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1. ZUSAMMENFASSUNG

Typ I Immunantworten, wie z.B. gegen Influenza Virus, Sendai Virus aber auch gegen

intrazelluläre Erreger wie Toxoplasma gondii sind klassischerweise durch robuste IFN-γ

Expression gekennzeichnet. Th1 und CD8+ Effektor T Zellen zählen zu den

Hauptproduzenten von IFN-γ. Im Zusammenhang mit Autoimmunerkrankungen,

Immunpathologie aber auch Impfstoffentwicklung, ist es überaus wichtig die Regulierung
von IFN-γ zu verstehen. In der vorliegenden Arbeit wurde die IFN-γ Expression von

CD4+ und CD8+ T Zellen detailliert charakterisiert. Des Weiteren wurde die Rolle des

IFN-γ Rezeptors für die IFN-γ Expression von T Zellen untersucht. Unter Zuhilfenahme

von bicistronischen IFN-γ-eYFP Reporter Mäusen, welche die direkte Identifizierung und

Isolierung von vitalen IFN-γ exprimierenden Zellen ermöglichen, wurde die Expression

von IFN-γ in vitro und in vivo, nach Infektion mit den bereits erwähnten Erregern,

visualisiert.

Die Expression des IFN-γ-eYFP Reporters zeichnete sich, sowohl in vitro als auch in vivo

nach Infektion, durch ein äußerst heterogenes Fluoreszenzspektrum aus. Die Helligkeit der
Reporter Fluoreszenz korrelierte positiv mit der Menge an IFN-γ Transkripten und mit der

Menge des sekretierten IFN-γ Proteins nach Stimulierung. Die Helligkeit des Reporters

reflektierte das Potenzial zur IFN-γ Produktion, die eigentliche Sekretion war jedoch

weitgehend abhängig von zusätzlicher Stimulierung durch Antigen. Des Weiteren
korrelierte die Helligkeit des Reporters mit der zunehmenden Produktion von weiteren

proinflammatorischen Zytokinen und Chemokinen. Hoch fluoreszente Zellen exprimierten
zudem vermehrt Marker auf ihrer Oberflache, die auf akute Aktivierung hinweisen. Die

am hellsten eYFP fluoreszierenden Zellen waren im Allgemeinen weiter ausdifferenziert

und ihre Präsenz war auf bestimmte Organe beschränkt. Die anatomische Begrenzung
wurde durch den Erreger bestimmt.

IFN-γ exprimierende Zellen wurden nach Infektion mit Sendai Virus oder Toxoplasma

gondii in IFN-γ Rezeptor defizienten Reporter Mäusen generiert. Die Frequenz und die

Helligkeit der eYFP Reporter Expression waren jedoch verändert. Experimente mit dualen

Knochenmarks-Chimären Mäusen, welche mit Wild-Typ und IFN-γ Rezeptor defizientem
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Knochenmark rekonstituiert wurden, ergaben eine T Zell-intrinsische Abhängigkeit von

IFN-γ Rezeptor vermittelten Signalen für die Expression von IFN-γ. Die Helligkeit des

Reporters dagegen wurde unabhängig von dem IFN-γ Rezeptor reguliert. Abschließend

wurde ein Modell für die Expression von IFN-γ in CD4+ und CD8+ T Zellen entwickelt.

Zusammenfassend führen diese Ergebnisse zu dem Schluss, dass die Expression von

IFN-γ in CD4+ und CD8+ T Zellen und nach viraler oder parasitärer Infektion

unterschiedlich reguliert wird. Zusätzlich wurde gezeigt, dass der IFN-γ Rezeptor an der

Modulation der IFN-γ Expression beteiligt ist.
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2. SUMMARY

IFN-γ is the signature cytokine of Th1 and CD8+ effector cells generated in type I

immune responses against pathogens, such as Influenza virus, Sendai virus and the

intracellular protozoan parasite Toxoplasma gondii. Understanding the regulation of IFN-γ

is critical for the manipulation of immune responses, prevention of immunopathology and

for vaccine design. In the present thesis, IFN-γ expression by CD4+ and CD8+ T cells was

characterized in detail and the requirement of IFN-γ receptor mediated functions for IFN-γ

expression was assessed. Bicistronic IFN-γ-eYFP reporter mice, which allow direct

identification and isolation of live IFN-γ expressing cells, were used to visualize IFN-γ

expression in vitro and in vivo after infection with the afore mentioned pathogens.

Expression of the IFN-γ-eYFP reporter by CD4+ and CD8+ T cells was broadly

heterogeneous in vitro and in vivo after infection. Increased expression of the reporter

correlated positively with the abundance of IFN-γ transcripts and IFN-γ protein production

upon stimulation. eYFP reporter brightness reflected the potential for IFN-γ production,

but actual secretion was largely dependent on antigenic stimulation. Increased expression

of the reporter also correlated with enhanced secretion of additional proinflammatory

cytokines and chemokines and cell surface expression of markers that indicate recent

activation. Highly eYFP fluorescent cells were generally more differentiated and their

anatomical distribution was restricted to certain tissues. The anatomical restriction

depended on the pathogen.

IFN-γ expressing CD4+ and CD8+ T cells were generated in IFN-γ receptor deficient

reporter mice after infection with Sendai virus or Toxoplasma gondii. However, in the

absence of IFN-γ receptor mediated functions, the frequency and brightness of the eYFP

reporter expression was altered. Dual BM chimeric mice, reconstituted with wild-type and

IFN-γ receptor deficient reporter BM, revealed a T cell-intrinsic requirement for the IFN-γ

receptor for optimal IFN-γ expression. Reporter fluorescence intensities were regulated

independently of IFN-γ receptor mediated functions. Finally, we propose a model for

IFN-γ expression by CD4+ and CD8+ T cells.



2.  SUMMARY                                                                                                                                                        10

In summary, the expression of IFN-γ is differentially regulated in CD4+ and CD8+ T cells

and after viral or protozoan infections. Additionally, the role of IFN-γ receptor mediated

functions for the expression of IFN-γ was determined.
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3.  INTRODUCTION

3.1.  Cytokines and the immune system

Cytokines are small protein messengers, secreted mainly by cells of the immune
system, which transfer vital information within the immune systems delicate network.

They are crucial for communication between cells as they mediate and regulate immunity,
inflammation, and hematopoiesis in response to immune stimuli. Although cytokines are

heterogeneous in both their molecular structure as well as their effector functions, they

have several characteristics in common. They are produced in relatively small quantities
but nonetheless display potent biological activity. The effector properties of cytokines,

pleiotropic and partially redundant in nature, are exerted by binding to their respective

cytokine receptors on target cells that are in close spacial proximity. To band these
different immune mediators together S. Cohen and colleagues introduced the term

“cytokine” in 1974 (Cohen et al., 1974). Cytokines are now subdivided into five families.
The type I cytokines include many of the interleukins (IL) as well as certain hematopoietic

growth factors. The type II cytokines are constituted of the interferons and IL-10. The

tumor necrosis factor (TNF) related molecules encompass TNF, the lymphotoxins and Fas
ligand. IL-1 and IL-18 are members of the Ig super family. Chemokines, small

chemoattractant proteins constitute another growing cytokine family (Janeway et al., 2004;
Paul, 2003).

The broad field of cytokine research is providing new insights into the regulatory

elements that orchestrate immune responses. Therefore, it is not surprising that

manipulation of the cytokine network represents a promising strategy in the fight against

cancer, autoimmunity and viral infections.
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3.2.   Interferons

In 1957, Alick Isaacs and Jean Lindemann discovered an antiviral substance able to

induce biological interference between chick cells and Influenza virus (Isaacs and

Lindenmann, 1957). The responsible substance was then termed "interferon" after the

Latin words for inter (between) and ferire (to strike). Interferons (IFNs) were the first

cytokine family to be identified and then cloned. As early as the 1960s separate classes of

interferons could be distinguished based upon their secretion by different cell types (i.e.

IFN-α by leukocytes and IFN-β by fibroblasts), and later upon their biochemical behavior

and induction by viruses (IFN-α and IFN-β) or antigens (IFN-γ). Today IFNs are defined

as cytokines that induce cells to resist viral replication and are divided into three

subfamilies, type I and type II IFNs and IFN-like cytokines (De Maeyer and De Maeyer-

Guignard, 1998; Farrar and Schreiber, 1993; Janeway et al., 2004; Pestka et al., 2004;

Stark et al., 1998). The division into type I and type II IFNs is based upon differences in

structure, signaling through the respective receptors as well as differences in effector

function. Type I IFNs are subdivided into seven classes, encompassing IFN-α, IFN-β,

IFN-δ, IFN-ε, IFN-κ, IFN-τ and IFN-ω. Type I IFNs share structural homologies and they

all bind to the same heterodimeric receptor, composed of the IFN-αR1 and IFN-αR2

chains. Although originally associated with antiviral properties and despite signaling

through a common receptor, type I IFNs exhibit a wide breadth of effector functions,

including an important role in the host response to bacterial infections (Decker et al.,

2005; Perry et al., 2005). They affect a variety of cellular functions, such as cell growth

(antiproliferative effects), viability and antigen presentation (up regulation of major

histocompatibility complex (MHC) class I antigens) (De Maeyer and De Maeyer-

Guignard, 1998; Decker et al., 2005; Stark et al., 1998). Additionally, type I IFNs induce

cytotoxic activity in macrophages, dendritic cells, natural killer (NK) cells, and T cells (De

Maeyer and De Maeyer-Guignard, 1998,Pestka, 2004 #103; Stark et al., 1998). Recently,

IFN-like cytokines have been reported; so far they include IL-29, IL-28A, IL-28B (also

known as IFN-λ1-3). Their function is similar to the type I IFNs, although IL-28 and

IL-29 signal through a unique receptor complex composed of the IL-28R1 and IL-10R2

subunits (Kotenko et al., 2003; Sheppard et al., 2003). IFN-γ, also known as immune IFN,

represents the sole known member of the type II IFN category.
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3.3.  IFN-γ

Similar to the type I IFNs, IFN-γ was first recognized on the basis of its antiviral

properties after phytohemagglutinin (PHA) stimulation of leukocytes in 1965 (Wheelock,
1965). However, IFN-γ is structurally unrelated to the type I IFNs; it binds to a different

receptor, and is encoded by a separate chromosomal locus as a single gene on the human

chromosome 12 and the murine chromosome 10, respectively (Pestka et al., 2004). In

humans and in mice, IFN-γ is encoded by a single-copy gene, which generates one

mRNA-species (1.2 kb) and a polypeptide of 166 residues including a cleaved
hydrophobic signal sequence of 23 residues (Derynck et al., 1982; Rinderknecht et al.,

1984). In its biologically active form, the IFN-γ protein presents itself is a 34 kDa

homodimer, stabilized by noncovalent forces through self-association, and variable

N-glycosylation gives rise to a mature form with a predominant molecular mass of 50 kDa
(Ealick et al., 1991; Walter et al., 1995). Moreover, specific antigens and mitogens, such

as staphylococcal enterotoxin A, B, or the combination of PHA and phorbol esters or
ionophores induce IFN-γ expression, while type I IFNs can be directly induced by viruses.

Although IFN-γ displays most of the properties that have been associated with type I IFNs,

though to a much lesser extent, IFN-γ has now been recognized as a very potent

immunomodulatory cytokine beyond its antiviral activity. IFN-γ, a classical pleiotropic

cytokine, exerts its multiple effector functions on a wide variety of different cell types
through its ubiquitously expressed receptor. The major cellular sources of IFN-γ are CD4+

T helper cell type 1 (Th1) lymphocytes, CD8+ cytotoxic T lymphocytes (CTLs), NK and

natural killer T (NKT) cells. However, there is some evidence that other cell types, such as

B cells, mast cells, macrophages and professional antigen-presenting cells (APCs) are also
capable of expressing IFN-γ (Frucht et al., 2001; Gessani and Belardelli, 1998; Gupta et

al., 1996; Harris et al., 2005; Harris et al., 2000; Yamaguchi et al., 2005). Production of

IFN-γ by NK cells is likely to be important in the innate host defense against infection,

whereas T cells represent the major source of IFN-γ in the adaptive immune response

(Farrar and Schreiber, 1993; Frucht et al., 2001). IFN-γ is the signature cytokine of type I

immune responses, which are induced after infection with intracellular bacteria (e.g.

Listeria monocytogenes, Mycobacteria spec.), protozoa (e.g. Toxoplasma gondii) and
viruses (e.g. Influenza virus; Sendai virus; lymphocytic choriomeningitis virus, LCMV)
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(Abbas et al., 1996; Farrar and Schreiber, 1993). The expression of a variety of genes in

different cell types, such as the diverse cells of the immune system but also fibroblasts and
epithelial cells, is regulated by IFN-γ. It is conservatively estimated that IFN-γ directly

regulates at least 200-500 genes in cells expressing its receptor (Boehm et al., 1997;

Ramana et al., 2002). The diversity of target genes is mirrored by the vast diversity of

biological functions of IFN-γ (see Table I in appendix). Table I represents by no means a

complete account of regulated genes but merely demonstrates the variety of genes
regulated by IFN-γ in a broader context of immunological functions. Besides these genes,

IFN-γ also regulates certain oncogenes, thyroid-specific genes, genes encoding protein-

tyrosine kinases, extracellular matrix and cytoskeletal elements, acute phase reactants,

ribosomal RNAs and proteins, lipids and steroids and genes involved in tryptophan and

iron metabolism (Boehm et al., 1997).

Within the immune system's network, however, IFN-γ has multiple important

functions (Table I). Besides its antiviral activity, it enhances antigen-presentation by

professional APCs and conventional cell types through up-regulation of both antigen

processing and presentation by MHC class I and II molecules (Decker et al., 2002; Mach

et al., 1996). The important role of IFN-γ in viral immune defense is further highlighted by

the fact that several viruses encode proteins designed to interfere with IFN-γ signaling

(Alcami and Smith, 1995; Khan et al., 2004). In B cells IFN-γ induces class switch

recombination towards IgG2a and IgG3 (Boehm et al., 1997). One of the most important

effects of IFN-γ is the activation of macrophages and their microbicidal effector functions,

including nitric oxide (NO) production (Cooper et al., 2002; Decker et al., 2002).

Moreover, IFN-γ displays antiproliferative properties and has been tightly linked with

induction of apoptosis in macrophages and T cells (Dalton et al., 2000; Farrar and

Schreiber, 1993; Pestka et al., 2004). Additionally, IFN-γ induces and enhances other

cytokines and cytokine receptors involved in immunomodulatory and proinflammatory

mechanisms, including the IL-4 receptor, IL-12, TNF-α and its receptor, RANTES

(regulated on activation, normal T  expressed and secreted, CCL5) and IP-10

(IFN-inducible protein10, CXCL10)(Boehm et al., 1997; Schroder et al., 2004).
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3.4.  IFN-γ receptor mediated signaling

IFN-γ exerts its biological functions through binding to its specific receptor (IFN-γR),

a heterodimer comprised of a 90 kDa α chain (IFN-γR1, CD119) and a smaller 65 kDa β

chain (IFN-γR2; accessory factor-1, AF-1) (Aguet et al., 1988; Aguet and Merlin, 1987;

Hemmi et al., 1994; Soh et al., 1994). Both IFN-γR1 and IFN-γR2 belong to the class II

cytokine receptor family. The functional IFN-γR complex consists of two high affinity

ligand-binding IFN-γR1 chains and two signal-transducing IFN-γR2 chains (Walter et al.,

1995). The IFN-γR2 chains do not interact directly with IFN-γ but are believed to stabilize

the interaction of IFN-γ with IFN-γR1. Moreover, two IFN-γR complexes are assumed to

interact with two IFN-γ homodimers, forming a tetramer (Langer et al., 1994). Binding of

homodimeric IFN-γ with IFN-γR1 facilitates the dimerization of IFN-γR1. However, in

contrast to previous assumptions, the IFN-γR1 and IFN-γR2 chains are pre-assembled

prior to presence of the ligand (Krause et al., 2002). Additionally, the IFN-γ/IFN-γR1 and

IFN-γR1/IFN-γR2 interactions are species-specific and conferred by the receptor

extracellular domains (Gibbs et al., 1991; Hemmi et al., 1992).

The IFN-γR is expressed on all nucleated cells, and is most highly expressed outside

the lymphoid system (i.e. fibroblasts, endothelial cells) (Farrar and Schreiber, 1993;

Valente et al., 1992). Though ubiquitously expressed, IFN-γR expression is not uniform

on all cell types. Expression of the two IFN-γR chains is differentially regulated. While

both chains are expressed constitutively, with IFN-γR1 at moderate levels and IFN-γR2 at

extremely low levels on the cell surface, the expression of IFN-γR2 is tightly regulated on

certain cell types by cell-extrinsic stimuli. Naïve T cells and CD4+ Th2 cells express

IFN-γR2 at relatively high levels. However, CD4+ Th1 cells are unresponsive to IFN-γ

stimulation due to the lack of IFN-γR2 expression on developing Th1 but not Th2 cells

(Gajewski and Fitch, 1988; Groux et al., 1997; Pernis et al., 1995). However, the lack of

IFN-γR2 expression on the surface of Th1 cells is not linked to T helper cell

differentiation, but rather to the presence of IFN-γ, which induces down-regulation of its

own IFN-γR2 chain. Accordingly, adding exogenous IFN-γ to Th2 cultures similarly

results in ligand-induced down-regulation of the IFN-γR2 chain (Bach et al., 1995;

Sakatsume and Finbloom, 1996). The loss of IFN-γR2 is therefore a characteristic of the

CD4+ T cell response to IFN-γ exposure, rather than the result of a specific genetic
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program during Th1 development. This ligand-dependent down-regulation of IFN-γR2 is

thought to represent a key mechanism for protecting T lymphocytes from the

antiproliferative effects of IFN-γ. This is supported by the fact that other cell types, like

fibroblasts and B cells do not lose IFN-γR2 on their surface after exposure to IFN-γ (Bach

et al., 1997). Stimulation of T cells with certain phorbol esters or α-CD3 antibodies has

been shown to induce up-regulation of IFN-γR2 mRNA expression (Sakatsume and

Finbloom, 1996). In contrast to murine CD4+ T cell clones, human T cells appear to

regulate IFN-γR2 expression in a ligand-independent manner (Rigamonti et al., 2000).

Resting and PHA-stimulated human CD3+ T cells maintain large cytoplasmic stores of

IFN-γR2 whereas surface expression remains low. The intracellular pools of IFN-γR2 are

the result of constitutive recycling of IFN-γR2 between the cell surface and the cytoplasm.

This process has been demonstrated to be ligand-independent, because recycling of

IFN-γR2 still occurs in the absence of surface IFN-γR1 or in the presence of neutralizing

Abs for IFN-γ  (Rigamonti et al., 2000). Allospecific CD8+ T cell lines also maintain

expression of IFN-γR1, but are unresponsive to IFN-γ due to down-regulation of IFN-γR2

at the mRNA level (Tau et al., 2001). Transient down-regulation of IFN-γR1 in transgenic

CD4+ T cells after exposure to antigen or TCR ligation with antibody in vitro has also

been reported (Skrenta et al., 2000). Other reports, describe a modest transient down-

regulation on transgenic antigen-specific CD8+ T cells within 24 hrs after infection with

L. monocytogenes-OVA or LCMV in vivo (Haring et al., 2005b; Whitmire et al., 2005).

However, the L. monocytogenes OVA-specific cells remained IFN-γ responsive and these

observations are yet to be confirmed in a non-transgenic setting.

IFN-γR signaling is under tight control. Binding of IFN-γ  to its receptor causes

internalization and dissociation of the complex (Boehm et al., 1997; Farrar and Schreiber,

1993). In most cells, including murine macrophages, internalized IFN-γ is quickly

degraded, and IFN-γR1 is efficiently recycled back to the cell surface (Celada and

Schreiber, 1987). Upon binding of their cognate ligands, cytokine receptors are

responsible for transmitting signals from the cell surface to the inside. Many of the class II

cytokine receptors lack intrinsic tyrosine kinase domains. Signaling through the IFN-γR is

therefore achieved by phosphorylation of proteins already present and constitutively

associated with the receptor α and β chains. It is noteworthy, that studies on the IFN-γR

revealed fundamental mechanisms of cytokine signaling. These include the recognition
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that tyrosine phosporylation of the cytokine receptor intracellular domain represents the

mechanism that links the activated receptor to its signal transduction system. They further

include the discovery of a novel pathway of signal transduction  that mediates the

biological functions of a variety of different cytokines (namely the JAK-STAT-pathway)

and the molecular basis of the observed specificity of cytokine–induced cellular responses

(Bach et al., 1997; Ivashkiv, 1995). The fundamental principle of the JAK-STAT-

pathway lies in the activation of specific members of two protein families, the Janus

kinases (JAK) and the signal transducers and activators of transcription (STAT). This

pathway is employed by a at least 50 different cytokine receptors of the type I and type II

families (Brierley and Fish, 2005; Igarashi et al., 1994; Ihle, 1996; Kisseleva et al., 2002;

O'Shea et al., 2002). Four JAKs (JAK1-4) and seven STATs (STAT1, STAT2, STAT3,

STAT4, STAT5a, STAT5b and STAT6) have been described in mammals. JAKs are

directly associated with the intracellular domains of the respective cytokine receptor

chains. Upon ligand binding of the receptor, JAKs “trans-activate” each other through

phosphorylation and subsequently phosphorylate the receptor. STATs, constitutively

present in the cytosol, bind to the phosphorylated receptor, and are in turn activated by

tyrosine phosphorylation through JAKs. After activation they can form homodimers or

heterodimers. These translocate to the cell nucleus where they either directly bind to DNA

or act together with other DNA-binding proteins or transcription factors to form

multiprotein transcription complexes that regulate gene expression. Accordingly, IFN-γR1

and IFN-γR2 are constitutively associated with their respective Jamus kinases; IFN-γR1

with JAK1 and IFN-γR2 with JAK2 (Bach et al., 1997) (Figure 1). Although pre-

assembled, the IFN-γR complex becomes only activated upon binding of IFN-γ with

IFN-γR1 and the intracellular domains of the receptor chains change structurally to allow

association of JAK1 and JAK2. Additionally, binding of IFN-γ to IFN-γR1 induces

autophosporylation and activation of JAK2, which in turn transphosphorylates JAK1

(Igarashi et al., 1994). The activated JAK1 then phosphorylates a functionally critical

tyrosine on residue 440 of each IFN-γR1 chain, which function as the docking sites for the

latent cytosolic STAT1. STAT1, which is already dimerized prior to activation

(Braunstein et al., 2003; Ota et al., 2004), is recruited to the receptor where it is then

phosphorylated at a tyrosine on residue 701 by JAK2 (Briscoe et al., 1996) (Figure 1). The

tyrosine phosphorylation induces the dissociation of the now activated STAT1 homodimer

from the receptor complex (Greenlund et al., 1995). In addition to the phosphorylation at
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tyrosine 701, STAT1 becomes phosphorylated at a serine residue on 727, which is

essential for maximal ability to activate transcription of target genes (Wen et al., 1995;

Zhang et al., 1995). The phosphorylated STAT1 homodimer forms a complex known as

the gamma-activating factor (GAF), which translocates to the nucleus and controls the

transcription of IFN-γ regulated genes. This migration through the cytoplasm was shown

to be the result of a random walk movement, rather than liberation from a cytoplasmic

anchor or transport by microtubules (Lillemeier et al., 2001). While the nuclear membrane

forms an efficient barrier to inactivated STAT1, the entry requires a special amino acid

sequence known as the nuclear localization sequence (NLS). Moreover, since GAF does

not display NLS function, and IFN-γ itself has been shown to posses a NLS sequence,

required for full biological activity, a model has been proposed in which STAT1

translocates with requirement for intracellular IFN-γ  (Lillemeier et al., 2001; Lundell et

al., 1991; Subramaniam et al., 2000; Subramaniam et al., 1999). Nuclear accumulation of

Figure 1:
Schematic signaling mechanism of IFN-γ. The details of the model are described in the text.
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IFN-γ was first observed 20 years ago and since then has been linked to induce MHC I

expression on macrophages (Bader and Weitzerbin, 1994; MacDonald et al., 1986; Smith

et al., 1990). According to the model, STAT1 forms a cytosolic complex with IFN-γ,

internalized IFN-γR1 and importin-α-1 (NPI-1) which is then utilizing the NLS sequence

of IFN-γ to translocate into the nucleus (Subramaniam et al., 2001). Once STAT1 crosses

the nuclear membrane it binds to specific sequences, the gamma-interferon activation site

(GAS) and the interferon-stimulated response element (ISRE), in the promoter regions of
IFN-γ regulated genes to initiate or suppress transcription (Figure 1) (Darnell et al., 1994;

Ramana et al., 2002). Recently, cofactors of the minichromosome maintenance (MCM)

family, assumed to act mainly as essential helicases for DNA replication, were found to
associate with STAT1 at the promoter of IFN-γ target genes to induce optimal

transcription (Snyder et al., 2005).

IFN-γ signaling through homodimeric STAT1 represents the classical pathway after

receptor complex activation. However, there are several additional STAT1-independent

signaling pathways activated by IFN-γ, which play important roles in IFN-γ-induced

biological responses and regulation of gene expression (Ramana et al., 2001). These

pathways involve the activation of signal-transduction proteins such as mitogen-activated

protein kinases (MAPKs) Pyk2 and ERK1/2, the Src-family kinase Fyn, the adapter

protein Vav and the SH2-domain-containing protein tyrosine phosphatases SHP-1 and

SHP-2 (English et al., 1997; Ramana et al., 2002; Takaoka et al., 1999; Uddin et al., 1997;

You et al., 1999). Using microarray-technology, STAT1-independent regulated genes

were identified in macrophages, including monocyte chemoattractant protein-1 (MCP-1;

CCL2), macrophage inflammatory protein-1α and β (MIP-1α/β; CCL3/4) and IL-1β (Gil

et al., 2001).

Dysfunction of IFN-γ mediated signaling has been extensively studied in patients,

where loss-of-function mutations in the IFN-γR chains lead to increased susceptibility to

bacterial, parasitic and viral infections (Jouanguy et al., 1997; Roesler et al., 1999;

Rosenzweig and Holland, 2005). Similarly, IFN-γ and IFN-γR1 knockout mice display

deficiencies in natural resistance to bacterial infection with low virulence mycobacteria

species, Listeria monocytogenes (L. monocytogenes), parasitic infections with Leishmania

major (L. major), Toxoplasma gondii (T. gondii) and viral infections such as vaccinia

virus and LCMV (Dalton et al., 1993; Huang et al., 1993; van den Broek et al., 1995).
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Mice that were genetically engineered to constitutively express IFN-γR2 (IFN-γR2

transgenic mice) were unable to mount productive Th1 immune responses to L.

monocytogenes or Leishmania, and thus resembled IFN-γ deficient mice (Tau et al., 2000).

Allospecific CD8+ T cell lines made from these mice had impaired cytotoxic capabilities

in vitro despite being able to produce IFN-γ and proliferate in response to antigen (Tau et

al., 2001). These studies suggest that regulation of IFN-γ responsiveness is required for

normal T cell function.

3.5.  Regulation of IFN-γ expression in effector T lymphocytes

3.5.1.  IFN-γ expression in T helper type 1 lymphocytes

Strategies of resistance towards pathogens include both innate and adaptive immune
responses. Adaptive immunity can further be divided into antibody-mediated (also known

as humoral immunity) or a cell-mediated forms of immunity (i.e. activation of cytolytic
and phagocytic pathways). Despite the variety of cell types partaking in the fight against

unwanted invaders, CD4+ effector T cells play pivotal roles in determining the outcome of

infections. Especially the development of an appropriate CD4+ T helper (Th) response
during infections is critical for mounting an effective immune response against pathogens.

Thus, adaptive immune responses against pathogens are usually driven towards either a
cell-mediated response with a predominant CD4+ T helper type 1 (Th1) phenotype (type I

immune response) or a humoral immune response where CD4+ T helper type 2 (Th2) cells

are most abundant (type 2 immune response). The Th1 phenotype dominates and directs
the immune response against intracellular pathogens such as Mycobacterium tuberculosis,

T. gondii as well as viral infections. The Th1 phenotype is characterized by intensive
production of IFN-γ. In contrast, the Th2 phenotype is associated with immune responses

against extra-cellular pathogens, such as parasitic helminth infections, and is prominent in

allergic responses, with IL-4, IL-5 and IL-13 as signature cytokines (Figure 2) (Glimcher,

2001; Mosmann et al., 1986; Mosmann and Sad, 1996; Murphy and Reiner, 2002b). The
cytokine expression profile of each subset is regulated by cell-specific transcription



3.  INTRODUCTION                                                                                                                                              21

factors. In Th1 cells, IFN-γ production and lineage commitment is largely controlled by T-

bet (T-box expressed in T cells), whereas in Th2 cells, specific cytokine production is

mediated mainly by the transcription factor GATA-3 (Grogan and Locksley, 2002;
Murphy and Reiner, 2002a). Generally, Th1/Th2 cytokines promote their respective

phenotype in an autocrine fashion, while suppressing the differentiation of the other

phenotype (Figure 2) (Grogan and Locksley, 2002). T helper cells "help" other cell types
to exert their effector functions, according to the type of CD4 T helper lymphocyte. In

type I immunity, Th1 cells provide help for activation of macrophages, CTLs and IFN-γ

dependent Ig class switch of B cells to IgG2a and IgG3 (Abbas et al., 1996; Finkelman et
al., 1990; Paul, 2003; Paul and Seder, 1994). The majority of the effects of Th1 help are

due to the effects IFN-γ itself (see Table I). In contrast, during a type 2 immune response,

Th2 cells provide help for the maturation and degranulation of eosinophils and basophils,

the activation of B cells and IL-4 dependent Ig class switch to IgE and IgG1 (Abbas et al.,
1996; Finkelman et al., 1990; Paul, 2003; Paul and Seder, 1994). Differentiated Th1 and

Th2 cells derive from a common precursor cell (Thp) (Figure 2) that produces little

amounts of IL-2, IL-4 and IFN-γ (Constant and Bottomly, 1997; Kamogawa et al., 1993;

Swain, 1995). Factors that influence T helper differentiation include the cytokine
microenvironment during priming of naïve T cells (especially IL-12 and IL-4), the signal

strength and duration of APC-T cell interaction, type of APC and its activation status, co-

Figure 2:
Lineage decisions of T helper cells (simplified model).  Details of the model are described in the text.
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stimulatory molecules and cell cycle (Amsen et al., 2004; Bird et al., 1998; Constant and

Bottomly, 1997; Kuchroo et al., 1995; Reiner and Seder, 1995; Seder, 1994). However,

the Th1/Th2 classification is based upon the assumption, that CD4+ T cells are able to

acquire stable and polarized cytokine producing phenotypes. Recently, another Th subset

was identified on the basis of these criteria. This new subset, termed Th-17 cells, secrets

predominantly IL-17 and no IFN-γ, and plays an important role in the development of

autoimmune pathogenesis (Figure 2) (Cua et al., 2003; Hunter, 2005; Nakae et al., 2002;

Nakae et al., 2003). IL-23, TGF-β, IL-6 and IL-1 have been associated with Th-17

development (Harrington et al., 2005; Park et al., 2005; Veldhoen et al., 2006). The

importance of the Th1/Th2 paradigm on the outcome of infections has been well

established in vivo. First by seminal experiments characterizing CD4 T cell responses in

mouse strains that are either naturally susceptible (Th2, Balb/c) or resistant (Th1,

C57BL/6) against the parasite L. major, and later in humans with studies on leprosy

(Heinzel et al., 1989; Scott et al., 1988; Yamamura et al., 1991,Reiner, 1995 #353).

IFN-γ is the hallmark cytokine of type I immune responses and Th1 cells are

classically characterized by a robust IFN-γ expression. But how exactly is IFN-γ

expression induced during Th1 differentiation? IFN-γ expression is the result of a

sequential combination of different mechanisms, including inter- and intrachromosomal

interactions, epigenetic modifications, initiation of crucial transcription factors and up-

regulation of pivotal cytokine receptors (Grogan and Locksley, 2002; Murphy and Reiner,

2002b; Spilianakis et al., 2005). In the case of Th1 differentiation, it is well established

that IL-12 and its receptor, T-bet, STAT4 and IFN-γ are crucial in inducing Th1

development (Magram et al., 1996; Szabo et al., 2002; Wurster et al., 2000; Zhang et al.,

2001), but the sequential hierarchy of known events leading to Th1 differentiation is still

unclear and subject to vigorous investigation. However, IFN-γ, probably produced by NK

cells, is thought to be among the cytokines initiating the differentiation program (Bradley

et al., 1996; Lohoff and Mak, 2005; Murphy and Reiner, 2002b). Naïve Th cells activated

under Th1-polarizing conditions become exposed to IFN-γ during T cell receptor (TCR)

engagement, leading to the STAT1-dependent induction of the transcription factor T-bet

(Afkarian et al., 2002; Lighvani et al., 2001) (Figure 3, 1). A member of the T-box family

of transcription factors, T-bet represents one of the key factors required for Th1 lineage

commitment (Ho and Glimcher, 2002; Szabo et al., 2000; Szabo et al., 2002). After

activation, T-bet, in cooperation with the homeobox transcription factor HLX (H2.0-like
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homeobox 1), induces chromatin remodeling and activation of the repressed ifng gene

locus, stabilizes its own expression through an autocatalytic feedback loop and actively

suppresses GATA-3 (Afkarian et al., 2002; Mullen et al., 2001; Mullen et al., 2002; Szabo

et al., 2000; Szabo et al., 2002) (Figure 3). Additionally, T-bet up-regulates expression of

the IL-12 receptor β2 subunit (Afkarian et al., 2002; Mullen et al., 2001) (Figure 3, 2).

IL-12 is a heterodimeric cytokine, consisting of a IL-12/p40 and a IL-12/p35 subunit,

which signals through the IL-12 receptor complex (IL-12R) and plays an important role in

Th1 differentiation (Trinchieri, 1993). IL-12R is composed of the ligand-binding IL-12

receptor β1 chain (IL-12Rβ1; constitutively expressed) and the signaling IL-12 receptor

β2 chain (IL-12Rβ2; inducible), and activates the JAK-STAT pathway of signal

transduction (Trinchieri, 2003). The specific cellular effects of IL-12 are mainly due to

activation of STAT4 (homodimer, but also STAT4/STAT3 heterodimers). It is

Figure 3:
Model of IFN-γ expression in CD4+ Th1 cells.

Naïve CD4+ T cells, activated under Th1 polarizing conditions are exposed to IFN-γ during T cell receptor (TCR)
engagement (1), leading to the primarily STAT1-dependent induction of the transcription factor T-bet. T-bet in turn
induces chromatin remodeling and activation of the repressed ifng gene locus, stabilizes its own expression through an
autocatalytic feedback loop (⊕) and up-regulates functional IL-12R by inducing IL-12Rβ2 expression (2). STAT4
activation downstream of IL-12R signaling in turn leads to increased levels of functional IL-18R by inducing IL-18Rβα
expression (3). The now committed Th1 cell is able to induce acute ifng transcription by both antigen-dependent (TCR)
and cytokine-dependent (IL-12 in combination with IL-18) mechanisms. NFAT, nuclear factor of activated T cells; NF-
κB, nuclear factor-κB.
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predominately produced by activated inflammatory cells, such as macrophages,

neutrophils and dendritic cells (DCs). In context of Th1 differentiation DCs appear to
provide the initial IL-12 during priming, independently of IFN-γ (Gazzinelli et al., 1994;

Scharton-Kersten et al., 1996; Trinchieri, 2003). STAT4 activation downstream of IL-12

signaling enhances acute transcription of ifng (Kaplan et al., 1998; Mullen et al., 2001;

Schijns et al., 1998) and up regulation of the IL-18 receptor α chain (Nakahira et al., 2001;

Yoshimoto et al., 1998) (Figure 3, 3). IL-18 is primarily produced by macrophages and
dendritic cells and belongs to the IL-1 family of cytokines (Nakanishi et al., 2001). It

signals through the IL-18 receptor complex (IL-18R), consisting of a ligand-binding IL-
18R α chain (IL-18Rα) and a signal-transducing IL-18R β chain (IL-18Rβ) (Nakanishi et

al., 2001). IL-18R utilizes signaling pathways analogous to the IL-1 receptor, including
IRAK (IL-1 receptor-associated kinase) and the adaptor protein MyD88 (Adachi et al.,

1998; Nakanishi et al., 2001). Activation of IRAK leads to subsequent activation of
TRAF6 and finally to the nuclear translocation of NF-κB, which can function as a

regulator of IFN-γ transcription (Kanakaraj et al., 1999; Kojima et al., 1998; Matsumoto et

al., 1997; Robinson et al., 1997; Sica et al., 1997) (Figure 3). IL-18 serves as a cofactor for

IL-12-induced Th1 differentiation and, in synergy with IL-12, strongly enhances IFN-γ

expression and production in an antigen-independent manner and induces IFN-γ

production in fully differentiated and activated Th1 cells (Ahn et al., 1997; Nakahira et al.,

2002; Nakanishi et al., 2001; Robinson et al., 1997; Szabo et al., 2003). Antigen-
dependent transcription of IFN-γ occurs, when TCR stimulation induces the activation of

NFAT (nuclear factor of activated T cells), which in turn binds to specific NFAT binding

sites within in the IFN-γ promoter, regulating transcription (Campbell et al., 1996; Sica et

al., 1997; Sweetser et al., 1998) (Figure 3). Therefore, there are at least two

physiologically distinct pathways that can independently induce IFN-γ expression,

including TCR signaling and IL12/IL18 signaling (Robinson et al., 1997; Yang et al.,
1999; Yang et al., 2001). Additionally, in a positive-feedback loop, IFN-γ itself is reported

to drive Th1 differentiation and IFN-γ production independently of IL-12 (Bradley et al.,

1996) (Figure 3).

With both IFN-γ-dependent (T-bet) and independent mechanisms (TCR stimulation is

able to induce IL-12Rβ2 through JNK2 (Murphy et al., 2000)) inducing IL-12

responsiveness, IL-12 is also thought to be crucial for initiating the Th1 differentiation
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program (Afkarian et al., 2002; Dong et al., 1998; Yang et al., 1998). Contrary to that

conception, T-bet, primarily induced by IFN-γ, has been shown to act prior to IL-12 in

Th1 differentiation (Mullen et al., 2001). Thus, the sequential roles of IFN-γ vs. IL-12 in

the induction of both IFN-γ expression and Th1 differentiation by CD4+ T cells remain

controversial with existing models in favor of both IFN-γ and IL-12 as the important

initiating cytokine (Murphy and Reiner, 2002b; Robinson and O'Garra, 2002).

3.5.2.  IFN-γ expression in CD8+ effector T cells

Among T lymphocytes, CD8+ effector cells (CTLs) are the major producers of IFN-γ

besides Th1 cells. Despite being so closely related to CD4+ T cells, IFN-γ expression

seems to be differentially regulated in CD8+ T cells. Both CD4+ and CD8+ T cells arise
from a common progenitor in the thymus and share most of the surface receptors for

cytokines and transcription factors, involved in Th1/Th2 differentiation and IFN-γ

expression, respectively (Figure 4). However, surprisingly little is known about the

specific differences in IFN-γ expression unique to CD8+ T cells (Glimcher et al., 2004;

Ho and Glimcher, 2002; Murphy et al., 2000). Analogous to the Th1/Th2 dichotomy in
CD4+ T cells, CD8+ T cells can be further divided in T cells of the cytotoxic type I (Tc1)

and type II (Tc2), with Tc1 cells producing IFN-γ and Tc2 cells IL-4 (Mosmann et al.,

1997). However, unlike Th2 cells, Tc2 cells produce significantly less IL-4 and retain the

capacity to produce high levels of IFN-γ, although reduced when compared to Tc1 (Carter

and Dutton, 1996; Croft et al., 1994; Sad et al., 1995; Seder et al., 1992). Further
differences in IFN-γ expression between CD4+ and CD8+ T cells have been reported.

Distal and proximal promoter elements have been identified in the 5′-flanking region of

the IFN-γ gene (Penix et al., 1993). While CD4+ T cells utilize both promoter elements

when expressing IFN-γ, CD8+ T cells display transcriptional activity only in the distal

promoter, which requires IL-12 and IL-2 for maximum activity (Aune et al., 1997). The

failure of CD8+ T cells to express transcriptional activity directed by the proximal element

might provide a mechanism for differential regulation of IFN-γ expression in CD4+ and

CD8+ T cells. The transcription factor T-bet is expressed in a cytokine-inducible fashion
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in CTLs, but is surprisingly dispensable for both IFN-γ production and cytolytic activity,

whereas IFN-γ production is absent in CD4 T cells lacking T-bet (Pearce et al., 2003;

Szabo et al., 2002; Yin et al., 2002). However, one report has shown diminished IFN-γ

expression by CD8+ effector cells in the absence of T-bet and failure to down-regulate

surface markers, such as CD62L (Sullivan et al., 2003). In contrast to Th1 development
and IFN-γ production by CD4+ T cells, Tc1 development and IFN-γ production by Tc1

cells can occur independently of STAT4 (Aronica et al., 1999; Carter and Murphy, 1999).
This is due to distinct regulation of TCR-induced IFN-γ production in CD4+ and CD8+ T

cells. Carter and Murphy showed that STAT4-deficient CD8+ T cells produced IFN-γ

abundantly, particularly when activated via the TCR, whereas CD4+ T cells lacking

STAT4 were unable to generate significant amounts of IFN-γ (Carter and Murphy, 1999).

However, the IL12/IL18 pathway for induction of IFN-γ operates in CD8+ T cells as well

Figure 4:
Model of IFN-γ expression in CD8+ Tc1 cells.

Naïve CD8+ T cells, activated under type I polarizing conditions are exposed to IFN-γ during T cell receptor (TCR)
engagement (1), leading to the primarily STAT1-dependent induction of the transcription factor T-bet. T-bet in turn
induces chromatin remodeling and activation of the repressed ifng gene locus, stabilizes its own expression through an
autocatalytic feedback loop (⊕) and up-regulates functional IL-12R by inducing IL-12Rβ2 expression (2. However,
Eomes is the dominant transcription factor inducing IFN-γ expression in CD8+ T cells. STAT4 activation downstream of
IL-12R signaling in turn leads to increased levels of functional IL-18R by inducing IL-18Rβα expression (3). Tc1 cells
are able to induce acute ifng transcription by both antigen-dependent (TCR) and cytokine-dependent (IL-12 in
combination with IL-18) mechanisms. NFAT, nuclear factor of activated T cells; NF-κB, nuclear factor-κB
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as CD4+ T cells, and is strictly STAT4 dependent in both cases (Carter and Murphy,

1999). It has been well established that memory (CD44hi) CD8+ T cells produce IFN-γ in

an antigen-independent manner when exposed to IL12/IL18 (Berg et al., 2003;

Lertmemongkolchai et al., 2001). Since both STAT4 and T-bet are dispensable for IFN-γ

expression in CTLs, it was unclear what transcription factor might be involved in

regulating IFN-γ expression in CD8+ T cells. Two years ago, Eomesodermin (Eomes) was

identified as the crucial transcription factor for IFN-γ expression and cytolytic effector

lineage differentiation in CD8+ T cells (Pearce et al., 2003) (Figure 4). Although

expressed in both activated CD4+ and CD8+ effector cells, Eomes mRNA is only

significantly induced in CD8+ T cells (Pearce et al., 2003). Eomes, like T-bet, belongs to

the T-box transcription factors and was initially described as a key regulator of

mesodermal cell fate in vertebrates (Ryan et al., 1996).

Besides the mentioned parameters, other molecular factors and signaling pathways

have been associated with regulating IFN-γ production in both CD4+ and CD8+ T cells.

Among these are both TCR-dependent and independent factors, such as IL-21, IL-23,

IL27 and their respective receptors, members of the SOCS (suppressors of cytokine

signaling) family, IRF (interferon regulatory factor) family, the GADD45 family, the

NFAT family, the MAPK pathway, the JNK (c-Jun NH2-terminal kinase) pathway, the

transcription factors CREB1 (cyclic AMP-responsive-element-binding protein 1),

ATF1/ATF2 (activating transcription factor) ,cJUN and OCT1 (Octamer binding

transcription factor-1) ( (Hunter, 2005; Kasaian et al., 2002; Lohoff and Mak, 2005;

Murphy et al., 2000; Strengell et al., 2003; Strengell et al., 2002; Yang et al., 2001, Penix,

1996 #393).
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3.6.  Bicistronic IFN-γ reporter

Various approaches have been employed to determine the role of cytokines in

immunity to infection. The depletion of cytokines in vivo with antibodies, the use of

knockout mice deficient in specific cytokines or cytokine receptors represent just a small

selection of successful strategies which lead to a greater appreciation of the importance of

cytokines for controlling viral and parasitic infections. However, it is extremely difficult to

track cytokine-producing cells in vivo due to the rapid secretion of cytokines and the short

half-lives of both the proteins and mRNA transcripts. Commonly used methods to identify

IFN-γ expression at the single cell level require in vitro restimulation thereby altering the

in  situ phenotype and are not able to localize the distribution of cytokine production

within populations of cells (Assenmacher et al., 1998; Gessner et al.). Recently, with the

development of bicistronic IL-4 and IL-4 dual-reporter mice, novel approaches emerged to

overcome these limitations and study cytokine-expressing cells directly in vivo (Mohrs et

al., 2005; Mohrs et al., 2001). Applying the same strategy used to create 4get mice (Mohrs

et al., 2001), bicistronic IFN-γ reporter mice were generated by targeting a bicistronic

reporter cassette, containing an encephalomyocarditis virus (EMCV) internal ribosomal

entry site (IRES) linked to eYFP, into the 3’ untranslated region of the endogenous ifng

locus (Matsuda et al., 2003; Stetson et al., 2003). A genomic fragment of the ifng gene,

containing exons 2–4 and 2.5 kb of 3' untranslated sequence of the ifng gene, was mutated

by the addition of an IRES element, eYFP, and a polyadenylation signal, followed by a

loxP-flanked neomycin resistance cassette. A herpes simplex derived thymidine kinase

was added upstream for counterselection. Cre-mediated recombination of the loxP-flanked

neomycin selection cassette in chimeric males resulted in the final mutated ifng gene

locus.

The novel IFN-γ reporter was designated Yeti, an acronym for yellow enhanced

transcript for IFN-γ. A schematic map of the murine ifng locus, the reporter-targeting

construct, and the mutated gene in bicistronic IFN-γ reporter (Yeti) mice is depicted in

Figure 5. The insertion of an IRES element into the endogenous ifng locus allows for

separate translation of IFN-γ and the eYFP reporter. Upon activation, the ifng gene,

including the bicistronic reporter cassette containing the IRES/eYFP, is being transcribed

and processed. The resulting mRNA consists of both the IFN-γ and the eYFP cistron. Due

to the IRES element the eYFP protein is translated 5’Cap-independently, which results in
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two separate proteins encoded by one mRNA. While the IFN-γ protein is being secreted,

the eYFP protein is retained in the IFN-γ expressing cell (Figure 6). The estimated half-

life for eYFP within any cell is about 24 to 48 hrs (M. Mohrs unpublished data).

Figure 5:
Schematic map of the murine ifng locus, the targeting construct, and the mutated gene in bicistronic IFN-γ
reporter (Yeti) mice

A genomic fragment of the ifng gene was mutated by the addition of an IRES (internal ribosomal entry site) element,
eYFP, and a polyadenylation signal (pA), followed by a loxP-flanked neomycin resistance (neo) cassette. Thymidine
kinase (tk) was added upstream for counterselection. Cre-mediated recombination of the loxP-flanked neomycin cassette
in chimeric males resulted in the final mutated locus (bottom). Ifng exons are numbered and depicted as filled boxes.
BamHI (B), ClaI (C), and SacI (S) sites are indicated.

Figure 6:
Function of the IRES-element in Yeti mice

Upon activation, the endogenous ifng gene, including the bicistronic reporter cassette containing the IRES element
linked to eYFP, is being transcribed and processed. The resulting mRNA consists of both the IFN-γ and the eYFP
cistron. The IRES element allows for Cap (c)-independent translation of the eYFP protein, leading to two separate
proteins encoded by one mRNA. While the IFN-γ protein is being secreted, the eYFP protein is retained in the IFN-γ
expressing cell. IFN-γ expressing cells can then be detected via flow cytometry for example; Ifng exons are depicted as
filled boxes pA, polyadenylation site
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Bicistronic reporter systems are substantially more sensitive for identifying cytokine-

expressing cells than currently standardized methods (Mohrs et al., 2001). Additionally,

Yeti mice allow non-invasive and unbiased tracking of IFN-γ expressing cells on a single

cell level using flow cytometry as well as isolation of live, cytokine-expressing cells

(Matsuda et al., 2003; Stetson et al., 2003). Furthermore, both the ifng gene regulation and

the cytokine production is intact and restimulation of cells is not required to identify

cytokine-expressing cells.

3.7.  Experimental mouse model of Influenza virus infection

Influenza viruses belong to the taxonomic family Orthomyxoviridae and can further be

divided into Influenza types A, B and C, based on molecular and serological criteria.

Influenza A and B are the two types of influenza viruses that cause epidemic human

Influenza (also known as flu) disease. Besides humans Influenza A viruses infect a variety

of mammals, including horses, pigs and whales as well as domestic and wild birds (also

known as avian flu or bird flu). Influenza types B and C are described only in humans.

The influenza isolates used in the present study are of the Influenza A subtype. Influenza

A viruses are further categorized into subtypes on the basis of two surface antigens:

hemagglutinin (H) and neuraminidase (N). Three of the 15 known H subtypes (H1, H2

and H3) and two of the 9 known N subtypes (N1 and N2) are recognized as being capable

to cause disease outbreaks in humans (Wright and Webster, 2001). Different strains of

Influenza A viruses are described by geographic origin, strain number, year of isolation

and the respective H and N subtype. Isolates used in the present thesis are A/HK-

x31/H3N2 (referred to as X31) and the heterosubtypic strain A/PR8/34/H1N1 (referred to

as PR8). The A/HK-x31/H3N2 virus is a recombinant between A/PR8/34/H1N1 and

A/Aichi with the surface H3N2 proteins of A/Aichi and many of the internal components

of A/PR8 (Allan et al., 1990; Daly et al., 1995; Kilbourne, 1969). The Influenza A virus

particle consists of a segmented single-stranded negative sense RNA genome inside a

protein envelope (Figure 7). It presents itself mostly in a spherical shape (80-120 nm in

diameter), however it is highly pleomorph. Influenza A virus displays the unique property

to undergo extensive antigenic variation in the hemagglutinin and neuraminidase surface
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antigens. These two antigens represent the major epitopes for neutralizing and protective

antibody responses by the infected host. Frequent development of antigenic variants

through antigenic drift is the virologic basis for the seasonal flu epidemics, where

protective antibody responses are missing. Antigenic drift refers to these relatively minor

changes in the hemagglutinin and neuraminidase coding RNA segments that occur each

year. The World Health Organization (WHO) estimates that in a typical year, 10 to 20

percent of the world’s population is infected with influenza, resulting in 3,000,000 to

5,000,000 severe illnesses and 250,000 to 500,000 deaths (Organization, 1999). In

contrast, antigenic shift refers to major changes in the Influenza A subtype (e.g. from

H2N2 to H1N1). This occurs infrequently, only every one to four decades and is the result

of genetic reassortment (e.g. introduction of a new RNA segment coding for H and N)

(Webster, 2002; Wright and Webster, 2001). Due to the segmented nature of the viral

Figure 7:
Negative-stained transmission electron micrograph of Influenza A virus particle.
Ultrastructural details depicted include virus envelope and segmented RNA-genome (content provided by CDC/ Dr.
Erskine, L. Pamer; Dr. M.L. Martin)

genome and the existence of a variety of animal hosts, co-infection of cells within a host

with human-adapted and animal-adapted strains is likely to occur. This can lead to the

emergence of novel strains by genetic reassortment, with the sudden appearance of a new

antigenic subtype, and even pandemics. When this reassortment results in a virus with

novel surface proteins, it spreads rapidly because most of the population has no protective

serum antibody (Webster et al., 1992). Human pandemic viruses have arisen from avian

viruses by reassortment (Webster, 2002). In the twentieth century, there were three such
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pandemics: the so-called swine flu of 1918–1919, being the most extreme, causing two

billion cases and 20 to 40 million deaths worldwide, the “Asian” flu of 1957, and the

“Hong Kong” flu of 1969 (Kilbourne, 1975). The latter two pandemics killed an estimated

1 million people each. With the recent H5N1 avian flu outbreaks in Asia, but also in

Europe and Africa, the possibility of a new world wide pandemic is strongly debated.

Mice represent the most suitable animal model to study influenza virus infection in

mammals (Ada and Jones, 1986). They can be naturally infected with human influenza

isolates. After intranasal (i.n.) oculation with influenza virus, mice develop a progressive

upper and lower respiratory tract disease with histopathology virtually identical to that

seen in human disease (Renegar, 1992; Yetter et al., 1980). Because viral replication is

limited to epithelial cells of the upper and lower respiratory tract, influenza infection

represents a localized infection (Eichelberger et al., 1991b). Nevertheless, antigen-specific

cells can be found in other peripheral lymphoid organs, especially the spleen (Doherty et

al., 1996). Much that is known about the details of influenza pathogenesis and host

defense was first established in mice and later confirmed in humans (Bender and Small,

1992; Small, 1990). Antibodies to influenza virus can protect against reinfection and when

passively transferred antibody can protect naive animals. However, this form of protection

is often subtype-specific or even narrowly specific to certain viral surface antigens (Ada

and Jones, 1986; de Jong et al., 2000).

In terms of cellular immunity, mediated by effector and memory T cells, the mouse

model could establish the following. Effector CD4+ and CD8+ T cells play important

roles in clearing influenza virus and protecting against challenge, although they can also

cause immunopathology (Doherty et al., 1997b; Wells et al., 1981). Peter Doherty’s and

other groups have provided evidence for a beneficial role of class I MHC-restricted CD8+

CTLs in clearing primary influenza virus infection and also in protection against challenge

with homologous virus (Doherty et al., 1997b; Lu and Askonas, 1980). A conserved gene

product among Influenza A viruses, nucleoprotein (NP) is a major target antigen for CTLs

in mice (Yewdell et al., 1985), and MHC class I tetramer staining reagents are available to

track NP specific CTLs via flow cytometry (Altman et al., 1996; Crowe et al., 2003). The

primary mechanism utilized by CD8+ effector T cells to clear the viral infection is

destruction of infected cells mediated by either the perforin or Fas pathways (Topham et

al., 1997). Furthermore, adoptive transfer of cloned influenza-specific CTL can prevent

death from lethal virus challenge (Lukacher et al., 1984). CD4+ T cells also mediate
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protection, although CD8+ T cells are much more efficient in effecting recovery from

influenza virus infection (Allan et al., 1990; Bender et al., 1992; Eichelberger et al.,

1991a). Both Th1 and Th2 T cells are involved in both the primary and secondary

response, though most of the CD4 + T cell clones recovered from influenza virus-infected

mice display the Th1 cytokine phenotype (Carding et al., 1993; Graham et al., 1994).

MHC class II-restricted cytotoxic activity specific for influenza virus antigens has also

been reported (Taylor and Bender, 1995). The most differentiated CD4+ and CD8+

effector cells are present at the site of infection, the lung airways and the lung

parenchyma, whereas cells with apparently less differentiated phenotypes can be found in

the secondary lymphoid organs, such as the spleen (Homann et al., 2001). Further,

immunization with one Influenza A virus subtype can protect animals against challenge

with virus of a different subtype. This cross-protection was first demonstrated by

Schulman and Kilbourne in 1965 and is referred to as heterosubtypic immunity (Schulman

and Kilbourne, 1965). In vivo depletion showed that CD4+ and CD8+ T-cells both

contribute to control of heterosubtypic virus challenge (Liang et al., 1994). The precise

mechanism of more rapid recovery in heterotypic immune mice has not been completely

defined but is likely due to augmented anti-influenza pulmonary cellular responses, Th1

cytokines and cross-reactive CTLs from influenza-infected mice recognizing NP (Bennink

et al., 1978; Carding et al., 1993; Townsend et al., 1984; Yewdell et al., 1985). This of

particular importance for vaccine development, because heterosubtypic T cell memory

could potentially provide broad protection against new strains of influenza viruses,

displaying altered surface H and N proteins, that are not cross-neutralized by preexisting

antibodies.

3.8.  Experimental model of Sendai virus infection

Respiratory virus infections, such as those caused by influenza but also parainfluenza

viruses (PIVs), are a major cause of morbidity and mortality worldwide. PIVs are

medium-sized (150 to 200nm) enveloped viruses that have a non-segmented negative-

strand RNA genome and belong to the family Paramyxoviridae (Figure 8). Sendai virus,

also known as hemagglutinating virus of Japan (HVJ), is a member of the paramyxovirus
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family and was classified as the murine counterpart of human parainfluenza virus type 1

(hPIV1), which causes a respiratory infection in children. First identified in the town of

Sendai (Japan) in 1952 by Kuroya and colleagues, Sendai virus was initially thought to be

a human pathogen, since it was recovered from mice inoculated with an autopsy specimen

from an infant with respiratory disease (Kuroya and Ishida, 1953; Kuroya et al., 1953).

However, it is recognized now that Sendai virus is indigenous to mice and hardly ever

causes disease in humans. Due to its antigenic relationship with hPIV1, Sendai virus is

used as a model for human parainfluenza disease, but also respiratory virus infections,

such as influenza virus in general (Doherty and Christensen, 2000; Doherty et al., 1997a;

Doherty et al., 1996; Doherty et al., 1997b; Swain et al., 2004; Woodland, 2003;

Woodland et al., 2001). Similar to Influenza virus infection, intranasal inoculation of mice

with Sendai virus results in a localized infection of epithelial cells of the upper and lower

respiratory tract of limited duration (Doherty and Christensen, 2000; Flynn et al., 1999;

Hou et al., 1992). Both Sendai and Influenza virus are respiratory pathogens, because they

require a trypsin-like enzyme, which is anatomically restricted to the respiratory tract, to

cleave the surface fusion (Sendai) or hemagglutinin (Influenza) protein, respectively

(Horimoto and Kawaoka, 1995; Tashiro et al., 1992; Walker et al., 1992). The immune

response against Sendai virus is comparable to that against Influenza virus infection, with

similar kinetics of effector T cell recruitment, viral clearance (by 10-12 days) and memory

cell formation (Doherty and Christensen, 2000; Doherty et al., 1997a; Doherty et al.,

1996; Doherty et al., 1997b; Swain et al., 2004; Woodland, 2003; Woodland et al., 2001).

As in the case for many viruses, much of the Sendai virus-specific CD8+ T cell response

Figure 8.
Transmission electron micrograph
of Parainfluenza virus type 1,
Sendai strain. An intact virion and a
disintegrating particle with free
nucleocapsid fragments. (content
provided by June Almeida, The
Wellcome Research Laboratories,
Beckenham, England.)
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is directed against peptides derived from conserved internal components such as the

nucleoprotein. The SenNP324-332/K
b

 epitope (SenNP) is the major immunodominant target

of CD8+ T cells, and MHC class I tetramer staining reagents are available to track these

CTLs via flow cytometry (Altman et al., 1996; Arnold et al., 2002; Cauley et al., 2002). In

fact, the SenNP epitope seems to be immunodominant to an unusual extent by engaging an

extremely diverse spectrum of TCR αβ pairs, rendering up to 70% of CD8+ T cells in the

lung airways responsive to that one epitope (Cole et al., 1994; Doherty and Christensen,

2000). Importantly, a MHC class II peptide multimer specific for an immunodominant

haemagglutinin-neuraminidase epitope HN419-433/A
b (SenHN) is available to track antigen-

specific CD4+ T cells (Arnold et al., 2002; Cauley et al., 2002). Finally, Sendai virus

attracts increasing attention as an emerging viral vector system for gene transfer

approaches and DNA vaccine development. For example, Sendai virus has been employed

as a xenogenic vaccine vector for the delivery of respiratory syncitial virus (RSV) antigens

and unmodified Sendai virus is currently being studied in clinical trials as a vaccine for the

closely related human hPIV1 (Bitzer et al., 2003; Takimoto et al., 2005).

3.9.  Experimental mouse model of Toxoplasma gondii infection

Toxoplasma gondii (T. gondii) is an Apicomplexa obligate intracellular protozoan

parasite that commonly infects mammals and birds throughout the world. Infections can

be categorized into an acute phase, in which the asexual invasive parasite form

(tachyzoite) rapidly proliferates and invades host cells, and a chronic phase, which is

characterized by disappearance of tachyzoites and formation of tissue cysts (Figure 9). T.

gondii is a food born pathogen and the natural reservoir are cats. It exists in three stages

throughout its life cycle in various hosts: the tachyzoite, the tissue cyst (containing

bradyzoites) and the oocyst (containing sporozoites), which is produced during the sexual

cycle in the intestine of cats (Figure 9) (Dubey et al., 1998). Following ingestion of tissue

cysts or oocysts, either bradyzoites or sporozoites respectively, invade cells of the small

intestine and transform into the tachyzoite form, a stage that is highly motile and can

invade and replicate in any nucleated cell type eventually leading to lysis of the cell and

further dissemination throughout the body via the blood and lymphatics (Dubey et al.,
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1998). Tachyzoites are present in tissues during the acute phase or after reactivation of the

chronic infection. Formation of tissue cysts, approximately 10-14 days after infection, is

accompanied with disappearance of the tachyzoite stage and appears to be associated with

development of immunity and acquisition of resistance against rechallenge with the

parasite (Aliberti, 2005; Dubey et al., 1998; Filisetti and Candolfi, 2004). Thus, the

parasite successfully avoids elimination from the host by forming tissue cysts in multiple

organs. Immunocompromised hosts, such as HIV infected individuals, suffer from

widespread dissemination with pneumonitis, myocarditis and encephalitis, eventually

leading to death (Martinez et al., 1995). Toxoplasmosis has emerged as one of the most

common opportunistic infections in AIDS patients. Maternal-fetal transmission in

Figure 9:
Life cycle of T. gondii. Details are discussed in the text.(content provided by CDC)

immune-competent females continues to be an important cause of congenital defects

(Swisher et al., 1994; Wong and Remington, 1994), although T. gondii infection is

frequently regarded as asymptomatic. However, there is a growing recognition that even in
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immune-competent individuals this parasite is a cause of severe morbidity, ocular disease

and even death (Swisher et al., 1994; Wong and Remington, 1994). Most of what is

known today about the immune response against T. gondii was established in the mouse

model of Toxoplasmosis. Cell-mediated immunity plays a central role in resistance against

T. gondii, with both CD4+ and CD8+ effector T cells involved in conferring protection

(Araujo, 1991; Gazzinelli et al., 1991; Suzuki and Remington, 1988). T. gondii induces an

extremely potent type I immune response, characterized by a strong IFN-γ production of

both parasite-specific CD4+ and CD8+ T cells. T cells confer long term protection, at least

in part by secretion of IFN-γ, and these mechanisms are most effective when working in

combination (Gazzinelli et al., 1991; Suzuki et al., 1989; Suzuki et al., 1988; Suzuki and

Remington, 1988). IFN-γ is of extreme importance for resolution of acute parasite burdens

and IFN-γ deficient mice succumb rapidly to infection (Scharton-Kersten et al., 1996).

From a historical perspective, the study of protective immunity against T. gondii was

focused on adaptive responses, because T cells were considered the major source for

IFN-γ. It is now recognized that T. gondii stimulates also a strong innate response, with

IL-12 release by accessory cells which stimulates NK cell production of IFN-γ (Gazzinelli

et al., 1994; Hunter et al., 1994; Johnson, 1992; Khan et al., 1994). Thus, both T cells and

NK cells are important sources of IFN-γ during infection. One of the major anti-microbial

functions of IFN-γ is (in combination with TNF-α) to activate macrophages to produce

NO, which inhibits the growth of T. gondii (Chao et al., 1993; Sibley et al., 1991). While

there is evidence that tryptophan-starvation can also be involved in the inhibition of

parasite replication, it is clear that there is an iNOS independent pathway for the control of

T. gondii that is dependent on a family of IFN-γ-induced GTPases, including LRG-47 and

IGTP (Collazo et al., 2002; Collazo et al., 2001; Pfefferkorn, 1984; Taylor et al., 2004).

Infection also induces an early (d3) peak in systemic levels of Type I IFNs, but while the

cellular source of these factors is unclear, they have been implicated in activating NK cells

and mediating anti-parasite effector function (Hunter et al., 1994; Johnson, 1992; Khan et

al., 1994). Cytotoxic T cells are generated during infection (Subauste et al., 1991), but it

appears that lysis of infected cells plays a secondary role in protection (Denkers and

Gazzinelli, 1998; Denkers et al., 1997). Finally, humoral immunity does not appear to be

crucial for protection against T. gondii (Blackwell et al., 1993).

The outcome of T. gondii infection in mice varies widely depending on the genetic

background, the virulence of the parasite strain and the route of infection. All experiments
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in the present study were conducted with the cystogenic ME49 strain of T. gondii by oral

infection of mice on the susceptible C57BL/6 background.
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4.  AIMS OF THIS THESIS

IFN-γ is the signature cytokine of type I immune responses against invading

pathogens, such as intracellular bacteria, parasites and viruses. Understanding the dynamic

regulation of its expression is of importance, not only for the comprehension of cell

mediated type I immune responses per se, but also for optimizing vaccine strategies

against type I associated pathogens. The goal of the present thesis is to define the

expression patterns of IFN-γ by the two major T cell sources for this cytokine, CD4+ and

CD8+ T cells, after infection. Although IFN-γ is one of the most intensively studied

cytokines, there are still many unaddressed questions: 1) Do IFN-γ expressing T cells

represent a homogeneous population? 2) Is IFN-γ expression tied to a specific surface

phenotype or anatomical location? 3) Are viral and protozoan infections similar in their

IFN-γ response? 4) What are the differences in the IFN-γ expression patterns between

CD4+ and CD8+ T cells? 5) What is the role of IFN-γ receptor mediated functions for the

expression of IFN-γ? To address these and related questions, the immune response against

various infectious agents is studied, using bicistronic IFN-γ reporter mice and MHC class I

and II multimer technology to assess antigen-specific CD4+ and CD8+ T cell responses.
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5.  MATERIALS AND METHODS

5.1.  Mice

Bicistronic IFN-γ reporter (Yeti WT) mice (Stetson et al., 2003) were backcrossed for

a minimum of 10 generations to C57BL/6 obtained from the Animal Breeding Facility

(ABF) at the Trudeau Institute (Saranac Lake, USA). Yeti mice were crossed to IFN-

γR1KO mice (B6.129S7-Ifngr1tm1Agt/J) and the F1 generation was subsequently

backcrossed to the IFN-γR1KO background to generate Yeti mice homozygous for the

receptor knockout (Yeti IFN-γR-/-). Additionally Yeti WT mice were crossed to C57BL/6

mice congenic for CD90.1 (B6.PL-Thy1a/CyJ) and CD45.1 (B6.SJL-PtprcaPep3b/BoyJ).

B6.129S7-Ifngr1tm1Agt/J, B6.PL-T h y 1a/CyJ, B6.SJL-PtprcaPep3b/Boy, B6.129P2-

Tcrbtm1Mom Tcrdtm1Mom/J (TCRβδKO) and B6.129S7-Ifngtm1Ts/J (GKO) mice were

purchased from the ABF at the Trudeau Institute. Yeti WT, Yeti x CD90.1, Yeti x CD45.1

and Yeti IFN-γR-/- were heterozygous for the bicistronic reporter knockin and wild-type

(B6 WT) littermates were used as controls. Experimental animals were between 8 and 12

weeks of age at the onset of experiments and were kept under specific pathogen-free

conditions in filter top cages at the animal facility of Trudeau Institute. The Institutional

Animal Care and Use Committee (IACUC) at Trudeau Institute approved all experimental

procedures involving mice.

5.2.  Viral Infections

Mice at 8-12 weeks of age were anesthetized with 2,2,2-tribromoethanol (also known as

Avertin) intraperitoneal (i.p.) and infected intranasally (i.n.) with either 300 50% egg
infectious doses (EID50) Influenza virus A/HK-x31 (H3N2; referred to as X31) in 30 µl of

phosphate buffered saline (PBS) (Crowe et al., 2003) or 250 EID50 of Sendai virus

(Enders) in 30 µl of PBS (Cauley et al., 2002; Hou et al., 1992). Experimental procedures
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involving Sendai virus and Sendai virus-infected mice were carried out in a designated

Biosafety Level 3 facility at the Trudeau Institute.

5.3.  T. gondii Infections

Cysts of the T. gondii strain ME49 were obtained from brains of chronically infected

C57BL/6 mice and infections were initiated by oral gavage of 10 cysts in 0.1 ml of diluted

brain suspension using a 19-gauge gavage needle (Johnson et al., 2003). Sham-infected
mice received similarly diluted brain suspensions from uninfected mice.

5.4.  Tissue Sampling and Preparation

Peripheral blood was collected into heparin before pleural exudates cells (PLC) were
isolated by lavage through the diaphragm. Next, bronchoalveolar lavage (BAL) cells were

collected by 5 consecutive washes with 1 ml PBS each. Mice were perfused through the

heart after the portal vein was cut for drainage. Perfused lung and liver tissues were either
mechanically cut into small pieces or dispersed by passage through a 70 µm cell strainer

and subsequently digested for 45 min at 37°C with collagenase IV (100 U/ml, Sigma-

Aldrich) and DNase I (10 U/ml, Sigma-Aldrich). Hepatocytes were then sedimented at 30

x g for 3 min and non-hepatocytes collected from the supernatant. Subsequently
lymphocytes were enriched in the interphase of a discontinuous 60%/40% Percoll

(Amersham Biosciences) gradient spun at 1200 x g for 20 min at room temperature. Single
cell suspensions were prepared from spleen, mediastinal lymph nodes (medLN) and bone

marrow (BM) by mechanical dispersion through a 70 µm cell strainer. Erythrocytes were

removed from blood, spleen and BM by ammonium chloride lysis. Adherent cells from

BAL and PLC were depleted by incubation in complete RPMI (cRPMI; supplemented
with 10% heat-inactivated fetal calf serum , 100 U/ml penicillin/streptomycin, 50 µM 2-

mercaptoethanol and 2 mM L-glutamine; Fisher/Cellgro) medium, for 2 h in tissue culture

dishes at 37°C, 5% CO2. Panning on goat anti-mouse IgG H+L-coated (Jackson
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ImmunoResearch Laboratories Inc.) Primaria flasks (BD Falcon) for 1 hr at 37°C, 5%

CO2, depleted B cells and adherent cells from the spleen.

5.5.  Flow Cytometric Analysis

Surface antigens were analyzed by flow cytometric analysis using monoclonal

antibodies that were purchased from Caltag Laboratories, eBioscience or BD Biosciences

if not stated otherwise and clone designations are given in parentheses. Single cell

suspensions were kept on ice at all times and stained in 1% bovine serum albumine

(BSA), 0.1% azide in PBS (FACS buffer). All samples were first incubated with

anti-CD16/32 (2.4G2) to block non-specific binding of antibodies to Fc III/II receptors.

Monoclonal antibodies were directly conjugated to phycoerythrin (PE), Peridinin

chlorophyll protein (PerCP), allophycocyanin  and Biotin or tandem conjugates of PE-

Texas Red, PE-Cy7 and APC. Where necessary Streptavidin (SA)-PE, SA-PerCP, SA-

allophycocyanin or SA-allophycocyanin-Cy7 were used to detect biotin labeled

antibodies. The following monoclonal antibodies were used: CD3ε (145-2C11), CD4

(RM4-5), CD8α (CT-CD8α), CD11a (M17/4), CD11c (HL3), CD19 (1D3), CD25 (PC61

5.3), CD44 (IM7), CD45.1 (A20), CD45.2 (104), CD62L (MEL-14), CD69 (H1.2F3),

CD90.1 (HIS51 and OX-7), CD90.2 (53-2.1), CD122 (TM-γ1) and NK1.1 (PK136), CD27

(LG.3A10), H-2Db (KH95), I-Ab (AF6-120.1), ICOS (C398.4A). MHC class I peptide

tetramers specific for the Influenza nucleoprotein (NP) epitope NP366-374/D
b, the Influenza

acid polymerase (PA) protein epitope PA224-233/D
b and the Sendai nucleoprotein epitope

NP324-332/K
b (SenNP) as well as the MHC class II peptide multimer specific for the Sendai

hemagluttinin-neuraminidase epitope (HN) HN419-433/A
b (SenHN) were generated

according to described methods (Altman et al., 1996; Arnold et al., 2002; Cauley et al.,

2002) and purchased from the Molecular Biology Core facility (MBCF) at the Trudeau

Institute. Tetramer and multimer staining was performed for 1 h at room temperature prior

to staining of surface antigens. Sendai virus infected samples were then fixed in 1%

paraformaldehyde and subsequently analyzed by flow cytometry. Dead cells were

identified in unfixed samples by addition of DAPI (4’,6-Diamidino-2-phenylindole, 0.1
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µg/ml; Sigma-Aldrich) or PI (propidium iodide, 3 µg/ml, Sigma-Aldrich) and excluded

from the analyses.

Four-color samples were acquired on a FACSCaliburTM (Beckton Dickinson)

cytometer with CellQuest software, or a FACScanTM (Beckton Dickinson) cytometer

upgraded to 5 colors (Cytek) equipped with Rainbow software (Cytek Development) and

CellQuest software. 5-9 color samples and samples stained with tandem conjugate

fluorochromes other than allophycocyanin-Cy7 were acquired on a CyAn (DAKO

Cytomation) flow cytometer equipped with Summit 3.3 software.

Data were analyzed using FlowJo (Tree Star) software. Electronic compensation

matrices for data acquired on the CyAn cytometer were calculated and verified using the

FlowJo compensation platform based on proper single stain controls. All analyses of

unfixed samples were gated on lymphocytes within a live (PI- or DAPI-) gate.

5.6.  IFN-γ Secretion Assay

Splenocytes from day 9 influenza infected mice were cultured at 5 x 106/ml in the

presence or absence of PMA (50 ng/ml, Sigma) and ionomycin (500 ng/ml; Sigma) in

cRPMI for 4 h at 37°C, 5% CO2. The IFN-γ Secretion Assay is a flow cytometry-based

assay for measuring cytokine secretion by individual T lymphocytes (Brosterhus et al.,

1999). The assay is designed for the detection, isolation, and analysis of T cells

responding by IFN-γ secretion to brief (approximately 3- to 16-h) in vitro stimulation with

a either antigen or PMA and ionomycin. The secreted IFN-γ is captured on the cell surface

of the secreting cell, using an affinity matrix for the secreted cytokine (catch reagent)

which consists of a bispecific antibody able to capture IFN-γ conjugated to a cell-surface

specific antibody (Brosterhus et al., 1999). Captured IFN-γ is then detected by a PE-

labeled second antibody specific for a distinct IFN-γ epitope (detection antibody). The

subsequent analysis by flow cytometry allows for assessment of lymphocytes secreting

IFN-γ, on a single cell level. The IFN-γ Secretion Assay was performed according to the

manufacturer’s instructions (Miltenyi Biotec). A “High Control” (Hu-Li et al., 2001) was
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included by the addition of recombinant murine IFN-γ (100 ng/ml, eBioscience) and the

staining specificity was confirmed by using a PE-labeled rat IgG1 isotype control (R3-34).

5.7.  Intracellular Cytokine Staining

For immunofluorescent staining of intracytoplasmic cytokines, cells were stimulated

with either PMA (50 ng/ml, Sigma) and ionomycin (500 ng/ml; Sigma) or peptide

(SenNP324-332/K
b 10 µg/ml; SenHN419-433/A

b 10 µg/ml; soluble toxoplasma antigen, STAg

10 µg/ml) in cRPMI for 4 hrs at 37°C, 5% CO2. Brefeldin A (10 µg/ml; Sigma) was added

for the last 2 hrs of stimulation to allow for accumulation of cytokines within the cells. 2 x

106 cells were stained for surface markers prior to fixation and permeabilization with BD

Cytofix/Cytoperm solution (Cytofix/Cytoperm™  Kit; BD Biosciences, 20 min 4°C).

Subsequently cells were stained with α-IFN-γ (XMG1.2; BD Biosciences), α-IL-4

(11B11, BD Biosciences), α-IL-17 (TC11-18H10; BD Biosciences) or rat IgG1 (R3-34;

Calteg) in 1x BD Perm/Wash solution (Cytofix/Cytoperm™ Kit; BD Biosciences; 30 min

4°C in darkness) and analyzed by flow cytometry.

5.8.  SNARF®-1 labeling of cells

SNARF®-1 carboxylic acid, acetate, succinimidyl ester (SNARF-1; Molecular

Probes) is a vital red fluorescent dye, similar to CFSE, for monitoring cytokinesis (Lyons

et al., 2001). Up to 107 cells/ml were labeled with 5 µM SNARF-1 in PBS for 7 min. at

37°C in a waterbath. Cell division was monitored by Flow cytometry in the FL2 channel.
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5.9.  Cell Sorting

For in vitro priming, single cell suspensions from the lymph nodes and spleens of

naïve Yeti WT or Yeti IFN-γR-/- were depleted of B cells and adherent cells (see 3.4)prior

to purification of CD8+ or CD4+ T cells. CD8+ and CD4+ T cells were then purified

using either negative selection with magnetic microbeads according to the manufacturer’s

instructions (Miltenyi Biotec) or were stained with CD4-PE, CD8α-PE-Cy5 and

CD62L-APC or CD44-APC, using buffers without azide. The cells were  sorted into

eYFPneg/CD44hi or eYFPneg/CD62Llow CD4+ and CD8+ populations using a

FACSVantageTM (Becton Dickinson) cell sorter with DiVa enhancement software. In

some experiments the CD8+ and CD4+ T cell cultures were resorted according to their

eYFP expression into eYFP negative (eYFPneg), eYFP intermediate (eYFPint) and eYFP

high (eYFPhi) populations on day 1 and day 5 of culture, respectively.

On day 9 after influenza infection T cells from BAL, lung and medLN from 12-15

Yeti WT mice were prepared as described using buffers without azide. Samples were then

stained with CD4-PE, CD8α-PE-Cy5 and CD62L-APC and subsequently sorted. MedLN

samples were sorted into eYFPneg and eYFPint populations within a CD62Llow, CD4+ or

CD8α+ lymphocyte gate. Pooled BAL/lung samples were first sorted into total CD8+

cells and CD62Llow/CD4+ cells with an eYFPneg, eYFPint and eYFPhi phenotype.

CD8+ cells were subsequently resorted and separated according to eYFP fluorescence

within a CD62Llow gate.

5.10.  In Vitro T Cell Priming and Cultures

Purified CD4+ or CD8+ T cells (1 x 106/ml) in cRPMI media were stimulated in 48-

well plates in the presence of anti-CD3ε mAb (145-2C11, 2 µg/ml, BD Pharmingen) and

anti-CD28 mAb (37.51, 5 µg/ml, eBioscience) and recombinant murine IL-2 (5 ng/ml, BD

Pharmingen) and irradiated (3000 rad from a 137Cs source) B6 WT or GKO splenocytes as

APCs (5 x 106/ml) (neutral priming conditions). The following cytokines and antibodies

were added to the cultures as indicated: recombinant murine IL-4 (50 ng/ml, R&D

Systems), recombinant murine IL-12 (5 ng/ml, Peprotech), recombinant murine IL-18
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(30ng/ml, R&D Systems), recombinant murine IFN-γ (30 ng/ml, eBioscience), anti-IL-4

(11B11, 20 µg/ml, MBCF Trudeau Institute), anti-IL-12 (C17.8, 20 µg/ml, MBCF

Trudeau Institute) and anti-IFN-γ (XMG1.2, 20 µg/ml, MBCF Trudeau Institute). Under

type 1 priming conditions, IL-12 and anti-IL-4 mAb, and, under type 2 priming

conditions, IL-4 and anti-IFN-γ, were added to the respective cultures. Some cells were

labeled with the vital red fluorescent dye SNARF-1 (Molecular Probes) to monitor cell

division.

T cells sorted from Influenza virus-infected animals were cultured at 5 x 105/ml in flat-

bottom 96-well plates for 24 h in cRPMI at 37˚C, 5% CO2. Cells were activated by plate-

bound anti-CD3ε (10 µg/ml) where indicated.

5.11.  Cytokine and Chemokine Quantification using RT-PCR

For RT-PCR, RNA was extracted using the RNAqueous-4PCR kit (Ambion) and

reverse transcribed with the Superscript II RNase H- kit (Invitrogen) using oligo(dT)18

priming. To analyze mRNA expression of cytokines and chemokines, quantitative real-

time RT-PCR was performed using gene-specific primers and probes (Johnson et al.,

2003, Overbergh, 1999 #361), purchased from the MBCF at the Trudeau Institute, and the

ABI Prism 7700 Sequence BioDetector (PE Biosystems) according to the manufacturer's

instructions (TaqMan, Perkin Elmer). Ct (cycle threshold) values were normalized to

levels of the housekeeping gene GAPDH (routinely between 15 and 18 cycles) and

normalization to the housekeeping gene ß-2-microglobulin gave similar results.

5.12.  Cytokine and Chemokine Quantification in Supernatants

Cytokines and chemokines in culture supernatants were quantified using traditional

ELISA (enzyme-linked immunosorbent assay) or a multiplex flow cytometric suspension

microbead array (Carson and Vignali, 1999). Plates and reagents were purchased from

Fisher Scientifc if not otherwise stated. Cytokine quantification by ELISA was performed
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using paired antibodies for IFN-γ (R4-6A2; XMG1.2; both eBioscience). Briefly, Nunc™

MaxiSorp™ 96-well immunoplates were coated overnight at 4°C with unconjugated rat

anti-mouse IFN-γ (R4-6A2, 2µg/ml) in PBS containing 0.05% NaN3, washed with PBS

containing 0.05% Tween 20 (PBS-Tween) and subsequently blocked with PBS containing

0.05% NaN3, 1% BSA and 0.5% sucrose (Amresco) for 2 hours at room temperature (RT).

After washing, samples and recombinant mouse IFN-γ (eBioscience) as standard were

serially diluted in PBS containing 0.05% NaN3 and 1% BSA and applied for 2 hours at

RT. Cytokine-antibody binding was detected using unconjugated mAb against mouse

IFN-γ (XMG1.2, 0.5µg/ml in PBS 0.05% NaN3, 1% BSA, 1 hour RT) and visualized with

a conjugate of biotinylated alkaline phosphatase/streptavidin (Caltag, 45 min RT) and p-

nitrophenyl phosphate as substrate (Sigma, in alkaline buffer). If necessary, reactions were

stopped adding 0.5M NaOH. Absorbance was read at 405 nm with a Spectramax™ 190

ELISA microplate reader (Molecular Devices) equipped with SOFTmax™ Pro Version 4.0

(Molecular Devices) software.

Multiplex flow cytometric suspension microbead arrays are based on 5.6 micron

polystyrene microbeads that are internally dyed with fluorochromes. Using different

intensities of the dyes for different batches of microbeads results in unique spectral

signatures determined by its mixtures. Thus, it is possible to distinguish up to 100

different parameters via flow cytometry in one sample. The surface chemistry of the

microbeads allows coupling of capture reagents such as antibodies, oligonucleotides,

peptides or even receptors. In our case, monoclonal antibodies specific for a cytokine or
chemokine are covalently linked to a fluorescent bead set, which captures the cytokine. A

complementary biotinylated monoclonal cytokine/chemokine antibody then completes the

immunological sandwich and the reaction is detected with SA-PE. Multiplex flow

cytometric microbead array analysis was performed according to the manufacturer’s

instructions (Beadlyte® Multi-Cytokine/Chemokine Flex-Kit; Upstate USA). Briefly, 50

µl of sample or recombinant mouse cytokine/chemokine standards were diluted in

Beadlyte® assay buffer, mixed with 25 µl of relevant mouse cytokine or chemokine

capture beads, and incubated for 2 h at RT in a microplate shaker. Unbound material was

removed from the bead mixture by placing the filter plate over a vacuum manifold

(Millipore Inc.). Beads were washed extensively in Beadlyte® assay buffer, resuspended in

75  µl of assay buffer and mixed with 25 µl of biotinylated secondary antibodies. The
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mixture was then incubated for 1.5 h at 25°C in a microplate shaker. Next, 25  µl of SA-

PE was added, incubated for 30 min, washed and samples were finally resuspended in 125

µl of assay buffer. The following mouse Beadmates™ were combined in a multiplex

analysis: IL-2, IFN-γ, GM-CSF, TNF-α, RANTES (CCL5), SDF (CXCL12) and MIP-1β

(CCL4). The median fluorescence intensity (MFI) was measured from at least 50 beads

per set using the Luminex xMAP system (Luminex). The concentration of cytokines and

chemokines was determined using a 5 parameter curve-fit generated from the MFI’s of the

respective mouse cytokine and chemokine standards.

5.13.  Dual Adoptive Transfer System

For dual transfer experiments single cell suspensions from the lymph nodes and

spleens of naïve Yeti WT (CD45.1 or CD90.1) and Yeti IFN-γR-/- (CD45.2, CD90.2)

were depleted of B and adherent cells as described above. An aliquot of the cells was

analyzed prior to transfer by FACS analysis in order to determine the percentage of CD4+

and CD8+ T cells and subsequently combined such that the total number of CD4+ and

CD8+ cells in each donor population was equal. The combined donor cells were then

transferred (1.7 x 107 total cells) in 200 µl into naive TCRβδKO recipient mice via tail

vein injection of 200 µl. 1 d later, recipient mice were challenged with Sendai virus or T.

gondii as described above, and T cell responses were analyzed on day 9 or day 7 post

infection, respectively.

5.14.  Bone marrow Chimeras

Bone marrow (BM) chimeras were generated by reconstituting lethally irradiated (2x

475 rads from a 137Cs source) TCRβδKO recipient mice with a total of 1 x 107  donor-

derived whole BM cells (Lee et al., 2003). Erythrocytes were removed from donor BM by

ammonium chloride lysis. Donor BM cells from naïve Yeti WT (CD45.1 or CD90.1) and

Yeti IFN-γR-/- (CD45.2, CD90.2) donor mice were transferred at equal numbers via tail
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vein injection in a volume of 200 µl. Mice were put on an antibiotic diet for at least 3

weeks after transfer and allowed to reconstitute for 6-8 weeks prior to Sendai virus or T.

gondii infection.

5.15.   Statistical Analysis

Statistical analysis was performed using Prism 3.0c (Graphpad Software). Asterisks

indicate statistical differences with p values <0.05 in a Student’s t test.
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6.  RESULTS

6.1.  Assessing IFN-γ expression by CD4+ and CD8+ effector T cells

6.1.1.  IFN-γ expression by CD4+ and CD8+ T cells is heterogeneous in vitro

Yeti mice represent a unique tool to directly visualize IFN-γ expressing cells (Stetson

et al., 2003). Briefly, in these mice eYFP is linked to the endogenous ifng gene and

activation and transcription of the endogenous ifng gene locus results in one mRNA with

two cistrons. Due to the IRES element, eYFP and IFN-γ are translated separately. While

IFN-γ is secreted, eYFP is retained in the cell, thereby marking the IFN-γ expressing cell.

Yeti mice allow therefore non-invasive and unbiased tracking of any IFN-γ expressing cell

using flow cytometry. Thus, to analyze the expression of IFN-γ during the activation of T

cells, CD4+ and CD8+ T cells were purified from naïve Yeti mice or B6 WT littermates

and stimulated with anti-CD3ε and anti-CD28 in the presence of irradiated APCs. The

cultures were supplemented with IL-12 plus α-IL-4 (Th1/Tc1 conditions) or IL-4 plus α-

IFN-γ (Th2/Tc2 conditions) as indicated. To assess cell division, some cells were labeled

with the vital red-fluorescent dye SNARF-1 (Lyons et al., 2001) and cultured under the

same conditions. As shown in Figure 1A, CD8+ T cells expressed high levels of eYFP

within 24 h of priming although they had not divided yet. The eYFP fluorescence was

broadly heterogeneous and Tc1 conditions clearly increased IFN-γ expression while Tc2

conditions reduced the frequency and brightness. Both effects were more apparent after 3

days of culture. In contrast to CD8+ T cells, CD4+ T cells required 2 days of priming to

become eYFP fluorescent and were only induced to do so under Th1 conditions (Figure

10B). Although at least one cell division was apparent, even undivided cells were eYFP+

indicating that the time in culture rather than cytokinesis is the limiting factor for IFN-γ

expression. Heterogeneous eYFP expression was maintained in Th1 cells over the 5-day

culture period. To confirm that eYFP fluorescence correlates with the expression of IFN-γ

we sorted CD8+ and CD4+ T cells into eYFP negative (eYFPneg), eYFP intermediate
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(eYFPint) and eYFP high (eYFPhi) populations and determined the abundance of IFN-γ

transcript by real time RT-PCR. The eYFP brightness of both CD8+ (Figure 10C) and

CD4+ (Figure 10D) T cells correlated positively with the abundance of IFN-γ transcripts

of the respective population. Together, these data show that IFN-γ expression by CD4+

and CD8+ is broadly heterogeneous and can be directly quantified by the brightness of the

bicistronic eYFP reporter.

Figure 10:
Heterogeneous fluorescence of the bicistronic IFN-γ-eYFP reporter correlates with IFN-γ  expression.

CD8+ (A) or CD4+ (B) T cells were purified from the lymph nodes of naïve Yeti mice (gray histograms) or wt
littermate controls (bold line) and stimulated with anti-CD3ε and anti-CD28 in the absence or presence of polarizing
cytokine conditions and APCs. Some cells were labeled prior to culture with the vital red-fluorescent dye SNARF-1. On
the indicated days, the cells were analyzed by FACS for eYFP expression and SNARF-1 fluorescence. Cultures of CD8+
(C) T cells cultured under neutral conditions and CD4+ (D) T cells cultured under Th1 conditions were sorted on day 1
and day 5, respectively, into eYFPneg (open histogram and bar), eYFPint (gray histogram and bar) and eYFPhi (black
histogram and bar) populations (top panels). The abundance of IFN-γ transcripts in the sorted populations was
determined by real-time RT-PCR and is depicted relative to the eYFPneg population. The frequency and MFI of the eYFP
positive cells are noted in the histograms. All data are representative of two or more independent experiments.
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6.1.2.  Expression of IFN-γ in respiratory virus-infected Yeti mice is broadly

heterogeneous and highly fluorescent cells are restricted to the infected lung

To investigate the expression of IFN-γ during infection, we analyzed the response to

intranasal challenge with Influenza or Sendai virus, respectively. Yeti mice and B6 WT

littermates were infected i.n. with Influenza virus or Sendai virus and analyzed 9 days

later, at the peak of the cellular response, by FACS for eYFP expression. Consistent with

published data, non-infected Yeti controls revealed only a background of eYFP

fluorescence in all examined tissues, (Figure 11 and 12) (Matsuda et al., 2003; Stetson et

al., 2003). The background fluorescence intensity was low and the number of eYFP+ cells

in the BAL and lung was prior to infection very small (Figure 11A and 12). Upon

infection with Influenza or Sendai virus the number and frequency of eYFP+ cells

Figure 11:
Expression of the bicistronic IFN-γ- eYFP reporter in naïve and Influenza-infected Yeti mice.

A Indicated organs from naive Yeti mice were analyzed by FACS for eYFP fluorescence of CD4+ and CD8+ T cells.
B Yeti mice were infected i.n. with Influenza virus and FACS was performed 9 days later together with the analysis of
naïve mice in (A). C Yeti mice and wt littermate controls were infected as in (B) and CD8a+-gated T cells from the
indicated organs were analyzed by flow cytometry for the expression of eYFP and NP366-374 tetramer staining. The
vertical dashed line demarcates eYFPint and eYFPhi cells. Data are representative of multiple independent experiments.
In some of these experiments five individual mice per cohort were analyzed with comparable results.



6.  RESULTS                                                                                                                                                           53

increased substantially, mainly in the BAL (>100-fold), the lung (>6-fold) and the pleural

cavity (>7-fold) (Figure 11B, 12A, 13B and data not shown). Essentially all eYFP+ cells

were in all organs contained within a FSC/SSC lymphocyte gate and were predominantly

identified as CD4+ or CD8+ T cells (60-95%) with a minor contribution of NK and NK T

cells (Figure 11B, 12B and data not shown). T lymphocytes in the lung parenchyma and

airways were almost exclusively eYFP positive (Figure 11B and 13B) although only one

ifng allele was marked by the bicistronic reporter. In contrast, the frequency of eYFP

positive T lymphocytes remained low in all secondary lymphoid organs, including the

draining medLN and in other peripheral tissues besides the lung (Figure 11B, 13B and

data not shown). The eYFP fluorescence intensity of eYFP+ CD4+ and CD8+ T cells was

remarkably heterogeneous in all examined tissues and highly fluorescent cells (eYFPhi)

were present only in the lung airways (BAL) and parenchyma of infected mice (Figure

11B, 13B). Even the pleural cavity, which harbors the infected lung and had a similar

increase and frequency of eYFP+ cell as the lung, did not contain cells of comparable

brightness (Figure 11B, 11C and data not shown).

Figure 12:
Total numbers and identity of
eYFP+ cells in naïve and
Influenza-infected Yeti mice.

Naïve and day 9 Influenza virus
infected Yeti mice were analyzed
by flow cytometry for eYFP
expression.
A Viable cells were counted  by
trypan blue exclusion using a
hemacytometer and the total
number of eYFP+ cells from
naïve (white bars) and day 9
influenza-infected (grey bars) Yeti
mice was calculated according to
the flow cytometric analysis
within a negative PI or DAPI gate.
Depicted are the mean and
standard deviation obtained from
three mice per group. These data
are representative of six
independent experiments with
similar result.
B  The relative contribution of
cellular subsets to the eYFP+ population of naïve (-) and day 9 influenza-infected (+) Yeti mice was determined by flow
cytometry using mAb to CD4, CD8α, NK1.1 and CD3ε. The following classifications were made and indicated in the
legend: CD4 (CD4+, CD8α-; dark grey bars), CD8 (CD4-, CD8α+, hatched bars), NK (NK-1.1+, CD3ε-, white bars),
NK T (NK-1.1+, CD3ε+, black bars) and uncharacterized others (light grey bars). Depicted is the mean from three mice
per group. These data are representative of three independent experiments with similar result.
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We next used MHC class I tetramers to analyze IFN-γ expression in antigen-specific

CD8+ T cells after  Influenza or Sendai virus infection (Belz et al., 2000; Cauley et al.,

2002; Flynn et al., 1998). Both Influenza NP366-374- and PA224-233-specific and Sendai

NP324-332 (SenNP) specific CD8+ T cells disseminated into all examined tissues. These

cells were almost exclusively eYFP positive but nonetheless highly heterogeneous in their

fluorescence intensity (Figure 2C, 4C and data not shown). Moreover, highly fluorescent

CD8+ antigen-specific cells were also only present in the lung airways and parenchyma

after infection with both Influenza and Sendai virus. The frequency of Influenza NP366-374-

or PA224-233-specific cells was comparable between Yeti and B6 WT littermate controls in

all organs, demonstrating that the insertion of the bicistronic reporter did not affect the

cellular response to infection with the Influenza virus (Figure 11C and data not shown).

Figure 13:
Expression of the bicistronic IFN-γ- eYFP
reporter in Sendai-infected Yeti mice.

A. Lung lymphocytes from Sendai (left
plot) and Influenza (right plot) infected mice
were analyzed 9 days after infection for
specificity of the SenHN419-433 multimer
staining. B. Yeti mice were infected i.n.
with Sendai virus and FACS was performed
9 days later. Indicated organs were analyzed
by FACS for eYFP fluorescence of CD4+
and CD8+ T cells. C  CD4+ and CD8a+-
gated T cells from the indicated organs were
analyzed by flow cytometry for expression
of eYFP and SenHN419-433 multimer or
SenNP324-332 tetramer staining, respectively.
The vertical dashed line demarcates eYFPint

and eYFPhi cells. Data are representative of
multiple independent experiments. In some
of these experiments five individual mice
per cohort were analyzed with comparable
results.
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To investigate the expression of IFN-γ in antigen-specific CD4+ T cells after Sendai virus

infection we used a MHC class II multimer, recognizing CD4+ T cells specific for the

hemagluttinin-neuraminidase HN419-433 epitope (SenHN) in the context of I-Ab (Arnold et

al., 2002; Cauley et al., 2002). In a control experiment, the SenHN MHC class II multimer

did not stain in mice infected 9 days earlier with Influenza virus, demonstrating the

specificity of the reagent (Figure 13A). SenHN-specific CD4+ T cells also disseminated

into all examined tissues but were only in the lung airways and lung parenchyma

exclusively eYFP positive (Figure 13C). Antigen-specific CD4+ T cells were also highly

heterogeneous in their fluorescence intensity (Figure 13C). Moreover, eYFPhi SenHN-

specific CD4+ T cells were only present in the lung airways and parenchyma after Sendai

virus infection.

In summary, the heterogeneity in eYFP fluorescence and the anatomical restriction of

eYFPhi cells was observed in Influenza NP366-374, Influenza PA224-233-specific and SenNP-

specific CD8+ T cells as well as SenHN-specific CD4+ T cells and is therefore not due to

differences in T cell lineage, antigen-specificity or the nature of the respiratory virus.

6.1.3.  eYFP fluorescence correlates directly with the expression of acute activation
markers

Next we investigated whether heterogeneous eYFP fluorescence intensity correlates

with the expression of surface activation markers. Conventional methods to identify

cytokine-producing cells at the single-cell level require in vitro restimulation

(Assenmacher et al., 1998; Openshaw et al., 1995) which alters the expression patterns of

surface antigens and prevents their assessment directly ex vivo (Taylor-Fishwick and

Siegel, 1995; Ziegler et al., 1994). In contrast, bicistronic cytokine reporter mice allow the

direct phenotypic analysis of cytokine-expressing cells ex vivo (Mohrs et al., 2005; Mohrs

et al., 2001; Shinkai et al., 2002; Stetson et al., 2002; Stetson et al., 2003). Yeti mice were

infected with Influenza virus and analyzed 9 days later via flow cytometry. T lymphocytes

with a naïve phenotype (CD62Lhi, CD44low, CD45RBhi, CD11alow) were eYFP

negative (Figure 14A and data not shown). Conversely, eYFP positive CD4+ and CD8+ T

cells were CD62Llow, CD44hi, CD45RBlow and CD11ahi consistent with an
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activated/memory phenotype. The activated/memory phenotype of eYFP positive cells

was displayed on lymphocytes derived either from secondary lymphoid tissues or

peripheral sites and was independent of eYFP brightness. In contrast, the surface

expression of acute activation markers such as CD69, CD25, and CD122 on eYFP positive

CD4+ and CD8+ T cells was clearly heterogeneous (Figure 14B and data not shown). The

expression of these markers on CD4+ and CD8+ T cells correlated positively with eYFP

fluorescence. For example, eYFPhi cells in the lung expressed higher levels of CD69 on

the surface than eYFPint or eYFPneg cells suggesting a higher level of acute activation.

6.1.4.  IFN-γ production correlates with eYFP fluorescence but is only induced after

stimulation

As described above, we observed remarkable fluorescence heterogeneity in eYFP

positive CD4+ and CD8+ T cells after infection with Influenza or Sendai virus (Figures

11,13,14). We next asked whether the brightness of reporter expression correlated with the

secretion of IFN-γ protein. Yeti mice and B6 WT controls were infected with Influenza

virus and the production of IFN-γ by splenocytes was analyzed 9 days later by cytokine

secretion assay (Hu-Li et al., 2001). As shown in figure 6A, the vast majority of eYFP

positive but not eYFP negative cells secreted IFN-γ upon short-term stimulation. The

secretion of IFN-γ by CD4+, total CD8+ and antigen-specific CD8+ T cells correlated

directly with the eYFP fluorescence. In fact, eYFPhi cells secreted the maximum amount

Figure 14:
Surface phenotype of T cells in correlation with
eYFP fluorescence.

Yeti mice were infected i.n. with influenza virus.
BAL and medLN were analyzed by flow cytometry
9 days later. Depicted dot plots were gated on
CD4+ or CD8a+ cells. Shown are eYFP
fluorescence versus CD44 ( A )  or CD69 (B).
Depicted plots are representative of three individual
mice. Similar results were obtained in three
independent experiments.
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of IFN-γ that can be measured by this assay as determined by the addition of recombinant

IFN-γ as a High Control (Hu-Li et al., 2001) (Figure 15A). However, the frequency of

IFN--secreting cells was very low when the same cells were cultured in the absence of

stimulation with plate-bound anti-CD3ε despite robust eYFP fluorescence. Similar results

were obtained by intracellular cytokine staining and antigen-specific stimulation with the

Influenza NP366-374 peptide (data not shown). Although the cytokine secretion assay is

ideal to analyze the secretion of IFN-γ at the single cell level, it is limited to the detection

of one cytokine at a time and it is unclear whether the brightness of staining reflects the

secreted amount. To directly corroborate the positive correlation between eYFP

fluorescence and IFN-γ production and to assay for additional cytokines and chemokines,

we measured the accumulation of effector molecules in culture supernatants of cells that

were isolated based on different levels of eYFP fluorescence. Yeti mice were infected with

Influenza virus and CD4+ and CD8+ T lymphocytes were sorted from the pooled

BAL/lung and the medLN into eYFPneg, eYFPint and eYFPhi cells (Figure 15B). We

gated on CD62Llow cells since the vast majority of eYFP negative cells in the lymph node

have a naïve phenotype (CD44low, CD62Lhi, CD45RBhi), whereas essentially all

lymphocytes in the periphery display an effector/memory phenotype (CD44hi,

CD62Llow, CD45RBlow). As mentioned earlier, eYFPhi cells were present only in the

pooled BAL and lung, while eYFP negative cells could not be obtained in sufficient

numbers from these sites (Figure 11). The sorted cells were then cultured in the absence or

presence of plate-bound anti-CD3ε for 24 h and the supernatants were analyzed for IFN-γ

using a multiplexed cytokine bead array. As shown in figure 15B, IFN-γ secretion by

CD4+ and CD8+ cells isolated from either the peripheral effector tissue or the draining

medLN correlated positively with the eYFP fluorescence intensity of the sorted

population. CD4+ T lymphocytes isolated from the effector site generally secreted more

IFN-γ than cells with similar reporter expression isolated from the lymph node.

Surprisingly, IFN-γ was almost undetectable in cultures without further in vitro

restimulation despite the robust eYFP fluorescence of the sorted cell populations at the
time of isolation. Upon in vitro restimulation with plate bound α-CD3ε (Figure 15B) or

PMA + ionomycin (data not shown), the IFN-γ secretion was more than 1000-fold

increased. Similar results were obtained when the culture supernatants were harvested

after 4 h or 8 h (data not shown). These observations suggest that the potential of CD4+
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and CD8+ T cells to secret IFN-γ correlates directly with the expression of the bicistronic

reporter; however, cytokine secretion is largely dependent on stimulation

6.1.5.  eYFP fluorescence correlates directly with the production of additional
effector cytokines and chemokines

We speculated further that increased reporter fluorescence might correlate not only

with the secretion of IFN-γ but also with the enhanced secretion of additional effector

cytokines and chemokines. To test this hypothesis we analyzed the culture supernatants

from cells sorted by different levels of eYFP fluorescence as described in figure 15B for

additional effector cytokines and chemokines. Indeed, the secretion of the type 1 effector

cytokines TNF-α and GM-CSF (Figure 16A) and the pro-inflammatory chemokines CCL5

(RANTES) and CCL4 (MIP-1β) (Figure 16B) was largely restricted to eYFP positive cells

Figure 15:
Ex vivo IFN-g production by T cells in correlation with
eYFP fluorescence.

Yeti and wt mice were infected i.n. with Influenza virus and
analyzed 9 days later. (A) Splenocytes were cultured for 4 h in
the presence or absence of PMA+ ionomycin and analyzed by
IFN-g secretion assay. Depicted dot plots were gated on CD4+,
total CD8a+ or PA224-233-specific T cells. The spleens from three
mice per group were pooled. Similar results were obtained in
two independent experiments. (B) Single cell suspensions were
prepared from lungs (BAL+lung) and medLN. CD4+ and CD8a+

T lymphocytes with a CD62Llo phenotype were separated by
cell sorting according to fluorescence intensity into eYFPneg,
eYFPint and eYFPhi populations. Purified populations were
cultured in the absence (-) or presence (a-CD3) of plate-bound
anti-CD3e. Culture supernatants were analyzed for IFN-g using
a cytokine bead array. Depicted are mean ± SD. Asterisks
indicate statistical differences with p values <0.05 in a Student’s
t test. Certain cell populations were not obtained in sufficient
numbers and IFN-g production could not be determined = ND.
Similar results were obtained in two independent experiments.
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and correlated positively with the eYFP brightness of CD4+ and CD8+ from the medLN

or the BAL/lung. In contrast, the secretion of IL-2 (Figure 16A) and the chemokine

CXCL12 (SDF-1) (Figure 16B) was not restricted to eYFP positive cells and did not

correlate with eYFP fluorescence intensity. As seen for IFN-γ, tissue-derived CD4+ T

lymphocytes secreted larger amounts of these soluble effector molecules than cells from

the lymph node. In fact, among the CD4+ T population, GM-CSF was only detectable in

the supernatants of stimulated cells derived from BAL/lung. As observed for the

production of IFN-γ, the secretion of these cytokines and chemokines was likewise largely

dependent on activation of the CD3 complex. These data show that the brightness of the

bicistronic eYFP reporter correlates positively with the potential to coordinately secret a

select set of effector cytokines and chemokines in addition to IFN-γ. The production of

Figure 16:
Ex vivo cytokine and chemokine production by T lymphocytes.

Yeti mice were infected with influenza virus and the indicated populations were isolated 9 days later as described in
Fig. 4. Subsequently eYFPneg, eYFPint and eYFPhi populations were cultured in the absence (-) or presence (α-CD3) of
plate-bound anti-CD3ε. Culture supernatants were analyzed for (A) the cytokines TNF-α, GM-CSF, IL-2, and (B) the
chemokines RANTES/CCL5, MIP-1β/CCL4 and SDF-1/CXCL12 using a cytokine bead array. Depicted are mean ± SD.
Detection limits for the cytokines or chemokines are indicated in the respective graphs. Asterisks indicate statistical
differences with p values <0.05 in a Student’s t test. Certain cell populations were not obtained in sufficient numbers and
protein production could not be determined = ND. Similar results were obtained in two independent experiments.
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these cytokines and chemokines by CD4+ and CD8+ T cells ex vivo is largely restricted to

eYFP positive cells and is dramatically increased upon stimulation. These data suggest

that increased eYFP fluorescence reflects the progressive effector differentiation of

activated CD4+ and CD8+ T cells and that highly differentiated cells are restricted to the

site of infection.

6.1.6.  The anatomical restriction of eYFPhi cells, but not the heterogeneity of eYFP,

depends on the pathogen

Finally we wanted to study whether the observed heterogeneity of eYFP fluorescence

or the anatomical restriction of eYFPhi cells after respiratory virus infection are specific

for a given type of pathogen. To this end, Yeti mice were infected orally with the

protozoan parasite T. gondii, which induces a vigorous type I response, and various organs

were analyzed 1 week later by FACS (Figure 17). T. gondii-infected mice revealed a

similar heterogeneity of eYFP fluorescence of CD4+ and CD8+ T cells as Influenza- and

Sendai-infected animals. However, in contrast to Influenza or Sendai-infected mice,

eYFPhi cells were restricted to other organs such as the mesLN, liver, lung or the blood

Figure 17:
Expression of the bicistronic IFN-g-eYFP reporter
in T. gondii-infected Yeti mice.

Yeti mice were infected orally with T. gondii and
CD4+ and CD8+ T cells in the indicated organs were
analyzed after 1 week for their eYFP fluorescence. The
vertical dashed line demarcates eYFPint and eYFPhi

cells. Data are representative of two independent
experiments with a minimum of 3 individual mice or 3
pooled mice per group.
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(Figure 17 and data not shown). In fact, blood-borne CD4+ T cells from T. gondii-infected

animals had substantially higher MFI (eYFP) values than cells in any organ of Influenza

or Sendai virus-infected animals (Figure 11, 13 and 17). Consistent with this observation,

T. gondii-infected mice have high serum IFN-γ concentrations during acute infection

((Denkers and Gazzinelli, 1998; Johnson et al., 2003) and data not shown). Thus the

heterogeneous expression of IFN-γ by CD4+ and CD8+ T cells and the selective

accumulation of eYFPhi cells in certain tissues are not limited to localized viral infections.

In contrast, in which tissue eYFPhi cells accumulate is dependent on the pathogen, despite

the wide dissemination of eYFP positive cells.
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6.2 The Role of IFN-γ receptor mediated signals for IFN-γ expression by CD4+ and

CD8+ T cells

6.2.1.  Differential requirement for IFN-γ receptor mediated signals for IFN-γ

expression by CD4 and CD8 T cells in vitro

To investigate the requirement of IFN-γ receptor mediated signals for the subsequent

expression of IFN-γ in T cells, naïve CD4+ and CD8+ T cells were purified from

CD45.1+ Yeti WT and Yeti IFN-γR1-deficient (Yeti IFN-γR-/-) mice by sorting for an

eYFP negative/CD44low phenotype. Purified cells were stimulated with α-CD3ε, α-CD28

and IL-2 (neutral conditions) in the presence of irradiated IFN-γ deficient (GKO) APCs

(Dalton et al., 1993; Huang et al., 1993; Stetson et al., 2003). The splenic APCs were

obtained from Thy1.1+ GKO mice to exclude APCs as a potential source of IFN-γ and to

omit live non-Yeti effectors based on their Thy1 disparity from the T cell analysis (Dalton

et al., 1993). CD4+ and CD8+ T cells were cultured with IL-12 plus α-IL-4 (Th1/Tc1

conditions) or IL-4 plus α-IFN-γ (Th2/Tc2 conditions) where indicated and analyzed on

d5 or d3 post priming, respectively (Figure 18). Consistent with data shown in paragraph

4.1.1, neither Yeti WT nor Yeti IFN-γR-/- CD4+ T cells induced the eYFP reporter under

neutral or Th2 conditions, while Th1 polarizing conditions lead to robust eYFP expression

by Yeti WT CD4+ T cells (Figure 18A). In contrast, the frequency of eYFP positive Yeti

IFN-γR-/- CD4+ T cells was substantially decreased under Th1 polarizing condition,

despite similar cell recovery (Figure 18A and data not shown), suggesting a critical role of

IFN-γ mediated signals for optimal IFN-γ expression by CD4+ effector T cells. And,

consistent with previous data (paragraph 4.1.1), robust eYFP expression by Yeti WT

CD8+ T cells could be detected in all priming conditions and the addition of IL-12

resulted in the highest frequency and brightness (Figure 18B). Yeti IFN-γR-/- CD8+ T

cells also induced IFN-γ under all conditions, however, their frequency and brightness was

substantially lower under neutral and Tc2 polarizing conditions when compared to Yeti

WT cultures (Figure 18B). Interestingly, the addition of IL-12 to Yeti IFN-γR-/- cultures

restored the defect in IFN-γ expression, revealing that IL-12 is able to compensate for the
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lack of IFN-γR signals in CD8+ T cells. Thus, activated CD8+ T cells express IFN-γ

independently of IFN-γR mediated signals but IFN-γ mediated functions are required for

optimal IFN-γ expression in the absence of IL-12.

Figure 18:
Expression of the bicistronic IFN-γ-eYFP reporter in IFN-γR-/- Yeti mice after in vitro polarization.

CD44low/eYFP negative CD4+ (A) or CD8+ T cells (B) were purified from the lymph nodes of naïve Yeti mice
(Yeti WT, bold line) or naïve IFN-γ R-/- Yeti mice (Yeti IFN-γ R-/-, gray histograms) and stimulated with anti-CD3ε,
anti-CD28 and IL-2 (   , neutral conditions) in the absence or presence of polarizing cytokine conditions (as indicated)
and GKO APCs. The cells were analyzed by FACS for eYFP expression on d5 and d3, respectively. The frequency and
median fluorescence intensity (MFI) of the eYFPpos cells are noted next to the histograms. All data are representative of
three or more independent experiments.

6.2.2.  IFN-γ by itself is not sufficient to induce IFN-γ expression by CD4+ or CD8+ T

cells

As reviewed in the introduction, IFN-γ is thought to play a critical role in inducing its

own expression, via T-bet-activation by the IFN-γR complex and STAT1, respectively

(Figure 12 and 13). However, the sequential roles of IFN-γ vs. IL-12 in the induction of

IFN-γ expression remain controversial (Murphy and Reiner, 2002b; Robinson and

O'Garra, 2002). We therefore asked whether IFN-γ by itself is capable of inducing

substantial IFN-γ expression by CD4+ and CD8+ T cells. To answer this question we

analyzed the eYFP expression of Yeti WT and Yeti IFN-γR-/- CD4+ and CD8+ T cells

cultured in vitro, as described in figure 18, after addition of exogenous rIFN-γ and
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concurrent neutralization of IL-12 and IL-4 (Figure 19). Recombinant IFN-γ alone was

insufficient to induce IFN-γ expression, as its presence did not result in significant eYFP

expression by Yeti WT CD4+ T cells (Figure 19A). In fact, comparable eYFP expression

was achieved by CD4+ under neutral or cytokine neutralizing conditions without addition

of IFN-γ (Figure 18A and 19A). Likewise, the addition of rIFN-γ did not increase the

frequency of eYFP+ Yeti WT CD8+ T cells when compared to conditions without rIFN-γ

but neutralization of IL-12 and IL-4 (Figure 19B).

Figure 19:
Expression of the bicistronic IFN-γ-eYFP reporter in IFN-γR-/- Yeti mice after in vitro polarization with
recombinant IFN-γ

CD44low/eYFP negative CD4+ (A) or CD8+ T cells (B) were purified from the lymph nodes of naïve Yeti mice (Yeti
WT, bold line) or naïve IFN-γ R-/- Yeti mice (Yeti IFN-γ R-/-, gray histograms) and stimulated with anti-CD3ε, anti-
CD28 and IL-2 in the presence of rIFN-γ and neutralizing Ab against IL-12 and IL-4 (as indicated) and GKO APCs. The
cells were analyzed on d5 or d3 by FACS for eYFP expression. The frequency and median fluorescence intensity (MFI)
of the eYFPpos cells are noted next to the histograms. All data are representative of three or more independent
experiments.

Moreover, the absence of IL-4, in cultures where neutralizing Ab against IL4 was added,

increased the frequency of IFN-γ expressing CD4+ and CD8+ T cells. This observation is

in concordance with earlier studies demonstrating the dominance of IL-4 over IL-12 in T

cell differentiation cultures (Hsieh et al., 1993). Overall, IFN-γ alone is not sufficient for

the induction of IFN-γ  during priming of naïve CD4+ and CD8+ T cells in vitro.
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6.2.3.  Impaired Th1 response after Sendai-virus infection of IFN-γ receptor deficient

mice

Our previous studies revealed that IFN-γ receptor-mediated signals are required for an

optimal IFN-γ response by both CD4+ and CD8+ effector T cells after in vitro priming. To

examine the role of the IFN-γR complex for IFN-γ expression by antigen-specific CD4+

and CD8+ T cells in vivo, B6 WT, Yeti WT and Yeti IFN-γR-/- mice were infected

intranasally with the respiratory Sendai virus (Cauley et al., 2002). The IFN-γ response

was analyzed 9 days later in various organs (Figure 20). B6 WT mice were included as

controls to discriminate autofluorescence from low eYFP fluorescence. IFN-γR-/- antigen-

specific CD4+ and CD8+ T cells displayed heterogeneous IFN-γ expression after Sendai

infection as assessed by eYFP fluorescence. Thus, the observed heterogeneity in eYFP

expression in CD4+ and CD8+ T cells after infection is not the result of IFN-γ mediated

events. Also consistent with our previous in vivo data, the presence of highly eYFP

fluorescent cells was restricted to the infected lung airways and parenchyma in antigen-

specific IFN-γR-/- CD4+ and CD8+ T cells (Figure 20C and D). In agreement with our in

vitro observation, both the frequency and brightness of eYFP positive cells within the

CD4+ SenHN-specific population were reduced in all examined organs of Yeti IFN-γR-/-

mice when compared to Yeti WT mice (Figure 20C). In contrast, the antigen-specific

CD8+ T cell response was normal in terms of frequency and brightness of the IFN-γ

reporter positive cells (Figure 20D). Moreover, while the overall frequency of the SenNP-

specific CD8+ response was similar between Yeti IFN-γR-/- and Yeti WT, the SenHN-

specific CD4+ T cell response was substantially reduced in all examined organs (Figures

20A, 20B and 21A, 21B). Therefore, IFN-γ receptor-mediated functions are critical for

both the magnitude of the SenHN-specific CD4+ T cell response and their IFN-γ

expression, while eYFP expression was not compromised in SenNP-specific CD8+ T

cells. While our experiments clearly demonstrated a critical role of IFN-γ receptor-

mediated functions for the T helper cell response and IFN-γ expression upon infection

with Sendai virus, it remains unclear whether the observed defects in the SenHN-specific

CD4+ T cell compartment are T cell-intrinsic or due to indirect effects, such as impaired

antigen presentation. Although the overall frequency of recently activated antigen-specific

T cells, as assessed by CD69 expression, was similar between Yeti IFN-γR-/- and Yeti
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WT controls in the lung parenchyma, there was a substantial eYFPnegative CD69hi

population present within SenHN-specific CD4+ T cell which was absent in Yeti WT

controls (Figure22). As described in the introduction, IFN-γ is critically involved in the

up-regulation of MHC class II expression by APCs. Therefore, IFN-γ might be required

for optimal activation and differentiation of naïve CD4+ T cells in order to acquire an
IFN-γ expressing phenotype. Indeed, Sendai-infected Yeti IFN-γR-/- displayed

substantially lower levels of I-Ab expression when compared to the Yeti WT controls (data

not shown). Thus, it remains possible that IFN-γ receptor signals directly or indirectly

regulate the IFN-γ expression by T cells in mice that entirely lack the IFN-γ receptor.

Figure 20:
Expression of the bicistronic IFN-g-eYFP reporter in Sendai-infected IFN-γR-/-Yeti mice.

IFN-γR-/- Yeti mice (Yeti IFN-γR-/-, gray histograms), Yeti mice (Yeti WT, bold line) and WT littermate controls
(B6 WT, thin line) were infected i.n. with 250 EID50 Sendai virus and FACS was performed 9 days later. (A) Antigen-
specific CD4+ T cells in the BAL were determined by HN419-433/A

b
  multimer staining. (B) Antigen-specific CD8 T cells

in the BAL were determined by Sendai NP324-332/K
b

 tetramer staining. (C) CD4+HN419-433/A
b+-gated T cells

(CD4+SenHN+) from the indicated organs were analyzed for the expression of eYFP. (D) CD8a+NP324-332/K
b+-gated T

cells (CD8+SenNP+) from the indicated organs were analyzed for the expression of eYFP. The frequency and MFI of
the eYFPpos cells are noted next to the histograms. Data are representative of four independent experiments. A
minimum of three individual mice per cohort were analyzed with comparable results.
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Figure 21:
Defective response of antigen-specific IFN-γR-/- CD4+ T cells after Sendai virus infection.

Yeti IFN-γR-/- (black bars) mice and Yeti WT (gray bars) were infected with Sendai virus and analyzed 9 days later.
(A) Frequency of SenHN419-433+ T cells within the CD4+ T cell population and frequency and MFI of eYFP positive
cells within SenHN419-433+ (CD4+SenHN+) cells (B) Frequency of SenNP324-332+ T cells within the CD8+ T cell
population and frequency and median fluorescence intensity (MFI) of eYFP positive cells within SenNP324-332+
(CD8+SenNP+) cells. Depicted are the mean and SD (n=5). Data are representative of four independent experiments. A
minimum of three individual mice per cohort were analyzed with comparable results. Asterisks indicate statistical
differences of at least p<0.05 as determined by Student’s t-test.

Figure 22:
Expression of the acute activation marker CD69 on
IFN-γR-/- antigen-specific T cells after Sendai virus
infection.

Yeti IFN-γR-/- mice and Yeti WT mice were infected
i.n. with 250 EID50 Sendai virus and FACS was
performed 9 days later to assess CD69 expression the
lung parenchyma. Data are representative of three
independent experiments. A minimum of three
individual mice per cohort were analyzed with
comparable results.
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6.2.4.  IFN-γ acts directly on antigen-specific CD4+ T cells after Sendai-virus

infection to induce optimal IFN-γ expression

To test whether the observed CD4+ T cell defects in IFN-γ expression were due to

functions mediated by IFN-γ directly onto the T cells or indirectly onto other cell

compartments, we wanted to examine IFN-γR-/- T cells in an IFN-γR sufficient

environment. Moreover, to compare IFN-γ expression of IFN-γR deficient and WT T cells

side by side in the same animal, we generated dual BM chimeric mice (Lee et al., 2003).

We used TCRβδKO hosts to exclude potential contamination by radio-resistant T cells

eYFP negative cells. TCRβδKO hosts were lethally irradiated and reconstituted with 50%

CD45.1- Yeti IFN-γR-/- BM and 50% CD45.1+ Yeti WT BM. The use of CD45.1 as a

congenic marker allows to discriminate respective populations. Because hematopoietic

cells in these chimeras will be derived from both donors the non-T cell compartment is
IFN-γR sufficient. Thus, indirect defects that might result from a lack of IFN-γR 1

expression in the non-T cell compartment are avoided by the presence of WT cells.
Moreover, the presence of WT T cells functions as an internal control in individual

experimental animals. The irradiated BM chimeric mice were allowed to reconstitute for
6-8 weeks and reconstitution was assessed by flow cytometric analysis of blood samples

prior to infection with Sendai virus. IFN-γ expression was analyzed 9 days in various

organs. As shown in Figure 23B and 24B, eYFP expression by SenNP-specific IFN-γR-/-

CD8+ was unimpaired when compared to WT cells. In contrast, the frequency of eYFP

positive cells within the SenHN-specific IFN-γR-/- CD4+ T cells was significantly

reduced in all examined organs (Figure 23A and 24A). The greatest defect in IFN-γ

expression by SenHN-specific IFN-γR-/- cells was observed in the lymphoid organs such

as the spleen and the draining medLN. In contrast the relative defect at the site of infection
was less pronounced in terms of frequency of eYFP expression (Figure 23A and 24A). In

concordance with our previous data, the presence of eYFP bright SenHN-specific

IFN-γR-/- CD4+ T cells was restricted to the lung airways and parenchyma. Furthermore,

the reporter fluorescence intensity of SenHN-specific IFN-γR-/- CD4+ T cells was

unimpaired in these organs, but defective in the spleen and the medLN. Thus, T cell
intrinsic IFN-γR-/- signals are required for optimal IFN-γ expression in CD4+ but not

CD8+ T cells.
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Figure 23:
Express ion  o f  the
bicistronic IFN-γ-eYFP
reporter in Sendai-
infected dual BM chimeric
mice.

TCRβδKO hosts were
lethally irradiated and
reconstituted with 50%
CD45.1- Yeti IFN-γR-/- BM
and 50% CD45.1+ Yeti WT
BM. Chimeric mice were
allowed to reconstitute for
6-8 weeks and were
subsequently infected i.n.
with 250 EID50 Sendai virus
and FACS was performed 9
days later to assess eYFP
expression in the indicated
organs. Yeti IFN-γR-/- (gray
histograms) and Yeti WT
(bold line) T cells were
identified on the basis of
their CD45.1 expression.
(A) C D 4+HN419-433/A

b+-
g a t e d  T  c e l l s
(CD4+SenHN+) and (B)
CD8α+NP324-332/K

b+-gated T cells (CD8+SenNP+) from the indicated organs were analyzed for the expression of eYFP.
The frequency and MFI of the eYFPpos cells are noted next to the histograms. Data are representative of three
independent experiments. A minimum of five individual mice per cohort were analyzed with comparable results.

Figure 24:
Impaired response of antigen-specific
CD4+ T cells lacking the IFN-γR1 in
Sendai-infected BM chimeric mice.

TCRβδKO hosts were lethally
irradiated and reconstituted with 50%
CD45.1- Yeti IFN-γR-/- BM and 50%
CD45.1+ Yeti WT BM Chimeric mice
were allowed to reconstitute for 6-8
weeks and were subsequently infected
with Sendai virus and FACS was
performed 9 days later. Yeti IFN-γR-/-
(black bars) and Yeti WT (gray bars) T
cells were identified on the basis of their
CD45.1 expression. (A) Frequency of
SenHN419-433+ T cells within the CD4+
T cell population and frequency and
MFI of eYFP positive cells within
SenHN419-433+ (CD4+SenHN+) ( B )
Frequency of SenNP324-332+ T cells
within the CD8+ T cell population and
frequency and median fluorescence
intensity (MFI) of eYFP positive cells
within SenNP324-332+ (CD8+SenNP+).
Depicted are the mean and SD (n=5). Data are representative of three independent experiments. A minimum of five
individual mice per cohort were analyzed with comparable results. Asterisks indicate statistical differences of at least
p<0.05 as determined by Student’s t-test.
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6.2.5.  Repeated in vitro stimulation enhances IFN-γ expression in IFN-γR-/- CD4+ T

cells

Our studies using BM chimeric mice revealed that the eYFP brightness of IFN-γR-/-

CD4+ T cells in the infected lung airways and parenchyma is unimpaired. Moreover, the

relative decrease in YFP expression was less pronounced at these sites when compared to

WT CD4+ T cells. Therefore, it is conceivable that the highly inflammatory environment

in the infected lung enhances IFN-γ expression, potentially synergizing with repeated

antigenic stimulation (Cerwenka et al., 1999; Ely et al., 2003; Wiley et al., 2001). Indeed,

the frequency of cells presenting MHC class II-restricted antigenic peptides is the highest

in the infected lung (S. R. Crowe and D. L. Woodland, unpublished observations; (Crowe

et al., 2003; Hamilton-Easton and Eichelberger, 1995; Usherwood et al., 1999)). As

elucidated in the introduction, IFN-γ production in differentiated T cells can be induced

via TCR-dependent and independent stimulation, such as IL-12 + IL-18. We wished to

examine whether the observed defect in IFN-γ expression by IFN-γR-/- CD4+ T cells in

non-infected sites was solely the result of sub-optimal priming and whether this defect

could be overcome by repeated stimulation in vitro via TCR engagement or IL-12/IL-18

cytokines, respectively. To this end, we primed CD4+ T cells under Th1 polarizing

conditions (Figure 25, top panel) as described in figure 9 and re-stimulated the cultures 7

days later in the presence of IL-12 and IL-18, α-CD3ε and α-IL-4 or under Th1 polarizing

conditions as indicated in figure 17 (bottom row) and analyzed eYFP expression 5 days

later. TCR stimulation in the absence of IL-12 did not increase the frequency or brightness

of eYFPpositive IFN-γR-/- CD4+ T cells (Figure 25, bottom row, left). In contrast,

repeated stimulation under Th1 polarizing conditions increased both frequency and

brightness. A second TCR independent IFN-γ stimulation via the IL-12/IL-18 pathway

also increased the proportion of IFN-γ expressing IFN-γR-/- CD4+ T cells (Figure 25).

However, the fact that IL-12 or IL-18 alone did not increase eYFP expression (data not

shown), asserted the synergistic effect of IL-12 and IL-18 for induction of IFN-γ

expression in differentiated Th1 cells (Nakanishi et al., 2001; Szabo et al., 2003). Thus,

the defect in IFN-γ expression by IFN-γR-/- CD4+ T cells can at least partially be

overcome by repeated TCR stimulation and cytokines.
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Figure25:
YFP- expression of IFN-gR-/- CD4+ T cells after repeated in vitro stimulationCD4+ T cells from lymph nodes of
naïve Yeti mice (Yeti WT, bold line) or naïve IFN-gR-/- Yeti mice (Yeti IFN-gR-/-, gray histograms) were sorted for a
naïve (CD44low/eYFPneg) phenotype and primed (d0) with anti-CD3ε and anti-CD28 in the presence of Th1 polarizing
cytokine conditions (top panel). On d7 cells were restimulated either with anti-CD3ε plus anti-IL-4 (bottom row, left),
Th1 polarizing cytokines (bottom row, middle) or in the presence of IL-12 + IL-18 (bottom row, right). Cells were
analyzed 5 days after the respective stimulation by FACS for eYFP expression. The frequency and median fluorescence
intensity (MFI) of eYFPpos cells are noted next to the histograms. All data are representative of two or more
independent experiments.

6.2.6.  Increased IFNγ expression of IFN-γ receptor deficient mice after T.gondii

infection

Since we were able to ameliorate the defect in IFNγ expression by IFN-γR-/- CD4+ T

cells via Th1-associated inflammatory signals in vitro, we speculated that IFNγ expression

by IFN-γR-/- CD4+ T cells might be differentially regulated in different disease models.

We further speculated that in a model, which induces a vigorous type I response,

IFN-γR-/- CD4+ T cells would display little or no defect in IFNγ expression. To test this

hypothesis we infected Yeti IFN-γR-/- and Yeti WT mice orally with the protozoan

parasite T. gondii, a strong inducer of type I-associated inflammation, and various organs

were analyzed 1 week later by FACS (Figure 26). To exclude contamination by naïve

eYFP negative CD4 or CD8+ T cells and to assess reporter expression within a defined

activated population, eYFP fluorescence was analyzed within CD44hi T cells. T. gondii-

infected Yeti IFN-γR-/- mice revealed, like their WT counterparts, heterogeneous eYFP

fluorescence by CD4+ and CD8+ T cells. However, T. gondii-infected Yeti IFN-γR-/-

mice revealed a significantly higher frequency and brightness of eYFP positive CD44hi

CD4+ T cells when compared to Yeti WT cells (Figure 26A).
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Figure 26:
Expression of the bicistronic IFN-γ-eYFP reporter in T.gondii-infected IFN-γR-/-Yeti mice.
IFN-γR-/- Yeti mice (Yeti IFN-γR-/-, gray histograms), Yeti mice (Yeti WT, bold line) and WT littermate controls (B6
WT, thin line) were infected orally with T. gondii and CD44hiCD4+ gated T cells (A) and CD44hiCD8+ gated T cells
(B) in the indicated organs were analyzed after 1 week for their eYFP fluorescence. The frequency and MFI of the
eYFPpositive (eYFPpos) cells are noted next to the histograms. Data are representative of four independent experiments.
A minimum of three individual mice per cohort were analyzed with comparable results.

Figure 27:
Increased response of CD44hi CD4+ T
in T.gondii-infected Yeti IFN-γR-/-
mice.
 Both Yeti IFN-γR-/- (black bars) mice
and Yeti WT (gray bars) were infected
with T.gondii and analyzed 7 days later.
(A) Frequency of CD44hi cells within the
CD4+ T cell population and frequency and
median fluorescence intensity (MFI) of
eYFP positive (eYFPpos) cells within
CD44hi CD4+ T cells (B Frequency of
CD44hi cells within the CD8+ T cell
population and frequency and median MFI
of eYFP positive cells within CD44hi
CD8+ T cells. Depicted are the mean and
SD (n=5). Data are representative of three
independent experiments. A minimum of
three individual mice per cohort were
analyzed with comparable results.
Asterisks indicate statistical differences of
at least p<0.05 as determined by Student’s
t-test.
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This data suggest that under strong inflammatory conditions IFN-γ expression by

IFN-γR-/- CD4+ T cells can be restored. In fact, the MFI of eYFP positive CD44hi CD4+

T cells was significantly higher in Yeti IFN-γR-/- mice than in Yeti WT mice (Figure 26A

and 27A). Additionally, the frequency of activated CD4+ T cells, as assessed by high

CD44 expression, was higher in all examined organs of T. gondii-infected Yeti IFN-γR-/-

mice (Figure 27 A). In contrast, the CD44hi CD8+ response was only increased in the

mesenteric LN (Figure 27B). Our previous in vivo studies demonstrated that IFN-γ

expression can be regulated independently of IFN-γR mediated functions in CD8+ T cells.

Here, we observed a significant increase in eYFP-reporter fluorescence after T. gondii

infection in the absence of IFN-γR expression by CD44hi CD8+ T cells in both the liver

and the blood (Figures 26 B and 27B). Overall these data show that IFN-γ receptor signals

are not required for maximal IFN-γ expression by CD4+ and CD8+ T cells after infection

with T. gondii. However, the caveat remains in Yeti IFN-γR-/- mice, that the observed

increase in eYFP brightness could be mediated by indirect effects, such as increased

parasite burden. Indeed, Yeti IFN-γR-/- mice displayed a 10-fold higher parasitic burden

than Yeti WT mice (Figure 28).

Figure 28:
Increased parasite burden in the lungs of T.gondii-
infected Yeti IFN-γR-/-mice
    Yeti IFN-γR-/- (black squares) mice and Yeti WT (open
circles) were infected with T.gondii and analyzed 7 days
later for T.gondii parasite levels, via quantitative RT-PCR
of infected lungs. Depicted are the results of three
individual mice. Data are representative of two
independent experiments.
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6.2.7.  T cell intrinsic IFN-γR signals are required for optimal IFN-γ expression after

T. gondii infection

To distinguish between T cell-intrinsic and indirect IFN-γR functions and directly

compare IFN-γ expression by Yeti IFN-γR-/- and Yeti WT CD4+ T cells side by side in

the same animal after acute T.gondii infection, we generated dual BM chimeric mice as

explained in chapter 3.2.3. The irradiated dual BM chimeric mice were allowed to

reconstitute for 6-8 weeks and reconstitution was assessed by flow cytometric analysis of

blood samples prior to oral infection with T.gondii cysts. Various organs were analyzed 7

days later for IFN-γ expression (Figure 29 and 30). In contrast to IFN-γR-/- mice, the

frequency of eYFP positive cells within CD44hi CD4+ and CD8+ IFN-γR-/- T cells was

reduced in lymphoid organs and in the blood, while the frequency not reduced in the liver

(Figures 29 and 30). Furthermore, while the frequency was reduced in the lymphoid

Figure 29:
Expression of the bicistronic IFN-γ-eYFP reporter in T.gondii -infected BM chimeric mice.

TCRβδKO hosts were lethally irradiated and reconstituted with 50% CD45.1- Yeti IFN-γR-/- BM and 50% CD45.1+
Yeti WT BM. Chimeric mice were allowed to reconstitute for 6-8 weeks and were subsequently infected orally. with 10
T.gondii cysts and FACS was performed 7 days later to assess eYFP expression in the indicated organs. Yeti IFN-γR-/-
(gray histograms) and Yeti WT (bold line) T cells were identified on the basis of their CD45.1 expression. (A) CD44hi
CD4+ T cells from the indicated organs were analyzed for the expression of eYFP. (B) CD44hi CD8+ from the indicated
organs were analyzed for the expression of eYFP. The frequency and MFI of the eYFPpos cells are noted next to the
histograms. Data are representative of three independent experiments. A minimum of five individual mice per cohort
were analyzed with comparable results.
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organs and the blood, the fluorescence intensity of eYFP positive CD44hi CD4+

IFN-γR-/- T cells was increased in dual BM chimeric mice (Figures 29A and 30A).

eYFP fluorescence was not increased in eYFP positive IFN-γR-/- CD44hi CD8+ T cells.

Contrary to infection of IFN-γR-/- mice, the proportion of CD44hi cells within the

IFN-γR-/- CD4+ and CD8+ cell populations was unaltered or even decreased in blood-

derived and splenic CD4+ T cells when compared to WT cells in dual BM chimeras

(Figure 30). In the liver and the lung no differences in eYFP-expression were observed in

both CD4+ and CD8+ IFN-γR-/- T cells in terms of frequency or brightness (Figures 29,

30 and data not shown). Thus, infection of dual BM chimeric mice with T.gondii, revealed

that in lymphoid organs T cell intrinsic IFN-γR signals are required for optimal IFN-γ

induction. However, at sites known for high parasitic burden, such as the liver, IFN-γ-

expression can be regulated independently of IFN-γR mediated signals.

Figure 30.
Response of CD44hi CD4+ T cells lacking the IFN-γR1 in T.gondii infected dual BM chimeric mice.

TCRβδKO hosts were lethally irradiated and reconstituted with 50% CD45.1- Yeti IFN-γR-/- BM and 50% CD45.1+
Yeti WT BM. Chimeric mice were allowed to reconstitute for 6-8 weeks and were subsequently infected with T.gondii
and FACS was performed 7 days later. Yeti IFN-γR-/- (black bars) and Yeti WT (gray bars) T cells were identified on
the basis of their CD45.1 expression. (A) Frequency of CD44hi cells within the CD4+ T cell population and frequency
and median fluorescence intensity (MFI) of eYFP positive (eYFPpos) cells within CD44hi CD4+ T cells (B) Frequency
of CD44hi cells within the CD8+ T cell population and frequency and median MFI of eYFP positive cells within
CD44hi CD8+ T cells. Depicted are the mean and SD (n=5). Data are representative of three independent experiments.
A minimum of five individual mice per cohort were analyzed with comparable results. Asterisks indicate statistical
differences of at least p<0.05 as determined by Student’s t-test.
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7. DISCUSSION

IFN-γ is a hallmark cytokine of type I immune responses against a diversity of

pathogens. Bicistronic cytokine reporter mice have been instrumental to visualize,

quantify and functionally characterize cytokine-expressing cells in vivo (Mohrs et al.,
2005; Mohrs et al., 2001; Stetson et al., 2003). Using bicistronic IFN-γ reporter (Yeti)

mice (Stetson et al., 2003), we show here that the expression of the IFN-γ-eYFP reporter

by CD4+ and CD8+ T cells is broadly heterogeneous, in vitro and in vivo upon infection.

Increased expression of the reporter correlated positively with the abundance of IFN-γ

transcripts and with the amount of secreted IFN-γ protein upon stimulation. Therefore,

heterogeneous eYFP expression reflects important functional differences because it

correlates with both the abundance of IFN-γ transcripts and the potential for IFN-γ

secretion upon stimulation. Increased expression of the reporter also correlated with
enhanced secretion of additional proinflammatory cytokines and chemokines after

stimulation. Highly eYFP fluorescent CD4+ and CD8+ T cells were found only in select

tissues and their restriction was dependent on the infectious agent. Applying multimer
technology after respiratory virus infection, we found that antigen-specific CD4+ T cells

are exclusively eYFP positive in the lung airways and parenchyma, while all antigen-
specific CD8+ T cells were eYFP positive in all examined organs. Furthermore, we show

that T cell-intrinsic IFN-γR signals are not necessary to induce IFN-γ expression but

greatly enhance the proportion of IFN-γ expressing cells within CD4+ T cells in vitro and

in vivo. In contrast, the abundance of IFN-γ transcripts in either eYFP fluorescent CD4+ or

CD8+ T cells was regulated independently of IFN-γR mediated functions. Finally, IFNγ

expression by CD8+ T cells was less dependent on IFN-γR mediated functions than CD4+

T cells

Heterogeneous reporter expression and post-transcriptional regulation of IFN-γ

In vitro, the expression of IFN-γ was broadly heterogeneous in both CD4+ and CD8+

T cells and occurred prior to cell division (Figure 10A and B). Increased expression of the

reporter correlated positively with the abundance of IFN-γ transcripts, as assessed by
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quantitative RT-PCR (Figure 10C and D). In contrast to CD4+ T cells, which expressed

IFN-γ only under Th1 polarizing conditions, CD8+ T cells activated the ifng gene

irrespective of the polarizing cytokine milieu. However, eYFP expression occurred more
rapidly and the expression of IFN-γ in CD8+ T cells was substantially regulated by

exogenous factors (Figure 10B). This mechanism might be important for the local

modulation of CD8+ effector functions in vivo. Indeed, a similar heterogeneity of IFN-γ

expression by both CD4+ and CD8+ T cells was observed upon infection with Influenza

virus, Sendai virus, or the obligate intracellular protozoan parasite T. gondii (Figures 11,
13 and 17). When T cells were isolated from Influenza virus infected mice, according to

their eYFP brightness and subsequently cultured in the presence or absence of plate-bound

α-CD3, eYFP expression correlated positively with IFN-γ protein production upon

stimulation (Figure 15). Most interestingly, despite robust expression of the reporter at

the time of isolation, IFN-γ production was more than 1000-fold increased upon

stimulation. Thus, the bicistronic IFN-γ reporter marks cells competent for rapid cytokine

production, while the secretion of this effector cytokine is largely dependent on antigenic
simulation. In fact, the rapid on/off cycling of IFN-γ production by CD4+ and CD8+ T

cells has been demonstrated (Corbin and Harty, 2005; Slifka et al., 1999; Slifka and

Whitton, 2000). Both IFN-γ transcript levels and the amount of IFN-γ that is secreted upon

stimulation correlated directly with the expression of the bicistronic eYFP reporter
(Figures 10C, 10D and 15). The accessible ifng gene locus and the constitutive presence of

transcripts may allow accelerated cytokine production (Ansel et al., 2003), while the

requirement for antigen-specific stimulation could limit collateral damage. The greatly
enhanced secretion of cytokines upon TCR-mediated stimulation might additionally be

important to focus antigen-specific T helper functions to MHC class II-bearing cells
(Ingulli et al., 1997; Itano and Jenkins, 2003; Jenkins et al., 2001). The translational

silencing of IFN-γ has recently been demonstrated in NK and NK T cells derived from

wild-type and Yeti mice (Matsuda et al., 2003; Stetson et al., 2003). Moreover, CD8+

memory T cells have been shown to contain high levels of IFN-γ and RANTES /CCL5

transcripts even in the absence of detectable protein production (Bachmann et al., 1999;
Grayson et al., 2001; Swanson et al., 2002). In fact, we observed that antigen-specific

CD8+ T cells remain eYFP positive for at least one year after primary Influenza virus

infection (K.D. Mayer and M. Mohrs manuscript in preparation). Thus, the disconnect
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between the presence of IFN-γ transcripts and the actual secretion of IFN-γ protein,

suggests that IFN-γ is being post-transcriptionally regulated. Additionally, our in vivo

studies with Yeti mice imply that this mechanism of post-transcriptional IFN-γ regulation

is also operational in conventional CD4+ and CD8+ effector T cells in a situation of acute

infection.
In conclusion, the presence of eYFP fluorescence in Yeti mice reflects the potential for

IFN-γ production in a qualitative fashion, while the eYFP brightness quantitatively reflects

the potential for IFN-γ production. The heterogeneity in eYFP expression reflects both the

abundance of IFN-γ transcripts and the potential for IFN-γ secretion upon stimulation.

Thus, it has important functional consequences. Furthermore, heterogeneous IFN-γ

expression represents a distinct functional adaptation of CD4+ and CD8+ T cells because

innate IFN-γ producers such as NK and NK T cells, which are constitutively eYFP

positive in Yeti mice (Matsuda et al., 2003; Stetson et al., 2003) do not reveal a similar

heterogeneity in their reporter fluorescence in naïve or infected animals (K.D. Mayer and
M. Mohrs data not shown).

High eYFP fluorescence reflects a more differentiated effector status
eYFP fluorescence of CD4+ and CD8+ T cells also correlated positively with the

enhanced production of a select set of cytokines and chemokines after Influenza virus
infection. In addition to IFN-γ, eYFP high cells also produced the highest amount of TNF-

α, GM-CSF, MIP-1β/CCL4, RANTES/CCL5, IP-10/CXCL10 and SDF-1/CXCL12

(Figure 16). Similar to IFN-γ, these cytokines and chemokines were 100-1000 fold

induced upon stimulation ex vivo. The positive correlation between the secretion of these

cytokines and chemokines with eYFP brightness, implies that eYFPhi cells reflect a

generally more differentiated effector status. The association of IFN-γ and TNF-α with the

immune response to viral infections is well established (Harty et al., 2000; Wong and
Goeddel, 1986; Wong and Pamer, 2003). The synergistic function of GM-CSF and TNF-α

is supported by data showing that the combined exposure of antigen presenting cells in the

lung to both cytokines is required for optimal antigen presentation and Th1 priming (Holt

et al., 1993; Holt and Stumbles, 2000; Nelson and Holt, 1995). The chemokine receptors
for the inflammatory chemokines RANTES/CCL5 and MIP-1β/CCL4 (CCR1, 3, 5) are

expressed on a variety of cell types including effector and memory T cells and
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macrophages (Mackay, 2001; Moser and Loetscher, 2001; Zlotnik and Yoshie, 2000).

Thus, eYFPhi cell efficiently recruit other effector cells into the lung. The increased
secretion of soluble effector molecules was selective and therefore not simply due to a

generally enhanced secretory capacity. For example, the production of IL-2 was not

limited to eYFP positive cells and the secreted amounts did not correlate positively with
eYFP fluorescence intensity (Figure 16A). In fact, eYFPhi CD4+ and CD8+ cells

produced less IL-2 than eYFPint cells, and reduced IL-2 production has been associated
with progressive Th1 effector polarization (Seder, 1994; Szabo et al., 2000; Wu et al.,

2002). Our notion, that high eYFP fluorescence reflects a generally more differentiated

effector status, is further substantiated by the fact that the surface expression of acute
activation markers, such as CD25, CD69 and CD122, correlated positively with eYFP

fluorescence (Figure 14). These markers indicate recent antigenic stimulation (Ortega et
al., 1984; Sancho et al., 2005; Taniguchi and Minami, 1993; Waldmann, 1991; Ziegler et

al., 1994).

Anatomical restriction of highly eYFP fluorescent cells
T cells with heterogeneous eYFP fluorescence disseminated systemically after both

respiratory virus and parasitic infection, but eYFPhi cells were restricted to certain tissue

sites (Figures 11, 13 and 17). In the case of respiratory virus-infection, the frequency of

cells presenting MHC class I- and class II-restricted antigenic peptides is highest in the
infected lung (S.R. Crowe and D.L. Woodland unpublished data and (Crowe et al., 2003;

Hamilton-Easton and Eichelberger, 1995; Usherwood et al., 1999)). Therefore, it is

conceivable that increased antigenic stimulation is potentially synergizing with the highly
inflammatory environment in the infected lung to enhance IFN-γ expression in T cells

(Cerwenka et al., 1999; Ely et al., 2003; Wiley et al., 2001). In fact, eYFPhi cells were

only present in the lung airways and parenchyma after respiratory virus infection.
Employing secondary infections with viral mutants of Influenza virus, lacking either the

NP366-374- or PA224-233-epitope, inflammation alone, without the context of antigen-presence,

did not result in conversion of eYFPint to eYFPhi cells (data not shown, K.D. Mayer and
M. Mohrs manuscript in preparation). Similarly, recruitment into tertiary sites alone did

not result in high levels of eYFP expression, because eYFPhi cells were not present in the
lung-harboring pleural cavity, despite similar recruitment and frequency of antigen-

specific cells as the infected lung (Figure 11C). Moreover, identical patterns of restriction
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were observed after Sendai or Influenza virus infection, in Influenza-specific CD8+ T

cells recognizing NP366-374- or PA224-233-epitopes and Sendai-specific CD8+ and CD4+ T
cells (Figures 11C, 13C and data not shown). Therefore, the fluorescence heterogeneity

and anatomical restriction of eYFPhi cells after respiratory virus infection is not linked to

a particular virus species, antigen-specificity or T cell lineage. Additionally, oral infection
with the protozoan parasite T. gondii also resulted in functional heterogeneity, and highly

fluorescent cells were similarly restricted to certain tissues despite the widespread
dissemination of the parasite. eYFPhi T cells were present within the CD44hi T cell

population of the mesLN, the blood, the liver and the lung parenchyma (Figure 17 and

data not shown). However, the highest proportion of eYFPhi cells was found in the liver
and the lung parenchyma (Figure 17 and data not shown). Indeed, the lung and the liver

are among the organs with the highest parasitic burden after acute T.gondii infection (L.L.
Johnson unpublished data and (Kobayashi et al., 1999; Luo et al., 1997)). Again, it is

conceivable that in these organs increased antigen presentation in conjunction with

inflammation induces high expression of IFN-γ in CD4+ and CD8+ effector T cells. Thus,

fluorescence heterogeneity and anatomical restriction of eYFPhi cells represent general
immunological mechanisms that are not limited to viral infections of the lung. However,

in which tissue eYFPhi cells accumulate is dependent on the pathogen.

Biallelic expression of IFN-γ

The potential for IFN-γ secretion was tightly linked to clonal expansion of antigen-

specific CD8+ lymphocytes because all NP366-374- or PA224-233-specific T cells were eYFP+

in all tissues (Figure 11C and data not shown). Because we used heterozygous reporter
knockin mice throughout all experiments, this observation implies that both ifng alleles are

frequently expressed, because otherwise a substantial fraction of the cells would be eYFP

negative. Expression of the ifng gene in CD4+ T cells was also biallelic, because after
Influenza virus infection >95% of these cells in the lung airways and parenchyma were

eYFP+ and after Sendai virus infection SenHN-specific CD4+ cells in these organs were
almost exclusively eYFP positive (Figure 11B and 13C). Thus, IFN-γ expression by both

CD4+ and CD8+ T cells occurred biallelically. This finding stands in contrast to previous
reports which suggest monoallelic expression of IFN-γ by CD4+ T cells (Hsieh et al.,

2000; Mullen et al., 2001).
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IFN-γR signals are not necessary for IFN-γ expression by CD4+ T cells

Expression of IFN-γ by T cells is the result of a sequential and complex combination

of different mechanisms, including the activation of crucial transcription factors and up-

regulation of pivotal cytokine receptors (Grogan and Locksley, 2002; Murphy and Reiner,
2002b). In the case of Th1 differentiation, it is well established that IL-12 and its receptor,

T-bet, STAT4 and IFN-γ are crucial in inducing Th1 development (Magram et al., 1996;

Szabo et al., 2002; Wurster et al., 2000; Zhang et al., 2001), but the sequence of events

leading to Th1 differentiation is unclear. IFN-γ, probably produced by NK cells, is thought

to be among the cytokines initiating the differentiation program (Bradley et al., 1996;
Lohoff and Mak, 2005; Murphy and Reiner, 2002b). However, the sequential role of

IFN-γ vs. IL-12 in the induction of both IFN-γ expression and Th1 differentiation by

CD4+ T cells remains controversial with existing models in favor of either IFN-γ or IL-12

(Murphy and Reiner, 2002b; Robinson and O'Garra, 2002). We are able to show here, that

IFN-γ by itself is a very poor inducer of IFN-γ expression by CD4+ and CD8+ T cells in

vitro (Figure 19). Therefore, in our hands, IFN-γ is not able to efficiently drive IFN-γ

expression or Th1 differentiation, when IL-12 is neutralized. Our finding stands in
contrast to a previous report from Bradley and colleagues, which showed that autocrine

IFN-γ, independently of IL-12, is able to drive Th1 differentiation and IFN-γ production

(Bradley et al., 1996). However, most studies confirm that IFN-γ alone is insufficient for

the development of Th1 cells and that it is more likely to enhance IL-12 responsiveness in

naive T cells and to stabilize the Th1 phenotype (Seder et al., 1993; Swihart et al., 1995;
Wenner et al., 1996; Zhang et al., 2001). Furthermore, IFN-γR expression by CD4+ T

cells was not a prerequisite for the induction of IFN-γ or Th1 differentiation per se,

because both occurred in the absence of autocrine IFN-γR signaling in vitro (Figure 18).

Since our current understanding of the role of IFN-γ responsiveness for its own expression

is extensively extrapolated from in vitro culture systems, we employed IFN-γR1-/- Yeti

mice to revisit the role of IFN-γ for its own expression in vivo. After infection with the

respiratory Sendai virus or with the protozoan parasite T. gondii, IFN-γR-/- CD4+ T cells

were able to acquire an IFN-γ expressing Th1 phenotype (Figures 20, 23, 26 and 29). It

has been reported that IFN-γR1 colocalizes with the TCR, during, but not before, naïve

CD4+ T cells become activated (Maldonado et al., 2004). Thus, IFN-γR1 recruitment into

the immunological synapse could be a prerequisite for the generation of Th1 cells. Our
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data clearly indicate that this is not the case. Indeed, recent reports confirm that antigen-

specific Th1 cells were generated in the absence of the IFN-γR, after infection with L.

monocytogenes or LCMV, respectively (Haring et al., 2005a; Seder et al., 1993). In
contrast to our experiments, these studies used TCR transgenic T cell populations and

IFN-γ secretion was assessed by intracellular cytokine staining after restimulation ex vivo.

Using two different infectious models our data clearly demonstrate that IFN-γ

responsiveness is not required to initiate IFN-γ expression or Th1 differentiation of CD4+

T cells.

IFN-γR signals enhance the induction of IFN-γ in CD4+ T cells

Yeti mice uniquely allow to visualize differences in both quality (eYFP positive cells)

and quantity (eYFP brightness) of IFN-γ expression in T cells. For example, we found that

the proportion of IFN-γ expressing IFN-γR-/- CD4+ cells under Th1 priming conditions in

vitro was reduced, despite similar cell recovery (Figure 18A). These data reveal a critical

role of IFN-γR mediated functions for maximal IFN-γ induction by CD4+ T cells in vitro.

Similarly, in vivo, after Sendai virus infection of IFN-γR-/- Yeti mice, the proportion of

IFN-γ expressing SenHN-specific CD4+ T cells was also reduced (Figure 20C). Of note,

the reduced frequency of eYFPpositive cells within the SenHN-specific CD4+ T cell

response cannot be explained by monoallelic expression of the ifng locus, because

homozygous eYFP-reporter IFN-γR-/- mice displayed the same defect (K.D. Mayer and

M. Mohrs unpublished data). Additionally, the overall magnitude of the SenHN–specific

CD4+ T cell response was drastically reduced in IFN-γR-/- Yeti mice, irrespective of

IFN-γ expression (Figure 21A and C). Therefore, IFN-γ receptor-mediated functions are

critical for both the magnitude of the SenHN-specific CD4+ T cell response and the

development of Th1 cells within this population. IFN-γ is critically involved in the

up-regulation of MHC class II expression on APCs. Thus, IFN-γ might be required for

optimal activation and differentiation of naïve CD4+ T cells in order to acquire an IFN-γ

expressing phenotype. Indeed, Sendai-infected Yeti IFN-γR-/- expressed substantially

lower levels of I-Ab when compared to Yeti WT controls (data not shown). Because none

of the cells in these knockout mice express the receptor, it remains possible that the effect

of IFN-γ on T cells is indirect. Nevertheless, these and other indirect effects did not result

in decreased IFN-γ expression by CD4+ T cells after infection of IFN-γR-/- mice with
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T.gondii. In contrast, the proportion of IFN-γ expressing CD44hi CD4+ T cell was

substantially increased after T.gondii infection (Figures 26A and 27A). It is conceivable

that these indirect effects could also cause an increase in IFN-γ expression by Th1 cells.

Of note, T.gondii infected IFN-γR-/- mice displayed a consistently higher parasitic burden

(Figure 28). This is due to impaired activation of macrophages by IFN-γ. Macrophages are

crucial for the elimination of the parasite, by inducing tryptophan degradation in host cells

and NO production (Beaman et al., 1994; Chao et al., 1993; Deckert-Schluter et al., 1996;

James, 1995; Nathan et al., 1983; Pfefferkorn, 1984; Scharton-Kersten et al., 1996; Sibley

et al., 1991). Moreover, proinflammatory cytokines such as IL-12 and IFN-α have been

shown to induce high levels of IFN-γ (Wenner et al., 1996). Indeed, it is known that T.

gondii induces systemic levels of type I IFNs early after infection (Hunter et al., 1994;

Johnson, 1992; Khan et al., 1994). Similarly, a pathway for IFN-γ induction by gram-

negative bacteria has been reported, which is based on IL-18 signaling and STAT4

activation by type I IFNs (Freudenberg et al., 2002). Thus, it might be possible that a

strong inflammatory environment, caused by high parasite numbers, favors the induction

of IFN-γ, independently of its receptor. Even more so, cytokine dependent IFN-γ induction

together with increased antigen-presentation could be sufficient to overcome the observed

defect in IFN-γ induction by IFN-γR-/- CD4+ T cells. In fact, we could demonstrate that

repeated TCR and cytokine stimulation in vitro is able to greatly enhance IFN-γ

expression by IFN-γR-/- CD4+ T cells (Figure 25).

CD4+ T cell intrinsic IFN-γR functions enhance the induction of IFN-γ

We wished to determine whether the observed CD4+ T cell defect in IFN-γ expression

was due to functions mediated by IFN-γ directly on the T cell compartment. To compare

IFN-γ expression of IFN-γR-/-and WT T cells side by side in the same animal, we

generated dual BM chimeric mice (Lee et al., 2003). Infection of these mice with Sendai

virus or T. gondii resulted in a reduced proportion of IFN-γ expressing cells within the

IFN-γR-/- CD4+ population (Figures 23A, 24A, 26A and 27A). This defect was also

apparent in IFN-γ production after in vitro stimulation with specific antigen (SenHN

peptide or STAg) (data not shown). Moreover, the proportion of antigen-specific eYFP

negative IFN-γR-/- CD4+ cells was not due to the generation of Th2 cells, because IL-4

producing CD4+ T cells could not be detected (data not shown). In conclusion, our studies
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in two different infectious disease models reveal a CD4+ T cell-intrinsic requirement for

IFN-γ responsiveness for maximal IFN-γ induction.

Regulation of reporter brightness occurs independently of IFN-γR functions

As mentioned above, bicistronic IFN-γ reporter mice uniquely allow to visualize

differences in IFN-γ expression not only in terms of quality (eYFP positive cells) but also

quantity (eYFP brightness). The median fluorescence intensity (MFI) of eYFP expression

allows to assess the abundance of IFN-γ transcripts in individual cells and for cell

populations (Figure 10C and D). In all examined organs, infection of Yeti IFN-γR-/- mice

with Sendai virus resulted in decreased MFIs of eYFP fluorescence within the eYFP

positive Th1 population (Figure 20A). As discussed above, indirect effects in these mice,

such as sub-optimal priming, could similarly be responsible for the observed defect in

eYFP brightness of IFN-γR-/- Th1 cells. Accordingly, repeated in vitro stimulation with

TCR dependent and independent stimuli could restore the eYFP fluorescence intensity in

knockout CD4+ T cells (Figure 25). After infection of IFN-γR-/- mice with T. gondii, a

inducer of a vigorous type I immune response, the generated Th1 cells displayed no defect

in eYFP fluorescence intensity (Figures 26A and 27A). Indeed, the potent inflammatory

environment and/or increased antigen load in IFN-γR-/- mice resulted in a strong increase

in eYFP brightness (up to 10 fold higher MFIs, Figure27). Therefore, the up-regulation of

IFN-γ transcripts within a cell can occur in the absence of IFN-γR-/- mediated functions.

After infection of dual BM chimeric mice with Sendai virus or T.gondii, eYFP brightness

within eYFP positive IFN-γR-/- CD4+ cells was unaltered in non-lymphoid organs (Figure

24A and 30A and data not shown). Thus, IFN-γ transcript levels were regulated in a

IFN-γR independent manner, while the induction of IFN-γ was enhanced when IFN-γR is

present on CD4+ T cells

IFNγ expression by CD8+ T cells is less dependent on IFN-γR mediated functions

than CD4+ T cells

As discussed in the introduction, various mechanisms govern IFN-γ induction in CD8+

and CD4+. IFN-γ induces T-bet expression in both cell types, but only CD8+ T cells

employ additionally the transcription factor Eomes for the expression of IFN-γ (Afkarian

et al., 2002; Lighvani et al., 2001; Pearce et al., 2003; Szabo et al., 2002; Yin et al., 2002).
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Consequently, this feature of CD8+ T cells could allow for robust IFN-γ expression in the

absence of IFN-γR mediated functions, such as the activation of T-bet. Indeed, CD8+ T

cells were less dependent on IFN-γR mediated functions for the induction of IFN-γ than

CD4+ T cells. For example, in vitro under culture conditions where IL-12 was absent, the

relative defect in IFN-γ expression by IFN-γR-/- CD8+ T cells was less pronounced, when

compared to the relative defect in IFN-γR-/- CD4+ T cells (Figure 18). Moreover, in the

presence of IL-12, optimal IFN-γ expression by IFN-γR-/- CD8+ T cells was completely

restored (Figure 18B). Thus, in vitro, IL-12 is able to compensate for the lack of IFN-γR

signals in CD8+ T cells but not CD4+ T cells. Additionally, after infection of knockout

mice with Sendai virus, both IFN-γ expression and eYFP brightness were unaltered in

IFN-γR-/- CD8+ T cells (Figures 20B and 21B). After infection with T. gondii, the

proportion and brightness of eYFP expressing IFN-γR-/- CD8+ T cells were increased in

the liver, the spleen and the blood (Figures 26B and 27B). However, the relative increase

was little when compared to WT CD8+ T cells or IFN-γR-/- CD4+ T cells. IFN-γR-/-

CD4+ T cells consistently displayed 5 to 10 fold higher eYFP MFIs than IFN-γR-/- CD8+

T cells (Figure 27B). As discussed above, the indirect effects in these knockout mice are

very divers, yet they affect CD4+ T cells to a greater extent than CD8+ T cells. Moreover,

in dual BM chimeric mice the IFN-γ expression of IFN-γR-/- CD8+ T cells was unaltered

after Sendai virus infection (Figure 24B). After T. gondii infection, IFN-γR-/- CD8+ T

cells the frequency of eYFP expression was reduced in the blood, but not other examined

organs (Figure 30B). Taken together these data suggest IFN-R independent mechanisms

are in place for optimal IFN-γ induction in CD8+ but not CD4+ T cells.

Proposed model for IFN-γ expression by CD4+ and CD8+ T cells

Bicistronic IFN-γ reporter mice provide valuable insights into the IFN-γ expression of

defined cell populations and individual cells. The visualization of IFN-γ expression in

terms of quality (eYFP positive cells) and quantity (eYFP brightness) are unique attributes

of bicistronic cytokine reporter mice (Matsuda et al., 2003; Stetson et al., 2003).

Qualitative statements can be made for defined cell populations (frequency of eYFP),

while quantitative statements (MFI) refer additionally to individual cells. Thus, based on

our data obtained from Yeti mice in vitro and in vivo, the following distinctive features of

IFN-γ expression by CD4+ and CD8+ T cells could be identified.
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1) eYFP-reporter brightness (MFI) faithfully reflects the abundance of IFN-γ

transcripts.

2) The abundance of IFN-γ transcripts is highly regulated within individual cells

(heterogeneous eYFP fluorescence).
3) Upon stimulation, eYFP-reporter brightness (MFI) correlates with the amount

of secreted IFN-γ protein.

4) The dependence of robust IFN-γ protein secretion/production on antigenic

stimulation, despite heterogeneous IFN-γ transcript levels, implies post-

transcriptional regulation of IFN-γ.

5) High eYFP fluorescence reflects a more differentiated effector status.

6) IFN-γ expression occurs biallelically.

Based on these observations, we propose a model for IFN-γ expression by CD4+ and

CD8+ T cells (Figure 31). Naïve CD4+ and CD8+ T cells are non-competent for IFN-γ

production while at the same time they are able to respond to IFN-γ (Gajewski and Fitch,

1988; Groux et al., 1997; Pernis et al., 1995). They have little or no IFN-γ transcript and

are negative for the IFN-γ-eYFP reporter. According to the above-mentioned features, we

were able to dissect two distinct steps in the regulation of IFN-γ expression. During

priming and differentiation, naïve cells become activated and given the appropriate

stimuli, are rendered competent for IFN-γ production (i.e. eYFP positive). Thus, the

acquisition of IFN-γ competence, as assessed by the presence of eYFP fluorescence,

represents the first step in the regulation of IFN-γ expression by both CD4+ and CD8+ T

cells (Step 1 in Figure 31). IFN-γR expression on T cells is not necessary for this step.

However, T cell-intrinsic expression of IFN-γR augments the proportion of IFN-γ

competent cells within CD4+ and CD8+ T cells. In CD8+ T cells in vitro, this partial

requirement for the IFN-γR can be overcome by IL-12. Besides the IFN-γR, various other

parameters, involved in both T cell priming and Th1 differentiation, are able to influence

the acquisition of IFN-γ competence. Factors that influence Th differentiation and priming

include the cytokine microenvironment (especially IL-12 and IL-4), the signal strength

and duration of the APC-T cell interaction, the type of APC and its activation status, co-

stimulatory molecules and cell cycle (Amsen et al., 2004; Bird et al., 1998; Constant and

Bottomly, 1997; Kuchroo et al., 1995; Reiner and Seder, 1995; Seder, 1994). Furthermore,
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the acquisition of IFN-γ competence includes inter- and intrachromosomal interactions,

epigenetic modifications, initiation of crucial transcription factors and up-regulation of

pivotal cytokine receptors (Grogan and Locksley, 2002; Murphy and Reiner, 2002b;

Spilianakis et al., 2005).

Figure 31:
Proposed model for IFN-γ expression by CD4+ and CD8+ T cells in context of IFN-γR requirements. Details are
described in the text.

Once rendered IFN-γ competent, CD4+ and CD8+ T cells are able to modulate the

abundance of IFN-γ transcripts (Step 2 in Figure 31), as detected by heterogeneous

reporter expression. The ability to up-regulate IFN-γ transcripts represents the second

distinct step in the regulation of IFN-γ expression. The modulation of IFN-γ transcript

levels occurs largely independent of IFN-γR mediated functions in both CD4+ and CD8+

T cells. This is supported by the fact that differentiated Th1, but also Tc1 cells, become

unresponsive to IFN-γ (Gajewski and Fitch, 1988; Groux et al., 1997; Haring et al., 2005b;

Pernis et al., 1995; Rigamonti et al., 2000; Whitmire et al., 2005). Furthermore, the
modulation of transcript abundance within a cell reflects the observed functional
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heterogeneity in IFN-γ expression. Highly up-regulated IFN-γ transcript levels

approximate a more differentiated effector phenotype, and high eYFP fluorescence could

mark IFN-γ secreting/ producing cells in situ. The anatomical restriction of eYFP hi cells

mainly to tertiary sites and/or sites of pathogen replication, as in the case for respiratory
virus infections, could support this concept. Moreover, while secretion of IFN-γ was

largely dependent upon antigenic-stimulation, eYFPhi cells produced detectable amounts

even without stimulation. Most interestingly, the dependence of robust IFN-γ protein

secretion/production on antigenic stimulation implies post-transcriptional regulation of

IFN-γ. Thus, the abundance of IFN-γ transcripts within a cell reflects its potential to

produce a corresponding amount of IFN-γ protein upon stimulation. In differentiated Th1

and Tc1 cells, which are IFN-γ competent by nature, various stimuli can up-regulate IFN-γ

transcripts. Once rendered IFN-γ competent (Step 1 in Figure 31), both TCR-dependent

and independent stimuli, such as IL-12/IL-18 exposure, can increase IFN-γ expression

(Step 2 in Figure 31) (Ahn et al., 1997; Campbell et al., 1996; Nakahira et al., 2002;

Nakanishi et al., 2001; Robinson et al., 1997; Sica et al., 1997; Sweetser et al., 1998;
Szabo et al., 2003). In contrast, the acquisition of IFN-γ competence by naïve T cells (Step

1 in Figure 31) is strictly TCR dependent.

Recently, a two-step process for IL-4 cytokine production could be identified by using IL-
4 dual-reporter mice (Mohrs et al., 2005). In these mice, insertions of two different

reporter genes into both copies of the endogenous Il4 locus allow for simultaneous

analysis of IL-4 transcripts and IL-4 protein secretion within the same cell. According to
this two-step model of cytokine production, the first step generates IL-4 competent CD4+

cells that disseminate systemically, while during the second step the cytokine is rapidly

produced in response to local stimulation. Thus, the acquisition of competence for
cytokine production and the functional separation between cytokine transcript levels

(competence) and actual cytokine secretion upon stimulation, are likely to reflect general
regulatory mechanisms of cytokine expression.

Understanding the regulation of cytokine expression in situ is of great importance for

vaccine development and identifying novel therapeutic approaches for cancer and
autoimmunity. For example, enhancing IFN-γ transcripts could lead to more potent

effectors. Similarly, down-regulating IFN-γ could ameliorate autoimmune diseases or

decrease pathology. The functional separation between IFN-γ transcript levels and actual
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IFN-γ secretion could be exploited for controlling IFN-γ production. The molecular basis

for the anatomical restriction of eYFPhi cells could aid in targeting the most differentiated

effectors to desired organs, when developing vaccines. Future investigations might allow
to integrate these concepts of cytokine regulation and develop means for in vivo adaptation

to control IFN-γ expression in humans.
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9. APPENDIX

9.1. Table I

A selection of IFN-γ regulated genes according to their association with IFN-γ
effector functions (modified after (1, 2))

Antigen Processing and Presentation (genes up-regulated by IFN-γ)

Gene Function References
α1, α2, β1, β2
MHC II chains

Constituents of the heterodimeric MHC II. MHC II displays foreign and self-
peptides on the cell surface for immune surveillance by CD4+ T cells. The
MHC II α and β chains are encoded by the class II MHC locus.

(3, 4)

Cathepsins B, H, L Lysosomal proteases implicated in peptide production for class II MHC
loading.

(5, 6)

Class I MHC
heavy chain

The heavy chain associates with ß2-microglobulin to form the MHC class I
complex (MHC I). MHC I displays foreign and self-peptides on the cell
surface for immune surveillance by cytotoxic T cells.

(7, 8)

PAα28, PA28β Proteasome activator (PA)28α:PA28β dimer is a nonenzymatic proteasome
subunit, which alters the specificity of peptides generated to increase efficiency
of class I MHC peptide delivery.

(9, 10)

ß2-microglobulin Light chain that associates with the class I MHC heavy chain to form the MHC
I. MHC I displays foreign and self-peptides on the cell surface for immune
surveillance by cytotoxic T cells. The ß2-microglobulin light chain is not
MHC-encoded.

(11, 12)

TAP-1, TAP-2 The transporter associated with antigen processing (TAP) is a heterodimer
consisting of TAP-1 and TAP-2 subunits. TAP functions as a transmembrane
pump to transfer peptides from the proteasome into the endoplasmic reticulum
(ER) lumen. It also aids in peptide delivery to class I MHC. TAP-1 and TAP-2
map to class II MHC.

(13, 14)

Tapasin Tapasin is a chaperone that aids in the retention of empty MHC I in the ER and
peptide loading into MHC I peptide-binding cleft.

(15)

Antiproliferative Effect (genes up-regulated by IFN-γ)

Gene Function References
p202 p202 is a strong cell cycle repressor that can bind to E2F and inactivate its

DNA-binding activity, thereby preventing transcription of E2F-dependent
genes required for S phase.

(16, 17)

p21, p27 p21 and p27 are cyclin-dependent kinase (CDK) inhibitors of the Cip/Kip
family. p21 and p27 inhibit the activity of CDK2 and CDK4, respectively,
causing cell cycle arrest at the G1/S checkpoint.

(18-20)

PKR PKR is an antiviral enzyme, which functions as a serine/threonine kinase when
activated by dsRNA. PKR inhibits cellular proliferation, thereby halting
protein synthesis. May also suppress c-myc function.

(21, 22)

Apoptotic Effect (genes up-regulated by IFN-γ)

Gene Function References
Caspase 1 Caspase-1 is a cysteine protease involved in the generation of bioactive IL-1β

and IL-18 and implicated in mediating macrophage apoptosis.
(23)

Fas/Fas ligand IFN-γ may increase cellular sensitivity to apoptosis by up-regulating
expression of Fas and Fas ligand.

(24, 25)

IRF-1 interferon regulatory factor 1 (IRF-1) is a tumor-suppressor gene required for
the induction of apoptosis by signals such as DNA damage.

(26-28)

TNF-α receptor IFN-γ  may promote cellular sensitivity to the proapoptotic effects of tumor
necrosis factor-α (TNF-α) by promoting surface expression of a TNF-α
receptor on tumor cells.

(29)
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Table I.  (continued)

Antimicrobial Effect (genes up-regulated by IFN-γ)

Gene Function References
C2, C4, Factor B Complement proteins are secreted by macrophages and fibroblasts in response

to IFN-γ. Complement functions to opsonize extracellular pathogen for
receptor-mediated phagocytosis by mononuclear phagocytes.

(30)

FcRγI Expression of the high-affinity Fc receptor (FcRγI) is increased in myeloid
cells by IFN-γ stimulation. FcRγI binds extracellular pathogens via IgG in the
adaptive phase of the immune response.

(31)

GBPs The guanylate-binding proteins (GBP) are GTPases with antimicrobial
properties that function as regulators of immunity to intracellular pathogens

(32)

gp67phox, gp91phox subunits of the NADPH oxidase, associate with gp22phox and gp47phox to form
the active complex capable of the generation of ROS during the respiratory
burst.

(33-35)

iNOS/NOS2 The NOS enzymes (NOS1, iNOS, NOS3) catalyze the reduced nictonimide
adenine dinucleotide phosphate (NADPH)-dependent conversion of L-arginine
to L-citrulline, forming NO as a by-product. Of these, iNOS is the only
isoform inducible by cytokine and/or microbial stimulus.

(36, 37)

Mac-1 Complement receptors CR3 of mononuclear phagocytes, up-regulated by IFN-
γ to promote receptor-mediated phagocytosis of opsonized extracellular
pathogens.

(38)

Antiviral Effect (genes up-regulated by IFN-γ)

Gene Function References
ADAR The dsRNA-specific adenosine deaminase (ADAR) catalyzes the deamination

of adenosine to form inosine on dsRNA substrates and thus may be responsible
for the generation of "edited" viral mRNA. The cellular translational
machinery treats inosine as guanosine, and thus, A → I editing of viral mRNA
may cause mistranslation into nonfunctional viral proteins to inhibit viral
replication

(39)

GBP1, GBP2 The guanylate-binding proteins (GBP) are GTPases with antiviral properties (32, 40)

Immunomodulation, T helper development, and leukocyte trafficking
(genes up-regulated by IFN-γ)

Gene Function References
B7-1/B7-2 Surface molecules on APCs that provide costimulus for antigen-specific T cell

activation.
(41)

B7/BB-1 B cell activation antigen, Type I membrane protein, natural ligand for the T
cell antigen CD28

(42)

CCL2 (MCP-1),
CCL7 (MCP3),
CCL8 (MCP-2),

Monocyte chemoattractant protein (MCP), MCP-1, MCP-2 and MCP-3 are
chemoattractants for monocytes, macrophages, basophils, eosinophils and
activated T cells and NK cells

(43-45)

CCL3, CCL4 (MIP-1α, MIP-1β) chemoattractants for CD4+, CD8+, and memory T cells. (46)
CCL5 (RANTES) regulated on activation, normal T expressed and secreted (RANTES) is a

chemoattractant for memory CD4+ T cells and monocyte/macrophages.
(47-49)

CD11a, CD18
(LFA-1)

Lymphocyte function- associated antigen-1(LFA-1), interacts with ICAM-1
and ICAM-2, activation marker for T cells

(50-52)

CD40 Member of the TNF-α  superfamily expressed on APCs, fibroblast and
endothelial cells, interacts with CD40 Ligand on T cells to induce B cell
activation

(53, 54)

CD44 CD44 is a surface molecule  that mediates cell-cell and cell-matrix adhesion,
Highly expressed on activated/memory T cells

(55)

CD62L L-selectin (CD62L) is a cell surface adhesion protein that mediates the
adherence of leukocytes to high endothelial venules, highly expressed on naïve
T cells

(56)

CXCL10 (IP-10) IFN-inducible protein (IP-10) is a chemoattractant for monocytes and T cells. (57, 58)
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Table I.  (continued)

Immunomodulation, T helper development, and leukocyte trafficking

(genes up-regulated by IFN-γ)  continued

Gene Function References
ICAM-1 Adhesion molecule-binding to lymphocyte function-associated antigen-1 and

Mac1.
(59)

IFN-γ Autostimulatory loop (60-62)
IgG2a, IgG3 Up-regulation of immunoglobulin heavy chain gene class switch transcripts (63-65)
IL-12 NK cell activator and differentiation factor driving CD4+ cell development to

a Th1 phenotype.
(66, 67)

IL-4 receptor IL-4 is the hallmark cytokine of type 2 immune responses. In mouse cells IL-4
receptor is up-regulated by IFN-γ, whereas it is down-regulated in human cells

(68, 69)

Hyaluronic acid
(HA)

Hyaluronic acid (HA) is a component of the extracellular matrix and is a ligand
for CD44

(70)

PNAd Peripheral lymph node addressin (PNAd, MECA-79 antigen), ligand for L-
selectin; required for lymphocyte homing

(50)

SCF (stem cell factor) c-kit ligand (71)
T-bet T-box transcription factor that is key regulator in Th1 differentiation (72, 73)
VCAM-1 Adhesion molecule-binding to very late antigen-4. (74-76)

Immunomodulation, T helper development, and leukocyte trafficking
(genes down-regulated by IFN-γ)

Gene Function References
CD15 Ligand for L-selectin, inhibits neutrophil phagocytosis and bacterial activity (77, 78)
CD31 (PECAM-1) Platelet endothelial cell adhesion molecule 1 (PECAM-1) acts as an cell

adhesion molecule expressed on platelets and at endothelial intercellular
junctions

(79, 80)

CD34 Ligand for L-selectin on endothelial cells (81)
CD35 Low affinity IgE receptor (82, 83)
CD147 interaction between CD147 (Basigin, OX-47) and cyclophilin A is important

for the infectivity of HIV
(84, 85)

Fibronectin Involved in cell adhesion, cell motility, opsonization, wound healing and
maintenance of cell shape

(86, 87)

IgG1, IgE Down-regulation of immunoglobulin heavy chain gene class switch transcripts (63, 88, 89)
VLA-4, VLA-5 Very late antigen (VLA) 4 and 5 interact with fibronectin and VCAM-1 (90-92)
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