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Abstract
A complete simulation system is proposed that can be used as an educational tool
by physicians in training basic skills of Minimally Invasive Vascular Interventions.
In the first part, a surface model is developed to assemble arteries having a planar
segmentation. It is based on Sweep Surfaces and can be extended to T- and Y-like
bifurcations. A continuous force vector field is described, representing the interaction
between the catheter and the surface. The computation time of the force field is
almost unaffected when the resolution of the artery is increased.
The mechanical properties of arteries play an essential role in the study of the

circulatory system dynamics, which has been becoming increasingly important in
the treatment of cardiovascular diseases. In Virtual Reality Simulators, it is crucial
to have a tissue model that responds in real time. In this work, the arteries are
discretized by a two dimensional mesh and the nodes are connected by three kinds
of linear springs. Three tissue layers (Intima, Media, Adventitia) are considered and,
starting from the stretch-energy density, some of the elasticity tensor components are
calculated. The physical model linearizes and homogenizes the material response,
but it still contemplates the geometric nonlinearity. In general, if the arterial stretch
varies by 1% or less, then the agreement between the linear and nonlinear models is
trustworthy.
In the last part, the physical model of the wire proposed by Konings is improved.

As a result, a simpler and more stable method is obtained to calculate the equi-
librium configuration of the wire. In addition, a geometrical method is developed
to perform relaxations. It is particularly useful when the wire is hindered in the
physical method because of the boundary conditions. The physical and the geo-
metrical methods are merged, resulting in efficient relaxations. Tests show that the
shape of the virtual wire agrees with the experiment. The proposed algorithm allows
real-time executions and the hardware to assemble the simulator has a low cost.
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Chapter 1 Introduction

1.1 Motivation

Over the last decades, Minimally Invasive Surgery (MIS) has revolutionized many
surgical procedures [1]. The treatment is delivered using image guidance, so that
skillful instrument navigation and a thorough understanding of the anatomy are
critical to avoid complications. MIS surgery has demonstrably better quality-of-life
outcomes than open surgery [2]. According to Fusch [3] “...two major drawbacks
have emerged with the introduction of MIS: firstly, the prolonged learning curve for
most surgeons, in comparison to the learning process in open surgery; and secondly,
increased costs due to investment in the equipment required and the use of disposable
instruments...”
Because MIS has a reduced sense of touch compared to open surgery, surgeons

must rely more on the feeling of net forces resulting from tool-tissue interactions [4].
Thus longer training is needed to develop sufficient skills. The outcomes of surgical
procedures and the possibility of medical training have been subject of exhaustive
research [5].
The combination of traditional learning methods and technology enhances trainee

satisfaction and skill acquisition level [6, 7]. The training methods include live ob-
servation of procedures, practicing on mechanical models, and hands-on training
using human cadavers or live animals [8]. In the past, hands-on training was con-
sidered the best available method [9, 10]. However, it has ethical issues and it is
also expensive, owing to the costs associated to the use of animals in the process
and because the instruments can be used only once [11].
Nowadays, Virtual Reality Simulators (VRS) provide an initial training step to

develop basics skills [12]. With the aid of simulation techniques, several training
sessions can be performed, which provide certain levels of proficiency to the physician
[13]. Moreover, no radiation is required and the simulation can be made specific [14].
Based on these findings, the US Food and Drug Administration accepted a proposal
that VRS is an important component of a training package for carotid stenting:
“Trainees would learn catheter and wire handling skills on a high-fidelity VRS until
the trainees achieved a level of proficiency in didactic and technical skills” [15].
Cardiac catheterization (Fig. 1.1) is a Minimally Invasive Vascular Surgery

(MIVS) commonly used to diagnose and treat heart conditions [17]. During catheter-
ization, small tubes (catheter) are inserted into the circulatory system through the
femoral artery and vein as the preferred access sites [18]. Using X-ray fluoroscopy,
information is obtained about blood flow and pressures within the heart. As a re-
sult, it is determined if there are obstructions within the blood vessels feeding the
heart muscle [19]. For interventional procedures (e.g. stenting and baloon angio-
plasty), a wire must be inserted through the catheter [20, 21] and maneuvered in
the coronaries.
The wires are commonly fabricated from type 304 stainless steel [22], but some

recent studies are trying replace metal by optical fiber, so that it can be used in
Magnetic Resonance (MR) environments [23]. Thus, it offers new possibilities of
measurements and analysis [24]. To control the motion of the catheter within the
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1.1 Motivation

Figure 1.1: Interventional cardiologists from NewYork-Presbyterian Hospital and
Columbia University Medical, performing a coronary angiogram in a
cardiac catheterization laboratory. The C-Arm [16] generates/detects
the X-Rays and the images are displayed on the screen.

vascular network, the radiologist can push, pull or twist the proximal end of the
device [25]. Achieving optimal outcomes requires operator skills in guiding the wire,
as well as selecting and using the surgical tools [26].
In general, MIVS such as the ones showed in Fig. 1.2, are expensive and complex

[27]. Procedures start with a needle insertion into the vascular system, but current
commercial simulators skip this step1 in order to reduce complexity and cost. The
wire and the catheter are then manipulated within the vascular anatomy to navigate
to the position of interest [29]. Rudin et al. [30] offer a vision for the future of this
dynamic field in the form of predictions.
Local deformations are important because they increase the realism in proximity

to the surgical tool [31]. However, changes in tool geometry cause variations in the
force-deflection responses only for large localized deformations of tissues [32], which
is not the case in catheter simulations. Thus, the catheter shape is not crucial and
it can be represented by a curve discretized by points.
Simulators are also able to differentiate advanced from novice operators, suggest-

ing that it is a valid tool in the assessment of performances [33]. VRS are not
exclusively used for training purposes, because they can be easily customized to

1Specific needle simulation can be practice in a different VRS [28].
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Chapter 1 Introduction

(a) (b) (c)

Figure 1.2: Commercial VRS for endovascular procedures: (a) Mentice VIST-C
(www.mentice.com ), (b) CAE Cath VR (www.caehealthcare.com ),
and (c) Simbionix ANGIO Mentor (http://simbionix.com ).

provide both medical programs and certification boards with an objective tool for
assessing physician skill and knowledge [34].
Dawson et al. [35] proposed an organogram of a MIVS (Fig. 1.3). According to

Sanz-Lopes et al. [36], the design of VRS, and more specifically those dedicated to
surgery training, implies to take into account numerous constraints so that simula-
tors look realistic and train proper skills for surgical procedures. Among those con-
straints, the accuracy of the biophysical models [37] remains a very hot topic, since
parameter estimation and experimental validation often rely on invasive protocols
that are obviously not suited for living beings [38]. In the context of Interventional
Radiology, the procedures involve the navigation of surgical catheter tools inside the
vascular network where many contacts, sliding, and friction phenomena occur [39].
According to Peterson et al. [41], one of the major components of the cardiovas-

cular system is its arterial network, the mechanical properties of which determine
the propagation of energy from the heart to the periphery. The relationships of
blood flow and blood pressure [42], of intravascular pressure and vessel volume [43],
of pulse wave velocity and blood pressure [44] are but a few of the variables often
measured which depend, quantitatively, on the mechanical properties of the blood
vessel walls.
The arterial wall is composed by three tissue layers: Intima, Media, and Adventitia

[45]. A better understanding of the arterial wall mechanics can provide relevant
information for medical diagnosis and therapies of some vascular pathologies [46].
For example, the measurements obtained by an Intravascular Ultrasound (IVUS)
(Fig. 1.4) of the arterial tree stiffness, can be applied in routine clinical practice for
risk stratification [47]. Detailed knowledge of vascular tissue properties is required to
improve procedures such as angioplasty, to design arterial prostheses, and to describe
the dynamics of the interaction between the heart and the circulatory system [48].

4
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1.1 Motivation

Figure 1.3: Components of a real-time simulator proposed by Dawson et al.
[35]. The user interacts with the haptics interface device contain-
ing catheters and guidewires linked to force-feedback mechanisms. A
haptic controller integrates the catheter model, blood flow models,
and synthetic fluoroscopy renderer. Hemodynamic models affect fluid
flow and subsequent fluoroscopic appearance. Geometric models of
anatomy and devices used during procedures provide tissue-tool inter-
actions. The user interface relays information about the physiologic
state of the patient (hemodynamic model) and the progress of the
procedure through the fluoroscopic display.

Moreover, in order to show the artery deformation caused by the introduction of
medical devices, a truthful simulator of the MIVS must consider the physical models
of the devices and of the artery [49, 50].

The mechanical properties of vascular tissues can not be described in terms of
homogeneous cell agglomerations [51]. Tissues have microscopic and macroscopic
organizations, which need to be considered in the context of multiple scales [52].
The arterial wall is incompressible, inhomogeneous, and exhibits hysteresis under a
cyclic load [53]. When modeling the artery, a complex set of nonlinear equations
results and considerable Processing Time (PT) is consumed to solve them [54].

5



Chapter 1 Introduction

Figure 1.4: Cross-sectional format of a typical IVUS image. The bright-dark-
bright, three-layered appearance is seen in the image with correspond-
ing anatomy as defined. The IVUS represents the imaging catheter
in the blood vessel lumen. Histologic correlation with intima, media,
and adventitia are shown. The media has lower ultrasound reflectance
owing to less collagen and elastin compared with neighboring layers.
Because the intimal layer reflects ultrasound more strongly than the
media [40], there is a spillover in the image, which results in a slight
overestimation of the thickness of the intima and a corresponding un-
derestimation of the medial thickness (black and white image). Figure
extracted from Moscucci [26].

1.2 Contributions
The publications of the author are the Refs. [55–63] and the results appearing in
this thesis have been published mainly in the last three ones. Specifically, the major
contributions are:

• A model that assembles arteries and has planar segmentation to increase effi-
ciency of the collision-detection algorithm. It is based on Sweep Surfaces and
can be extended to T- and Y-like bifurcations.

• Description of a continuous force vector field, representing the interaction be-
tween the catheter and the surface of the artery.

• Linearization of an artery model to calculate the stiffness of springs used in

6



1.3 Organization

Two-Dimensional (2D) Finite Element Method (FEM).

• In comparison with the paper of Konings et al. [64]:
– The wire model is more accurate, especially when the bending is large.
– The update equations are simpler and the calculations are faster.
– The wire segment can be introduced at once (it is not necessary to make

subdivisions).

• A new method, the Geometrical Relaxation (GR), is introduced. It helps to
improve the speed when the wire is hindered by boundary conditions.

• A hardware device is described, which is simple to deploy and has a low cost.
This can help to disseminate the technique and make it widespread.

1.3 Organization
The chapters are independent, complementary, and are organized as follows:

• Chapter 2 (based on Ref. [61])
A model is proposed to assemble arteries which includes planar segmentation,
increasing the efficiency of the collision-detection algorithm. Specifically, in
Section 2.2.1 the Sweep Surfaces and the T- and Y-like bifurcations are de-
scribed. Then, in Section 2.2.2 a continuous force vector field, representing
the interaction between the catheter and the surface, is presented.

• Chapter 3 (based on Ref. [62])
The artery model is linearized to calculate the stiffness of springs. Arteries
with three tissue layers (Intima, Media, Adventitia) are considered and, start-
ing from the stretch-energy density, some of the elasticity tensor components
are calculated. The artery is discretized by a 2D mesh where the nodes are
connected by three kinds of linear springs (one normal and two angular ones).
The model linearizes and homogenizes the material response, but it still con-
templates the geometric nonlinearity. Specifically, a linearization is performed
in Section 3.2 to determine the Elasticity Tensor (ET) for each layer. Fur-
thermore, the interaction between the nodes is simulated using normal and
angular springs. Then, in Section 3.4 the stiffnesses are determined and the
results are compared to the calculations performed with a nonlinear model.
Finally, in Section 3.4.1 the range of validity in the linear approximation is
analyzed.

• Chapter 4 (based on Ref. [63])
In this chapter, a complete system for the simulation of MIVS is described.
The environment is composed of a hardware that captures the movements
of the wire and an algorithm that simulates in real-time the motion inside

7



Chapter 1 Introduction

arteries. In Section 4.2.1 the physical model of the wire proposed by Konings
is improved. As a result, a simpler and more stable method is obtained to
calculate the equilibrium configuration of the wire. Then, in Section 4.2.2 the
GR method is developed to perform relaxations. It is particularly useful when
the wire is hindered in the Physical Relaxation (PR) method because of the
boundary conditions. Also, in Section 4.2.3 a recipe is given to merge the PR
and the GR methods, resulting in efficient relaxations. The hardware has a
low cost and is explained in Section 4.2.4. Moreover, in Section 4.3 tests show
that the shape of the virtual wire agrees well with the experiment.

Finally, in Chapter 5 the main conclusions of the previous chapters are addressed
and future works are pointed out.

8
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Chapter 2 Surfaces for Modeling Arteries

2.1 State of the Art
According to Kretschmer et al. [65], current vascular modeling methods can be
roughly categorized as model-free or model-based. Model-free methods are also re-
ferred to as implicit methods, since they usually rely on generic point cloud-based in-
terpolation techniques [66] and make extensive use of implicit indicator functions to
interpolate models. Common choices for interpolation techniques include multilevel
partition of unity implicits [67] and Poisson surface reconstruction [68]. Model-free
methods are usually concerned with a robust extraction of point clouds from binary
segmentation masks that is able to capture fine vessels. To generate reliable inter-
polations, these methods need a dense sampling and usually they do not incorporate
explicit topological and geometric information on the underlying vasculature.
Model-based methods, in contrast, are motivated by the tubular structure of vas-

cular systems and are frequently used to visualize centerline descriptions [65]. Many
techniques rely on explicit mesh generation methods [69–71], which is usually fast
but often leads to selfintersecting meshes at vascular bifurcations. For computational
hemodynamics, the generated models need to be smooth and free of selfintersections
or unwanted inner structures [72]. Implicit modeling provides inherent composition
mechanisms to solve this problem and has been successfully used to generate model-
based vascular models. The Oeltze & Preim [73] approach is based on convolution
surfaces and produces closed, intersection-free models. It has, however, limited ex-
pressiveness, since it is restricted to polar definitions of cross sections. An implicit
modeling technique that supports free-form shapes was proposed by Kretschmer et
al. [74].
Workflows to interactively segment or correct vascular segmentations have been

proposed by Diepenbrock & Ropinski [75] and by Wang et al. [76]. These semi-
automatic methods, however, are bound to the resolution of the underlying dataset
and allow only for an indirect manipulation of the vascular representation.
A mesh generation of image-based vascular models has been implemented by

Santis et al. [77] combining two software packages: the Vascular Modeling Toolkit
from www.vmtk.org (a software for Three-Dimensional (3D) reconstruction and
geometric analysis of image-based modeling of blood vessels) and pyFormex from
www.pyformex.org (a software for generating, transforming, and manipulating large
geometrical models of 3D structures by sequences of mathematical operations). A
common problem of surface mesh generation is the intersecting triangulations. Ce-
bral et al. [78] described an algorithm for merging these triangulations in the context
of FEM applied to blood flow.
Sometimes a complicated geometry is not adequate, especially at initial learning

stages. Currently, there are no implementations of hands-on online learning plat-
forms for physicians in this area, because the algorithms used are computationally
expensive to simulate a real-time experience [79]. The need for such a platform
inspired the development of our model-base algorithm, which generates virtual ar-
teries using Sweep Surfaces.1 In particular, the planar geometry of the contour

1See a video at https://youtu.be/MXHTx0MjNNo
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2.2 Methods

curves improves the collision-detection [80] between the tool and the artery.

2.2 Methods

2.2.1 Surfaces

Figure 2.1: (a) A Bezier curve defined by 7 control points representing the trajec-
tory α(t). The orthonormal vectors T, N, and B are illustrated at
a particular point. (b) The parametric curve ξt(u) changes its shape
smoothly. The cross section in this example is a circumference with
variable radius.

Sweep surfaces have already been used for modeling vascular structures applied
to blood flow simulations [65, 81]. This idea is extended to show how it can be used
to generate virtual arteries suitable for simulators of MIVS.
Generating a 3D surface by sweeping a curve along a trajectory α(t) as in Fig.

2.1(a), consists of forward mapping a contour set ξt(u) [82]. The general transfor-
mation describing the parametric surface can be written as the isometry

S(t, u) = ξt(u)

N(t)
B(t)
T(t)


3×3

+α(t)

where the tangent T(t), the normal N(t), and binormal B(t) are the vectors in
the Frenet-Serret frame [83]. To simplify the equations and to introduce a planar
segmentation, we use 2D curves ξt(u) =

(
xt(u), yt(u)

)
, i.e. with zt(u) = 0. Then

11



Chapter 2 Surfaces for Modeling Arteries

the Sweep Surface becomes (Fig. 2.1(b))

S(t, u) =
(
xt(u), yt(u)

)(N(t)
B(t)

)
2×3

+α(t) (2.1)

Sometimes, it is convenient to rotate the normal and binormal vectors in order to
adjust the curves close to the bifurcation. The 2D planar curves are discretized by
polylines with Nv vertices. The topology of the inner surface, where the interaction
with the catheter takes place, is defined by a triangularization [84].
It is possible to connect arteries through “T” or “Y” bifurcations, preserving

planar polylines in the intersection. Some vertices of the polylines are removed and
additional planes are required to decide in which artery the catheter is located (see
Fig. 2.2 for details). To avoid holes in the connection of consecutive segments, all
polylines must have the same number of vertices.
The idea of planar surfaces can be extended to real objects (Fig. 2.3). This can

be done by defining planes intersecting the real model and constructing a polyline
which fits the cross section by means of a least square procedure. Finally, note
that the resolution in the intersection region depends solely on Nv, which must be
a multiple of 4. Specifically, the number of Surface Elements (SE) equals N2

v and
3
4N

2
v in a T-like and in a Y-like bifurcation respectively.
In a VRS the collision-detection must be carried out between the catheter and

the inner surface of the artery [85]. In principle, a simple algorithm checks if an
intersection occurs between each segment of the catheter (a large number) and the
triangles that mold the surface and represent the discretization of the artery wall (a
huge number).
The collision search task is time-consuming and an efficient approach is to use

the idea of boundary boxes [86]. In our case these become segment boxes and take
advantage of the Sweep Surface geometry. Each segment box is bounded by two
consecutive planar sections and the search is restricted to those triangular SE inside
the segment.
A further improvement can be made by dividing each cylindrical segment into

subsegments as slices of a cake (Fig. 2.4(a)). We take the number of subsegments
to be equal to the number Nv of polyline vertices. Then the number Ns of SE per
subsegment is approximately constant.
Making additional subdivisions (Fig. 2.4(b)) reduces the collision-detection cal-

culation still further. Close to the border of the slices of a cake we insert a cutting
plane (blue line), so that if the catheter is inside the white or light green region no
collision-detection needs to be performed. Hence, by including a single additional
step we can avoid testing the collision-detection with the SE, which are approxi-
mately five in number as observed in numerical simulations.
A straightforward procedure to find a cutting plane is as follows. Let S1, · · · ,

Sm be the vector areas of the SE (triangles) within the subsegment. First calculate
nS = S1 + · · · + Sm, where S represents the modulus of the sum and n is a unit
vector. The normal n points in the average direction of the triangles vector area.

12
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(a)

(b)

Figure 2.2: Top view of connected arteries having polylines with the same number
of vertices (open points). The 3D segments are represented by white
and light colored areas separated by planar polylines. When two planes
intersect some vertices are removed and the truncated polylines have
two vertices in common: one at the top (black point) and one at the
bottom (not shown). The shape of the arteries is arbitrary, since the
only requirement is that the black point remains in the line given by
the intersection of the two planes. The black lines represent additional
planes that split the volume between adjacent arteries. We show in
(a) a T-like bifurcation and in (b) a Y-like bifurcation.

Further, if r1a, r1b, r1c, · · · , rma, rmb, rmc are the vertices of the triangles, test which
one gives the smallest dot product n.rix and label it as rmin. An equation for the
cutting plane is n.(r− rmin) = 0, since all triangles will be on the upper side of this
plane.
To decide which SE the catheter joint intercepts, it is necessary to have aditional

planes (black lines in Fig. 2.4) dividing the volume between adjacent triangles, i.e.

13
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(a) (b) (c)

Figure 2.3: (a) Image from a bifurcation of the Abdominal Aorta into the Common
Iliac Arteries. The image was extracted using the Vascular Modeling
Toolkit software, which can also determine the central line α(t) (not
shown). Virtual representation using planar polylines (b) in a T-like
bifurcation and (c) in a Y-like bifurcation. Although both bifurcations
styles can be applied, in this case the Y-like bifurcation looks more
natural. For simplicity, the resolution is low with Nv = 24 vertices,
and the triangularization is not displayed in order to make the Figure
clear.

to build volume boxes similar to a triangular prism. We label this plane as lateral
plane and it will be used in the calculation of the interaction force (Section 2.2.2).
Consider two vertices A and B common to the pair of triangles. The lateral

plane goes through the vertices A, B, and has a normal vector t̂AB. A natural
definition for t̂AB is to take it parallel to the vector (rA − rB) × (n̂A + n̂B), where
ri represents the position of the vertice and n̂i the surface normal. In this way t̂AB
is perpendicular to the line joining A, B, and also to the average normal vector at
these vertices. However, when A and B are in the same planar polyline, the vector
t̂AB is the normal vector of the plane containing the polyline.
The video at https://youtu.be/q5lhvXNd_Xg shows how the sections are cre-

ated.

2.2.2 Catheter-Surface Interaction
A critical point in simulations is how the catheter interacts with the artery, since
the finely tuned details will decide the way the catheter propagates in bifurcations,
which is the significant part of the learning process [87].
We suppose that the catheter has intercepted a triangular SE with vertices ABC

and we proceed to calculate the force FABC acting on this surface.
At the A-th vertice we define the vector kA = keqAn̂A, whose modulus keqA rep-

resents the equivalent stiffness of the springs holding the vertice to the equlibrium
position. The force associated with A reads

FA = skA (2.2a)
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(a)

(b)

Figure 2.4: Cross section in the midle of a segment i.e. between two planar poly-
lines. In this example each polyline has Nv = 8 vertices and there
are 2Nv = 16 triangular SE (red lines) defining the topology of the
artery segment. Additional lateral planes (black lines) are used to di-
vide the volume outside the artery between adjacent SE. Notice that
the planes represented by lines are not perpendicular to the Figure but
are inclined. (a) Cross section of an artery segment divided as slices of
a cake (green lines). In practice the division need not be symmetric.
(b) Further subdivision using a single additional plane per subsegment
(blue lines).

where s stands for the distance between the joint and the SE.
Denoting by x the joint position, we associate the following force with the line

connecting A and B (Fig. 2.5(a))

FAB = dB FA + dA FB

dA + dB
(2.2b)

where dA =
√

(x− rA)2 − [m̂A.(x− rA)]2 is the distance to the line going through
A and parallel to the unit vector m̂A, which points in the direction of t̂AB × t̂CA.
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dA

m̂A

dB

m̂BrA rB

x

s

(a)

eAB

t̂AB

FAB

eCA
t̂CA

FCA eBC

t̂BC FBC

rA rB

rC

x

(b)

Figure 2.5: (a) Side view of the catheter joint at position x between two vertices
at rA, rB. The green lines go through A, B, and are parallel to the unit
vectors m̂A, m̂B, respectively. The vectors x, m̂A, and m̂B are not in
the plane of the Figure. (b) Top view of the joint over a triangular SE.
The unit vectors t̂ij are not in the plane of the Figure, and the vectors
Fij are not perpendicular to the plane of the Figure.

The resulting force acting on the SE is defined to be (Fig. 2.5(b))

FABC = eAB eCA FBC + eBC eAB FCA + eCA eBC FAB

eAB eCA + eBC eAB + eCA eBC
(2.2c)

where eAB = t̂AB.(x− rA) = t̂AB.(x− rB) is the distance to the lateral plane.

The weight of FA in the calculation of FAB is inversely proportional to dA, and for
dA → 0 we get FAB → FA. Similarly, the weight of FAB in the calculation of FABC

is inversely proportional to the distance eAB, and for eAB → 0 we get FABC → FAB.

Lastly, according to Newton’s third law the reaction force of the surface Fsurf
equals minus the force −FABC exerted by the catheter. Since the force is related to
the potential energy by Fsurf = −∇Usurf , the gradient of the surface energy coincides
with FABC . This gradient is used to determine the wire behaviour (see Section 4.2).
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2.3 Technical Evaluation
Initially, the steps to calculate the force in a collision are examined. The recipe used
in the collision-detection algorithm has the following steps. For each catheter joint
perform the operations described below (Fig. 2.6):

1. Identify the artery segment where the joint is located. As the catheter is
pushed into or removed from the vessel, the position of the joint changes along
the artery. Thus, the first step is to verify if the joint remains in the segment,
moves forward, or recedes. The search starts from the last known location
and since this operation is repeated with a high frequency in comparision with
the speed of the catheter, most of the time the joint will remain in the same
segment.
The total wire length can be changed introducing or removing catheter seg-
ments close to the end instead of the beginning. In this way, the transition
probability of a joint between adjacent artery segments becomes even smaller,
since it does not change the position of the joints up to the beginning. How-
ever, decreasing the separation between planar polylines (i.e. increasing the
resolution of the artery in the axial direction) increases the transition proba-
bility.

2. Search for the subsegment where the joint is located (slice of the cake in Fig.
2.4(a)). The subsegments are periodically ordered and the search is performed
examining on which side of the green planes the joint is situated. As in step 1,
most of the time the subsegment location will not change and this step usually
reduces to test if the joint remains in the same subsegment. Thus, choosing a
larger number of divisions (subsegments) does not affect the PT.

3. Test if the joint is in the inner side of the subsegment (white or light green
regions in Fig. 2.4(b)). This check is easy to perform and in affirmative case
there can be no collision, so that the calculation stops here. Since the inner
volume is much larger than the outer volume (cyan region in Fig. 2.4(b)), this
will be the result unless the joint is very close to the surface. The cyan region
decreases when the number of vertices increases.

4. Test the collision of the joint with some triangular SE. This requires to verify
if the joint crosses the plane defined by the triangle. Moreover, we must
check the position within the volume enclosed by the triangular prism (Section
2.2.1). If the result is negative all SE within this subsegment must be tested.
Furthermore, when a collision ocurred previously, the new search starts from
the last SE where the collision was detected.
Note that variations of the average Ns affect the PT, since a larger number
means that more collision tests must be performed. We remark that increasing
Nv and the number of subdivisions by the same amount can result in tiny
variations of Ns. This happens because the surfaces are usually not right
circular cylinders and the SE are triangles with variable shape. Hence, the PT
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does not become appreciably larger using a higher resolution in the tangential
direction.

5. Reaching this step means that a collision ocurred and we have identified the
triangular SE. Then proceed to calculate the reaction force on the SE (linear
approximation) as described in Section 2.2.2.
The calculation of the force takes longer than testing all collisions in a sub-
segment (step 4) with a negative result. Changing the resolution modifies the
geometry on a small scale. As a consequence, the contact points between the
catheter and the surface will not be exactly the same. Thus, the collision
number varies slightly with the resolution.

Start
Identify the

artery segment

Search the
subsegment

Inner side

Collision

Calculate
the force

Stop

Stop

no

yes

yes

no

Figure 2.6: Workflow of steps 1–5 to calculate the force FABC between the wire
and the artery wall.

In CA simulations, most of the PT is spent in determining the interaction between
the catheter and the surface [88]. The recipe above constitutes an efficient method
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to perform this calculation. The PT does not increase appreciably using a higher
artery resolution in the axial and/or tangential directions.
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M

(a1)
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(a2)
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(b1)

s

D

F

H (b2)

Figure 2.7: (a1) Concave intersection KLM . As a point moves along the line
DEFGH, the distance s to the planes KL and LM (perpendicular to
the Figure) varies continuously as shown in (a2). (b1) Convex inter-
section KLM . As a point moves along the line DFH, the distance s
to the planes KL and LM has the dependence shown in (b2), which is
not continuous at point F .

The force vector field defined in Section 2.2.2 is a continuous function of the
position. Further, consider a lateral plane (line LF in Fig. 2.7) dividing two adjacent
triangular regions. In a convex surface as in (a1), the field is continuous at LF (point
F in (b2)), since for eAB → 0 the value is equal to FAB on both sides. For that

19



Chapter 2 Surfaces for Modeling Arteries

reason, no instabilities appear when the joint moves across the lateral plane. But in
a nonconvex surface, as can happen for example in the bifurcation of arteries, the
modulus of the field is discontinuous. The minimum distance s to the SE has a jump
across the lateral plane (point F in (b2)) and FAB differs on both sides. However,
in the special case that the angles ∠FLK and ∠FLM are equal, s is continuous at
F .
Close to equilibrium, the catheter joints which are not tightly bound to the sur-

face bounce in and out by a small amount (a numerical artifact). When the joint
leaves the surface, the repelling force instantaneously becomes zero and the joint
moves back. Therefore, including dissipative forces in the calculations improves
convergence [89].

2.4 Software
In order to modele the sweep surfaces, a system was developed in C++ that uses
the OpenGL2 graphic library [90] and the GLUI user interface library.3
In the main window of the modeler, it is possible to add and to edit the parameters

of the central line, to change the perspective, and to chose the objects to be visualized
(Fig. 2.8). Specifically, the main controls are:

Segment - Add or delete a new segment of the central line. It can be connected
with a T- or Y-like bifurcation.

Control Point - Edit the control points of the central line.
Model Rotation - Rotate the tubular or the bifurcation surface around the first

control point.
Real movements - Change the position and scale of the real model.
Show - Specify how each object must appear.

Two auxiliary windows work in connection with the main window (Fig. 2.9).
They are used to edit the planar curves of the sweep and of the bifurcation surfaces.
Any change in the auxiliary windows is immediately updated in the main window.
This ensure the correct visualization in the artery model.
The most relevant controls of the Builder of Sections window are:

Scale/Rotation - Change the scale and rotation of the curve around the central
point (green in Fig. 2.9).

Position - Change the position of the planar curve over the central line. It varies
from 0 to 1, which corresponds to the beginning and to the end of the central
line respectively.

Curves selection - Select the active planar curve.
New curve 2D/Del - Add or delete a planar curve.
Orientation - Change the orientation of the polyline (clockwise or counterclock-

wise).
2Open Graphics Library www.opengl.org
3GLUT-based www.glui.sourceforge.net
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Figure 2.8: Main window of the Modeler software. The sweep surface in red is
built over a real model of coronaries in blue (kindly yielded by LNCC
www.lncc.br ). The central line is a Bezier curve (cyan) with 4 control
points.

Adj. Act/All Sec - Merge the planar curve in the real model.

The most relevant controls of the Builder of Bifurcations window are:

Surface - Chose the part of the bifurcation.
Curve - Chose the planar curve.
Separ - Select the distance between the adjacent central lines.
Adj. Act/All Sec - Merge the planar curve in the real model.

Once the central line is positioned inside of the real model, moving the 4 control
points of the Bezier curve automatically fits all the planar sections. A similar pro-
cedure is performed at the bifurcation.

21

www.lncc.br


Chapter 2 Surfaces for Modeling Arteries

(a) (b)

Figure 2.9: (a) “Builder of Sections” auxiliary window. Here it is possible to edit
the planar curves which are swept over the main curve. (b) “Builder
of Bifurcations” auxiliary window. In this window, the planar curves
from the bifurcations are edited. The green point in both windows rep-
resents the intersection of the central line and the plane which contains
the planar curves.

2.5 Conclusions
An intuitive way to create the geometry of an artery using the sweep technique
was proposed, which can be extended to bifurcations. The method only requires to
define the trajectory and the cross section with planar polylines. Then it quickly
determines the topology of the inner surface. Furthermore, this procedure can also
be applied to model arteries with real data.
The most time-consuming task in catheter simulations is the calculation of inter-

actions with the surface. The use of planar surfaces in the segmentation simplifies
the collision-detection algorithm. The idea of boundary boxes is key to create a
simple and efficient method. A procedure has been introduced to create a smart
volume partition of the arteries. The artery resolution can be increased and it does
not affect the PT significantly.
A thorough recipe to calculate the gradient of the surface energy representing the

interaction with the catheter was given. The resulting force field is a continuous
function of position, except under special circumstances at bifurcations. This vector
field is a milestone for the development of a catheter simulator.
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Chapter 3 Approximate Artery Elasticity

3.1 State of the Art

Acording to Diez [91], physiological and pathological changes in the cardiovascular
system directly influence the mechanical behaviour of arterial walls. With age, the
normal wall stress is associated with a larger diameter and a stiffer material of the
arteries (arteriosclerosis), which results in increased pulse-wave velocity and dispro-
portionate increase in pressure [92]. It is, therefore, of crucial importance to improve
the understanding of the mechanical properties of the constituents of arterial walls,
including the inherent features of anisotropy and nonlinearity [93]. These properties
pose formidable challenges in the constitutive modelling and numerical analysis of
such tissues, and they can be clearly connected to the underlying structure of the
tissues [94].
The passive mechanical behaviour of an arterial wall is governed mainly by the

matrix material (which consists of water, elastin, and proteoglycans [95]) and the
collagen fibre reinforcement [96]. The anisotropy is associated with the local mean
alignment of the collagen fibres which stiffen their response under tension [97], lead-
ing to significant nonlinear characteristics. The fibres are not perfectly aligned but
are dispersed around a mean direction [98]. The amount and character of the dis-
persion depends on the topography, the particular layer of the vessel considered, and
the respective (patho)physiological condition, inter alia. Fibre dispersion and struc-
tural quantification of collagen in arterial walls has been documented and analysed,
for example, in Refs. [99–103].
An overview of the main existing continuum mechanical models was provided by

Holzapfel et al. [93]. Classical continuum mechanics assumes that the constitutive
models and the corresponding simulations start from an unloaded, stress-free ref-
erence configuration [104]. This has been used to calculate the amount of stress
applied to the tissue and its associated strain response [105–108]. Other models try
to approximate the behavior by splitting the strain-energy function into an isotropic
part for elastin and an anisotropic part for collagen [109, 110]. Collagen exhibits
high non-linear behavior bearing the major part of the load transmitted through
the tissue, while elastin has important flexibility and extensibility features for blood
vessels [111].
Hill et al. [112] presented a new combined constitutive model in which fiber

recruitment begins at a finite strain with activation stretch represented by a proba-
bility distribution function. By directly including this recruitment data, the collagen
contribution was modeled using a simple Neo-Hookean equation [113]. As a result,
only two phenomenological material constants were required to fit the stress-stretch
data.
A nonlinear artery model has been proposed by Holzapfel et al. [48], which is well

suited for numerical realization using FEM [114]. Due to its strong mathematical
background, the FEM is physically more accurate than most methods [115, 116].
Linear FEM is the most popular technique to model tissue deformation in VRS [117].
However, it is a time-consuming process and can not support real time simulations
unless some approximations are done. For instance, in the Condensation Method
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only the displacements in the vicinity of the surgical instrument are calculated [118].
The simulation is restricted to specific tasks and regions, while the rest of the scene
remains a static mesh.
An alternative approach to the FEM is the Mass-Spring Method, which uses

springs to connect the nodes of the mesh [119–122]. In comparison to the FEM,
it is relatively easy to simulate the soft tissue deformation [123]. Nevertheless, the
outcomes depend on the springs stiffnesses and the determination of the stiffnesses
is not a straightforward task [124].
In this chapter, a 2D mesh to calculate artery deformations is proposed. Therefore,

the numerical difficulties arising from the isochoric constrain in 3D are avoided. The
number of points in the FEM is substantially reduced and the calculations become
simpler.

3.2 Methods

When accuracy is not the most relevant aspect and a real time response is required
as in VRS, reduced mesh size and linearization increase the computing performance
[125]. The method in this work is equivalent to a FEM using few mesh points. First,
some ET components are determined and, afterwards, the stiffness of the springs
connecting the nodes are calculated.

3.2.1 Elasticity Tensor

Any model used to describe tissues must be populated with data which are difficult
to acquire in vivo [126]. It is not our purpose to develop a new artery prototype but
to simplify the model of previous works. Our main interest is in tangential, axial,
and radial deformations, so shear stretches will not be considered. Holzapfel et al.
[127] have modeled each arterial layer t with the following energy density function

Ψt = µt(I1 − 3) + k1t

k2t
(Γt − 1) (3.1)

with

Γt = ek2t[(1−ρt)(I1−3)2+ρt(I4t−1)2] (3.2)

The invariants I1, I4t are defined by

I1 = Λr+θ+z

I4t = Φθt + Φzt (3.3)
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where

Λ`r+mθ+nz = `λ2
r +mλ2

θ + nλ2
z

Φθt = λ2
θ cos2 φt

Φzt = λ2
z sin2 φt (3.4)

and `,m, n represent integers. For example, Λr+θ+z = λ2
r + λ2

θ + λ2
z, Λθ−r = λ2

θ − λ2
r,

and Λz+r = λ2
z + λ2

r. The physical parameters of the layers µt, k1t, k2t, ρt, φt were
experimentally obtained from the coronaries of human cadavers (Table 3.1).

Table 3.1: Average physical parameters from Holzapfel et al. [127] for the Intima
(i), Media (m), and Adventitia (a) tissues. The thickness at is in mm,
µt and k1t are in kPa, k2t and ρt are dimensionless, and the angle φt is
in degrees.

t at µt k1t k2t ρt φt

i 0.24 27.90 263.66 170.88 0.51 60.3
m 0.32 1.27 21.60 8.21 0.25 20.61
a 0.34 7.56 38.57 85.03 0.55 67.0

Soft tissues, composed of collagen fibers with a considerable amount of water, can
be modeled as quasi-incompressible [128]. Their volumes do not change within the
physiological range of interest, so that

λrλθλz = 1 (3.5)

Hence, the radial stretch λr depends on the tangential stretch λθ and on the axial
stretch λz. Furthermore, the stresses in the circumferential and axial directions are
functions of λθ and λz

σθθt = λθ
∂Ψt

∂λθ

σzzt = λz
∂Ψt

∂λz
(3.6)

Several calculations in artery mechanics are inherently large deformation prob-
lems. However, our interest is in small deformations and a linearization is carried
out in order to obtain the incremental elasticity constants. By expanding (3.6) in a
Taylor series up to the first order

σθθt = σθθt0 + cθθθθtεθθ + cθθzztεzz

σzzt = σzzt0 + cθθzztεθθ + czzzztεzz (3.7)
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where cθθθθt, czzzzt, cθθzzt are ET components,

εθθ = ln(λθ/λθ0)
εzz = ln(λz/λz0) (3.8)

are strains, and λθ0, λz0 are the circumferential and axial stretches in the average
blood pressure pin.
It is convenient to define

Pθt = (1− ρt)(I1 − 3)Λθ−r + ρt(I4t − 1)Φθt

Pzt = (1− ρt)(I1 − 3)Λz−r + ρt(I4t − 1)Φzt

Qθθt = (1− ρt)
[
(I1 − 3)Λθ+r + Λ2

θ−r

]
+ ρt(I4t − 1 + Φθt)Φθt

Qzzt = (1− ρt)
[
(I1 − 3)Λz+r + Λ2

z−r

]
+ ρt(I4t − 1 + Φzt)Φzt

Qθzt = (1− ρt)
[
(I1 − 3)Λr + Λθ−rΛz−r

]
+ ρtΦθtΦzt (3.9)

Then the stresses at average blood pressure are explicitly

σθθt0 = 2µtΛθ−r + 4k1tPθtΓt

σzzt0 = 2µtΛz−r + 4k1tPztΓt (3.10)

and the ET components in (3.7) are calculated with the formulas

cθθθθt = 4µtΛθ+r + 8k1tQθθtΓt + 16k1tk2tP
2
θtΓt

czzzzt = 4µtΛz+r + 8k1tQzztΓt + 16k1tk2tP
2
ztΓt

cθθzzt = 4µtΛr + 8k1tQθztΓt + 16k1tk2tPθtPztΓt (3.11)

α

ai am aaRin

Intima

Media

Adventitia

Figure 3.1: Cross view of the arterial ring in the stress-free reference configuration
(not to scale, see Fig. 1.4). The geometrical parameters are the inner
radius Rin, the tissue thicknesses ai, am, aa, and the opening angle α.

For simplicity, a cylindrical artery is considered. The inner radius is Rin and the
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thicknesses of the Intima i, Media m, and Adventitia a tissues are ai, am, and aa
respectively (Fig. 3.1). After applying an internal pressure or stretching axially the
artery, the geometry changes [128].
Because the tissues are incompressible [129, 130], the circumferential stretch has

the following dependence on the radius r

λθ = kr

R
= kr√

R2
in + kλz(r2 − r2

1)
(3.12)

where k = 2π/(2π − α) and r1 = λθinRin/k is the inner radius in the deformed
configuration (with internal pressure pin). Furthermore, α represents the opening
angle (Fig. 3.1) and λθin represents the circumferential stretch at the inner surface.
Particularly, the volume average is

λθ = 1
λz
(
r2

2 − r2
1

)[r2Ra − r1Rin + kλzr
2
1 −R2

in√
kλz

ln
(√

kλzr2 +Ra√
kλzr1 +Rin

)]
(3.13)

where Ra = Rin + ai + am + aa and r2 = Υ(Ra), the function Υ being defined by

Υ(R) =
√
r2

1 + R2 −R2
in

kλz
(3.14)

When the cylindrical artery is subjected to the internal pressure, the deformation
and the stress are axially symmetric. The equilibrium stress without external body
forces satisfies the following differential equation [131]

dσrr
dr + σrr − σθθ

r
= 0 (3.15)

The boundary condition at the inner surface is σrr(r1) = −pin and (3.15) can be
integrated numerically to determine σrr(r). However, the value of λθin is not yet
known and it is chosen such that σrr(r2) = 0 results. Physically, this condition is
equivalent to a zero traction at the external surface [132].

3.2.2 Spring Stiffness

To simulate the physical properties of the tissues, the interaction between the nodes
located at the inner surface of the Intima must be defined. For simplicity, the mesh
of points forms a net of rectangles. They are connected with three kinds of linear
springs:

1. Normal spring with stiffness κi and energy κi(∆bi)2/2, where ∆bi represents
the departure from the equilibrium distance bi between two nodes along the
tangential, axial, or diagonal direction (Fig. 3.2(a)).
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2. Angular spring with stiffness τ and energy τ
(
−∆[cosϕ]

)2
/2, which is associ-

ated with the relative orientation (angle ϕ) between two neighboring rectan-
gles. They have a common axis of rotation n̂z parallel to the axial direction
(Fig. 3.2(b)).

3. Angular spring with stiffness ζ and energy −ζ ∆[cosϕ]. It is associated with
the relative orientation of two neighboring rectangles, which have an axis of
rotation n̂θ pointing in the tangential direction (Fig. 3.2(c)).

The spring κ involves the relative position of two nodes, while the two angular
springs involve three nodes simultaneously (e.g. r1, r2, r3 in Fig. 3.2(b) and r4, r5,
r6 in Fig. 3.2(c)). The difference between spring τ and spring ζ is that, in the last
one, the two rectangles lie in the same plane when there is no deformation. For
example, in a right circular cylinder the adjacent rectangles of the spring τ and of
the spring ζ are in the tangential and axial direction respectively.

κθ

κzκd

bθ

bz (a)

ττ

r1

r2r3

ϕ0 nz
^ (b)

r4

r5

r6

ζζ

nθ
^ (c)

Figure 3.2: (a) Four nodes (black points) are connected by two springs of stiffness
κθ (red lines), two springs of stiffness κz (green lines), and two springs
of stiffness κd (blue lines). Increasing the distance bθ by bθεθθ (tan-
gential direction) and the distance bz by bzεzz (axial direction), also
increases the length of the diagonal bd. (b) Two adjacent non coplanar
rectangles (ϕ0 6= 0) have two angular springs of stiffness τ connected
to straight lines joining the nodes (e.g. r2 − r1 and r3 − r1). The axis
of rotation is the unit vector n̂z. (c) Two adjacent coplanar rectangles
have two angular springs of stiffness ζ. The axis of rotation is n̂θ.
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Chapter 3 Approximate Artery Elasticity

3.2.2.1 Normal Spring κi

The stiffness of the spring κ is related to the elastic properties of the tissues and
to the geometry of the mesh. Consider a rectangle of size bθ × bz subjected to
the strains εθθ and εzz (Fig. 3.2(a)). Thus ∆bθ = bθεθθ, ∆bz = bzεzz, ∆bd =
(b2
θεθθ + b2

zεzz)/
√
b2
θ + b2

z, and since there are two springs κ of each kind in one
rectangle, the stored energy reads

Ustretch = 2 1
2κθ(∆bθ)

2 + 2 1
2κz(∆bz)

2 + 2 1
2κd(∆bd)2

=
(
κθb

2
θ + κd

b4
θ

b2
θ + b2

z

)
ε2
θθ +

(
κzb

2
z + κd

b4
z

b2
θ + b2

z

)
ε2
zz

+ 2κd
b2
θb

2
z

b2
θ + b2

z

εθθεzz (3.16)

On the other hand, the elastic energy due to the homogeneous deformation is

Ustretch =
(

1
2cθθθθε

2
θθ + 1

2czzzzε
2
zz + cθθzzεθθεzz

)
V (3.17)

where V = 1
2θ(r

2
2 − r2

1)bz represents the volume. By comparing (3.16), (3.17), and
solving for κi

κθ = 1
2

(
cθθθθ
b2
θ

− cθθzz
b2
z

)
V

κz = 1
2

(
czzzz
b2
z

− cθθzz
b2
θ

)
V

κd = 1
2

(
1
b2
θ

+ 1
b2
z

)
cθθzzV (3.18)

Because κθ, κz, and κd must be positive [133], the ratio between bθ and bz can not be
arbitrary. Since cθθθθczzzz− c2

θθzz > 0, it can be verified that for b2
θ/b

2
z =

√
cθθθθ/czzzz

the stiffnesses are indeed positive. Finally, since the ET depends on the radius r,
the components are replaced by the volume averages cθθθθ, czzzz, and cθθzz.

3.2.2.2 Angular Spring τ

The bending energy of a homogeneous beam of thickness h = r2 − r1 and a natural
curvature radius R0, subjected to a deformation specified by a new radius R, is equal
to

Ubend,θ = 1
2

(
1
R
− 1
R0

)2

gθV (3.19)
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τ
r12r13 nz

^

ϕϕ

RR

(a)

ζ

δϕ45δϕ46δs46
δs45

m̂

δr4

δr6

δr5

r45r46 nθ
^

(b)

Figure 3.3: (a) Cross view of two adjacent rectangles perpendicular to the plane of
the Figure, with nodes at the coordinates r1, r2 and r1, r3. The vectors
r12 and r13 are the projections of r2−r1 and r3−r1 in the plane of the
Figure. Without deformation, the moduli r12 and r13 are both equal
to bθ. The unit vector n̂z, represented by the dot •, is perpendicular
to the Figure. When the rectangles are rotated along the axis defined
by n̂z, the structure is bent with a curvature radius R. The stiffness
of the angular springs connected to the rectangles is τ (blue). (b) The
unit vector m̂ is perpendicular to n̂θ and to r̂45 − r̂46. The lengths
δs45 and δs46 are the projections of δr5 − δr4 and δr6 − δr4 along m̂.
Hence, up to first order δϕ45 = δs45/r45 and δϕ46 = δs46/r46.

with gθ = cθθθθh
2/12. Notice that the bending energy of the bar is shared with two

additional springs τ located at r2 and r3 (only the spring τ located at r1 is shown
in Fig. 3.3(a)). Hence, V is only half of the bar volume which is associated with
two adjacent rectangles of thickness h, so that V coincides with the value previously
used in (3.17).
From Fig. 3.3(a) it can be inferred that bθ = 2R sin(ϕ/2), so that

1
R
− 1
R0

= 2
bθ

(
sin ϕ2 − sin ϕ0

2

)
(3.20)
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For ϕ close to ϕ0, it follows that up to first order in ∆ϕ = ϕ− ϕ0

2
(

sin ϕ2 − sin ϕ0

2

)
= ∆ϕ cos ϕ0

2 = cosϕ0 − cosϕ
2 sin ϕ0

2
(3.21)

Substituting (3.20) and (3.21) in (3.19)

Ubend,θ = 1
2

gθV(
2bθ sin ϕ0

2

)2 (cosϕ0 − cosϕ)2 (3.22)

On the other hand, there are two springs τ connected to a pair of rectangles (Fig.
3.2(b))

Ubend,θ = 21
2τ
(
−∆[cosϕ]

)2
(3.23)

Hence, from (3.22) and (3.23)

τ = 1
2

gθV(
2bθ sin ϕ0

2

)2 (3.24)

Since r̂12.r̂13 = cos(π − ϕ) = − cosϕ, for numerical purposes it is convenient to
use −∆[cosϕ] = ∆[r̂12.r̂13]. The vectors r12 and r13 are the components of r2 − r1
and r3 − r1 perpendicular to the rotation axis n̂z, respectively. Furthermore, some
useful formulas are

∇1[r̂12.r̂13] =
(

r̂12

r12
− r̂13

r13

)
× (r̂12 × r̂13)

∇2[r̂12.r̂13] = − r̂12

r12
× (r̂12 × r̂13)

∇3[r̂12.r̂13] = r̂13

r13
× (r̂12 × r̂13) (3.25)

and in particular

δ[r̂12.r̂13] = ∇1[r̂12.r̂13].δr1 + ∇2[r̂12.r̂13].δr2 + ∇3[r̂12.r̂13].δr3 (3.26)

which can be used in the derivation of the Stiffness Matrix. Notice that the Stiffness
Matrix changes when the position of the nodes are updated. However, the displace-
ment of the nodes is usually small [134] and the convergence is very fast. Although
the model linearizes and homogenizes the material response in the linear springs, it
still contemplates the geometric nonlinearity by updating the reference frame to the
deformed geometry.
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3.2.2.3 Angular Spring ζ

The previous calculation does not work if R0 → ∞, because ϕ0 = 0 and the first
order approximation in (3.21) vanishes (the right side becomes undetermined). For
ϕ� 1 Eqs. (3.19) and (3.20) are replaced by

Ubend,z = 1
2
gzV

R2

1
R

= 2
bz

sin ϕ2 ≈
ϕ

bz

so that

Ubend,z = gzV

b2
z

ϕ2

2 (3.27)

Up to second order in ϕ, it follows that ∆[r̂45.r̂46] = −∆[cosϕ] = − cosϕ+1 = ϕ2/2.
There are two springs ζ connecting a pair of rectangles (Fig. 3.2(c)), so that (3.27)
becomes

Ubend,z = 2ζ ∆[r̂45.r̂46] (3.28)

where

ζ = 1
2
gzV

b2
z

(3.29)

By replacing r̂12 → r̂45 and r̂13 → r̂46, the gradients in (3.25) vanish, because r̂45
and r̂46 are antiparallel. Thus, Eq. (3.26) can not be used to calculate the Stiffness
Matrix. Instead, from the geometry in Fig. 3.3(b) it can be seen that

δϕ = δϕ45 + δϕ46 = m̂.(δr5 − δr4)
r45

+ m̂.(δr6 − δr4)
r46

(3.30)

where the unit vector m̂ is parallel to n̂θ × (r̂45 − r̂46).

As noted previously, the ET depends on the radius r. Hence, gi in (3.24) and
(3.29) are replaced by the volume average

gi = 1
V

∫
ciiii(r − ri)2 dV (3.31)

where ri is the radius to the neutral axis of the beam

ri = 1
ciiiiV

∫
ciiiir dV (3.32)
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bθ1

βθ1

Figure 3.4: When the rectangle in Fig. 3.2(a) is deformed and/or rotated, the
lengths and the orientations (relative to the tangential and axial di-
rections) are modified. For simplicity, only the length bθ1 and the angle
βθ1 are shown. The spring stiffnesses between the nodes are the same
as before.

3.2.2.4 Generalizations to Other Geometries

When the rectangle is deformed to a quadrilateral or the orientation changes (Fig.
3.4), the results of Section 3.2.2.1 must be modified. Under the strains εθθ and εzz,
the length variation of bθ1 is

∆bθ1 = bθ1(εθθ cos2 βθ1 + εzz sin2 βθ1) (3.33)

with analogous formulas for ∆bθ2, ∆bz1, ∆bz2, ∆bd1, and ∆bd2. In addition, (3.16)
must be replaced by

Ustretch = 1
2κθ(∆bθ1)2 + 1

2κz(∆bz1)2 + 1
2κd(∆bd1)2

+ 1
2κθ(∆bθ2)2 + 1

2κz(∆bz2)2 + 1
2κd(∆bd2)2 (3.34)

Substituting (3.33) in (3.34) and comparing the coefficients of ε2
θθ, εθθεzz, and ε2

zz

with (3.17), the spring stiffnesses are obtained. Note that V in (3.17) now represents
the volume of the quadrilateral of thickness h.

Furthermore, the calculations of Section 3.2.2.2 are also modified. Considering
that part of the beam with radius R12 in Fig. 3.5(a) and proceeding as before, it is
deduced that

Ubend,θ12 = 1
2

gθVθ12(
2bθ12 sin ϕ0

2

)2 (cosϕ0 − cosϕ)2
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τ

bθ12bθ13 r1

r2r3

r4

ϕ

ϕ R12

R
13

(a)

Vθ12

V’θ12

Vθ13

V’θ13

r1

r2r3

r’1
r’2

r’3

(b)

Figure 3.5: (a) If the adjacent rectangles in Fig. 3.3(a) are not rectangles with
the same dimensions, then the bending radius on the right (R12)
and the bending radius on the left (R13) are different. The dis-
tances between the points are replaced by bθ12 = 2R12 sin(ϕ/2) and
bθ13 = 2R13 sin(ϕ/2). It is possible to join the points using the same
radius R12 = R13 but different angles ϕ12 6= ϕ13. However, in this
case, the line defining the beam will not be smooth when connecting
consecutive parts, since the radius and the center of the circles (e.g.
through r3, r1, r2 and through r1, r2, r4) will not coincide. (b) Top
view of Fig. (a). Note that the points r′1, r′2, and r′3 are not represented
because they are hidden behind r1, r2, and r3. The sum Vθ12 + V′θ12 is
equal to one half of Vright (the volume of the yellow region of thickness
h defined by the points r1, r2, r′2, and r′1) and V′θ12/Vθ12 = V′θ13/Vθ13.

The volumes Vθ12 and Vθ13 are calculated with the formulas

Vθ12 = f ′θ
fθ + f ′θ

Vright

2

Vθ13 = f ′θ
fθ + f ′θ

Vleft

2 (3.35)

where Vright and Vleft represent the beam volumes to the right and to the left in Fig.
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3.5(b) respectively, and

fθ = 1
sin2 ϕ0

2

(
Vright

b2
θ12

+ Vleft

b2
θ13

)

f ′θ = 1

sin2 ϕ
′
0

2

(
Vright

b′2θ12
+ Vleft

b′2θ13

)
(3.36)

An analogous formula is obtained for Ubend,θ13. Comparing the sum Ubend,θ12 +
Ubend,θ13 with 1

2τ
(
−∆[cosϕ]

)2
, it is deduced that

τ = gθ

4 sin2 ϕ0

2

(
Vθ12

b2
θ12

+ Vθ13

b2
θ13

)
(3.37)

Notice that in Fig. 3.5(b) there is a second spring of stiffness τ ′ connected to the
straight lines through r′1, r′2 and through r′1, r′3. Using (3.35) and (3.36), it can be
shown that τ ′ coincides with τ in (3.37).
Proceeding in a similar way, the stiffness of the spring ζ is generalized to

ζ = gz

(
Vz12

b2
z12

+ Vz13

b2
z13

)
(3.38)

Further, the computation of the volumes Vz12 and Vz13 is similar to (3.35), but
making use of

fz = Vright

b2
z12

+ Vleft

b2
z13

f ′z = Vright

b′2z12
+ Vleft

b′2z13
(3.39)

3.3 Pseudocode
The pseudocode to calculate the spring constants in the cylindrical case is shown
in the Algorithm 3.1. Briefly, it involves the determination of the strain field (lines
1–3), the calculation of ciijj, ri, gi (lines 4–6), and the computation of the spring
constants (lines 8–9).
To apply the method to other geometries (Section 3.2.2.4) it is necessary to modify

the calculations in the following way:
• The integration methods in lines 1–3 are no longer valid. Instead, FEM can

be used to find the strain field and after that obtain ciijj as function of the
position.

• The neutral axis in line 5 is a cylindrical surface of radius ri. However, when
the tissue thicknesses or the shape of the artery vary, the surface of the neutral
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Algorithm 3.1: Calculation of the spring constants for a right circular cylin-
drical artery. The input geometrical parameters are the tissue thicknesses ai,
am, aa, the internal radius Rin, the opening angle α, and the axial stretch λz.
The physical parameters are those appearing in Eqs. (3.1)–(3.4). Finally, nvert
represents the number of vertices of the polyline discretizing the artery in the
tangential direction and pin is the average internal pressure.
void SpringConstants(artery geometry, physical constants, int nvert, float
pin){
1. set σrr(r1) = −pin and λθin = 1;
2. integrate Eq. (3.15) to obtain σrr(r2);
3. if σrr(r2) 6= 0, then vary λθin and go back to 2;
4. calculate the volume integrals of cθθθθ, cθθzz, czzzz in Eq. (3.11) and
divide by the volume V to obtain cθθθθ, cθθzz, czzzz;
5. calculate the volume integrals of rcθθθθ, rczzzz and divide by V cθθθθ,
V czzzz respectively, to obtain the radii rθ, rz to the neutral axis (Eq.
(3.32));
6. calculate the volume integrals of (r − rθ)2cθθθθ, (r − rz)2czzzz and divide
by V to obtain gθ, gz (Eq. (3.31));
7. determine the dimensions of the rectangle in Figure 3.2 with the
formulas θ = 2π/nvert, bθ = 2r1 sin(θ/2), bz = bθ(czzzz/cθθθθ)1/4;
8. use the values of cθθθθ, cθθzz, czzzz in line 4 and of bθ, bz in line 7 to
calculate the spring constants κθ, κz, κd (Eq. (3.18));
9. use the values of gθ, gz in line 6 and of bθ, bz in line 7 to calculate the
angular spring constants τ in Eq. (3.24) (with ϕ0 → θ) and ζ in Eq. (3.29);

}
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axis is not cylindrical. For example, consider a voxel as shown in Fig. 3.6.
The neutral axis x depends on z (black line)

x(z) =

∫∫
x czzzz(x, y, z) dx dy∫∫
czzzz(x, y, z) dx dy

(3.40)

where the integral is carried out over the cross section with z = const (red).
Then

gz = 1
V

∫∫∫ [
x− x(z)

]2
czzzz(x, y, z) dx dy dz (3.41)

The value of gθ can be calculated in a similar way.

• In general, the rectangles are deformed into quadrilaterals and the formulas
in line 7 are not used.1 However, after the spring constants have been cal-
culated, it must be checked if all constants are positive [133]. Otherwise the
quadrilateral geometry has to be changed2 and the calculations are repeated.

• Finally, to determine the springs constants in lines 8 and 9, Eqs. (3.37)–(3.38)
are used.

3.4 Technical Evaluation
Experimental and computational studies suggest a substantial variation in the me-
chanical responses of the arterial wall layers [135]. In order to calculate values for
the ET, the physical parameters listed in Table 3.1 are used. The mean pressure
loading pin is assumed to be equal to (80+120)/2 = 100 mm Hg [136]. Furthermore,
the internal radius is Rin = 1.35 mm and in the special case λz = 1 and k = 1 (no
residual strains), the calculated stretch at the inner surface is λθin = 1.1495, the
mean stretch is λθ = 1.088, and the internal radius is r1 = 1.55 mm. Then the
volume averages of the ET components are cθθθθ = 558 kPa, czzzz = 844 kPa, and
cθθzz = 505 kPa. Moreover, gθ = 15.3 mN and gz = 29.7 mN.

3.4.1 Stiffness Analysis
The cylindrical artery is discretized by a polyline having 24 vertices in the tangential
direction (Fig. 3.7). Using (3.18), (3.24), and (3.29) the following spring stiffnesses
are obtained: κθ = 85.3 N/m, κz = 105 N/m, κd = 532 N/m, τ = 130 µJ, and
ζ = 14.0 µJ. When two or three nodes have multiple rectangles in common, the
equivalent stiffness equals the sum.

1When the quadrilateral becomes a rectangle, line 7 can be applied and the calculated spring
constants are always positive. Line 7 is not a “must” but it is a convenient choice.

2Note that this action affects neighbouring quadrilaterals.
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x

z

y

neutral
axis

Integration

Figure 3.6: View of a voxel (cian) corresponding to the volume V of the arterial
wall delimited by a quadrilateral parallel to the yz plane (shadow).
The normal to the arterial wall points in the x axis direction. For a
given z, the integration area (red) of Eq. (3.40) is parallel to the xy
plane. The neutral axis (black line) depends on the z coordinate.

θ bθ

r1

Figure 3.7: Cross view of the artery discretized by a polyline. The angle is θ =
2π/24 and the inner radius (with an internal pressure equal to pin)
is r1 = 1.55 mm. Thus, the rectangle dimensions in Fig. 3.2 are
bθ = 2r1 sin(θ/2) = 0.405 mm and bz = bθ

(
czzzz/cθθθθ

)1/4
= 0.449 mm.

It is instructive to analyze the behavior of the stiffnesses when the resolution or
radius change. For simplicity, let the thickness h and the ET be constants. First,
consider the case where the radius does not vary and θ → θ′ = θ/2 with θ � 1
rad. Then bθ → b′θ = bθ/

(
2 cos[θ/4]

)
≈ bθ/2, bz → b′z = bz/

(
2 cos[θ/4]

)
≈ bz/2,

V → V ′ = V/
(
4 cos[θ/4]

)
≈ V/4, and ϕ0 → ϕ′0 = ϕ0/2. Within this approximation,
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it can be concluded from (3.18), (3.24), and (3.29), that all spring stiffnesses are
nearly the same before and after increasing the resolution, with the exception of τ
which is replaced by τ ′ ≈ 4τ . Indeed, by repeating the previous calculations with
48 vertices, the ratio between the new and the old spring stiffnesses are κ′θ/κθ =
κ′z/κz = κ′d/κd = ζ ′/ζ = 0.9979 and τ ′/τ = 3.974.

κ

κ

κ

κ

(a)

κp = 2κ κ p = 2κ
(b)

κs = κp /2 = κ
(c)

Figure 3.8: (a) Four springs of stiffness κ (connected in parallel and then in series)
are joined by rigid vertical bars (blue). (b) Two springs connected in
parallel are equivalent to one spring of stiffness κp = κ+κ = 2κ [137].
(c) The two springs connected in series are equivalent to one spring of
stiffness κs = κpκp/(κp + κp) = κp/2.

With this new resolution, the number of springs κ connected in series doubles
and the number of springs κ connected in parallel doubles, so that the equivalent
stiffness is the same (Fig. 3.8). In other words, increasing the resolution does not
change the stiffness κi up to first order.
Consider now the situation where the artery has a bigger radius. If r1 → r′1 = 2r1,

then bθ → b′θ = 2bθ, bz → b′z = 2bz, and V → V ′ = 4V − θh2bz ≈ 4V for h � r1.
Hence, doubling the radius keeps the spring stiffness constant. Since the radial force
acting on the nodes is given by Fr = bθbz pin, it follows that F ′r = b′θb

′
z pin = 4Fr

and the deformation must be 4 times larger to balance the applied force. As a
consequence, the tangential strain

εθθ = ∆r1

r1
(3.42)

doubles. However, a numerical calculation with the method described in Section 3.2
shows that κ′i 6= κi (case (i) of Table 3.2), because V ′ is substantially smaller than
4V (the condition h � r1 is not fulfilled). Moreover, by increasing the radius, the
tangential stress as well as the tangential strain increase, and the ET components
become larger (Section 3.4.3).
Finally, if h is also doubled, then V ′ = 8V and the stiffness of the springs κ is mul-

tiplied by 2 (case (ii) of Table 3.2). Note that the deformation ∆r1 (∝ Fr/stiffness)
is two times bigger and according to (3.42) the tangential strain does not vary, so
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Table 3.2: Ratio between the physical parameters for R′in = 2Rin and two different
layer thicknesses: (i) h′ = h, (ii) h′ = 2h. In the calculations the values
Rin = 1.35 mm and h = ai + am + aa = 0.90 mm are used.

case λ
′
θ/λθ c′θθθθ/cθθθθ c′zzzz/czzzz c′θθzz/cθθzz g′θ/gθ g′z/gz

i 1.0365 2.962 2.367 2.918 1.567 1.238
ii 1 1 1 1 4 4

case V ′/V κ′θ/κθ κ′z/κz κ′d/κd τ ′/τ ζ ′/ζ

i 3.367 1.721 1.538 2.499 1.274 1.126
ii 8 2 2 2 8 8

that cθθθθ, czzzz, and cθθzz remain constant. On the other hand, the gi are multiplied
by 4 because they are proportional to h2.
These conclusions are in conformity with a mechanical analysis. If the internal

pressure in a cylinder equals pin, then the tangential force per unit length is Fθ/bz =
r1pin. Assuming h� r1 the tangential stress is then

σθθ = r1

h
pin

At low stretches the strain is proportional to the stress [53] so that εθθ ∝ r1/h. If
r1 → 2r1 and h = constant, then the strain doubles, but if r1 ∝ h, the strain does
not change. In general, the following equation holds for a cylinder under a uniform
tangential strain

εθθ = r1

Ω pin

where

Ω =
∫ r1+h

r1
cθθθθ dr

The artery deformation depends on the pressure, on the internal radius, and on the
parameter Ω, which in turn is a function of the thickness and of the elasticity.

3.4.2 Comparison of Models
Three different tests are performed to validate the calculations. Specifically, the re-
sults of our discrete model (label A) are compared with the nonlinear incompressible
artery model of Holzapfel et al. [127] (label B), corresponding to Eqs. (3.1)-(3.6),
(3.12), (3.14), and (3.15).
Furthermore, these models are compared with calculations performed using a
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plane strain FEM (label C). Due to the axial symmetry, it gets reduced to a one
dimensional problem and the displacement field can be characterized by a single
parameter r1, which ensures incompressibility. From (3.8) and (3.12)

δεθθ = δ
[

ln(λθ/λθ0)
]

= kλzr1 δr1

R2
in + kλz(r2 − r2

1)

The stress component σrr cannot be calculated with the model described by Eq.
(3.1). Moreover, σrr � σθθ because the fiber reinforcement is mainly between the
tangential and axial directions, not in the radial direction [128]. Thus, the approxi-
mation σ : δε = σθθ δεθθ + σrr δεrr ≈ σθθ δεθθ is assumed. The internal virtual work
is ∫

σ : δε dV =
∫ r2

r1
σθθ

kλzr1 δr1

R2
in + kλz(r2 − r2

1) 2πrl dr (3.43)

where l represents the axial length of the right circular cylinder. Furthermore, the
external virtual work due to the surface force is∫

p δr1 dS = 2πr1lp δr1 (3.44)

At equilibrium (3.43) and (3.44) are equal3, so

p =
∫ r2

r1
σθθ

kλzr

R2
in + kλz(r2 − r2

1) dr (3.45)

Note that σθθ = σθθ(λθ, λz), λθ = λθ(r1), and r2 = r2(r1) (see (3.12) and (3.14)).
Hence p = p(r1) or, inverting numerically this equation, r1 = r1(p). The knowledge
of r1 allows for the calculation, for example, of the average tangential stretch λθ in
(3.13) or the axial force component

∫
σzz dS.

Usually, the velocity of the arterial wall displacement is slow, because in a sur-
gical procedure the tool movements are not abrupt [139]. Thus, the deformation
is quasi-static which means that the nodes should reach the equilibrium position
instantaneously. Hence, it is necessary to compare only static deformations.

3.4.2.1 Pressure-Inflation

The inflation is the most common artery deformation [140]. Since the radial stress is
smaller than the tangential stress by a factor h/r1 < 1 (Section 3.4.1), it is reasonable
to neglect the radial direction and to work in two dimensions. Furthermore, in
this case there is no axial displacement (Fig. 3.9(a)) and the essential parameter
describing the deformation is the tangential stretch.
Figure 3.10 illustrates the mechanical response for pressures varying between 80

and 120 mm Hg. If the residual strain (λz > 1, k > 1) is considered or the external
3The external virtual work is equal to internal virtual work when equilibrated forces and stresses
undergo unrelated but consistent displacements and strains [138].
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Figure 3.9: Axial view of the artery submitted to different boundary conditions.
(a) The pressure pin increases and the axial length z1 is kept constant.
As a result, the tangential stretch and the radius r1 vary (bottom).
(b) The pressure is kept constant at pin, the length increases from z1
(top) to z′1 (bottom), and the radius becomes smaller (r1 → r′1).

surface is not stress-free (σrr(r2) > 0), then the pressure/radius response of the
artery and the tangential stress would change [128, 141]. The computed stretch
λθ = 1.088 at pin = pin is not far from the average experimental result of 1.06
obtained by Schulze-Bauer et al. [142] for arteries of elderlies. Further, they found
the average 1.07 for the axial stretch λz and in one case it was negative, showing
that λz has a wide variation.

Models B and C are nonlinear and show a similar stretch variation. If pin > pin
the artery in model B becomes stiffer than in model A. The stresses are nonlinear
functions of the stretches and the stiffnesses increase as the circumferential stretch
increase [106]. On the other hand, model A corresponds to a linearization around
pin, so that for small deformations the stress is proportional to the strain. In the
stretch calculations of model A, only ∆λθ is meaningful because the initial stretch
λθ is given beforehand, when the spring stiffnesses at pin = pin are computed.

Considering the internal pressure pin in the range from 80 and 120 mm Hg, the
average strain εθθ in model A is in the interval [0.07703, 0.09187] (the variation is
smaller than 1.5%). It can be inferred from Fig. 3.10 that the linearization gives a
good approximation within this pressure range, in accordance with the conclusions
of Kerdok et al. [143].
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Figure 3.10: Average circumferential stretch λθ as a function of blood pressure pin
without residual strain and without external surface traction. The
red, blue, and green lines correspond to the calculations with model
A (this work), with model B (nonlinear and incompressible artery of
Holzapfel et al. [127]), and with model C (one dimensional FEM).

3.4.2.2 Axial Force

Besides the tangential direction, the axial direction is also relevant in the two dimen-
sional model. Thus, a test including the axial deformation from λz = 1 to λz = 1.01
is performed to further validate the model. The blood pressure is kept constant at
pin, the radius is not fixed (Fig. 3.9(b)), and as a consequence λθ decreases. The ax-
ial forces calculated with models A, B, and C are 0.03971 N, 0.03633 N, and 0.03530
N, respectively. The discrepancy of 9.3% between models A and B can be mainly
attributed to variations of the ET when the stretches are modified. On the other
hand, the discrepancy between models B and C is only 2.8%, showing that it is more
accurate than model A.
However, the calculations with model C become more difficult as the symmetry

is reduced because the displacement field is not given by the single parameter r1.
Therefore, a 3D mesh of points must be considered and the displacement must
keep the isochoric constrain. In model A and in traditional FEM each point has
three degrees of freedom, but the number of points is smaller in the former one. In
numerical tests performed with bigger mesh resolutions, the accuracy of the results
obtained with model A did not change appreciably.
Note that if the artery is stretched axially, it becomes stiffer (model B). Hence,

the variation of the internal radius when the pressure changes, is smaller. Or, what
is the same, keeping the pressure constant and stretching the artery axially, the
radius decreases. Indeed, Table 3.3 shows the radius r1 for two different values of
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λz. The variation of r1 is similar in the linear model A and in the nonlinear models
B and C. Therefore, the axial forces as well as the radial deformations are alike.

Table 3.3: Dependence of the internal radius r1 on the axial stretch λz for a con-
stant pressure equal to pin.

model r1(λz = 1) r1(λz = 1.01) ∆r1

A 1.5518 mm 1.5377 mm −0.91%
B 1.5518 mm 1.5351 mm −1.08%
C 1.5414 mm 1.5253 mm −1.04%

3.4.2.3 Bending

Since the model is essentially a two dimensional mesh, it is important to examine
deformations in the perpendicular direction. To this end, a planar slice of an artery
with a rectangular shape is considered. The slice hangs from the two extremes and
it is subjected to a uniform load (Fig. 3.11). The deflection v of a simply supported
beam as a function of the distance z is [144]

v = − wz

24EI (L3 − 2Lz2 + z3) (3.46)

where w = pW is the load per unit length, EI = gzhW is the flexural rigidity,
and L is the separation between the two supporting points. Furthermore, W and h
represent the width and the height of the beam respectively.
The ET is not the same as in Section 3.4.1, because the artery is planar and no

stress (internal pressure) deforms the artery at the onset. The spring stiffnesses
now become κθ = 28.4 N/m, κz = 45.2 N/m, κd = 98.4 N/m, ζθ = 4.46 µJ, and
ζz = 7.64 µJ (here τ is replaced by ζθ and ζ is replaced by ζz). Moreover, gz = 21.4
mN, p = 200 Pa, h = 0.90 mm, and L = 8.72 mm. Observe that L is shorter than
the original length 8.90 mm of the artery when there is no bending.
The results of our numerical calculation and of the beam deflection are compared

in Fig. 3.11. The modulus of the maximum deflection δ = |v|max varies from 0.8145
mm in our calculation to 0.7795 mm using (3.46). The difference is only 4.5%,
showing a fairly good agreement. Furthermore, as long as the distance between
adjacent nodes is kept nearly constant (i.e. large κθ, κz, κd), the only relevant
parameter in this deformation is ζz. For example, reducing κθ, κz, κd, and ζθ by a
factor 2, but keeping the same value for ζz, the new value of δ is 0.8157 mm, i.e. it
increases by 0.15%.
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L

δ

Figure 3.11: Bending of a planar artery subjected to a uniform vertical load. The
triangle and the circle at the ends support the artery vertically: the
triangle is fixed but the circle can move freely in the horizontal di-
rection (green arrows). The black curve represents Eq. (3.46) and
the red points are the result of the calculations performed with the
model developed in this work.

3.4.3 Large Stretch
The artery deformations can be large [145] and since the model is nonlinear, it
is significant to see how the ET depends on the stretches. Figure 3.12 shows the
calculations for each tissue layer when the stretches λθ and λz vary between 1 and
1.1.
The largest increase of the ET components is found in the Intima layer (Fig.

3.12(d)), because it has the biggest constitutive parameter k2 entering in the expo-
nential of Eq. (3.2). In particular, the largest component is czzzz, which increases
by a factor of 72.5 when λz = 1 → 1.1. However, the most relevant dependence is
on λθ, because λz is nearly constant in most artery deformations.
Observe that, in the shorter interval 1 < λθ < 1.01, the ET does not vary ap-

preciably and the linear approximation can be used. The average stiffness µ of the
tissues in the low loading domain (at which the noncollagenous matrix material is
mainly active) is lower for the Media compared to the Adventitia [146]. According
to Holzapfel et al. [127] the Intima is the stiffest layer over the whole deformation
domain, whereas the Media is the softest in the axial direction.
Lastly, in Table 3.1 the angle φ between the tangential direction and the fiber

reinforcement is smaller than 45◦ in the Media, so that cθθθθ > czzzz (the red curve
in Fig. 3.12 (b, e) is above the green curve). On the other hand, φ is larger than 45◦
in the Intima and in the Adventitia, so the opposite behavior is observed.

3.5 Conclusions
The artery model developed in this chapter is linear and two dimensional, which
results in shorter PT. So, it is suitable for computing small and noninvasive artery
deformations. Furthermore, it implicitly includes the individual characteristics and
inhomogeneous properties of the artery layers. Some of the elasticity tensor compo-
nents were obtained and a method to calculate the spring stiffnesses connecting the
nodes of the mesh was described.
Three kinds of springs are used. The stiffnesses of the normal springs κ are derived

by comparing the elastic energy stored in the springs and in the layers subjected to
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Figure 3.12: Logarithm of the ET as function of the tangential stretch λθ (a, b, c)
and of the axial stretch λz (d, e, f) in the interval [1, 1.1]. The con-
stant c0 is equal to 1 MPa. The different colors indicate the ET
components cθθθθ (red), czzzz (green), and cθθzz (blue). The results
are given for the Intima (a, d), Media (b, e), and Adventitia (c, f)
tissues.

the same strain. The determination of the angular spring stiffnesses τ and ζ is carried
out by comparing the energies when the tissues are bent. The resulting formulas
are compact and the procedure was generalized in order to include geometries other
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than the cylindrical.
The stiffness of the springs κ was analyzed for different mesh resolutions and artery

sizes (radius r1 and thickness h). Increasing the resolution, κi remain constant up
to first order. If the ratio r1/h does not vary, κi are proportional to r1. On the
other hand, it becomes difficult to predict the behavior when r1/h varies, because
the strain inside the layer changes and the average elasticity tensor is a nonlinear
function of the strain.
The method was validated by different loads. The first one evaluated the most

relevant case, where the blood pressure inflates the artery, and the outcome was
close to the nonlinear and incompressible artery, which was also modeled by plane
strain FEM. When the artery is stretched by a small amount in the axial direction,
the calculations with the models led to similar results. The nonlinear FEM is more
accurate than our method, but its precision decreases if the symmetry is lowered.
Furthermore, the angular springs are essential in the case that the structure un-
dergoes bending deformations. Finally, the elasticity tensor strongly depends on
the stretch, especially if the Intima layer is axially deformed. However, assuming a
stretch variation smaller than 1%, the linear approximation is accurate.
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4.1 State of the Art

In 2003 Konings et al. [64] proposed an analytical approximation to the problem
of the wire. Their algorithm is highly generic and has good but slow convergence
properties. It is based on quasi-static mechanics [147], which models the wire prop-
agation without specific knowledge about friction forces. The motion is considered
to be the result of a forced translation of the proximal wire body into the intro-
duced sheath, effected by the physician. The translation is a stepwise process which
calculates how the wire reacts to an introduction of a small wire segment, giving
a new steady-state position. In 2007 Alderliesten et al. [49] improved the model,
incorporating the friction between the wire and the vasculature.
The wire is similar to the model of the rope (knot) proposed by Brown et al.

[148] and extended by Müller et al. [149] to simulate hair and fur. They apply the
idea based on “Follow The Leader”, which is a purely geometrical technique where a
chain of particles defines a curve representing a rope. Each particle moves towards
its predecessor to enforce their mutual distance to be constant. The speed of the
algorithm for computing the global shape of the rope saves time that can be used
on the collision detection and on the management modules.
The Cosserat continuum theory of thin objects (shells, rods, and points) can be

used to model the wire [150, 151]. Cao et al. [152] employed the Cosserat method
to explore the nonplanar nonlinear dynamics of elastic rods. Later, Gao et al. [153]
described the dynamic behavior of the wire with the Lagrange equations of motion
and applied the penalty method to maintain the constraints. They proposed a
simplified solving procedure to integrate the resulting equations more easily.
Another method to model the deformation of a wire or a similar body, is a rep-

resentation based on the 3D beam theory [154]. The elementary stiffness matrix
relates angular and spatial positions of each end of a beam element to the applied
forces and torques. Duriez et al. [155] improved the accuracy and treat geometric
non-linearities, while maintaining real-time computation. They considered a FEM
approach and developed a new mathematical representation combined with an in-
cremental technique, that allows for highly non-linear behavior. In particular, a new
method is presented for correctly handling contact response in complex situations,
where a large number of nodes are subject to non-holonomic constraints.
According to Coles et al. [11], some simulators also include interactive fluid dy-

namics of blood flow [156], volumetric contrast agent propagation, and real time
collision detection and response [157]. Also, the artery deformation can be consid-
ered [158]. This problem was dealt in chapter 3, where some of the ET components
were determined and, afterwards, the stiffness of the springs connecting the nodes
were calculated. Current efforts are aimed towards integrating performance assess-
ment and user guidance [34].
One of the most time consuming tasks in the simulation is the calculation of

energy gradients in the PR. This problem has been addressed in chapter 2. In
particular, an efficient collision-detection algorithm was developed based on space
partitioning. Furthermore, a continuous vector field (modulus and direction) was
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proposed, giving a realistic representation of the wire-surface interaction. On the
other hand, Luboz et al. [159] introduced a simplified deformable vascular model,
but it is not smooth and contains surface irregularities which affect the collision
response.
Besides the virtual model, the simulator must capture the wire motion. The

hardware can be built e.g. using an optical encoder [160] or a haptic device [159].
For instance, the Vascular Simulation Platform by Xitact is specifically designed to
coaxially track a catheter and a wire. However, these solutions are expensive and
difficult to assemble.
A promising surgery technique uses teleoperation [161]. This technique protects

the physician from X-ray radiation and solves the problem of lack of experienced
physicians in remote areas [162]. The slave manipulator detects the force of a
catheter being inserted into the blood vessels. Then the master manipulator pro-
duces an equal damping force based on magnetorheological fluids [163]. Since VRS
is similar to teleoperation, any progress made on one front can contribute to the
other one.

4.2 Methods
The model of Konings et al. [64] considers the wire as a discrete set of joints at
positions x0, . . . ,xn, with x0 fixed. There are n segments and the i-th segment
λi = xi − xi−1 is represented by a small rigid rod which is neither compressible nor
bendable. Further, the size |λi| is the same for all segments [164].

n

1 2 3 n−M (a)

n+1

1 2 3 n−M
n−M+1

(b)

Figure 4.1: (a) The wire has a curved tip (red) with M segments. They are
numbered from the proximal end to the distal end of the wire. (b)
The new segment (green) points to the same direction as the segment
number n−M , and the total number increases to n+ 1.

When parts of the wire are inserted into the vessel, the current representation is
adapted by adding segments and computing a new configuration with an optimiza-
tion algorithm (relaxations). Pushing the wire into the vessel mainly affects its end,
while the rest of the scene looks almost static. Hence, the natural way to add a new
segment is to introduce it just before the curved tip, with the same orientation as
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the previous segment (Fig. 4.1). The wire can also be rotated but this action affects
only the tip which is intrinsically curved.
In Sections 4.2.1 and 4.2.2, two different and complementary methods are ex-

plained to implement the relaxation. The combination of both methods is shown in
Section 4.2.3. In addition, Section 4.2.4 presents a hardware which can be used to
build this simulator.

4.2.1 Physical Relaxation

x0

λλλλ 1

x1

λλλλ 2

x2 λλλλ 3

x3

xi−1

xi λλλλ i

xi+1

λλλλ i+1

xn−1

xn

λλλλ n

x’i

λλλλ ’i

x’i+1

λλλλ i+1

x’n−1

x’n

λλλλ n

Figure 4.2: The wire geometry. The difference between the coordinates of two
consecutive joints xj − xj−1 is equal to the vector λj, which has a
constant length λ. Changing λi modifies only xi, xi+1, · · · , xn−1, xn,
and the difference between the new and the old coordinates x′j − xj =
λ′i − λi is the same for j = i, i+ 1, · · · , n− 1, n.

Figure 4.2 illustrates the wire geometry. Since

xj = x0 +
j∑

k=1
λk

updating the i-th segment λi influences the joints from xi up to xn. For this reason,
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more relaxations are needed close to the distal end of the wire. A PR cycle is defined
to be the sequence of n iterations

iteration 1: update segment n,

iteration 2: update segments n, n− 1,

iteration 3: update segments n, n− 1, n− 2,
...

iteration n: update segments n, n− 1, · · · , 2, 1.

The algorithm of Konings et al. [64] also proceeds from the distal end to the proximal
end. The total number of updates in one cycle equals 1

2n(n+ 1).
To ensure numerical stability, every time an “action” is performed (add a segment,

remove a segment, or rotate the wire) a Tip Relaxation is executed:

1. A number of 1
2m(m + 1) updates (corresponding to the first m iterations)

is carried out. Thus, the m segments closest to the tip are always updated.
Since the actions take place just before the curved tip (Fig. 4.1), m is chosen
as M + 5 to ensure that all affected segments will be updated at least five
times before a new action is performed. However, if the wire is very stiff, then
it is necessary to replace 5 by a bigger number.

2. Additionally, one update is executed for the segment numbers n − m − 5,
n−m− 10, n−m− 15, · · · up to the proximal end of the wire. This ensures
some degree of relaxation besides the tip. Otherwise, if a large number of
actions performed in a short time interval, the rest of the wire would be far
away from equilibrium.

The numerical performance can be increased if incomplete cycles are carried out,
i.e. some of the last iterations [49] are suppressed. In what follows, the physical
model of the wire is improved and an updating recipe is given, which is simpler to
apply than the recipe of Konings et al. [64].

4.2.1.1 Bending Energy

Consider the bending energy Ui of a wire segment (an arc) defined by three points
xi−1, xi, and xi+1 (Fig. 4.3)

Ui = 1
2
EIi
R2
i

si (4.1)

where EIi represents the flexural rigidity, Ri is the radius, and si = Riθi is the arc
length between xi−1 and xi (or equivalently between xi and xi+1). Note that Ui does
not represent the elastic energy between the points xi−1 and xi+1, but only half of
this arc.
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Figure 4.3: Three successive points xi−1, xi, and xi+1 separated by an equal
distance λ = |λi| = |λi+1| define a circular arc of radius Ri and angle
2θi.

From Fig. 4.3 it follows that the distance between two points is given by λ =
2Ri sin(θi/2). Hence Eq. (4.1) can be put in the form

Ui = EIi
2Ri

θi = EIi
λ
θi sin

θi
2 (4.2)

For θi � 1 the last equation reduces to Eq. (3) of Alderliesten et al. [12]

Ui = 1
2
EIi
λ
θ2
i

The angle θi can be calculated using the formula cos θi = λi.λi+1/λ
2. If the wire is

intrinsically curved at joint i, then λi+1 must be replaced by xi+1 − xi −ωi+1 (Fig.
4.4). Further, rotating the wire changes the orientation of ωi+1. Since

θ sin θ2 ≈ (1− cos θ) + 1
12(1− cos θ)2 + 3

1280θ
6 (4.3)

up to fourth order in θi

Ui
(
λi,λi+1

)
= EIi

12λ
[
13− 14 cos θi + cos2 θi

]

= Ci
12

13− 14λi.λi+1

λ2 +

(
λi.λi+1

)2

λ4

 (4.4)

where Ci = EIi/λ is a springs constant.
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Figure 4.4: The minimum energy of a wire without external forces results when
λi−1 is parallel to λi, and λi is parallel to λi+1. If λi−1 = xi−1−xi−2 +
ωi, λi = xi−xi−1, and λi+1 = xi+1−xi−ωi+1, then the equilibrium is
obtained when xi−2, xi−1, xi, and xi+1 are in the positions indicated.
Thus, the vectors ωi bend a free wire.

4.2.1.2 Energy Minimization

The orientation of the i-th segment is updated (λi → λi + αi) while the others λj
are kept constant, in such a way that the energy decreases. The energy variation of
Ui
(
λi + αi,λi+1

)
around the new position λi + αi → λi + αi + δαi is up to first

order

δUi
(
λi +αi,λi+1

)
= Ci

6λ2

[
− 7 + λi+1.λi + λi+1.αi

λ2

]
λi+1.δαi (4.5a)

Furthermore, Ui−1 also varies

δUi−1
(
λi−1,λi +αi

)
= Ci

6λ2

[
− 7 + λi−1.λi + λi−1.αi

λ2

]
λi−1.δαi (4.5b)

Similarly, if the wire is intrinsically curved at joint i−1, then λi−1 must be replaced
by xi−1 − xi−2 + ωi (Fig. 4.4).

It is convenient to introduce the vectors ûi, ηi, εi, and the scalar κi defined by

ûi = λi/λ

ηi = ûi−1 − ûi
εi = ûi+1 − ûi
κi = ûi.ûi+1 (4.6)

The elastic energy variation of the wire is the sum of Eqs. (4.5a) and (4.5b)

δUelas = −Ci
λ

[
(pi + qi)ûi + piηi + qiεi

]
.δαi (4.7)
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with

pi = 1
6

[
7− κi−1 − (ûi + ηi).

αi
λ

]
≈ 7− κi−1

6

qi = 1
6

[
7− κi − (ûi + εi).

αi
λ

]
≈ 7− κi

6 (4.8)

because κi . 1 and |αi| � λ for small corrections (i.e. nearby equilibrium).

Usually, the artery deformations caused by the wire are tiny [165], so that close
to equilibrium the relation between stress and strain is linear. Changing λi + αi
by δαi affects the coordinates xi, · · · , xn by the same amount. Hence, due to
the interactions between the wire and the artery, the surface energy also varies
δUsurf = Gi.δαi. Here Gi stands for the sum of the gradients from joint i up to the
distal end of the wire [12]

Gi =
n∑
j=i

∇j Usurf(xj) (4.9)

where Usurf(xj) represents energy interaction of joint j with the artery’s surface.

The total energy variation is

δU =
[
− Ci

λ
(pi + qi)ûi −

Ci
λ

(piηi + qiεi) + Gi

]
.δαi

=
[
(Bui − ρi)ûi +Bviv̂i +Bwiŵi

]
.δαi (4.10)

where v̂i and ŵi are two unit vectors perpendicular to ûi, i.e. the set {ûi, v̂i, ŵi}
forms an orthonormal basis with ûi parallel to λi. Furthermore,

ρi = Ci
λ

(pi + qi)

Bi = Gi −
Ci
λ

(piηi + qiεi) ((4.10)′)

and Bui = Bi.ûi, Bvi = Bi.v̂i, Bwi = Bi.ŵi.

Since the modulus of λi +αi remains constant, it follows that |λi +αi|2 = λ2 or
2λi.αi = −|αi|2. Thus, αi can be written in the form (Fig. 4.5)

αi = − a
2
i

2λ ûi +H(ai)(cosψiv̂i + sinψiŵi) (4.11)

with

H(ai) = ai
2λ

√
4λ2 − a2

i ((4.11)′)
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Figure 4.5: The lengths of the vectors λi (old), λ′i (new) are equal, and the
modulus of αi = λ′i−λi is ai. Further, the unit vector ûi is parallel to
λi and perpendicular to t̂i = cosψiv̂i + sinψiŵi, where ψi represents
the azimuthal angle of αi around λi.

Any variation of αi can be expressed using the parameters ai and ψi

δαi =
[
− ai
λ

ûi + dH
dai

(cosψiv̂i + sinψiŵi)
]
δai

+H(ai)(− sinψiv̂i + cosψiŵi) δψi (4.12)

At the minimum, δU = 0 for arbitrary δai and δψi. Considering first the case δai = 0
and δψi 6= 0 [

−Bvi sinψi +Bwi cosψi
]
H(ai) δψi = 0

from which it is deduced that Bwi cosψi = Bvi sinψi. Hence

cosψiv̂i + sinψiŵi = Bviv̂i +Bwiŵi√
B2

vi +B2
wi

(4.13)

Now, the case δai 6= 0 and δψi = 0 is examined. From Eq. ((4.11)′)

dH
dai

= d
dai

(
ai −

a3
i

8λ2 + · · ·
)

= 1− 3a2
i

8λ2 + · · ·

so that up to first order in ai/λ Eq. (4.12) becomes

δαi =
[
− ai
λ

ûi + Bviv̂i +Bwiŵi√
B2

vi +B2
wi

]
δai
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where Eq. (4.13) has been used. Therefore Eq. (4.10) gives[
− ai
λ

(Bui − ρi) +
√
B2

vi +B2
wi

]
δai = 0 (4.14)

and solving

ai = λ

√
B2

vi +B2
wi

Bui − ρi
(4.15)

Note that changing the sign of Eq. (4.13) as in the work of Alderliesten et al. [12],
also changes the sign of ai in the last equation. Since H(ai) is an odd function, the
product H(ai) (cosψiv̂i + sinψiŵi) is the same irrespective of the chosen sign.

4.2.1.3 First Order Correction

Because the norm of the vector λi remains constant, only the change of direction
needs to be updated in the calculations: ûi → ûi + ∆ûi = ûi +αi/λ. In particular,
note that for ai � λ Eq. (4.11) becomes

αi ≈ ai(cosψiv̂i + sinψiŵi) = λ
Bviv̂i +Bwiŵi

Bui − ρi
or

∆ûi = αi
λ
≈ − ûi × (Bi × ûi)

ρi − ûi.Bi

(4.16)

The scalar ûi.Bi = Bi‖ is the projection of Bi along ûi and ûi × (Bi × ûi) =
Bi − ûi(ûi.Bi) = Bi −Bi‖ = Bi⊥ represents the component of Bi perpendicular to
ûi (the infinitesimal variation of a vector with a constant modulus is perpendicular to
the vector). Since ∆ûi is only an approximation, after updating ûi a renormalization
must be performed.
Mostly ûi.Bi � ρi ∼ 2Ci/λ, so that from Eq. (4.16)

∆ûi ≈ −
ûi × (Bi × ûi)

ρi
(4.17)

As ρi is nearly constant, to achieve equilibrium (∆ûi → 0) the component of ûi
perpendicular to Bi must be minimized. Notice that Bi depends on Gi, so that the
calculation of Gi plays a crucial role.
Suppose that all updates ∆ûi have nearly the same magnitude and are randomly

oriented. As in random walks1, the average distance covered by the tip when the
segments between i and n are updated, is proportional to

√
n+ 1− i. Thus |xn,new−

xn,old| can become very large. To avoid this unstable behavior, the update is bounded

1The expected translation distance after p steps varies as √p [166]
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using the formula

|∆ûi| ≤
∆umax√
n+ 1− i

(4.18)

where i = 1, · · · , n and ∆umax is small (∼ 0.1). In a frontal collision of the wire
with the surface, a single update can bend the tip at most by the amount ∆umax.
When the calculation proceeds, the next iterations will bend the tip further until
|∆ûi| naturally decreases and the wire approaches equilibrium.
The updates ∆ûi for small i are tiny, because they are bounded by Eq. (4.18).

Hence, instabilities are dissipated and do not propagate to the proximal end of the
wire. It is the tip of the wire (i close to n) which plays an important role in the
simulation and, in this region, a higher number of updates is performed. Since the
relaxation is stable, there is no need to introduce the segment in small steps as in
the work of Alderliesten et al. [12], and it can be performed at once.
If |Bi| � ρi the update will be small. In this case, the denominator in Eq. (4.16)

is positive and the update moves the wire in a direction so as to cancel Bi. But in a
frontal collision of the tip with the artery, Bi can become very large because of Gi.
If the sign of the denominator is negative, Bi will increase instead of canceling, and
the calculations diverge. In particular, for ρi− ûi.Bi ≈ 0 the modulus |αi| becomes
larger than 2λ, which is geometrically impossible. In such cases, the approximation
dH/dai = 1 fails.
To overcome this drawback, Eq. (4.14) should be considered without approxima-

tions

−ai
λ

(Bui − ρi) + 2λ2 − a2
i

λ
√

4λ2 − a2
i

√
B2

vi +B2
wi = 0

and solved numerically for ai. However, a simple estimation for ∆ûi can be found.
Taking the absolute value in the denominator of Eq. (4.16)

∆ûi = − ûi × (Bi × ûi)
|ρi − ûi.Bi|

(4.19)

the update will always be in the right direction. Note that using Eq. (4.17) in
place of Eq. (4.19) gives similar results. The magnitude of the correction can still
be large, but since |∆ûi| is bounded and ûi is renormalized after each update, it
poses no problem. Applying Eqs. (4.18) and (4.19) in the Tip Relaxation results
in a stable algorithm even if, in a short time interval, a large number of actions are
performed by the user.
Lastly, it is observed that Eq. (4.19) basically involves the calculation of Bi and

the computation of scalar and cross products with ûi. On the other hand, Eq. (11)
of Alderliesten et al. [12] works implicitly with an orthonormal basis. It is necessary
to calculate the projections of Bi in this base, to determine the modulus ai, the angle
ψi, and then to construct the vector αi again using the base. Thus, the method
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developed in this work is simpler to apply.

4.2.1.4 Pseudocode

Algorithm 4.1: Pseudocode of the PR method. The entrance parameter is the
segment i of the wire. The procedure updates the points xj and orientations ωj
from j = i up to the end of the wire j = n.
void PhysicalUpdate(segment i){

1. calculate the gradient Gi, see Eq. (4.9);
2. calculate the update ∆ûi, see Eqs. (4.18) and (4.19);
3. update ûi and renormalize;
4. update xi, xi+1, · · · , xn;
5. update ωi, ωi+1, · · · , ωn;

}

The pseudocode 4.1 implements the method described in this Section. Next, the
PT spent in calling the procedure during a complete PR cycle is analyzed.
For a segment number i, the calculation of Gi involves the collision test for n− i

segments. During the cycle of the PR, this procedure is called 1
2n(n+ 1) times, and

the total number of collision tests in one cycle is 1
6n(n + 1)(n + 2). If there is a

collision for j > i, then ∇j Usurf(xj) must be calculated. The number of times the
gradient is computed depends on j. For example, if j = n/2 the computation is
repeated 1

8n(n+2) ≈ n2/8 times, and in general it will be a fraction of n2. Thus, the
PT of line 1 has the form 1

6n(n+ 1)(n+ 2)T1 + n2T2, where T1 and T2 are positive
constants.
The lines 2 and 3 involve a single execution, so that the PT of one cycle is

proportional to 1
2n(n + 1). Finally, lines 4 and 5 give a contribution similar to the

number of collision tests executed, i.e. proportional to 1
6n(n+ 1)(n+ 2). Hence, the

estimated PT of the physical update cycle is

tphy = tp1n+ tp2n
2 + tp3n

3

≈ tp2n
2 + tp3n

3 (4.20)

In the last line, the PT is approximated by the two main contributions for large n.
Since Tip Relaxation plays a central role in the algorithm, its PT will also be

examined. In the first part, when the first m segments are updated, the PT is
similar to Eq. (4.20) but with n → m = M + 5 (a constant). In the second part,
when the segment numbers n −m − 5, n −m − 10, n −m − 15, · · · are updated
once, instead of 1

2n(n+ 1) only ∼ (n−m)/5 steps are executed. Hence, for large n
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the term n2/2 must be replaced by n/5 in Eq. (4.20). The overall result is

ttip ≈ tp1m+ tp2m
2 + tp3m

3 + tp3

(
2n
5

)3/2

= const + tp4n
3/2 (4.21)

For example, if m = 5 + 5 and n = 250, then m3 = 1000 = (2n/5)3/2, i.e. the
constant has the same order of magnitude as the last term in Eq. (4.21).

4.2.2 Geometrical Relaxation

Consider the problem of finding the minimum energy of a homogeneous wire (EI =
const) with the following boundary conditions. The end points xµ and xν are fixed
as well as the tangent vectors to the trajectory ẋµ and ẋν (the dot denotes differ-
entiation with respect to the curve parameter τ). Between these points there is no
contact with the surface and the total length of the curve is not fixed.

θi

R i +1

R
i

λλλλ i + 1

λλλλ i

θi

θi

xi

xi +1

xi −1

Figure 4.6: Three points xi−1, xi, and xi+1 are separated by different distances
|λi| 6= |λi+1|. The two circular arcs have the same angle θi but the
radii Ri and Ri+1 are not equal.

4.2.2.1 Bending Energy

Here, it is necessary to derive a generalization of Eq. (4.2) when the modulus
λi = |λi| is variable. In Fig. 4.6 the three points xi−1, xi, and xi+1 are joined by
two arcs having the same angle θi but different radii Ri and Ri+1. It is also possible
to join the points using the same radius and different angles, but the calculations
become cumbersome. The sum of the energies in half arc under and in half arc
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above the point xi is

Ui = 1
2
EI

R2
i

si
2 + 1

2
EI

R2
i+1

si+1

2

= EI

2

(
θi

2Ri

+ θi
2Ri+1

)

= EI

2

(
1
λi

+ 1
λi+1

)
θi sin

θi
2

because sin(θi/2) = λi/2Ri = λi+1/2Ri+1. Using Eq. (4.3) with cos θi = ûi.ûi+1
results in

Ui = EI

12

(
1
λi

+ 1
λi+1

)
13− 14 ûi.ûi+1 + (ûi.ûi+1)2

2

4.2.2.2 Energy Minimization

Since only λi and λi+1 are functions of xi, it follows that Ui−1, Ui, and Ui+1 depend
on this coordinate. Omitting the constant multiplicative factor EI/12, it suffices to
analyze the function

Ψ(xi) =
(

1
λi−1

+ 1
λi

)
13− 14κi−1 + κ2

i−1
2

+
(

1
λi

+ 1
λi+1

)
13− 14κi + κ2

i

2

+
(

1
λi+1

+ 1
λi+2

)
13− 14κi+1 + κ2

i+1
2 (4.22)

Notice that Ψ does not contain any physical parameter and depends solely on the
geometry.
The label ∗ will be used to refer to the coordinates of the improved curve. In order

to minimize Ψ, substitute x∗i by x∗i + yiŷi + ziẑi, where ŷi and ẑi are orthogonal to
the vector xi+1 − xi−1. The calculation of yi and zi can be carried out using the
Hessian matrix and the gradient(

Ψyy,i Ψyz,i

Ψyz,i Ψzz,i

)(
yi
zi

)
= −

(
ŷi.∇iΨ
ẑi.∇iΨ

)
(4.23)

The Hessian matrix gives essentially a metric to find the length of the update∣∣∣x∗i,new − x∗i,old

∣∣∣ in the Newton direction of steepest descent [167]. This direction is
determined by the negative components of the gradient in the plane defined by ŷi
and ẑi. Near the minimum, the Hessian approaches a constant [168]. Thus, the
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matrix elements can be computed numerically

Ψyy,i = 1
(δλ)2

[
Ψ(x∗i + δλ ŷi)− 2Ψ(x∗i ) + Ψ(x∗i − δλ ŷi)

]
Ψyz,i = 1

4(δλ)2

[
Ψ(x∗i + δλ ŷi + δλ ẑi)
−Ψ(x∗i + δλ ŷi − δλ ẑi)
−Ψ(x∗i − δλ ŷi + δλ ẑi)
+ Ψ(x∗i − δλ ŷi − δλ ẑi)

]
Ψzz,i = 1

(δλ)2

[
Ψ(x∗i + δλ ẑi)− 2Ψ(x∗i ) + Ψ(x∗i − δλ ẑi)

]
(4.23a)

where δλ = λ/104 for calculations performed with double precision.
On the other hand, the gradient is very sensitive to numerical round off errors

near the minimum. Hence ∇iΨ must be determined analytically with the help of
∇iλ

∗
i−1 = 0, ∇iλ

∗
i = û∗i , ∇iλ

∗
i+1 = −û∗i+1, ∇iλ

∗
i+2 = 0, and

∇iκ
∗
i−1 = û∗i−1 − κ∗i−1û∗i

λ∗i

∇iκ
∗
i = û∗i+1 − κ∗i û∗i

λ∗i
−

û∗i − κ∗i û∗i+1
λ∗i+1

∇iκ
∗
i+1 = − û∗i+2 − κ∗i+1û∗i+1

λ∗i+1
(4.23b)

The minimization update is executed for the sequence i = µ+ 1, µ+ 2, · · · , ν− 1,
which is defined to be an iteration in the GR cycle. After repeating ∼ ν−µ times the
iteration, the modulus of ∇iΨ is reduced by a considerable amount, i.e. the curve
approaches the desired solution. Hence, one GR cycle consists of ν − µ iterations,
which has (ν − µ)(ν − µ− 1) ≈ (ν − µ)2 minimization updates.
Observe that the vectors ŷi and ẑi are calculated only at the beginning of the

minimization procedure. Since the plane over which the point x∗i can move is kept
constant, the possibility λ∗i → 0 is ruled out and numerical instabilities are avoided.

4.2.2.3 Point Slide

After executing the energy minimization, the point must be shifted (x∗i → x′i)
to restore |λ′i| = λ. Specifically, x′i is displaced following the polyline to obtain
|x′i − x′i−1| = λ as depicted in Fig. 4.7(a), an idea which is based on the “Follow
The Leader” technique [149].
To find x′j explicitly, consider Fig. 4.7(b). Let x∗i−1 and x∗i be two vertices in the

polyline such that |x∗i−1−x′j−1| < λ and |x∗i −x′j−1| > λ. Then construct the vector

bij = û∗i ×
[
(x∗i−1 − x′j−1)× û∗i

]
(4.24)
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Figure 4.7: (a) Original curve xi (red), curve after executing the energy mini-
mization x∗i (green), and displaced points x′i (black). (b) Closer view
of three coordinates x∗i−2, x∗i−1, and x∗i after the minimization. The
unit vector û∗i points from x∗i−1 to x∗i , and the vector bij goes from
x′j−1 to the line passing through x∗i−1 and x∗i . The distance between
x′j−1 and x′j equals λ.

The j-th coordinate is calculated with the formula

x′j = x′j−1 + bij + û∗i
√
λ2 − |bij|2 (4.25)

In particular, at the beginning x′µ = xµ.

The previous displacement is performed using a linear interpolation between x∗i−1
and x∗i . It is not difficult to find a second order correction for the interpolated point
x′j. This procedure is illustrated in Fig. 4.8: the point x′j is displaced in the direction
of the unit vector ê∗i which is perpendicular to x∗i − x∗i−1 = λ∗i = λ∗i û∗i . In order
to find a formula for ê∗i , let v̂∗i− and v̂∗i+ be two vectors parallel to û∗i−1 × û∗i and
û∗i × û∗i+1 respectively. Then ê∗i is chosen to point in the direction û∗i × (v̂∗i− + v̂∗i+).
Notice that ê∗i lies in the average of the planes specified by û∗i−1, û∗i and by û∗i ,
û∗i+1. But if v̂∗i−.v̂∗i+ ≤ 0 it is not convenient to perform the second order correction,
because the curve has an inflection and the circumference in Fig. 4.8 is no longer a
good approximation.

To determine the length εij of the displacement, first calculate the radius of the
circumference

R∗i = λ∗i

2 sin
(
θ
∗
i /2

) = λ∗i√
2− 2 cos θ∗i

The cosine of the angle θ∗i can be found with the dot product û∗i−1.û∗i or û∗i .û∗i+1. In
general, these products will be different and cos θ∗i is set equal to the mean value.
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Figure 4.8: Second order correction εij ê∗i to the coordinate x′j. The displacement
is indicated by the green arrow. The arc segment has an angle θ∗i and
a radius R∗i . The distance between x∗i−1 and x∗i is λ∗i , and the distance
between x′j and x∗i is dij.

Then the radius becomes

R∗i = λ∗i√
2− û∗i .

(
û∗i−1 + û∗i+1

) (4.26)

Let dij be the distance between xi and x′j. From Fig. 4.8 it is inferred that

εij =

√√√√(R∗i )2 −
(
λ∗i
2 − dij

)2

−

√√√√(R∗i )2 −
(
λ∗i
2

)2

(4.27)

Finally, the replacement x′j → x′j + εij ê∗i is carried out. Observe that, after replac-
ing, the modulus of the vector λ′j = x′j − x′j−1 becomes slightly different from λ.
Therefore, it is necessary to move the point x′j to fix the length of λ′j.
The second order correction is in practice very small. But it is important for

points close to the surface, because it avoids abrupt changes of the interaction force
in the PR.

4.2.2.4 Cubic Spline

To select the interval to apply the GR, it is desirable to have an approximate an-
alytical solution x(τ) with boundary conditions xµ, ẋµ, xν , and ẋν . The 2D static
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Euler-Bernoulli equation describing a beam having a small deflection υ is [169]

d4υ

dτ 4 = Q

EI

For zero transverse load (Q = 0) the solution is a cubic spline [170]. The four
integration constants are determined using the boundary conditions υ(τµ), υ̇(τµ),
υ(τν), and υ̇(τν).
In 3D the cubic spline becomes

xcub = (1− τ)xµ + τxν + τ(1− τ)
[
(1− τ)sµ − τsν

]
(4.28)

where τ ∈ [0, 1]. Let Xµν = xν − xµ and Ûµ, Ûν be two unit vectors parallel to ẋµ,
ẋν respectively. If the vectors sµ and sν (associated with the cubic dependencies on
τ) are perpendicular to the line (1 − τ)xµ + τxν connecting the points xµ and xν ,
then

sµ = |Xµν |2

Xµν .Ûµ

Ûµ −Xµν

sν = |Xµν |2

Xµν .Ûν

Ûν −Xµν (4.29)

A small deflection occurs when Ûµ and Ûν are nearly parallel to X̂µν = Xµν/|Xµν |.

4.2.2.5 Interval Selection

To find a suitable interval to apply the GR, the first step is to search for intervals
whose end points xµ, xν are close to the surface, and whose inner points xµ+1, · · · ,
xν−1 are far from the surface. Specifically, we considered a point is close (far) when
the distance to the surface is smaller (larger) than 5% of the average artery diameter.
It will be seen that in the PR cycle a point near to the surface can be bouncing
(Section 4.3.4).
Next, discard intervals having few segments, say less than 5. Also exclude the tip

of the wire, which is curved, and any other interval having a non-constant flexural
rigidity.
For each of the remaining intervals execute the following operations. Given xµ

and xν with tangent vectors ẋµ = ûµ + ûµ+1 and ẋν = ûν + ûν+1, determine the
cubic spline xcub,i. Then calculate the mean square deviation [171]

σ2
µν = 1

ν − µ

ν∑
i=µ

σ2
i (4.30)

where σ2
i = |xi−xcub,i|2. The cases of interest occur when the deviation σµν is large.

Moreover, the cubic spline is not a good approximation unless Ûµ and Ûν are nearly
parallel to X̂µν , i.e. a bad approximation results if 1 + Ûµ.X̂µν or 1 + Ûν .X̂µν are
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small. Hence, calculate the following figure of merit

χµν = (1 + Ûµ.X̂µν)2 (1 + Ûν .X̂µν)2 σµν (4.31)

and select the interval with the largest χµν .
It is not mandatory to move the points when the distance between xi and xcub,i

is small, so that a reduced interval can be chosen. If σi < 0.10σµν for i = µ +
1, µ + 2, · · · , µ+, then replace µ → µ+. Likewise, if σi < 0.10σµν for i = ν −
1, ν − 2, · · · , ν−, then replace ν → ν−. Note that a shorter interval decreases the
PT to calculate the improved curve, which is proportional to (ν − µ)2. Moreover,
the angles ](N̂µ, Ûµ), ](N̂ν , Ûν) are likely bigger than the angles ](N̂µ+, Ûµ+),
](N̂ν−, Ûν−), where N̂i stands for a vector normal to the artery’s surface. Hence,
there is a smaller probability that the improved curve intercepts the surface when
the interval is reduced.
If an interception occurs, then do not update xi → x∗i but use a linear interpolation

xi → ζx∗i +(1−ζ)xi with ζ ∈ (0, 1). In practice, ζ should be large but it must avoid
the intersection. Further, to ensure numerical stability it is convenient to limit ζ
such that the tip of the wire does not displace a distance greater than λ. Thus,
after executing the GR check if |xn − x′n| < λ, otherwise decrease ζ and repeat the
interpolation.

4.2.2.6 Pseudocode

Algorithm 4.2: Pseudocode of the GR method. The entrance parameter is the
entire wire. The procedure chooses the best interval of the wire to apply the GR
and updates the points xj from j = µ+ 1 up to the end j = n.
void GeometricalRelaxation(wire geometry){

6. select the interval µ < i < ν to apply the GR, see Section 4.2.2.5;
7. execute ν − µ iterations (with a total of (ν − µ)2 energy minimization
updates), see Section 4.2.2.2;
8. shift the points xµ+1, xµ+2, · · · , xn to restore the length |λj| = λ, see
Section 4.2.2.3;

}

Now, the PT of the GR will be analyzed using the Algorithm 4.2. The number of
operations necessary to determine the interval in line 6 is proportional to n. Let us
change the resolution of the wire in such a way that λ ∝ 1/n. If the shape of the
wire does not vary appreciably, then the position of the points xµ1, xν1 before and
xµ2, xν2 after changing the resolution will be nearly the same. Thus, it is concluded
that µ, ν are proportional to n and the PT in line 7 scales with n2 (Section 4.2.2.5).
Similarly, the PT in line 8 (proportional to n − µ) scales with n. In summary, the
average PT of the GR cycle is

tgeo = tg1n+ tg2n
2 (4.32)
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4.2.3 Combination of Physical and Geometrical Relaxation

P0

P1 P2

P3

P4

P5

P6

Figure 4.9: Wire segments inside an artery. In order to relax, the segment P1P2
should rotate upwards about point P1 as indicated by the arrow. Note
that from P2 to P6 the wire is rigid, so that the resulting translation is
hindered by the contact points P3 and P4. Nor can it move downwards
because of P5. The GR is not subjected to this restriction, since from
P3 up to P6 the wire can slide. It is especially designed to relax intervals
like from P0 to P3 (red).

A major drawback of the PR is that the wire moves as rigid structure about a
fixed point. Depending on the boundary conditions this can be very hard to achieve.
For example, the segment P1P2 in Fig. 4.9 needs to turn up but it is hindered by
contact points.
One possible solution is the GR developed in Section 4.2.2, which allows the wire

to slide. The GR is executed after a PR cycle (Fig. 4.10) and does not interfere
with it, because the GR is much faster than the PR (Section 4.3.3). In particular,
if a user action takes place during a PR or a GR cycle, then it is interrupted and
a Tip Relaxation is executed (this ensures stability). Moreover, the shape of the
tip (where the actions take place) looks more natural. The combination of both
techniques results in a more realistic wire behavior than using only the relaxation
proposed by Konings et al. [64].

4.2.4 Wire Device
Here, a simple device to capture the wire motion is described (Fig. 4.11). In
cardiovascular procedures, the wire sweeps at most a length of 150 mm inside the
coronary [172]. In view of this fact, the required materials are:

• Support box.

• Pipe tube of length 320 mm, with a small window in the middle.
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Figure 4.10: Workflow. In the “Tip Relaxation” (Section 4.2.1) the procedure
PhysicalUpdate is applied to the tip of the wire and also to some
selected segments. When the “Physical Relaxation” is called, 1

2m(m+
1) updates are executed. The PR is completed if the cycle ends, i.e.
after 1

2n(n + 1) updates. In the same way, when the “Geometrical
Relaxation” is called, m(m + 1)/(ν − µ) iterations are executed to
improve the curve. The GR is completed after ν − µ iterations.

• Light and opaque cylinder 170 mm long.

• Optical mouse with a precision of 1200 dpi or higher.

• Set of catheter and steerable wire with 150 mm free length.

The wire is attached to the cylinder, which is put inside the pipe. In particular,
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the material of the pipe and the cylinder should be chosen in such a way that the
friction between them must be small as possible [173]. The mouse is fixed over the
pipe so that the light-emitting diode stays on the window. Moreover, it is possible
to add extra commands to improve the simulator. For instance, the mouse buttons
can simulate the contrast injection or the activation of the X-ray employed in video
generation. Also, a USB-joystick with two axis can be used to change the C-arm
[16] perspective.

box

cylinder
(free)

pipe tube (fixed)

catheter push/pull

rotate

to the PC

optical mouse (fixed)

Figure 4.11: Photography (top-view) and sketch (cross-view) of the wire device.
The pipe has a small window and the mouse is over the window.
Translating and rotating the wire also translates and rotates the
cylinder, which is captured by the mouse.

The wire movement is transferred to the cylinder and captured by the mouse
according to:

• Pushing and pulling the wire = cursor up and down.

• Rotating the wire = cursor left and right.

The mouse must be aligned with the axis of the cylinder, otherwise translations and
rotations will appear mixed. Depending on the mouse resolution, pointer speed, and
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cylinder diameter, different cursor movements are obtained. Hence, a calibration is
required to provide a correct feedback to the user. As an alternative to the optical
mouse, a piezoelectric captor [174] can be connected to detect the cylinder motion.
The device has the technology of an optical mouse, whose movements can be read

with basic functions in any programming language. The manufacturing cost is low
and the portability allows the device to be used without platform restrictions.
Since the tip of the wire is soft [175], the contribution to the sense of touch is not

significant. The force feedback is due mainly to the friction between the wire and the
catheter [165]. In our device this force is already embodied, because the wire slides
inside the catheter. This removes the complex problem of coupling haptics [176]
and graphic simulation, especially because they proceed at different frequencies (of
the order of 1000 Hz and 30 Hz respectively [177, 178]).

4.3 Technical Evaluation
In order to validate the usefulness and to examine the limitations of the methods
developed in this work, several analysis were performed including the stability, wire
resolution, and PT of the PR and GR. Moreover, the interaction between the wire
and the artery was inspected. Finally, the present model was compared with the
model of Alderliesten et al. [12].
In the simulations, a flexural rigidity EI equal to 6.35 × 10−9 Nm2 is assumed,

experimentally obtained from a trial wire [179]. The algorithm was implemented
in C++, and the tests were performed in a computer having a Intel Core i7-4500U
(2.40 GHz) and 16 GB of RAM.

4.3.1 Stability Analysis
The total PT was tested for the artery shown in Fig. 4.12, which includes a T-like
and a Y-like bifurcation (Section 2.2.1). In the first part of the simulation, the
wire is outside the artery and it is quickly pushed inside (only the Tip Relaxation
is applied). The result (green curve) looks unphysical, but the algorithm does not
crash during a fast insertion of the wire. The stability is also verified if λ increases to
2.5 mm, so that a deeper frontal collision occurs at the T-like bifurcation. However,
if the wire becomes very stiff (a huge flexural rigidity), then it will “perforate” the
artery (like a needle) and the behavior becomes unstable.
In contrast, the algorithm of Alderliesten et al. [12] demands a slow insertion of

the wire, otherwise it can crash. For example, in numerical tests Konings et al. [64]
and Alderliesten et al. [49] used an internal stepsize smaller than λ/10. Since they
insert the new segment in the proximal end of the wire, to guarantee stability they
must execute at least ten times the complete relaxation cycle before a new action
takes place. As in Eq. (4.20), their PT is proportional to n3 for large n, but in our
case it is proportional to a constant plus n3/2 (see Eq. (4.21)). Hence, this method
works much faster under stress conditions.
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x50

x100

x150

x200

Figure 4.12: Artery with a T-like and a Y-like bifurcation. (Left) The wire
has 250 segments, λ = 1 mm, and it has been quickly inserted
into the artery (green curve). In this part, the program exe-
cuted only Tip Relaxations and the time consumed was 0.24 sec-
onds. In the second part, no action takes place and a combi-
nation of 100 relaxation cycles (Physical and Geometrical) is ex-
ecuted, so that equilibrium is attained (blue curve). The coordi-
nates indicate the location of some wire joints. (Right) Mockup
representing the stiff artery. The wire inserted in the artery has
the same shape as the blue curve. The average separation be-
tween the physical wire (plot digitized with WebPlotDigitezer 3.8
http://arohatgi.info/WebPlotDigitizer ) and the blue curve
is 0.262 mm, with a standard deviation of 0.227 mm. Hence, the
calculations with the model developed in this work give a realistic
result.

In the second part of the simulation, a large number of cycles are executed. The
result is the blue curve in Fig. 4.12 (left) and a numerical comparison with exper-
iment (right) shows that the calculations are truthful. Besides the specific case in
Fig. 4.12, several paths have been tested and the results were always good.
In real procedures, the physician should not insert the wire quickly to avoid vas-

cular damage [180, 181]. For security reasons, in the specific case of Teleoperation
the speed of the slide platform is less than 10 mm/s [162]. On the other hand, one of
the most annoying situations encountered by users in simulators, is the time delay
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between the action and the response [182]. In our simulator (green curve in Fig.
4.12) the average speed was (250 mm)/(0.24 s) ≈ 1 m/s.

4.3.2 Segment Size
The PT will depend on the artery’s resolution and on the size of the segment λ. The
method of Chapter 2 to calculate Gi is almost independent of the artery’s resolution.
This artery model refers to a geometry which does not depend on time. Otherwise
the proposed method is not feasible, because changes of shape make it more difficult
to use precomputed data structures for expediting collision tests during simulation
[148]. On the other hand, some works try to enhance the surgeon’s endoscopic vision
with a time dependent 3D model of the coronary artery tree to be used in a per-
operative augmented reality [183, 184], but the resulting images are not segmented.
If λ decreases but the wire length remains the same, the total number of segments

n increases. Hence, with a higher wire resolution the PT becomes longer. To
determine the optimal segment size, the influence of λ on the shape of the wire must
be investigated [12]. Afterwards, set the size to the maximum value which gives a
satisfactory visual effect.
In Fig. 4.13, the simulations for λA = 2.5 mm (wire A) and λB = 1 mm (wire

B) are compared. The equilibrium looks similar, but the time tA required for wire
A is only 11% of the time tB required for wire B. The shape difference is not due
to the precision of the calculations with different values of λ, but to the contact
points with the artery, which is not the same in the case of wire A and in the case
of wire B. The wire A has less contact points and in the T-like bifurcation the wire
A penetrates deeper inside the corner of the artery wall. The wire B has a bigger
resolution and the result is closer to the real artery (Fig. 4.12).

4.3.3 Physical and Geometrical Processing Time

Table 4.1: PT of the PR (tphy) and of the GR (tgeo) for different resolutions:
λA = 2.5 mm, λB = 1.0 mm, and λC = 0.4 mm. The PT does not
include the fast insertion of the wire, but only the relaxation between
the green and the blue curves in Fig. 4.12. The approximated times
tphy,fit and tgeo,fit have been obtained with Eq. (4.33).

λX 2.5 1.0 0.4
tphy 0.9840 9.330 103.7
tgeo 0.0160 0.0704 0.2431
tphy,fit 1.026 9.321 103.7
tgeo,fit 0.0220 0.0671 0.2435

A further comparison is made using λC = 0.4 mm (wire C), so that λA/λB =
λB/λC = 2.5 or nB/nA = nC/nB = 2.5. The relative PT is in Table 4.1 and for
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µ
ν

Figure 4.13: The green wire A has nA = 100 segments, λA = 2.5 mm and the blue
wire B has nB = 250 segments, λB = 1 mm. Hence nAλA = nBλB.
The arrows indicate one of the intervals µ < i < ν where the GR is
applied. In the case of wire A it was found that µA = 1, νA = 13 and
in the case of wire B it was found that µB = 2, νB = 30. Thus, µ
and ν are closely proportional to n.

increasing resolution the PT of the PR becomes much larger than the PT of the
GR. The data can be approximated with Eqs. (4.20) and (4.32)

tphy = 0.716
(
n

100

)2

+ 0.310
(
n

100

)3

tgeo = 0.01875 n

100 + 0.00323
(
n

100

)2

(4.33)

From Table 4.1 it can be read that

• For λA = 2.5 mm or nA = 100: tphy/tgeo = 61.6

• For λB = 1.0 mm or nB = 250: tphy/tgeo = 132.5

• For λC = 0.4 mm or nC = 625: tphy/tgeo = 426.5

Note that the ratio tphy/tgeo increases from nA to nB by a factor 2.15, and from nB
to nC by a factor 3.22. These factors are close to nB/nA = nC/nB = 2.5 or nearly
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proportional to n. Indeed, for tp1 = tp2 = 0 in Eq. (4.20) and tg1 = 0 in Eq. (4.32),
it follows that tphy/tgeo ∝ n. In general, for large n the time tgeo is much smaller
than tphy.
The PT of the GR is discussed now in detail. For a fixed n and given µ, ν, the

time in Eq. (4.32) can be put in the form

tgeo = tµν0 + tµν1(ν − µ) + tµν2(ν − µ)2 (4.34)

The results for wire B and wire C are shown in Fig. 4.14. Note that there are points
missing in the numerical experiments, because in the calculations not every interval
size ν − µ occurs. In particular, the blue points are not far from the red points for
ν − µ ≈ 60.

0 50 100 150 200
ν − µ

0.000

0.002

0.004

0.006

0.008

0.010

0.012

t g
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Figure 4.14: GR relaxation time tgeo as function of the interval length ν−µ. The
blue color represents the wire B with nB = 250 segments (blue curve
in Fig. 4.13) and the red color represents the wire C with nC = 625
segments (not shown in Fig. 4.13). The points are the PT measured
in numerical simulations and the lines are the fits performed with Eq.
(4.34).

The blue points in the interval 20 < ν − µ < 30 correspond to the red points in
the interval 60 < ν − µ < 90, because µ and ν are nearly proportional to n (Section
4.2.2.6). Also, the blue points in 55 < ν − µ < 60 correspond to the red points in
165 < ν − µ < 175.
The PT for a single energy minimization does not depend on the total number

of wire segments. Since (ν − µ)2 minimization updates are executed in a GR cycle,
the quadratic coefficient in Eq. (4.34) should always be the same. Indeed, this
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coefficient is equal to tg2 = 0.003663, 0.003586 for wire B, wire C respectively, and
the difference is 2%.

Figure 4.15: Initial curve (green) and the final equilibrium curve (blue) obtained
after a very long relaxation time. The final result is the same with or
without the GR. The analysis is focussed in the wire portion located
inside the gray box, which goes from wire segment number 90 to 95.
In this interval are seen the most relevant changes during relaxation.

It is also interesting to compare the PT using the PR (case P ) and using both
the PR and the GR (case G). The outcomes are highly dependent on the initial
wire shape and on the boundary conditions (artery geometry). For instance, Fig.
4.15 shows an initial curve (green) and the situation is similar to that depicted in
Fig. 4.9. Although the final result is the same in cases P and G (blue curve in Fig.
4.15), the relaxation times are very different. Specifically, the time is computed so
that the difference, between the blue and green curve for the segments inside the
gray box, is reduced to 10%. The result is tP/tG = 3.73, which means that the PT
with GR is only 27% of the PT without GR.
As pointed out previously, the ratio tP/tG depends on the specific boundary condi-

tions and on the initial wire shape. In all cases tG < tP is obtained, but the reduction
is not always noticeably. In summary, using both the PR and GR a shorter PT is
achieved, although the pertinent improvement of the method is found when the wire
is hindered.
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4.3.4 Wire-Artery Contact
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Figure 4.16: The red bars represent the percentage of the time in which each
joint (blue curve in Fig. 4.12) is in contact with the artery’s surface.
The magenta curve represents the average modulus of the unit vector
update ∆ûi during a PR cycle.

It will now be analyzed how much time each point is in contact with the artery
in a static solution (Fig. 4.16). In general, a softer wire (small flexural rigidity EI)
will have more points (a longer interval) in contact with the artery than a stiffer
one [49, 185]. Also, the shape of the artery will influence the number of collisions.
Hence, the flexural rigidity and the shape affect the PT to compute the surface
energy gradient in Eq. (4.9).
Only few points are effectively touching the surface, holding the wire to the equi-

librium position. The points bounce in the artery and the total number of contacts
vary from one step to the next. For instance, the surface force can eject the point
and then it becomes zero. In the next steps, due to the elastic restoring force of the
wire, the same point can move back.
The magenta curve in Fig. 4.16 shows the modulus of the update ∆ûi. In par-

ticular, the maximum |∆û137| = 9.2 × 10−3 corresponds to an amplitude variation
of 4.6 µm around the average position of xi for 137 ≤ i ≤ 250. Note that in one
complete PR cycle, the unit vector ûi will be updated i times. Furthermore, after
a joint collision has been surpassed, the modulus drops because the contribution of
the surface gradient is suppressed from the sum in Eq. (4.9).
Although the numerical solution looks unstable, the oscillations are tiny and they

are not perceptible. Moreover, the algorithm is usually applied in dynamic simula-
tions where the wire is moving, and a final equilibrium configuration is not required.
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4.3.5 Comparison of Physical Models
The PR is essentially the same relaxation introduced by Alderliesten et al. [12]. The
difference is that in the energy of the i-th joint Ui = Cig(θi) we use the approximation
g1(θi) = (13 − 14 cos θi + cos2 θi)/12, while they use g2(θi) = (1 − cos2 θi)/2. Thus,
in the calculations

ki
λ2 = κi−1 . 1

k′i
λ2 = κi . 1

are replaced by

pi & 1
qi & 1

respectively (see Eq. (4.8)).

0

1

0 π/2θ

g(θ)

g1(θ)

g2(θ)

Figure 4.17: Comparison of the functions g(θ) (red; exact), g1(θ) (blue; this work),
and g2(θ) (green; Alderliesten et al. [12]) in the interval 0 < θ < π/2.

The functions g1(θ) and g2(θ) are compared with the exact g(θ) = θ sin(θ/2) in
Fig. 4.17. All functions have a minimum at θ = 0 and, in the absence of external
forces, equilibrium is achieved when there is no bending. For θ < 0.1 rad = 5.7◦
they are almost identical: the errors of g1(θ) and g2(θ) are less than 4.7×10−5% and
0.29% respectively. But for θ ∼ 1 rad = 57◦ the function g1(θ) is clearly superior.
Numerical simulations performed with g1 and with g2 have been compared. Specif-

ically, the blue curve in Fig. 4.13 (λB = 1 mm) is relaxed over a long period of time
using our model (without including the GR) and using the model of Alderliesten
et al. [12]. The average difference between both calculations is 0.052 mm, which
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is nearly the same precision of the calculations due to tiny oscillations around the
equilibrium position (Section 4.3.4). Moreover, for λA = 2.5 mm and for λC = 0.4
mm the average differences are 0.121 mm and 0.010 mm respectively. Note that for
small λ (higher resolution) the calculations are more precise.
Further, the following average and maximum values of the angle θi between ûi−1

and ûi were obtained

• For λA: θ = 4.7◦ and θmax = 13.6◦

• For λB: θ = 1.9◦ and θmax = 6.7◦

• For λC : θ = 0.75◦ and θmax = 2.9◦

Hence, the results with g1 and with g2 are practically the same, because the angles
θi are small. However, in a deep frontal collision of the wire with the artery, the
angle is very large. In such situations, it is advantageous to use g1 which gives a
better approximation.

4.3.6 Validation Tests
A dozen specialized participants of a conference in 2011 at INTUS (Interdisziplinäres
Trainings- und Simulationszentrum, http://intus-wuerzburg.de) performed an
informal comparison between our initial setup and three commercial vascular simu-
lators (see Fig. 1.2). The majority of the specialists gave the best approval ratings
to our setup. We also requested the participants to fill out a formulary (Appendix
A) and the results are summaraized in Table 4.2. The worst grade was to the wire
realism, which motivated us to work and to improve the method. On the other
hand, the best grade was to the easiness of use due to the simplicity and portability
of the device.

Table 4.2: Survey of the initial simulator applied in a conference in 2011 with a
dozen specialized participants. The grade scale goes from 1 (poor) to 5
(optimal).

Avaredge grade
Easy to use 4.3
Robustness, stability 4.1
Realism of the wire 3.4
Learning effect 4.1
Overall judgment 4.1

Actually, one of the current challenges is to evaluate the propensity of a simulator
to help the user gain skills within its professional environment, not only increase its
ability in using the simulator [186].
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We also ask to the participants to fell free to write any comment, suggestion or
compliment. The answers can be summarized as follows:

• Simulate the exchange of the wire.
• Possibility for two angulations.

The commentaries refers basically to the possibility to fold the wire besides the tip
and change the type of the wire . These techniques help the navigation of the wire
inside the coronaries [187] and have already been incorporated to the simulator. To
add a new angulation in a specific point of the wire, it is necessary to redefine the
ωi (Fig. 4.4). To change the type of the wire, it is necessary to modify his flexural
moment EI.

4.4 Software
The simulator was developed in C++. It uses the OpenGL2 graphic library and can
be compiled in any plataform. The software has many functionalities shown in the
normal perspective (Fig. 4.18):

Curvature, Angle, Tip - Controls the deformation of the wire tip used in the sim-
ulation.

Speed - Scales the real wire displacement to the virtual wire displacement.
Beat - Set the beat of the heart.
Time - Reset the time counter.
Keyboard arrows or joystick - Change the position of the C-arm, modifying the

view angle.
Contrast - Inject the dye.
X-Ray - Activate the X-Ray.

The last two elements (Contrast and X-Ray) must be used at minimum level by the
physician, in order to preserve the health of the patient [190].
One of the most difficult skill the physician must achieve, is the 3D perception of

the angioplasty using only the 2D view of the monitor, especially when the arteries
overlap [183, 191]. To help this visualization, it is possible to change the perspec-
tive in order to view inside the artery. Although this is still not possible in real
interventions, it helps the physicians to figure out the problem during learning (Fig.
4.19).
Once the physicians understands the 3D difficulty, he/she can use a joystick to

change the left and right anterior oblique views (LAO and RAO) or cranial and
caudal angulation of the C-arm,3 obtaining better projections. The position of the
C-Arm relative to the patient can be seen in the right bottom screen of the simulator
(Fig. 4.18).

2Open Graphics Library www.opengl.org
3The most common values used for these angulations can be found in the Table [5] from Chapter
41 of Lanzer & Topol [192].
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Figure 4.18: View of the normal perspective frame from the simulator, showing
a fictice left coronary. The user goal is to reach the green ball at
the end of the artery. In this case, the implementation follows the
idea of “serious games” [188, 189], where there is a primary purpose
(increase the ability using the wire) other than pure entertainment.

4.5 Conclusions
Using a hardware in combination with an algorithm that responds in real time is
helpful for training MIS. More physicians can be trained over longer periods of time
(increasing skills) and no disposable instruments are needed (decreasing costs).
In this chapter a simulation system for MIVS was presented. It consists of a simple

device to capture the wire motion and two complementary methods to relax the wire.
The physical model introduced by Konings et al. [64] was improved. Although the
results are nearly the same for small beam deflections, our approximation g1(θ) is
superior for larger deflections.
The divergence problem, when the denominator in Eq. (4.16) becomes small or

negative, was detected and solved. The update formula in Eq. (4.19) is simpler than
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Figure 4.19: View of the wire perspective. This is useful to elucidate the overlap
situations of two or more arteries, helping the physician to understand
the bifurcation.

Eq. (11) of Alderliesten et al. [12]. Also, the algorithm does not crash when the
surface gradient becomes large. Hence, the wire can be moved quickly in the artery.
The PR has some drawbacks which have been amended with the GR. The PT of

the GR is proportional to n2 and the PT of the PR is proportional to n3. There-
fore, the GR is faster, does not interfere with the PR, and helps to correct some
wire distortions. Using both methods gives stable and realistic results, as seen in
comparisons of experiments with numerical calculations.
In a stiff artery only few points of the wire are in contact with the surface. Al-

though these points are bouncing, the numerical instability is not perceptible. More-
over, several other cases besides the ones shown in Section 4.3 (e.g. different artery
shapes, rigidity levels, wire paths in the mockup) have been tested and the outcomes
have been similar.
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A simulator of MIVS is composed of several parts. First, the surface geometry
must be defined; second, the interaction between the surface and the wire must be
calculated; third, the shape of the wire must be determined. The performance of the
simulator depends on the hardware (CPU and GPU), the resolution of the artery
and of the wire, the force field to model the collision, and the wire relaxation.
An intuitive way to create the geometry of an artery using the sweep technique was

proposed in Chapter 2, which can be extended to bifurcations. The procedure can
also be applied to model arteries with real data. The most time-consuming task in
catheter simulations is the calculation of interactions between the wire and the sur-
face. The use of planar surfaces in the segmentation simplifies the collision-detection
algorithm and it becomes faster. The artery can have an arbitrary resolution and
it does not affect the PT significantly. The proposed force field is a continuous
function of position, except under special circumstances at bifurcations.
The artery model developed in Chapter 3 is linear and two dimensional, which

results in shorter PT. It is suitable for computing small and noninvasive artery
deformations as required, for example, in the calculation of equivalent spring con-
stants for the catheter simulator. Furthermore, our model implicitly includes the
individual characteristics and inhomogeneous properties of the artery layers.
Some of the elasticity tensor components were obtained and a method to calculate

the spring stiffnesses connecting the mesh nodes was described. Three kinds of
springs were introduced: one linear and two angular. The stiffness of the springs was
analyzed for different mesh resolutions, artery sizes, and the method was validated
by different loads. Finally, the elasticity tensor strongly depends on the stretch,
especially if the Intima layer is axially deformed. However, assuming a stretch
variation smaller than 1%, the linear approximation is accurate.
In Chapter 4, a simulation system for MIVS was presented. It consists of a simple

device to capture the motion and two complementary methods to relax the wire.
The physical model introduced by Konings et al. [64] was improved and a divergence
problem was detected and solved. The proposed update formula is simpler than Eq.
(11) of Alderliesten et al. [12] and the algorithm does not crash during a fast wire
movement.
The PR has some drawbacks which have been amended with the GR. The PT

of the GR is proportional to n2 and the PT of the PR is proportional to n3, where
n represents the number of wire segments. Therefore, the GR is faster, does not
interfere with the PR, and helps to correct some wire distortions. Using both meth-
ods gives stable and realistic results, as seen in comparisons of experiments with
numerical calculations.
The work in this thesis can be extended in several aspects. The sweep surfaces can

be made less restrictive with similar results, provided that the boundary between
artery segments is planar. Working with a database representing a sequence of
surfaces, can simulate the heart beat or any other periodic movements of the arteries.
However, in order to apply this idea it is necessary to have an algorithm which
performs very fast wire relaxation. If the sweep surfaces are generated in real time
using MR Images, they can be used to implement augmented reality, so that the
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physicians obtain a better perception during the procedure.
A systematic study of the equivalent spring constants in different artery geometries

has not been done. This information can be especially useful to analyze the elastic
behaviour close to the bifurcations, because the critical part of catheterism is to
guide the wire through the bifurcation. Moreover, the artery deformation plays
a central role in balloon angioplasty and stenting. Chapter 3 contains the basic
elements and the methodology to perform this study. In particular, a theory using
triangular SE would be more useful because they are commonly used in surface
meshing. The results in 3D can be compared to numerical calculations performed
with FEM.
As remarked previously, even faster relaxation algorithms are necessary to have

real time simulations, especially if the artery geometry becomes time dependent.
One way to approach this problem can be to consider higher order wire approxima-
tion and to analyze how it affects the precision and the PT. Furthermore, a faster
energy minimization algorithm (Section 4.2.2.2) can improve the GR substantially.
As the wire is continuously deformed, there are several energy minima. The

problem is then equivalent to search the minimum of a function in a very larger
dimensional space. Using a more complex numerical procedure would help to skip
these minima, so that the absolute (true) minimum is found. Specifically, a multiple
joint relaxation procedure can be implemented, where the joints are strategically
chosen. The relaxations would be faster but the procedure may become unstable,
so that the trade off between the PT and the stability needs to be analyzed.
Finally, a more detailed and extensive evaluation of the simulator must be carried

out. Some important questions to be addressed are:

• What are the experience and/or expertise level of the evaluators?

• How does our setup compare to other simulators? On what basis?

• The simulator helps the user to gain skills within its professional environment?

This evaluation will be realized after the software has been improved.
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Appendix A

Formulary
Formulary regarding to the wire simulator.

The wire simulator you just tested is been developed to be an auxiliary teaching
tool to the physicians with the manipulation of the wire in vascular procedures.
Please help us to improve his development filling out the following formulary.

Optimal ↔ Poorly
5 4 3 2 1

Easy to use o o o o o
Robustness, stability o o o o o
Realism of the wire o o o o o
Learning effect o o o o o
Overall judgment o o o o o

Please feel free to write any comment, suggestion or compliment:
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1.1 Interventional cardiologists from NewYork-Presbyterian Hospital and
Columbia University Medical, performing a coronary angiogram in a
cardiac catheterization laboratory. The C-Arm [16] generates/detects
the X-Rays and the images are displayed on the screen. . . . . . . . 3

1.2 Commercial VRS for endovascular procedures: (a) Mentice VIST-C
(www.mentice.com), (b) CAE Cath VR (www.caehealthcare.com),
and (c) Simbionix ANGIO Mentor (http://simbionix.com). . . . . 4

1.3 Components of a real-time simulator proposed by Dawson et al.
[35]. The user interacts with the haptics interface device contain-
ing catheters and guidewires linked to force-feedback mechanisms.
A haptic controller integrates the catheter model, blood flow models,
and synthetic fluoroscopy renderer. Hemodynamic models affect fluid
flow and subsequent fluoroscopic appearance. Geometric models of
anatomy and devices used during procedures provide tissue-tool inter-
actions. The user interface relays information about the physiologic
state of the patient (hemodynamic model) and the progress of the
procedure through the fluoroscopic display. . . . . . . . . . . . . . . 5

1.4 Cross-sectional format of a typical IVUS image. The bright-dark-
bright, three-layered appearance is seen in the image with correspond-
ing anatomy as defined. The IVUS represents the imaging catheter
in the blood vessel lumen. Histologic correlation with intima, media,
and adventitia are shown. The media has lower ultrasound reflectance
owing to less collagen and elastin compared with neighboring layers.
Because the intimal layer reflects ultrasound more strongly than the
media [40], there is a spillover in the image, which results in a slight
overestimation of the thickness of the intima and a corresponding un-
derestimation of the medial thickness (black and white image). Figure
extracted from Moscucci [26]. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 (a) A Bezier curve defined by 7 control points representing the tra-
jectory α(t). The orthonormal vectors T, N, and B are illustrated at
a particular point. (b) The parametric curve ξt(u) changes its shape
smoothly. The cross section in this example is a circumference with
variable radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.2 Top view of connected arteries having polylines with the same number
of vertices (open points). The 3D segments are represented by white
and light colored areas separated by planar polylines. When two
planes intersect some vertices are removed and the truncated polylines
have two vertices in common: one at the top (black point) and one
at the bottom (not shown). The shape of the arteries is arbitrary,
since the only requirement is that the black point remains in the line
given by the intersection of the two planes. The black lines represent
additional planes that split the volume between adjacent arteries. We
show in (a) a T-like bifurcation and in (b) a Y-like bifurcation. . . . . 13

2.3 (a) Image from a bifurcation of the Abdominal Aorta into the Com-
mon Iliac Arteries. The image was extracted using the Vascular Mod-
eling Toolkit software, which can also determine the central line α(t)
(not shown). Virtual representation using planar polylines (b) in a
T-like bifurcation and (c) in a Y-like bifurcation. Although both
bifurcations styles can be applied, in this case the Y-like bifurcation
looks more natural. For simplicity, the resolution is low with Nv = 24
vertices, and the triangularization is not displayed in order to make
the Figure clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Cross section in the midle of a segment i.e. between two planar
polylines. In this example each polyline has Nv = 8 vertices and
there are 2Nv = 16 triangular SE (red lines) defining the topology
of the artery segment. Additional lateral planes (black lines) are
used to divide the volume outside the artery between adjacent SE.
Notice that the planes represented by lines are not perpendicular to
the Figure but are inclined. (a) Cross section of an artery segment
divided as slices of a cake (green lines). In practice the division need
not be symmetric. (b) Further subdivision using a single additional
plane per subsegment (blue lines). . . . . . . . . . . . . . . . . . . . . 15

2.5 (a) Side view of the catheter joint at position x between two vertices
at rA, rB. The green lines go through A, B, and are parallel to
the unit vectors m̂A, m̂B, respectively. The vectors x, m̂A, and m̂B

are not in the plane of the Figure. (b) Top view of the joint over a
triangular SE. The unit vectors t̂ij are not in the plane of the Figure,
and the vectors Fij are not perpendicular to the plane of the Figure. . 16

2.6 Workflow of steps 1–5 to calculate the force FABC between the wire
and the artery wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 (a1) Concave intersection KLM . As a point moves along the line
DEFGH, the distance s to the planes KL and LM (perpendicular
to the Figure) varies continuously as shown in (a2). (b1) Convex in-
tersection KLM . As a point moves along the line DFH, the distance
s to the planes KL and LM has the dependence shown in (b2), which
is not continuous at point F . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.8 Main window of the Modeler software. The sweep surface in red is
built over a real model of coronaries in blue (kindly yielded by LNCC
www.lncc.br). The central line is a Bezier curve (cyan) with 4 control
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 ( a) “Builder of Sections” auxiliary window. Here it is possible to edit
the planar curves which are swept over the main curve. ( b) “Builder
of Bifurcations” auxiliary window. In this window, the planar curves
from the bifurcations are edited. The green point in both windows
represents the intersection of the central line and the plane which
contains the planar curves. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Cross view of the arterial ring in the stress-free reference configuration
(not to scale, see Fig. 1.4). The geometrical parameters are the inner
radius Rin, the tissue thicknesses ai, am, aa, and the opening angle α. 27

3.2 (a) Four nodes (black points) are connected by two springs of stiff-
ness κθ (red lines), two springs of stiffness κz (green lines), and two
springs of stiffness κd (blue lines). Increasing the distance bθ by bθεθθ
(tangential direction) and the distance bz by bzεzz (axial direction),
also increases the length of the diagonal bd. (b) Two adjacent non
coplanar rectangles (ϕ0 6= 0) have two angular springs of stiffness τ
connected to straight lines joining the nodes (e.g. r2−r1 and r3−r1).
The axis of rotation is the unit vector n̂z. (c) Two adjacent coplanar
rectangles have two angular springs of stiffness ζ. The axis of rotation
is n̂θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 (a) Cross view of two adjacent rectangles perpendicular to the plane
of the Figure, with nodes at the coordinates r1, r2 and r1, r3. The
vectors r12 and r13 are the projections of r2 − r1 and r3 − r1 in the
plane of the Figure. Without deformation, the moduli r12 and r13 are
both equal to bθ. The unit vector n̂z, represented by the dot •, is
perpendicular to the Figure. When the rectangles are rotated along
the axis defined by n̂z, the structure is bent with a curvature radius
R. The stiffness of the angular springs connected to the rectangles
is τ (blue). (b) The unit vector m̂ is perpendicular to n̂θ and to
r̂45 − r̂46. The lengths δs45 and δs46 are the projections of δr5 − δr4
and δr6 − δr4 along m̂. Hence, up to first order δϕ45 = δs45/r45 and
δϕ46 = δs46/r46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 When the rectangle in Fig. 3.2(a) is deformed and/or rotated, the
lengths and the orientations (relative to the tangential and axial di-
rections) are modified. For simplicity, only the length bθ1 and the
angle βθ1 are shown. The spring stiffnesses between the nodes are the
same as before. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.5 (a) If the adjacent rectangles in Fig. 3.3(a) are not rectangles with
the same dimensions, then the bending radius on the right (R12)
and the bending radius on the left (R13) are different. The dis-
tances between the points are replaced by bθ12 = 2R12 sin(ϕ/2) and
bθ13 = 2R13 sin(ϕ/2). It is possible to join the points using the same
radius R12 = R13 but different angles ϕ12 6= ϕ13. However, in this
case, the line defining the beam will not be smooth when connect-
ing consecutive parts, since the radius and the center of the circles
(e.g. through r3, r1, r2 and through r1, r2, r4) will not coincide. (b)
Top view of Fig. (a). Note that the points r′1, r′2, and r′3 are not
represented because they are hidden behind r1, r2, and r3. The sum
Vθ12 + V′θ12 is equal to one half of Vright (the volume of the yellow
region of thickness h defined by the points r1, r2, r′2, and r′1) and
V′θ12/Vθ12 = V′θ13/Vθ13. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 View of a voxel (cian) corresponding to the volume V of the arterial
wall delimited by a quadrilateral parallel to the yz plane (shadow).
The normal to the arterial wall points in the x axis direction. For a
given z, the integration area (red) of Eq. (3.40) is parallel to the xy
plane. The neutral axis (black line) depends on the z coordinate. . . 39

3.7 Cross view of the artery discretized by a polyline. The angle is θ =
2π/24 and the inner radius (with an internal pressure equal to pin)
is r1 = 1.55 mm. Thus, the rectangle dimensions in Fig. 3.2 are
bθ = 2r1 sin(θ/2) = 0.405 mm and bz = bθ

(
czzzz/cθθθθ

)1/4
= 0.449

mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 (a) Four springs of stiffness κ (connected in parallel and then in series)
are joined by rigid vertical bars (blue). (b) Two springs connected in
parallel are equivalent to one spring of stiffness κp = κ+κ = 2κ [137].
(c) The two springs connected in series are equivalent to one spring
of stiffness κs = κpκp/(κp + κp) = κp/2. . . . . . . . . . . . . . . . . 40

3.9 Axial view of the artery submitted to different boundary conditions.
(a) The pressure pin increases and the axial length z1 is kept constant.
As a result, the tangential stretch and the radius r1 vary (bottom).
(b) The pressure is kept constant at pin, the length increases from z1
(top) to z′1 (bottom), and the radius becomes smaller (r1 → r′1). . . . 43

3.10 Average circumferential stretch λθ as a function of blood pressure pin
without residual strain and without external surface traction. The
red, blue, and green lines correspond to the calculations with model
A (this work), with model B (nonlinear and incompressible artery of
Holzapfel et al. [127]), and with model C (one dimensional FEM). . 44
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3.11 Bending of a planar artery subjected to a uniform vertical load. The
triangle and the circle at the ends support the artery vertically: the
triangle is fixed but the circle can move freely in the horizontal direc-
tion (green arrows). The black curve represents Eq. (3.46) and the
red points are the result of the calculations performed with the model
developed in this work. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 Logarithm of the ET as function of the tangential stretch λθ (a, b, c)
and of the axial stretch λz (d, e, f) in the interval [1, 1.1]. The constant
c0 is equal to 1 MPa. The different colors indicate the ET components
cθθθθ (red), czzzz (green), and cθθzz (blue). The results are given for
the Intima (a, d), Media (b, e), and Adventitia (c, f) tissues. . . . . . 47

4.1 (a) The wire has a curved tip (red) with M segments. They are
numbered from the proximal end to the distal end of the wire. (b)
The new segment (green) points to the same direction as the segment
number n−M , and the total number increases to n+ 1. . . . . . . . 51

4.2 The wire geometry. The difference between the coordinates of two
consecutive joints xj − xj−1 is equal to the vector λj, which has a
constant length λ. Changing λi modifies only xi, xi+1, · · · , xn−1, xn,
and the difference between the new and the old coordinates x′j−xj =
λ′i − λi is the same for j = i, i+ 1, · · · , n− 1, n. . . . . . . . . . . . 52

4.3 Three successive points xi−1, xi, and xi+1 separated by an equal dis-
tance λ = |λi| = |λi+1| define a circular arc of radius Ri and angle
2θi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 The minimum energy of a wire without external forces results when
λi−1 is parallel to λi, and λi is parallel to λi+1. If λi−1 = xi−1−xi−2+
ωi, λi = xi−xi−1, and λi+1 = xi+1−xi−ωi+1, then the equilibrium is
obtained when xi−2, xi−1, xi, and xi+1 are in the positions indicated.
Thus, the vectors ωi bend a free wire. . . . . . . . . . . . . . . . . . 55

4.5 The lengths of the vectors λi (old), λ′i (new) are equal, and the mod-
ulus of αi = λ′i − λi is ai. Further, the unit vector ûi is parallel to
λi and perpendicular to t̂i = cosψiv̂i + sinψiŵi, where ψi represents
the azimuthal angle of αi around λi. . . . . . . . . . . . . . . . . . . 57

4.6 Three points xi−1, xi, and xi+1 are separated by different distances
|λi| 6= |λi+1|. The two circular arcs have the same angle θi but the
radii Ri and Ri+1 are not equal. . . . . . . . . . . . . . . . . . . . . 61

4.7 (a) Original curve xi (red), curve after executing the energy mini-
mization x∗i (green), and displaced points x′i (black). (b) Closer view
of three coordinates x∗i−2, x∗i−1, and x∗i after the minimization. The
unit vector û∗i points from x∗i−1 to x∗i , and the vector bij goes from
x′j−1 to the line passing through x∗i−1 and x∗i . The distance between
x′j−1 and x′j equals λ. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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4.8 Second order correction εij ê∗i to the coordinate x′j. The displacement
is indicated by the green arrow. The arc segment has an angle θ∗i
and a radius R∗i . The distance between x∗i−1 and x∗i is λ∗i , and the
distance between x′j and x∗i is dij. . . . . . . . . . . . . . . . . . . . 65

4.9 Wire segments inside an artery. In order to relax, the segment P1P2
should rotate upwards about point P1 as indicated by the arrow. Note
that from P2 to P6 the wire is rigid, so that the resulting translation is
hindered by the contact points P3 and P4. Nor can it move downwards
because of P5. The GR is not subjected to this restriction, since from
P3 up to P6 the wire can slide. It is especially designed to relax
intervals like from P0 to P3 (red). . . . . . . . . . . . . . . . . . . . . 68

4.10 Workflow. In the “Tip Relaxation” (Section 4.2.1) the procedure
PhysicalUpdate is applied to the tip of the wire and also to some
selected segments. When the “Physical Relaxation” is called, 1

2m(m+
1) updates are executed. The PR is completed if the cycle ends, i.e.
after 1

2n(n + 1) updates. In the same way, when the “Geometrical
Relaxation” is called, m(m + 1)/(ν − µ) iterations are executed to
improve the curve. The GR is completed after ν − µ iterations. . . . 69

4.11 Photography (top-view) and sketch (cross-view) of the wire device.
The pipe has a small window and the mouse is over the window.
Translating and rotating the wire also translates and rotates the cylin-
der, which is captured by the mouse. . . . . . . . . . . . . . . . . . . 70

4.12 Artery with a T-like and a Y-like bifurcation. (Left) The wire has
250 segments, λ = 1 mm, and it has been quickly inserted into the
artery (green curve). In this part, the program executed only Tip
Relaxations and the time consumed was 0.24 seconds. In the second
part, no action takes place and a combination of 100 relaxation cy-
cles (Physical and Geometrical) is executed, so that equilibrium is
attained (blue curve). The coordinates indicate the location of some
wire joints. (Right) Mockup representing the stiff artery. The wire
inserted in the artery has the same shape as the blue curve. The av-
erage separation between the physical wire (plot digitized with Web-
PlotDigitezer 3.8 http://arohatgi.info/WebPlotDigitizer) and
the blue curve is 0.262 mm, with a standard deviation of 0.227 mm.
Hence, the calculations with the model developed in this work give a
realistic result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 The green wire A has nA = 100 segments, λA = 2.5 mm and the blue
wire B has nB = 250 segments, λB = 1 mm. Hence nAλA = nBλB.
The arrows indicate one of the intervals µ < i < ν where the GR is
applied. In the case of wire A it was found that µA = 1, νA = 13 and
in the case of wire B it was found that µB = 2, νB = 30. Thus, µ
and ν are closely proportional to n. . . . . . . . . . . . . . . . . . . 74
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4.14 GR relaxation time tgeo as function of the interval length ν − µ. The
blue color represents the wire B with nB = 250 segments (blue curve
in Fig. 4.13) and the red color represents the wire C with nC = 625
segments (not shown in Fig. 4.13). The points are the PT measured
in numerical simulations and the lines are the fits performed with Eq.
(4.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15 Initial curve (green) and the final equilibrium curve (blue) obtained
after a very long relaxation time. The final result is the same with or
without the GR. The analysis is focussed in the wire portion located
inside the gray box, which goes from wire segment number 90 to 95.
In this interval are seen the most relevant changes during relaxation. 76

4.16 The red bars represent the percentage of the time in which each joint
(blue curve in Fig. 4.12) is in contact with the artery’s surface. The
magenta curve represents the average modulus of the unit vector up-
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4.17 Comparison of the functions g(θ) (red; exact), g1(θ) (blue; this work),
and g2(θ) (green; Alderliesten et al. [12]) in the interval 0 < θ < π/2. 78

4.18 View of the normal perspective frame from the simulator, showing
a fictice left coronary. The user goal is to reach the green ball at
the end of the artery. In this case, the implementation follows the
idea of “serious games” [188, 189], where there is a primary purpose
(increase the ability using the wire) other than pure entertainment. . 81

4.19 View of the wire perspective. This is useful to elucidate the overlap
situations of two or more arteries, helping the physician to understand
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