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Abstract

A complete simulation system is proposed that can be used as an educational tool
by physicians in training basic skills of Minimally Invasive Vascular Interventions.
In the first part, a surface model is developed to assemble arteries having a planar
segmentation. It is based on Sweep Surfaces and can be extended to T- and Y-like
bifurcations. A continuous force vector field is described, representing the interaction
between the catheter and the surface. The computation time of the force field is
almost unaffected when the resolution of the artery is increased.

The mechanical properties of arteries play an essential role in the study of the
circulatory system dynamics, which has been becoming increasingly important in
the treatment of cardiovascular diseases. In Virtual Reality Simulators, it is crucial
to have a tissue model that responds in real time. In this work, the arteries are
discretized by a two dimensional mesh and the nodes are connected by three kinds
of linear springs. Three tissue layers (Intima, Media, Adventitia) are considered and,
starting from the stretch-energy density, some of the elasticity tensor components are
calculated. The physical model linearizes and homogenizes the material response,
but it still contemplates the geometric nonlinearity. In general, if the arterial stretch
varies by 1% or less, then the agreement between the linear and nonlinear models is
trustworthy.

In the last part, the physical model of the wire proposed by Konings is improved.
As a result, a simpler and more stable method is obtained to calculate the equi-
librium configuration of the wire. In addition, a geometrical method is developed
to perform relaxations. It is particularly useful when the wire is hindered in the
physical method because of the boundary conditions. The physical and the geo-
metrical methods are merged, resulting in efficient relaxations. Tests show that the
shape of the virtual wire agrees with the experiment. The proposed algorithm allows
real-time executions and the hardware to assemble the simulator has a low cost.
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Chapter 1 Introduction

1.1 Motivation

Over the last decades, Minimally Invasive Surgery (MIS) has revolutionized many
surgical procedures [I]. The treatment is delivered using image guidance, so that
skillful instrument navigation and a thorough understanding of the anatomy are
critical to avoid complications. MIS surgery has demonstrably better quality-of-life
outcomes than open surgery [2]. According to Fusch [3] “..two major drawbacks
have emerged with the introduction of MIS: firstly, the prolonged learning curve for
most surgeons, in comparison to the learning process in open surgery; and secondly,
increased costs due to investment in the equipment required and the use of disposable
instruments...”

Because MIS has a reduced sense of touch compared to open surgery, surgeons
must rely more on the feeling of net forces resulting from tool-tissue interactions [4].
Thus longer training is needed to develop sufficient skills. The outcomes of surgical
procedures and the possibility of medical training have been subject of exhaustive
research [5].

The combination of traditional learning methods and technology enhances trainee
satisfaction and skill acquisition level [6 [7]. The training methods include live ob-
servation of procedures, practicing on mechanical models, and hands-on training
using human cadavers or live animals [§]. In the past, hands-on training was con-
sidered the best available method [9, [10]. However, it has ethical issues and it is
also expensive, owing to the costs associated to the use of animals in the process
and because the instruments can be used only once [L1].

Nowadays, Virtual Reality Simulators (VRS) provide an initial training step to
develop basics skills [12]. With the aid of simulation techniques, several training
sessions can be performed, which provide certain levels of proficiency to the physician
[13]. Moreover, no radiation is required and the simulation can be made specific [14].
Based on these findings, the US Food and Drug Administration accepted a proposal
that VRS is an important component of a training package for carotid stenting:
“Trainees would learn catheter and wire handling skills on a high-fidelity VRS until
the trainees achieved a level of proficiency in didactic and technical skills” [15].

Cardiac catheterization (Fig. is a Minimally Invasive Vascular Surgery
(MIVS) commonly used to diagnose and treat heart conditions [17]. During catheter-
ization, small tubes (catheter) are inserted into the circulatory system through the
femoral artery and vein as the preferred access sites [18]. Using X-ray fluoroscopy,
information is obtained about blood flow and pressures within the heart. As a re-
sult, it is determined if there are obstructions within the blood vessels feeding the
heart muscle [I9]. For interventional procedures (e.g. stenting and baloon angio-
plasty), a wire must be inserted through the catheter [20, 2I] and maneuvered in
the coronaries.

The wires are commonly fabricated from type 304 stainless steel [22], but some
recent studies are trying replace metal by optical fiber, so that it can be used in
Magnetic Resonance (MR) environments [23]. Thus, it offers new possibilities of
measurements and analysis [24]. To control the motion of the catheter within the
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Figure 1.1: Interventional cardiologists from New York-Presbyterian Hospital and
Columbia University Medical, performing a coronary angiogram in a
cardiac catheterization laboratory. The C-Arm [16] generates/detects
the X-Rays and the images are displayed on the screen.

vascular network, the radiologist can push, pull or twist the proximal end of the
device [25]. Achieving optimal outcomes requires operator skills in guiding the wire,
as well as selecting and using the surgical tools [26].

In general, MIVS such as the ones showed in Fig. [I.2] are expensive and complex
[27]. Procedures start with a needle insertion into the vascular system, but current
commercial simulators skip this step! in order to reduce complexity and cost. The
wire and the catheter are then manipulated within the vascular anatomy to navigate
to the position of interest [29]. Rudin et al. [30] offer a vision for the future of this
dynamic field in the form of predictions.

Local deformations are important because they increase the realism in proximity
to the surgical tool [31]. However, changes in tool geometry cause variations in the
force-deflection responses only for large localized deformations of tissues [32], which
is not the case in catheter simulations. Thus, the catheter shape is not crucial and
it can be represented by a curve discretized by points.

Simulators are also able to differentiate advanced from novice operators, suggest-
ing that it is a valid tool in the assessment of performances [33]. VRS are not
exclusively used for training purposes, because they can be easily customized to

!Specific needle simulation can be practice in a different VRS [28].
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Figure 1.2: Commercial VRS for endovascular procedures: (a) Mentice VIST-C
(www. mentice. com), (b) CAE Cath VR (www. caehealthcare. com),
and (c) Simbionix ANGIO Mentor (http://simbionix. com).

provide both medical programs and certification boards with an objective tool for
assessing physician skill and knowledge [34].

Dawson et al. [35] proposed an organogram of a MIVS (Fig. . According to
Sanz-Lopes et al. [36], the design of VRS, and more specifically those dedicated to
surgery training, implies to take into account numerous constraints so that simula-
tors look realistic and train proper skills for surgical procedures. Among those con-
straints, the accuracy of the biophysical models [37] remains a very hot topic, since
parameter estimation and experimental validation often rely on invasive protocols
that are obviously not suited for living beings [38]. In the context of Interventional
Radiology, the procedures involve the navigation of surgical catheter tools inside the
vascular network where many contacts, sliding, and friction phenomena occur [39].

According to Peterson et al. [41], one of the major components of the cardiovas-
cular system is its arterial network, the mechanical properties of which determine
the propagation of energy from the heart to the periphery. The relationships of
blood flow and blood pressure [42], of intravascular pressure and vessel volume [43],
of pulse wave velocity and blood pressure [44] are but a few of the variables often
measured which depend, quantitatively, on the mechanical properties of the blood
vessel walls.

The arterial wall is composed by three tissue layers: Intima, Media, and Adventitia
[45]. A better understanding of the arterial wall mechanics can provide relevant
information for medical diagnosis and therapies of some vascular pathologies [46].
For example, the measurements obtained by an Intravascular Ultrasound (IVUS)
(Fig. of the arterial tree stiffness, can be applied in routine clinical practice for
risk stratification [47]. Detailed knowledge of vascular tissue properties is required to
improve procedures such as angioplasty, to design arterial prostheses, and to describe
the dynamics of the interaction between the heart and the circulatory system [48].


www.mentice.com
www.caehealthcare.com
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Geometrical User Interface

Haptic

Figure 1.3: Components of a real-time simulator proposed by Dawson et al.
[35].  The user interacts with the haptics interface device contain-
ing catheters and guidewires linked to force-feedback mechanisms. A
haptic controller integrates the catheter model, blood flow models,
and synthetic fluoroscopy renderer. Hemodynamic models affect fluid
flow and subsequent fluoroscopic appearance. Geometric models of
anatomy and devices used during procedures provide tissue-tool inter-
actions. The user interface relays information about the physiologic
state of the patient (hemodynamic model) and the progress of the
procedure through the fluoroscopic display:.

Moreover, in order to show the artery deformation caused by the introduction of
medical devices, a truthful simulator of the MIVS must consider the physical models
of the devices and of the artery [49, 50].

The mechanical properties of vascular tissues can not be described in terms of
homogeneous cell agglomerations [51]. Tissues have microscopic and macroscopic
organizations, which need to be considered in the context of multiple scales [52].
The arterial wall is incompressible, inhomogeneous, and exhibits hysteresis under a
cyclic load [53]. When modeling the artery, a complex set of nonlinear equations
results and considerable Processing Time (PT) is consumed to solve them [54].
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Adventitia

Media

Adventitia

Figure 1.4: Cross-sectional format of a typical IVUS image. The bright-dark-
bright, three-layered appearance is seen in the image with correspond-
ing anatomy as defined. The IVUS represents the imaging catheter
in the blood vessel lumen. Histologic correlation with intima, media,
and adventitia are shown. The media has lower ultrasound reflectance
owing to less collagen and elastin compared with neighboring layers.
Because the intimal layer reflects ultrasound more strongly than the
media [40], there is a spillover in the image, which results in a slight
overestimation of the thickness of the intima and a corresponding un-
derestimation of the medial thickness (black and white image). Figure
extracted from Moscucci [26].

1.2 Contributions

The publications of the author are the Refs. [55H63] and the results appearing in
this thesis have been published mainly in the last three ones. Specifically, the major
contributions are:

e A model that assembles arteries and has planar segmentation to increase effi-
ciency of the collision-detection algorithm. It is based on Sweep Surfaces and
can be extended to T- and Y-like bifurcations.

e Description of a continuous force vector field, representing the interaction be-
tween the catheter and the surface of the artery.

e Linearization of an artery model to calculate the stiffness of springs used in
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Two-Dimensional (2D) Finite Element Method (FEM).

e In comparison with the paper of Konings et al. [64]:
— The wire model is more accurate, especially when the bending is large.
— The update equations are simpler and the calculations are faster.

— The wire segment can be introduced at once (it is not necessary to make
subdivisions).

e A new method, the Geometrical Relaxation (GR), is introduced. It helps to
improve the speed when the wire is hindered by boundary conditions.

e A hardware device is described, which is simple to deploy and has a low cost.
This can help to disseminate the technique and make it widespread.

1.3 Organization
The chapters are independent, complementary, and are organized as follows:

e Chapter [2] (based on Ref. [61])

A model is proposed to assemble arteries which includes planar segmentation,
increasing the efficiency of the collision-detection algorithm. Specifically, in
Section the Sweep Surfaces and the T- and Y-like bifurcations are de-
scribed. Then, in Section [2.2.2] a continuous force vector field, representing
the interaction between the catheter and the surface, is presented.

e Chapter 3| (based on Ref. [62])

The artery model is linearized to calculate the stiffness of springs. Arteries
with three tissue layers (Intima, Media, Adventitia) are considered and, start-
ing from the stretch-energy density, some of the elasticity tensor components
are calculated. The artery is discretized by a 2D mesh where the nodes are
connected by three kinds of linear springs (one normal and two angular ones).
The model linearizes and homogenizes the material response, but it still con-
templates the geometric nonlinearity. Specifically, a linearization is performed
in Section to determine the Elasticity Tensor (ET) for each layer. Fur-
thermore, the interaction between the nodes is simulated using normal and
angular springs. Then, in Section the stiffnesses are determined and the
results are compared to the calculations performed with a nonlinear model.
Finally, in Section the range of validity in the linear approximation is
analyzed.

e Chapter 4| (based on Ref. [63])

In this chapter, a complete system for the simulation of MIVS is described.
The environment is composed of a hardware that captures the movements
of the wire and an algorithm that simulates in real-time the motion inside
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arteries. In Section the physical model of the wire proposed by Konings
is improved. As a result, a simpler and more stable method is obtained to
calculate the equilibrium configuration of the wire. Then, in Section the
GR method is developed to perform relaxations. It is particularly useful when
the wire is hindered in the Physical Relaxation (PR) method because of the
boundary conditions. Also, in Section [4.2.3 a recipe is given to merge the PR
and the GR methods, resulting in efficient relaxations. The hardware has a
low cost and is explained in Section Moreover, in Section [4.3] tests show
that the shape of the virtual wire agrees well with the experiment.

Finally, in Chapter |5 the main conclusions of the previous chapters are addressed
and future works are pointed out.
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2.1 State of the Art

According to Kretschmer et al. [65], current vascular modeling methods can be
roughly categorized as model-free or model-based. Model-free methods are also re-
ferred to as implicit methods, since they usually rely on generic point cloud-based in-
terpolation techniques [66] and make extensive use of implicit indicator functions to
interpolate models. Common choices for interpolation techniques include multilevel
partition of unity implicits [67] and Poisson surface reconstruction [68]. Model-free
methods are usually concerned with a robust extraction of point clouds from binary
segmentation masks that is able to capture fine vessels. To generate reliable inter-
polations, these methods need a dense sampling and usually they do not incorporate
explicit topological and geometric information on the underlying vasculature.

Model-based methods, in contrast, are motivated by the tubular structure of vas-
cular systems and are frequently used to visualize centerline descriptions [65]. Many
techniques rely on explicit mesh generation methods [69-71], which is usually fast
but often leads to selfintersecting meshes at vascular bifurcations. For computational
hemodynamics, the generated models need to be smooth and free of selfintersections
or unwanted inner structures [72]. Implicit modeling provides inherent composition
mechanisms to solve this problem and has been successfully used to generate model-
based vascular models. The Oeltze & Preim [73] approach is based on convolution
surfaces and produces closed, intersection-free models. It has, however, limited ex-
pressiveness, since it is restricted to polar definitions of cross sections. An implicit
modeling technique that supports free-form shapes was proposed by Kretschmer et
al. [74].

Workflows to interactively segment or correct vascular segmentations have been
proposed by Diepenbrock & Ropinski [75] and by Wang et al. [76]. These semi-
automatic methods, however, are bound to the resolution of the underlying dataset
and allow only for an indirect manipulation of the vascular representation.

A mesh generation of image-based vascular models has been implemented by
Santis et al. [77] combining two software packages: the Vascular Modeling Toolkit
from www.vmtk.org (a software for Three-Dimensional (3D) reconstruction and
geometric analysis of image-based modeling of blood vessels) and pyFormex from
www . pyformex.org (a software for generating, transforming, and manipulating large
geometrical models of 3D structures by sequences of mathematical operations). A
common problem of surface mesh generation is the intersecting triangulations. Ce-
bral et al. [78] described an algorithm for merging these triangulations in the context
of FEM applied to blood flow.

Sometimes a complicated geometry is not adequate, especially at initial learning
stages. Currently, there are no implementations of hands-on online learning plat-
forms for physicians in this area, because the algorithms used are computationally
expensive to simulate a real-time experience [79]. The need for such a platform
inspired the development of our model-base algorithm, which generates virtual ar-
teries using Sweep Surfaces.! In particular, the planar geometry of the contour

1See a video at https://youtu.be/MXHTxOMjNNo
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2.2 Methods

curves improves the collision-detection [80] between the tool and the artery.

2.2 Methods

2.2.1 Surfaces

(b)

Figure 2.1: (a) A Bezier curve defined by 7 control points representing the trajec-
tory a(t). The orthonormal vectors T, N, and B are illustrated at
a particular point. (b) The parametric curve &,(u) changes its shape
smoothly. The cross section in this example is a circumference with
variable radius.

Sweep surfaces have already been used for modeling vascular structures applied
to blood flow simulations [65, 8I]. This idea is extended to show how it can be used
to generate virtual arteries suitable for simulators of MIVS.

Generating a 3D surface by sweeping a curve along a trajectory a(t) as in Fig.
2.1)(a), consists of forward mapping a contour set &,(u) [82]. The general transfor-
mation describing the parametric surface can be written as the isometry

N(?)
S(tu) =§&(w) | B(t) | +a(l)
T(t) 3x3

where the tangent T(t), the normal N(¢), and binormal B(t¢) are the vectors in
the Frenet-Serret frame [83]. To simplify the equations and to introduce a planar

segmentation, we use 2D curves &,(u) = (xt(u),yt(u)), i.e. with z;(u) = 0. Then

11
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the Sweep Surface becomes (Fig. [2.1[b))

St = (s (3(1))+ a0 21

Sometimes, it is convenient to rotate the normal and binormal vectors in order to
adjust the curves close to the bifurcation. The 2D planar curves are discretized by
polylines with N, vertices. The topology of the inner surface, where the interaction
with the catheter takes place, is defined by a triangularization [84].

It is possible to connect arteries through “T” or “Y” bifurcations, preserving
planar polylines in the intersection. Some vertices of the polylines are removed and
additional planes are required to decide in which artery the catheter is located (see
Fig. for details). To avoid holes in the connection of consecutive segments, all
polylines must have the same number of vertices.

The idea of planar surfaces can be extended to real objects (Fig. . This can
be done by defining planes intersecting the real model and constructing a polyline
which fits the cross section by means of a least square procedure. Finally, note
that the resolution in the intersection region depends solely on N,, which must be
a multiple of 4. Specifically, the number of Surface Elements (SE) equals N2 and
%NVQ in a T-like and in a Y-like bifurcation respectively.

In a VRS the collision-detection must be carried out between the catheter and
the inner surface of the artery [85]. In principle, a simple algorithm checks if an
intersection occurs between each segment of the catheter (a large number) and the
triangles that mold the surface and represent the discretization of the artery wall (a
huge number).

The collision search task is time-consuming and an efficient approach is to use
the idea of boundary boxes [86]. In our case these become segment boxes and take
advantage of the Sweep Surface geometry. Fach segment box is bounded by two
consecutive planar sections and the search is restricted to those triangular SE inside
the segment.

A further improvement can be made by dividing each cylindrical segment into
subsegments as slices of a cake (Fig. 2.4[(a)). We take the number of subsegments
to be equal to the number N, of polyline vertices. Then the number Ny of SE per
subsegment is approximately constant.

Making additional subdivisions (Fig. [2.4(b)) reduces the collision-detection cal-
culation still further. Close to the border of the slices of a cake we insert a cutting
plane (blue line), so that if the catheter is inside the white or light green region no
collision-detection needs to be performed. Hence, by including a single additional
step we can avoid testing the collision-detection with the SE, which are approxi-
mately five in number as observed in numerical simulations.

A straightforward procedure to find a cutting plane is as follows. Let Sy, ---,
S, be the vector areas of the SE (triangles) within the subsegment. First calculate
nS = S; + .-+ S,,, where S represents the modulus of the sum and n is a unit
vector. The normal n points in the average direction of the triangles vector area.

12
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(@)

(b)

Figure 2.2: Top view of connected arteries having polylines with the same number
of vertices (open points). The 3D segments are represented by white
and light colored areas separated by planar polylines. When two planes
intersect some vertices are removed and the truncated polylines have
two vertices in common: one at the top (black point) and one at the
bottom (not shown). The shape of the arteries is arbitrary, since the
only requirement is that the black point remains in the line given by
the intersection of the two planes. The black lines represent additional
planes that split the volume between adjacent arteries. We show in
(a) a T-like bifurcation and in (b) a Y-like bifurcation.

Further, if ri,, r1p, T1e, ** *, Tina, Tmb, T'me are the vertices of the triangles, test which
one gives the smallest dot product n.r;, and label it as r.;,. An equation for the
cutting plane is n.(r — ry;,) = 0, since all triangles will be on the upper side of this
plane.

To decide which SE the catheter joint intercepts, it is necessary to have aditional
planes (black lines in Fig. dividing the volume between adjacent triangles, i.e.

13
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Figure 2.3: (a) Image from a bifurcation of the Abdominal Aorta into the Common
Iliac Arteries. The image was extracted using the Vascular Modeling
Toolkit software, which can also determine the central line a(t) (not
shown). Virtual representation using planar polylines (b) in a T-like
bifurcation and (c) in a Y-like bifurcation. Although both bifurcations
styles can be applied, in this case the Y-like bifurcation looks more
natural. For simplicity, the resolution is low with N, = 24 vertices,
and the triangularization is not displayed in order to make the Figure
clear.

to build volume boxes similar to a triangular prism. We label this plane as lateral
plane and it will be used in the calculation of the interaction force (Section [2.2.2)).

Consider two vertices A and B common to the pair of triangles. The lateral
plane goes through the vertices A, B, and has a normal vector tsz. A natural
definition for t4p is to take it parallel to the vector (r4 — rg) x (fiy + np), where
r; represents the position of the vertice and fi; the surface normal. In this way tap
is perpendicular to the line joining A, B, and also to the average normal vector at
these vertices. However, when A and B are in the same planar polyline, the vector
tap is the normal vector of the plane containing the polyline.

The video at https://youtu.be/q51hvXNd_Xg shows how the sections are cre-
ated.

2.2.2 Catheter-Surface Interaction

A critical point in simulations is how the catheter interacts with the artery, since
the finely tuned details will decide the way the catheter propagates in bifurcations,
which is the significant part of the learning process [87].

We suppose that the catheter has intercepted a triangular SE with vertices ABC'
and we proceed to calculate the force F 450 acting on this surface.

At the A-th vertice we define the vector ky = keqania, whose modulus keqa rep-
resents the equivalent stiffness of the springs holding the vertice to the equlibrium
position. The force associated with A reads

FA = SkA (22(1)
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(@

(b)

Figure 2.4: Cross section in the midle of a segment i.e. between two planar poly-
lines. In this example each polyline has N, = 8 vertices and there
are 2N, = 16 triangular SE (red lines) defining the topology of the
artery segment. Additional lateral planes (black lines) are used to di-
vide the volume outside the artery between adjacent SE. Notice that
the planes represented by lines are not perpendicular to the Figure but
are inclined. (a) Cross section of an artery segment divided as slices of
a cake (green lines). In practice the division need not be symmetric.

(b) Further subdivision using a single additional plane per subsegment
(blue lines).

where s stands for the distance between the joint and the SE.
Denoting by x the joint position, we associate the following force with the line
connecting A and B (Fig. [2.5(a))

F _dBFA+dAFB
AB T+ dg

(2.20)

where dy = \/(x —14)? — [Ma.(x —1r4)]? is the distance to the line going through
A and parallel to the unit vector my, which points in the direction of tap X tca.
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Chapter 2 Surfaces for Modeling Arteries

Figure 2.5: (a) Side view of the catheter joint at position x between two vertices
atra, rg. The green lines go through A, B, and are parallel to the unit
vectors m 4, mp, respectively. The vectors X, m 4, and mp are not in
the plane of the Figure. (b) Top view of the joint over a triangular SE.
The unit vectors fij are not in the plane of the Figure, and the vectors
F,; are not perpendicular to the plane of the Figure.

The resulting force acting on the SE is defined to be (Fig. [2.5(b))

r eapecaFpcoc+epceapFoa+ecaepcFap (2.20)
ABC = -
eABecA+ epceaB + €caeBe

where eqp = tap.(x —1r4) = tap.(x — rp) is the distance to the lateral plane.

The weight of F 4 in the calculation of F 45 is inversely proportional to d 4, and for
dy — 0 we get F p — F 4. Similarly, the weight of F 45 in the calculation of F 4pc
is inversely proportional to the distance e, g, and for e4p — 0 we get Fapc — Fap.

Lastly, according to Newton’s third law the reaction force of the surface Fyur¢
equals minus the force —F 4pc exerted by the catheter. Since the force is related to
the potential energy by Fgut = —V U, the gradient of the surface energy coincides
with F 4pc. This gradient is used to determine the wire behaviour (see Section .
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2.3 Technical Evaluation

Initially, the steps to calculate the force in a collision are examined. The recipe used
in the collision-detection algorithm has the following steps. For each catheter joint

perform the operations described below (Fig. :

1. Identify the artery segment where the joint is located. As the catheter is

pushed into or removed from the vessel, the position of the joint changes along
the artery. Thus, the first step is to verify if the joint remains in the segment,
moves forward, or recedes. The search starts from the last known location
and since this operation is repeated with a high frequency in comparision with
the speed of the catheter, most of the time the joint will remain in the same
segment.
The total wire length can be changed introducing or removing catheter seg-
ments close to the end instead of the beginning. In this way, the transition
probability of a joint between adjacent artery segments becomes even smaller,
since it does not change the position of the joints up to the beginning. How-
ever, decreasing the separation between planar polylines (i.e. increasing the
resolution of the artery in the axial direction) increases the transition proba-
bility.

2. Search for the subsegment where the joint is located (slice of the cake in Fig.
2.4(a)). The subsegments are periodically ordered and the search is performed
examining on which side of the green planes the joint is situated. As in step 1,
most of the time the subsegment location will not change and this step usually
reduces to test if the joint remains in the same subsegment. Thus, choosing a
larger number of divisions (subsegments) does not affect the PT.

3. Test if the joint is in the inner side of the subsegment (white or light green
regions in Fig. [2.4/b)). This check is easy to perform and in affirmative case
there can be no collision, so that the calculation stops here. Since the inner
volume is much larger than the outer volume (cyan region in Fig. 2.4]b)), this
will be the result unless the joint is very close to the surface. The cyan region
decreases when the number of vertices increases.

4. Test the collision of the joint with some triangular SE. This requires to verify
if the joint crosses the plane defined by the triangle. Moreover, we must
check the position within the volume enclosed by the triangular prism (Section
2.2.1)). If the result is negative all SE within this subsegment must be tested.
Furthermore, when a collision ocurred previously, the new search starts from
the last SE where the collision was detected.

Note that variations of the average N affect the PT, since a larger number
means that more collision tests must be performed. We remark that increasing
N, and the number of subdivisions by the same amount can result in tiny
variations of Ng. This happens because the surfaces are usually not right
circular cylinders and the SE are triangles with variable shape. Hence, the PT
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Chapter 2 Surfaces for Modeling Arteries

does not become appreciably larger using a higher resolution in the tangential
direction.

5. Reaching this step means that a collision ocurred and we have identified the
triangular SE. Then proceed to calculate the reaction force on the SE (linear
approximation) as described in Section m
The calculation of the force takes longer than testing all collisions in a sub-
segment (step 4) with a negative result. Changing the resolution modifies the
geometry on a small scale. As a consequence, the contact points between the
catheter and the surface will not be exactly the same. Thus, the collision
number varies slightly with the resolution.

Identify the
Start
artery segment

Search the
subsegment

€S
"

no
‘i
yes

Calculate
the force

Figure 2.6: Workflow of steps 1-5 to calculate the force F sgc between the wire
and the artery wall.

In CA simulations, most of the PT is spent in determining the interaction between
the catheter and the surface [88]. The recipe above constitutes an efficient method
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to perform this calculation. The PT does not increase appreciably using a higher
artery resolution in the axial and/or tangential directions.

(a)

(a,)

D H (b

>

Figure 2.7: (a;) Concave intersection KLM. As a point moves along the line
DEFGH, the distance s to the planes K L and LM (perpendicular to
the Figure) varies continuously as shown in (ay). (by) Convex inter-
section K LM . As a point moves along the line DF' H, the distance s
to the planes K L and LM has the dependence shown in (by), which is
not continuous at point F'.

The force vector field defined in Section [2.2.2] is a continuous function of the
position. Further, consider a lateral plane (line LF in Fig. dividing two adjacent
triangular regions. In a convex surface as in (a; ), the field is continuous at LF (point
F in (by)), since for eap — 0 the value is equal to F4p on both sides. For that
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reason, no instabilities appear when the joint moves across the lateral plane. But in
a nonconvex surface, as can happen for example in the bifurcation of arteries, the
modulus of the field is discontinuous. The minimum distance s to the SE has a jump
across the lateral plane (point F' in (b)) and F 4p differs on both sides. However,
in the special case that the angles /F LK and ZF LM are equal, s is continuous at
F.

Close to equilibrium, the catheter joints which are not tightly bound to the sur-
face bounce in and out by a small amount (a numerical artifact). When the joint
leaves the surface, the repelling force instantaneously becomes zero and the joint
moves back. Therefore, including dissipative forces in the calculations improves
convergence [89].

2.4 Software

In order to modele the sweep surfaces, a system was developed in C++ that uses
the OpenGL? graphic library [90] and the GLUI user interface library.?

In the main window of the modeler, it is possible to add and to edit the parameters
of the central line, to change the perspective, and to chose the objects to be visualized
(Fig. . Specifically, the main controls are:

Segment - Add or delete a new segment of the central line. It can be connected
with a T- or Y-like bifurcation.

Control Point - Edit the control points of the central line.

Model Rotation - Rotate the tubular or the bifurcation surface around the first
control point.

Real movements - Change the position and scale of the real model.

Show - Specify how each object must appear.

Two auxiliary windows work in connection with the main window (Fig. [2.9).
They are used to edit the planar curves of the sweep and of the bifurcation surfaces.
Any change in the auxiliary windows is immediately updated in the main window.
This ensure the correct visualization in the artery model.

The most relevant controls of the Builder of Sections window are:

Scale/Rotation - Change the scale and rotation of the curve around the central
point (green in Fig. [2.9).

Position - Change the position of the planar curve over the central line. It varies
from 0 to 1, which corresponds to the beginning and to the end of the central
line respectively.

Curves selection - Select the active planar curve.

New curve 2D /Del - Add or delete a planar curve.

Orientation - Change the orientation of the polyline (clockwise or counterclock-
wise).

20pen Graphics Library www.opengl .org
3GLUT-based www.glui.sourceforge.net
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Figure 2.8:

Main window of the Modeler software. The sweep surface in red is
built over a real model of coronaries in blue (kindly yielded by LNCC
www. 1ncc. br|). The central line is a Bezier curve (cyan) with 4 control

points.

Adj. Act/All Sec - Merge the planar curve in the real model.

The most relevant controls of the Builder of Bifurcations window are:

Surface - Chose the part of the bifurcation.
Curve - Chose the planar curve.

Separ - Select the distance between the adjacent central lines.
Adj. Act/All Sec - Merge the planar curve in the real model.

Once the central line is positioned inside of the real model, moving the 4 control
points of the Bezier curve automatically fits all the planar sections. A similar pro-

cedure is performed at the bifurcation.
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Figure 2.9: (a) “Builder of Sections” auxiliary window. Here it is possible to edit
the planar curves which are swept over the main curve. (b) “Builder
of Bifurcations” auxiliary window. In this window, the planar curves
from the bifurcations are edited. The green point in both windows rep-
resents the intersection of the central line and the plane which contains
the planar curves.
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2.5 Conclusions

An intuitive way to create the geometry of an artery using the sweep technique
was proposed, which can be extended to bifurcations. The method only requires to
define the trajectory and the cross section with planar polylines. Then it quickly
determines the topology of the inner surface. Furthermore, this procedure can also
be applied to model arteries with real data.

The most time-consuming task in catheter simulations is the calculation of inter-
actions with the surface. The use of planar surfaces in the segmentation simplifies
the collision-detection algorithm. The idea of boundary boxes is key to create a
simple and efficient method. A procedure has been introduced to create a smart
volume partition of the arteries. The artery resolution can be increased and it does
not affect the PT significantly.

A thorough recipe to calculate the gradient of the surface energy representing the
interaction with the catheter was given. The resulting force field is a continuous
function of position, except under special circumstances at bifurcations. This vector
field is a milestone for the development of a catheter simulator.
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Chapter 3 Approximate Artery Elasticity

3.1 State of the Art

Acording to Diez [91], physiological and pathological changes in the cardiovascular
system directly influence the mechanical behaviour of arterial walls. With age, the
normal wall stress is associated with a larger diameter and a stiffer material of the
arteries (arteriosclerosis), which results in increased pulse-wave velocity and dispro-
portionate increase in pressure [92]. It is, therefore, of crucial importance to improve
the understanding of the mechanical properties of the constituents of arterial walls,
including the inherent features of anisotropy and nonlinearity [93]. These properties
pose formidable challenges in the constitutive modelling and numerical analysis of
such tissues, and they can be clearly connected to the underlying structure of the
tissues [94].

The passive mechanical behaviour of an arterial wall is governed mainly by the
matrix material (which consists of water, elastin, and proteoglycans [95]) and the
collagen fibre reinforcement [96]. The anisotropy is associated with the local mean
alignment of the collagen fibres which stiffen their response under tension [97], lead-
ing to significant nonlinear characteristics. The fibres are not perfectly aligned but
are dispersed around a mean direction [98]. The amount and character of the dis-
persion depends on the topography, the particular layer of the vessel considered, and
the respective (patho)physiological condition, inter alia. Fibre dispersion and struc-
tural quantification of collagen in arterial walls has been documented and analysed,
for example, in Refs. [99-103].

An overview of the main existing continuum mechanical models was provided by
Holzapfel et al. [93]. Classical continuum mechanics assumes that the constitutive
models and the corresponding simulations start from an unloaded, stress-free ref-
erence configuration [I04]. This has been used to calculate the amount of stress
applied to the tissue and its associated strain response [L05HI0§|. Other models try
to approximate the behavior by splitting the strain-energy function into an isotropic
part for elastin and an anisotropic part for collagen [109, 110]. Collagen exhibits
high non-linear behavior bearing the major part of the load transmitted through
the tissue, while elastin has important flexibility and extensibility features for blood
vessels [I11].

Hill et al. [I12] presented a new combined constitutive model in which fiber
recruitment begins at a finite strain with activation stretch represented by a proba-
bility distribution function. By directly including this recruitment data, the collagen
contribution was modeled using a simple Neo-Hookean equation [I13]. As a result,
only two phenomenological material constants were required to fit the stress-stretch
data.

A nonlinear artery model has been proposed by Holzapfel et al. [48], which is well
suited for numerical realization using FEM [114]. Due to its strong mathematical
background, the FEM is physically more accurate than most methods [1T5], [116].
Linear FEM is the most popular technique to model tissue deformation in VRS [117].
However, it is a time-consuming process and can not support real time simulations
unless some approximations are done. For instance, in the Condensation Method
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only the displacements in the vicinity of the surgical instrument are calculated [118].
The simulation is restricted to specific tasks and regions, while the rest of the scene
remains a static mesh.

An alternative approach to the FEM is the Mass-Spring Method, which uses
springs to connect the nodes of the mesh [I19-122]. In comparison to the FEM,
it is relatively easy to simulate the soft tissue deformation [123]. Nevertheless, the
outcomes depend on the springs stiffnesses and the determination of the stiffnesses
is not a straightforward task [124].

In this chapter, a 2D mesh to calculate artery deformations is proposed. Therefore,
the numerical difficulties arising from the isochoric constrain in 3D are avoided. The
number of points in the FEM is substantially reduced and the calculations become
simpler.

3.2 Methods

When accuracy is not the most relevant aspect and a real time response is required
as in VRS, reduced mesh size and linearization increase the computing performance
[125]. The method in this work is equivalent to a FEM using few mesh points. First,
some ET components are determined and, afterwards, the stiffness of the springs
connecting the nodes are calculated.

3.2.1 Elasticity Tensor

Any model used to describe tissues must be populated with data which are difficult
to acquire in vivo [126]. It is not our purpose to develop a new artery prototype but
to simplify the model of previous works. Our main interest is in tangential, axial,
and radial deformations, so shear stretches will not be considered. Holzapfel et al.
[127] have modeled each arterial layer t with the following energy density function

k
Wy = (I — 3) + k—“’(rt —1) (3.1)
2t
with
T, = kn[0-p0 (=87 pu(Lie—1)?] (3.2)

The invariants Iy, Iy are defined by

I = AT+0+Z
Lig = Pyt + Pt (3.3)
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where

Aprympsnz = LA2 +mA; + n\?
Dy = Aj cos” ¢y
(I)zt = )\z Sin2 (bt (34)

and ¢, m, n represent integers. For example, A, 9. = A2+ X2+ A2, Ay, = A2 — \2
and A, = A2 + \2. The physical parameters of the layers yu, kit, ko, ps, ¢y Were
experimentally obtained from the coronaries of human cadavers (Table .

Table 3.1: Average physical parameters from Holzapfel et al. [127] for the Intima
(i), Media (m), and Adventitia (a) tissues. The thickness ay is in mm,
i and kyg are in kPa, koy and py are dimensionless, and the angle ¢y is
in degrees.

t a Lt k1 Koy Pt on

i 024 2790 263.66 170.88 0.51 60.3
m 032 127 21.60 8.21 0.25 20.61
a 034 756 3857 85.03 055 67.0

Soft tissues, composed of collagen fibers with a considerable amount of water, can
be modeled as quasi-incompressible [128]. Their volumes do not change within the
physiological range of interest, so that

AAghs = 1 (3.5)

Hence, the radial stretch A, depends on the tangential stretch Ay and on the axial
stretch A,. Furthermore, the stresses in the circumferential and axial directions are
functions of Mg and A,

Opor = A 73‘1&
00t — N\ (9)\9
A
zzt — >\z 3.6
72t = 9N, (3:6)

Several calculations in artery mechanics are inherently large deformation prob-
lems. However, our interest is in small deformations and a linearization is carried
out in order to obtain the incremental elasticity constants. By expanding in a
Taylor series up to the first order

Ogot = Oggto + Co900tE00 T Co922tE 22

szt = 02240 T C00226€00 T Cozzat€rz (37)
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where Coggot, Cozrzazt, Cop-2t are ET components,

Epp — ln()\g/)\go)
=1In(\,/X.0) (3.8)
are strains, and Agg, Ao are the circumferential and axial stretches in the average

blood pressure p;,,.
It is convenient to define

=1 —=pe)(l1 = 3) Ao + pe(Lse — 1)Dps
= (1= pe)(lh = 3)Aser + pe(Lae — 1) Doy
Qee = (1= po)[(h - Aeﬂ + A2 ]+ pe(Lu — 1+ Do) Doy
Qe = (1= po)[(1 = 3)Asiy + A2 4 pullie — 1+ Bop) D
Qe = (1 — Pt)[(ll )A + Ao, A r] + Pt Por P4 (3.9)

Then the stresses at average blood pressure are explicitly

Toot0 = 2peNo—r + 4k1 Poels
0220 = 2/4Ltj\z—r + 4k1thtFt (310)

and the ET components in (3.7) are calculated with the formulas

coooor = e Notr + 8Kk16Qoocl's + 16k1tk2tP92tFt
Crzzzt = 4,U/tAz+r + 8k1ththt + 16k1tk2tP22tPt
Co022t = Ae Ny + 8k1Qo2 s + 16k15kat Poy Pat L' (3.11)

Figure 3.1: Cross view of the arterial ring in the stress-free reference configuration
(not to scale, see Fig. . The geometrical parameters are the inner
radius Ry,, the tissue thicknesses aj, am, aa, and the opening angle a.

For simplicity, a cylindrical artery is considered. The inner radius is R;, and the
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thicknesses of the Intima i, Media m, and Adventitia a tissues are a;, Gy, and a,
respectively (Fig. . After applying an internal pressure or stretching axially the
artery, the geometry changes [12§].

Because the tissues are incompressible [129, [130], the circumferential stretch has
the following dependence on the radius r

kr kr
R \/R2 +EA(r2 —12)

Ao = (3.12)

where k = 27/(2m — «) and r; = A\ginRin/k is the inner radius in the deformed
configuration (with internal pressure p;,). Furthermore, « represents the opening
angle (Fig. and Agijn represents the circumferential stretch at the inner surface.
Particularly, the volume average is

< 1

where Ry = Rin + a; + am + aa and ro = T(R,), the function T being defined by

kX, 2 VEA, a
[TQRa - TlRin + Tl Rln In ( 2 + R )] (313)

EX, VEN.T1 + Rin

R? — R?
T(R) = y[r} + 2= tin 14

When the cylindrical artery is subjected to the internal pressure, the deformation
and the stress are axially symmetric. The equilibrium stress without external body
forces satisfies the following differential equation [131]

darr Orr — 000
+

=0 3.15
dr r ( )
The boundary condition at the inner surface is o,,(r1) = —pin and (3.15) can be
integrated numerically to determine o,,.(r). However, the value of Ay, is not yet
known and it is chosen such that o,,.(rs) = 0 results. Physically, this condition is
equivalent to a zero traction at the external surface [132].

3.2.2 Spring Stiffness

To simulate the physical properties of the tissues, the interaction between the nodes
located at the inner surface of the Intima must be defined. For simplicity, the mesh
of points forms a net of rectangles. They are connected with three kinds of linear
springs:

1. Normal spring with stiffness x; and energy r;(Ab;)?/2, where Ab; represents
the departure from the equilibrium distance b; between two nodes along the
tangential, axial, or diagonal direction (Fig. [3.2(a))
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2

2. Angular spring with stiffness 7 and energy T( — Alcos go]) /2, which is associ-
ated with the relative orientation (angle ) between two neighboring rectan-
gles. They have a common axis of rotation n, parallel to the axial direction

(Fig. 3.2(b)).

3. Angular spring with stiffness ¢ and energy —( Afcos ¢|. It is associated with
the relative orientation of two neighboring rectangles, which have an axis of
rotation Ay pointing in the tangential direction (Fig. [3.2(c)).

The spring k involves the relative position of two nodes, while the two angular
springs involve three nodes simultaneously (e.g. ri, ro, r3 in Fig. [3.2(b) and ry, rs,
rg in Fig. [3.2(c)). The difference between spring 7 and spring ¢ is that, in the last
one, the two rectangles lie in the same plane when there is no deformation. For
example, in a right circular cylinder the adjacent rectangles of the spring 7 and of
the spring ( are in the tangential and axial direction respectively.

Kg
bz Kd Kz (a)
- .
(02
Iy T T r,
~lg A, _, ©
ry z
¢ 4
g
N
r4_’ne ()
le

Figure 3.2: (a) Four nodes (black points) are connected by two springs of stiffness
ke (red lines), two springs of stiffness k. (green lines), and two springs
of stiffness kq (blue lines). Increasing the distance by by bpegg (tan-
gential direction) and the distance b, by b.e,, (axial direction), also
increases the length of the diagonal by. (b) Two adjacent non coplanar
rectangles (po # 0) have two angular springs of stiffness T connected
to straight lines joining the nodes (e.g. ro —ry and r3 — ry). The axis
of rotation is the unit vector .. (c) Two adjacent coplanar rectangles
have two angular springs of stiffness (. The axis of rotation is ny.
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3.2.2.1 Normal Spring «;

The stiffness of the spring s is related to the elastic properties of the tissues and
to the geometry of the mesh. Consider a rectangle of size by x b, subjected to
the strains egg and e.. (Fig. [.2(a)). Thus Aby = bpegs, Ab, = b.e.., Abg =
(biego + b2e..)/4/b3 + b2, and since there are two springs x of each kind in one
rectangle, the stored energy reads

1 1 1
Ustretch =2 5/{9(Abg)2 +2 §KZ(AbZ)2 +2 §Kd(Abd)2
2 bg 2 2 b4 2
= </€9b9 + fﬂ?dibg i bg>€99 + <K/zbz + Rd bg + bg>€zz
2b2
0%z

+ 2de599523 (316)

On the other hand, the elastic energy due to the homogeneous deformation is

1

1
Ustretch = <269990830 + iczzzzgzz + 699z26905zz> V (317>

where V' = %9(7“% — r)b, represents the volume. By comparing (3.16)), (3.17)), and

solving for r;

1 (cosp9  coo
R = < — i V

2\ b b2
1 Crzzz Co0z 2
z = 5 - V
-3 - %)
1/1 1
Rq = § (bg + bg) ngZZV (318)

Because kg, k., and kg must be positive [133], the ratio between by and b, can not be

arbitrary. Since cgpgoC.z.. — Cag., > 0, it can be verified that for b2 /b% = \/cogpg/Crzzz
the stiffnesses are indeed positive. Finally, since the ET depends on the radius r,

the components are replaced by the volume averages Cgggg, C...., and Ceg...

3.2.2.2 Angular Spring 7

The bending energy of a homogeneous beam of thickness h = r, — r; and a natural
curvature radius Ry, subjected to a deformation specified by a new radius R, is equal
to

1/1 1

2
oo === =) gV 3.19
Upend,o 2<R R0> 9o ( )
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Figure 3.3: (a) Cross view of two adjacent rectangles perpendicular to the plane of
the Figure, with nodes at the coordinates ry, ro and ry, r3. The vectors
ri2 and ri3 are the projections of ro —ry and r3 —ry in the plane of the
Figure. Without deformation, the moduli r15 and r3 are both equal
to by. The unit vector n,, represented by the dot e, is perpendicular
to the Figure. When the rectangles are rotated along the axis defined
by n,, the structure is bent with a curvature radius R. The stiffness
of the angular springs connected to the rectangles is 7 (blue). (b) The
unit vector m is perpendicular to ng and to T45 — T4¢. The lengths
0s45 and dsug are the projections of érs — dry and drg — ory along m.
Hence, up to first order §@4s = d545/745 and S@ag = 0546/ 46-

with gg = cggeph®/12. Notice that the bending energy of the bar is shared with two
additional springs 7 located at ry and rs (only the spring 7 located at ry is shown
in Fig. [3.3(a)). Hence, V is only half of the bar volume which is associated with
two adjacent rectangles of thickness h, so that V' coincides with the value previously
used in (3.17)).

From Fig. [3.3(a) it can be inferred that by = 2R sin(¢/2), so that

1 1 2( . ¢ . o
- =2 sin? —sin ¥ 2
= (Sm 5 SN ) (3.20)
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For ¢ close to ¢y, it follows that up to first order in Ay = ¢ — g

. P . Yo\ Yo  COSpo — COS P
2(Sln 5 — Sin 2) = AQO COS ? = M—@ (321)
2

Substituting (3.20)) and (3.21)) in (3.19)

1 Vv
Ubendo = = ge 5 (cos g — cos gp)Q (3.22)

2
<2b9 sin g020>

On the other hand, there are two springs 7 connected to a pair of rectangles (Fig.

3.2(b))
Ubend,o = 217'< — Alcos @])2 (3.23)

2
Hence, from (3.22) and (3.23)

1 %4
r=— (3.24)
. Yo
(2()9 sin )
2
Since T19.713 = cos(m — ) = — cos ¢, for numerical purposes it is convenient to

use —A[cos p] = A[f19.T13). The vectors ris and ri3 are the components of ry — ry
and r3 — ry perpendicular to the rotation axis n,, respectively. Furthermore, some
useful formulas are

A r r . .
V1[I'12~I'13] = (12 - 13) X (1‘12 X 1'13)
12 13
V2[I‘12-I‘13] = 2 x (P12 X T13)
12
PN T3 N o
Vg[rlg.rlg] = — X (I'12 X I'13) (325)
13
and in particular
(S[f'm.f'lg] = Vl[f'lg.f'lg].(srl + VQ[f'lg.f'lgg].(SI'g + Vg[f‘lg.flg}.érg (326)

which can be used in the derivation of the Stiffness Matrix. Notice that the Stiffness
Matrix changes when the position of the nodes are updated. However, the displace-
ment of the nodes is usually small [134] and the convergence is very fast. Although
the model linearizes and homogenizes the material response in the linear springs, it
still contemplates the geometric nonlinearity by updating the reference frame to the
deformed geometry.
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3.2 Methods

3.2.2.3 Angular Spring (

The previous calculation does not work if Ry — oo, because pg = 0 and the first
order approximation in ({3.21)) vanishes (the right side becomes undetermined). For

¢ < 1 Egs. (3.19) and (3.20]) are replaced by

1g.V
Uenz:*
bend= ™ o Re
I 2 v o
—SIn -~ —

R b2 b,

so that
9:V ¢*
Ubend,z = bg ? (327)
Up to second order in ¢, it follows that A[f4s.846] = —A[cos p] = — cos p+1 = ¢?/2.

There are two springs ¢ connecting a pair of rectangles (Fig. 3.2)c)), so that (3.27)
becomes

Ubend,» = 2¢ A[f45.546) (3.28)
where
1g.V

By replacing 1o — T45 and T3 — T46, the gradients in (3.25) vanish, because 145
and T4 are antiparallel. Thus, Eq. (3.26]) can not be used to calculate the Stiffness
Matrix. Instead, from the geometry in Fig. [3.3(b) it can be seen that

m.(dr; — dry) N m.(0rg — 0ry)

T45 T'46

530 = 5(,045 + 6@46 = (330)

where the unit vector m is parallel to ng x (f45 — T46).

As noted previously, the ET depends on the radius r. Hence, g; in (3.24) and
(3.29) are replaced by the volume average

1
gi = */Ciiii(r — Fi)z dV (331)
V
where 7; is the radius to the neutral axis of the beam

1
CiiiiV

T =
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Chapter 3 Approximate Artery Elasticity

~__
>

b91

Figure 3.4: When the rectangle in Fig. [3.2(a) is deformed and/or rotated, the
lengths and the orientations (relative to the tangential and axial di-
rections) are modified. For simplicity, only the length bg; and the angle
Be1 are shown. The spring stiffnesses between the nodes are the same
as before.

3.2.2.4 Generalizations to Other Geometries

When the rectangle is deformed to a quadrilateral or the orientation changes (Fig.
3.4), the results of Section [3.2.2.1 must be modified. Under the strains gy and ¢,

the length variation of by, is
Ab@l = bgl (599 COS2 ﬁgl + Ezz Sin2 591) (333)

with analogous formulas for Abgy, Ab.1, Ab.s, Abgr, and Abgs. In addition, (3.16)
must be replaced by

1 1 1
Ustretch - §H9(Ab01)2 + §/fz(Abzl)2 + §/fd(Abd1)2
1 1 1
-+ 5I€0(Ab92)2 + §H3(Ab22)2 + §’fd<Abd2)2 (334)

Substituting (3.33) in (3.34) and comparing the coefficients of €%y, €ggc.., and &2,
with (3.17)), the spring stiffnesses are obtained. Note that V' in (3.17)) now represents
the volume of the quadrilateral of thickness h.

Furthermore, the calculations of Section |3.2.2.2| are also modified. Considering
that part of the beam with radius Ry, in Fig. (a) and proceeding as before, it is
deduced that

9goVoi2

1
2
<2b912 sin 9020>

2
Ubend 12 = 5 (cos g — cos )
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(b)

Figure 3.5: (a) If the adjacent rectangles in Fig. [3.3(a) are not rectangles with

the same dimensions, then the bending radius on the right (Ri)
and the bending radius on the left (Ry3) are different. The dis-
tances between the points are replaced by bga = 2Ry5sin(p/2) and
bg1s = 2Ri13sin(p/2). It is possible to join the points using the same
radius Ris = Ry3 but different angles p15 # p13. However, in this
case, the line defining the beam will not be smooth when connecting
consecutive parts, since the radius and the center of the circles (e.g.
through rs, rq, ro and through ry, ry, r,) will not coincide. (b) Top
view of Fig. (a). Note that the pointsr}, ry, and r are not represented
because they are hidden behind ry, ro, and rs. The sum Vg2 + Vp,4 is
equal to one half of Viigny (the volume of the yellow region of thickness
h defined by the points ry, r9, rh, and r}) and Vj,5/Vei1a = Vyi5/Vors.

The volumes Vg2 and Vg3 are calculated with the formulas

fo+fy 2

fé Vieft
Vo3 = 3.35
0= (3.35)

where Vg and Vieg, represent the beam volumes to the right and to the left in Fig.
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3.5((b) respectively, and

1 Viight Vet
Jo = ( 4
sin? % bgu

D513
1 Viight = Vet
= - ( b’2g N V. t) (3.36)
Sin2 70 012 013
2

An analogous formula is obtained for Upendqgis. Comparing the sum Upendgiz +
2
Ubend 13 With %T( — Alcos go]) , it is deduced that

ge V12 V913>
T = + (3.37)
4 sin? % ( Voo Yous

Notice that in Fig. [3.5(b) there is a second spring of stiffness 7/ connected to the
straight lines through r}, r} and through r}, r}. Using and (3.36), it can be
shown that 7 coincides with 7 in (3.37).

Proceeding in a similar way, the stiffness of the spring ( is generalized to

(=g (Vm + V““”’) (3.38)

2 2
bz12 bzl3

Further, the computation of the volumes V,;2 and V,;3 is similar to (3.35]), but
making use of

£, = Viight . Vet
z 2 2
bz12 bzlS

f/ o ‘/}ight ‘/left

z 2 2
bz12 bzl3

(3.39)

3.3 Pseudocode

The pseudocode to calculate the spring constants in the cylindrical case is shown
in the Algorithm [3.1] Briefly, it involves the determination of the strain field (lines
1-3), the calculation of ¢;;;, 7, g; (lines 4-6), and the computation of the spring
constants (lines 8-9).

To apply the method to other geometries (Section it is necessary to modify
the calculations in the following way:

e The integration methods in lines 1-3 are no longer valid. Instead, FEM can
be used to find the strain field and after that obtain c;;;; as function of the
position.

e The neutral axis in line 5 is a cylindrical surface of radius 7;. However, when
the tissue thicknesses or the shape of the artery vary, the surface of the neutral
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3.3 Pseudocode

Algorithm 3.1: Calculation of the spring constants for a right circular cylin-
drical artery. The input geometrical parameters are the tissue thicknesses aj,
Gm, 0a, the internal radius Rj,, the opening angle «, and the axial stretch A,.
The physical parameters are those appearing in Eqs. (3.1)—(3.4). Finally, nyer
represents the number of vertices of the polyline discretizing the artery in the
tangential direction and py,, is the average internal pressure.

void SpringConstants(artery geometry, physical constants, int Nyey, float
pin) {

1. set 0,,(r1) = =Py, and Agin = 1;

2. integrate Eq. to obtain o,,.(13);

3. if 0,,(rg) # 0, then vary Agin and go back to 2;

4. calculate the volume integrals of cgggg, Cggs2, C222. in Eq. (3.11]) and
divide by the volume V' to obtain Gpgee, Co-2, Cszzs;

5. calculate the volume integrals of rcgggg, rC.... and divide by VEygge,
V'¢,... respectively, to obtain the radii 7y, 7, to the neutral axis (Eq.
(3:32));

6. calculate the volume integrals of (r — Tg)%cgage, (r — T.)?c.... and divide
by V to obtain gy, . (Eq. (3.31));

7. determine the dimensions of the rectangle in Figure |3.2| with the
formulas 6 = 27 /Nyert, b = 271 5in(0/2), b, = bg(C.... /Toese)/*;

8. use the values of Cgggg, Cog~, Cz»-- in line 4 and of by, b, in line 7 to

calculate the spring constants kg, k., ka (Eq. (3.18)));
9. use the values of g,, g, in line 6 and of by, b, in line 7 to calculate the

angular spring constants 7 in Eq. (3.24]) (with g9 — 6) and ¢ in Eq. (3.29);
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axis is not cylindrical. For example, consider a voxel as shown in Fig. [3.6
The neutral axis T depends on z (black line)

//:I;czzzz(x, y,z)dx dy
// Cozzz(T,y, 2) d dy

where the integral is carried out over the cross section with z = const (red).
Then

7(2) = (3.40)

g, = ‘1//// {x — T(z)]z Corzz(T,y, 2)dedy dz (3.41)

The value of g, can be calculated in a similar way.

e In general, the rectangles are deformed into quadrilaterals and the formulas
in line 7 are not used.! However, after the spring constants have been cal-
culated, it must be checked if all constants are positive [I33]. Otherwise the
quadrilateral geometry has to be changed? and the calculations are repeated.

e Finally, to determine the springs constants in lines 8 and 9, Eqgs. (3.37)—(3.38))

are used.

3.4 Technical Evaluation

Experimental and computational studies suggest a substantial variation in the me-
chanical responses of the arterial wall layers [I35]. In order to calculate values for
the ET, the physical parameters listed in Table are used. The mean pressure
loading p;,, is assumed to be equal to (804 120)/2 = 100 mm Hg [136]. Furthermore,
the internal radius is Rj, = 1.35 mm and in the special case A, = 1 and kK = 1 (no
residual strains), the calculated stretch at the inner surface is Agin, = 1.1495, the
mean stretch is Ay = 1.088, and the internal radius is 7 = 1.55 mm. Then the
volume averages of the ET components are Gggg9 = 558 kPa, ¢..., = 844 kPa, and
Cpo.. = 505 kPa. Moreover, g, = 15.3 mN and g, = 29.7 mN.

3.4.1 Stiffness Analysis

The cylindrical artery is discretized by a polyline having 24 vertices in the tangential
direction (Fig. [3.7). Using (3.18)), (3.24), and the following spring stiffnesses
are obtained: ky = 85.3 N/m, k, = 105 N/m, kg = 532 N/m, 7 = 130 pJ, and
¢ = 14.0 pJ. When two or three nodes have multiple rectangles in common, the
equivalent stiffness equals the sum.

"When the quadrilateral becomes a rectangle, line 7 can be applied and the calculated spring
constants are always positive. Line 7 is not a “must” but it is a convenient choice.
2Note that this action affects neighbouring quadrilaterals.
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X Integration

»
>

neutral
axis

Figure 3.6: View of a voxel (cian) corresponding to the volume V' of the arterial
wall delimited by a quadrilateral parallel to the yz plane (shadow).
The normal to the arterial wall points in the x axis direction. For a

given z, the integration area (red) of Eq. (3.40) is parallel to the xy
plane. The neutral axis (black line) depends on the z coordinate.

—T16__| In

Figure 3.7: Cross view of the artery discretized by a polyline. The angle is § =
27 /24 and the inner radius (with an internal pressure equal to P, )
is 1y = 1.55 mm. Thus, the rectangle dimensions in Fig. are

by = 2ry sin(6/2) = 0405 mm and b, = b (Covvv /Cooss) | = 0.449 mm.

It is instructive to analyze the behavior of the stiffnesses when the resolution or
radius change. For simplicity, let the thickness h and the ET be constants. First,
consider the case where the radius does not vary and ¢ — 6’ = 0/2 with 0 < 1

rad. Then by — by = by/(2cos[0/4]) ~ by/2, b, — b, = b./(2cos[0/4]) =~ b./2,
VoV =V/ (4 005[9/4]) ~ V/4, and ¢y — ¢) = po/2. Within this approximation,
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Chapter 3 Approximate Artery Elasticity

it can be concluded from ({3.18), (3.24), and (3.29), that all spring stiffnesses are

nearly the same before and after increasing the resolution, with the exception of 7
which is replaced by 7/ = 47. Indeed, by repeating the previous calculations with
48 vertices, the ratio between the new and the old spring stiffnesses are kp/kg =
K./k, = Kh/ka = (' /( =0.9979 and 7'/7 = 3.974.

K K

(@)

—— A MVMNANA—A NMNNA—— (D)

Ks=Kp/2 =K

(©

Figure 3.8: (a) Four springs of stiffness r (connected in parallel and then in series)
are joined by rigid vertical bars (blue). (b) Two springs connected in
parallel are equivalent to one spring of stiffness k, = k+ k = 2k [137].
(¢) The two springs connected in series are equivalent to one spring of
stiffness ks = Kpkp/(Kp + kp) = Kp/2.

With this new resolution, the number of springs x connected in series doubles
and the number of springs x connected in parallel doubles, so that the equivalent
stiffness is the same (Fig. . In other words, increasing the resolution does not
change the stiffness x; up to first order.

Consider now the situation where the artery has a bigger radius. If r; — ] = 21y,
then by — b = 2bg, b, — b, = 2b,, and V — V' = 4V — 0h%b, ~ 4V for h < 1.
Hence, doubling the radius keeps the spring stiffness constant. Since the radial force
acting on the nodes is given by F,. = byb, pin, it follows that F! = byt pin = 4F.
and the deformation must be 4 times larger to balance the applied force. As a
consequence, the tangential strain

o0 = - (3.42)
doubles. However, a numerical calculation with the method described in Section
shows that s} # k; (case (i) of Table [3.2)), because V’ is substantially smaller than
4V (the condition h < 7y is not fulfilled). Moreover, by increasing the radius, the
tangential stress as well as the tangential strain increase, and the ET components
become larger (Section [3.4.3).

Finally, if h is also doubled, then V/ = 8V and the stiffness of the springs  is mul-
tiplied by 2 (case (ii) of Table[3.2). Note that the deformation Ary (x F,/stiffness)
is two times bigger and according to the tangential strain does not vary, so
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/

Table 3.2: Ratio between the physical parameters for R;, = 2R;,, and two different
layer thicknesses: (i) h' = h, (ii) ' = 2h. In the calculations the values
R, = 1.35 mm and h = a; + am + aa = 0.90 mm are used.

— — _ — _ — _ — o o
case )‘0//\9 0/0099/09999 Clzzzz/cZZZZ Cl&@zz/c99,zz 9,0/90 g;'/gz

i 1.0365 2.962 2.367 2918 1.567 1.238
1l 1 1 1 1 4 4
case V'V Kp/ ke KL/K, K4/ Kd '/t (/¢
i 3.367 1.721 1.538 2.499 1.274 1.126

il 8 2 2 2 8 8

that Cgpggs, C...., and Cpp.. remain constant. On the other hand, the g; are multiplied
by 4 because they are proportional to h?.

These conclusions are in conformity with a mechanical analysis. If the internal
pressure in a cylinder equals pi,, then the tangential force per unit length is Fy /b, =
r1Pin- Assuming h < r; the tangential stress is then

(A1

009 = ﬁpin

At low stretches the strain is proportional to the stress [53] so that gg9 o ry/h. If
ri — 2r, and h = constant, then the strain doubles, but if r; o< h, the strain does
not change. In general, the following equation holds for a cylinder under a uniform
tangential strain

1
€h9 = ﬁpin

where
ri+h
Q = / Cpooo d’f’
T1

The artery deformation depends on the pressure, on the internal radius, and on the
parameter 2, which in turn is a function of the thickness and of the elasticity.

3.4.2 Comparison of Models

Three different tests are performed to validate the calculations. Specifically, the re-
sults of our discrete model (label A) are compared with the nonlinear incompressible
artery model of Holzapfel et al. [127] (label B), corresponding to Eqgs. (3.1])-(3.6)),

E1D). @19). and @15)

Furthermore, these models are compared with calculations performed using a
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plane strain FEM (label C). Due to the axial symmetry, it gets reduced to a one
dimensional problem and the displacement field can be characterized by a single
parameter r1, which ensures incompressibility. From ({3.8) and (3.12)

. k>\zT1 (57”1
B R12n + k)‘z<'r2 - T%)

0209 = 6| In(Ag/ Ao)|

The stress component o, cannot be calculated with the model described by Eq.
. Moreover, o, < ogg because the fiber reinforcement is mainly between the
tangential and axial directions, not in the radial direction [128]. Thus, the approxi-
mation o : e = gy 0€gp + Oy O, R 0gg Ocgp 18 assumed. The internal virtual work
is

r2 k’)\z’l“l 5T1
/a‘ c0edV = /rl Top B (7 — 1) 2nrldr (3.43)

where [ represents the axial length of the right circular cylinder. Furthermore, the
external virtual work due to the surface force is

/p5r1 dS = 27rilp ory (3.44)

At equilibrium (3.43) and (3.44) are equal®, so

T2 kX, r
= d 3.45
p /7"1 00 R2 + kXN, (r2 —1r?) " (3.45)

Note that ogg = gga(Ng, A2), Ao = Ag(r1), and ro = ro(r1) (see (3.12) and (3.14))).

Hence p = p(ry) or, inverting numerically this equation, r; = r1(p). The knowledge
of r1 allows for the calculation, for example, of the average tangential stretch \g in
or the axial force component [ o, dS.

Usually, the velocity of the arterial wall displacement is slow, because in a sur-
gical procedure the tool movements are not abrupt [139]. Thus, the deformation
is quasi-static which means that the nodes should reach the equilibrium position
instantaneously. Hence, it is necessary to compare only static deformations.

3.4.2.1 Pressure-Inflation

The inflation is the most common artery deformation [140]. Since the radial stress is
smaller than the tangential stress by a factor h/ry < 1 (Section[3.4.1), it is reasonable
to neglect the radial direction and to work in two dimensions. Furthermore, in
this case there is no axial displacement (Fig. [3.9(a)) and the essential parameter
describing the deformation is the tangential stretch.

Figure |3.10| illustrates the mechanical response for pressures varying between 80
and 120 mm Hg. If the residual strain (A, > 1, & > 1) is considered or the external

3The external virtual work is equal to internal virtual work when equilibrated forces and stresses
undergo unrelated but consistent displacements and strains [138].
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Figure 3.9: Axial view of the artery submitted to different boundary conditions.
(a) The pressure p;, increases and the axial length z; is kept constant.
As a result, the tangential stretch and the radius ry vary (bottom).
(b) The pressure is kept constant at py,, the length increases from z,
(top) to z} (bottom), and the radius becomes smaller (ry — r}).

surface is not stress-free (o,.(ry) > 0), then the pressure/radius response of the
artery and the tangential stress would change [128, [141]. The computed stretch
Ao = 1.088 at py, = Py, is not far from the average experimental result of 1.06
obtained by Schulze-Bauer et al. [I42] for arteries of elderlies. Further, they found
the average 1.07 for the axial stretch A, and in one case it was negative, showing
that A\, has a wide variation.

Models B and C are nonlinear and show a similar stretch variation. If piy, > p;,
the artery in model B becomes stiffer than in model A. The stresses are nonlinear
functions of the stretches and the stiffnesses increase as the circumferential stretch
increase [106]. On the other hand, model A corresponds to a linearization around
Din, S0 that for small deformations the stress is proportional to the strain. In the
stretch calculations of model A, only A)y is meaningful because the initial stretch
g is given beforehand, when the spring stiffnesses at pi, = P;, are computed.

Considering the internal pressure p;, in the range from 80 and 120 mm Hg, the
average strain gy in model A is in the interval [0.07703,0.09187] (the variation is
smaller than 1.5%). It can be inferred from Fig. that the linearization gives a
good approximation within this pressure range, in accordance with the conclusions
of Kerdok et al. [143].
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Figure 3.10: Average circumferential stretch Ay as a function of blood pressure pin
without residual strain and without external surface traction. The
red, blue, and green lines correspond to the calculations with model
A (this work), with model B (nonlinear and incompressible artery of
Holzapfel et al. [127]), and with model C (one dimensional FEM).

3.4.2.2 Axial Force

Besides the tangential direction, the axial direction is also relevant in the two dimen-
sional model. Thus, a test including the axial deformation from A\, =1 to A, = 1.01
is performed to further validate the model. The blood pressure is kept constant at
Din, the radius is not fixed (Fig. (b)), and as a consequence \g decreases. The ax-
ial forces calculated with models A, B, and C are 0.03971 N, 0.03633 N, and 0.03530
N, respectively. The discrepancy of 9.3% between models A and B can be mainly
attributed to variations of the ET when the stretches are modified. On the other
hand, the discrepancy between models B and C is only 2.8%, showing that it is more
accurate than model A.

However, the calculations with model C become more difficult as the symmetry
is reduced because the displacement field is not given by the single parameter r;.
Therefore, a 3D mesh of points must be considered and the displacement must
keep the isochoric constrain. In model A and in traditional FEM each point has
three degrees of freedom, but the number of points is smaller in the former one. In
numerical tests performed with bigger mesh resolutions, the accuracy of the results
obtained with model A did not change appreciably.

Note that if the artery is stretched axially, it becomes stiffer (model B). Hence,
the variation of the internal radius when the pressure changes, is smaller. Or, what
is the same, keeping the pressure constant and stretching the artery axially, the
radius decreases. Indeed, Table [3.3| shows the radius r; for two different values of
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A,. The variation of r; is similar in the linear model A and in the nonlinear models
B and C. Therefore, the axial forces as well as the radial deformations are alike.

Table 3.3: Dependence of the internal radius r1 on the axial stretch \, for a con-
stant pressure equal to p;,.

model 7 (A, =1) (A, =101) Anr

A 15518 mm  1.5377 mm  —0.91%
B 1.5518 mm  1.5351 mm  —1.08%
C 1.5414 mm  1.5253 mm  —1.04%

3.4.2.3 Bending

Since the model is essentially a two dimensional mesh, it is important to examine
deformations in the perpendicular direction. To this end, a planar slice of an artery
with a rectangular shape is considered. The slice hangs from the two extremes and
it is subjected to a uniform load (Fig. . The deflection v of a simply supported
beam as a function of the distance z is [144]

wz

_ 3_or.2 . .3
v = 24EI(L 202" + 2°) (3.46)

where w = pW is the load per unit length, EI = g,hW is the flexural rigidity,
and L is the separation between the two supporting points. Furthermore, W and h
represent the width and the height of the beam respectively.

The ET is not the same as in Section [3.4.1) because the artery is planar and no
stress (internal pressure) deforms the artery at the onset. The spring stiffnesses
now become kg = 28.4 N/m, k, = 45.2 N/m, kg = 98.4 N/m, (4 = 4.46 pJ, and
(. = 7.64 puJ (here 7 is replaced by (p and ( is replaced by (.). Moreover, g, = 21.4
mN, p = 200 Pa, h = 0.90 mm, and L = 8.72 mm. Observe that L is shorter than
the original length 8.90 mm of the artery when there is no bending.

The results of our numerical calculation and of the beam deflection are compared
in Fig. [3.11] The modulus of the maximum deflection § = |v|yay varies from 0.8145
mm in our calculation to 0.7795 mm using (3.46). The difference is only 4.5%,
showing a fairly good agreement. Furthermore, as long as the distance between
adjacent nodes is kept nearly constant (i.e. large kg, k., Kq), the only relevant
parameter in this deformation is (.. For example, reducing kg, k., kq, and (y by a
factor 2, but keeping the same value for (., the new value of ¢ is 0.8157 mm, i.e. it
increases by 0.15%.
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Figure 3.11: Bending of a planar artery subjected to a uniform vertical load. The
triangle and the circle at the ends support the artery vertically: the
triangle is fixed but the circle can move freely in the horizontal di-
rection (green arrows). The black curve represents Eq. and
the red points are the result of the calculations performed with the
model developed in this work.

3.4.3 Large Stretch

The artery deformations can be large [145] and since the model is nonlinear, it
is significant to see how the ET depends on the stretches. Figure [3.12] shows the
calculations for each tissue layer when the stretches Ay and A\, vary between 1 and
1.1.

The largest increase of the ET components is found in the Intima layer (Fig.
3.12d)), because it has the biggest constitutive parameter ks entering in the expo-
nential of Eq. (3.2). In particular, the largest component is c,..., which increases
by a factor of 72.5 when A, =1 — 1.1. However, the most relevant dependence is
on Ay, because A, is nearly constant in most artery deformations.

Observe that, in the shorter interval 1 < Ay < 1.01, the ET does not vary ap-
preciably and the linear approximation can be used. The average stiffness i of the
tissues in the low loading domain (at which the noncollagenous matrix material is
mainly active) is lower for the Media compared to the Adventitia [146]. According
to Holzapfel et al. [127] the Intima is the stiffest layer over the whole deformation
domain, whereas the Media is the softest in the axial direction.

Lastly, in Table the angle ¢ between the tangential direction and the fiber
reinforcement is smaller than 45° in the Media, so that cgegs > ¢.... (the red curve
in Fig. (b, e) is above the green curve). On the other hand, ¢ is larger than 45°
in the Intima and in the Adventitia, so the opposite behavior is observed.

3.5 Conclusions

The artery model developed in this chapter is linear and two dimensional, which
results in shorter PT. So, it is suitable for computing small and noninvasive artery
deformations. Furthermore, it implicitly includes the individual characteristics and
inhomogeneous properties of the artery layers. Some of the elasticity tensor compo-
nents were obtained and a method to calculate the spring stiffnesses connecting the
nodes of the mesh was described.

Three kinds of springs are used. The stiffnesses of the normal springs x are derived
by comparing the elastic energy stored in the springs and in the layers subjected to
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Figure 3.12: Logarithm of the ET as function of the tangential stretch \g (a,b,c)
and of the axial stretch A, (d,e, f) in the interval [1,1.1]. The con-
stant cq is equal to 1 MPa. The different colors indicate the ET
components cggpg (red), c,.., (green), and cyg,, (blue). The results
are given for the Intima (a,d), Media (b,e), and Adventitia (c, f)
tissues.

the same strain. The determination of the angular spring stiffnesses 7 and ( is carried
out by comparing the energies when the tissues are bent. The resulting formulas
are compact and the procedure was generalized in order to include geometries other
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Chapter 3 Approximate Artery Elasticity

than the cylindrical.

The stiffness of the springs x was analyzed for different mesh resolutions and artery
sizes (radius r and thickness h). Increasing the resolution, k; remain constant up
to first order. If the ratio ry/h does not vary, k; are proportional to r1. On the
other hand, it becomes difficult to predict the behavior when r;/h varies, because
the strain inside the layer changes and the average elasticity tensor is a nonlinear
function of the strain.

The method was validated by different loads. The first one evaluated the most
relevant case, where the blood pressure inflates the artery, and the outcome was
close to the nonlinear and incompressible artery, which was also modeled by plane
strain FEM. When the artery is stretched by a small amount in the axial direction,
the calculations with the models led to similar results. The nonlinear FEM is more
accurate than our method, but its precision decreases if the symmetry is lowered.
Furthermore, the angular springs are essential in the case that the structure un-
dergoes bending deformations. Finally, the elasticity tensor strongly depends on
the stretch, especially if the Intima layer is axially deformed. However, assuming a
stretch variation smaller than 1%, the linear approximation is accurate.
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4.1 State of the Art

In 2003 Konings et al. [64] proposed an analytical approximation to the problem
of the wire. Their algorithm is highly generic and has good but slow convergence
properties. It is based on quasi-static mechanics [I147], which models the wire prop-
agation without specific knowledge about friction forces. The motion is considered
to be the result of a forced translation of the proximal wire body into the intro-
duced sheath, effected by the physician. The translation is a stepwise process which
calculates how the wire reacts to an introduction of a small wire segment, giving
a new steady-state position. In 2007 Alderliesten et al. [49] improved the model,
incorporating the friction between the wire and the vasculature.

The wire is similar to the model of the rope (knot) proposed by Brown et al.
[148] and extended by Miiller et al. [149] to simulate hair and fur. They apply the
idea based on “Follow The Leader”, which is a purely geometrical technique where a
chain of particles defines a curve representing a rope. Each particle moves towards
its predecessor to enforce their mutual distance to be constant. The speed of the
algorithm for computing the global shape of the rope saves time that can be used
on the collision detection and on the management modules.

The Cosserat continuum theory of thin objects (shells, rods, and points) can be
used to model the wire [I50} 151]. Cao et al. [I52] employed the Cosserat method
to explore the nonplanar nonlinear dynamics of elastic rods. Later, Gao et al. [153]
described the dynamic behavior of the wire with the Lagrange equations of motion
and applied the penalty method to maintain the constraints. They proposed a
simplified solving procedure to integrate the resulting equations more easily.

Another method to model the deformation of a wire or a similar body, is a rep-
resentation based on the 3D beam theory [I54]. The elementary stiffness matrix
relates angular and spatial positions of each end of a beam element to the applied
forces and torques. Duriez et al. [I55] improved the accuracy and treat geometric
non-linearities, while maintaining real-time computation. They considered a FEM
approach and developed a new mathematical representation combined with an in-
cremental technique, that allows for highly non-linear behavior. In particular, a new
method is presented for correctly handling contact response in complex situations,
where a large number of nodes are subject to non-holonomic constraints.

According to Coles et al. [11], some simulators also include interactive fluid dy-
namics of blood flow [I56], volumetric contrast agent propagation, and real time
collision detection and response [I57]. Also, the artery deformation can be consid-
ered [I58]. This problem was dealt in chapter , where some of the ET components
were determined and, afterwards, the stiffness of the springs connecting the nodes
were calculated. Current efforts are aimed towards integrating performance assess-
ment and user guidance [34].

One of the most time consuming tasks in the simulation is the calculation of
energy gradients in the PR. This problem has been addressed in chapter 2| In
particular, an efficient collision-detection algorithm was developed based on space
partitioning. Furthermore, a continuous vector field (modulus and direction) was
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proposed, giving a realistic representation of the wire-surface interaction. On the
other hand, Luboz et al. [159] introduced a simplified deformable vascular model,
but it is not smooth and contains surface irregularities which affect the collision
response.

Besides the virtual model, the simulator must capture the wire motion. The
hardware can be built e.g. using an optical encoder [I60] or a haptic device [159].
For instance, the Vascular Simulation Platform by Xitact is specifically designed to
coaxially track a catheter and a wire. However, these solutions are expensive and
difficult to assemble.

A promising surgery technique uses teleoperation [I61]. This technique protects
the physician from X-ray radiation and solves the problem of lack of experienced
physicians in remote areas [162]. The slave manipulator detects the force of a
catheter being inserted into the blood vessels. Then the master manipulator pro-
duces an equal damping force based on magnetorheological fluids [163]. Since VRS
is similar to teleoperation, any progress made on one front can contribute to the
other one.

4.2 Methods

The model of Konings et al. [64] considers the wire as a discrete set of joints at
positions X, ...,Xx,, with x¢ fixed. There are n segments and the i-th segment
A\ = X; — X;_1 is represented by a small rigid rod which is neither compressible nor
bendable. Further, the size |A;| is the same for all segments [164].

<
1 2 3 n—M/ (a)

A

/
1 2 3 n—-M (b)

n-M+1

Figure 4.1: (a) The wire has a curved tip (red) with M segments. They are
numbered from the proximal end to the distal end of the wire. (b)
The new segment (green) points to the same direction as the segment
number n — M, and the total number increases to n + 1.

When parts of the wire are inserted into the vessel, the current representation is
adapted by adding segments and computing a new configuration with an optimiza-
tion algorithm (relaxations). Pushing the wire into the vessel mainly affects its end,
while the rest of the scene looks almost static. Hence, the natural way to add a new
segment is to introduce it just before the curved tip, with the same orientation as
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Chapter 4 Simulator

the previous segment (Fig. . The wire can also be rotated but this action affects
only the tip which is intrinsically curved.

In Sections and [4.2.2) two different and complementary methods are ex-
plained to implement the relaxation. The combination of both methods is shown in
Section [4.2.3] In addition, Section presents a hardware which can be used to

build this simulator.

4.2.1 Physical Relaxation

Figure 4.2: The wire geometry. The difference between the coordinates of two
consecutive joints x; — X;_1 is equal to the vector A;, which has a
constant length A. Changing A; modifies only X;, X;11, ++, Xp_1, Xn,
and the difference between the new and the old coordinates X;- —X; =
A, — \; is the same for j =4,i+1,--- .n—1,n.

Figure illustrates the wire geometry. Since
J
X; = Xo + Z AL
k=1

updating the i-th segment \; influences the joints from x; up to x,,. For this reason,
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more relaxations are needed close to the distal end of the wire. A PR cycle is defined
to be the sequence of n iterations

iteration 1: update segment n,
iteration 2: update segments n, n — 1,

iteration 3: update segments n, n — 1, n — 2,

iteration n: update segments n, n — 1, ---, 2, 1.

The algorithm of Konings et al. [64] also proceeds from the distal end to the proximal
end. The total number of updates in one cycle equals $n(n + 1).

To ensure numerical stability, every time an “action” is performed (add a segment,
remove a segment, or rotate the wire) a Tip Relaxation is executed:

1. A number of $m(m + 1) updates (corresponding to the first m iterations)
is carried out. Thus, the m segments closest to the tip are always updated.
Since the actions take place just before the curved tip (Fig. , m is chosen
as M + 5 to ensure that all affected segments will be updated at least five
times before a new action is performed. However, if the wire is very stiff, then
it is necessary to replace 5 by a bigger number.

2. Additionally, one update is executed for the segment numbers n — m — 5,
n—m— 10, n —m — 15, --- up to the proximal end of the wire. This ensures
some degree of relaxation besides the tip. Otherwise, if a large number of
actions performed in a short time interval, the rest of the wire would be far
away from equilibrium.

The numerical performance can be increased if incomplete cycles are carried out,
i.e. some of the last iterations [49] are suppressed. In what follows, the physical
model of the wire is improved and an updating recipe is given, which is simpler to
apply than the recipe of Konings et al. [64].

4.2.1.1 Bending Energy

Consider the bending energy U; of a wire segment (an arc) defined by three points
X;—1, Xj, and Xi+1 (Flg 43

1EI

(4.1)
where EI; represents the flexural rigidity, R; is the radius, and s; = R;0; is the arc
length between x; 1 and x; (or equivalently between x; and x;,1). Note that U; does
not represent the elastic energy between the points x;_; and x;,1, but only half of
this arc.
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Figure 4.3: Three successive points x; 1, X;, and X;,, separated by an equal
distance A = |\;| = |Ai;1| define a circular arc of radius R; and angle
20;.

From Fig. it follows that the distance between two points is given by A =
2R;sin(0;/2). Hence Eq. (4.1) can be put in the form
EJ
2R,

Ui

For 6; < 1 the last equation reduces to Eq. (3) of Alderliesten et al. [12]

_1EL
20\

U 0?

The angle 6; can be calculated using the formula cos€; = A\;.A;11/ A2, If the wire is
intrinsically curved at joint 7, then A;y; must be replaced by x;11 — x; — w; 41 (Fig.
[4.4). Further, rotating the wire changes the orientation of w;4;. Since

0 1 , 3
Hsmiw(l—cosg)—l—ﬁ(l—cos@) +?800 (4.3)

up to fourth order in 6;

U; ()\i, /\i+1) = % [13 — 14 cos 6; + cos? QZ}

12X
Ci Ai-)\i—i-l (Ai-Ai+1)2
= B 13—14 2 + X (4.4)

where C; = EI;/)\ is a springs constant.
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Figure 4.4: The minimum energy of a wire without external forces results when
A;_1 is parallel to A;, and A; is parallel to A 1. If A\j_1 = X;_1 —X;_o+
Wi, Nj =X; —X;_1, and A\jy1 = X;11 —X; —w;1, then the equilibrium is
obtained when x; o, X;_1, X;, and X;,1 are in the positions indicated.
Thus, the vectors w; bend a free wire.

4.2.1.2 Energy Minimization

The orientation of the i-th segment is updated (A\; — A; + ;) while the others A
are kept constant, in such a way that the energy decreases. The energy variation of
U; ()\i + a, )\i+1) around the new position \; + a; — \; + «; + day; is up to first
order

C; Aiit A + Ao
6Ui()\i+ai,)\i+1):[—7+ H ; e

] )\i+1.5ai (45@)

Furthermore, U;_; also varies

i Aict A F Aoy
5Uz’71()‘i717 Ai + ai) = 60/\ [_ T+ - ;_2 R ])‘il'éai (4-5b)

Similarly, if the wire is intrinsically curved at joint ¢ — 1, then A;_; must be replaced
by X1 — X;j_9 + w; (Flg .

It is convenient to introduce the vectors u;, 1;, €;, and the scalar ; defined by

n, =1 —u
€ = Uip1 — W4

R; = ﬁi.ﬁi+1 (46)

The elastic energy variation of the wire is the sum of Eqs. (4.5d) and (4.5b)

C; "
OUelas = DY [(pz +¢)a; +pin; + %’Ei] ooy (4.7)
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with
1 Qo T— Ki—1
i = = |7 — Ko — (W )N | T
p 6[ Ri—1 (u +T’z) )\‘| 6
1 i 7 — Ky
qi = 6[7—ﬁi_(ﬁi+€i)-(§\‘| ~ 6/€ (4.8)

because r; < 1 and |a;| < A for small corrections (i.e. nearby equilibrium).

~

Usually, the artery deformations caused by the wire are tiny [165], so that close
to equilibrium the relation between stress and strain is linear. Changing A; + o
by da; affects the coordinates x;, ---, x, by the same amount. Hence, due to
the interactions between the wire and the artery, the surface energy also varies
0Usut = G;.0a;. Here G; stands for the sum of the gradients from joint ¢ up to the
distal end of the wire [12]

G =3V, Uaui(x)) (1.9)

j=i

where Ugy(x;) represents energy interaction of joint j with the artery’s surface.

The total energy variation is

A A
= [(Bui — pi)W; + Byiv; + BwiWi] oy (4.10)

C; . G
oU = [— —(pi + @) — —(pim,; + gigi) + Gi] day

where ¥; and w; are two unit vectors perpendicular to @;, i.e. the set {;, v;, W;}
forms an orthonormal basis with G; parallel to A;. Furthermore,
C.
pi = Tz(pz + ;)
C.
and Buz’ = Blﬁ“ Bvi = BZ\A/“ sz' = Bz\ifl

Pin; + ¢E:) ((4.10)")

Since the modulus of A; + @; remains constant, it follows that |A; + a;|? = A% or
2)\;.a; = —|a;|>. Thus, a; can be written in the form (Fig.

a2

with

H(a;) = %\/w —a? ([ 11))
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o

\ 4

£>

Figure 4.5: The lengths of the vectors X; (old), N, (new) are equal, and the
modulus of a; = X, — \; is a;. Further, the unit vector W is parallel to
A; and perpendicular to t; = cos W V; + siny;Ww;, where 1); represents
the azimuthal angle of a; around ;.

Any variation of a; can be expressed using the parameters a; and ;

ooy = —%ﬁ~+dH
b A day

+ H(a;)(— sin¢;v; 4 cos i, W;) 01, (4.12)

(COS ’QZ)Z\AQ + sin ’QZJZ\/?%)‘| (SCLZ‘

At the minimum, dU = 0 for arbitrary da; and dv;. Considering first the case da; = 0
and (51/)2 7é 0

[ — Bvi sin 77Z)z —+ Bwi COSs ¢Zi| H(CL,) 6¢1 = O
from which it is deduced that By; cosv; = By; sin;. Hence

Bvi Ai Bwi W 7
cos ;V; + sin Y, w; = Vit w (4.13)

vV BYi+ Bl

Now, the case da; # 0 and d¢; = 0 is examined. From Eq. ((4.11))

dd  d '_a§+ _1_3a?+
da,  da; \ T 82 RSV

so that up to first order in a;/A Eq. (4.12]) becomes

A Bo.¥: + B W,
5az: [_alA VZVZ+ W7/“/7,‘|5a/z

B B,
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where Eq. (4.13)) has been used. Therefore Eq. (4.10) gives

l - %(Bm- —p;) + /B2 + ng.] Sa; = 0 (4.14)

and solving

\Bai + B2,
A (4.15)

Bui — pi

a; =

Note that changing the sign of Eq. (4.13)) as in the work of Alderliesten et al. [12],
also changes the sign of a; in the last equation. Since H(a;) is an odd function, the
product H(a;) (cos¥;v; + sin;W;) is the same irrespective of the chosen sign.

4.2.1.3 First Order Correction

Because the norm of the vector A; remains constant, only the change of direction
needs to be updated in the calculations: @; — 0; + A = @; + o;/A. In particular,

note that for a; < A Eq. (4.11)) becomes

L ByiVi + BuiW,
a; ~ a;(cos i V; + sin W) = \——— e

Bui — pi
or

The scalar 4;.B; = B is the projection of B; along ; and G; x (B; x ;) =
B, — 4;(4;.B;) = B; — B;; = B, represents the component of B; perpendicular to
1, (the infinitesimal variation of a vector with a constant modulus is perpendicular to
the vector). Since At is only an approximation, after updating G; a renormalization
must be performed.

Mostly @;.B; < p; ~ 2C;/\, so that from Eq. (4.16])

A’L’ BZ Ai
Ad; v -2 X (Bi X @) (4.17)
Pi

As p; is nearly constant, to achieve equilibrium (Ad; — 0) the component of @;
perpendicular to B; must be minimized. Notice that B; depends on G;, so that the
calculation of G; plays a crucial role.

Suppose that all updates At; have nearly the same magnitude and are randomly
oriented. As in random walks!, the average distance covered by the tip when the
segments between ¢ and n are updated, is proportional to v/n + 1 — i. Thus X, new —
Xy,01d| can become very large. To avoid this unstable behavior, the update is bounded

!The expected translation distance after p steps varies as /P [166]
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using the formula

Au
Al < ——2E 4.18
A= T (418)
where i = 1,--+ ,n and Aup,y is small (~ 0.1). In a frontal collision of the wire

with the surface, a single update can bend the tip at most by the amount At,ay.
When the calculation proceeds, the next iterations will bend the tip further until
|Aty;| naturally decreases and the wire approaches equilibrium.

The updates AqQ; for small i are tiny, because they are bounded by Eq. (4.18).
Hence, instabilities are dissipated and do not propagate to the proximal end of the
wire. It is the tip of the wire (i close to n) which plays an important role in the
simulation and, in this region, a higher number of updates is performed. Since the
relaxation is stable, there is no need to introduce the segment in small steps as in
the work of Alderliesten et al. [12], and it can be performed at once.

If |B;| < p; the update will be small. In this case, the denominator in Eq.
is positive and the update moves the wire in a direction so as to cancel B;. But in a
frontal collision of the tip with the artery, B; can become very large because of G;.
If the sign of the denominator is negative, B; will increase instead of canceling, and
the calculations diverge. In particular, for p; — 0;.B; ~ 0 the modulus |a;| becomes
larger than 2\, which is geometrically impossible. In such cases, the approximation

dH/da; = 1 fails.

To overcome this drawback, Eq. (4.14) should be considered without approxima-
tions

; 2N —a? o
_CL(Buz'_pi)_’_iaZ B\2/z'+B\2w‘:0
A M/4X2 — a2

and solved numerically for a;. However, a simple estimation for A, can be found.
Taking the absolute value in the denominator of Eq. (4.16))

lAlZ' X (Bz X ﬁz)

At = (4.19)

lpi — ;.8

the update will always be in the right direction. Note that using Eq. in
place of Eq. gives similar results. The magnitude of the correction can still
be large, but since |Ady| is bounded and ; is renormalized after each update, it
poses no problem. Applying Egs. and in the Tip Relaxation results
in a stable algorithm even if, in a short time interval, a large number of actions are
performed by the user.

Lastly, it is observed that Eq. basically involves the calculation of B; and
the computation of scalar and cross products with @;. On the other hand, Eq. (11)
of Alderliesten et al. [I12] works implicitly with an orthonormal basis. It is necessary
to calculate the projections of B; in this base, to determine the modulus a;, the angle
¥, and then to construct the vector a; again using the base. Thus, the method
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developed in this work is simpler to apply.

4.2.1.4 Pseudocode

Algorithm 4.1: Pseudocode of the PR method. The entrance parameter is the
segment ¢ of the wire. The procedure updates the points x; and orientations w;
from 7 = ¢ up to the end of the wire j = n.

void PhysicalUpdate(segment i){

1. calculate the gradient G;, see Eq. ;

2. calculate the update A, see Eqgs. (4.18) and (4.19);
3. update 1; and renormalize;

4. update x;, X;11, -+, Xp;

5. update w;, w1, -+, Wp;

The pseudocode implements the method described in this Section. Next, the
PT spent in calling the procedure during a complete PR cycle is analyzed.

For a segment number ¢, the calculation of G; involves the collision test for n — ¢
segments. During the cycle of the PR, this procedure is called %n(n + 1) times, and
the total number of collision tests in one cycle is gn(n + 1)(n + 2). If there is a
collision for j > i, then V; Ugye(x;) must be calculated. The number of times the
gradient is computed depends on j. For example, if j = n/2 the computation is
repeated in(n+2) ~ n?/8 times, and in general it will be a fraction of n?. Thus, the
PT of line 1 has the form gn(n + 1)(n + 2)Ty + n*Ty, where T} and T} are positive
constants.

The lines 2 and 3 involve a single execution, so that the PT of one cycle is
proportional to %n(n + 1). Finally, lines 4 and 5 give a contribution similar to the
number of collision tests executed, i.e. proportional to %n(n +1)(n+2). Hence, the
estimated PT of the physical update cycle is

tphy = tpln + tp2n2 + tp3n3
~ tp2n2 + tp3n3 (420)

In the last line, the PT is approximated by the two main contributions for large n.

Since Tip Relaxation plays a central role in the algorithm, its PT will also be
examined. In the first part, when the first m segments are updated, the PT is
similar to Eq. but with n — m = M + 5 (a constant). In the second part,
when the segment numbers n —m — 5, n —m — 10, n — m — 15, --- are updated
once, instead of $n(n + 1) only ~ (n —m)/5 steps are executed. Hence, for large n
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the term n?/2 must be replaced by n/5 in Eq. (4.20). The overall result is

m, 3/2
ttip ~ tplm + tp2m2 + tp3m3 + tpg <5>

= const + tp4n®/? (4.21)

For example, if m = 5+ 5 and n = 250, then m® = 1000 = (2n/5)%?, i.e. the
constant has the same order of magnitude as the last term in Eq. (4.21]).

4.2.2 Geometrical Relaxation

Consider the problem of finding the minimum energy of a homogeneous wire (E1 =
const) with the following boundary conditions. The end points x,, and x, are fixed
as well as the tangent vectors to the trajectory %, and %, (the dot denotes differ-
entiation with respect to the curve parameter 7). Between these points there is no
contact with the surface and the total length of the curve is not fixed.

Xi+1

Figure 4.6: Three points x;_1, X;, and X;,1 are separated by different distances
IAi| # |Ait1]. The two circular arcs have the same angle 6; but the
radii R; and R;,; are not equal.

4.2.2.1 Bending Energy

Here, it is necessary to derive a generalization of Eq. when the modulus
Ai = || is variable. In Fig. the three points x;_1, X;, and x;,1 are joined by
two arcs having the same angle 6; but different radii R; and R;.;. It is also possible
to join the points using the same radius and different angles, but the calculations
become cumbersome. The sum of the energies in half arc under and in half arc
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above the point x; is

1EISZ 1 FI Si+1
99 o2
2RZ2 ' 2R%, 2

_EI( 6 N 0;
2 \2R;, 2R

_ELL L L %
O VLAV At

Ui

because sin(#;/2) = \;/2R; = A\i+1/2R;41. Using Eq. (4.3) with cosf; = @;.0;44

results in

>\i * )\iJrl

_ EI( 1 1 ) 13 — 140041 + (0. 0541)?
D) 2

4.2.2.2 Energy Minimization

Since only A; and A, are functions of x;, it follows that U;_;, U;, and U, ; depend
on this coordinate. Omitting the constant multiplicative factor £1/12, it suffices to
analyze the function

V(x;) =

1 1 13 — ]_4 Ri—1 —|— lizz_l

_|,_ -
Ni—1 N 2
L, L \1B= Ukt

Ai At 2

1 1 \ 13— 1k + K74
! 4.22

* <)\i+1 * )\i+2> 2 (4.22)

Notice that ¥ does not contain any physical parameter and depends solely on the
geometry.

The label * will be used to refer to the coordinates of the improved curve. In order
to minimize ¥, substitute x} by x} + y;¥; + 2:2;, where ¥, and 2z; are orthogonal to
the vector x;,1 — x;_1. The calculation of y; and z; can be carried out using the
Hessian matrix and the gradient

Wyy,i Wi\ (¥i) _ yv;.V, U
The Hessian matrix gives essentially a metric to find the length of the update
X} now — Xioud| i0 the Newton direction of steepest descent [167]. This direction is

determined by the negative components of the gradient in the plane defined by y;
and z;. Near the minimum, the Hessian approaches a constant [I68]. Thus, the
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matrix elements can be computed numerically

1 A * * ~
1 . R .
\ijzﬂ' = 4(5)\)2|:\D(X2 + 5)\ Yi ‘i: 5)\ Zi)/\
—U(x] + 0Ny —0AZ;)
—U(xF — NG + 0N Z;)
+U(x! — Ay — 5)\21)}
1 * A * * 5.
V.., = G (W(x] +0A%) — 2W(x]) + W(x] — 6A2;)] (4.23a)

where dA = \/10?* for calculations performed with double precision.

On the other hand, the gradient is very sensitive to numerical round off errors
near the minimum. Hence V,;¥ must be determined analytically with the help of
VN1 =0, ViAl =0, ViAl, = —aj,,, ViAi, =0, and

7y k

* Oy ok
U, 1 — K, 14

1—1 *
A;
A K Ak * Ak
V.t — W — /Uy 0y — Ky,
vy — A* *
i i+1
ar, ., — kX .af
* _ i+2 i+1 41
i+1
The minimization update is executed for the sequence ¢ = p+1, u+2, ---, v—1
) ) ) )

which is defined to be an iteration in the GR cycle. After repeating ~ v—u times the
iteration, the modulus of V;V¥ is reduced by a considerable amount, i.e. the curve
approaches the desired solution. Hence, one GR cycle consists of v — pu iterations,
which has (v — p)(v — u — 1) &~ (v — u)? minimization updates.

Observe that the vectors y; and z; are calculated only at the beginning of the
minimization procedure. Since the plane over which the point x; can move is kept
constant, the possibility A] — 0 is ruled out and numerical instabilities are avoided.

4.2.2.3 Point Slide

After executing the energy minimization, the point must be shifted (x; — x})
to restore |[A;| = A. Specifically, x} is displaced following the polyline to obtain
x; —x}_,| = X as depicted in Fig. 4.7(a), an idea which is based on the “Follow

The Leader” technique [149].
To find x’; explicitly, consider Fig. (b) Let x; ; and x; be two vertices in the
polyline such that |x; | —x’ ;| < A and [x] —x}_,[ > A. Then construct the vector
by = ) x [(x_; — X} ;) x 1] (4.24)

1
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Figure 4.7: (a) Original curve x; (red), curve after executing the energy mini-
mization x} (green), and displaced points x; (black). (b) Closer view
of three coordinates x;_,, X! ;, and x; after the minimization. The
unit vector 0} points from x;_; to x;, and the vector b;; goes from
x’_, to the line passing through x}_, and x}. The distance between

j—1
xj_y and X} equals \.

j—1

The j-th coordinate is calculated with the formula

X;- = X;#l + bij + ﬁ:\/)\Q — ‘bijP (425)

In particular, at the beginning x], = x,,.

The previous displacement is performed using a linear interpolation between x;
and x;. It is not difficult to find a second order correction for the interpolated point
x. This procedure is illustrated in Fig. the point x’; is displaced in the direction
of the unit vector € which is perpendicular to x — x ; = A7 = AXa!. In order
to find a formula for &7, let ¥;_ and V;, be two vectors parallel to G;_; x G and
47 x 0, ; respectively. Then & is chosen to point in the direction 4} x (V;_ + V7).
Notice that € lies in the average of the planes specified by 4} ;, G} and by ],
uy, . Butif v;_.v;j < 0 it is not convenient to perform the second order correction,
because the curve has an inflection and the circumference in Fig. is no longer a
good approximation.

To determine the length ¢;; of the displacement, first calculate the radius of the
circumference

Aj Al

iy (9:/2) N V2 —2cos0;

The cosine of the angle #; can be found with the dot product @}_,. or @}.if,,. In
general, these products will be different and cos 9: is set equal to the mean value.
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Xi-1

Figure 4.8: Second order correction ¢;;€; to the coordinate x;. The displacement

is indicated by the green arrow. The arc segment has an angle 9: and
a radius ;. The distance between x;_; and x} is A}, and the distance
between x/; and X} is d;.

J

Then the radius becomes

A\
R d (4.26)

’i:
A A A

Let d;; be the distance between x; and x}. From Fig. it is inferred that

s = \I(R”Q (E-a) - J e (%) (1.27

Finally, the replacement x; — x’; + £;;€] is carried out. Observe that, after replac-
ing, the modulus of the vector )\; = x; — X;_; becomes slightly different from .
Therefore, it is necessary to move the point x; to fix the length of )\;-.

The second order correction is in practice very small. But it is important for
points close to the surface, because it avoids abrupt changes of the interaction force
in the PR.

4.2.2.4 Cubic Spline

To select the interval to apply the GR, it is desirable to have an approximate an-
alytical solution x(7) with boundary conditions x,, X, X,, and %,. The 2D static
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Euler-Bernoulli equation describing a beam having a small deflection v is [169]

dv  Q

dr* ~ EI

For zero transverse load (@) = 0) the solution is a cubic spline [I70]. The four
integration constants are determined using the boundary conditions v(7,), 0(7,),
v(7,), and (7).

In 3D the cubic spline becomes

Xeub = (1 = 7)x, + 7%, +7(1 — 7) [(1 —T)S, — Tsy] (4.28)

where 7 € [0, 1]. Let X,,, = x, — x,, and ﬂ“, U, be two unit vectors parallel to X,
%, respectively. If the vectors s, and s, (associated with the cubic dependencies on
7) are perpendicular to the line (1 — 7)x, + 7x, connecting the points x, and x,,
then

S :Mﬂ - X
"X, 0, " e

X,wl? -~
5 = 1 Xwl gy X, (4.29)
XU,
A small deflection occurs when U, and U, are nearly parallel to X, = X,,,./| X, |-

4.2.2.5 Interval Selection

To find a suitable interval to apply the GR, the first step is to search for intervals
whose end points x,,, x,, are close to the surface, and whose inner points x,,;1, - - -,
x,_1 are far from the surface. Specifically, we considered a point is close (far) when
the distance to the surface is smaller (larger) than 5% of the average artery diameter.
It will be seen that in the PR cycle a point near to the surface can be bouncing
(Section [4.3.4)).

Next, discard intervals having few segments, say less than 5. Also exclude the tip
of the wire, which is curved, and any other interval having a non-constant flexural
rigidity.

For each of the remaining intervals execute the following operations. Given x,
and x, with tangent vectors x, = 0, + 0,41 and %, = 0, + 0,4, determine the
cubic spline Xy ;. Then calculate the mean square deviation [171]

1 14
2 2
S = h 220 (4.30)

where af = |x; — Xcub,i|2. The cases of interest occur when the deviation o, is large.
Moreover, the cubic spline is not a good approximation unless U, and U, are nearly

parallel to X, i.e. a bad approximation results if 1 + ﬂu.X“V or 1+ IAL,.XW are

)
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small. Hence, calculate the following figure of merit
Xuv = (1 + ﬂu'qu)z (1 + [AJwX,uV)Q Ouv (431)

and select the interval with the largest x ..

It is not mandatory to move the points when the distance between x; and Xcyup ;
is small, so that a reduced interval can be chosen. If o; < 0.100,, for ¢ = p +
L+ 2,---, puy, then replace p — py. Likewise, if 0; < 0.100,, for ¢ = v —
1,v—2,--- ,v_, then replace v — v_. Note that a shorter interval decreases the
PT to calculate the improved curve, which is proportional to (v — u)?. Moreover,
the angles £(N,,U,), £(N,,U,) are likely bigger than the angles £(N,,U,,),
L(Ny,, [AL,,), where N; stands for a vector normal to the artery’s surface. Hence,
there is a smaller probability that the improved curve intercepts the surface when
the interval is reduced.

If an interception occurs, then do not update x; — x; but use a linear interpolation
x; = (X7 + (1 —()x; with ¢ € (0,1). In practice, ¢ should be large but it must avoid
the intersection. Further, to ensure numerical stability it is convenient to limit
such that the tip of the wire does not displace a distance greater than A. Thus,
after executing the GR check if |x,, — x/,| < A, otherwise decrease ¢ and repeat the
interpolation.

4.2.2.6 Pseudocode

Algorithm 4.2: Pseudocode of the GR method. The entrance parameter is the
entire wire. The procedure chooses the best interval of the wire to apply the GR
and updates the points x; from j = p + 1 up to the end j = n.

void GeometricalRelaxation(wire geometry){
6. select the interval p < i < v to apply the GR, see Section [4.2.2.5;
7. execute v — p iterations (with a total of (v — p)? energy minimization

updates), see Section 4.2.2.2

8. shift the points X,,+1, X,12, - - -, X,, to restore the length |A;| = A, see

Section ;

Now, the PT of the GR will be analyzed using the Algorithm [4.2] The number of
operations necessary to determine the interval in line 6 is proportional to n. Let us
change the resolution of the wire in such a way that A o< 1/n. If the shape of the
wire does not vary appreciably, then the position of the points x,, x,1 before and
X,2, X2 after changing the resolution will be nearly the same. Thus, it is concluded
that u, v are proportional to n and the PT in line 7 scales with n? (Section .
Similarly, the PT in line 8 (proportional to n — u) scales with n. In summary, the
average PT of the GR cycle is

toeo = tgn + tgon? (4.32)
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4.2.3 Combination of Physical and Geometrical Relaxation

Figure 4.9: Wire segments inside an artery. In order to relax, the segment P, P,
should rotate upwards about point P, as indicated by the arrow. Note
that from P, to Py the wire is rigid, so that the resulting translation is
hindered by the contact points P3 and P,. Nor can it move downwards
because of Ps. The GR is not subjected to this restriction, since from
P up to Py the wire can slide. It is especially designed to relax intervals
like from Py to P3 (red).

A major drawback of the PR is that the wire moves as rigid structure about a
fixed point. Depending on the boundary conditions this can be very hard to achieve.
For example, the segment PP, in Fig. needs to turn up but it is hindered by
contact points.

One possible solution is the GR developed in Section [4.2.2] which allows the wire
to slide. The GR is executed after a PR cycle (Fig. and does not interfere
with it, because the GR is much faster than the PR (Section [4.3.3). In particular,
if a user action takes place during a PR or a GR cycle, then it is interrupted and
a Tip Relaxation is executed (this ensures stability). Moreover, the shape of the
tip (where the actions take place) looks more natural. The combination of both
techniques results in a more realistic wire behavior than using only the relaxation
proposed by Konings et al. [64].

4.2.4 Wire Device

Here, a simple device to capture the wire motion is described (Fig. [.11). In
cardiovascular procedures, the wire sweeps at most a length of 150 mm inside the
coronary [172]. In view of this fact, the required materials are:

e Support box.

e Pipe tube of length 320 mm, with a small window in the middle.

68



4.2 Methods

Start

Tip Relaxation

l

yes

Action
no
i yes

Rzg};cs;z?;n GR completed
yes
Action no
yes
no
PR completed yes Geometrical
Relaxation

Figure 4.10: Workflow. In the “Tip Relaxation” (Section the procedure
PhysicalUpdate is applied to the tip of the wire and also to some
selected segments. When the “Physical Relaxation” is called, %m(m—l—
1) updates are executed. The PR is completed if the cycle ends, i.e.
after %n(n + 1) updates. In the same way, when the “Geometrical
Relaxation” is called, m(m + 1)/(v — p) iterations are executed to
improve the curve. The GR is completed after v — y iterations.

e Light and opaque cylinder 170 mm long.
e Optical mouse with a precision of 1200 dpi or higher.
e Set of catheter and steerable wire with 150 mm free length.

The wire is attached to the cylinder, which is put inside the pipe. In particular,
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the material of the pipe and the cylinder should be chosen in such a way that the
friction between them must be small as possible [I73]. The mouse is fixed over the
pipe so that the light-emitting diode stays on the window. Moreover, it is possible
to add extra commands to improve the simulator. For instance, the mouse buttons
can simulate the contrast injection or the activation of the X-ray employed in video
generation. Also, a USB-joystick with two axis can be used to change the C-arm

[16] perspective.

to the PC

cylinder T
(free)

optical mouse (fixed)

) rotate

catheter pUSh/pU| |

Figure 4.11: Photography (top-view) and sketch (cross-view) of the wire device.
The pipe has a small window and the mouse is over the window.
Translating and rotating the wire also translates and rotates the
cylinder, which is captured by the mouse.

The wire movement is transferred to the cylinder and captured by the mouse
according to:

e Pushing and pulling the wire = cursor up and down.
e Rotating the wire = cursor left and right.

The mouse must be aligned with the axis of the cylinder, otherwise translations and
rotations will appear mixed. Depending on the mouse resolution, pointer speed, and
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cylinder diameter, different cursor movements are obtained. Hence, a calibration is
required to provide a correct feedback to the user. As an alternative to the optical
mouse, a piezoelectric captor [I74] can be connected to detect the cylinder motion.

The device has the technology of an optical mouse, whose movements can be read
with basic functions in any programming language. The manufacturing cost is low
and the portability allows the device to be used without platform restrictions.

Since the tip of the wire is soft [175], the contribution to the sense of touch is not
significant. The force feedback is due mainly to the friction between the wire and the
catheter [165]. In our device this force is already embodied, because the wire slides
inside the catheter. This removes the complex problem of coupling haptics [1706]
and graphic simulation, especially because they proceed at different frequencies (of
the order of 1000 Hz and 30 Hz respectively [177, [178]).

4.3 Technical Evaluation

In order to validate the usefulness and to examine the limitations of the methods
developed in this work, several analysis were performed including the stability, wire
resolution, and PT of the PR and GR. Moreover, the interaction between the wire
and the artery was inspected. Finally, the present model was compared with the
model of Alderliesten et al. [12].

In the simulations, a flexural rigidity E1 equal to 6.35 x 107 Nm? is assumed,
experimentally obtained from a trial wire [I79]. The algorithm was implemented
in C4++, and the tests were performed in a computer having a Intel Core i7-4500U
(2.40 GHz) and 16 GB of RAM.

4.3.1 Stability Analysis

The total PT was tested for the artery shown in Fig. [4.12] which includes a T-like
and a Y-like bifurcation (Section . In the first part of the simulation, the
wire is outside the artery and it is quickly pushed inside (only the Tip Relaxation
is applied). The result (green curve) looks unphysical, but the algorithm does not
crash during a fast insertion of the wire. The stability is also verified if A increases to
2.5 mm, so that a deeper frontal collision occurs at the T-like bifurcation. However,
if the wire becomes very stiff (a huge flexural rigidity), then it will “perforate” the
artery (like a needle) and the behavior becomes unstable.

In contrast, the algorithm of Alderliesten et al. [I2] demands a slow insertion of
the wire, otherwise it can crash. For example, in numerical tests Konings et al. [64]
and Alderliesten et al. [49] used an internal stepsize smaller than A/10. Since they
insert the new segment in the proximal end of the wire, to guarantee stability they
must execute at least ten times the complete relaxation cycle before a new action
takes place. As in Eq. , their PT is proportional to n? for large n, but in our
case it is proportional to a constant plus n*? (see Eq. ) Hence, this method
works much faster under stress conditions.
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Figure 4.12:

Artery with a T-like and a Y-like bifurcation. (Left) The wire
has 250 segments, A\ = 1 mm, and it has been quickly inserted
into the artery (green curve). In this part, the program exe-
cuted only Tip Relaxations and the time consumed was 0.24 sec-
onds. In the second part, no action takes place and a combi-
nation of 100 relaxation cycles (Physical and Geometrical) is ex-
ecuted, so that equilibrium is attained (blue curve). The coordi-
nates indicate the location of some wire joints. (Right) Mockup
representing the stift artery. The wire inserted in the artery has
the same shape as the blue curve. The average separation be-
tween the physical wire (plot digitized with WebPlotDigitezer 3.8
http://arohatgi. info/WebPlotDigitizer|) and the blue curve
is 0.262 mm, with a standard deviation of 0.227 mm. Hence, the
calculations with the model developed in this work give a realistic
result.

In the second part of the simulation, a large number of cycles are executed. The
result is the blue curve in Fig. (left) and a numerical comparison with exper-
iment (right) shows that the calculations are truthful. Besides the specific case in
Fig. [4.12] several paths have been tested and the results were always good.

In real procedures, the physician should not insert the wire quickly to avoid vas-
cular damage [I80, [I81]. For security reasons, in the specific case of Teleoperation
the speed of the slide platform is less than 10 mm/s [I62]. On the other hand, one of
the most annoying situations encountered by users in simulators, is the time delay
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between the action and the response [I82]. In our simulator (green curve in Fig.
4.12) the average speed was (250 mm)/(0.24 s) ~ 1 m/s.

4.3.2 Segment Size

The PT will depend on the artery’s resolution and on the size of the segment A\. The
method of Chapter 2[to calculate G; is almost independent of the artery’s resolution.
This artery model refers to a geometry which does not depend on time. Otherwise
the proposed method is not feasible, because changes of shape make it more difficult
to use precomputed data structures for expediting collision tests during simulation
[148]. On the other hand, some works try to enhance the surgeon’s endoscopic vision
with a time dependent 3D model of the coronary artery tree to be used in a per-
operative augmented reality [183] [I84], but the resulting images are not segmented.

If \ decreases but the wire length remains the same, the total number of segments
n increases. Hence, with a higher wire resolution the PT becomes longer. To
determine the optimal segment size, the influence of A on the shape of the wire must
be investigated [12]. Afterwards, set the size to the maximum value which gives a
satisfactory visual effect.

In Fig. [4.13] the simulations for Ay = 2.5 mm (wire A) and A\g = 1 mm (wire
B) are compared. The equilibrium looks similar, but the time ¢4 required for wire
A is only 11% of the time tp required for wire B. The shape difference is not due
to the precision of the calculations with different values of A, but to the contact
points with the artery, which is not the same in the case of wire A and in the case
of wire B. The wire A has less contact points and in the T-like bifurcation the wire
A penetrates deeper inside the corner of the artery wall. The wire B has a bigger
resolution and the result is closer to the real artery (Fig. [4.12).

4.3.3 Physical and Geometrical Processing Time

Table 4.1: PT of the PR (tyny) and of the GR (tye,) for different resolutions:
Aa = 2.5 mm, \g = 1.0 mm, and A\¢ = 0.4 mm. The PT does not
include the fast insertion of the wire, but only the relaxation between
the green and the blue curves in Fig. [4.12. The approximated times
tohy.fit and teeo e have been obtained with Eq. (4.33).

A | 25 1.0 0.4
tony | 0.9840 9330 103.7
teeo | 0.0160 0.0704  0.2431
tongse | 1026 9321 103.7
tacoie | 0.0220 0.0671  0.2435

A further comparison is made using A\¢ = 0.4 mm (wire C'), so that As/Ap =
Ag/Ac = 2.5 or ng/na = nc/np = 2.5. The relative PT is in Table and for
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Figure 4.13: The green wire A has ny = 100 segments, Ay = 2.5 mm and the blue
wire B has ng = 250 segments, A\g = 1 mm. Hence na\q = ngAp.
The arrows indicate one of the intervals p < ¢ < v where the GR is
applied. In the case of wire A it was found that uq = 1, v4 = 13 and
in the case of wire B it was found that ug = 2, vg = 30. Thus, u
and v are closely proportional to n.

increasing resolution the PT of the PR becomes much larger than the PT of the
GR. The data can be approximated with Eqgs. (4.20]) and (4.32))

2 3

n n

=0.716( — 310( —
tony = 0.7 6<100> +0.3 0(10())

2
n n
o = 0.01875 —— + 0. . 4.
tgeo = 0.01875 100+000323<100> (4.33)

From Table [4.1] it can be read that
e For Ay = 2.5 mm or ny = 100: tyny/tgeo = 61.6
e For \g = 1.0 mm or np = 250: tppy/teeo = 132.5
e For \c = 0.4 mm or ng = 625: tphy/teeo = 426.5

Note that the ratio t,ny/tge, increases from ny to np by a factor 2.15, and from np
to no by a factor 3.22. These factors are close to ng/na = nc/np = 2.5 or nearly
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proportional to n. Indeed, for ¢,; =t = 0 in Eq. and ty = 0 in Eq. (4.32),
it follows that t,ny/teeo X 1. In general, for large n the time tg, is much smaller
than tphy‘

The PT of the GR is discussed now in detail. For a fixed n and given pu, v, the
time in Eq. can be put in the form

tgeo = t;uz() + tur/l(’/ - ;u) + t,uVZ(V - #)2 (434)

The results for wire B and wire C' are shown in Fig. [4.14] Note that there are points
missing in the numerical experiments, because in the calculations not every interval
size v — p occurs. In particular, the blue points are not far from the red points for
v — =~ 60.

0 13—

0.010

0.008

£ 0.006

0.004

0.002

0 50 100 150 200
v-p

0.000

Figure 4.14: GR relaxation time t,e, as function of the interval length v — pu. The
blue color represents the wire B with ng = 250 segments (blue curve
in Fig. and the red color represents the wire C' with ng = 625
segments (not shown in Fig. [4.13). The points are the PT measured
in numerical simulations and the lines are the fits performed with Eq.

(4.34).

The blue points in the interval 20 < v — u < 30 correspond to the red points in
the interval 60 < v — p < 90, because p and v are nearly proportional to n (Section
[4.2.2.6). Also, the blue points in 55 < v — u < 60 correspond to the red points in
165 < v —pu < 175.

The PT for a single energy minimization does not depend on the total number
of wire segments. Since (v — p)? minimization updates are executed in a GR cycle,
the quadratic coefficient in Eq. should always be the same. Indeed, this
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coefficient is equal to tz, = 0.003663, 0.003586 for wire B, wire C' respectively, and
the difference is 2%.

Figure 4.15: Initial curve (green) and the final equilibrium curve (blue) obtained
after a very long relaxation time. The final result is the same with or
without the GR. The analysis is focussed in the wire portion located
inside the gray box, which goes from wire segment number 90 to 95.
In this interval are seen the most relevant changes during relaxation.

It is also interesting to compare the PT using the PR (case P) and using both
the PR and the GR (case G). The outcomes are highly dependent on the initial
wire shape and on the boundary conditions (artery geometry). For instance, Fig.
shows an initial curve (green) and the situation is similar to that depicted in
Fig. . Although the final result is the same in cases P and G (blue curve in Fig.
, the relaxation times are very different. Specifically, the time is computed so
that the difference, between the blue and green curve for the segments inside the
gray box, is reduced to 10%. The result is tp/tg = 3.73, which means that the PT
with GR is only 27% of the PT without GR.

As pointed out previously, the ratio ¢p/ts depends on the specific boundary condi-
tions and on the initial wire shape. In all cases t; < tp is obtained, but the reduction
is not always noticeably. In summary, using both the PR and GR a shorter PT is
achieved, although the pertinent improvement of the method is found when the wire
is hindered.
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4.3.4 Wire-Artery Contact
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Figure 4.16: The red bars represent the percentage of the time in which each
joint (blue curve in Fig. is in contact with the artery’s surface.
The magenta curve represents the average modulus of the unit vector
update Au; during a PR cycle.

It will now be analyzed how much time each point is in contact with the artery
in a static solution (Fig. [4.16)). In general, a softer wire (small flexural rigidity E7)
will have more points (a longer interval) in contact with the artery than a stiffer
one [49] [185]. Also, the shape of the artery will influence the number of collisions.
Hence, the flexural rigidity and the shape affect the PT to compute the surface
energy gradient in Eq. (4.9)).

Only few points are effectively touching the surface, holding the wire to the equi-
librium position. The points bounce in the artery and the total number of contacts
vary from one step to the next. For instance, the surface force can eject the point
and then it becomes zero. In the next steps, due to the elastic restoring force of the
wire, the same point can move back.

The magenta curve in Fig. shows the modulus of the update At;. In par-
ticular, the maximum |[At37] = 9.2 X 103 corresponds to an amplitude variation
of 4.6 pm around the average position of x; for 137 < i < 250. Note that in one
complete PR cycle, the unit vector G; will be updated 7 times. Furthermore, after
a joint collision has been surpassed, the modulus drops because the contribution of
the surface gradient is suppressed from the sum in Eq. .

Although the numerical solution looks unstable, the oscillations are tiny and they
are not perceptible. Moreover, the algorithm is usually applied in dynamic simula-
tions where the wire is moving, and a final equilibrium configuration is not required.
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4.3.5 Comparison of Physical Models

The PR is essentially the same relaxation introduced by Alderliesten et al. [12]. The
difference is that in the energy of the i-th joint U; = C;g(6;) we use the approximation
g1(0;) = (13 — 14 cos 6; + cos? 6;) /12, while they use go(6;) = (1 — cos?6;)/2. Thus,
in the calculations

ki
3o - Ri-1 S
3
)\7; = K; S 1
are replaced by
pizl
¢ 21
respectively (see Eq. (4.8)).
A 9(6)
9.(6)
0
0 0 T2

Figure 4.17: Comparison of the functions g(0) (red; exact), g1(6) (blue; this work),
and go(0) (green; Alderliesten et al. [12]) in the interval 0 < 6 < /2.

The functions ¢;(0) and go(6) are compared with the exact g(f) = 0sin(6/2) in
Fig. All functions have a minimum at 6 = 0 and, in the absence of external
forces, equilibrium is achieved when there is no bending. For § < 0.1 rad = 5.7°
they are almost identical: the errors of g;(#) and g»(6) are less than 4.7 x 1075% and
0.29% respectively. But for § ~ 1 rad = 57° the function g;(0) is clearly superior.

Numerical simulations performed with g; and with g, have been compared. Specif-
ically, the blue curve in Fig. (A = 1 mm) is relaxed over a long period of time
using our model (without including the GR) and using the model of Alderliesten
et al. [I2]. The average difference between both calculations is 0.052 mm, which
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is nearly the same precision of the calculations due to tiny oscillations around the
equilibrium position (Section . Moreover, for A4 = 2.5 mm and for A\¢ = 0.4
mm the average differences are 0.121 mm and 0.010 mm respectively. Note that for
small A\ (higher resolution) the calculations are more precise.

Further, the following average and maximum values of the angle 6; between 01;_
and 0; were obtained

o For \s: 0 =4.7° and 0,0 = 13.6°
e For \g: # =1.9°and 0, = 6.7°
o For \o: 0 =0.75° and O, = 2.9°

Hence, the results with g; and with g, are practically the same, because the angles
0; are small. However, in a deep frontal collision of the wire with the artery, the
angle is very large. In such situations, it is advantageous to use g; which gives a
better approximation.

4.3.6 Validation Tests

A dozen specialized participants of a conference in 2011 at INTUS (Interdisziplinéres
Trainings- und Simulationszentrum, http://intus-wuerzburg.de) performed an
informal comparison between our initial setup and three commercial vascular simu-
lators (see Fig. . The majority of the specialists gave the best approval ratings
to our setup. We also requested the participants to fill out a formulary (Appendix
and the results are summaraized in Table . The worst grade was to the wire
realism, which motivated us to work and to improve the method. On the other
hand, the best grade was to the easiness of use due to the simplicity and portability
of the device.

Table 4.2: Survey of the initial simulator applied in a conference in 2011 with a
dozen specialized participants. The grade scale goes from 1 (poor) to 5

(optimal).
Avaredge grade
Easy to use 4.3
Robustness, stability 4.1
Realism of the wire 3.4
Learning effect 4.1
Overall judgment 4.1

Actually, one of the current challenges is to evaluate the propensity of a simulator
to help the user gain skills within its professional environment, not only increase its
ability in using the simulator [186].
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We also ask to the participants to fell free to write any comment, suggestion or
compliment. The answers can be summarized as follows:

e Simulate the exchange of the wire.
e Possibility for two angulations.

The commentaries refers basically to the possibility to fold the wire besides the tip
and change the type of the wire . These techniques help the navigation of the wire
inside the coronaries [I87] and have already been incorporated to the simulator. To
add a new angulation in a specific point of the wire, it is necessary to redefine the
w; (Fig. [£.4). To change the type of the wire, it is necessary to modify his flexural
moment E1.

4.4 Software

The simulator was developed in C++. It uses the OpenGL? graphic library and can
be compiled in any plataform. The software has many functionalities shown in the

normal perspective (Fig. 4.18):

Curvature, Angle, Tip - Controls the deformation of the wire tip used in the sim-
ulation.

Speed - Scales the real wire displacement to the virtual wire displacement.

Beat - Set the beat of the heart.

Time - Reset the time counter.

Keyboard arrows or joystick - Change the position of the C-arm, modifying the
view angle.

Contrast - Inject the dye.

X-Ray - Activate the X-Ray.

The last two elements (Contrast and X-Ray) must be used at minimum level by the
physician, in order to preserve the health of the patient [190].

One of the most difficult skill the physician must achieve, is the 3D perception of
the angioplasty using only the 2D view of the monitor, especially when the arteries
overlap [I83] 191]. To help this visualization, it is possible to change the perspec-
tive in order to view inside the artery. Although this is still not possible in real
interventions, it helps the physicians to figure out the problem during learning (Fig.
4.19).

Once the physicians understands the 3D difficulty, he/she can use a joystick to
change the left and right anterior oblique views (LAO and RAO) or cranial and
caudal angulation of the C-arm,® obtaining better projections. The position of the
C-Arm relative to the patient can be seen in the right bottom screen of the simulator

(Fig. {4.18).

20Open Graphics Library www.opengl .org
3The most common values used for these angulations can be found in the Table [5] from Chapter
41 of Lanzer & Topol [192].
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4.5 Conclusions

B Simulator — O x

Figure 4.18: View of the normal perspective frame from the simulator, showing
a fictice left coronary. The user goal is to reach the green ball at
the end of the artery. In this case, the implementation follows the
idea of “serious games” [I88, [189], where there is a primary purpose
(increase the ability using the wire) other than pure entertainment.

4.5 Conclusions

Using a hardware in combination with an algorithm that responds in real time is
helpful for training MIS. More physicians can be trained over longer periods of time
(increasing skills) and no disposable instruments are needed (decreasing costs).

In this chapter a simulation system for MIVS was presented. It consists of a simple
device to capture the wire motion and two complementary methods to relax the wire.
The physical model introduced by Konings et al. [64] was improved. Although the
results are nearly the same for small beam deflections, our approximation g¢;(0) is
superior for larger deflections.

The divergence problem, when the denominator in Eq. (4.16) becomes small or
negative, was detected and solved. The update formula in Eq. is simpler than
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B Simulator - O x

Figure 4.19: View of the wire perspective. This is useful to elucidate the overlap
situations of two or more arteries, helping the physician to understand
the bifurcation.

Eq. (11) of Alderliesten et al. [12]. Also, the algorithm does not crash when the
surface gradient becomes large. Hence, the wire can be moved quickly in the artery.

The PR has some drawbacks which have been amended with the GR. The PT of
the GR is proportional to n? and the PT of the PR is proportional to n3. There-
fore, the GR is faster, does not interfere with the PR, and helps to correct some
wire distortions. Using both methods gives stable and realistic results, as seen in
comparisons of experiments with numerical calculations.

In a stiff artery only few points of the wire are in contact with the surface. Al-
though these points are bouncing, the numerical instability is not perceptible. More-
over, several other cases besides the ones shown in Section (e.g. different artery
shapes, rigidity levels, wire paths in the mockup) have been tested and the outcomes
have been similar.
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A simulator of MIVS is composed of several parts. First, the surface geometry
must be defined; second, the interaction between the surface and the wire must be
calculated; third, the shape of the wire must be determined. The performance of the
simulator depends on the hardware (CPU and GPU), the resolution of the artery
and of the wire, the force field to model the collision, and the wire relaxation.

An intuitive way to create the geometry of an artery using the sweep technique was
proposed in Chapter [2, which can be extended to bifurcations. The procedure can
also be applied to model arteries with real data. The most time-consuming task in
catheter simulations is the calculation of interactions between the wire and the sur-
face. The use of planar surfaces in the segmentation simplifies the collision-detection
algorithm and it becomes faster. The artery can have an arbitrary resolution and
it does not affect the PT significantly. The proposed force field is a continuous
function of position, except under special circumstances at bifurcations.

The artery model developed in Chapter |3| is linear and two dimensional, which
results in shorter PT. It is suitable for computing small and noninvasive artery
deformations as required, for example, in the calculation of equivalent spring con-
stants for the catheter simulator. Furthermore, our model implicitly includes the
individual characteristics and inhomogeneous properties of the artery layers.

Some of the elasticity tensor components were obtained and a method to calculate
the spring stiffnesses connecting the mesh nodes was described. Three kinds of
springs were introduced: one linear and two angular. The stiffness of the springs was
analyzed for different mesh resolutions, artery sizes, and the method was validated
by different loads. Finally, the elasticity tensor strongly depends on the stretch,
especially if the Intima layer is axially deformed. However, assuming a stretch
variation smaller than 1%, the linear approximation is accurate.

In Chapter [, a simulation system for MIVS was presented. It consists of a simple
device to capture the motion and two complementary methods to relax the wire.
The physical model introduced by Konings et al. [64] was improved and a divergence
problem was detected and solved. The proposed update formula is simpler than Eq.
(11) of Alderliesten et al. [12] and the algorithm does not crash during a fast wire
movement.

The PR has some drawbacks which have been amended with the GR. The PT
of the GR is proportional to n? and the PT of the PR is proportional to n3, where
n represents the number of wire segments. Therefore, the GR is faster, does not
interfere with the PR, and helps to correct some wire distortions. Using both meth-
ods gives stable and realistic results, as seen in comparisons of experiments with
numerical calculations.

The work in this thesis can be extended in several aspects. The sweep surfaces can
be made less restrictive with similar results, provided that the boundary between
artery segments is planar. Working with a database representing a sequence of
surfaces, can simulate the heart beat or any other periodic movements of the arteries.
However, in order to apply this idea it is necessary to have an algorithm which
performs very fast wire relaxation. If the sweep surfaces are generated in real time
using MR Images, they can be used to implement augmented reality, so that the
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physicians obtain a better perception during the procedure.

A systematic study of the equivalent spring constants in different artery geometries
has not been done. This information can be especially useful to analyze the elastic
behaviour close to the bifurcations, because the critical part of catheterism is to
guide the wire through the bifurcation. Moreover, the artery deformation plays
a central role in balloon angioplasty and stenting. Chapter |3| contains the basic
elements and the methodology to perform this study. In particular, a theory using
triangular SE would be more useful because they are commonly used in surface
meshing. The results in 3D can be compared to numerical calculations performed
with FEM.

As remarked previously, even faster relaxation algorithms are necessary to have
real time simulations, especially if the artery geometry becomes time dependent.
One way to approach this problem can be to consider higher order wire approxima-
tion and to analyze how it affects the precision and the PT. Furthermore, a faster
energy minimization algorithm (Section can improve the GR substantially.

As the wire is continuously deformed, there are several energy minima. The
problem is then equivalent to search the minimum of a function in a very larger
dimensional space. Using a more complex numerical procedure would help to skip
these minima, so that the absolute (true) minimum is found. Specifically, a multiple
joint relaxation procedure can be implemented, where the joints are strategically
chosen. The relaxations would be faster but the procedure may become unstable,
so that the trade off between the PT and the stability needs to be analyzed.

Finally, a more detailed and extensive evaluation of the simulator must be carried
out. Some important questions to be addressed are:

e What are the experience and/or expertise level of the evaluators?
e How does our setup compare to other simulators? On what basis?
e The simulator helps the user to gain skills within its professional environment?

This evaluation will be realized after the software has been improved.
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Appendix A

Formulary

Formulary regarding to the wire simulator.

The wire simulator you just tested is been developed to be an auxiliary teaching
tool to the physicians with the manipulation of the wire in vascular procedures.
Please help us to improve his development filling out the following formulary.

Optimal ~ Poorly

5 4 3 2 1
Easy to use 0 0 0 0 0
Robustness, stability o 0 0 0 0
Realism of the wire o 0 0 ) 0
Learning effect 0 0 0 ) 0
Overall judgment 0 0 0 0 0

Please feel free to write any comment, suggestion or compliment:
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Interventional cardiologists from New York-Presbyterian Hospital and

Columbia University Medical, performing a coronary angiogram in a

cardiac catheterization laboratory. The C-Arm [16] generates/detects

the X-Rays and the images are displayed on the screen. | . . . . . ..

M2

Commercial VRS for endovascular procedures: (a) Mentice VIST-C

(www.mentice.com), (b) CAE Cath VR (www.caehealthcare.com),

and (c¢) Simbionix ANGIO Mentor (http://simbionix.com).|

3

Components of a real-time simulator proposed by Dawson et al.

[35]. The user interacts with the haptics interface device contain-

ing catheters and guidewires linked to force-teedback mechanisms.

A haptic controller integrates the catheter model, blood How models,

and synthetic fluoroscopy renderer. Hemodynamic models aftect fluid

flow and subsequent fluoroscopic appearance. (Geometric models of

anatomy and devices used during procedures provide tissue-tool inter-

actions. The user interface relays information about the physiologic

state of the patient (hemodynamic model) and the progress of the

procedure through the fluoroscopic display. | . . . . . . .. ... ...

.4

Cross-sectional format of a typical IVUS image. The bright-dark-

bright, three-layered appearance is seen in the image with correspond-

ing anatomy as defined. The IVUS represents the imaging catheter

in the blood vessel lumen. Histologic correlation with intima, media,

and adventitia are shown. The media has lower ultrasound reflectance

owing to less collagen and elastin compared with neighboring layers.

Because the intimal layer reflects ultrasound more strongly than the

media [40], there is a spillover in the image, which results in a slight

overestimation of the thickness of the intima and a corresponding un-

derestimation of the medial thickness (black and white image). Figure

extracted from Moscucci 6. | . . . . . . . .. ...,

21

(a) A Bezier curve defined by 7 control points representing the tra-

jectory a(t). The orthonormal vectors T, N, and B are illustrated at

a particular point. (b) The parametric curve &,(u) changes its shape

smoothly. The cross section in this example is a circumference with

variable radius. . . . . ..o
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D2

Top view of connected arteries having polylines with the same number

of vertices (open points). The 3D segments are represented by white

and light colored areas separated by planar polylines. When two

planes intersect some vertices are removed and the truncated polylines

have two vertices in common: one at the top (black point) and one

at the bottom (not shown). The shape of the arteries is arbitrary,

since the only requirement is that the black point remains in the line

given by the intersection of the two planes. The black lines represent

additional planes that split the volume between adjacent arteries. We

show in (a) a T-like bifurcation and in (b) a Y-like bifurcation. . . . .

13

3

(a) Image from a bifurcation of the Abdominal Aorta into the Com-

mon Iliac Arteries. The image was extracted using the Vascular Mod-

eling Toolkit software, which can also determine the central line a(t)

(not _shown). Virtual representation using planar polylines (b) in a

T-like bifurcation and (c¢) in a Y-like bifurcation. Although both

biturcations styles can be applied, in this case the Y-like bifurcation

looks more natural. For simplicity, the resolution is low with N, = 24

vertices, and the triangularization is not displayed in order to make

the Figure clear.|. . . . . . . .. ... ... oo

D

Cross section in the midle of a segment i.e. between two planar

polylines. In this example each polyline has N, = 8 vertices and

there are 2N, = 16 triangular SE (red lines) defining the topology

of the artery segment. Additional lateral planes (black lines) are

used to divide the volume outside the artery between adjacent SE.

Notice that the planes represented by lines are not perpendicular to

the Figure but are inclined. (a) Cross section of an artery segment

divided as slices of a cake (green lines). In practice the division need

not be symmetric. (b) Further subdivision using a single additional

plane per subsegment (blue lines).[. . . . . .. ... ... ... .. ..

15

25

(a) Side view of the catheter joint at position x between two vertices

at ry, rg. The green lines go through A, 5, and are parallel to

the unit vectors my, mgp, respectively. The vectors x, my, and mp

are not in the plane of the Figure. (b) Top view of the joint over a

triangular SE. The unit vectors t;; are not in the plane of the Figure,

and the vectors F;; are not perpendicular to the plane of the Figure|.

2.6

Worktlow of steps 1-5 to calculate the force F 4po between the wire

and the artery wall. | . . . . ... ... ... 0L,

2.7 (a;) Concave intersection K LM. As a point moves along the line

DFEFGH, the distance s to the planes KL and LM (perpendicular

to the Figure) varies continuously as shown in (as). (b;) Convex in-

tersection K LM . As a point moves along the line DF' H, the distance

s to the planes K'L and LM has the dependence shown in (by), which

1s not continuous at point £.|. . . . . . . ... ... ...
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P8

Main window of the Modeler sottware. The sweep surtace in red is

built over a real model of coronaries in blue (kindly yielded by LNCC

www.1lncc.br). The central line is a Bezier curve (cyan) with 4 control

POINGS.| . . . . . . e e e e e

21

.9

(a) “Builder of Sections” auxiliary window. Here it is possible to edit

the planar curves which are swept over the main curve. (b) “Builder

of Bifurcations” auxiliary window. In this window, the planar curves

from the bifurcations are edited. The green point in both windows

represents the intersection ot the central line and the plane which

contains the planar curves.| . . . . . . .. ..o

B

Cross view of the arterial ring in the stress-free reference configuration

(not to scale, see Fig. |1.4]). The geometrical parameters are the inner

radius R;,, the tissue thicknesses a;, am, aa, and the opening angle a. | 27

B2

(a) Four nodes (black points) are connected by two springs of stiff-

ness ry (red lines), two springs of stiffness x, (green lines), and two

springs of stiffness x4 (blue lines). Increasing the distance by by byege

(tangential direction) and the distance b, by b.e,. (axial direction),

also increases the length of the diagonal by. (b) Two adjacent non

coplanar rectangles (¢y # 0) have two angular springs of stiffness 7

connected to straight lines joining the nodes (e.g. ro—r; and r3—ry).

The axis of rotation is the unit vector n,. (¢) Two adjacent coplanar

rectangles have two angular springs of stifiness . The axis of rotation

ISTg. |« o o

B3

(a) Cross view of two adjacent rectangles perpendicular to the plane

of the Figure, with nodes at the coordinates r{, ro and ry, r3. The

vectors rio and ri3 are the projections ot ro — ry and r3 — ry in the

plane of the Figure. Without deformation, the moduli 15 and 73 are

both equal to by. The unit vector n,, represented by the dot e, is

perpendicular to the Figure. When the rectangles are rotated along

the axis defined by n,, the structure is bent with a curvature radius

R. The stittness ot the angular springs connected to the rectangles

is 7 (blue). (b) The unit vector m is perpendicular to ng and to

T.5 — T46. The lengths ds.; and 0s4g are the projections of drs — 0Ty

and org — ory along m. Hence, up to first order dyy5 = ds45/r45 and

6@46 = 5846/T46. | .............................

B4

When the rectangle in Fig. [3.2(a) is deformed and/or rotated, the

lengths and the orientations (relative to the tangential and axial di-

rections) are modified. For simplicity, only the length bg; and the

angle b, are shown. The spring stiffnesses between the nodes are the

same as before. |. . . . . ...
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(3.5 (a) If the adjacent rectangles in Fig. [3.3{a) are not rectangles with
the same dimensions, then the bending radius on the right (Ris)
and the bending radius on the left (R;3) are different. The dis-
tances between the points are replaced by bgio = 2R12sin(p/2) and
bg1s = 2R13sin(p/2). It is possible to join the points using the same

[ radius Ry, = R;3 but different angles 15 # 3. However, in this |

| case, the line defining the beam will not be smooth when connect- |

[ ing consecutive parts, since the radius and the center ot the circles |

(e.g. through rs, ry, ry and through ry, ry, r4) will not coincide. (b)

Top view of Fig. (a). Note that the points r}, rj, and r} are not

represented because they are hidden behind ry, ro, and r3. The sum

V12 + Vi, 1s equal to one half of Vi (the volume of the yellow

region of thickness h defined by the points ry, ry, r5, and r}) and

Voo /Voro = Voo /Vors- |- o o o o o oo 35

[3.6  View of a voxel (cian) corresponding to the volume V' of the arterial
| wall delimited by a quadrilateral parallel to the yz plane (shadow).
The normal to the arterial wall points in the x axis direction. For a
given z, the integration area (red) of Eq. (3.40)) is parallel to the zy
plane. The neutral axis (black line) depends on the z coordinate. | . . 39

[3.7 Cross view of the artery discretized by a polyline. The angle is 6§ = |
| 27 /24 and the inner radius (with an internal pressure equal to py,) |
1s 71 = 1.05 mm. Thus, the rectangle dimensions in Fig. 3.2 are

by = 2ry5in(6/2) = 0.405 mm and b, = by(Ceve /Tases) | = 0449

13.8  (a) Four springs of stiffness x (connected in parallel and then in series)
are joined by rigid vertical bars (blue). (b) Two springs connected in
parallel are equivalent to one spring of stiffness k, = k+r = 2k [137].
(c) The two springs connected in series are equivalent to one spring
of stiffness ks = Kkpkp/(Kp + Kp) = Kp/2. | « o o o o oo oo 40

[3.9 Axial view of the artery submitted to different boundary conditions.
(a) The pressure p;, increases and the axial length z; is kept constant.
As a result, the tangential stretch and the radius r; vary (bottom).
(b) The pressure is kept constant at p;,,, the length increases from z;
(top) to 2] (bottom), and the radius becomes smaller (r; — 7). |. . . 43

13.10 Average circumferential stretch \g as a function of blood pressure pi, |
| 0 Tl : il ] : : T l
red, blue, and green lines correspond to the calculations with model
A (this work), with model B (nonlinear and incompressible artery of
Holzapfel et al. [127]), and with model C (one dimensional FEM). | . 44
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311

Bending of a planar artery subjected to a unitorm vertical load. The

triangle and the circle at the ends support the artery vertically: the

triangle is fixed but the circle can move freely in the horizontal direc-

tion (green arrows). The black curve represents Eq. (3.46]) and the

red points are the result of the calculations performed with the model

developed in this work. | . . . . ... ... ... ... ...

B.12

Logarithm of the ET as function of the tangential stretch Ay (a, b, c)

and of the axial stretch A, (d, e, f) in the interval [1, 1.1]. The constant

co 18 equal to 1 MPa. The different colors indicate the E'T' components

Coppg (red), c.... (green), and cgy.. (blue). The results are given for

the Intima (a, d), Media (b, e), and Adventitia (c, f) tissues. | . . . . .

a1

(a) The wire has a curved tip (red) with M segments. They are

numbered from the proximal end to the distal end of the wire. (b)

The new segment (green) points to the same direction as the segment

number n — M, and the total number increases ton+1.|. . . . . ..

12

The wire geometry. The difference between the coordinates ot two

consecutive joints x; — x;_; is equal to the vector A;, which has a

constant length A. Changing A; modifies only x;, x;.1, - -+, X,,_1, Xy,

and the difference between the new and the old coordinates x;- —X; =

A, — \; is the same for j =4,i+1,--- n—1n. | ... ... .....

13

'I'hree successive points x;_1, X;, and X;.1 separated by an equal dis-

tance A = |A\;| = |A\;11| define a circular arc of radius R; and angle

....................................

rw}

The minimum energy of a wire without external forces results when

A;_1 1s parallel to A;, and A; is parallel to A\;.1. [T A, 1 =%, 1—X; o+

Wi, A; = X;—X;_1,and ;11 = X;.1 —X; —W,;11, then the equilibrium is

obtained when x; o, X;_1, X;, and X;.1 are in the positions indicated.

Thus, the vectors w; bend a free wire. | . . . . . . .. ... ... ...

15

The lengths of the vectors A; (old), A; (new) are equal, and the mod-

ulus of a; = A, — \; is a;. Further, the unit vector 1; is parallel to

\; and perpendicular to t; = cos ¥;V; + sin ¢;w;, where 1); represents

the azimuthal angle of o; around A;. |. . . . . ... .. ... .. ...

16

Three points x;_1, x;, and X, are separated by different distances

[A;| # |Air1|. The two circular arcs have the same angle 6; but the

radii [t; and ;1 arenotequal. | . . . ..o 0oL

L7

(a) Original curve x; (red), curve after executing the energy mini-

mization x; (green), and displaced points x; (black). (b) Closer view

of three coordinates x; ,, x; ;, and x; after the minimization. The

unit vector u; points from x;_; to x;, and the vector b;; goes from

x;_; to the line passing through x; ; and x;. The distance between

x;_pand xXjequals A | oo
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Second order correction ¢;;€; to the coordinate x’;. The displacement

is indicated by the green arrow. The arc segment has an angle 6,

and a radius ;. The distance between x; ; and x; is A}, and the

distance between x; and x7 isdy. | ... ..o

65

Wire segments inside an artery. In order to relax, the segment PP

should rotate upwards about point P; as indicated by the arrow. Note

that from P to Fs the wire is rigid, so that the resulting translation is

hindered by the contact points P53 and F,. Nor can it move downwards

because of 5. The GR is not subjected to this restriction, since from

P3 up to Fy; the wire can slide. It is especially designed to relax

intervals like from Py to Py (red). |. . . . .. .. ...

68

110

Workflow. In the “Tip Relaxation” (Section [4.2.1)) the procedure

PhysicalUpdate is applied to the tip of the wire and also to some

selected segments. When the “Physical Relaxation” is called, %m(m—k

1) updates are executed. The PR is completed if the cycle ends, i.e.

after %n(n + 1) updates. In the same way, when the “Geometrical

Relaxation” is called, m(m + 1)/(v — p) iterations are executed to

improve the curve. The GR is completed after v — p iterations. | . . .

11

Photography (top-view) and sketch (cross-view) of the wire device.

The pipe has a small window and the mouse is over the window.

Translating and rotating the wire also translates and rotates the cylin-

der, which i1s captured by the mouse. |. . . . . . . ... .. ... ...

12

Artery with a T-like and a Y-like bifurcation. (Left) The wire has

250 segments, A = 1 mm, and it has been quickly inserted into the

artery (green curve). In this part, the program executed only Tip

[) ‘ /]

cles (Physical and Geometrical) is executed, so that equilibrium is

attained (blue curve). The coordinates indicate the location of some

wire joints. (Right) Mockup representing the stiff artery. The wire

inserted in the artery has the same shape as the blue curve. The av-

erage separation between the physical wire (plot digitized with Web-

PlotDigitezer 3.8 http://arohatgi.info/WebPlotDigitizer) and

the blue curve is 0.262 mm, with a standard deviation ot 0.227 mm.

Hence, the calculations with the model developed in this work give a

[ realisticresult. | . . . . . . ... oo 72

[4.13 The green wire A has n4 = 100 segments, A4 = 2.5 mm and the blue [
[ wire B has ng = 250 segments, Ag = 1 mm. Hence ngsAy = ngig. |
[ The arrows indicate one of the intervals © < ¢ < v where the GR 1is |
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