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1
Chapter 1.

Introduction

1.1. Motivation

Medical imaging has been a useful tool of growing importance over the last decades.

Advances in software and hardware together with the exploration of different physical

principles has led to the development of a variety of imaging methods. Important exam-

ples are: Computer Tomography (CT), Positron Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) which involve ionizing radiation; Ul-

trasound Imaging, which is based on the mechanical properties of sound waves and

Magnetic Resonance Imaging (MRI), this technology uses magnetization of the protons

in the human body within an external magnetic field. Thanks to the lack of ionizing

radiation, MRI and Ultrasound are considered very safe [1] and have become popular in

clinical practice [1].

Although MRI provides an excellent soft-tissue contrast in comparison to CT, one of the

major drawbacks of MRI is the long acquisition times needed. In addition to patient dis-

comfort, especially if the patient has any impediment to stay immobile or is claustropho-

bic to any degree, it leads to a low cost-effectiveness of MRI devices. Furthermore, long

MRI acquisition times may cause artifacts related to involuntary patient’s motion. Res-

piration, cardiac motion, blood flow, eye movements and swallowing are some examples

of involuntary physiological motion. If the object to be measured is in constant motion

during the acquisition time, inconsistencies in the phase and amplitude of the signal

will occur. As consequence, images may exhibit ghosting artifacts as well as spatial

and/or temporal blurring. Many strategies have been proposed in order to reduce these

artifacts. Artifacts can be minimized by applying breath holding techniques [2], cardiac

triggering or retrospective triggering, respiratory gating (prospective or retrospective) [3]

or flow compensation techniques, depending on the physiological movement affecting

the image [4]. Multiple averages can also reduce periodic physiological motion artifacts

(cardiac motion and respiration) while at the same time increasing the signal to noise

ratio. The major disadvantage for all strategies mentioned is an increased acquisition

time.
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CHAPTER 1. INTRODUCTION

The quality of MRI depends on the resolution, contrast, signal to noise ratio (SNR) and

a low artifact-level. These parameters are affected by the field homogeneity, the field

strength, the receiver and the pulse sequence type. The main goal of a large percentage

of MRI research and past and recent technical developments was and still is reduced ac-

quisition time and improved image quality. Among the past developments are stronger

magnets, faster software, advanced sequences and imaging reconstruction techniques

such as parallel MRI (pMRI). The later one, allows to shorten acquisition times by only

partially acquiring the usually required data using arrays of multiple receiver coils. This

leads to errors in the imaging called aliasing. pMRI requires the signal to be detected

simultaneously and independently by several receiver coils with different spatial sensi-

tivity profiles. This additional spatial information is exploited to calculate missing data

points and obtain aliasing-free images. Hence, the gradient encoding in the acquisition

process is partially replaced by coil encoding. pMRI experienced its breakthrough in

1997 with the introduction of SMASH [5], which was shown to generate artifact-free

in vivo images. In the following years, many different reconstruction techniques such

as AUTO-SMASH [6], SENSE [7], SPACE RIP [8], PILS [9], VD-AUTO-SMASH [10] and

GRAPPA [11] emerged. Nowadays, pMRI is an integral part of clinical routines.

Further reconstruction and acquisition strategies have been developed to measure dy-

namic changes of the objects. The difficulty of measuring the signal from dynamic

objects increases with the speed of the motion because the temporal window for the

acquisition of a single frame decreases. pMRI techniques allow an acceleration of the

acquisition by partially measuring the object over the time. Dynamic pMRI reconstruc-

tion methods such as UNFOLD [12], TSENSE [13] and TGRAPPA [14] suppress alias-

ing artifacts at moderate acceleration factors. Recently, kt-BLAST/kt-SENSE [15] and

kt-PCA [16] have provided good quality reconstructions for highly accelerated acquisi-

tions. Additional to spatial sensitivity encoding, these reconstruction techniques use

spatio-temporal correlation between data. Prior information about these correlations is

obtained from a training data set, which consists of low resolution images. The train-

ing data set represents extra lines to be acquired and therefore extra scanning time.

Additionally, the trade-off between spatial and temporal resolution to be considered in

the acquisition of training data may cause undesired spatio-temporal filtering in the

reconstructed data.

1.2. Goal of the Work

The main aim of dynamic MRI is to not only accurately capture fast movements of the or-

gans (e.g. in cardiac imaging) but also to obtain tissue relaxation variables. Also known

as relaxometry, this allows a proper assessment of several diseases and lesions. In this

thesis, applications to both cardiac imaging and relaxometry studies are presented.

In this work, we propose several strategies in order to alleviate the trade-off problem for

training data to be used in reconstructions of accelerated dynamic MRI acquisitions as

described in the last section. One of the goals of this project is to characterize differ-

ent dynamic parallel imaging approaches and to address possible drawbacks. Funda-
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CHAPTER 1. INTRODUCTION

mentally, dynamic MRI techniques are developed which improve spatial and temporal

resolution of reconstructed images.

Using methods such as feedback regularization [17], non-Cartesian sampling strategies

and efficient reconstruction methods as kt-SENSE and kt-PCA, high-quality images with

a high temporal resolution can be obtained without increasing acquisition time.

The outline of this thesis is described as follows: in Chapter 2 the basic concepts of

MRI are introduced. Chapter 3 and 4 addresses topics related to parallel imaging and

dynamic parallel imaging respectively. In Chapter 5, non-Cartesian strategies for dy-

namic cardiac images are developed that reduce the temporal filtering showing in the

auto-calibration of some dedicated reconstruction methods using accelerated Cartesian

data. In Chapter 6, the auto-calibration for kt-SENSE is presented in order to eliminate

the need for training data and therefore increasing the efficiency of the acquisition.

The concept of kt-PCA, proposed first for cardiac imaging, is presented in Chapter 7

for reconstructing MR relaxometry studies. Finally a discussion of this work is given in

Chapter 8.
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2
Chapter 2.

MR Basics

2.1. Magnetic Properties of Protons

Elementary particles have inherent properties such as mass, charge and spin, which is

an intrinsic quantum mechanical angular momentum [18]. Magnetic Resonance makes

use of the magnetic properties connected with the spins of nuclei to obtain information

about their spatial distribution. Due to its abundance in the human body, hydrogen

(1H) is the most commonly used nucleus in clinical applications and will therefore be

discussed exclusively in this chapter. However, MR Images have also been based on

other nuclei such as carbon, phosphorus, sodium and fluorine.

In quantum mechanics the spin is characterized by its quantum numbers (s, ms), which

correspond to the magnitude and the orientation of the spin respectively. Its angular

momentum (S) is given by:

S = [s(s+ 1)]
1
2 ~ (2.1.1)

where ~ is the Planck constant (1.054 × 10−34 J · s) over 2π. The quantization of the

spin direction is given by the second quantum number ms (also known as the azimuthal

quantum number). In an external magnetic field
−→
B = B0 ~ez, the energy of a single spin

is given by:

E = −−→µ ·
−→
B = −γ

−→
S ·
−→
B (2.1.2)

Hereby, −→µ is the magnetic moment connected with the spin
−→
S and γ the gyromagnetic

ratio (for hydrogen 2.68 × 108 rad/s/Tesla). This leads to 2s + 1 different eigenstates

associated with the values of the azimuthal quantum number (ms = −s,−s+ 1, ..., s). The

hydrogen nucleus has the spin quantum number s = 1
2 . In this case, there are two

eigenstates with the eigenvalues (ms = ± 1
2 ). The state ms = 1

2 (pointing in the positive

z-direction) contains lower energy than ms = − 1
2 (pointing in the negative z-direction).

In MRI, only the signal from an ensemble of spins is measured rather than the signal

coming from individual spins. In thermal equilibrium and in the absence of an exter-

nal magnetic field, the tips of all spins are isotropically distributed on the surface of

a sphere, leading to zero net magnetization. An external magnetic field introduces a
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CHAPTER 2. MR BASICS

preferred direction with a lower energy level according to equation 2.1.2. Therefore, the

spatial distribution of the orientation of all of spins now changes slightly, resulting in a

macroscopic magnetization (
−→
M ) directed along the external magnetic field as depicted in

Figure 2.1.1. In thermal equilibrium, the magnetization vector is static and cannot be

measured by MR.

(a) (b)

B
o

z
-a

x
is

N
e
t 
M

a
g
n
e
ti
z
a
ti
o
n

Figure 2.1.1.: The spins in thermal equilibrium lead to no net magnetization (a). How-
ever a polarization/magnetization vector appears if the sample is im-
mersed in an extern magnetic field B0 (b).[19]

However if
−→
M is tipped away from the z-axis, the net magnetization vector precesses

in the xy-plane and the MR signal can be acquired through electromagnetic induction

using radiofrequency coils. The magnetization vector, as well as the individual spins,

precess with an angular frequency given by:

ω0 = γB0 (2.1.3)

This equation is known as the Larmor equation [20]. The evolution of the net magnetiza-

tion vector is usually considered in a rotating reference frame (at the Larmor frequency)

to significantly simplify description. In this reference frame, the magnetization does not

experience the Larmor precession due to B0. To rotate the magnetization vector from

it’s equilibrium on the z-axis into the transversal plane, an extra constant magnetic

field
−→
B1 = B1

−→ex is applied, located in the transversal plane of the rotating reference

frame (Figure 2.1.2). In order to maintain a constant direction in the rotating refer-

ence frame, B1 has to rotate around the z-axis of the laboratory frame at the Larmor

frequency (ω0 = γB0). This leads to a precession of the magnetization around B1 with

the frequency ω = γB1. For typical field strengths B0 used in MR, ω0 lies in the range of

radio frequencies (rf ).
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RF

PULSE

Z

x

y

x

y

Z

1 1

M

M

Figure 2.1.2.: During the application of a rf-pulse with the B1 field aligned along the
y-axis in the rotating frame, the magnetization vector

−→
M rotates in the

xz-plane.

For rf pulses of finite duration with a varying field strength B1(t), the total rotation

angle (α) of the magnetization vector due to Larmor precession is given by:

α =

τ̂

0

ω(t)dt = γ

τ̂

0

| B1(t) | dt (2.1.4)

The angle α is often referred to as flip angle. Some important examples are the 90◦

excitation and the 180◦ inversion angles.

2.2. Decay and Recovery

After excitation, the net magnetization vector ( ~M ) precesses around the external mag-

netic field and a MR signal can be measured, which decays overtime. Two different

relaxation processes dominate the evolution of the magnetization vector back to its ther-

mal equilibrium.

The recovery of longitudinal magnetization is known as spin-lattice relaxation and is

caused by the interaction of the spins with the surrounding matter by exchange of

energy. The magnetization hereby recovers exponentially with the time constant T1.

Additionally, the spins experience a spin-spin interaction due to the local magnetic field

caused by the surrounding spins, resulting in spatially slightly varying Larmor frequen-

cies. As a consequence of spin-spin interactions, the magnetization decreases in ampli-

tude along the transverse plane. This exponential temporal decay of the magnetization

vector is known as T 2 relaxation. Further dephasing of the magnetization is caused by

the inhomogeneity of B0. Both effects combined lead to an accelerated exponential de-

cay according to the smaller time constant T ∗2 . The relaxation parameters of each tissue

are characteristic and can be exploited to obtain different image contrasts that highlight

or suppress signal corresponding to specific tissues.
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The temporal evolution of the transversal and longitudinal components of the vector
−→
M

is mathematically represented by:

Mz(t) = M0(1− (M0 −Mz(0)) · e−t/T1) (2.2.1)

Mxy(t) = Mxy(0) · e−t/T2 (2.2.2)

As depicted in Figure 2.2.1 Mxy decreases to zero along the time axis and Mz recovers

asymptotically from Mz(0) towards M0.

M (t)xy

M (0)xy

0
Time

M (t)z

M0

M (0)z Time

Figure 2.2.1.: Relaxation and recovery graphics of magnetization vector in transversal
(on the left) and longitudinal (on the right) axis.

2.3. Spatial Encoding and Imaging

After a single excitation, the decaying signal received by rf coils is coming from all the

excited protons in the sample without any information about their location. In MRI,

spatial encoding is introduced by magnetic field gradients in three directions across the

volume of the sample, as depicted in Figure 2.3.1. The nuclei experience different mag-

netic fields according to their position −→r and the corresponding magnetization vectors

precess at different Larmor frequencies ω:

ω(−→r , t) = γ ·B(−→r , t) = γ(B0 +
−→
G(t) · −→r ) (2.3.1)

where
−→
G =

−→
∇Bz. Here the time dependency of the gradient denotes its variation during

the sample acquisition process.
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Figure 2.3.1.: Gradients in x, y and z axis are applied to the sample immersed in the
main magnetic field (

−→
B ) in order to acquire an image. Here an example of

gradients applied in z direction.

In the following subsections, the encoding in the x and y direction for 2-D imaging, also

known as frequency and phase encoding respectively, is described in detail. It can be

easily extended to 3-D imaging, adding another encoding gradient in the z-direction. For

more details reference [21] is suggested.

2.3.1. MRI Signal and k-space

The application of gradients leads to a signal S(t), which consists of the superposition

of all contributions at different frequencies:

S(t) ∝
ˆ
ρ(−→r )ei

´ t
0
ω(−→r ,t′)dt′d3r, (2.3.2)

where ρ(−→r ) is the spin density at the location −→r . Relaxation effects are omitted for

simplification. Inserting equation 2.3.1 results in:

S(t) ∝ eiω0t

ˆ
ρ(−→r )ei

´ t
0
γ
−→
G(t′)·−→r dt′d3r. (2.3.3)

In the rotating frame, the term ω0 vanishes. Introducing
−→
k = γ

´ t
o

−→
G(t′)dt′ proportional

to the gradient moment, we obtain:

S(
−→
k ) ∝

ˆ
ρ(−→r )ei

−→
k −→r d3r (2.3.4)

From this equation can be seen that S(
−→
k ) is represented by the Fourier transform of

12
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the spin density. The vector
−→
k is element of a typically two- or three- dimensional space

depending on the acquisition type, known in MRI as k-space. The image of the object

is proportional to its spin density in each location ~r, can be obtained by applying the

inverse Fourier transform of S(
−→
k ):

ρ(−→r ) ∝
ˆ
S(
−→
k )e−i

−→
k −→r d3k. (2.3.5)

The substitution of
−→
k in equation 2.3.4 simplifies the idea of spatial encoding. To

be able to perform this inverse operation, data at all points
−→
k have to be acquired.

In practice, data are taken at discrete locations for k = (Nx 4 kx, Ny 4 ky). Data in

one direction are acquired by applying a constant linear magnetic field gradient during

acquisition. The gradient in x-direction is known as the read out gradient. Encoding

in the other direction is achieved by applying gradients at varying moments before each

read out. This is called phase encoding. Hence, to sample a whole image of size Nx×Ny,
a total number of Ny read outs have to be performed.

2.3.2. Slice Selection

The first step in a 2-D MRI acquisition is a selective excitation of the desired slice in

an arbitrary orientation. To follow conventions in MR, the reference system is chosen

so that the slice direction is aligned to the z-axis. The selection of a slice means the

excitation of just the desired volume along the z-axis, with a thickness of ∆z. This can

be performed with the help of a gradient in z direction given by:

Gz =
∂Bz
∂z

(2.3.6)

Similar to the last subsection, the gradient introduces a spatial dependency of the

Larmor frequency of all spins. Now, using a rf excitation pulse with a well-defined

frequency range leads to a selective excitation of only the spins at the corresponding

resonance frequencies. This process is depicted in Figure 2.3.21. To achieve a homoge-

neous excitation across the desired slice, ideally the rf pulse should exhibit a box-car

profile in the frequency domain. This corresponds via Fourier transform to a sinc func-

tion for the temporal envelope of the rf pulse. For a limited bandwidth of ∆ν, the slice

thickness can be described by:

∆z =
2π

γGz∆ν
(2.3.7)

The slice is centered at the position z0 set by the carrier frequency of the rf pulse.

1This graphic was modified from the original Figure 1.3 in Haacke 1999
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B0=1.5T

Zoom

=

z

Bz

{Slice Thickness

y

x

Figure 2.3.2.: The precession frequency ν = ω
2π of the spins is a function of their position

along the z-axis. The center frequency of the rf pulse must be offset from
the Larmor frequency by γGz · z0.

2.4. Discrete Sampling of k-space

Consider the continuous sampling of a signal S(k) described by equation 2.3.4. The

received signal S(k) can be discretized by the multiplication of the signal with an infinite

train of delta functions in a rectangular window w(k), which delimits the number of

samples (N ):

d∞(k) = ∆k

∞∑
j=−∞

δ(k − j∆k) (2.4.1)

s(k) = S(k) · d∞(k) · w(k) = ∆k

n−1∑
j=−n

S(j∆k)δ(k − j∆k) (2.4.2)

As expression 2.3.5 suggests, the Fourier transform of the k-space yields the image or

spin density of the truth object. In the present discrete case, the Fast Fourier Transform

(FFT) is applied leading to:

ρ̂(x) = ∆k

n−1∑
j=−n

S(j∆k)ei j ∆k x (2.4.3)

A multiplication of two functions in k-space represents their convolution in image do-

main and vice versa. Consider for instance the example shown in Figure 2.4.1. The
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discrete sampling of the Gaussian curve (object) is generated by the multiplication of

a train of delta functions and the continuous signal. In frequency domain, this repre-

sents the convolution of the Fourier transformation of the object with the transform of

the windowed train of delta functions, which consists in a periodic sinc function. Wider

windows produce very narrow sinc peaks modeled as delta functions. The periodicity of

the density spin function satisfies x = x − l 2π
∆k for any positive and negative integer l.

The distance between each sample in k-space is inversely related to the so called Field

of View (FOV ) of the experiment:

FOV =
2π

∆k
(2.4.4)

FFT

FFT

FFT

= =
k-space Frequency domain

Multiplication Convolution

{

Figure 2.4.1.: Fourier Transform pairs of the sampling process of a Gaussian signal.

If the Nyquist sampling criterion is not satisfied, the adjacent copies overlap, this is also

known as aliasing. The Nyquist sampling criterion establishes that the FOV should be

at least or larger than the size of the object (A), FOV > A, in order to avoid the influence

of aliasing.

In the real life, as infinite sampling is not possible, a truncated version of a train of delta

functions is applied. To avoid blurring or Gibbs ringing artifacts in the image domain,

the temporal window where this train is applied should be wide enough.

Those concepts can be straight forward extended to the n-dimensional data s(
−→
k ) (see

Figure 2.4.2 for the 2-D case).
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Figure 2.4.2.: Fourier Transformation of the 2D MR signal. K-space samples are sepa-
rated with distance ∆kx in the horizontal direction and ∆ky along vertical
direction. In frequency domain the adjacent copies of the image are sep-
arated by the FOV = 2π

∆k in both directions.

2.5. k-space Coverage

In the last section it was demonstrated that the finite sampling of the received rf signal

in combination with the discrete Fourier transform results in the image of the true

object. The way data s(kx, ky) is collected, is not mentioned yet. There are many different

ways to obtain a signal for each location (kx, ky) and fully cover k-space. Here, the

encoding and collection of Cartesian and radial data are presented. More details about

many other type of sampling patterns can be found for example in references [22, 21].

2.5.1. Cartesian Sampling

To perform the 2-D spatial encoding and to collect the data, gradients in the both princi-

pal directions are turned on at different time points. The k-space is divided in Ny phase

encoding lines and Nx frequency encoding steps.

After the slice selection gradient in z-direction, a short gradient pulse in the y-direction

determines the phase encoding line to be acquired. Afterwards, a frequency encoding

gradient of constant amplitude is active during a time interval of Nx 4 t, during which

the acquisition of the signal is carried out. Both gradients are applied Ny times, until the

signal from the whole k-space is collected. Finally, the image of the object is obtained

by the inverse Fourier transform of the k-space signal.

The temporal graphic representation of not only the gradients but also the rf signals is

known as pulse sequence diagram. To illustrate this, a basic gradient echo sequence

[23] is presented (Figure 2.5.1a). It starts at t0 with the selection of the slice in z-
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direction, where the rf pulse with a flip angle (α) and the slice selection gradient in

z-direction are applied as described in the previous section.

In order to ensure a maximal signal, a gradient in z-direction reverses the dephasing

of spins introduced by the slice-selection gradient. The negative gradient in x-direction

and the phase encoding gradient move to the desired starting point in k-space for the

read out procedure as showed by Figure 2.5.1b.

In the center of the read out gradient, the so called gradient echo is generated as here

the total gradient moment on this axis is zero. The time between the rf pulse and the

occurrence of this echo is known as echo time (TE). The whole process is repeated Ny

times, for each repetition changing the strength of Gy gradient to adjust the k-space

position in direction of ky. The time between two rf pulses is known as repetition time

(TR) [22].

TR

TE

rf-pulse

k-space(a) (b)

Figure 2.5.1.: Cartesian sampling of the k-space using a gradient echo sequence: (a)
diagram and (b) path performed by the Cartesian FLASH sequence [24].

2.5.2. Radial Sampling

In radial coverage of k-space, first proposed by Lauterbur in 1973 [25], the signal in

k-space is collected along several spokes or projections at different angles θ. To gen-

erate the radial sampling pattern in k-space, the gradient in x-direction (Gx) is applied

simultaneously with the gradient in y-direction (Gy) with varying amplitudes as can be

seen from Figure 2.5.2. To cover the k-space, ns spokes are uniformly distributed along

the radial k-space with:

ns =
π

∆θ
(2.5.1)

To avoid aliasing, according to the Nyquist criterion, the largest angular steps (∆θ)

should be [22] :

∆θ =
1

L · FOV
, (2.5.2)

where L is the diameter of the radial k-space. This results in a minimum number of
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spokes given by:

ns ≥ π · L · FOV (2.5.3)

In a similar way, the minimal number of samples along the spoke is:

Nr ≥ 2 · L · FOV (2.5.4)

The image domain is obtained by applying the non-uniform Fourier transform (NUFFT)

[26] or the regridding onto Cartesian grid and then applying the Fast Fourier Transform

(FFT).

k-space

x

y

kr

k
q

rf-pulse

Figure 2.5.2.: Pulse sequence diagram for radial k-space acquisition. Here an example
of a radial Steady-state free precession sequence, the gradients on the
xy-axes are modulated according to the orientation of the corresponding
spoke (left). Right, the angular acquisition order is schematically depicted.

An important characteristic of radial sampling is that every spoke passes the center of

the k-space, which means that each projection samples both low and high frequencies

[27] and it has low sensitivity for object motion. By using radial sampling, trading spatial

for temporal resolution is easy to achieve, which is not the case for a Cartesian acqui-

sition. However, image reconstruction is more complicated and more time-consuming

than for Cartesian sampling and so radial acquisitions are not frequently used in clinical

experiments.

2.6. Acquisition Time and Signal to Noise Ratio

Important properties of an MR image are determined by the choice of the pulse sequence

and its parameters such as repetition time (TR), echo time (TE), flip angle (α), matrix size

(i.e. number of k-space samples), Field of View (FOV ). Therefore, for each application
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these parameters have to be carefully considered for the desired effect.

Sampling
data

Image
domain

Figure 2.6.1.: The acceleration of the data acquisition can be carried out by skipping
some phase encoding lines (a). This idea is used by the Parallel Imaging.
The partial Fourier technique is a modification of the Fourier transfor-
mation imaging method used in MRI in which the symmetry of the raw
data in k-space is used to reduce the data acquisition time by acquiring
only a part of k-space data (b). Not acquiring the most peripheral lines in
k-space leads to a low-resolution image, where information about much
of the fine details is lost (c).

One of the most important measures of image quality is signal-to-noise ratio (SNR),

which is defined in the MR community as the ratio of signal amplitude to noise standard

deviation. The signal strength depends on the voxel volume (4x · 4y · 4z), since the

number of protons scales with the volume. Noise in an image refers to random or

systematic undesirable perturbations of signal that arises from the body, electronics

and computer calculations. The noise variance is dependent of the receiver bandwidth

(BW) of the signal (determined by the gradient field strengths), the size of the image

(Nx ×Ny) and the number of averaged signals (Nav). Thus, [21]

SNR ∝ (4x · 4y · 4z)
√
NavNxNy
BW

(2.6.1)

Since the bandwidth BW is equal to 1
∆t , for a 2-D MR experiment we have:

SNR ∝ (4x4 y4 z)
√
NavNxNy 4 t (2.6.2)
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SNR ∝ (V oxel V olume)
√

(Acquisition T ime)

SNR considerations have implications for the selection of several imaging parameters.

In practice, longer acquisition times might be unfeasible. Nowadays in MRI, there is

a tendency to reducing acquisition times while having only negligible losses in image

quality. To accomplish this goal, reduction in the number of phase encoding steps Ny
and/or shorter TR are required. When reducing Ny, the location of the omitted lines in

k-space has a big influence on the resulting image, as shown in Figure 2.6.1. Omitting

phase encoding lines only at the edges of k-space leads to an image of lower resolution,

which is undesirable in most cases. Sampling only every n-th line instead results in an

image with aliasing artifacts, since this violates the Nyquist criterion. Hence, without

further image processing this sampling scheme also cannot be used to obtain diagnostic

images. However, the introduction of Parallel Imaging in the 80’s made it possible to

calculate missing data points through the use of receiver arrays and to remove the

aliasing artifacts. This is explained in detail in the next chapter.

The repetition time (TR) can be reduced using different rapid MR sequences, such as

FLASH [24], EPI [28], Turbo Spin Echo (TSE) [29]. Additionally the combination of these

rapid sequences and Parallel Imaging provide further acceleration in image acquisition

techniques.
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3
Chapter 3.

Basics of Parallel Imaging

3.1. Historical Overview

One of the major breakthroughs in fast MRI was the introduction of the concept of multi-

ple receiver coils by Hyde et al. [30] at the end of the 80’s and later by Roemer et al. [31].

With this technique, either the SNR can be improved or the image acquisition can be

sped up as was proposed by Carlson [32] and by Hutchinson and Raff [33] in their early

works of Parallel MRI (pMRI). Using multiple receiver coils, the MR signal is received

simultaneously and independently by each element. An example of an array consisting

of 8 coils is shown in Figure 3.1.1 an example of an array consisting of 8 coils is shown.

Further development has allowed the construction of arrays up to 128 independent coils

[34, 35]. In 1988, Hutchinson et al. [33] planted the idea of spatial encoding imaging

using only multiple coil arrays without applying magnetic field gradients. One year later,

Kelton et al. [36] proposed the use of both multi coil arrays and magnetic field gradients.

This technique was based on skipping phase encoding steps and the reconstruction of

images without aliasing artifacts using mathematical approaches. However, the recon-

struction technique did not provide satisfactory results. This idea was further explored

by many other groups [32, 37], with breakthroughs by Sodickson et al. [5], using coil

sensitivities to simulate additional phase encoding gradients (Simultaneous Acquisitions

of Spatial Harmonics (SMASH)), and Prussman et al. [7], utilizing the coil sensitivities to

improve the inversion matrix conditions (Sensitivity Encoding (SENSE)). Following the

arrival of these techniques, many reconstruction methods were proposed, which can

be classified into two groups: Methods that perform the reconstructions in image do-

main (SENSE [7], PILS [9]) or in k-space (AUTO-SMASH[6], VD-AUTO-SMASH[10] and

GRAPPA [11]). There are also hybrid reconstruction techniques as described in reference

[8]. The next section introduces the basic concepts used in parallel imaging.
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Multi-coil

x

z

y

zi

Figure 3.1.1.: Parallel acquisition with multiple coils. Independent coils with individual
responses or sensitivities acquire signal from the object simultaneously.
This can be seen as an additional “spatial encoding” because each receiver
coil has a different “view” of the object.

3.2. Basic Concepts

The basic idea of pMRI is to shorten acquisition times by skipping part of the required

information and to retrieve it in a post-processing step. In Cartesian k-space sampling,

some phase encoding lines are omitted and the final image exhibits aliasing artifacts

because the Nyquist criterion is not anymore satisfied. In the following chapter, a de-

tailed description of the aliasing artifacts in the images and some other basic concepts

in pMRI are presented.

3.2.1. Aliasing

Aliasing artifacts in image domain are the result of undersampling k-space. As described

in the previous chapter, skipping phase encoding steps decreases the distance between

copies or replicas of the spin density in image domain and due to the violation of the

Nyquist criterion, aliasing artifacts emerge in image domain. Figure 3.2.1 illustrates

an example of k-space undersampling, where the FOV is reduced to half by omitting

every other phase encoding step. This therefore results in two overlapping replicas in

the image of each individual coil. As a rule, the acceleration of k-space sampling by R

will reduce the FOV by the same factor and lead to the overlap of R replicas in image
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domain.

The pMRI techniques take advantage of the fact, that the signal is acquired by different

coils with different spatial sensitivities in order to remove the aliasing (see Figure 3.2.1).

0.20 cm

2

.

4

7

 

c

m

2.27 cm

2.27 cm

0.38 cm

1.43 cm

k-space

R=2
Undersampling

k-space

Coil sensitivity
information

Parallel imaging 
technique

Reconstructed 
data

Multi-coil 
acquisition

Object

x

y y

x

2.27 cm

2.27 cm

Figure 3.2.1.: Aliasing artifacts in the image domain result from skipping phase encod-
ing steps in k-space (undersampling in ky direction). R represents the ac-
celeration factor, in this example an acceleration factor of R = 2 is shown.
Data from multiple coils are used in pMRI to reconstruct the image.
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3.3. Reconstruction Methods

This section describes basic concepts of the most common parallel imaging techniques.

Beginning with a widespread technique, that performs the reconstruction in image do-

main known as Sensitivity Encoding (SENSE) [7] and followed by a brief description of

one of the first reconstruction techniques, Simultaneous Acquisitions of Spatial Har-

monics (SMASH) [5] and its successors AUTO-SMASH [6] and VD-AUTO-SMASH [10]

which allowed the implementation of a more generalized reconstruction method, Gen-

eralized Auto-calibrating Partial Parallel Acquisition (GRAPPA)[11].

Today, there is a big diversity of reconstruction techniques derived from the methods

previously mentioned.

3.3.1. Sensitivity Encoding (SENSE)

The reconstruction of aliasing-free images with SENSE [7] is performed in image domain

using explicit coil sensitivity profiles, also called coil sensitivity maps. To understand

how this reconstruction method works, consider the image with aliasing artifacts shown

in Figure 3.3.1 with a reduced FOV .

Figure 3.3.1.: Image encoding with multiple coils. In vectorial form,
−→
I contains the

aliased data from reduced FOV images. The matrix
−→
C is the assembly of

the sensitivities of the coils corresponding to the locations of the involved
pixels in the full FOV image −→ρ .

The undersampling in k-space reduces the FOV of the image by a factor of R. That

results in the overlapping of R replicas distributed equidistant with a period of FOV
R

(see Figure 3.2.1). Hence, the intensity of one pixel in the undersampled image is the
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superposition of R pixels with a spacing of FOVR of the image with the desirable FOV , see

Figure 3.3.1. Furthermore, the MR signal is collected using multiple coils with different

spatial sensitivities, which corresponds to an additional spatial encoding (or weighting)

along the FOV . Therefore, each of the R pixels overlapped at certain position in the

reduced FOV is weighted by the corresponding spatial sensitivity. We can describe the

intensity of a certain pixel acquired by the j-th coil, as the sum of R pixels weighted

with their coil sensitivities Cja :

Ij =

R∑
a=1

Cjaρa, (3.3.1)

where Ij represents a certain pixel value in the aliased image acquired with the j-th coil,

Cja is the coil sensitivity weight corresponding to the pixel at position a in the image FOV

and ρa corresponds to the unknown spin density value at position a. In the multi-coil

case this can be written in matrix form with nc equations:


I1

I2
...

Inc

 =


C11

C12
. . . C1R

C21
C22

. . . C2R

...
... . . .

...

Cnc1
Cnc2

. . . CncR

 ·

ρ1

ρ2

...

ρR

 , (3.3.2)

or in short form:
−→
I = Ĉ · −→ρ . (3.3.3)

To obtain the unfolded image, this equation is solved for the spin density vector (−→ρ ) for

every pixel in the reduced FOV :
−→ρ = Ĉ−1−→I (3.3.4)

From this expression it is clear that there are three cases:

• There are fewer equations (or number of coils) than unknowns. In this case the

equations system cannot be solved without prior information knowledge about the

object.

• There is the same number of equations as unknowns and therefore there are no

extra degrees of freedom. It is solved by simply inverting the matrix C.

• When there are more equations as unknowns, which is the most common case

in MRI, the Moore-Penrose pseudo-inverse should be applied to obtain unfolded

images:

C−1 = pinv(Ĉ) = (ĈHĈ)−1ĈH (3.3.5)

where H is the Hermitian transpose of the matrix C. The noise correlation matrix ψ

describing any correlation (e.g. coupling) between the receiver coils can be incorporated

in the inversion in order to improve the SNR.

−→ρ = (ĈHψ−1Ĉ)−1ĈHψ−1, (3.3.6)
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The encoding efficiency or also called geometry factor [7] indicates how accurate the

inversion of the matrix Ĉ is performed. In the presence of noise, the geometry factor

leads to noise amplification in the final image. The geometry factor can be calculated

with:

gi =

√
[(ĈHψ−1Ĉ)−1]ii[(Ĉψ−1Ĉ)−1]ii (3.3.7)

where the subscripts ii indicate the elements of the diagonal matrix. The g-factor value

is higher when the sensitivities of the R pixels are similar because in this case it is more

difficult to separate the folded pixels. It has been demonstrated [38], that the SNR of

SENSE reconstructions is optimal when the coils sensitivities do not present errors. The

encoding efficiency or g-factor can be included in the SNR calculation at every pixel i by:

SNRSENSEi =
SNRfulli

gi
√
R

(3.3.8)

Therefore, the coil sensitivities should present different values between them across the

FOV to ensure a higher SNR (smaller g-factor) in the reconstructed images.

3.3.2. Simultaneous Acquistion of Spatial Harmonics (SMASH)

In the SMASH algorithm, coil sensitivity profiles are used in order to estimating the effect

of the missing gradient encoding steps. Unlike SENSE reconstructions, the SMASH

reconstructions are performed in k-space. To explain the general idea of SMASH, here

we will revisit some basic concepts about the acquisition of the MR signal. Every ky line

or phase encoding step in k-space is obtained by the integration of the sinc functions as

demonstrated in the last chapter, which consists of spatial harmonic components (i.e.

sinusoidal) generated by the gradient Gy along the FOV . In Figure 3.3.2, some spatial

harmonics are illustrated that carry out this phase encoding process.

A receiver coil array also provides spatial variation. This can be used by linear super-

position Cmtot of the coil sensitivities at a specific location to approximate the missing

harmonics, usually generated by the gradient Gy in y-direction, as shown in Figure

3.3.3:

C
(m)
tot (x, y) =

nc∑
j=1

w
(m)
j Cj(x, y) ≈ ei m∆ky y (3.3.9)

where Cj is the coil sensitivity of the component coil j in a nc components array, w(m)
j

represents the complex weight factors, which estimate the harmonic of order m = 0...R−
1, R is the acceleration factor and ∆ky = 2π

FOV the distance between adjacent phase

encoding lines in k-space. The weight factors wj are calculated from the equation 3.3.9,

fitting the coil sensitivity profiles Ck(x, y) to the spatial harmonics ei m∆ky y.
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0

Gradients Spatial Harmonics k-space lines

t

t

t

Figure 3.3.2.: Spatial harmonics components generated by the gradient Gy along the
phase encoding direction. SMASH approximates these harmonics from
the coil sensitivities directly to reconstruct missing data.

Coil array

Coil sensitivity
Profiles

Weights (   )

y y

y y

Figure 3.3.3.: Here an example of the generation of composite coil profiles C
(m)
tot using

weights w(m)
j .
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The missing phase encoding line shifted by m ·∆ky steps is equal to the composite signal

(S(m)
tot ) generated by the linear combination of the acquired data of the nc single coils (Sj )

using the weights wj. The composite signal is given by:

S
(m)
tot (kx, ky +m∆ky) =

nc∑
j=1

w
(m)
j Sj(kx, ky) =

nc∑
j=1

w
(m)
j

ˆ ˆ
dy dxCj(x, y)ρ(x, y)e−i (ky y+kxx)

=

ˆ ˆ
dy dx

nc∑
j=1

w
(m)
j Cj(x, y)ρ(x, y)e−i (ky y+kxx) ≡

ˆ ˆ
dy dxρ(x, y)ei m∆ky ye−i (ky y+kxx)

(3.3.10)

As with all parallel imaging methods, this method is limited by the spatial variation

present across the coils, which are used for the generation of spatial harmonics to

estimate missing data.

3.3.3. AUTO-SMASH and VD-AUTO-SMASH

Obtaining accurate coil sensitivities may be non-trivial in some regions due to lack of

signal (e.g. human lung) or motion between the acquisition of coil sensitivity and accel-

erated data. Deviations in the coil sensitivity profiles can cause errors in the estimation

of spatial harmonics. A further improvement of SMASH was proposed by Jakob et al.

[6], in order to avoid these inaccuracies introduced by the coil sensitivity estimation. In-

stead of using explicit coil sensitivity profiles, AUTO-SMASH, allows the reconstruction

of missing data making use of additionally acquired R−1 central k-space lines, called

auto calibration signal (ACS).

In this self-calibrating approach the linear weights w
(m)
j are calculated directly from

the combination of ACS lines SACSj . In the last section it was demonstrated that the

weighted combination of signal across multiple coils (Sj ) results in the shifting of the

signal (S(m)
tot ) by m∆ky. In AUTO-SMASH, the prior knowledge of the ACS lines allows the

derivation of the weight factors in the following way:

S
(m)
tot (kx, ky +m∆ky) =

nc∑
j=1

w
(m)
j Sj(kx, ky) ≈

nc∑
j=1

S
(m)
ACS j(kx, ky +m∆ky) (3.3.11)

The complex weight factors w(m)
j , which shift measured lines by m4 ky in k-space, are

determined by fitting the single coil acquired signals Sj(kx, ky) to the composite ACS

signal S(m)
ACS j(kx, ky + m∆ky), as illustrated in Figure 3.3.4. Then the reconstruction

process is performed by applying these estimated weights to the undersampled data

(Sj(kx, ky)) in order to calculate the composite S(m)
tot (kx, ky + m∆ky) and after the inverse

Fourier transform obtaining a full FOV image.
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Coil1 Coil2 Coil3 Coil4
Coil1 Coil2 Coil3 Coil4

(a) Auto Calibration Signal (b) Accelerated data

(c) Reconstruction process

ACS
signals
(S )ACS j

undersampled
signals

(S )j

F
it

Figure 3.3.4.: Reconstruction process in the AUTO-SMASH algorithm. (a) ACS sig-
nals (SACSj ) are used to estimates the weight factors w

(m)
j to (b) recon-

struct the undersampled signals (Sj ). (c) These weight factors are ob-
tained by fitting the single coil acquired signal (Sj(kx, ky)) to the compos-
ite ACS signal S(m)

ACS j(kx, ky + m∆ky). The missing lines in the composite

S
(m)
tot (kx, ky + m∆ky) are calculated applying the estimated weights to the

acquired signals (Sj(kx, ky)).

The quality of the reconstructed image improves when a larger number of ACS lines is

acquired to determine the weights. [10]. To that end, in VD-AUTO-SMASH [10] a higher

number of ACS lines is used (∼16-32) and are sampled in a scheme embedded in the

accelerated data shown in Figure 3.3.5. Additionally, the SNR increases when the ACS

lines are included in the reconstructed data. By incorporating a k-space based auto-

calibrated approach, AUTO-SMASH overcomes the limitation of methods that use the

coil sensitivity profiles explicitly.
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Undersampled
data

Undersampled
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lines

Figure 3.3.5.: VD acquisition scheme used by VD-AUTO-SMASH. 16-32 ACS lines are
used to calculate the weight factors w(m)

j .

3.3.4. Generalized Auto-calibrating Partially Parallel Imaging (GRAPPA)

Images reconstructed using AUTO-SMASH and VD-AUTO-SMASH show low SNR due

to a non-optimized combination of the signal to form the composite image. They may

also exhibit phase cancellation caused by non-aligned phases across coils or slight dif-

ferences between the residual aliased signal and the unaliased normal data. However,

these reconstruction methods paved the way to an approach called Generalized Auto-

calibrating Partially Parallel Imaging (GRAPPA)[11]. GRAPPA and VD-AUTO-SMASH

both require ACS lines, but differ in the way the reconstruction is carried out. In con-

trast to VD/AUTO-SMASH, where a single combined image is reconstructed, in GRAPPA

unaliased images are reconstructed for each coil. Therefore, a separate set of weights

has to be determined for each individual coil:

Sacsk (kx, ky +m∆ky) =

nc∑
j=1

w
(m)
k,j S

acs
j (kx, ky), (3.3.12)

where m = 1...R− 1. Similar to AUTO-SMASH, several extra central lines (ACS data) are

fully acquired and used to calculate the reconstruction weights (wk,j ). In the GRAPPA

algorithm, the shape of a so called kernel (see Figure 3.3.6) can have a large impact

on the accuracy of the reconstruction [11]. The smallest reasonable GRAPPA kernel is

typically defined by two acquired lines and R-1 missing lines according to the sampling

pattern. For the calibration stage, source and target points in the kernel are identified

as illustrated in Figure 3.3.6. The kernel is shifted along the ACS lines and source and

target points for all available kernel repetitions (Nrep) are collected into the matrices Sscr
and Strg respectively. According to equation 3.3.12, the collected data in Sscr and Strg

are related by:

S(m)
scr = ŵ(m)Strg
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Figure 3.3.6.: Calibration process of the GRAPPA algorithm. In a block wise scheme
(kernel), the data along the ACS lines are labeled and collected, according
to the sampling pattern, into the Sscr and Strg matrices. Then the weights
ŵ(m)are estimated applying the pseudoinverse (pinv) to the Sscr matrix.

The matrices Sscr and Strg have the size of Nc · Nscr
bx · Nscr

by × Nrep and N c · (R − 1) × Nrep
respectively, where N bx and N by are the number of source points in the kernel along x-

and y-directions. The GRAPPA weights (ŵ) are derived by solving the system of equation

3.3.12, resulting a matrix with size N c · (R− 1)×Nc ·Nscr
bx ·Nscr

by .
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Figure 3.3.7.: The reconstruction step of GRAPPA algorithm. Using the same kernel
scheme along the undersampled data, the weights ŵ(m) are applied to the
acquired data Sacq to calculate the R− 1 missing data Smd in each coil.

The second stage in the GRAPPA reconstruction process is the application of these

weights (ŵ) along the undersampled data using the same kernel to calculate the R − 1

missing points in each coil as shown in Figure 3.3.7. As a result, A fully sampled

k − space is obtained for each individual coil.

In order to obtain one composite image using the information from all coils, the re-

constructed data are typically combined using the sum of squares in each pixel across

coils in image domain [31]. Compared to the AUTO-SMASH, this results in a better

SNR and additionally avoids phase cancellation. The versatility of this approach has

allowed further developments and improvements to this technique. Some examples are

the reconstruction in the image domain [39] and the reconstruction of non-Cartesian

data sets [40, 41, 42].
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3.4. Limitations

All pMRI techniques make use of the coil sensitivity information, which can either be

obtained by an additional pre-scan or included in the accelerated acquisition. Neverthe-

less, both of them increase the duration of the acquisition process. Furthermore, high

accuracy of the coil sensitivity maps is very important for reconstruction techniques

such as SENSE or SMASH, that operate directly in image space, in order to completely

remove the aliasing artifacts. Errors in the estimation of coil sensitivity maps may be

caused by the voluntary or involuntary motion of the object during the scan, the inho-

mogeneity of the regions with small signal or in general changes in the object during

the in-vivo experiments. Additionally, the physical arrangement of the coils is impor-

tant in pMRI algorithms for estimating the missing data. However the coil configuration

is directly depending on the hardware technology available. Addressing this problem,

methods as VD/AUTO-SMASH and GRAPPA do not require explicit coil sensitivities es-

timations in order to perform the reconstruction. Nevertheless, they still limit the speed

of the acquisition due to the acquisition of extra central lines for the ACS data. This

becomes crucial in cases where the object presents inherent motion or the patients are

not able to remain still.

For all parallel imaging methods, decreasing the number of acquired phase encoding

lines diminishes the Signal to Noise Ratio (SNR) by a factor of
√
R and the g-factor in the

reconstructed data. Hence, the quality of the reconstructions will be degraded by the

noise enhancement for higher acceleration factors R. To summarize, there is a tradeoff

between the acceleration of data acquisition and the quality of the reconstructed image.

The SNR degradation is one of the main reasons, why acceleration factors of merely of 2

or 3 are so far applied in clinical routines, even when many coils are available.

3.5. Regularization

In order to obtain unfolded images, in general parallel MRI methods are dealing with

inverse problems, which can be ill-conditioned due to noise or coil configurations, in

the form:

Ax = y (3.5.1)

Here A represents either the coil sensitivity matrix (C) in methods such as SENSE and

SMASH or the matrix S in AUTO-SMASH and GRAPPA. The vector x is the unaliased

desired data and y represents the aliased data. A common approach for finding an

approximate solution to this problem is the minimization of the residual L2-norm given

by:

x min ‖Ax− y‖2 (3.5.2)

this approach is known as least-squares solution [43]. However, the presence of small

perturbation at the matrix A produces large perturbation at the output due to the ill-

conditioning of the system [44]. Because of this, it is necessary to compute a regularized
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solution in which the effect of such noise is filtered out. The classical regularization

method developed independently by Phillips [45] and Tikhonov [46] (usually referred as

Tikhonov regularization) has the form:

min
x

{
‖Ax− y‖2 + λ2 ‖L(x− x0)‖2

}
(3.5.3)

λ is a positive constant chosen to control the amount of regularization and it is known

as regularization parameter. The matrix L(x− x0) is used to constrain the solution with

information given by the vector x0, which may be an a priori estimation about x. In many

cases when the prior information is not available, L is chosen as the identity matrix I

in order to give preference to solutions with smaller norms and therefore the reduction

of noise in the solution. The regularized solution of the vector x formally proposed by

Phillips [45] is given by the expression:

x = (AHA+ λ2LHL)−1AHy (3.5.4)

The regularization parameter λ provides a trade-off between the fidelity to the measure-

ments and noise sensitivity. In this formulation, larger values of λ lead to higher weight-

ing of the regularization term and therefore noise suppression in the reconstructed data.

Nevertheless, this also results in larger residual norms and aliasing artifacts may ap-

pear in the solution [47]. On the other hand, the solution will be dominated by the

contributions from the noisy data if too little regularization is imposed. The main idea

is that a regularized solution with a small residual norm is not too far from the desired

solution. In addition for L 6= I, Hansen et al. [48] demonstrated that excessive regular-

ization may introduce filtering on the solution. In Figure 3.5.1, with L = I, three SENSE

reconstructions using different amount of regularization, are shown.

Low regularization Mild regularization Strong regularization

Figure 3.5.1.: Three SENSE reconstructions of accelerated data factor 2: with low (left),
mild (middle) and with a stronger regularization (right) are shown. Here
the noise enhancement effect produce by different regularization param-
eter values is observed. Higher regularization values may lead to blurring
and aliasing artifacts in the reconstructed data, while the noise dominates
reconstructions using small amount of regularization.
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There are a variety of parameter-choice strategies. For example, the discrepancy prin-

ciple method [49] chooses the regularization parameter such that the residual norm for

the regularized solution satisfies [48]:

‖Axreg − b‖ = ‖e‖

This method is based on a good estimate for the norm of the perturbation of the right-

hand side (‖e‖ ) . Methods such as the L-curve criterion [50], generalized cross-validation

[51], and the quasi-optimality criterion [49] do not require the estimation of ‖e‖, but

instead seek to extract the necessary information from the given right-hand side.

All these strategies allow finding the optimal regularization parameter to avoid artifacts

in the resulting image.

3.6. Summary

Parallel Magnetic Resonance Imaging techniques significantly reduce the acquisition

time by undersampling k-space, which leads to aliased images. Dedicated techniques

such SENSE and SMASH recover the missing data relying on explicit knowledge of

spatial coil sensitivity profiles. Other reconstruction methods as AUTO-SMASH and

GRAPPA require a fully sampled part of k-space for calibration.

In clinical routines today, both SENSE and GRAPPA algorithms are used to recover the

missing data and to remove the aliasing artifacts from the images. The main drawback

of these techniques is the reduction of the SNR caused by the reduction of acquired data

and its g-factor, which degrade the reconstructed data [52].
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Chapter 4.

Basics of Dynamic Parallel Imaging

Dynamic Magnetic Resonance Imaging (dMRI) refers to the acquisition of a series of im-

ages in order to monitor the object’s changes over time. The same imaging sequence

with same parameters is repeated several times in order to capture the dynamics of the

object. To be of diagnostic value, images should have a certain spatial and temporal

resolution enough to detect smooth changes in the object. Some acquisition strate-

gies, such as ECG-gated CINE [53] take advantage of the periodicity of cardiac cycle

in patients by collecting only a fraction of the data (also called a segment) during one

heartbeat. Multiple heartbeats are necessary to obtain the final image. It allows the

reduction of motion artifacts with high temporal resolutions. Problems using this tech-

nique arise when the periodicity of the cardiac cycles is affected by cardiac diseases or

when patients can not hold their breath over multiple heartbeats.

A major challenge for MRI is real time imaging, which requires a frame rate of 25 im-

ages/s. Important applications include the monitoring of swallowing process, speech

movements, catheter guidance, and cardiac arrhythmias among others. To properly

visualize these processes, fast acquisition sequences combined with parallel imaging

reconstruction techniques can be used, allowing considerable improvement of tempo-

ral resolution. However, there is usually a compromise between temporal and spatial

resolutions in real time imaging, and typically spatial resolution is sacrificed to achieve

higher temporal resolutions. Moreover, as described earlier, the need of low resolution

reference lines to estimate coil sensitivities for pMRI increases slightly the scanning time

limiting the spatio-temporal resolution of the images.

For accelerated dynamic data, the reconstructions can be performed frame by frame

using any of the pMRI reconstruction methods described in the last chapter. On the

other hand there exist reconstruction methods specifically for dynamic data, which use

the time domain as an additional dimension where the signal can be separated. In the

UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension (UNFOLD)

[12] technique, a temporal interleaved undersampling scheme and filtering processes

contribute to separate the temporal spectra generated by the acceleration of the dynamic

data. An interleaved undersampling scheme has been exploited also by auto-calibrating

methods: TSENSE [13] and TGRAPPA [14]. Additionally, reconstruction methods as
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kt-BLAST/kt-SENSE [15], kt-GRAPPA [54], PEAK-GRAPPA [55] and kt-PCA [16] take

advantage of spatio-temporal correlations in the dynamic data. For reconstructions,

they use prior knowledge of the dynamics of the object obtained by a series of low

resolution images also called training data.

4.1. Sampling Patterns for Dynamic Imaging

In 2-D dynamic imaging, the representation of the data is extended to a third dimension

[56] (x, y, t) as depicted in Figure 4.1.1a. The raw data are acquired in k-space at different

time points t and their k-t representation describes the arrangement in which the data

points are collected at each time frame, as shown by the sampling patterns in Figure

4.1.1b and c. Since the data along the read-out direction (kx ) are fully sampled, this

dimension is omitted from now on.

Fully sampled data

t

x

y

y

t

y

f

Undersampled data R=4

Sampling
pattern

PSF

y

f

t

ky

t

x

y

ky

Sampling
pattern

PSF

y

f

t

t

x

y
y

f

y

f

(a)

(b) (c)

Figure 4.1.1.: Representation of fully sampled data of: (a) temporal images (left), data
along the white line (middle), this representation is also called M-mode,
and the y-f representation of the data (right). (b) The representation of the
sampling pattern and the Point Spread Function of accelerated data factor
4 without shifting along time and (c) with shifting of one phase encoding
line over the time.
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According to the properties of the Fourier transform, discrete regular sampling in k t-

space leads to periodic replication in the reciprocal space y-f . Here, f is the Fourier-

domain of the discrete variable t, known as temporal frequency. The distribution of

these replicas is dictated by the point spread function (PSF), which is the inverse Fourier

transform of the sampling pattern, exemplified in the Figure 4.1.1b and c. The spatial

acceleration of the k-space shortens the distance between replicas in y direction, see

Figure 4.1.1b. Additionally, from the Fourier shift theorem, the shift of the sampling

pattern in ky with time generates alternation of the PSF in f direction leading to a shift

of the replicas (Figure 4.1.1c).

The concept of this interleaved acquisition scheme has been exploited first by UNFOLD

[12] and then by other reconstruction methods presented in the following sections.

4.2. Temporal SENSE (TSENSE)

The TSENSE reconstruction method proposed by Kellman et.al [13] combines UNFOLD

[12] and SENSE concepts in order to either improve the suppression of aliased com-

ponents, when the data are not static enough to separate their spectra, or to achieve

higher acceleration factors. Additionally, the interleaved phase encoded acquisition,

first proposed by Koestler et al. [57], allows the estimation of coil sensitivities from the

accelerated data without a separate calibration acquisition. Considering the equation

2.4.2, the k-space sampling and its Fourier transform pair can be represented by:

s(kx, ky, t) = S(kx, ky, t)× d(kx, ky)
FFT→ ρ̂(x, y, t) = C(x, y) · ρ(x, y, t)⊗D(x, y) (4.2.1)

where d(kx, ky) and D(x, y) are the sampling function in k-space and image domain

respectively. The discretization leads to the periodic ρ̂(x, y, t) function with a period of

l 2π
∆k as demonstrated previously in Chapter 2. The reduction of phase encoding lines by

a factor of R causes aliased images and a shift in phase encoding direction over the time

(interleaved sampling pattern) is exploited by TSENSE as in UNFOLD. This interleaved

sampling represents an encoding process in the time domain, separating the temporal

spectrum of each aliased pixel in the image domain, as shown in Figure 4.2.1.

In matrix form the aliased time series of images can be represented by:

ρ̃1(x, y, t)
...

ρ̃nc
(x, y, t)

=


C1(x, y ± nFOVR ) . . . C1(x, y ± nFOVR )

...
. . .

...

Cnc
(x, y ± nFOVR ) · · · Cnc

(x, y ± nFOVR )

×


ρ(x, y ± nFOVR , t)
...

ρ(x, y ± nFOVR , t)(−1)t


(4.2.2)
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Figure 4.2.1.: Encoding over time of a series of images by a shifting in phase encod-
ing direction (interleaved sampling pattern). The shift (L) in the sampling
pattern corresponds to a linear phase shift in its Point Spread Function
(PSF) according to the Fourier shift theorem. For R = 2, it results in a
change of sign in the aliased components in image domain (∓P1). The
spectrum at each aliased pixel contains information about the dynamics
of the desired pixel (P 0) around the temporal frequency 0 (or Direct Com-
ponent, DC) and information of the dynamics of the aliased component
(P 1) around the Nyquist frequency.

where n = 0, 1, ...R − 2, nc means the number of coils and the term (−1)t represents the

alternating sign factor due to the interleaved sampling. In this reconstruction method,

the desired unaliased images are produced by the SENSE formulation:

−→ρ SENSE = (ĈHψ−1ĈH)−1ĈHψ−1−→ρ̃ (4.2.3)

The original TSENSE uses the results of these reconstructions as a first pass recon-

struction taking advantage of the spatial encoding. As a second step, a low-pass tempo-

ral filtering (UNFOLD) is performed in order to filter the residual aliased components on

the SENSE reconstructions, which might be produced by the imperfections of the coil

sensitivities estimation. The TSENSE reconstruction process is shown in Figure 4.2.2.
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Figure 4.2.2.: Conventional TSENSE. An interleaved acquisition scheme allows the es-
timation of the coil sensitivities from the temporal integration of the ac-
celerated data without need of additional scanning. These estimated coil
sensitivities are used in SENSE reconstructions at each temporal frame.
Afterwards the residual aliased components (indicated by the white arrow
on the SENSE reconstructed image) that might be present after applying
conventional SENSE reconstructions over time are reduced by the appli-
cation of an UNFOLD filter.
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The temporal integration of data will result in full spatial reference images used for

the estimation of coil sensitivities performing the auto calibration of the reconstruction

method, as illustrated Figure 4.2.2. More recent implementations of TSENSE take ad-

vantage of the higher number of coils nowadays available. These results in less residual

artifacts after the SENSE reconstruction and therefore the low-pass filtering may not be

necessary.

The big advantage of the TSENSE over SENSE is the auto-calibration, which allows

to obtain coil maps with a high spatial resolution and avoids residual artifacts due to

motion.

4.3. Temporal GRAPPA (TGRAPPA)

Analogous to TSENSE, temporal GRAPPA (TGRAPPA) is an auto-calibrating method.

Proposed by Breuer et.al [14], TGRAPPA performs the reconstructions using the UN-

FOLD acquisition scheme. Temporal GRAPPA (TGRAPPA) reconstructs the time series

of images frame by frame using sliding block implementation GRAPPA reconstructions.

The ACS full resolution reference data are estimated integrating at least R adjacent time

frames in k-space as illustrated in Figure 4.3.1. The ACS lines estimated in this way

will contain the information about the changes in coil position over the time due to

patient motion. It has been demonstrated that TGRAPPA reconstruction using ∼ 3 · R
adjacent frames for calibration is more robust in the presence of undesired motion (e.g.

respiratory motion) [14] and further applications for free-breathing imaging.
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Figure 4.3.1.: TGRAPPA: temporal integration of undersampled data set in interleaved
fashion is carried out to estimate the full resolution ACS data. In the
presence of motion artifacts, it is recommended to integrate 3R adjacent
frames for calibration.

TGRAPPA as well as TSENSE, using the combination of the interleaved acquisition

scheme for calibration, avoid the acquisition of extra k-space central lines and fur-

thermore the limitation in spatial resolution in conventional GRAPPA. Furthermore, no

low pass filtering is performed in this reconstruction method.

4.4. kt-SENSE

In dynamic images, there are regions within the FOV that exhibit motion and regions

which remain almost static over the time. As a consequence there is a certain amount of

spatial and temporal redundancy in dynamic data. These data correlations are exploited

by kt-BLAST/kt-SENSE [15] in order to remove the temporal aliasing. Spatio-temporal

correlations are learnt using prior information provided by a training data set acquired

additionally to the accelerated data, as Figure 4.4.1 depicts. kt-SENSE utilizes not

only spatio-temporal correlations but also spatial coil sensitivity variations in order to

separate the aliased signals. kt-BLAST is the particular case of kt-SENSE with one
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receiver coil.
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Figure 4.4.1.: In the Figure is illustrated a: (a) fully sampled dynamic data set and (b) a
typical sampling scheme based on and suitable for auto-calibration.

Furthermore both kt-BLAST/kt-SENSE control the aliasing artifact in the frequency

domain by shifting the sampling pattern along the time in order to minimize the over-

lapping areas of high intensity as described above.

From now on, we consider the data in the (x, y, f ) domain where f denotes the temporal

frequency. R-fold subsampling in a temporally shifted fashion results in aliasing in

which R locations of the true object data (ρ) in the (x, y, f ) domain are mapped into a

single pixel in the aliased data (ρalias) as illustrated by Figure 4.4.1.

The kt-SENSE method calculates the vector (ρ) of unaliased signals using a regularized

solution:

ρ = (Cψ−1CH + λ(M2)−1)−1CHψ−1ρalias (4.4.1)

Hereby, M2is the covariance matrix of the prior information from the aliased voxels,

C is the sensitivity encoding matrix, ψ the noise covariance matrix of the receiver coil
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array and λ is the regularization parameter that determines the degree of regularization.

Typically M2 is a diagonal matrix with the diagonal entries m1 to mR along the diagonal,

see Figure 4.4.1b.

The information contained in the matrix (M2) should be as close as possible to that of

the true object (ρ) and an accurate estimation of the coil sensitivities (C) will be required

in order to obtain reasonable results.

On the one hand, kt-SENSE enables high acceleration rates of the data and its recon-

structions exhibit high SNR [58]. On the other hand, the need for the acquisition of extra

training lines restricts acceleration of the process. Additionally, the limited resolution

of the training data may lead to temporal filtering (i.e. temporal blurring). The amount

of temporal filtering can be controlled varying the parameter λ in equation 4.4.1.

4.5. Summary

The acquisition and reconstruction of a dynamic image series has been a big challenge

for MRI. Dedicated methods like TSENSE, TGRAPPA, kt-SENSE and many more address

this problem using sampling methods and numerical techniques that allow higher ac-

celeration factors and good quality data reconstructions. A limitation of some of these

methods is the need for extra training information, which also reduces the effective

acceleration factor, in order to perform the reconstruction. Additionally, the training

information should exhibit high accuracy.
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Chapter 5.

Temporal Filtering Effects in
Dynamic Parallel MRI

To overcome some of the limitations of dynamic MR image acquisition mentioned in

the introduction, new reconstruction strategies have been proposed in the early 2000’s.

Among them are auto-calibrating pMRI techniques for dynamic images, which have the

principal goal of reducing the scan time without sacrificing spatial resolution. Addition-

ally preserving the temporal resolution of accelerated measurements, auto-calibrating

reconstruction techniques employ the undersampled data itself to produce images with

full spatial resolution and to avoid extra acquisitions of reference images. The TGRAPPA

[14] method, for example, averages at least R undersampled temporal frames in order

to estimate reconstruction weights required for the calculation of missing data. This

auto-calibrating method does not introduce temporal filtering during the reconstruc-

tion process. However, the SNR of reconstructed images may not be optimal at higher

acceleration factors.

Other dedicated methods such as TSENSE [13], kt-SENSE [15] or SENSE-UNFOLD [59],

which utilize coil sensitivity maps explicitly for data reconstruction, can potentially also

be auto-calibrating techniques. Interleaved acquisition schemes along the temporal

axis yield full resolution images when performing a temporal integration of aliased data.

These reference images can be used to estimate coil sensitivity maps. The temporal

average image (also called direct current (DC)) represents the constant component of

dynamic data and it is localized at zero frequency in a x − f representation (see previ-

ous chapter). However, it was demonstrated for Cartesian sampling [60, 61, 62] that

the DC calculated in this way may contain additional aliased components. This may

lead to signal loss in temporal frequency spectra of reconstructed images [63, 64] and

consequently temporal filtering effects in the reconstructed data.

With recent advances in gradient hardware and sequence design, radial sampling for

dynamic imaging has become a renewed area of research [65, 22]. Radial sampling

fills the k-space with radial spokes as described in Chapter 2. Images obtained from

undersampled radial data exhibit streaking artifacts which look like texture patterns

and keep the object visible even at high acceleration factors. This is a major difference
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to undersampled Cartesian images, where coherent aliasing artifacts appear. Although

radial trajectories have many favorable intrinsic properties with respect to the demands

of dynamic MRI [66], in this section we focus on the distribution of its aliasing artifacts

that will be useful for our purpose.

It is demonstrated that in contrast to Cartesian imaging, temporal filtering effects are

not significantly present in auto-calibrated reconstructions of radial undersampled data

due to the incoherent nature of aliasing artifacts. The origin of the temporal filtering

effect as well as its reduction by applying a GRAPPA filter to DC images are described in

the following paragraphs.

5.1. Theory

5.1.1. Temporal Filtering Effect

The temporal integration of interleaved Cartesian undersampled data generates a fully

sampled image as described in the last chapter. In auto-calibrating methods, this aver-

aged image is used to estimate coil sensitivity maps or a regularization parameter map.

From here on, the temporal average of the Cartesian undersampled data will be repre-

sented by the variable DCund,cart. In general, the temporal average of a series of images

corresponds to the signal at temporal frequency equal to zero (f = 0). The temporal av-

erage calculated using fully sampled acquisitions (DCtrue) differs from DCund,cart. This

is demonstrated in the following paragraphs.

The interleaved acquisition of a series of images in frequency domain expressed in terms

of its point spread function (PSF) can be written as:

ρund,cart(x, y, f) = PSF (x, y, f)⊗ ρtrue(x, y, f) (5.1.1)

where the PSF is the Fourier transform of the encoding function (PSF) E(kx, ky, t):

PSF (x, y, f) = FFT (E(kx, ky, t))

Cartesian interleaved undersampling ρund is therefore given by:

ρund,cart(x, y, f) =

R−1∑
n=0

ρtrue(x, y − n
FOV

R
, f − n · fmax

R
) (5.1.2)

Hereby fmax is the highest temporal frequency sampled. Since the DC term is the com-

ponent at zero temporal frequency, DCund,cart can be calculated by:

DCund,cart(x, y) =

R−1∑
n=0

ρtrue(x, y − n
FOV

R
, −n · fmax

R
)

From this equation, it can be seen that DCund,cart is the superposition of the temporal

average of fully sampled data (DCtrue = ρtrue(x, y, 0)) and signals from different spatial

and tempocal locations.

DCundcart
(x, y) = DCtrue +

R−1∑
n=1

ρtrue(x, y − n
FOV

R
, −n · fmax

R
) (5.1.3)
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The sum to the right over 1 ≤ n ≤ R − 1 is related to aliasing artifacts. Equation 5.1.3

demonstrates that the temporal average of Cartesian undersampled data contains un-

desirable components from aliased terms as illustrated in Figure 5.1.1. Hence, the use

of DCund,cart to calculate coil sensitivity maps leads to errors in the auto-calibrating

kt-SENSE reconstruction process which may cause temporal filtering in reconstructed

images. Since errors are present in the coil sensitivity matrix, the calculation of its

pseudo-inverse in the kt-SENSE algorithm misestimates the reconstructed vector at the

temporal frequencies n · fmax

R with n = 0, 1, . . . , R − 1. Therefore the auto-calibrating kt-

SENSE algorithm is not able to recover the signal at these temporal frequency points.

Figure 5.1.1 shows the signal nulls produced at the aliased components in the spec-

trum of reconstructed data. The specific form of the aliasing artifacts depends on the

sampling scheme.
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data
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DCund
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f
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Figure 5.1.1.: The DCund (highlighted in yellow on the spectrum of the accelerated data)
of an interleaved undersampled data set might contain undesirable com-
ponents caused by the aliased terms (highlighted in blue) from copies of
the spectra (highlighted in red). Using the DCund in the kt-SENSE pro-
cess might result in inaccuracies in the estimation of coil sensitivities and
consequently null-signals in the reconstructions (indicated by the yellow
arrows in the spectrum of the reconstructed data).

5.1.2. Reducing Temporal Filtering Effect

Temporal filtering effects can be reduced if a more accurate estimation of the temporal
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average of the true object (DCtrue) is employed. Since the GRAPPA method can be seen

as a spatial convolution filter in image domain [39], performing a GRAPPA reconstruc-

tion on the DCund,cart term may be able to attenuate the inherent aliasing artifacts [60].

In addition, it has been demonstrated that the insignificant temporal filtering introduced

by TGRAPPA makes it suitable for the estimation of the DCtrue term. The application of

GRAPPA weights to the DCund,cart term is equivalent to performing a TGRAPPA recon-

struction and then integrating over the reconstructed frames to estimate DCtrue with a

lower computational cost. According to Blaimer et al. [60], the use of a GRAPPA fil-

ter over the DCund,cart signal reduces or even eliminates the effects of the right hand

sum term in equation 5.1.3, resulting in a better estimation of DCtrue. In other words,

the signal nulls on the temporal frequency spectra can be avoided using the filtered

temporal average (DCund,cart−filt) to estimate more accurate coil sensitivity maps.

A different way to avoid temporal filtering effects in the reconstructed images is to use

sampling patterns with incoherent undersampling artifacts. While equidistant Carte-

sian undersampling patterns lead to coherent interference and the probability to super-

position is high, some non-Cartesian trajectories provide incoherent aliasing artifacts

decreasing this probability. In the next sections, radial trajectories are investigated in

order to demonstrate that the incoherence of their aliased components allows the cal-

culation of a more accurate DCtrue estimation term by averaging an interleaved radial

acquisition (DCund,rad).

Analogous to the Cartesian interleaved sampling, to cover the complete k-space when

combined into a single image, an interleaved acquisition scheme can be implemented

for radial data. Here all projections are rotated by a constant angle for the acquisition

of the subsequent frames as illustrated in Figure 5.1.2.

Time

Radial interleaved
sampling pattern

Cartesian interleaved
sampling pattern

Figure 5.1.2.: Radial and Cartesial interleaved sampling scheme.

The PSF of radial sampling consists of a central peak surrounded by an artifact-free

circular region and streaking artifacts outside this region. The diameter of the artifact

free region is proportional to the number of radial views included in the reconstruction

48



CHAPTER 5. TEMPORAL FILTERING EFFECTS IN DYNAMIC PARALLEL MRI

(see Figure 5.1.3). In image domain, streaking patterns appear at a respective distance

from the individual points. Because of the incoherence of the aliased components, the

hypothesis is that temporal filtering effects are not significantly present in accelerated

dynamic parallel MRI experiments using radial sampling patterns.

a) b)

Figure 5.1.3.: Point spread function (PSF) of: a fully sampled radial trajectory (a) and a
reduced number of projections (b).

5.1.3. kt-SENSE for non-Cartesian Data

The kt-SENSE reconstruction algorithm for undersampled Cartesian data was described

in the last chapter and is given by equation 4.4.1. In general, for arbitrary subsampled

trajectories, the kt-SENSE image reconstruction is performed by solving:

D(Eψ−1EH + λ(M2)−1)ρ = DEHψ−1ρalias (5.1.4)

Hereby, E represents the linear combination of coil sensitivity functions and gradient

encoding and D (also called preconditioning matrix) corresponds to density correction

[67]. Solving this equation for ρ by calculating the inverse of the left hand term would

require immense amounts memory and computation time due to the large sizes of the

matrices and vectors involved. However, a solution can also be obtained using the

iterative conjugate gradient method [68], which is used by the kt-SENSE algorithm and

that reconstructs missing points for arbitrary trajectories [67] as described in Figure

5.1.4.
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k-t y-f

y-f k-t

Multiply by noise covariance

Density correction

Regularization term

FFT along temporal dimension

Fourier transform to image domain (    )

Separately for each channel:
1. Convolve with gridding kerne
2. Resample on Cartesian grid
3. FFT to image domain(k-t    y-f)
4. Multiply by complex conjugate

coil sensitivity and summed all channels
5. Multiply by density correction matrix

Fourier transform to k-t domain (   )

1. Multiply with D
2. Inverse FFT to k-t domain(y-f    k-t)
3. Convolution with gridding kernel
4. Resample along non-standanrd trajectory

If converged

Figure 5.1.4.: kt-SENSE method for non-Cartesian trajectories using a CG algorithm.
The first step is to form the right hand side term of equation 5.1.4. The
multiplication with EH corresponds to gridding the data from each chan-
nel onto the points of a Cartesian grid, followed by the Fourier transform
(FFT). The resulting images are individually multiplied by complex con-
jugate coil sensitivity and linearly combined. For each iteration step, a
search image vector is multiplied by the matrix (Eψ−1EH + λ(M2)−1). The
conjugate gradient is used to iteratively update the search and solution
vectors. This process continues until convergence. Scheme adapted from
[67].

The basic idea of the preconditioning matrices is to reduce the number of iterations, but

it is not necessary. Optionally, an intensity correction can also be added to this equation

as preconditioning term (here omitted). For lower regularization parameters λ, Cartesian

and non-Cartesian kt-SENSE reconstructions can be compared. For comparison of both

reconstructed data, in this chapter just small values of λ are used.

5.2. Methods

5.2.1. Simulations

Simulations were performed using a synthetic dynamic data set designed to simulate

cardiac motion, shown in Figure 5.2.1. A fully sampled radial (192 projections per frame)
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and a fully sampled Cartesian data set with a base resolution of 192 were generated.

Random noise was added to these images. Both data sets were accelerated by a factor of

R = 4 in an interleaved scheme. The undersampled data sets were reconstructed using

kt-SENSE algorithms for Cartesian [15] and radial [69] trajectories with estimated coil

sensitivities obtained by the temporal integration of the undersampled data, DCund,cart
and DCund,rad respectively. All the simulations and reconstructions were carried out

using the MATLAB (Mathworks, Natick, MA, USA) programming environment.

Simulated
Images M-mode

x

y

t

y

t

Figure 5.2.1.: The simulated data set with a matrix size of 192 × 192 pixels and 32 time
frames. The data set was multiplied by coil sensitivitiy maps obtained by
Biot-Savart calculations. The M-mode along the indicated white line is
displayed.

For comparison, reconstructions were performed with coil sensitivity maps obtained by

the GRAPPA filtered temporal average as described in [60]. The spectra of the reference

and the reconstructed data for both sampling schemes were compared. Their spectra

were analyzed by detecting the presence of null components and the temporal blurring

in the y − t representation of the reconstructed data.

5.2.2. In-vivo Measurements

In addition, retrospective gated cardiac CINE TrueFISP experiments were performed on

a 1.5 T clinical scanner (Siemens Medical Solution, Erlangen, Germany). All experi-

ments were conducted on healthy volunteers. Written informed consent was obtained

before the imaging session.

The parameters of the fully sampled Cartesian CINE TrueFISP experiment were: TE =

1.4 ms, TR = 2.8 ms, flip angle = 50°, 32 phases per cardiac cycle and a matrix size

of 192 x 192, Field of View (FOV ) of 350 x 263 mm2, temporal resolution of 50 ms

per segment and 12 receiver channels. Fully sampled radial data were also simulated

with 192 projections per frame. Both Cartesian and radial data were restrospectively

undersampled using the interleaved R = 4 scheme. The undersampled data sets were

reconstructed with kt-SENSE for Cartesian and radial trajectories employing DCund,cart
and DCund,rad, respectively, to calculate the sensitivity maps. After reconstruction, the

spectra of the reference and the undersampled data sets were compared.
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Additionally, an accelerated Cartesian CINE data set with interleaved sampling scheme

was acquired with: acceleration factor 4, TE = 1.4 ms, TR = 2.8 ms, flip angle = 50°, a

matrix size of 192 x 168, FOV of 350 x 263 mm2, 16 phases per cycle and 12 receiver

channels. This data set was reconstructed with kt-SENSE using coil sensitivity profiles

calculated with the DCund,cart and the filtered DCund,cart−filt.

A radial CINE TrueFISP experiment was conducted with the following parameters: TE=

1.7 ms, TR=3.4 ms, 192 projections with 192 read out points, FOV of 350 x 263 mm2,

12 receiver channels. Subsequently, the data were undersampled by a factor of 4. The

undersampled data were reconstructed with kt-SENSE for non-Cartesian trajectories

using coil sensitivity maps calculated from DCund,rad.

5.3. Results

5.3.1. Simulations

Figure 5.3.1 shows the comparison of both DC terms from simulated interleaved Carte-

sian and radial undersampled data. Errors in DCund,cart coming from the aliased com-

ponents are evident in the difference images and were highlighted with arrows.

E
rr

o
r 

X
2

0

DCund, rad DCund, cart

Figure 5.3.1.: DC images calculated by Cartesian (DCund,cart) and radial (DCund,rad) in-
terleaved undersampled data. The difference images highlight the errors
produced by the coherent aliasing in the Cartesian undersampled data.

In general, temporal average terms (DC) represent the static signal of dynamic data.

Accordingly, DC images usually appear blurred at dynamic regions. It has been demon-

strated that the difference between DCtrue term of the true object and DCund terms

from interleaved undersampled data reveals errors as shown in Figure 5.3.1. Aliasing

artifacts in DCund,rad have noise-like appearance while they are coherent in DCund,cart.

Furthermore, errors are present in auto-calibrating Cartesian and radial kt-SENSE re-
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constructions as a consequence of inconsistencies in the coil sensitivity maps (see Fig-

ure 5.3.2).

Cartesian
kt-SENSE

Radial
kt-SENSE Reference

M-modeReconstructions

Spectra

y

t

y

f

Cartesian
kt-SENSE

Radial
kt-SENSE

Reference
Cartesian
kt-SENSE

Radial
kt-SENSE

Figure 5.3.2.: Sample frame and deviations from the reference of auto-calibrating kt-
SENSE reconstructions using Cartesian and radial data. Additionally the
M-mode and the spectra of the data sets are displayed.

However, temporal filtering effects are only evident in Cartesian reconstructions. The

artifacts in the reconstructed data are also visible in the M-mode graphics (pointed

out by arrows). On the contrary, signal nulls and temporal filtering effects seem to be

negligible in reconstructed radial data.

5.3.2. In-vivo Measurements

5.3.2.1. Full Resolution Cartesian In-vivo data

The DC terms from retrospectively undersampled in-vivo data sets were calculated and

employed in the reconstruction of the Cartesian and radial data. The errors in DCund,cart

with respect to the reference are not perceivable to the eye in this example and therefore

not shown.
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However, auto-calibrating kt-SENSE reconstructions reveal temporal filtering and signal

nulls caused by the DCund,cart used for the calculation of the coil sensitivities [60], as

illustrated in Figure 5.3.3. In contrast, auto-calibrating kt-SENSE reconstructions of

undersampled radial data lead to randomly distributed noise-like artifacts and signals

at all temporal frequencies were mostly recovered [70].

Cartesian
kt-SENSE

Radial
kt-SENSE

Reference

M-mode
Reconstructions

Spectra

Reference

y

t

y

f

Cartesian
kt-SENSE

Radial
kt-SENSE

Cartesian
kt-SENSE

Radial
kt-SENSE

Figure 5.3.3.: Auto-calibrating kt-SENSE reconstructions for Cartesian and radial un-
dersampled data (R = 4) with coil sensitivity maps estimated by DCund,cart
and DCund,rad respectively. The arrow in the difference image is point-
ing out temporal filtering caused by the use of DCund,cart in the auto-
calibrating algorithm. Aliased components in DCund,cart images lead to
the temporal blurring enclosed within the yellow oval at M-mode graph-
ics. Furthermore, signal nulls in the sprectrum of the auto-calibrating
kt-SENSE for Cartesian data are marked with small arrows.

5.3.2.2. Effect of Spatial Filter

The accelerated Cartesian in-vivo data set was reconstructed utilizing the auto-calibrating

kt-SENSE algorithm. Coil sensitivities for the auto-calibration were estimated with the

temporal integration of the undersampled data set (DCund,cart) and the filtered temporal

average employing GRAPPA weights (DCund,cart−filt). The difference between both terms

is shown in Figure 5.3.4. In this example, artifacts at static regions in the image are
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stronger than the errors of dynamic components.
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Figure 5.3.4.: DC terms obtained by the temporal integration of the temporal interleaved
undersampled data with (DCund,cart−filt) and without (DCund,cart) spatial
filter.

Although the aliased components artifacts cannot be detected in visual inspection in

the unfiltered DCund,cart terms, the blurring in the reconstructed images is evident in

the M-mode image. Additionally, signal nulls indicate the presence of higher temporal

filtering in the reconstructions using the unfiltered DCund,cart. Figure 5.3.5 illustrates

this phenomena.
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Figure 5.3.5.: One frame of auto-calibrating kt-SENSE reconstructions using a non-
filtered and a filtered DC component. Blurring and signal nulls can be
observed in the reconstructions using the non-filtered DC term.

Furthermore, the reconstructions employing unfiltered DCund,cart present strong arti-

facts due to aliased components, marked with the arrows in difference images.

5.3.2.3. Radial In-vivo data

A fully sampled radial in-vivo data set was retrospectively undersampled by a factor of

4 in a temporal interleaved fashion. Its DC image was compared to the DC of the full

resolution data (DCtrue), as depicted in Figure 5.3.6. Apparently, the DCund,rad does not

present significant artifacts caused by the aliased components.
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Figure 5.3.6.: DC’s of the in-vivo fully radial acquired data and the temporal interleved
undersampled data set. The difference between both terms is also shown
below the images.

Errors in the difference image have noise-like character. Consequently, the absence of

signal nulls and the insignificant temporal filtering in the reconstructed radial images

shown in Figure 5.3.7 stand out.
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Figure 5.3.7.: A sample frame of auto-calibrating kt-SENSE reconstructions of radial
data. Additionally the M-mode and the spectra of the reference and re-
constructed data are provided.

In this example, there is no evidence of temporal filtering effects in either the spectra or

the M-mode signal of the reconstructed data.

5.4. Discussion and Conclusion

In this chapter, it has been demonstrated that the temporal average of undersampled

dynamic data is affected by aliasing artifacts. Consequently, coil sensitivity maps esti-
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mated from these data exhibit errors. Using these coil sensitivities in auto-calibrating

methods may cause signal cancellation in the reconstructed data. In Cartesian auto-

calibrating kt-SENSE reconstructions due to an inaccurate inversion of the coil sensi-

tivity matrix, signals at certain temporal frequencies may not be recovered. This lack

of temporal frequency components may lead to temporal blurring in the reconstructed

images.

In this work, auto-calibrating kt-SENSE reconstructions, where the required coil-sensiti-

vity information is obtained from the temporal average of the undersampled data itself,

were performed. The temporal average of undersampled simulated data exhibits alias-

ing artifacts, that are easily detected. It should be stated, however, that similar artifacts

could not be observed in some in-vivo experiments. This can be explained by the sharp-

ness of edges in simulated images, which were not present in in-vivo images where the

transitions between the structures in the object are smoother. Nonetheless, signal nulls

in reconstructed images are presented in both in-vivo and simulated experiments using

DCund,cart for the calculation of coil sensitivity maps.

In order to improve the SNR of reconstructed data, some reconstruction techniques

based on the original kt-SENSE algorithm subtract the temporal average of the under-

sampled data. The subtraction of the temporal average calculated of the undersampled

data leads to a loss of some temporal frequencies in reconstructed images, which can

not be recovered as demonstrated in Blaimer et al. [60].

In all these cases, reconstructions with moderate acceleration factor show loss of signal

at few temporal frequencies and therefore moderate temporal filtering. However, the

main challenge may arise in the case of higher acceleration factors due to the lack of

multiple temporal frequency signals. It could be a severe problem for quantification or

segmentation of clinical cardiac images.

To reduce aliasing artifacts in the DC image, a spatial GRAPPA filter can be applied, as

proposed in [60]. The main purpose of filtering DCund,cart is to obtain a closer approxi-

mation of DCtrue by partially removing the aliasing components from DCund,cart images.

This simple additional step allows the recovery of all temporal frequencies in kt-SENSE

reconstructed images.

Another possibility to prevent temporal filtering effects is to use acquisition strategies

with less severe aliasing artifacts. This has been shown here for radial sampling, where

aliasing artifacts in the DC have incoherent characteristics. Consequently, no signifi-

cant temporal filtering could be observed in auto-calibrating kt-SENSE reconstructions

of radial data. The same behavior is expected for other non-Cartesian acquisition strate-

gies (e.g. spiral, rosette, among others).

Here, simulated and in-vivo data were employed to demonstrate the incoherence of the

aliasing artifacts in DC images of interleaved undersampled radial data. As it can be

observed in Figures 5.3.1 and 5.3.6, the aliasing artifacts of the DC of undersampled

radial data (DCund,rad) have noise-like appearance. This leads to a closer approximation

of DCtrue and therefore more accurate coil sensitivity maps. The use of DCund,rad in the

auto-calibrating process of kt-SENSE does not seem to introduce signal cancellation at
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any temporal frequency.

It was proved that in order to reduce temporal filtering in the reconstructed data using

auto-calibrating kt-SENSE, a radial acquisition strategy can be employed. Due to the

incoherence of its aliasing artifacts superposition in the temporal average of the under-

sampled data is negligible and consequently the estimation of coil sensitivity maps more

accurate.

60



6
Chapter 6.

Auto-calibrating kt-SENSE

To accelerate dynamic imaging, data are often only partially acquired. To obtain aliasing-

free images with diagnostic value, different reconstruction methods have been developed

that use a wide range of different mechanism. Typically, a temporal image series ex-

hibits considerable spatial and temporal correlations between frames. This property is

used by various reconstruction techniques in order to successfully recover the missing

information.

In dynamic imaging, auto-calibrating reconstruction techniques, such as TSENSE [13],

Auto-SENSE [57], TGRAPPA [14], require time-interleaved acquisition schemes [71].

These schemes have the advantage, that a full FOV reference image with full resolution

can be obtained by temporal integration of the subsampled data. In some cases, the

reference image is utilized to extract coil sensitivity information if the coil configuration

experiences only insignificant changes during the acquisition.

Reconstruction methods such as kt-SENSE [15] exploit not only coil sensitivity varia-

tions but also spatio-temporal correlations in order to separate the aliased signals. A

priori information about spatio-temporal correlations is obtained from a training data

set, which consists of several central k-space lines acquired in a separate scan prior

to or embedded in between the subsampled data acquisition as discussed in Chapter

4. A separated training data scan may lead to misregistration due to patient motion or

may have different contrast, for example due to administration of contrast agent. An

acquisition of training data embedded into the actual scan can for example be achieved

by using a variable-density (VD) acquisition scheme [10]. Any of those cases leads to

an increased total acquisition time. Furthermore, the quality of training data influences

the resulting reconstructed images [72]. It has been demonstrated that training data

of limited spatial resolution may cause undesired temporal filtering effects [72]. As de-

scribed by Vitanis et. al. [73, 74], parallel imaging can be used to increase the spatial

resolution of training data. However, the achievable acceleration is still restricted by the

time required to obtain extra training lines.

In this work an auto-calibration approach for kt-SENSE is proposed [75]. Our approach

is based on feedback regularization [17]. To obtain the training data necessary for kt-

SENSE, a TSENSE [13] reconstruction is applied to subsampled data. The resulting
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training data set has full spatial and temporal resolution. Notice that there is no need

for acquisition of extra training lines in addition to the undersampled scan. In this

auto-calibration method, the training data are obtained from the undersampled data

set itself.

Images reconstructed with the proposed method are compared to conventional kt-SENSE

reconstructions. Temporal filtering effects are quantified by Modulation Transfer Func-

tions (MTFs) [64]. Additionally, noise characteristics are investigated by means of Monte-

Carlo simulations. It can be shown, that the temporal fidelity of auto-calibrating kt-

SENSE reconstructions is improved when compared to standard kt-SENSE reconstruc-

tions.

6.1. Theory

6.1.1. Auto-calibrating kt-SENSE

In auto-calibrating kt-SENSE, reference images with high spatio-temporal resolution

are generated to be used as training data for kt-SENSE reconstructions. To avoid com-

promising acquisition time, these reference images are estimated directly from the sub-

sampled data set itself.

Auto-calibrating kt-SENSE consists of three stages (see Figure 6.1.1):

1. Calculation of the coil sensitivities using the filtered temporal average of

undersampled data.

2. Training data estimation using TSENSE.

3. Final reconstructions with conventional kt-SENSE.

1. 2. 3.

Undersampled
data

Temporal
average

(DC)

GRAPPA
filter

Coil maps
estimation

TSENSE
(training data)

kt-SENSE

Final
Recons

Figure 6.1.1.: Auto-calibrating kt-SENSE reconstruction process in three steps: 1. Coil
maps are estimated. 2. TSENSE is used to generate the training data. 3.
Conventional kt- SENSE is applied to get the final images.

1. Calculation of the coil sensitivities using a rectified temporal average

A temporally interleaved sampling pattern allows the generation of a fully sampled im-
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age by the integrating the subsampled data over the time. The resulting image is the

temporal average known as direct current component (DC). The DC image contains the

stationary information of the dynamic image series and it is located at zero temporal

frequency. Stationary objects in the image contribute only to the DC term. The DC

obtained from the subsampled data (DCund) and the DC obtained from fully sampled

data (DCtrue) are different because non-stationary components lead to aliasing artifacts

[60] as mentioned in the previous chapter. To estimate an aliasing-free DC image, a

GRAPPA filter is applied to the DCund signal [60]. Subsequently, coil sensitivity maps

are extracted from the filtered image.

2. Training data estimation using TSENSE

The coil sensitivity maps from step 1 are used for TSENSE [13] reconstructions of the

subsampled data set. The resulting images are used as training data for the kt-SENSE

reconstruction. In contrast to training data used in conventional kt-SENSE, these im-

ages have full spatial and temporal resolution.

3. Final images with conventional kt-SENSE

The coil sensitivity maps calculated in step 1 and the training data from the step 2 are

used to obtain the final kt-SENSE reconstructions, as described in Chapter 4.

6.2. Methods

6.2.1. Evaluation: Modulation Transfer Function (MTF) and Noise
Amplification

The performance of conventional and auto-calibrating kt-SENSE are evaluated using

the modulation transfer function (MTF) [64]. For dynamic MRI applications, the MTF

describes the relation between the true signal Mtrue and the reconstructed signal Mrecon

at a given temporal frequency f :

MTF (f) =
Mrecon(f)

Mtrue(f)

It therefore is a quantitative measure for temporal filtering effects caused by the recon-

struction algorithms. In general, the true object and the reconstructed image are related

by:

ρ̂ = Hρ+ η̂ (6.2.1)

where ρ̂ is the reconstructed data expressed in (kx, ky, f) domain, ρ the truth data in

same domain, H represents the combined data acquisition and reconstruction process

and η̂ is noise present in the data. Now, consider a pixel of the reconstructed image:

ρ̂i = Hiiρii +
∑
j 6=i

Hijρj + η̂i (6.2.2)

where Hii are the coefficients of the MTF and the off-diagonal terms Hij represent resid-
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ual aliasing. The relation H between the true signal (M true) and the reconstructed signal

(Mrecon) is unknown in equation 6.2.1. In order to calculate the MTF of the reconstruc-

tion method, a perturbation approach is used as proposed in reference [64]. To that

end, several perturbations (Pp) are added to the true signal (ρ), resulting in disturbed

data ρp. The resulting disturbed signal or “new” true signal is then subsampled and re-

constructed to yield the final signal (ρ̂p). The reconstructed signal (ρ̂p) are plotted versus

the values of disturbed data (ρp) at each temporal frequency. This process is repeated

with different linearly increasing perturbations. As illustrated in Figure 6.2.1, the slope

of the fit to these points (ρp,ρ̂p) represents the MTF. A perfect reconstruction will have a

slope of 1, meaning that no temporal filtering is present in the reconstructed data, i.e.

Mrecon(f) = Mtrue(f). Slopes smaller than 1 correspond to temporal filtering, because

the signal at this temporal frequency is suppressed by the reconstruction.
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Figure 6.2.1.: This Figure illustrates the MTF calculation process based on the perturba-
tion approach. The relation between reconstructed (ρ̂p ) and disturbed (ρp)
points at each temporal frequency is linear and the slope of the graphic
represents the MTF at each temporal frequency point.

In addition to temporal filtering effects, the noise level introduced by both reconstruc-

tion methods was evaluated using Monte-Carlo simulations. To that end, the acquired

data were replaced by complex Gaussian random numbers. The data set was subsam-

pled and reconstructed using parameters from the actual reconstruction. This process

was repeated n-fold for different noise data and its variance was calculated. The ratio

64



CHAPTER 6. AUTO-CALIBRATING KT-SENSE

between the variances of these reconstructions ρ̂R and the reconstructions of the fully

sampled data ρ̂1 gives the noise amplification of the reconstructed data:

N(ky, f) =

√∑
kx
var{ρ̂R(kx, ky, f)}∑

kx
var{ρ̂1(kx, ky, f)}

(6.2.3)

The 2-D MTF’s were calculated for conventional and auto-calibrating kt-SENSE as de-

scribed in reference [64]. Because the MTF’s exhibit only small variations along this

dimension, the ky-direction was averaged before displaying the data. Additionally, the

noise amplification of the reconstructions was compared.

6.2.2. Simulations

Image reconstructions of both simulated and in-vivo data were performed off-line using

the MATLAB (Mathworks, Natick, MA, USA) programming environment.

The numerical model shown in Figure 6.2.2 was used to obtain simulated data. The

simulated data with a matrix size of 100 × 100 were multiplied by coil sensitivity maps

obtained by Biot-Savart calculations. Complex Gaussian noise was added to each chan-

nel and the noisy simulated data were retrospectively subsampled by a factor of R = 5

shifting the sampling pattern by one phase encoding line for subsequent frames. Re-

constructions were performed using auto-calibrating and conventional kt-SENSE. Low

resolution (21 central k-space lines) and full resolution images were chosen as train-

ing data sets for conventional kt-SENSE. For cardiac applications, the recommended

amount of reference training data lines is at least 10 for sufficient reconstruction qual-

ity without compromising the temporal resolution of the acquired data [72]. The used

number of 21 k-space central lines is relatively high for conventional kt-SENSE. How-

ever, the goal is to demonstrate that using training data with a resolution lower than

the base resolution of the acquired data may introduce temporal filtering.

Simulated data M-mode Sampling
Pattern

ky

t
t

y
t

y

x

Figure 6.2.2.: Numerical model, provided by Malik S. (King’s College London, United
Kingdom), used for producing synthetic images. The temporal evolution
of the points along the dashed line are shown in the middel. This repre-
sentation is also known as M-mode. On the right hand side, the sampling
pattern (R = 5) is shown.
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6.2.3. In-vivo Measuremets

In-vivo data of healthy volunteers were acquired on a 1.5T whole body scanner (Siemens

Medical Solutions, Erlangen, Germany). All subjects gave informed consent according

to the institutional policy. The data were provided by Peter Kellman (National Institutes

of Health, Bethesda US).

In order to demonstrate the feasibility of the auto-calibration approach for kt-SENSE,

32 time frames of in-vivo prospectively gated segmented cardiac CINE experiments were

acquired with a 32 channel receiver array using a bSSFP sequence with parameters:

TE = 1.4 ms, TR = 2.8 ms, flip angle = 50°, a matrix size of 192 x 150 and a Field

of View (FOV ) of 350 x 263 mm2. The data were retrospectively subsampled to an

acceleration factor of 5 using the same sampling pattern that was previously used in the

simulations. Both conventional and auto-calibrating kt-SENSE reconstructions were

performed. Conventional kt-SENSE reconstructions were carried out using training

data sets with low (21 central k-space lines) and full resolution.

Both, simulated and in-vivo data were reconstructed using conventional and auto-

calibrating kt-SENSE with three values of the regularization parameter λ (see equation

4.4.1), in order to investigate the temporal filtering connected to different levels of regu-

larization.

In addition, real time free-breathing data were acquired with a 8 channel receiver array

using a bSSFP sequence with parameters: acceleration factor 4 with a Cartesian inter-

leaved sampling scheme, TE = 1.3 ms ,TR = 2.7 ms, flip angle = 50°, 32 time frames, a

matrix size of 92 x 192 and FOV of 350 x 263 mm2. No additional training data was

obtained. A second data set was acquired with a 32 channel receiver coil and 8-fold

acceleration. Due to the lack of training data, only auto-calibrating kt-SENSE could be

applied in order to reconstruct these data sets. For comparison, TSENSE reconstruc-

tions were applied in both cases.

All reconstructions were performed off-line using the MATLAB (Mathworks, Natick, MA,

USA) programming environment.

6.3. Results

6.3.1. Simulations

The MTF’s of auto-calibrating and conventional kt-SENSE reconstructions of synthetic

data (R = 5) with three different degrees of regularization are shown in Figure 6.3.1.

Mild, medium and strong regularization degrees were combined with training data of low

and full resolution as well as full resolution training data obtained via auto-calibration.

Different degrees of temporal filtering in the reconstructed kt-SENSE images can be

observed. The red curve in Figure 6.3.1 depicts the MTF of auto-calibrating kt-SENSE,

the blue and discontinuous black curves represent the MTF of conventional kt-SENSE

using training data with low and full resolution respectively.
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Figure 6.3.1.: MTF’s of conventional kt-SENSE reconstructions of simulated data (R =
5) using full resolution training data (dashed black line), low resolution
training data (blue line) and MTF’s of auto-calibrating kt-SENSE recon-
structions (red line) with mild, medium and strong regularization values.

Confirming the hypothesis of this work, the MTF’s of conventional kt-SENSE with low

resolution training data show more attenuation at frequencies outside the DC term,

implying higher filtering even for small values of the regularization parameter. Note
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that the auto-calibrating kt-SENSE reconstructions show a similar behavior in terms

of temporal filtering as conventional kt-SENSE with full resolution training data. A

representative frame reconstructed with auto-calibrating and conventional kt-SENSE

using a mild regularization are shown to illustrate the blurring effect corresponding

to temporal filtering (see Figure 6.3.2a). The arrows in Figure 6.3.2a point to blurring

produced by conventional kt-SENSE due to the low spatial resolution of the training data

in regions of motion with high frequencies. Figure 6.3.2b shows the noise amplification

for each reconstruction method.
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Figure 6.3.2.: Representative reconstructed frame and noise measurements choosing a
mild regularization parameter. (a) Exemplary image of R = 5 subsam-
pled data with moderate noise level reconstructed with: conventional kt-
SENSE employing low resolution (first column), full resolution training
data (second column) and auto-calibrating kt-SENSE (third column). (b)
Errors with respect to the reference data are depicted below. The respec-
tive noise measurements.
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Compared to conventional kt-SENSE with full resolution training data, auto-calibrating

kt-SENSE reconstructions have a reduced SNR. Noise amplification in the reconstructed

images increases when adding higher noise levels to the simulated data, as demon-

strated in Figure 6.3.3.
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Figure 6.3.3.: Exemplary frame of reconstructions of accelerated data (R = 5) with higher
noise level. Shown are results from conventional kt-SENSE reconstructed
data using low resolution (left column), full resolution training data (mid-
dle) and auto-calibrating kt-SENSE (right column). The error with respect
to the reference are depicted below.

It has been demonstrated in [72] that the quality of training data in the kt-SENSE

method influences the final reconstructions. This can also be observed in the auto-

calibrating kt-SENSE reconstructions, where the SNR is affected by noise amplification

in the training data caused by the TSENSE reconstruction.

6.3.2. In-vivo Measurements

Breath hold CINE Experiment

Accelerated in-vivo data were reconstructed with auto-calibrating and conventional kt-

SENSE using different amount of regularization. In Figure 6.3.4, MTF’s of auto-calibrating

and conventional kt-SENSE reconstructions are depicted using mild, medium and strong

regularization. Again, reconstructions employing conventional kt-SENSE with low res-

olution training data yield the highest temporal filtering (i.e. strongest attenuation of

higher temporal frequencies). The MTF’s of in-vivo data exhibit similar behavior as the

MTF’s of simulated data.
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Figure 6.3.4.: Reconstructions of accelerated in-vivo data (R = 5) using conventional kt-
SENSE with full resolution (dashed black line), low resolution (blue line)
training data and using auto-calibrating kt-SENSE (red line). In each
case, three different lambda values were employed.

In Figure 6.3.5a, reconstructed images with auto-calibrating and conventional kt-SENSE

using a mild regularization are displayed. In these reconstructions, the spatial blurring

is more evident, which can also be observed in the M-mode plot (yellow oval). The
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arrow points out the artifacts in the difference image produced by the use of low res-

olution training data in conventional kt-SENSE. The myocardium appears sharper in

auto-calibrating kt-SENSE and full resolution conventional kt-SENSE reconstructions.
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Figure 6.3.5.: (a) Representative reconstructed frame of undersampled data (R=5) using
mild regularization with conventional kt-SENSE employing low resolu-
tion (left column), full resolution training data (middle) and using auto-
calibrating kt-SENSE (right column). (b) Errors with respect to the ref-
erence data are shown below each reconstruction. The M-mode plotted
along the white line in image domain is also illustrated. Noise measure-
ments for each reconstruction.

Noise measurements of both conventional and auto-calibrating kt-SENSE reconstruc-

tions were calculated and are illustrated in Figure 6.3.5b. Auto-calibrating kt-SENSE

reconstruction algorithm exhibit a lower SNR in the final images when compared to

conventional kt-SENSE, very similar to the behavior observed in the simulations.

Free Breathing Experiments

In order to validate auto-calibrating kt-SENSE, in-vivo free breathing experiments are

presented. Auto-calibrating kt-SENSE and TSENSE reconstructions of free-breathing

accelerated (R = 4 and R = 8) data are shown in Figure 6.3.6 and 6.3.7 respectively.

Auto-calibrating kt-SENSE reconstructions exhibit improvement SNR when compared
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to TSENSE images. In contrast to kt-SENSE, a TSENSE reconstruction does not intro-

duce temporal filtering. Comparing the M-mode of both TSENSE and auto-calibrating

kt-SENSE reconstructions reveals the high temporal fidelity and the lack of visible tem-

poral filtering using the auto-calibrating approach. Due to the lack of training data, no

conventional kt-SENSE reconstruction could not be carried out.
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Figure 6.3.6.: In-vivo free-breathing experiments (acceleration factor R = 4) without ac-
quisition of training lines. Two frames from different stages of the cardiac
cycle are presented, reconstructed with TSENSE and auto-calibrating kt-
SENSE. Additionally, the M-mode is plotted along the white line.
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Figure 6.3.7.: In-vivo experiments (acceleration factor R = 8) without acquisition of train-
ing data. Two exemplary frames from different stages of the cardiac cy-
cle are shown, reconstructed with both TSENSE and auto-calibrating kt-
SENSE. The M-mode is also displayed.

6.4. Discussion and Conclusions

For kt-SENSE reconstructions, the training data set plays an important role since it

is used for the estimation of missing data. Motion artifacts or any other inconsistency

between subsampled and training data lead to deviations of reconstructed data from the

optimal solution. Besides consistency of the data, the spatial and temporal resolution

of the training data influences the quality in kt-SENSE reconstructions. Using training

data with a higher spatial resolution avoids strong temporal filtering effects.

Here, we presented an auto-calibration approach for kt-SENSE based on feedback reg-

ularization. The training data are obtained from the accelerated data itself by an addi-

tional TSENSE reconstruction prior to the final kt-SENSE reconstruction. The sensitiv-

ity maps required for a TSENSE reconstruction can be obtained by temporal integration

of the undersampled data. To remove aliasing artifacts and to prevent possible temporal

filtering effects, a GRAPPA filter is applied to the temporal average as discussed in the

previous chapter. The auto-calibrating process produces training data with full spatial

resolution and therefore minimizes the temporal filtering that affects the reconstructed

images. Auto-calibrating kt-SENSE does not require a separate training data acqui-

sition, which leads to a higher achievable temporal resolution and an overall reduced

acquisition time.

An auto-calibration approach using a TGRAPPA instead of TSENSE to obtain the train-

ing data and coil sensitivity maps for the kt-SENSE was proposed in a previous work
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[76]. However, reconstructions using TGRAPPA exhibit in lower SNR and affect the noise

level of the final kt-SENSE images.

The spatial resolution of the training data used in kt-SENSE has an important impact

on the quality of the reconstructed images. By employing MTF functions, the auto-

calibrating approach was shown to have the same temporal accuracy as conventional

kt-SENSE with a full resolution training data set. Compared to conventional kt-SENSE

using low resolution training data (e.g. 21 or less training lines), the auto-calibration

approach leads to reduced blurring within reconstructed images.

However, the noise level in auto-calibrating kt-SENSE is higher than in the conventional

approach. This can be explained by the noise amplification (g-factor) in the TSENSE re-

constructed images that are used as training data. The higher noise level in the training

data is then transferred to the final reconstructed images. The higher noise level was not

a problem in the cardiac cine experiments shown here, but might become problematic

at very high acceleration factors. However, it should be noted that the effective accel-

eration factor is higher than in conventional kt-SENSE because no additional training

data have to be acquired.

In general, auto-calibrating kt-SENSE provides reconstructions of high accuracy for dy-

namic imaging applications. Temporal filtering effects are minimized because a training

data set with full spatial and temporal resolution is obtained from the subsampled data

itself. Since the acquisition of the training data is not necessary in order to perform

the reconstruction, the acquisition time will be further reduced. Additionally, the auto-

calibrating method is less sensitive to object motion [13] and inconsistencies in data.
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Chapter 7.

Optimizing MR Relaxometry using
kt-PCA

The interest in quantitative MRI (qMRI) has increased over the last decade due to its

ability to detect changes in tissue in a quantitative way. This allows for example, the

early detection and diagnostic of brain alterations [77]. Specifically, changes of spin-

lattice (T1), spin-spin (T2) relaxation times as well as spin density may be an indicator for

the presence of lesions or diseases in the brain. Quantification of relaxation parameters

(i.e. MR relaxometry) in clinical practice demands high accuracy and reproducibility

since they are used for detecting and monitoring diverse diseases, for example multiple

sclerosis [78] and Alzheimer’s disease [79].

Conventionally, the estimation of MR parameters requires a series of images acquired

with different contrasts. In combination with the pauses in between scans that are re-

quired for the full recovery of the magnetization, this leads to long acquisition times.

In practice, the long scan times required for quantitative MR parameter mapping im-

ages restrict its clinical application. New acquisition techniques for MR relaxometry

images have been developed in order to shorten acquisition times. Several recent ad-

vances in MR sequence design allow the mapping of either just one relaxation parameter

[80, 81, 82] or several parameters mapping T1, T2 and spin density simultaneously in

clinically acceptable time [83, 84, 85]. One example is the Inversion Recovery TrueFISP

(IR TrueFISP) sequence [85], that allows the simultaneous extraction of T1, T2 and rela-

tive spin density from a single 2-D experiment in one slice. An advantage of this method

is automatically registered and perfectly aligned parameter maps.

Additionally, parallel MRI techniques promise a shortened acquisition process as de-

scribed in the last chapters. Methods such as TSENSE [13], TGRAPPA [14] and kt-

SENSE [15] that are routinely used for the reconstruction of dynamic cardiac data, rely

on manipulating the artifacts in the temporal frequency domain in order to obtain a

maximal separation between the spectra. This mechanism often fails for the recon-

struction of undersampled MR relaxometry studies since the images exhibit values at

all temporal frequencies and the real and the aliased components cannot be separated.

75



CHAPTER 7. OPTIMIZING MR RELAXOMETRY USING KT-PCA

The recent introduction of kt-PCA [16] for the reconstruction of cardiac images, where

the data are expressed in different basis functions based on Principal Component Anal-

ysis (PCA), provides a new approach for separating the aliasing artifacts in a different

domain. PCA is a mathematical tool that extracts the most important information (based

on their relevance) from a data set. The data are converted into linearly uncorrelated

variables called principal components (PC). The first and most important principal com-

ponent has the largest corresponding eigenvalue. The eigenvalues of all succeeding

components are lower and less relevant for the representation of the data. The number

of principal components needed for an accurate representation of the data can be equal

or less than the number of original variables. The smallest components mostly only

carry noise or other artifacts inherent to the data. Since relaxometry images typically

exhibit a temporal exponential behavior and hence can be described with only few pa-

rameters, kt-PCA seems to be good a candidate for reconstruction. Using a relatively

low number of principal components may simplify the reconstruction and provide more

accurate results.

So far, kt-PCA has been presented for reconstruction of dynamic cardiac data [16].

Here, we propose the application of kt-PCA for accelerated MR relaxometry images [86].

We expect relaxometry images to be highly sparse in the PC domain. The representa-

tion of these data with fewer parameters may constrain the reconstruction and lead to

improved results. Furthermore, the high degree of redundancy in MR relaxometry data

can be advantageous for kt-PCA in order to significantly reduced the required amount of

training data. In the following work, parameter MR mapping is investigated exclusively

in two dimensions. However, this principle can be easily extended to 3-D imaging.

7.1. Theory

7.1.1. MR Relaxometry

As described in Chapter 2, after excitation the magnetization vector (
−→
M ) precesses

around the external magnetic field and relaxes back to its thermal equilibrium along

the longitudinal axis. The time constants T1 and T2 are connected to the recovery of the

longitudinal magnetization and the decoherence of transversal magnetization respec-

tively. Sequences such as FLASH [24] and TrueFISP [87] allow the quantification of T1

or T1 and T2 simultaneously. Here, IR-Snapshot FLASH [88] and IR TrueFISP[85] are

utilized for measuring T1, T2 and spin density (M0) maps in a single acquisition.

7.1.1.1. Segmented IR-Snapshot FLASH

IR-Snapshot FLASH [82] is used for fast acquisition of quantitative T1 and M0 maps. A

rf pulse with a flip angle of 180◦ inverts the magnetization vector from its position +M0 to

−M0 on the z-axis. Subsequently, the magnetization recovers towards its thermal equi-

librium with the time constant T1. During this recovery, IR Snapshot FLASH acquires

a set of images at different time points using a train of excitation pulses with small flip

angles. This leads to a modified value M∗0<M0 for the steady state magnetization.
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Because of the fast recovery of the longitudinal relaxation, the k-space of each image

needs to be divided into segments in order to obtain the desired temporal resolution as

depicted in Figure 7.1.1. After a single inversion, only part of the k-space of each image

is acquired and so the experiment has to be repeated multiple times to obtain fully

sampled data. Before a new segment is acquired, a delay of about 5-10 s is inserted

for complete relaxation of the longitudinal magnetization. As the signal evolution is

influenced by the FLASH pulses, a time constant T ∗1 < T1 is obtained. Accordingly,

relaxation of the magnetization vector for this sequence can be expressed as:

M(t) = M∗0 · [1− INV · exp(− t

T ∗1
)] (7.1.1)

where INV and the effective relaxation time T ∗1 are given by:

INV = 1 +
M0

M∗0
(7.1.2)

1

T ∗1
=

1

T1
− 1

TR
· ln(cosα) (7.1.3)

with a very small flip angle α. The saturation value M∗0 can be calculated using:

M∗0 = M0 ·
1− exp(TRT1

)

1− exp(TRT∗1
)

(7.1.4)

For very short repetition times (TR) (TR � T ∗1 ), this can be approximated using a Taylor

series, leading to:

M∗0 = M0 ·
T ∗1
T1

(7.1.5)

Finally, the parameters T1 and M0 can be obtained by fitting the data to the parameters

INV , T ∗1 and M∗0 of equation 7.1.1:

T1 = T ∗1 (INV − 1) (7.1.6)

M0 = M∗0 (
T1

T ∗1
) (7.1.7)

Here, knowledge of the flip angle is not necessary to successfully fit the data. However,

flip angles values higher than 10◦ produce larger deviations in the results, according to

equation 7.1.3.
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Figure 7.1.1.: The scheme shows the relaxation curves across two segments using a IR-
Snapshot FLASH sequence. The time period between both segments rep-
resents the delay needed for a fully relaxation of the magnetization vector.
Note: this signal evolution is also valid for the IR TrueFISP sequence.

7.1.1.2. Segmented IR TrueFISP

T1, T2 and M0 parameters can be estimated simultaneously utilizing a IR TrueFISP se-

quence. Following a 180◦ inversion pulse, the standard TrueFISP sequence [89] is ap-

plied for the acquisition of images. Typically, a TrueFISP sequence consists of consecu-

tive excitation pulses with flip angles alternating between α and −α. To avoid an intense

signal fluctuation at the beginning of the sequence producing image artifacts, a prepa-

ration pulse with a flip angle of α
2 precedes the TrueFISP sequence. The IR-TrueFISP

signal evolution is analogous to the IR-Snapshot FLASH in Figure 7.1.1.

It has been demonstrated that the parameters T1, T2 and M0 can be calculated from the

apparent relaxation times (T ∗1 , M∗0 and INV ) obtained from a single IR TrueFISP signal

evolution [85]. Analogous to IR-Snapshot FLASH, the signal evolution in IR TrueFISP

imaging can be described in good approximation by a three parameter mono-exponential

function:

M(t) = M∗0 · [1− INV · exp(− t

T ∗1
)] (7.1.8)

The values of M0, INV and T ∗1 can be estimated by a three parameter fit. T1 and T2

maps are related to INV , T ∗1 and M∗0 by:

INV = 1 +
M0

M∗0
= 1 +

sin α
2

sinα

[(
T1

T2
+ 1

)
− cosα

(
T1

T2
− 1

)]
(7.1.9)
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From here, T1 and T2 can directly be calculated:

T1 = T ∗1 · cos
(α

2

)
· (INV − 1) (7.1.10)

T2 = T ∗1 · sin2
(α

2

)
·

(
1−

cos
(
α
2

)
INV − 1

)−1

(7.1.11)

and finally the relative spin density (M0) can be expressed by:

M0 = M∗0 ·
(INV − 1)

sin α
2

(7.1.12)

In contrast to IR-FLASH, in this approach the flip angle α has to be known.

7.1.2. Data Reconstruction with kt-PCA

Mathematically, a Principal Component Analysis (see appendix A) of a matrix is a sim-

ple basis transform. Hereby, a basis is chosen that exposes useful signal correlations

and noise in the data. In dynamic MR applications, PCA can be used to reconstruct

images of highly accelerated data. kt-PCA combines PCA and the kt-BLAST/SENSE

reconstruction process in order to generalize these approaches [16].

The PCA decomposition of the true data ρtrue in y-f domain is given by:

ρtrue = XpcB. (7.1.13)

Hereby, Xpc and B contain the principal components of the true data. Xpc represents

a set of temporally invariant basis vectors (y-pc) and B spatially invariant temporal fre-

quency profiles (f-pc).

Accordingly, the training data set can be decomposed into two matrices (ρtrain = XtrainB),

see Figure 7.1.2. Each voxel of the data can be calculated explicitly by:

ρtrain(y, fm) =

npc∑
i=1

Xtrain(y, i)B(i, fm) ≡ xtrain(y)b(fm) (7.1.14)

where the columns of Xtrain and rows of B contain the principal components of the

training data derived by PCA and npc is the minimum number of principal components

with which the data can accurately be represented. The rows of B contain the spatially

invariant PC’s basis functions to build every temporal frequency profile present in the

training data. The columns of Xtrain are the temporal invariant weighting coefficients.
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Figure 7.1.2.: Difference between the kt-BLAST and the kt-PCA reconstructions. In kt-
PCA, the spatially invariant principal components B and the temporal in-
variant weighting coefficients Xtrain are extracted from the training data,
which are used to construct the encoding matrix E and covariance matrix
Mx respectively.

Now consider the undersampled data. Depending on the sampling pattern, the aliased

voxels at a certain location (y, fm) is the superposition of R-voxels from the true data:

ρalias(y, fm) =

R−1∑
j=0

ρtrue(yj , fmj
) (7.1.15)

Using PCA, an aliased voxel at position (y, fm) can also be represented as:

ρalias(y, fm) =

R−1∑
j=0

npc∑
i=1

Xpc(yj , i)B(i, fmj
) = 1xy Bm (7.1.16)

where 1 =
[

1 1 · · · 1
]
, xy is given by:

xy =


xT (y0)

xT (y1)
...

xT (yR−1)


and Bm by:

Bm =


bT (fm0

) 0 0 0

0 bT (fm1
) 0 0

0 0
. . . 0

0 0 0 bT (fmR−1
)


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b(fmj
) and x(yj) correspond to the row and the column of B and Xpc of the j’th aliased

voxel respectively. The subscript T indicates the matrix transpose. The temporal fre-

quency profiles Bm are derived from the matrix of the training data B.

Since, the coefficient matrix Xpc is temporally invariant, there is an expression similar

to equation 7.1.16 for each temporal frequency. Thus, the system of equations to be

solved is given by:

ρalias, y =


ρalias(y, f1)

ρalias(y, f2)
...

ρalias(y, fnf
)

 =


1B1

1B2

...

1Bnf

xy. (7.1.17)

The signal encoding equation for all temporal frequencies at spatial position y can be

expressed as:

ρalias y =


1B1

1B2

...

1Bnf

xy ≡ E · xy
Analogous to equation 4.4.1,the reconstruction of the data is given by:

xy = M2
XE

Hpinv(EM2
XE

H)ρalias (7.1.18)

with MX as the covariance of the matrix constructed with the rows of Xtrain (M2
X =

diag(|xtrain y|2)). Solving equation 7.1.18 for all positions y, all columns of the matrix Xpc

of the true object are determined and ρtrue = XpcB is calculated.

For multi-coil data, the corresponding coefficients C of the sensitivity profiles are in-

cluded in equation 7.1.15:

ρalias(y, fm) = C


ρtrue(y1, fm1

)

ρtrue(y2, fm2
)

...

ρtrue(yj , fmj
)

 = CBmxy

When fewer principal components are needed to accurately characterize the data, the re-

construction problem becomes more constrained. This corresponds to a reduced degree

of freedom in the reconstruction and may lead to an improved removal of noise and ar-

tifacts. The number of principal components (PC’s) used in the kt-PCA reconstructions

will be reduced according to their significant eigenvalues.

Since the relaxation is characterized by only three parameters (M0, M∗0 , T ∗1 ) , strong

compressibility for high acceleration factors is expected.

7.2. Methods

The general goal of this thesis is to develop the optimization of acquisition strategies

for dynamic data that allow reduced scan times without sacrificing image quality. In
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this chapter, the reconstruction of undersampled MR relaxometry data employing kt-

PCA is investigated. As PCA is a tool which extracts the most relevant information

from data sets and allows their representation with fewer parameters, our hypothesis is

that the redundancy of dynamic data in the new domain can be exploited. In order to

demonstrate the feasibility of using a reduced amount of training data for reconstruction

of relaxometry data with kt-PCA, simulated and in-vivo data are utilized.

7.2.1. Simulations

Synthetic MR relaxometry data were generated using IR-Snapshot FLASH and IR True-

FISP sequences from the object illustrated in Figure 7.2.1b. The brain model with matrix

size of 192×192 pixels and slice thickness of 1 mm was taken from BIC (Mc-Connell Brain

Imaging Center) data [90, 91]. Standard IR-Snapshot FLASH and IR TrueFISP data were

simulated in MATLAB based on the Bloch equations [92]. To simulate dynamic cardiac

data, a numerical model provided by Malik S. (King’s College London, United Kingdom)

with matrix size of 192× 192 pixels was used (see Figure 7.2.1).

IR-Snapshot FLASHIR True-FISP
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Figure 7.2.1.: (a) Simulated cardiac data. M-mode representation and the temporal evo-
lution of a single pixel of simulated dynamic cardiac data. (b) Brain model
and the relaxation curves of one specific image pixel for simulated IR-
Snapshot FLASH and IR TrueFISP experiments.

For both dynamic data sets, 64 time frames for a single homogenous receiver coil were

generated. Figure 7.2.1 shows different representations of the dynamic data along the

temporal axis. M-mode (y-f ) representation as well as the temporal evolution of the am-

plitude of one pixel are illustrated in Figure 7.2.1a. Figure 7.2.1b depicts the relaxation

curves of one pixel generated by simulated IR-Snapshot FLASH and IR TrueFISP brain

measurements. Additionally, fully sampled simulated data sets are shown in on the
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left hand side of Figure 7.2.2 in different domains. The corresponding undersampled

images exhibiting aliasing artifacts are shown to the right.

The simulated data were subsampled in a Cartesian interleaved way with different ac-

celeration factors as depicted in Figure 7.2.3 and then reconstructed using kt-PCA. M0,

T1 and T2 maps were estimated pixel by pixel after obtaining the parameters T ∗1 , M∗0 and

INV from the reconstructed data.
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Figure 7.2.2.: The three simulated dynamic data sets used in this work. (a) Simulated
dynamic cardiac data, their corresponding spectrum and the temporal in-
variant coefficients Xpc (on the right). (b) Simulated brain measurements
using IR TrueFISP, their corresponding spectrum and the temporal in-
variant coefficients Xpc (on the right). (c) Simulated brain measurements
using IR-Snapshot FLASH, their corresponding spectrum and the tempo-
ral invariant coefficients Xpc (on the right). In the box on the right hand
side, the corresponding undersampled data sets and their y-f represen-
tation are shown.

Various parameters affect the reconstruction quality and were investigated in more de-

tail:
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• The degree of undersampling: the simulated data were subsampled in a Cartesian

interleaved way by factors of 2, 4, 6, 8 and 16.

• The resolution of training data: kt-PCA reconstructions of R = 8 accelerated data

were performed using training data of varying resolution (1 to 192 lines) and com-

pared to fully sampled reference data.

• The number of principal components: as illustrated in Figure 7.2.3, kt-PCA recon-

structions of R = 8 accelerated data were performed using one central k-space line

of training data and varying numbers of principal components.

Sampling
pattern

ky

t

Training
data

P
C

f

y

PC

B

Xtrain

Figure 7.2.3.: Sampling pattern used for the simulated and in-vivo data. One central
fully sampled k-space line is used as training data, from which the spa-
tially invariant B matrix and the temporal invariant Xtrain are extracted.

7.2.2. In-vivo Measurements

All in-vivo experiments were performed on a 1.5T whole body scanner (Siemens Medical

Solutions, Erlangen, Germany) using a 12-channel head array for signal reception.

Healthy volunteers were examined after informed written consents. Data were acquired

using IR-Snapshot FLASH (with parameters: TR = 4.8 ms, TE = 2.4 ms, matrix size of

208 × 256, FOV = 241 × 296 mm2, slice thickness = 10 mm, flip angle = 8◦, number of

contrast = 64) and IR TrueFISP (with parameters: TR = 5 ms, TE = 2.5 ms, matrix size

of 208 × 256, FOV = 241 × 296 mm2, slice thickness = 10 mm, flip angle = 50◦, number

of sampled points along the relaxation curve = 64, 45 and 33). Eight k-space segments

were acquired to provide a fully encoded reference. Acquisition times per segment were

4.3 s for 33 temporal frames, 5.8 s for 45 temporal frames and 8.3 s for 64 temporal

frames. Between the acquisition of each individual k-space segment, a 10 s time delay

was inserted to allow full relaxation of the magnetization to its thermal equilibrium.

Thus the overall scan time per slice for fully sampled images was between 1:54 min for

series with 33 temporal frames and 2:24 min for series with 64 temporal frames.

The data were retrospectively subsampled in a Cartesian interleaved way by factors 2,

4, 8 and 16. Reconstructions were performed using kt-PCA. For evaluation, in-vivo data
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were reconstructed using just the central k-space line for training data and compared

to the reference data. Additionally, reconstructions with a varying number of principal

components (1, 2, 3, 4, 5, 6 and 10) and a varying amount of training data (1 to 45

k-space lines) were performed. Furthermore, using IR TrueFISP measurements, the

influence of a varying number of contrasts was investigated.

M0, T1 and T2 maps were estimated pixel by pixel fitting the data to the parameters T ∗1 ,

M∗0 and INV for both IR-Snapshot FLASH and IR TrueFISP acquisitions and for both

reference and kt-PCA reconstructed data.

7.3. Results

7.3.1. Simulations

As shown in Figure 7.2.2, the simulated brain images (in their y-f representation) ex-

hibit signal across all the frequencies because the relaxation effects occur in every single

pixel of the image. This is not the case for simulated dynamic cardiac images (see Fig-

ure 7.2.2c). In dynamic cardiac images, temporal changes occur just at some voxels

within the whole image and many voxels remain relatively static. Using PCA analysis,

MR relaxometry data can experience a strong compression because just a few princi-

pal components contain the whole information (y-pc) and suffice for representing the

original data set ( see Figure 7.2.2a and b).

Influence of Acceleration Factor

It is known that kt-PCA achieves good quality reconstructions of highly accelerated dy-

namic data [93]. Here, we used numerical simulations to demonstrate what degree of

subsampling of relaxometry data is tolerated by the kt-PCA algorithm without leading

to artifacts in reconstructed images. Using 3 PC’s, reconstructions from various data

sets accelerated by factors of 2, 4, 8 and 16 are compared to the reference data (Fig-

ure 7.3.1a). The difference between the reconstruction errors (Root Mean Square Error,

RMSE) of R = 4 and R = 8 undersampled data sets is relatively small. However, recon-

struction errors of R = 16 undersampled data increase dramatically.

Additionally, the relaxation curves of a pixel of reconstructed R = 8 (red) and reference

(blue) data sets are depicted in Figure 7.3.1b. Here, the SNR of the first six frames of

the reconstructions is relatively poor, causing the deviation from the reference.
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Figure 7.3.1.: IR True FISP simulation results. (a) The relative root mean square errors
of reconstructions of R = 2, 4, 8 and 16 accelerated data using 3 PC’s. (b)
Relaxation curves of one pixel from the reconstruction of R = 8 accelerated
data using 3 PC’s (red) and from the reference data (blue). (c) Relaxation
curves of one pixel from the reconstruction of R = 16 accelerated data
using 2 PC’s (red) and reference data (blue).
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Also shown are example images at two time points along the relaxation curve (reference

and reconstructed frames of accelerated data R = 8 using 3 PC’s and R = 16 using 2

PC’s).

Influence of Training Data

The linearly independent temporal profiles in f-pc domain (B) and temporally invariant

basis functions in y-pc domain (Xtrain) are extracted from the training data set in the

kt-PCA algorithm. To determine the optimal number of training lines, it is important

to know if these basis functions undergo changes when varying the amount of train-

ing lines. In Figure 7.3.2, the three most significant PC’s obtained from 1, 2 and 20

training lines are depicted. Apparently, the amount of training lines does not affect the

information carried by the three most significant PC’s. The negligible difference between

the RMSE of reconstructions with 20, 2 and 1 training lines using the first three PC’s,

suggested that accurate reconstructions can be obtained regardless of the amount of

training data.
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Figure 7.3.2.: The first three principal components (PC’s) of: (a) 20 training lines, (b) 2
and (c) 1 training line.

Influence of the Number of Principal Components

As described in appendix A, the eigenvalues extracted from the original data are a mea-
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sure of the amount of information required for characterization. Large magnitudes of

eigenvalues indicate high relevance for accurately representing the original data. For

IR-Snapshot FLASH and IR TrueFISP measurements, the magnitude of the eigenval-

ues decays rapidly compared to the eigenvalues of dynamic data as indicated in Figure

7.3.3. Relaxometry data can be accurately represented by only their 3-4 first PC’s, be-

cause the magnitude of the remaining eigenvalues tends to zero. In contrast, 7-8 PC’s

are required to accurately characterize dynamic cardiac data. Errors of reconstructed

MR relaxometry and dynamic cardiac data sets obtained by using in between 1 and 8

PC’s are also depicted. Ideally, for noiseless data the error approaches zero with the

complete basis (PC’s = 64). Here, we chose the optimal number of principal components

that minimize the error in the reconstruction.

Figure 7.3.3.: The graphic on top illustrates the magnitude of the eigenvalues of both
relaxometry and dynamic data. The errors introduced by reconstructions
of R = 8 accelerated data varying the number of PC’s are shown on the
bottom.

Additionally M0, T1 and T2 maps were estimated from kt-PCA reconstructions of R = 8

accelerated IR TrueFISP measuerments, using just 3 PC’s and one line of training data

(Figure 7.3.4).
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Spin density T1 T2

Reference
X1

Accelerated
X8

Figure 7.3.4.: M0, T1 and T2 for simulated IR TrueFISP measurements. Maps of the fully
sampled data are shown on the top. kt-PCA reconstructions from R = 8
accelerated IR TrueFISP measurements using just 3 PC’s and one line of
training data are shown on the bottom.

It can be observed that the spin density map estimated from the reconstructed data

exhibits a higher deviation from the reference data set in contrast to T1 and T2 maps.

Especially the T1 map is very similar to the reference.

7.3.2. In-vivo Experiments

Influence of Acceleration Factor

Figure 7.3.5a shows the reconstruction error of IR-Snapshot FLASH and IR TrueFISP

data sets using different acceleration factors (from 2 to 16). Only a small increase of the

deviation can be observed up to an acceleration factor of 8, with a considerable increase

for an acceleration factor of 16.

The influence of the number of temporal frames on the reconstruction is shown in Figure

7.3.5b. Using the same temporal resolution, acquisition of one segment takes in between

4.3 s for 33 temporal frames and 8.3 s for 64 temporal frames. A slight decrease of the

RMSE of reconstructed data using a higher number of temporal frames can be observed.

However, the number of frames per temporal series is limited by the acquisition time.
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Figure 7.3.5.: Reconstruction errors for IR TrueFISP and IR-Snapshot FLASH measure-
ments of accelerated data with factors 2, 4, 8 and 16 using one training
line and 3 PC’s (a) and varying the number of frames per temporal series
(b).

Figure 7.3.6 shows the first four time frames of reconstructions from R = 2, 4 and

8 accelerated IR TrueFISP measurements. The SNR degradation in the reconstructed

data is more evident at higher acceleration factors. However, the perturbation in the

relaxation curve is minimal.
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Figure 7.3.6.: Reference and reconstructed frames for acceleration factors of 2, 4 and 8.
The relaxation curves in one particular pixel shown to the right.
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Influence of Training Data

In experimental data as well as in simulations, the number of training lines in kt-PCA

has no significant influence on the reconstructed data. In Figure 7.3.7, the reconstruc-

tion errors for IR TrueFISP and IR-Snapshot FLASH measurements are plotted varying

the amount of training data lines.

R
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Number of training lines

IR TrueFISP data

IR-Snapshot
FLASH data

Figure 7.3.7.: Relative reconstruction errors for IR-Snapshot FLASH and IR TrueFISP
accelerated data with R = 8 using 3 PC’s and varying the amount of train-
ing data lines.

The small increase between reconstruction errors using one and several lines of training

data can be explained by the contribution of additional noisy data that deteriorates the

SNR of reconstructions.

Influence of the Number of Principal Components

The simulations showed that the number of PC’s used for reconstruction is crucial for

optimal results. Figure 7.3.8 shows errors of reconstructions from R = 8 undersampled

IR-Snapshot FLASH and IR-TrueFISP data varying the number of PC’s. A number of 2

PC’s seem to be optimal for the IR-Snapshot FLASH experiments and 3 PC’s for the IR

TrueFISP data.
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Figure 7.3.8.: Relative reconstruction errors for IR-Snapshot FLASH (right) and IR True-
FISP (left) R = 8 accelerated data using one training line and varying the
amount of PC’s.
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Parameter Mapping

Figure 7.3.9 depicts the relaxation of one particular pixel in IR TrueFISP and IR-Snapshot

FLASH reconstructions (red curves) and reference data (blue curves) along the time axis.

In both cases, the reconstructions of R = 8 accelerated data closely follow the temporal

evolution of the reference data. Rapid fluctuations along the relaxation curve present in

the reference data are removed due to the elimination of irrelevant PC’s during recon-

struction.
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Figure 7.3.9.: Relaxation curves of reference (blue) and reconstructed data, from R = 8
accelerated IR-Snapshot FLASH and IR TrueFISP sets (red) using 1 train-
ing line and 2 and 3 PC’s respectively.

In general, IR TrueFISP reconstructions have higher SNR than IR-Snapshot FLASH re-

constructed data. In both cases, the first six temporal frames exhibit larger deviation

from the reference. More specifically, as shown in Figure 7.3.9, the first frame of IR
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TrueFISP reconstructions has the largest error. This does not affect the estimation of

M∗0 and T ∗1 parameters in the fitting process. However, big errors in the first tempo-

ral frame for IR TrueFISP series lead to wrong estimation of INV parameter, which is

directly related to the spin density (M0) map.

The spin density maps (M0) calculated from IR-Snapshot FLASH reconstructed data are

very noisy and the structures of the brain are difficult to distinguish, as depicted Figure

7.3.10. The average of all the pixel values in T1 and M0 maps was underestimated by

15% and 9%, respectively.

Spin Density T1

IR-Snapshot FLASH maps

(a)

(b)

Figure 7.3.10.: Spin density (M0) and T1 maps of IR-Snapshot FLASH data sets: (a)
reference and (b) kt-PCA reconstruction of accelerated data by a factor
of 8 using 2 PC’s and one line of training data.

Maps obtained from the reconstructions of undersampled IR TrueFISP data sets with 64

and 33 temporal frames are shown in Figure 7.3.11a and b respectively. Maps estimated

from reconstructed data sets with 33 temporal frames present significant errors due to

the low SNR. For the data set with 64 temporal frames, the average of all the pixel

values in M0, T1 and T2 maps was underestimated by 9%, overestimated by 5% and

underestimated by 6%, respectively.
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Figure 7.3.11.: Spin density (M0), T1 and T2 maps estimated from IR TrueFISP: (a) refer-
ence data, (b) 64 time frames and (c) 33 time frames of R = 8 accelerated
data using 3 PC’s and one line of training data.

7.4. Discussion and Conclusions

This work opens the possibility to obtain accurate MR parameter maps from highly ac-

celerated acquisitions. The amount of training data needed for the kt-PCA approach

could be reduced to a single k-space line, which leads to a further decrease of acquisi-

tion time. For fully sampled IR-Snapshot FLASH and IR TrueFISP experiments (spatial

resolution = 1.16 mm/pixel), the acquisition time was approximately 2 min. However,

for accelerated acquisitions, the scan time can be significantly reduced, for example to

only 8 s for an 8-fold acceleration. Further optimization for the acquisition of relax-

ometry images is possible using a modified IR TrueFISP that avoids the delay between

segments and allows higher resolution as described in F. Petzschner’s thesis [94].

It has been demonstrated that the number of PC’s chosen for the kt-PCA reconstruction

process is crucial to obtain accurate results. A lower number of principal components

constrains the reconstruction and produces good separation of the overlapped signals.

Since the mono-exponential signal course of relaxometry data can be described by few

parameters, the PCA decomposition was shown to be advantageous for the reconstruc-
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tion. Results of in-vivo experiments and simulations confirmed that the number of PC’s

necessary to accurately describe MR relaxometry data is lower than the number of PC’s

required to represent dynamic cardiac data. In the presented examples, 2 or 3 PC’s were

sufficient to produce optimal reconstructions. In contrast, 10 PC’s are needed for the

accurate representation of cardiac imaging.

Thanks to the high redundancy of MR relaxometry data, the required amount of training

data could be reduced up to only one central k-space line, as shown for both simulated

and in vivo data. The parameter maps extracted from kt-PCA reconstructions show no

significant deviations from the respective references. The acquisition of just one central

line instead of several extra central lines, that are typically required by the kt-PCA

algorithm, could be promising to improve the scan efficiency.

Good results were obtained with the kt-PCA algorithm for acceleration factors up to

R = 8. In the case of higher acceleration factors, we constrained the reconstruction

problem by reducing the number of principal components (PC’s) in order to eliminate

the residual aliasing artifacts. However, the lack of information leads to a miscalculation

of the reconstructed data and therefore temporal filtering.

The main difference between IR TrueFISP and IR-Snapshot FLASH reconstructions lies

in the higher SNR achieved by larger flip angles (50◦) employed in the IR TrueFISP se-

quence. In general, the SNR of reconstructed MR relaxometry data remains constant

regardless of the amount of training data lines. However, the small increment between

the error of reconstructed IR-Snapshot FLASH data using one training line and more

training may be the result of noise amplification, as other than the central k-space line

exhibit more noise. The noise amplification takes place during the inversion of the co-

variance matrix M2
X in equation 7.1.18 and decreases with the number of acquired time

points.

In this chapter, it was shown that the kt-PCA approach may allow a highly efficient

reconstruction of MR relaxometry. Acquisition time can be significantly reduced not

only because of acceleration of the actual data but also due to the reduction of the

required amount of training data. The kt-PCA method is able to provide reconstructions

of MR relaxometry data with the quality required to estimate accurate MR parameter

maps using just one training line.
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Chapter 8.

Summary and Outlook

Since the introduction of the parallel Magnetic Resonance Imaging (pMRI), the primary

goal of many research projects has been and still is a reduction of acquisition time with-

out sacrificing image quality. The complexity of both acquisition and reconstruction is

especially high when only a limited temporal window is available to obtain data, e.g.

for objects with high dynamics. Partial acquisition of the data reduces scan times and

allows to capture even rapid motions. The challenge for dynamic pMRI techniques in

particular is to accurately reconstruct artifact-free images from accelerated measure-

ments without compromising temporal fidelity. Dedicated reconstruction techniques

such as SENSE [7] and kt-SENSE [15] require reference or training data for estimating

missing data. The training data usually have to be acquired in an additional measure-

ment, which increases the overall scan time. In order to reduce or totally eliminate this

extra acquisition for dynamic data, several different strategies were proposed in this

work.

Several auto-calibrating methods have been proposed for the reconstruction of dynamic

data, that generate the reference data (e.g. spatial information) required from the un-

dersampled data itself. However, these approaches have some drawbacks, which has

been demonstrated in this work for the example of kt-SENSE. The temporal average

of Cartesian interleaved undersampled data yields a fully sampled image, that can be

used for the estimation of the coil sensitivity maps required by kt-SENSE. However,

this temporal average may contain contributions from aliased components and deviates

from the true temporal average. Using coil sensitivity maps that were estimated from

the undersampled data may therefore lead to signal nulls in the reconstructed spectra.

This corresponds to temporal filtering, as demonstrated in Chapter 5. To obtain accu-

rate reconstructions using an auto-calibrating approach, it is necessary to significantly

reduce the aliased components present in the temporal average of the accelerated data.

For Cartesian acquisitions, this can be achieved by applying a GRAPPA filter to the tem-

poral average, which prevents signal nulls in the reconstructed data [60]. A different

possibility demonstrated in this work is to use radial sampling, that inherently has less

severe aliasing artifacts and allows a more accurate estimation of the temporal aver-

age [70]. This also significantly reduces the undesired temporal filtering effect. Similar
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findings are expected for all trajectories with highly incoherent aliasing artifacts in the

presence of undersampling.

In conventional kt-SENSE, the extra spatio-temporal information required for recon-

struction is obtained via an additional training data scan. To reduce measurement

time, usually a lower resolution is chosen for this extra acquisition. However, the qual-

ity of the training data directly influences the spatial and temporal resolution of the

reconstructed data. Lower resolution training data may lead to temporal filtering effects

in the reconstructions.

In Chapter 6 of this thesis, an auto-calibration approach for kt-SENSE is proposed that

eliminates the need for extra acquisitions and at the same time provides calibration data

of full resolution [75]. The proposed auto-calibrating kt-SENSE is based on the feedback

regularization [13]. In this method, training data are obtained by performing a TSENSE

reconstruction on the undersampled data as a first pass. The full spatial resolution of

the training data set results in reduced temporal filtering and therefore lower temporal

blurring in the kt-SENSE reconstructions. Comparing the results of auto-calibrating

kt-SENSE and conventional kt-SENSE with training data of full spatial and temporal

resolution reveals only negligible differences in terms of temporal fidelity. However, the

cost of the auto-calibrating approach is the reduction of SNR in the reconstructions due

to noise propagation from the TSENSE reconstructions to the final kt-SENSE images.

Nevertheless, as demonstrated in experiments with standard protocol parameters the

proposed method shows a high level of robustness.

A different method used in dynamic MRI applications is kt-PCA [16], that was first pro-

posed for the reconstruction of MR cardiac data. In Chapter 7 of this thesis, kt-PCA

was employed for the generation of spatially resolved M0, T1 and T2 maps from a single

accelerated IR-TrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac

dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies,

which makes their reconstruction more challenging. However, since relaxometry mea-

surements can be represented by only few parameters, the use of few principal compo-

nents (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. While

7-10 PC’s are necessary to accurately describe dynamic cardiac data, it was demon-

strated that 2-3 PC’s characterize relaxometry measurements. Results confirmed that

accurate reconstructions from undersampled relaxometry images can be obtained using

the kt-PCA method. Furthermore, it was found that due to high redundancy in relax-

ometry data, PCA can efficiently extract the required information from just a single line

of training data. Only small errors can be observed for simulated and in-vivo IR exper-

iments. In conclusion, kt-PCA allows accurate reconstructions of MR parameter maps

using a significantly reduced amount of training data, which leads to shorter acquisition

times.

In general, in both kt-SENSE and kt-PCA a temporal filter is applied to the undersam-

pled data during reconstruction. Hereby, the particular design of the temporal filter is

extracted from the training data. For both techniques, a successful suppression of alias-

ing artifacts is highly dependent on the quality of the training data. As demonstrated,
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auto-calibrating kt-SENSE can be employed to reconstruct dynamic cardiac images up

to an acceleration factor of 5 with high temporal fidelity. In this approach, training data

are obtained from the undersampled data themselves, which removes the need for ex-

tra acquisitions. kt-PCA on the other hand allows the estimation of accurate spatially

resolved parameter maps from undersampled inversion recovery data up to an acceler-

ation factor of R = 8. Hereby, a single central line is sufficient as training data, which

accelerates the acquisition process.

In conclusion, in this work, we were able to significantly reduce or totally eliminate

the acquisition of training data for two different dynamic MRI reconstruction methods

without compromising reconstruction quality. We were able to demonstrate for in-vivo

experiments and simulations that the proposed approaches are able to both improve the

temporal fidelity of reconstructed data and reduce acquisition times at the same time.

Outlook

In this work, dynamic MRI applications were investigated exclusively in two-dimensional

experiments. A much more complex scenario is 3-D dynamic MRI. Due to the additional

phase encoding direction, the acquisition time increases for 3-D MRI. However, 3-D

imaging has some substantial advantages. For example, it allows the coverage of whole

organs in the human body, avoiding misregistration and may provide more accurate

diagnoses. Additionally, due to its inherently high SNR and therefore the possibility

to accelerate in an additional dimension with pMRI, higher acceleration factors can be

achieved with parallel imaging without severely compromising image quality. Therefore,

an extension of the proposed semi and auto-calibrating methods to 3-D imaging is highly

desirable as it may reduce scan times significantly. Based on the consistency and

temporal fidelity of reconstructed 2-D data, a successful application of the proposed

methods to 3-D imaging seems likely.

In general, dynamic MRI struggles with long acquisition times and motion artifacts,

especially if patients have difficulties to either stay immobile or to hold their breath.

The application of auto-calibrating kt-SENSE or kt-PCA could lead to acceleration in

the acquisition process and also to reduce motion artifacts due to the robustness of

the approaches. kt-PCA could be especially promising in applications with a simple

temporal dynamics, such as relaxometry, contrast enhanced perfusion or angiography

studies.

Auto-calibrating kt-SENSE uses TSENSE for the reconstruction of training data. Noise

amplification in the training data also transfers to the final reconstructed images di-

minishing their SNR. A future area of research could be the improvement of SNR in

the reconstructed training data set. This may for example be achieved by introducing

additional constraints in the TSENSE algorithm.

In this thesis, it was demonstrated that auto-calibrating kt-SENSE is able to obtain

accurate reconstructions with high temporal fidelity without increasing the acquisition
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time. Despite its advantages, the application of this technique is limited by its insuffi-

cient SNR and moderate degree of acceleration factor of the data. Therefore, its clinical

adoption requires further works. For relaxometry studies, where the relaxation signal

occurs at every single pixel of the image and therefore their reconstruction may be chal-

lenging, kt-PCA has been proven to be a suitable method. In this particular application,

only one central k-space line of training data was sufficient, which is expected to be true

for other applications with a simple temporal dynamics. This could be useful for many

cases, especially where higher spatial or temporal resolution is needed.
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Appendix A.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [95] is a useful tool for data analysis. A PCA trans-

formation finds a set of basis vectors that is best suited for describing a particular data

set. Even data of high dimensionality can often be described with high accuracy by only

a few basis vectors after PCA. Therefore, PCA is widely used for reducing the number of

dimensions [96] and the extraction of characteristical information from data.

PCA searches for the linear combination of the original data that provides the maximal

variance [97]. Consider a data set X arranged in a matrix of size n ×m, where n and m

represent the number of observations and the dimensions of the data respectively. The

matrix X can be expressed by a new representation Y, which is another matrix of size

n×m, using a linear transformation P:

PX = Y (A.0.1)

The rows of P are the new basis vectors, which are given by the principal components

(PC) extracted from X. In order to find the optimal transform P, it is necessary to examine

the characteristics of the desired matrix Y.

For the new coordinate system of the data (Y), the first axis corresponds to the largest

variation in the data points, the second axis corresponds to the next largest variation in

the data and so on. If PCA is for example performed on a data set with noise, the first

components mainly represent the dynamics present in the data and correspondingly

have a high SNR, while the later components indicate almost exclusively contain noise.

Figure A.0.1 illustrates this phenomenon for the example of linear data in 2-D that ex-

hibit some level of scattering in the orthogonal direction. The new axes determined by

PCA are parallel to the direction of the principal components of the data. The first princi-

pal component has the largest possible variance and each succeeding component has a

lower variance under the constraint that it be orthogonal to the preceding components.
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Figure A.0.1.: Change of axis during PCA. The data cloud is scattered along a line. The
blue axes depict the new reference frame based on the principal compo-
nents of the data.

The level of redundancy present in a particular data set indicates how much information

(in average) is measured multiple times. This is the central idea behind dimensional

reduction. Figure A.0.2 shows three data sets obtained from measurements of two

variables r1 and r2 with different degrees of redundancy. While the left hand graph

depicts two variables with no apparent relationship or correlation, the data in the right

hand graph exhibit a high level of correlation. In the latter case, it would be more

efficient to describe the data with a single variable.

r1

r2
r2

r1
r1

r2

Low redundancy High redundancy

Figure A.0.2.: Three levels of redundancy.

Numerically, linear independence between the data can be identified using covariance.

By definition, the covariance matrix CX of matrix X is given by:

CX ≡
1

n
XXT (A.0.2)

CX is a square symmetric matrix of size m ×m. The diagonal elements of CX are the

variance of particular measurement types and its off-diagonal terms indicate the covari-

ance between variables. Large values in the diagonal and off-diagonal term correspond

102



APPENDIX A. PRINCIPAL COMPONENT ANALYSIS (PCA)

to important structure and high redundancy in the data respectively.

As already mentioned, the goal of PCA is to find new basis to represent the original data,

in which their first components have the direction of the largest variances and have

lowest redundancy between them. In other words, the desired matrix Y should have a

diagonal covariance matrix CY which indicates a decorrelation of the data. Additionally,

each dimension in Y should be ordered according to its variance.

Mathematically, the orthonormal basis P are used to transform X into the matrix Y such

that the covariance matrix CY will be a diagonal matrix. Thus, the relationship between

the covariance CY and P is given by:

CY =
1

n
Y Y T

=
1

n
(PX)(PX)T

=
1

n
PXXTPT =

1

n
PCXP

T (A.0.3)

According to linear algebra, CX is a symmetric matix and can be diagonalized by an

orthogonal matrix of its eigenvectors (for details please see reference [97]):

CX = EDET (A.0.4)

Hereby D is a diagonal matrix containing the eigenvalues of the data and E is a matrix

of eigenvectors of CX arranged in columns1.

Therefore, the transformation matrix P is selected such that each row is an eigenvector

of CX . In that case P will be equal to ET and PT = P−1. Rewriting equation A.0.3 leads

to:

CY =
1

n
PCXP

T

= P (EDET )PT

= P (PTDP )PT

= (PP−1)D(PP−1)

⇒ CY = D (A.0.5)

This particular choice of P diagonalizes the covariance matrix CY and the transformed

data set Y exhibits the desired characteristics.

A.0.1. PCA using Singular Value Decomposition (SVD)

A PCA can also be performed using singular value decomposition (SVD). The SVD

method is a more general approach finding the new basis [97].
1The matrix CX may have r ≤ m orthonormal eigenvectors where r is the rank of the matrix. When the rank

of CY is less than m, the r − m additional vectors do not affect the final solution because the variances
associated with these directions are zero.
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The decomposition of matrix X using SVD is given by:

X = UΣV T

Hereby, Σ is a diagonal matrix containing the singular values of X, U and V are the left

and right eigenvectors of matrix X. Now rewriting the last equation, we have:

X = UΣV T

UTX = ΣV T

Defining Y ≡ ΣV T , it is clear that the orthogonal basis UT correspond to P which

transforms the matrix X into Y. The eigenvectors with the largest eigenvalues contain

the bulk of information necessary to characterized the original data.

In order to reduce the dimensionality of a data set, the components in matrix U associ-

ated with the smallest eigenvalues can be set to zero. This leads to a matrix Ũ containing

only the dynamics of interest. To conclude, the transformed data in terms of the SVD

decomposition of the matrix X can therefore be written as:

Y = ŨTX = ŨTUΣV T

where the term ŨTU is a simple n×m matrix which has ones on the diagonal and zeros

everywhere else.
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Abstract

In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly com-

plex due to rapid changes occurred in the object to be imaged. For clinical diagnostic,

dynamic MR images require both high spatial and temporal resolution. The speed in

the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain

accurate diagnosis. Technological advances in the last decades have allowed in certain

degree acceleration in the MRI process. With the application of faster hardware, rapid

sequences, increasing number of coil receiver, acquisition strategies among others, the

reduction of scan times has been possible. In the 90’s, partially parallel MRI (pMRI) has

been introduced to shorten scan times reducing the amount of acquired data. These

approaches use multi-receiver coil arrays to acquire independently and simultaneously

the data.

Reduction in the amount of acquired data results in images with aliasing artifacts. Many

strategies have been implemented to obtain artifact-free images utilizing spatial informa-

tion provided by the receiver coils and/or information about the dynamics of the data.

Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocali-

brating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms

in pMRI. Both, the SENSE and the GRAPPA algorithms are part of clinical routines in

MR devices.

Nevertheless, pMRI methods require extra spatial or temporal information in order to

optimally reconstruct the data. This information is typically obtained by an extra scan or

embedded in the accelerated acquisition applying a variable density acquisition scheme.

Nowadays, imaging reconstruction techniques face the challenge of producing images

with higher spatial and temporal resolution without compromising the acquisition time.

In this work, we were able to reduce or totally eliminate the acquisition of the training

data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high

temporal fidelity.

For dynamic data acquired in an interleaved fashion, the temporal average of accelerated

data can generate an artifact-free image used to estimate the coil sensitivity maps avoid-

ing the need of extra acquisitions. However, this temporal average contains errors from

aliased components, which may lead to signal nulls along the spectra of reconstruc-

tions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to
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the temporal average reduces these errors and subsequently may reduce the null com-

ponents in the reconstructed data. In this thesis the effect of using temporal averages

from radial data was investigated. Non-periodic artifacts performed by undersampling

radial data allow a more accurate estimation of the true temporal average and thereby

avoiding undesirable temporal filtering in the reconstructed images.

kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of

spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal

correlations in kt-SENSE are learnt using a training data set, which consists of several

central k-space lines acquired in a separate scan. The scan of these extra lines result in

longer acquisition times even for low resolution images. It was demonstrate that limited

spatial resolution of training data set may lead to temporal filtering effects (or temporal

blurring) in the reconstructed data.

In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was

tested in order to completely eliminate the acquisition of training data. The applica-

tion of a prior TSENSE reconstruction produces the training data set for the kt-SENSE

algorithm. These training data have full spatial resolution. Furthermore, it was demon-

strated that the proposed auto-calibrating method reduces significantly temporal filter-

ing in the reconstructed images compared to conventional kt-SENSE reconstructions

employing low resolution training images. However, the performance of auto-calibrating

kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions

that propagates to the final reconstructions.

Another dedicated method used in dynamic MRI applications is kt-PCA, that was first

proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed

for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IR-

TrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data,

MR relaxometry experiments exhibit signal at all temporal frequencies, which makes

their reconstruction more challenging. However, since relaxometry measurements can

be represented by only few parameters, the use of few principal components (PC) in

the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was

found that due to high redundancy in relaxometry data, PCA can efficiently extract the

required information from just a single line of training data.

It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain

high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data

avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to

be a suitable method for the reconstruction of highly accelerated MR relaxometry data.

Furthermore, a single central training line is necessary to obtain accurate reconstruc-

tions. Both reconstruction methods are promising for the optimization of training data

acquisition and seem to be feasible for several clinical applications.
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Zusammenfassung

Dynamische Bildgebung mithilfe der Magnetresonanztomographie stellt eine besondere

Herausforderung dar. Für klinische Anwendungen benötigt man Bilder mit hoher räum-

licher und bei schnellen Bewegungen auch zeitlicher Auflösung. Aus diesem Grund

ist die Geschwindigkeit den Datenakquisition ein entscheidender Faktor, um genaue

Diagnosen zu erhalten. Technologische Fortschritte in den letzten Jahrzehnten, im

speziellen Entwicklungen von Hardware, Sequenzen und Akquisitionsschemata, konn-

ten MRT-Experimente erheblich beschleunigen.

Einen weiteren wichtiger Beitrag lieferte die parallele Bildgebung (pMRT), die in den

90er Jahren eingeführt wurde und durch die Entwicklung von Spulenarrays für den

Empfang des MR-Signals ermöglicht wurde. In paralleler Bildgebung wird nur ein Teil

der eigentlich benötigten Daten aufgenommen. Diese Unterabtastung des k-Raum führt

zu Bildern mit Aliasing-Artefakten. Verschiedenste Algorithmen wurden entwickelt, um

mittels der zusätzlichen räumlichen Informationen der Spulenarrays anschließend arte-

faktfreie Bilder zu rekonstruieren. Heute spielen im Speziellen Sensitivity Encoding

(SENSE) und Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) eine

große Rolle im klinischen Alltag und bilden eine Grundlage für eine Vielzahl anderer

Algorithmen.

Ein Großteil aller pMRT Methoden erfordern für optimale Ergebnisse zusätzliche räum-

liche oder zeitliche Informationen zur Kalibrierung. Diese Kalibrations- oder Trainings-

daten werden in der Regel durch einen zusätzlichen Scan erzeugt oder in die beschleu-

nigte Messung eingebettet aufgenommen. In beiden Fällen ist eine unerwünschte Ver-

längerung der Messzeit die Folge.

Heute stehen Bildrekonstruktionsverfahren deshalb vor der Herausforderung, Bilder

mit höherer räumlicher und zeitlicher Auflösung zu ermöglichen ohne jedoch die Auf-

nahmezeit zu verlängern. In dieser Arbeit konnten wir kt-SENSE und kt-PCA Rekon-

struktionen dynamischer MRT Daten mit hoher zeitlicher Genauigkeit erzielen bei gleich-

zeitiger Reduktion bzw. sogar Beseitigung der benötigten Menge an Trainingsdaten.

Um die in beiden Methoden benötigten Spulensensitivitäten zu berechnen, kann bei be-

stimmten Abtastschemata mit dem Mittelwert der dynamischen Daten ein weitgehend

Artefakt-freies Bild erzeugt werden. Dieser zeitliche Mittelwert enthält jedoch kleine

Fehler, die durch die Anwendung von Methoden wie kt-SENSE zu Signalauslöschungen

im Spektrum der rekonstruierten Daten führen können. Es konnte gezeigt werden,

dass die Anwendung eines GRAPPA Filter auf den zeitlichen Mittelwert die Fehler in

den Spulensensitivitäten reduziert und die Rekonstruktion von Daten aller Frequen-

zen ermöglicht. Eine weitere aufgezeigte Möglichkeit ist die Verwendung einer radialen
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Akquisition, die dank der inkohärenten Aliasing-Artefakte ebenfalls zu einer erheblich

genaueren Abschätzung des zeitlichen Mittelwerts führt. Dies verhindert zeitliche Un-

genauigkeiten in den rekonstruierten Bildern.

Zusätzliche zu Spulensensitivitäten verwenden Rekonstruktionsmethoden wie kt-SENSE

Vorkenntnisse über räumlich-zeitliche Korrelationen, um Artefakte zu entfernen. In-

formationen darüber werden gewöhnlich aus voll aufgenommenen Trainingsdaten mit

geringer Auflösung extrahiert. Die separate Akquisitions dieser Trainingsdaten verur-

sacht eine unerwünschte Verlängerung der Messzeit. In dieser Arbeit wurde gezeigt,

dass die niedrige Auflösung der Trainingsdaten zu zeitlichen Filterungseffekten in den

rekonstruierten Daten führen kann. Um dies zu verhindern und um die zusätzliche Auf-

nahme von Trainingsdaten zu vermeiden, wurde eine Autokalibrierung für kt-SENSE

vorgeschlagen und untersucht. Hierbei werden die benötigten Trainingsdaten in einem

ersten Schritt durch eine TSENSE Rekonstruktion aus den unterabgetasteten Daten

selbst erzeugt. Dank der vollen Auflösung dieser Trainingsdaten kann das Auftreten

eines zeitlichen Filters verhindert werden. Die Leistung der Auto-kalibration wird ledig-

lich durch einen Einfluss des SNRs der TSENSE Trainingsdaten auf die finalen Rekon-

struktionen beeinträchtigt.

Ein weiteres Verfahren für die dynamische MRT ist kt-PCA, das zunächst für die Rekon-

struktion von MR-Herzdaten vorgeschlagen wurde. In dieser Arbeit wurde kt-PCA für

die neurologische MR Relaxometrie verwendet. Hierbei konnten aus beschleunigten IR-

TrueFISP und IR-Snapshot-FLASH Messungen genaue M0, T1 und T2 Karten gewonnen

werden. Im Gegensatz zur Herzbildgebung weisen MR Relaxometrie Datensätze Sig-

nal auf alles zeitlichen Frequenzen auf, was ihre Rekonstruktion mit konventionellen

Methoden erschwert. Andererseits können die zeitlichen Signalverläufe mit einigen

wenigen Parametern dargestellt werden und die Rekonstruktion mittels kt-PCA ver-

einfacht sich erheblich aufgrund der geringen Anzahl benötigter Hauptkomponenten

(PC). Weiter wurde gezeigt, dass aufgrund der hohen Redundanz ein Trainingsdaten-

satz bestehend aus einer einzigen Zeile ausreicht, um alle relevanten Informationen zu

erhalten.

In dieser Thesis wurde demonstriert, dass mit dem Ansatz einer auto-kalibrierten kt-

SENSE Rekonstruktion Bilder mit hoher zeitlicher Genauigkeit aus beschleunigten Da-

tensätzen des Herzens gewonnen werden können. Dies vermeidet die gewöhnlich be-

nötigte zusätzliche Aufnahme von Trainingsdaten. Weiterhin hat sich kt-PCA als geeig-

netes Verfahren zur Rekonstruktion hochbeschleunigter MR Relaxometrie Datensätze

erwiesen. In diesem Fall war ein Trainingsdatensatz bestehend aus einer einzelnen

Zeile ausreichend für Ergebnisse mit hoher Genauigkeit. Beide Methoden stellen eine

Optimierung der Datenakquisition dar und sind vielversprechend für die klinische An-

wendung.
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