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where effective regulations for antibiotic use have not been established yet. In Nigeria, for 

instance, studies revealed that up to 88% of Staphylococcus aureus infections cannot be treated 

with methicillin anymore, also known as “methicillin resistant Staphylococcus aureus” (MRSA) 

strains [17, 18]. This percentage tends to increase over the next years. Currently, 700,000 people 

die every year due to infections which are resistant to antibiotic therapies. If this trend goes on, 

by 2050 this number could reach up to ten millions of deaths annually [19]. The main reasons for 

antibiotic resistance are the emergence of mutations in intrinsic genes or the acquisition of 

exogenous genetic material bearing single or multiple resistance determinants. While being 

exposed to antimicrobial drugs, the growth of susceptible strains is inhibited; the resistant 

bacteria survive and are selected [20, 21]. The rate of antibiotic resistant strains appearance 

usually is accelerated by the mis- and overuse of antibiotics, resulting in opportunistic 

pathogens being genetically selected by unnecessary exposure to these drugs (Figure 1) [22].  

Antibiotics are highly overused as prophylactic in human and animal medicine, as well as in 

agriculture [23-25]. Studies have shown that no significant differences with regard to 

complications and implant survival were found when comparing a 1-day single-dose preoperative 

antibiotic regimen with that following a standard 1-week postoperative antibiotic protocol [26]. 

Misprescription is a major concern in primary care where a large number of infections is treated 

with antibacterial compounds though being of viral origin. E.g., 90% of all antibiotic prescriptions 

in the USA are issued by general practitioners with upper respiratory tract infections representing 

the leading indication [27-29]. In Europe, even though the prescription rates for antibiotics vary 

throughout each country, a shift from applying narrow-spectrum to broad-spectrum antibiotics is 

observed [30]. The lack of sufficient verbal and written information for patients about the 

necessity of using antibiotics also plays a big role in the development of resistances [31, 32].  

However, one frequently neglected aspect is the untargeted mechanism of action of established 

antibiotics. The mutualistic relationship between host and its microbiota is in a delicate 

homeostasis which evolved during millennia and can easily be corrupted by administering 

antibiotic compounds. While this equilibrium is usually restored after the cessation of an 

antibiotic treatment [33-35], the interactions of microorganisms with the host orient the host’s 

immune system and can easily lead to changes in the dynamics of the innate and adaptive 

immune system, creating opportunities for pathogens [36-38]. During antibiotic treatment, the 

colonization pattern of the digestive tract is altered whilst being contaminated with exogenous 

bacterial species usually persisting much longer and in much higher concentration when 

compared to individuals not being subject to antimicrobial therapy [39]. Of note, the nasal 

microflora and thus the respiratory tract can also be affected when systemic antibiotics are 

administered [40].  
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However, history already showed us that the acquisition of resistance by bacteria against new 

antimicrobial drugs is only a matter of time. It is our duty to reduce the unnecessary contact of 

bacteria with antibiotics, and it is useless to keep developing and discovering new antimicrobial 

substances if we do not change the way of selectively delivering them. Therefore, smart antibiotic 

delivery ways are needed to avoid the emergence of new resistant and multiresistant strains.  

1.2 Smart drug release systems 

Drug delivery systems (DDS) are used to improve the pharmacological and therapeutic properties 

of parenterally administered drugs by altering the pharmacokinetics and biodistribution of their 

associated active compound, or by serving as a sustained release system. Many undesired 

properties of a drug candidate such as poor solubility, tissue damage, and lack of selectivity for 

target tissues can be corrected by using an appropriate delivery system (Table 1) [84].  

Table 1 – Non-ideal properties of drugs and their therapeutic implications. Adapted from [84].  

Problem Implication/challenges Effect of DDS 
Poor solubility Difficulty in a proper pharmaceutical format, 

precipitation in aqueous solutions 
DDS that provide both hydrophilic and 
hydrophobic environments to enhance 
drug solubility  

Tissue damage Cytotoxic drugs leads to tissue damage, e.g. 
necrosis 

Regulated drug release can reduce or 
eliminate tissue damage 

Poor 
pharmacokinetics 

Quick clearance, requiring higher doses or 
continuous infusion 

DDS protect drugs from premature drug 
degradation. Lower dosage is required.  

Rapid breakdown of 
drug in vivo 

Loss of activity after drug administration DDS substantially alter pharmacokinetics 
and reduce clearance when compared to 
free small molecules in circulation 

Poor biodistribution Widespread biodistribution affects normal 
and healthy tissues, as well as microbiota 

DDS lower the volume of distribution and 
reduce side effects  

Lack of selectivity for 
targeted tissues  

Distribution to healthy tissues leads to 
undesired side effects that restrict the 
amount of drug considered to be safe to be 
administered. 

DDS increase drug concentration in target 
tissues  

 
One of the greatest challenges is the tailoring of targeted drug delivery systems. Many drugs do 

not act exclusively on their supposed target tissue, leading to a variety of undesired side effects. 

One particularly negative example is in oncological therapy: the majority of antiproliferative 

chemotherapeutics used at present owe what little selectivity they have for cancer cells to their 

higher proliferation rates leading to an extremely high toxicity against normal tissue cells, e.g. in 

the gastrointestinal tract or for hair follicles [85, 86]. In addition, a low bioavailability often limits 

the use of potential new drug candidates since therapeutic doses become too high and often 

overlap with the toxic dose range [87, 88].  

A targeted antibiotic delivery represents another major challenge. Some infections are difficult to 

treat due to hard access infection spots or bacterial strategies to defend themselves. Intracellular 
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infective bacteria are especially difficult to eradicate and the drug activity upon these infections 

depends on their pharmacokinetics and -dynamics [89, 90]. In those cases, a particular antibiotic 

needs to satisfy many selection criteria for optimal activity, such as cell penetration, retention, 

intracellular distribution, and activity towards bacteria in the environment [91]. The ratio of 

intracellular concentration to the extracellular concentration is the standard parameter to classify 

the ability for intraphagocytic accumulation of antibiotics; many classic antimicrobial drugs like 

penicillin and cephalosporins present a low value and consequently a limited activity in those 

infections.  

The same way as in intracellular infections, biofilm formation is also a big concern. Studies show 

that antibiotic susceptibility decreases 1000 times compared to biofilm formation with bacterial 

suspension in conventional liquid media [92-94]. The poor drug penetration helps to explain this 

higher rate of resistance [95, 96]; however, it is shown that naturally selected resistant bacteria 

tend to express genes related to biofilm formation more than susceptible strains [97-99]. Bone 

and joint infections are difficult to be treated owing to the anatomical and physiological 

characteristics of the tissue [100]. The antibiotic penetration is extremely poor, thus requiring 

much higher doses of the respective compounds [101-103].  

However, many advances in drug delivery have been made to help find a solution for these 

problems. Currently, liposomes are widely being used for antibiotic loading and delivery. 

Encapsulation of antibiotics is a good solution for designing the desired pharmacokinetics and 

biodistribution. The liposomal carriers can have their physicochemical properties tailored 

according to the target tissue requirements and offer the advantage of gradual and sustained 

drug release while circulating in the body [104]. Studies show that liposomal encapsulated 

antibiotics significantly reduce the number of microorganisms when compared to the application 

of the free drug [105-107]. Liposomes are identified by the immunological system as foreign 

bodies and are therefore opsonized. While this phenomenon is interesting for targeting 

intracellular infections, it leads to lower blood circulation and fast blood clearance of the 

respective compounds [108, 109]. Besides, another problem is the loading of the drug. Since 

most liposomes are composed of fluid bilayers, the loading stability can be poor in some 

physiological environments [104, 110].  

Polymeric nanomaterials have also been extensively studied for the nanoencapsulation of drugs, 

especially in the field of antibiotics. Novel nanomaterials, nanoparticles (NP) in particular, have 

unique physicochemical properties (e.g., ultra-small and controllable size, large surface area to 

mass ratio, high interactions with microorganisms and host cells, structural/functional 

versatility) and are a promising platform to overcome the limitations of antibiotic targeted 

delivery [111-113]. Their structural stability provides a low rate of degradation in biological fluids 
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and when exposed to harsh conditions during their formulation (e.g., spray drying and ultra-fine 

milling), and storage [114]. Drug delivery profiles can be tuned by manipulating polymer length, 

surfactants, and monomer chemistry. So far, two main types of polymers have been explored for 

antibiotic delivery: linear and amphiphilic block polymers. While the linear polymers constituted 

of NP usually being nanocapsules or solid nanospheres, the second presents itself in self-

assembling micelles in which the drug is loaded within the hydrophobic core whilst the 

hydrophilic corona shields the drug from being opsonized and degraded [111, 115-117]. In vitro 

studies show the enhanced antimicrobial effect of ciprofloxacin and gentamycin loaded 

poly(lactide-co-glycolic) acid (PLGA) particles against Pseudomonas aeruginosa biofilms in 

comparison to free drugs [118-120]. Carboxymethyl chitosan particles loaded with vancomycin 

were able to disrupt the cell membrane of Staphylococcus aureus in biofilms [121].  

In many cases, drugs are unstable and poorly absorbed by the gastrointestinal tract. Some 

successful efforts have been made in improving the oral administration of antibiotics by using 

polymeric NPs made of polyethylcyanoacrylate (PECA) [122]. PEGylation of PECA NPs increased 

half-life in serum and reduced phagocytosis by macrophages [123]. Microencapsulation of 

gentamycin in PLGA-PEG used as implants was successful in readily releasing the drug into bone 

tissues and therefore is a promising candidate for post-operative prophylaxis [124]. Many other 

degradable and non-degradable NP formulations of amino glycosides and β-lactam antibiotics 

release the drugs at concentrations exceeding the minimal inhibitory concentrations for the most 

common pathogens involved in osteomyelitis without causing any adverse systemic effects [125].  

Conventional drug release systems in which the drug is entrapped within a polymer lattice 

usually results in an early drug release peak in plasma concentration, followed by a constant, 

steady linear release. The disadvantage is that local drug concentration and location of delivery 

cannot be properly controlled. These systems are insensitive towards environmental and 

metabolic changes in the body and therefore unable of modulating drug release [126]. Thus, the 

lack of control is the main purpose on seeking bioresponsive controlled release systems. 

Bioresponsive systems are an innovative way of releasing the drug on site and avoiding side 

effects. Nanocarriers can be engineered to respond to pH, heat, and magnetic field changes, as 

well as to chemical and biological triggers [127-129]. The response to stimuli can appear in many 

ways: chain dimension/size, shape, surface characteristics, secondary or tertiary structure, 

solubility or degree of intermolecular association [126] and is usually quick, varying from a few 

minutes to some hours [130, 131].  

Among all existing drug delivery strategies, certainly enzyme triggered release systems are an 

interesting approach. The altered expression of some specific enzymes, like proteases, 
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phosphatases, and glycosidases during pathological conditions such as cancer, inflammation or 

infections makes them a valuable trigger for drug release and accumulation of drugs at the 

desired tissue [129]. In those systems, an essential constituent is the presence of an enzyme-

sensitive linker, which responds to the action of the highly expressed enzyme and controllably 

releases the drug in the specific site.  

Studies show the use of short peptide sequences being sensitive for Matrix Metalloproteases 

(MMP) as a linker between PEG chains to either TAT-functionalized liposomes [132] or CPP-

decorated, dextran-coated iron oxide nanoparticles [133]. After MMP cleaved the PEG surface in a 

tumor environment, the bioactive compounds became exposed and their intracellular 

penetration was enhanced when compared with other carriers without cleavable linkers. Braun et 

al. were able to design a myostatin inhibitor delivery system responsive to the upregulation of 

MMP-9 during sarcopenia. This model comprised of a peptide linker sensitive to MMP attached to 

the myostatin inhibitor and immobilized on a microparticles’ surface [134]. This concept can also 

be used in diagnostics. Ritzer et al. developed a concept of a sensory chewing gum which could 

detect peri-implant inflammations by cleavage of a peptide sequence by MMPs present in oral 

cavities and subsequent release of a bitter taste molecule, therefore targeting the tongue as a 

diagnostic sensor [135].  

The strategy based upon enzymatic release can be extended to different fields of application with 

bacterial infection treatments being no exception. For example, regarding the release of 

antibiotics, Xiong et al. successfully accomplished an on-demand release of vancomycin with 

lipase-sensitive nanogels [136]. However, as discussed by the authors, lipase is abundant in 

microbial flora since it plays a major role in bacterial metabolism [137, 138]. For that reason, a 

selective antibiotic delivery system is needed in which the antimicrobial component is only active 

and released in the presence of virulence factors, thus not afflicting commensal bacteria in the 

organism and helping to prevent the emergence of new multiresistant strains.  
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2. Aim  

The aim of this work was to develop an antibiotic delivery system whose release would only be 

triggered by proteases being expressed during the virulent state of bacteria. We focused on 

targeting Staphylococcus aureus methicillin resistant strains mainly for two reasons: (i) this 

bacterium is one of the most dangerous pathogens in the world being responsible for an 

enormously high mortality rate as well as resistance mechanisms against many antibiotics, and 

(ii) it is a commensal bacterium for humans, asymptomatically colonizing the upper respiratory 

tract and the skin. Of note, as already discussed, S. aureus can be an opportunistic pathogen.  

The developed delivery system consists of three parts: the main focus of this work, a short 

peptide sequence acting as cleavable linker (CL); a polymer linked to its N-terminus in order to 

enhance the pharmacokinetic and half-life of the antibiotic during circulation; and attached to 

the C-terminus, the antibiotic itself. The antibiotic of choice acting as a prototype for our release 

system was the atypical tetracycline chelocardin (CHD), synthesized at the Helmholtz Institute for 

Pharmaceutical Research Saarland (Saarbrücken, Germany) in the research group of Prof. Dr. Rolf 

Müller.  

The peptide sequence representing the cleavable linker is selectively recognized by aureolysin, a 

43 kDa protease which is expressed during the virulent state of S. aureus, primarily attacking the 

C3 complement protein and inactivating it [51]. Once the sequence is cleaved, the antibiotic is 

partially released; however, carrying four remaining amino acids attached to it. Once again, we 

use a bioresponsive tool from the human organism to completely release the antimicrobial 

substance: aminopeptidases are a class of enzymes which catalyze the cleavage of amino acids 

at the N-termini of peptides and proteins, respectively, and which are abundantly present in the 

human plasma [139]. These proteases would also be able to cleave the remaining amino acids 

which are attached to the antibiotic, thus fully releasing it and exposing its antimicrobial activity 

against the pathogenic S. aureus.  
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3. Experimental section 

3.1 Materials  

3.1.1 Solid Phase Peptide Synthesis  

FMOC-protected amino acids Novabiochem Merck-Millipore (Darmstadt, Germany) 
Chlorotrityl Chloride Resin (CTC) Chem-Impex Wood (Dale, IL, USA) 
2-Azidoacetic acid  Carbosynth (Berkshire, UK) 
2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate (HBTU) 

Chem-Impex Wood (Dale, IL, USA) 

1-Hydroxybenzotriazole hydrate (HOBt) Sigma-Aldrich Chemie (Schnelldorf, Germany) 
Piperidine Sigma-Aldrich Chemie (Schnelldorf, Germany) 
N,N-Diisopropylethylamine (DIPEA) Carl Roth GmbH (Karlsruhe, Germany) 
Diisopropylcarbodiimide (DIC) Fluka (Buchs, Switzerland) 
Dimethylformamide (DMF) Fisher Scientific (Schwerte, Germany) 
Dichloromethane (DCM) Fisher Scientific (Schwerte, Germany) 
Methanol Fisher Scientific (Schwerte, Germany) 
Trifluoroacetic acid (TFA) 
1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo= 
[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) 

VWR (Radnor, Pennsylvania, USA) 
ChemPep, Inc (Wellington, USA) 

3.1.2 Enzymatic assays  

Human neutrophil matrix metalloproteinases (MMPs) EMD Millipore Corporation (Billerica, MA) 
Metalloproteinase from Staphylococcus aureus 
(Aureolysin) 

BioCentrum Ltd. (Cracow, Poland) 

Leucine Aminopeptidase Sigma-Aldrich Chemie (Schnelldorf, Germany) 
L-Leucin-p-nitroanilide Sigma-Aldrich Chemie (Schnelldorf, Germany) 
Sulfanilamide-azocasein Sigma-Aldrich Chemie (Schnelldorf, Germany) 
Tris-HCl base Sigma-Aldrich Chemie (Schnelldorf, Germany) 
APMA Sigma-Aldrich Chemie (Schnelldorf, Germany) 
NaCl Sigma-Aldrich Chemie (Schnelldorf, Germany) 
CaCl2 Sigma-Aldrich Chemie (Schnelldorf, Germany) 

ZnCl2 Sigma-Aldrich Chemie (Schnelldorf, Germany) 

Brij 35 Sigma-Aldrich Chemie (Schnelldorf, Germany) 

3.1.3 Immunoassays 

96-well ELISA plate  (Immuno-Plate; Nunc, Denmark) 
α-Aureolysin antibody (murine, serum) Kindly provided by Dr. Knut Ohlsen,  

Institute for Molecular Infection Biology (IMIB), 
University of Würzburg 

Rabbit IgG α-mouse IgG  Dianova (Hamburg, Germany) 
Peroxidase Substrate Kit TMB Vector Laboraties (Burlingname, California) 
Tween-20 Sigma-Aldrich Chemie (Schnelldorf, Germany) 
0.2 μm cellulose acetate membrane sterile filter bottles Fisher Scientific (Schwerte, Germany) 

3.1.4 Chromatographic characterization and purification of peptides and constructs 

Acetonitrile (HPLC grade) VWR (Radnor, Pennsylvania, USA) 
Trifluoroacetic acid (TFA) (HPLC grade) VWR (Radnor, Pennsylvania, USA) 
Methanol (HPLC grade) VWR (Radnor, Pennsylvania, USA) 
Ultra-pure water for Chromatography Prepared by a water purification system (Merck 

Millipore (Darmstadt, Germany)) 
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3.1.5 Construction of PEG-peptide-antibiotic conjugate  

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) Sigma-Aldrich Chemie (Schnelldorf, Germany) 
N-Hydroxysuccinimide (NHS) Fisher Scientific (Schwerte, Germany) 
4arm-PEG10K-NH2 Sigma-Aldrich Chemie (Schnelldorf, Germany) 
DBCO-PEG4-NHS ester Jena Bioscience (Jena, Germany) 
DBCO-PEG 10 kDa Jena Bioscience (Jena, Germany) 
DMF (water free) Sigma-Aldrich Chemie (Schnelldorf, Germany) 

3.1.6 Hydrogel formulation assays 

3-D Life Maleimide-Dextran thiol-reactive polymer Cellendes GmbH (Tübingen, Germany) 
3-D Life PEG-Link Cellendes GmbH (Tübingen, Germany) 
Fluorescein isothiocyanate–dextran 20 kDa Sigma-Aldrich Chemie (Schnelldorf, Germany) 
Fluorescein isothiocyanate–dextran 40 kDa Sigma-Aldrich Chemie (Schnelldorf, Germany) 

3.1.7 Buffers 

All substances were obtained from Sigma-Aldrich Chemie (Schnelldorf, Germany) 

Buffer system Composition 
Human Matrix Metalloproteinase MMP-8 buffer (pH 6.8-7.0) 200 mM NaCl 
 50 mM Tris-HCl 
 5 mM CaCl2 
 1 μM ZnCl2 
 0.05% Brij 35 
  
Metalloproteinase from Staphylococcus aureus (pH 7.8) 20 mM Tris-HCl 
 5 mM CaCl2 

  
Leucine aminopeptidase buffer (pH 7.0) 50 mM Tris-HCl 
 
 

1 mM CaCl2 
150 mM NaCl 

  
PBS (pH 7.4) 137 mM KCl 

2.69 mM KCl 
4.3 mM Na2HPO4 
1.5 mM KH2PO4 
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3.2 Methods 

All experimental work described in the following was performed by me, except for:  

 MALDI-TOF 

All experiments were planned by me in collaboration with Prof. Dr. Dr. Lorenz Meinel and 

PD Dr. Tessa Lühmann. Sample preparation was performed by me, the technical work was 

done either by Dr. Jennifer Ritzer (peptide analysis) or Dr. Michael Büchner and his team 

(Institute for Organic Chemistry, University of Würzburg) (PEGylated peptides).  

 

 LC-MS/MS analysis 

All strategies were planned by me in collaboration with Prof. Dr. Dr Lorenz Meinel and PD 

Dr. Tessa Lühmann. Sample preparation was undertaken by me, the technical work and 

data analysis was performed by Dr. Jennifer Ritzer, Katharina Dodt, or Johanna Siehler.  

 

 ELISA  

The assay was planned by me in collaboration with Martina Selle and PD Dr. Knut Ohlsen 

(Institute for Molecular Infection Biology (IMIB), University of Würzburg). Bacterial 

supernatants and antibodies were provided by their research group. Experiments were 

performed by me in collaboration with Martina Selle.  
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3.2.1 Peptide synthesis 

Peptides were manually synthesized by Solid Phase Peptide Synthesis (SPPS) using FMOC amino 

acid coupling strategy. The FMOC-protected amino acids were coupled to an acid labile 

Chlorotrityl Chloride resin (CTC – loading 1.0 meq/g) in a 5 molar excess compared to the resins’ 

loading capacity. The resin was swollen by incubating it with DCM at room temperature under 

agitation for at least 30 min. The first amino acid was dissolved in a mixture of DCM and DMF with 

one equivalent of DIPEA and was added to the swollen resin. The coupling reaction was 

incubated under agitation at room temperature for at least 1 h. Afterwards, methanol was added 

in a final concentration of 0.1 mL/g of resin to block eventual remaining free binding sides of the 

resin and again incubated for 15 min. The resin was washed three times with DCM and another 

three times using methanol.  

The FMOC group was cleaved by incubating the sequence with a mixture of piperidine in DMF; 

first at a concentration of 40% (v/v) for 3 min followed by 20% (v/v) for 10 min. The resin was 

washed four times with DMF and the subsequent amino acid was coupled using a 0.2 M solution 

of HBTU in DMF and 500 μL of DIPEA. The reaction was again incubated for at least 1 h under 

agitation at room temperature. Those steps were repeated until the synthesis of the desired 

peptide sequence was completed. For sequence 3g (Table 2), after the cleavage of the last FMOC 

protecting group, 2-azidoacetic acid was coupled overnight in a 3 molar excess in 0.5 M HOBt 

solution in DMF with 80 μL of DIC and 88 μL of DIPEA. The resin was dried by washing it three 

times with DMF and three times using diethyl ether.  

Table 2 – Peptide sequences synthesized in this work. 

Peptide (N-C termini) Identification number Mass Calculated [Da] Mass Identified [Da] 
Cf-GARSNLDEDG  1a 1519 1519.489 
Cf-GVNQHLCGSG 2a 1457 1457.583 
Cf-GLFEKKVYLG 3a 1511 1511.681 
C-PEG6-GLFEKKVYL-C 3b 1639 1639.0 
C-PEG6-GLFEKKVYLG-C 3c 1696 1696.0 
Cf-PEG3-LFEKKVYL-PEG3-C 3d 1908.95 1908.009 
N3-LFEKKVYL (with protect. groups) 3e 1434.35 1433.903  
KVYL-Af 4a 851 851.35 
KVYL 4b 522 522.30 

 

To cleave the peptide from the resin, solutions of TFA in DCM having different concentrations 

were prepared depending on whether the amino acids’ side chain protecting groups should be 

detached or not. The peptide sequences that should have their side chains protected were 

incubated with a 10% (v/v) solution of TFA in DCM, while the ones whose protecting groups 

should be detached were incubated with a 95% (v/v) solution. The incubation was performed 

under agitation for at least 1 h followed by precipitation using ice cooled diethyl ether. The 
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suspension was centrifuged for 5 min at 3000 g (Sigma 3K12 centrifuge, Sigma Laborzentrifugen 

GmbH, Osterode am Harz, Germany), the supernatant was discarded, and the pellet was washed 

three times using diethyl ether. 

3.2.2 Preparative peptide and construct purification 

Peptides and constructs were purified by FPLC on a GE ÄKTA Explorer system (GE Healthcare, 

Chalfont St Giles, UK) with a Jupiter 15u C18 300 A column (21.2 mm internal diameter, 250 mm 

length) (Phenomenex Inc., Torrance, CA), with eluent A being 0.1% (v/v) of TFA in water and 

eluent B being 0.1% (v/v) of TFA in acetonitrile. The purity of each fraction was analyzed by HPLC 

and their correct mass was confirmed by MALDI-MS or LC-MS, respectively. Samples were 

lyophilized later.  

3.2.3 Analytical high performance liquid chromatography (HPLC) 

HPLC analysis was performed using a VWR Hitachi Elite LaChrom HPLC (Autosampler L-2200; 

Pump L-2130; Column Oven L-2300; UV detector L-2400) as well as an Hitachi LaChrom Ultra 

UHPLC system (Autosampler L-2200U; Pump L-2160U; Column Oven L-2300; Diode Array Detector 

L-2455U) (both VWR International GmbH, Darmstadt, Germany). A ZORBAX Eclipse XDB-C18 

column (4.6 mm internal diameter, 150 mm length) (Agilent, Santa Clara, CA) was utilized; the 

mobile phase consisted of eluent A (0.1% (v/v) TFA in water and eluent B (0.1% (v/v) TFA in 

acetonitrile). Column oven temperature was kept at 25 °C and the absorbance was monitored at a 

wavelength of λ = 214 nm, unless specified otherwise.  

3.2.4 Lyophilization  

Lyophilization was carried out utilizing a laboratory freezing dryer (Christ alpha 1-4, Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). After purification, peptide and 

PEGylated samples were put under a nitrogen atmosphere prior to lyophilization in order to 

evaporate any acetonitrile residues in the sample. Samples were stored at –80 °C overnight.  

3.2.5 Dynamic Light Scattering (DLS) 

Particle size distributions of the PEGylated samples were measured using a Delsa™ Nano HC 

Particle Analyzer (Beckman Coulter® Inc., Fullerton, CA, USA) at 25 °C. Each measurement 

consisted of three individual runs comprising 70 accumulations. 1 mL of each individual sample 

was subject to analysis in a disposable cuvette. Values for intensity distribution, hydrodynamic 
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diameter, and polydispersity index (PdI) were obtained and compared to potential aggregates 

formed during incubation.  

3.2.6 Mass spectrometry 

MALDI-MS 

Samples were desalted using ZipTipC18 tips, following the manufacturer’s instructions. Afterwards, 

samples were mixed 1:1 to the appropriate matrixes and applied to the MTP 384 target plate.  

Matrix assisted laser desorption ionization (MALDI)-MS spectra were acquired in linear positive 

mode by using an Autoflex II LRF instrument (Bruker Daltonics, Billerica, USA). Mass spectra were 

calibrated externally using a peptide standard (Bruker Daltonics, Billerica, USA).  

Liquid chromatography–mass spectrometry (LC-MS)  

The LC-MS system from Shimadzu contained a DGU-20A3R degassing unit, a LC20AB liquid 

chromatograph, and a SPD-20A UV/Vis detector (Shimadzu Scientific Instruments, Columbia, 

MD, USA). Mass spectra were obtained with an LC-MS 2020. A Synergi 4u fusion-RP column (150 

x 4.6 mm) (Phenomenex Inc., Torrance, CA) was used, as well as eluent A (0.1% (v/v) TFA in 

water) and eluent B (0.1% (v/v) TFA in methanol) as mobile phases. The detection range was set 

to 60 – 1000 (m/z). A wavelength of λ = 214 nm was used for detection after loading 30 μL of the 

respective sample. The gradient was set as (i) linear gradient from 5 to 90% eluent B in 8 min, (ii) 

flushing at 90% eluent B for 5 min, (iii) linear gradient to 5% eluent B in 1 min, and (iv) rinsing the 

column with 5% of eluent B for 4 min.  

3.2.7 In vitro assays 

Enzymatic digestion of azocasein 

This assay was based on the protocol established by Chavira et al., applying the following 

modifications [140]: 0.1 g of azocasein was added to 20 mL of aureolysin buffer (final 

concentration: 5 mg/mL) and stirred under magnetic agitation for 2 h. The suspension was 

centrifuged for 20 min at 4500 g. The supernatant containing potential peptide residues was 

discarded. The pellet was suspended in the same buffer volume and stirred for another 2 h. A 

stable suspension was formed. 300 μL of substrate was transferred to a 1.5 mL reaction tube 

(Eppendorf GmbH, Hamburg, Germany) and 1 μg of aureolysin or 1μg of trypsin, respectively, was 

added. The mixture was incubated in a ThermoMixer (Eppendorf GmbH, Hamburg, Germany) at 
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37 °C for 1, 2, 3, 4, 6, 8, and 10 h under 1300 rpm of agitation. The reaction was stopped by the 

addition of a solution of 100 μL of 10% trichloroacetic acid (TCA) in appropriate buffer. The 

digested sample was further centrifuged for 10 min at 13000 g and the TCA supernatant was 

subsequently transferred to 700 μL of 525 mM NaOH. Absorption was determined using a plate 

reader (Tecan SpectraMax250, Molecular Devices, CA, USA) applying a wavelength of λ = 

442 nm. A sample without the presence of proteases was used as a negative control. The specific 

activity unit (SAU) was calculated as:  

SAU= 
Absorption [442 nm]

mg ൫enzyme൯*min
 

Cleavage assays by aureolysin 

1 mg of purified lyophilized peptide was diluted into 2 mL of aureolysin buffer, resulting in a final 

concentration of 0.5 mg/mL of the substrate. To analyze the impact of aureolysin concentration 

on peptide cleavage, a logarithmic screening of aureolysin concentration from 10-1 to 104 ng/mL 

was performed, followed by a narrower screening from 3 to 1000 ng/mL. For both concentration 

assays, the samples were incubated under agitation for 1 h at 37 °C. Protease activity was 

interrupted by incubating the sample at 95 °C for 15 min. Afterwards, peptides were again 

incubated under the same conditions as already described for the aureolysin concentration 

which resulted in 50% cleavage of the substrate within 1 h. Samples were taken after 5, 10, 30, 

60, 120, 180, and 360 min. The relative decrease of the PCL main peak was analyzed by RP-HPLC, 

applying a determination wavelength of λ = 214 nm and loading 30 μL of the sample. The 

gradient was set as (i) equilibration of the column at 5% eluent B for 3 min, (ii) linear gradient 

from 5 to 100% eluent B in 32 min, (iii) flushing at 100% eluent B for 2 min, (iv) linear gradient to 

5% eluent B within 4 min, and (v) re-equilibration at initial conditions. 

Cleavage assays by human proteases  

Pro-MMPs (e.g. MMP-8, MMP-1, or MMP-9; adapted to 0.1 mg/mL and > 100.0 mU/mg based on 

the manufacturer certificate if applicable) were activated with 4-aminophenylmercuric acetate 

(APMA) as described before [141]. 1 mg of purified lyophilized peptide was diluted into 2 mL of 

MMP buffer, resulting into a final concentration of 0.5 mg/mL of the substrate. The substrates 

were incubated using 900 ng/mL of different MMPs for 1 h at 37 °C. Enzymatic activity was 

stopped by adding 4 μL of a 250 mM EDTA solution. The relative decrease of PCLs’ main peak was 

analyzed by RP-HPLC as mentioned before.  
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Enzyme-linked immunosorbent assays 

Preparation of a standard curve 

The 96-well ELISA plate was coated overnight with a solution of 1 μg/mL aureolysin in PBS at 

4 °C. The liquid was discarded and the plate was washed three times with PBS-T (PBS + 0.1% 

(w/v) Tween-20). To block any possible remaining binding sites of the plate, a solution of PBS + 

5% BSA was added to each well and incubated for 1 h at 37 °C. The reaction was again washed 

three times with PBS-T. A serial dilution of 1:2 (first dilution 1:100) of the detection antibody (α-

aureolysin) was performed in PBS + 5% BSA. The dilutions were added onto the plate and 

incubated for 1 h at room temperature. The plate was washed three times and incubated with the 

HRP conjugated secondary antibody (diluted 1:10000 in PBS + 5% BSA) at room temperature for 

1 h. After washing the plate three times, the chromogenic substrate was added and incubated for 

15 min, followed by the adding of a stop solution (H2SO4 diluted 1:2 (v/v) in H2O), turning the 

solution from blue to yellow. The quantification was performed using a plate reader and a 

detection wavelength of λ = 450 nm.  

Detection of aureolysin in bacterial supernatants  

Staphylococcus aureus strains 8325, MA12, and Newman (all Δspa) were cultivated in either LB 

medium or fetal bovine serum (FBS) until their stationary growing phase was reached, followed 

by sterile filtration with a 0.22 μm cellulose acetate membrane of the supernatants. Similar to the 

previously described method, the 96-well ELISA plate was coated overnight with the 

supernatants at 4 °C. The liquid was discarded and washed three times with PBS-T (PBS + 0.1% 

(w/v) Tween). To block possible remaining binding sites of the plate, a solution of PBS + 5% BSA 

was added to each well and incubated for 1 h at 37 °C. The reaction was again washed three 

times with PBS-T. The detection antibody was diluted 1:1600 and added to each well. The plate 

was incubated for 1 h at 37 °C, washed three times, and incubated with the HRP conjugated 

secondary antibody (diluted 1:10000 in PBS + 5% BSA) at room temperature for 1 h. After washing 

the plate three times, the chromogenic substrate was added and incubated for 15 min, followed 

by the adding of a stop solution (H2SO4 diluted 1:2 (v/v) in H2O), turning the solution from blue to 

yellow. The quantification was performed using a plate reader and a detection wavelength of λ = 

450 nm.  

Aminopeptidase (AP) assays  

1 mg of purified lyophilized peptide was diluted into 2 mL of AP-buffer, resulting into a final 

concentration of 0.5 mg/mL of substrate. L-Leucine-p-nitroanilide was used as control substrate. 
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To analyze the impact of AP concentration on peptide cleavage, AP was added at concentrations 

of 0 (negative control), 0.18, 0.36, 0.72, 1.8, and 3.6 μg/mL, and the samples were shaken at 

37 °C for 1 h. For analysis of the impact of AP incubation time, AP concentration of 0.72 μg/mL 

was incubated with the substrate under the same conditions and analyzed after 10 and 20 min, 

and after 1, 2, 3, and 4 h. Enzymatic activity was stopped by incubating the samples at 95 °C for 

15 min. The relative decrease of the PCL main peak was analyzed by RP-HPLC as described 

before. 

Determination of AP concentration in human plasma  

The determination of AP concentration in human plasma samples was performed based on a 

protocol established by Pfleiderer [142]. The AP specific substrate L-Leucine-p-nitroanilide was 

dissolved in AP buffer (concentration 0.5 mg/mL) obtained from the Institute for Transfusion 

Medicine and Haemotherapy, Würzburg. Linearity was observed by serially diluting AP from 

porcine kidney dissolved in AP and adding it to the substrate. After incubating the plate at 37 °C 

for 30 min, a plate reader set at a wavelength of λ = 405 nm was used for absorbance 

measurement. The concentration for each plasma sample was calculated from the standard curve 

using linear regression analysis. 

3.2.8 Hydrogel assays  

Fluorophore diffusion assay 

The diffusion assay was based on a protocol established by Vigen et al. [143] with some 

modifications. Each system was prepared by incorporating 7 μg of each fluorophore in 50 μL 

hydrogel, with polymeric concentrations varying from 5 to 10 mM. Hydrogels were incubated in 

100 μL PBS, the supernatant was collected and replaced with fresh PBS after 1, 3, 6, 24, 48, 72, 

168, 336, and 504 h after polymerization. The supernatants from each time point and the exact 

initial masses were determined on an LS 50 B fluorescence spectrophotometer (Perkin Elmer, 

Waltham, USA) at an excitation wavelength of λ = 490 nm and an emission wavelength of 

λ = 514 nm for FITC-dextran and λ = 489 nm (excitation) and λ = 509 nm (emission) for eGFP, 

respectively. The fluorophore mass in each sample was determined in comparison to a standard 

curve in PBS. Rate constants K were determined by fitting the release profiles to a first-order 

exponential approximation. Each assay was performed in triplicate.  
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Hydrogel incubation with aureolysin  

Hydrogels were prepared as described above (formulations described in Table 3) and incubated 

in 100 μL of aureolysin buffer containing 0.5 μg of aureolysin. The supernatant was collected and 

replaced with fresh buffer and enzyme every 30 min for a total of 4 h. Samples without the 

addition of aureolysin were used as a negative control. The supernatants from each time point 

and the exact initial masses were measured with an LS 50 B fluorescence spectrophotometer at 

an excitation wavelength of λ = 489 nm an emission wavelength of λ = 509 nm for GFP. The 

mass of fluorophore in each sample was determined by comparison to a standard curve in PBS. 

Rate constants, K, were determined by fitting release profiles to a first-order exponential 

approximation. Each assay was performed in triplicate. 

Table 3 – Hydrogel formulations.  

Formulation ID Polymer 
concentration [mM] 

Fluorophore Peptide:thiol-PEG 
ratio 

Peptide isometry 

5FD20 5 FITC-Dex 20kDa 0:10 - 
10FD20 10 FITC-Dex 20kDa 0:10 - 
5FD40 5 FITC-Dex 40kDa 0:10 - 
10FD40 10 FITC-Dex 40kDa 0:10 - 
5GFP 5 GFP 0:10 - 
10GFP 10 GFP 0:10 - 
5GFP10L 5 GFP 1:9 L 
5GFP10D 5 GFP 1:9 D 
10GFP10L 10 GFP 1:9 L 
10GFP10D 10 GFP 1:9 D 
5GFP20L 5 GFP 2:8 L 
5GFP20D 5 GFP 2:8 D 
10GFP20L 10 GFP 2:8 L 
10GFP20D 10 GFP 2:8 D 
5GFP30L 5 GFP 3:7 L 
5GFP30D 5 GFP 3:7 D 
10GFP30L 10 GFP 3:7 L 
10GFP30D 10 GFP 3:7 D 
3CfL 3 Cf 1:6 L 

 

3.2.9 Conjugation reactions 

EDC/NHS reaction 

The coupling of a carboxyl group to an amino group was performed based on the protocol 

described by Sakurai et al. [144]. Briefly, the activation of the carboxylic group at the C-terminus 

of the peptide was performed by mixing equal volumes of side-chain protected peptide (250 mM 

in DMF), EDC (250 mM in DMF), and NHS (250 mM in DMF), and incubating it under shaking at 

25 °C for 1 h. The NHS ester was added in two portions to a solution containing the amine 

molecule (200 mM in DMF) and the mixture was incubated overnight under the same conditions 

as described above. The resulting product was analyzed by MALDI-TOF.   
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HATU/HOBt coupling  

Boc alanine, 2 equimolars of DIPEA, and 1.2 equimolar of a HATU: HOBt mixture (1:0.2 proportion) 

were stirred in THF at room temperature for 10 min. 1.1 equimolar of CHD. HCl with 1 equimolar of 

DIPEA was dissolved in THF and added dropwise into the mixture. The solution was left stirring 

overnight at room temperature. For workup, the reaction was diluted in 80 mL of ethyl acetate 

and washed with brine four times. Sodium sulphate was added and the suspension was filtered 

using glass wool. The organic phase was removed in vacuo using a rotary evaporator (Heidolph, 

Schwabach, Germany). 

Copper free click chemistry  

The respective azide containing peptide was dissolved in 50 μL of DMSO and diluted to 1.0 mL 

with PBS pH 7.4. The solution was added to DBCO functionalized PEG (Molecular weight: 10 kDA) 

in a molar ratio of 1:1.2 and incubated for 48 h at 25 °C while shaking. The product was analyzed 

by means of MALDI-MS and UHPLC. 

3.2.10 Statistical analysis  

All data are reported as mean ± standard deviation of at least three independent measurements, 

unless specified otherwise. Statistical significance was calculated by one-way ANOVA with an 

overall significance level of 0.05 using Minitab® version 17.2.1.  
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4. Results 

4.1 Search for the best cleavable linker 

4.1.1 Peptide synthesis and purification  

The first step was to find a suitable peptide sequence being suitable as a cleavable linker. The 

linker should be cleaved only by the bacterial virulence protease and not by human ones. Thus, it 

is inevitable that the peptide sequence constitutes a natural substrate of aureolysin. We entered 

the MEROPS Sanger Peptidase database in order to find a suitable candidate 

(https://www.ebi.ac.uk/merops). MEROPS is an on-line database for peptidases and their 

inhibitors [145]. The three sequences which were identified as potential candidates for cleavable 

linkers are depicted in Table 4. 

Table 4 – Peptide sequences as candidates for aureolysin dependent cleavable linker. 

Substrate P4’ P3’ P2’ P1’ P1 P2 P3 P4 Reference 
Complement 
C3 alpha chain 

A R S N L D E D [51] 

Insulin V N Q H L C G S [146] 
Plasminogen L F E K K V Y L [147] 

 

Sequences 1a, 2a, and 3a (Table 2) were synthesized by Solid Phase Peptide Synthesis, adding 

glycine as a spacer on each side and a carboxyfluorescein to the N-terminus, acting as a 

prototype for the potential antibiotic linked to the peptide chain.  

The successful synthesis of each sequence was confirmed by MALDI-TOF (Figures 5-7). They were 

purified by Äkta using a mixture of H2O + 0.1% TFA as eluent A and ACN + 0.1% TFA as eluent B. A 

wavelength of 214 nm was applied.  
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Figure 34 – Mass spectrum of L-thiol-plasminogen peptide sequence (ID 3b) 
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After 15 minutes, it is possible to observe the masses of both resulting fragments and the free 

fluorophore. After 30 minutes, almost all intermediate fragments were digested by the 

aminopeptidase and only the mass corresponding to Af is found (Figure 51).  

The rapid and complete release of the fluorophore, which is serving as a substitute for potential 

antibiotics, is an indicative of success for using aminopeptidase as a secondary bioresponsive 

tool. The first cleavage of the intact peptide linker would indicate the presence of virulent S. 

aureus, therefore the full release of the antibiotic by the secondary bioresponsive action of 

plasmatic aminopeptidases should occur as quickly as possible. 

After fully characterizing the kinetic parameters for cleavage of the designed linker as well as the 

complete release of the antibiotic prototype, our next and final step was to find a suitable 

formulation and a polymer carrier or matrix, respectively, to accommodate our release system. 

 

4.5 Construction of a PEGylated chelocardin release system  

4.5.1 Synthesis of a CHD linker 

Having the linker fully characterized as a bioresponsive release strategy, the next step was to 

design a suitable carrier in order to allow a systemic distribution of the compound and to have a 

broader field of application for fighting possible opportunistic infections. Besides, we wanted to 

identify a distinct antibiotic during this step so that the system could be tested in in vitro assays. 

The tetracycline derivative chelocardin was chosen and synthesized at the Helmholtz Intitute for 

Pharmaceutic Research (HIPS) (Saarbrücken, Germany). The molecule carries a primary amino 

group at the C4 position which is necessary for sucessfully achieving a coupling reaction to our 

peptide linker.  

In general, a conjugation reaction between an amino group and a carboxygroup is not specific 

and any amino group can conjugate to any carboxylgroup present in a particular system. 

Therefore, we needed to change the synthesis strategy of the peptide linker since our chosen 

amino acid sequence contains side chains carrying both carboxyl group (e.g., glutamic acid) and 

amino groups (e.g., lysine). The peptide sequence was synthesized according to the conventional 

protocol using the CTC resin; however, the cleavage off from the resin was performed using only 

1% (v/v) TFA in DCM. This would allow the protective groups of the linker to remain intact during 

the conjugation reaction to chelocardin, which would then only attach to the free C-terminus. 

After successful coupling, the peptide would be incubated in 90% TFA in DCM (v/v) in order to 

detach the protecting groups (Figure 52).  
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5. Discussion and outlook  

We designed a bioresponsive antibiotic release system which is solely triggered by the presence 

of virulent proteases. The main focus of the developed strategy was upon the cleavable linker, a 

peptide being sensitive towards the target enzymes. For our purpose it was imperative that no 

other human protease could cleave the sequence, assuring that antibiotics would only be 

released in case of a bacterial infection and thus guaranteeing the specificity of the system. After 

searching for possible prototypes to be used as those linkers, we synthesized three different 

sequences obtained from natural substrates for aureolysin, i.e., C3 complement protein, insulin, 

and plasminogen [51, 146, 147]. We incubated each sequence not only with aureolysin, but also 

with various types of human metalloproteinases, mostly known as MMPs. MMPs are a vast family 

of more than 20 enzymes usually involved in tissue remodeling and wound healing [157]. For that 

reason, their expression rates usually increase significantly after surgical procedures in 

comparison to healthy individuals [148, 158-160]. The use of a bioresponsive antibiotic release 

system as a prophylactic in postoperative procedures, for example, could be highly influenced by 

the enhanced levels of MMPs.  

By incubating the three linker prototypes with aureolysin, all sequences were cleaved as 

expected, since they were obtained from natural aureolysin substrates (Figure 18). Sequence 2a, 

obtained from the B chain of insulin, was almost completely cleaved after one hour of incubation 

with aureolysin, whereas the C3 complement sequence presented a cleavage by this enzyme of 

about 65% and the plasminogen originated sequence of only 35%. However, not all sequences 

were insensitive towards the tested human proteinases. MMP-8 and MMP-1, respectively, were 

able to cleave the insulin sequence, whereas the C3 complement was also cleaved by MMP-1. 

Rozanov et al. described the cleavage of C3b complement protein by MMP-1 during metastatic 

neoplasms [161, 162]. None of the linkers were cleaved by MMP-9 and MMP-13.  

Further characterization of how efficiently aureolysin would cleave the designed linker was 

performed in order to better understand the behavior of this enzyme, since this is the main 

component of the developed release strategy. Azocasein digestion assays have been used for 

almost 70 years for the determination and characterization of proteolytic activity. The digestion of 

a suspension with those chromophores releases acid soluble peptides producing a reddish to 

orange color of the solution [163]. Trypsin was used for comparison since its activity towards 

azocasein is already well described in literature [164]. Aureolysin presented a better activity and 

longer duration when compared to trypsin. It is known that due to their role in infections, 

bacterial proteases serving as virulence factors tend to have a more aggressive activity in 

comparison to other proteases [165, 166]. While this is concerning regarding a staphylococcal 
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infection, we use this prolonged activity in our favor as the main trigger for the release of 

antibiotics.  

One encountered challenge in this project was to establish and quantify the range of aureolysin 

amount expressed during a bacterial infection. Even though the transcription of the aur gene 

being responsible for aureolysin expression, is much higher in virulent S. aureus strains when 

compared to non-virulent ones [167, 168], the real concentration range is still unknown. The 

indirect ELISA method is known for a more specific and sensible detection of antigens in 

comparison to the traditional direct method [169]. In order to validate this method with regard to 

a specific detection of aureolysin and to establish the optimal concentration of the primary 

antibody known as α-aureolysin, we first performed this assay using purchased aureolysin as the 

antigen. By reading the plates at λ = 450 nm, we observed a good absorption showing that the 

use of ELISA is suitable for the detection and quantification of aureolysin in bacterial 

supernatants (Figure 22). The chosen staphylococcal strains, whose supernatants were used for 

the following ELISA assays, were mutant strains of ATCC strains 8325, MA12, and Newman in 

which their spa gene was deleted. This gene is responsible for another virulence factor of 

Staphylococcus aureus named protein A, interfering during ELISA by binding to the Fc region of 

most mammalian IgG used as the capturing antibodies in these assays [170, 171]. Bacterial 

cultures were sterile filtered once their growth reached the stationary phase, in which there is a 

maximal expression of aureolysin [167, 168].  

However, by initially trying to detect the presence of aureolysin in S. aureus strains cultivated in 

LB medium, no absorption was obtained. It was hypothesized that since aureolysin is a virulence 

factor for S. aureus, it is only expressed when bacteria encounter a hostile environment and 

stressful situation, thus immunological methods for protein quantification are not able to detect 

it in a normal bacterial culture [172, 173]. For this reason, we repeated the assay using FBS as 

culture medium to mimic the usual environment and available nutrients during a systemic 

infection and again, no signal was observed. In order to obtain a real detection and subsequent 

quantification of aureolysin during infections, it would be necessary to obtain abscess and 

plasma samples from infected patients or animals. The mimicking of hostile conditions for the 

proliferation of microorganisms in vitro does not always provide a reliable model for simulating 

the mechanisms of the expression of their virulence factors.  

Since we could not obtain a real aureolysin concentration range during staphylococcal infections, 

we performed a logarithmic screening of enzymatic concentration to determine the range of its 

activity. The results showed that aureolysin already presents a good proteolytic activity in lower 

concentration levels (Figure 24). The range in which aureolysin cleaves from 0 to 100% of the 
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substrate was defined as 101 to 103 ng/mL, respectively. A further assay within this measured 

concentration range on the cleavage of the synthesized linker provided some more specific 

information of the activity range (Figure 25). Aureolysin was able to cleave 100% of the present 

substrate within one hour at a concentration of 100 ng/mL and the lowest concentration tested in 

which aureolysin presented any activity was 10 ng/mL. The level of 50 ng/mL was chosen as the 

concentration to analyze the cleavage over time since in this concentration the enzyme was able 

to cleave about 50% from the original sequence in the first assay. After two hours of incubation, 

already 100% of the sequence was cleaved, indicating a rapid and efficient cleavage by the target 

protease. Since the presence of aureolysin indicates a virulent and aggressive infection by S. 

aureus, it is important that the antibiotic release is triggered very rapidly with the concentration 

threshold for the linker cleavage being as low as possible. Xiong et al. presented a vancomycin 

release nanogel system triggered by 0.5 and 1.0 mg/mL Pseudomonas cepacia lipase in which a 

maximum of 80% cumulative release was obtained after an incubation of 10 hours [136], whereas 

the peptide sequences introduced between block polymers for delivery of antineoplastic 

antibody was 90% degraded after 3 days incubation with lysosomal enzymecathepsin B [174]. 

Our designed system showed very good rates of cleavage in a few hours using low concentrations 

of aureolysin only.  

For our first formulation attempt, we used a commercially available PVA hydrogel matrix 

functionalized with maleimide groups. The choice of using a PVA based polymer matrix for the 

hydrogel system is based on the fact that these are stable against enzymatic activity [175]. 

Together with thiol containing linear PEGs, we used the aureolysin sensitive peptide sequence as 

crosslinkers. Those linkers were synthesized with cysteine at each terminus in order to provide 

the thiol group necessary for the conjugation with maleimide group at the PVA matrix. An 

antimicrobial component would be physically incorporated into the hydrogel pores, and during 

an infection caused by S. aureus the expressed aureolysin would cleave those sequences, 

releasing the compound entrapped in the hydrogel (Figure 29). For that purpose we used three 

different fluorophores as prototypes for active substances: linear FITC-Dextran having a molecular 

weight of 20 and 40 kDa, respectively, as well as a glomerular GFP (molecular weight: 27.2 kDa).  

The first requirement is to establish a suitable matrix concentration in which the fluorophore 

would not diffuse into the medium. For that purpose we formulated hydrogels with two different 

matrix concentrations of 5 and 10 mM and determined the diffusion of fluorophores over time. All 

formulations containing FITC-Dex were not able to entrap the fluorophore for a longer time, which 

was completely diffused within a few hours. This could be explained due to the elongated shape 

of those compounds, which would allow a better diffusion throughout the pores of the hydrogel. 

On the other hand, the glomerular shape of GFP helped to entrap them in the pores and only 40 
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and 20% diffused after three weeks for the 5 and 10 mM matrix concentration formulations, 

respectively (Figure 32). However, the next generation of formulations containing cleavable 

linkers presented similar patterns of fluorophore release when the samples (incubation with 

aureolysin; L-amino acid sequence) were compared to their respective negative controls (without 

aureolysin incubation and/or using the D-amino acid sequence). 80 to 100% of the fluorophore 

was diffused for each sample and their negative controls in the 5 mM hydrogel matrix 

formulations in two days, whereas the fractions of 10 mM hydrogels only reached a maximum of 

10% during the same period of time (Figure 38). The only formulation whose release by 

incubation with aureolysin was faster when compared to the respective negative controls was 

10GFP30. However, the release rate was still too low to be considered as an effective antibiotic 

release system. It was hypothesized that the 5 mM formulations were not stiff enough to prevent 

the fluorophore of passively diffusing through the pores to the medium, whereas the 10 mM 

samples were too densely crosslinked for a bacterial protease being capable of penetrating 

inside the hydrogel. We did not perform any further investigations to confirm this hypothesis.  

Nevertheless, we wanted to check whether the covalent binding of a linker-antibiotic complex to 

the PVA matrix would be a valid alternative for the strategy of using hydrogels as our carrier 

polymer. As a proof of concept, we synthesized a linker carrying cysteine at the C-terminus, thus 

providing a thiol group necessary for the conjugation reaction with the maleimide groups present 

at the PVA backbone as well as carboxyfluorescein as an antibiotic model compound coupled to 

the N-terminus (Figure 39). The hydrogel was loosely formulated so that aureolysin could easily 

penetrate inside the system and reach the cleavable linkers attached to the PVA matrix. The 

proteolytic assays regarding the incubation of the free linker as well as the conjugates to the 

polymer showed a common peak at 18.4 min in the respective chromatograms indicating that the 

redesigned strategy of conjugating both linker and antibiotic to the polymer could be applied to a 

bioresponsive antibiotic delivery system. Tanihara et al. presented a similar strategy for 

antibiotic release during infections in which a peptide linker was attached to the insoluble PVA 

matrix by one terminus and gentamycin coupled to the other terminus, being released in the 

presence of thrombin [176]. This enzyme is increasingly expressed infected wounds by 

Staphylococcus aureus [177]; however, its presence is not exclusive under those situations, and 

therefore compromises the selectivity of the circumstances in which the antimicrobial drug is 

released. A system based on a responsiveness triggered by a particular bacterial virulence factor 

only guarantees an action with the presence of the targeted pathogens.  

The conjugation of the antibiotic to the peptide linker has an obstacle which needs to be 

overcome: after the proteolytic cleavage by aureolysin, the antibiotic would still be bound 

covalently to some amino acid artefacts. This would most certainly influence the antimicrobial 
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activity of the compound. For example, antibiotics from the tetracycline family inhibiting protein 

synthesis by blocking the attachment of charged aminoacyl-tRNA to the A site on the ribosome by 

binding to the 30S subunit of microbial ribosomes [77, 178] need to pass several biomembranes: 

Thus, the presence of residual amino acids could prevent them from actually reaching the 

respective target at all [179].  

Once again we apply a biological tool for the degradation of those residual amino acids and the 

subsequent release of our antibiotic. Aminopeptidase belongs to a class of proteases which 

cleaves amino acids from the N-terminus of peptides and proteins, respectively [139]. These 

enzymes, being widely distributed in plasma, would cleave the residual amino acids linked to the 

antibiotic until its complete release. Ritzer et al. used a similar strategy for the release of bitter 

substances in bioresponsive diagnostic systems of peri-implant diseases [135]. For that purpose 

we synthesized the residual amino acid sequence KVYL resulting after cleavage by aureolysin and 

coupled the C-terminus to the primary amino group of aminofluorescein, again serving as a 

model for any antibiotic compound. This reaction was performed by EDC/NHS in which the 

carboxyl group is activated by carbodiimide and subsequently bound to the free amine [180].  

Estimating the concentration range in which aminopeptidases are present in plasma is important 

to determine whether the release would take place under those conditions. Tanihara described 

that aminopeptidase activity in infected plasma was 1.4 times higher when compared to non-

infected samples; however, no distinct concentration for neither of both samples was determined 

[176]. We measured the aminopeptidase plasmatic concentrations from healthy plasma samples 

to simulate a “worst case scenario” in which the levels would not be yet increased by the 

emergence of an infection. With the obtained range from 0.72 to 3.6 μg/mL (Figure 48), we 

investigated the effect of aminopeptidase concentration starting from the highest concentration 

and going even below the lowest measured point. The degradation of residual amino acids 

showed to be the very efficient. Already the concentration of 0.72 μg/mL of aminopeptidase was 

able to completely release 50% of the fluorophore. With this value we performed a release assay 

over time and after two hours, all residual amino acids were degraded (Figure 49). For the 

average concentration of 1.7 μg/mL, all fluorophores were released after only 30 minutes of 

incubation (Figure 50).  

The proteolytic cleavage of the peptide linker by aureolysin indicates the presence of virulent 

Staphylococcus aureus. Therefore, it is essential that the subsequent degradation of residual 

amino acids and the release of the antimicrobial agent is accomplished as quickly as possible to 

fight the infection. The obtained results present an efficient activity for aminopeptidase, even 

when working with the presumption of the lowest plasmatic levels. 
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The final phase of this work was the construction of a PEG-linker-antibiotic system. The choice of 

using a linear PEG polymer as the carrier instead of continuing with the PVA hydrogel matrix was 

based on the fact that since the previous hydrogel formulation was primary developed for 3D 

imaging of cell cultures, it was not suitable for an intravenous application and therefore could not 

be used for systemic drug delivery. A systemic distribution is essential when aiming to fight 

possible post-operative infections.  

For already planned in vitro and in vivo assays for release testing, we designed this system by not 

incorporating fluorophores anymore, but an antimicrobial substance instead. For this purpose, 

we chose the tetracycline like antibiotic chelocardin (Figure 3) which was synthesized at the 

Helmholtz Institute for Pharmaceutical Research in Saarbrücken, Germany. CHD presents a MIC 

value of 4 μg/mL against MRSA and is known for its dual mechanism of action [82]. The primary 

amino group located at C4 is strategic for being coupled with the C-terminus of the linker. 

However, the use of EDC and NHS as amide coupling reagents often leads to a racemization of 

the amine bond [181-183]. EpiCHD does not present antimicrobial activity and besides, some 

epimers of tetracycline present some level of hepatotoxicity [184, 185]. Even though there is no 

data available for EpiCHD hepatotoxicity, its formation should be avoided. Thus, a solution was 

to perform a conjugation using HATU as the coupling agent and HOBt as additive which 

significantly slows down racemization [186]. In addition, another obstacle is the unspecific 

nature of such reactions. An amide can be formed deliberately by coupling any primary amino- 

and carboxyl group. Thus, since the peptide linker contained both groups in its amino acid side 

chains, the coupling was performed with the sequence still having their protecting groups 

attached. This is also true for antibiotics containing more than one primary amino groups or other 

reactive moieties. The resulted coupling product was poorly water soluble which was expected 

since all protecting groups are hydrophobic. However, after the incubation with TFA, the acid 

labile groups were detached and the linker solubility could be increased (Figure 57).  

Another change of strategy was regarding the coupling of the linker-CHD to the chosen polymer. 

Even though thiol-maleimide is considered to trigger a specific reaction, maleimide groups can 

favor a reaction with primary amines like lysine side chains over thiol [187]. Since we had lysine 

integrated in our linker, we decided to perform a copper free click reaction instead. For that 

reason, the N-terminus of the linker was functionalized with azidoacetic acid. This provides an 

azido group for the click reaction which is integrated to the peptide backbone. The very specific 

bioorthogonal reaction between the azido group and cyclooctine has the advantage of not 

needing copper as a catalyst and therefore eliminating a relevant cytotoxicity factor [154]. For that 

purpose, we used a linear 10 kDa PEG polymer modified with a DBCO group. Since the chosen 

polymer does not present a specific mass but instead possesses a polydisperse distribution 
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pattern [188], the mass shift to around 11500 m/z observed by MALDI was the indicative for the 

successful conjugation (Figure 60). Besides, during the purification using ÄKTA system, different 

wavelengths were used and the collected fractions projected peaks obtained at 214 and 307 nm, 

corresponding to the peptide linker and DBCO groups, respectively.  

By performing the established cleavage assay with the PEGylated linker, we observe a similar 

cleavage rate when compared to the free linker. 60% of the initial sequence was cleaved after 

two hours of incubation. This indicates that the PEGylation does not have any influence over 

aureolysin activity. The PEGylation of peptide substrates was already shown to have a positive 

effect on enzymatic proteolytic activity since it improves their solubility and thus increases their 

susceptibility [189-191].  

However, since the chosen PEG polymer only possesses one DBCO group, it provides a very low 

loading capacity of only one linker per polymer. In order to optimize the antibiotic loading, we 

applied a 4-armed PEG with a similar molecular weight of 10 kDa. Since there are no 

commercially available multi-armed PEG polymers functionalized with DBCO, we constructed an 

intermediate polymer by conjugating a DBCO containing spacer to the multi-armed PEG. This four-

armed PEG system contained a free primary amino group at each side chain and was linked to a 

spacer constituted of one NHS activated carboxyl group at one terminus, followed by four units of 

PEG and finished with a DBCO group at the other terminus. After the expected mass shift for the 

polydisperse system to around 12000 m/z (observed by MALDI-MS), we once again tried to click 

the linker-CHD to the new polymer construct after the already successfully performed protocol. 

However, it was not possible to click the linker-CHD system to the new construct using 

conventional protocols. This could be due to the amphiphilic nature of the intermediate polymer; 

since the PEG moiety is highly hydrophilic while the DBCO has a strong hydrophobicity. The 

construct could form micellar structures in aqueous solutions; hence, the DBCO groups would 

not be available to perform a click reaction with the azido group from the linker.  

A second click attempt was performed in a mixture of 70% (v/v) THF in PBS at 45 °C. This time, a 

shift to around 16800 m/z was observed, indicating an average loading of 3.4 linkers per PEG 

molecule (Figure 66). However, aureolysin was not able to cleave the linker and provide the 

antibiotic release, even with longer incubation times and higher protease concentration (Figure 

67). Once again it was hypothesized that the system would form aggregates with the linker 

remaining entrapped in the core and not available for proteolytic cleavage by the bacterial 

enzyme. To investigate this theory, we analyzed the size distribution and polydispersity of multi 

armed and linear PEGylated systems in buffer by DLS (Figure 68). The PdI is a parameter to 

characterize the size distribution width of a particle collective. In a scale from 0 to 1, low PdI 

values such as 0.1 represent narrow size distribution whereas higher values indicate 
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polydispersity and particle aggregation [192]. Both PEG systems are polydisperse systems, thus it 

was expected that none of the samples would present a very low PdI. However, the linear 

PEGylated construct was still able to present a PdI below 0.2, thus not indicating the presence of 

aggregates in solution. The PdI value for the multi-armed PEG was above 0.6 and the formation of 

aggregates could be assumed. The aggregation of the PEGylated release systems explains the 

low release profile observed after aureolysin incubation. The strategic approach of increasing the 

antibiotic release per polymer should be followed by a formulation study to prevent such 

aggregation in physiological conditions.  

In this work, we were able to successfully develop the concept of a bioresponsive antibiotic 

release system triggered by aureolysin. This bacterial protease is a potent virulence factor only 

expressed when S. aureus reaches a pathogenic state. The novelty of this profile guarantees 

maximum specificity in which the antibiotic would only be released during an infection and not 

caused by any cross signaling coming from human or symbiotic bacterial biomolecules. It is of 

extreme importance that antibiotic therapy is applied only when necessary to avoid the 

emergence of new resistant strains and the appearance of side effects. Our release system goes 

one step beyond and releases the antibiotic only when it is really necessary. This would be 

extremely useful as a prophylactic in postoperative procedures, in which there is a high risk of 

occurrence of an opportunistic infection. The linker was proven to be sensitive towards very low 

enzymatic concentrations in comparison to similar developed systems, exhibiting a very fast 

release rate. The same is true for the second release component, the human protease class of 

aminopeptidases. By incubating the enzyme within the measured concentrations, the full release 

of antibiotic was achieved after only a few minutes. These features are positive since we expect a 

rapid response in case of an infection. Smart, specific, and sensitive bioresponsive delivery 

systems are the next generation in drug release. It is however necessary to further investigate the 

antibacterial effect of the release system in bacterial culture as well as in infected animal 

models. The loading is also an asset to be considered, since the stable formulation only presents 

a ratio of one antibiotic per polymer. Nevertheless, the applications of the concept could be 

extrapolated to other infections, only by adapting and tailoring the cleavable linker to the specific 

need.  
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6. Summary 

A major problem regarding public health is the emergence of antibiotic resistant bacterial strains, 

especially methicillin resistant Staphylococcus aureus (MRSA). This is mainly attributed to the 

unnecessary overuse of antimicrobial drugs by patients; however, one aspect that is often 

neglected is their untargeted mechanism of action, affecting not only the infection itself but also 

commensal bacteria which are often opportunistic pathogens causing many diseases as well. 

Therefore, our goal was to develop a bioresponsive antibiotic delivery system triggered by 

virulence factors. The designed system is comprised of a polymer to enhance its pharmacokinetic 

profile, a peptide cleavable linker, and the antibiotic agent itself. The bacterial protease 

aureolysin which is expressed by S. aureus during infections would cleave the linker and partially 

release the antibiotic which would be still attached to a remaining tetrapeptide. These would be 

cleaved by a group of proteases naturally present in plasma called aminopeptidases, finally 

releasing the compound.  

In the first part of this project, we searched for a suitable sequence to serve as a cleavable linker. 

It should be sensitive towards the target bacterial protease but not be cleaved by any human 

enzymes to guarantee the specificity of the system. Therefore, we synthesized three peptide 

sequences via Solid Phase Peptide Synthesis and incubated them with aureolysin as well as with 

many human matrix Metalloproteases. The analysis and quantification of enzymatic activity was 

monitored chromatographically (RP-HPLC). The plasminogen originated sequence was chosen 

since it was not sensitive towards MMPs, but cleaved by aureolysin.  

In the second part, we tried to incorporate the chosen peptide sequences as crosslinkers in 

hydrogel formulations. The purpose was to physically incorporate the antibiotic within the 

hydrogel, which would be released by the cleavage of those sequences and the consequent 

loosening the hydrogel net. For that purpose we used a commercially available hydrogel kit with a 

PVA matrix modified with maleimide, which allows a conjugation reaction with thiol 

functionalized crosslinkers. Three fluorophores were chosen to serve as antibiotic models and a 

diffusion assay was performed. Only the glomerular structured Green Fluorescent Protein (GFP) 

presented a low diffusion rate, thus the aureolysin release assays were performed only using this 

prototype. Assays showed that with a low hydrogel polymer concentration, the fluorophore either 

quickly diffused into the medium or was not released at all. The physical incorporation of the 

antibiotic within the hydrogel pores was therefore abolished as a suitable release approach. For 

a second attempt, we covalently bound a fluorophore to the linker, which was conjugated to the 

hydrogel matrix. The incubation with aureolysin and subsequent RP-HPLC analysis showed a 

peak with the same retention time correspondent to the fragment product after cleavage of the 
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free linker. This is a proof that the concept of linking the peptide sequence to the antibiotic is a 

promising strategy for its bioresponsive release.  

Within the third part of this study, we analyzed the degradation of the resulted fragment after 

aureolysin activity and subsequent full release of the antibiotic by human aminopeptidases. We 

determined the concentration of those enzymes in human plasma and synthesized the fragment 

by conjugating the tetrapeptide sequence to aminofluorescein via EDC/NHS reaction. By 

incubating the construct with the lowest aminopeptidase concentration measured in plasma, the 

fluorophore was completely released within two hours, showing the efficacy of these enzymes as 

bioresponsive agents.  

The last part was the construction of the PEGylated linker-antibiotic. For this purpose we chose 

the tetracycline like antibiotic chelocardin (CHD) as our prototype. The conjugation of the linker-

CHD to the polymer was performed by copper free click chemistry. The cleavage rate of the linker 

by aureolysin was very similar to the one obtained for the free peptide, indicating that the 

PEGylation does not interfere on the enzymatic activity. However, by trying to increase the 

loading ratio of chelocardin onto the polymer, we observed a very low cleavage rate for the 

system, indicating the formation of aggregates by those constructs.  

The designed system has proved to be a smart strategy for the delivery on demand of antibiotics 

in which the drug is only released by the presence of S. aureus during their virulent state.  
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7. Zusammenfassung  

Ein weltweites Problem des Gesundheitswesens ist die Entstehung von antibiotikaresistenten 

Bakterienstämmen, besonders Methicillin-resistenter Staphylococcus aureus (MRSA). Eine 

wichtige Ursache für Resistenzentwicklungen ist die unüberlegte Verschreibung von Antibiotika; 

allerdings das breite Wirkspektrum der meisten Substanzen ist ein stets vernachlässigter Aspekt. 

Dies betrifft nicht nur die Pathogene selbst, sondern auch die bakterielle Mikroflora des 

Patienten, die opportunistische Pathogene darstellen und in machen Fallen ebenfalls 

verschiedene Erkrankungen hervorrufen können. Unser Ziel ist die Entwicklung eines 

bioresponsiven Freisetzungssystems für Antibiotika. Das System besteht aus einem Polymer zur 

Optimierung der Pharmakokinetik, einem Peptidlinker sowie dem eigentlichen Antibiotikum. Die 

bakterielle Protease Aureolysin wird von S. aureus exprimiert, sobald sich das Bakterium in 

seinem virulenten Zustand befindet. Das Enzym schneidet den Linker, wodurch das Antibiotikum 

zum Teil freigesetzt wird. Da es noch an Aminosäureartefakte gebunden ist, muss es im 

Anschluss durch eine Aminopeptidase, einer Gruppe von Exoproteasen des humanen Plasmas, 

abgespalten werden.  

Die erste Phase des Projektes war die Suche nach einer passenden Peptidsequenz, die als Linker 

geeignet ist. Diese soll nur durch die Zielprotease und nicht durch andere humane Proteasen 

geschnitten werden, um die Spezifizität des Systems zu gewährleisten. Es wurden drei 

Sequenzen ausgewählt und mittels Festphasen-Peptidsynthese hergestellt. Diese wurden mit 

Aureolysin sowie humanen Matrix-Metalloproteasen (MMP) inkubiert; die Produkte wurden 

chromatographisch (RP-HPLC) charakterisiert und die enzymatische Aktivität bestimmt. Die von 

Plasminogen abgeleitete Sequenz wurde von keiner der Matrix-Metalloproteasen geschnitten, 

wohl aber von Aureolysin. Eine ausführliche Analyse des Aureolysin-Verdaus zeigte, dass der 

Linker innerhalb weniger Stunden komplett geschnitten wird. 

In der zweiten Phase wurde die Peptidsequenz als Crosslinker in verschiedene Hydrogelmatrices 

inkorporiert. Die Strategie war der physikalische Einschluss des Antibiotikums in das Hydrogel 

und die anschließende Freisetzung durch Spaltung dieser Sequenzen und Lockerung des 

Hydrogelnetzes auf molekularer Ebene. Hierfür wurde ein kommerzielles Hydrogelkit mit 

Maleinsäureamid-modifizierter PVA Matrix verwendet, die mit Thiol-funktionalisierten Linkern 

konjugiert werden können. Drei verschiedene Fluorophore wurden als Modelle für die 

Diffusionsversuche verwendet. Nur das glomeruläre green fluorescent protein (GFP) besaß eine 

ausreichend niedrige Diffusionskonstante und wurde deshalb als Prototyp für die weiteren 

Schneidversuche verwendet. Die Ergebnisse zeigen, dass der Fluorophor bei niedrigen 

Matrixkonzentrationen schnell aus den Poren in das umgebende Medium diffundiert, während er 
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bei höheren Konzentrationen nicht freigesetzt wird. Die physikalische Inkorporierung des 

Antibiotikums wurde aus diesen Gründen verworfen und nicht durchgeführt. Als zweiter Versuch 

wurde der Fluorophor kovalent an den Linker gekoppelt, welcher im Anschluß an die Matrix 

konjugiert wurde. Die Inkubation mit Aureolysin und die nachfolgende RP-HPLC-Analyse zeigte 

einen Peak bei der Retentionszeit entsprechend dem Fragmentprodukt, das durch Inkubation des 

freien Linkers entsteht. Die kovalente Bindung zwischen der antimikrobiellen Substanz und dem 

Linker ist eine vielversprechende Strategie für eine bio-responsive Freisetzung.  

In der dritten Phase des Projektes wurde die Zersetzung des resultierenden Fragments nach 

Aureolysin-Verdau und die anschließende vollständige Freisetzung des Antibiotikums durch 

humane Aminopeptidasen untersucht. Die Konzentration an Aminopeptidasen im humanen 

Plasma wurde bestimmt und die durch Aureolysin entstehende Peptidsequenz an 

Aminofluorescein mittels EDC/NHS-Reaktion gekoppelt. Die Inkubation des Konstruktes mit der 

niedrigsten Aminopeptidase-Konzentration, die im Plasma bestimmt werden konnte zeigte, dass 

der Fluorophor in zwei Stunden vollständig freigesetzt wurde.  

Die letzte Phase hat sich mit der PEGylierung des Linker-Antibiotikum-Komplexes beschäftigt. 

Das Tetracyclin-analoge Antibiotikum Chelocardin wurde als Prototyp ausgewählt und am 

Helmholtz-Institut für Pharmazeutische Forschung des Saarlandes synthetisiert. Die Konjugation 

des Linker-CHD-Konstruktes an das Polymer wurde mittels kupferfreier Click-Chemie 

durchgeführt. Der PEGylierte Linker wurde in einer ähnlichen Rate durch Aureolysin geschnitten 

wie der freie Linker, was beweist, dass das Polymer keinen Einfluss auf die enzymatische 

Aktivität hat. Allerdings wurde während der Optimierung der Beladung von CHD je 

Polymermolekül eine sehr niedrige Freisetzung des Antibiotikums beobachtet, was durch 

Aggregatbildung der Konstrukte erklärt werden kann.  

Das entwickelte System ist eine interessante Delivery-Strategie für Antibiotika, welche hierdurch 

nur durch virulente S. aureus-Erreger freigesetzt werden. 
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9. Appendix 

9.1 List of abbreviations  

ACN Acetonitrile 
Af Aminofluorescein 
AP Leucine aminopeptidase  
APMA 4-Aminophenylmercuric acetate 
au Arbitrary units  
BOC tert-Butoxycarbonyl 
Cf Carboxyfluorescein  
CHD Chelocardin 
CL: Cleavable linker 
CTC Chlorotrityl Chloride resin 
Da Dalton 
DBCO Dibenzylcyclooctyne 
DCM Dichloromethane  
Dex Dextran 
DIC N,N'-Diisopropylcarbodiimid 
DIPEA N,N-Diisopropylethylamine (or Hünings Base) 
DMF Dimethylformamide 
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 
EDTA Ethylenediaminetetraacetic acid 
FITC Fluorescein isothiocyanate 
FMOC Fluorenylmethoxycarbonyl amino acid protecting group 
FPLC Fast protein liquid chromatography 
GFP Green Fluorescent Protein 
HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 
HOBt 1-Hydroxybenzotriazol 
HPLC High-performance liquid chromatography 
LC-MS Liquid chromatography-Mass spectrometry 
MALDI Matrix-assisted Laser Desorption/Ionization 
MIC Minimum inhibitory concentration 
MRSA Methicillin resistant Staphylococcus aureus 
MSSA Methicillin susceptible Staphylococcus aureus 
NHS N-Hydroxysuccinimide 
NP Nanoparticle 
PECA Polyethylcyanoacrylate 
PEG Polyethylene glycol 
PLGA Poly(lactide-co-glycolic) acid 
PVA Polyvinyl alcohol 
rpm Rotations per minute 
SAB Staphylococcus aureus bacteremia 
SPPS Solid Phase Peptide Synthesis  
TCA Trichloroacetic acid 
TFA Trifluoroacetic acid 
tris Tris(hydroxymethyl) aminomethane 
UV Ultraviolet 
UHPLC Ultra-high performance liquid chromatography 
v/v Volume concentration 
w/v Weight concentration 
WHO World Health Organization 
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