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Abstract
In this workwe present an extensive experimental and theoretical investigation of different regimes of
strongfield light–matter interaction for cavity-driven quantumdot (QD) cavity systems. The electric
field enhancement inside a high-Qmicropillar cavity facilitates exceptionally strong interactionwith
few cavity photons, enabling the simultaneous investigation for awide range ofQD-laser detuning. In
case of a resonant drive, the formation of dressed states and aMollow triplet sideband splitting of up to
45 μeV ismeasured for amean cavity photon number á ñ n 1c . In the asymptotic limit of the linear
ACStark effect we systematically investigate the power and detuning dependence ofmore than 400
QDs. SomeQD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained
by an extended dressed 4-level QDmodel.We provide a detailed analysis of theQD-cavity systems
properties enabling this novel effect. The experimental results are successfully reproduced using a
polaronmaster equation approach for theQD-cavity system,which includes the driving laserfield,
exciton-cavity and exciton-phonon interactions.

1. Introduction

At itsmost essential level, light–matter interaction is based on the exchange of single energy quanta between a
quantumoscillator and a photonicmode. Formany applications in thefield of quantum information processing
an efficient coupling offlying (photons) and stationary (atoms) qubits is of fundamental importance.
Semiconductor quantumdots (QDs) serve as ideal, artificially grown atomic qubits as they intrinsically provide a
strong nonlinearity on the single-photon level enabling the generation of single-photon Fock states [1],
indistinguishable photons [2] and entangled photon pairs [3]. Their integration into semiconductor
microcavities enables high outcoupling efficiencies, reduction of the radiative lifetime due to Purcell
enhancement, and coherent energy exchange between light andmatter states in the strong coupling regime [4–
11]. Regarding the interaction offlying and stationary qubits, cavities possess tremendous potential due to the
enhanced light–matter coupling, low cavity losses and the high coupling efficiency to opticalmodes. Thus, all-
optical switchingwith low-photon numbers [12], optical nonlinearities for few-photon pulses [13], single-
photonfilters [14], photon-sorters [15], and coherentmanipulation ofQDswith few photons [16] have been
achieved.

The interaction between a strong oscillating electric field and a two-level system (TLS) strongly relies on the
energy detuning between the two systems. In the resonant case the system can be described in the dressed states
picture [17], where strong light–matter interaction leads to the formation of new, hybridized eigenstates. Using
QDs as artificial atoms, these dressed states have been experimentally demonstrated either by the formation of
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thewell-knownMollow triplet in photoluminescence (PL) spectroscopy [18–21] or by exploring the Autler–
Townes splitting [22–25]. In the asymptotic limit of large detunings, the energy shift of the TLS can be described
as a residual effect of the dressed states—known as the AC Stark shift [17, 26–28].

In this work, we enable strong light–matter interaction via the electric field enhancement of only few
photons inside the cavity. Usually such strong interaction is only achievable by using strong laser fields and
thousands of photons [10, 29, 30].We systematically investigate the transition from the resonantMollow triplet
regime to the linear AC Stark effect for a large number of cavity-driven semiconductorQD-micropillar systems
(figures 1(a)–(d)). Due to the self-assembled growth, theQDenergy levels are randomly distributed, enabling a
detailed study of the light–matter interaction over a wide range ofQD-cavity detunings and coupling strengths.
In addition, we observe a rich spectrumof behaviors depending on theQD-cavity coupling strength and
orientation of theQD axis relative to the linearly polarized cavitymode. In particular in the resonant, case a
single cavity photonmediates strong light–matter interactions resulting in aMollow triplet with a sideband
splitting of up to 45 μeV. Additionally, the appearance of an unexpected anomalous shift, i.e., towards the laser
energy, is intuitively and qualitatively explained by a dressed 4-levelmodel, which also includes the biexciton
state. All experimental findings arewell reproduced by a rigorous polaronmaster equation approach including
QD-cavity coupling, electron–photon and electron–phonon scattering.

2. Sample description and optical setup

The sample under investigation is grown bymolecular beam epitaxy, and the self-assembled In 0.45Ga 0.55AsQDs
are embedded in a high-Qmicropillar resonator, which consists of aGaAsλ-cavity confined by 26 and 30 pairs
of distributed Bragg reflectors (DBRs) on the top and the bottom, respectively. TheseDBRs are composed of
alternating l 4 thick layers of GaAs andAlAs. TheQDdensity of roughly -10 cm10 2 and thewide spectral
distribution due to the self-assembled growth enable the simultaneous investigation of several dots with various
QD-cavity detuning and coupling strengths within one singlemicropillar. An aluminummask on top of the
micropillars reduces the scattered laser light in the case of resonant cavity pumping.Wemount the sample inside
a heliumflow cryostat to performmicro-PLmeasurements at 7K.Twomicroscope objectives ( =NA 0.45) in
orthogonal configuration allow for excitation and detection fromboth the top and the side of themicropillar
(figure 1(e)). The stray-light suppression is further improved by a pair of crossed polarizers in front of the
objectives with a nominal suppression of 105.We analyze the emission properties using a spectrometer with a
1800l mm–1 grating and a spectral resolution of 24μeV.Using a l 2-waveplate and a polarizing beamsplitter
in front of the spectrometer we can performpolarization resolvedmicro-PL using the top detection path. For
this purpose, we replace the polarizer for laser suppressionwith a longpass filter to clean up the resonant
scattered laser light. By rotating the l 2-waveplate we can then distinguish between the two linear polarized
exciton states ñ∣X and ñ∣Y due to their perpendicular polarized light emission.

Figure 1.Detuning dependence of dressed states eigenenergies. (a) Laser quantumdot detuning dependence of dressed-state
eigenenergies (solid lines), as well as theQDand laser uncoupled eigenstates (dashed lines). For large detuning the small energy shift
can be described by the linear optical Stark effect as an asymptotic solution of the dressed states picture. (b)–(d)Eigenstates of a dressed
two-level system as a function of the applied laser power for different laser detuning. In the resonant case (c), the observation of the
Mollow triplet in PLmeasurements indicates the formation of dressed states. (e) Schematic of the optical setupwith beamsplitter (BS),
polarizing beamsplitter (PBS), and half-wave plate (l 2) andGlan-Thompson polarizers (GT).
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3.Different regimes of light–matter interaction

In order to gain detailed insight into the light–matter interactionwe investigatemore than 400QDs in about 15
micropillars with a diameter of 1.5μm.Almost all cavities exhibit two non-degenerated, orthogonally polarized
fundamentalmodes (FMs) due to the elliptical shape of themicropillar [31]. The quality factors are between
14 000 and 19 000 estimated by themeasured cavity linewidths. Intuitively, one can interpret the quality factorQ
as the average number of roundtrips a photonmakes before leaving the cavity. The use of a cavity strongly
enhances the electrical field for each photon and thus reduces the total number of photons needed compared to
free-space experiments. In the following experiments, we couple a resonant, linearly polarized continuouswave
(CW) laser with a linewidth smaller than 2MHz into one of the polarized FMs, i.e., from the top of the pillar.
TheQDemission is then collected from the side of themicropillar.

We investigate the influence of the cavity-enhanced lightfield on theQD states bymicro-PLmeasurements
as a function of the incident laser power. A color-scalemap of the PL intensity in dependence of the emission
energy w with respect to the cavitymode w c , and the laser power is plotted for two different, representative
QD-micropillar systems in figure 2 to demonstrate various light–matter interaction effects. Firstly, theQD
emission is distributed over a large spectral range, thus enabling an extensive study. Secondly, formostly all
resonantly driven cavities the emission at lower energy side of the cavity ismore pronounced due to amore
probable phonon excitation than absorption at low temperatures (seeMicropillar 1 infigure 2). Thirdly, we
observe a clear tendency of almost all emission lines shifting away from the cavity with increasing pumppower
—most lines shift linearly, but some lines also exhibit a nonlinear shift with increasing pump fields.

The red boxes in figure 2 highlight some exemplary line shifts depending on the detuning and theQD
orientationwith respect to the cavity axes. In the next sections we further analyze these highlighted lines
amongst others, which are not displayed infigure 2.

3.1. Small detuning: dressed-states regime
When theQD exciton-to-ground state transition nears resonancewith the cavitymode and the driving laser, the
occurrence of dressed states—essentially observable through theMollow triplet sidebands in PL spectroscopy—
is a signature of strong coupling of light andmatter states (see figures 1(a) and (c)). The normalized color-scale
plot infigure 3(a)displays power dependent PLmeasurements and visualizes clearly the appearance of two
sidebands, i.e., the Fluorescence Line ( F ) and theThree Photon Line (T). The Rabi splitting Wx is additionally
plotted infigure 3(b) and grows linearly with the square root of the applied laser power, which is proportional to
the Rabi frequencyΩcdriving the cavitymode.Here, we reachRabi splittings of up to 295 μeV for an incident
laser power of 5.62 μW ( m=P 2.37 W ), not limited by any physical issue but due to spectral overlapwith
otherQDs. In the limit of a strongly drivenweakly coupled cavity we can adiabatically eliminate the cavitymode
by a coherent state a h k= 2 c [32, 33], with the cavity decay rate k =74 μeV and the direct cavity drive hc ,

which is twice the Rabi frequency Wc .We assume the cavity photon number to be very close to a = h
k( )∣ ∣2 2 2

c as

the cavity is primarily driven by the laser with hc.We can then estimate themean cavity photon number as

Figure 2.ExemplaryQD-cavity systems under resonant, CWcavity pumping. The large emission energy distribution of the self-
assembledQDs enables a statistical study of light–matter interaction for detunings of up to 15 meV.Different examples of light-
induced Stark shifts are highlightedwithin the red boxes.
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The effect of the cavity on theQD can be represented as an off-resonant exciton drive h a= á ñB gx [33], where
á ñB is the thermally averaged coherent phonon bath displacement operator [34–36]. For the given temperature
of 21 K for this particular resonantmeasurement á ñ =B 0.91. The optimalQD-cavity coupling strength is given
by = [( ) ( )] g e f n m V4 e

2 2
0

1 2≈35 μeVwith an oscillator strength »f 10 for a typical lifetime of =T 1.21

ns, an effectivemode volume m»V 0.23 m3 [4] and the refractive index n of the surrounding semiconductor
material. However, for the calculations, we use an intermediateQD-cavity coupling strength of 25μeVwhich
reflects different polarization and spatial displacement of theQDswithin the cavity (comparefigure 4(d)).
Thereby, we ensure to not underestimate the average cavity photon number á ñnc . It is displayed infigure 3(b):
only a few cavity photons are necessary for substantial Rabi splittings Wx of the exciton transition.More
important is themeasuredRabi splitting of 45 μeV for a single cavity photon, which is several times larger than
the natural linewidth of a typical InAsQD. Thus, theQD exciton state can be used to probe genuine quantum
fields at the few photon limits.

Note: the sideband’s linewidth exhibits an almost linear increase with excitation power due to an increased
carrier-phonon coupling, which causes excitation-induced dephasing (EID). This has been reported for
different not cavity-driven systems and is thus not subject of our investigation [37–39].

If the driving laser is off resonancewith the TLS, the frequencies of the threeMollow triplet emission lines, in
the strongfield limit, are given by [20, 40, 41]

w w
w w

= - D
= - D  W ( )

,
. 2

central 0

side 0

Here, w0 is the bare two-level transition frequency, w wD = - L0 is the laser frequency detuning, and

W = D + Wx
2 2 is the effective Rabi frequency. It is worthmentioning that the detuningΔ is defined as theQD

emission frequencywith respect to thefixed laser frequency. In the literature, this detuning is normally defined

Figure 3.Mollow triplet spectra and detuning dependence. (a)Cavity-enhancedMollow triplet for zeroQD-cavity detuning. (b)Rabi
splitting versus square root of incident laser power and cavity photon number. (c)Normalized emission spectra as a function of the
cavity-laser detuning. The cavity filters the number of absorbed photons resulting in an effective bare Rabi frequency. (d)Total Rabi
splitting ofMollow triplet sidebands as a function of the laser detuning. (e)Energy shift for some exemplaryQDswith varyingQD-
cavity detuning. The experimental data arefittedwith equation (2). The detuning corresponds to w w-( ) c , as in figure 2.
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as the opposite value, because the laser frequency is tunedwith respect to a single TLS frequency. Inmost of the
following experiments the laser frequencywill befixed at the cavity frequency andQDswith differentQD-cavity
detuningwill be investigated. In the case of a strictly resonant interaction the sidebands shift linearly with the
bare Rabi frequency Wx , as presented before.

First we tune the laser ( m=P 0.84 W1 2)with respect to the cavitymode and plot the normalized PL
intensity of theMollow triplet infigure 3(c). The three emission lines exhibit a distinct anticrossing, which
differs in shape from the anticrossing of coherently driven non-cavity systems (given by the dashed lines in
figure 3(c)). This is due to the spectralfiltering of the cavitymode itself, i.e., the number of photons entering the
cavity strongly depends on the detuning between laser and cavity. Thus, a detuned laser results in a reduced bare
Rabi frequency driving the cavity. The line shift and also the anticrossing is then superimposedwith an effective
Rabifield from the cavitymode:

W = D + D W( ( ) · ) ( )F , 3x
2 2

where the factor D =
+

k
D( )( )F 1

1
2

2 accounts for the spectral filtering from the cavitymode. In figure 3(c)we

used this equation to fit the detuning dependence of theMollow triplet sidebands (solid lines). The dashed
lines represent the lines detuning dependence for the same Rabi frequency but without cavity filtering. For a
more convenient study, we extract the total splitting between the two sidebands and plot the results in
figure 3(d). From a least-squares fitµ D + D W( ( ) · )F2 x

2 2 to the data, we derive a bare Rabi frequency of
mW = 117x eV ( pW =( )2 28.2x GHz) for zero detuning. This driving field is generated by only amean

cavity photon number of 6.6.
We now investigate the power dependence of the line shift for largerQD-cavity detunings (the laser is again

resonant to the cavitymode). The relative line shift for several QDswith different positive and negative detuning
with respect to the cavitymode as a function of the applied laser power is displayed in figure 3(e). Besides the
large differences in strength, which strongly depends on the detuning, the line shifts also differ in the formof

Figure 4. Linear AC Stark effect and its detuning dependence. (a)Exemplary line shift for largeQD-cavity detuning. (b) Some lines
exhibit a line splittingwith increasing power due to different cavity coupling strengths of the excitonic states. (c)Polarization resolved
spectra reveal the perpendicularly polarized emission. (d) Line shift as a function of the applied laser power for differentQDswith
varyingQD-cavity detuning.
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their power dependence.We use equation (2) tofit the energy detuning, represented by the solid lines. The
transition from strongly dressed states (0 meVdetuning, already discussed in detail infigures 3(a) and (b))with
an energy shift proportional to the square root of the applied power to the linear AC Stark effect (3.8 meV and
−2.7 meV)with an energy shift proportional to the applied power is clearly observable.

In the following section, wewill further investigate theAC Stark effect and its detuning dependence in detail.

3.2. Asymptotic limit for largeQD-laser detuning: AC Stark effect
For largeQD-laser detuning, only the emission line close to w0 of theMollow triplet is still observable, as the
admixture of light andmatter states is strongly reduced [17].We can then use a Taylor expansion of equation (2)
to obtain a simple form for the expected AC Stark shift,

w w» +
W
D

( )1

2
, 4x

AC 0

2

which predicts the spectral line shift of the original TLS transitionwith frequency w0. This AC Stark shift
depends linearly on the applied laser power µ WP x

2 , and is inversely proportional to theQD-laser detuningΔ.
The sign of the detuning determines the direction of the energy level shift.

Typical linear line shifts for twoQDs are plotted infigure 4(a) (box 1 infigure 2). Both emission lines are
shifted negatively by roughly 150 μeV due to theAC Stark effect. At the same time the lines are broadened from
30 to 110μeVdue to EID (not shown here).

Some lines exhibit a splitting with increasing excitation power as shown for twoQDs infigure 4(b) (box 2).
The polarization resolved PL spectroscopy infigure 4(c) identifies twomainly linearly and perpendicularly
polarized components for each emission line. Thus, we relate the splitting to the two exciton eigenstates ñ∣X and
ñ∣Y from the sameQDwith orientation not parallel to the cavity axes. The correspondingQD transitions are now

exposed to different Rabi oscillations, expressed by different cavity coupling strengths gX and gY. The increase of
thefine structure splitting from fewμeV tomore than 120 μeV reveals a considerably larger tuning range
compared to non-cavity-driven semiconductorQD systems [24, 28].

With increasing laser powermost emission lines exhibit the expected shift predominantly away from the
cavity, i.e., negative for negatively detuned emission lines and positive for positively detuned emission lines.We
fitted the energy shift formore than 400QDs in 15 different cavities as a function of the applied laser powerwith
the linear relationD =E m P . The slope m m( )m eV W is then plotted in figure 4(d) as a function of theQD-
cavity detuning. First of all, we clearly observe an inversely proportional dependence on the detuning, as
expected from equation (4). The large variation in the strengths of the Stark shift for same detuning results from
differentQD-cavity couplings strengths, due to theQDoscillator strength, and theQDorientation and
displacement inside themicropillar. However, it appears that amaximum coupling strength causes a sharp
upper limit of the observable Stark shift. To calculate the Stark shift we insert equation (1) into equation (4) and
exploit the relation of incident laser power and cavity photons in the steady state h k wá ñ = ( · )n Pc in inc .
h » 0.2in is the coupling efficiency into the FMand can be obtained experimentally (figure 3(b)). The solid lines
infigure 4(d) display the calculated Stark shift as a function of the detuning for differentQD-cavity coupling
strength (10 μeV–35 μeV). The optimal coupling strength of 35 μeV serves as upper limit of themeasured
values. Because of aforementioned reasons,mostQDs exhibit a weaker Stark shift. TheACStark shift per cavity
photon number is explicitly given infigure 4(d), right y-scale. Apparently, a large number of cavity photons is
necessary for the observed shifts of up to 150 μeV, because of the extraordinary largeQD-cavity detuning.

For small detunings the AC Stark shift approximation (equation (4)) deviates from the analytic equation (2).
The grey area infigure 4(d) indicates the detuning rangewith a deviation ofmore than 10% for amaximumbare
Rabi frequency of 1.0 meV. For detunings smaller than 1.5 meVboth the calculated and the experimentally
collected slopesmust be treatedwith caution, especially for largeQD-cavity coupling strengths. For small
detuning the number of investigatedQDs decreases as the linear AC Stark effect is not valid anymore, andmost
QDs show a nonlinear power dependence (see figures 3(e), (f)).

4. Anomalous Stark shift

Most shifts infigure 4(d) reflect the expected ACStark shift relation in equation (4), but some lines reveal an
unexpected opposite Stark shift, i.e., they shift to higher energies although theQD-cavity detuning is negative,
and vice versa. The related slopes are then located in the upper left and lower right quadrant of the
graph (figure 4(d)). One example is highlightedwithin box3 infigure 2, and a close-up view is given in
figure 5(b). Although this particular emission line is positively detunedwith respect to the cavitymode and the
driving laser energy, one of the emerging lines exhibit a negative shift with increasing power. This anomalous
shift can be explained by a detuned 4-level system, including the biexciton state ñ∣XX , the two exciton states ñ∣X ,
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ñ∣Y , and the ground state ñ∣G . The level energy diagram is illustrated infigure 5(a, left). Here, the driving laser
frequency is red detuned, i.e., the laser energy is smaller than all involved transitions. Due to the biexciton
binding energyEB the laser is spectrally closer to the biexciton emission energy w XX X Y, than to the exciton
emission energy w X Y G, . Therefore, the former transition is initially shifted stronger by the lightfield aswe have
seen infigure 4(d). By calculating the new eigenstates ( ñ∣1 – ñ∣4 ) of the dressed 4-level atom [33], we can easily
simulate their power dependence as depicted infigure 5(a, right) in the frame of the rotating laser. Note that the
polarization of the laser also imposes its polarization on themixed states, thus leading to the same eigenstates
under strong drive and for a smallfine structure splitting of the exciton levels. For convenience, we assume a
linear polarized laser in x-direction, i.e., the effective drive of the y-polarized transitions is zero (h h= = 0Y YY ).
The transition between ñ∣2 (former state ñ∣X ) and ñ∣1 ( ñ∣G ) apparently exhibits a negative shift for small pump

Figure 5.Anomalous Stark shift. (a)Energy level diagramof the bare (left) and the dressed (right)QD states in the lab frame and the
rotating frame of the laser, respectively. (b)Measurement showing the anomalous line shift. Absolute value of anomalous shift (c) and
the required pumpdrive (d) as a function of exciton and biexciton binding energy. (e)Calculated spectrumof the dressedQD system,
for low (black) and high (red) excitation power. (f) Simulations based on a polaronmaster equation reproduce themeasured line shift.
Main simulation parameters (see text): spontaneous emission rates g - -X G Y G, =0.56 μeV, g - -XX X XX Y, =0.44 μeV, pure dephasing
rates g ¢ - - - -XX X X G XX Y Y G, , , =8.2 μeV, cavity decay rates kx y, =74, 129 μeV, cavity coupling q= =¢ ¢g g g cosx x y y ,

q= =¢ ¢g g g sinx y y x , where g =26.7 μeV and =g g 1.162 1 , θ=34°. The phonon calculations use a phonon cutoff frequency
w = 0.9b meV, and exciton-phonon coupling strength a p =( )2 0.03 psp

2 2. The original exciton-ground transition is located
+6 meV and the biexciton-exciton transition is located 3 meVwith respect to cavity at w c . The splitting between x- and y-polarized
excitons d XY =25 μeV andT=6.8 K.
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power. In other words: the strong dressing of the biexciton transition induces a negative shift of themore
detuned exciton transition.

The appearance of the anomalous shift and its strength strongly relies on theQD energy levels and their
detuningwith respect to the driving laser. The absolute value of this shiftDanom is plotted infigure 5(c) as a
function of the exciton detuning w wD = -( )xL x L and the biexciton binding energy EB. It occurs within two
separated regions of the parameter spacewhere one is located around the biexciton resonance condition
(D = ExL B). It covers all cases that exhibit a negative shift of one exciton emission line including the presented
experimental case for an exciton detuning of 6.7 meV (figure 5(b)). The appropriate biexciton binding energy is
roughly 4meV for this special detuning and themeasured negative shift, a reasonable value for InAsQDs.We
actuallyfind aweak emission linewith the correct detuning infigure 2, but cannot definitely assign it to the
biexciton transition due to strong spectral overlapwith other emission lines. The anomalous shift of the exciton
transition reaches itsmaximum for resonant biexciton drive. The second region is located around the exciton
resonance (D = 0xL ). Here, one of the biexciton-to-exciton transitions is shifted to higher energy, although the
laser is located at higher energy. This anomalous shift is the direct counterpart of the presented data. The two
regions are symmetric to the two-photon resonance condition (D = E 2xL B )highlightedwith the yellow
dashed line infigure 5(c).

The required pumppower (hx
2) to reach themaximumanomalous line shift is plotted infigure 5(d) for the

same parameter space.

4.1. Theoretical description andnumerical simulations
Wenext discuss our theoreticalmodel using a polaronmaster equation approach to calculate the anomalous
Stark shift for this cavity-drivenQD system, closely following theworks of [32, 33, 36].

The biexciton-exciton system consists of four states, including the biexciton state ñ∣XX , ñ∣X and ñ∣Y
polarized exciton states and the ground state ñ∣G . In contrast to [33]we assume that the polarization of the
orthogonalQD transitions ( ¢x and ¢y ) are not alignedwith the orthogonal cavitymodes (x and y) and rotated by
an angle θ to bettermatch the experimentalmeasurements. The orthogonal ¢x -polarized and ¢y -polarized
transitions of theQDnamely ñ∣XX - ñ∣X , ñ∣X - ñ∣G and ñ∣XX - ñ∣Y , ñ∣Y - ñ∣G are coupled to both the orthogonal
x- (y-) polarized cavities of themicropillar. The x-polarized cavity is driven by a coherent laser. The following
Hamiltonian, written in the frame of the rotating laser, includes the fourQD states, cavity driving, QD-cavity
interactions, and electron–phonon interactions,
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The detuningsΔ of the bareQD states and cavities aremeasuredwith respect to the driving laser frequency wL.
These detunings are labeled as w wD = - 2XX L4 for the biexciton, w wD = -X L3 for theX exciton,

w wD = -Y L2 forY exciton, w wD = -cL
x

c
x

L for theX-cavity and w wD = -cL
y

c
y

L for theY-cavity, where wc
x y,

are the bare cavity frequencies. Here, theX andY excitons are detuned by dXY due to a possible anisotropic
exchange interaction. To be consistent with the experiments, the x-polarized cavity is driven by an x-polarized
resonant laserwith amplitude hc (two times theRabi field) and frequency wL. The operators ax y, describe
lowering operators for x- and y-polarized cavities. TheQD lowering operator s -

-
A B denotes lowering from state

ñ∣A to ñ∣B . The fourQD transitions are coupled to the two cavitymodes with the coupling rates g ab
1,2
, where the

superscript describes coupling between the a polarizedQD transitionwith a b polarized cavitymode and the
subscripts 2 and 1 denote biexciton-to-exciton and exciton-to-ground state transition, respectively. bq ( †bq ) are
the annihilation (creation) operators of the acoustic phonons and lq is the exciton-phonon coupling strength.

Sincewe are in theweak-to-intermediate coupling limit, we can conveniently adiabatically eliminate the
cavity and describe the state of the driven cavity as a coherent state, a h k= 2 c , with cavity decay rateκ [32, 33].
The effect of the cavity on theQD can be represented as an off-resonant exciton drive h a= á ñB gx [33], where
á ñB is the thermally averaged coherent phonon bath displacement operator [34–36].
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We subsequently derive an extended polaronmaster equation for the total biexciton-exciton system [33]
which additionally contains extra spontaneous decay and dephasing rates for the variousQD transitions as
Lindblad terms, e.g., g -XX X is the radiative decay rate from the biexciton to the x-polarized exciton. Thefinal
master equation is used to calculate the y-polarized spectrum,measured in the experiment, which computed
from [33]

w q q= +¢ ¢( ) ( ) ( ) ( )S S Ssin cos , 6y x y

with òw t s t s s s= á + ñ - á w w t
¢ ¥

¥ + - + - -( ) [ ( ( ) ( ) ( ) ( )) ]( )S t t t tlim Re d ey t Y Y Y Y0
i L ,

òw t s t s s s= á + ñ - á w w t
¢ ¥

¥ + - + - -( ) [ ( ( ) ( ) ( ) ( )) ]( )S t t t tlim Re d e ,x t X X X X0
i L where

s s s= +-
- -

-
- -

-d dX XX X XX X X G X G, s s s= +-
- -

-
- -

-d dY XX Y XX Y Y G Y G and dAB corresponds to themagnitude of
the dipolemoment connecting transition between states ñ∣A to ñ∣B and is determined from the bare spontaneous
emission rate connecting these states, i.e., gµdAB AB .

For our calculations, we use a biexciton binding energy of 3 meV and the original single exciton-ground
transition is located at 6 meV (= D xc) from the driven cavity, as in themeasurement (see caption offigure 5 for
detailed parameter description). Thus for low drives the exciton-to-ground and biexciton-to-exciton transitions
are located at 6 and 3 meV, respectively (figure 5(e), red line). Strong dressing leads to 13 distinct lines in the total
spectrawhich are symmetric to the laser frequency (figure 5(e), black line) [33]. The spectra are plotted in a log10
scale for better visibility and two lines are still barely visible in the total spectra. Two lines apparently emerge
from the exciton emission line atD = 6 meV. Infigure 5(f), we focus around the region of this exciton-to-
ground state transition like in the experiment and connect with the observed experimental features (figure 5(b)).
As it can be recognized, the experimentally observed line shifts are qualitatively reproduced. Especially the lower
energy emission line’s anomalous, negative shift is well-understood using our 4-level QD-cavity approachwith a
driving laser far detuned from the two-photon resonance condition of the biexciton state (compare for the
results in [33]).

5. Conclusions

Wehave systematically investigated the transition fromdressed states (Mollow triplet) to the AC Stark effect for
a large number of cavity-driven semiconductorQD-micropillar systems. The self-assembled growth of theQDs
allows for comprehensive study of the light–matter interaction over awide range ofQD-cavity detuning and
coupling strengths. In the resonant case, we observe strong light–matter coupling on the single photon level. A
Mollow triplet sideband splitting of up to 45μeV ismediated by amean cavity photon number of á ñ =n 1c due
to the cavity-enhanced electric field. For a large detuning theQDenergy shift shows linear dependencewith
applied laser power and an inversely proportional dependencewithQD-cavity detuning, characterizing the
linear optical Stark effect. Here, we investigatedmore than 400QDs to account for statistical changes in theQD-
cavity strengths due to theQDoscillator strength, and theQDorientation and displacement inside the
micropillar. The appearance of an unexpected anomalous shift, i.e., towards the laser energy, is intuitively and
qualitatively explained by a dressed 4-level system,which additionally includes the biexciton state. The
experimental observation of this anomalous shift is successfully reproduced by an extended polaronmaster
equation approach includingQD-cavity coupling, electron–phonon and electron–photon scattering.
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Appendix

In this appendix, we discuss how the Stark shifts of theQDs are estimated, the validity of the adiabatic
approximation for eliminating the cavitymode from the systemsHamiltonian, and the precise role played by
phonons on the Stark shift.

The Stark shift of theQDdue to the cavity pump hc is estimated from the shift of the zero phonon line of the
QDas shown infigures 6(a), (b), where a 20 μeV Stark shift is applied on theQD (originally at 2.5 meV) for a
negative (a) and positive (b) detuningDxc . The dashed lines are exact simulations of the full polaronmaster
equation approach introduced in [33] and explained for the 4-levelmodel in themain text, while the solid lines
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show the spectra calculated using the adiabatic elimination [33] and theymatch the full numerical results (with
no approximations) very closely. Thus, in the paperwe have used this adiabatic approximation for all
calculations shown. Specifically, we assume the cavity photon number to be very close to h k( )2 c

2 as the cavity
photons are primarily driven by the direct drive hc and the drive required for implementing a Stark shift on an
off-resonantQD is strong. This allows us to employ the adiabatic approximation on the cavity which
substantially simplifies the numerical simulations. In the presence of a strong cavity drive hc , a high photon
number (>40) is typically required for convergence, whichmakes the spectrum calculations numerically
difficult. This can however be simplified in the followingway: when aweak coupling condition between theQD
and cavity ismet and the cavity is driven strongly, the cavity can be adiabatically eliminated. In this limit, as
stated in themain text, the state of the driven cavity can be described as a coherent stateα and is given by
a h k= 2 c from theQD-cavity Bloch equations (in resonance case). The effect of the cavity on theQDcan be
represented as an off-resonant exciton drive h a= á ñB gx [32, 33].With the cavity adiabatically eliminated, the
numerical simulations becomes significantly easier. In addition to a cavity-modified drive, the adiabatic
elimination also introduces a cavitymodified spontaneous emission enhancement through the Purcell effect.
However, for the large detunings considered in this paper, the Purcellmodification is negligible and thus not
included.

The spectrum for positiveDxc normalizes both spectra infigures A1(a), (b), and theQD located to the left of
the cavity reveals stronger excitation by the resonant cavity drive. This happens because phonon emission is
stronger than absorption at low temperatures and aQD is coupledmore strongly through phonon emission,
when it has a lower energy than the cavity. Next, we study the influence of phonons on the spectral AC Stark
shift.

The Stark-shift of theQDvs laser power (hc
2) is plotted infigure A1(c) using the adiabatic elimination, for a

negative (black, solid) and positive (red, dashed) detuningDxc, where D∣ ∣ xc =3.5 meV.Without phonon

coupling, the drive amplitude h =W( )2c c for a Stark shiftDS is given by h = k D D∣ ∣
c g 8

S xc and the slope

=
h k
D

D∣ ∣
g8S

c xc
2

2

2 . The Stark shift without phonon contributions is also plotted infigure A1(c) (dotted, blue) and

reveals almost no difference. The slope estimated fromfigure A1(c) is plotted for various detunings D∣ ∣xc in
figure A1(d). Here the solid and dashed lines denote slopes for negative and positiveDxc respectively and the
Stark shifts and slopes are approximately the same. In addition, the calculations ignoring phonon effects are
again in good agreement. For small detunings these simple calculations show a slightmismatch as theAC Stark
effect approximation (equation (4)) deviates from the exact solution (equation (2)).

Figure A1.ACStark effect. (a)Calculated spectra S of theQDwith a single exciton, for a negative (a) and positive (b) detuning of
D∣ ∣ xc =2.5 meV. The black dashed linemarks the original location of theQDwithout Stark shift. The solid and dashed lines show

calculations with andwithout the adiabatic approximation. (c) Stark shift of theQDversus laser power h p( ( ))2c
2 for the given

detuning of D∣ ∣ xc =3.5 meV. (d) Slope of figure A1(c) for variousQD-cavity detunings D∣ ∣xc . Themain parameters are
g =50 μeV,κ=73 μeV, g ¢=3 μeV, γ=3 μeV andT=7 K.
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Finally, we assess the role of phonons at higher temperatures. Since at an elevated temperature ofT» 50 K,
á ñB (=0.71) is small (á ñB =0.96 at =T 4 K) , the applied Stark shift due to effective drive h a= á ñB gx is
expected to be small through the coherent reduction of the drive.However a large phonon-mediated Lamb-shift
at highT compensates for this effect and a large frequency shift is observed. This can be seen from figure A2,
where the light solid line includes only the coherent contribution of phonons ( ¢HS) and ignores phonon induced
fluctuations and the dark solid line shows full phonon calculations, where the phononfluctuations gives rise to
large Lamb shifts [36]. The dashed red line is calculations without phonon interactions.
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