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Chapter 11

Introduction2

Based on the programm of the research unit FOR 1809 regarding light-induced3

dynamics in molecular aggregates [1–4], this work addresses the fundamental ques-4

tions related to excited state dynamics in quantum systems. Aggregates are5

promising systems of importance in, e.g., organic semi-conductors [5–9]. The6

main goal of the FOR is to understand the arrangement of molecular building7

blocks in aggregates and to understand the resulting functionality controlled by8

light-induced dynamics [10–12].9

The latter is strongly connected with excited state dynamics [13–15]. This is still10

a challange to quantum dynamics as the size of molecular systems and also ag-11

gregates is large, and therefore, computational predictions are necessarily limited.12

The situation is even more complex in case of environmental effects [16, 17].13

Mixed classical-quantum methods are able to tackle high-dimensional systems and14

predict reaction pathways; however, these methods rely on quantum chemical cal-15

culations which have to be optimized for the regarded quantum system as well as16

to be numerically efficent [18–20].17

Leaving such rather complex systems aside, this work takes a step back and regards18

the fundamental understanding of wave-packet dynamics in a low-dimensional19

quantum system, the Shin-Metiu model [21, 22]. With the reduction of complex-20

ity, it becomes possible to investigate coupled electron-nuclear dynamics within21

1



the frame of a numerically exact calculation. The conclusions drawn from these1

observations might help to understand molecular quantum systems of higher di-2

mensionality.3

This work concentrates on the fundamental dynamical properties revealed by an4

exact treatment of a coupled electron-nuclear wave-packet dynamic. This motion5

is compared to the nuclear dynamics within the adiabatic and diabatic repre-6

sentation. Several key questions are addressed. In section 4.2, the influence of7

non-adiabatic coupling on the eigenfunctions is regarded. Section 4.4 addresses8

the distinction of electronic and vibrational coherences in two-dimensional spectra9

[23]. Furthermore, in section 4.5 the question is addressed of how can a system10

with strong electron-nuclear coupling be treated using classical mechanics [24].11

This is followed in section 4.6 by the calculation of the electron flux within the12

Born-Oppenheimer approximation [25]. Finally, in chapter 5 the coupled electron-13

nuclear dynamics in the vicinity of a conical intersection (CoIn) is regarded [26].14
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Chapter 21

Theoretical Background2

2.1 Eigenvalue Equation3

An eigenvalue equation in a coordinate space 𝜏⃗ is given in eq. (2.1). Here 𝜏⃗ ∈ R𝑛,4

where 𝑛 ∈ N is the dimension of the configuration space [27]:5

𝑂̂(𝜏⃗) 𝜑(𝜏⃗) = 𝑎 𝜑(𝜏⃗). (2.1)

In this equation, 𝑂̂(𝜏⃗) is a hermitian Operator acting on the eigenstate 𝜑(𝜏⃗) ∈ H6

with the corresponding eigenvalue 𝑎, where H is a Hilbert space. Because 𝑂̂(𝜏⃗) is7

a hermitian operator, the eigenvalue is real: 𝑎 ∈ R. The set of the eigenvalues of8

𝑂̂(𝜏⃗) are called the spectrum of the operator [28].9

2.2 Postulates of Quantum Mechanics10

In 1926, E. Schrödinger formulated a theory describing a non-relativistic quan-11

tum system. Here, the basic postulates of Schrödinger’s quantum theory will be12

repeated shortly [29–32].13
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2.2.1 State Expression and Normalization1

The first postulate is the description of a quantum system by a wave function2

𝜑(𝜏⃗ , 𝑡), with 𝑡 ∈ R. The probability density 𝜚(𝜏⃗ , 𝑡) at time 𝑡 and at position 𝜏⃗ is3

given as |𝜑(𝜏⃗ , 𝑡)|2. The density of the state integrated over configuration space 𝜏⃗4

has to be [33]:5

∫︁
R𝑛

𝑑𝜏⃗ |𝜑(𝜏⃗ , 𝑡)|2 = 1, ∀ 𝑡, (2.2)

which is known as the normalization condition. Thus, 𝜑(𝜏⃗ , 𝑡) has to be a function6

of twice integrable function space L2 [34].7

2.2.2 Observables and Expectation Values8

Measurable observables correspond to eigenvalues of hermitian operators, see eq. (2.1).9

The average of experimentally determined observables is formulated as an expec-10

tation value as [27, 35]:11

⟨𝑂̂(𝜏⃗)⟩(𝑡) =
∫︁

R𝑛

𝜓*(𝜏⃗ , 𝑡) 𝑂̂(𝜏⃗) 𝜓(𝜏⃗ , 𝑡) 𝑑𝜏⃗ , (2.3)

where 𝜓(𝜏⃗ , 𝑡) ∈ H is not necessarily an eigenfunction of 𝑂̂(𝜏⃗).12

2.2.3 Time-Evolution13

The temporal evolution of 𝜓(𝜏⃗ , 𝑡) is given by the time-dependent Schrödinger14

equation [27]:15

𝑖~
𝜕

𝜕𝑡
𝜓(𝜏⃗ , 𝑡) = 𝐻̂(𝜏⃗) 𝜓(𝜏⃗ , 𝑡), (2.4)

where 𝑖 is the imaginary unit and ~ is Planck’s constant. 𝐻̂(𝜏⃗) ∈ H is a hermitian16

operator corresponding to the total energy of the described quantum system. It17

will be seen that the time-dependent Schrödinger equation is a linear homogeneous18

partial differential equation [36]. Therefore, the superposition principle [33] holds19
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for the quantum state description.1

Before the properties of the Schrödinger equation are discussed in detail, first2

a Dirac-based notation which shortens the formalism of quantum mechanics is3

introduced in the following.4

2.3 Dirac-Based Notation5

Dealing with wave functions expressing quantum states, which are dependent on6

several variables, the notation for the complex scalar product for 𝜒(𝜏⃗ , 𝑡)* ∈ H*
7

and 𝜓(𝜏⃗ , 𝑡) ∈ H in 𝜏⃗ space is written as:8

⟨𝜒(𝜏⃗ , 𝑡) |𝜓(𝜏⃗ , 𝑡)⟩𝜏⃗ =

∫︁ ∞

−∞
𝜒(𝜏⃗ , 𝑡)*𝜓(𝜏⃗ , 𝑡) 𝑑𝜏⃗ , (2.5)

which is the definition of an algebraic complex scalar product in an unitary space.9

This notation is strongly related to the Dirac braket notation introduced in 193910

[37]. From now on, this Dirac–based notation is applied solely.11

2.4 Schrödinger Equation12

The Schrödinger equation is the central equation to describe non-relativistic quan-13

tum mechanical systems [29]. In this work, a planar quantum system consisting14

of only one electron and three protons in a plane, with two of the protons being15

fixed in position is studied. Then, the Schrödinger equation reads:16

𝑖~
𝜕

𝜕𝑡
|𝜓(𝑟⃗, 𝑅⃗, 𝑡)⟩ = 𝐻̂(𝑟⃗, 𝑅⃗) |𝜓(𝑟⃗, 𝑅⃗, 𝑡)⟩. (2.6)

The vector 𝑟⃗ ∈ R2 refers to the coordinate vector of the electron, and 𝑅⃗ ∈ R2 refers17

to the mobile proton. |Ψ(𝑟⃗, 𝑅⃗, 𝑡)⟩, describes a quantum state in Hilbert space H.18

As a result, for the quantum system the hamiltonian 𝐻̂(𝑟⃗, 𝑅⃗) with electron mass19

𝑚𝑒 and proton mass 𝑀 reads as:20

5



𝐻̂(𝑟⃗, 𝑅⃗) = − ~2

2𝑀
∇⃗2

𝑅⃗
− ~2

2𝑚𝑒
∇⃗2

𝑟⃗ + 𝑉 (𝑟⃗, 𝑅⃗), (2.7)

with ∇⃗𝑅⃗ =

⎛⎜⎝ 𝜕
𝜕𝑅𝑥

𝜕
𝜕𝑅𝑦

⎞⎟⎠ and ∇⃗𝑟⃗ =

⎛⎜⎝ 𝜕
𝜕𝑥

𝜕
𝜕𝑦

⎞⎟⎠.1

The time-dependent Schrödinger equation is a linear partial differential equation2

of second order which, in case of |Ψ(𝑟⃗, 𝑅⃗, 𝑡)⟩ being an eigenfunction, is separable3

in space 𝑟⃗, 𝑅⃗ and time 𝑡 via the following product ansatz [27]:4

|Ψ(𝑟⃗, 𝑅⃗, 𝑡)⟩ = 𝜉(𝑡)|𝜓(𝑟⃗, 𝑅⃗)⟩. (2.8)

The solution and initial conditions for |Ψ(𝑟⃗, 𝑅⃗, 𝑡)⟩ will be regraded in the following5

subsection.6

2.4.1 Solution of the Time-Dependent Schrödinger Equation7

A separation of variables, namely 𝑟⃗, 𝑅⃗ and 𝑡, leads to the following form of the8

Schrödinger equation:9

i~
𝜉(𝑡)

𝜉(𝑡)
= 𝐻̂(𝑟⃗, 𝑅⃗)

|𝜓(𝑟⃗, 𝑅⃗)⟩
|𝜓(𝑟⃗, 𝑅⃗)⟩

i~
𝜉(𝑡)

𝜉(𝑡)
= 𝐸. (2.9)

Neither the left part of the equation is dependent on the right part of the equation10

and vice versa. This leads to the conclusion that both parts must be constant [27].11

This can be expressed by the constant 𝐸, namely the eigenenergy of the quantum12

state, described by 𝜉(𝑡)|𝜓(𝑟⃗, 𝑅⃗)⟩.13

Solving now eq. (2.9) for 𝜉(𝑡) leads to the following time-dependence for 𝜉(𝑡0) as14

an initial condition:15

𝜉(𝑡) = 𝜉(𝑡0)𝑒
− i

~𝐸𝑡. (2.10)

6



As a result, the total wave function has the time-dependence:1

|𝜓(𝑟⃗, 𝑅⃗)⟩𝜉(𝑡) = |𝜓(𝑟⃗, 𝑅⃗)⟩𝜉(𝑡0)𝑒−
i
~𝐸𝑡. (2.11)

Summarizing, one initial condition for |𝜓(𝑟⃗, 𝑅⃗)⟩𝜉(𝑡) at 𝑡 = 0 is needed, and by2

knowledge of the eigenenergy 𝐸, the temporal evolution of the system is given.3

Still, one is left with the conditions which are put on |𝜓(𝑟⃗, 𝑅⃗)⟩, but this will be4

explained in the following subsections for a case with four degrees of freedom using5

one electron and one proton, moveable in a plane as mentioned earlier. It should6

be noted that propagators are used for the time-evolution of wave packets. These7

propagators are introduced in section 2.5.8

2.4.2 Solution of the Time-Independent Schrödinger Equation in9

Four Dimensions for Screened Coulomb Potentials10

In general, it is not possible to solve the Schrödinger equation for many particle11

systems analytically. So, one is forced to use numerical methods like imaginary12

time-propagation (ITP) to solve the differential equations numerically [38].13

Despite the complexity, one can find different representations which partially solve14

the time-independent Schrödinger equation step by step and, therefore, shed some15

light on the quantum mechanical system. In the following, two different state16

representations are given to characterize the multi-particle system encountered in17

this work. With these representations the coordinate space is reduced by first18

solving the electronic Schrödinger equation and treating the proton coordiante 𝑅⃗19

afterwards [39]. Using atomic units, unless otherwise stated, the total hamiltonian20

𝐻̂(𝑟⃗, 𝑅⃗) reads as:21

𝐻̂(𝑟⃗, 𝑅⃗) = −
∇⃗2

𝑅⃗

2𝑀⏟  ⏞  
𝑇𝑁 (𝑅⃗)

−
∇⃗2

𝑟⃗

2⏟  ⏞  
𝑇𝑒(𝑟⃗)

− 1

|𝑟⃗ − 𝑅⃗|
−

2∑︁
𝑘=1

1

|𝑅⃗𝑘 − 𝑟⃗|⏟  ⏞  
𝑉𝑒𝑁 (𝑟⃗,𝑅⃗)

+
2∑︁

𝑘=1

1

|𝑅⃗𝑘 − 𝑅⃗|⏟  ⏞  
𝑉𝑁 (𝑅⃗)⏟  ⏞  

𝐻̂𝑒𝑙(𝑟⃗,𝑅⃗)

. (2.12)

7



Note that 𝑅⃗1 and 𝑅⃗2, both being ∈ R2, are the positions of the two fixed protons.1

The hamiltonian can be decomposed in the kinetic energy operator for the mobile2

proton 𝑇𝑁 (𝑅⃗) and the electronic hamiltonian 𝐻̂𝑒𝑙(𝑟⃗, 𝑅⃗) consisting of the kinetic3

energy operator of the electron 𝑇𝑒(𝑟⃗), the interaction between electron and protons4

𝑉𝑒𝑁 (𝑟⃗, 𝑅⃗) and the static repulsive interaction between the protons 𝑉𝑁 (𝑅⃗) [27, 40].5

This decomposition leads to the ability of a partial solution of the Schrödinger6

equation [39].7

It should be noted that in this study screened Coulomb potentials are used later8

on for numerical and practical reasons [41, 42] .9

It must be emphasized that the total hamiltonian and the total wave function10

|𝜓(𝑟⃗, 𝑅⃗)⟩ depend on the electron and proton coordinate. Solving this equation ex-11

actly for all coordinates, a discrete set of eigenfunctions {|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩𝑒𝑖𝑐𝑛} ∈ C, and12

a corresponding spectrum of eigenvalues 𝐸𝑛 ∈ R is obtained. The eigenfunctions13

are unique, up to a phase factor 𝑒𝑖𝑐𝑛 ∈ C, which has no impact on the energetic14

eigenvalues. For simplicity, 𝑐𝑛 = 𝑐𝑟 is chosen in the way that the eigenfunctions15

are real [27].16

|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩ = |𝜙𝑛(𝑟⃗, 𝑅⃗)𝑒
𝑖𝑐𝑟⟩ ∈ R, (2.13)

and finally17

𝐻̂(𝑟⃗, 𝑅⃗) |𝜙𝑛(𝑟⃗, 𝑅⃗)⟩ = 𝐸𝑛 |𝜙𝑛(𝑟⃗, 𝑅⃗)⟩. (2.14)

8



2.4.2.1 Adiabatic Representation1

In order to solve the time-independent Schrödinger equation (eq. (2.14)) partially2

and expand it into the adiabatic representation, adiabatic electronic eigenfunctions3

are needed. The idea behind this is to solve the electronic Schrödinger equation:4

[︁
𝐻̂𝑒𝑙(𝑟⃗; 𝑅⃗)− 𝑢𝑛𝑛(𝑅⃗)

]︁
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩ = 0. (2.15)

As a result, one obtains electronic energetic eigenvalues 𝑢𝑛𝑛(𝑅⃗) parametrically5

dependent on the nuclear geometry 𝑅⃗. The eigenfunctions define a normalized6

orthogonal complete set
{︁
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩

}︁
at each nuclear geometry 𝑅⃗ [27].7

It is important to know that the phase matching between two adiabatic electronic8

eigenfunctions of adjacent nuclear geometries must be fulfilled. This means that9

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩ must be continuous and twice differentiable along the nuclear geometry10

coordinate 𝑅⃗. This is crucial in dealing with the adiabatic eigenfunctions in the11

context of the total Schrödinger equation.12

The expansion of the total wave function |𝜓(𝑟⃗, 𝑅⃗)⟩ into the basis set
{︁
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩

}︁
13

is given as [43, 44]:14

|𝜓(𝑟⃗, 𝑅⃗)⟩ =
∑︁
𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩ ⟨𝜑𝑛(𝑟⃗; 𝑅⃗) |𝜓(𝑟⃗, 𝑅⃗)⟩𝑟⃗⏟  ⏞  
|𝜒𝑛(𝑅⃗)⟩

. (2.16)

As a result of the expansion into the electronic basis set, functions |𝜒𝑛(𝑅⃗)⟩ depend-15

ing on the proton coordiante 𝑅⃗ are obtained. Inserting the adiabatic expansion16

eq. (2.16) into the total Schrödinger equation, yields [39]:17
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0 =
(︁
𝐻̂(𝑟⃗, 𝑅⃗)− 𝐸

)︁∑︁
𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩|𝜒𝑛(𝑅⃗)⟩

=
(︁
𝑇𝑁 (𝑅⃗) + 𝐻̂𝑒𝑙(𝑟⃗; 𝑅⃗)− 𝐸

)︁∑︁
𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩|𝜒𝑛(𝑅⃗)⟩

=⟨𝜑𝑘(𝑟⃗; 𝑅⃗)|
(︁
𝑇𝑁 (𝑅⃗) + 𝐻̂𝑒𝑙(𝑟⃗; 𝑅⃗)− 𝐸

)︁∑︁
𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗|𝜒𝑛(𝑅⃗)⟩

=
∑︁
𝑛

⎧⎪⎪⎨⎪⎪⎩⟨𝜑𝑘(𝑟⃗; 𝑅⃗)|𝑇𝑁 (𝑅⃗)|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗⏟  ⏞  
Ω̂𝑘𝑛(𝑅⃗)

+
[︁
𝑢𝑛𝑛(𝑅⃗)𝛿𝑘𝑛 − 𝐸

]︁⎫⎪⎪⎬⎪⎪⎭ |𝜒𝑛(𝑅⃗)⟩. (2.17)

Thus, the Schrödinger equation is transformed into a coupled system of 𝑛 equations1

for the nuclear wave functions |𝜒𝑛(𝑅⃗)⟩, where 𝑛 ∈ N numbers the basis state2

and the coupling elements are denoted as Ω̂𝑘𝑛(𝑅⃗). The coupling operators are3

calculated as:4

Ω̂𝑘𝑛(𝑅⃗) = ⟨𝜑𝑘(𝑟⃗; 𝑅⃗) |𝑇𝑁 (𝑅⃗) |𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗

= ⟨𝜑𝑘(𝑟⃗; 𝑅⃗) | −
∇⃗2

𝑅⃗

2𝑀
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗

= − 1

2𝑀
⟨𝜑𝑘(𝑟⃗; 𝑅⃗) | ∇⃗2

𝑅⃗
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗⏟  ⏞  

𝜔̂𝑘𝑛(𝑅⃗)

. (2.18)

These kinetic coupling elements depend on the proton mass 𝑀 and on 𝜔̂𝑘𝑛(𝑅⃗).5

Putting the focus on the modified kinetic nuclear matrix element 𝜔̂𝑘𝑛(𝑅⃗), the6

coupling strength is determined by the change of electronic eigenfunctions for the7

nuclear geometry [27].8
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𝜔̂𝑘𝑛(𝑅⃗) =⟨𝜑𝑘(𝑟⃗; 𝑅⃗)|∇⃗𝑅⃗[[[∇⃗𝑅⃗|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗]]]

= ⟨𝜑𝑘(𝑟⃗; 𝑅⃗)|∇⃗2
𝑅⃗
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗⏟  ⏞  

𝜏
(2)
𝑘𝑛 (𝑅⃗)

+2 ⟨𝜑𝑘(𝑟⃗; 𝑅⃗)|∇⃗𝑅⃗|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗⏟  ⏞  
𝜏⃗𝑘𝑛(𝑅⃗)

∇⃗𝑅⃗

+ ⟨𝜑𝑘(𝑟⃗; 𝑅⃗) |𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟⃗⏟  ⏞  
1 or 𝛿𝑘𝑛

∇⃗2
𝑅⃗
, (2.19)

following the rearrangement of 𝜔̂𝑘𝑛(𝑅⃗), eq. (2.17) can be written in matrix form.1

In what follows, 𝜏⃗𝑘𝑛(𝑅⃗) and 𝜏 (2)𝑘𝑛 (𝑅⃗) will be called NACT [39], standing for non-2

adiabatic coupling element.3

−
∇⃗2

𝑅⃗

2𝑀
|𝜒𝑘(𝑅⃗)⟩+

(︁
𝑢𝑘𝑘(𝑅⃗)− 𝐸

)︁
|𝜒𝑘(𝑅⃗)⟩

− 1

2𝑀

∑︁
𝑛

(︁
2𝜏⃗𝑘𝑛(𝑅⃗)∇⃗+ 𝜏

(2)
𝑘𝑛 (𝑅⃗)

)︁
|𝜒𝑛(𝑅⃗)⟩ = 0. (2.20)

Using the following divergence condition [45–47]:4

𝜏 (2)(𝑅⃗) = 𝜏⃗ 2(𝑅⃗) + ∇⃗𝑅⃗ · 𝜏⃗(𝑅⃗), (2.21)

eq. (2.20) can be rewritten as [48–51]:5

− 1

2𝑀

∑︁
𝑛

[︁
∇⃗𝑅⃗𝛿𝑘𝑛 + 𝜏⃗𝑘𝑛(𝑅⃗)

]︁2
|𝜒𝑛(𝑅⃗)⟩+

(︁
𝑢𝑘𝑘(𝑅⃗)− 𝐸

)︁
|𝜒𝑘(𝑅⃗)⟩ = 0. (2.22)

The latter equation is the Schrödinger equation in the adiabatic representation.6

The electronic Schrödinger equation is now solved, and the electron coordinate is7

integrated out. The information about the electron is now completely incorpo-8

rated in the NACT 𝜏⃗𝑘𝑛(𝑅⃗) and in the adiabatic potential 𝑢𝑘𝑘(𝑅⃗).9

On the other hand, it is also possible to define a diabatic representation with10

electronic eigenfunctions which do not depend on the nuclear geometry and are,11
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therefore, constant for each geometry. Now, the question arises under what con-1

dition this can be transformed into the Schrödinger equation within the diabatic2

representation. In what follows, the diabatic representation will be given, and3

afterwards, the transformation from a diabatic to an adiabatic picture for the4

nuclear and electronic wave function will be discussed.5

2.4.2.2 Diabatic Representation6

Within the diabatic picture, the electronic Schrödinger equation is solved only for7

a single discrete geometry (𝑅⃗) [46, 49, 52–56]:8

[︁
𝐻̂𝑒𝑙(𝑟⃗; 𝑅⃗)− 𝑢̃𝑛𝑛(𝑅⃗)

]︁
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩ = 0. (2.23)

This is exactly the same as taking the adiabatic ansatz at one specific nuclear9

geometry. The eigenfunctions built a complete orthonormal set at the reference10

geometry 𝑅⃗. Expanding the total wave function into the diabatic basis set at a11

given geometry, one obtains:12

|𝜓(𝑟⃗, 𝑅⃗)⟩ =
∑︁
𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩ ⟨𝜑𝑛(𝑟⃗; 𝑅⃗) |𝜓(𝑟⃗, 𝑅⃗)⟩𝑟⃗⏟  ⏞  
|𝜒̃𝑛(𝑅⃗;𝑅⃗)⟩

. (2.24)

Inserting the diabatic expression into the Schrödinger equation yields:13

− 1

2𝑀
∇⃗2

𝑅⃗
|𝜒̃𝑘(𝑅⃗; 𝑅⃗)⟩+

∑︁
𝑛

(︁
𝑢̃𝑘𝑛(𝑅⃗; 𝑅⃗)− 𝐸

)︁
|𝜒̃𝑛(𝑅⃗; 𝑅⃗)⟩ = 0, (2.25)

where 𝑢̃𝑘𝑛(𝑅⃗; 𝑅⃗) = ⟨𝜑𝑘(𝑟⃗; 𝑅⃗) | 𝐻̂𝑒𝑙(𝑟⃗; 𝑅⃗) |𝜑𝑛(𝑟⃗; 𝑅⃗)⟩𝑟. This is the Schrödinger equa-14

tion within the diabatic representation for a certain nuclear geometry 𝑅⃗. The15

information about the electron does not appear as a kinetic coupling but as a16

potential coupling with elements 𝑢̃𝑘𝑛(𝑅⃗; 𝑅⃗), with 𝑘 ̸= 𝑛. Here, the picture arises17
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of a nuclear wave packet being driven on diabatic potential energy surfaces which1

are coupled to other surfaces via diabatic potential coupling elements.2

Now, the question arises under what condition the diabatic representation of the3

Schrödinger equation can be transformed into the adiabatic representation. If one4

takes the Schrödinger equation within the adiabatic representation eq. (2.22):5

− 1

2𝑀

∑︁
𝑛

[︁
∇⃗𝑅⃗𝛿𝑘𝑛 + 𝜏⃗𝑘𝑛(𝑅⃗)

]︁2
|𝜒𝑛(𝑅⃗)⟩+

(︁
𝑢𝑘𝑘(𝑅⃗)− 𝐸

)︁
|𝜒𝑘(𝑅⃗)⟩ = 0, (2.26)

then an orthogonal transformation matrix 𝐴(𝑅⃗; 𝑅⃗) ∈ R𝑛×𝑛 is considered, with6 ∑︀
𝑚(𝐴−1)𝑘𝑚(𝑅⃗; 𝑅⃗)𝐴𝑚𝑛(𝑅⃗; 𝑅⃗) = 𝛿𝑘𝑛, that transforms like [45, 47, 48, 50]:7

|𝜒̃𝑛(𝑅⃗; 𝑅⃗)⟩ =
∑︁
𝑚

𝐴𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒𝑚(𝑅⃗)⟩. (2.27)

and8

|𝜒𝑛(𝑅⃗)⟩ =
∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩. (2.28)

This transformation is path-dependent, as the nuclear geometry 𝑅⃗ of the diabatic9

basis representation is arbitrary. Additionally, the transformation is carried out10

from 𝑅⃗ to the continuous variable 𝑅⃗ and vice versa. So, in general this transforma-11

tion depends on the path Γ between 𝑅⃗ and 𝑅⃗. Inserting eq. (2.27) and eq. (2.28)12

into eq. (2.26) yields [39]:13

− 1

2𝑀

∑︁
𝑘,𝑛

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
[︁
∇⃗𝑅⃗𝛿𝑘𝑛 + 𝜏⃗𝑘𝑛(𝑅⃗)

]︁2∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)𝐴𝑚𝑛(𝑅⃗; 𝑅⃗)|𝜒𝑛(𝑅⃗)⟩

+
∑︁
𝑘,𝑛

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
𝑢𝑘𝑛(𝑅⃗)𝛿𝑘𝑛 − 𝐸

)︁∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)𝐴𝑚𝑛(𝑅⃗; 𝑅⃗)|𝜒𝑛(𝑅⃗)⟩ = 0.

(2.29)

This can be rewritten in the form, see appendix A:14
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− 1

2𝑀
∇⃗2

𝑅⃗
|𝜒̃𝑜(𝑅⃗; 𝑅⃗)⟩+

2
∑︁
𝑘,𝑚,𝑛

⎡⎢⎣𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
∇⃗𝑅⃗𝛿𝑘𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗) + 𝜏⃗𝑘𝑛(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

)︁
⏟  ⏞  

=0

⎤⎥⎦ ∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

+
∑︁

𝑘,𝑚,𝑛,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)×⎡⎢⎣(︁∇⃗𝑅⃗𝛿𝑘𝑠 + 𝜏⃗𝑘𝑠(𝑅⃗)
)︁(︁

∇⃗𝑅⃗𝛿𝑠𝑛(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗) + 𝜏⃗𝑠𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)
)︁

⏟  ⏞  
=0

⎤⎥⎦×

|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩+
∑︁
𝑚

(︁
𝑢̃𝑜𝑚(𝑅⃗; 𝑅⃗)− 𝐸

)︁
|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩ = 0. (2.30)

As far as
∑︀

𝑛 ∇⃗𝑅⃗𝛿𝑘𝑛(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)+ 𝜏⃗𝑘𝑛(𝑅⃗)(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗) = 0 ∀𝑘,𝑚, the trans-1

formation from the adiabatic representation to the diabatic representation can be2

achieved. In case the extended curl condition [45]:3

0 =
(𝜕𝜏⃗𝑘𝑛(𝑅⃗))𝑅𝑥

𝜕𝑅𝑦
−
(𝜕𝜏⃗𝑘𝑛(𝑅⃗))𝑅𝑦

𝜕𝑅𝑥
−
[︁
(𝜏⃗𝑘𝑛(𝑅⃗))𝑅𝑥(𝜏⃗𝑘𝑛(𝑅⃗))𝑅𝑦 − (𝜏⃗𝑘𝑛(𝑅⃗))𝑅𝑦(𝜏⃗𝑘𝑛(𝑅⃗))𝑅𝑥

]︁
(2.31)

is satisfied, one can find a solution for the transformation matrix [39]:4

(𝐴−1)𝑘𝑚(𝑅⃗; 𝑅⃗) =
∑︁
𝑛

(︂
𝑒
−

∫︀ 𝑅⃗
𝑅⃗

𝜏⃗(𝑅⃗′)·𝜕𝑅⃗′
)︂

𝑘𝑛

(𝐴−1)𝑛𝑚(𝑅⃗, 𝑅⃗). (2.32)

The line integral−
∫︀ 𝑅⃗
𝑅⃗ 𝜏⃗𝑘𝑛(𝑅⃗

′)·𝜕𝑅⃗′ = 𝜙𝑘𝑛(𝑅⃗; 𝑅⃗) gives the mixing angle 𝜙𝑘𝑛(𝑅⃗; 𝑅⃗) ∈5

R between involved states which are coupled via 𝜏⃗𝑘𝑛(𝑅⃗).6

Then, for example, for a two-level system 𝜏⃗21(𝑅⃗) = −𝜏⃗12(𝑅⃗) [39] and the rotation7

matrix is given as 𝑒𝑄(𝑅⃗;𝑅⃗), with:8
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𝑄(𝑅⃗; 𝑅⃗) = 𝜙(𝑅⃗; 𝑅⃗)

⎡⎢⎣0 −1

1 0

⎤⎥⎦ . (2.33)

Now one can calculate:1

𝑄2(𝑅⃗; 𝑅⃗) = −𝜙(𝑅⃗; 𝑅⃗)21. (2.34)

Then:2

𝑄3(𝑅⃗; 𝑅⃗) = −𝜙(𝑅⃗; 𝑅⃗)3

⎡⎢⎣0 −1

1 0

⎤⎥⎦ . (2.35)

and3

𝑄4(𝑅⃗; 𝑅⃗) = −𝜙(𝑅⃗; 𝑅⃗)2𝑄2(𝑅⃗; 𝑅⃗) = 𝜙(𝑅⃗; 𝑅⃗)41, (2.36)

and so on. Then:4

𝑒𝑄(𝑅⃗;𝑅⃗) =

∞∑︁
𝑛=0

(−1)𝑛

2𝑛!
𝜙(𝑅⃗; 𝑅⃗)2𝑛

⎡⎢⎣1 0

0 1

⎤⎥⎦+

∞∑︁
𝑛=0

(−1)𝑛

(2𝑛+ 1)!
𝜙(𝑅⃗; 𝑅⃗)2𝑛+1

⎡⎢⎣0 −1

1 0

⎤⎥⎦ .
(2.37)

Finally, the transfomation for a two-level system can be written as rotation matrix5

of the following form:6
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𝐴−1(𝑅⃗; 𝑅⃗) =

⎛⎜⎝cos(𝜙(𝑅⃗; 𝑅⃗)) − sin(𝜙(𝑅⃗; 𝑅⃗))

sin(𝜙(𝑅⃗; 𝑅⃗)) cos(𝜙(𝑅⃗; 𝑅⃗))

⎞⎟⎠𝐴−1(𝑅⃗, 𝑅⃗), (2.38)

with 𝑘, 𝑛,𝑚 = 1, 2. This is a rotation matrix 𝐴−1(𝑅⃗; 𝑅⃗) which transforms the dia-1

batic representation via an abstract mixing angle to the adiabatic representation.2

Depending on its geometry, the value of the mixing angle will be different.3

This mixing angle can be directly connected to the transformation from the dia-4

batic electronic eigenfunctions to the adiabatic electronic eigenfunctions in incre-5

mental Δ𝑅⃗ steps [39]:6

|𝜑𝑘(𝑟⃗; 𝑅⃗+Δ𝑅⃗)⟩ =
∑︁
𝑛

(︁
𝛿𝑘𝑛 −Δ𝑅⃗ · 𝜏⃗𝑘𝑛(𝑅⃗)

)︁
|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩

|𝜑𝑘(𝑟⃗; 𝑅⃗+Δ𝑅⃗)⟩ − |𝜑𝑘(𝑟⃗; 𝑅⃗)⟩
Δ𝑅⃗

=−
∑︁
𝑛

𝜏⃗𝑘𝑛(𝑅⃗)|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩

∑︁
𝑛

∇⃗𝑅⃗𝛿𝑘𝑛|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩+ 𝜏⃗𝑘𝑛(𝑅⃗)|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩ =0. (2.39)

From the solution of eq. (2.39), one can recast the transformation expression for7

the diabatic transformation to the adiabatic transformation of the electronic eigen-8

functions.9

|𝜑𝑘(𝑟⃗; 𝑅⃗)⟩ =
∑︁
𝑛

(︂
𝑒
−

∫︀ 𝑅⃗
𝑅⃗

𝜏⃗(𝑅⃗′)·𝜕𝑅⃗′
)︂

𝑘𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩

|𝜑𝑘(𝑟⃗; 𝑅⃗)⟩ =
∑︁
𝑛,𝑚

(︂
𝑒
−

∫︀ 𝑅⃗
𝑅⃗

𝜏⃗(𝑅⃗′)·𝜕𝑅⃗′
)︂

𝑘𝑛

(𝐴−1)𝑛𝑚(𝑅⃗, 𝑅⃗)⏟  ⏞  
𝛿𝑛𝑚

|𝜑𝑚(𝑟⃗; 𝑅⃗)⟩

|𝜑𝑘(𝑟⃗; 𝑅⃗)⟩ =
∑︁
𝑚

(𝐴−1)𝑘𝑚(𝑅⃗; 𝑅⃗)|𝜑𝑚(𝑟⃗; 𝑅⃗)⟩. (2.40)

This exemplifies that the transformation from the diabatic to the adiabatic repre-10

sentation and vice versa is equivalent for the electronic eigenfunctions, the nuclear11
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wave function, and the reduced Schrödinger equation. The solution of the trans-1

formation matrix is path-dependent and strongly related to the non-adiabatic2

coupling elements.3

(𝐴−1)𝑘𝑚(𝑅⃗; 𝑅⃗) =
∑︁
𝑛

(︂
𝑒
−

∫︀ 𝑅⃗
𝑅⃗

𝜏⃗(𝑅⃗′)·𝜕𝑅⃗′
)︂

𝑘𝑛

(𝐴−1)𝑛𝑚(𝑅⃗, 𝑅⃗). (2.41)

Another possibility to gain the transformation matrix 𝐴−1(𝑅⃗; 𝑅⃗) is to define the4

diabatic electronic basis functions out of the adiabatic electronic eigenfunctions at5

a certain geometry 𝑅⃗. Then, the adiabatic electronic eigenfunctions are expanded6

into the diabatic basis set.7

|𝜑𝑘(𝑟⃗; 𝑅⃗)⟩ =
∑︁
𝑛

|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩⟨𝜑𝑛(𝑟⃗; 𝑅⃗) |𝜑𝑘(𝑟⃗; 𝑅⃗)⟩𝑟⃗

=
∑︁
𝑛

(𝐴−1)𝑘𝑛(𝑅⃗; 𝑅⃗)|𝜑𝑛(𝑟⃗; 𝑅⃗)⟩. (2.42)

2.5 Quantum Wave-Packet Dynamics8

2.5.1 Exact Propagation9

The time-dependence of a wave packet can be calculated via the system propaga-10

tor 𝑈̂(𝑟⃗, 𝑅⃗, 𝑡, 𝑡0). This propagator arises from the solution of the time-dependent11

Schrödinger equation. One initial condition needs to be fulfilled. This is the ini-12

tial wave packet |𝜓(𝑟⃗, 𝑅⃗, 𝑡0)⟩. Then, by knowledge of the full time-independent13

hamiltonian 𝐻̂(𝑟⃗, 𝑅⃗), the evolution of the wave packet is given by the propagator14

[27]:15

𝑈̂(𝑟⃗, 𝑅⃗, 𝑡, 𝑡0) = 𝑒
−𝑖

∫︀ 𝑡
𝑡0

𝐻̂(𝑟⃗,𝑅⃗) 𝑑𝑡′
. (2.43)
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The time-dependence for the wave packet is then given as:1

|𝜓(𝑟⃗, 𝑅⃗, 𝑡)⟩ = 𝑈̂(𝑟⃗, 𝑅⃗, 𝑡, 𝑡0)|𝜓(𝑟⃗, 𝑅⃗, 𝑡0)⟩

= 𝑒
−𝑖

∫︀ 𝑡
𝑡0

𝐻̂(𝑟⃗,𝑅⃗) 𝑑𝑡′ |𝜓(𝑟⃗, 𝑅⃗, 𝑡0)⟩

=
∑︁
𝑛

𝑐𝑛(𝑡0)|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩ 𝑒−𝑖𝐸𝑛(𝑡−𝑡0), (2.44)

where the picture arises of a spectral superposition of eigenstates being driven in2

phase by their corresponding eigenenergies. This superposition depends on the3

state coefficients 𝑐𝑛(𝑡0) of the composition of the wave packet.4

2.5.2 Propagation in the Adiabatic Framework5

Besides the exact propagation, a propagation in the adiabatic representation can6

also be done. This is a reduction down to nuclear coordinates which are propagated7

only. In case the non-adiabatic coupling elements 𝜏⃗𝑘𝑛(𝑅⃗) can also be regarded8

within the dynamical description, this representation is also an exact one. The9

coupled equations of motion then read:10

𝑖
𝜕

𝜕𝑡
|𝜒𝑘(𝑅⃗, 𝑡)⟩ = − 1

2𝑀

∑︁
𝑛

[︁
∇⃗𝑅⃗𝛿𝑘𝑛 + 𝜏⃗𝑘𝑛(𝑅⃗)

]︁2
|𝜒𝑛(𝑅⃗, 𝑡)⟩+ 𝑢𝑘𝑘(𝑅⃗)|𝜒𝑘(𝑅⃗, 𝑡)⟩.

(2.45)

The time-dependence for a nuclear wave packet |𝜒𝑘(𝑅⃗, 𝑡)⟩ within the adiabatic11

electronic eigenstates |𝜑𝑘(𝑟⃗; 𝑅⃗)⟩ is then given by:12

|𝜒𝑘(𝑅⃗, 𝑡)⟩ =
∑︁
𝑛

(︂
𝑒
−𝑖

(︁
− 1

2𝑀 [∇⃗𝑅⃗
+𝜏⃗(𝑅⃗)]

2
+𝑢(𝑅⃗)

)︁
(𝑡−𝑡0)

)︂
𝑘𝑛

∑︁
𝑗

𝑐𝑛𝑗(𝑡0)|Π𝑛𝑗(𝑅⃗)⟩, (2.46)

where |𝜒𝑛(𝑅⃗, 𝑡)⟩ =
∑︀

𝑗 𝑐𝑛𝑗(𝑡0)|Π𝑛𝑗(𝑅⃗)⟩ is the nuclear wave packet in the 𝑛-th13
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adiabatic state.1

Often, these NACTs can not be treated within a numerical calculation, thus, the2

dynamical description gets unprecise. In certain cases, one can neglect the NACTs,3

which is well known as the Born-Oppenheimer approximation [43, 44]. In this case4

a quite good result for the dynamics is achieved. Then the equations of motion5

are given as:6

𝑖
𝜕

𝜕𝑡
|𝜒𝑘(𝑅⃗, 𝑡)⟩ =

[︂
− 1

2𝑀
∇⃗2

𝑅⃗
+ 𝑢𝑘𝑘(𝑅⃗)

]︂
|𝜒𝑘(𝑅⃗, 𝑡)⟩. (2.47)

|𝜒𝑘(𝑅⃗, 𝑡)⟩ = 𝑒
−𝑖

(︁
− 1

2𝑀
∇⃗2

𝑅⃗
+𝑢𝑘𝑘(𝑅⃗)

)︁
(𝑡−𝑡0)

∑︁
𝑗

𝑐𝑘𝑗(𝑡0)|Π𝑘𝑗(𝑅⃗, 𝑡0)⟩. (2.48)

2.5.3 Propagation in the Diabatic Framework7

Last but not least, it is also possible to propagate in the diabatic state representa-8

tion. The coupling elements appear as off-diagonal coupling elements 𝑢̃𝑘𝑛(𝑅⃗; 𝑅⃗),9

with 𝑘 ̸= 𝑛. The coupled equations of motion read:10

𝑖
𝜕

𝜕𝑡
|𝜒̃𝑘(𝑅⃗; 𝑅⃗, 𝑡)⟩ =

∑︁
𝑛

{︃
−
∇⃗2

𝑅⃗

2𝑀
𝛿𝑘𝑛 + 𝑢̃𝑘𝑛(𝑅⃗; 𝑅⃗)

}︃
|𝜒̃𝑛(𝑅⃗; 𝑅⃗, 𝑡)⟩. (2.49)

Then the temporal evolution of a nuclear wave packet is given within the diabatic11

states as:12

|𝜒̃𝑘(𝑅⃗; 𝑅⃗, 𝑡)⟩ =
∑︁
𝑛

(︂
𝑒
−𝑖

(︁
− 1

2𝑀
∇⃗2

𝑅⃗
+𝑢̃(𝑅⃗;𝑅⃗)

)︁
(𝑡−𝑡0)

)︂
𝑘𝑛

∑︁
𝑗

𝑐𝑛𝑗(𝑡0)|Π̃𝑛𝑗(𝑅⃗; 𝑅⃗, 𝑡0)⟩.

(2.50)
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2.6 Wave Packet in the Wigner Representation1

A wave packet in coordinate space 𝑅 ∈ R can be described by a wave function2

|𝜓(𝑅, 𝑡)⟩ at time 𝑡 ∈ R. This wave packet can also be described by a pure state in3

density formalism by the operator [27]:4

𝜚(𝑅, 𝑡) = |𝜓(𝑅, 𝑡)⟩⟨𝜓(𝑅, 𝑡)|. (2.51)

The Wigner representation connects the quantum mechanical density operator5

with the classical distribution in phase space. The Wigner function of the density6

operator is defined via:7

𝜚𝑤(𝑅,𝑃, 𝑡) =

∫︁
𝑅
𝑑𝑠⟨𝑅+

𝑠

2
| 𝜚(𝑅, 𝑡) |𝑅− 𝑠

2
⟩𝑒−𝑖𝑃𝑠. (2.52)

𝑃 is the momentum variable. For the density operator, the time-evolution is8

similar to wave functions given by the Liouville-von Neumann equation:9

𝑖
𝜕𝜚(𝑅, 𝑡)

𝜕𝑡
=
[︁
𝐻̂(𝑅), 𝜚(𝑅, 𝑡)

]︁
. (2.53)

Inserting the Liouville-von Neumann equation into the Wigner representation of10

the density operator and multiplying eq. (2.52) by the imaginary unit yields:11

𝜕𝜚𝑤(𝑅,𝑃, 𝑡)

𝜕𝑡
= {𝐻(𝑅,𝑃 ), 𝜚𝑤(𝑅,𝑃, 𝑡)} −

1

24

𝜕3𝑉 (𝑅)

𝜕𝑅3

𝜕3𝜚𝑤(𝑅, 𝑡)

𝜕𝑅3
+ ... . (2.54)

Here, the time-evolution equation for the density operator in the Wigner represen-12

tation is given [57]. The temporal derivation of this quantity is then determined13

by the Poisson bracket {𝐻(𝑅,𝑃 ), 𝜚𝑤(𝑅,𝑃, 𝑡)} known from classical mechanics and14

additional correction terms. These correction terms will disappear when harmonic15
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potentials 𝑉 (𝑅) are used within the system’s description. In this case, the equation1

of motion for the density operator in the Wigner representation reads:2

𝜕𝜚𝑤(𝑅,𝑃, 𝑡)

𝜕𝑡
= {𝐻, 𝜚𝑤(𝑅,𝑃, 𝑡)} . (2.55)

According to this, 𝜚𝑤(𝑅,𝑃, 𝑡) can be built up of trajectories [58, 59]:3

𝜚𝑤(𝑅,𝑃, 𝑡) =
∑︁
𝑅𝑖

∑︁
𝑃𝑖

𝜌(𝑅𝑖, 𝑃𝑖)𝛿(𝑅−𝑅𝑖)𝛿(𝑃 − 𝑃𝑖), (2.56)

and these trajectories can be propagated using Newton’s equation of motion [60]:4

𝑚𝑖
𝑑2

𝑑𝑡2
𝑅𝑖 = 𝐹

(𝑒𝑥)
𝑖 +

∑︁
𝑖 ̸=𝑗

𝐹𝑖𝑗 (2.57)

where 𝐹 (𝑒𝑥)
𝑖 is the force acting on the 𝑖-th particle. 𝐹𝑖𝑗 is the force acting between5

the 𝑖-th and 𝑗-th particle. Thus, a wave packet can be approximated as a swarm6

of trajectories in classical phase space as long as the driving system’s potential is7

harmonic.8
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2.7 Non-Linear Polarization1

Light-matter interaction can be described in a perturbative approach. Here, for2

the calculation of linear absorption spectra and two-dimensional spectra one is3

interested in the induced polarization of first and third order by one and three4

light-matter interactions [61].5

Formulating the components of the polarization to the final signal is done in the6

density matrix representation. Therefore, the description of quantum states in7

the Liouville space L is used here. In Liouville space, the contribution of the8

polarization to the detection signal can be demonstratively derived [62].9

It should be noted that the calculations later on are done in Hilbert space.10

2.7.1 Liouville Space11

In Liouville space [63], the expression of the density matrix is replaced by a vector12

in double braket notation [62]. Then, for the set of eigenfunctions {|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩}13

follows:14

|𝜌(𝑡)⟩⟩ =
∑︁
𝑛,𝑚

𝜌𝑛𝑚(𝑡)|𝑛𝑚⟩⟩ =
∑︁
𝑛,𝑚

𝜌𝑛𝑚(𝑡)|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩⟨𝜙𝑚(𝑟⃗, 𝑅⃗)|. (2.58)

Analogously the complex conjugate density matrix is defined as:15

⟨⟨𝜌(𝑡)| =
∑︁
𝑛,𝑚

𝜌*𝑛𝑚(𝑡)⟨⟨𝑛𝑚| =
∑︁
𝑛,𝑚

𝜌𝑚𝑛(𝑡)|𝜙𝑚(𝑟⃗, 𝑅⃗)⟩⟨𝜙𝑛(𝑟⃗, 𝑅⃗)|. (2.59)

Of course, then the extended orthonormality relation holds:16

⟨⟨𝑛𝑚 | 𝑗𝑘⟩⟩ = Tr𝑟⃗,𝑅⃗ [|𝜙𝑚(𝑟⃗, 𝑅⃗)⟩⟨𝜙𝑛(𝑟⃗, 𝑅⃗) |𝜙𝑗(𝑟⃗, 𝑅⃗)⟩𝑟⃗,𝑅⃗⟨𝜙𝑘(𝑟⃗, 𝑅⃗)|] = 𝛿𝑘,𝑚𝛿𝑗,𝑛,

(2.60)

and expectation values are calculated by:17
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⟨⟨𝑂̂ | 𝜌(𝑡)⟩⟩ = Tr𝑟⃗,𝑅⃗

[︃
𝑂̂(𝑟⃗, 𝑅⃗)

∑︁
𝑛,𝑚

𝜌𝑛𝑚(𝑡)|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩⟨𝜙𝑚(𝑟⃗, 𝑅⃗)|

]︃
= ⟨𝑂̂⟩(𝑡). (2.61)

The evolution of a state defined in Hilbert space is described via the time-dependent

Schrödinger equation. As density matrix expressions are used, one is forced to ex-

tend the formalism. Then, the temporal evolution of the density is expressed via

the time-dependent Liouville-von Neumann equation

𝜕𝜌𝑘𝑙(𝑡)

𝜕𝑡
= −𝑖

∑︁
𝑚

[𝐻̂𝑘𝑚𝜌𝑚𝑙(𝑡)− 𝜌𝑘𝑚(𝑡)𝐻̂𝑚𝑙]. (2.62)

The hamilton operator 𝐻̂𝑘𝑚 is written in the system basis set spanned by {|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩}1

in Hilbert space. The expression 𝐻̂𝑘𝑚𝜌𝑚𝑙(𝑡) − 𝜌𝑘𝑚(𝑡)𝐻̂𝑚𝑙 can be replaced by2

one single superoperator 𝐿̂𝑘𝑙,𝑚𝑛 in Liouville space L acting on the matrix vector3

|𝑛𝑚⟩⟩. Then, the time-dependent Liouville-von Neumann equation in Liouville4

space reads:5

𝜕𝜌𝑘𝑙(𝑡)

𝜕𝑡
= −𝑖

∑︁
𝑚,𝑛

𝐿̂𝑘𝑙,𝑚𝑛 𝜌𝑚𝑛(𝑡). (2.63)

Starting from this equation, the expression for spectroscopic signals is derived. In6

what follows, light-matter interactions are described via time-dependent pertur-7

bation theory [64] in Liouville space.8

2.7.2 Light-Matter Interaction9

Light-matter interactions are described in a semi-classical approach. Therefore,10

classical electro-magnetic fields are used. The magnetic component of the field11

is neglected, as the interaction between matter and the magnetic component is12

weak [65, 66]. Then, the electric field is defined as a classical transversal wave13

𝐸⃗(𝑅⃗𝑒, 𝑡) ∈ R2 in coordinate space 𝑅⃗𝑒 ∈ R2, with an amplitutde 𝜁 = 2𝜖⃗ ∈ R2,14

a wave momentum 𝑘⃗ ∈ R2, and a frequency 𝜔 ∈ R. Additionally, on the basis15
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of experimental techniques [67–69] using short laser pulses, the electric field is1

characterized as a short Gaussian pulse being described by an additional Gaussian2

envelope expression:3

𝐸⃗(𝑅⃗𝑒, 𝑡) = 𝜁 cos(𝑘⃗ ·𝑅⃗𝑒−𝜔𝑡)𝑒−𝛼𝑡2 = 𝜖⃗
(︁
𝑒−𝑖{𝑘⃗·𝑅⃗𝑒−𝜔𝑡} + 𝑒+𝑖{𝑘⃗·𝑅⃗𝑒−𝜔𝑡}

)︁
𝑒−𝛼𝑡2 , (2.64)

with 𝛼 ∈ R+. Here, 𝛼 is connected to the Gaussian standard deviation 𝜎 ∈4

R+
0 ∖ {∞} via 𝛼 = 1

2𝜎2 [34].5

Only systems are regarded with a size much smaller than the wave length 𝜆 = 2𝜋

|⃗𝑘|
6

of the used classical fields. Therefore, expanding the space-dependent component7

of the electric field in a power series and terminating after the zeroth-order term8

yields:9

𝑒𝑖𝑘⃗·𝑅⃗𝑒 = 1 + 𝑖𝑘⃗ · 𝑅⃗𝑒 + ... ≈ 1. (2.65)

This is known as dipole approximation [70]. From now on, only electric fields are10

regarded where the spatial dependence is omitted.11

𝐸⃗(𝑡) = 𝜁 cos(𝜔𝑡) = 𝜖⃗
(︀
𝑒−𝑖𝜔𝑡 + 𝑒+𝑖𝜔𝑡

)︀
𝑒−𝛼𝑡2 . (2.66)

Applying the rotating wave approximation [71], one can distinguish 𝜖⃗ 𝑒−𝑖𝜔𝑡𝑒−𝛼𝑡2
12

to prompt an excitation within a quantum system, and 𝜖⃗ 𝑒+𝑖𝜔𝑡𝑒−𝛼𝑡2 to prompt a13

stimulated emission [62].14

The finite pulse sequence of 𝑛 ∈ N interactions is written as one composite electric15

field 𝐸⃗(𝑡):16

𝐸⃗(𝑡) =

𝑚∑︁
𝑛=1

𝐸⃗𝑛(𝑡− 𝑡𝑛) =

𝑚∑︁
𝑛=1

𝐸⃗(+)
𝑛 (𝑡− 𝑡𝑛) + 𝐸⃗(−)

𝑛 (𝑡− 𝑡𝑛), (2.67)

with17
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𝐸⃗(±)
𝑛 (𝑡) = 𝜖⃗𝑒∓𝑖𝜔𝑛(𝑡−𝑡𝑛)𝑒−𝛼(𝑡−𝑡𝑛)2 . (2.68)

𝑡𝑛 is the center of the 𝑛-th Gaussian pulse. The dipole-moment operator for the1

system is given by:2

^⃗𝜇(𝑟⃗, 𝑅⃗) = −^⃗𝑟 +
^⃗
𝑅, (2.69)

and in the transition dipole matrix elements as:3

^⃗𝜇𝑛𝑚(𝑅⃗) = ⟨𝜑𝑛(𝑟⃗, 𝑅⃗) | − ^⃗𝑟 +
^⃗
𝑅 |𝜑𝑚(𝑟⃗, 𝑅⃗)⟩𝑟⃗. (2.70)

The transition dipole matrix in the exact basis state representation is given as:4

𝜇⃗𝑛𝑚 = ⟨𝜙𝑛(𝑟⃗, 𝑅⃗) | − ^⃗𝑟 +
^⃗
𝑅 |𝜙𝑚(𝑟⃗, 𝑅⃗)⟩𝑟⃗,𝑅⃗. (2.71)

Furthermore, one defines for the operator in Liouville space:5

^⃗𝜇𝑗𝑘,𝑛𝑚 = 𝜇⃗𝑗𝑛𝛿𝑘𝑚 − 𝜇⃗*𝑘𝑚𝛿𝑗𝑛. (2.72)

The polarization is given as the expectation value of the dipole-moment operator6

[72]:7

𝑃 (𝑡) = ⟨ ^⃗𝜇⟩(𝑡) = ⟨⟨ ^⃗𝜇 | 𝜌(𝑡)⟩⟩. (2.73)

In the following, the vector notation is omitted because the polarization is regarded8

parallel to the direction of the electric field
(︁
𝑃 (𝑡) ‖ 𝜖⃗

)︁
[65]. As the description is9

in the complete eigenstate basis {|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩}, the spatial notation of the light-10

matter interaction is also suppressed. Making now a perturbative approach for11

the polarization, it is composed of contributions of order 𝑞 ∈ N [73–75]:12
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𝑃 (𝑡) =

𝑞∑︁
𝑙

𝑃 (𝑙)(𝑡) =

𝑞∑︁
𝑙

⟨⟨ ^⃗𝜇 | 𝜌(𝑙)(𝑡)⟩⟩. (2.74)

Following S. Mukamel [62], the time-dependence for 𝜌(𝑙)𝑛𝑚(𝑡) can be derived in the1

time-dependent perturbative picture as:2

𝜌(𝑙)𝑛𝑚(𝑡) =𝑖𝑙
∞∫︁
0

𝑑𝑡𝑙

∞∫︁
0

𝑑𝑡𝑙−1· · ·
∞∫︁
0

𝑑𝑡1𝐸𝑙(𝑡− 𝑡𝑙)𝐸𝑙−1(𝑡− 𝑡𝑙 − 𝑡𝑙−1) · · · ×

𝐸1(𝑡− 𝑡𝑙 − 𝑡𝑙−1 · · · − 𝑡1)𝐺𝑛𝑚,𝑛𝑚(𝑡𝑙)
∑︁
𝑒,𝑓,𝑐,
𝑑,...,𝑎,𝑏

𝜇̂𝑛𝑚,𝑒𝑓×

𝐺𝑒𝑓,𝑒𝑓 (𝑡𝑙−1)𝜇̂𝑒𝑓,𝑐𝑑𝐺𝑐𝑑,𝑐𝑑(𝑡𝑙−2) . . . 𝐺𝑎𝑏,𝑎𝑏(𝑡1)𝜇̂𝑎𝑏,00𝜌00(𝑡0),

(2.75)

where3

𝐺𝑛𝑚,𝑛𝑚(𝑡𝑙) = Θ(𝑡𝑙)𝑈̂𝑛𝑚,𝑛𝑚(𝑡𝑙) = Θ(𝑡𝑙)𝑒
−𝑖𝐿̂𝑛𝑚,𝑛𝑚 𝑡𝑙 (2.76)

is the Green’s function, propagating the unperturbed system [76–78]. With the4

perturbative expansion of the density, the time-dependent perturbative polariza-5

tion can finally be written as:6

𝑃 (𝑙)(𝑡) =𝑖𝑙
∞∫︁
0

𝑑𝑡𝑙

∞∫︁
0

𝑑𝑡𝑙−1· · ·
∞∫︁
0

𝑑𝑡1
∑︁

𝑛,𝑚,𝑒,𝑓,
𝑐,𝑑,...,𝑎,𝑏

×

⟨⟨𝜇̂ |𝑛𝑚⟩⟩𝐺𝑛𝑚,𝑛𝑚(𝑡𝑙)𝜇̂𝑛𝑚,𝑒𝑓𝐺𝑒𝑓,𝑒𝑓 (𝑡𝑙−1)𝜇̂𝑒𝑓,𝑐𝑑𝐺𝑐𝑑,𝑐𝑑(𝑡𝑙−2)×

. . . 𝐺𝑎𝑏,𝑎𝑏(𝑡1)𝜇̂𝑎𝑏,00 𝜌00(𝑡0)×

𝐸𝑙(𝑡− 𝑡𝑙)𝐸𝑙−1(𝑡− 𝑡𝑙 − 𝑡𝑙−1) . . . 𝐸1(𝑡− 𝑡𝑙 − 𝑡𝑙−1 · · · − 𝑡1).

(2.77)

The following expression for 𝑆(𝑙)(𝑡𝑙, 𝑡𝑙−1, . . . , 𝑡1) out of the polarization function7

can be extracted and denoted as response function:8
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𝑆(𝑙)(𝑡𝑛, 𝑡𝑙−1, . . . , 𝑡1) =𝑖
𝑙
∑︁

𝑛,𝑚,𝑒,𝑓,
𝑐,𝑑,...,𝑎,𝑏

⟨⟨𝜇̂ |𝑚𝑛⟩⟩𝐺𝑛𝑚,𝑛𝑚(𝑡𝑙)𝜇̂𝑛𝑚,𝑒𝑓×

𝐺𝑒𝑓,𝑒𝑓 (𝑡𝑙−1)𝜇̂𝑒𝑓,𝑐𝑑𝐺𝑐𝑑,𝑐𝑑(𝑡𝑙−2)×

. . . 𝐺𝑎𝑏,𝑎𝑏(𝑡1)𝜇̂𝑎𝑏,00𝜌00(𝑡0).

(2.78)

With this expression, the contributions to a one-dimensional spectrum [79–81], e.g.1

an absorption spectrum, can be derived. This is a process with one single light-2

matter interaction. As a result, the response function is of first order: 𝑆(1)(𝑡1) is3

depending on one single interaction at a certain time 𝑡1.4

𝑆(1)(𝑡1) = 𝑖
∑︁
𝑎

⟨⟨𝜇̂ | 𝑎0⟩⟩𝐺𝑎0,𝑎0(𝑡1)𝜇̂𝑎0,00 𝜌00(𝑡0). (2.79)

This can be further expanded in Hilbert space to finally come to the form:5

𝑆(1)(𝑡1) = 𝑖{𝜇𝑎0𝜌00(𝑡0)𝜇0𝑎(𝑡1)− 𝜇𝑎0(𝑡1)𝜌00(𝑡0)𝜇0𝑎}, (2.80)

where there are two contributions to the total response function. One, where the6

light-matter interaction takes place upon the ket-elements of the density matrix,7

calling 𝐽(𝑡1) and 𝐽*(𝑡1) for the interaction on the bra-elements of the density8

matrix.9

𝑆(1)(𝑡1) = 𝑖{𝐽(𝑡1)− 𝐽*(𝑡1)}. (2.81)

Similarly, for the three-photon interaction for the two-dimensional spectrum a10

response function with three interactions is obtained:11
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𝑆(3)(𝑡3, 𝑡2, 𝑡1) =𝑖
3Θ(𝑡1)Θ(𝑡2)Θ(𝑡3){𝑅1(𝑡3, 𝑡2, 𝑡1)−𝑅*

1(𝑡3, 𝑡2, 𝑡1)

+𝑅2(𝑡3, 𝑡2, 𝑡1)−𝑅*
2(𝑡3, 𝑡2, 𝑡1) +𝑅3(𝑡3, 𝑡2, 𝑡1)

−𝑅*
3(𝑡3, 𝑡2, 𝑡1) +𝑅4(𝑡3, 𝑡2, 𝑡1)−𝑅*

4(𝑡3, 𝑡2, 𝑡1)},

(2.82)

with the eight contributions 𝑅𝑛(𝑡3, 𝑡2, 𝑡1) and 𝑅*
𝑛(𝑡3, 𝑡2, 𝑡1), with 𝑛 = 1, 2, 3, 4:1

𝑅1(𝑡3, 𝑡2, 𝑡1) =
∑︁
𝑎,𝑏,𝑐,𝑑

𝜇𝑐𝑎𝜇0𝑎(𝑡1)𝜇𝑐𝑏(𝑡1 + 𝑡2 + 𝑡3)𝜇𝑏0(𝑡1 + 𝑡2) 𝜌00(𝑡0), (2.83)

𝑅2(𝑡3, 𝑡2, 𝑡1) =
∑︁
𝑎,𝑏,𝑐,𝑑

𝜇𝑏𝑐𝜇0𝑐(𝑡1 + 𝑡2)𝜇𝑏𝑎(𝑡1 + 𝑡2 + 𝑡3)𝜇𝑎0(𝑡1) 𝜌00(𝑡0), (2.84)

𝑅3(𝑡3, 𝑡2, 𝑡1) =
∑︁
𝑎,𝑏,𝑐,𝑑

𝜇0𝑎(𝑡1)𝜇𝑎𝑏(𝑡1 + 𝑡2)𝜇𝑏𝑐(𝑡1 + 𝑡2 + 𝑡3)𝜇𝑐0 𝜌00(𝑡0), (2.85)

and

𝑅4(𝑡3, 𝑡2, 𝑡1) =
∑︁
𝑎,𝑏,𝑐,𝑑

𝜇0𝑐(𝑡1 + 𝑡2 + 𝑡3)𝜇𝑏𝑎(𝑡1 + 𝑡2)𝜇𝑎0(𝑡1)𝜇𝑏𝑐 𝜌00(𝑡0). (2.86)
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Chapter 31

Numerical Methods2

3.1 Numerics on a Grid3

3.1.1 Discretization in Coordinate Space4

Regarding a spatial coordinate 𝑟 ∈ R with 𝑟 ∈ [𝑟0; 𝑟𝑒𝑛𝑑], one defines the increment5

𝑑𝑟 =
(𝑟𝑒𝑛𝑑 − 𝑟0)

𝑛𝑔 − 1
, (3.1)

where 𝑛𝑔 ∈ N is the number of sampling points. Discrete values of the coordinate6

are given as:7

𝑟𝑛 = 𝑑𝑟 · (𝑛− 1) + 𝑟0, (3.2)

with 𝑛 ∈ [1;𝑛𝑔]. Any function is represented by its values at the grid points 𝑟𝑛. For8

example, a wave function then assumes the discrete values Ψ𝑛(𝑟𝑛). The extension9

to several spatial degrees of freedom is straight-forward [82].10

3.1.2 Discretization in Momentum Space11

Discretizing the coordinate space wave function at (𝑛𝑔 − 1) sampling points, the12

momentum wave function representation is [34]:13
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Ψ(𝑘𝑗) =
1

2𝜋𝑛𝑔

𝑛𝑔−1∑︁
𝑚=0

Ψ(𝑟𝑚)𝑒−𝑖𝑘𝑗𝑟𝑚 . (3.3)

The momentum increment is [82]:1

𝑑𝑘 =
𝑘+ − 𝑘−
𝑛𝑔 − 1

, (3.4)

where 𝑘+ ∈ R is the maximal momentum in positive direction, and 𝑘− ∈ R is the2

maximal momentum in negative direction. Due to the periodicity of momentum3

space, the maximal momentum component is given as:4

𝑘+ =
𝜋

𝑑𝑟⏟ ⏞ 
𝑘𝑚𝑎𝑥

−𝑑𝑘, (3.5)

and the maximal momentum in negative direction is given as:5

𝑘− = − 𝜋

𝑑𝑟⏟ ⏞ 
−𝑘𝑚𝑎𝑥

. (3.6)

Inserting these two relations in eq. (3.4), yields for the incremental momentum6

expression:7

𝑑𝑘 =
2𝜋

𝑑𝑟 𝑛𝑔
. (3.7)

Finally, one can symmetrically span the discretized momentum space in the fol-8

lowing form [65]:9

𝑘𝑛 =

⎧⎪⎪⎨⎪⎪⎩
(𝑛− 1) 2𝜋

𝑛𝑔𝑑𝑟
, if 𝑛 = 1, 2, . . . ,

𝑛𝑔

2 + 1

−(𝑛𝑔 + 1− 𝑛) 2𝜋
𝑛𝑔𝑑𝑟

, if 𝑛 =
𝑛𝑔

2 + 2, . . . , 𝑛𝑔 .

(3.8)
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3.2 Short-Time Propagator1

In section 2.5, the formal solution of the time-dependent Schrödinger equation2

with time-independent hamiltonian has already been encountered, where the time-3

evolution depends on the propagator 𝑈(𝑟, 𝑡, 𝑡0):4

𝑈̂(𝑟, 𝑡, 𝑡0) = 𝑒−𝑖𝐻̂(𝑟)·(𝑡−𝑡0). (3.9)

In order to numerically evaluate this expression, a discretization of the time-5

coordinate is needed, where one uses a time-incremet of Δ𝑡 ∈ R.6

Δ𝑡 =
𝑡− 𝑡0
𝑁

. (3.10)

𝑁 ∈ N is the total number of time-steps. With this incremental description one7

can formulate the short-time propagator in exponential form [83]:8

𝑈̂ (𝑟, 𝑡0 +Δ𝑡, 𝑡0) = 𝑒−𝑖𝐻̂(𝑟)Δ𝑡. (3.11)

Consequently, the expression for eq. (3.9) is:9

𝑈̂(𝑟, 𝑡, 𝑡0) = 𝑈̂ (𝑟, 𝑡0 +𝑁(Δ𝑡), 𝑡0) =

𝑁∏︁
𝑗=1

𝑒−𝑖𝐻̂(𝑟)Δ𝑡. (3.12)

3.3 Split-Operator Method10

The short-time propagation scheme mentioned above is used. For this numerical11

method, one has to evaluate the following expression for the system’s short-time12

propagator 𝑈̂ (𝑟, 𝑡0 +𝑁(Δ𝑡), 𝑡0) approximately [84, 85]:13
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|Ψ(𝑟, 𝑡+Δ𝑡)⟩ = 𝑒−𝑖𝐻̂(𝑟)Δ𝑡|Ψ(𝑟, 𝑡)⟩. (3.13)

The hamiltonian 𝐻̂(𝑟) has derivatives of 𝑟, as has already been seen in previous1

chapters. A straight-forward numerical evaluation of these derivatives in spatial2

representation is not recommended.3

The key is to evaluate the derivative components of the hamiltonian in the momen-4

tum space. There, they appear as multiplicatives of the momentum coordinate5

𝑘. So, the challenge is to split up 𝐻̂(𝑟) into a propagation scheme that allows to6

switch between coordinate space representation and momentum space representa-7

tion.8

This form is known from section 2.4.2, and one can proceed with a splitting into9

a kinetic and a potential part of the hamiltonian:10

𝐻̂ = 𝑇 + 𝑉 . (3.14)

Then in a straight-forward scheme one would evaluate the following expression for11

the short-time propagator:12

𝑒−𝑖𝐻̂Δ𝑡 = 𝑒−𝑖𝑇Δ𝑡𝑒−𝑖𝑉Δ𝑡; (3.15)

then the expression for a short-time propagation of the wave function is:13

|Ψ(𝑟, 𝑡+Δ𝑡)⟩ = F−1 𝑒−𝑖𝑇 (𝑘)(Δ𝑡) F
{︁
𝑒−𝑖𝑉 (𝑟)(Δ𝑡)|Ψ(𝑟, 𝑡)⟩

}︁
, (3.16)

where the discrete Fourier transform F [86] is used to switch between space and14

momentum representation.15

Note that eq. (3.15) is not correct because [𝑇 , 𝑉 ] ̸= 0.16

The split-operator technique aims at reducing the error produced by the non-17

commutivity of the kinetic energy operator and potential energy operator.18

Given two arbitrary operators 𝐴 and 𝐵̂ which do not commute, the product of19
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exponents containing 𝐴 and 𝐵̂ is:1

exp𝐴 exp 𝐵̂ = 1 +𝐴+ 𝐵̂ +
𝐴2 + 2𝐴𝐵̂ + 𝐵̂2

2
+ . . . . (3.17)

This, however, is not the same expression in second order as one obtains for:2

exp
[︁
𝐴+ 𝐵̂

]︁
= 1 +𝐴+ 𝐵̂ +

𝐴2 +𝐴𝐵̂ + 𝐵̂𝐴+ 𝐵̂2

2
+ . . . . (3.18)

Therefore, one uses the following splitting. Here, derivations appear in the second3

order term already:4

exp
𝐴

2
exp 𝐵̂ exp

𝐴

2
=1 +

𝐴

2
+
𝐴2

4
+ 𝐵̂ +

𝐵̂𝐴

2
+ . . .+

𝐵̂2

2

+ . . .+
𝐴

2
+
𝐴2

4
+ . . .+

𝐴𝐵̂

2
+ . . . . (3.19)

Thus, this splitting reproduces 𝑒𝐴+𝐵̂ correctly up to second order. Using the5

splitting, the time-evolution of the wave function is now:6

|Ψ(𝑟, 𝑡+Δ𝑡)⟩ = 𝑒−𝑖
𝑉 (𝑟)
2

(Δ𝑡) F−1 𝑒−𝑖𝑇 (𝑘)(Δ𝑡) F

{︂
𝑒−𝑖

𝑉 (𝑟)
2

(Δ𝑡)|Ψ(𝑟, 𝑡)⟩
}︂
. (3.20)

For small time-steps Δ𝑡 in the propagation scheme, one can neglegt the contribu-7

tions of third and higher order.8

3.4 Coupled Propagation9

The split-operator method can also be applied for the propagation of coupled10

systems. Regarding, for example, a two-state problem with nuclear coordinate11

𝑅 ∈ R in the diabatic representation, where the hamiltonian is of the following12

form:13
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⎛⎜⎝− 1
2𝑀∇2

𝑅 + 𝑢̃00(𝑅,𝑅) 𝑢̃01(𝑅,𝑅)

𝑢̃10(𝑅,𝑅) − 1
2𝑀∇2

𝑅 + 𝑢̃11(𝑅,𝑅)

⎞⎟⎠ . (3.21)

Due to the coupling 𝑢̃01(𝑅,𝑅) = 𝑢̃10(𝑅,𝑅) the potential energy operator is not1

diagonal but the exponential operator containing the potential can be written as:2

𝑒−𝑖𝑉Δ𝑡 =

exp

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝−𝑖𝑢̃00(𝑅,𝑅)Δ𝑡 0

0 −𝑖𝑢̃11(𝑅,𝑅)Δ𝑡

⎞⎟⎠
⏟  ⏞  

−𝑖 ^̃𝑉Δ𝑡

+

⎛⎜⎝ 0 −𝑖𝑢̃01(𝑅,𝑅)Δ𝑡

−𝑖𝑢̃01(𝑅,𝑅)Δ𝑡 0

⎞⎟⎠
⏟  ⏞  

−𝑖𝑊̂Δ𝑡

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

(3.22)

The term 𝑒−𝑖𝑊̂Δ𝑡 can be evaluated as follows:3

𝑒−𝑖𝑊̂Δ𝑡 =exp

⎛⎜⎝ 0 −𝑖𝑢̃01(𝑅,𝑅)Δ𝑡

−𝑖𝑢̃01(𝑅,𝑅)Δ𝑡 0

⎞⎟⎠
=

∞∑︁
𝑛=0

(−𝑖Δ𝑡)𝑛

𝑛!
𝑊̂𝑛

=
∞∑︁
𝑛=0

(−1)𝑛(Δ𝑡)2𝑛

2𝑛!
𝑢̃01(𝑅,𝑅)

2𝑛1

− 𝑖
∞∑︁
𝑛=0

(−1)𝑛(Δ𝑡)2𝑛+1

(2𝑛+ 1)!
𝑢̃01(𝑅,𝑅)

2𝑛+1

⎛⎜⎝0 1

1 0

⎞⎟⎠
=

⎛⎜⎝ cos (𝑢̃01(𝑅,𝑅)Δ𝑡) −𝑖 sin (𝑢̃01(𝑅,𝑅)Δ𝑡)

−𝑖 sin (𝑢̃01(𝑅,𝑅)Δ𝑡) cos (𝑢̃01(𝑅,𝑅)Δ𝑡)

⎞⎟⎠ . (3.23)

According to split-operator technique, the extended propagation scheme is:4
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⎛⎜⎝|𝜒̃1(𝑅, 𝑡+Δ𝑡)⟩

|𝜒̃0(𝑅, 𝑡+Δ𝑡)⟩

⎞⎟⎠ =𝑒−𝑖
𝑊̂ (𝑅,𝑅)

4
(Δ𝑡)𝑒−𝑖

^̃𝑉 (𝑅,𝑅)
2

(Δ𝑡)𝑒−𝑖
𝑊̂ (𝑅,𝑅)

4
(Δ𝑡) F−1 𝑒−𝑖𝑇 (𝑘)(Δ𝑡) ×

F

⎧⎪⎨⎪⎩𝑒−𝑖
𝑊̂ (𝑅,𝑅)

4
(Δ𝑡)𝑒−𝑖

^̃𝑉 (𝑅,𝑅)
2

(Δ𝑡)𝑒−𝑖
𝑊̂ (𝑅,𝑅)

4
(Δ𝑡)

⎛⎜⎝|𝜒̃1(𝑅, 𝑡)⟩

|𝜒̃0(𝑅, 𝑡)⟩

⎞⎟⎠
⎫⎪⎬⎪⎭ .

(3.24)

3.5 Using Short-Time Propagation for Time-Dependent1

Perturbation Theory2

Time-dependent perturbation theory is used to describe multi-photon processes.3

The Δ𝑡 incremental time-evolution of a perturbed wave function |Ψ(𝑟, 𝑡)⟩ in a4

system hamiltonian of the form 𝐻̂(𝑟, 𝑡) = 𝐻̂0(𝑟) + 𝑊̂ (𝑡) with the time-dependent5

interaction 𝑊̂ (𝑡) and the unperturbed system hamiltonian 𝐻̂0(𝑟), can be described6

by [27, 64]:7

|Ψ(𝑟, 𝑡)⟩𝐼 =|Ψ(𝑟, 𝑡0)⟩𝐼 − 𝑖

∫︁ 𝑡

𝑡0

𝑑𝑡′𝑊̂𝐼(𝑡
′)|Ψ(𝑟, 𝑡′)⟩𝐼 , (3.25)

where 𝑊̂𝐼(𝑡
′) is the time-dependent interaction and |Ψ(𝑟, 𝑡)⟩𝐼 is the wave function8

in the interaction picture. A transformation to the Schrödinger picture and a9

description in incremental time-steps leads to:10

|Ψ(𝑟, 𝑡+Δ𝑡)⟩ =𝑒−𝑖𝐻̂0(𝑟)Δ𝑡|Ψ(𝑟, 𝑡)⟩

− 𝑖

∫︁ 𝑡+Δ𝑡

𝑡
𝑑𝑡′𝑒−𝑖𝐻̂0(𝑟)(𝑡+Δ𝑡−𝑡′)𝑊̂ (𝑡′)|Ψ(𝑟, 𝑡′)⟩. (3.26)

The time-increment Δ𝑡 is adjusted to the short-time propagation time-step. As11

far as this incremental step is short, one can approximate the integral expression12
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by a left Rieman sum:1

|Ψ(𝑟, 𝑡+Δ𝑡)⟩ =𝑒−𝑖𝐻̂0(𝑟)Δ𝑡|Ψ(𝑟, 𝑡)⟩ − 𝑖(Δ𝑡)𝑊̂ (𝑡+Δ𝑡)|Ψ(𝑟, 𝑡+Δ𝑡)⟩. (3.27)

This recursive equation is evaluated iteratively. Starting from a temporal un-2

perturbed system, one can define this as |Ψ(0)(𝑟, 𝑡)⟩ which means zeroth-order3

perturbed wave function. Higher orders of perturbation are then obtained by iter-4

atively applying eq. (3.27). So for the 𝑛th-order, one uses the expression [87, 88]:5

|Ψ(𝑛)(𝑟, 𝑡+Δ𝑡)⟩ =𝑒−𝑖𝐻̂0(𝑟)Δ𝑡|Ψ(𝑛)(𝑟, 𝑡)⟩

− 𝑖(Δ𝑡)𝑊̂ (𝑡+Δ𝑡)|Ψ(𝑛−1)(𝑟, 𝑡+Δ𝑡)⟩. (3.28)

3.6 Imaginary-Time Propagation6

In section 2.4.2, the solution of the stationary Schrödinger equation was discussed.7

Here a numerical method for the determination of the eigenfunctions of the hamil-8

tonian 𝐻̂(𝑟⃗, 𝑅⃗) with screened Coulomb potentials, is given [38].9

Remembering the short-time evolution of an arbitrary wave function |𝜓(𝑟⃗, 𝑅⃗, 𝑡)⟩ ∈10

H from previous sections,11

|𝜓(𝑟⃗, 𝑅⃗, 𝑡+ 𝑑𝑡)⟩ = 𝑒−𝑖𝐻̂(𝑟⃗,𝑅⃗)𝑑𝑡|𝜓(𝑟⃗, 𝑅⃗, 𝑡)⟩, (3.29)

a substitution of 𝑑𝑡 = −𝑖𝑑𝜏 leads to:12

|𝜓(𝑟⃗, 𝑅⃗, 𝜏 + 𝑑𝜏)⟩ = |𝜓(𝑟⃗, 𝑅⃗, 𝜏)⟩ 𝑒−𝐻̂(𝑟⃗,𝑅⃗)𝑑𝜏 , (3.30)

which is the imaginary-time evolution of the wave function. Expanding the wave13

function in terms of the eigenfunctions of the hamiltonian leads to:14
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|𝜓(𝑟⃗, 𝑅⃗, 𝜏 + 𝑑𝜏)⟩ =
∑︁
𝑛

𝑒−𝐸𝑛𝑑𝜏 𝑐𝑛(𝜏)|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩. (3.31)

Thus, different terms are exponentially damped differently. As far as the ground1

state has the lowest eigenenergy, this is the only state which is left after the2

eigenenergy has converged. The duration of the imaginary propagation is specified3

via a threshold energy, which is the energy difference between two imaginary-time4

steps because the wave function’s energy at time 𝜏 , is given by:5

𝐸(𝜏) = − 1

2 𝑑𝜏
ln

(︃
⟨𝜓(𝑟⃗, 𝑅⃗, 𝜏 + 𝑑𝜏) |𝜓(𝑟⃗, 𝑅⃗, 𝜏 + 𝑑𝜏)⟩𝑟⃗,𝑅⃗

⟨𝜓(𝑟⃗, 𝑅⃗, 𝜏) |𝜓(𝑟⃗, 𝑅⃗, 𝜏)⟩𝑟⃗,𝑅⃗

)︃
. (3.32)

For long times one converges to the ground state energy for an initial wave func-6

tion which should contain all relevant symmetries and should at least contain the7

ground state.8

lim
𝜏→∞

𝐸(𝜏) = 𝐸0. (3.33)

It should be noticed that because the imaginary time-evolution is not norm con-9

serving, thus, one is forced to renormalize the wave function after each imaginary-10

time step. Higher eigenfunctions can be obtained by projecting out lower eigen-11

functions |𝜙𝑛(𝑟⃗, 𝑅⃗)⟩ already found during the damping procedure.12

|𝜙𝑚(𝑟⃗, 𝑅⃗)⟩ = lim
𝜏→∞

{︃
|𝜓(𝑟⃗, 𝑅⃗, 𝜏)⟩ −

𝑚−1∑︁
𝑛=1

⟨𝜙𝑛(𝑟⃗, 𝑅⃗) |𝜓(𝑟⃗, 𝑅⃗, 𝜏)⟩|𝜙𝑛(𝑟⃗, 𝑅⃗)⟩

}︃
. (3.34)

3.7 Velocity Verlet Algorithm13

In section 2.6, classical trajectories were introduced. These trajectories are prop-14

agated numerically by the Velocity Verlet Algorithm [89, 90]. According to the15

classical Newtonian equations of motion, the spatial coordinate can be obtained16

for a small time-step Δ𝑡 by:17
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𝑥(𝑡+Δ𝑡) = 𝑥(𝑡) + 𝑣(𝑡)Δ𝑡+
1

2
(Δ𝑡)2𝑎(𝑡), (3.35)

where the trajectories velocity at time 𝑡 is given as 𝑣(𝑡). The acceleration 𝑎(𝑡)1

also determines the spatial coordinate. Parallelly, the velocity is obtained by the2

acceleration:3

𝑣(𝑡+Δ𝑡) = 𝑣(𝑡) +
𝑎(𝑡) + 𝑎(𝑡+Δ𝑡)

2
Δ𝑡. (3.36)
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Chapter 41

Adiabatic and Non-Adiabatic2

Dynamics within the Shin-Metiu3

Model4

The one-dimensional Shin-Metiu model has been used to characterize non-adiabatic5

quantum dynamics [21, 22]. With the help of this model, coupled and uncoupled6

electron-nuclear wave-packet motion was investigated [91]. Kinetic coupling el-7

ements were calculated, and their impact on the quantum dynamical properties8

of the system in the weak and strong coupling case was examined. In additional9

studies, the case of an intermediate coupling case was considered. The dynamical10

properties were characterized by photoelectron spectra documenting that this ob-11

servable is able to monitor coupled electron-nuclear dynamics [66, 92, 93].12

Based on this work, the investigation of the Shin-Metiu model is continued here13

in order to identify the basics of coupled electron-nuclear motion. The coupling14

strongly influences the spectral properties of the system [91]. Therefore, in the15

following the eigenfunctions in the weak coupling case are compared to the eigen-16

functions in the strong coupling case. On the gathered indications of an alter-17

native state representation, a diabatization is performed in the case of strong18

non-adiabatic coupling. After this, two-dimensional spectroscopy, which is known19
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to reveal coupled dynamics [67], is used to further distinguish the two different1

coupling cases. Furthermore, a comparison of classical and quantum dynamics will2

be presented. Finally, the electron flux within the weak coupling case is examined.3

4.1 The One-Dimensional Shin-Metiu Model4

The particle configuration of the Shin-Metiu model [21, 22] is depicted in fig. 4-1.5

It is a 𝐻2+
3 system and consists of two fixed protons, a mobile proton and a mobile6

electron. The coordinate of the mobile proton is denoted as 𝑅𝑥, and the coordinate7

of the electron is denoted as 𝑥. Both are able to move in one dimension.8

-6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6

Rxx

-L/2 +L/2

p+ p+

fixed fixed

[Å]

p+

e-

Figure 4-1: One-Dimensional Shin-Metiu Model. The model consists of two
fixed protons (𝑝+) on the left and the right at −𝐿

2 = −5.0 Å and 𝐿
2 = 5.0 Å. The

two internal degrees of freedom are defined by 𝑥 and 𝑅𝑥 for the electron and the
mobile-proton coordinate.

This model describes a one-dimensional quantum system with two internal degrees9

of freedom (𝑥,𝑅𝑥). The model hamiltonian 𝐻̂ (𝑥,𝑅𝑥) is given by:10

𝐻̂ (𝑥,𝑅𝑥) =− 1

2𝑀

𝜕2

𝜕𝑅2
𝑥

− 1

2

𝜕2

𝜕𝑥2
+ 𝑉 (𝑥,𝑅𝑥), (4.1)

with the proton mass 𝑀 and11
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𝑉 (𝑥,𝑅𝑥) = +
1⃒⃒

𝐿
2 −𝑅𝑥

⃒⃒ + 1⃒⃒
𝐿
2 +𝑅𝑥

⃒⃒ − erf
(︁
|𝐿/2−𝑥|

𝑅𝑓

)︁
⃒⃒
𝐿
2 − 𝑥

⃒⃒ −
erf
(︁
|𝐿/2+𝑥|

𝑅𝑓

)︁
⃒⃒
𝐿
2 + 𝑥

⃒⃒
−

erf
(︁
|𝑅𝑥−𝑥|

𝑅𝑐

)︁
|𝑅𝑥 − 𝑥|

+ 𝐸𝑜𝑓𝑓 . (4.2)

This hamiltonian consists of the kinetic operators for the mobile proton and the1

electron and screened and unscreened Coulomb-interactions between the particles.2

The screened Coulomb potentials [41, 42] are of the form 𝑉 ±(𝑞):3

𝑉 ±(𝑞) = ±
erf
(︁
|𝑞|
𝐴

)︁
|𝑞|

, (4.3)

where 𝑞 is an arbitrary one-dimensional coordinate, and 𝐴 is an arbitrary shield-4

ing parameter. The sign of the expression determines whether the potential is5

attractive (−) or repulsive (+). These potentials have the property to screen the6

attraction between the electron and the protons which can be followed in fig. 4-2.7

-2.5
-2

-1.5
-1

-0.5
 0

-4.0 -2.0 0.0 2.0 4.0

E 
[e

V]

(Rx -x) [Å]

adiabatic
diabatic
mixed

Figure 4-2: Screened Coulomb Potentials. Three different screened Coulomb
potentials are schematically sketched. A Coulomb potential is indicated by the
dashed yellow curve.

The screening parameter 𝑅𝑓 controls the attraction between the fixed protons, at8

−𝐿
2 = −5.0 Å and 𝐿

2 = 5.0 Å, and the electron; at the same time 𝑅𝑐 controls the9
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attraction between the electron and the mobile proton. The energy 𝐸𝑜𝑓𝑓 shifts1

the minimum of the potential to the origin of the energy scale and has a value of2

11.58 eV in the weak coupling case and 10.01 eV in the strong coupling case.3

The model parameters are summarized in table 4.1. It is distinguished between4

the weak coupling case with 𝑅𝑐 = 1.5 Å and strong coupling case with 𝑅𝑐 = 2.55

Å. For the particle distances and the shielding parameters, the units are changed6

to Å. For the energy, the unit is set to 𝑒𝑉 .7

Table 4.1: Model Parameters.

symbol: description: value
[𝑅𝑥𝑚𝑖𝑛 ;𝑅𝑥𝑚𝑎𝑥 ] ∈ R range in 𝑅𝑥-space [-6;6]Å
[𝑥𝑚𝑖𝑛;𝑥𝑚𝑎𝑥] ∈ R range in 𝑥-space [-50;50]Å
𝑁𝑅 ∈ N grid points in 𝑅𝑥-direction (𝑝+) 256
𝑁𝑥 ∈ N grid points in 𝑥-direction (𝑒−) 256
𝑀 ∈ R proton mass 1836.15 a.u.
𝛿𝜏 ∈ R time-step ITP 0.5 a.u.
𝑅𝑓 ∈ R shielding: 𝑒− and 𝑝+𝑓𝑖𝑥𝑒𝑑 1.5 Å

For the two coupling cases, the potential 𝑉 (𝑥,𝑅𝑥) is depicted in fig. 4-3. In8

the left panel the potential for the weak coupling case is given as a contour plot.9

Characteristic for this potential are two minima which are connected by a reaction10

path along the diagonal of the coordinate axes where the reaction path exhibits a11

small barrier. The potential for the strong coupling case is depicted in the right12

panel of fig. 4-3 and exhibits two separate minima being elongated parallely to the13

𝑅𝑥-axis.14
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Figure 4-3: Potential for the Weak and Strong Coupling Case. The po-
tential 𝑉 (𝑥,𝑅𝑥) exhibits for the weak coupling two minima at approximately
(𝑥 = −3.5, 𝑅𝑥 = −2.5) Å and (𝑥 = +3.5, 𝑅𝑥 = +2.5) Å and a diagonally
elongated valley connecting both minima. In case of strong coupling, the two min-
ima are approximately at (𝑥 = −4.5, 𝑅𝑥 = −1.8) Å and (𝑥 = +4.5, 𝑅𝑥 = +1.8)
Å. The two minima are further apart from each other compared to the weak cou-
pling case [91]. Energetically, the lines are separated by 0.05 eV. The first line
corresponds to a value of 0.01 eV.

4.2 Eigenfunctions1

The eigenfunctions are regarded for weak and strong coupling. In what follows2

the eigenfunctions are obtained by first regarding the adiabatic eigenfunctions and3

the corresponding adiabatic potentials. This aspect has already been investigated4

by M. Erdmann and M. Falge [66, 91], but it is shortly given here for clarity and5

completeness in order to justify the results of the exact eigenfunctions.6
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4.2.1 Weak Coupling1

4.2.1.1 Adiabatic Electronic Eigenfunctions in the Weak Coupling Case2

For this study, the adiabatic representation in section 2.4.2.1 is applied. First,3

the solutions of the electronic Schrödinger equation are regarded. Solving the4

electronic Schrödinger equation5

[︂
−1

2

𝑑2

𝑑𝑥2
+ 𝑉 (𝑥,𝑅𝑥)

]︂
|𝜑𝑛(𝑥;𝑅𝑥)⟩ = 𝑢𝑛𝑛(𝑅𝑥)|𝜑𝑛(𝑥;𝑅𝑥)⟩, (4.4)

real adiabatic electronic eigenfunctions |𝜑𝑛(𝑥;𝑅𝑥)⟩ are obtained which are para-6

metrically dependent on 𝑅𝑥.7

The first two adiabatic electronic eigenfunctions |𝜑𝑛(𝑥;𝑅𝑥)⟩ with 𝑛 = 0, 1 are8

shown in fig. 4-4.9
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R
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Å]

(a)

ϕ0(x;Rx)
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(b)

ϕ1(x;Rx)

Figure 4-4: Adiabatic Electronic Eigenfunctions of the Weak Coupling
Case. (a) corresponds to the adiabatic ground state and (b) is the adiabatic first
excited state. The black color shows positive values, and the blue color shows
negative values of the wave function.

In the left panel, the ground state adiabatic electronic eigenfunction is depicted.10
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It has no nodal structure in 𝑥 and evolves almost constantly in shape along the nu-1

clear coordinate 𝑅𝑥. Additionally, the localization of the electronic wave function2

moves diagonally, along the 𝑅𝑥 parameter, from negative to positive values of 𝑥.3

This describes the shift of the electron probability density with the displacement4

of the proton and suggests the non-adiabatic coupling elements (NACTs) from the5

adiabatic electronic ground state |𝜑0(𝑥;𝑅𝑥)⟩ to other adiabatic states |𝜑𝑛(𝑥;𝑅𝑥)⟩6

to be small. As a result, the ground state decouples from the other adiabatic7

electronic excited states.8

The first excited state |𝜑1(𝑥;𝑅𝑥)⟩ has a clear nodal structure along the 𝑥-coordinate.9

In 𝑅𝑥-direction, changes in the shape of the electronic eigenfunction are seen, in-10

dicating that this adiabtic electronic eigenfunction is coupled to the next higher11

adiabatic state.12

Here, in the following, only the two lowest adiabatic electronic states with 𝑛 = 0, 113

are regarded. An arrangement of the corresponding adiabatic potentials 𝑢00(𝑅𝑥)14

and 𝑢11(𝑅𝑥) is given in fig. 4-5.15

 1
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Figure 4-5: Adiabatic Potentials - Weak Coupling Case. The black curve
represents the adiabatic electronic ground state, and the blue curve represents the
adiabatic electronic excited state. (I), (II) and (III) mark the energetic regions
where the character of the nuclear component of the exact eigenfunctions changes.
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The energetic difference between 𝑢00(𝑅𝑥) and 𝑢11(𝑅𝑥) exemplifies that these elec-1

tronic eigenfunctions are weakly coupled to each other, see here the following2

equation for the non-adiabatic coupling element [94]:3

𝜏10(𝑅𝑥) =
⟨𝜑1(𝑥;𝑅𝑥) | ∇𝑅𝑥𝐻̂𝑒𝑙(𝑥;𝑅𝑥) |𝜑0(𝑥;𝑅𝑥)⟩

|𝑢11(𝑅𝑥)− 𝑢00(𝑅𝑥)|
. (4.5)

This theorem suggests, for energetically well separated adiabatic electronic eigen-4

states, the denominator of eq. (4.5) to become large, and the coupling elements to5

become accordingly small.6

Besides eq. (4.5), the NACTs can be explicitly calculated. They are shown in7

fig. 4-6. These non-adiabatic coupling elements are indeed small in contrast to8

the strong coupling case, which is discussed in the next section. These findings9

confirm eq. (4.5).10
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Figure 4-6: Non-Adiabatic Coupling Elements of the Weak Coupling
Case. Depicted are the non-adiabatic coupling elements which are negligible as
they take up only small values compared to the strong coupling case which will be
seen later on. Note that curve (d) is divided by a factor of 10.

The total hamiltonian 𝐻̂(𝑥,𝑅𝑥) can be written in the adiabatic representation11

[39]:12
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𝐻̂𝑛𝑛,𝑎𝑑𝑖(𝑅𝑥;𝑅𝑥) = ⟨𝜑𝑛(𝑥;𝑅𝑥) | 𝐻̂(𝑥,𝑅𝑥) |𝜑𝑛(𝑥;𝑅𝑥)⟩𝑥. (4.6)

Writing the hamiltonian of the subsystem in the adiabtic representation of the two1

adiabatic electronic eigenstates |𝜑𝑛(𝑥;𝑅𝑥)⟩, with 𝑛 = 0, 1, yields:2

⎛⎜⎝𝐻̂00,𝑎𝑑𝑖(𝑅𝑥;𝑅𝑥) 𝐻̂01,𝑎𝑑𝑖(𝑅𝑥;𝑅𝑥)

𝐻̂10,𝑎𝑑𝑖(𝑅𝑥;𝑅𝑥) 𝐻̂11,𝑎𝑑𝑖(𝑅𝑥;𝑅𝑥)

⎞⎟⎠ =

⎛⎜⎝ 1
2𝑀 (𝜏

(2)
00 (𝑅𝑥)−∇2

𝑅𝑥
) + 𝑢00(𝑅𝑥)

1
2𝑀 𝜏

(2)
01 (𝑅𝑥) +

1
𝑀 𝜏01∇𝑅𝑥

1
2𝑀 𝜏

(2)
10 (𝑅𝑥) +

1
𝑀 𝜏10∇𝑅𝑥

1
2𝑀 (𝜏

(2)
11 (𝑅𝑥)−∇2

𝑅𝑥
) + 𝑢11(𝑅𝑥)

⎞⎟⎠ . (4.7)

Neglecting the kinetic-coupling elements 𝜏 (2)𝑛𝑛 (𝑅𝑥), 𝜏
(2)
𝑛𝑚(𝑅𝑥) and 𝜏𝑛𝑚(𝑅𝑥) with3

𝑛,𝑚 = 0, 1, yields:4

⎛⎜⎝− 1
2𝑀∇2

𝑅𝑥
+ 𝑢00(𝑅𝑥) 0

0 − 1
2𝑀∇2

𝑅𝑥
+ 𝑢11(𝑅𝑥)

⎞⎟⎠
⎛⎜⎝|𝜒0(𝑅𝑥)⟩

|𝜒1(𝑅𝑥)⟩

⎞⎟⎠ =

⎛⎜⎝𝐸 0

0 𝐸

⎞⎟⎠
⎛⎜⎝|𝜒0(𝑅𝑥)⟩

|𝜒1(𝑅𝑥)⟩

⎞⎟⎠ . (4.8)

In this case, the Born-Oppenheimer adiabatic approximation [43, 44] is valid for5

treating the ground state as a subsystem. For the adiabatic electronic ground6

state, the time-independent Schrödinger equation can be approximated as:7

[︂
− 1

2𝑀
∇2

𝑅𝑥
+ 𝑢00(𝑅𝑥)

]︂
|𝜒0(𝑅𝑥)⟩ = 𝐸|𝜒0(𝑅𝑥)⟩, (4.9)

and the adiabatic first excited state can be approximated as:8
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[︂
− 1

2𝑀
∇2

𝑅𝑥
+ 𝑢11(𝑅𝑥)

]︂
|𝜒1(𝑅𝑥)⟩ = 𝐸|𝜒1(𝑅𝑥)⟩. (4.10)

4.2.1.2 Eigenfunctions in the Weak Coupling Case1

Regarding the division of the total hamiltonian in the adiabatic representation2

with the separation of the adiabatic ground state, eigenfunctions are expected3

which have a pure electronic character from either the adiabatic ground state or4

the adiabatic excited state. The eigenfunctions of three different energetic regions5

(I), (II) and (III), shown in the adiabatic potential in fig. 4-5, are studied. (I) as6

the energetic region of a double minimum potential, (II) as the energetic region7

above the double minimum barrier and finally (III) as the energetic region where8

a new electronic-eigenstate characteristic begins.9

4.2.1.3 (I) - Double Minimum Potential10

The adiabatic electronic ground state is weakly coupled to other electronic states,11

therefore, a specific quantum number for the electronic state is chosen. Taking the12

eigenfunctions in the adiabatic representation, the electronic quantum number for13

the electronic ground state is 𝑛 = 0 and 𝑚 is selected for the quantum number of14

nuclear wave function components:15

|𝜓0,𝑚(𝑥,𝑅𝑥)⟩ = |𝜑0(𝑥;𝑅𝑥)⟩ · |𝜒0,𝑚(𝑅𝑥)⟩. (4.11)

The exact eigenfunctions for values of 𝑚 are depicted in fig. 4-7, and the cor-16

respondent reference of quantum number and panels of the figure are found in17

table 4.2.18
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Table 4.2: Nuclear Quantum Numbers for Exact Eigenfunctions.

panel: (a) (b) (c) (d) (e) (f) (g) (h) (i)
𝑚: 0 1 2 3 4 5 6 7 8
𝐸0𝑚[𝑒𝑉 ]: 1.649 1.649 1.721 1.721 1.793 1.793 1.863 1.863 1.933

In fig. 4-7 panel (a), the lowest vibrational and electronic ground state can be found1

with 𝑛 = 0 and 𝑚 = 0. There, the exact eigenfunction exhibits two amplitudes2

with opposite phase. The amplitudes appear at each minimum of the double3

minimum potential as expected, see fig. 4-3.4
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Figure 4-7: Exact Eigenfunctions |𝜓𝑛𝑚(𝑥,𝑅𝑥)⟩ for the Double Minimum
Region (I). The black color shows positive values, and the blue color shows
negative values of the wave function. Quantum numbers for the eigenfunctions
are assigned in table 4.2.
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For higher quantum numbers 𝑚, the extend of the wave function |𝜓0,𝑚(𝑥,𝑅𝑥)⟩ is1

diagonal in coordinate space. This is in accordance with the development of the2

adiabatic electronic ground state function |𝜑0(𝑥;𝑅𝑥)⟩, thus, it is in accordance3

with the product ansatz eq. (4.11).4

4.2.1.4 (II) - Above the Double Minimum Barrier5

In fig. 4-8, the eigenfunctions in the energetic region of the transition from the6

double well to the region energetically above the barrier are depicted.7
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Figure 4-8: Exact Eigenfunctions for the Energetic Region (II). The black
color shows positive values, and the blue color shows negative values of the wave
function. Quantum numbers for the eigenfunctions are assigned in table 4.3.
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Table 4.3 includes the corresponding quantum number with 𝑚 = 29 highlighted,1

as this corresponds to the exact eigenfunction, which is the first to be spread all2

over both minima of the potential (see fig. 4-3 left panel), connecting both minima.3

Table 4.3: Nuclear Quantum Numbers for Exact Eigenfunctions.

panel: (a) (b) (c) (d) (e) (f) (g) (h) (i)
𝑚: 22 23 24 25 26 27 28 29 30
𝐸0𝑚[𝑒𝑉 ]: 2.374 2.374 2.427 2.427 2.471 2.477 2.507 2.526 2.552

Reaching from 𝑚 = 22 to 𝑚 = 28, the twin peaks of the lower eigenfunctions4

are evolving towards each other and finally are connected to each other in case of5

𝑚 = 29. From this quantum number onwards, the eigenfunctions of the electronic6

ground state are spread over both minima.7

4.2.1.5 Energetic Region (III)8

As 𝐸0𝑚 approaches the energetic region of the adiabatic potential 𝑢11(𝑅𝑥) around9

3.70 eV, one expects an influence on the eigenfunctions.10

This can be seen by the eigenfunction |𝜓1,0(𝑥,𝑅𝑥)⟩ in fig. 4-9 (b), which has an11

additional nodal structure along the 𝑥-coordinate and an eigenenergy of 3.70812

eV. Simultaneously, the nodal structure of this eigenfunction in the 𝑅𝑥-coordinate13

repeats from the very first time with 𝑚 = 0. Then, |𝜓1,0(𝑥,𝑅𝑥)⟩ is the vibrational14

ground state of the first excited electronic state. From now on, the high-level15

excited vibrational states lie within the same energy range as the further excited16

vibrational states of the first excited electronic state. This can be seen by looking17

at the panels (e) to (i) in fig. 4-9.18
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Figure 4-9: Exact Eigenfunctions for First Excited Adiabatic Electronic
Eigenstate in Region (III). The black color shows positive values, and the
blue color shows negative values of the wave function. Quantum numbers for the
eigenfunctions are assigned in table 4.4.

The assigned quantum numbers to the eigenfunctions in fig. 4-9 can be drawn from1

table 4.42
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Table 4.4: Nuclear Quantum Numbers for Exact Eigenfunctions.

panel: (a) (b) (c) (d) (e) (f) (g) (h) (i)
𝑛: 0 1 mix mix 1 0 1 1 0
𝑚: 60 0 – – 2 62 3 4 63
𝐸𝑛𝑚[𝑒𝑉 ]: 3.708 3.709 3.709 3.754 3.757 3.761 3.795 3.806 3.817

A special case is presented in panel (c) and (d) table 4.4. Both panels depict a1

superposition of eigenfunctions, which have clearly different electronic and vibra-2

tional character. This is due to non-adiabatic coupling elements, which are weak3

in this case study but still apparent in some manner. As a result quantum numbers4

can not be assigned in this case.5

4.2.2 Strong Coupling6

4.2.2.1 Adiabatic Electronic Eigenfunctions in the Strong Coupling7

Case8

To realize the situation of a strong coupling case, the shielding parameter is set9

to 𝑅𝑐 = 2.5 Å, which is larger than in the weak coupling case, where a value of10

𝑅𝑐 = 1.5 Å was used. This results in a decrease of the Coulomb interaction between11

the electron and the mobile proton. For consistency, all the other parameters are12

kept as in the weak coupling case, see table 4.1.13

The first two adiabatic electronic eigenfunctions |𝜑𝑛(𝑥;𝑅𝑥)⟩ with 𝑛 = 0, 1 are14

shown in fig. 4-10. There a schematic separation of the wave function into four15

areas (𝛼),(𝛽),(𝛾) and (𝛿) in coordinate space is made which serves to identify the16

different characteristic of the adiabtic wave function, see below.17

53



-5  0  5
x [Å]

-2

 0

 2

R
x [

Å]

(α) (β)

(γ) (δ)

ϕ0(x;Rx)
-5  0  5

 

 

 
(α) (β)

(γ) (δ)

ϕ1(x;Rx)

Figure 4-10: Adiabatic Electronic Eigenfunctions of the Strong Coupling
Case. The left panel corresponds to the adiabatic electronic ground state, and the
right panel is the adiabatic electronic first excited state. The black color shows
positive values, and the blue color shows negative values of the wave function.

The first two adiabatic electronic eigenfunctions exhibit a structure different from1

the ones in the weak coupling case. Here, the adiabatic electronic ground state2

|𝜑0(𝑥;𝑅𝑥)⟩ exhibits an abrupt change along the 𝑅𝑥-coordinate at its value of3

𝑅𝑥 = 0.0 Å. The same is seen in the adiabatic first excited state. This indicates4

that the two adiabatic electronic eigenfunctions are strongly coupled.5

In the adiabatic ground state wave function, regarding the x-coordinate, this6

change separates the eigenfunction into two parts. One being unchanged upon7

variation of 𝑅𝑥 in the region (𝛽), in which the center of the electronic wave func-8

tion is located at approximately 𝑥 = +5.0 Å; the other part is unchanged in the9

region (𝛾), where the center of the electronic wave function is located at approxi-10

mately 𝑥 = −5.0 Å.11

A similar separation is found in the first excited adiabatic electronic eigenfunction12

|𝜑1(𝑥;𝑅𝑥)⟩ depicted in fig. 4-10, right panel. There are again two parts being se-13

parated by an abrupt change in the wave function. Region (𝛿), in which the center14
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of the electronic wave function is located at approximately 𝑥 = +5.0 Å, and region1

(𝛼), where the center of the electronic wave function is located at approximately2

𝑥 = −5.0 Å, but with a negative amplitude.3

Regarding the adiabatic excited state |𝜑1(𝑥;𝑅𝑥)⟩ region (𝛼) is just the extension4

of the region (𝛾) in the adiabatic ground state |𝜑0(𝑥;𝑅𝑥)⟩. The same can be said5

about the region (𝛽) and (𝛿) in both eigenfunctions. This is an indication for6

another state representation in which the shape of the electronic eigenfunction is7

constant.8

In what follows only the two lowest adiabatic electronic eigenstates |𝜑𝑛(𝑥;𝑅𝑥)⟩ are9

regarded, with 𝑛 = 0, 1. The potential curves 𝑢00(𝑅𝑥) and 𝑢11(𝑅𝑥) are given in10

fig. 4-11. The vanishing energetic difference between 𝑢00(𝑅𝑥) and 𝑢11(𝑅𝑥) also in-11

dicates that the two adiabatic electronic eigenfunctions are strongly coupled with12

each other, see eq. (4.5).13
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Figure 4-11: Adiabatic Potentials - Strong Coupling Case. The black curve
represents the electronic ground state, and the blue curve represents the electronic
excited state. (I) and (II) mark the energetic regions where the progression of the
nuclear component of the exact eigenfunctions changes.

The two potentials exhibit an avoided crossing at 𝑅𝑥 = 0.0 Å. Confirming eq. (4.5),14
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additionally the numerically calculated NACTs for the coupled case are depicted1

in fig. 4-12. Taking large values, they are localized at the origin of the coordinate2

system with 𝑅𝑥 = 0.0 Å in an especially narrow interval around the avoided3

crossing.4
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Figure 4-12: Non-Adiabatic Coupling Elements (NACTs) - Strong Cou-
pling Case. The NACTs assume high values in the coupling region. Note that
curve (c) is multiplied by a factor of 100.

4.2.2.2 Eigenfunctions in the Strong Coupling Case5

4.2.2.3 (I) - Double Well Region6

As the non-adiabatic coupling elements are localized at the vicinity of the origin,7

the exact eigenfunctions are expected to have no mixed electronic character when8

they are separated from this region. The coupling is localized to the interval9

𝑅𝑥 = [−0.2; 0.2] Å, see fig. 4-12. As can be seen in fig. 4-13, the eigenfunctions10

raising in the double minimum region of the potential for low eigenenergy values11

resemble the ones of the double minimum potential in the weak coupling case.12

Therefore, the same product ansatz as for the weak coupling case is applied, see13

eq. (4.11). In table 4.5, the quantum numbers for the vibrational progression14
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are listed to the corresponding eigenfunctions |𝜓0,𝑚(𝑥,𝑅𝑥)⟩ in fig. 4-13 within the1

double minimum region (I).2

Table 4.5: Nuclear Quantum Numbers for Exact Eigenfunctions.

panel: (a) (b) (c) (d) (e) (f) (g) (h) (i)
𝑚: 0 1 2 3 4 5 6 7 8
𝐸0𝑚[𝑒𝑉 ]: 1.877 1.877 1.932 1.932 1.987 1.987 2.042 2.042 2.097

Regarding the eigenfunctions in fig. 4-13, the extension of the eigenfunctions for3

raising 𝑚 values is vertical in 𝑥-direction. This is in contrast to the double mini-4

mum region of the weak coupling case in section 4.2.1.3. There, the extension was5

diagonal in the 𝑅𝑥-𝑥 plane.6
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Figure 4-13: Exact Eigenfunctions for the Double Minimum Region (I).
The black color shows positive values, and the blue color shows negative values
of the wave function. Quantum numbers for the eigenfunctions are assigned in
table 4.5.

4.2.2.4 (II) - Coupling Region1

In the coupling region 𝑅𝑥 = [−0.2; 0.2] Å, the adiabatic electronic ground state2

|𝜑0(𝑥;𝑅𝑥)⟩ and the electronic excited state |𝜑1(𝑥;𝑅𝑥)⟩ are coupled. As a result,3

eigenfunctions which are a composition of the two mentioned adiabatic eigenfunc-4

tions with a nuclear vibrational progression |𝜉𝑘(𝑅𝑥)⟩ and |𝜉𝑙(𝑅𝑥)⟩ are present.5

|𝜓𝑛𝑚(𝑥,𝑅𝑥)⟩ = 𝑁 [𝑐0 · |𝜑0(𝑥;𝑅𝑥)⟩|𝜉𝑘(𝑅𝑥)⟩+ 𝑐1 · |𝜑1(𝑥;𝑅𝑥)⟩|𝜉𝑙(𝑅𝑥)⟩] . (4.12)
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Here, 𝑐0 and 𝑐1 are coefficients and 𝑁 is a normalization constant. This mixture1

of two adiabatic electronic states is assigned as 𝑚𝑖𝑥 for the quantum number 𝑛 in2

|𝜓𝑛𝑚(𝑥,𝑅𝑥)⟩ in table 4.6. 𝑚 is the vibrational quantum number continued from3

lower eigenfunctions.4

Table 4.6: Nuclear Quantum Numbers for Exact Eigenfunctions.

panel: (a) (b) (c) (d) (e) (f) (g) (h) (i)
𝑛: mix mix mix mix mix mix mix mix mix
𝑚: 72 73 74 75 76 77 78 79 80
𝐸𝑛𝑚[𝑒𝑉 ]: 3.782 3.833 3.838 3.889 3.893 3.945 3.948 4.002 4.003

The eigenfunctions, see fig. 4-14, show at 𝑥 = −5.0 Å a spreading of the wave5

function over the interval 𝑅𝑥 = [−4.5; 2.0] Å. The same can be seen in the right6

branch at 𝑥 = +5.0 Å, with a spreading over the interval 𝑅𝑥 = [−2.0;+4.5] Å.7

This indicates that an alternative description of the eigenfunctions is possible,8

where a linear combination of 𝑅𝑥-independent electronic eigenfunctions |𝜑0(𝑥)⟩9

and |𝜑1(𝑥)⟩ is used for representation. These two electronic functions describe the10

left and the right branch of the exact eigenfunctions centered at 𝑥 ≈ −5.0 Å and11

𝑥 ≈ +5.0 Å.12

|𝜓𝑛𝑚(𝑥,𝑅𝑥)⟩ = 𝑁
[︁
𝑐0𝑝|𝜑0(𝑥)⟩ · |𝜒𝑝(𝑅𝑥)⟩+ 𝑐1𝑞|𝜑1(𝑥)⟩ · |𝜒𝑞(𝑅𝑥)⟩

]︁
. (4.13)

|𝜒𝑝(𝑅𝑥)⟩ and |𝜒𝑞(𝑅𝑥)⟩ correspond to the vibrational progression on the electronic13

eigenfunctions, where 𝑞, 𝑝 ∈ N are vibrational quantum numbers. As eq. (4.13)14

is a linear combination with coefficients, 𝑐0𝑝 and 𝑐1𝑞 are assigned as weightening15

coefficients. In the next section this ansatz of constant electronic eigenfunctions16

is used for a diabatization.17
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Figure 4-14: Exact Eigenfunctions for the Coupling Region (II). The black
color shows positive values, and the blue color shows negative values of the wave
function. Quantum numbers for the eigenfunctions are assigned in table 4.6.

Concluding Remarks1

Based on former work, it is shown that the weak and strong coupling case of the2

Shin-Metiu model exhibit strong differences concerning non-adiabatic coupling ele-3

ments, adiabatic potentials and adiabatic electronic eigenfunctions. In particular4

the difference among the exact eigenfunctions of the weak and strong coupling5

situation is illustrated.6

In the weak coupling case, the eigenfunction can be represented within an adia-7

batic product ansatz. In contrast to the strong coupling situation, where a strong8
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coupling between the adiabatic electronic eigenstates is present, this leads to eigen-1

functions which are a linear combination of different adiabatic states with a vibra-2

tional progression. Furthermore, first indications for an alternative representation3

containing electronic eigenfunctions with constant electronic character are seen.4

In what follows a diabatization is carried out in the strong coupling case in order5

to justify the alternative state representation.6
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4.3 Diabatization Applied to the Strong Coupling Case1

In what follows, diabatic electronic eigenfunctions are constructed from the adia-2

batic electronic eigenfunctions. The expansion of the total wave function in terms3

of the diabatic basis leads to a nuclear dynamics in the diabatic framework, which4

is compared to the dynamics obtained from a full-dimensional propagation.5

4.3.1 Definition of the Diabatic Basis Set6

Again, the electronic Schrödinger equation for the adiabatic electronic eigenfunc-7

tions |𝜑𝑛(𝑥;𝑅𝑥)⟩ is regarded, with 𝑛 = 0, 1:8

𝐻̂𝑒𝑙(𝑥;𝑅𝑥)|𝜑𝑛(𝑥;𝑅𝑥)⟩ = 𝑢𝑛𝑛(𝑅𝑥)|𝜑𝑛(𝑥;𝑅𝑥)⟩. (4.14)

The ground state |𝜑0(𝑥;𝑅𝑥)⟩ and the first excited state |𝜑1(𝑥;𝑅𝑥)⟩ are displayed9

in fig. 4-10. These two states are regarded solely as an electronic two-level sys-10

tem, where the two adiabatic states are coupled to each other. As the adiabatic11

description forms a two-state system, a two-state representation in the diabatic12

representation is needed. Here, the indications of a 𝑅𝑥-independent electronic13

eigenfunction basis set is used.14

Therefore, two electronic eigenfunctions are chosen in the following way:15

|𝜑0(𝑥)⟩ = |𝜑0(𝑥;𝑅𝑥)⟩ = |𝜑0(𝑥;𝑅𝑥 = −0.5 Å)⟩ (4.15)

and16

|𝜑1(𝑥)⟩ = |𝜑1(𝑥;𝑅𝑥)⟩ = |𝜑1(𝑥;𝑅𝑥 = −0.5 Å)⟩. (4.16)

These two functions are by definition orthogonal to each other:17

0 = ⟨𝜑0(𝑥) |𝜑1(𝑥)⟩𝑥. (4.17)

The choice of a diabatic basis set is arbitrary in phase and distance 𝑅𝑥. This18
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includes orthogonality and completeness of the basis set. The two diabatic wave1

functions |𝜑𝑛(𝑥)⟩, with 𝑛 = 0, 1, can be seen in fig. 4-15.2
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Figure 4-15: Diabatic Electronic Eigenfunctions. The left panel corresponds
to the diabatic electronic state |𝜑0(𝑥)⟩, and the right panel shows the diabatic
electronic state |𝜑1(𝑥)⟩.

The adiabatic wave functions in fig. 4-10 look like a geometry dependent super-3

position of the diabatic eigenfunctions in fig. 4-15. This is an indication for a4

mixing or rotation involved within the transformation from diabatic to adiabatic5

eigenfunctions. In section 2.4.2.2, it has already been seen that, under certain6

conditions, a transformation from the diabatic to the adiabatic framework and7

vice versa is possible.8

4.3.2 Diabatic-to-Adiabatic Transformation9

Two transformations connecting the diabatic and adiabatic representation are10

specified in what follows.11

One is the projection of the diabatic basis set onto the adiabatic basis set, and the12

other one is obtained via the non-adiabatic coupling elements.13
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4.3.2.1 Transformation as a Projection of the Diabatic Basis Set onto1

the Adiabatic Basis Set2

The following transformation ansatz is chosen, where the geometry of the diabatic3

basis set is indicated by 𝑅𝑥:4

|𝜑𝑛(𝑥;𝑅𝑥)⟩ =
∑︁
𝑚

|𝜑𝑚(𝑥;𝑅𝑥)⟩⟨𝜑𝑚(𝑥;𝑅𝑥)|⏟  ⏞  
1

𝜑𝑛(𝑥;𝑅𝑥)⟩𝑥

=
∑︁
𝑚

⟨𝜑𝑚(𝑥;𝑅𝑥) |𝜑𝑛(𝑥;𝑅𝑥)⟩𝑥⏟  ⏞  
(𝑎−1)𝑛𝑚(𝑅𝑥;𝑅𝑥)

|𝜑𝑚(𝑥;𝑅𝑥)⟩

|𝜑𝑛(𝑥;𝑅𝑥)⟩ =
∑︁
𝑚

(𝑎−1)𝑛𝑚(𝑅𝑥;𝑅𝑥) |𝜑𝑚(𝑥;𝑅𝑥)⟩. (4.18)

The transformation matrix is obtained by the projection of the diabatic basis set5

onto the adiabatic basis set. Only a certain geometry 𝑅𝑥 for the diabatic basis6

set has to be chosen, but as the wave function behaves stationary for the 𝑅𝑥-7

coordinate in the interval [−2.2; 2.2] Å, it is possible to choose any fixed geometry8

𝑅𝑥 in this interval, see fig. 4-16.9
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Figure 4-16: Adiabatic Electronic Eigenfunctions and Their Reconstruc-
tion by a Diabatic Basis Set. The lower panels correspond to the adiabatic
electronic ground state and to the first excited state. The black color shows pos-
itive values, and the blue color shows negative values of the wave function. The
adiabatic eigenfunctions constructed via eq. (4.18) can be seen in the upper panels
(a) and (b), respectively.

Then, the transformation matrix coefficients (𝑎−1)𝑛𝑚(𝑅𝑥;𝑅𝑥) read as the trans-1

formation from the diabatic basis set at a fixed geometry 𝑅𝑥, to the adiabatic basis2

set at the geometry 𝑅𝑥, so this is a dynamical transformation, which is specific3

for every 𝑅𝑥-coordinate position and, under certain conditions, path-dependent.4

A fixed geometry is chosen at 𝑅𝑥 = −0.5 Å, and the adiabatic basis set is con-5

structed from the diabatic basis set. This is illustrated in fig. 4-16, which compares6

the numerically calculated adiabatic wave functions (lower panels) to the ones ob-7
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tained by the basis set expansion of eq. (4.18). The transformation is only valid in1

the interval 𝑅𝑥 = [−2.2; 2.2] Å, because outside this interval, the second excited2

state gets involved. This situation is not addressed.3

4.3.2.2 Transformation Using Non-Adiabatic Coupling Elements4

Another approach to obtain the transformation matrix for the basis set transition5

involves the non-adiabatic coupling elements, see also section 2.4.2.2. These ele-6

ments can be seen in fig. 4-12. The non-adiabatic coupling element 𝜏01(𝑅𝑥) is of7

largest interest. The elements 𝜏𝑛𝑚(𝑅𝑥) 𝛿𝑛𝑚 are zero.8

It has been seen in section 2.4.2.2, that for a successful transformation, the curl9

condition must be fulfilled:10

0 = ∇⃗𝑅⃗ × 𝜏⃗𝑘𝑖(𝑅𝑥), (4.19)

which in the one-dimensional model system is trivially fulfilled. Then, one looks11

for a solution for the following equation for a two-state system, with 𝑘, 𝑖, 𝑛 = 0, 1,12

consisting of the two lowest adiabatic states:13

∑︁
𝑖

∇𝑅𝑥𝛿𝑘𝑖(𝐴
−1)𝑖𝑛(𝑅𝑥) + 𝜏𝑘𝑖(𝑅𝑥)(𝐴

−1)𝑖𝑛(𝑅𝑥) = 0. (4.20)

In section 2.4.2.2, the solution has been derived, and this leads to a geometry-14

dependent rotation martrix:15

(𝐴−1)(𝑅𝑥;𝑅𝑥) =

⎛⎜⎝cos(𝜙(𝑅𝑥;𝑅𝑥)) − sin(𝜙(𝑅𝑥;𝑅𝑥))

sin(𝜙(𝑅𝑥;𝑅𝑥)) cos(𝜙(𝑅𝑥;𝑅𝑥))

⎞⎟⎠ (𝐴−1)(𝑅𝑥;𝑅𝑥), (4.21)

where the rotation angle is given by the line integral:16

𝜙(𝑅𝑥;𝑅𝑥) = −
∫︁ 𝑅𝑥

𝑅𝑥

𝜏01(𝑅̃𝑥) 𝜕𝑅̃𝑥, (4.22)
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Figure 4-17: Geometric Phase associated with the Diabatic-to-Adiabatic
Transformation. In the beginning a vanishing of the mixing angle is recognized.
Reaching the coupling region, the angle is increased and finally reaches the full
value of −𝜋

2 .

which is just the geometric phase associated with the transformation. Integrating1

𝜏01(𝑅𝑥) in fig. 4-12 over the only possible path from 𝑅𝑥 = −2.2 Å 𝑅𝑥 = 2.2 Å to2

in 𝑅𝑥-direction yields −𝜋
2 , see fig. 4-17.3

Remembering that the diabatic basis is defined at 𝑅𝑥 = −0.5 Å from the adiabatic4

eigenfunctions, the transformation starts with a vanishing mixing angle value for5

this position. The value is then decreasing for the distances 𝑅𝑥 > −0.5 Å and6

increasing for the distances 𝑅𝑥 < −0.5 Å, see fig. 4-18.7
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Figure 4-18: Mixing Angle for the Diabatic-to-Adiabatic Transformation.
At the position 𝑅𝑥 = −0.5 Å, a vanishing mixing angle is recognized. Up to
distanced right of 𝑅𝑥 = −0.5 Å, the angle is decreasing and reaches nearly the
value of −𝜋

2 . For distances left of 𝑅𝑥 = −0.5 Å, the angle is increasing.

According to this mixing angle, the adiabatic eigenfunctions can be construced1

from the diabatic basis via the associated rotation matrix. Beyond the coupling2

region in 𝑅𝑥-direction the sign and 𝑥 position of the wave function changes. There-3

fore, the adiabatic eigenfunction |𝜑1(𝑥;𝑅𝑥)⟩, which is a mixture of two diabatic4

states, being fully changed in the coupling region at 𝑅𝑥 = 0.0 Å is obtained, see5

fig. 4-19.6
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Figure 4-19: Reconstruction of the Adiabatic Electronic Eigenfunctions
by the Diabatic Basis Set and the Rotation Matrix. Same as fig. 4-16.
The adiabatic eigenfunctions constructed via the rotation matrix eq. (4.21) can be
seen in the upper panels (a) and (b), respectively.

4.3.2.3 Diabatic Potentials and Diabatic Coupling Elements1

Next, the adiabatic eigenenergies 𝑢𝑛𝑛(𝑅𝑥) are regarded, and the diabatic eigenen-2

ergies 𝑢̃𝑛𝑛(𝑅𝑥;𝑅𝑥) are obtained by the transformation matrix 𝑎−1(𝑅𝑥;𝑅𝑥) from3

the diabatic to the adiabatic representation. The inverse transformation matrix4

can be formulated [95], and the diabatic potential matrix can be calculated.5

The adiabatic eigenenergies 𝑢𝑛𝑛(𝑅𝑥), obtained via the ITP, are given in fig. 4-206

as solid curves. There, the black curve is the adiabatic ground state, and the blue7
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curve represents the adiabatic first excited state energy. The avoided crossing1

between the ground state and the excited state can be seen clearly.2

 1

 2

 3

 4

 5
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[e

V]

Rx [Å]

u00(Rx)

u11(Rx)

ũ00(Rx;Rx=-0.5 Å) ũ11(Rx;Rx=-0.5 Å)

Figure 4-20: Adiabatic and Diabatic Potentials. The diabatic potentials are
obtained via the adiabatic-to-diabatic transformation.

The diabatic potentials are obtained via :3

∑︁
𝑚

(𝑎−1)𝑘𝑚(𝑅𝑥;𝑅𝑥)𝑎𝑚𝑛(𝑅𝑥;𝑅𝑥) = 𝛿𝑘𝑛, (4.23)

which is just a property of orthogonal matrices. Then, the transformation from4

diabatic to adiabatic potentials can be written as [39]:5

𝑢𝑛𝑚(𝑅𝑥) =
∑︁
𝑘,𝑜

(𝑎−1)𝑛𝑘(𝑅𝑥;𝑅𝑥)𝑎𝑘𝑜(𝑅𝑥;𝑅𝑥)𝑢𝑜𝑚(𝑅𝑥)

∑︁
𝑚

𝑢𝑛𝑚(𝑅𝑥)(𝑎
−1)𝑚𝑖(𝑅𝑥;𝑅𝑥) =

∑︁
𝑘,𝑜,𝑚

(𝑎−1)𝑛𝑘(𝑅𝑥;𝑅𝑥)𝑎𝑘𝑜(𝑅𝑥;𝑅𝑥)𝑢𝑜𝑚(𝑅𝑥)(𝑎
−1)𝑚𝑖(𝑅𝑥;𝑅𝑥)

∑︁
𝑘

𝛿𝑘𝑝𝑢̃𝑘𝑖(𝑅𝑥;𝑅𝑥) =
∑︁
𝑚,𝑛

𝑎𝑝𝑛(𝑅𝑥;𝑅𝑥)𝑢𝑛𝑚(𝑅𝑥)(𝑎
−1)𝑚𝑖(𝑅𝑥;𝑅𝑥)

𝑢̃𝑝𝑖(𝑅𝑥;𝑅𝑥) =
∑︁
𝑚,𝑛

𝑎𝑝𝑛(𝑅𝑥;𝑅𝑥)𝑢𝑛𝑚(𝑅𝑥)(𝑎
−1)𝑚𝑖(𝑅𝑥;𝑅𝑥) (4.24)
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This yields the diabatic potentials 𝑢̃00(𝑅𝑥;𝑅𝑥) and 𝑢̃11(𝑅𝑥;𝑅𝑥) in fig. 4-20. The1

diabatic potential coupling 𝑢̃10(𝑅𝑥;𝑅𝑥) and 𝑢̃01(𝑅𝑥;𝑅𝑥) are obtained, too, and2

depicted in fig. 4-21.3
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Figure 4-21: Diabatic Coupling Potentials. The diabatic coupling potentials
are obtained numerically from the adiabatic-to-diabatic transformation.

The two coupling potentials are only parallel to each other where the diabatic4

representation is valid. The coupling in the valid interval is linear and not constant,5

as this is sometimes assumed in theory, when two diabatic states are constructed6

to couple with each other [96, 97]. At the origin, the coupling takes up small values7

which is in accordance with the appearance of the avoided crossing. It is again8

seen, as expected, that the diabatic approximation is only valid for the interval9

𝑅𝑥 = [−2.2; 2.2] Å.10

4.3.2.4 Comparison of the Exact Dynamics and the Diabatic Dynamics11

Finally, the exact dynamic of a nuclear wave packet can be reproduced using the12

diabatic representation. The following coupled equations of motion for the diabatic13

representation have to be solved:14
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𝑖
𝜕

𝜕𝑡
|𝜒̃𝑘(𝑅𝑥, 𝑡)⟩ =

∑︁
𝑖

{︃
−
∇⃗2

𝑅𝑥

2𝑀
𝛿𝑘𝑖 + 𝑢̃𝑘𝑖(𝑅𝑥;𝑅𝑥)

}︃
|𝜒̃𝑖(𝑅𝑥, 𝑡)⟩. (4.25)

Parallel, the time-dependent Schrödinger equation is solved:1

𝑖~
𝜕

𝜕𝑡
|𝜓(𝑥,𝑅𝑥, 𝑡)⟩ = 𝐻̂(𝑥,𝑅𝑥) |𝜓(𝑥,𝑅𝑥, 𝑡)⟩. (4.26)

In the following, a comparison between the projected adiabatic nuclear density2

𝜌𝑎𝑘(𝑅𝑥, 𝑡) = |𝜒𝑘(𝑅𝑥, 𝑡)|2 = |⟨𝜑𝑘(𝑥;𝑅𝑥) |𝜓(𝑥,𝑅𝑥, 𝑡)⟩𝑥|
2 of the exact calculation and3

the density 𝜌𝑑𝑘(𝑅𝑥, 𝑡) = |𝜒̃𝑘(𝑅𝑥;𝑅𝑥, 𝑡)|2 of the calculation in the diabatic represen-4

tation is made.5

For the exact propagation, a Gaussian wave-packet is chosen to be in the adiabatic6

first excited state with a nuclear displacement:7

|𝜓𝑖𝑛𝑖𝑡(𝑥,𝑅𝑥, 𝑡0)⟩ = 𝑁 |𝜑1(𝑥;𝑅𝑥)⟩ · 𝑒−𝛽(𝑅𝑥−𝑅𝑒𝑞)2 , (4.27)

with 𝛽 = 7.14 1

Å2 , 𝑅𝑒𝑞 = −1.86 Å and 𝑁 as normalization constant. In the8

diabatic representation, the nuclear wave function is the Gaussian wave-packet9

with the identical nuclear displacement in the first diabatic state |𝜑1(𝑥;𝑅𝑥)⟩.10

|𝜒̃1,𝑖𝑛𝑖𝑡(𝑅𝑥;𝑅𝑥, 𝑡0)⟩ = 𝑁𝑒−𝛽(𝑅𝑥−𝑅𝑒𝑞)2 . (4.28)

The results of the two calculations are displayed in fig. 4-22. Regarding the exact11

calculation, the wave packet starts in the adiabatic first excited state and ap-12

proaches the origin of the coordinate system, where the coupling region begins.13

After the wave packet has arrived at the coupling region, a complete non-adiabatic14

transition to the ground state takes place. This happens again vice versa as the15

wave packet re-enters the coupling region after approximately 𝑡 = 55 fs.16
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Figure 4-22: Comparison of Wave-Packet Dynamics in the Diabatic Rep-
resentation to the Exact Propagation. In the upper panels, the nuclear
density (left) and the electron density (right) is plotted from the numerically ex-
act propagation. It is seen that the electron density does not follow the nuclear
density. In the middle panels, the diabatic nuclear densities are seen for the first
diabatic state (left) and the second diabatic state (right). The projected adiabatic
nuclear densities from the exact calculation are shown in the lower panels. Here,
the dynamics is mapped in both adiabatic states.

Regarding now the middle panels in fig. 4-22, one can see 𝜌𝑑𝑘(𝑅𝑥, 𝑡) in the reduced1

propagation scheme. Here, it becomes clear that the dynamics of the wave packet2

takes only place in one diabatic state. There is no transition between the diabatic3

states. The reduced dynamic in the diabatic representation fits very well with4
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the exact calculation. It should be noted that the dynamics is well reproduced1

although the propagation is partially done outside of the interval 𝑅𝑥 = [−2.2; 2.2]2

Å.3

Concluding Remarks4

Comparing the diabatization from an earlier work [91], which was applied by fit-5

ted diabatic potentials and an assumed constant coupling between the two fitted6

diabatic potentials, the approach followed here relies on the transformation from7

the adiabatic to the diabatic basis. The diabatic eigenfunctions are defined as8

the adiabatic eigenfunctions at a certain geometry. Therefore, orthonormality is9

guaranteed.10

From this point, the diabatic basis set can be checked to reproduce the adiabatic11

eigenfunctions in good agreement. With the eigenfunctions in the two representa-12

tions at hand, one can define the transformation matrix and can finally obtain the13

diabatic potentials. The coupling potentials are linear in shape and very small at14

the coupling region. Finally, it can be shown that the exact dynamics of a wave15

packet can be reproduced in good agreement within the diabatic representation.16
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4.4 Spectroscopy of the Shin-Metiu Model1

In what follows, the spectroscopy of the Shin-Metiu model is addressed by regard-2

ing the linear absorption spectra first. This study has already been performed in3

previous works [66, 91], but is revisited here in more detail, as the linear absorp-4

tion spectra are important to understand the two-dimensional spectroscopy. The5

simulation parameters in table 4.7 are used throughout the analysis.6

Table 4.7: Model Parameters.

symbol: description: value
[𝑅𝑥𝑚𝑖𝑛 ;𝑅𝑥𝑚𝑎𝑥 ] range in 𝑅𝑥-space [-6;6]Å
[𝑥𝑚𝑖𝑛;𝑥𝑚𝑎𝑥] range in 𝑥-space [-50;50]Å
𝑁𝑅 grid points in 𝑅𝑥-direction (𝑝+) 256
𝑁𝑥 grid points in 𝑥-direction (𝑒−) 256
𝑚𝑝 proton mass 1836.15 a.u.
Δ𝜏 time-step ITP 0.5 a.u.
Δ𝑡 time-step propagation 2.0 a.u.
𝑅𝑓 shielding: 𝑒− and 𝑝+𝑓𝑖𝑥𝑒𝑑 1.5 Å

4.4.1 Linear Absorption Spectra7

First, the description of the laser pulses acting upon the model system is addressed.8

As already mentioned in section 2.7.2, light-matter interactions are described via9

a semi-classical approach, meaning the use of classical electric transversal waves.10

In the model system, only resonant transitions are regarded. In these cases, the11

system takes energy out of the electric field via an absorptive process and decreases12

its internal energy via a stimulated emission [62].13

As was argued in section 2.7.2, the dipole approximation is applied and, therefore,14

the coordinate dependence of the electric field description is omitted. In the simu-15

lation, the direction of the electric field is adjusted parallel to the axis of the model16

system. The direction of the laser pulse is omitted and, therefore, the electric field17

is written without the vector notation.18
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The electric field is of the form, with 𝑚 = 1,:1

𝐸(𝑡) =
𝑚∑︁

𝑛=1

𝐸𝑛(𝑡− 𝑡𝑛) =
𝑚∑︁

𝑛=1

𝐸(+)
𝑛 (𝑡− 𝑡𝑛) + 𝐸(−)

𝑛 (𝑡− 𝑡𝑛), (4.29)

with the components correspondent to the absorptive process 𝐸(+)
𝑛 and stimulated2

emission 𝐸(−)
𝑛 in |𝜓(𝑥,𝑅𝑥, 𝑡)⟩:3

𝐸(±)
𝑛 (𝑡) = 𝜖𝑒∓𝑖𝜔𝑛(𝑡−𝑡𝑛)𝑒−𝛼(𝑡−𝑡𝑛)2 . (4.30)

The spectrum is defined as Fourier transform of the model system’s emitted elec-4

tric field 𝐸𝑠𝑖𝑔.(𝑡
′) during the acquisition time, after the light-matter interaction5

has taken place [69]. To be more precise, the acquisition time, denoted as 𝑡′, is6

the detection time span starting after the last light-matter interaction has acted7

upon the system and having a finite length after which the detection process is8

terminated. This length basically determines the resolution of the spectrum in 𝐸𝑡′9

𝑆(𝐸𝑡′) =
1√
2𝜋

∫︁
𝑡′
𝑑𝑡′𝐸𝑠𝑖𝑔.(𝑡

′) 𝑒+𝑖𝐸𝑡′ 𝑡
′
. (4.31)

The last expression is further constrained as the light-matter interaction is simu-10

lated via time-dependent perturbation theory, and as one is only interested in the11

peak position and their relative height to each other, all proportionality factors12

are omitted within the time-dependent perturbation theory.13

The emitted electric field is proportional to the polarization function 𝑃𝑠𝑖𝑔.(𝑡
′) and14

rotated by 90𝑜 in phase [62, 69, 98]. Then, eq. (4.31) is rewritten as:15

𝑆(𝐸𝑡′) = 𝑖

∫︁
𝑡′
𝑑𝑡′𝑃𝑠𝑖𝑔.(𝑡

′) 𝑒+𝑖𝐸𝑡′ 𝑡
′
. (4.32)

To calculate the spectrum, the first-order polarization has to be evaluated, see sec-16

tion 2.7.2. Then, for the first-order polarization expression for 𝑃𝑠𝑖𝑔.(𝑡) = 𝑃 (1)(𝑡),17
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one obtains1 [62]:1

𝑃 (1)(𝑡) = 𝑖

∫︁ ∞

0
𝑑𝑡1{𝐽(𝑡1)− 𝐽*(𝑡1)}𝐸1(𝑡− 𝑡1)

= 2

∫︁ ∞

0
𝑑𝑡1Im{𝐽(𝑡1)𝐸(+)

1 (𝑡− 𝑡1)}

= Im

{︂∫︁ ∞

0
𝑑𝑡1𝐽(𝑡1)𝐸

(+)
1 (𝑡− 𝑡1)

}︂
, (4.33)

where the factor 2 is droped, and the component of the response function 𝐽(𝑡1) is2

given as:3

𝐽(𝑡1) = ⟨𝜇̂(𝑥,𝑅𝑥) | 𝜌(𝑥,𝑅𝑥, 𝑡0) | 𝜇̂(𝑥,𝑅𝑥, 𝑡1)⟩𝑥,𝑅𝑥
. (4.34)

The completeness relation
∑︀

𝛽|𝜓𝛽(𝑥,𝑅𝑥)⟩⟨𝜓𝛽(𝑥,𝑅𝑥)| = 1 is inserted for the sys-4

tem’s propagator 𝑈̂(𝑡𝑝, 𝑡𝑞), and the interaction picture of the dipole moment op-5

erator is transferred to the Schrödinger picture.6

𝑈̂(𝑡𝑝) =
∑︁
𝑒

|𝜓𝑒(𝑥,𝑅𝑥)⟩𝑒−𝑖𝐸𝑒𝑡𝑝⟨𝜓𝑒(𝑥,𝑅𝑥)|. (4.35)

So, the polarization function is written as:7

𝑃 (1)(𝑡) = Im

{︂∫︁ ∞

0
𝑑𝑡1⟨𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0)|𝑈̂*(𝑡1)𝜇̂(𝑥,𝑅𝑥)𝑈̂(𝑡1) × (4.36)

𝜇̂(𝑥,𝑅𝑥)|𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0)⟩𝑥,𝑅𝑥
𝐸

(+)
1 (𝑡− 𝑡1)

}︂
.

The system is in the ground state with energy 𝐸𝐸0 at 𝑡 = 𝑡0. Introducing the new8

time-variable 𝑡′1 = 𝑡− 𝑡1 yields:9

1The system is assumed to be initially in the ground state, so there is no stimulated emission
out of the ground state.
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𝑃 (1)(𝑡) = Im

{︃∑︁
𝑒

⟨𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝑒(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
×

⟨𝜓𝑒(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0)⟩𝑥,𝑅𝑥
×

𝑒+𝑖(𝐸𝐸0
−𝐸𝑒)𝑡

∫︁ 𝑡

−∞
𝑑𝑡′1𝑒

−𝑖(𝐸𝐸0
−𝐸𝑒)(𝑡′1) 𝐸

(+)
1 (𝑡′1)

}︂
. (4.37)

The time variable 𝑡 = 𝑡′ is redefined as the acquisition time for the spectrum.1

Then one gets:2

𝑃 (1)(𝑡′) = sin
[︀
(𝐸𝐸0 − 𝐸𝑒)𝑡

′]︀×
Im

{︃∑︁
𝑒

⟨𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝑒(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
×

⟨𝜓𝑒(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0)⟩𝑥,𝑅𝑥
×∫︁ ∞

−∞
𝑑𝑡′1𝑒

−𝑖(𝐸𝐸0
−𝐸𝑒)(𝑡′1) 𝐸

(+)
1 (𝑡′1)

}︂
. (4.38)

The upper boundary for the integral was extended to infinity, as finite short light3

pulses are used. One can unify all transition dipole moments into the scalar factors4

𝑁𝐸0,𝑒 and unify the integral expression into the factor 𝑔
𝐸0,𝑒,𝐸

(+)
1

:5

𝑃 (1)(𝑡′) = sin
[︀
(𝐸𝐸0 − 𝐸𝑒)𝑡

′]︀∑︁
𝑒

𝑁𝐸0,𝑒 𝑔𝐸0,𝑒,𝐸
(+)
1

. (4.39)

Inserting the expression above into eq. (4.32) yields for the spectral function6

|𝑆(𝐸𝑡′)|:7

|𝑆(𝐸𝑡′)| =

⃒⃒⃒⃒
⃒∑︁

𝑒

𝑁𝐸0,𝑒 𝑔𝐸0,𝑒,𝐸
(+)
1

∫︁
𝑡′
𝑑𝑡′ 𝑒+𝑖𝐸𝑡′ 𝑡

′
sin
[︀
(𝐸𝐸0 − 𝐸𝑒)𝑡

′]︀⃒⃒⃒⃒⃒ . (4.40)

Dropping the factor of 1
2 , one finally obtains:8
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|𝑆(𝐸𝑡′)| =

⃒⃒⃒⃒
⃒∑︁

𝑒

𝑁𝐸0,𝑒 𝑔𝐸0,𝑒,𝐸
(+)
1

{𝛿[𝐸𝑡′ − (𝐸𝐸0 − 𝐸𝑒)] + 𝛿 [𝐸𝑡′ − (𝐸𝑒 − 𝐸𝐸0)]}

⃒⃒⃒⃒
⃒ .

(4.41)

The signal then contains the appearing coherences prompted by the light-matter1

interaction, which will yield information about energetic spacings within the model2

system via peaks, where the height of these peaks are mediated by certain factors3

𝑁𝐸0,𝑒 and laser pulse properties 𝑔
𝐸0,𝑒,𝐸

(+)
1

. In the simulation of a linear absorption4

spectrum, an interaction hits the system, namely a short Gaussian laser pulse with5

direction, ±𝑘1. These are the reddish arrows depicted in fig. 4-23. After this inter-6

action, the system is set in the coherences |𝐸0⟩⟨ 𝑒| and |𝑒⟩⟨𝐸0|. These coherences7

are then detected during the acquisition time 𝑡′. Afterwards, not concerned in8

the simulation, but common practice in this notation, at some point the system9

relaxes to population states, indicated by the final wavy arrow −𝑘𝑠 [62]. Note10

that, as a matter of formalism, here the direction is always drawn to the left side11

of the diagram.12

−𝑘1

−𝑘𝑠
|𝐸0⟩ ⟨𝐸0|

|𝐸0⟩ ⟨𝑒|

|𝐸0⟩ ⟨𝐸0|

𝑡′

+𝑘1

+𝑘𝑠

|𝐸0⟩ ⟨𝐸0|

|𝑒⟩ ⟨𝐸0|

|𝐸0⟩ ⟨𝐸0|

𝑡′

Figure 4-23: Double-Sided Feynman Diagram for a Linear Absorption
Spectrum.

The pulse direction was already constrained to −𝑘1, because the signal direction13

𝑘𝑠 = −𝑘1 + 𝑘2 + 𝑘3 is used for the two-dimensional spectrum later on. Therefore,14

the left double-sided Feynman diagram in fig. 4-23 is regarded. Then, the linear15

absorption spectrum is expected to contain the energy differences between the16

laser excited states |𝜓𝑒(𝑥,𝑅𝑥)⟩ and the ground state |𝜓𝐸0(𝑥,𝑅𝑥)⟩.17
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In the following, the linear absorption spectrum is calculated via the polarization1

within the numerical time-dependent perturbation theory. This is done by the2

expression for the left Feynman diagram.3

𝑃 (1,𝑒𝑥)(𝑡) = ⟨𝜓(1,𝑒𝑥)(𝑥,𝑅𝑥,+𝑘1, 𝑡) | 𝜇̂(𝑥,𝑅𝑥) |𝜓(0,𝑒𝑥)(𝑥,𝑅𝑥, 𝑡)⟩𝑥,𝑅𝑥
. (4.42)

Here, the index 𝑒𝑥 stands for the numerically exact propagation in full-dimensional4

coordinate space. For the calculation of |𝜓(1,𝑒𝑥)(𝑥,𝑅𝑥,−𝑘1, 𝑡)⟩, the following nu-5

merical ansatz is used:6

|𝜓(1,𝑒𝑥)(−𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩ =𝑈̂(Δ𝑡)|𝜓(1,𝑒𝑥)(−𝑘1, 𝑥,𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︁
𝜇̂(𝑥,𝑅𝑥)𝐸

(+)
1 (𝑡+Δ𝑡)

)︁
|𝜓(0,𝑒𝑥)(𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩.

(4.43)

Then, the obtained expression for eq. (4.42) is calculated for the acquisition time7

𝑡′ and is then Fourier transformed along 𝑡′.8

4.4.1.1 Weak Coupling9

For this simulation, parameters are used for the model system which due to consis-10

tency are only slightly varied compared to the previous section, where the eigen-11

functions were discussed. These parameters as well as the parameters character-12

izing the Gaussian laser pulse are found in table 4.8.13

Table 4.8: Model Parameters for the Linear Absorption Spectrum.

symbol: description: weak coupling strong coupling
𝑡′ aquisition time 4.65 ps 4.65 ps
𝐸𝑜𝑓𝑓 offset energy 11.58 eV 10.01 eV
𝑅𝑐 shielding: 𝑒− and 𝑝+ 1.5 Å 2.5 Å
𝛼 Gaussian broadening 1.0 · 10-4 1

fs 2 1.0 · 10-4 1
fs 2

𝜔1 excitation energy 2.9 eV 1.9 eV
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The excitation energy is chosen as the energetic difference between the adiabatic1

first excited state and the ground state minimum, see fig. 4-5. Regarding the linear2

absorption spectrum in fig. 4-24, the laser pulse with the central frequency of 2.93

eV resonantly excites the first electronic adiabatic state.4
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in
te

ns
ity

 [a
rb

. u
ni

ts
]

Et` [eV]

Figure 4-24: Linear Absorption Spectrum of the Weak Coupling Case.
Shown is the absolute signal.

According to eq. (4.41), the spectrum is expected to show peaks at energy differ-5

ences between the laser excited states |𝜓𝑒(𝑥,𝑅𝑥)⟩ and the ground state |𝜓𝐸0(𝑥,𝑅𝑥)⟩.6

As ground state, |𝜓𝑛,𝑚(𝑥,𝑅𝑥)⟩ is used, with 𝑛 = 𝑚 = 0. This eigenfunction is7

displayed in fig. 4-7 panel (a). The spectral peaks and corresponding energetic8

differences are assigned in table 4.9 together with fig. 4-25.9

Table 4.9: Assignment of Spectral Peaks.

peak: 1 2 3 4 5 6 7 8
e 𝑛: 1 1 1 1 1 2 1 1

𝑚: 8 10 12 14 16 1 18 20
𝐸𝑛𝑚 − 𝐸0 [eV]: 2.264 2.332 2.405 2.483 2.561 2.602 2.644 2.726
fig. 4-26 (a) (b) (c) (d) (e) (f) (g) (h)
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Figure 4-25: Excerpt of the Linear Absorption Spectrum of the Weak
Coupling Case. Shown is the absolute signal. The spectrum is given for an
energetic interval 𝐸𝑡′ = [2.2; 2.76] eV and shows the first 8 peaks. The intensity is
cut. The wiggling structure on top of the peaks are artifacts from the numerical
Fourier transform.

From table 4.9, it emerges that only gerade vibrational states of the first electronic1

state are excited. This is in perfect agreement with the previous chapter, where2

the adiabatic product ansatz was elucidated as a proper state representation for3

the eigenfunctions of the weak coupling case. Then, the propensity rule according4

to the transition dipole moments in 𝑁𝐸0,𝑒 are given as the transitions from the5

symmetric initial ground state |𝜓𝐸0(𝑥,𝑅𝑥)⟩ to the target excited states |𝜓𝑒(𝑥,𝑅𝑥)⟩:6
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⟨𝜓𝑒(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝐸0(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥

= ⟨𝜒1,𝑚(𝑅𝑥)|⟨𝜑1(𝑥;𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜑0(𝑥;𝑅𝑥)⟩𝑥|𝜒0,0(𝑅𝑥)⟩𝑅𝑥

= ⟨𝜒1,𝑚(𝑅𝑥) |𝑅𝑥⟨𝜑1(𝑥;𝑅𝑥) |𝜑0(𝑥;𝑅𝑥)⟩𝑥 |𝜒0,0(𝑅𝑥)⟩𝑅𝑥

− ⟨𝜒1,𝑚(𝑅𝑥) | ⟨𝜑1(𝑥;𝑅𝑥) |𝑥 |𝜑0(𝑥;𝑅𝑥)⟩𝑥 |𝜒0,0(𝑅𝑥)⟩𝑅𝑥

= −⟨𝜒1,𝑚(𝑅𝑥) | ⟨𝜑1(𝑥;𝑅𝑥) |𝑥 |𝜑0(𝑥;𝑅𝑥)⟩𝑥⏟  ⏞  
̸=0 ∀𝑅𝑥

|𝜒0,0(𝑅𝑥)⟩𝑅𝑥

⏟  ⏞  
̸=0, 𝑓𝑜𝑟 𝑚=𝑔𝑒𝑟𝑎𝑑𝑒

(4.44)

This can be directly seen by regarding the eigenfunctions of the target states in1

fig. 4-26. The panels are matched with the corresponding peaks mentioned in ta-2

ble 4.9. A closer look reveals that the target wave functions are antisymmetric in3

𝑥-direction and symmetric in 𝑅𝑥-direction.4

There is also one exception in fig. 4-26 panel (f), namely the excitation to the5

second excited adiabtic state |𝜓𝑛,𝑚(𝑥,𝑅𝑥)⟩ with 𝑛 = 2,𝑚 = 1. There, the eigen-6

function is symmetric in 𝑥-direction and antisymmetric in 𝑅𝑥-direction. According7

to the propensity rule:8

⟨𝜓𝑒(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝐸0(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥

= ⟨𝜒2,1(𝑅𝑥) |𝑅𝑥 ⟨𝜑2(𝑥;𝑅𝑥) |𝜑0(𝑥;𝑅𝑥)⟩𝑥⏟  ⏞  
=0

|𝜒0,0(𝑅𝑥)⟩𝑅𝑥
, (4.45)

this transition is not allowed. Remembering the weak non-adiabatic coupling and9

the resulting eigenfunction with slightly mixed electronic character in fig. 4-9, this10

is the evidence for another spectral band below the transitions to the first excited11

state. It was also confirmed in previous studies [91] that there are two excitation12

bands.13
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Figure 4-26: Eigenfunctions Corresponding to the Spectroscopic Transi-
tions of the Weak Coupling Case. The black color shows positive values, and
the blue color shows negative values of the wave function. Quantum numbers for
the eigenfunctions are assigned in table 4.9.

4.4.1.2 Strong Coupling1

Regarding the spectrum displayed in fig. 4-27, an excitation in the interval 𝐸𝑡′ =2

[2.4; 3.1] eV is mainly seen. This is unexpected since the laser pulse has an exci-3

tation energy of 1.9 eV.4

The peak progression to higher energies and the transitions to the second adia-5

batic excited state have been already identified [91], and for the relatively small6

peak progression around 1.9 eV, it was confirmed that those correspond to the7
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transitions to mixed states, which are composed of the adiabatic ground state as1

well as the adiabatic first excited state due to strong non-adiabatic coupling.2
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Figure 4-27: Linear Absorption Spectrum of the Strong Coupling Situa-
tion. Shown is the absolute signal.

A reproduction of the peak structure by simulating the absorption spectrum within3

the diabatic framework was tried in previous studies. This had some agreement4

and could partially reproduce the structure of the exact spectrum [91].5

The study is continued with the transitions both to the mixed states as well as to6

the second excited state. Like in the weak coupling case, symmetry characteristics7

of the eigenfunctions are regarded.8

In fig. 4-28, two major characteristic9

85



 1.4  1.6  1.8  2  2.2  2.4  2.6

in
te

ns
ity

 [a
rb

. u
ni

ts
]

Et` [eV]

1 2
3
4
5 6 7

12
13
14

15
16

17

18

Figure 4-28: Absorption Spectrum of the Strong Coupling Situation.
Shown is the absolute signal. The spectrum is given for a energetic interval
𝐸𝑡′ = [1.0; 3.5] eV and shows the spectrum cut in intensity. A closer look re-
veals also transitions to energetic levels around 1.8 eV.

regions are seen in the peaks’ progression. The first one is seen in the interval1

[1.4; 2.3] eV, which is the region around the laser excitation. Here, an analysis2

of the excited eigenstates reveals and confirmes that the laser excited states have3

a mixed electronic character which is composed of both the electronic adiabatic4

ground state and the first excited state 𝑛 = 𝑚𝑖𝑥, see fig. 4-10. These first peaks5

are listed in table 4.10. A closer study of the target eigenfunctions, see fig. 4-29,6

reveals that these transitions exhibit a certain propensity rule.7

Table 4.10: Assignment of Spectral Peaks.

peak: 1 2 3 4 5 6 7
𝑛: mix mix mix mix mix mix mix
𝑚: 56 59 60 62 65 66 69
𝐸𝑛𝑚 − 𝐸0[eV]: 1.517 1.577 1.628 1.683 1.742 1.790 1.853
fig. 4-29: (a) (b) (c) (d) (e) (f) (g)

This propensity rule can be seen in regarding the corresponding target eigenfunc-8
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tions, where one has only contributions of eigenfunctions symmetric in one of the1

directions 𝑥 or 𝑅𝑥, but antisymmetric in the other direction. Those target eigen-2

functions which are not laser excited have only gerade or ungerade symmetry in3

both directions.4
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Figure 4-29: Eigenfunctions Corresponding to Final States for the Spec-
tral Transitions of the Strong Coupling Case. The black color shows positive
values, and the blue color shows negative values of the wave function. Quantum
numbers for the eigenfunctions are assigned in table 4.10.

Continuing the study, some conclusions are drawn on the second characteristic5

peak progression in fig. 4-28 in the interval [2.3; 2.6] eV. In table 4.11, peaks of the6

transition region are listed from [2.1; 2.6] eV.7

The peaks are decreasing in intensity regarding the mixed characteristic 𝑛 = 𝑚𝑖𝑥,8
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but are strongly increasing for the next characteristic with the 𝑛 = 2 peaks,1

representing the transition to the second excited adiabatic state.2

Table 4.11: Assignment of Spectral Peaks.

peak: 12 13 14 15 16 17 18
𝑛: mix mix mix mix 2 2 mix
𝑚: 78 81 83 84 1 3 91
𝐸𝑛𝑚 − 𝐸0[eV]: 2.126 2.184 2.239 2.295 2.372 2.437 2.504
fig. 4-31: (a) (b) (c) (d) (e) (f) (g)

This, can again be understood in regarding the target eigenfunctions of the laser3

excitation, see fig. 4-31 and table 4.11.4

Here, also the propensity rule holds for the transition to the second excited state,5

as this state is compared to the ground state energetically well separated, and6

leads to the formulation of an adiabatic product ansatz, just like in the case of the7

weak coupling case. Now the second excited adiabatic state is antisymmetric in8

𝑥-direction (not shown):9

⟨𝜓𝑒(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝐸0(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥

= ⟨𝜒2,𝑚(𝑅𝑥)|⟨𝜑2(𝑥;𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜑0(𝑥;𝑅𝑥)⟩𝑥|𝜒0,0(𝑅𝑥)⟩𝑅𝑥

= ⟨𝜒2,𝑚(𝑅𝑥) | ⟨𝜑2(𝑥;𝑅𝑥) |𝑥 |𝜑0(𝑥;𝑅𝑥)⟩𝑥⏟  ⏞  
̸=0, 𝑢𝑛𝑔𝑒𝑟𝑎𝑑𝑒

|𝜒0,0(𝑅𝑥)⟩𝑅𝑥

⏟  ⏞  
̸=0, 𝑓𝑜𝑟 𝑚=𝑢𝑛𝑔𝑒𝑟𝑎𝑑𝑒

(4.46)

As can be seen in fig. 4-30, the term ⟨𝜑2(𝑥;𝑅𝑥) |𝑥 |𝜑0(𝑥;𝑅𝑥)⟩𝑥 is an antisymmetric10

function with respect to the 𝑅𝑥 coordinate.11
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Figure 4-30: Evaluation of ⟨𝜑2(𝑥;𝑅𝑥) |𝑥 |𝜑0(𝑥;𝑅𝑥)⟩𝑥 for the Strong Coupling
Case. The integral expression is antisymmetric with respect to the 𝑅𝑥 coordinate.

Then, the propensity rule states, that only ungerade vibrational states in the1

second adiabatic excited state can be laser excited.2
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Figure 4-31: Exact Eigenfunctions Corresponding to Final Transition
States for the Absorption Spectrum of the Strong Coupling Case. The
black color shows positive values, and the blue color shows negative values of the
wave function. Quantum numbers for the eigenfunctions are assigned in table 4.11.

Concluding Remarks1

The linear spectroscopy for two different coupling situations was studied. In the2

case where the Born-Oppenheimer approximation is valid, a well defined peak pro-3

gression with an overall Gaussian envelope was seen. As has already been studied4

[91], such spectroscopic results can also be achieved in a reduced or adiabatic rep-5

resentation within the Born-Oppenheimer approximation as well as in a diabatic6

approach.7
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The findings of the last section put the study one step further in the interpreta-1

tion of two-dimensional spectra of the weak coupling case, as now the transitions2

and their intensity, prompted by a single laser-pulse, are known from the linear3

spectra. By keeping the same laser pulse parameters as well as the direction for4

the first pulse −𝑘1 for the two-dimensional laser setup, arguing about multiple5

transitions and their reflection in the two-dimensional spectrum is possible.6

On the other hand, a more complex structure of the strong coupling case in a lin-7

ear spectrum is seen, and it was found that some peaks are referred to transitions8

in electronically coupled states.9

4.4.2 Two-Dimensional Spectra10

The three-photon echo arises from the interaction of three laser pulses described by11

eq. (4.29), with m=3, with the system. The direction of the incoming laser pulses12

and of the outgoing signal is determined by the wave vector 𝑘𝑠 = −𝑘1 + 𝑘2 + 𝑘3.13

The temporal arrangement of the laser pulses is depicted in fig. 4-32.14

           

τ Tmin T t'

1 2 3
t1

t [fs]

Figure 4-32: Pulse Sequence for the Photon-Echo Experiment. The first
pulse starts the experiment, the second is delayed by 𝜏 with respect to the first
pulse. After a population time 𝑇 [98] and the fixed waiting time 𝑇𝑚𝑖𝑛, the third
pulse generates the polarization. The correspondent signal is detected as a function
of 𝑡′.

The simulation starts with the arrival of the first laser pulse at 𝑡1. After a delay15

time 𝜏 , the second laser pulse acts upon the system. After the second pulse, there16

is a waiting time 𝑇𝑚𝑖𝑛 which guarantees the pulses not to overlap [65]. Between17
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this waiting time and the third pulse, the time span is referred to as the population1

time 𝑇 . Finally, the detection or acquisition time 𝑡′ is set after the last laser pulse2

has interacted with the system. The polarization is detected as a function of the3

acquisition time and for different delay times 𝜏 . A double Fourier transform with4

respect to 𝑡′ and 𝜏 finally yields a two-dimensional spectrum [62, 67, 69, 99]:5

|𝑆(𝐸𝑡′ , 𝐸𝜏 , 𝑇 )| =
⃒⃒⃒⃒∫︁

𝜏

∫︁
𝑡′
𝑑𝑡′𝑑𝜏𝑃𝑠𝑖𝑔.(𝑡

′, 𝜏 , 𝑇 ) 𝑒+𝑖𝐸𝑡′ 𝑡
′
𝑒−𝑖𝐸𝜏 𝜏

⃒⃒⃒⃒
. (4.47)

Here, the polarization function of third order determined within time-dependent6

perturbation theory (section 2.7.2) enters. It reads [62]:7

𝑃 (3)(𝑡) = 𝑖3
∫︁ ∞

0
𝑑𝑡3

∫︁ ∞

0
𝑑𝑡2

∫︁ ∞

0
𝑑𝑡1 𝐸1(𝑡− 𝑡3 − 𝑡2 − 𝑡1)×

𝐸2(𝑡− 𝑡3 − 𝑡2)𝐸3(𝑡− 𝑡3)×
4∑︁

𝑎=1

[𝑅𝑎(𝑡1, 𝑡2, 𝑡3)−𝑅*
𝑎(𝑡1, 𝑡2, 𝑡3)] . (4.48)

As an initial condition, the system is constrained to the ground state |𝜓𝐸0(𝑥,𝑅𝑥, 𝑡0)⟩.8

As a result, the contributions to the polarization in which a stimulated emission9

is prompted by the first laser pulse can be omitted. Furthermore, excited state10

absorption contributions are neglected because only two state Born-Oppenheimer11

results are compared to the numerically exact calculations [23]. Neglecting the12

above mentioned contributions, the expression for the polarization reads:13
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𝑃 (3)(𝑡) =Im

{︂∫︁ ∞

0
𝑑𝑡3

∫︁ ∞

0
𝑑𝑡2

∫︁ ∞

0
𝑑𝑡1 𝐸

(+)
1 (𝑡− 𝑡3 − 𝑡2 − 𝑡1)×

𝐸
(−)
2 (𝑡− 𝑡3 − 𝑡2)𝐸

(+)
3 (𝑡− 𝑡3)𝑅1(𝑡1, 𝑡2, 𝑡3)

+ 𝐸
(+)
1 (𝑡− 𝑡3 − 𝑡2 − 𝑡1)𝐸

(+)
2 (𝑡− 𝑡3 − 𝑡2)×

𝐸
(−)
3 (𝑡− 𝑡3)𝑅2(𝑡1, 𝑡2, 𝑡3)

}︂
, (4.49)

with the response function 𝑅1(𝑡1, 𝑡2, 𝑡3) [62]:1

𝑅1(𝑡1, 𝑡2, 𝑡3) =

⟨𝜇̂(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥, 𝑡1)𝜇̂(𝑥,𝑅𝑥, 𝑡1 + 𝑡2 + 𝑡3)𝜇̂(𝑥,𝑅𝑥, 𝑡1 + 𝑡2) | 𝜌(𝑥,𝑅𝑥, 𝑡0)⟩𝑥,𝑅𝑥
.

(4.50)

This response demonstrates two interactions on the 𝑘𝑒𝑡-element of the density2

matrix at times 𝑡1 and 𝑡1+𝑡2, corresponding to the first and the second laser pulse.3

The third light-matter interaction takes place at 𝑡1 + 𝑡2 + 𝑡3 and acts upon the4

𝑏𝑟𝑎-element of the density matrix. A slightly different expression is 𝑅2(𝑡1, 𝑡2, 𝑡3):5

𝑅2(𝑡1, 𝑡2, 𝑡3) =

⟨𝜇̂(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥, 𝑡1 + 𝑡2)𝜇̂(𝑥,𝑅𝑥, 𝑡1 + 𝑡2 + 𝑡3)𝜇̂(𝑥,𝑅𝑥, 𝑡1) | 𝜌(𝑥,𝑅𝑥, 𝑡0)⟩𝑥,𝑅𝑥
.

(4.51)

In what follows, the expression for the third-order polarization is derived with the6

two contributions to the response function above mentioned. First, a change in7

time variables is made accordingly to:8
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𝑡′3 = 𝑡− 𝑡3, (4.52)

𝑡′2 = 𝑡− 𝑡3 − 𝑡2, (4.53)

𝑡′1 = 𝑡− 𝑡3 − 𝑡2 − 𝑡1. (4.54)

Then, similar to the previous section, the following expression for the third-order1

polarization within the Hilbert space description of eigenstates 𝛼, 𝛼′, 𝛼′′ and the2

initial state 𝐸0 is obtained [65]:3

𝑃 (3)(𝑡) =Im

{︃∫︁ 𝑡

−∞
𝑑𝑡′3

∫︁ 𝑡′3

−∞
𝑑𝑡′2

∫︁ 𝑡′2

−∞
𝑑𝑡′1⟨𝜓𝐸0(𝑥,𝑅𝑥)|𝑈̂*(𝑡′1 − 𝑡0)×

𝜇̂(𝑥,𝑅𝑥)𝐸
(+)*
1 (𝑡′1)𝑈̂

*(𝑡′2 − 𝑡′1)𝜇̂(𝑥,𝑅𝑥)𝐸
(−)*
2 (𝑡′2)×

𝑈̂*(𝑡− 𝑡′2)𝜇̂(𝑥,𝑅𝑥)𝑈̂(𝑡− 𝑡′3)𝜇̂(𝑥,𝑅𝑥)𝐸
(+)
3 (𝑡′3)×

𝑈̂(𝑡′3 − 𝑡0)|𝜓𝐸0(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
+ ⟨𝜓𝐸0(𝑥,𝑅𝑥)|𝑈̂*(𝑡′1 − 𝑡0)×

𝜇̂(𝑥,𝑅𝑥)𝐸
(+)*
1 (𝑡′1)𝑈̂

*(𝑡′3 − 𝑡′1)𝜇̂(𝑥,𝑅𝑥)𝐸
(−)*
3 (𝑡′3)×

𝑈̂*(𝑡− 𝑡′3)𝜇̂(𝑥,𝑅𝑥)𝑈̂(𝑡− 𝑡′2)𝜇̂(𝑥,𝑅𝑥)𝐸
(+)
2 (𝑡′2)×

𝑈̂(𝑡′2 − 𝑡0)|𝜓𝐸0(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥

}︂
.

(4.55)

The expression for the system’s propagator in the basis state representation is4

plugged in [69, 100, 101]:5

𝑈̂(𝑡𝑝) =
∑︁
𝛽

|𝜓𝛽(𝑥,𝑅𝑥)⟩𝑒−𝑖𝐸𝛽𝑡𝑝⟨𝜓𝛽(𝑥,𝑅𝑥)|. (4.56)

Furthermore, the delay time 𝜏 of the second laser pulse as well as the population6

time 𝑇 [98] is introduced, extending the time span between the second and third7

pulse. Then, the laser fields become:8
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𝐸1(𝑡
′
1) → 𝐸1(𝑡

′
1) (4.57)

𝐸2(𝑡
′
2) → 𝐸2(𝑡

′
2 − 𝜏 − 𝑇𝑚𝑖𝑛) (4.58)

𝐸3(𝑡
′
3) → 𝐸3(𝑡

′
3 − 𝜏 − 𝑇 − 𝑇𝑚𝑖𝑛) (4.59)

Putting all together, one is left with an expression for the third-order polarization,1

containing time-independent factors 𝑁𝐸0,𝛼,𝛼′,𝛼′′ , which are dipole moment ma-2

trix elements. The polarization expression also contains the two time-dependent3

contributions 𝑏𝑥𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) and 𝑏𝑦𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛), which will be4

regarded later.5

𝑃 (3)(𝜏, 𝑇, 𝑡) =Im

⎧⎨⎩ ∑︁
𝛼,𝛼′,𝛼′′

𝑁𝐸0,𝛼,𝛼′,𝛼′′×

{︁
𝑏𝑥𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) + 𝑏𝑦𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛)

}︁ ⎫⎬⎭ ,

(4.60)

Here, the 𝑁𝐸0,𝛼,𝛼′,𝛼′′ are explicitely given by:6

𝑁𝐸0,𝛼,𝛼′,𝛼′′ =⟨𝜓𝐸0(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝛼′′(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
×

⟨𝜓𝛼′′(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝛼′(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
×

⟨𝜓𝛼′(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝛼(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
×

⟨𝜓𝛼(𝑥,𝑅𝑥) | 𝜇̂(𝑥,𝑅𝑥) |𝜓𝐸0(𝑥,𝑅𝑥)⟩𝑥,𝑅𝑥
. (4.61)

𝑏𝑥𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) and 𝑏𝑦𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) are influenced by the electric7

fields and by the time evolution of eigenstates, and are defined as:8
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𝑏𝑥𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) =

∫︁ 𝑡

−∞
𝑑𝑡′3

∫︁ 𝑡′3

−∞
𝑑𝑡′2

∫︁ 𝑡′2

−∞
𝑑𝑡′1×

𝑒−𝛼[(𝑡′3−𝜏−𝑇−𝑇𝑚𝑖𝑛)
2+(𝑡′2−𝜏−𝑇𝑚𝑖𝑛)

2+(𝑡′1)
2]×

𝑒−𝑖𝜔3 (𝑡′3−𝜏−𝑇−𝑇𝑚𝑖𝑛) 𝑒−𝑖𝜔2(𝑡′2−𝜏) 𝑒𝑖𝜔1𝑡′1×

𝑒𝑖(𝐸𝛼−𝐸𝐸0
)𝑡′3 𝑒𝑖(𝐸𝛼′′−𝐸𝛼′ )𝑡′2 𝑒𝑖(𝐸𝐸0

−𝐸𝛼′′ )𝑡′1 𝑒𝑖(𝐸𝛼′−𝐸𝛼)𝑡,

(4.62)

and1

𝑏𝑦𝐸0,𝛼,𝛼′,𝛼′′(𝑡, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) =

∫︁ 𝑡

−∞
𝑑𝑡′3

∫︁ 𝑡′3

−∞
𝑑𝑡′2

∫︁ 𝑡′2

−∞
𝑑𝑡′1×

𝑒−𝛼[(𝑡′3−𝜏−𝑇−𝑇𝑚𝑖𝑛)
2+(𝑡′2−𝜏−𝑇𝑚𝑖𝑛)

2+(𝑡′1)
2]×

𝑒−𝑖𝜔3(𝑡′3−𝜏−𝑇−𝑇𝑚𝑖𝑛) 𝑒−𝑖𝜔2(𝑡′2−𝜏) 𝑒𝑖𝜔1𝑡′1×

𝑒𝑖(𝐸𝛼′′−𝐸𝛼′ )𝑡′3 𝑒𝑖(𝐸𝛼−𝐸𝐸0
)𝑡′2 𝑒𝑖(𝐸𝐸0

−𝐸𝛼′′ )𝑡′1 𝑒𝑖(𝐸𝛼′−𝐸𝛼)𝑡.

(4.63)

Finally, introducing the new time variables:2

𝑡′ = 𝑡− 𝜏 − 𝑇 − 𝑇𝑚𝑖𝑛,

𝑡1 = 𝑡′1,

𝑡2 = 𝑡′2 − 𝜏 − 𝑇𝑚𝑖𝑛 and

𝑡3 = 𝑡′3 − 𝜏 − 𝑇 − 𝑇𝑚𝑖𝑛,

(4.64)

eq. (4.60) can be rearranged in time and, therefore, the time-dependent contri-3

butions are transformed to 𝑏′,𝑥𝐸0,𝛼,𝛼′,𝛼′′(𝑡′, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) and 𝑏′,𝑦𝐸0,𝛼,𝛼′,𝛼′′(𝑡′, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛).4

Because the laser pulses are finite, the boundaries for the integrals over 𝑡′1, 𝑡′2 and5

𝑡′3 can be extended to infinity:6
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𝑏′,𝑥𝐸0,𝛼,𝛼′,𝛼′′(𝑡
′, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) =

∫︁ ∞

−∞
𝑑𝑡3

∫︁ ∞

−∞
𝑑𝑡2

∫︁ ∞

−∞
𝑑𝑡1×

𝑒−𝛼[(𝑡3)2+(𝑡2)2+(𝑡1)2] 𝑒−𝑖𝜔3𝑡3 𝑒−𝑖𝜔2𝑡2 𝑒𝑖𝜔1𝑡1×

𝑒𝑖(𝐸𝛼−𝐸𝐸0
)𝑡3 𝑒𝑖(𝐸𝛼′′−𝐸𝛼′ )𝑡2 𝑒𝑖(𝐸𝐸0

−𝐸𝛼′′ )𝑡1×

𝑒−𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝜏 𝑒−𝑖(𝐸𝐸0

−𝐸𝛼′ )𝑇 𝑒−𝑖(𝐸𝛼−𝐸𝛼′ )𝑡′×

𝑒−𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝑇𝑚𝑖𝑛 .

(4.65)

𝑏′,𝑦𝐸0,𝛼,𝛼′,𝛼′′(𝑡
′, 𝜏, 𝑇, 𝑇𝑚𝑖𝑛) =

∫︁ ∞

−∞
𝑑𝑡3

∫︁ ∞

−∞
𝑑𝑡2

∫︁ ∞

−∞
𝑑𝑡1×

𝑒−𝛼[(𝑡3)2+(𝑡2)2+(𝑡1)2] 𝑒−𝑖𝜔3𝑡3 𝑒−𝑖𝜔2𝑡2 𝑒𝑖𝜔1𝑡1×

𝑒𝑖(𝐸𝛼′′−𝐸𝛼′ )𝑡3 𝑒𝑖(𝐸𝛼−𝐸𝑖)𝑡2 𝑒𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝑡1×

𝑒−𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝜏 𝑒−𝑖(𝐸𝛼−𝐸𝛼′′ )𝑇 𝑒−𝑖(𝐸𝛼−𝐸𝛼′ )𝑡′×

𝑒−𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝑇𝑚𝑖𝑛 .

(4.66)

Finally, one can simplify eq. (4.60) to:1

𝑃 (3)(𝜏, 𝑇, 𝑡′, 𝑇𝑚𝑖𝑛) =Im

⎧⎨⎩ ∑︁
𝛼,𝛼′,𝛼′′

𝑁𝐸0,𝛼,𝛼′,𝛼′′

{︁
𝑏̃𝑥𝐸0,𝛼,𝛼′,𝛼′′ 𝑒−𝑖(𝐸𝐸0

−𝐸𝛼′ )𝑇

+ 𝑏̃𝑦𝐸0,𝛼,𝛼′,𝛼′′𝑒
−𝑖(𝐸𝛼−𝐸𝛼′′ )𝑇

}︁
×

𝑒−𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝜏𝑒−𝑖(𝐸𝛼−𝐸𝛼′ )𝑡′𝑒−𝑖(𝐸𝐸0

−𝐸𝛼′′ )𝑇𝑚𝑖𝑛

⎫⎬⎭ .

(4.67)

where 𝑏̃𝑥𝐸0,𝛼,𝛼′,𝛼′′ belongs to the right-hand double-sided Feynman diagram in fig. 4-2

33 and is defined as:3

97



𝑏̃𝑥𝐸0,𝛼,𝛼′,𝛼′′ =

∫︁ ∞

−∞
𝑑𝑡3

∫︁ ∞

−∞
𝑑𝑡2

∫︁ ∞

−∞
𝑑𝑡1×

𝑒−𝛼[(𝑡3)2+(𝑡2)2+(𝑡1)2] 𝑒−𝑖𝜔3𝑡3 𝑒−𝑖𝜔2𝑡2 𝑒𝑖𝜔1𝑡1×

𝑒𝑖(𝐸𝛼−𝐸𝐸0
)𝑡3 𝑒𝑖(𝐸𝛼′′−𝐸𝛼′ )𝑡2 𝑒𝑖(𝐸𝐸0

−𝐸𝛼′′ )𝑡1 ,

(4.68)

and 𝑏̃𝑦𝐸0,𝛼,𝛼′,𝛼′′ belongs to the left-hand double-sided Feynman diagram in fig. 4-331

and is defined as:2

𝑏̃𝑦𝐸0,𝛼,𝛼′,𝛼′′ =

∫︁ ∞

−∞
𝑑𝑡3

∫︁ ∞

−∞
𝑑𝑡2

∫︁ ∞

−∞
𝑑𝑡1×

𝑒−𝛼[(𝑡3)2+(𝑡2)2+(𝑡1)2] 𝑒−𝑖𝜔3𝑡3 𝑒−𝑖𝜔2𝑡2 𝑒𝑖𝜔1𝑡1×

𝑒𝑖(𝐸𝛼′′−𝐸𝛼′ )𝑡3 𝑒𝑖(𝐸𝛼−𝐸𝐸0
)𝑡2 𝑒𝑖(𝐸𝐸0

−𝐸𝛼′′ )𝑡1 .

(4.69)

Out of the polarization, a two-dimensional spectrum is obtained by a double3

Fourier transform in 𝜏 and 𝑡′.4

|𝑆(𝐸𝑡′ , 𝐸𝜏 , 𝑇, 𝑇𝑚𝑖𝑛)| =
⃒⃒⃒⃒∫︁

𝜏
𝑑𝜏

∫︁
𝑡′
𝑑𝑡′𝑒𝑖(𝐸𝑡′ 𝑡

′−𝐸𝜏 𝜏)Im
{︁
𝑃 (3)(𝜏 , 𝑇, 𝑡′, 𝑇𝑚𝑖𝑛)

}︁⃒⃒⃒⃒
. (4.70)

Strictly regarding the two only contributions, where the light-matter interaction5

prompts an absorptive process in −𝑘1 direction, one is left with the expression for6

the modulus of the two-dimensional spectrum:7
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|𝑆(𝐸𝑡′ , 𝐸𝜏 , 𝑇, 𝑇𝑚𝑖𝑛)| =

⃒⃒⃒⃒
⃒⃒ ∑︁
𝛼,𝛼′,𝛼′′

𝑁𝐸0,𝛼,𝛼′,𝛼′′ 𝑒−𝑖(𝐸𝐸0
−𝐸𝛼′′ )𝑇𝑚𝑖𝑛×

{︁
𝑏̃𝑥𝐸0,𝛼,𝛼′,𝛼′′𝑒−𝑖(𝐸𝐸0

−𝐸𝛼′ )𝑇 + 𝑏̃𝑦𝐸0,𝛼,𝛼′,𝛼′′𝑒
−𝑖(𝐸𝛼−𝐸𝛼′′ )𝑇

}︁
×

𝛿(𝐸𝜏 − [𝐸𝛼′′ − 𝐸𝐸0 ])𝛿(𝐸𝑡′ − [𝐸𝛼 − 𝐸𝛼′ ])

⃒⃒⃒⃒
⃒⃒ .

(4.71)

With the direction and the temporal order of the pulses, the following contribu-1

tions, which are displayed in a double-sided Feynman diagram [62], are given:2

−𝑘1

+𝑘2

+𝑘3

−𝑘𝑠
|𝛼′⟩ ⟨𝛼′|

|𝛼⟩ ⟨𝛼′|

|𝛼⟩ ⟨𝛼′′|

|𝐸0⟩ ⟨𝛼′′|

|𝐸0⟩ ⟨𝐸0|

𝑡′

𝑇

𝜏
−𝑘1

+𝑘2

+𝑘3

−𝑘𝑠
|𝛼′⟩ ⟨𝛼′|

|𝛼⟩ ⟨𝛼′|

|𝐸0⟩ ⟨𝛼′|

|𝐸0⟩ ⟨𝛼′′|

|𝐸0⟩ ⟨𝐸0|

𝑡′

𝑇

𝜏

Figure 4-33: Double-Sided Feynman Diagram Illustrating Two Contribu-
tions to the Two-Dimensional Spectrum. Depicted are the two contributions
to the spectral signal left due to eq. (4.71).

The parameters used in the simulation are summarized in table 4.12.3
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Table 4.12: Parameters for the Calculation of the Two-Dimensional Spec-
tra.

symbol: description: weak coupling strong coupling
𝜏 delay time 325.6 fs 325.6 fs
𝑇𝑚𝑖𝑛 waiting time 9.3 fs 9.3 fs
𝑇 population time 0.0 fs 0.0 fs
𝑡′ aquisition time 325.6 fs 325.6 fs
𝐸𝑜𝑓𝑓 offset energy 11.58 eV 10.01 eV
𝑅𝑐 shielding: 𝑒− and 𝑝+ 1.5 Å 2.5 Å
𝛼 Gaussian broadening 1.0 · 10-4 1

fs 2 1.0 · 10-4 1
fs 2

𝜔1 = 𝜔2 = 𝜔3 excitation energy 2.9 eV 1.9 eV

4.4.2.1 Weak Coupling1

For the third-order polarization, the following two contributions for the simulation2

are needed:3

𝑃 (3,𝑒𝑥)(−𝑘1,+𝑘2,+𝑘3, 𝑡) =

⟨𝜓(2,𝑒𝑥)
1 (+𝑘2,−𝑘1, 𝑥,𝑅𝑥, 𝑡) | 𝜇̂(𝑥,𝑅𝑥) |𝜓(1,𝑒𝑥)(+𝑘3, 𝑥,𝑅𝑥, 𝑡)⟩𝑥,𝑅𝑥

+⟨𝜓(2,𝑒𝑥)
1 (+𝑘3,−𝑘1, 𝑥,𝑅𝑥, 𝑡) | 𝜇̂(𝑥,𝑅𝑥) |𝜓(1,𝑒𝑥)(+𝑘2, 𝑥,𝑅𝑥, 𝑡)⟩𝑥,𝑅𝑥

. (4.72)

These two contributions are obtained from eq. (4.67).4

The third-order polarization is calculated exemplarily for ⟨𝜓(2,𝑒𝑥)
1 (+𝑘2,−𝑘1, 𝑥,𝑅𝑥, 𝑡)|5

in eq. (4.72) via:6

⟨𝜓(1,𝑒𝑥)(−𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)| =𝑈̂*(Δ𝑡)⟨𝜓(1,𝑒𝑥)(−𝑘1, 𝑥,𝑅𝑥, 𝑡)|

+ 𝑖Δ𝑡
(︀
𝜇̂(𝑥,𝑅𝑥)𝐸

+
1 (𝑡+Δ𝑡)

)︀
⟨𝜓(0,𝑒𝑥)

𝐸0
(𝑥,𝑅𝑥, 𝑡+Δ𝑡)|,

(4.73)

then, for the second order, the perturbative propagation of the wave function is:7
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⟨𝜓(2,𝑒𝑥)(+𝑘2 − 𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)| = 𝑈̂*(Δ𝑡)⟨𝜓(2,𝑒𝑥)(+𝑘2 − 𝑘1, 𝑥,𝑅𝑥, 𝑡)|

+ 𝑖Δ𝑡
(︀
𝜇̂(𝑥,𝑅𝑥)𝐸

−
2 (𝑡+Δ𝑡)

)︀
⟨𝜓(1,𝑒𝑥)(−𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)|. (4.74)

And finally, the term |𝜓(1,𝑒𝑥)(+𝑘3, 𝑥,𝑅𝑥, 𝑡)⟩:1

|𝜓(1,𝑒𝑥)(+𝑘3, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩ =𝑈̂(Δ𝑡)|𝜓(1,𝑒𝑥)(+𝑘3, 𝑥,𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂(𝑥,𝑅𝑥)𝐸

−
3 (𝑡+Δ𝑡)

)︀
|𝜓(0,𝑒𝑥)

𝐸0
(𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩,

(4.75)

where the exact propagation of the wave function is used. Applying the Born-2

Oppenheimer approximation, the perturbative calculation can be analogously spec-3

ified, with 𝑛, 𝑝 = 1, 2 and 𝑚 = 0, as:4

⟨𝜒(1,𝐵𝑂)
𝑛 (𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)| =𝑈̂*

𝑛(𝑅𝑥,Δ𝑡)⟨𝜒(1,𝐵𝑂)
𝑛 (𝑘1, 𝑅𝑥, 𝑡)|

+ 𝑖Δ𝑡
(︀
𝜇̂𝑛0(𝑅𝑥)𝐸

+
1 (𝑡+Δ𝑡)

)︀
⟨𝜒(0,𝐵𝑂)

0 (𝑅𝑥, 𝑡+Δ𝑡)|,

(4.76)

⟨𝜒(2,𝐵𝑂)
𝑚 (−𝑘2 + 𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)| = 𝑈̂*

𝑚(𝑅𝑥,Δ𝑡)⟨𝜒(2,𝐵𝑂)
𝑚 (−𝑘2 + 𝑘1, 𝑅𝑥, 𝑡)|

+ 𝑖Δ𝑡
(︀
𝜇̂𝑚𝑛(𝑅𝑥)𝐸

−
2 (𝑡+Δ𝑡)

)︀
⟨𝜒(1,𝐵𝑂)

𝑛 (𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)| (4.77)

and5
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|𝜒(1,𝐵𝑂)
𝑝 (+𝑘3, 𝑅𝑥, 𝑡+Δ𝑡)⟩ =𝑈̂𝑝(𝑅𝑥,Δ𝑡)|𝜒(1,𝐵𝑂)

𝑝 (+𝑘3, 𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂𝑝0(𝑅𝑥)𝐸

−
3 (𝑡+Δ𝑡)

)︀
|𝜒(0,𝐵𝑂)

0 (𝑅𝑥, 𝑡+Δ𝑡)⟩,

(4.78)

with:1

𝑈̂𝑛(𝑅𝑥,Δ𝑡) = 𝑒−𝑖(− 1
2𝑀

∇2
𝑅𝑥

+𝑢𝑛𝑛(𝑅⃗𝑥)) Δ𝑡. (4.79)

Combining the Born-Oppenheimer treatment with the knowledge obtained from2

the linear absorption spectrum for the weak coupling case, one expects peaks along3

the diagonal with a vibrational progression because the electronic ground state and4

the excited state are almost decoupled from each other.5

This is indeed the case, both for the exact propagation scheme and for the prop-6

agation within the Born-Oppenheimer approximation, as can be seen in fig. 4-34.7

The absolute value of the two-dimensional spectrum for the exact calculation (left8

hand panel) matches perfectly with the spectrum calculated in the approximated9

picture.10
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Figure 4-34: Two-Dimensional Spectrum of the Weak Coupling Case. The
peaks are given as absolute of the signal in arbitrary units. Panel (a) shows the
spectrum obtained within the adiabatic treatment. Panel (b) shows the spectrum
obtained from the exact propagation scheme.

The two-dimensional spectrum exhibits, as expected, peaks along the diagonal at1

approximately 𝐸𝑡′ = 𝐸𝜏 = 2.9 eV. Comparing this to the eigenenergies obtained in2

section 4.2.1 and to the vertical excitation in fig. 4-25, it is in very good agreement.3

This can be characterized as the transition from the ground state to the adiabatic4

first electronic excited state. This fact now helps to characterize the peaks along5

the 𝐸𝑡′ axis, which is a more complex task regarding eq. (4.80), eq. (4.71) and6

corresponding double-sided Feynman diagrams. According to this, a huge variety7

of combinations of energy differences 𝐸𝛼′ − 𝐸𝛼 is possible to reflect the peaks8

appearing along the 𝐸𝑡′ axis. This is due to the fact that these peaks are the9

result of three laser pulses acting upon the system, each with a strong energetic10

broadening [23].11

𝐸𝜏 = (𝐸𝛼′′ − 𝐸𝐸0) and 𝐸𝑡′ = (𝐸𝛼′ − 𝐸𝛼). (4.80)

Remembering that the two-dimensional spectrum can be reproduced by the adi-12

abatic calculation, puts some constrains to the interpretation of the transitions13

during the detection time 𝑡′. The decoupled adiabatic states and the laser pulse14
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settings allow transitions between the vibrational states within the adiabatic elec-1

tronic ground state |𝜓0,𝜈(𝑥,𝑅𝑥)⟩ and the adiabatic electronic first excited state2

|𝜓1,𝜈′(𝑥,𝑅𝑥)⟩. Then, the quantum numbers can be chosen according to the elec-3

tronic and nuclear degree of freedom and yield as peak structure:4

𝐸𝜏 = (𝐸1,𝜈′′ − 𝐸0,0) and 𝐸𝑡′ = (𝐸0,𝜈 − 𝐸1,𝜈′). (4.81)

In the signal, these transitions are not too difficult to interpret and are derived5

from transitions within the vibrational energy levels in the adiabatic ground state6

and first electronic excited state. The peaks appearing at smaller 𝐸𝑡′ arise because7

𝐸0,𝜈 > 𝐸0,0 for 𝜈 ̸= 0. Then |𝐸0,𝜈−𝐸1,𝜈′ | < |𝐸1,𝜈′′−𝐸0,0|. A double-sided Feynman8

diagram shows the possible transitions:9

−𝑘1

+𝑘2

+𝑘3

−𝑘𝑠
|0, 𝜈⟩ ⟨0, 𝜈|

|1, 𝜈′⟩ ⟨0, 𝜈|

|1, 𝜈′⟩ ⟨1, 𝜈′′|

|𝐸0,0⟩ ⟨1, 𝜈′′|

|𝐸0,0⟩ ⟨𝐸0,0|

𝑡′

𝑇 = 0

𝜏
−𝑘1

+𝑘2

+𝑘3

−𝑘𝑠
|0, 𝜈⟩ ⟨0, 𝜈|

|1, 𝜈′⟩ ⟨0, 𝜈|

|𝐸0,0⟩ ⟨0, 𝜈|

|𝐸0,0⟩ ⟨1, 𝜈′′|

|𝐸0,0⟩ ⟨𝐸0,0|

𝑡′

𝜏

𝑇 = 0

Figure 4-35: Double-Sided Feynman Diagram for the Two-Dimensional
Spectrum of the Weak Coupling Case. Depicted are the two contributions
left due to the selection rules put on the simualtion, but with further restrictions
on vibrational 𝜈, 𝜈 ′, 𝜈 ′′ and electronic states 0, 1 involved during the experiment.

4.4.2.2 Strong Coupling10

Next, the two-dimensional spectrum of the strong coupling case with 𝑅𝑐 = 2.511

Å is studied. The spectrum is calculated with a photon energy of 1.9 eV for all12

pulses. It displays a rather complicated structure. As can be seen in fig. 4-36, a13

diagonal component in the peak structure at about 𝐸𝜏 = 𝐸𝑡′ = 2.6 eV is visible.14

Regarding the absorption spectrum fig. 4-27, this corresponds to transitions in the15
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second excited state. Additionally, in fig. 4-36 panel (a) shows the transition to1

the first excited state, calculated in the adiabatic representation within the Born-2

Oppenheimer approximation. Also here, a diagonal peak at 𝐸𝜏 = 𝐸𝑡′ = 2.6 eV3

can be matched to the transition in the exact calculated spectrum in region (𝛽)4

in panel (c).5

The spectrum also exhibits peaks in the region (𝛿) of 𝐸𝜏 = 𝐸𝑡′ = 1.9 eV which cor-6

respond to the |𝜓𝐸0(𝑥,𝑅𝑥)⟩ and |𝜓𝑚𝑖𝑥(𝑥,𝑅𝑥)⟩ transition, see fig. 4-29, but these7

are rather small as can be confirmed by the absorption spectra from section 4.4.1.2.8

These peaks, however, are of high interest, because they are influenced by non-9

adiabatic coupling. In the case of calculating the transition between |𝜓𝐸0(𝑥,𝑅𝑥)⟩10

and |𝜓𝑚𝑖𝑥(𝑥,𝑅𝑥)⟩ in the adiabatic framework, or Born-Oppenheimer framework,11

fig. 4-36 panel (b) shows that this spectrum is in bad agreement with the exact12

calculated one, panel (c). This is because the coupling is neglected in this calcu-13

lation, and it has already been seen that the coupling is essential for the structure14

of the eigenfunctions in section 4.4.1.1 and in the calculation of absorption spectra15

[91].16

This confirms that these peaks can not be matched to certain electronic or vibra-17

tional transitions, because they are electronically coupled and exhibit a non-trivial18

structure [23].19

Though, an interpretation of the two-dimensional exact spectrum of the strong20

coupling situation is possible. Starting with the yet uncharacterized region (𝛼) in21

the interval 𝐸𝜏 = [2.25; 3.0] eV and approximately 𝐸𝑡′ = [0.75; 2.3] eV, this region22

derives from high energetic coherences during the coherence time 𝜏 [99]. They are23

prompted after the first laser pulse has excited the model system. This energetic24

difference must correspond to the second excited state transitions, regarding the25

energy of 2.7 eV along the 𝐸𝜏 -axis. The small energy components in 𝐸𝑡′-direction26

are then prompted by coherences between the mixed states and the second excited27

state. There, energetic spacings of at least 0.5 eV and higher are present. These28

transitions correspond to the off-diagonal region in the two-dimensional spectrum.29
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Also noteworthy are transitions defining the second off-diagonal region in the inter-1

val between the 𝐸𝜏 = [1.5; 2.3] eV and 𝐸𝑡′ = [2.3; 3.0] eV. These peaks are mainly2

formed by transitions to the states with mixed electronic characteristic prompted3

by the first laser pulse. After this, during the acquisition time, coherences between4

the second excited state and the ground state are seen, as this is the only energetic5

difference high enough in energy to match the values of 𝐸𝑡′ = 1.9 eV.6

Regarding the two-dimensional spectrum of the strong coupling case, one is still7

left with the question whether the two-dimensional spectrum can reveal the mix-8

ing character of the adiabatic ground state and adiabatic first excited state. This9

indeed can not be distinguished by this numerical experiment. The only fact seen10

is the appearance of states coupled via the light-matter interaction and exhibit a11

defined energetic window, in which transitions are allowed.12
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Figure 4-36: Two-Dimensional Spectrum of the Strong Coupling Case.
The peaks are given as the absolute signal in arbitrary values. Panel (a) shows
the spectrum within the adiabatic treatment of ground state and second excited
adiabatic state. The validity of the Born-Oppenheimer approximation is assumed.
Panel (b) shows the spectrum within the adiabatic treatment of ground state and
first excited adiabatic state. Panel (c) contains the spectrum obtained from the
exact propagation.
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4.4.3 Distinction between Vibrational and Electronic Coherences1

In the last section the polarization function was regarded as a function of the2

delay-time 𝜏 and the acquisition time 𝑡′. This gave the information about the3

coherences appearing between the first and the second pulse and after the third4

pulse, respectively. The population time 𝑇 was set to 𝑇 = 0 fs. A variation of the5

population time implies coherences and, therefore, oscillations in the intensity of6

the two-dimensional spectrum. These oscillations are often matched to electronic,7

vibrational and vibronic coherences within the model system [102–106].8

This section is dedicated to the distinction of the characteristics of such oscilla-9

tions. The numerical experiments for the weak coupling and strong coupling case10

are repeated, but in contrast, the delay time 𝜏 and the detection time 𝑡′ are fixed11

to a value of 𝜏 = 0 fs and 𝑡′ = 9.3 fs, respectively. Only the population time 𝑇 is12

varied in the interval 𝑇 = [0.0, 232.6] fs. The polarization is proportional to the13

terms given in eq. (4.82) [23]:14

𝑃 (3,𝑒𝑥)(𝑡′, 𝜏, 𝑇 ) ∼ 𝑒𝑖(𝐸𝛼′−𝐸𝛼)𝑡′ 𝑒𝑖(𝐸𝛼′′−𝐸𝐸0
)𝜏
{︁
𝑒𝑖(𝐸𝛼′−𝐸𝐸0

)𝑇 + 𝑒𝑖(𝐸𝛼′′−𝐸𝐸0
)𝑇
}︁
.

(4.82)

In the case of the weak coupling situation, the numerically exact spectrum can be15

reproduced within the Born-Oppenheimer treatment. As a result, peaks can be16

matched to the quantum numbers 𝛼, 𝛼′ and 𝛼′′ appearing in eq. (4.82) to product17

states of an electronic and vibrational component [23]:18

𝑃 (3,𝐵𝑂)(𝑡′, 𝜏, 𝑇 ) ∼ 𝑒𝑖(𝐸0,𝑣−𝐸1,𝑣)𝑡′ 𝑒𝑖(𝐸1,𝑣′′−𝐸0,0)𝜏×{︁
𝑒𝑖(𝐸0,𝑣−𝐸0,0)𝑇 + 𝑒𝑖(𝐸1,𝑣′′−𝐸1,𝑣′ )𝑇

}︁
, (4.83)

where the appearing coherences during the population time 𝑇 are of vibrational19

character in the electronically excited state and of the ground state, respectively.20
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These are inter-electronic vibrational coherences. A comparison to the exactly1

calculated spectrum obtained by:2

𝑆(𝐸𝑇 ) =
1√
2𝜋

∫︁
𝑇
𝑑𝑇𝑃 (3,𝑒𝑥)(𝑡′, 𝜏, 𝑇 ) 𝑒+𝑖𝐸𝑇𝑇 (4.84)

and the spectrum obtained within the Born-Oppenheimer treatment using 𝑃 (3,𝐵𝑂)(𝑡′, 𝜏, 𝑇 )3

shows a good agreement and proves the statement.4
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Figure 4-37: Abolute Spectrum Showing Coherences during the Popula-
tion Time 𝑇 within the Weak Coupling Case. The black curve represents
the spectrum, simulated within the adiabatic framework and the assumption of
the Born-Oppenheimer approximation. The blue curve shows the spectrum within
the exact propagation scheme.

In fig. 4-37, both positive and negative energy differences appear as can be checked5

by eq. (4.83). On the other hand, in the strong coupling case it is not possi-6

ble to distinguish between vibrational and electronic coherences because of the7

non-adiabatic coupling between the adiabatic ground state and the adiabatic first8

excited state. Therefore, coherences are of strongly mixed vibronic character in9

the spectrum fig. 4-38. The blue line shows the exact calculation and neither the10
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black nor the red line, obtained from the Born-Oppenheimer treatment incorpo-1

rating the first and second excited state, respectively, can reproduce the exact2

spectrum [23].3
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Figure 4-38: Abolute Spectrum Showing Coherences during Population
Time 𝑇 within the Strong Coupling Case. The black and red curve represent
the spectrum, simulated within the adiabatic framework between the ground state
and the first and second excited state, respectively. The blue curve shows the
spectrum within the exact propagation scheme.

Concluding Remarks4

The results show that only in case of an adiabatic dynamic within the validity of5

the Born-Oppenheimer approximation, the distinction of vibrational from other6

characteristic oscillations is possible within a two-level system, where the three7

photon-experiment prompts only transitions within the two weakly coupled adi-8

abatic states. In case of non-adiabatic coupling, which can not be neglected, a9

distinction between vibrational and electronic coherences is not possible. The10

properties of eigenfunctions being of mixed electronic character strictly leads then11

to the apperance of vibronic coherences.12
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4.4.4 Degenerated Four-Wave Mixing1

Next, the time-resolved four-wave mixing (FWM) signal of the model is calculated.2

The impact of non-adiabatic coupling on the FWM signal of the weak coupling and3

strong coupling case is studied again and the previous study is continued. With4

the FWM signal, one is able to look at ground state and excited state wave-packet5

dynamics [107–113].6

The laser setup consists of four equal pulses. The first and the second pulse act7

simultaneously, while the third pulse is delayed by a time 𝜏 with both positive8

and negative values to the previous two pulses. Last but not least, a fourth pulse9

serves as to record the third-order signal in a homodyne detection scheme [72]. To10

calculate such signals only three pulses are needed, though, given in eq. (4.85);11

then the setup is arranged like in fig. 4-39.12

           

-τ τ t'

2

1 3
t1

3

t [fs]

Figure 4-39: Pulse Sequence for a FWM Signal Experiment. The scheme
shows the first pulse and the second pulse to interact simultaneously, and the third
pulse being delayed with both negative delay times and positive delay times with
respect to the first two pulses.

𝐸(𝑡) =
3∑︁

𝑛=1

(︁
𝐸(+)

𝑛 (𝑡− 𝑡𝑛) + 𝐸(−)
𝑛 (𝑡− 𝑡𝑛)

)︁
. (4.85)

The components are given as :13

𝐸(±)
𝑛 (𝑡− 𝑡𝑛) =

1

2
𝑒−𝛼(𝑡−𝑡𝑛)2 · 𝑒∓𝑖𝜔𝑛(𝑡−𝑡𝑛). (4.86)
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This time, the signal in direction 𝑘𝑠 = 𝑘1 − 𝑘2 + 𝑘3 is detected. The polarization1

is numerically calculated according to eq. (4.87), where only a single contribution2

is regarded [113, 114].3

𝑃 (3,𝑒𝑥)(𝑡, 𝜏) = ⟨𝜓(0,𝑒𝑥)(𝑥,𝑅𝑥, 𝑡) | 𝜇̂(𝑥,𝑅𝑥) |𝜓(3,𝑒𝑥)(𝑘3 − 𝑘2 + 𝑘1, 𝑥,𝑅𝑥, 𝑡)⟩𝑥,𝑅𝑥
.

(4.87)

In case of a Born-Oppenheimer treatment, one can be more specific and use tran-4

sitions between adiabatic states. So, the third-order polarization is written as:5

𝑃 (3,𝐵𝑂)(𝑡, 𝜏) = ⟨𝜒(0,𝐵𝑂)
1 (𝑅𝑥, 𝑡) | 𝜇̂1𝑛(𝑅𝑥) |𝜒(3,𝐵𝑂)

𝑛 (𝑘3 − 𝑘2 + 𝑘1, 𝑅𝑥, 𝑡)⟩𝑥,𝑅𝑥
. (4.88)

The third-order polarization is numerically obtained via time-dependent pertur-6

bation theory, see section 3.5.7

|𝜓(1,𝑒𝑥)(𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩ =𝑈̂(Δ𝑡)|𝜓(1,𝑒𝑥)(𝑘1, 𝑥,𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂(𝑥,𝑅𝑥)𝐸

+
1 (𝑡+Δ𝑡)

)︀
|𝜓(0,𝑒𝑥)(𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩,

(4.89)

|𝜓(2,𝑒𝑥)(−𝑘2 + 𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩ = 𝑈̂(Δ𝑡)|𝜓(2,𝑒𝑥)(−𝑘2 + 𝑘1, 𝑥,𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂(𝑥,𝑅𝑥)𝐸

−
2 (𝑡+Δ𝑡)

)︀
|𝜓(1,𝑒𝑥)(𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩ (4.90)

and8
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|𝜓(3,𝑒𝑥)(𝑘3 − 𝑘2 + 𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩ = 𝑈̂(Δ𝑡)|𝜓(3,𝑒𝑥)(𝑘3 − 𝑘2 + 𝑘1, 𝑥,𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂(𝑥,𝑅𝑥)𝐸

+
3 (𝑡+Δ𝑡)

)︀
|𝜓(2,𝑒𝑥)(𝑘2 + 𝑘1, 𝑥,𝑅𝑥, 𝑡+Δ𝑡)⟩. (4.91)

In the Born-Oppenheimer treatment, the perturbation can be specified, with 𝑛, 𝑝 =1

1, 2 and 𝑚 = 0, as:2

|𝜒(1,𝐵𝑂)
𝑛 (𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)⟩ =𝑈̂𝑛(Δ𝑡)|𝜒(1,𝐵𝑂)

𝑛 (𝑘1, 𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂𝑛0(𝑅𝑥)𝐸

+
1 (𝑡+Δ𝑡)

)︀
|𝜒(0,𝐵𝑂)

0 (𝑅𝑥, 𝑡+Δ𝑡)⟩,

(4.92)

|𝜒(2,𝐵𝑂)
𝑚 (−𝑘2 + 𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)⟩ = 𝑈̂𝑚(Δ𝑡)|𝜒(2,𝐵𝑂)

𝑚 (−𝑘2 + 𝑘1, 𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂𝑚𝑛(𝑅𝑥)𝐸

−
2 (𝑡+Δ𝑡)

)︀
|𝜒(1,𝐵𝑂)

𝑛 (𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)⟩ (4.93)

and3

|𝜒(3,𝐵𝑂)
𝑝 (𝑘3 − 𝑘2 + 𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)⟩ = 𝑈̂𝑝(Δ𝑡)|𝜒(3,𝐵𝑂)

𝑝 (𝑘3 − 𝑘2 + 𝑘1, 𝑅𝑥, 𝑡)⟩

− 𝑖Δ𝑡
(︀
𝜇̂𝑝𝑚(𝑅𝑥)𝐸

+
3 (𝑡+Δ𝑡)

)︀
|𝜒(2,𝐵𝑂)

𝑚 (𝑘2 + 𝑘1, 𝑅𝑥, 𝑡+Δ𝑡)⟩. (4.94)

According to the homodyne detection [72], the absolute square of the polarization4

is integrated over a time-span of 𝑇𝑝 = 23.4 fs.5

𝑆(𝑠)(𝜏) =

∫︁ 𝑇𝑝

−𝑇𝑝

𝑑𝑡|𝑃 (3,𝑠)(𝑡, 𝜏)|2 (4.95)

For the calculation, the parameters in table 4.13 are given for both cases:6
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Table 4.13: Model Parameters for the Calculation of the Degenerate
Four-Wave Mixing Signal.

symbol: description: weak coupling strong coupling
±𝜏 delay time 186.0 fs 186.0 fs
𝐸𝑜𝑓𝑓 offset energy 11.58 eV 10.01 eV
𝑅𝑐 shielding: 𝑒− and 𝑝+ 1.5 Å 2.5 Å
𝛼 Gaussian broadening 1.0 · 10-4 1

fs 2 1.0 · 10-4 1
fs 2

𝜔 excitation energy 2.9 eV 1.9 eV

4.4.4.1 Weak Coupling1

First, the weak coupling case is regarded. Pulses of a bandwidth of 2.8 fs and a2

central frequency of 2.9 eV are used. These pulse parameters justify the use of the3

impulsive limit [72]. Within this limit, the third-order polarization for positive4

delay-times 𝜏 is given as [113]:5

𝑃 (3,𝐵𝑂)(𝑡, 𝜏) =− 𝑒𝑖𝐸0,0𝑡
∑︁

𝑚0,𝑚1

⟨𝜓(0)
0 (𝑅𝑥, 𝑡 = 0) | 𝜇̂01(𝑅𝑥) |𝜙1,𝑚1(𝑅𝑥)⟩𝑅𝑥

×

⟨𝜙1,𝑚1(𝑅𝑥) | 𝜇̂10(𝑅𝑥) |𝜙0,𝑚0(𝑅𝑥)⟩𝑅𝑥
×

⟨𝜙0,𝑚0(𝑅𝑥) | 𝜇̂01(𝑅𝑥)𝜇̂10(𝑅𝑥) |𝜓(0)
0 (𝑅𝑥, 𝑡 = 0)⟩𝑅𝑥

×

𝑒−𝑖𝐸1,𝑚1 𝑡𝑒𝑖(𝐸1,𝑚1−𝐸0,𝑚0 )𝜏 , (4.96)

where |𝜓(0)
0 (𝑅𝑥, 𝑡 = 0)⟩ is the lowest vibrational eigenfunction in the adiabatic6

ground state with energy 𝐸0,0. The vibrational eigenstates of the adiabatic ground7

state are denoted as𝑚0 and the vibratinal states of the adiabatic first excited state8

are denoted as 𝑚1. Then |𝜙1,𝑚1(𝑅𝑥)⟩ denotes a vibrational eigenfunction in the9

adiabatic first excited state.10

The signal can be obtained by integrating over 𝑇𝑝:11
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𝑆(𝐵𝑂)(𝜏) =
∑︁

𝑚0,𝑚1

∑︁
𝑚′

0,𝑚
′
1

𝑐(𝑚0,𝑚1,𝑚
′
0,𝑚

′
1)𝑒

𝑖(𝐸1,𝑚1−𝐸1,𝑚′
1
)𝜏×

𝑒
𝑖(𝐸0,𝑚0−𝐸0,𝑚′

0
)𝜏
∫︁ 𝑇𝑝

−𝑇𝑝

𝑑𝑡𝑒
𝑖(𝐸1,𝑚1−𝐸1,𝑚′

1
)𝑡
. (4.97)

For a long time-span of 𝑇𝑝, the integral becomes a 𝛿-function and the whole ex-1

pression for the signal can be reduced to:2

𝑆
(𝐵𝑂)
+ (𝜏) ≈

∑︁
𝑚0,𝑚1

∑︁
𝑚′

0,𝑚
′
1

𝑐(𝑚0,𝑚1,𝑚
′
0,𝑚

′
1)𝑒

𝑖(𝐸0,𝑚0−𝐸0,𝑚′
0
)𝜏
. (4.98)

For negative delay times 𝜏 , the polarization is calculated as:3

𝑃 (3,𝐵𝑂)(𝑡, 𝜏) =− 𝑒𝑖𝐸0,0𝑡
∑︁

𝑚1,𝑚′
1

⟨𝜓(0)
0 (𝑅𝑥, 𝑡 = 0) | 𝜇̂01(𝑅𝑥) |𝜙1,𝑚1(𝑅𝑥)⟩𝑅𝑥

×

⟨𝜙1,𝑚1(𝑅𝑥) | 𝜇̂10(𝑅𝑥)𝜇̂01(𝑅𝑥) |𝜙1,𝑚′
1
(𝑅𝑥)⟩𝑅𝑥

×

⟨𝜙1,𝑚′
1
(𝑅𝑥) | 𝜇̂10(𝑅𝑥) |𝜓(0)

0 (𝑅𝑥, 𝑡 = 0)⟩𝑅𝑥
×

𝑒−𝑖𝐸1,𝑚1 𝑡𝑒
𝑖(𝐸1,𝑚1−𝐸1,𝑚′

1
)𝜏
, (4.99)

then the signal reduces to4

𝑆
(𝐵𝑂)
− (𝜏) ≈

∑︁
𝑚1

∑︁
𝑚′

1

𝑏(𝑚1,𝑚
′
1)𝑒

𝑖(𝐸1,𝑚1−𝐸1,𝑚′
1
)𝜏
. (4.100)

The previous signal was derived for the Born-Oppenheimer treatment and it is5

shown that the signal is modulated by the oscillations as a function of the delay-6

time 𝜏 . In the following, the derivation of the signal function is given for the exact7

case:8
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𝑆
(𝐵𝑂)
+ (𝜏) ≈

∑︁
𝛼,𝛼′

∑︁
𝛽

𝑐(𝛼, 𝛼′, 𝛽)𝑒𝑖(𝐸𝛼−𝐸𝛼′ )𝜏 . (4.101)

for positive 𝜏 . And for negative 𝜏 values, it becomes:1

𝑆
(𝐵𝑂)
− (𝜏) ≈

∑︁
𝛽,𝛽′

𝑏(𝛽, 𝛽′)𝑒𝑖(𝐸𝛽−𝐸𝛽′ )𝜏 . (4.102)

The oscillating signal of the weak coupling case can be seen in fig. 4-40. Looking at2

eq. (4.98), for positive delay times 𝜏 , the oscillations appear as vibrational energy3

differences in the ground state. According to eq. (4.100), oscillations are seen as4

vibrational energy differences in the first excited state for negative 𝜏 .5

The energetic difference in the ground state between gerade states is Δ𝐸1 =6

0.074 eV, and in the first excited state the difference is Δ𝐸2 = 0.086 eV (see7

section 4.2.1). This is in very good agreement with the obtained signal, which8

oscillates with a period of 𝑇1,𝑣𝑖𝑏 = 2𝜋
Δ𝐸1

= 55 fs and 𝑇2,𝑣𝑖𝑏 = 2𝜋
Δ𝐸2

= 47 fs.9
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Figure 4-40: FWM Signal for the Weak Coupling Case. The black curve
represents the signal within the exact treatment and the blue curve the signal
within the Born-Oppenheimer treatment.

The exact calculated signal and the one within the Born-Oppenheimer treatment1

are in good agreement and underline the validity of the Born-Oppenheimer ap-2

proximation. This, furthermore, reveals that the arbitrary energy differences which3

could appear in an exact calculation can be matched to vibrational energy differ-4

ences within the electronic ground state and electronic excited state, respectively5

[113].6

4.4.4.2 Strong Coupling7

Next, the strong coupling case with 𝑅𝑐 = 2.5 Å is regarded. The exact calculated8

signal is shown in fig. 4-41. For negative delay-times 𝜏 , there are only small ampli-9

tudes. On the other hand for positive 𝜏 , there are oscillations of approximately 7510

fs periodically. These oscillactions are on top of a large offset signal background.11

Now, a comparison of the Born-Oppenheimer treatment with the adiabatic ground12

state and the first excited adiabatic state results in a mismatch. Obviously, this13

demonstrates that the Born-Oppenheimer treatment is not valid.14
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Comparing on the other hand the Born-Oppenheimer treatment including the1

ground state and the second excited state with the exact signal, one can see that2

at least for positive delay-times 𝜏 , the signal has the same oscillation period. Also,3

there appears a large background signal at positive 𝜏 values. At this point, it can4

be said that the incorporation of the second excited state is able to reproduce5

the exact signal, as the second excited state and the ground state are also well6

separated energetically, which means that here the Born-Oppenheimer treatment7

should be valid, as has already been seen in the weak coupling case.8

Nevertheless, the first excited state, as a matter of coupling, is not able to repro-9

duce any signal characteristics.10
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Figure 4-41: FWM Signal for the Strong Coupling Case. The blue curve
represents the signal obtained within the exact treatment. The reddish curve
and the black curve represent the signal within the Born-Oppenheimer treatment
between the ground state and the second adiabatic state and the second adiabatic
state, respectively.

As it has been revealed that the second excited state plays an important role11

in the light-matter-interaction process [115], longer pulses are chosen with 𝛼 =12

1.6 · 10−5 1
fs2 in order to surpress the second excited state. The results of this13

numerical experiment can be seen in fig. 4-42, where the excited state beating14
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has been seen in the Born-Oppenheimer treatment of ground state and second1

excited adiabatic state is surpressed. Nevertheless, in the ground state vibrational2

beatings are again resolved.3

Also, the Born-Oppenheimer treatment with the ground state and the first excited4

state fails [113].5

-200 -150 -100 -50  0  50  100  150  200

si
gn

al
 [a

rb
. u

ni
ts

]

τ [fs]

Figure 4-42: FWM Signal for the Weak Coupling Case with Longer Laser
Pulses. Same as fig. 4-41.

Concluding Remarks6

It has been seen that the characteristics obtained from two-dimensional spectra7

are in good agreement with those extracted from the FWM signals. Also, one saw8

that as long as the Born-Oppenheimer approximation is valid, the beating in the9

signal can be matched to vibrational energy differences in either the ground state10

or in one of the excited states, respectively. For the strong coupling case, this is11

not possible.12
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4.5 Quantum versus Classical Dynamics1

As was mentioned earlier, there is a relation between quantum dynamics and clas-2

sical dynamics, and it is common to treat nuclear dynamics classically employing3

the potential energy surface in a fixed electronic state. This approach has a long4

history [116, 117] and modern MD calculations rest on classical mechanics [19].5

To describe coupled electron-nuclear motion, one is forced to modify the classical6

description by, for example, surface hopping procedures which allow the classical7

trajectories to switch between different potentials [18, 118].8

In the following, the question of how non-adiabatic coupling is visible in the9

electron-nuclear coupled quantum-dynamics of a wave packet is investigated, which10

will address the possibility to describe this coupled dynamics via a complete clas-11

sical treatment on the potential, defined by all interactions between the protons12

and the electron.13

4.5.1 Quantum Dynamical Case Study on Three Different Cou-14

pling Cases15

In order to separate the dynamical properties, three different coupling cases are16

regarded, and thus, the one-dimensional Shin-Metiu model is again employed with17

the following parameters, see table 4.14.18

Table 4.14: Simulation Parameters.

symbol: description: value
[𝑅𝑥𝑚𝑖𝑛 : 𝑅𝑥𝑚𝑎𝑥 ] range in 𝑅𝑥-space [-6:6]Å
[𝑥𝑚𝑖𝑛 : 𝑥𝑚𝑎𝑥] range in 𝑥-space [-10:10]Å
𝑁𝑅 grid points in 𝑅𝑥-direction (𝑝+) 256
𝑁𝑥 grid points in 𝑥-direction (𝑒−) 256
𝑚𝑝 proton mass 1836.15 a.u.
𝛿𝜏 time-step ITP 1.0 a.u.
𝛿𝑡 time-step 0.5 a.u.
𝑅𝑓 shielding 𝑒− and 𝑝+𝑓𝑖𝑥𝑒𝑑 1.5 Å

Besides the constant parameters in table 4.14, 𝑅𝑐 is varied from low values, eg.19
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high electron-nuclear interaction, to high values, meaning low particle interaction,1

and the three cases of different interaction strength can be classified as weak,2

intermediate and strong coupling, respectively.3

Table 4.15: Shielding Parameters.

scenario: 𝑅𝑐

𝑤𝑒𝑎𝑘 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 1.0 Å
𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 2.0 Å
𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 2.5 Å

Solving the electronic Schrödinger equation, the adiabatic potentials are obtained,4

and they are depicted in the left panels in fig. 4-43.5

The initial conditions for the time-dependent Schrödinger equation are chosen such6

that the dynamics takes place only in the lowest two adiabatic electronic states.7

These states are obtained via eq. (4.4). The initial wave packet is:8

|𝜓𝑖𝑛𝑖𝑡(𝑥,𝑅𝑥)⟩ = 𝑁 |𝜑0(𝑥;𝑅𝑥)⟩ · 𝑒−𝛽(𝑅𝑥−𝑅𝑒𝑞)2 , (4.103)

with the given parameters in table 4.16.9

Table 4.16: Initial Conditions for Quantum Wave-Packet Dynamics.

scenario: 𝑅𝑒𝑞 𝛽

𝑤𝑒𝑎𝑘 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 3.5 Å 7.14 1

Å2

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 3.0 Å 7.14 1

Å2

𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 2.5 Å 7.14 1

Å2

Thus, the wave packet starts in the electronic ground state. The population dy-10

namics are shown in fig. 4-43 right-hand, for each case.11
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Figure 4-43: Adiabatic Potentials and Population Dynamics. The left pan-
els show the adiabatic potentials with shifted energy minimum for the three dif-
ferent coupling cases. The right panels show the population dynamics of a wave
packet being initially in the electronic ground state.

In the weak coupling case, no population transfer between the adiabatic ground1

state and the adiabatic excited state is seen, as expected [66, 91]. An almost2

complete electronic transition takes place in the strong coupling case. Finally, the3

intermediate coupling results in about 50 % transfer during each passing of the4

coupling region.5
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4.5.2 Comparison of Quantum and Classical Dynamics1

In the following, the dynamics of classical trajectories propagated in the potential2

𝑉 (𝑥,𝑅𝑥) are compared to the quantum-dynamical calculation [24]. Both the inte-3

grated densities 𝜚𝑒𝑙(𝑅𝑥, 𝑡) from the quantum-dynamical calculation and 𝜌𝑒𝑙(𝑅𝑥, 𝑡),4

obtained from the trajectory study, are regarded.5

For the classical trajectories, the initial wave function is chosen to define the6

initial conditions. The trajectories are sampled from the quantum-mechanical7

phase-space function:8

𝜌(𝑥,𝑅𝑥, 𝑝𝑥, 𝑃𝑅𝑥 , 𝑡) = |𝜓(𝑥,𝑅𝑥, 𝑡0)|2|𝜓(𝑝𝑥, 𝑃𝑅𝑥 , 𝑡0)|
2, (4.104)

yielding the distribution function [18, 59, 119]:9

𝑊
(︀
𝑥𝑖(𝑡0), 𝑅𝑥,𝑗(𝑡0), 𝑝𝑥,𝑖′(𝑡0), 𝑃𝑅𝑥,𝑗′(𝑡0)

)︀
= |𝜓(𝑥𝑖, 𝑅𝑥,𝑗 , 𝑡0)|2|𝜓(𝑝𝑥,𝑖′ , 𝑃𝑅𝑥,𝑗′ , 𝑡0)|

2,

(4.105)

Finally, the classical density is given as:10

𝜌(𝑥,𝑅𝑥, 𝑝𝑥, 𝑃𝑅𝑥 , 𝑡) =
1

𝑁

∑︁
𝑖,𝑗,𝑖′,𝑗′

𝑊 (𝑥𝑖(𝑡), 𝑅𝑥,𝑗(𝑡), 𝑝𝑥,𝑖′(𝑡), 𝑃𝑅𝑥,𝑗′(𝑡))×

𝛿(𝑥− 𝑥𝑖(𝑡))𝛿(𝑅𝑥 −𝑅𝑥,𝑗(𝑡))×

𝛿(𝑝𝑥 − 𝑝𝑥,𝑖′(𝑡))𝛿(𝑃𝑅𝑥 − 𝑃𝑅𝑥,𝑗′(𝑡)). (4.106)

For the electron density, one obtains:11

𝜌𝑒𝑙(𝑥, 𝑡) =
1

𝑁

∑︁
𝑖,𝑗,𝑖′,𝑗′

𝑊 (𝑥𝑖(𝑡), 𝑅𝑥,𝑗(𝑡), 𝑝𝑥,𝑖′(𝑡), 𝑃𝑅𝑥,𝑗′(𝑡))×

𝛿(𝑥− 𝑥𝑖(𝑡)) (4.107)
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and1

𝜌𝑛𝑢𝑐(𝑅𝑥, 𝑡) =
1

𝑁

∑︁
𝑖,𝑗,𝑖′,𝑗′

𝑊 (𝑥𝑖(𝑡), 𝑅𝑥,𝑗(𝑡), 𝑝𝑥,𝑖′(𝑡), 𝑃𝑅𝑥,𝑗′(𝑡))×

𝛿(𝑅𝑥 −𝑅𝑥,𝑗(𝑡)) (4.108)

for the nuclear density, respectively [120].2

4.5.3 Integrated Densities3

4.5.3.1 Weak Coupling4

First, the weak coupling case is regarded. As the Born-Oppenheimer approxima-5

tion is valid in this case, one expects the electron density to follow the nuclear6

density [91]. In fig. 4-44, left panels, the quantum-dynamical calculated densities7

𝜚𝑒𝑙(𝑅𝑥, 𝑡) and 𝜚𝑛𝑢𝑐(𝑥, 𝑡) can be seen, which exhibit the same time-evolution.8

Starting at −4.0 Å, the density proceeds with constant velocity across the adia-9

batic potential until it is reflected after approximately 45 fs from a nuclear position10

of +4.0 Å, and a complete period is finished within 80 fs.11

Regarding the right panels of fig. 4-44, 𝜌𝑒𝑙(𝑅𝑥, 𝑡), obtained from the classical tra-12

jectories, shows a very good agreement within the first 45 fs, which is just the first13

half period.14
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Figure 4-44: Density Dynamics in the Weak Coupling Case. The left panels
correspond to the quantum-dynamical calculation and show the electron density to
follow the nuclear density. In comparison, the right panels show the correspondent
classical calculation.

A difference between the quantum-dynamical and classical calculation can be seen,1

comparing 𝜌𝑒𝑙(𝑅𝑥, 𝑡) and 𝜚𝑒𝑙(𝑅𝑥, 𝑡). The classical trajectories remain at the fixed2

proton position +4.0 Å after a passage of the wave packet. This behavior is more3

characteristic for the dynamics in the strong coupling situation, which is regarded4

in the following.5
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4.5.3.2 Strong Coupling1

In the strong coupling case, the quantum-dynamical propagation should exhibit2

major differences compared to the weak coupling case one. This can indeed be3

seen in fig. 4-45, left panels. The electron density does not follow the nuclear4

density 𝜚𝑛𝑢𝑐(𝑅𝑥, 𝑡). 𝜚𝑒𝑙(𝑥, 𝑡) remains at the left fixed proton position around −4.05

Å, while the movable proton takes up the motion similar to the one which was6

seen within the diabatic potentials in fig. 4-20 and the corresponding dynamics in7

fig. 4-22.8
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Figure 4-45: Density Dynamics in the Strong Coupling Case. Same as
fig. 4-44.

The nuclear density evolves, compared to the uncoupled case, independently of9
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the electron density. The densities obtained from the classical trajectories are in1

very good agreement with the quantum densities.2

4.5.3.3 Intermediate Coupling3

For the intermediate case, a superposition of both diabatic and adiabatic dynamics4

is expected. This is indeed the case as is seen in fig. 4-46, left panels. The nuclear5

density 𝜚𝑛𝑢𝑐(𝑅𝑥, 𝑡) exhibits two branches. These can be distinguished in regarding6

the different turning points. The adiabatic branch is the one reaching to the other7

side of the potential at +4.0 Å, and the diabatic one returns earlier, as has already8

been seen in the uncorrelated motion at +1.0 Å.9
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Figure 4-46: Density Dynamics in the Intermediate Coupling Case. Same
as in fig. 4-44.

Also, the electron density exhibits both characteristics. As for the diabatic motion,1

the density remains at the fixed protons. For the adiabatic motion, which can be2

associated with the density moving along with the proton.3

Regarding the classical trajectories (right panels), it can also be seen that the4

superposition of a diabatic and adiabatic motion is present. Qualitatively, there5

are also two points of return which help to distinguish the two different motions6

from each other. The point of return for the diabatic motion is +3.0 Å, whereas7

the point of return for the adiabatic motion is +0.5 Å.8

The electron density shows a superposition with most of the amount of density9

128



remaining at the fixed right ion (+5.0 Å) and some of the density located in the1

middle between the fixed protons.2

4.5.4 Densities in Nuclear and Electronic Coordinate Space3

The wave-packet dynamics given by 𝜚(𝑅𝑥, 𝑥, 𝑡) for the quantum-mechanical calcu-4

lation and 𝜌(𝑅𝑥, 𝑥, 𝑡) for the classical propagation are now compared in the weak,5

strong and intermediate coupling case. The main interest is on the time-interval,6

where the wave packet passes the coupling region for the first time.7

4.5.4.1 Weak Coupling8

The quantum-mechanical density 𝜚(𝑅𝑥, 𝑥, 𝑡) for the times of 17, 22, 27 and 31 fs is9

shown in fig. 4-47. As expected, the motion of 𝜚(𝑅𝑥, 𝑥, 𝑡) is diagonal in coordiante10

space. This is in accordance with an adiabatic motion because the electronic wave11

function adapts to the nuclear position. The classical density 𝜌(𝑅𝑥, 𝑥, 𝑡) evolves12

along the path of steepest descend, which is the elongated minimum accounting for13

the diagonal motion. It tracks the motion of the quantum-mechanical wave-packet14

[24].15
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Figure 4-47: Density Dynamics in the Weak Coupling Case. The left
panels show the density obtained from the classical treatment. The black lines
correspond to the potential 𝑉 (𝑥,𝑅𝑥) starting at a value of 0.0 eV and increasing
in 0.1 eV steps. The right panels show the correspondent densities obtained from
the quantum calculation. The blue dot marks the initial position of the wave
packet.
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4.5.4.2 Strong Coupling1

This time, only a motion in the nuclear coordiante 𝑅𝑥 is seen. In contrast to2

the weak coupling case, the electron remains at the position of the fixed proton3

position at 𝑅𝑥 = −5.0 Å. Interestingly, the wave packet does not change in shape4

while passing the coupling region at 𝑅𝑥 = 0.0 Å.5

Regarding now the left hand panels of fig. 4-48, one can see that the classical6

trajectories also follow the trend of the quantum-dynamical calculation. The mo-7

tion of the classical trajectories exhibit the determined path along the steepest8

descend. As long as this minimum just evolves along the 𝑅𝑥-coordinate, this is in9

good agreement. Small deviations come from the anharmonicity of the potential10

along the trajectorial motion which can be seen by the contours in fig. 4-48 [24].11
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Figure 4-48: Density Dynamics in the Strong Coupling Case. Same as
fig. 4-47.

4.5.4.3 Intermediate Coupling1

The dynamics in the intermediate coupling case is regarded in fig. 4-49. As has2

already been confirmed, this case is a superposition of adiabatic and diabatic3

motion, and this is also seen in the time-evolution of 𝜚(𝑅𝑥, 𝑥, 𝑡) in fig. 4-48, right4

hand panels. A splitting of the density into two parts is observed as the wave5
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packet crosses the coupling region. Compared to the weak coupling case, where a1

diagonal motion in coordiante space was seen, the part of the wave packet moving2

diagonal can be matched to the adiabatic motion, whereas the other part, moving3

horizontally, can be matched to the diabatic motion in the strong coupling case4

[24].5

ρ(Rx,x,t)

-7
-5
-3
-1
 1
 3
 5
 7

-7
-5
-3
-1
 1
 3
 5
 7

ϱ(Rx,x,t)

t = 17 fs

-7
-5
-3
-1
 1
 3
 5

x 
[Å

]

-7
-5
-3
-1
 1
 3
 5
 7

t = 22 fs

-7
-5
-3
-1
 1
 3
 5

-7
-5
-3
-1
 1
 3
 5
 7

t = 27 fs

-3 -2 -1  0  1  2  3
-7
-5
-3
-1
 1
 3
 5

-7
-5
-3
-1
 1
 3
 5
 7

-3 -2 -1  0  1  2  3
Rx [Å]

t = 31 fs

Figure 4-49: Density Dynamics in the Intermediate Coupling Case. Same
as fig. 4-47.
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Regarding the classical density 𝜌(𝑅𝑥, 𝑥, 𝑡) in fig. 4-49 left hand panels, one recog-1

nizes that the characteristics of adiabatic motion and diabatic motion are present2

after the wave packet crosses the coupling region, but there also appear differences3

to the quantum densities. Of course, the interferences, seen for 𝜚(𝑅𝑥, 𝑥, 𝑡 = 37 𝑓𝑠),4

can not be reproduced by classical trajectories. Furthermore, the ratio of diabat-5

ically and adiabatically moving density is not the same as in the quantum calcu-6

lation. There is much more percentage trapped in the diabatic motion than in7

the classical calculation. Regarding the contours of the potential in fig. 4-49, the8

anharmonicity prompts deviations between the classical and the quantum motion9

[24].10

Concluding Remarks11

In case of weak coupling it is seen that the classical and the quantum dynamics12

are quite similar. The description of the nuclear dynamics takes place in a single13

adiabatic electronic state which is decoupled from other adiabatic states, because14

the Born-Oppenheimer approximation is valid. In this case, the classical motion15

can be matched with the motion in this adiabatic state potential.16

In case of strong non-adiabatic coupling, the classical and quantum-mechanical17

calculation are also in very good agreement. The complete population transfer18

in the adiabatic picture can be referred, according to section 4.3, to a diabatic19

motion within one diabatic state. As a result, the classical motion takes place in20

a single diabatic potential.21

The intermediate case shows both for the quantum and for the classical density22

a splitting of the wave packet passing the coupling region. It thus represents a23

superposition of a purely adiabatic motion and diabatic motion.24
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4.6 Electron Flux1

Within the weak coupling case (𝑅𝑐 = 1.5 Å) the electron flux obtained from a full-2

dimensional calculation is compared with the electron flux within the adiabatic3

approximation. The electron flux is defined as [121–124]:4

𝑗(𝑥, 𝑡) =

∫︁
𝑑𝑅𝑥 Im

(︂
𝜓*(𝑥,𝑅𝑥, 𝑡)

𝜕

𝜕𝑥
𝜓(𝑥,𝑅𝑥, 𝑡)

)︂
. (4.109)

|𝜓(𝑥,𝑅𝑥, 𝑡)⟩ is determined via eq. (2.6). The continuity equation relates the flux5

to the time-derivative of the density [33] as:6

𝜕𝜚(𝑥, 𝑡)

𝜕𝑡
= −𝜕𝑗(𝑥, 𝑡)

𝜕𝑥
. (4.110)

Rewriting eq. (4.109) using the adiabatic product and assuming the Born-Oppen-7

heimer approximation so that the dynamics takes place only in the electronic8

ground state (see section 4.2.1), the electron flux can be written as:9

𝑗𝐵𝑂(𝑥, 𝑡) =

∫︁
𝑑𝑅𝑥 |𝜒(𝑅𝑥, 𝑡)|2 Im

(︂
𝜑*0(𝑥;𝑅𝑥)

𝜕

𝜕𝑥
𝜑0(𝑥;𝑅𝑥)

)︂
(4.111)

Because |𝜑0(𝑥;𝑅𝑥)⟩ is real, the flux becomes zero within the usual definition.10

However, the electron flux within the Born-Oppenheimer treatment does not nec-11

essarily vanish if one employs the continuity equation eq. (4.110). Within the12

adiabatic representation, the density can be written in the following form:13

𝜚𝐵𝑂(𝑥, 𝑡) =

∫︁
𝑑𝑅𝑥 |𝜒(𝑅𝑥, 𝑡)|2|𝜑0(𝑥;𝑅𝑥)|2, (4.112)

Using eq. (4.110), the electron flux within the Born-Oppenheimer approximation14
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can be rewritten as follows [121, 124, 125]:1

𝑗𝐵𝑂(𝑥, 𝑡) = −
∫︁ 𝑥

−∞
𝑑𝑥′

𝜕𝜚𝐵𝑂(𝑥′, 𝑡)

𝜕𝑡
(4.113)

= −
∫︁ ∞

−∞
𝑑𝑅𝑥

𝜕𝜚𝐵𝑂
𝑁 (𝑅𝑥, 𝑡)

𝜕𝑡
𝑓(𝑥;𝑅𝑥), (4.114)

with2

𝑓(𝑥;𝑅𝑥) =

∫︁ 𝑥

−∞
𝑑𝑥′ |𝜑0(𝑥′;𝑅𝑥)|2 (4.115)

and3

𝜚𝐵𝑂
𝑁 (𝑅𝑥, 𝑡) = |𝜒(𝑅𝑥, 𝑡)|2. (4.116)

Using now the equivalent of eq. (4.110) for the nuclear flux:4

𝜕𝜚𝐵𝑂
𝑁 (𝑅𝑥, 𝑡)

𝜕𝑡
= −

𝜕𝑗𝐵𝑂
𝑁 (𝑅𝑥, 𝑡)

𝜕𝑅𝑥
, (4.117)

one finds, by partial integration,5

𝑗𝐵𝑂(𝑥, 𝑡) = −
∫︁ ∞

−∞
𝑑𝑅𝑥 𝑗

𝐵𝑂
𝑁 (𝑅𝑥, 𝑡) 𝑤(𝑥;𝑅𝑥), (4.118)

where the window function is defined as:6

𝑤(𝑥;𝑅𝑥) =
𝜕𝑓(𝑥;𝑅𝑥)

𝜕𝑅𝑥
. (4.119)
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Equation (4.118) directly connects the electron flux with the nuclear flux within1

the Born-Oppenheimer approximation.2

In what follows a calculation of the electron flux in the electronic ground state is3

carried out both in the full-dimensional coordinate space (eq. (4.109)) and within4

the Born-Oppenheimer approximation (eq. (4.118)).5

As initial wave packet for the full-dimensional calculation |𝜓(𝑥,𝑅𝑥, 𝑡 = 0)⟩ is6

defined as:7

|𝜓(𝑥,𝑅𝑥, 𝑡 = 0)⟩ = 𝑁𝑒−𝛽(𝑅𝑥−𝑅𝑒𝑞)2 |𝜑0(𝑥;𝑅𝑥)⟩, (4.120)

with 𝛽 = −7.14 1

Å2 and 𝑅𝑒𝑞 = −3.6 Å. 𝑁 is a normalization constant. Within the8

adiabatic treatment the same initial wave packet is chosen. Figure 4-50 shows in9

the upper panels the nuclear flux obtained from the full-dimensional calculation10

(right) and from the Born-Oppenheimer treatment (left). As expected, they are in11

very good agreement and show the wave packet to move back and forth within the12

electronic ground state. In the middle panels, the time-derivative of the electron13

density is seen to follow the nuclear density. This also applies to the electron flux14

which is displayed in the lower panels. Here, results from the Born-Oppenheimer15

treatment are also in good agreement with the full-dimensional calculation. It is16

seen that the electron flux is positive as the wave packet propagates with positive17

momentum from the initial position to larger distances. The electron flux changes18

to negative values as the wave packet returns to the initial position after 60 fs.19
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Figure 4-50: Comparison of the Born-Oppenheimer and the Full-
Dimensional Calculation. The upper panels display the nuclear density. The
middle panels compare the time-derivative of the electron density and the lower
panels compare the electron flux. The black color shows positive values, and the
blue color shows negative values of the quantities.

In what follows, eq. (4.118) is used to derive a reflection principle [119, 126–130].1

The function 𝑤(𝑥;𝑅𝑥) is displayed in fig. 4-51. The maximum of this window2

function occurs at the nuclear position:3
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⟨𝑅𝑥⟩(𝑥) =
∫︀
𝑑𝑅𝑥 |𝑤(𝑥;𝑅𝑥)| 𝑅𝑥∫︀
𝑑𝑅𝑥 |𝑤(𝑥;𝑅𝑥)|

, (4.121)

and one replaces the window function by:1

𝑤(𝑥;𝑅𝑥) = 𝑤(𝑥; ⟨𝑅𝑥⟩(𝑥))𝛿(𝑅− ⟨𝑅𝑥⟩(𝑥)). (4.122)

Then eq. (4.118) becomes:2

𝑗𝑚𝑎𝑝(𝑥, 𝑡) = 𝑗𝐵𝑂
𝑁 (⟨𝑅𝑥⟩(𝑥), 𝑡) 𝑤(𝑥; ⟨𝑅𝑥⟩(𝑥)), (4.123)

and describes a flux-flux reflection-principle which is illustrated in fig. 4-51. The3

nuclear flux (upper left panel) is mapped onto the electron flux (lower right panel).4

The mapped electron flux can then be compared to the electron flux (lower left5

panel) for the full-dimensional calculation. It is seen that 𝑗𝑚𝑎𝑝(𝑥, 𝑡) gives the right6

trend, but also there appear deviations due to the 𝛿-function approximation [25].7
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Figure 4-51: Flux-Flux Reflection-Principle. The mapped electron flux in
the lower right panel is compared to the numerically exact electron flux (lower
left panel). The mapped electron flux is obtained by a mapping of the nuclear
flux via the window function 𝑤(𝑥;𝑅𝑥), which is seen in the upper right panel in
combination with ⟨𝑅𝑥⟩(𝑥).

Concluding Remarks1

The results show that within the one-dimensional model, a calculation of the2

electron flux within the Born-Oppenheimer treatment is possible. The electron3

flux can be shown to reflect the nuclear flux. This flux-flux reflection-principle4

uses a window function which is related to the adiabatic ground state function.5

It yields a direct relation between the two particle fluxes. However, extensions to6

more complex dynamics provide a challange [25].7
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Chapter 51

Adiabatic Dynamics and2

Non-Adiabatic Dynamics in the3

Two-dimensional Shin-Metiu4

Model5

In the previous chapter the nuclear hamiltonian for the one-dimensional Shin-6

Metiu model was constructed in the adiabatic and in the diabatic representation,7

and the transformation between the two representations was discussed. Further-8

more, the nuclear dynamics on the adiabatic and diabatic potentials has been9

compared.10

In this chapter, a more advanced case, where an additional degree of freedom for11

the electron and the nucleus is present, is studied. Here, conical intersections [131–12

135] (CoIns) of the adiabatic potential surfaces are present, which present a more13

general situation as the case of avoided crossings between the adiabatic potential14

curves in the one-dimensional system.15

Since CoIns play a mayor role in quantum dynamics, the study on this extended16

model system is of large interest. Recently, the diabatic dynamics through a CoIn17
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and an adiabatic dynamics around a CoIn was studied [136, 137] using a similar1

model system. It was shown that the diabatic dynamics of a Gaussian wave-packet2

through a CoIn is accompained by an electron density that remains almost sta-3

tionary during this process. This again is an indication of the existence of a proper4

diabatic representation, and therefore, in what follows a diabatization is carried5

out as well as a diabatic wave-packet dynamics.6

On the other hand, the adiabatic wave-packet dynamics around a CoIn was in-7

vestigated. It was shown that the rotational motion of the electron density is8

correlated to the rotational motion of the nuclear density. Based on this work, in9

the following study, the circling around a CoIn is further investigated. This in-10

cludes the study of the geometric phase [138, 139] connected to the surrounding of11

a CoIn. Furthermore, the long-time behavior of the diabatic and adiabatic motion12

is studied [26].13

5.1 The Two-Dimensional Shin-Metiu Model14

The Shin-Metiu model has been extended to two dimensions by Gross and co-15

workers [140]. Here, their model is modified in a way that a single CoIn appears16

with the consequence that the system can be mapped on a linear Jahn-Teller17

hamiltonian. The hamiltonian is given for the electron coordinates 𝑟⃗ = (𝑥, 𝑦) and18

the proton coordinates 𝑅⃗ = (𝑅𝑥, 𝑅𝑦) as:19

𝐻̂(𝑅⃗, 𝑟⃗) =
^⃗𝑝𝑟⃗

2

2
+

^⃗𝑝𝑅⃗
2

2𝑀
− 1√︁

𝑎+ |𝑟⃗ − 𝑅⃗|2
− 1√︁

𝑎+ |𝑟⃗ − 𝑅⃗1|2

− 1√︁
𝑎+ |𝑟⃗ − 𝑅⃗2|2

+
1√︁

𝑏+ |𝑅⃗1 − 𝑅⃗2|2

+
1√︁

𝑏+ |𝑅⃗− 𝑅⃗1|2
+

1√︁
𝑏+ |𝑅⃗− 𝑅⃗2|2

+

(︃
𝑅⃗

𝑅0

)︃4

. (5.1)
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The coordinate system is shifted to the position of the mobile proton being in1

the 𝐷3ℎ symmetry configuration. A confining potential
(︁

𝑅⃗
𝑅0

)︁4
centered at this2

position, where the CoIn exists, is added.3

As depicted in fig. 5-1, both the electron and one proton move in a plane. Two4

other protons are fixed in the same plane at positions 𝑅⃗1 = (−𝐿,−𝐿
√
3) a.u. and5

𝑅⃗2 = (𝐿,−𝐿
√
3) a.u., respectively, with 𝐿 = 2

√
3
5 a.u.. The shielding parameters6

𝑎 and 𝑏 for the electron-nuclear and nuclear-nuclear interaction, respectively, are7

taken as: 𝑎 = 0.5 a.u. and 𝑏 = 10.0 a.u. and 𝑅0 = 1.5 a.u. is the parameter of8

the strength of the confining potential [26].9
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Figure 5-1: Two-Dimensional Shin-Metiu Model. The configuration model
consists of two fixed protons (𝑝+) at (−𝐿,−𝐿

√
3) a.u. and (𝐿,−𝐿

√
3) a.u., re-

spectively. Along with the mobile electron 𝑒− with coordinate 𝑥, 𝑦 and the mobile
proton 𝑝+ with coordinate 𝑅𝑥 and 𝑅𝑦, this model has four internal degrees of
freedom.

For the following study, the parameters in table 5.1 are used.10
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Table 5.1: Parameters Employed for the Calculations.

symbol: description: value
[𝑅𝑥𝑚𝑖𝑛 ;𝑅𝑥𝑚𝑎𝑥 ] range in 𝑅𝑥-space [-1.5;1.5] a.u.
[𝑅𝑦𝑚𝑖𝑛 ;𝑅𝑦𝑚𝑎𝑥 ] range in 𝑅𝑦-space [-1.5;1.5] a.u.
[𝑥𝑚𝑖𝑛;𝑥𝑚𝑎𝑥] range in 𝑥-space [-12;12] a.u.
[𝑦𝑚𝑖𝑛; 𝑦𝑚𝑎𝑥] range in 𝑦-space [-12;12] a.u.
𝑁𝑅𝑥 grid points in 𝑅𝑥-direction (𝑝+) 51
𝑁𝑅𝑦 grid points in 𝑅𝑦-direction (𝑝+) 51
𝑁𝑥 grid points in 𝑥-direction (𝑒−) 81
𝑁𝑦 grid points in 𝑦-direction (𝑒−) 81
𝛿𝜏 time-step ITP 0.1 a.u.
𝑑𝑡 time-step 0.1 a.u.

5.2 Adiabatic Representation and Diabatic Represen-1

tation of the Two-Dimensional Shin-Metiu Model2

5.2.1 Adiabatic Representation3

The adiabatic eigenfunctions are obtained by solving the electronic Schrödinger4

equation.5

(︁
𝐻̂𝑒𝑙(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)− 𝑢𝑛𝑛(𝑅𝑥, 𝑅𝑦)

)︁
|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ = 0. (5.2)

The correspondent eigenvalues 𝑢𝑛𝑛(𝑅𝑥, 𝑅𝑦) are the adiabatic potential surfaces.6

Similar to the one-dimensional Shin-Metiu model, the adiabatic eigenfunctions7

are obtained as real-valued functions with arbitrary sign. In order to get a con-8

tinuous wave function description, the adiabatic eigenfunctions are adjusted in9

phase to each other for each adjacent proton position. To illustrate the adiabatic10

eigenfunctions, they are represented by the vector field [140]:11
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𝜈⃗𝑛(𝑅𝑥, 𝑅𝑦) =

⎛⎜⎝⟨𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦) |𝑥 |𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩𝑥,𝑦

⟨𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦) | 𝑦 |𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩𝑥,𝑦

⎞⎟⎠ , (5.3)

with 𝑛 = 1, 2.1

In fig. 5-2, panel (a) with 𝑛 = 2 and (c) with 𝑛 = 1, 𝜈⃗𝑛(𝑅𝑥, 𝑅𝑦) is given for2

the first and the second adiabatic state. The orientation of |𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ was3

aligned to the initial configuration of |𝜑𝑛(𝑥, 𝑦;𝑅𝑥 = −1.5 𝑎.𝑢., 𝑅𝑦 = −1.5 𝑎.𝑢.)⟩ in4

the way that the scalar product of two spatially adjacent 𝜈⃗𝑛(𝑅𝑥, 𝑅𝑦) is positive.5

Another possible orientation is seen in panel (b) with 𝑛 = 2 and (d) with 𝑛 =6

1, where the initial configuration of |𝜑𝑛(𝑥, 𝑦;𝑅𝑥 = −1.5 𝑎.𝑢., 𝑅𝑦 = 1.5 𝑎.𝑢.)⟩ was7

used.8
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Figure 5-2: Vector Fields of the Adiabatic Eigenfunctions. The orientation
of the adiabatic eigenfunctions according to the vector-field definition of 𝜈⃗𝑛(𝑅𝑥, 𝑅𝑦)
is shown. It is seen that there appears a discontinuity within the allignment.
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It is seen that the orientation of the eigenfunctions change dramatically at the1

origin. This indicates the existence of kinetic non-adiabtic coupling elements.2

The change of the adiabatic eigenfunctions is strongest in the vicinity of the CoIn,3

indicating that the non-adiabatic coupling elements in this region are large. The4

components of the NACT 𝜏⃗12(𝑅𝑥, 𝑅𝑦) are seen in fig. 5-3.5
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Figure 5-3: Components of the Non-Adiabatic Coupling Element. The
left panel shows the 𝑅𝑥-component of the NACT 𝜏⃗12(𝑅𝑥, 𝑅𝑦), and the right panel
shows the 𝑅𝑦-component. The blue color shows negative values, and the black
color shows positive values.

In fig. 5-4, panel (a), the adiabatic electronic eigenfunctions |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ for6

the geometry at (𝑅𝑥 = 0.0, 𝑅𝑦 = 0.4) a.u. are displayed. It is seen that the7

eigenfunction has a nodal structure with a node parallel to the 𝑅𝑥-axis. Further-8

more, it has two slopes in 𝑅𝑦-direction with opposite sign. The shape of this9

eigenfunction is, in what follows, denoted as 𝑝𝑦-like. Arguing in the same manner,10

|𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩, depicted in panel (b), is denoted as 𝑝𝑥-like.11
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Figure 5-4: Adiabatic Eigenfunctions. In panel (a), the adiabatic eigenfunction
|𝜑2(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦)⟩, and in panel (b) |𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ for the fixed nuclear position
at 𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢. is depicted. The black color shows positive values,
and the blue color shows negative values of the wave function.

The adiabatic potential surfaces of the first and second adiabatic electronic state1

are depicted in fig. 5-5, where a conical intersection is seen at the origin of the2

coordinate system, as expected. This degeneracy can be explained by the use of a3

character table. Although the model system is restricted to a plane, the use of a4

character table is valid, if the symmetry operations and irreducible representations5

are projected on the system’s plane.6

As the proton skeleton is assumed to have 𝐷3ℎ symmetry at the location of (𝑅𝑥 =7

0.0, 𝑅𝑦 = 0.0), table 5.2 can be used.8

Table 5.2: Excerpt of the Character Table of the 𝐷3ℎ Symmetry Point
Group [141].

𝐷3ℎ 𝐸 2𝐶3 3𝐶 ′
2 𝜎ℎ 2𝑆3 3𝜎𝑣 translation

𝑒′ 2 −1 0 2 −1 0 (𝑥, 𝑦); (𝑅𝑥, 𝑅𝑦)
1

In the 𝐷3ℎ character table, the coordinates for translation 𝑥 and 𝑦 belong to the9

𝑒′ irreducible representation, which is degenerated. The 𝑝𝑥- and 𝑝𝑦-like adiabatic10

eigenfunctions belong to this irreducible representation.11

1(𝑅𝑥, 𝑅𝑦) are the coordinates of the mobile proton.
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Figure 5-5: Adiabatic Potentials of the Two-Dimensional Shin-Metiu
Model. The black surface shows 𝑢11 (𝑅𝑥, 𝑅𝑦) of the first excited state
|𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ and the blue surface shows 𝑢22 (𝑅𝑥, 𝑅𝑦) of the second excited
state |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩. The CoIn appears at the origin of the nuclear coordinate
system. There, the two adiabatic electronic states are degenerated. It should
be noted that the ground state and the third excited state are energetically well
separated by 0.44 𝑎.𝑢. and 0.81 𝑎.𝑢., respectively, from the regarded two states.

A nuclear displacement from this geometry leaves the adiabatic surfaces with an1

energetic separation. Regarding the symmetry breaking along the 𝑅𝑦-coordinate2

first, the point group of the proton skeleton is assumed to have 𝐶2𝑣, which is a3

subgroup of 𝐷3ℎ. The character table of 𝐶2𝑣 is given in table 5.3.4
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Table 5.3: Excerpt of the Character Table of the 𝐶2𝑣 Symmetry Point
Group [141].

𝐶2𝑣 𝐸 2𝐶2(𝑦) 𝜎(𝑥𝑦) 𝜎(𝑦𝑧) translation
𝑎1 1 1 1 1 𝑦;𝑅𝑦

𝑏1 1 −1 −1 1 𝑥;𝑅𝑥

The adiabatic eigenfunctions differ in their symmetry. The lower state |𝜑1(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦)⟩1

has in the interval 𝑅𝑦 = [−1.5; 0.0[ a.u. and 𝑅𝑥 = 0.0 a.u. 𝑎1 symmetry.2

|𝜑2(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦)⟩ has 𝑏1 symmetry within the same interval. On the opposite3

side of the CoIn, these properties are just interchanged.4

A symmetry breaking 𝑅𝑥 ̸= 0 is not connected to the 𝐶2𝑣 symmetry group. Al-5

though, regarding fig. 5-2, it is seen that the adiabatic eigenfunctions can also be6

represented by a linear combination of the 𝑎1 and 𝑏1 irreducible representations7

of the 𝐶2𝑣 symmetry group, which can be followed in fig. 5-2, where the vector8

fields represent these linear combinations by vectors which are not parallel to the9

coordinate axis.10

The adiabatic electronic eigenfunctions depend parametrically on the nuclear co-11

ordinates. They build a complete basis set {|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩}, and the total wave12

function |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦)⟩ can be expanded as:13

|Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩ =
∑︁
𝑛

|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ ⟨𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩𝑥,𝑦⏟  ⏞  
|𝜒𝑛(𝑅𝑥,𝑅𝑦 ,𝑡)⟩

=
∑︁
𝑛

|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩|𝜒𝑛(𝑅𝑥, 𝑅𝑦, 𝑡)⟩. (5.4)

5.2.2 Diabatic Representation14

5.2.2.1 Definition of the Diabatic Basis Set15

For the definition of diabatic states, one solves the electronic Schrödinger equation16

at a fixed position (𝑅𝑥, 𝑅𝑦):17
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(︁
𝐻̂𝑒𝑙(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)− 𝑢̃𝑛𝑛(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)

)︁
|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ = 0. (5.5)

As a diabatic basis, the following two wave functions are chosen:1

|𝜑1(𝑥, 𝑦)⟩ = |𝜑1(𝑥, 𝑦;𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢.)⟩, (5.6)

|𝜑2(𝑥, 𝑦)⟩ = |𝜑2(𝑥, 𝑦;𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢.)⟩. (5.7)

The two determined diabatic eigenfunctions |𝜑1(𝑥, 𝑦)⟩ and |𝜑2(𝑥, 𝑦)⟩ are depicted2

in fig. 5-6. These two eigenfunctions build the diabatic basis for the description3

of a wave function within the adiabatic first and second excited electronic states4

|𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ and |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩.5
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Figure 5-6: Diabatic Eigenfunction Basis Set. In panel (a), the diabatic
eigenfunction |𝜑2(𝑥, 𝑦)⟩, and in panel (b) |𝜑1(𝑥, 𝑦)⟩ for the fixed nuclear position
at 𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢. is depicted. The black color shows positive values,
and the blue color shows negative values of the wave function.

The diabatic expansion then reads:6
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|Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩ =
2∑︁

𝑛=1

|𝜑𝑛(𝑥, 𝑦)⟩ ⟨𝜑𝑛(𝑥, 𝑦) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩𝑥,𝑦⏟  ⏞  
|𝜒̃𝑛(𝑅𝑥,𝑅𝑦 ,𝑡)⟩

=
2∑︁

𝑛=1

|𝜑𝑛(𝑥, 𝑦)⟩|𝜒̃𝑛(𝑅𝑥, 𝑅𝑦, 𝑡)⟩. (5.8)

5.2.2.2 Transformation from the Diabatic Representation to the Adi-1

abatic Representation2

To establish the transformation between the diabatic representation and adiabatic3

representation, one writes:4

|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ =
2∑︁

𝑚=1

|𝜑𝑚(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩⟨𝜑𝑚(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦) |𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩𝑥,𝑦

=

2∑︁
𝑚=1

(𝑎−1)𝑛𝑚(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)|𝜑𝑚(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩. (5.9)

Then 𝑎(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) is the inverse of 𝑎−1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦), so:5

|𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ =
2∑︁

𝑚=1

𝑎𝑛𝑚(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)|𝜑𝑚(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩, (5.10)

with this transformation, the following relations are given:6

∑︁
𝑚

𝑎𝑘𝑚(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) (𝑎
−1)𝑚𝑛(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) = 𝛿𝑘𝑛, (5.11)

∑︁
𝑚

(𝑎−1)𝑘𝑚(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) 𝑎𝑚𝑛(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) = 𝛿𝑘𝑛. (5.12)

To clarify the question if the NACTs deliver an analytic solution for the trans-7

formation matrix, one follows another ansatz which was also used in the previous8

chapters. This ansatz is employed via the non-adiabatic coupling elements between9
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the first adiabatic and second adiabatic electronic eigenstate.1

Following the previous chapter, one has to find a solution for:2

2∑︁
𝑖=1

∇⃗𝑅⃗𝛿𝑘𝑖(𝐴
−1)𝑖𝑛(𝑅𝑥, 𝑅𝑦) + 𝜏⃗𝑘𝑖(𝑅𝑥, 𝑅𝑦)(𝐴

−1)𝑖𝑛(𝑅𝑥, 𝑅𝑦) = 0. (5.13)

In order to obtain a solution for eq. (5.13), the curl condition must be fulfilled:3

0 =
𝜕

𝜕𝑅𝑥
(𝜏12(𝑅𝑥, 𝑅𝑦))𝑅𝑦 −

𝜕

𝜕𝑅𝑦
(𝜏12(𝑅𝑥, 𝑅𝑦))𝑅𝑥 . (5.14)

This can also be evaluated numerically, and the result can be seen in fig. 5-7.4

-1.5 -1 -0.5  0  0.5  1  1.5
Rx [a.u.]
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 [
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Figure 5-7: The Curl of 𝜏12(𝑅𝑥, 𝑅𝑦). It can be seen that the curl condition is
valid for the white area, where the value of the curl is zero. This holds neither
for the location of the CoIn, nor for the discontinuity. It should be noted that the
discontinuity can be shifted, and finally the curl condition is valid for all points
within the numerical range, except of the location of the CoIn.
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The curl equation is fulfilled for the white area.1

Equation (5.13) is solved according to earlier sections:2

𝐴−1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) =

⎛⎜⎝cos(𝜙(𝑅𝑥, 𝑅𝑦)) − sin(𝜙(𝑅𝑥, 𝑅𝑦))

sin(𝜙(𝑅𝑥, 𝑅𝑦)) cos(𝜙(𝑅𝑥, 𝑅𝑦))

⎞⎟⎠ ·

𝐴−1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦), (5.15)

where the rotation angle is given by the path integral:3

𝜙(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) =

∫︁ 𝑅𝑥,𝑅𝑦

𝑅𝑥,𝑅𝑦

⎛⎜⎝(𝜏12(𝑅𝑥, 𝑅𝑦))𝑅̃𝑥

(𝜏12(𝑅𝑥, 𝑅𝑦))𝑅̃𝑦

⎞⎟⎠
𝑇

·

⎛⎜⎝𝜕𝑅̃𝑥

𝜕𝑅̃𝑦

⎞⎟⎠ . (5.16)

-1.5 -1 -0.5  0  0.5  1  1.5Rx [a.u] -1.5 -1 -0.5  0  0.5  1  1.5

Ry [a.u]

 0

 0.5

 1

φ [π]

Figure 5-8: Mixing Angle along a Closed Random Path around the CoIn.
The black line depicts the path around the CoIn, and the blue line is the phase
gathered upon the line integration along this path.
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The mixing angle is path-dependent. The transformation starts at the initial1

geometry defining the diabatic basis set. There, the function |𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩2

has 𝑝𝑥-shape and |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ has 𝑝𝑦-shape. As the adiabatic eigenfunctions3

are identical to the diabatic ones in this location, the transformation matrix reads4

with a vanishing mixing angle:5

𝐴−1(𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢.;𝑅𝑥, 𝑅𝑦) =

⎛⎜⎝1 0

0 1

⎞⎟⎠𝐴−1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦).

(5.17)

After a half circle around the CoIn, following this path in fig. 5-2, the adiabatic6

wave functions are reversed in shape with respect to the initial starting point.7

Then, |𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ has 𝑝𝑦-shape, and |𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ has 𝑝𝑥-shape. This is8

in agreement with the mixing angle of 𝜋
2 , gathered around a half cycle. Then, the9

transformation matrix is given by:10

𝐴−1(𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = −0.4 𝑎.𝑢.;𝑅𝑥, 𝑅𝑦) =

⎛⎜⎝0 −1

1 0

⎞⎟⎠𝐴−1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)

(5.18)

and upon a full clockwise circle around the CoIn, the mixing angle amounts to 𝜋11

and the transformation matrix is:12

𝐴−1(𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢.;𝑅𝑥, 𝑅𝑦) =

⎛⎜⎝−1 0

0 −1

⎞⎟⎠𝐴−1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦),

(5.19)

which is again in perfect agreement with fig. 5-2. The transformation from adia-13
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batic potentials to diabatic potentials is given by:1

∑︁
𝑛,𝑚

𝑎𝑘𝑛(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)𝑢𝑛𝑚(𝑅𝑥, 𝑅𝑦)(𝑎
−1)𝑚𝑖(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦) =𝑢̃𝑘𝑖(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦).

(5.20)

the diabatic potentials are given as: 𝑢̃𝑛𝑚(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)𝛿𝑛𝑚, and the off-diagonal2

coupling elements as: 𝑢̃𝑛𝑚(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦), with 𝑛 ̸= 𝑚.3
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Figure 5-9: Diabatic Potentials. In the left panel, the diabatic diagonal po-
tentials 𝑢̃𝑛𝑛

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
, with 𝑛 = 1, 2, and for a fixed nuclear geometry of

𝑅𝑥 = 0.0 𝑎.𝑢., 𝑅𝑦 = 0.4 𝑎.𝑢. are depicted. In the right panel the off-diagonal

coupling potentials 𝑢̃12
(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
and 𝑢̃21

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
are shown.

The nuclear time-depenedent Schrödinger equation in the diabatic basis is written4

as:5

2∑︁
𝑖=1

{︃
−
∇⃗2

𝑅⃗

2𝑀
𝛿𝑘𝑖 + 𝑢̃𝑘𝑖

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁}︃
|𝜒̃𝑖(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦; 𝑡)⟩

= 𝑖
𝜕

𝜕𝑡
|𝜒̃𝑘(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦; 𝑡)⟩. (5.21)

The hamiltonian can be written in matrix from:6
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𝐻̂(𝑅𝑥, 𝑅𝑦) = 𝑇𝑁 (𝑅𝑥, 𝑅𝑦) + 𝑉 (𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦)

=

⎛⎜⎝− 1
2𝑀

(︁
𝜕2

𝜕𝑅2
𝑥
+ 𝜕2

𝜕𝑅2
𝑦

)︁
0

0 − 1
2𝑀

(︁
𝜕2

𝜕𝑅2
𝑥
+ 𝜕2

𝜕𝑅2
𝑦

)︁
⎞⎟⎠

+

⎛⎜⎝𝑢̃11
(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
𝑢̃12

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
𝑢̃21

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
𝑢̃22

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
⎞⎟⎠ . (5.22)

If the diabatic approximation is valid, a diabatic propagation in comparison to the1

exact propagation should reproduce the results of the numerically exact propaga-2

tion.3

It should be noticed that the diabatic potentials in fig. 5-9 are in very good agree-4

ment with a linear hamiltonian of Jahn-Teller form [94], which reads as:5

𝑉𝐽𝑇 (𝑅𝑥, 𝑅𝑦) =

⎛⎜⎝𝜔1
2 (𝑅2

𝑥 +𝑅2
𝑦) 0

0 𝜔2
2 (𝑅2

𝑥 +𝑅2
𝑦)

⎞⎟⎠ + 𝜅

⎛⎜⎝𝑅𝑦 𝑅𝑥

𝑅𝑥 −𝑅𝑦

⎞⎟⎠ . (5.23)

One has two concentric two-dimensional harmonic oscillators 𝜔𝑛
2 (𝑅2

𝑥 + 𝑅2
𝑦) with6

coordinates 𝑅𝑥, 𝑅𝑦 and frequencies 𝜔𝑛. These two harmonic oscillators are then7

separated in energy by the diagonal elements 𝜅𝑅𝑦 and −𝜅𝑅𝑦. The off-diagonal el-8

ements in the Jahn-Teller hamiltonian are chosen linear with 𝜅𝑅𝑥. Regarding the9

off-diagonal elements of the numerically determined diabatic coupling potential in10

fig. 5-9, one sees clearly the linearity in these potential along the 𝑅𝑥-coordinate.11

Along the 𝑅𝑦-coordinate, this coupling potential stays more or less constant which12

confirms the characteristic of the off-diagonal elements within the linear Jahn-13

Teller hamiltonian.14

Furthermore, the diagonal elements of the diabatic potential matrix resemble har-15

monic potentials displaced in 𝑅𝑦. This is nothing else than two harmonic con-16

centric oscillators modulated by a negative linear term and a positive linear term17
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in 𝑅𝑦-direction. This is also in perfect agreement with the potential form of the1

linear Jahn-Teller hamiltonian, where one has 𝜔1
2 (𝑅2

𝑥+𝑅
2
𝑦)+𝜅𝑅𝑦 for the first state2

potential, and 𝜔2
2 (𝑅2

𝑥 + 𝑅2
𝑦) − 𝜅𝑅𝑦 for the other potential, which corresponds to3

𝑢̃11

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
and 𝑢̃22

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
, respectively.4

5.3 Exact Wave-Packet Dynamics in Comparison to the5

Dynamics in the Adiabatic Representation and Di-6

abatic Representation7

In what follows the adiabatic as well as the diabatic representation are used to8

characterize the wave-packet dynamics through, around and circuitting the CoIn.9

These representations are compared to the numerically exact propagation.10

5.3.1 Nuclear Wave-Packet Dynamic Through a Conical Inter-11

section12

As was already reported [136, 137], a nuclear wave-packet motion directly through13

a CoIn is under certain circumstances a process where the electronic character14

stays almost constant. This holds for a dynamics where, upon passage of the15

CoIn, a large population transfer between the involved adiabatic states is observed16

passing a CoIn. A comparable situation with a motion through a CoIn as in former17

studies [137] is regarded. But this process is further investigated by a diabatization18

which replicates the dynamics in the reduced diabatic picture with a remarkable19

resemblance compared to the fully coupled electron-nuclear propagation.20

5.3.1.1 Full-Dimensional Dynamics21

First, the numerically exact coupled electron-nuclear propagation is discussed.22

The wave packet is obtained by solving eq. (2.6). In order to visualize the starting23

point of the nuclear wave-packet motion, it is marked on the adiabatic potential24

surface 𝑢22 (𝑅𝑥, 𝑅𝑦) at (𝑅𝑥0 = 0.0 𝑎.𝑢., 𝑅𝑦0 = 0.4 𝑎.𝑢.) in fig. 5-10.25
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Figure 5-10: Starting Point of the Wave Packet in the Adiabatic Repre-
sentation. Shown are the adiabatic potentials 𝑢11 (𝑅𝑥, 𝑅𝑦) and 𝑢22 (𝑅𝑥, 𝑅𝑦) of
the first and the second excited state. The red arrow marks the position of the
wave packet at the second adiabatic potential energy surface, which refers to the
starting point of the simulation.

The initial wave function in full-dimensional coordinate space is given as the prod-1

uct of a Gaussian nuclear wave-packet and the second adiabatic excited electronic2

eigenstate:3

|Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡 = 0)⟩ = 𝑁 · 𝑒−𝛽(𝑅𝑥−𝑅𝑥0)2𝑒−𝛽(𝑅𝑦−𝑅𝑦0)2 · |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩, (5.24)

with 𝛽 = 10.0 1
𝑎.𝑢. , and 𝑅𝑥0 = 0.0 𝑎.𝑢., and 𝑅𝑦0 = 0.4 𝑎.𝑢.. 𝑁 is a normalization4

constant. The parameters for the wave-packet propagation are summarized in5

table 5.1. The dynamics is characterized by the nuclear and electron densities6

𝜌𝑛𝑢𝑐(𝑅𝑥, 𝑅𝑦, 𝑡) and 𝜌𝑒𝑙(𝑥, 𝑦, 𝑡), defined as:7
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𝜌𝑛𝑢𝑐(𝑅𝑥, 𝑅𝑦, 𝑡) = ⟨Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩𝑥,𝑦 (5.25)

and1

𝜌𝑒𝑙(𝑥, 𝑦, 𝑡) = ⟨Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩𝑅𝑥,𝑅𝑦
. (5.26)

Regarding the nuclear wave-packet dynamics in the picture of adiabatic potential2

surfaces, see fig. 5-10, it is seen that the Gaussian wave-packet evolves towards3

the CoIn and finally passes it. This is due to the gradient of the potential surface4

𝑢22 (𝑅𝑥, 𝑅𝑦) towards the location of the CoIn.5

The temporal evolution of the nuclear density 𝜌𝑛𝑢𝑐(𝑅𝑥, 𝑅𝑦, 𝑡) is displayed in fig. 5-6

11. The density is depicted for times ranging from 1 to 4 𝑓𝑠.7

Shown before [136], the nuclear wave packet stays rather compact and Gaus-8

sian like while passing the CoIn the location of which is marked by the black9

point in the origin of the nuclear coordinate space. Also shown is the potential10

𝑉 (𝑥, 𝑦,𝑅𝑥,𝑡, 𝑅𝑦,𝑡), where (𝑅𝑥,𝑡,𝑅𝑦,𝑡) is the temporal mean position of the nuclear11

density. This represents the interaction potential, a classical electron would be12

exposed to. During this motion, the electron density does not change significantly.13

Rather, it remains almost stationary [26, 136, 137].14
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Figure 5-11: Densities for the Wave-Packet Motion through the CoIn.
The left panels show the nuclear density, and the right panels the electron density.
The contour lines represent the interaction potential 𝑉 (𝑥, 𝑦,𝑅𝑥,𝑡, 𝑅𝑦,𝑡). They start
with the value of −0.5 a.u. (outer line) and decrease in steps of 0.5 a.u..

To be more precise the electronic component of the wave packet starts in the 𝑝𝑦-1

like electronic state and keeps its initial character. In other words, it conserves its2

symmetry along with the wave-packet dynamics. Starting with 𝑎1 symmetry, it3

becomes then the degenerate 𝑒′ representation in 𝐷3ℎ symmetry during the time,4

when the wave packet is located at the position of the CoIn and after passing the5

CoIn the symmetry stays 𝑎1-like.6

This is in accordance with a diabatic motion. The population transfer can addi-7

tionally be seen in the population dynamics depicted in fig. 5-12. The transition8

starts at approximately 2 𝑓𝑠, and upon the first crossing of the CoIn, about 809

percent of the population is transferred. Further crossings turn out to be less10
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efficient as the transition rate goes down [26].1

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

po
pu

la
tio

n

t [fs]

population in adiabatic states

state 1
state 2

Figure 5-12: Population Dynamics for the Wave-Packet Motion Through
the CoIn. Shown is the population dynamics in the two adiabatic states, as
indicated. A large population transfer takes place at the first passage of the CoIn
after 2 fs.

5.3.1.1.1 Full-Dimensional Dynamics Regarded in the Adiabatic Rep-2

resentation. Concentrating on the first adiabatic state transition of the wave3

packet in the time-interval [0.0; 4.0] fs, one can calculate the adiabatic densities:4

𝜌𝑎𝑛(𝑅𝑥, 𝑅𝑦, 𝑡) = ⟨𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩𝑥,𝑦, (5.27)

with 𝑛 = 1, 2.5

These densities are compared to the total nuclear density 𝜌𝑛𝑢𝑐(𝑅𝑥, 𝑅𝑦, 𝑡) in fig. 5-6

13. It is clearly seen that the initially populated component vanishes and, simul-7

taneously, the other component appears at the location of the CoIn. Remarkably,8

the transition at the location of the CoIn is large and spatially localized, where9

slight deviations from the position of the CoIn show almost no transferred den-10

sity. It is seen that the total density does not exhibit such dramatic changes while11

passing the CoIn.12
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Figure 5-13: Density Dynamics Projected on the Adiabatic States. The
left panels show the nuclear density. The middle and the right panels show the
adiabatic densities. It is seen that the density changes from the second to the first
adiabatic state while passing the CoIn.

5.3.1.1.2 Full-Dimensional Dynamical Approach Regarded in the Di-1

abatic Representation. The diabatic representation is used and the fully cou-2

pled electron-nuclear dynamics is projected on the diabatic representation. There-3

fore, using the ansatz already introduced in the second part of this chapter, one4

obtains the diabatic potential surfaces 𝑢̃11
(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
and5

𝑢̃22

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
in fig. 5-14. The nuclear wave packet starts at the same nu-6

clear coordinates as in the previous propagation with the same initial nuclear wave7

function, but now one just projects the nuclear density on the two diabatic states8

|𝜑𝑛=1,2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩.9
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Figure 5-14: Starting Point of the Wave Packet in the Diabatic Represen-
tation. The black surface represents 𝑢̃11

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
and the blue surface

represents 𝑢̃22
(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
of the first and the second diabatic state, respec-

tively. The arrow marks the position of the initial wave packet.

The nuclear wave packet is expected to follow the negative gradient of the diabatic1

potential surface 𝑢̃22
(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
. The dynamics clearly takes place mainly2

in the second diabatic state |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩, as is documented by the diabatic3

state populations shown in fig. 5-15.4
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Figure 5-15: Population Dynamics Projected on the Diabatic States.
Shown is the population dynamics in the two diabatic states. It is seen that
most of the population stays in the second diabatic state.

The dynamics can also be illustrated by the diabatic densities:1

𝜌𝑑𝑛(𝑅𝑥, 𝑅𝑦, 𝑡) = ⟨𝜑𝑛(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩𝑥,𝑦, (5.28)

with 𝑛 = 1, 2.2

They are depicted in fig. 5-16. The nuclear density stays mostly in the second3

diabatic state |𝜑2(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩. One can claim that the electron stays stationary4

or constant while the nuclear wave packet is passing the CoIn, as this diabatic5

state is uniform in character and has 𝑎1 symmetry.6
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Figure 5-16: Density Dynamics Projected on the Diabatic States. The left
panels show the nuclear density. The middle and right panels show the diabatic
densities. It is seen that the density remains mostly in the second diabatic state
during the dynamics.

5.3.1.2 Diabatic State Dynamics1

The nuclear dynamics is obtained from the solution of the time-dependent Schrödinger2

equation eq. (5.21). As initial condition, the following wave functions are chosen:3

|𝜒̃2(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦, 𝑡 = 0)⟩ = 𝑁 · 𝑒−𝛽(𝑅𝑥−𝑅𝑥0 )
2
𝑒−𝛽(𝑅𝑦−𝑅𝑦0 )

2
, (5.29)

and4

|𝜒̃1(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦, 𝑡 = 0)⟩ = 0.0. (5.30)

The numerical parameters are the same as used before. The result of the diabatic5

propagation is seen in fig. 5-17, where the nuclear densities are depicted for the two6

diabatic states (middle and right panel), and also the total densities are defined7
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as:1

𝜚𝑑𝑡𝑜𝑡(𝑅𝑥, 𝑅𝑦, 𝑡) = 𝜚𝑑1(𝑅𝑥, 𝑅𝑦, 𝑡) + 𝜚𝑑2(𝑅𝑥, 𝑅𝑦, 𝑡), (5.31)

where2

𝜚𝑑𝑛(𝑅𝑥, 𝑅𝑦, 𝑡) = ⟨𝜒̃𝑛(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦, 𝑡) | 𝜒̃𝑛(𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦, 𝑡)⟩, (5.32)

with 𝑛 = 1, 2. As one can see, the dynamics is in very good agreement with the3

result obtained from the coupled dynamics, see fig. 5-16.4
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Figure 5-17: Density Dynamics in the Diabatic State Representation. The
left panels show the total nuclear density. The middle and the right panels show
the diabatic densities. It is seen that the density remains mostly in the second
diabatic state during the dynamics and that it is in very good agreement with the
numerically exact propagation fig. 5-16.
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5.3.1.3 Long-Time Behavior of a Wave Packet Passing the Conical1

Intersection2

Regarding the long-time behavior of the case where a nuclear wave packet crosses3

the CoIn multiple times, one can verify the process to remain diabatic. This is seen4

in fig. 5-18, where the nuclear wave packet stays compact while passing the CoIn5

at least three times after 12 fs, see fig. 5-12. This indicates that the electronic6

character should also be constant as it is observed for the short-time behavior7

crossing the CoIn once. Regarding the right panels in fig. 5-18, this can be verified8

as the electron density remains mostly in a 𝑝𝑦-like shape, i.e. the symmetry of the9

initial electronic wave function symmetry [26].10
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Figure 5-18: Densities for the Wave-Packet Motion through the CoIn for
Longer Times. Same as in fig. 5-11, but for times up to 12 fs.
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5.3.1.4 Changing Nuclear-Electron Interaction1

As observed in fig. 5-12, about 80 percent of the population was transferred, while2

the nuclear wave packet passed the CoIn for the first time. In this case, the shiel-3

ding parameter for the electron-proton interaction is set to a value of 𝑎 = 0.5 a.u..4

In what follows, the population transfer for weaker and stronger shielding between5

the electron and the mobile proton are regarded. As with different shielding pa-6

rameters the topology changes, the initial conditions are slightly adapted and are7

comparable to the already known situation of a wave packet crossing the CoIn.8

The initial conditions are only changed to a 𝑅𝑦0 = 0.7 𝑎.𝑢. displacement.9

Regarding fig. 5-20, it is observed that neither for stronger shielding nor for weaker10

shielding the population transfer significantly changes. Although the topology11

changes for different shielding, see fig. 5-19, the topology keeps exhibiting the12

CoIn. It was seen earlier that the location of the CoIn marks the point on the adi-13

abatic surfaces where the population transfer is very efficient. This is in contrast to14

the case of the one-dimensional model, where an avoided crossing is present. There15

the energy gap between the two non-crossing potentials can be toggled by variing16

the shielding. As seen in section 4.5.1, this has an influence on the population17

transfer between the involved adiabatic states.18
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Figure 5-19: Potential Energy Surfaces for Weaker and Stronger Electron-
Proton Interaction. The blue surface represents the potential energy surface of
the second adiabatic state, and the black surface represents the potential energy
surface of the first adiabatic state, respectively.
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Figure 5-20: Population Dynamics for Weaker and Stronger Electron-
Proton Interaction. The blue curve represents the population of the second
adiabatic state, and the black curve represents the population of the first adiabatic
state, respectively. Neither for stronger interaction (upper panel), nor for the
weaker (lower panel) the population transfer changes significantly.
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5.3.1.5 Wave-Packet Dynamics Through the CoIn from a Different1

Angle2

To complete the study, a case is chosen where the initial condition leads to a3

crossing of the CoIn at a different angle. The initial wave packet is given by4

eq. (5.24), with 𝑅𝑥 = 0.4 a.u. and 𝑅𝑦 = 0.0 a.u..5

The densities for the proton 𝜌𝑛𝑢𝑐(𝑅𝑥, 𝑅𝑦, 𝑡) and the electron 𝜌𝑒𝑙(𝑥, 𝑦, 𝑡) can be6

followed in fig. 5-21 for the time interval in which the wave packet passes the7

CoIn. Again, it can be seen that the nuclear wave packet stays compact in shape8

while passing the CoIn. Parallel, the density for the electron stays stationary in9

shape indicating a constant electronic character.10
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Figure 5-21: Densities for the Wave-Packet Motion through the CoIn
from a Different Angle. The left panels show the nuclear density, and the right
panels show the electron density for times up to 4 fs.
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As a result, a diabatic representation can be chosen in order to follow this diabatic1

process. Therefore, the following states are chosen as diabatic basis states:2

|𝜑1(𝑥, 𝑦)⟩ = |𝜑1(𝑥, 𝑦;𝑅𝑥 = 0.4 𝑎.𝑢., 𝑅𝑦 = 0.0 𝑎.𝑢.)⟩, (5.33)

|𝜑2(𝑥, 𝑦)⟩ = |𝜑2(𝑥, 𝑦;𝑅𝑥 = 0.4 𝑎.𝑢., 𝑅𝑦 = 0.0 𝑎.𝑢.)⟩. (5.34)

These functions are depicted in fig. 5-22.3
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Figure 5-22: Diabatic Basis States. In panel (a), the adiabatic eigenfunction
|𝜑1(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦)⟩ for a fixed nuclear geometry of 𝑅𝑥 = 0.4 𝑎.𝑢., 𝑅𝑦 = 0.0 𝑎.𝑢. is
depicted. In panel (b), |𝜑2(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦)⟩ for the fixed nuclear position at 𝑅𝑥 =
0.4 𝑎.𝑢., 𝑅𝑦 = 0.0 𝑎.𝑢. is depicted. The black color shows positive and the blue
color negative values of the wave function.

In this diabatic basis, a wave-packet dynamics can be clearly seen, which mostly4

takes place in the second diabatic state. This is also confirmed in the population5

dynamics of the diabatic states in fig. 5-23. There, about 70 percent of the popula-6

tion stays in the first diabatic state. This states that the crossing from a different7

angle is also a diabatic motion.8
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Figure 5-23: Population Dynamics in the Diabatic Electronic States.
Shown is the diabatic population dynamics for the nuclear wave-packet motion
through the CoIn from a different angle.

A projection of the full-dimensional propagation on the diabatic representation is1

shown in fig. 5-24 and confirmes that most of the nuclear wave packet stays in the2

second diabatic state.3
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Figure 5-24: Density Dynamics in the Diabatic State Representation. The
left panels show the nuclear density for the nuclear wave-packet motion through
the CoIn from a different angle. The middle and the right panels show the pro-
jected diabatic nuclear density for corresponding times for the first and the second
diabatic state. It is seen that most of the density stays in the second diabatic
state.

5.3.1.6 Diabatization for the Wave-Packet Dynamics Through the CoIn1

from a Different Angle2

In what follows, a diabatization is carried out in order to underline the findings3

from above. The system is represented in the diabatic representation where the4

diabatic potentials and potential coupling elements take an already known form,5

see fig. 5-25.6
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Figure 5-25: Diabatic Potentials for the Different Diabatic Basis. In the
left panel, 𝑢̃11

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
is shown as black surface and 𝑢̃22

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
is shown as blue surface. The diabatic coupling potentials 𝑢̃12

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
,

𝑢̃21

(︁
𝑅𝑥, 𝑅𝑦;𝑅𝑥, 𝑅𝑦

)︁
are depicted in the right panel. These potentials are obtained

a diabatic basis at the fixed nuclear geometry of 𝑅𝑥 = 0.4 𝑎.𝑢., 𝑅𝑦 = 0.0 𝑎.𝑢.
.

As an initial condition, the nuclear wave packet is chosen to be in the second1

diabatic state according to eq. (5.29) and eq. (5.30). The parameters are kept2

with the full dimensional propagation for consistency.3

This results in a dynamics in the diabatic representation shown in fig. 5-26. As4

expected, they are in very good agreement with the nuclear dynamics obtained5

from the full-dimensional propagation.6
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Figure 5-26: Density Dynamics in the Diabatic State Representation for
the Nuclear Wave-Packet Motion Through a CoIn from a Different An-
gle. Left, the total nuclear density is shown. In the middle and the right panels,
the diabatic nuclear densities of the first and second diabatic state are shown. The
nuclear wave-packet dynamics is in very good agreement with the full-dimensional
approach fig. 5-24.

5.3.2 Nuclear Wave-Packet Dynamics Around a Conical Inter-1

section2

Another interesting case is the surrounding of a CoIn by a wave packet. This has3

also been studied [142] using a Jahn-Teller model hamiltonian with linear coupling4

elements, which exhibits a ’Mexican-hat’-like structure of the adiabatic potentials.5

This was seen already in section 5.2.2.2. A similar propagation around a CoIn can6

also be realized here using the 2D model system which also exhibits a ’Mexican-7

hat’-like energetical topology of the potential energy surfaces and a small decline8

from positive to negative 𝑅𝑦 values. But additionally, in this model system the9

total wave function is propagated, and as far as the reduction of the system to the10

diabatic picture resembles the linear Jahn-Teller hamiltonian, these two dynam-11
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ical approaches can be compared to each other. Most important, the electronic1

wave-packet dynamics can be studied. This is of great advantage, because phase2

sensitive processes like the gathering of a geometric phase by a wave function3

surrounding a CoIn are maybe observable in the full dimensional dynamics.4

5.3.2.1 Full-Dimensional Dynamical Approach in Comparison to the5

Adiabatic and Diabatic Dynamical Approaches6

First, the electron-nuclear coupled propagation is regarded. The initial wave func-7

tion is defined as in eq. (5.24), but with |𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩ as initial electronic8

state.9

The center of the inital wave function is marked by an arrow in fig. 5-27. It10

starts at a saddle point and, upon bifurcating into two parts, evolves along the11

valley around the CoIn, see fig. 5-29, left panels. Within 10 𝑓𝑠, the surrounding12

is complete and the electronic character has changed from 𝑝𝑥-like to 𝑝𝑦-like [26].13

The dynamics proceeds adiabatic as can be taken from fig. 5-28 and fig. 5-28.14

177



-0.6-0.4-0.2  0  0.2 0.4Rx [a.u] -0.4-0.2  0  0.2 0.4 0.6

Ry [a.u]

-0.34

-0.32

-0.3

-0.28

-0.26

E [a.u]

Figure 5-27: Initial Condition for a Wave Packet to Surround the CoIn.
Shown are the adiabatic potentials 𝑢11 (𝑅𝑥, 𝑅𝑦) and 𝑢22 (𝑅𝑥, 𝑅𝑦). The black arrow
marks the position of the nuclear wave packet in the adiabatic representation.

It should be noted that before the surrounding is complete, the nuclear density1

of the full-dimensional approach and the reduced adiabatic approach within the2

Born-Oppenheimer approximation (obtained from eq. (2.45)) are identical. This3

changes as the left and the right branch of the density join at negative values4

of the 𝑅𝑦-axis. The full-dimensional approach exhibits a destructive interference,5

whereas the Born-Oppenheimer treatment shows a constructive interference. This6

is due to the geometric phase connected to the surrounding of the CoIn [26].7
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Figure 5-28: Population Dynamics for a Wave Packet Surrounding the
CoIn. The population stays almost constant in the lower adiabatic state.

As a result, in the exact propagation, the phase difference between the left and1

right branch has at the point of joining the value of 𝜋, which leads to a destructive2

interference.3

On the contrary, in the Born-Oppenheimer treatment the phase connected to both4

branches is the same resulting in a constructive interference. The destructive in-5

terference in the exact propagation can also by explained using symmetry reasons.6

The initial wave function has a nodal structure along the 𝑅𝑥-axis as the Gaussian7

nuclear wave packet is symmetric and the electronic eigenfunction is antisymmet-8

ric in this direction. Now at 10 fs, the nuclear wave packet has moved to the9

opposite side of the coordinate system as well as the CoIn. There, the electronic10

wave function is symmetric in 𝑅𝑥-direction and as a consequence of symmetry11

conservation, the nuclear wave packet has to be antisymmetric in the point where12

both branches join [26].13
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Figure 5-29: Comparison of Numerically Exact Propagation and Born-
Oppenheimer Treatment. The left panels show the nuclear density and the
middle panels show the corresponding electron density obtained from the exact cal-
culation. The right panels show the nuclear density within the Born-Oppenheimer
treatment. It is seen that the outcome of the Born-Oppenheimer treatment is dif-
ferent in phase.

Additionally, one can reproduce the dynamics in the diabatic framework. The1

result can be seen in fig. 5-30, where the geometric phase effect is present be-2

cause the potential coupling elements are incorporated. The outcome is also in3

good agreement with the full coupled propagation. These results imply that the4

conditions for the diabatization must be well fulfilled.5
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Figure 5-30: Nuclear Density Dynamics within the Diabatic Representa-
tion. The diabatic nuclear density resembles the numerically exact nuclear density
dynamics in fig. 5-29 and reproduces the correct phase of the wave function.

5.3.3 Circuitting of a CoIn by a Nuclear Wave Packet1

As a last case the circuitting of a nuclear wave packet around a CoIn is regarded.2

This is an adiabatic motion, but it is regarded here to study the geometric phase3

effect with the help of an autocorrelation function.4

5.3.3.1 Full-Dimensional Dynamical Approach5

In this case the initial wave function is similar to the previous section and given6

with an additional momentum:7
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|Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡 = 0)⟩ = 𝑁 ·𝑒−𝛽(𝑅𝑥−𝑅𝑥0)2𝑒−𝛽(𝑅𝑦−𝑅𝑦0)2𝑒−𝑖𝑃𝑅𝑥𝑅𝑥 ·|𝜑1(𝑥, 𝑦;𝑅𝑥, 𝑅𝑦)⟩.

(5.35)

The initial momentum is set to 𝑃𝑅𝑥 = 14.84 a.u., where 𝑅𝑥0 = 0.0 a.u. and1

𝑅𝑦0 = 0.6 a.u.. The resulting dynamics is depicted in fig. 5-31.2
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Figure 5-31: Nuclear Wave Packet Circuitting the CoIn. The left pan-
els show the nuclear density from the numerically exact propagation. The mid-
dle panels show the corresponding electron density. The contour lines represent
𝑉 (𝑥, 𝑦,𝑅𝑥,𝑡, 𝑅𝑦,𝑡). The outer line starts with a value of -0.5 a.u. and decreases
in steps of 0.5 a.u.. The right panels show the nuclear density in the Born-
Oppenheimer treatment. They are in excellent agreement with the exact treat-
ment.
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Figure 5-32: Nuclear Wave Packet Circuitting the CoIn. Same as fig. 5-31,
but for longer times.

Starting with the nuclear density of the exact propagation, the initial momentum1

pushes the nuclear wave packet into a circular counterclockwise motion around2

the CoIn. The population dynamics in the adiabatic representation (not shown)3

exhibits no significant state transition which proves this motion to be adiabatic.4

Following the nuclear density up to 5.5 fs, the nuclear wave packet makes a half5

cycle around the CoIn. Regarding the corresponding electron density, this results6

in a rotation of the electronic wave function from 𝑝𝑥- to 𝑝𝑦-like shape. The circular7

motion is complete at about 12 fs (fig. 5-32). Then, the corresponding electron8

density is again 𝑝𝑥-like. But the electronic wave function is now inverted and the9

associated phase can be connected to the geometric phase [26].10
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Figure 5-33: Autocorrelation Functions. Shown are the autocorrelation func-
tions from the numerically exact treatment (blue) and the Born-Oppenheimer
treatment (red). In the beginning, the autocorrelation functions are identical but
differ after 9 fs by 𝜋 in phase. The time interval corresponds to a full cycle of the
CoIn by the wave packet. After a second cycle around 17 fs, the functions are in
phase again.

This phase can not be seen in the nuclear densities which appear nearly identical1

in the exact propagation and the Born-Oppenheimer treatment. But it can be2

visualized using autocorrelation functions obtained from the exactly propagated3

wave function and the Born-Oppenheimer approximation. They are defined as4

𝑐(𝑒𝑥)(𝑡) = ⟨Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡 = 0) |Ψ(𝑥, 𝑦,𝑅𝑥, 𝑅𝑦, 𝑡)⟩ (5.36)

and5

𝑐(𝑎𝑑)(𝑡) = ⟨𝜒1(𝑅𝑥, 𝑅𝑦, 𝑡 = 0) |𝜒1(𝑅𝑥, 𝑅𝑦, 𝑡)⟩, (5.37)

where we use the same initial nuclear wave packet for the propagation. The real6
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parts of the autocorrelation functions are plotted in fig. 5-33. There, both func-1

tions are oscillating in phase at the beginning of the simulation. At the time when2

the wave packet is located on the opposite side of the CoIn, the autocorrelation3

function vanishes. After a full circle and a recurrence time of 12 fs, the auto-4

correlation functions are found to be out of phase by 𝜋. Following the temporal5

behavior up to 24 fs, which is twice the recurrence time, the functions are in phase6

again [26].7

From the autocorrelation functions 𝑐(𝑗)(𝑡) (𝑗 = 𝑒𝑥, 𝑎𝑑), spectra can be obtained8

according to [119, 143, 144]:9

𝜎(𝑗)(𝐸) =

∫︁
𝑑𝑡 𝑒𝑖𝐸𝑡𝑐(𝑗)(𝑡). (5.38)

It is sufficient to investigate the autocorrelation functions until 19 fs. They can be10

decomposed in two parts (𝑛 = 1, 2) which is approximately written as [26, 119]:11

𝑐(𝑗)𝑛 (𝑡) = 𝑎𝑛

(︁
𝑒−𝛼𝑛(𝑡−𝑇𝑛)2 + 𝑒−𝛼𝑛(𝑡+𝑇𝑛)2

)︁
𝑒−𝑖𝛽𝑛𝑡, (5.39)

where 𝑎𝑛, 𝛼𝑛, 𝛽𝑛 are parameters, 𝑇1 = 0 and 𝑇2 ∼ 12 fs. Figure 5-33 shows12

that 𝑐(𝑒𝑥)1 = 𝑐
(𝑎𝑑)
1 and 𝑐

(𝑒𝑥)
2 = −𝑐(𝑎𝑑)2 . This results in a spectrum which can be13

approximately written as:14

𝜎(𝑒𝑥)(𝐸) = 𝜎1(𝐸) + 𝜎2(𝐸), (5.40)

𝜎(𝑎𝑑)(𝐸) = 𝜎1(𝐸) + 𝜎2(𝐸), (5.41)

with15
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𝜎𝑛(𝐸) = 𝑎𝑛𝑒
−(𝐸−𝛽𝑛)2/(4𝛼𝑛) cos [(𝐸 − 𝛽𝑛)𝑇𝑛] . (5.42)

In the expression for 𝜎𝑛(𝐸), the Gaussian envelop is modulated by an oscillating1

term which corresponds to the findings form the numerically obtained spectra [26].2
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Figure 5-34: Spectra Derived from Autocorrelation Functions. In the up-
per panel the spectra of the numerically exact treatment (black) and the Born-
Oppenheimer treatment (blue) are compared. The middle panel shows (same color
code) the background spectrum, and the lower panel shows the oscillating part of
the spectrum.

The spectrum is composed of two parts. 𝜎1(𝐸) is a Gaussian background and3

is identical for both spectra. The other part 𝜎2(𝐸) is an oscillating function4

with a Gaussian envelope. According to eq. (5.40) and eq. (5.41), the oscillating5

part is added or substracted, which results in a spectra where the positions of6

the maxima of exact treatment lie between the positions of the maxima of the7
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Born-Oppenheimer treatment. This can be seen in fig. 5-34, where the numeri-1

cally obtained spectra are reproduced by addition of the background terms and2

oscillating terms [26].3
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Chapter 61

Summary2

In the context of quantum mechanical calculations, the properties of non-adiabatic3

coupling in a small system, the Shin-Metiu model, is investigated. The transition4

from adiabatic to non-adiabatic dynamics is elucidated in modifying the electron-5

nuclear interaction. This allows the comparison of weakly correlated electron-6

nuclear motion with the case where the strong correlations determine the dy-7

namics. There, the eigenfunctions are analyzed and the impact of non-adiabatic8

coupling is characterized. It is shown that in the weak coupling regime, the eigen-9

functions are well represented within the adiabatic product ansatz, where the10

adiabatic electronic eigenfunctions are decoupled from each other and separated11

in their electronic character. On the contrary, in the strong coupling regime, the12

adiabatic electronic eigenfunctions and corresponding vibrational eigenfunctions13

are strongly coupled, and a diabatic basis set turns out to be an equivalent but a14

more intuitive representation in the description of eigenfunctions.15

With these findings, a diabatization is carried out, and the nuclear dynamics ob-16

tained from a numerically exact quantum dynamical wave-packet propagation is17

compared to the corresponding propagation in the diabatic representation. The18

dynamics are in very good agreement and show that the diabatization ansatz is19

suitable for uncorrelated electron-nuclear motion and classifies the wave-packet20

dynamics in the strong coupling regime as a diabtic motion.21
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The studies of the one-dimensional model are extended to include spectroscopi-1

cal transitions being present in two-dimensional and degenerate four-wave mixing2

(FWM) spectroscopy. Linear spectroscopy is used as a precursor for the non-linear3

spectroscopic methods. Here, the findings are in agreement with previous studies.4

Two-dimensional spectra probing the coupled electron-nuclear motion are calcu-5

lated. A comparison of the weak and the strong coupling regime reveals that, in6

the weak coupling case, the spectra are reproducable in the Born-Oppenheimer7

treatment. The conclusion states that parts of the spectrum which can not be8

reproduced within the Born-Oppenheimer treatment result from mixed states due9

to strong non-adiabatic coupling.10

Being able to tune the model between the weak and strong coupling regime,11

the question of the signatures of vibrational and electronic coherences in two-12

dimensional spectra could be addressed. Therefore, the spectra are analyzed as13

a function of the population time. In the case of the weak coupling, this study14

reveals that the occuring coherences are of vibrational character. On the contrary,15

it is shown that due to the mixed state character in the strong coupling regime16

case, the coherences are of vibronic character so that it is not possible to distin-17

guish between a pure vibrational or electronic character.18

As another method, degenerate four-wave mixing is applied, which is able to mo-19

nitor the ground state and excited state dynamics by changing the pulse sequence.20

Here, both for negative and positive delay times, the two coupling cases are ad-21

dressed and it is studied when the separation between ground and excited-state22

dynamics breaks down within the adiabatic representation.23

Furthermore, the quantum and classical time-evolution of the coupled motion in24

the complete electron-nuclear phase space is compared for the two coupling cases.25

In the weakly coupled case, it is shown that the short-time behavior of the clas-26

sical calculation is in good agreement with quantum dynamics. This also applies27

in the strongly coupled situation. It is shown that the dynamics in the strong28

coupling regime takes place mostly in a single diabatic state, as can be expected29
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from the investigation of the diabatization ansatz. This states that the classical1

trajectory motion is very similar to the diabatic quantum motion. As a result, a2

classical treatment in the complete phase space of electron and nuclear degrees of3

freedom reproduces the quantum dynamics, where strong non-adiabatic coupling4

is present.5

Finally, the numerically exact electron flux within the weak coupling case is com-6

pared to the Born-Oppenheimer treatment. Within the usual definition the elec-7

tron flux vanishes in the Born-Oppenheimer approximation. The approach of8

calculating the electron flux directly from the continuity equation results in a non-9

zero flux and a flux-flux reflection-principle which maps the electron flux onto the10

nuclear flux and vice versa.11

In the last part of the thesis, the one-dimensional model is extended to two dimen-12

sions. The system then possesses potential energy surfaces which exhibit a typical13

’Mexican hat’-like structure and a CoIn in the adiabatic representation. Thus, it14

is possible to map properties of the system onto a vibronic coupling (Jahn-Teller)15

hamiltonian.16

Exact wave-packet propagations as well as nuclear wave-packet dynamics in the17

adiabatic and diabatic representation are performed. It is shown that the crossing18

of a wave packet through a CoIn carries the characteristics of a diabatic motion19

and is a highly efficient process. The nuclear dynamics is well reproduced in the20

diabatic representation. Furthermore, the motion around the CoIn can be charac-21

terized as an adiabatic motion with changing electronic character.22

Here, a geometric phase appears, which is traced back to the rotational motion23

of the electronic wave function. The influence of the geometric phase on time-24

correlation functions as well as the corresponding spectra derived from them, is25

analyzed. Furthermore, the geometric phase is explicitly calculated as a mixing26

angle for the transformation between the diabatic representation and the adiabatic27

representation.28

To summarize, the here presented model calculations, although they are restricted29
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to only two particles, reveal many fundamental aspects of correlated electron-1

nuclear dynamics.2
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Chapter 71

Zusammenfassung2

Im Rahmen quantenmechanischer Rechnungen werden die Eigenschaften nicht-3

adiabatischer Kopplungen in einem kleinen Modellsystem, dem Shin-Metiu Modell,4

untersucht. Die Fallunterscheidung zwischen adiabatischen und nicht-adiabatischen5

Prozessen wird durch eine Parameterisierung der Elektronen-Kernwechselwirkung6

realisiert. Dies ermöglicht den Vergleich zwischen korrelierter und unkorrelierter7

Elektronen-Kernbewegung. Innerhalb dieser zwei Extrema werden die Eigen-8

funktionen betrachtet und der Einfluss nicht-adiabtischer Kopplungen auf diese9

analysiert. Es wird gezeigt, dass im Fall einer schwachen Kopplung die Eigen-10

funktionen als adiabatisches Produkt dargestellt werden können, soweit die adi-11

abatischen elektronischen Eigenfunktionen voneinander entkoppelt sind und un-12

terschiedlichen elektronischen Charakter besitzen. Auf der anderen Seite sind die13

adiabatischen elektronischen Eigenfunktionen und die Vibrationseigenfunktionen14

im Bereich einer starken Kopplung miteinander gekoppelt, und es zeigt sich, dass15

die Eigenfunktionen in der diabatischen Darstellung eine zur adiabatischen äqui-16

valente, aber intuitivere Beschreibung darstellen.17

Anhand dieser Ergebnisse wird eine Diabatisierung und ein Vergleich zwischen18

exakter Elektronen-Kernpropagation und der Propagation im diabatischen Bild19

durchgeführt. Dieser Vergleich ist in sehr guter Übereinstimmung und zeigt, dass20

der Ansatz der Diabatisierung für unkorrelierte Elektronen-Kernbewegungen hin-21
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reichend ist und gleichzeitig klassifiziert er die Wellepacketdynamik im Bereich1

starker Kopplungen als diabatisch.2

Die theoretischen Untersuchungen des eindimensionalen Modells werden auf spek-3

troskopische Übergänge erweitert, welche lineare und nichtlineare System-Feld4

Wechselwirkungen beinhalten. Ein Vergleich zwischen zweidimensionalen Spek-5

tren bezüglich schwach und stark gekoppelter Elektronen-Kern Dynamik zeigt,6

dass im Fall schwacher Kopplungen, die Spektren durch analoge Rechnungen im7

Rahmen der Born-Oppenheimer Näherung reproduzierbar sind.8

Es zeigt sich, dass diejenigen Teile des Spektrums, welche auf gleiche Weise nicht9

reproduzierbar sind, elektronisch gemischten Zuständen, aufgrund starker nicht-10

adiabtischer Kopplungen, zuzuordnen sind. Die Möglichkeit, das System zwischen11

schwacher und starker Kopplung zu variieren, erlaubt es Vibrationskohärenzen und12

elektronischen Kohärenzen in zweidimensionalen Spektren zu analysieren. Dazu13

werden die zweidimensionalen Spektren als Funktion der Populationszeit betrach-14

tet. Es ergibt sich, dass im Fall schwacher Kopplungen die Kohärenzen während15

der Populationszeit Vibrationskohärenzen zugeordnet werden können. Im Gegen-16

satz dazu ergeben sich im Bereich starker Kopplungen, aufgrund des gemischten17

elektronischen Charakters der Zustände, Kohärenzen vibronischer Art.18

Als weitere Methode wird die Degenerierte-Vier-Wellen-Mischen Spektroskopie19

(FWM) untersucht. Diese ist in der Lage Grundzustandsdynamiken und Dy-20

namiken im angeregten Zustand separat zu verfolgen. Sowohl für negative als auch21

für positive Verzögerungszeiten werden die zwei verschiedenen Kopplungsszenarien22

untersucht und der Zusammenbruch dieser Methode bezüglich der nicht möglichen23

Trennung der Grundzustandsdynamik und Dynamik im angeregten Zustand inner-24

halb der adiabatischen Beschreibung betrachtet.25

Als weiterer Aspekt, wird die quantenmechanische und klassische Zeitentwick-26

lung der gekoppelten Elektronen-Kernbewegung im vollständigen Phasenraum für27

verschiedene Kopplungsstärken verglichen. Im Fall schwacher Kopplung stimmt28

im Kurzzeitverhalten die klassische Berechung mit der quantenmechanischen gut29
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überein. Dies kann auch im Fall starker Kopplungen gezeigt werden, was die wei-1

tere Schlussfolgerung zulässt, dass die Dynamik im Bereich starker Kopplungen2

hauptsächlich in einem diabatischen Zustand stattfindet. Das zeigt, dass die klas-3

sische Bewegung sehr ähnlich zu der diabatischen quantenmechanischen Bewegung4

verläuft. Als Konsequenz reproduziert eine klassische Bewegung im vollständi-5

gen Phasenraum eine quantenmechanische, bei der nicht-adiabatische Kopplungen6

stark involviert sind.7

Als letzte Betrachtung des eindimensionalen Shin-Metiu Modells, wird der Elektro-8

nenfluss im schwach gekoppelten Fall untersucht und der numerisch exakt berech-9

nete Fluss mit dem in der Born-Oppenheimer Näherung verglichen. Innerhalb10

der üblichen Definition verschwindet der Elektronenfluss im Rahmen der Born-11

Oppenheimer Näherung. Durch die Verwendung der Kontinuitätsgleichung für12

den Elektronenfluss ergibt sich jedoch ein nicht-verschwindender Elektronenfluss.13

Weiter wurde ein Reflektionsprinzip hergeleitet, welches den Elektronenfluss auf14

den Kernfluss abbildet und umgekehrt.15

Zum Abschluss der Untersuchungen des eindimensionalen Shin-Metiu Modells wird16

das System auf zwei Dimensionen erweitert. Dabei zeigt sich, dass die adiabati-17

schen Potentialflächen des Modells eine typische ’Mexican-hat’ Topologie aufweist.18

Daraus ergibt sich, dass es möglich ist das System auf einen vibronischen (Jahn-19

Teller) Hamiltonian zurückzuführen. Im Zuge dessen wird das zweidimension-20

ale System hinsichtlich der exakten Elektronen-Kerndynamik, sowie der Dynamik21

in den adiabatischen und diabatischen Anschauungen betrachtet. Die durchge-22

führten Rechnungen zeigen, dass das Passieren eines Wellenpaketes durch eine23

Konische Durchschneidung als eine diabatische Dynamik klassifiziert werden kann,24

wobei ein effizienter adiabatischer Populationstransfer stattfindet. Dieser Prozess25

kann sehr gut im diabatischen Bild reproduziert werden. Des Weiteren wird eine26

Wellenpaketdynamik um eine Konische Durchschneidung herum betrachtet und27

als adiabatische Dynamik klassifiziert. Der interessante Aspekt der geometrischen28

Phase, die mit dem Umrunden einer Konischen Durchschneidung assoziiert ist,29
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wird mit der Rotation der elektronischen Wellenfunktion verknüpft. Zusätzlich1

wird hier das Auftreten der geometrische Phase in Autokorrelationsfunktionen und2

den daraus abgeleiteten Spektren charakterisiert. Die geometrische Phase wird zu-3

sätzlich als Mischungswinkel der Transformation zwischen dem diabatischen und4

adiabatischen Bild explizit berechnet. Zusammenfassend zeigen die Rechnugen5

an den verwendeten Modellsystemen viele fundamentale Aspekte der korrelierten6

Elektronen-Kerndynamik, obwohl sie auf lediglich zwei Partikel begrenzt sind.7
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Appendix A1

In what follows eq. (2.30) is derived from eq. (2.29) according to [39].2

− 1

2𝑀

∑︁
𝑘,𝑛

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
[︁
∇⃗𝑅⃗𝛿𝑘𝑛 + 𝜏⃗𝑘𝑛(𝑅⃗)

]︁2∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)𝐴𝑚𝑛(𝑅⃗; 𝑅⃗)|𝜒𝑛(𝑅⃗)⟩⏟  ⏞  
𝐶(𝑅⃗;𝑅⃗)

+
∑︁
𝑘,𝑛

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
𝑢𝑘𝑛(𝑅⃗)𝛿𝑘𝑛 − 𝐸

)︁∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)𝐴𝑚𝑛(𝑅⃗; 𝑅⃗)|𝜒𝑛(𝑅⃗)⟩ = 0.

(A.1)

First, 𝐶(𝑅⃗; 𝑅⃗) is defined as part of the above expression which is rewritten in the3

following separately:4

𝐶(𝑅⃗; 𝑅⃗)

=
∑︁
𝑘,𝑛,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
[︁
∇⃗𝑅⃗𝛿𝑘𝑠 + 𝜏⃗𝑘𝑠(𝑅⃗)

]︁ [︁
∇⃗𝑅⃗𝛿𝑠𝑛 + 𝜏⃗𝑠𝑛(𝑅⃗)

]︁∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

=
∑︁
𝑘,𝑛,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
[︁
∇⃗𝑅⃗∇⃗𝑅⃗𝛿𝑘𝑠𝛿𝑠𝑛 + ∇⃗𝑅⃗𝛿𝑘𝑠𝜏⃗𝑠𝑛(𝑅⃗) + 𝜏⃗𝑘𝑠(𝑅⃗)∇⃗𝑅⃗𝛿𝑠𝑛 + 𝜏⃗𝑘𝑠(𝑅⃗)𝜏⃗𝑠𝑛(𝑅⃗)

]︁
×

∑︁
𝑚

(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩. (A.2)

Then one ends up with four terms within the square brackets. To these four terms,5

different colors are attatched in the following:6
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𝐶(𝑅⃗; 𝑅⃗)

=
∑︁

𝑘,𝑛,𝑚,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)∇⃗𝑅⃗

(︁
∇⃗𝑅⃗𝛿𝑘𝑠𝛿𝑠𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)∇⃗𝑅⃗𝛿𝑘𝑠

(︁
𝜏⃗𝑠𝑛(𝑅⃗)(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑠(𝑅⃗)
(︁
∇⃗𝑅⃗𝛿𝑠𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑠(𝑅⃗)𝜏⃗𝑠𝑛(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩. (A.3)

Furthermore, the orange term can be further expanded, so there are in total ten1

terms:2

𝐶(𝑅⃗; 𝑅⃗)

=
∑︁

𝑘,𝑛,𝑚,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
∇⃗𝑅⃗∇⃗𝑅⃗(𝐴

−1)𝑘𝑚(𝑅⃗; 𝑅⃗)
)︁
|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
∇⃗𝑅⃗(𝐴

−1)𝑘𝑚(𝑅⃗; 𝑅⃗)
)︁(︁

∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
∇⃗𝑅⃗(𝐴

−1)𝑘𝑚(𝑅⃗; 𝑅⃗)
)︁(︁

∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)(𝐴
−1)𝑘𝑚(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

)︁
+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗𝜏⃗𝑘𝑛(𝑅⃗)

)︁
(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑠𝑛(𝑅⃗)
(︁
∇⃗𝑅⃗𝛿𝑘𝑠(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)
)︁
|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑠𝑛(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗𝛿𝑘𝑠|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

)︁
+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑠(𝑅⃗)

(︁
∇⃗𝑅⃗𝛿𝑠𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)
)︁
|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑠(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗𝛿𝑠𝑛|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

)︁
+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑠(𝑅⃗)𝜏⃗𝑠𝑛(𝑅⃗)(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩. (A.4)

Equation (A.4) can be rewritten as:3
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𝐶(𝑅⃗; 𝑅⃗)

=
∑︁

𝑘,𝑛,𝑚,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)(𝐴
−1)𝑘𝑚(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗)⟩

)︁
+
[︁
2𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗(𝐴

−1)𝑘𝑚(𝑅⃗; 𝑅⃗)
)︁
+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑛(𝑅⃗)(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑛(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

]︁ (︁
∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

)︁
+
[︁
𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗∇⃗𝑅⃗(𝐴

−1)𝑘𝑚(𝑅⃗; 𝑅⃗)
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
∇⃗𝑅⃗𝜏⃗𝑘𝑛(𝑅⃗)

)︁
(𝐴−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑛(𝑅⃗)
(︁
∇⃗𝑅⃗(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑛(𝑅⃗)
(︁
∇⃗𝑅⃗(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)
)︁

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑠(𝑅⃗)𝜏⃗𝑠𝑛(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

]︁
|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩. (A.5)

This can be summarized to:1

𝐶(𝑅⃗; 𝑅⃗)

=
∑︁

𝑘,𝑛,𝑚,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)(𝐴
−1)𝑘𝑚(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗)⟩

)︁
+
[︁
2𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)

(︁
∇⃗𝑅⃗(𝐴

−1)𝑘𝑚(𝑅⃗; 𝑅⃗)
)︁
+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑛(𝑅⃗)(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)𝜏⃗𝑘𝑛(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

]︁ (︁
∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

)︁
+𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)×[︁(︁

∇⃗𝑅⃗𝛿𝑘𝑠 + 𝜏⃗𝑘𝑠

)︁(︁
∇⃗𝑅⃗𝛿𝑠𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗) + 𝜏⃗𝑠𝑛(𝑅⃗)(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

)︁]︁
×

|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩. (A.6)

Combining the above expression with eq. (A.1) yields eq. (A.7) which corresponds2

to eq. (2.30).3
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− 1

2𝑀
∇⃗2

𝑅⃗
|𝜒̃𝑜(𝑅⃗; 𝑅⃗)⟩+

2
∑︁
𝑘,𝑚,𝑛

⎡⎢⎣𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)
(︁
∇⃗𝑅⃗𝛿𝑘𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗) + 𝜏⃗𝑘𝑛(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗)

)︁
⏟  ⏞  

=0

⎤⎥⎦ ∇⃗𝑅⃗|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩

+
∑︁

𝑘,𝑚,𝑛,𝑠

𝐴𝑜𝑘(𝑅⃗; 𝑅⃗)×⎡⎢⎣(︁∇⃗𝑅⃗𝛿𝑘𝑠 + 𝜏⃗𝑘𝑠(𝑅⃗)
)︁(︁

∇⃗𝑅⃗𝛿𝑠𝑛(𝐴
−1)𝑛𝑚(𝑅⃗; 𝑅⃗) + 𝜏⃗𝑠𝑛(𝐴

−1)𝑛𝑚(𝑅⃗; 𝑅⃗)
)︁

⏟  ⏞  
=0

⎤⎥⎦×

|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩+
∑︁
𝑚

(︁
𝑢̃𝑜𝑚(𝑅⃗; 𝑅⃗)− 𝐸

)︁
|𝜒̃𝑚(𝑅⃗; 𝑅⃗)⟩ = 0. (A.7)
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