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Summary 

Marine sponge-associated actinomycetes are reservoirs of diverse natural products with 

novel biological activities. Their antibiotic potential has been well explored against a range 

of Gram positive and negative bacteria. However, not much is known about their anti-

infective or anti-virulence potential against human pathogens. This Ph.D. project aimed to 

investigate the anti-infective (anti-Shiga toxin and anti-biofilm) potential of sponge-derived 

actinobacteria through identification and isolation of their bioactive metabolites produced 

and characterizing their mechanism of action by transcriptomics. This thesis is divided into 

three studies with the overall objective of exploring the anti-infective efficacy of 

actinomycetes-derived extracts and compound(s) that could possibly be used as future 

therapeutics. 

The first study deals with investigation on the anti-Shiga toxin effects of sponge-associated 

actinomycetes. Diarrheal infections pose a huge burden in several developing and 

developed countries. Diarrheal outbreaks caused by Enterohemorrhagic Escherichia coli 

(EHEC) could lead to life-threatening complications like gastroenteritis and haemolytic 

uremic syndrome (HUS) if left untreated. Shiga toxin (Stx) produced by EHEC is a major 

virulence factor that negatively affects the human cells, leading them to death via apoptosis. 

Antibiotics are not prescribed against EHEC infections since they may enhance the risk of 

development of HUS by inducing the production and release of Stx from disintegrating 

bacteria and thereby, worsening the complications. Therefore, an effective drug that blocks 

the Stx production without affecting the growth needs to be urgently developed. In this study, 

the inhibitory effects of 194 extracts and several compounds originating from a collection of 

marine sponge-derived actinomycetes were evaluated against the Stx production in EHEC 

strain EDL933 with the aid of Ridascreen® Verotoxin ELISA assay kit. It was found that 

treatment with the extracts did not lead to significant reduction in Stx production. However, 

strepthonium A isolated from the culture of Streptomyces sp. SBT345 (previously cultivated 

from the Mediterranean sponge Agelas oroides) reduced the Stx production (at 80 µM 

concentration) in EHEC strain EDL933 without affecting the bacterial growth. The structure 

of strepthonium A was resolved by spectroscopic analyses including 1D and 2D-NMR, as 

well as ESI-HRMS and ESI-HRMS2 experiments. This demonstrated the possible 

application of strepthonium A in restraining EHEC infections.  
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In the second study, the effect of marine sponge-associated actinomycetes on biofilm 

formation of staphylococci was assessed. Medical devices such as contact lenses, metallic 

implants, catheters, pacemakers etc. are ideal ecological niches for formation of bacterial 

biofilms, which thereby lead to device-related infections. Bacteria in biofilms are multiple fold 

more tolerant to the host immune responses and conventional antibiotics, and hence are 

hard-to-treat. Here, the anti-biofilm potential of an organic extract derived from liquid 

fermentation of Streptomyces sp. SBT343 (previously cultivated from the Mediterranean 

sponge Petrosia ficiformis) was reported. Results obtained in vitro demonstrated its anti-

biofilm (against staphylococci) and non-toxic nature (against mouse macrophage (J774.1), 

fibroblast (NIH/3T3) and human corneal epithelial cell lines). Interestingly, SBT343 extract 

could inhibit staphylococcal biofilm formation on polystyrene, glass and contact lens 

surfaces without affecting the bacterial growth. High Resolution Fourier Transform Mass 

Spectrometry (HR-MS) analysis indicated the complexity and the chemical diversity of 

components present in the extract. Preliminary physio-chemical characterization unmasked 

the heat stable and non-proteinaceous nature of the active component(s) in the extract. 

Finally, fractionation experiments revealed that the biological activity was due to synergistic 

effects of multiple components present in the extract.  

In the third study, anti-biofilm screening of 50 organic extracts generated from solid and 

liquid fermentation of 25 different previously characterized sponge-derived actinomycetes 

was carried out. This led to identification of the anti-biofilm organic extract derived from the 

solid culture of Streptomyces sp. SBT348 (previously cultivated from the Mediterranean 

sponge Petrosia ficiformis). Bioassay-guided fractionation was employed to identify the 

active fraction Fr 7 in the SBT348 crude extract. Further purification with semi-preparative 

HPLC led to isolation of the bioactive SKC1, SKC2, SKC3, SKC4 and SKC5 sub-fractions. 

The most active sub-fraction SKC3 was found to be a pure compound having BIC90 and MIC 

values of 3.95 µg/ml and 31.25 µg/ml against S. epidermidis RP62A. SKC3 had no apparent 

toxicity in vitro on cell lines and in vivo on the greater wax moth Galleria melonella larvae. 

SKC3 was stable to heat and enzymatic treatments indicating its non-proteinaceous nature. 

HR-MS analysis revealed the mass of SKC3 to be 1258.3 Da. Structure elucidation of SKC3 

with the aid of 1D and 2D-NMR data is currently under investigation. Further, to obtain 

insights into the mode of action of SKC3 on S. epidermidis RP62A, RNA sequencing was 

done. Transcriptome data revealed that SKC3 was recognized by RP62A at 20 min and 

SKC3 negatively interfered with the central metabolism of staphylococci at 3 h. Taken 
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together, these findings suggest that SKC3 could be a lead structure for development of 

new anti-staphylococcal drugs. 

Overall, the results obtained from this work underscore the anti-infective attributes of 

actinomycetes consortia associated with marine sponges, and their applications in natural 

product drug discovery programs. 
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Zusammenfassung 

Meeresschwamm-assoziierte Actinomyceten stellen ein Reservoir für verschiedene 

natürliche Produkte mit neuartigen biologischen Aktivitäten dar. Ihr antibiotisches Potenzial 

gegenüber einer Reihe von Gram-negativen und -positiven Bakterien ist bereits intensiv 

erforscht worden. Wenig ist allerdings über ihre antiinfektive und antivirulente Wirksamkeit 

gegenüber menschlichen Pathogenen bekannt. Ziel dieser Doktorarbeit war es, die 

antiinfektiven Fähigkeiten (anti-Shiga-Toxin und anti-Biofilm) der aus Schwämmen isolierten 

Actinobakterien zu untersuchen. Hierfür wurden bioaktive Metabolite der Actinobakterien 

identifiziert und isoliert und abschließend wurde ihr Wirkmechanismus mit Hilfe einer 

Transkriptomanalyse charakterisiert. Diese Arbeit ist in drei Studien gegliedert, welche alle 

zum Ziel hatten die antiinfektive Wirksamkeit von aus Actinomyceten gewonnenen Extrakten 

und Komponente(n), welche möglicherweise als zukünftige Therapeutika dienen könnten, 

zu untersuchen. 

Die erste Studie befasst sich mit den anti-Shiga-Toxin Effekten der Meeresschwamm-

assoziierten Actinomyceten. Durchfallinfektionen stellen in vielen Entwicklungsländern aber 

auch in Industrieländern eine große Gefahr dar. Durchfallerkrankungen die durch 

enterohämorrhagische Escherichia coli (EHEC) hervorgerufen werden, können sich zu 

lebensbedrohlichen Komplikationen wie Gastroenteritis oder dem hämolytisch urenischen 

Syndrom (HUS) weiterentwickeln. Das von den EHEC Stämmen produzierte Shiga-Toxin 

(Stx) stellt hierbei den Haupt Virulenz Faktor dar, welcher die eukaryotische Proteinsynthese 

menschlicher Zellen negativ beeinflusst, was wiederum den Zelltod durch Apoptose zur 

Folge hat. Die Behandlung der EHEC-Patienten mit Antibiotika wird nicht empfohlen, da dies 

zu einem Anstieg von freigesetztem Stx der zersetzen Bakterien führen könnte, wodurch 

das Risiko für die Entwicklung des HUS ansteigt. Aus diesem Grund werden effektive 

Medikamente dringen benötigt, welche die Stx Produktion blockieren ohne das Wachstum 

der Bakterien zu beeinflussen. In dieser Studie wurden 194 Extrakte und einige isolierte 

Komponenten von aus Schwämmen gewonnenen Actinomyceten auf ihren negativen 

Einfluss auf die Stx Produktion des EHEC Stammes EDL933 mit der Hilfe des Ridascreen® 

Verotoxin ELISA Kits untersucht. Es konnte gezeigt werden, dass die Zugabe der Extrakte 

keinen signifikanten Einfluss auf die Stx Produktion hatte. Strepthonium A auf der anderen 

Seite, welches aus Streptomyces sp. SBT345 isoliert wurde (vom mediterranen Schwamm 

Agelas oroides) konnte die Stx Produktion von EDL933 bei einer Konzentration von 80 µM 



     
 

IX 
 

reduzieren ohne das Wachstum des EHEC Stammes zu beeinflussen. Die Struktur von 

Strepthonium A wurde mittels spektroskopischer Analyse (1D- und 2D-NMR), sowie mittels 

ESI-HRMS und ESI-HRMS2 Experimenten entschlüsselt. Basierend auf diesen Ergebnissen 

könnte Strepthonium A eine mögliche Alternative oder Zusatz in der Behandlung einer 

EHEC Infektion darstellen. 

In der zweiten Studie wurde der Einfluss der Meeresschwamm-assoziierten Actinomyceten 

auf die Biofilmbildung von Staphylokokken bewertet. Medizinische Produkte wie Kontakt 

Linsen, metallische Implantate, Katheter, Herzschrittmacher, usw. stellen optimale 

ökologische Nischen für die Ausbildung von bakteriellen Biofilmen dar, wodurch Infektionen 

im Menschen hervorgerufen werden können. Bakterien in einem Biofilm sind deutlich 

toleranter gegenüber der Immunantwort ihres Wirtes sowie gegenüber konventionellen 

Antibiotika und sind daher schwer zu bekämpfen. In dieser Studie wurde das anti-Biofilm 

Potential eines organischen Extrakts der flüssigen Fermentation von Streptomyces sp. 

SBT343 (vom mediterranen Schwamm Petrosia ficiformis) ermittelt. In vitro Ergebnisse 

zeigten, dass das organische Extrakt anti-Biofilm (gegenüber Staphylococci) Fähigkeiten 

besitzt und nicht toxisch für Maus Makrophagen (J774.1), Fibroblasten (NIH/3T3) und 

humane korneale Epithelzellen ist. Zudem konnte gezeigt werden, dass das SBT343 Extrakt 

die Ausbildung eines Biofilms von Staphylokokken auf den Oberflächen von Polystyrol, 

Glass und Kontaktlinsen unterbinden konnte ohne das bakterielle Wachstum zu 

beeinflussen. Die hochauflösende Fouriertransformation-Massenspektrometrie (HR-MS) 

Analyse konnte die Komplexität sowie die chemische Vielfalt an Komponenten im Extrakt 

aufzeigen. Eine vorläufige, physio-chemische Charakterisierung deutet darauf hin, dass die 

aktive Komponente im Extrakt hitzestabil und nicht proteinartiger Natur ist. Abschließend 

konnte durch Fraktionierungsexperimente gezeigt werden, dass die biologische Aktivität auf 

synergistischen Effekten mehrerer Komponenten im Extrakt beruht. 

In einer dritten Studie wurden 50 organische Extrakte, welche aus fester und flüssiger 

Fermentierung von 25 verschiedenen aus Meeresschwämmen isolierten Actinomyceten 

gewonnen wurden, auf anti-Biofilm-Aktivität untersucht. Hierbei wurde die anti-Biofilm 

Aktivität des organischen Extrakts der Festkultur von Streptomyces sp. SBT348 (vom 

mediterranen Schwamm Petrosia ficiformis) identifiziert. Eine Bioassay gestützte 

Fraktionierung führte zu der Identifikation der aktiven Fraktion Fr 7 im SBT348 Extrakt. 

Durch weitere Aufreinigung des Extrakts mit einer semipräparativen HPLC, konnten die 

bioaktiven Sub-Fraktionen SKC1, SKC2, SKC3, SKC4 und SKC5 isoliert werden. Die Sub-
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Fraktion SKC3 hatte den stärksten anti-Biofilm Effekt und bestand aus einer reinen 

Verbindung mit BIC90 und MIC Werten von 3,95 µg/ml und 31,25 µg/ml gegen S. epidermidis 

RP62A. SKC3 zeigte weder erkennbare Toxizität gegenüber Zelllinien in vitro noch 

gegenüber den Larven der großen Wachsmotte Galleria melonella in vivo. SKC3 war Hitze- 

und Enzym-resistent, was auf eine nicht proteinartige Natur hindeutet. Eine HR-MS Analyse 

ergab, dass die Masse von SKC3 1258,3 Da beträgt. Die Strukturanalyse von SKC3 durch 

1D und 2D-NMR ist zurzeit in Bearbeitung. Um weiteres Verständnis über den anti-Biofilm 

Wirkmechanismus von SKC3 auf S. epidermidis RP62A zu erlangen, wurde eine RNA 

Sequenzierungsanalyse durchgeführt. Die Transkriptomanalyse zeigte, dass SKC3 von 

RP62A nach einer 20-minütigen Inkubationszeit erkannt wird und dass SKC3 den zentralen 

Metabolismus des Staphylokokken Stammes nach 3 h negativ beeinflusst. 

Zusammengenommen deuten die Ergebnisse darauf hin, dass SKC3 als Leitstruktur für die 

Entwicklung neuer anti- Staphylokokken Medikamente dienen könnte. 

Zusammenfassend heben die Ergebnisse dieser Arbeit die antiinfektiven Eigenschaften der 

Meeresschwamm-assoziierte Actinomyceten hervor und bieten eine Möglichkeit für die 

Nutzung dieser in Wirkstoffentwicklungsprogrammen.
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1. General introduction 

1.1. Infectious diseases and antibiotic resistance 

Infectious diseases have continued to threaten the achievements of modern medicine for 

the past 70-80 years (Levy and Marshall, 2004). The mortality rates by infectious diseases 

(particularly of bacterial origin) account to one-fifth of the global deaths and is considered to 

be the major killer for children aged <5 years (WHO, 2009). The discovery of antibiotics was 

a major turn point in the management of bacterial infections which has led to substantial 

benefits on human and animal health. Antibiotics work against bacteria by targeting essential 

processes such as negative interference with cell wall/membrane synthesis/organization 

leading to bacterial cell death (bactericidal), or by blocking DNA/RNA/protein synthesis 

arresting the bacterial growth (bacteriostatic) (Coates et al., 2002; Aminov, 2010).  

The discovery of penicillin by Alexander Fleming marked the onset of the “Golden age of 

antibiotics”, the period between 1940 and 1960s (Brannon and Hadjifrangiskou, 2016). In 

this time-frame, plethora of new antibiotics were discovered by empirical approaches 

involving fermentation of soil microbes. However, their extensive over mining programs by 

the end of 1960s has brought an end to the initial era of antibiotic discovery (Lewis, 2012). 

By late 1970s-until now, the glory of traditional fermentation approaches has gradually 

diminished (Silver, 2011; Stallforth and Clardy, 2014; Silva et al., 2016) and currently there 

is a phase of void in the discovery of new antibiotics (Figure 1).  

 

Figure 1. A timeline of the discovery of new antibiotics. A void phase in the discovery of novel antibiotics 

could be seen. Teixobactin is the only new kind of antibiotic that has been discovered over the past 3-4 

decades. Dates indicated are those of initial discovery or patent. Modified from (Silver, 2011).  
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Lack of innovation and adequate investments by pharmaceutical venture capitalists (owing 

to the huge cost involved in the drug discovery process, uncertain life cycles of new drugs 

in the market and increasing stringent drug regulation processes) are some of the main 

reasons behind this sharp fall-off in the antibiotic drug discovery timeline (Hogberg et al., 

2010; Gill et al., 2015). Over the last 40 years, only one new broad-spectrum antibiotic 

Teixobactin has been discovered so far (Ling et al., 2015). Teixobactin was discovered in a 

screen of 10,000 uncultured bacteria using the innovative iChip technology (iChip is a 

multichannel miniature device that can cultivate rare microbial cells directly in their source 

environments in a high-throughput manner). The discovery of Teixobactin highlights the 

potential of innovative approaches in fueling the existing dry antibiotic pipeline with the yet 

undiscovered drugs (Arias and Murray, 2015). 

Alexander Fleming during his Nobel Prize lecture in 1945, clearly warned that the 

inappropriate usage of antibiotics could lead to development of resistance (Fleming, 1945). 

However, the medical community and public have failed to recognize this risk, and this has 

led to a global overuse and misuse of antibiotics. Consequently, bacterial strains have 

evolved to become insensitive and tolerant to existing antibiotics. The emergence of 

multidrug-resistant, extensively drug-resistant and pan drug-resistant bacterial strains have 

now posed fears of an expected post-antibiotic era in which many infections could become 

untreatable (Sousa et al., 2015; Hauser et al., 2016).  

The inefficacy of conventional antibiotics against drug-resistant bacteria has become a 

global health and economic concern (Sommer, 2014; Fitchett, 2015; Tillotson, 2015). The 

magnitude of this problem on a global scale has been outlined in the WHO’s Global Report 

on Surveillance (WHO, 2014). Estimates suggest that antimicrobial resistance could lead to 

about 25,000 deaths per year in the European Union (EU) and 23,000 deaths per year in 

the USA. The total economic cost is estimated to be around €1.5 billion per year in the EU 

and is as high as $20 billion per year in the USA (WHO, 2015; CDC, 2013; CDC, 2014). 

According to a report from the UK, the human cost of antibiotic resistance crisis is estimated 

to be around 300 million cumulative premature deaths by 2050, together with a global 

economy-related loss of $100 trillion (Neill, 2014; Arias and Murray, 2015). The need for 

expensive drugs for second line treatments, longer hospital stays, and prolonged sick leaves 

are some of the obvious reasons behind this economic burden (Coast and Smith, 2003).  

Drug-resistant bacteria could persist, multiply, and produce virulence despite the presence 

of antibiotic drugs. Several resistance mechanisms aid bacterial tolerance to antibiotics. Like 
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antibiotics, the antibiotic resistance mechanisms are ancient and existed even before the 

antibiotics introduction into the market or their usage (Davies and Davies, 2010; D'Costa et 

al., 2011). Antibiotic resistance could be exogenous or endogenous (Silver, 2011). 

Endogenous resistance occurs endogenously in the bacterial pathogen by mutations and 

selection pressure. As an outcome of endogenous resistance, bacteria could possess the 

following properties: 

• reduced target(s) affinity to drugs 

• remodeling of the target(s) 

• reduced drug influx and efflux 

• upregulation of target(s) 

Exogenous resistance occurs by horizontal gene transfer (HGT) mediated transmission of 

resistance to human bacterial pathogens from environmental organisms (such as antibiotic 

producers, non-human pathogens and commensals). As an outcome of exogenous 

resistance, bacteria could display the following properties leading to ineffectiveness of 

antibiotics: 

• class specific efflux of drugs 

• class specific modification or degradation of drugs 

• target(s) protection or modification 

From the existent data, it envisaged that resistance to antibiotics is almost inevitable and it 

could emerge soon after the introduction into the market (Figure 2). Thus, efforts aiming at 

discovery of new antibiotics and alternate approaches should continue to circumvent this 

inexorable rise of antibiotic resistance and inexistence of effective drugs in the market. In 

parallel to this, the following should be done: 

• Rational dose regimens based on pharmacodynamic and pharmacokinetic profiles 

should be prescribed by the medical practitioners to avoid the antibiotics overuse 

(Cheng et al., 2016). 

• Antibiotic prescriptions for treating diseases with non-microbial origin should be 

strictly avoided. 

• Antibiotics must be carefully used in animal and agricultural context to avoid the 

spread of resistance via food chains and environments (Chang et al., 2015). 

• Hygiene conditions should be improved to avoid the accumulation and spread of 

resistant bacteria in the environment (WHO, 2001; Hogberg et al., 2010). 
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• Coordinated networking of medical professionals, microbiologists, natural product 

chemists and pharmacologists together with investor pharmaceutical companies 

could drive the existing effective drugs towards clinical applications and thereby 

bolster the treatment regimens of patients experiencing drug-resistant infections.  

 

 

Figure 2: Timeline depicting the development of resistance. From introduction of antibiotics into market 

to development of significant clinical resistance. Modified from (O'Connell et al., 2013). 

 

An ideal target for development of new antibiotic drugs should possess the following 

properties: 

• It should not be vulnerable to the development of rapid resistance. 

• The structure of the target should be conserved among different bacterial species if 

broad-spectrum activity needs to be achieved. 

• Its essentiality to the organism of the function should be there. 

• It should not be structurally or functionally homologous with humans (to avoid toxic 

effects).   

With these properties it is likely that the rate-limiting steps of conventional antibiotic 

discovery could be overcome, and the resistance phenomenon will be avoided (Silver, 

2011). The inexorable rise of antibacterial resistance with the conventional drugs has led to 

a massive shift in the drug-discovery research paradigms. Development of resistance-
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resistant drugs (that act against drug-resistant pathogens), anti-resistant drugs (that could 

augment the activity of existing antibiotics by circumventing the drug-resistance 

mechanisms; e.g. β-lactamase inhibitors, efflux pump inhibitors, membrane permeabilizers), 

host-directed therapies (that modulate the host immune systems and provoke infection 

clearance), alternate treatments (phage therapy, microbiota therapy, usage of probiotics and 

prebiotics) etc. are some of the blooming areas of research against drug-resistant pathogens 

(Gill et al., 2015).  

1.2. Anti-virulence strategies 

Bacteria encounter different challenges in the host environment such as pH changes, 

reduced oxygen levels, active immune response, secretions from the host (like mucus), 

existing host microbiota etc. To establish themselves in the host and cause a disease, they 

are equipped with an arsenal of components called virulence factors (Staskawicz et al., 

2001). Examples of these factors include motility proteins, enzymes, toxins, secretion 

systems, adherence and colonization components (pili, curli and biofilms), cell-cell 

communication molecules (quorum sensing components) (Escaich, 2008). These factors 

are non-essential for bacterial growth, but are coordinately expressed during an infection in 

the host (Allen et al., 2014). Targeting the virulence or infectivity of the pathogen without 

directly affecting its survival (anti-virulence/anti-pathogenic/anti-infective approach) could 

combat the bacterial diseases. They are specifically aimed at disarming the pathogens of 

their virulence factors that lead to the disease without hampering the growth (Rampioni et 

al., 2014; Sousa et al., 2015; Silva et al., 2016). The subsequent neutralization or inhibition 

of virulence factors could block the pathogen progression to cause a disease and thereby, 

allowing the pathogen elimination through host immunity or antibiotic therapy (Then and 

Sahl, 2010; Allen et al., 2014; Johnson and Abramovitch, 2017). Anti-virulence therapy is an 

approach that is even older than antibiotic usage. In 1893, the German physiologist Emil 

von Behring treated diphtheria affected children with immune antiserum raised against 

diphtheria toxin.  

There has been a considerable increase in the development of anti-virulence approaches 

over the past two decades (Figure 3). Currently, the United States Food and Drug 

Administration (US-FDA) approved anti-virulence therapies exist only for Bacillus anthracis, 

Clostridium botulinum and C. difficile infections. There are also several anti-virulence drugs 

in preclinical trials (Dickey et al., 2017).  
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Figure 3: The upsurge of anti-virulence strategies. The increase in the number of anti-virulence 

publications and citations over time. The red base line indicates the number of antibiotic publications; 

indicated in the brackets. Adapted with permission from Nature Reviews Drug Discovery, Springer Nature 

(Dickey et al., 2017). © 2017. 

 

Anti-virulence strategies have the following advantages over the conventional antibiotic 

therapies (Escaich, 2008; Johnson and Abramovitch, 2017): 

1. They target specific virulence factors than the metabolism, and potentially reduce the 

selective evolutionary pressure for development of resistance. 

2. They don’t damage the host microbiota as they do not affect the bacterial growth. 

3. They can be used as stand-alone medications or in combinations with existing 

antibiotics. 

4. Anti-virulence compounds have limited off-target effects. 

Even though they possess several advantages, these approaches also have the following 

limitations (Shakhnovich et al., 2007; Allen et al., 2014; Curtis et al., 2014; Johnson and 

Abramovitch, 2017): 

1. They have a narrow range of spectrum and limited specificity against the pathogens. 

This limits their usage against polymicrobial infections. 

2. Their targets should have constitutive than inducible expression for effective 

functioning. 

3. Before being used in combination with antibiotics, potential drug-interactions, 

pharmacokinetic properties of the drugs in combination must be carefully studied. 
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4. The potential lifetime of anti-virulence drugs and their usage in the world of 

continuous bacterial evolution remains unclear. 

5. The recovery of virulence during the anti-virulence drug treatment (anti-virulent drug-

resistance) has also been reported in certain cases.  

The vast knowledge acquired in the fields of bacterial pathogenesis and virulence factor 

identification (Freiberg and Brotz-Oesterhelt, 2005; Burrack and Higgins, 2007; Roemer et 

al., 2011; Anthouard and Dirita, 2015), and the potential of anti-virulence strategies serve 

as a ray of hope in the discovery of novel therapeutics against bacterial pathogens (Boucher 

et al., 2009; Brannon and Hadjifrangiskou, 2016; Hauser et al., 2016). Even though anti-

virulence strategies are thought to reduce the development of bacterial resistance, efforts 

should be taken such that they are not accumulated in the environment as that of the 

antibiotics (Gill et al., 2015).  

1.3. Enterohemorrhagic Escherichia coli and Shiga toxin  

The human gastrointestinal tract (GI) is a complex environment consisting of a wide range 

of microorganisms, comprising the host microbiota (Pifer and Sperandio, 2014). It is 

estimated that the number of bacterial cells in the GI tract is 10 times higher than their 

numbers in the body, and more than 1000 different individual species could be present 

(Hooper and Gordon, 2001; Gill et al., 2006; Hugon et al., 2015). The complexity of adult GI 

microbiota is a result of hygiene, medication, diet and lifestyle over the years, starting from 

“absolutely zero microbe levels” in the fetal stage (Koenig et al., 2011). The association 

between the human host and GI microbiota is symbiotic, facilitating beneficial effects like 

shaping the immunity, physiology, behavior and nutrition to humans, and nutrient availability 

and exchange to the microbes (Gordon and Klaenhammer, 2011; Grenham et al., 2011; 

Thursby and Juge, 2017). Any disturbance to this symbiotic relationship leading to an 

imbalance between the host and microbiota (dysbiosis), could lead to augmentation of GI 

tract infections and diseases like inflammatory bowel disease (IBD) and autism (Grenham 

et al., 2011). Alteration of the GI microbiota and the resulting dysbiosis is often a 

consequence of antibiotics therapy or infections with enteric pathogens. Both these factors 

reduce the GI tract microbial diversity and shift the community composition leading to 

development of enteric diseases (Dethlefsen and Relman, 2011; Jandhyala et al., 2015). 

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a Gram negative, food-borne 

enteric pathogen, that is often associated with bloody diarrhea (BD), hemorrhagic colitis, 
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hemolytic uremic syndrome (HUS) and death (Karmali et al., 1983; Jacob et al., 2013; Lee 

et al., 2014). More than 63,000 infections ascribed to food borne illnesses, caused by 

EHECs are recorded annually in the United States (Scallan et al., 2011). Further, the 

implications and severity of EHEC infections on global health and economy could be realized 

from their notable outbreaks over the years. The largest and the most recent 2011 EHEC 

outbreak in Germany led to 3842 illnesses and 53 deaths (RKI, 2011). Low infectious doses 

of 50-100 CFUs are enough for EHECs to establish in the host and cause a disease (Tilden 

et al., 1996; Pifer and Sperandio, 2014). Outbreaks have been associated with consumption 

of contaminated food such as ground beef, ready-to-eat salad, cheese salami, lettuces, 

salmon roe, radish sprouts, fenugreek seeds, apple cider and unpasteurized dairy products 

(Vojdani et al., 2008; McCollum et al., 2012; King et al., 2014; Marder et al., 2014). Person-

person transmission of EHECs has also been found in nurseries, day-care centers and 

certain institutions (Pennington, 2010).  

Shiga toxin (Stx) is the major virulence factor responsible for the pathogenesis of EHECs. 

With its initial discovery in the 1980s, Stx has emerged as one of the important toxins 

responsible for virulence in EHECs and other enteric pathogens (Konowalchuk et al., 1977; 

Stearns-Kurosawa et al., 2010). Production of Stx along with other virulence factors in the 

GI tract induces hemorrhagic colitis and its entry into the circulatory system could lead to 

the life-threatening complication of HUS (Griffin and Tauxe, 1991; Smith et al., 2014).  

There are two kinds of Shiga toxin (Stx) produced by the EHECs, namely the Stx1 and Stx2. 

While, Stx1 is structurally similar to the Stx produced by Shigella dysentriae, Stx2 which 

shares 55% similarity (amino acid level) with Stx1, is more virulent and heat stable. EHEC 

strains possess several allelic variants of Stx1 (Stx1, Stx1c, Stx1d) and Stx2 (Stx2a, Stx2c, 

Stxc2, Stx2d, Stx2dactivable, Stx2e, Stx2f) with different immunological reactivity and 

pathogenic potentials (Tarr et al., 2005; Pacheco and Sperandio, 2012).  

Stx is an A1B5 toxin which is encoded by a bacteriophage integrated in the EHEC 

chromosome (O'Brien and Holmes, 1987; Tyler et al., 2004). The activation of this Stx 

prophage in the EHEC chromosome, phage DNA replication and subsequent bacterial cell 

lysis leads to release of Stx and Stx phages (Schmidt, 2001). Consequently, the released 

Stx phages could convert the commensal E. coli to Stx-producing E. coli (STEC), leading to 

spread of infection and STEC strains (Gamage et al., 2004; Yue et al., 2012). Various factors 

that provoke the SOS response (like antibiotics) could induce the transcription of phage and 

stx genes via the activation mediated by the protein RecA (Los et al., 2011). Since antibiotics 
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enhance the Stx production in vitro and in vivo (Kimmitt et al., 2000;Zhang et al., 2000), 

antibiotic based chemotherapeutic measures are not recommended for treating EHEC 

infections (Tarr et al., 2005).  

The mechanism of Stx is illustrated in Figure 4. Briefly after the release of Stx, the 

pentameric B subunit binds to glycosphingolipids on the eukaryotic cell surfaces and gets 

internalized via endocytosis. This endocytosis-mediated internalization of Stx leads to the 

activation of N-glycosidase activity of the A subunit (32 kDa) leading to the disruption of 

ribosomal protein elongation, blockade in protein synthesis and ultimately cell death by 

apoptosis (MacConnachie and Todd, 2004; Bauwens et al., 2011; Betz et al., 2012; 

Bauwens et al., 2013).  

 

Figure 4. Mechanism of action of Stx. The first step (1) involves the binding of the B-subunit of Stx to 

globotriaosylceramide (Gb3) receptor (expressed by certain eukaryotic cells), the next step (2) involves the 

internalization of Stx via endocytosis and the subsequent retrograde transport (3) to trans-Golgi network 

(TGN) and endoplasmic reticulum (ER). Finally, in the ER, Stx inactivates ribosomes, blocks protein 

synthesis and leads to apoptotic cell death (4). Modified from (Pacheco and Sperandio, 2012).  

 

Current management of EHEC outbreak (Braeye et al., 2014) typically involves the following 

steps: 

1. Early detection of the infection. 

2. Timely identification of the suspected food vehicle to avoid the spread of strains. 

3. Subsequent control measures to curb the infection intensities. 

The frequent diarrheal outbreaks, emergence of highly pathogenic EHEC strains (e.g. EHEC 

O104:H4) and the inexistence of effective anti-EHEC strategies have altogether 

necessitated the need for development of novel anti-Stx approaches in targeting EHEC 
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infections (Goldwater and Bettelheim, 2012). Further, it is envisaged that modulating the 

virulence through toxin-suppressing therapeutics could be promising for treating EHEC 

infections without affecting the host endogenous microbiome (Clatworthy et al., 2007).  

The Chapter 2 of this Ph.D. thesis provides an attempt taken towards identification of anti-

Stx substances in nature.  

1.4. Staphylococci and biofilms 

Medical devices like (implants, central venous catheters, peritoneal dialysis catheters, 

prosthetic joints, pacemakers, heart valves etc.) and biomaterials (like contact lenses and 

conjunctival plugs) have greatly helped in improving the quality of human health (Vinh and 

Embil, 2005; Suter et al., 2011). However, in health care facilities the surfaces of these 

devices are often attacked by microorganisms. Bacteria from perioperative contaminations 

(originating from either the patient’s own body, health care worker’s body or health care 

environments) form strong communities called “biofilms” and lead to nosocomial and device-

related infections (DRIs) (Percival et al., 2015; Aljabri et al., 2018). The observation of 

biofilms in human niches dates back to their identification on teeth by Antonie van 

Leeuwenhoek in the 17th century (Percival, 2011).  

Biofilms are three-dimensional resistant networks of bacteria that are enmeshed in a self-

produced matrix composed of polysaccharides, proteins, lipids, extracellular DNA, RNA and 

water (Costerton et al., 1999; Hall-Stoodley et al., 2004; Hoiby et al., 2011). Water channels 

are responsible for the flow of essential nutrients to and within the biofilm (Sutherland, 2001; 

Lu and Collins, 2007). The thickness of matrix is usually between 200-1000 nm (Sleytr, 

1997). The viscoelastic nature of the matrix is responsible for the mechanical stability of 

biofilms to shear stresses (Shaw et al., 2004). Biofilms are formed on biotic or abiotic 

surfaces. Biofilms on medical devices could be caused by single class of bacteria (mono-

species biofilm) or a mixture of different classes of bacteria (mixed biofilm) depending on 

the nature and the extent of contamination (Donlan, 2002).  

The formation of biofilm confers resistance to bacteria against stressful conditions such as 

UV, lack of nutrients, presence of host-immune systems and antibiotics etc. (Hoiby et al., 

2010; de la Fuente-Nunez et al., 2013). The presence of biofilm matrix itself, reduced growth 

rates, persister cell formations, efflux pumps, plasmid exchange, target mutations, antibiotic-

deactivating enzymes etc. are some of the common factors contributing to the resistance 
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phenotype of bacteria in biofilms (Stewart and Costerton, 2001; Hall-Stoodley et al., 2004). 

Biofilm-driven DRIs are resilient to treatments and hence, are linked with increased morbidity 

and mortality rates, and corresponding increased economic losses in health-care settings 

(Barros et al., 2014; Kleinschmidt et al., 2015; Leary et al., 2017). The necessity of a second 

surgery for removal of infected medical devices (e.g. implants, pacemakers), extended 

second-line antibiotic usage, longer hospital stays are some of the obvious reasons 

connected to the increased health care losses with DRIs (Bryers, 2008; Otto, 2012). 

Currently, biofilm-associated infections represent 80% of the nosocomial infections, and 

staphylococci are the leading etiological agents in this aspect (Bryers, 2008; Hoiby et al., 

2010; Becker et al., 2014). Staphylococci are clustered Gram-positive cocci, that are non-

motile and non-spore forming facultative anaerobic bacteria belonging to the phylum 

Firmicutes. Based on their ability to produce coagulase (the enzyme responsible for clotting 

of blood), they are classified as Coagulase negative (CoNS) and coagulase positive 

staphylococci (CoPS).  

S. epidermidis (CoNS) and S. aureus (CoPS) are commensal bacteria residing on human 

skin and mucous membranes (Otto, 2008). Through formation of biofilms on medical 

devices, they could lead to complications like blood-stream infections, prosthetic joint 

infections, early-onset neonatal sepsis, endocardial and urinary tract infections (Barros et 

al., 2014; WHO, 2014; Widerstrom, 2016). Insufficient hand hygiene, inadequate disinfection 

and/or sterilization of medical devices and surfaces are presumed to be the possible reasons 

behind transmission of staphylococci to medical devices. An example of in vitro 

staphylococcal (S. epidermidis RP62A) biofilm on contact lens surface is shown in Figure 

5C. The array of problems caused by staphylococcal biofilms and the emergence of 

methicillin and vancomycin resistant staphylococcal strains is far from resolved. It is 

predicted that the resistance problem is greater for CoNS than CoPS, however, subsequent 

therapeutic options are extremely limited in both cases (Becker et al., 2014).  

Staphylococcal biofilm formation on medical devices is a complex and multifactorial 

phenomenon involving attachment, accumulation, maturation and detachment phases 

(Figure 5A). The different phases of biofilm development process are explained below: 

1.4.1. Initial attachment and microcolony formation 

The first step of biofilm life cycle involves the reversible attachment of staphylococcal cells 

to an abiotic surface. Various physical forces and non-specific interactions like van der 
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Waal’s forces, electrostatic interactions etc. govern this step (Muszanska et al., 2012). 

Physiochemical characteristics of the surface like hydrophobicity, surface energy, chemical 

composition of material, temperature and roughness of the surface also contributes to the 

initial adherence of bacteria (Dunne, 2002). Bacteria tend to attach more likely to 

hydrophobic (non-polar) surfaces than hydrophilic (polar) surfaces (Pringle and Fletcher, 

1983). Staphylococcal surface molecules like the protein autolysin (AtlE), serine-aspartate 

family protein (Sdr), accumulation associated protein (Aap), wall teichoic acids (WTAs) also 

govern the attachment of bacteria to biotic or abiotic surfaces (Otto, 2009). Once the 

attachment becomes stable, bacterial multiplication and division leads to formation of micro-

colonies. The micro-colonies then coordinate with each other in multiple aspects, facilitating 

the exchange of substrate, exchange and excretion of metabolic products (Costerton et al., 

1999). 

1.4.2. Accumulation  

This phase is mediated in intercellular attachment and development of multicellular 

agglomerates leading to the development of three-dimensional biofilm structures. This step 

of biofilm formation could be either polysaccharide intercellular adhesin (PIA) (also known 

as poly-N-acetylglucosamine, PNAG) dependent or independent. Many staphylococcal 

strains encode a functional icaADBC operon responsible for PIA synthesis (detailed in 

Figure 5B). The products of the ica locus, IcaA and IcaD synthesize a chain of activated 

monomers of N-acetylglucosamine (GlcNAc) and the transmembrane protein IcaC, by its 

transporter function exports this chain. Cell-surface located enzyme IcaB then, partially de-

acetylates this chain which induces positive charges in the otherwise neutral polymer PIA 

(Heilmann et al., 1996; Gerke et al., 1998; Vuong et al., 2004). The cationic nature of PIA is 

essential for its surface binding and multiple roles in biofilm formation. A variety of 

environmental stresses and multiple global virulence factors are known to influence the PIA 

synthesis process (Otto, 2008; 2009). Thus, synthesis of PIA is a crucial step in the life cycle 

of staphylococcal biofilms and has a major role in its pathophysiology in vitro and in vivo 

(Mehlin et al., 1999; Wang et al., 2007; Stevens et al., 2009).  

PIA-independent biofilm formation is mainly mediated by proteins. A variety of surface 

proteins (like accumulation associated protein (Aap), biofilm-associated protein (Bap), 

SasG, SasC, protein A, fibronectin-binding proteins like FnBPA and FnBPB) and cell wall 

anchored proteins (CWA) (like clumping factors A and B, autolysins A and E, WTA, 

fibronectin binding protein SdrG/Fbe and lipoteichoic acids (LTA)) are known to assist this 
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mode of biofilm formation (Speziale et al., 2014). Under certain conditions, staphylococci 

can switch between these two modes of biofilm formation and still form a tough biofilm 

(Rohde et al., 2005; Hennig et al., 2007). Thus, it can be understood that both proteins and 

polysaccharides could contribute to the aggregation and accumulation of cells within a 

biofilm. 

1.4.3. Structuring and maturation of biofilms 

Structuring and maturation phase of biofilm formation is facilitated by a cell-cell signaling 

phenomenon (quorum sensing) mediated by accessory gene regulator (Agr) systems (Otto, 

2012). At this stage, secretion of certain autoinducer peptides (cell signaling molecules) lead 

to multi-layered structuring of the biofilm. Interstitial voids are produced in the biofilm matrix 

which serve as a circulatory system for supply of essential nutrients to bacterial 

microcolonies and subsequent removal of their metabolic waste (Mack et al., 1996; 

Periasamy et al., 2012). Typically, biofilms resemble mushroom shaped structures where 

bacteria with low metabolic activity (due to oxygen and nutrient limitations) are embedded 

in the bottom. Few persister cells (that neither grow nor die but become tolerant to 

antibiotics) may also be present in a biofilm (Rani et al., 2007). Bacteria with high metabolic 

activity (rapidly dividing cells) are usually present at the surface of the biofilms. The 

upregulation of agr-related genes at these surfaces further leads to augmentation in 

dispersal of free bacteria from biofilms (Yarwood et al., 2004).  

1.4.4. Detachment  

In this stage, sessile bacteria get detached from biofilms and get transition to mobile forms 

in a natural pattern or under conditions of mechanical stress (Costerton et al., 1999). 

Dispersal of cells in a staphylococcal biofilm could be mediated by enzymatic degradation 

of matrix (like proteases, hydrolases, nucleases) or by disruption of non-covalent 

interactions through detergent-like substances (like phenol soluble modulins (PSMs)) (Otto, 

2009; Kaplan et al., 2012). Once detached free bacteria get disseminated to a new site and 

continue the spread of an infection (Otto, 2008).  

The wide range of health complications caused by staphylococcal biofilms with their 

resistant and recalcitrant nature, and the inexistence of effective anti-staphylococcal drug 

formulations, has urged the need for discovery of novel anti-biofilm-based therapeutics in 

staphylococcal disease management. The Chapters 3 and 4 of this Ph.D. thesis provide an 

attempt in achieving this goal.  
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Figure 5: Staphylococcal biofilms. (A) Biofilm growth cycle depicting the different stages of biofilm 

formation (attachment, accumulation, maturation and dispersal or detachment). (B) The exopolysaccharide 

PIA synthesis mechanism. PIA is a deacetylated β 1-6 linked N-acetylglucosamine (GlcNAc) homopolymer 

synthesized by the products of icaADBC operon. The membrane located IcaA that has the N-

acetlyglucosamine transferase activity works with IcaD and generates poly-GlcNAc chains, which is then 

transported by the IcaC membrane protein. After export, the surface-associated IcaB protein partially de-

acetylates PIA by removing some of the N-acetyl groups, and this gives the PIA a cationic character 

necessary for attachment to hydrophobic surfaces. Expression of icaADBC operon is modulated by the 

repressor protein IcaR and several other regulatory proteins, environmental factors and nutrient limitation. 

Insertion elements like IS256 can also switch on/off the PIA expression. CW, cell wall; CM, cell membrane; 

PG, peptidoglycan; PSMs, phenol soluble modulins. Images A and B modified from (Otto, 2009; Richards 

and Melander, 2009). (C) Scanning electron micrograph of a 24 h staphylococcal biofilm on contact lens. 

Net like structures represent the biofilm matrix. Image was false-colored using the ImageJ program. Scale 

bar: 0.5 µm. 

A 
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1.5. Bioactive potential of marine natural products (MNPs) 

Natural products (NPs) are small chemical compounds (molecular weight<3000 Da) 

produced by living organisms. NPs are structurally complex and possess defined orientation 

in the space (Montaser and Luesch, 2011; Martins et al., 2014). They are mainly secondary 

metabolites, which are unessential for the growth and development of the producing 

organism. Chemical defense against predators, intra or inter-species communication, 

survival mechanisms are some of the ecological roles of these secondary metabolites in the 

producers. NPs are widely probed in drug discovery programs owing to their potential in 

interacting with diverse drug targets with greater efficiency and biochemical specificities 

(Martins et al., 2014). Estimates suggest that more than half of the present-day drugs were 

made using NPs or their derivatives (Fenical and Jensen, 2006; Newman and Cragg, 2007; 

Molinski et al., 2009; Subramani and Aalbersberg, 2013). 

Depending on the origin, NPs could be terrestrial or marine. The frequent re-discovery and 

excessive overmining of terrestrial natural products has shifted the research focus towards 

MNPs which have chemical novelty and enormous pharmacological potential. The marine 

environment is a treasure trove for discovery of new compounds with antibacterial, antiviral, 

antiparasitic, antioxidant, anticancer and immunomodulatory activities (Villa and Gerwick, 

2010; Zhou et al., 2013; Abdelmohsen et al., 2014). Particularly, their potential against drug-

resistant bacterial, fungal, viral and parasitic infections has been increasingly studied in 

detail (Rahman et al., 2010; Eom et al., 2013; Abdelmohsen et al., 2017). Several MNPs 

have already entered phase 1, 2 and 3 clinical trials, and six MNP-based drugs have been 

approved for usage by the US-FDA and EU (Mayer et al., 2010; 2018). Extreme conditions 

in the oceans such as temperature differences, variations in light intensity, salinity, pH, 

pressure and the presence of certain chemicals are some of the reasons for the presence 

of diverse and novel antibiotic compounds in the marine environment (Lane, 2008; Rateb 

and Ebel, 2011; Abdelmohsen et al., 2017).  

Marine invertebrates are the most bio-prospected organisms in MNPs research owing to 

their rich chemical and biological diversity. Bioprospecting efforts for discovery of new drugs 

majorly target two classes of marine invertebrates, namely, “marine sponges and cnidarians” 

(Leal et al., 2012; Leal et al., 2014). Particularly, marine sponges and their associated 

actinomycetes are ranked the highest for discovery of novel anti-infectives and presence of 

chemically diverse metabolites (Stamatios Perdicaris, 2013; Abdelmohsen et al., 2014). 
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Nutritional scarcity and chemical defense are often linked to the reasons for their production 

of MNPs (Montaser and Luesch, 2011).  

1.5.1. Marine sponges and their microbial consortia 

Sponges (phylum Porifera) are primitive filter feeders living on the benthic habitats and their 

evolutionary origin dates 700-800 million years back (Belarbi el et al., 2003; Thomas et al., 

2010). Estimates suggest that there are more than 20,000 species of sponges on this earth 

and only around 8800 of these species are currently known (Hooper et al., 2013; Van Soest 

et al., 2018). Tropical reefs, polar latitudes, deep sea, fresh water lakes and rivers are the 

common habitats where marine sponges are found (Schmitt et al., 2012). Pictures of marine 

sponges involved in this study are shown in Figure 6 (A, B). Through filter feeding, sponges 

absorb and pump out constant volumes of sea water through their bodies to retain food and 

remove waste particles. 1 kg of sponge has the potential to pump out 24,000 l of water per 

day (Taylor et al., 2007). Microbes including bacteria, unicellular algae, fungi and viruses, 

and certain nano- and pico-eukaryotes are commonly acquired by these sponges through 

filter feeding (Thacker and Freeman, 2012; Webster et al., 2012). The microbial content in 

marine sponges contribute to about 35% of the total sponge biomass and the microbial 

density in a sponge is 3-4 orders of magnitude greater than the surrounding sea water 

(Taylor et al., 2007). From an ecological perspective, it is presumed that microbes in 

sponges offer beneficial effects to them e.g. protection against predators via production of 

defense compounds, protection against environmental stresses, nutrient acquisition, 

stabilization of sponge skeletons, metabolic waste processing etc. (Lam, 2006; 

Abdelmohsen et al., 2014). In addition, microbial symbionts of marine sponges are benefited 

by constant nutrient supply as a consequence of filter feeding activities, as well as access 

to scarce elements like nitrogen (from the sponge metabolic end product ammonia) 

(Hentschel et al., 2012).   
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Figure 6: Photographs of Mediterranean marine sponges under investigation in this Ph.D. thesis. (A) 

Agelas oroides, (B) Petrosia ficiformis (underwater photography by Dr. Thanos Dailianis) 

 

Various innovative cultivation-dependent (Abdelmohsen et al., 2010; Cheng et al., 2015) 

and -independent techniques (16S rRNA gene library construction, denaturing gradient gel 

electrophoresis (DGGE), fluorescence in situ hybridization (FISH), amplicon tag 

sequencing, metagenomics, metaproteogenomics, single cell genomics etc.) (Schmitt et al., 

2012; Simister et al., 2012; Jin et al., 2014; Rodriguez-Marconi et al., 2015) are now 

available to get useful insights to the microbial diversity associated with marine sponges. 

Both marine sponges and their associated microbiomes offer an interesting chemical and 

metabolic repertoire that could be used to produce biologically active compounds (Piel, 

2006; Blunt et al., 2007). A wide range of marine sponge compounds possessing anti-

diabetic, antioxidant, anti-inflammatory, antitumor, immunosuppressive, antimicrobial and 

antibiofilm activities have been reported (Blunt et al., 2007; Mehbub et al., 2014; Skropeta 

and Wei, 2014). However, the daunting challenge associated with the large-scale production 

and marketability of these compounds is the cultivability of sponges in normal environments. 

The majority of sponges from benthic habitats do not survive in seawater aquaria due to 

their slow growth rates, seasonal influences, inability to adapt in the artificial sea 

environment, and infection with parasites (Belarbi el et al., 2003). Further, yields of 

compounds produced by aquaculture of sponges are invariably low and cost of maintenance 

is high. Strategies such as identification of pharmacophore linked with synthetic chemistry 

and metabolomics-based approaches could initiate the scale-up of drugs from these marine 

prototypes (Kersten and Dorrestein, 2009; da Silva et al., 2015; Kurita et al., 2015). 

A B 
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The evidence of production of bioactive compounds by the sponge microbiota and the 

sponge, has led the parentage of natural products from sponges a question of debate (Leal 

et al., 2014). Using the sponge microbiota for production of new compounds could be an 

alternate approach as it overcomes the above-mentioned bottlenecks and large-scale 

cultivation of these microbes is possible with the usage of bioreactors. The large fraction of 

uncultivable microbes in marine sponges represents a major draw-back in this strategy and 

this could be resolved with the application of metagenomics-based techniques for 

identification of biosynthetic gene clusters. This could in turn bolster the discovery of new 

MNPs from these uncultivable microbes (Brady et al., 2009; Donia et al., 2011; Wilson and 

Piel, 2013). Around 32 bacterial phyla and candidate phyla were described from marine 

sponges so far. The most common phyla associated with marine sponges include 

Actidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, Nitrospira, Bacteriodetes, 

Planctomycetes, Gemmatimonadetes, Spirochetes and Proteobacteria (α and γ) (Hentschel 

et al., 2012; Schmitt et al., 2012). Figure 7 indicates the percentage distribution of 

compounds produced by sponge-associated microbes. 

It could be seen that the phylum Actinobacteria among the bacterial sponge symbionts are 

prolific producers of secondary metabolites followed by the members of phylum 

Proteobacteria (Thomas et al., 2010).  

  

Figure 7: Percentage distribution of compounds produced by: (A) bacterial and fungal sponge 

associates, (B) bacteria-phylum wise. Modified from (Thomas et al., 2010). 

 

1.5.2. Marine sponge-derived actinomycetes 

Actinomycetes are Gram positive bacteria with high GC contents (up to 70%) and diverse 

colony morphologies (Waksman, 1950; Korn-Wendisch, 1992). They exist in terrestrial and 
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marine environments and produce a broad spectrum of NPs with massive chemical diversity 

and a range of biological activities (Li and Vederas, 2009; Nett et al., 2009; Abdelmohsen et 

al., 2014). However, the frequent re-discovery of compounds from terrestrial actinomycetes 

and the rich metabolic diversity of marine actinomycetes has made the exploitation of 

actinomycetes from marine habitats a hotspot in NP-based drug discovery (Lam, 2006; 

Fischbach and Walsh, 2009; Subramani and Aalbersberg, 2012; 2013). A total of 10,400 

actinomycete 16S rRNA gene sequences were so far described from marine origin 

(cultivated from sea water, marine sediments, invertebrates like soft corals, tunicates, fish 

and marine sponges) (Abdelmohsen et al., 2014). It is well known that the majority of the 

marine actinomycetes isolated from marine invertebrates comes from marine sponges 

(Zhang et al., 2006; Selvin, 2010). Abdelmohsen et al. (2014) extensively studied the 

diversity of marine sponge-derived actinomycetes. 60 different genera of marine sponge-

derived actinomycetes were identified by a search in NCBI database (until August 2013). 

These genera are represented in Figure 8. Over half of the genera of actinomycetes isolated 

from sponges were of the suborder Micrococcineae (Micrococcus, Microbacterium and 

Arthrobacter). Members of Micrococcineae are fast-growing but produce only a few 

chemotypes (Lang et al., 2004). Many of the chemically rich Streptomyces were represented 

by hundreds of sequence entries. Several new and rare actinomycetes (like 

Actinokineospora, Actinomadura, Knoellia, Nonomurea, Pseudonocardia, 

Saccharopolyspora, Saccharomonospora and Verrucosispora) have also been reported 

from sponges, pointing their undiscovered potential in producing clinically relevant 

compounds.  
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Figure 8. Maximum likelihood phylogenetic tree based on 16S rRNA sequences of sponge-derived 

actinomycete genera derived from literature and NCBI database until August 2013. Reproduced from 

(Abdelmohsen et al., 2014) with permission of The Royal Society of Chemistry.  

 

There has been a considerable rise in the discovery of new actinomycetes and even genera 

from marine sponges (Kwon et al., 2006; Supong et al., 2013a; Supong et al., 2013b). The 

following modifications in the isolation protocols have been made to facilitate the recovery 

of new sponge-associated actinomycetes: 

• Heat shock application which reduces the numbers of Gram negative bacteria from 

sea water (Takizawa et al., 1993) 

• Pretreatment with ultraviolet (UV) radiation and high frequency waves to induce spore 

germination (Bredholdt et al., 2007) 
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• Supplementation of cultivation media with antibiotics to inhibit the growth of Gram 

negatives and fungi (Webster et al., 2001) 

• Media formulation with low nutrients for recovery of oligotrophic bacteria (Olson et 

al., 2000) 

• Addition of sponge extract to the cultivation media (Kampfer et al., 2014) 

• Encapsulation of cells in gel microdroplets (Zengler et al., 2002) 

• Diffusion chambers, microbial traps and isolation chips (Gavrish et al., 2008; Lewis 

et al., 2010; Pahlow et al., 2013) 

Actinobacteria produce the major fraction of MNPs among the different microbial phyla in 

marine habitats, with antiprotozoal, antiviral, anticancer, antioxidant, anti-inflammatory and 

antibiotic activities against drug-resistant pathogens (Wei et al., 2011; Palomo et al., 2013; 

Abdelmohsen et al., 2014; Abdelmohsen et al., 2017). It is due to the production of unique 

chemotypes, these actinomycetes are regarded as economically and biotechnologically 

profitable prokaryotes (Lam, 2006; Subramani and Aalbersberg, 2013). NPs produced by 

sponge-derived actinomycetes include several classes of compounds like polyketides, 

alkaloids, fatty acids, peptides and terpenes. About 22% of total MNPs by marine 

actinomycetes were obtained from sponge-associated actinomycetes (Figure 9A). Further, 

the number of NPs from marine actinomycetes (reported over the years) is depicted in 

Figure 9B.  

 

 

 

 

Figure 9. Distribution of MNPs. (A) Percentage distribution of NPs from marine actinomycetes in different 

environments, (B) NPs discovery rates from marine actinomycetes; data collected from MarinLit® 2013 and 

literature. Modified from (Abdelmohsen et al., 2014).  
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Few anti-infective compounds derived from these actinomycetes have been illustrated in 

Figure 10. From the diversity, abundance and the available genome mining data it is evident 

that there is still room for discovery of new anti-infectives from these talented phyla.  

 

 

 

 

Actinomycin D (Lee et al., 2016) 

 

Coryxin (Dalili et al., 2015) 

 

 

Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-3-

(2-methylpropyl) (Rajivgandhi et al., 2018) 

 

 

                                                                                                                  

 

        

Cahuitamycins A, B, C (Park et al., 2016) 

 

 

 

Kocurin (Palomo et al., 2013) 

 

 

 

Marinopyrroles A and B (Hughes et al., 2008) 

 

Figure 10. Diverse chemistry of anti-infective compounds from actinomycetes. Few examples from 

existing literature have been shown. 
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1.6. Scope of the study 

The alarming levels of drug-resistant bacterial infections, impressive array of evolved 

bacterial protection mechanisms against drugs, as well as the current inexistence of 

effective therapeutics in the market, have urged the continuation in search of novel anti-

infective agents. Marine sponge-associated actinomycetes have been increasingly mined 

for discovery of new antibiotics. The main goal of this Ph.D. thesis is to investigate the anti-

infective or anti-virulence potential of marine sponge-associated actinomycetes against 

Shiga toxin production in EHEC and biofilm formation in staphylococci. 

The first objective of the study (Chapter 2) was to evaluate the inhibitory effect of the 

compound strepthonium A isolated from Streptomyces sp. SBT345 (previously cultivated 

from the Mediterranean sponge Agelas oroides) in curtailing Stx production in EHEC strain 

EDL933. Structural elucidation as well as the biological activity has been reported. 

The second objective of the study (Chapter 3) was to investigate the anti-biofilm effect of 

an organic extract obtained from liquid fermentation of Streptomyces sp. SBT343 (previously 

cultivated from the Mediterranean sponge Petrosia ficiformis) in restraining staphylococcal 

biofilm formation in vitro. The biofilm inhibitory effects of SBT343 extract were studied on 

polystyrene, glass and contact lens surfaces using crystal violet assay, scanning electron 

and confocal microscopies. Toxicity of SBT343 extract was evaluated in vitro (cell lines: 

mouse macrophage (J774.1), fibroblast (NIH/3T3), human corneal cells) and in vivo (greater 

wax moth Galleria melonella larvae). Physio-chemical characterization of the extract (heat 

and enzymatic treatments) was done to ascertain the nature of active component(s). Finally, 

fractionation experiments were done to isolate and identify the active component(s). 

The third objective of the study (Chapter 4) was to investigate the anti-biofilm effect of an 

organic extract obtained from solid fermentation of Streptomyces sp. SBT348 (previously 

cultivated from the Mediterranean sponge Petrosia ficiformis) in blocking staphylococcal 

biofilm formation in vitro. Bioassay-guided fractionation and semi-preparative HPLC 

methods were employed to isolate and identify the active compound(s). Anti-biofilm and anti-

staphylococcal effects of the most active compound SKC3 in the extract was extensively 

studied using in vitro assays. Finally, RNA sequencing was done to understand the 

mechanism of action of SKC3 on staphylococci.  
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The experimental Chapters (2, 3 and 4) are preceded by a general introduction (Chapter 

1), followed by a general discussion (Chapter 5) on the anti-infective potential of 

actinobacteria from marine sponges, and conclusion and future perspectives (Chapter 6). 

Further, the materials and methods used in this Ph.D. thesis have been detailed in chapters 

2, 3 and 4. For further information, readers are requested to refer to these chapters.
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2. Inhibitory potential of strepthonium A against Shiga toxin 

production in enterohemorrhagic Escherichia coli (EHEC) strain 

EDL933 

 

This article was published in the peer-reviewed journal Natural Product Research. 

For documentation of individual contributions to this work and consent of all authors for 

second publication in this thesis please refer to the appendix. 

Supplementary information to this article could be accessed online at: 

http://dx.doi.org/10.1080/14786419.2017.1297443 
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3. Marine sponge-derived Streptomyces sp. SBT343 extract 

inhibits staphylococcal biofilm formation 

 

This article was published in the peer-reviewed journal Frontiers in Microbiology, Section: 

Antimicrobials, Resistance and Chemotherapy. 

For documentation of individual contributions to this work and consent of all authors for 

second publication in this thesis please refer to the appendix. 

Supplementary information to this article could be accessed online at: 

https://www.frontiersin.org/article/10.3389/fmicb.2017.00236/full#supplementary-material 
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4. A new bioactive compound from the marine sponge-derived 

Streptomyces sp. SBT348 inhibits staphylococcal growth and 

biofilm formation 
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Abstract 

Staphylococcus epidermidis, the common inhabitant of human skin and mucosal 

surfaces has emerged as an important pathogen in patients carrying surgical 

implants and medical devices.  Entering the body via surgical sites and colonizing 

the medical devices through formation of multi-layered biofilms leads to refractory 

and persistent device-related infections (DRIs). Staphylococci organized in biofilms 

are more tolerant to antibiotics and immune responses, and thus are difficult -to-

treat. The consequent morbidity and mortality, and economic losses in health care 

systems have strongly necessitated the need for development of new anti -bacterial 

and anti-biofilm-based therapeutics. In this study, we describe the biological activity 

of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining 

staphylococcal growth and biofilm formation on polystyrene, glass, medically 

relevant titan metal and silicone surfaces. A bioassay-guided fractionation was 

performed to isolate the active compound (SKC3) from the crude SBT348 extract. 

Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 

µg/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 µg/ml) of S. epidermidis 

RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, 

and Mass Spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, 

and high molecular weight (1258.3 Da).  Cytotoxicity profiling of SKC3 in vitro on mouse 

fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth 

larvae Galleria melonella revealed its non-toxic nature at the effective dose. Transcriptome 

analysis of SKC3 treated-S. epidermidis RP62A has further unmasked its negative effect on 

central metabolism such as carbon flux as well as, amino acid, lipid and energy metabolism. 

Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent 

staphylococcal DRIs.  

Keywords: Marine sponges, Streptomyces, Staphylococci, Device-related infections, 

Bioassay guided-fractionation, Transcriptome 
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1. Introduction 

Surgical implants and medical devices have greatly assisted in improving the survival and 

recovery of patients from physical ailments (Vinh and Embil, 2005). However, they also are 

ideal niches for colonization and biofilm formation by microorganisms from patient’s own 

skin, healthcare workers’ skin or hospitalized settings (Percival et al., 2015). Biofilms are 

networks of microorganisms that are entrapped in a self-produced gluey matrix made up of 

polysaccharides, proteins, lipids and eDNA (Otto, 2009; Flemming and Wingender, 2010). 

Microbes in biofilms exhibit 10-1000-fold increased resistance to antibiotics and host 

immune systems; and a number of mechanisms are supposed to contribute to this 

phenomenon such as the presence of biofilm matrix itself, slow growth rate and persister 

cell formation, efflux pumps, plasmid exchange, target mutations and antibiotic-modifying 

enzymes etc. (Stewart and Costerton, 2001; Hall-Stoodley et al., 2004; Percival et al., 2011; 

Rajput et al., 2018). Current treatment of biofilm based DRIs involves complete removal of 

the infected implant or device by a surgical procedure followed by prolonged antibiotic 

treatments (Otto, 2012). Biofilm based infections thus, lead to increased patient morbidity 

and mortality, and increased health care costs (Shida et al., 2013; Kleinschmidt et al., 2015; 

Leary et al., 2017). 

The majority of the DRIs reported till date are a consequence of biofilm formation by 

coagulase negative (e.g. S. epidermidis) and positive (e.g. S. aureus) staphylococci (Mack 

et al., 2007; Becker et al., 2014; Windolf et al., 2014). Predominantly, S. epidermidis an 

inhabitant of skin and mucosa is the leading cause of nosocomial and DRIs (Otto, 2009; 

Franca et al., 2012; Namvar et al., 2014; Sabate Bresco et al., 2017). The development of 

complications like catheter-related blood stream infections, prosthetic joint infections, early-

onset neonatal sepsis etc. and the rapid emergence of drug-resistant staphylococcal strains 

in hospital and community settings has challenged the effectiveness of current therapeutic 

regimes (Barros et al., 2014; WHO, 2014; Sakimura et al., 2015; Widerstrom, 2016). 

Therefore, it is imperative to develop novel antibacterial and antibiofilm based therapeutics 

for management of the hard-to-treat staphylococcal infections (Bjarnsholt et al., 2013). 

Marine bioprospecting has gained much attention in the recent years owing to its massive 

chemical and biological diversity (Mayer et al., 2010; Gerwick and Moore, 2012; Martins et 

al., 2014; Thompson et al., 2017). A variety of bioprospecting techniques (including 

cultivation-dependent to independent approaches) have been described so far towards 

harnessing the bioactive potential of the marine realm (Abdelmohsen et al., 2015;  Kodzius 
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and Gojobori, 2015; Indraningrat et al., 2016). Particularly, marine sponges and their 

associated actinomycetes are abundant reserves of novel natural products with distinct 

biological activities of pharmaceutical importance (Thibane et al., 2010; Abdelmohsen et al., 

2014a; Abdelmohsen et al., 2015; Abdelmohsen et al., 2017). A wide spectrum of anti-

staphylococcal compounds and extracts possessing antibacterial and/or antibiofilm activities 

have been reported from marine sponges and microbes (Rahman et al., 2010; Stowe et al., 

2011; Beau et al., 2012; Palomo et al., 2013; Gomes et al., 2014; Balasubramanian et al., 

2017).  

A preliminary anti-biofilm screening (against the model isolate S. epidermidis RP62A) with 

50 different organic extracts obtained from solid and liquid batch fermentations of 25 

different marine sponge-derived actinomycetes led to the identification of the bioactive 

extract from Streptomyces sp. SBT348. Marine sponge-derived Streptomyces sp. SBT348 

is a Gram-positive bacterium that was previously shown to possess distinct metabolomic 

and rich chemistry profiles with strong biological activities (Cheng et al., 2015; Cheng et al., 

2017). In this study, bioassay-guided fractionation was performed to unravel the active 

component(s) in the SBT348 extract. The most active compound SKC3 was evaluated 

further for growth and biofilm inhibition on various S. epidermidis, S. aureus and P. 

aeruginosa strains. Results obtained highlighted the specific anti-biofilm nature of SKC3 with 

high potency and non-toxic nature. Chemical analysis revealed the heat-stable, non-

proteinaceous and high-molecular weight of SKC3 (1258.3 Da). Finally, data from 

transcriptome analysis revealed the regulation of expression of several genes related to 

carbon, amino-acid, proteins, lipids, nucleotide and energy metabolism suggesting the 

possible interference of SKC3 with global metabolism of staphylococci. 

2. Materials and methods 

2.1. Instrumentation 

Flash chromatography was done on an Interchim Puri-Flash 430 instrument (ultra 

performance flash purification) connected to an Interchim flash ELSD (Montlucon, France). 

Semi-preparative HPLC of the active fraction was perfomed with Agilent 1100 series 

(Waldbronn, Germany) using Gemini-NX5u-C18-110A column (250x10 mm, Phenomenex, 

USA) and detection at 254 nm. The following gradient was applied solvent A: water and 

solvent B: acetonitrile. Separation method: solvent B 20% for 4 min, 40% for 11 min, 40% 
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to 50% in 5 min, 50% to 90% in 1 min and again to 20% in 4 min; maximum pressure of 400 

bar and a flow rate of 4 ml/min. 

Analytical HPLC to assess the purity of the compound was done with the same HPLC 

system but with Gemini-NX5u-C18-110A column (250x4.60 mm, Phenomenex, USA) 

Separation method: solvent B 5% at 0 min, 5% to 100% for 25 min, 100% for 1 min, 100% 

to 50% in 2 min and again to 5% in 2 min; maximum pressure of 400 bar and a flow rate of 

1 ml/min. 

Fourier transform-infra-red-spectroscopy (FT-IR) of SKC3 were conducted using Jasco 

FT/IR-6100 spectrometer with an ATR unit (Groß-Umstadt, Germany) at room temperature. 

MS measurements were performed using Electron Spray Ionization (ESI) in a micrOTOF-

QIII mass spectrometer (Bruker Daltonics, Billerica, Massachusetts, USA) coupled to an 

Agilent 1100 HPLC system. ESI was operated in positive mode with a capillary voltage of 

4.5 kV. Nitrogen at 200 ºC and a flow rate of 7 l/min was used as the desolvation gas. Mass 

spectral data was obtained over a range of 50-3500 m/z.  

Scanning electron microscopy (SEM) was done with JEOLJSM-7500F (Japan) with field 

emission gun system.  

2.2. Bacterial strains and culture conditions 

Bacterial strains used in the work are mentioned in Table 1. Streptomyces sp. SBT348 was 

grown in ISP2 medium (4 g/l yeast extract, 10 g/l malt extract, 4 g/l glucose in artificial sea 

water) at 30 ºC. All other strains in the study were cultured in Tryptic Soy Broth (TSB; Becton 

Dickinson) (17.0 g/l pancreatic digest of casein, 3.0 g/l peptic digest of soybean meal, 5.0 

g/l sodium chloride, 2.5 g/l dipotassium hydrogen phosphate, 2.5 g/l glucose) and incubated 

at 37 ºC. 

 

Table 1: Strains used in this study. 

Strain Origin Relevant 
characteristics 

Reference and/or 
source 

Streptomyces sp. SBT348 Marine sponge-derived 

actinomycetes strain# 

Filamentous and 

sporulating 

(Cheng et al., 2015) 

S. epidermidis RP62A Reference strain isolated 

from intra-vascular catheter 

associated sepsis 

+++ ATCC collection 
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# Isolated from Mediterranean sponge Petrosia ficiformis that was collected offshore Pollonia, Milos, Greece 

(N36.76612º; E24.51530º), May 2013 (GeneBank accession No. KP238417). +++ strong biofilm former, ++ 

moderate biofilm former; + weak biofilm former, - no detectable biofilms under conditions tested, --- biofilm 

negative phenotype. Biofilm formation was assessed in TSB medium employing the standard crystal violet 

biofilm formation assay. 

S. epidermidis O-47 Clinical isolate from septic 

arthritis 

++ (Heilmann et al., 1996) 

S. epidermidis 1457 Clinical isolate from a patient 

with infected central venous 

catheter 

+++ (Mack et al., 1992) 

S. epidermidis ATCC 

12228 

Non-infection associated 

strain 

--- ATCC collection 

S. carnosus TM300 Meat starter culture --- (Rosenstein et al., 2009) 

S. aureus Newman MSSA isolate from 

osteomyelitis patient 

+ (Lipinski et al., 1967) 

S. aureus USA Lac* CA-MRSA isolate from a wrist 

abscess 

+ (McDougal et al., 2003) 

S. aureus RF122 Bovine mastitis isolate - (Fitzgerald et al., 2001) 

S. aureus Mu50 Human MRSA isolate from 

surgical wound infections, 

vancomycin-resistant 

- (Kuroda et al., 2001) 

S. aureus Col Human MRSA isolate - (Dyke et al., 1966) 

P. aeruginosa PAO1 Clinical isolate from wound +++ Dr. Vinay Pawar, 

Braunschweig, Germany 

P. aeruginosa PA14 Clinical isolate from burn 

wound 

+++ Dr. Vinay Pawar, 

Braunschweig, Germany 
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2.3. Large scale fermentation and extract preparation 

1000 ISP2 agar plates (prepared with artificial sea water) were inoculated with a week-old 

liquid culture of Streptomyces sp. SBT348 respectively and were incubated at 30 ºC for 10 

d (batch fermentation). Agar with bacterial biomass was cut into small pieces and transferred 

into 1 l of ethyl acetate. The solutions were subjected to shaking at 175 rpm in a shaker 

overnight. Subsequently, the macerations were filtered, and the filtrates were evaporated in 

vacuo to obtain the dried SBT348 organic extract. Agar plates without the actinomycetes 

were extracted in a similar manner and this was the medium control for the bioactivity testing. 

Extracts were dissolved in DMSO (final concentration 3.75% v/v) and used for in vitro 

assays. Additionally, scanning electron microscopy (SEM) was done for the Streptomyces 

sp. SBT348 10 d culture on the ISP2 agar plate. The SEM protocol has been described 

below.  

2.4. Bioassay guided-fractionation for isolation for active component(s) 

1.2 g of the dried extract obtained was subjected to fractionation using a flash 

chromatography with a cyclohexane/ethyl acetate/methanol gradient eluent yielding 10 

major fractions. After biological evaluation of each major fraction in vitro, against the biofilm 

formation of S. epidermidis RP62A, the active fraction Fr 7 was found. Fr 7 was sub-

fractionated by semi-preparative HPLC and this yielded 7 sub-fractions (including the 

bioactive SKC1, SKC2, SKC3, SKC4 and SKC5). The bioactive fraction was further purified 

on HPLC to yield the bioactive compound SKC3. Pure compound SKC3 was dissolved in 

DMSO (final concentration 3.75% on cells) or stored dry in amber colored vials at -80 ºC to 

ensure stability. 

2.5. Characterisation of the active compound SKC3 

2.5.1. Stability of compound to heat and enzyme treatments 

SKC3 at the respective effective concentrations was subjected to heat (100 ºC for 1 h; 

followed by cooling on ice) and enzymatic (proteinase K and trypsin; final concentration of 

1 mg/ml, 37 ºC for 1 h) treatments. As controls, DMSO (final concentration of 3.75%) was 

subjected to similar heat and enzymatic treatments. For each of the treatments, the growth 

and biofilm inhibitory effects of treated and untreated SKC3 was assessed using the 

microtiter 96 well plate assay against S. epidermidis RP62A. Each data point is composed 

of three independent cultures performed in duplicates.  
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2.6. Biofilm assay and MIC determination 

Biofilm assay was perfomed as previously described (Balasubramanian et al., 2017). 

Bacterial strains (OD600 ~ 0.05 in TSB) were incubated in the presence of SBT348 extract 

or SKC3 at different concentrations at 37 ºC (for S. epidermidis and P. aeruginosa) or 30 ºC 

(for S. aureus) for 24 h. Experimental controls included bacteria treated with ISP2 medium 

extract or DMSO and TSB without bacteria. MIC was determined against the various 

pathogenic bacterial strains in this microbroth dilution assay according to CLSI protocols. 

OD630 values were used to determine the MICs. MIC was determined as the concentration 

of the test substance where the lowest OD630 values were recorded with no visible bacterial 

growth. After OD630 measurement, the planktonic bacteria were discarded by rinsing with 

sterile 1xPBS (sterile) and biofilm cells were heat fixed at 65 ºC for 1 h. Plates were then 

stained with 0.3% crystal violet for 5 min, washed thrice with sterile double-distilled water 

and air-dried briefly. Finally, OD492 measurements determined the extent of biofilm inhibition 

in test wells in comparison with control. S. epidermidis (ATCC12228) and S. carnosus 

TM300 were the biofilm negative strains used in the experiment. 

For studying the effect on existing or pre-formed biofilms, biofilms were established shortly 

before the experiment with the above protocol. Formed biofilms were then treated with fresh 

TSB (control) or the test substance at their respective final concentrations and incubated 

further at 37 ºC or 30 ºC for 24 h. The extent of biofilm eradication was assessed with the 

crystal violet assay. NaIO4 that digests the biofilm matrix (polysaccharides) was used as the 

positive control in the experiment. 

2.7. Growth curve studies 

The antagonistic effect of SBT348 extract and SKC3 on the growth of S. epidermidis RP62A 

was determined by growth curve measurements (Nithya et al., 2010). Briefly, SBT348 

extract or SKC3 (MIC and MBIC90) were added to tubes containing bacteria (initial OD600 of 

0.1). Tubes were incubated at 37 ºC  at 200 rpm. Bacterial growth was monitored for every 

2 h up to 24 h by optical density and CFU measurements (every 4 h). TSB medium devoid 

of the bacteria was used as the negative control while medium extract or DMSO treated 

bacteria served as the appropriate controls in the experiment. Three independent cultures 

were used in this experiment to ensure reproducibility of results. 
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2.8. Antibiofilm effect on different surfaces 

The antibiofilm effect of SBT348 extract and the compound SKC3 was studied at their 

respective BICs on different surfaces; glass cover slips (diameter of 12 mm), medically 

relevant titan metal plates (diameter of 1.5 cm; University clinic for dental, oral and jaw 

diseases, Würzburg, Germany), and silicone tubes (length 1 cm and 0.2 cm diameter; 

Biotronik, Berlin, Germany). Briefly, 1 ml of S. epidermidis RP62A (OD600 of 0.05), was 

transferred to 24 well plates (Greiner bio-one, GmbH, Germany) containing the surfaces of 

interest with the test substances. Control wells containing the medium extract and DMSO 

were maintained in parallel. Sterile controls containing the surfaces with TSB alone were 

included to ensure absence of contamination. All the plates were incubated at 37 ºC for 24 

h under static conditions. Samples were then subjected to washing with sterile PBS (2X) 

and subjected to SEM studies. 

For SEM, samples were fixed overnight with gluteraldehyde (6.25%) and washed with 

Sörenson buffer (100 mM KH2PO4 and 100 mM Na2HPO4). After dehydration with a series 

of steps with ethanol, samples were finally coated with gold by low vacuum sputter coating, 

and scanned in the electron microscopy unit, University of Würzburg. 

2.9. Cytotoxicity profiling 

2.9.1. In vitro on cell lines  

Cytotoxicity of the purified compound SKC3 was assessed on macrophage (J774.1) and 

mouse fibroblast (NIH/3T3) cell lines using alamar blue assay (Huber and Koella, 1993).  

RPMI 1640 (1X) + Glutamax™-1 and DMEM (1X) + Glutamax™-1 (Life Technologies™, 

USA), supplemented with 10% FCS without antibiotics, were used for culturing J774.1 and 

NIH/3T3 cell lines, respectively. 105 cells/ml were seeded on 96 well plates containing 

SBT348 extract (62.5-500 µg/ml) or SKC3 (3.95-500 µg/ml) and the plates were incubated 

at 37 ºC with 5% CO2 for 24 h. 20 µl of alamar blue (Thermofischer scientific, USA) was 

added to each well and the plates were incubated for a further period of 24 h at 37 ºC with 

5% CO2. Finally, the OD550 values of the plates were measured and normalized to OD630 

values. The extent of cytotoxicity was measured by comparison of extract/SKC3 treated sets 

with the control. MeOH (toxic to the cells) was used as the positive control in the experiment. 

DMSO at a final concentration of 1% was used as the control. 
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2.9.2. In vivo on G. melonella larvae  

G. melonella larvae (at their final stage) were purchased from Mouse Live Bait (Balk, The 

Netherlands). In vivo toxicity of SBT348 extract and SKC3 was assessed in G. melonella 

using the method described previously (Gibreel and Upton, 2013; Skaf et al., 2017). Healthy 

larvae (clear in color without the presence of any spots or pigmentation) were used in the 

experiment. SBT348 extract and SKC3 at their respective test concentrations were prepared 

in endotoxin-free PBS (Merck, Germany) (vehicle control) and were injected in the last left 

pro-leg of the larvae with sterile insulin pens (BD Micro-Fine™ + Demi). A total of 10 larvae 

were included per group. Negative controls included the group that underwent no injection 

and injection with vehicle control only, while positive control included the group injected with 

pure MeOH (Roth, Germany). Larval groups were incubated at 37 ºC in petri dishes (devoid 

of light). Larval survival rates were recorded every 24 h up to 120 h. Larvae that were 

pigmented and did not respond to touch were scored dead and vice versa. Experiments 

were repeated three independent times to ensure the reproducibility of results. 

2.10. RNA extraction, DNase treatment and RNA quality determination 

S. epidermidis RP62A (OD600 of 1.0) was treated with SKC3 (62.5 µg/ml) and was statically 

incubated in a 6-well plate at 37 ºC for 20 min and 3 h. Treatment with DMSO (final 

concentration of 3.75% v/v on the cells) served as the appropriate control in the experiment. 

RNAprotect bacteria reagent (Qiagen, Germany) was added at the respective time points 

for protection and stabilization of RNA. Subsequently, RNA isolation was done according to 

the customized protocol described by Franca et al., 2012. Three independent biological 

replicates each from a pool of three independent wells were performed in order to reduce 

the variability. Isolated RNA samples were subjected to treatment with Turbo DNA-free™ kit 

(Invitrogen, USA) following manufacturer’s instructions and acid phenol: chloroform: 

isoamylalcohol (125:24:1) (Ambion, USA). Finally, pure RNA samples obtained, were 

precipitated with ethanol and checked for DNA contamination by PCR for the icaA gene 

(Figure S1). 

Concentration and purity of the total RNA was evaluated spectrophotometrically using 

NanoDrop 2000 PEQLAB GmbH (Erlangen, Germany). The ratios A260/A280 (mean values 

of all the samples was 1.97) and A260/A280  (mean values of all the samples was 2.59) were 

used as indicators of protein and phenol/polysachharide contamination. Total RNA quality 

was also assessed with an Agilent 2100 Bioanalyzer (Agilent, CA). RNA integrity numbers 

of all samples were ~8.0 or more.  
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2.11. Ribosomal RNA depletion, library preparation and sequencing  

Extracted RNA was depleted of ribosomal RNA using the Ribo-Zero rRNA Removal Kit for 

bacteria (Illumina) according to the manual. Depleted RNA was fragmented for 3 min at 94 

°C using the NEBNext Magnesium RNA Fragmentation Module. The RNA ends were 

repaired with two consecutive T4 PNK incubations (-/+ ATP) and an RppH treatment. Library 

preparation was performed according to the NEBNext Multiplex Small RNA Library 

Preparation Guide for Illumina. All adapters and primers were diluted 1:4 and 15 and 16 

cycles of PCR were used, respectively. No size selection was performed at the end of the 

protocol. 12 libraries were pooled and sequenced on a NextSeq 500 with a read length of 

75 nt. 

2.12. Analysis of deep-sequencing data  

The quality of raw reads (Phred scores, amount of duplicates and adapter) were  assessed 

using FastQC version-0.11.31 (Andrews, 2010). In order to assure a high sequence quality, 

the Illumina reads in FASTQ format were trimmed with a cut-off phred score of 20 by 

cutadapt version-1.15 (Martin, May 2011) that also was used to remove the sequencing 

adapter sequences. The following steps were performed using the subcommand "create", 

"align" and "coverage" of the tool READemption version 0.4.3 (Forstner et al., 2014) with 

default parameters. Reads with a length below 15nt where removed and the remaining reads 

were mapped to the reference genome sequences (NCBI accession no. NC_002976.3 (31 

January 2014)) using segemehl (Hoffmann et al., 2009). Coverage plots in wiggle format 

representing the number of aligned reads per nucleotide were generated based on the 

aligned reads and visualized in the Integrated Genome Browser (Freese et al., 2016). Each 

graph was normalized to the total number of reads that could be aligned from the respective 

library. To restore the original data range and prevent rounding of small error to zero by 

genome browsers, each graph was then multiplied by the minimum number of mapped 

reads calculated over all libraries. The differentially expressed genes were identified using 

DESeq2 version 1.16.1 (Love et al., 2014). In all cases, only genes with maximum 

Benjamini-Hochberg corrected p-value (padj) of 0.05, were classified as significantly 

differentially expressed. The data were represented as MA plots using R.  

Differentially expressed genes (cutoff of p adjusted ≤0.05 and log2FC = ±2) was used to 

perform Gene enrichment using the R package clusterProfiler version 3.4.4 (Yu G. et al., 

2012). Using enrichKEGG function enrichment in KEGG pathways was analyzed. Only the 
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pathways with Benjamini–Hochberg FDR threshold ≤0.05 defined as significantly 

enrichment terms. 

The RNA-Seq data presented in this work has been deposited at the NCBI Gene Expression 

Omnibus (Edgar et al., 2002) and can be accessed through GEO series accession number 

GSE109983 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109983). Samples 

treated with SKC3 has been referred to as C3 in the submitted files. 

2.13. Statistical analysis 

All the experiments were performed three independent times with technical replicates. Data 

are expressed as mean±SEM. For all the comparisons, Student’s t-test was used. For 

comparing different Kaplan-Meier survival curves from in vivo G. melonella experiments, 

Log-rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon test was used. p value<0.05 was 

considered as statistically significant. GraphPad Prism® version 6.01 was used for statistical 

analysis of experimental data. 

 

3. Results  

3.1.  Antibiofilm potential of Streptomyces sp. SBT348 

The antibiofilm potential of Streptomyces sp. SBT348 was identified with a preliminary anti-

biofilm screening of different actinomycetes organic extracts against the strong biofilm 

forming S. epidermidis RP62A. Streptomyces sp. SBT348 was characterized by its wrinkled, 

rough, dry and light-yellow mycelia on ISP2 agar medium (t=10 d). SEM analysis revealed 

the filamentous nature of Streptomyces sp. SBT348. Branched networks with the presence 

of extracellular polymeric substance-like materials were identified in the scanning electron 

micrograph (Figure 1A).  The ethyl acetate SBT348 extract significantly reduced the biofilm 

formation (at 24 h) in S. epidermidis RP62A (p<0.0001). Extract at a concentration of 62.5 

µg/ml reduced the biofilm formation by ~90% and this was designated as the BIC90 (90% 

biofilm inhibition concentration). Notably, there were no significant differences in the effect 

beyond this concentration (Figure 1B). SBT348 extract at BIC90 or 2xBIC90 did not further 

alter the growth pattern of S. epidermidis RP62A (compared to extract from ISP2 medium 

control) (Figure 1C). SBT348 extract had no antagonistic effects on pre-formed S. 

epidermidis RP62A biofilms at any of the tested concentrations (15.62-500 µg/ml; data not 

shown). Cytotoxicity profiling of the extract in vitro on NIH/3T3 and J774.1 cell lines (Table 

3), and in vivo on G. melonella larvae demonstrated the non-toxic nature of the extract 
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(Figure 1D). Further, no changes in the activity of the extract was observed after heat and 

enzymatic (proteinase K and trypsin) treatments (data not shown). This highlighted the 

presence of heat-stable and non-proteinaceous active proportion(s) in the extract. 
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Figure 1. (A) Colony morphology and scanning electron micrograph (at X1500 and X15000 magnification) 

of Streptomyces sp. SBT348 after 10 d batch fermentation on ISP2 agar plate at 30 ºC. SEM indicates the 

presence of extracellular polymeric substance-like materials in Streptomyces sp. SBT348. Scale bar: 10 µm 

and 1 µm. (B) Dose-dependent inhibition of biofilm formation of S. epidermidis RP62A by ethyl acetate 

extract of Streptomyces sp. SBT348. (C) Influence of SBT348 extract on the growth of S. epidermidis RP62A 

A 

B C 

D 
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3.2. Bioassay-guided fractionation and characterization of the active compound 

The bioassay-guided fractionation approach followed to identify the active component SKC3 

(MIC of 31.25 µg/ml and BIC90 of 3.95 µg/ml) in the extract that is shown in Figure 2A. SKC3 

was further investigated in detail in the study. The pure compound SKC3 (Figure S2) was 

obtained as yellow crystalline solid and was soluble in polar solvents like water, DMSO and 

MeOH. Results obtained from LC and MS analysis revealed that SKC3 had a purity of 100% 

and a mass of approximately 1258.3 Da (Figure 2B). This mass was also found in the crude 

LC-MS chromatogram of SBT348 extract (data not shown). FT-IR spectra of SKC3 revealed 

some significant bands at  2936, 3326 and 1660 cm-1, representing the presence of -C-H- 

stretches, -OH and C=O groups (Figure 2C). Mass search with 1258. 3 Da in databases 

like MarinLit® and Chemspider® did not yield any possible hits. Further, heat and enzymatic 

treatments did not significantly alter the biological activity of SKC3 (Figure S3). This was in 

line with the results obtained from the stability studies of the extract. The absence of relevant 

hits with the existing mass and spectral data indicated that SKC3 is likely to be a new 

compound. The structure elucidation of SKC3 is currently under investigation. 

 

 

 

 

 

 

 

at BIC90 (62.5 µg/ml) and 2xBIC90 (125 µg/ml). (D) Kaplan-Meier survival curve of G. melonella larvae treated 

with 16xBIC90-0.5xBIC90 of SBT348 extract (20 – 0.625 µg/larvae). MeOH (positive control) killed 100% of 

larval population at 24 h. Treatment with medium control or SBT348 extract (at the tested concentrations) 

did not lead to death of the larvae (100% survival). 

Control in the experiments (B-D) consisted of ethyl acetate extract (at the respective highest concentration) 

from sterile ISP2 medium which was used as growth medium for Streptomyces sp. SBT348. Graphs 

represent the mean±SEM from three independent repetitions of experiment done with multiple technical 

replicates. ns, not significant; **** p<0.0001. 
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Figure 2. (A) Bioassay-guided fractionation scheme employed for isolation of active compound SKC3 in the 

SBT348 extract. Crystal violet biofilm assay (on 96-well plate against S. epidermidis RP62A) was done in 

each step for identification of active anti-biofilm fraction (Fr), sub-fraction (SF), and pure compound (SKC3). 

(B) LC-MS chromatogram and ESI-MS spectra of SKC3 confirming the presence of single peak and mass 

of SKC3 (1258.3309 Da). ## Sodium ion adduct. (C) FT-IR spectra of SKC3 representing the presence of 

strong absorption troughs at 1660 cm-1 (*), 2936 cm-1, 3326 cm-1 (**) indicating the presence of -OH, -CH 

stretch and C=O groups. # background signal from the instrument. 

 

3.3. Antagonistic activities of SKC3 against staphylococci 

SKC3 displayed an MIC of 31.25 µg/ml on S. epidermidis RP62A and the sub-MIC 

concentrations (1.95-<31.25 µg/ml) effectively inhibited the biofilm formation in the crystal 

violet biofilm assay (Figure 3A). BIC90 value of SKC3 was 3.95 µg/ml. Interference of SKC3 

(MIC) with the growth of S. epidermidis RP62A was further confirmed with the growth curve 

analysis (Figure 3B). Thus, presence of SKC3 at MIC, effectively inhibited bacterial growth 

(approximately 100-fold reduction in CFUs/ml; data not shown) while SKC3 at BIC90 had no 

significant influence. Further, SKC3 (at the highest tested concentration: 500 µg/ml) had no 

clearing effect on existing biofilms of S. epidermidis RP62A (Figure 3C). Complete biofilm 

dispersal by NaIO4 (40 mM) was used a positive control in this experiment. SKC3 was also 

effective in inhibiting the growth and biofilm formation of other strains used in the study 

(Table 2). Noteworthy, SKC3 was more effective against MSSA, MRSA and VRSA strains 

C 
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used in the study, but was ineffective against the tested Gram negative P. aeruginosa 

strains. 

Table 2: Effect of SKC3 on other staphylococcal strains used in the study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIC, minimum inhibitory concentration; BIC>75 >75% biofilm inhibitory concentration; -, inactive; ND, not 

determined. 

Strain MIC BIC>75 

S. epidermidis RP62A >31.25 µg/ml 3.95 µg/ml 

S. epidermidis O-47 >31.25 µg/ml 7.81 µg/ml 

S. epidermidis 1457 >31.25 µg/ml 15.62 µg/ml 

S. aureus Newman >31.25 µg/ml 7.81 µg/ml 

S. aureus USA300 Lac* >15.62 µg/ml 3.95 µg/ml 

S. aureus RF122 >31.25 µg/ml ND 

S. aureus Col >15.62 µg/ml ND 

S. aureus Mu50 >15.62 µg/ml ND 

P. aeruginosa PAO1 - - 

P. aeruginosa PA14 - - 
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Figure 3. (A) Inhibition of growth (MIC: 31.25 µg/ml) and biofilm formation (sub-MIC range: <31.25 µg/ml) 

of S. epidermidis RP62A. Controls consisted of biofilm negative strains S. epidermidis ATCC 12228, S. 

carnosus TM300, DMSO treated S. epidermidis RP62A and sterile TSB without bacteria. (B) Effect of SKC3 

on growth (OD600) at MIC (31.25 µg/ml) and BIC90 (3.95 µg/ml) respectively. DMSO treated S. epidermidis 

RP62A was the appropriate control in the growth curve analysis. (C) Influence of SKC3 on pre-formed 

(existing) biofilms of S. epidermidis RP62A. NaIO4 that digests the polysaccharide biofilms was used as the 

positive control. All the experiments were repeated at least three times in multiple technical replicates. ns, 

not significant; ****p<0.0001. 

A 

B C 
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3.4. SEM analysis 

Investigation of the antibiofilm efficacy of SKC3 at sub-MICs were further evaluated with 

SEM of S. epidermidis RP62A biofilms grown on glass, titan metal and silicone tube 

surfaces. From the scanning electron micrographs, clear differences in appearance were 

observed in the three sterile surfaces under study. In the control sets of the surfaces (treated 

with DMSO; 3.75%), three-dimensional dense biofilm structures were observed.  Treatment 

with SKC3 (BIC90 and 2xBIC90) significantly reduced the biofilm formation on these surfaces 

and this further confirmed the results obtained from crystal violet biofilm assay (Figure 4). 

Particularly, the three-dimensional networks were absent, and the surfaces were clearly 

seen (between sporadic microcolonies or single cells) in the SKC3-treated sets. A closer 

look on the SEM images at higher magnification revealed no alterations in the cell 

morphology of staphylococci. These findings further point towards the antibiofilm potential 

of the isolated compound SKC3. 

 

 

Figure 4. Scanning electron micrographs of S. epidermidis RP62A (24 h) biofilms on glass cover slips, 

titan metal plate and silicone tubes at X1500 magnification (scale bar: 10 µm). Treatment with SKC3 at BIC90 

and 2xBIC90 significantly reduced the staphylococcal biofilm formation on these surfaces. No apparent 

changes in the morphology of RP62A (zoom in image) was observed at higher magnification (X10000; scale 

bar: 1 µm). 
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3.5. In vitro and in vivo toxicity of SKC3 

In vitro toxicity assessment of SKC3 was done on mouse macrophage (J774.1) and 

fibroblast cell lines (NIH/3T3) using the alamar blue assay. Results from the cytotoxicity 

analysis demonstrated the non-toxic nature of SKC3 at effective concentrations (Table 3). 

Toxicity of SKC3 was additionally assessed in vivo in the greater wax moth larvae, G. 

melonella. In recent years, G. melonella larvae have emerged as an interesting model 

system for evaluating the toxicity and efficacy of novel compounds and for studying various 

microbial infections (Gibreel and Upton, 2013; Aparecida Procopio Gomes et al., 2016; Skaf 

et al., 2017). The ease of handling, low maintenance costs, absence of ethical concerns, 

survival at human physiological temperatures are some of the advantages of using G. 

melonella larvae for pre-screening of toxicity (Tsai et al., 2016). Survival rates of larvae 

treated with SKC3 (BIC90-200XBIC90) are shown in Figure 5. None of the tested 

concentrations lead to death of the larvae, whereas, the positive control MeOH lead to 90% 

reduction in the larval survival rates. Thus, SKC3 was completely non-toxic to the larvae at 

the tested concentration.  

 

Table 3: In vitro cytotoxicity of SKC3 on cell lines 

Cell line 

  
 

 

500 µg/ml 250 µg/ml 125 µg/ml 3.9-125 µg/ml 

NIH/3T3 41.07±1.37**** NC NC NC 

J774.1 62.91±.83**** 63.90±1.84**** 32.78±7.00*** NC 

Each data point is comprised of three independent trials done in quadruplicate. Mean±SEM are reported. 

Differences in the mean were compared to the control and considered statistically significant when p 

(***p<0.001, ****p<0.0001) calculated by Student’s t-test. SBT348 extract (62.5-500 µg/ml) exhibited no 

significant toxicity on both the cell lines tested. Positive control, MeOH reduced the cell viability of NIH/3T3 by 

66.73±0.59**** and J774.1 by 72.10±2.16****. NC-no cytotoxicity. 

 

% reduction in cell viability 
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Figure 5. In vivo toxicity evaluation of SKC3 on G. melonella larvae. No death was observed in the 

larval groups treated with vehicle control (1xPBS; endotoxin-free) and SKC3 (at all the tested 

concentrations; BIC90-200XBIC90). MeOH treatment lead to 90% death of the larvae. 

 

3.6. Transcriptome analyses of SKC3-treated S. epidermidis RP62A 

Total RNA sequencing was done for S. epidermidis RP62A treated with SKC3 (62.5 µg/ml) 

at 20 min and 3 h points. Global transcriptome analysis with the obtained RNA sequencing 

results revealed the existence of several differentially expressed genes upon SKC3 

treatment. The differentially expressed genes were identified by setting the threshold of 

Log2foldchange±2.0 with an adjusted p value of <0.05 for statistical significance. From the 

MA plots (Figure 6: A, B), it is evident that higher number of genes were differentially 

expressed (upon SKC3 treatment) at 3 h than 20 min. This was additionally confirmed in the 

PCA plot and a well-distributed grouping of the different biological replicates were observed 

(Figure S4). According to the set threshold, a total of 31 genes representing 1.1% of the 

transcriptome were significantly altered in response to SKC3 at 20 min and a total of 509 

genes representing 19.5% of the transcriptome were significantly altered in response to 

SKC3 at 3 h. Among these genes, 29 genes were upregulated, and 2 genes were 

downregulated at 20 min (Table S1), whereas, 265 genes were upregulated, and 244 genes 

were downregulated at 3 h (Table S2). After data filtering and searches in PubMed and 

UniProtKB, the differentially expressed genes at the two-time points were manually sorted 

in several categories based on their biological functions of the products they encode. 
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Majority of the differentially regulated genes in the entire data set consisted of hypothetical 

proteins. Transcriptome analysis revealed that at 20 min, several of the differentially 

expressed genes were attributed to signal transduction mechanism, transporters, 

transcription and antibiotic response-related functions (Figure 6C). This suggests that S. 

epidermidis RP62A responds to SKC3 by signal transduction mechanisms and by 

expressing several transcription, transporters and antibiotic-stress related genes. 

Transcriptome analysis further revealed that at 3h, several of the metabolic processes 

(pertaining to carbon, amino acid, protein, lipid, nucleotide and energy metabolism) and 

transport processes were strongly affected (Figure 6D). Functional enrichment analysis also 

yielded similar antagonistic effects of SKC3 on metabolism (Figure S5). A list of all 

differentially regulated metabolism-related genes and virulence genes upon SKC3 treatment 

at 3 h are further detailed in Table 4. Overall, the results from transcriptome analysis suggest 

that SKC3 possibly works by interference with the overall metabolism of staphylococci.  
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Figure 6. MA plots representing the significant gene expression changes (red dots; padj value<0.05) in 

SKC3 (62.5 µg/ml) treated-S. epidermidis RP62A at (A) 20 min and (B) 3 h time points in comparison with 

A B 

C 
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control (DMSO treated-S. epidermidis RP62A). Black dots represent the insignificant gene expression 

changes (padj value>0.05). Histogram of differentially expressed genes in the presence of SKC3 (62.5 

µg/ml) at 20 min (C) and 3 h (D). Results are summarized based on biological process. X-axis indicates the 

number of differentially expressed genes in a category. Positive and negative axes represent the numbers 

of up- and downregulated genes respectively. Absolute value of Log2fold change±2 and padj value<0.05 

was used as the threshold to screen the differentially expressed genes. UniProtKB was used to search for 

the biological function of differentially expressed genes. 

 

Table 4: List of metabolism-related genes affected in response to SKC3 at 3 h. Only genes with a 

Log2foldchange±2.0 and a padj value<0.05 were included. 

Metabolic process and 

genes Function 

Log2fold 

change padj value 

Carbon metabolism 
  

  

glmU 

UDP-N-acetylglucosamine 

pyrophosphorylase -2.1757 3.88E-44 

SERP0257 alcohol dehydrogenase zinc-containing -2.9328 7.33E-24 

fruK 1-phosphofructokinase -2.0069 7.77E-11 

hprK HPr kinase/phosphatase -2.3083 3.43E-37 

pgk phosphoglycerate kinase -2.0399 3.02E-17 

tpiA triosephosphate isomerase -2.2812 2.56E-15 

pgi glucose-6-phosphate isomerase -3.4822 1.38E-49 

pdhA 

pyruvate dehydrogenase complex E1 

component alpha subunit -3.1290 1.06E-26 

pdhB 

pyruvate dehydrogenase complex E1 

component beta subunit -3.3469 7.02E-40 

pdhC 

pyruvate dehydrogenase complex E2 

component dihydrolipoamide 

acetyltransferase -3.5036 1.37E-27 

pdhD 

pyruvate dehydrogenase complex E3 

component lipoamide dehydrogenase -2.4225 1.55E-16 

pyc pyruvate  -2.7047 3.23E-51 

trxA thioredoxin -2.3877 4.66E-11 
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tkt transketolase -2.3499 1.62E-104 

SERP0974 acylphosphatase -3.7088 5.81E-45 

malA alpha-glucosidase -2.4798 3.93E-27 

gnd 

6-phosphogluconate dehydrogenase 

decarboxylating -2.3314 5.38E-91 

pfkA 6-phosphofructokinase -2.5866 9.06E-34 

SERP1290 PTS system IIBC components 2.6442 1.92E-32 

tal transaldolase -2.1920 4.46E-19 

sceD sceD protein 4.8221 7.26E-69 

lacR 

lactose phosphotransferase system 

repressor 2.0861 7.09E-16 

sdhA 

L-serine dehydratase iron-sulfur-dependent 

alpha subunit -2.1059 3.48E-44 

SERP2112 alcohol dehydrogenase zinc-containing -2.1470 2.46E-14 

SERP2114 PTS system IIABC components -3.3405 5.78E-34 

budA alpha-acetolactate decarboxylase -2.4764 2.38E-37 

budB acetolactate synthase catabolic -3.4875 2.65E-55 

ldh L-lactate dehydrogenase -3.3363 1.49E-48 

SERP2345 dihydroxyacetone kinase family protein -2.0835 3.63E-14 

gldA glycerol dehydrogenase -2.4748 1.96E-33 

SERP2354 tributyrin esterase EstA putative 2.9073 1.37E-14 

pflB formate acetyltransferase -3.6275 2.36E-49 

Amino acid and protein 

metabolism 
  

  

SERP0033 cyclase putative 2.1197 1.70E-08 

cysK cysteine synthase -2.5176 1.47E-38 

cysE serine acetyltransferase -3.4603 1.64E-52 

cysS cysteinyl-tRNA synthetase -2.7266 4.95E-54 

ilvE 

branched-chain amino acid 

aminotransferase -2.5610 6.43E-11 

SERP0349 deoxyribodipyrimidine photolyase putative 2.1987 2.22E-18 
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prfB peptide chain release factor 2 -2.5844 5.22E-23 

lgt prolipoprotein diacylglyceryl transferase -2.1091 7.12E-33 

gcvH glycine cleavage system H protein -2.4191 2.29E-23 

def peptide deformylase -2.1348 2.13E-24 

def-2 polypeptide deformylase 2.1031 4.64E-59 

fmt methionyl-tRNA formyltransferase 2.1719 7.90E-22 

glnR glutamine synthetase repressor -2.7030 7.01E-27 

trpD anthranilate phosphoribosyltransferase 4.0312 1.23E-14 

trpC indole-3-glycerol phosphate synthase 2.2689 1.50E-08 

trpB tryptophan synthase beta subunit 2.0434 6.37E-06 

argB acetylglutamate kinase 2.3225 6.68E-10 

glyS glycyl-tRNA synthetase -2.9083 1.29E-22 

SERP1176 peptidase U32 family 2.3811 1.83E-24 

SERP1177 peptidase U32 family 2.6006 3.16E-30 

infC translation initiation factor IF-3 2.3684 4.36E-17 

ald alanine dehydrogenase -2.7547 2.67E-09 

SERP1292 serine protease HtrA putative -2.7124 1.23E-30 

SERP1310 dipeptidase family protein -3.0286 8.51E-63 

SERP1376 protein export protein PrsA putative -2.6829 7.19E-41 

SERP1549 death-on-curing family protein 2.3238 1.91E-56 

leuB 3-isopropylmalate dehydrogenase 2.6290 7.14E-09 

glyA serine hydroxymethyltransferase -2.3637 4.36E-33 

secY preprotein translocase SecY subunit 2.5474 1.38E-20 

SERP2034 amino acid permease family protein 3.3899 3.46E-17 

SERP2043 peptidase M42 family -3.4218 1.54E-47 

cysJ 

sulfite reductase (NADPH) flavoprotein 

alpha-component -2.1931 2.60E-23 

cysH phosophoadenylyl-sulfate reductase -2.5134 3.48E-28 

arcA arginine deiminase -2.3875 1.56E-39 

sepA extracellular elastase precursor 2.3264 4.49E-17 
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SERP2272 

peptide methionine sulfoxide reductase 

putative 2.6559 5.30E-18 

SERP2276 secA family protein 2.2325 1.96E-31 

hisH amidotransferase HisH 2.5488 6.82E-14 

hisB imidazoleglycerol-phosphate dehydratase 3.4466 1.62E-17 

hisD histidinol dehydrogenase 2.6795 3.23E-18 

hisG ATP phosphoribosyltransferase 2.8203 5.58E-10 

SERP2338 peptide synthetase 2.4122 9.72E-67 

SERP2364 peptidase M20/M25/M40 family 2.6489 1.23E-16 

SERP2375 diaminopimelate epimerase family protein 2.6285 3.49E-18 

serS seryl-tRNA synthetase -2.7533 3.76E-36 

Lipid metabolism 
  

  

SERP0309 lipase/esterase putative 2.2785 1.41E-11 

fabH 3-oxoacyl-(acyl-carrier-protein) synthase III -2.1260 4.25E-10 

plsX 

fatty acid/phospholipid synthesis protein 

PlsX -2.1079 1.80E-60 

acpP acyl carrier protein -2.8822 7.31E-15 

SERP1001 DegV family protein -2.0926 2.95E-41 

SERP2337 

4-phosphopantetheinyl transferase family 

protein 2.9365 5.06E-42 

SERP2523 

glycerophosphoryl diester 

phosphodiesterase UgpQ putative -2.4642 8.93E-19 

Nucleotide and energy 

metabolism 
  

  

prsA ribose-phosphate pyrophosphokinase -2.2578 1.40E-57 

SERP0371 exsD protein 6.0454 4.40E-29 

SERP0372 

6-pyruvoyl tetrahydrobiopterin synthase 

putative 5.8808 9.47E-31 

SERP0373 exsB protein 5.7653 9.79E-77 

folD 

methylenetetrahydrofolate 

dehydrogenase/methenyltetrahydrofolate 

cyclohydrolase -2.5692 3.02E-88 
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purE 

phosphoribosylaminoimidazole carboxylase 

catalytic subunit -4.1495 5.44E-70 

purK 

phosphoribosylaminoimidazole carboxylase 

ATPase subunit -3.9826 4.21E-85 

purC 

phosphoribosylaminoimidazole-

succinocarboxamide synthase -4.4226 2.61E-60 

purS 

phosphoribosylformylglycinamidine 

synthase PurS protein -4.5392 7.95E-95 

purQ 

phosphoribosylformylglycinamidine 

synthase I -4.5973 2.90E-78 

purL 

phosphoribosylformylglycinamidine 

synthase II -4.2042 6.09E-107 

purF amidophosphoribosyltransferase -4.2181 3.25E-136 

purM 

phosphoribosylformylglycinamidine cyclo-

ligase -4.3477 2.30E-69 

purN 

phosphoribosylglycinamide 

formyltransferase -3.8846 2.36E-80 

purH 

phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase -3.7319 6.33E-113 

purD phosphoribosylamine--glycine ligase -2.6846 2.00E-23 

purB adenylosuccinate lyase -2.9759 1.15E-62 

cdd cytidine deaminase -2.0209 1.32E-49 

thiI thiamine biosynthesis protein ThiI 2.6751 1.97E-48 

fhs formate--tetrahydrofolate ligase -3.4566 2.24E-39 

upp uracil phosphoribosyltransferase -2.2580 1.20E-35 

adk adenylate kinase 2.5524 1.03E-10 

SERP1865 

inosine-uridine preferring nucleoside 

hydrolase family protei -2.0061 2.04E-09 

rbsK ribokinase -2.2333 3.77E-29 

Metabolic processes 
  

  

SERP0250 acetyltransferase GNAT family -2.4617 3.97E-40 

SERP0461 glyoxalase family protein 2.8462 1.43E-08 
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SERP0556 

fumarylacetoacetate hydrolase family 

protein -2.1019 4.39E-07 

SERP0561 
hydrolase haloacid dehalogenase-like 
family -2.2982 1.85E-41 

SERP1178 O-methyltransferase family protein 2.3694 4.74E-47 

SERP1280 aminotransferase class V 2.7479 3.78E-43 

SERP1918 amidohydrolase family protein 2.1722 5.93E-10 

SERP1996 acetyltransferase GNAT family 2.0172 4.71E-05 

SERP2054 glycosyl transferase group 1 family protein 2.5257 1.06E-23 

SERP2299 N-acetyltransferase family protein 2.6212 2.47E-16 

SERP2547 YjeF-related protein 3.2688 4.13E-16 

 

4. Discussion 

The increased use of implanted medical devices, the subsequent risk of biofilm formation 

on these devices and the emergence of drug-resistant strains has altogether imposed a 

heavy burden on patient and health care systems (Becker et al., 2014; WHO, 2014; Casillo 

et al., 2017). About 5027 anti-biofilm agents against Gram positive and negative bacteria, 

and fungi have been reported between 1988-2017 (Rajput et al., 2018). However, up to our 

knowledge none of them have been successfully translated to the market for clinical and 

medical applications. Our research aimed at harnessing the potential of marine sponge-

derived actinomycetes for discovery of novel antibacterial and anti-biofilm compounds 

(Abdelmohsen et al., 2014a; Abdelmohsen et al., 2014b; Dashti et al., 2014). Actinomycetes 

from marine sponges represent an untapped reservoir of a wide range of unforeseen 

biological compounds (Xi et al., 2012; Abdelmohsen et al., 2015; Sun et al., 2015). Previous 

results have demonstrated the antibiofilm efficacy of an organic extract from Streptomyces 

sp. SBT343 isolated from marine sponge Petrosia ficiformis (Balasubramanian et al., 2017). 

In this paper, we describe the anti-staphylococcal activity of another strain Streptomyces sp. 

SBT348 isolated from the same sponge. We applied a bioassay-guided fractionation 

strategy to identify, isolate and purify the active compound responsible for this activity. 

Streptomyces sp. SBT348 is a filamentous Gram-positive bacterium that was previously 

shown to possess distinct metabolomic and rich chemistry profiles with strong biological 

activities (Cheng et al., 2015; Cheng et al., 2017). SEM of the 10 d old Streptomyces sp. 

SBT348 culture used for extraction and isolation of the bioactive SKC3 indicated the 

presence of biofilm-like networks (Figure 1A). This extends the possibility of SKC3 to be a 
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compound produced in the biofilm networks that is antagonistic to other bacteria. However, 

more experiments are needed to confirm the same.  

Leary et al., proposed a combination of autoclave and chlorhexidine treatment for complete 

removal of biofilms from orthopedic materials (Leary et al., 2017). Alternative, coating-based 

strategies have been proposed to prevent this phenomenon (Windolf et al., 2014). The 

isolated compound SKC3 effectively inhibited the growth and biofilm formation of different 

staphylococcal strains (Figure 3, Table 2). Further, the inefficacy of SKC3 against 

dispersing pre-formed biofilms highlights its usage in prevention of staphylococcal 

infections. This is advantageous, since, targeting the disassembly could lead to increased 

inflammatory response and severity of a disease (Franca et al., 2016). SKC3 was also 

shown to inhibit the staphylococcal biofilm formation on different medically relevant surfaces 

(glass, titan metal and silicone tubes). The non-toxic nature of SKC3 in vitro (cell lines) and 

in vivo (G. melonella larvae) explains its applicability as antimicrobial and antibiofilm agents 

on medical devices. As a step forward, the potential of SKC3 to protect G. melonella from 

S. aureus USA300 Lac* was also assessed in an independent experiment. Results obtained 

indicated that SKC3 could not protect the larvae from staphylococcal infection (data not 

shown). The exact reason behind this failure remains unclear. However, further 

investigations are needed to evaluate the toxicity and in vivo antimicrobial efficacy of SKC3 

on higher in vivo model systems to support its usage.  The huge mass (1258.3 Da), stability 

towards heat and enzymatic treatments, and the absence of relevant hits in several 

databases point towards a complex structure of SKC3. Thus, SKC3 is expected to be a new 

compound and further NMR spectrometric investigations to elucidate its complete structure 

are currently in progress.  

Transcriptomics have been increasingly used for understanding the responses of 

staphylococci to antimicrobial agents and for obtaining insights into the antimicrobial mode 

of action (Sianglum et al., 2012; Wang et al., 2018). In our study, an overall view of the state 

of SKC3 treated S. epidermidis RP62A was achieved by RNA sequencing and transcriptome 

analysis (at 20 min and 3 h post treatment). Transcriptome data from early time point (20 

min), indicated that genes encoding a two-component system (sensor histidine kinase and 

response regulator), several proteins involved in transport of macromolecules, such as ATP-

binding cassette (ABC) transporters, quaternary ammonium compound efflux pumps (SugE) 

were significantly upregulated. ABC transporters are often involved in multi-drug resistance 

by serving as efflux pumps for transport of anti-infectives (Lage, 2003). SugE, a drug efflux 

pump belonging to the small multi drug resistance family (SMR) was shown to be involved 
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in resistance to a narrow range of quaternary ammonium compounds in Escherichia coli 

(Chung and Saier, 2002). However, these ABC transporters and sugE regulated by SKC3 

have not been documented to be involved in resistance to antimicrobial compounds in S. 

epidermidis till date. Further studies are needed to understand the exact roles of these 

transporters and efflux pump in this organism. Thus, it could be presumed that at 20 min S. 

epidermidis RP62A recognizes SKC3 by a yet unknown two-component system and reacts 

by expressing a variety of transporters.  

Transcriptome data from the late time point (3 h), indicated that genes encoding for 

hypothetical proteins were the most differentially regulated (representing 30.64% of the total 

differentially expressed genes at 3 h). Major fraction of the known differentially expressed 

genes at 3 h included the genes encoding proteins involved in global metabolism 

(representing 23.37% of the total differentially expressed genes), and transporters and 

membrane proteins (representing 14.73% of the total differentially expressed genes). In 

addition, bacterial stress and defense related proteins were strongly downregulated 

indicating the sensitivity of bacterial cells at this time point. Like the 20 min transcriptome 

data, several ABC transporters, ion transporters, drug transporters and efflux pumps were 

influenced in the presence of SKC3 at 3 h. These are speculated to be the typical responses 

of S. epidermidis to toxic agents (Putman et al., 2000; Cecil et al., 2011). However, the 

specific effects of SKC3 on metabolism are much stronger. Interference with metabolism 

involved differential regulation of genes involved in carbon metabolism (down regulation of 

genes related to processes of glycolysis, gluconeogenesis, pentose phosphate pathway, 

glycerol, fructose and lactose metabolism), lipid metabolism (repression of genes related to 

fatty acid biosynthesis and phospholipid metabolism), nucleotide and energy metabolism 

(repression of several genes related to purine biosynthetic process from de novo and 

salvage pathways), and amino acid, and protein metabolism (repression in biosynthesis of 

cysteine, isoleucine, leucine, valine, glycine, glutamine and lipoproteins; repression of 

alanine and arginine catabolism; up regulation in biosynthesis of tryptophan, arginine and 

histidine). Cecil et al. previously reported similar negative influence of the isoquinoline 

compounds IQ-143 and IQ-238 on purine and carbon metabolism in staphylococci (Cecil et 

al., 2011; Cecil et al., 2015). In another study, Sianglum et al. had demonstrated the 

influence of the phytochemical compound rhodomyrtone in altering metabolism in 

methicillin-resistant S. aureus (Sianglum et al., 2012). Our results thus, demonstrate the 

striking similarity of SKC3 in altering metabolism of staphylococci with the existing literature.  
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Interestingly, there was no direct remarkable influence of SKC3 on the transcription of ica 

locus (3 h) encoding the polysaccharide intercellular adhesin (PIA) responsible for biofilm 

formation in S. epidermidis. However, virulence factors like the phenol soluble modulins α 

and β, (proinflammatory cytolysins) involved in biofilm structuring and detachment 

processes, (Otto, 2009; Fey and Olson, 2010)) and hemolysin (putative) were down-

regulated.  The purine biosynthesis regulator purR and the iron sequestration system (sitA, 

sitB, sitC and sirR) were also found to be significantly down regulated. PurR is reported to 

positively regulate ica expression via an indirect mechanism (Mack et al., 2007; O'Gara, 

2007). These results suggest that SKC3 could inhibit biofilm formation by repressing the 

expression of purR. S. epidermidis RP62A is also known to largely depend on the availability 

of iron to form biofilms (Massonet et al., 2006; Oliveira et al., 2017) and the down-regulation 

of iron acquisition system could be yet another explanation for biofilm inhibitory effect. 

Further investigations are required to get more insights into molecular mechanisms of biofilm 

inhibition by SKC3.  

In conclusion, the anti-biofilm compound SKC3 was isolated from the chemically diverse 

strain Streptomyces sp. SBT348 with the aid of bioassay guided-fractionation. SKC3 

exhibited antagonistic effects against growth and biofilm formation (at concentrations less 

than MICs) of several staphylococcal strains tested without exhibiting apparent in vitro and 

in vivo toxicity. Transcriptome analysis revealed the interference of SKC3 with several 

metabolic processes (carbon, protein, lipid, nucleotide and energy metabolism) of 

staphylococci. However, further experimental data is needed to elucidate the exact anti-

staphylococcal mode of action of SKC3.  
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Supplementary figures to chapter 4 

                                                                        

 

Figure S1. icaA PCR (quality control) for verification of the absence of DNA contamination before RNA 

sequencing. M, molecular ladder (100 bp).  icaA amplicon at 414 bp seen in the three independent biological 

replicates (I, II, III) used for the transcriptome experiment. Primer sequence (5’-3’) used for PCR: 

icaA forward: GTCATTGATGACGATGCGCC 

icaA reverse: AAGTACTTCATGCCCGCCTT     
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Figure S2. HPLC chromatogram of SKC3 at wavelength of 250 nm (retention time ~17.8 min) confirming its 

purity. SKC3 was dissolved in pure HPLC-grade MeOH and had a concentration of 500 µg/ml.  

 

 

 

Figure S3. Effect of heat and enzymatic treatments on biological activity of SKC3 (physio-chemical 

characterization). HT, heat treatment; PKT, proteinase K treatment; TT, trypsin treatment (MIC: 31.25 µg/ml; 

BIC90, 3.95 µg/ml). DMSOT, DMSO treated (3.75% on cells), Sterile control, TSB with DMSO without S. 

epidermidis RP62A. 



     
 

90 
 

 

 

Figure S4.  PCA plot representing the well-defined grouping of different biological replicates from RNA 

sequencing data. This plot also indicates the difference in level of gene expression changes between the 

control and SKC3 treated samples at 20 min and 3 h.  
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Figure S5.  Function enrichment analysis (Filter: Log2foldchange ± 2.0, padj value: 0.05) of SKC3 treated S. 

epidermidis RP62A (3 h) revealed down-regulation of several pathways involved in carbon, sulfur and purine 

metabolism. Column bars reflect the ratio on the left. This ratio denotes the number of selected genes in a 

pathway per total number of genes in the pathway. The line in the graph reflects the -log10 q-value, which is 

the p-value from the hypergeometric test adjusted for multiple testing. Red, up-regulation; blue, down-

regulation. 
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5. General discussion 

5.1. A retrospective of the bioactive potential of sponge-associated 

actinomycetes  

Resistance against different classes of antibiotics and cross resistance to antibiotics of the 

same class are the major concerns in management of hospital and community-acquired 

infections. Today, even last resort antibiotics such as colistin, vancomycin and polymyxin B 

are facing the problems of bacterial resistance (Silver, 2011; Dickey et al., 2017). Big pharma 

companies have displayed reduced interests on antibiotic drug discovery initiatives owing to 

several reasons such as the absence of discovery of novel chemical scaffolds, frequent re-

discovery of known compounds and limited financial return on investment (Bush and Page, 

2017). Alternatively, modifications of existing chemical scaffolds have provided a temporary 

solution for treatment of resistant bacterial infections (Fischbach and Walsh, 2009; Brotz-

Oesterhelt and Sass, 2010). These semi-synthetic analogues of existing antibiotics are 

known to display improved spectrum of activity, pharmacokinetic properties and act 

efficiently against resistant pathogens. Few derivatives of the existing antibiotics like 

vancomycin and teicoplanin (telavancin, oritavancin, and dalvabancin) have been approved 

for usage in treatment of complicated skin and skin structure infections (CSSSI), acute 

bacterial skin and skin structure infections (ABSSSI) caused by Gram positive bacteria 

(Leadbetter et al., 2004; Bouza and Burillo, 2010; Guskey and Tsuji, 2010). Their structures 

are shown in Figure 1.  

Even though these compounds have been introduced into the clinic, the pipeline in the early 

stages of antibiotic discovery remains dry. Thus, discovery of novel anti-infectives with new 

modes of action is essential to address the urgent clinical needs. The marine realm has 

proven to be an attractive environment in this regard to find new compounds against 

infectious diseases (Abdelmohsen et al., 2017). Specifically, marine sponges and their 

microbial diversity have gained significant attention towards discovery of novel anti-infectives 

(Bessa et al., 2016; Wright et al., 2017; Buttachon et al., 2018).  
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Figure 1: Structures of existing antibiotics and their derivatives in the market. Modified from 

(Genilloud, 2017). 
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The Streptomyces strains used in this Ph.D. thesis were previously cultured from the 

Mediterranean marine sponges Petrosia ficiformis and Agelas oroides. Several biological 

activities have been reported from these sponges (Sauleau et al., 2017; Bayari et al., 2018). 

These include anticancer, antibacterial and antiparasitic activities (Ferretti et al., 2007; Ines 

et al., 2007; Tasdemir et al., 2007; Dyson et al., 2014). However, the main limitation of using 

the sponges for the large-scale production of compounds is the high sensitivity and 

resistance of these sponges to growth outside the oceanic environments. Further, the 

sponge-associated microbes are speculated to be the true producers of secondary 

metabolites in marine sponges (Bringmann et al., 2004; Lopez-Gresa et al., 2009; Thomas 

et al., 2010; Pagliara and Caroppo, 2011). The chemically diverse phylum Actinobacteria are 

known to be abundantly present in sponge niches (Abdelmohsen et al., 2014). Therefore, 

using the actinomycetes diversity of sponges is an ideal way for scaling up the production of 

bioactive compounds. From an ecological standpoint, using actinomycetes living on sponges 

for discovery of new compounds is an emerging strategy, since they are presumed to provide 

a line of protection to these sponges from predators through production of secondary 

metabolites. 

Actinomycetes have contributed significantly to the discovery of new antibiotics. It is known 

that the majority of present day antibiotics like tetracyclines, rifamycins, aminoglycosides, 

macrolides, glycopeptides and β-lactams originate from actinomycetes (Genilloud, 2017). 

However, the isolation and characterization of many compounds is limited by the challenge 

in isolating and culturing their producer actinomycetes in vitro (Rappe and Giovannoni, 

2003). Development has been made in cultivating the “uncultivable” actinomycetes and 

discovery of new antibiotic scaffolds by employing diffusion chamber technologies like iChip 

(Kaeberlein et al., 2002; Gavrish et al., 2008; Nichols et al., 2010; Versluis et al., 2017). A 

list of antibiotics derived from marine actinomycetes that have been cultured with new 

isolation methods is presented in Table 1.  
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Table 1: Antibiotic discovery from actinomycetes (cultivated from new isolation methods). Modified from 

(Genilloud, 2017). MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant 

enterococci. 

Producer Isolation 

scheme 

Antibiotic Antibiotic  

spectrum 

Reference 

Nocardia sp. Diffusion 

chamber  

Neocitreamicins I, II Gram positive (Peoples et al., 2008) 

Streptosporangium sp. Diffusion 

chamber 

Novo 3 MRSA/VRE (A. Peoples, 2012) 

Amycolatopsis sp. Diffusion 

chamber 

Novo 4 MRSA/VRE (A. Peoples, 2011) 

Lentzea kentukyensis iChip 

technology 

Lassomycin Mycobacterium 

tuberculosis 

(Gavrish et al., 2014) 

 

The Streptomyces strains SBT343, 345 and 348 used in this Ph.D. thesis were previously 

cultivated from the Mediterranean sponges using cultivation-dependent approaches. The 

sporulating strain Streptomyces sp. SBT343 was isolated on basic actinobacterial medium, 

M1, whereas, the filamentous and sporulating Streptomyces sp. SBT345 and SBT348 were 

isolated on ISP2_F medium (ISP2 agar covered by a layer of soft agar on top after 

inoculation) (Cheng et al., 2015).  

The closest relative to these strains as revealed by BLAST searches is shown in Table 2. 

Table 2: Isolation and identification of actinomycetes isolates used in the study. Adapted from (Cheng, 

2016). 

Streptomyces sp. Sponge source Sequence length Closest relative by BLAST Sequence 

identity (%) 

SBT345 A. oroides 1398 Streptomyces sp. 56E35 99.86 

SBT343 P. ficiformis 1448 S. flavogriseus P.S.461 99.65 

SBT348 P. ficiformis 1152 S. atroolivaceous strain Nt1-5 99.91 

 

Several compounds with biological activities have been reported from Streptomyces sp. 

SBT345 and SBT348. No biological activity has been reported so far from Streptomyces sp. 

SBT343. Morphology of the strains and the structures of compounds previously reported 

from the three strains in this study is shown in Figure 2.  
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Figure 2: (A) Colony morphologies of the sponge-derived Streptomyces strains in the study in ISP2 

medium (prepared with artificial sea water). (B) Structures of bioactive compounds isolated from 

Streptomyces sp. SBT345 and SBT348, data derived from existing literature. No compound has been 

isolated so far from Streptomyces sp. SBT343 (Cheng, 2016b; a; Cheng et al., 2017).  

 

The existing knowledge in the abundance and diversity of bioactive actinomycetes in marine 

sponges and their increasingly available genomes have unmasked their enormous 

unprecedent abilities in production of novel secondary metabolites for pharmaceutical 

applications (Harjes et al., 2014; Horn et al., 2015; Dashti et al., 2017). However, they 

possess a large fraction of silenced biosynthetic gene clusters (encoding secondary 
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metabolites) that are not transcribed under conventional laboratory conditions 

(Seyedsayamdost, 2014; Abdelmohsen et al., 2015). Predictions from mathematical models 

have revealed thousands of undiscovered antibiotics from actinomycete genomes 

(Caboche, 2014; Cimermancic et al., 2014). Hence, it is postulated that a lot of biosynthetic 

genes could remain cryptic in the Streptomyces strains used in this Ph.D. thesis. Genome 

sequencing of these strains should be done to understand their real secondary metabolism 

potential. Bioinformatic algorithms such as antiSMASH (Blin et al., 2013), MIBiG (Medema 

et al., 2015) and NaPDoS (Ziemert et al., 2012) could help in identification of silenced gene 

clusters. The induction in expression of the silent genes in these strains could be then 

achieved by suitable elicitation strategies (e.g. co-cultivation with other microbes, addition 

of microbial lysates, microbial cell components, chemical elicitors) or by heterologous 

expression of the identified genes in a suitable host (Challis, 2008; Harvey et al., 2015). 

Thus, it is posited that with these genome targeted approaches the actual chemical diversity 

of these Streptomyces strains could be harnessed (Genilloud, 2017). A list of antibiotics 

discovered already with the genome-targeted approaches are enlisted in Table 3. 

Table 3: Antibiotics discovered from the genome-based approaches from actinomycetes. Modified from 

(Genilloud, 2017).  

Genome Antibiotic Antibiotic spectrum Reference 

Streptomyces mauvecolor Piperidamycins Gram positive (Hosaka et al., 

2009) 

Streptomyces aureus Phosacetamycin Gram positive/negative (Evans et al., 2013) 

Streptomyces monomycini Argolaphos A/B Gram positive/negative (Ju et al., 2015) 

Streptomyces durhamensis Valinophos Gram positive/negative (Ju et al., 2015) 

Sphaerisporangium sp. Sphaerimicin A Gram positive (Winn et al., 2010) 

Nocardiopsis sp. TP-1161 Gram positive (Engelhardt et al., 

2010) 

Saccharomonospora sp. Taromycin A Gram positive (Yamanaka et al., 

2014) 

Salinispora sp. 

S.afghaniensis 

Thiolactomycin and 

analogs 

Gram positive (Tang et al., 2015) 

 

5.2. Anti-Stx approaches: state-of-the-art 

EHECs have become a major problem in subjects of human health. Several notable 

outbreaks have been recorded with EHEC infections (RKI, 2011; McCollum et al., 2012). 
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Current regimes for the treatment of EHEC infections include management of symptoms like 

bleeding, anaemia, fluid or electrolytes imbalance, central nervous system effects and renal 

failure (Pacheco and Sperandio, 2012; McGannon et al., 2010). Antimotility agents, 

narcotics, non-steroidal anti-inflammatory drugs and antibiotics could aggravate the 

neurological complications and HUS progression by EHEC infections and thus are not 

recommended (Pacheco and Sperandio, 2012). Antibiotics are known to induce the phage 

lytic cycle and thereby lead to expression and dissemination of Stx from the dying bacteria. 

They are believed to worsen the outcome of EHEC infections and their endorsement for 

treatment of EHEC infections remains debatable (Zhang et al., 2000; McGannon et al., 

2010). Reports suggest that antibiotics that target the DNA synthesis like quinolones, 

Mitomycins, Amplicillin and Ciprofloxacin could increase the Stx production, whereas, 

antibiotics that target the protein synthesis like Azithromycin, Doxycycline, Fosfomycin and 

Gentamycin inhibits Stx production (Wong et al., 2000; Los et al., 2010; McGannon et al., 

2010). Certain antibiotics like Ceftriaxone and Rifampin are documented to have no effects 

on Stx production (Zhang et al., 2000). Clearly, it is still premature to use antibiotics for 

treatment of EHEC infections. There are several other strategies that seem promising in the 

management of EHEC infections. They are discussed below. However, it is interesting to 

note that none of these strategies have entered the market so far and data with regards to 

their human efficacy is still lacking. 

5.2.1. Quorum sensing inhibitors 

Quorum sensing (QS) is defined as a process of bacterial communication. Pathogenic 

bacteria like EHEC, sense their cell density and communicate with one another using 

chemical molecules called autoinducers (Bassler, 1999; Hughes et al., 2009). QS controls 

the expression of bacterial virulence factors during an infection. QS inhibitors could interfere 

with Stx production and EHEC virulence. Anti-EHEC for development of QS inhibitors 

typically involves high-throughput screening of chemical libraries. LED209 is a small 

molecule that was shown to down-regulate the virulence and Stx production in EHEC via 

binding to the cognate receptor QseC. LED209 exhibited limited toxicity against bacterial 

and human cells. Specifically, LED209 was able to supress the Stx production, motility and 

A/E (attaching and effacing) lesions of EHECs in vitro (Rasko et al., 2008).   

5.2.2. Pyocins 

Bacteriocins like pyocins (produced by P. aeruginosa) bind to bacterial cell surface, forms 

pores on cell membrane, and thereby leads to membrane depolarization and cell death 
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(Scholl et al., 2009). Ritchie, et al. (2011) demonstrated that an engineered pyocin specific 

against E. coli O157 ameliorated the diseased condition caused by EHECs in vivo (Ritchie 

et al., 2011). LPS degradation was the reason ascribed to the mode of action of pyocins on 

EHECs.  

5.2.3. Vaccines and immunotherapy 

Vaccines are the most powerful tools in prophylaxis of infectious diseases. Vaccine-resistant 

strains have never emerged so far. This is thought to be due to the presence of multiple 

immunogenic epitopes on a vaccine (Abdelmohsen et al., 2017). With the fields of reverse 

vaccinology, novel adjuvants and omics technologies, it is now possible to develop vaccines 

against every pathogen (Rappuoli et al., 2011). Efforts in raising antibodies against the Stx 

have been undertaken in the previous years. Anti-Stx antibodies are postulated to prevent 

the pathogenesis of EHECs in vivo by neutralizing Stx (Yamagami et al., 2001; Bitzan et al., 

2009; Lopez et al., 2010; Dickey et al., 2017). For example, the chimeric antibody against 

Stx2, Shigamab (developed by Bellus Health), neutralizes the toxin just after its production 

(Dickey et al., 2017).  

5.2.4. Toxin binding inhibitors 

These involve inhibitors that prevent the binding of Stx to its Gb3 receptor on human cells. 

Gb3 ligand mimics possessing the trisaccharide moieties could subsequently neutralize the 

toxin in vitro and in vivo (Kitov et al., 2000). Examples of these mimics include, SUPERTWIG, 

glycan encapsulated gold nanoparticles, Synsorb Pk etc. (Takeda et al., 1999; Nishikawa et 

al., 2005; Kale et al., 2008). However, most of these inhibitors are still at their infancy and 

immense translational research is needed for their clinical usage.  

5.2.5. Probiotics 

Probiotics are defined as “live microorganisms that, when administered in adequate 

amounts, confer a health benefit on the host” (Cordonnier et al., 2017). E. coli Nissle 1917, 

lactic acid bacteria (lactobacilli, enterococci, bifidobacteria) and yeasts (Saccharomyces 

genus) represent the most common probiotics clinically used (Rund et al., 2013; Stanford et 

al., 2014; McFarland, 2015; Mohsin et al., 2015; Varankovich et al., 2015). Probiotics are 

known to act on pathogenic bacteria via direct antagonism, immunomodulation or 

competitive exclusion mechanisms (Preidis et al., 2011). Probiotics like Bifidobacterium sp., 

Clostridium butyricum, E. coli Nissle 1917, Lactobacilli strains and Saccharomyces 

cerevisiae are reported to exhibit anti-EHEC effects (antagonism against growth, stx 
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expression, adhesion and colonization) (Cordonnier et al., 2017). An in-depth knowledge on 

several factors (like dosage and duration of course of probiotics, mode of administration, risk 

of possible adverse metabolic effects due to manipulation of existent microbiota and transfer 

of resistance from probiotics to the pathogenic strains in the GI tract) is needed before the 

marketing and usage of probiotics in treatment of EHEC infections (Cordonnier et al., 2017).  

5.2.6. Anti-Stx NPs 

NPs have always been valuable in treatment of bacterial infections. Nature is endowed with 

chemically diverse substances that can be used for clinical applications. Few terrestrial and 

plant based-NPs (phytochemicals) have shown promising effects against EHECs 

(Bommarius et al., 2013; Friedman and Rasooly, 2013; Lee et al., 2013; Noel et al., 2013). 

These NPs act against EHECs by negatively regulating the growth, Stx production, QS 

processes and inhibiting the cytotoxic effect of the produced Stx on human cells. Examples 

of anti-EHEC NPs include cinnamon oil, indole-3-acetaldehyde, curcumin, phenethyl 

isothiocyanate etc. (Sood et al., 2001; Moon et al., 2006; Lee et al., 2012; Nowicki et al., 

2014; Sheng et al., 2016). Up to our knowledge, the potential of marine realm against EHEC 

infections has been left untouched so far. Thus, it is an exciting strategy to explore the anti-

EHEC potential of MNPs.  

 

In this Ph.D. thesis, the anti-Stx effect of strepthonium A isolated from marine sponge-

derived Streptomyces sp. SBT345 has been reported. Previous metabolomic analysis 

revealed that Streptomyces sp. SBT345 is a chemically distinct strain (Cheng, 2016). The 

compounds isolated from this strain (in the previous years) is shown in Figure 2B. The 

chlorinated quinolone compound ageloline A isolated from liquid fermentation of 

Streptomyces sp. SBT345 exhibited anti-oxidant and anti-chlamydial effects (Cheng, 2016b). 

In another study, solid fermentation of Streptomyces sp. SBT345 resulted in production of 

the cytotoxic phenoxazin analogue streptoxaxine A along with the known phenoxazin 

antibiotics, phencomycin and tubermycin B (Cheng, 2016a). Overall, results indicate the rich 

chemical and biological potential of Streptomyces sp. SBT345. Further, genome mining and 

elicitation experiments with Streptomyces sp. SBT345 should be performed to shed lights 

on the yet undetected compounds produced by this strain.  

Strepthonium A is a quaternary ammonium compound and shares structural similarity to the 

non-chlorinated surfactant benzethonium. The latter has been widely used as a bactericide 

and is predominantly present as an ingredient in deodorants, cosmetics, mouth washes and 
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medications (Hikiba et al., 2005; Oztekin and Erim, 2005; Sugimoto et al., 2008; Oyanagi et 

al., 2012). By contrast with benzethonium, strepthonium A (at 80 µM) displayed no effects 

on the growth of EHEC strain EDL933 rather selectively inhibited the Stx production. Thus, 

less pressure for development of resistance to strepthonium A is expected. Lipinski’s rule of 

five is used for the analysis of drug-like physiochemical properties. It is an algorithm 

consisting of four rules (based on molecular weight, log P, hydrogen bond donor and 

hydrogen bond acceptor) that determines the drug-like nature of a candidate. It could be 

observed that strepthonium A follows the Lipinski’s rule of five (molecular weight<500 Da, 

CLogP value:4.908, three hydrogen bond acceptors and no hydrogen bond donors) and is 

therefore drug-like. With the chlorination in the 2- position of the phenoxy group in 

strepthonium A, lower cytotoxic effects are expected. Further, its cationic nature could restrict 

its membrane permeability and the consequent systemic effects after the oral uptake. The 

absence of benzethonium in the production facilities and microbiological media points that 

the isolated compound is not a bio-transformation product. However, feeding experiments 

are necessary to confirm the biosynthetic origin of strepthonium A. Further, the compound 

needs to be chemically synthesized and induction of resistance (multi-passage experiments 

of EHECs with increasing concentrations of strepthonium A), cytotoxicity profiling (in vitro 

and in vivo), and detailed in vitro studies are certainly needed to prove its medicinal 

application in curtailing EHEC infections. 

5.3. Anti-biofilm approaches: state-of-the-art 

Bacteria typically race for surfaces, establish biofilms and lead to recalcitrant and resistant 

infections (Gristina et al., 1988; Busscher et al., 2012). The formation of biofilms on different 

surfaces (biotic or abiotic) is a massive concern in medical, marine and food industrial 

settings. Consequently, several antibiofilm strategies have been developed. These 

strategies fall into the four categories (Figure 3) aiming at prevention, weakening, disruption 

or killing of bacterial biofilms (Bjarnsholt et al., 2013; van Tilburg Bernardes et al., 2015; 

Gupta et al., 2016). 
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Figure 3: Existing anti-biofilm strategies aiming at preventing/weakening/disrupting/killing for 

management of biofilm infections. Active and slow metabolism cells represent the susceptibility of bacterial 

cells to antibiotic treatment. It is expected that a combination of the four strategies could lead to management 

of bacterial biofilms. Modified from (Bjarnsholt et al., 2013). 

 

These strategies based on the stage of biofilm targeted are summarized below: 

5.3.1. Prevention 

Pre-conditioning of a surface by methods like treatment with chemicals, imprint special 3D 

patterns or surface hydrophobicity etc. are some of the technologies that inhibit the bacterial 

attachment to different surfaces (de Carvalho and da Fonseca, 2007; Pogodin et al., 2013; 

Kim et al., 2015b). Antibiotic coatings, pre-treating the surfaces with UV radiations and 

addition of antibodies or enzymes have proven to prevent the formation of bacterial biofilms 

on different surfaces (Frederiksen et al., 2006; Berra et al., 2008; Bak et al., 2011; O'Grady 

et al., 2011). 

5.3.2. Weakening 

Certain anti-biofilm approaches involve weakening the bacteria by disarming them. This 

helps to improve the activity of existing antibiotics on biofilm or even the host immune 

responses. Virulence factors, QS, sRNAs, iron metabolism are usually targeted. Antibodies, 

compounds, QS inhibitors, sRNAs, siderophore-metal or siderophore-antibiotic conjugates 

have been documented to weaken the bacteria in biofilms (Bjarnsholt et al., 2013). However, 
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many of these approaches are species or even strain specific which limits their clinical 

applicability. 

5.3.3. Disruption  

Breaking the bacterial networks by dispersing agents is another interesting approach. 

Typically, a disruption process could release bacterial cells from biofilms and render them 

susceptible to host immune clearance and antibiotic treatments. This strategy typically 

requires an antibiotic treatment in combination to clear the released cells. Disruption of 

biofilm could be performed by mechanical scrubbing, treatment with ultrasonic waves, 

enzymes (DNases, glycoside hydrolases, alginate lyases) or compounds acting on the 

matrix (e.g. cis-2-decanoic acid and nitric oxide) (Frederiksen et al., 2006; Kaplan, 2009; 

Young et al., 2010; Bjarnsholt et al., 2013; Fleming and Rumbaugh, 2017). However, the 

lack of in vivo data with these methods and the risk of induction of inflammatory response in 

the host by biofilm-released cells have warranted their usage (Franca et al., 2016). 

5.3.4. Killing 

Mono-therapy with single effective compounds like Gallium nitrate or combinatorial therapy 

with antibiotics (meropenem, colistin, azithromycin) that act under conditions of oxygen 

limitations and low metabolic activity, and phage therapy appear to be promising strategies 

in effectively killing bacterial cells in a biofilm (Hughes et al., 1998; Hill et al., 2005; Kohler et 

al., 2007; Pamp et al., 2008). 

With the aid of “aBiofilm” platform, it is now possible to get access to all the anti-biofilm 

agents discovered till date (Rajput et al., 2018). This platform comprises 5027 anti-biofilm 

agents (1720 unique) reported between 1988-2017. The list includes chemical compounds, 

peptides, phages, secondary metabolites, extracts, nanoparticles and antibodies targeting 

over 140 organisms including bacteria and fungi. Particularly, with the predictor function of 

this database it is possible to identify the anti-biofilm potential of an unknown substance with 

an accuracy of ~80%. Further, the stages of biofilm targeted and chemical diversity of 

different compounds could be understood with this platform. However, this platform lacks 

prediction of strain specific anti-biofilm activity. Nevertheless, this platform could be used for 

determining the anti-biofilm effects of known or unknown compounds and aid in discovery of 

new anti-biofilm substances.  

However, none of the agents described above have made it to the market. This is due to the 

lack of translational science to upscale the laboratory findings to industrial settings. The 
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enormous cost involved, lack of sufficient investments by the pharmaceutical sectors, the 

question of returns from these investments, vagueness in regulatory steps for approval are 

some of the other reasons tagged to the inexistence of biofilm control agents in the market. 

Glimmers of hope could still be seen from the growing discovery of new anti-biofilm agents 

applicable in medical areas of research (Romero and Kolter, 2011).  

NPs are rich in antagonizing the biofilm processes in pathogenic bacteria. Various 

phytochemicals and MNPs were previously shown to possess anti-biofilm properties (Chusri 

et al., 2012; Nair et al., 2016; Silva et al., 2016; Algburi et al., 2017; Wang et al., 2017). 

Secondary metabolites produced by actinomycetes have been increasingly tested for anti-

biofilm applications (Lee et al., 2012; Park et al., 2012; Park et al., 2016).  

In this Ph.D. thesis, the anti-biofilm potential of Streptomyces sp. SBT343 and SBT348 is 

reported. Both these strains were previously isolated from the Mediterranean sponge 

Petrosia ficiformis (Cheng et al., 2015). SEM analysis indicated their similarity in morphology 

to other Streptomyces sp. reported in the literature (Figure 4). No biological activities have 

been reported until now from Streptomyces sp. SBT343. Streptomyces sp. SBT348 is a 

candidate actinomycetes strain that had been previously prioritized in a strain collection 

comprising 64 different Mediterranean sponge-associated actinomycetes based on its 

distinct HPLC, LC-HRMS and NMR profiles (Cheng et al., 2015; Cheng, 2016). 

Metabolomics, de-replication tools and PCA analysis had confirmed the chemical 

uniqueness of this strain. Extracts from both solid and liquid fermentation of SBT348 

revealed chemical richness and displayed anti-oxidant, anti-microbial and anti-trypanosomal 

activities (Cheng, 2016). Four different compounds including the new cytotoxic cyclic 

dipeptide petrocidin A and the known 2,3-dihydroxybenzamide, 2,3-dihydroxybenzoic acid 

and maltol have been reported from the solid fermentation of Streptomyces sp. SBT348 

(Cheng et al., 2017). Thus, these strains have a huge chemical potential in them which could 

be used for discovery of new metabolites through genome mining and elicitation platforms. 
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Figure 4: SEM analysis of Streptomyces sp. SBT343 (A, B) and SBT348 (C, D). Magnifications of X1500 

and X10000 are represented. Scale bar: 10 and 1 µm. 

 

Up-scaling of the fermentation conditions and bioassay-guided fractionation was employed 

in both the studies with Streptomyces sp. SBT343 and SBT348 extracts (Chapters 3 and 4) 

to identify the active component(s) in the extract proportions. Batch fermentation was 

employed in large scale under liquid and solid fermentation conditions (50 l for SBT343; 1000 

plates for SBT348). This was followed by extraction and fractionation experiments. Bioassay-

guided isolation is conventionally used in NP drug discovery programs and essentially 

involves activity testing at every step in the fractionation procedure. Loss of activity during 

fractionation, limited isolation of trace compounds and repeated isolation of known 

compounds are some of the limitations of this strategy (Inui et al., 2012; Weller, 2012). 

However, with the aid of metabolomic tools, de-replication strategies and combining them 

with fractionation procedures it is now possible to identify different compounds in a mixture 

and linking them to their structural data.  
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A loss of activity was seen after bioassay-guided fractionation of the anti-biofilm SBT343 

extract. However, a combination of the different fractions obtained (in equal volume ratios) 

and testing against biofilm inhibition revealed that the activity was due to the synergism of 

different compounds in the extract and was not an effect of a single compound (Figure 5). 

Hence, detailed investigations into these fractions of SBT343 extract were discontinued.  

 

 

Figure 5: Bioassay-guided fractionation of SBT343 extract.  None of the nine fractions generated from 

fractionation of SBT343 extract (n-hexane, F2, F5, F7, F8, F9, F11, F13, F14) resulted in anti-biofilm effects 

against biofilm formation (OD492) of S. epidermidis RP62A, while the SBT343 extracts before and after 

fractionation procedures were still active. Further, combination of the nine fractions (Fcomb) in equal volumes 

and testing (0.250 mg/ml) restored the activity. This indicates that the activity in SBT343 extract was due to 

synergism of various components. TSB, tryptic soy broth; DMSOT, DMSO treatment (3.75%); MCT(old), 

medium control before fractionation; SBT343(old), extract before fractionation; MCT(new), remaining medium 

control after fractionation; SBT343(new), remaining extract after fractionation; ****p,0.0001 (as determined by 

Student’s t-test). 

 

In contrast to bioassay-guided fractionation of SBT343, results with SBT348 demonstrated 

the excellent applicability of this technique in successful isolation of active compound(s) 

(Chapter 4, Figure 2A). These observations indicate the complexity and resistance of 

different compound(s) (present in NP-based-extracts) to isolation procedures. Interestingly, 

fractionation of SBT348 extract resulted in identification of several anti-biofilm fractions 

(SKC1, SKC2, SKC3, SKC4, and SKC5). Of the five active fractions, only SKC3 displayed 

high purity (identified with analytical HPLC; Chapter 4, Figure S2) and potent anti-biofilm 

activities (BIC90: 3.95 µg/ml; MIC: 31.25 µg/ml against S. epidermidis RP62A). Hence, SKC3 
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was investigated in detail for its mechanism of action, cytotoxicity profiling and broad-

spectrum anti-staphylococcal effects.  

The absence of impurities or contaminants in SKC3 was analysed with diffusion ordered 

spectroscopy (DOSY). DOSY is an NMR technique employed in NP chemistry research to 

identify the purity of component and presence of different components in a mixture. Diffusion 

parameters (diffusion coefficients) are different for different components in a mixture, and 

this forms the basis of DOSY analysis. DOSY spectra of SKC3 revealed that SKC3 is pure 

and devoid of contaminating impurities. Further, all the accompanying NMR spectra of SKC3 

(provided in the CD attached to this thesis) indicates the high complexity and unusual 

structure of SKC3. Structural elucidation of SKC3 with the obtained NMR and HR-MS data 

is currently under investigation (in collaboration with Prof. Dr. Rolf Müller, Helmholtz Institute 

of Pharmaceutical Research, Saarland, Germany). 

Transcriptomics has been increasingly used for studying the mechanism of action of anti-

biofilm and antibiotic compounds (Pietiainen et al., 2009; Riordan et al., 2011; Sianglum et 

al., 2012; Kim et al., 2015a). It provides an overall view on the gene expression of various 

processes in bacteria, thereby the metabolic and physiological states. Selection of 

appropriate time points are essential for transcriptome experiments. Kinetics of biofilm 

formation of S. epidermidis RP62A (with a starting OD600 of 0.05) was assessed in the 

presence of SKC3 (2xBIC90: 7.8 µg/ml) (Figure 6A). Results obtained indicated that the 

biofilm formation was inhibited between 3-4 h. However, to increase the RNA yield together 

with minimal usage of compound, the initial culture OD600 was increased to 1.0. 

Subsequently, it was found that the biofilm formation was inhibited between 1-3 h (Figure 

6B). Thus, RNA was isolated at 20 min and 3 h post-treatment with SKC3 (62.5 µg/ml). In 

parallel, CFU determinations were done at time points of 0 h, 20 min and 3 h to eliminate the 

effect of SKC3 on growth at this concentration. It was observed that treatment with SKC3 did 

not significantly affect the CFUs of S. epidermidis (Log CFUs/ml remained at values around 

8-8.5). The isolated RNA was subjected to sequencing and transcriptome analysis. 
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Figure 6: Biofilm kinetics of S. epidermidis RP62A in the presence of SKC3. (A) Kinetics with initial 

OD600 of 0.05. It could be seen that in the presence of SKC3, biofilm formation was inhibited between 3-4 

h. (B) Kinetics with initial OD600 of 1.0. It could be seen that increasing the initial OD600 to 1.0, subsequently 

increased the effective concentrations. Further, a clear inhibition of biofilm formation was seen when SKC3 

was used at 31.25 or 62.5 µg/ml at time points between 1-3 h. Thus, time points of 20 min (early) and 3 h 

(late) were chosen for RNA sequencing and transcriptome analysis. 

In both the experiments above, SKC3 was added at t (0 h) and control consisted of treatment with DMSO 

(3.75%) at t (0 h). UT, untreated S. epidermidis RP62A; MIC, minimum inhibitory concentration (determined 

with initial OD600 of 0.05). 

 

Evidences from transcriptome data has outlined that SKC3 possibly works by overall 

negative regulation on central metabolism of staphylococci. Transcriptome data of SKC3 

treated staphylococci at 20 min time point revealed upregulation of transcripts of members 

of certain two-component systems (involving membrane bound histidine kinase and 

corresponding response regulator) indicating the possible recognition of SKC3 by 

staphylococci. A few genes encoding efflux proteins and proteins documented to confer 

antibiotic resistance in other bacteria were also upregulated at this time point. Additional data 

on the exact role of these efflux systems and resistance proteins in S. epidermidis RP62A is 

necessary to draw conclusions on the same. Nevertheless, experiments involving induction 

of staphylococcal resistance to SKC3 needs to be performed to better understand the life 

cycle of SKC3 in medicinal utilization aspects. Transcripts encoding several key proteins and 

enzymes involved in carbon (glycolysis, gluconeogenesis, TCA cycle), amino acids, proteins, 

lipids, energy (synthesis of purine, folate, pyrimidines) metabolism and export were 

significantly down-regulated at 3 h staphylococcal samples treated with SKC3. Further, the 

absence of direct influence of SKC3 on genes related to biofilm formation indicates that 
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biofilm inhibitory effects of SKC3 may be due to secondary effects (such as down-regulation 

of purR and iron-sequestration genes).  

Cytotoxicity to mammalian systems is an important criterion regarding applicability of NPs to 

medications. MTT assay and Alamar blue assay are two commonly used assays in 

determining the cytotoxicity of compounds in vitro on cell lines. In this study, alamar blue 

assay demonstrated the non-toxic nature of the anti-biofilm SBT343 and SBT348 extracts 

and the compound SKC3 on the mouse macrophage J774.1 and fibroblast NIH/3T3 cell 

lines. In addition to the in vitro cytotoxicity data, in vivo toxicity information is essential to 

extrapolate the results to human systems before pre-clinical applications. Simple 

invertebrate animal model systems like Artemia salina (brine shrimp), Caenorhabditis 

elegans (round worm), Danio rerio (zebra-fish), Drosophila melanogaster (fruit fly) and G. 

melonella (greater wax moth larvae) have been increasingly employed to determine the toxic 

effects of NPs and compounds prior to mammalian models (Freires et al., 2017). This pre-

screening step has the advantage in eliminating the concerned failure in mammalian model 

experiments and reducing the number of animals in pre-clinical screens. However, a single 

compound could elicit differential toxicity on different animal models and thus, the 

extrapolation of results to human applications should be carefully defined. In this thesis work, 

G. melonella has been used to study the toxicity of the antibiofilm extracts and compound 

SKC3 (Figure 7A; Chapter 4, Figure 5). All the tested substances in the study showed no 

toxic effects on the larval system.  

G. melonella is a very good in vivo model for studying the virulence of different staphylococci 

and other pathogenic bacteria (Junqueira, 2012). The advantages of G. melonella over the 

other in vivo model systems in toxicity analysis is explained in Chapter 4. S. aureus USA 

Lac* was the most virulent strain among the staphylococcal strains used in the study. It 

resulted in a completed death of all the larvae at 72 h pointing its associated pathogenicity 

(Figure 7B).  
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Figure 7: (A) In vivo toxicity of SBT343 extract on G. melonella larvae. Larvae were administered with 

different amounts of SBT343 extract (equivalent to their effective anti-biofilm concentrations). Medium 

control included the extract generated from modified ISP2 medium in which Streptomyces sp. SBT343 was 

grown. Toxicity was observed only in larval populations treated with SBT343 extract (250 µg or higher).  

(B) Virulence potential of different S. aureus strains in the study. Larvae were administered with 

different strains (inoculation OD600 of 0.1) or with endotoxin-free PBS vehicle (vehicle control). Methicillin-

resistant S. aureus Mu50, Col strains did not affect the larval survival significantly. However, S. aureus 

USA300 Lac* (MRSA), RF122 and Newman (MSSA) strains significantly reduced the survival rates. It could 

be observed that S. aureus USA300 Lac* strain was the most pathogenic strain and lead to 100% death of 

larvae (72 h), followed by S. aureus RF122 and Newman strains. Interestingly, S. epidermidis RP62A 

showed no effects on larval survival (data not shown). This could be due to the absence of virulence factors 

(other than biofilms) in this commensal bacterium. Positive control MeOH (Roth GmbH, Germany) killed all 

the larvae 1 h post injection. 

Log-rank-test (Mantel-Cox) was used to determine the statistical significance (p<0.05, statistically 

significant) of different survival curves. Each group consisted of 10 larvae and three independent 

experiments were performed to evaluate the statistical significance. 
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The ability of SKC3 to protect G. melonella from S. aureus USA Lac* was also independently 

assessed. Results indicated that administration of SKC3 (at effective or several fold higher 

concentrations) together with S. aureus USA Lac* could not increase the survival rates of 

larvae, in comparison to the infected group (Figure 8). The cause behind this failure is 

unknown and needs further in vivo evaluation of SKC3 on other model systems.  

 

Figure 8: In vivo anti-staphylococcal activity of SKC3. Larvae were administered with cocktails of S. 

aureus USA300 Lac* (inoculation OD600 of 0.1) with endotoxin-free PBS vehicle (control) or SKC3 (MIC, 

2xMIC, 200xMIC) to evaluate the in vivo antibiotic effects of SKC3. Negative controls included larvae that 

received no injection, PBS vehicle only, C3 only (200XMIC) or S. aureus USA300 Lac* only. Pure MeOH 

(Roth GmbH, Germany) that killed the larvae was the positive control in the experiment. Log-rank-test 

(Mantel-Cox) was used to determine the statistical significance (p<0.05, statistically significant) of different  

survival curves. No significant difference was observed between the groups that received the cocktail control 

and cocktail with SKC3. This reveals that SKC3 was ineffective in protecting the larvae from staphylococcal 

infection. Each group consisted of 10 larvae and three independent experiments were performed to evaluate 

the statistical significance. MIC, 15.62 µg/ml; ns, not significant. 

 

Taken together, the findings reveal that both the Streptomyces spp. (SBT343 and SBT348) 

contain a reservoir of anti-biofilm compounds that are heat-stable and non-proteinaceous in 

nature. Further, their broad-spectrum effects on different staphylococcal strains, potency in 
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eliminating the biofilm formation on different surfaces (polystyrene, glass, silicone, contact 

lens and titan metal) and lack of toxicity suggest their possible applications in medications 

or antibiofilm coatings on clinically relevant materials. This could mollify the complications 

caused by DRIs.  
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6. Conclusion and future perspectives 

Overall, this Ph.D. study highlights the potential of actinomycetes in producing new anti-

infective substances against pathogenic bacteria like staphylococci and EHECs. The specific 

antagonistic activities of extracts and/or compounds derived from sponge-associated 

Streptomyces against biofilm formation and Shiga toxin production underpins their 

application in management of these bacterial infections. 

As a step forward, genomes of the three Streptomyces sp. (SBT343, SBT345 and SBT348) 

should be sequenced. This will assist in the identification of biosynthetic gene clusters and 

the subsequent discovery of metabolic pathways responsible for synthesis of the anti-

infective compound(s). The compounds could then be synthesized in greater amounts either 

by heterologous expression of the identified biosynthetic genes in a suitable host, or by semi-

synthetic approaches. Through an in-depth understanding into the biosynthesis regulation, 

strain engineering and optimisation of fermentation conditions the yield of the compound 

production could be enhanced. 

Elicitation experiments involving co-culture with pathogenic bacteria or addition of elicitors 

such as microbial cell components, lysates, inorganic compounds etc. could be done to 

activate the production of new compound(s) from these metabolically rich Streptomyces 

strains. 

Further, omics-based approaches like genomics, transcriptomics and metabolomics will help 

in identification of self-resistance mechanism(s) in these strains and the generated data 

could help in understanding the mechanism of action of these compound(s). Another 

approach involving induction of resistance experiments through passaging of bacterial cells 

in the presence of increasing concentration of these compound(s) could help in assessment 

of the development of drug resistance in pathogenic bacteria.  

An integration of all the above approaches could lead to the discovery of yet undiscovered 

drugs from these biotechnologically profitable actinomycetes. 
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8. Appendix 

List of abbreviations and symbols 

EHEC Enterohemorrhagic Escherichia coli 

HUS hemoytic uremic syndrome 

Stx Shiga toxin 

ELISA Enzyme Linked Immunosorbent Assay 

NMR nuclear magnetic resonance 

1D, 2D, 3D one dimensional, two dimensional, three dimensional 

ESI electrospray ionization 

HR-MS high resolution mass spectrometry  

SBT SeaBiotech 

Fr fraction 

HPLC high pressure liquid chromatography 

BIC90 90% biofilm inhibitory concentration 

MIC minimum inhibitory concentration 

MBIC minimum biofilm inhibitory concentration 

Da dalton 

min minute 

h hour 

d day 

WHO World Health Organization 

DNA deoxyribonucleic acid 

RNA ribonucleic acid 

iChip isolation chip 

HGT horizontal gene transfer 

pH power of hydrogen 

US-FDA United States Food and Drug Administration 

GI gastro-intestinal 

IBD inflammatory bowel disease 

CFUs colony forming units 

Gb3 Globotriaosylceramide 

STEC Shiga toxin producing E. coli 
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TGN trans Golgi network 

ER endoplasmic reticulum 

DRIs device-related infections 

nm nanometer 

cm centimeter 

UV ultraviolet 

CoNS coagulase negative staphylococci 

CoPS coagulase positive staphylococci 

AtlE autolysin 

Aap accumulation-associated protein 

Bap biofilm-associated protein 

PNAG poly-N-acetylglucosamine 

GlcNAc N-acetylglucosamine 

FnBP fibronectin binding protein 

WTA wall teichoic acid 

LTA lipoteichoic acid 

QS quorum sensing 

PSM phenol soluble modulins 

CW cell wall 

CM cell membrane 

PG peptidoglycan 

µm micrometer 

NPs natural products 

MNPs marine natural products 

kg kilogram 

l liter 

rRNA ribosomal RNA 

DGGE denaturing gradient gel electrophoresis 

FISH Fluorescent In Situ Hybridization 

GC Guanine-cytosine 

NCBI National Center for Biotechnology Information 

BD bloody diarrhea 

m/z mass to charge ratio 

MAbs monoclonal antibodies 
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δC 
 

chemical shift (ppm), 13C-NMR 

 δH chemical shift (ppm), 1H-NMR 

ºC 

rpm 

degree Celsius 

revolutions per minute 

ASW artificial sea water 

13C-NMR carbon nuclear magnetic resonance spectroscopy 

COSY correlation spectroscopy 

DMSO Dimethyl sulfoxide 

HMBC heteronuclear multiple bond correlation 

1H-NMR proton nuclear magnetic resonance spectroscopy 

HSQC heteronuclear single quantum coherence 

Hz hertz 

MHz megahertz 

MeOH methanol 

EtOAc ethylacetate 

PC positive control 

µM micromolar 

LB Luria broth 

NIH National Institute of Health 

eDNA extracellular DNA 

TSB Tryptic soy broth 

v/v volume per unit volume 

w/v weight per unit volume 

g/l gram per liter 

µg/l microgram per liter 

% percentage 

mM millimolar 

ml milliliter 

ISP2 International Streptomyces project medium 2 

OD pptical density at a particular wavelength 

µg microgram 

PBS phosphate buffer saline 

ATCC American type culture collection 

mm millimeter 
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HCEC human corneal epithelial cells 

U/ml units/millilter 

µl microliter 

BIC50 50% biofilm inhibitory concentration 

A260/A280 absorbance at 260 nm to absorbance at 280 nm 

qPCR quantitative real time PCR 

PCR polymerase chain reaction 

Ct cycle threshold 

DHFR dihydrofolate reductase 

DCM dichloromethane 

MeCN acetonitrile 

kV kilovolts 

LC-MS liquid chromatography-mass spectrometry 

SEM scanning electron microscopy 

CLSM confocal laser scanning microscopy 

IOLs intraocular lenses 

mRNA messenger RNA 

Rt retention time 

FTIR fourier transform infra-red spectroscopy 

MRSA methicillin resistant S. aureus 

MSSA methicillin sensitive S. aureus 

VRSA vancomycin resistant S. aureus 

VRE vancomycin resistant enterococci 

ND not determined 

NC no cytotoxicity 

ABC ATP binding cassette 

SMR small molecule resistance 

CSSSI somplicated skin and skin structure infections 

ABSSI acute bacterial skin and skin structure infections 

ISP2_F International Streptomyces project medium 2_filamentous 

BLAST Basic Local Alignment Search Tool 

antiSMASH Antibiotics and Secondary Metabolite Analysis Shell 

MIBiG Minimum Information about a Biosynthetic Gene Cluster 

NaPDoS Natural Product Domain Seeker 
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LPS lipopolysaccharide 

sRNA small RNA 

PCA principal component analysis 

MC medium control 

UT untreated 

t time 

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide 

M molecular weight ladder 

bp base pair 

HT heat treated 

TT trypsin treated 

PKT proteinase K treated 

DOSY Diffusion Ordered Spectroscopy  

ns not significant (statistically); p>0.05 

*, **, ***, **** p<0.05, p<0.01, p<0.001, p<0.0001 
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