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Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able
to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest
to measure the patients’ burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were
found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral
blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the
most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet
assay, and the quantification of 8-oxo-7,8-dihydro-2-deoxyguanosine, are evaluated concerning the feasibility of the analysis and
regarding the marker’s potential to predict clinical outcomes.

1. Introduction

Patients with kidney damage, as evaluated by albuminuria, or
impaired renal function, in particular on renal replacement
therapies by dialysis or transplantation, exhibit an increased
cancer incidence [1–5]. The first report of chromosome
abnormalities in uremic patients was published in 1988 [6].
After this, first hints that patients with chronic kidney disease
(CKD)might have increasedDNAdamage came from studies
in the 1990s showing that the DNA repair in freshly isolated
leukocytes from patients with CKD not yet on dialysis and
on long term dialysis was impaired [7–9]. The majority of
the studies measuring DNA lesions in CKD were conducted
between 2000 and 2010 and the data clearly show that CKD
is accompanied by DNA damage. Unrepaired or inaccurately
repaired nuclear or mitochondrial DNA damage leads to cell
cycle arrest and apoptosis or to mutations and may have
fatal consequences, such as premature aging [10, 11], vascular
disease [12, 13], or cancer [14, 15]. Intervention studies were
conducted with the hope to find strategies to reduce the
genomic damage in CKD, thereby reducing the increased
cancer risk.

Two recent reviews, one published in this journal,
describe in detail the pathogenesis, biomarkers, and conse-
quences of oxidative stress andnucleic acid oxidation inCKD,
as well as strategies, like antioxidant therapies, to reduce the
stress [16, 17]. The present review attempts to evaluate the
commonly used biomarkers of DNA damage in CKD, on the
feasibility of the analysis and on the marker’s potential to
predict clinical outcomes.

2. Oxidative Stress in Chronic Kidney Disease

DNA damage can be caused by reactive oxygen species
(ROS). ROS and also reactive nitrogen species (RNS) are
formed during physiological processes including aerobic
metabolism, reactions occurring in lysosomes and perox-
isomes, or phase 2 metabolism. The cells are equipped
with antioxidative defense mechanisms which under normal
circumstances detoxify ROS and RNS. Oxidative stress is
defined as an imbalance between the production of radicals
and the antioxidative defense and was reported in CKD
[18, 19]. There are essentially two sources of ROS in kidney
disease: (1) intra- and extracellular radicals causing the

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 3592042, 10 pages
http://dx.doi.org/10.1155/2016/3592042



2 Oxidative Medicine and Cellular Longevity

initial injury in the kidney and (2) radicals produced in
the course of the injury-triggered inflammatory response
[20]. Inflammatory cells, including neutrophils, eosinophils,
and macrophages, are recruited to damaged parts of the
kidney. Their oxidant-generating enzymes, like NADPH oxi-
dase, myeloperoxidase, and inducible nitric oxide synthase
produce high concentrations of different reactive oxygen
and nitrogen species [21]. Oxidative stress causes damage
to lipids, proteins, and DNA. Being highly reactive, the
hydroxyl radical is the predominant ROS that targets DNA
[22]. Hydrogen peroxide, a precursor of the hydroxyl radical,
although less reactive is more readily diffusible, more likely
to reach the nuclear compartment and thus contributes to
the formation of oxidized bases through Fenton and Haber-
Weiss reactions [23]. ROS-induced DNA damage can result
in DNA single- or double-strand breakage, base modifica-
tions, deoxyribose modifications, and DNA cross-linking.
Cell death, DNA mutation, replication errors, and genomic
instability can appear if the oxidative DNA damage is not
repaired prior to DNA replication [24], as it occurs in kidney
tissue regeneration. Besides acting as a cellular defensemech-
anism, phagocyte-derived ROS continue to promote kidney-
specific injury or act as messenger molecules, resulting in
a locally sustained inflammatory response [25]. Recurrent
oxidative stress and chronic inflammation eventually lead to
nephron degeneration, resulting in apparent renal damage,
measurable, for example, by a reduced glomerular filtration
rate [20].

Over 100 oxidative DNA-modifications have been iden-
tified. The estimated frequency of oxidative DNA damage
in human cells is 104–105 lesions per cell and day [22]. In
addition to base modifications, DNA single and double-
strand breaks, abasic sites and DNA cross-links result from
oxidative DNA damage. ROS further seem to play a role in
the induction of apoptosis [26, 27], with cytokines anduremic
toxins being involved [27, 28].Without injury, normal kidney
function is maintained largely by postmitotic quiescent cells.
Upon acute or chronic injury, tubular and mesangial cells
are able to proliferate, leading to regeneration or tissue
remodeling [29]. Damaged DNA in tubular cells can then
lead tomitotic catastrophe and finally to tubular atrophy [30].

3. Types of DNA Damage Assessed in
Chronic Kidney Disease

Oxidative DNA damage may comprise intra- or interstrand
cross-links, cross-links between DNA bases and proteins,
single and double-strand breaks, and oxidized DNA bases
[58, 59]. Most of the DNA damage caused by oxidative stress
can be repaired by various repair systems present in the cells,
such as base excision repair, nucleotide excision repair, or
DNA double-strand break repair. However, some damage
might escape the repair machinery or the repair may be
exhausted when too many lesions occur. A compromised
DNA repair capacity is associated with elevated cancer risk
not only in CKD but also in heritable diseases or syndromes:
some recently discovered examples are lung and gynecologi-
cal cancers [60, 61].

Markers of genomic damage often measured in CKD are
micronuclei and strand breaks in peripheral blood lympho-
cytes (PBLs) and the quantity of the DNA base modification
8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) in DNA
and serum or urine (Figure 1).

3.1. Method of Comparison. To compare the data from differ-
ent studies measuring the amount of DNA damage of CKD
patients, the relative change of the marker was calculated
and is given in Tables 1 to 4 as relative change (%). Data
from hemodialyzed (HD) patients were compared to data
from healthy controls, omitting data from patients under
peritoneal dialysis.This decision wasmade due to the consid-
eration that the processes of hemodialysis, where the blood
is dialyzed through a synthetic membrane with extensive
contact to air, and of peritoneal dialysis, where the blood is
dialyzed through the patient’s ownperitonealmembranewith
dialysate containing a high amount of glucose, are extremely
different in their impact on possible oxidative exposure of
the blood. One study is included which did not meet this
criterion; it is highlighted in Table 4. It was not possible to
eliminate data from diabetic dialysis patients, since not all
studies excluded diabetic patients, created a distinct group
of diabetic dialysis patients, or even included the diagnosis.
Only studies including data from an age-matched healthy
control group were used in this evaluation.

3.2. Sister Chromatid Exchanges and Micronuclei. As first
markers of genomic damage of CKD patients, sister chro-
matid exchanges (SCEs) and micronuclei were studied in
PBLs. PBLs are optimally suited to study the extent of
individual burdens of genomic damage (1) under the assump-
tion that DNA damage and repair are generally similar in
different tissues [62, 63], (2) because of their long half-
life, (3) their presence in the whole body [64], and (4)
their accessibility. SCEs represent symmetrical exchanges
of replicated DNA between sister chromatids. Micronuclei
arise from whole chromosomes or chromosome fragments,
the latter originating, for example, from unrepaired DNA
double-strand breaks, which are unable to travel to the
spindle poles during mitosis [65]. Micronuclei are generally
scored in binucleated PBLs, which are cultured after sampling
in the presence of the cytokinesis blocker cytochalasin B,
which allows separation of nuclei but not of cells. This step is
thought to be necessary to express DNA lesions, which only
during DNA replication will transform into DNA double-
strand breaks [66]. Recently the sensitivity of this test for
occupational or environmental exposure was questioned,
since it might be possible that some of the lesions are
repaired in vitro before micronucleus formation and that a
part of the in vivo produced micronuclei are lost due to
apoptosis during the in vitro cultivation [67]. Here, further
validation is required. In the meantime, the micronucleus
frequency derived from the cytokinesis-block micronucleus
(CBMN) assay is widely used for in vitro genotoxicity
testing [68] and population biomonitoring [69]. It was
indeed found to be a predictive biomarker for preeclampsia
risk, cancer risk, and mortality from cardiovascular disease
[70–72].
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Figure 1: Markers of DNA damage measured frequently in CKD. (a) DNA double-strand breaks can result in the loss of chromosome
fragments, which might form micronuclei quantifiable in the cytokinesis-block micronucleus (CBMN) assay. Shown is a model of a DNA
double-strand break in the DNA helix. The scheme above illustrates the emergence of a micronucleus from a broken chromosome in the
anaphase of mitosis. Above this, a typical micronuclei highlighted with a yellow arrow in a double nucleated cell is depicted. (b) DNA single
strand breaks can be detected with the comet assay. Shown is amodel of a DNA single strand break in the helix, as well as a picture of damaged
nuclei after processing in the comet assay. (c) The oxidative DNA modification 8-oxodG can be either measured by HPLC or by ELISA, in
DNA, serum, or urine. Shown is a typical peak of 8-oxodG appearing in the HPLC-MS/MS measurement and a scheme of an ELISA plate.

SCEs as well as micronuclei are clearly increased in
PBLs of CKD patients (Table 1). Not shown in the table is
that micronuclei frequencies are also increased in predialysis
patients [34, 36, 73].

Comparing the percentages of change observed in the
two assays, the micronucleus test seems to be more robust
than the evaluation of SCEs, but this might be based on
the fact that three of the four included studies were per-
formed by the same research group. There is a time span
of 12 years between these three studies and we observed
a decrease of the absolute number of micronuclei in dial-
ysis patients over this time, from a mean value of about
43MN/1000 BN (micronuclei per 1000 binucleated cells) to
30MN/1000 BN down to 22MN/1000 BN, while the fre-
quency in the control persons stayed the same [34, 35, 37]. A
recent publication by Rangel-López et al. surprisingly could
not find a difference between healthy age-matched controls
and hemodialysis patients at all [73]. An explanation for
the reduction of micronuclei in PBLs of CKD patients on
hemodialysis might be improvement of the hemodialysis
procedures and the concomitant pharmacotherapy over time
[74–76].

From these two assays analyzing chromosomal abnor-
malities, the CBMN assay clearly is easier than the SCE assay.
The preparation of cells after incubation is less demanding.
While for the SCE assay all individual chromosomes of a
certain number of mitotic cells per sample must be evaluated
for SCEs, in the CBMN assay only the easily detectable
binucleated cells must be analyzed for their presence or
absence of micronuclei. This requires less time and less
training. Recently, validated protocols as well as scoring
criteria were published for the CBMN assay [77, 78]. A
CBMN assay database holds information of MN frequency
of approximately 7000 subjects and can be used to appraise
the data gathered [79]. A similar validation is in progress
for the buccal micronucleus cytome assay, which by using
buccal cells is less invasive than the CBMN assay. Up to
date, a validated assay protocol exists, the scoring criteria are
published, and data are gathered for a database [80–82].

Limitations of the CBMN assay are (1) its dependency
on the scoring person due to some subjectivity of counting
despite strict evaluation criteria (within one data set the
person should not change, ideally two persons score the same
cells) and, due to the duration of microscopical evaluation,
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Table 1: Outcome of studies comparing sister chromatid exchanges (SCEs) and micronuclei in peripheral blood lymphocytes (PBLs) and
buccal cells of healthy individuals and patients on maintenance hemodialysis1.

Parameter measured Number of healthy
individuals (age)

Number of dialyzed
patients (age) Relative change (%) Mean ± stddev Ref.

SCEs in PBLs 24 (35 ± 10) 44 (48 ± 15) +310

108 ± 116

[6]
SCEs in PBLs 25 (55 ± 9) 30 (58 ± 7) +30 [31]
SCEs in PBLs 18 (45 ± ?) 32 (56 ± ?) +100 [32]
SCEs in B-lymphocytes 25 (55 ± 9) 30 (58 ± 7) +55 [33]
SCEs in T-lymphocytes 25 (55 ± 9) 30 (58 ± 7) +45 [33]
Micronuclei in PBLs 23 (59 ± 16) 16 (64 ± 11) +190

111 ± 58

[34]
Micronuclei in PBLs 12 (53 ± 11) 12 (58 ± 13) +120 [35]
Micronuclei in PBLs 57 (52 ± 2) 98 (62 ± 2)∗ +70 [36]
Micronuclei in PBLs 14 (53 ± 13) 15 (69 ± 10) +65 [37]
Micronuclei in buccal cells 20 (49 ± 13) 20 (49 ± 13) +270 [38]
Micronuclei in PBLs of children 20 (13 ± 4) 15 (15 ± 3) +465 [39]
1The number of participants in the respective studies, their age, and the amount of relative change in the parameter in percent and rounded are given. From
these, the mean and the standard deviation (stddev) were calculated. When more than one sample was taken from the dialysis patients, the value of the
predialytic sample was compared to the control value. In the last column the reference (Ref.) is listed. ∗Study with significant differences of the age of the
included individuals. ?: no standard error mean or no age at all was given.

Table 2: Outcome of studies analyzing DNA lesions in peripheral blood lymphocytes (PBLs) and other cells of healthy individuals and
patients on maintenance hemodialysis with the comet assay2.

Cells analyzed Number of healthy
individuals (age)

Number of dialyzed
patients (age) Relative change (%) Mean ± stddev Ref.

PBLs 21 (48 ± 17) 26 (64 ± 13) +60

64 ± 17

[40]
PBLs 36 (49 ± 14) 36 (49 ± 14) +90 [41]
PBLs 9 (32 ± 6) 29 (52 ± 17) +60 [42]
PBLs 37 (36 ± 13) 41 (54 ± 13) +60 [43]
B-lymphocytes 25 (55 ± 9) 30 (58 ± 7) +40 [33]
T-lymphocytes 25 (55 ± 9) 30 (58 ± 7) +75 [33]
PBLs from children 20 (13 ± 4) 15 (15 ± 3) +80 [44]
Whole blood 30 (51 ± 9) 42 (57 ± 11) +190 [45]
Cells from minor accessory salivary glands 69 (63 ± ?) 66 (62 ± ?) −35 [46]
2The number of participants in the respective studies, their age, and the amount of relative change in the parameter in percent and rounded are given. From
these, the mean and the standard deviation (stddev) were calculated. When more than one sample was taken from the dialysis patients, the value of the
predialytic sample was compared to the control value. In the last column the reference (Ref.) is listed. ?: no standard error mean or no age at all was given.

(2) a restriction of the study group size. These limitations
will probably soon be vitiated, when scoring by automated
image cytometry systems passes interlaboratory validation
tests [83]. A drawback of these systems is their high price;
only few laboratories will have the means to purchase the
equipment and software.

3.3. Structural DNA Lesions. To measure structural DNA
damage, the comet assay (also single cell electrophoresis)
is often deployed. The assay is based on the migration of
structurally altered DNA or DNA fragments from damaged
nuclei in an electrical field during electrophoresis, leaving
a pattern which resembles a comet [84]. The comet assay
measures single- and double-strand breaks and alkali labile
sites like, for example, abasic sites [84]. When DNA lesion-
specific enzymes are added, the assay can also be used to
detect oxidative DNA damage [85, 86]. Advantages of this

assay are the possibility for application on different cells,
which can partly be taken noninvasively, like buccal or
nasal epithelial cells. Moreover, the analysis of the damage is
performed on the level of the individual cell.

The results of the comet assay, like those of the micronu-
clei test, show a clear increase of DNA lesions in dialyzed
CKD patients (Table 2). Additional data exist on nondialyzed
chronic renal failure patients (stages 4-5), where in PBLs as
well as in tissue of salivary glands, a significantly increased
comet formation was observed [40, 44, 46]. Considering the
fact that the published comet data from the lymphocytes
originate from six different laboratories, the variation of the
relative change is surprisingly small. For the comet assay
and also for the modified comet test, considerable activities
were performed to standardize these tests in such a manner
that they are comparable between laboratories all over the
world [87, 88]. A hindrance for this is the lack of a generally
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Table 3: Outcome of studies comparing 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) levels of healthy individuals and patients on
maintenance hemodialysis3.

8-oxodG measured in Method Number of healthy
individuals (age)

Number of dialyzed
patients (age) Relative change (%) Mean ± stddev Ref.

DNA of PBLs HPLC-ECD 35 (60 ± ?) 109 (60 ± 15) +160

185 ± 64

[47]
DNA isolated from
blood HPLC-ECD 9 (32 ± 6) 29 (52 ± 17) +180 [42]

DNA isolated from
blood HPLC-ECD 55 (41 ± 10) 44 (41 ± 9) +275 [48]

Nuclear DNA from
mononuclear cells HPLC-ECD 67 (54 ± 16) 30 (68 ± 13) +125 [49]

Mitochondrial DNA
from mononuclear cells HPLC-ECD 67 (54 ± 16) 30 (68 ± 13) +11 [49]

Serum ELISA 9 (?) 73 (68 ± 2) +700 [50]
Serum ELISA 16 (?) 71 (?) +155 [51]
Serum ELISA 10 (46 ± 10) 9 (50 ± 16) +55 [52]
3The number of participants in the respective studies, their age, and the amount of relative change in the parameter in percent and rounded are given. From
these, the mean and the standard deviation (stddev) were calculated. When more than one sample was taken from the dialysis patients, the value of the
predialytic sample was compared to the control value. In the last column the reference (Ref.) is listed. PBLs: peripheral blood lymphocytes. HPLC-ECD: high
performance liquid chromatography with electrochemical detection. ?: no standard error mean or no age at all was given.

accepted standard protocol [87]. Already over 15 years ago
Tice et al. [84] published guidelines for the procedure of
the comet assay under in vitro and in vivo conditions. Still
not all recommendations are implemented.Therefore, in 2011
Azqueta et al. [89] published reassessed recommendations for
the conductance of the comet assay andMøller and Loft gave
suggestions of how the results should be statistically evaluated
[90].The best descriptor of DNAmigration is currently being
searched for [91], as different descriptors can be and are
employed, the most often used being percentage DNA in tail,
tail length, and tail moment, which is the product of percent-
age DNA in tail and tail length. In biomonitoring studies the
percentageDNA in tail was used to compare results.However,
it is not sure whether this is themost robust descriptor [92]. It
would be desirable to include reference standards as positive
and negative controls into the studies. Here no consensus was
reached so far, regarding which standards should be used.
Moreover, these standards probably depend on the nature
of DNA damage studied [91]. Also for this assay, automated
evaluation is developed using image analysis systems as well
as high throughput sample processing and the methods are
currently validated [93, 94]. Given that the comet assay has a
lot of advantages compared to the CBMN assay, progress in
the standardization of this assay would probably allow studies
to detect correlations with health risks, similar to those
already found for micronuclei. These advantages include
the fact that nonproliferating cells can be studied in the
comet assay, and a great variety of cells can be studied
including noninvasively accessible cells. Furthermore, the
comet assay is much faster since no in vitro culture times are
needed.

3.4. DNA Base Modifications: 8-Oxo-7,8-dihydro-2-deoxy-
guanosine (8-oxodG). Guanine exhibits the lowest redox
potential among the DNA bases and therefore is the main
target of oxidative damage in the DNA. 8-oxo-7,8-dihydro-
2-deoxyguanosine (8-oxodG), first reported in 1983 [95],

is the most frequent modification of guanine and is often
measured when oxidative DNA damage is to be quantified as
a biomarker. Since 8-oxodG preferentially pairs with adenine
instead of cytosine, this oxidative modification is potentially
mutagenic, resulting in G→T transversions [96].

In the studies shown in Table 3, 8-oxodG was quantified
either in DNA from isolated blood lymphocytes by HPLC
analysis or in serum with commercially available ELISA
tests. All studies found increased 8-oxodG levels in dialyzed
patients compared to the healthy control group. The increase
in 8-oxodG ranged from 125 to 275% [47, 49] whenmeasured
withHPLC inDNA from isolated lymphocytes and from55 to
700% when measured with an ELISA assay in serum [50, 52]
(Table 3).

In conformity with the data from the CBMN and the
comet assay, analysis of 8-oxodG levels shows an increase
in dialysis patients. Surprisingly, the study comparing mito-
chondrial and nuclear DNA found a higher relative increase
in 8-oxodG in the nucleus compared to the mitochondrial
DNA, although former studies have reported the mitochon-
drial DNA to be more vulnerable to oxidative lesions [97].
In absolute values, the mitochondrial DNA of the dialysis
patients contained twice as many 8-oxodG molecules than
the nuclear DNA [97]. There seems to be a clear difference in
the comparability of studies using HPLC-ECD (HPLC with
electrochemical detection) or ELISA. The relative change
of 8-oxodG measured in the DNA of lymphocytes with
HPLC-ECD shows a good agreement between the five studies
included, despite the fact that twice PBLs, twice whole blood,
and once separated mononuclear cells were used to extract
DNA. Unfortunately only 3 of the many studies which quan-
tified 8-oxodG with ELISA in CKD patients included healthy
controls and therefore could be used in the evaluation. The
results from these studies show a very high variation. One
reason for this might be the long timespan between the
included studies, which were conducted in 2003, 2006, and
2011, with the oldest showing the highest values. The quality
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Table 4: Outcome of studies measuring mitochondrial DNA damage, oxidatively changed tRNA, or circulating cell-free double-stranded
DNA of healthy individuals and patients on maintenance hemodialysis4.

Parameter analyzed Number of healthy
individuals (age)

Number of dialyzed
patients (age) Relative change (%) Ref.

Mitochondrial DNA damage in muscle cells 22 (?) 22 (?) +240 [53]
Mitochondrial DNA damage in hair follicles 236 (?) 162 (?) +105 [54]
Mitochondrial DNA damage in PBLs 54 (40 ± 17) 52 (54 ± 14) +160 [55]
Conformational change in tRNA 10 (?) 29 (?) +110 [56]
Circulating double-stranded DNA 40 (58 ± 14) 40 (57 ± 13) +30 [57]
4The number of participants in the respective studies, their age, and the amount of relative change in the parameter in percent and rounded are given. When
more than one sample was taken from the dialysis patients, the value of the predialytic sample was compared to the control value. In the study of Cichota et al.
[57], 37 patients on peritoneal dialysis were included. In the last column the reference (Ref.) is listed. ?: no standard error mean or no age at all was given.

of the ELISA kits probably was improved during this time,
which is reflected by lower absolute values measured with
the newer kits (2.7 ng/mL measured in controls in 2003
compared to 0.4 ng/mLmeasured in controls in 2011 [50, 52]).

8-oxodG can be measured by different methods like
GC-MS, HPLC-ECD, HPLC-MS/MS, FPG-comet assay, and
ELISA. Results from these methods differ over a range of
at least two orders of magnitude, GC-MS measures the
highest, and FPG-comet assay the lowest amounts [98]. To
improve 8-oxodG quantifications, the European Standards
Committee on Oxidative DNA Damage (ESCODD) was
established in 1997 [98]. Source of substantial artifacts is
artificial oxidation of guanine during the procedures before
the actual measurement [99, 100]. To prevent this oxidation,
sample preparation should be performed in the presence
of antioxidants, metal chelators, or free radical trapping
agents [101]. Ranges of background levels of 8-oxodG in
human lymphocytes were determined with HPLC-ECD and
the FPG-modified comet assay in inter- and intralaboratory
comparisons [102]. As it has taken experienced laboratories
years to develop reliable methods, HPLC analysis of 8-oxodG
in DNA is definitely not an easy method or fast to establish.
The modified comet assay to measure FPG-sensitive sites
is currently being standardized within the European Comet
Assay Validation Group (ECVAG) [88].

Likewise, the European Standards Committee onUrinary
(DNA) Lesion Analysis (ESCULA), established in 2008, is
evaluating methods detecting 8-oxodG in urine [103, 104].
From the various methods included into this interlaboratory
trial, the chromatographic methods (mass spectrometry and
HPLC-ECD) were generally comparable, while ELISA-based
methods overestimated the 8-oxodG content and were not
as robust [104]. Although no efforts have started as yet
to evaluate serum measurements of 8-oxodG, it can be
assumed that for thismatrix similar conclusions can be drawn
concerning the different analysismethods.The high variation
seen in the three included ELISA-based studies in Table 3
reflects the problems with this assay.

Urinarymeasurements ofDNAdamagemarkers for obvi-
ous reasons were not performed in hemodialysis patients.
Indications that this marker might be useful in assessing
oxidative stress in the predialysis state are positive corre-
lations of 8-oxodG with proteinuria and that a negative
correlation with the tubular injury marker liver-type fatty
acid binding protein (L-FABP) was found in CKD patients

[105, 106]. To date the source of 8-oxodG found in urine is
not entirely clarified. One problem is that it is not sure, if the
nucleoside 8-oxodG in human urine originates exclusively
from the body’s cells or if its presence is also influenced by
the diet or the gut bacteria, as is the case with the oxidized
base, 8-oxo-7,8-dihydroguanine (8-oxoGua) [107]. A rather
new marker, oxidative damage to RNA, measured as urinary
excretion of 8-oxo-7,8-dihydroguanosine (8-oxoGuo), was
found to be an independent predictor of mortality in patients
with type 2 diabetes [108]. It would be interesting to measure
this marker in predialysis patients.

4. Other Markers of DNA Damage in CKD

As a target for oxidative stress besides the nuclear DNA
and RNA in general, mitochondrial DNA (mtDNA) and the
tRNA were also studied (Table 4). mtDNA from various
sources was analyzed, from muscle, hair, and PBLs, hinting
to an overall increased mtDNA damage burden of the CKD
patients, present in all cells studied. Due to its lack of histone
protection, reduced repair mechanisms and proximity to
a possible intracellular source of oxidative stress, mtDNA
may be afflicted to a greater extent by reactive oxygen
species than nuclear DNA [109]. The analysis of lesions
in the mtDNA is probably not suited for high throughput
methods since there are different lesions like deletions, point
mutations, and strand breaks to be considered [110].Theother
two studies measured circulating nucleic acids, oxidatively
changed tRNA [56], and cell-free double-strandedDNA [57].
The first method relies again on ELISA, so there might
arise problems to validate this analysis, if the oxidatively
changed tRNA proves to be increased in CKD patients in
additional studies.The circulating cell-free DNA is quantified
with a fluorescent dye, a technique which might be more
easily established, if this marker should be increased more
often in CKD.Nevertheless, all mentionedmethods observed
increased damage in CKD patients. Time will show if one
of these methods shows significant correlations with disease
state.

5. Summary and Conclusion

DNA damage in CKD patients is increased. Markers for
DNA damage often measured in CKD are micronuclei,
DNA strand breaks using the comet assay, and the base
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modification 8-oxodG. The only marker with an established
potential to predict disease complications is themicronucleus
frequency. Among the risks predicted are cancer risk and
cardiovascular mortality risk, but there are no parameters
assessing progression of CKD so far. The micronucleus assay
also is farthest in the progress of standardization for routine
use and interlaboratory comparability. The relative results
collected with the comet assay were surprisingly congruent;
here the final success of standardization would be desirable.
8-oxodGas a biomarker still lacksmechanistic understanding
of where the oxidized bases ultimately originate from.
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DNA strand breakage by the alkaline Comet assay in dialysis
patients and the role of Vitamin E supplementation,” Mutation
Research, vol. 520, no. 1-2, pp. 151–159, 2002.

[42] F. A. Domenici, M. T. I. Vannucchi, A. A. Jordão Jr., M. S.
S. Meirelles, and H. Vannucchi, “DNA oxidative damage in
patients with dialysis treatment,” Renal Failure, vol. 27, no. 6,
pp. 689–694, 2005.
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