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Abstract

A fundamental question in current biology concerns the translational mechanisms leading
from genetic variability to phenotypes. Technologies have evolved to the extent that they
can efficiently and economically determine an individual’s genomic composition, while at
the same time big data on clinical profiles and diagnostics have substantially accumulated.
Genome-wide association studies linking genomic loci to certain traits, however, remain
limited in their capacity to explain the cellular mechanisms that underlie the given
association. For most associations, gene expression has been blamed; yet given that
transcript and protein abundance oftentimes do not correlate, that finding does not
necessarily decrypt the underlying mechanism. Thus, the integration of further information
is crucial to establish a model that could prove more accurate in predicting genotypic effects
on the human organism.

In this work we describe the so-called proteotype as a feature of the cell that could provide
a substantial link between genotype and phenotype. Rather than looking at the proteome
as a set of independent molecules, we demonstrate a consistent modular architecture of
the proteome that is driven by molecular cooperativity. Functional modules, especially
protein complexes, can be further interrogated for differences between individuals and
tackled as imprints of genetic and environmental variability. We also show that subtle
stoichiometric changes of protein modules could have broader effects on the cellular system,
such as the transport of specific molecular cargos.

The presented work also delineates to what extent temporal events and processes influence
the stoichiometry of protein complexes and functional modules. The re-wiring of the
glycolytic pathway for example is illustrated as a potential cause for an increased Warburg
effect during the ageing of the human bone marrow. On top of analyzing protein
abundances we also interrogate proteome dynamics in terms of stability and solubility
transitions during the short temporal progression of the cell cycle. One of our main

observations in the thesis encompass the delineation of protein complexes into respective



sub-complexes according to distinct stability patterns during the cell cycle. This has never
been demonstrated before, and is functionally relevant for our understanding of the dis- and
assembly of large protein modules.

The insights presented in this work imply that the proteome is more than the sum of its
parts, and primarily driven by variability in entire protein ensembles and their cooperative
nature. Analyzing protein complexes and functional modules as molecular reflections of
genetic and environmental variations could indeed prove to be a stepping stone in closing
the gap between genotype and phenotype and customizing clinical treatments in the future.



Zusammenfassung

Eine fundamentale Frage in der heutigen biologischen Forschung ist durch welche
Mechanismen eine gebenene genetische Variation sich in einem Phanotyp &duflert. Etliche
Technologien konnen heutzutage effizient und 6konomisch die genomische Komposition
eines Individuals mit beispielloser Genaugikeit aufschliisseln. Gleichzeitig gibt es wesentliche
Erfolge und Bemiihungen, grole Datenmengen von Patienten zu sammeln, sowohl klinische
Profile, als auch Diagnosen. Es gibt bereits mehrere genomweite Assoziationsstudien, die
auf spezifische genomische Loci hinweisen, die womoglich einem bestimmenten
phénotypischen Merkmalen zugrunde liegen. Obwohl fiir die meisten genetischen
Assoziationen, eine veranderte Genexpression oftmals als Ursache diskutiert wird, ist dies
wahrscheinlich nur ein Teil des zugrundeliegenden Mechanismus. Wir koénnen dies
annehmen, da RNA-Transkripte nicht unbedingt mit ihrem Protein-Produkt korrelieren
aufgrund von post-transkriptioneller und translationeller Regulation. Um dementsprechend
ein Modell zu etablieren, das die genotypischen Effekte auf den human Organismus akkurat
vorhersagen kann, ist eine Integration von mehreren zellularen Informationsschichten
notwendig.

In der folgenden Arbeit beschreiben wir den sogenannten Proteotyp als ein zelluldres
Merkmal, das eine substanzielle Verkniipfung zwischen dem Genotyp und dem Phéanotyp
eines Individuums schaffen konnte. Statt das Proteom als ein Set unabhangiger Molekiile
zu betrachten, zeigen wir eine konsistent moduldre Architektur des Proteoms auf, das
durch die molekulare Kooperativitdt zustande kommt. Funktionelle Module, v.a.
Proteinkomplexe, konnen weiters auf Unterschiede zwischen Individuen untersucht werden,
sowie deren Variabilitat aufgrund genetischer oder umweltbedingter Ursachen. Wir
demonstrieren u.a. auch, dass leichte stochiometrische Veranderungen in solchen Modulen
zu weitldufigen Effekten im zelluliren Haushalt fiihren konnen, z.B. im Transport von
spezifischen Molekiilen.

Die vorgestellte Arbeit beschreibt allerdings auch inwieweit temporare Ereignisse und
Prozesse die Stochiometrie von Proteinkomplexen und funktionellen Modulen beeinflussen.
Wir zeigen z.B. auf, dass eine Veranderung in der glycolytischen Enzym-Stochiometrie die



Ursache fiir den Warburgeffekt in gealterten Zellen des humanen Knochenmarks darstellen
konnte. Neben der Analyse von Protein-Abundanzen untersucht die vorliegende Arbeit
Proteomdynamik auch in Hinblick auf Stabilitats- und Loslichkeitsveranderungen von
Proteine in kiirzeren Zeitablaufen wie den Zellzyklus. Wir konnen dabei feststellen, dass
Untereinheiten von gréferen Proteinkomplexen verschiedene Stabilitatsmuster aufweisen.
Dies ist durchaus eine neue Erkennis, die weittragende Folgen fiir unser Verstiandnis des
Ab- und Aufbauprozesses von Proteinkomplexen haben koénnte.

Die Einblicke, die aus dieser Arbeit gewonnen werden kénnen, implizieren in jedem Falle,
dass das Proteom mehr als die Summe der Einzelteile darstellt, und hauptsédchlich durch
die Variabilitdt von gesamten Proteinensembls und deren Kooperativitat bestimmt wird.
Proteinkomplexe und funktionelle Module sollten daher als molekulare Reflektionen von
genetisch- und  umweltbedingter  Variation  betrachtet  werden.  Solch  ein
Perspektivenwechsel konnte damit die Moglichkeit bieten eine mechanistische Verkniipfung
von Genotyp und Phanotyp zu gewahrleisten, und ein Fundament fiir zukiinftige individuell
angepasste klinische Behandlungen darstellen.
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Chapter 1

Introduction

he cell is a sophisticated machinery, characterized by a number of intricate sub-

systems that coordinate and execute vital tasks, such as cell differentiation, cell

growth and cell division, to name only a few [Alberts et al., 2008]. The sheer
dimension of that coordination is nothing less but extraordinary. It suffices, for example, to
know that an adult human loses around 50 to 70 billion cells every day due to programmed
cell death [Alberts et al., 2008] and that the organism compensates that loss by creating
new cells. Cell division, or mitosis, provides the mechanistic means to achieve that; it
essentially involves a faithful duplication of the genetic material, chromosomal separation
into precisely equal shares, and a division of the cytoplasm, organelles and the membrane
[Carter et al., 2014]. Though not apparent from the summary, that fundamental process
requires an army of tiny molecular machines [Satir et al., 2008], i.e. proteins. They are
needed for duplicating and packaging the DNA-material, as well as for the kinetochore
assembly to ensure the correct timing to pull the chromosomes apart [Santaguida et al.,
2009], just to name a few critical elements during the cell cycle. Proteins are undoubtedly
the molecules that make the cell actually work: They perform a vast array of functions,
from catalyzing reactions, and DNA replication to signaling and transporting molecules
from one cellular location to another. The fact that those tiny molecular machines routinely
and faithfully execute their functions billions of times in the human body is truly a
fascinating feat of nature. And it proves vital to understand how these systems operate to
leverage their power in the future (design of artificial molecular machines [Strong, 2004; Lu
et al., 2018]), and cure diseases of the human body.
Dissecting biological systems in the cell reveals molecular cooperativity as a fundamental
principle underlying practically all mechanisms involved [Whitford et al., 2005]. The
phenomenon becomes apparent with hemoglobin as an example: Once oxygen binds to one
of the four binding sites of hemoglobin, the affinity of the three remaining sites increases,
hence it becomes more likely that the hemoglobin molecule will have all of its binding sites
occupied with oxygen (cooperative binding, Whitford et al., 2005). While cooperativity
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equally manifests itself at the DNA, and lipid level, it is challenging to examine the effects
of cooperativity across molecular layers (a) and in the entirety of the system (b). The case
of (a) is probably best exemplified with the paradigm of Linus Pauling [Pauling, 1949],
again in context of the aforementioned hemoglobin (Hb) molecule: A single mutation in the
Hb gene - while not affecting the immediate functionality of its product itself - leads to a
flawed assembly of hemoglobin molecules into tetrameric structures. Hence, it directly
interferes and ruptures the required cooperativity of that molecular machinery in order to
successfully bind oxygen molecules. It becomes even more difficult to estimate what other
elements of the cellular system are then immediately affected by that missing cooperativity
(b), and how molecules respond to avoid collateral damage.

The most prominent model providing a link between the genetic composition of an
individual (genotype) to phenotypic variability, is guided by the principles of the so-called
central dogma of molecular biology [Crick, 1970]. The flow of genetic information assumes
that a mutation in a gene-coding DNA region further transcribes into a flawed transcript,
and subsequently translates into a possibly functional or non-functional protein structure
(Figure 1.1). While the dogma certainly provides a framework for understanding the
information flow, it does inherently treat gene products on a singular basis, and not in a
system-wide manner. Thus, if a flawed protein structure were to emerge from a mutated
gene, how is the proteomics system modulated to possibly buffer it? What re-arrangements
are necessary to achieve that? The large-scale effects on the protein landscape that is
characterized by high levels of connectivity and molecular cooperativity remain largely
unexplored.

CENTRAL DOGMA
Genotype

Transcription
(RNA synthesis)

influence of

environment / / / / / / RNA
Translation
(Protein synthesis)

/ //

Ribosome

influence of
environment Protein

phenotype TRAIT

Figure 1.1. Illustration of the Central Dogma. The genotype of an individual is defined by the composition of the
respective DNA molecules, which gets transcribed into RNA, and subsequently translated into a gene product, which
could be a protein. In concert with other proteins the gene product elicits a certain functionality and a phenotypic
trait. At every step of the central dogma, feedback from the environmental setting adds variation to the process.
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Investigating systematic changes in the protein landscape and characterizing the proteome
not only requires the accurate identification of individual proteins, but measuring their
abundances as well. We assume that by studying those protein abundances and possible co-
variation in abundances, it is possible to infer molecular cooperativity and to hence observe
disruptions in protein organizations due to genotypic variability.

In the following sections, we will present current measurement methods to approximate
protein abundances, and further delve into the concept of the proteome modularity and
possible features that can be extracted from it.

1.1  Proteomics State of the Art and why Transcriptomics is not

enough
1.1.1. The Transcriptome as a Proxy for the Proteome?

Protein concentration levels in general are determined by the levels of their coding mRNAs,
by translation rates and by protein turnover [Beck et al., 2011; Schwanhausser et al., 2013].
To what extent does each process, however, contribute to the eventual protein levels? Would
a weak correlation of protein and mRNA levels indicate poor quality of data or rather imply
post-transcriptional processes fine-tuning of proteins? This particular research question has
already been investigated for decades, yet still there is no simple consensus on how the cell
determines final protein concentrations, and whether the mechanisms in place are applied
at random [Liu et al., 2016; Edfors et al., 2016] In the following section of the introductory
chapter, we will elaborate on protein-mRNA correlations and their usefulness (a), as well
as tackle the question on how (measured) protein levels are determined (b), and finally
whether post-transcriptional regulation is relevant (c¢). These are important questions to
understand how the proteotype is established in the first place.

A deviation from a perfect regression line could be due to noise (measurement errors), but
also caused by post-transcriptional mechanisms, or intrinsic mRNA variation. At this point
it is also vital to distinguish between two types of correlations that can be performed: 1)
the same protein in different conditions is monitored against its respective transcript,
answering the question on how much does transcript change affect protein level changes
(Figure 1.2A) [Liu et al., 2016]. The actual R? across studies is not comparable since it is
highly dependent on the conditions used. (2) Different proteins in the same condition are
compared against their respective transcript levels (Figure 1.2B) thereby giving an
estimation on how much transcript levels determine absolute protein levels. Various studies
have been conducted on identifying the actual impact, ranging from R?=0.4-0.9 (Pearson
and Spearman, whereby Spearman is independent of linearity of relationship). One
particular study by Willhelm et al. (2014) stated that protein-mRNA ratios are highly
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conserved /constant across tissues and thus could be used to predict protein levels from mere
mRNA. In fact, as seen from Figure 1.2C, they reach a correlation of up to 0.91 by applying
this concept. Another publication by Fortelny et al. (2017) confirmed that predictions of
protein levels indeed coincide with protein-mRNA ratios, which they incidentally label as
“translation rates”. Probably the ratio is defined by both a protein’s half-life and its
turnover-rate. The authors of this work performed and additional analysis, changing the
translation rates to the median transcript levels across all tissues (the mRNA is rendered
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Figure 1.2. Overview on Protein-Transcript Correlation Aspects. (a) Correlation of one protein with its respective
transcript across different conditions. (b) Given a condition, measured protein concentrations are correlated against
respective mRNA levels. Both (a) and (b) were adapted from Liu et al., 2016. (¢) Conservation of protein/mRNA ratio
across 12 organs (upper panel). Lower left panel shows the correlation of median translation rates of transcripts across
all tissues, with protein abundance. The lower right panel shows the correlation between protein expression (y-axis)
and protein levels as predicted from protein/mRNA ratios (x-axis). Graphs adapted from Willhelm et al., 2014. (d)
Box-plots illustrating correlations from 12 tissues between mRNA and protein levels (1% boxplot), between predicted
and observed protein levels (2" boxplot, sourced from Willhelm et al., 2014), between mRNA-free predictions and
protein levels (3™ hoxplot), and between predictions based on random transcripts and protein levels (4" boxplot). The

graph has been adapted from Fortelny et al., 2017
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independent of the tissue). The resulting protein-RNA correlations were almost as good as
for the tissue-specific mRNA. Even randomizing protein-transcript pairs resulted in high
correlations (Figure 1.2D). It can be concluded therefore that beyond the expression of a
given transcript, other transcriptional and post-translational factors need to be considered
to give a more accurate estimation about the protein levels in the cell [Willhelm et al. reply,
2017]. As indicated in the beginning of this chapter, the central dogma is affected by several
processes. Levels of mRNA, for instance, are governed by their stability and localization
[Trcek et al., 2011]; latter being crucial in neurons and developmental processes for
translational purposes. Translation, on the other hand, depends largely on mRNA structure,
mRNA-binding proteins, miRNAs, codon usage, (charged) tRNA pool, etc. [Svennigsen et
al., 2017]. Protein turnover is then affected by proteasome availability/localization,
autophagy, stoichiometry of protein complexes, folding/chaperones, etc. In fact, if the
chaperone mechanisms fails to control solubility of certain proteins, the formation of
aggregates may leads to a dramatic increase of half-lives as proteins get stabilized [Liberek
et al., 2008]. Furthermore, the actual ex- and import of the protein, and therefore its
decoupling from the mRNA, could influence the eventual correlation that we measure.

When analyzing protein-mRNA correlations, there are also severe technical issues to
consider: Quantifying proteins tends to be difficult due to (i) post-translational
modifications changing visible peptide levels, (ii) incomplete proteins/protein fragments,
(iii) splice isoforms, and (iv) physico-chemical biases, with e.g. membrane proteins not being
detected. On the transcriptomics side, there are also technical issues involving splice
isoforms, stability of transcripts and ratios of nascent (immature) to mature mRNAs.

Finally, an important aspect in understanding the relationship between protein abundances
and transcript levels is kinetics [Liu et al., 2016] : The actual mRNA might be gone by the
time of protein measurement due to a lag-phase or signal delay, RNA being relatively
unstable while proteins usually being stable (Figure 1.3A). Such kinetics become especially
apparent in single-cell analysis: For a protein to remain stably expressed, it is believed so
far that transcription works in so-called bursts (transcription bursts) over time, which are
not apparent in bulk measurements (Figure 1.3B). A similar situation applies to cell-cycle
dependent genes, where we also observe a delay between RNA and protein bursts (Figure
1.3C). Conclusively, the higher the measurement resolution (sampling density), the lower
the protein-RNA correlation is bound to be, because of the reduced spatial and temporal

averaging.
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Figure 1.3. Dynamics of Protein-RNA relationship. (a) The left-hand panel illustrates the delayed signal upon
transcription and translation of elevated RNA levels. ‘Translation on demand’ mechanism ensures that protein levels
increase due to tweaking of translation rates despite constant RNA levels (right-hand panel). (b) At the single-cell level
transcriptional bursting signals become apparent that ensure constant protein levels over time. A bulk measurement of
RNA levels would be constant, however. (¢) Processes like the cell cycle do also show protein- and RNA-levels lagging
due to delays in transcription and translation. The graph has been adapted from Liu et al., 2016.

Many studies have investigated to what degree transcripts contribute to protein levels
[Willhelm et al., 2017; Fortelny et al., 2017; McManus et al., 2015]. One study by Jovanovic
et al. (2015) investigated LPS-stimulated dendritic cells, and collected comprehensive data
on protein levels, protein level changes upon stimulation using a pulse-chase-SILAC set-up
[Selbach et al., 2008], turnover of proteins and mRNA expression. This data was then used
to construct a model that would consider all possible contributions of biological information.
It essentially described a steady-state (before treatment), as well as dynamic changes (fold-
changes) distinguishing relative levels versus absolute molecule counts, respectively (Figure
1.4). The authors found that before treatment around 70% of protein abundances can be
attributed to RNA levels, 21% to translation and 10% to degradation. After treatment,
however, the relative fold-changes are almost completely determined by RNA changes.
Interestingly, the absolute number of molecules gives a different picture with around 40%
transcript contribution. It is further argued by the authors that for very highly abundant
proteins even small changes in the translation rate would have a huge impact on the total
number of protein molecules created. At this point it also needs to be highlighted that the
protein concentration of the cell remains more or less constant unless the cell is actively
growing (e.g. G1l-phase in the cell cycle). Hence, in order to increase the quantity of one
specific protein, the quantity of another protein needs to be reduced.
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Figure 1.4. Contribution of mRNA abundance, translation, and degradation rates to protein levels. (f.Lt.r.) First
and second bar plots illustrate contributions to protein levels before LPS induction, the two bar plots on the right show
the contribution to protein abundance change between LPS-induced and vehicle-treated. The third and fourth bar plot
differ by quantifying contribution to the relative fold-changes (3™ bar plot), and the absolute changes (4™ bar plot)
after LPS stimulation. The graph has been adapted from Jovanovic et al., 2015.

Conclusively, it can be established that mRNA indeed can serve as a reasonable proxy of
protein abundances, are easy to measure in a genome-wide manner and usually are less
noisy than the measurement of its proteomic counter-part. Hence, is it enough to look at
the transcripts only? It is clear that for certain predictable changes, such as developmental
programs of organisms, transcripts give a very accurate picture of the ultimate amount of
proteins produced. In a system that is not as clear-cut as developmental programs or the
cell cycle, post-transcriptional mechanisms come into play as well, such as in signaling
mechanisms [Hinnebusch et al., 2011; Beck et al., 2011]. For such systems, notably, it has
been reported that a mechanism of ‘translation on demand’ [Beyer et al., 2004] is
maintained, which allows for more cautious use of energy resources. The final mechanism
in case of unwanted mRNA fluctuation involves degrading excess proteins. That protein
level buffering becomes especially apparent in protein complexes with cells maintaining
specific stoichiometries [Dephoure et al., 2014; Stingele et al., 2012]. This has been shown
to be the case for copy number variations [Goncalves et al., 2017] in general, and more
specifically in cases of trisomy-21 [Liu et al., 2017].

We therefore conclude in this section that transcription is one of the major mechanisms by
which cells control the abundance of proteins; yet there are also other processes that need
to be taken into account with their respective importance varying from protein to protein.
Using mRNA as a proxy for protein levels is therefore not a reliable approach in general. It
can thus be argued that the proteome and the transcriptome do not contain the same
biological information [Liu et al., 2016].
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1.1.2. Mass-spectrometry technology - its strengths and caveats

The experimental method of choice for both identifying and quantifying proteins in a large-
scale manner is mass-spectrometry (MS) [Aebersold and Mann, 2003; Domon and
Aebersold, 2010]. Briefly, protein molecules get extracted from samples and cleaved by
specific proteases into peptides. These peptides then get subjected to an analysis using a
high-performance liquid chromatography (HPLC) coupled to an MS instrument (LC-MS)
(Figure 1.5). The chromatography allows the physical separation of the peptides in time
due to their interaction with the package material and the stationary phase in the column.
As other solvents are pumped through the column, different peptides reach the end of the
chromatography where a UV-detector records the absorbency at different wavelengths of
the spectrum (260nm = DNA, 280nm = protein (Trp, Tyr, Phe), 595 = Coomassie blue
dye). The area under the UV-trace is directly proportional to the amount of the given

= MS
HPLC . lonization
(electrospray) . _
- - miz
2 MS
(full spectra) [ L @ antification
- L_3 MS _ 4 Fragmentation
Time (precursor selection) (CAD)
-5 MS/MS

Quantification

miz

MS/MS (Production spectra) '  Identification

protein protein HPLC MS and/or
cell lysis separation digestion separation | MS/MS analysis

0’

&%
iE-
E § Metabolic Labeling: Spiking: AQUA, Enzymatic: Isobaric Tagging: Label-free:
a SILAC, SILAM QconCAT, %0 labeling iTRAQ, TMT Spectral Counting, MRM,
Super-SILAC Chemical Labeling: SWATH, XIC-based
Dimethylation, TrEnDi quantitation

Figure 1.5. Workflow of a proteomic experiment, with exemplified quantification methods. The first steps in the
workflow involve cell lysis, protein separation, and digestion to obtain peptides. These peptides are then separated by
an HPLC prior to mass spectrometry analysis. More specifically, the peptides get ionized; MS1 spectra are acquired
(full spectra), and top precursor ions are further fragmented and MS2-spectra (production spectra) are obtained. The
combination of both MS1 and MS2 spectra is required for identification and quantification. In the lower part of the
graph, different methods to acquire more precise quantification information, are outlined. The upper part of the graph

has been adapted from Domon & Aebersold, 2010.
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material eluting from the column, and therefore constitutes a critical part of the subsequent
integration with actual MS-data. An electrospray then injects the resulting peptides into
the mass spectrometer which records mass-to-charge ratios (m/z) of eluting peptides at a
given time point (MS1) [Canas et al., 2006; Yates et al., 2009]. From such a full-scan
spectrum the precursor ions with the highest intensity are selected (topl2) and further
fragmented using collision-induced dissociation (CID) or high-energy C-trap dissociation
(HCD), depending on the instrument. For each precursor ion, a further fragmentation
spectrum (MS2) is recorded, gathering the information on so-called b- and y-ions.
Ultimately, both the MS1- and MS2-spectra are used to identify the peptide by
interrogating a database of protein sequences. In order to quantify protein abundances,
several methods have been developed (Figure 1.5), and it is important to understand their
advantages, as well as their caveats to reliably draw conclusions on results obtained with
them. Table 1.1 gives a brief overview. The most common and straightforward way of
quantifying protein abundance relies on extracting the precursor ion chromatogram at the
MST1 level [Zhu et al., 2010], for a given m/z-value. The approach is genuinely independent
of any chemical modifications of the peptides or multiplexing and can theoretically be
obtained for an unlimited number of peptides and samples. However, the quantification
method suffers from poor reproducibility due to the stochastic ion selection per MS run,
and technical issues including sample handling, digestion efficiency, injection, shifts in
retention times, instantaneous matrix effects, etc. [Nesvizhskii, 2007; Worboys et al., 2014].
This particular methodology will be used in Chapter 4 as an orthogonal quantification

method, but needs to be carefully interpreted due to its inherent caveats.

Table 1.1: Overview on MS-quantification methods

Method Advantages Disadvantages Applications
Label-free (area © no labeling required o poor reproducibility biomarker discovery
under the o requires specialized software possible
(MQ has label-free
curve) e :
quantification option)
SILAC o reduces technical o cells must grow on special Cell-culture based
variability media (difficult with entire study
o labeling incorporated in living organisms, i.e. mice)
vivo o expensive
o side effects?
iTRAQ/TMT o no special growth o noisier than SILAC primary cells/tissue-
conditions required O expensive based studies
O use on primary tissue o interference with enrichment
possible protocols
o higher multiplex than
SILAC
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Synthetic o guaranteed observation o analyte must be known Targeted proteomics

peptides precise assessment of peptide preparation needed
concentrations

Spectral o no labeling required o poor reproducibility

Counting

Isotope labeling approaches, on the other hand, partially address the issue of poor
reproducibility. The basic principle was introduced with stable isotope labeling of amino
acids in culture (SILAC, Ong et al., 2002), where cultures to be compared are grown in
light (C-12) and heavy (C-13) media. After mixing cells in a 1:1 ratio, proteins are processed
together to guarantee low technical variability, and the relative protein abundance between
the light and heavy condition can reliably be quantified in the mass spectrometer. This
quantification method has found a lot of applications for monitoring protein and PTM
expression [Battle et al., 2014; Romanov et al., 2017], protein interactions [Kleiner et al.,
2017], as well as synthesis and degradation rates (pulse SILAC, Selbach et al., 2008).
However, it remains restricted to lower organism, such as yeast and bacteria, than can
synthesize their own amino acids from basic precursors and relies on the area under the
curve- calculations from the extracted ion chromatograms. The introduction of higher
multiplex-labeling, such as iTRAQ (isobaric tags for relative and absolute quantification),
and TMT (tandem-mass tag, McAlister et al., 2012; Rauniyar and Yates, 2014), certainly
represented a paradigm shift as it was circumventing latter mode of quantification. The
essential idea involves chemical reagents that have stable isotopes at various positions, while
their total mass is the same. The reagents typically consist of a reporter group, a balance
group and a peptide reactive groups that interacts with primary amines (hence the N-
terminal ends of peptides, e.g.). After sample processing and protein cleavage, peptides get
labeled with those reagents, and analyzed in the MS. During precursor fragmentation, the
balance group is bound to fall off, leaving the reporter ion as a single fragment with a very
distinct mass (in a 4-plex system, 4 reporter ions with 114-117 m/z are created). Thus, the
different variations of the reporter ion appear in a fragmentation spectrum of one single
peptide, and reflect the actual abundances of the peptide across the different conditions
tested. The TMT-MS currently supports ten-multiplexed systems allowing the coupling of
several conditions in one single MS-run. The power and usefulness of this technology will
be further demonstrated in Chapter 3 and 4.

In any case every quantification method remains biased towards abundant peptides given
the inherent manner of ion selection in the mass spectrometer. These so-called data-
dependent acquisition methods (DDA) allow covering 5.000 proteins in one single run
(50.000 peptides, corresponding to 50.000 western blots an hour) in a reasonable amount of
time spanning 6-8 hours from sample processing to acquiring the digital file [Lemeer and
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Heck, 2009]. Recently developed technologies, such as SWATH-MS, aims at complementing
such traditional methods that remain hampered in their quantification capability (data-
independent acquisition, DIA) [Gillet et al., 2012]. In a typical SWATH set-up, the mass
spectrometer scans a range of peptide precursors from 400-1200 m/z and fragments all
precursors in 25Da isolation windows. The same isolation window is fragmented again at
each cycle during chromatographic separation, thereby allowing for a time-resolved
recording of fragment ions of all peptide precursors. While the obtained ion maps are
difficult to de-convolute (OpenSWATH), the technology provides the first step towards

accurate quantification of a wide range of proteins in a reasonable time frame.

1.1.3. Proteomic Findings Reaching Saturation Level

The current state of the art in proteomics research indicates that around 14,200 proteins
have been detected, with more than 1 million distinct peptides from 133 million peptide
spectrum matches (PSMs) (according to the latest survey on Human Peptide Atlas [Desiere
et al., 2006]). While a more thorough investigation of post-translational modified peptides,
as well as isoforms could certainly fill the remaining void in peptide detection, it is clear
that in terms of actually mapping the human proteome, the discovery of new
peptide/protein species are close to saturation level. Figure 1.6A demonstrates the
tremendous increase in fragmentation spectra generated from the human proteome using
classical data-dependent acquiring techniques (DDA), as recovered from the EBI databases

[Cook et al., 2016].
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Figure 1.6. Saturation of the Human Proteome. (a) Overall size of data of different types (sequencing, array, mass
spectrometry) accumulated over time in EMBL-EBI. (b) Number of identified peptides across large-scale datasets. (c)
Number of identified proteins across large-scale datasets. Data for (b) and (c) have been sourced from the Human
Peptide Atlas.
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When further dissecting peptide and protein discoveries according to publications in Figure
1.6B/C, the plateauing becomes noticeable with both peptides and proteins (assuming that
the FDR has been correctly estimated). It is therefore paramount to look at the acquired
data from a different perspective. In context of the above described gap between genotype
and phenotype, it makes sense, for example, to investigate the notion and relevance of
protein cooperativity and the modular architecture of the proteome.

1.2  The Proteome in Context - the Proteotype
1.2.1. The modular architecture of the Proteome

For the most part proteomics research treats proteins as largely independent molecules, the
same way it is usually done for transcripts [Liu et al., 2016]. Yet it is clear that this is not
reflective of the mode of operation of those molecules. Rather, proteins act a social
molecules, assembling and acting in modules and networks, which in turn is complex and
rich in biological information. In fact, a pioneering observation made by Linus Pauling in
1949 already indicated the effect of protein re-organization leading to a clinical phenotype
[Linus Pauling et al., 1949]. The established paradigm was exemplified in sickle cell anemia,
showing that one mutation in a specific locus in the genome leads to a structural change in
hemoglobin Hb, causing the phenotype. The defined mutation did indeed result in
abundance changes of the specific gene product. Most importantly, however, it changed the
way hemoglobin gets organized into tetrameric complex, which is the primary trigger for
the emergence of the disease (Figure 1.7A). While the paradigm establishing the link
between genetic variants and altered protein structure and function is still valid, it remains
surprisingly ignored in the omics field. Hence, is it possible to extend Linus Pauling’s
principle to large-scale mass spectrometry data?

One particular attempt to do that involved establishing a model of the so-called proteotype,
which basically describes the acute state of the proteome in a cell, all its components, their
organization and inter-connections with each other [Aebersold et al., 2016] (Figure 1.7B).
The given model has a number of properties that should be considered: (1) the proteotype,
hence its composition and organization, is the result of complex processes and multiple
layers of regulation that remain poorly understood (i.e. transcriptional & translational
control, RNA interference, micro-mRNA modulation, phosphorylation, ubiquitination, etc.).
The cell, however, perfectly integrates all these layers of information, interpreting each
control level and generating a result entity. Incidentally, the resulting buffering of
transcriptional variability renders the proteotype more stable than the analogous
transcriptome. (2) The proteotype reflects the composite response of the cell to
environmental perturbations. (3) The proteotype determines the biochemical state of a cell
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and is therefore expected to define phenotypes, as postulated by Beadle & Tatum [Beadle
and Tatum, 1941], as well as Linus Pauling. (4) Rather than mapping individual functions
to gene products, analyzing the proteotype primarily centers on the question: How does the
system react in case the function of a gene is impaired? (5) The proteotype can be
represented at different levels of resolution which can be precisely measured if need be
[Aebersold et al., 2016].

This informative entity that is fundamental to the translation of genotypic variability to
the phenotype could be influenced by environmental cues, epigenetics or genetic
information; however, the enormous task of fitting the proteotype into the genotype-to-
phenotype model remains restricted to the identification and quantifications of individual
proteins. Clearly, the task in the future encompasses the understanding of how the different
proteins are connected and whether the level of connectivity is changed under certain
conditions, e.g. due to genetic variation, copy number variation, environmental changes,
etc. Using the proteotype as a model, several questions can be tackled to fully integrate it
into our understanding of the cellular phenotype:

—_

To what extent are cellular proteins organized in macromolecular structures?

\)

To what extent is the genotype determining the proteotype?
Does the proteotype classify groups (biomarker)?

-~ W
~— N N

Does proteome context reveal information that is not apparent from conventional
quantitative proteome measurements?
5) Do changes in the modular organization of the proteotype determine function and
phenotype?
Ultimately, these fundamental questions are major incentives for the presented work here

as well.

1.2.2. Optimizing the data matrix- technical aspects to be considered

An underlying necessity to answer the above questions involves data representation and
defining technical parameters of the data matrix that needs to be interrogated [Rost et al.,
2015]. Such a data matrix is typically derived from perturbed states of a biological specimen
(columns usually corresponding to the samples), and contains quantification values of the
measured variable (rows corresponding to the proteins). This data matrix would support
correlative analyses, machine learning, etc. High reproducibility of MS-measurements as
well as depth of identification and quantification are the foundation to such matrices; even
quantifying a low number of proteins across several sample, significant biological results
could be acquired [Rost et al., 2015]. What are the optical dimensions of the matrix though?
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Figure 1.7. Extension of Linus Pauling’s paradigm to the conceptualization of the proteotype. (a) Schematic
illustration of Linus Pauling’s paradigm, exemplified on sickle cell anemia. On the left-hand side, hemoglobin does not
carry any mutations, and forms a functional quarternary structure. On the right-hand side, a missense mutation leads
to an aberration of the tetrameric hemoglobin complex, ultimately resulting in fiber structures that give the blood cells
the particular sickle-shape. Graph adapted from http://biol151b.nicerweb.net/Locked /media/ch05/hemoglobin-
sickle.html. (b) Schematic illustration of the proteotype in connection with potential phenotypes of an individual. The
proteotype is shown as a network of proteins (colored shapes). The proteotype is influenced by both genotype (somatic
mutations, alleles..) and external perturbations, such as physical or chemical stimuli, cell-cell interactions or the
microbiota. The phenotype is then determined hy the respective proteotype of an individual which can be established
by association studies. To discover associations in a reliable manner, protein abundances need to he quantified across

a large number of patients with qualitative mass-spectrometry techniques. Graph adapted from Aebersold et al. (2016).



Should we spend more effort increasing the depth of the sample or rather the sample
number? Furthermore, what is the most informative subset of proteins in the matrix? Do
all proteins in the data matrix have the same biological information? Can we infer
information about proteotype organization from such a data matrix alone? If given the
possibility of applying questions from GWAS studies [Lappalainen et al., 2013] to a data
matrix derived from proteome measurements, it could indeed render this line of research
powerful for (1) biomarker exploration, (2) GWAS association studies, (3) identification of
clusters of proteins behaving similarly across conditions, (4) network inference, (5)
population-based molecular biology, and (6) support of mechanistic models. Most studies
on biomarker exploration, for example, have a very limited sample cohort, as well as a
limited number of proteins; clinical specimen are unique, irreplaceable and small in number
as well [Drucker et al., 2013]. It would thus be of high relevance to understand how biological
significance is impacted by matrix dimensions.

An unpublished investigation on this matter by Ting Huang, Olga Vitek et al. gives some
insight by determining factors that maximize prediction power of biomarkers, given a matrix
of 70 proteins quantified in 200 subjects. Their preliminary study essentially found that the
addition of more proteins reduces the predictive accuracy of markers since unfavorable noise
behavior might dilute the marker signal (or predictive proteins). More subjects, on the other
hand, increased the accuracy and sensitivity. It is therefore suggested to optimize for the
number of available samples, and high reproducibility of a low number of proteins.

1.2.3. Proteotype Variation and what it depends on

The next question regards the information content of each protein: Arguably some proteins
are more determined by environmental cues, by ageing, or genetic determinants. Studies so
far have not quantified the influence of each of these determinants on the proteotype but
provided a patchy network of dependencies, and relative contributions. There is one study,
however, that should be highlighted as it does attempt to mathematically de-convolute the
sources of variability of protein abundances based on plasma proteome maps of a human
twin cohort [Liu et al., 2015]. By defining general linear-mixed effects models with genetic
contributions, common environment of the twins, their individual environments,
longitudinal effects (age), and non-biological effects, they assessed for a total of 342 plasma-
derived proteins how their overall variability can be partitioned into different fractions
according of those effects. For around 100 proteins they could observe a strong genetic
impact on abundance variability (>20% of explained variance); yet other proteins were
primarily influenced by the environment in their abundance (Figure 1.8).

To what extent is the knowledge of the heritability landscape useful? The authors observe
that over time the genetic control on protein abundance actually decreases, hence the
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Figure 1.8. Heritability landscape of 342 human plasma proteins. (a) Histogram showing contribution of biological
components to protein abundance variation (red: heritability; light blue: common environment; dark blue: individual
environment; yellow: longitudinal effects; gray: unexplained fraction). (b) Examples of clinically assayed proteins with
heritability are shown. Graph has been adapted from Liu et al., 2015.

longitudinal vector (age) changes the contribution of the genetic component to protein
abundances. Such an observation can be crucial for our understanding and validation of
biomarkers. More specifically, around 302,423 papers have been published with the keyword
“protein biomarker” (257,568 papers with the keyword “protein biomarkers”), yet only a
few markers make it through clinical validation [Drucker et al., 2013]. Liu et al. (2015)
demonstrate that postulated marker proteins might have a very strong longitudinal
component, meaning that these proteins are highly variable between people of different ages
and environmental conditions (Figure 1.9A). It is hypothesized that these marker proteins
could have been postulated as such due to under-sampling and not taking into account the
longitudinal component. In contrast to that, FDA-cleared or approved plasma proteins tend
to be more stable over time and exhibit stronger genetic components (Figure 1.9B). The
identification of biomarkers should thus be correlated with high genetic heritability,
decreased longitudinal effects and low variability in the cohort. Mapping sources of
variability to protein abundances is therefore of high relevance, and should be taken into

account for e.g. biomarker research.
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Figure 1.9. Biomarker analysis in twin proteomic dataset. (a) Contribution of different variance sources to
abundance levels of reported protein biomarker candidates. (b) The variability of clinically assayed proteins tends to
generally lower than the quantitative variability of other plasma proteins. Graph has been adapted from Liu et al.,
2015.

1.2.4. Relevance of Proteotype for Personalized Medicine

Latter section is important in context of personalized medicine which has evolved as a major
concept in recent years, and which essentially tries to optimize medical treatment for
patients according to their genomic features [Ashley, 2016]. Since the costs and time efforts
for sequencing an entire human genome dramatically decreased in recent years, the
exploration of a patient’s genetic mutations has fueled the design of drugs that would target
a specific molecular alteration. Despite a number of successful tailored treatments (Gleevec-
secondary drug combination in leukemia patients, Hochhaus et al., 2017), understanding
the relationship between a patient’s genetics and the ultimate medical treatment remains
challenging. Biomarkers are being currently tested not only at the DNA and RNA level,
but also at the protein level as well; yet, our ability to stratify patients into clinical target
groups based on protein biomarkers is limited [Ashley, 2016]. One particularly striking
aspect concerns the stratification of male and female organisms based on proteome data:
Various studies have reported protein abundance variation due to the sex of an organism,
but remain restricted to chromosome X/Y-specific protein expression rather than the
systemic differences in the proteotypic pattern that latter could entail [Wu et al., 2013;
Kukurba et al., 2016]. Exploring gender differences of the proteome is pivotal for our
eventual understanding of human clinical phenotypes that often are sexually dimorphic.
Apart from obvious anatomic differences, several studies have pointed towards diseases
being more prevalent or severe with one or the other sex, such as autoimmune disorders
[Whitacre, 2001], cancer susceptibility [Naugler et al., 2007], cardiovascular [Mendelsohn
and Karas, 2005], and psychiatric diseases [Pigott, 1999; Hankin and Abramson, 2001].
Although the GWAS (genome-wide association studies) community is catching up on
elucidating the role of the X-chromosome in the heritability of such phenotypes [Chang et
al., 2014; Tukianen et al., 2014], sex-specific genetics needs to be further interrogated at the
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Figure 1.10. ‘Chaperome’ decline with ageing. (a) The heatmap illustrates 318 chaperones (y-axis) expressed in the
human brain, ordered by declining correlation with the chronological age of the specimen. Transcripts above the red
horizontal line get up-regulated upon ageing (p < 0.05); transcripts below the green horizontal line get down-regulated
upon ageing (p < 0.05). Dendrogram based on hierarchical clustering of brain specimens. (b) Three groups deduced
from hierarchical clustering in (a) are visualized in respective color code. The figure has heen adapted from Brehme et

al., 2014.

proteome level. In Chapter 2 we will provide one of the first attempts of such a survey
using a proteomics data on 94 male and 98 female mice of different genetic backgrounds
[Chick et al., 2016], and describe protein modules that exhibit sex-specific abundances as

well as complex stoichiometries. The underlying idea would be to recognize protein co-
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variation patterns as potential bio-markers that could be used in context of a personalized
treatment plan in the long run as well. The stratification of patients into male and female
is just the first step towards that goal.

Another essential step involves the ability to stratify patient’s proteotypes by age: The
proteome is known to undergo several crucial re-arrangements as the organism grows older,
particularly with regard to proteostasis. From the unfolded precursor state proteins are
folded with the help of chaperones into their most efficient and functional structure; if a
misfolding event occurs (e.g. due to mutation), there are degradation mechanisms in place
to prevent misfolded protein species from aggregating [Houck et al., 2012]. Given that
protein aggregates have profound consequences on cellular and organismal health, a major
challenge for each cell is to maintain that subtle balance of protein folding in response to
numerous signaling inputs, including heat shock responses, oxidative stress, and calcium
signaling [Park et al., 2013; Yu et al., 2014]. The aging of an organism, however, is associated
with a decline of that proteostasis capacity [Ben-Zvi et al., 2009], which a recent publication
by Brehme et al. (2014) has connected to a decline of chaperones (Figure 1.10). Specifically
the authors pinpoint at a ‘core chaperome’ of 21 genes decreasing in their overall expression
in the human brain. The finding was further complemented with observations of an
increased propensity of aggregate structures as well. While the mechanistic link still needs
to be further disentangled, it is clear that a disbalance in the proteome leading to such an
accumulation of misfolded species, represents the basis of cellular dysfunction [Douglas and
Dillin, 2010]. Incidentally, the authors also made the distinction between chronological and
‘proteostatic’ age based on the level of chaperome-decline they observe, since the system is
affected by an individual’s genetic and environmental background [Brehme et al., 2014].
Another proteotypic hallmark of ageing concerns advanced glycation end products (AGEs)
which are proteins that become glycated due to increased sugar levels in the blood. Once a
critical threshold of glycated proteins in the blood is reached, AGEs can induce crosslinking
to other proteins (e.g. collagen), thereby promoting vascular stiffening [Semba et al., 2009].
The presence of AGEs also leads to oxidized low—density lipoprotein (LDL) particles getting
trapped in the artery walls, which could result in artherosclerosis [Prasad et al., 2012; Di
Marco et al., 2013]. While the emergence of such products has been excessively linked to
lifestyle [Uribarri et al., 2010; Vlassara, 2005, it could also be due to an inherent oncogenic
re-wiring of the cellular metabolism. In tumor cells, for example, glucose metabolism get
heavily up-regulated to sustain accelerated cell growth, and primarily gather energy from
lactic acid fermentation in the presence of abundant oxygen rather than from mitochondrial
oxidative phosphorylation. This process has been described as the Warburg effect [Vander
Heiden et al., 2009] (Figure 1.11).
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Figure 1.11. Scheme illustrating difference between oxidative phosphorylation, anaerobic glycolysis, and aerobic
glycolysis (Warburg effect). (Left) Non-proliferating tissues metabolize glucose to pyruvate and completely oxidize
pyruvate in the mitochondria to COz (oxidative phosphorylation). In case of limited oxygen, pyruvate is converted into
lactate (anaerobic glycolysis), vielding less ATP than in oxidative phosphorylation. (Right) Cancer cells convert most
glucose to lactate regardless of oxygen presence (aerobic glycolysis), which is known as the Warburg effect. This process
is less efficient than oxidative phosphorylation, but allows to redirect glucose into biosynthetic pathways. Graph
adapted from Vander Heiden et al., 2010.

Such an aerobic glycolysis does not yield many more ATPs than its oxidative counterpart,
but generates many additional metabolites, which in excess leads to the phenomenon of
AGEs [Liberti et al., 2016]. Despite numerous studies on the Warburg effect, however, the
precise causes for that phenomenon remain elusive. It could be a consequence of
mitochondrial damage (during oncogenic progression) [Unwin et al., 2003], an adjustment
to low-oxygen environments, or simply a consequence of cell proliferation that requires
enhanced generation of metabolic building blocks derived from glycolysis [Lopez-Lazaro,
2008]. Some reports point towards over- expression of specific glycolytic enzymes to
maintain high anaerobic glycolytic rates, such as for example the hexokinase enzyme
[Bustamante et al., 1977], and the M2 splice isoform of pyruvate kinase [Unwin et al., 2003;
Christofk et al., 2008]. Thus, it could be of ultimate use to monitor the abundance levels of
a very specific sub-proteome of a human patient, namely proteins involved in glycolysis, to
understand whether a potential Warburg effect could indeed arise from the given
stoichiometric constellation, and target those specific enzymes to reduce their activity or
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kinetic rates. Chapter 4 is entirely dedicated to exploring the proteotype of young and old
people in context of such metabolic rewiring.

One key question with regard to the usefulness of the proteotype as a model to establish its
association with an eventual phenotype concerns the inference of metabolic flux [Madhukar
et al., 2015]. Tt is assumed that absolute protein concentration- if accurately measured- gives
an understanding of enzyme kinetics and the rate of metabolic processing as latter is
(usually) correlated with enzyme abundance [Northrop et al., 1998]. It has been shown, on
the other hand, that an increase in metabolic flux does not necessarily entail a shift in
enzyme abundance, but that it is rather by means of allosteric control mechanisms that
metabolic throughput is regulated, such as in carbon metabolism [Schwender et al., 2015].
Most studies, however, remain restricted to assessing the correlation of transcriptional
variation of metabolic genes with the given flux, primarily in context of oncogenic
transformations [Hu et al., 2013; Metallo et al., 2013; Deberardinis et al., 2008; Schulze et
al., 2012]. In Chapter 4 of this work, we will derive flux changes from robust measurements
of protein abundances during the ageing process across different cell types of the human
bone marrow. This particular aspect, however, remains to be further substantiated using
actual metabolite measurements.

1.2.5. To what extent is the Genotype determining the Proteotype?

In the previous sections of this work we have established the necessity to understand how
much of a given phenotypic variance is due to heritability (or explained by the genotype of
an individual), and to what extent it is determined by environmental variability (section
1.2.3). We have also pinpointed at its relevance in context of personalized medicine to design
more effective therapies for diseases (section 1.2.4). The underlying statistical approaches,
however, remain to be discussed to understand how the proteotype model could be
incorporated into established association-based methods. Today’s computational approaches
involve (A) linear models of the phenotype that use step-wise regression, (B) test-statistics
for discovering so-called quantitative trait loci (QTLs), hence markers that are associated
with a given quantitative trait, and (3) measurement of narrow sense (h?) and broad sense
(H?) heritability, as well as environmental variance. While broad sense heritability describes
phenotypic prediction by optimal arbitrary models, thereby revealing the actual complex
molecular mechanism, narrow sense heritability describes the phenotypic prediction by a
linear model and is thus efficient for genetic mapping studies [Vissher et al., 2008]. Hence,
the phenotype is described as following:

pi=f(g)+e
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i = individual [1...N]

gi = genotype of an individual

p; = quantitative phenotype ofan invidual i (single trait)
e; = environmental contribution to p;

The simplest model for the function fis a linear function, and would effectively describe the
narrow sense heritability:

fa(gi) = Z B;gij + Bo

JEQTL

i = individual [1...N]

gij = marker j for individual i with values {0,1}

B; = ef fect size for marker j

fa(g:) = additive model of genotypic components in g;

By restraining analysis to calculating the narrow sense heritability only in a standard QTL-
approach, it has been found that the heritability h?for the human height is around 0.8
[Yang et al., 2010], whereas fitness traits, such as a wild animal life history, is around 0.3
[Gagliardi et al., 2010]. Thus, there are certain traits that have a higher genetic component
than other phenotypic traits. It needs to be highlighted at this point that narrow sense
heritability- while being useful- only explains a fraction of phenotypic variance by the
additive model of markers f;(g;). The difference between broad sense and narrow sense
heritability then defines the fraction of so-called ‘missing heritability’. Latter could be due
to several factors, including incorrect heritability estimates, non-chromosomal elements, rare
variants, structural variants, many common variants of low effect, and epistasis [Bloom et
al., 2013]. In case of epistatic effects, hence actual gene-gene interactions, the effect on the
phenotype would not necessarily pop up due to the linearity assumption. In the study
conducted by Bloom et al. (2013), the authors examined interactions of significant QTLs
with all other genes to reduce the burden on statistical power. They could observe that for
most traits, missing heritability was not explained by pairwise interactions; yet for some
traits, such as growth capability on maltose medium, missing heritability was explained up
to 71% by pairwise interaction only. Given such findings, it would be interesting to see
whether protein modules that are generated downstream of translation do have that
information encoded in a similar way, with their respective genes interacting at the level of
such trait-association analyses.

One of the most common QTL analyses is the identification of expression QTLs (eQTLs)
with alleles explaining the variance in gene expression. Using microarray or RNA sequencing
(RNA-seq), the mRNA levels of an individual are obtained and further compared to the

48



respective genotype of the individual (SNP genotyping or whole genome sequencing). By
means of statistical methods, i.e. linear regressions, loci significantly contributing to RNA
expression levels (eQTL) are identified, and quantified (effect size). Such mappings have
been conducted in a large-scale manner across 53 human tissues (>10.000 samples), yielding
up to 30.000 significant eQTLs [Carithers et al., 2015; Ward and Gilad, 2017]. Undoubtedly,
the GTEx database provides a rich source of information required to bridge the genotype-
phenotype gap and to interpret the findings from genome-wide association studies (GWAS)
on various diseases [Lappalainen et al., 2013].

A fundamental caveat of all QTL-studies, however, is their inability to pinpoint at the
precise biological mechanism that leads to a given association [Pearson et al., 2008]. A study
by Battle et al. (2015), for example, suggested that only 65% of eQTLs get buffered, as
their effects do not further propagate to downstream protein abundance levels. That finding
prompts the idea of defining other types of QTLs that could explain variation at different
regulatory levels (Figure 1.12), such as at the level of histone modifications (hQTLs)
[Grubert et al., 2015], methylation (mQTLs) [Banovich et al., 2014], protein abundances
(pQTL) [Melzer et al., 2008; Suhre et al., 2017; Battle et al., 2015; Chick et al., 2016] and
even metabolite levels (meQTL) [Wu et al., 2014; Williams et al., 2016]. Integrating these
different layers may offer clues for deriving mechanisms underpinning a certain phenotypic
trait, and assessing the predictive power of the loci identified. By means of the so-called
mediation concept such a QTL analysis could be further extended to entire protein modules.

Figure 1.12. Overview on QTL interconnectivity. Data
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1.2.6. How do genetic effects propagate to protein modules?

Recent reports attempt to identify potential mechanisms of genetic control on protein
abundances, and exploit the modular architecture of the proteotype [Chick et al., 2016;
Goncalves et al., 2017; Roumeliotis et al., 2017; Ryan et al., 2017]. Protein complexes
represent a particularly interesting set of modules as they exhibit a highly coordinated mode
of regulation of their protein members. The stoichiometry of a complex needs to be
rigorously maintained for it to function in the first place; however, the biological mechanism
by which such a control is achieved remains elusive. Also it is not clear whether such a
detection would apply to all protein complexes, and whether some complex members are
more relevant than others during complex assembly. Chapter 2 provides more insight into
whether such a dissection is indeed possible by interrogating a large number of complexes
for presence of stable and more variable subunits. Prior to that, however, it needs to be
understood whether the stoichiometric maintenance is encoded at the genetic level, or an
independent mechanism downstream of translation.

The work by Li et al. (2014), for example, indicates that E.coli has the rate of protein
synthesis required for one particular complex encoded in one single operon. Using ribosome
profiling and RNA-seq analysis the authors demonstrate that, while the mRNA levels do
not show any stoichiometric balance whatsoever, the translation rate is reflective of the
eventual stoichiometry of the complex (Figure 1.13A). The optimization of translation rates
to achieve proportional synthesis in complexes is also demonstrated for yeast cells (Figure
1.13B); however, by what means the translation rates are adjusted is not clear. The strength
of the Shine-Dalgarno site, as well as the local RNA structure does not account fully for the
observed rates [Salis et al., 2009; Li et al., 2014]. Another constraint to the model established
by the authors is the fact that it cannot be readily extrapolated to multi-cellular organisms.
Genes coding for members of the same complex are not found to be particularly close to
each other in their chromosomal location, and a similar ribosome profiling has not revealed
any particular tuning of the translation rates [Ignolia et al., 2017; Stefely et al., 2016].
Instead, there have been proposals on (a) so-called ‘mediation’ events based on dependent
genetic and transcriptional regulation of subunits of the same complex [Chick et al., 2016],
and (b) attenuation of complex subunits by degradation of excessively produced proteins
[McShane et al., 2016]. Although these two hypotheses are not mutually exclusive, they are
characterized by very distinct biological mechanisms.

The mediation hypothesis (a) is an elegant means to link identified quantitative trait loci
(QTL) to entire complexes or modules. Given a pQTL, it is assumed that it affects its local
transcript or protein intermediate, which in turn influences the abundance of (a) distant
protein(s); thus the pQTL would act in trans. Chick et al. (2016) illustrate the concept with
the chaperonin-containing TCP1 (CCT) complex (Figure 1.13C), where all complex
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Figure 1.13. Models of complex stoichiometry maintenance by adjustment of translation rates and protein
mediation. (a) Polycistronic mRNA (blue) expressing all subunits of FO/F1 ATP synthase, with translation rates
(green) adjusted to stoichiometry of complex (data from ribosome profiling). (b) Heterodimeric complexes in
S.cerevisiae are synthesized proportionally. Both graphs (a) and (b) were adapted from Li et al., 2014. (¢) (From top
to bottom) (1) Scheme illustrating mediation on chaperonin complex. (2) Variant on chromosome 5 shows distant
effect on CCT2 abundance. (3) All members of chaperonin containing Tepl (CCT) complex are affected by latter
variant on chromosome 5. (4) Variants acts proximally to Cct6a and acts on it at the transcript level. (5) Protein
abundance of CCT2 is correlated with CCTG6A protein and Cct6a transcript. Graph has been adapted from Chick et

al., 2016.

members share a distant pQTL. Latter impacts the transcript and protein abundance of its

local gene Cct6a, which is then further propagated to the other complex members through

post-transcriptional mechanisms. It can thus be assumed that (physical) properties of

CCT6A renders it a suitable mediator protein for the complex (i.e. scaffold protein), and

that in case of perturbation in its abundance, it becomes more difficult to achieve the
required stoichiometric balance. Chick et al. (2016) was one of the first studies to present a
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comprehensive analysis on such mediatory events, followed by efforts from Roumeliotis et
al. (2017) in colorectal cancer cell lines, where they demonstrated potential mediators in the
BAF complex. Such studies remain scattered, however, and the power of mediation analysis
still needs to be leveraged for all complexes and protein modules. If integrated with other
resources on complex assembly [Levy et al., 2007], the bio-physical properties of discovered
mediators could hint at potential progressions during assembly and disassembly of protein
modules in general. Additionally, it needs to be further incorporated into our current
understanding of the degradation mechanisms (b).

Studies of aneuploidy in yeast and human cells have revealed that the majority of autosomal
gene duplications is reflected at the protein level as well; only subunits of multi-protein
complex showed significant attenuation in their protein abundance levels [Stingele et al.,
2012; Dephoure et al., 2014]. That finding has been also recovered in CPTAC and TCGA
cancer panels by Goncalves et al. (2017) in context of copy number variations (CNVs).
Generally, the observation further reinforces the hypothesis of excessive production of
protein complex subunits and subsequent degradation of subunits that have not managed
to get incorporated into their respective complex [Goldberg and Dice, 1974; Abovich et al.,
1985]. One substantial piece of evidence for latter mechanism was provided by McShane et
al. (2016), who investigated the degradation rates of young and old proteins by means of a
proteome-wide pulse-chase SILAC set-up [Selbach et al., 2008]. Two distinct models were
characterized, one being the exponential decay (ED) and the other being the non-
exponential decay (NED), which could either coincide with age-dependent stabilization or
de-stabilization of the protein. Using azidohomoalanine (AHA) in the media for further
dissection into newly synthesized proteins (‘young’) and ‘old’ proteins, the authors could
classify proteins according to their degradation rates. Around 50% were clearly following an
exponential decay, and 10% were classified as non-exponentially degraded proteins (NED
proteins) with most of them exhibiting an age-dependent stabilization. Those unbiasedly
identified NED proteins were significantly enriched in complex-associated proteins (Figure
1.14); moreover, the authors reported an increase in the fraction of NEDs once protein
complex formation is inhibited. Further testing in different human cell lines confirmed that
the production of complex members in super-stoichiometric amounts is indeed a common
and evolutionary conserved process with vital implications in protein complex formation,
gene expression control and aneuploidy [McShane et al., 2016].

The model does however raise some issues regarding the necessity for the cell to do so, as
such a mechanism is clearly not optimized and draining vital cellular energy resources.
Several explanations are offered: (1) Proteins with exponential decay (ED) showed a
preference of containing disordered structures, which could be harmful to the cell due to the
aggregation propensity of such proteins [Vavouri et al., 2009]. Producing excess NED
proteins could prevent such deleterious effects. (2) ED proteins could actually represent the
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Figure 1.14. Dissection of proteins according to exponential and non-exponential degradation (graphs adapted
from McShane et al., 2016). (a) Schematic representation of 1-state model (i.e. exponential decay), and 2-state model
(non-exponential decay) using Marcov-chain models. (b) Examples of proteins fitting into models from (a). (¢) Fraction
of proteome degraded by either of the described modes (ED, NED) and undefined ones. (d) (Left) Simple model
explaining non-exponential degradation in context of heteromeric complexes (NED=turquoise, ED=red). (Right)
Production of NED proteins in super-stoichiometric amounts. Complex-normalized protein abundances are shown on

the y-axis.

limiting factors (or ‘mediators’ as discussed above) that ultimately determine total protein
complex abundance. It would be thus interesting to see whether known trans-pQTLs could
be located at cis- sites of such ED proteins. (3) The over-production of NEDs might optimize
for efficient complex assembly [Marsh et al., 2013]. It is possible that any of the presented
theories applies to proteins to a different extent; it is equally possible that rather than
interaction engagement, the particular localization of a protein or the emergence of a post-

translational modification leads to its stabilization, and thus different degradation rate.
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Incidentally, the mediation (a) theory and the super-stoichiometric production of complex-
associated proteins (b) are not contradicting one another, but need to be further
investigated to enlarge our understanding of how potential genetic mutations might be

propagated to entire protein modules.

1.2.7. Functional consequences of modularity perturbations

More than 100.000 disease-causing mutations have been described in the OMIM database
[Amberger et al., 2015]. Most of those mutations are missense-mutations and thus known
to disrupt the overall structure of the protein, rendering it non-functional. On the other
hand, there is also a proportion of mutations that induce an amino acid change in a
disordered region (loops, or generally unfolded regions) and thus would not directly
contribute to any obvious structural change. It could, however, affect a PTM-site, a
protein’s overall stability, or a protein’s capability to engage in interactions. Meyer et al.
(2017) explore latter hypothesis by assuming that a short linear motif located in the
disordered mutation might be disrupted or gained due to a mutation, ultimately altering
the interaction behavior. In an elaborate pull-down screening using wildtype and mutant
synthetic peptides, the capability of all proteins to interact with those is interrogated using
a SILAC set-up [Meyer et al., 2017]. One of the primary findings of the authors involves
the identification of 619 specific interactions, with 180 being differential due to disease-
causing mutations, either caused by loss or gain of interaction. One particular aspect
concerned an enhanced interaction with clathrin proteins due to the formation of a dileucine
motif (proline converted to leucine) that would not be present under wildtype conditions.
Such a particular mutation in the disordered cytosolic tail of the glucose transporter GLUT1
effectively leads to clathrin-dependent endocytosis and mis-trafficking of GLUT1, ultimately
resulting in the so-called GLUT1 deficiency syndrome [Lee et al., 2015]. The authors
postulate that such dileucine motif gains in disordered cytosolic tails are significantly and
specially linked to diseases (dileucineopathies). The findings are especially important in light
of the mutated protein actually being functional; the phenotype is indeed only brought
about by it being at the wrong location. We will further elaborate on the trafficking
machinery and how it might be impacted by differential proteotypes of individuals in
Chapter 2.

The above paragraph demonstrates all too well how mechanistic validation of mutations
complements findings derived from GWAS and QTL-based studies. In the end, there are a
number of ways a causal variant could affect protein function. It could modify gene
expression by altering transcription factor binding sites [Mathelier et al., 2015; Melton et
al., 2015; Kamanu et al., 2012; Martin et al., 1989] or by means of epigenetic mechanisms
[Grubert et al., 2015]; it might as well affect physical properties of the gene product, such
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as its structure and hence function [Azzollini et al., 2014], its stability [Studer et al., 2014;
Prusiner et al., 1991; Collinge et al., 2001], or capability to get post-translationally modified
[Wagih et al., 2015; Reimand et al., 2013]. From above we can deduce that disrupting short
linear motifs (SLiM) could disrupt interactions between proteins [Muslin et al., 1996; Pandit
et al., 2007], and effectively lead to mis-locations as well. Finally, mutations that affect
protein quality control might affect an even larger fraction of proteins [Anczukow et al.,
2008; Giannandrea et al., 2013; Amrani et al., 2006; Schloesser et al., 1991; Sun et al., 2017].
The proteotype model should therefore capture as many physical and physiological features
of proteins as possible to understand the mechanism behind disease-causing mutations.

1.3  Other Features of the Proteotype- beyond Abundances...

The proteotype remains largely described in terms of abundance levels of individual proteins
due to the straightforward protocols and interpretation of the MS-data. Measuring post-
translational modifications, for example, renders issues usually more difficult, as there is a
PTM-enrichment step involved (such as immobilized metal affinity chromatography
(IMAC), and metal oxide affinity chromatography (MOAC)) which inevitably reduces the
yield of the sample. Subsequent PTM searches are mostly based on expected fragment
patterns, despite recent efforts to perform less biased MS-analyses using a mass-tolerant
database to recover fragment with unknown modifications [Chick et al., 2015]. Other protein
features are measured by other combinatorial MS-protocols: Protein interactions, for
example, can be surveyed in an MS-setup using cross-linking reagents [Rinner et al., 2008];
kinetic rates (synthesis and degradation) can be monitored by a pulse-chase SILAC setup
coupled to MS-analysis (as described in the previous section). Another pivotal characteristic
of the protein is its stability...

1.3.1. Protein Stability

The function of a protein is primarily determined by its three-dimensional configuration.
The sequence of amino acids is subject to electrostatic, van der Waals and hydrophobic
forces between the atoms of the respective residues. By these forces the protein traverses
through several fold states that can be characterized by the energy required to maintain
and stabilize the entire structure. The eventual protein 3D-structure represents a stable and
minimal energy structure (Figure 1.15), which coincides with the protein being fully
functional. In order to effectively measure the thermodynamic stability of a protein, it is
therefore necessary to monitor the unfolded versus the folded state of the protein. In terms
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of biophysics, the stability of a protein can be calculated as the respective difference in the
Gibbs free energy AG between the folded and unfolded state.

AG = Gfolded - Gunfolded
G=H-TS

G represents the Gibbs free energy, which is defined by the enthalpy (H), temperature (T)
and the entropy (S) of the system (i.e. the protein). If AG is therefore negative, we can
assume high stability of the corresponding protein.

Common experimental approaches to determine the stability of a protein usually entail
denaturing the proteins from its native state using denaturing agents such as urea,
guanidium chloride, or hot temperatures. Then one can measure ultraviolet light
absorbency, fluorescence [Royer et al., 2006] or the catalytic activity [Daniel & Danson,
2013] of the denatured protein and compare it with the native one. Fluorescence might arise
from the fact that hydrophobic aromatic residues (tyrosine, phenylalanine) get exposed
when the protein gets denatured. Using such read-outs with different temperatures or other
denaturing conditions allows to monitor how the protein unfolds and to calculate a protein’s
folding and unfolding rate. Their ratio then defines the equilibrium constant K., which can
then in turn be used to calculate the aforementioned Gibbs energy AG.

K. = kunfolding/
eq kfoiaing

AG = —RTInK,,

R represents the gas constant, T' the temperature in kelvins.

The above described read-outs- while efficient- are limited to measuring the
folding/unfolding behavior of one protein at a time.

1.3.2. Measuring protein thermal stabilities in a large-scale manner

A recently developed technology combines both the concept of monitoring the denaturation
state of proteins upon heating with quantitative mass spectrometry and thereby provides
a method to measure the thermal profiles of the entire proteome in a reasonable time frame
[Savitski et al., 2014]. The technology can be applied to both cell extracts as well as living
cells, which allows monitoring the effect on protein stabilities in the sample processing
protocol, and assessing to what extent results derived from cell extracts are reflective of the
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thermal energy.

protein stability pattern in living cells. The methodology entails heating cultured cells to
10 different temperatures thereby inducing denaturation of the entire proteome. Aggregates
get removed, and the fraction of soluble proteins are extracted with a buffer and quantified
by means of high-resolution mass spectrometry using TMT-10plex labeling for each
respective temperature. Thus, one MS-run yields accurate thermal profiles or denaturation
curves of the entire proteome in given cell culture (Figure 1.16). Clearly, this technology
opens many avenues to understand how proteins traverse the energy landscape of possible
stabilities under different conditions. One of the prime examples for an application described
by Savitski et al. (2014) involves assessing drug effects on protein stabilities. For a palette
of drugs it could thus be easily assessed which compound concentrations induce shifts in
protein thermal profiles, and what proteins are directly or indirectly affected by compound
addition.

At this point, the landscape of protein stabilities remains largely elusive even for very well-
described processes such as the cell cycle. It is known that the cell cycle is accompanied by
dramatic changes in the physico-chemical environment of proteins due to organelle
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disassembly, etc. [Hernandez-Verdun et al., 2011]. While protein abundances might not
necessarily be affected, protein stabilities and their solubility might very well be prone to
dramatic change. In Chapter 3 of the presented work, we will explore this matter more
carefully, and present the power of the methodology exemplified on the cell cycle.
Undoubtedly, however, the range of applications is spanning a number of issues — from
getting a better grasp on interaction-induced stabilities of protein modules and entire
networks, to understanding the origin of proteopathic diseases characterized by protein
aggregates, such as Alzheimer’s disease [Irvine et al., 2008]. Such a cell-wide assessment of
protein stabilities could indeed be integrated into the current understanding of the
proteotype and also monitored in its association to genetic variation.

0K
3007 vehicle
|
A >
- . & 200K \
o
e
€ 100k \
04— A A = # e -
u 12612 12614 127.12 127.14 12812 128.14 129.12 129.14 13012 13014 131.12 131.14
m/z
56| —» —» 6
: SR —
53 B l—— @ = # vehicle
% " = compound
- 5 =Y
N .q 05 L ]
50| = —» & Ve
I 2
c .
- 5 "
300K7 compound B oo LA N
8 0. e sl
o | ( = 735 40 45 50 55 60 65 70
2 200K It | | temperature (°C)
;2) I (Wil |
= {1 |
> > £ 0k || (1 I
| N [
\ ' I\
ol RN A |\ JAVAN Ap g
— 126,12 126,14 12712 127.14 12812 12814 129.12 129.14 130.12 13014 131.12 131.14
m/z

Figure 1.16. Quantitative profiling of protein thermal stability under different conditions in a proteome-wide
manner. (1) Cells get cultured under different conditions, i.e. drug treatment. Alternatively, cells get extracted from
respective cultures and get treated with drugs. (2) Samples get divided into 10 aliquots for each condition. (3) Aliquots
get heated to indicated temperatures, and proteins are extracted using PBS, and further digested. (4) Peptides get
labeled with different TMT-10 isotope tags. All samples from one condition get mixed and subjected to MS-analysis.
(5) Reporter ion intensities are reported for each identified peptide/protein in the mass-spectrometry analysis. (6)
Reporter ion intensities are used for fitting a melting curve and calculating the melting temperature T for each protein

for each respective condition tested. The graph has been adapted from Savitski et al., 2014.

1.3.3. Could genetic variants influence protein stabilities?

A mutation leading to residue substitution might have a dramatic effect if it occurs at a
critical position in the protein folding process, and therefore affect its function. The effect
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of such a mutation could be measured as the difference in AG between the wildtype and
the mutated condition, with values >1.8 indicating high destabilization, and values <-1.8
assuming further stability of the protein structure [Studer et al., 2014]. So far, many
mutagenesis experiments have been conducted to assess the effect on stabilities, and
summarized in databases like ProTherm [Bava et al., 2004], human genome mutation
database (HGMD) [Stenson et al., 2014] and protein mutant database (PMD) [Nishikawa
et al., 1994] which are manually curated. It would be of high relevance to overlay the
available information from these resources with the unbiased analysis of thermal profiles.
Latter could prove useful to see whether a mutation of one gene propagates to the stabilities
of all other proteins interacting with its product, and whether this could represent a quick
sensory mechanism for the cell to circumvent possible failures immediately. It is not
surprising that disruption of protein stabilities could then have a wide range of clinical
phenotypes associated with them, such as prion [Prusiner et al., 1991; Collinge et al., 2001],
muscular [Boopathy et al., 2015] and neurodegenerative diseases [Lin et al., 2008].

1.3.4. Post-translational modifications as a feature of the Proteotype

Another representative characteristic to be taken into account when assessing the
proteotype of a cell includes reversible chemical modifications on the proteins. These so-
called post-translational modifications (PTMs) encompass a wide range of possible chemical
groups that can get attached to certain amino acid residues of proteins, such as
phosphorylation, ubiquitination, acetylation, methylation, sumoylation, glycosylation, etc.
There are more than 200 types of PTMs that have been described so far [Minguez et al.,
2012], with protein target sites being described in databases such as dbPTM [Lee et al.,
2006] and PhosphoSitePlus [Hornbeck et al., 2015]. The addition of a chemical moiety to a
protein site usually involves an active enzyme that recognizes a target site and attaches the
modification (writer enzyme). On the other hand, another class of enzymes specialize in
removing the modification if necessary (eraser enzyme). These mechanisms are pivotal for
several processes that involve cellular signaling [Nusse, 2008], protein degradation [Wickner
et al., 1999] and metabolism [Zhao et al., 2010], and affect protein structure and ultimately
its function. It therefore comes as no surprise that mutations at residues prone to such
modifications could be giving ground to disease phenotypes [Grasbon-Frodl et al., 2004]. A
substitution T183A in prion protein, for example, prevents N-glycosylation which in turn is
pivotal for the emergence of spongiform encephalitis [Grasbon-Frodl et al., 2004]. Mutations
at PTM sites have generally been shown to be enriched in disease association [Reimand et
al., 2015], and should be studied in context of genetic variation as well.
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1.4 Aims of the Thesis

The above introduction has outlined particular aspects of the current proteomics research
field, in context of establishing a systematic working model of the so-called proteotype to
connect genotypic with phenotypic variability. The concept of the proteotype as a system
involving networks of proteins is largely built on the principle of molecular cooperativity
underlying cellular functionality in the first place. The presented work will interrogate

protein connectivity in various contexts, in an effort to tackle the following questions:

Question 1: To what extent are cellular proteins organized in macro-molecular

structures?

That question is one of the key focuses of Chapter 2, which basically demonstrates
covariation of proteins that are part of the same module across human and mouse
individuals, and conceptually dissects variation we observe for the abundances of entire
modules as opposed to variation observed in the stoichiometric composition of modules.
Such a dissection then allows to define core parts of protein modules, as well as auxiliary
proteins that are more prone to variation across individuals relative to the core protein set
of the corresponding module.

Question 2: What factors impact the variation in protein and module abundance and

to what extent?

Chapter 2 further discusses for the first time the association of genetic and environmental
factors to module abundance and stoichiometry. The sex of the animals in the studied cohort
is taken as a proxy for genetic effects, whereas their diet conditions represent the measurable
environmental impact. In this part of the work we established that the variability of the
proteotype is indeed largely driven by variability of modular entities, such as protein
complexes and pathways.

Question 3: Do changes in the modular organization of the proteotype have far-ranging

consequences?

Finally, Chapter 2 will additionally focus on the work conducted in collaboration with the
Pepperkok group, elucidating the impact of stoichiometric adjustment of the COPI/COPII-
transport machinery on receptor transport. The effort represents an interrogation of proteins
on their biological and physico-chemical feature that can in theory be extended to any
functional relationship between proteins in the cellular context. Therefore that particular

chapter should be viewed as a potential resource and guideline for such investigations.

60



......................................

CHAPTER 3 CHAPTER 4

G1Is
E: asynch@@@ .
T :: rewiring of modules
EE @ early S EE
g Cell Cycle i
variation in module

late S EE E
4| g
abundance and n human ageing

stoichiometry (dis-) assembly
variation in time

genetic/environmental variation

Figure 1.17. Schematic illustration of overall thesis structure and main themes. Functional modules are analyzed
in context of their variation across individuals in Chapter 2, and subsequently in their temporal variation during cell
cycle progression in Chapter 3 and human ageing in Chapter 4.

The second part of this work builds upon the concepts presented in Chapter 2, and examines
the temporal variation of functional protein modules (Figure 1.17). We describe and assess
to what extent modules are being re-organized on a short time scale, i.e. during cell cycle
progression (Chapter 3), as well as during a long-term period of 40 years in humans
(Chapter 4). Again there are specific questions to be tackled:

Question 4: What systematic changes in protein stability occur during the cell cycle?

To what extent do they reflect molecular cooperativity?

Chapter 3 illustrates the modulation of protein networks and their dependencies on the cell
cycle periodicity, surveying not only mere abundances of proteins, but also capturing the
thermostability of proteins as well as their solubility. The data, which has been generated
by in the Savitski lab, represents a valuable resource in that it combines such different
metrics and protein properties. My contribution, on this part, has been the observation of
correlated thermostability of proteins associated in complexes, indicative of general dis- and
assembly pathways of entire complexes during the cell cycle. Furthermore, I aided in de-
convolving the hypothesis on disordered proteins being pivotal in their stability transition
during the cell cycle, and correlated it with mitotic phosphorylation sites that might be
mediating this particular effect.
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Question 5: How does ageing affect the proteomic landscape?

In line of what has been briefly discussed in section 1.2.4, exploring the proteome in context

of ageing processes and the associated functional decline, is pivotal for future applications

in personalized medicine as well. Chapter 4 presents a collaborative effort in disentangling

the effects ageing has on protein cellular networks in the healthy and diseases bone marrow.

It also establishes the connection to other molecular layers, such as transcriptional data at

the single-cell level, as well as metabolism. For the first time, this particular project could

pinpoint at enzyme abundance changes in the upper glycolytic pathway as a potential source

for the age-associated Warburg effect commonly encountered in cancerous cells.

Figure 1.18 below gives a visual summary for the given thesis and the major elements about

to be discussed.
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Chapter 2

Systematic meta-analysis of
individual proteotypes reveals sex-

and diet-specific tfunctional modules

In this chapter, I describe a comprehensive analysis of protein organizational modules as
maintained across mouse and human individuals and their variation due to sex-specific
characteristics. The methodology behind the work has been conceived by me, and I carried
out all the computational analysis. The data underlying this analysis was obtained from

published articles and TCGA Cancer Panel (CPTAC), as specified further. The work has

been conceptualized in the following manuscript:

Natalie Romanov, Alessandro Ori, Michael Kuhn, Martin Beck and Peer Bork (2018).
Systematic meta-analysis of individual proteotypes reveals sex-specific functional

modules. In preparation.

2.1 Introduction

Recent advances in the experimental throughput of mass spectrometry (MS)- based
proteomics have enabled the first large scale studies of proteotypes measured for cell lines
or tissues, defined as the proteome complement of a genotype [Picotti et al., 2013]. Although
genotype and proteotype are poorly correlated [Willhelm et al., 2014; Liu et al., 2016; Payne
et al., 2014; De Sousa et al., 2009], genetic variation has been shown to have a considerable
impact on the abundance of proteins across yeast strains [Pictotti et al., 2013], mouse strains
[Wu et al., 2014; Williams et al., 2016; Chick et al., 2016], and human individuals [Battle
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et al., 2015; Wu et al., 2013; Liu et al., 2015]. While some rare diseases are 100% genetically
determined, for most common ones, the genetic components are usually minor. In case of
obesity for example, only about 6% of the phenotypic variance can be explained by the
associated genetic [Speliotes et al., 2010]. The identification of functional traits in
proteotypes therefore holds great promise to provide disease-associated fingerprints in
individuals. Such traits should be a molecular reflection of both genetic and environmental
factors, such as i.e. life style, and provide a basis for personalized treatments.

Establishing such connections from genetic or environmental factors to the individual
proteotype remains challenging. This is due to technical limitations, in particular the
variable experimental noise across studies but also biological buffering mechanisms [Stefely
et al., 2016]. However, the modular architecture of the proteome, i.e. its organization into
complexes, pathways and subcellular structures provides powerful means to overcome these
issues by interpreting observed variations in the context of well-established biological
functions [Stefely et al., 2016; Wang et al., 2017; Ori et al., 2016].

Protein complexes, in particular, represent key organizational units that — while robustly
connecting protein subunits in a physical and functional manner- have also been shown to
be adapting both in overall abundance and stoichiometry to cellular context, such as during
temporal processes [de Lichtenberg et al., 2005] or between different cell types and tissues
[Ori et al., 2013; Ori et al., 2016; Hansson et al., 2012; Frese et al., 2017; Arendt et al.,
2016). Other reports have detected similar variations during organism aging [Ori et al.,
2015; Cellerino et al., 2017], upon physical exercise [Greggio et al., 2017], or as a consequence
of cancer mutations [Goncalves et al., 2017; Roumeliotis et al., 2017]. Although the exact
regulatory mechanism of such variation remains elusive, the functional consequences might
be fundamental, i.e. the perturbation of protein complex stoichiometries can directly
influence organism lifespan [Houtkooper et al., 2013; Miwa et al., 2014; Vilchez et al., 2012]
or prevent cell differentiation [Hansson et al., 2012; D’Angelo et al., 2012; Lessard et al.,
2007]. Due to structural requirements, that is the physical protein interfaces that are
established within a complex and crucial for its function, the stoichiometry of protein
complexes is tightly regulated. Both mRNA abundance and post-transcriptional
mechanisms acting, e.g., at the level of protein synthesis and degradation, regulate protein
levels and ultimately determine the stoichiometry of protein complexes [Ori et al., 2016;
Goncalves et al., 2017; Roumeliotis et al., 2017; Liu et al., 2016; Ishikawa et al., 2017].
Several seminal studies have shown the variability of protein abundances across individuals
in human and mice [Wu et al., 2014; Chick et al., 2016; Battle et al., 2015; Wu et al., 2013;
Liu et al., 2015]. Although each study highlighted individual proteins and functional
modules that were found to be variable, a systematic and unbiased analysis of functional
modules across multiple studies is lacking. It remains unknown which type of modules
(complexes, pathways, organelles) or cellular functions are affected. The extent to which
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the proteome of individuals is variable and how this variability is linked to environmental
and genetic factors remains difficult to estimate.

Here, we analyze public datasets to investigate proteotypes of healthy and diseased
individuals from human and mice. We test the technical power of each dataset and
systematically examine functional modules and their contribution to proteotype variation
and association with genetic or environmental factors. Our unbiased analysis reveals that
protein complex abundance and stoichiometry are indeed major determinants of an
individual’s proteome, while other functional units, such as e.g. molecular pathway
stoichiometry are less variable. The consistently co-varying dynamic components in each
protein complex reveal not only refined mechanistic functional details, but can also be
associated with both genetic and environmental factors that influence the composition and
abundance of a wide range of complexes within individuals. We demonstrate that sex
explains the largest fraction of the observed variability in protein complexes and that
different types of complexes are more abundant in males versus females. Our variation
analysis further dissects core sub-structures and consistently dynamic components in each
complex. We show that both genetic and environmental factors influence the composition
and abundance of a wide range of complexes within individuals. Finally, stoichiometric
alterations of modules are also put into the perspective of their potential role during the
aging process of an organism. Our study thus adds another dimension to disentangle the
dynamics of the proteotype. With the considerable effect sizes observed for only two
examples of genetic and environmental factors, namely sex and diet, our study implies that
protein modules serve as molecular sensors for the impact for a wide range of environmental
factors on top of intrinsic genetic variation in an individual manner and calls for balancing

factors, e.g. individualized diet [Zeevi et al., 2015].

2.2 Results

2.2.1. Interacting proteins are co-abundant across healthy Individuals

To elucidate functional traits in individuals, we first tested to what extent known

functional modules or protein associations can be recovered in different proteomics datasets
assuming that proteins do not function alone. Implicitly, we thereby test the power of each
dataset and ensure consistent results. We examined datasets resulting from profiling
proteins across cancer patients (TCGA panels, such as Ovarian Cancer [Cancer Genome
Atlas Research Network, 2011; Zhang et al., 2016], Breast Cancer [The Cancer Genome
Atlas Network, 2012; Mertins et al., 2016] and Colorectal Cancer [The Cancer Genome
Atlas Network, 2012; Zhang et al., 2014]), healthy human individuals, healthy mouse strains
that were exposed to different diets, and other proteomic datasets derived from cell types
(entire list with details on each dataset given in Table S2.1) [Wu et al., 2014; Chick et al.,

66



2016; Battle et al., 2015; Wu et al., 2013; Khan et al., 2013] (Figure 2.1A). The respective
studies differ with regard to the MS-technique employed for protein measurement, as well
as the source organism, organ or cell type (see Table S2.1). While Wu et al. [Wu et al.,
2014; Williams et al., 2016] (BXD80 mouse strains) and Chick et al. (2016) (DO mouse
strains, and Founder mouse strains) recovered proteins from mouse livers from different
mouse populations, Battle et al. (2015) extracted proteins from lymphoblastoid cell lines
(LCLs) of the HapMap Yoruba individuals (Human Individuals). If available, we included
transcriptional data as well as data derived from ribosome profiling on the same cell types

or individuals.
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Figure 2.1. Schematic illustration of workflow. (1) Published proteomics datasets on human individuals, mouse

strains and cell types are considered for the study. If available, RNA-seq datasets for the respective specimens are taken

into account as well. (2) Co-variation of protein (transcript) abundances is calculated for each dataset. (3) Integration

of resources on protein modules (STRING, complexes, Reactome, Human Protein Atlas, etc.) to understand features

of co-varying proteins (transcripts). (4) Modules can be compared by ROC-statistics in each dataset. (5) Different

datasets can be compared by the degree of recoverable known co-variation (STRING-interactions).
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We assessed the power of each datasets for discovering functional modules by calculating
the level of observed co-expression or co-abundance for known protein-protein interactions
utilizing the STRING resource [Sklarczyk et al., 2017], and comparing the results to random
associations(Figure S2.1). As expected, throughout all datasets, we recovered high-scoring
interactions (STRING combined score >700) to be more co-abundant across conditions or
individuals than proteins with no (or unknown) interactions. To further dissect the
functional relevance of co-abundant protein sets, we added contextual information about
chromosomal location, housekeeping roles [Eisenberg and Levanon, 2013|, cellular
compartment (Human Protein Atlas), essentiality [Wang et al., 2015], pathways (Reactome
[Fabregat et al., 2016]) and protein complexes (Figure 2.1, Table S2.2). The latter were
derived from a manually curated list of 279 largely non-overlapping protein complexes as
defined by Ori et al. (2016). For each category of contextual information we assessed using
ROC curves whether the respective dataset reliably recovered known functional entities,
based solely on the co-abundance or -expression metric. This approach implicitly allows a
dual assessment: i) the overall quality of each dataset based on the amount of co-
abundance/expression, and ii) an unbiased assessment of the type of functional module
yielding the highest level of co-abundance across datasets. With regard to (i) we observed
datasets dervied from tissue samples to be noisier when compared to cell lines. Incidentally,
the datasets generated by SWATH (BXD80 mouse strains, Kidney cancer cells) were both
prone to recover less of known interactions than the other datasets, but were both derived
from tissue samples.

As it has been reported for cell types and differentiation stages [Ori et al., 2013; Geiger et
al., 2012; Siwak et al., 2015], we observed a consistently high level of co-abundance of
members of the same protein complex in proteomics datasets (average AUC>0.6, Figure
2.2A). Proteins in other modules, such as pathways, organelles, the housekeeping proteome,
etc. showed less coherence (Figure 2.2A). The shifts towards higher co-abundance were
especially apparent in the TCGA proteomics panels, the healthy human Yoruban
individuals [Battle et al., 2015] and the DO/Founder mouse strains [Chick et al., 2016] and
less so in RNA-seq and ribosomal profiling datasets (Figure 2.2A). Recent reports
[Goncalves et al., 2017; Roumeliotis et al., 2017] have demonstrated protein complex
attenuation due to copy number variations common to cancer. Strikingly, the abundance
shift for healthy individuals was in some cases even more pronounced than for cancer-
derived datasets, confirming that co-regulation of protein complex members beyond the
post-transcriptional level is indeed an inherent cellular mechanism, also in cells with natural
gene copy number (Figure 2.2B). Several studies have indeed pointed towards tight
regulation of protein complex stoichiometry by translational or post-translational
mechanisms [Ori et al., 2016; Goncalves et al., 2017; Roumeliotis et al., 2017; Stefely et al.,
2015; Ishikawa et al., 2017]. For example, for members of the FO/F1-ATP-synthase, gene
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transcripts only have a mean correlation of 0.23, while effective protein abundances are

strongly correlated (mean correlation of 0.79, Figure 2.2C).
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Figure 2.2. Strongest co-variation across individuals stemming from protein complexes. (a) Recovery of known
functional modules by means of ROC-analysis (receiver operating characteristic). Each cell of the matrix displays the
AUC (area under curve) value for the given module (x-axis) in the given dataset (y-axis). Modules are ordered according
to the average AUC per module across datasets; datasets are sorted according to the maximum AUC per dataset across
modules. The type of data is indicated next to the dataset. (b) The shift in Pearson correlation values for complex-
associated proteins (dark-red) relative to the background correlation values (grey) is illustrated for the top 6 datasets
derived from (a) as density graphs. Statistics are based on the Wilcoxon-rank test. (¢) Buffering of transcriptional and
translational variation of complex-associated proteins tends to be significantly higher at the level of protein abundances

than in the upstream layers.

2.2.2. Protein Complexes vary in their Stoichiometry across Individuals

Given the strong signal of variation in complex abundance across individuals, we focused
on a detailed analysis of protein complexes and their stoichiometry, in order to identify
genetic and environmental factors associated with it. For this purpose, we examined only
the proteomics datasets that were yielding the highest recovery of known modular entities
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due to co-abundance (Figure 2.2B), namely all TCGA cancer datasets, and the datasets on
human individuals [Battle et al., 2015] as well as Founder and DO mouse strains [Chick et
al., 2016]. Using median co-abundance per complex as a proxy for stoichiometric variability
across individuals and controlling for a number of technical biases and possible artefacts
(see Methods, Figure S2.2A, Figure S2.2B), we recovered a protein complex variability
landscape (Figure 2.3) that is highly consistent across the different proteomics datasets
(average R? = 0.645). We ranked protein complexes according to their level of co-abundance
across individuals and identified a subset that is rigorously maintained in stoichiometry
(Figure 2.3). This implies that protein complex stoichiometry regulation is a general
principle that is exploitable to reveal functional traits in different proteotypes.
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Figure 2.3. Co-variation landscape of protein complexes in different proteomics datasets. Manually curated
complexes are shown on the x-axis and are sorted according to the median co-abundance observed of complex members
in different datasets considered (y-axis). From original datasets analysed in Figure 2.2a, top 6 datasets and "Human
cell types’ (used as a reference) are considered. In each dataset median co-abundance of each complex is calculated and
ranked. The heatmap illustrates those ranked values, ranging from variable complexes (red) to stable complexes (blue).

Of 96 well-defined protein complexes with at least 5 subunits, 21 complexes exhibit a tight
co-regulation of all subunits across diseased, as well as healthy individuals (median
R?/complex>0.46 (75th percentile)). They include the mini-chromosome maintenance
(MCM) complex to complexes associated with the translational apparatus (ribosome,
chaperonin complex, elongation factor eIF2F) and mitochondrial complexes within the
electron chain transfer, such as the FO/F1 ATP-synthase, cytochrome bcl complex and the
cytochrome c-oxidase. Variable complexes (median R?<0.17 (25th percentile)), on the other
hand, were enriched in chromatin-associated processes (see Figure S2.3, 4.68x10*, Fisher
Exact Test) such as the RNA polymerase, the mediator complex, the BAF complex, etc.
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The range of complexes in between represent instances where both co-regulated parts of
complex, as well as more variable members are present, such as in the COPI/COPII, the
nuclear pore complex, and the 26S proteasome. For these complexes where arguably both
core sub-complexes and accessory subunits are present, we sought to extract consistent sub-
structures from the different proteomic datasets in question, as well as defining subunits
that primarily contribute to the overall variability of the complex. Briefly, complex subunits
were normalized by the trimmed mean complex abundance across samples and their
concurring variance relative to the other subunits was monitored [Ori et al., 2016] (see
Methods). We observed a high consistency between datasets after the dissection of modules
into stable and variable sub-parts (average R* of 0.23). Variable components - if identified
at p-value<0.1- were making up 2-20% of the overall structure of the complexes (Table
S2.3).
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Figure 2.4. Consistent dissection of protein complexes in stable and variable components. (a) Illustration of stable
and variable components in a number of exemplary complexes (x-axis: complex protein members, y-axis: datasets).
Each cell of the heatmaps display a z-score which was calculated based on protein variances after complex-normalization
(variable component (red): z-score > 1.5; stable component (blue): z-score < -1.5). If a given protein was not detected
in a dataset in the field is left out grey in the heatmap. (b) Boxplot showing the relative abundance of proteins
associated with the proteasome in the DO mouse strains. The colouring of the boxplots relates to the sub-structures of
the proteasome as indicated in the right-hand cartoon (blue: 20S, grey: 19S; orange: immuno-proteasome).

71



Stable subunits tend to be strongly correlated with other stable subunits of the same
complex, whereas this is not the case for variable components (Figure S2.4A, average
R?(stable) at 0.38 , average R*(variable) at 0.17, p-value = 9.24x10"2, Mann-Whitney U-
test). Additionally, stable subunits tend to have more STRING interactions on average
than the variable complex components (Figure S2.4B, average ppi (stable) at 48, average
ppi(variable) at 32, p-value = 1.47x10%, Mann-Whitney U-test).

We found multiple instances of variable subunits consistent with known biology (Table
S52.3). For example, the F1/FO ATPase inhibitor ATPIF1 is consistently recovered as
variable relative to the rest of the ATP synthase complex (Figure 2.4A, p-value<0.025).
ATPIF1 is known to be the master regulator of the FO/F1 ATP-synthase [Garcia-Bermudez
et al., 2016]. Its binding to the complex impedes the hydrolase activity of the ATP-synthase,
effectively shutting down its activity to prevent excess wasting of ATP. The observed high
variability of ATPIF1 across individuals can thus be explained by the variable energy
requirements of the cell, for example [Sanchez-Cenizo et al., 2010; Sanchez-Arago et al.,
2013]. Variable subunits of the nuclear pore complex (NPC) are peripherally associated to
the core scaffold such as e.g. all three transmembrane nucleoporins (NUP210, NDC1, and
POM121). Further variable members of the NPC were found to be ALADIN (AAAS), which
potentially binds to transmembrane nucleoporins [Stavru et al., 2006] and has been linked
to genetic disease, as well as Nup50- a subunit involved in active nuclear import [Beck and
Hurt, 2017]. We also found that paralogous subunits are often variable, such as the
ARFGAP-subunits of the COPI complex, the MBD2/3-paralogs involved in the NuRD
complex, as well as COPS7TA/COPS7B in the COP9 signalosome. This observation is in
line with the report from Ori et al. (2016) where paralog switching between different cell
types has been described as a major driver for complex re-arrangements.

Specific subunits of the 26S proteasome vary across healthy individuals, mouse strains and
cancer patients (Figure 2.4B). Those are part of both the 20S and the 19S subunits,
however, the 20S components PSMB8/9/10 of the immunoproteasome, a specific sub-
module of the proteasome that is involved in the immune-regulatory response [McCarthy
et al., 2015], stood out in terms of variability across individual (Figure 2.4A /B, average p-
value of 6.57x10?). This occured alongside with the constitutive proteins subunits
PSMB5/6/7 that they replace depending on the cellular context (Figure 2.4B/C).
Furthermore, the PSMD9 proteasome component was also more variable relative to the
other subunits of the complex, which could be explained by its known additional role as a
transcriptional co-regulator besides its regulatory role during proteasome assembly [Sangith
et al., 2014]. We conclude that proteotype data appear to be predictive of multi-
functionality of sub-complexes or complex components.

To further dissect features of stable and variable complex components, protein modifications
were mapped onto stable and variable complex components, such as acetylation,
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methylation, phosphorylation, sumoylation and ubiquitination. For 6 out of 7 datasets we
could identify an enrichment of proteins with ubiquitination target sites within the stable
set of proteins (Figure S2.5A, p-value of 1.65x10 Fisher Exact Test). We therefore sought
to substantiate the hypothesis on more rigorous degradation control on the stable complex
components by comparing protein turnover rates from stable versus variable components in
all proteomic datasets (data not shown). Indeed, stable complex subunits seem to
consistently show a higher turn-over rate on average than variable subunits (p-value of
0.14) [Ryan et al., 2017].

For variable complex subunits, on the other hand, we observed higher transcript-protein
correlations relative to core protein complex components (p-value (ANOVA) = 1.2x107 for
DO mouse strains, p-value (ANOVA) = 3.77x10" for Human Individuals, see Figure
S2.5B), suggesting potentially stronger transcriptional control exerted on these proteins.
This particularly manifests in the high protein-transcript correlations of the immuno-
proteasome subunits in the mouse dataset, such as R?>=0.72 for PSMBS, R?>=0.66 for PSMB9
and R?’=0.55 for PSMB10 (Figure S2.5C).

2.2.3. Co-abundance of entire Protein Modules is explained by Sex Differences

To identify potential genetic and environmental determinants for above explained
proteotypic features, we primarily leveraged the well-defined meta-data available on the DO
mice strains, namely their sex and their diet, with half of the animals fed with rodent chow,
and the other with high-fat diet [Chick et al., 2016]. We captured two different readouts,
namely the variability in (a) complex abundances, and (b) complex stoichiometries (inset
in Figure 2.5A, upper right). For (a) complex abundances, differences between male and
female mice were evaluated using a standard t-test and Cohen distances [Sullivan et al.,
2012] to yield effect size estimations for each complex (Figure 2.5A, upper part). From all
96 considered complexes, 21 complexes showed an overall higher abundance in male mice,
while 36 were more abundant in females (g-value<0.01). Those complexes were enriched in
complementary functional processes: Whereas complexes that were more abundant in males
were part of the translational process (ribosome, eukaryotic translational factor 2B complex)
and specifically protein transport processes involving COPI and COPII, complexes that
were more abundant in females, were enriched in mRNA transport (nuclear pore complex),
and RNA splicing processes such as the small nuclear ribonucleoprotein complex (Figure
S2.6, FDR<1%). This functional complementary is indicative of a genetic and possibly
environmental influence on the abundance of entire complex entities, as opposed to
individual protein abundances. It has been shown for example, that female mice, unlike
male ones, have a high constitutive activity of both mTORC1 and mTORC2, which are
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master regulators of the energy metabolism, mitochondrial function as well as protein and
lipid synthesis [Guergen et al., 2013].
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Figure 2.5. Sex-specific regulation of complex abundances and stoichiometry. (a) Delineation of differential
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are shown below, highlighting male and female stoichiometry within the complex.
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2.2.4. Sex- and diet-specific Protein Complex Stoichiometries

We tested if diet and sex influence complex stoichiometry. To this end, a LIMMA-analysis
[Ritchie et al., 2015] was performed on complex-normalized abundances for each complex
separately (see Methods, Table S2.4). Generally, changes in complex abundance did not
significantly correlate with the variability in complex stoichiometry (specified as the fraction
of subunits affected, FDR<1%), R* at -0.03. For example, dense networks composed of
MAP-kinases (MAPK1, MAPK3, MAP2K1, MAP2K2, MAP3K3, MAP3K5), did not yield
any signal with regard to complex abundance (Figure 2.5A), but display a different complex
stoichiometry between male and female mice (Figure 2.5B). In more general terms, a diverse
range of functions was variable in complex stoichiometry, including ubiquitin protein ligase
activity, mRNA splicing, catabolic processes and protein transport functions (Figure 2.6A).
With protein transport, in particular, the COPI and COPII complex were largely affected
in their relative stoichiometry between male and female mice (Figure 2.5B). Paralogous
components, for example SEC24A/B/C/D — while unaffected between the different diet
conditions (Figure 2.6B; FigureS2.7A) - contributed to very distinct sex-specific
stoichiometry, with SEC24D being consistently more abundant than SEC24B in males, and
vice versa in females (g-value<0.01, Figure 2.5B). SEC24A/C, on the other hand, had
similar complex-relative abundance between male and female mice. Such sex-specific
stoichiometric aberrations between individuals could indeed have severe functional
implications, such as the efficiency and/or specificity of receptor transport, which has been
shown to be affected by the absence and concentration of the specified paralogs [Scharaw
et al., 2016; Adams et al., 2014].
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2.2.5. Differential receptor transport mediated by COPI/COPII complexes

In order to understand what functional consequences differential stoichiometry of the COPI

and COPII complex could have, we mapped known receptors and ligand molecules
[Ramilowski et al., 2015] onto the proteomic dataset published by Chick et al. (2016) on
Diversity Outbred (DO) mice, and interrogated their abundance correlation with all

complex components of COPI and COPII. To get a more comprehensive picture, we also

included other elements of the transport machinery, such as ERGIC-sub-transport system,

the lysosome, etc. Finally receptor molecules were also correlated against proteins resident

in the endoplasmic reticulum and the Golgi apparatus to understand any bias arising from

the molecule’s original or final compartment (Figure 2.7).
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Figure 2.7. Clustering of receptors based on transport components between ER and Golgi. Heat map displaying

correlation values calculated from protein abundance profiles transport components (x-axis) and each receptor (y-axis)

that is sufficiently covered in the dataset (>50% coverage, hence ~90 mice). Only receptors with at least one correlation

with an FDR<5% are displayed. The clustering is based on Euclidean metrics and specifically on the correlation values

observed between receptors and the COPII components.
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Clustering the receptor correlations with the individual transport components revealed two
distinct clusters primarily driven by vesicle proteins, transmembrane proteins, COPII and
COPI. The first cluster is characterized by receptors that are highly correlated with
transport protein abundance, such as the EGF receptor (EGFR). The study by Scharaw et
al. (2016) found that the transport of newly synthesized EGF-receptors (EGFR) from the
ER to the plasma membrane coincides with the up-regulation of the isoforms SEC24B and
SEC24D. We could independently recover a significantly high correlation of EGFR with
those isoforms (Figure 2.7, Figure 2.8). The LDL-receptor-related proteins LRP1 and
LRP6 were in the same cluster, suggesting a similar mechanism as with the EGF-receptor
with regard to its transport.
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Figure 2.8. Comparison of expression or abundance levels of selected receptors and the COPII-component
SEC23B in DO mice. Resolved picture on SEC23B RNA (top)- or protein abundance (buttom) correlation with RNA-
or protein abundance profiles of receptors EGFR, INSR, PDGFRA or TRF2. Values are displayed as log2-values.

In contrast to the EGFR-cluster there are many other receptors who had the opposite
behavior being anti-correlated with COPI/COPII components, suggesting that these
receptors might work by mechanisms of saturation levels (Figure 2.7). Hence, if there is
too much of a certain receptor, the transport system is signaled that it should not transport
this particular receptor anymore. This cluster notably is enriched in integrin-receptors
necessary for cell-cell interactions and adhesion, as well as cluster-differentiation CD-
proteins relevant for immune signaling. Apart from the two main clusters, we can also note
that certain receptors, such as the transferrin receptor TFRC do no exhibit any significant
correlation with neither COPI- or COPII-subunits, which might have its recycling nature
as a mechanistic underpinning. Indeed, some receptors, such as TFRC and LDL-receptors
are simply retained in the cytoplasm again and re-used if necessary, and thus would not

7



elicit any up-or downregulation of the transport machinery. Indeed, the LDIL-receptor
LDLRC showed the same kind of behavior as the TFRC-receptor.

In summary, the observed clustering could therefore suggest that there are two signaling
mechanisms that interpret abundance of respective receptors as a trigger for transport up-
or downregulation (Figure 2.7). Further investigation would involve identifying distinct
protein features of those clusters that might explain receptor transport variability. Table
2.1 gives an overview on features that are currently explored.

Table 2.1: Overview

Tested Features Description

Post-translational
modifications

Degree of disordered protein

Mappings available for all proteins from PhosphoSitePlus [Hornbeck et al., 2015]

For each protein in this analysis a rank was calculated that gives a relative coverage

structure of disordered regions in the entire sequence. The rank was calculated exactly as
demonstrated in Chapter 3, and is based on data from d2p2 [Oates et al., 2013].

Other protein structural For all proteins in the analysis structures (alpha-helices, beta-sheets, turns, coiled

elements coils, etc.) have been mapped from PDB [Berman et al., 2000; www.rcsh.org).

Known protein domains Domains are mapped from InterPro [Finn et al., 2017]

Known protein short linear Mappings are conducted for each protein from the ELM database [Dinkel et al.,
motifs 2016]. The KKDEL (aromatic amino acid) motif is known to be important for
transport, and can be screened for as well.

Unknown protein short linear Unbiased mapping is conducted with Dilimot from the Russel lab [Neduva et al.,

motifs 2005]
Transmembrane (TM) For estimating the length of the TM region the I[UPRED database on
screening hydrophobicity [Dosztanyi et al., 2005] is interrogated. This should serve as a proxy

to also define Typel and Type2 receptors (depending on whether their N-or C-
terminus reaches into the cytosol or not).

Protein-protein interactions Interrogation on common interaction partners for proteins in one cluster. Are there

any pathways or other modules enriched?

The functional consequences of the observed changes in complex stoichiometry and their
propagation to other cellular processes within an individual remain to be further explored

in the future.

2.2.6. Sex- and diet- specific Variation in Module Abundance and
Stoichiometry influence the Proteotype

We compared the number of stoichiometric hits that we could recover using complex-
normalized abundances with the number of differentially expressed proteins when the
original abundances were used (Figure S2.8A). While 1.207 complex-associated proteins
were found to be differentially expressed between male and female mice using the original
abundances, nearly half of it was not defined as differentially expressed using the complex-
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normalized abundances. This effect is less apparent with pathway modules, where the
pathway-normalized approach would still recover ~80% of the original hits (Figure S2.8B).
The fact that pathway normalization does retrieve most of the difference might suggest that
there is more variation of individual proteins within pathways while in complexes
coordinated change of multiple members is more common. In addition using complex-
normalized abundances actually recovers 219 novel hits that otherwise would have remained
unnoticed. Thus, the method could be further leveraged to disentangle the slight fine-tuning
for proper module functioning.

To have an understanding on the cumulative effect of sex and diet on the overall proteotype,
we estimated the effect sizes of those two factors on the observed variation (Figure 2.9A,
Table S2.5). The variation of individual proteins- regardless of their modular context- was
on average less than 5% explained by sex differences, and even less so for diet differences
(around 2%). Some proteins, however, were strongly influenced by the sex of the animal,
i.e. SULT2A1 (63.65%) and PAPSS2 (64.82%) which are crucial for sulfation of the
androgen precursor [Oostdjik et al., 2015]. We additionally examined whether the animal’s
sex is proxy for heritability by comparing the effect sizes directly with the results from Liu
et al. (2015), where the authors measured to what extent the variation of 342 human plasma
proteins can be explained by heritability, environment and the longitudinal dimension. 37%
of the environmental effect on the human plasma proteome could be recovered in the DO
mice as diet-dependent (p(Spearman) = 0.37). Heritability effect on the human plasma
proteome and the impact of the animal’s sex on protein variation correlated positively as
well (p(Spearman) = 0.27).

We further explored to what extent the variation in the two above described metrics,
module abundance (a) and module stoichiometry (b) are influenced by either factor, and
cumulatively. A 'module’ is hereby defined as either a complex entitity, or a pathway that
is characterized by high (non-random) co-variation, such as the complement pathway (see
Methods). Specifically, the sex of the mice explains up to 35% of the variance of entire
module entities, as deduced from co-variate analysis controlling for diet (Figure 2.9A). The
effect sizes of diet, on the other hand, on module median abundances was only reaching up
to 15% and was generally affecting another set of modules, such as the Dsllp complex, the
HOPS complex and mitochondrial complexes, namely the cytochrome bel complex (Figure
2.9B). On average, sex and diet would cumulatively explain around 11% of the abundance
variation in complexes. Pathways, such as the Androgen and the Glucocorticoid
Biosynthesis, had expectedly a large fraction of its abundance variation explained by sex
differences (38.36% and 32%) (Table S2.5).

We also estimated the effect sizes of both sex and diet on module stoichiometry and observed
less of an impact on stoichiometry than on module abundances (sex around 8%, diet around
4%)(Figure 2.9A). Most complexes, however, had less than 5% explained by sex differences
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(Figure 2.9A/B). The same is true for diet effect sizes on complex stoichiometry, with most
complexes being impacted less than 2% by diet. Interestingly, there was a subset of
complexes that were considerably more affected in their stoichiometry by diet than by sex
(8.6%), such as the mitochondrial pyruvate dehydrogenase (Figure S2.7C). In general, there
was no significant correlation between stoichiometry changes between male/female mice
and stoichiometry changes between high-fat/chow mice (R?> = 0.016), again suggesting

functional complementarity (Figure 2.5C).
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Figure 2.9. Effects of sex and diet on protein variation, as well as variation in module abundance and
stoichiometry. (a) Distribution of the overall effect of sex, diet and the cumulative effect (~sex + diet) on protein
abundance variation (all proteins), as well as abundance and stoichiometry variation of modules, including protein
complexes and pathways with highly co-varying protein members. The lighter colors correspond to effects on
abundances, whereas darker colors correspond to effects on module stoichiometry. (b) Distribution of sex- and diet-
dependent effect sizes on all complexes (with 25 protein members), with lighter colors illustrating effects on abundances
and darker colors effects on stoichiometry (see legend from A). Complexes with their variability being mostly explained

by either sex or diet are highlighted.

2.2.7. The impact of ageing on sex- and diet-defined complex stoichiometries

Finally, we examined whether the sex- and diet-affected modules were somehow impacted

in the longitudinal dimension, i.e. during ageing. For this purpose, we used data from a

80



A O sex-dependent complexes (@) diet-dependent complexes age-dependent complexes

female>male . male>female

. - '
E Otrar’}s\anon : : H
. ; : | GO category —_— :
. H H H 0
P50t isaatian @) biolprocess Cytochrome bc1 complex abundance :
' % : ,nbcsoméll Subumﬂ : DH ‘ Sk ]
' i i cellular '
o H . )
0 : - H re ulauon of transl. compartmerk :
8 . 3 1005 v ml%amm 6()0 - -t
] ;
: 2 i ; o '
g : = ntmsump O O E
R T :
' ) .
3 8 2 =
v (wé)(%ﬁ ; ) o]
! u: '
Ne] ' 3 06 10 i 18 M - H
1] ' fold enrichment [log10] H
x | =y
D female > male male > female !
B sex EEE :
. '
E' weNNAAA A (NAX R
[« 0] > 2 @ Gr.r Gt @ '
0! ¢ & Sf — &
' @ @ﬁié’qo‘? GRS o .
. Q@Q 8_&‘% gq._\\é‘ & ‘\,;.\“\ t-statistic (old/young) — H
' o o & '
RN < o Moo ;
: H

3
. H
' e — L}
. | O transpért mitochondrial pyruvate dehydrogenase H
w0 GO cat
' | H category H
. f : 1 2 :
T _ | biol process (1) pomx N (2) !
"&,’ R .’;’r’o’:’eman's;baft """""""""" Seular POHAT LA I o H
Vo : compartment DLD \ =] '
E . = : vesn.le med. trdnwurl PDP2 - % 0.6} . !
[ ruffle: :
O 2 |96 QFlione onivien POP1 . N i S
e Fu| ' | 1 PDK3 B 2604l 1 :
- | i : ] S04} doo .
o " O%g o @ DLAT I M :“ﬁ I:j%- :
5 | : BCKDK 2= - :
O . % 6§O | @ : O 1 0 = [STIN ¢ 17| S H
= @® T : BCKDHA E H
" L |eBe@d® 0 o poHg M [ i i 0 8 & &
x ' 02 06 1.0 Q\@ & 10 20 3040 Ry H
2 ' fold enrichment [Iog10] b‘“‘ \(\q expl.vangnce !
Q. & [%] ~ diet :
' Fatty Acid Import Complex B-WICH complex 27 - '
E ' multi-tRNA synthetase H2AX complex t-statistic (old/young) [ highfat > chow no bias !
' exon junction complex H* ATPase o = how > highfat H
8 . Arp2/3 complex toposome 84 0 48 Y H
' Ubiquitin-proteasome complex COPIl . . 1
‘ + FIB-associated protein complex :
' ] | '
' 1
. 1

Figure 2.10. Age-dependencies of alterations in module abundance and stoichiometries. (a) Venn diagram showing
the overlap of significantly sex-dependent (blue), with diet-dependent (green) and age-dependent (orange) complex
abundances (¢-value<0.1). The cytochrome bcl complex is affected in overall abundance in diet and age, as
demonstrated on the right-hand side: First box-plot shows the z-score distribution of the median complex abundance
in chow- and highat-DO mice. The second box-plot illustrastes the z-score distribution of the median complex
abundance in young and old naked mole rats. For the overlap of complexes between sex- and age-dependencies, GO
enrichment is shown as a scatter plot on the left-hand side, with blue circles showing biological processes, and orange
circles showing cellular comparmtents. The heatmap below demonstrates the aging directionality of the affected
complexes (old/young t-statistic, g-value<0.1). For each complex it is also indicated whether the complex is
significantly more or less abundant in male or female mice on average (g-value < 0.1; male: purple, female: lightgreen).
(b) Venn diagram showing the overlap of significantly sex-dependent (blue), with diet-dependent (green) and age-
dependent (orange) complex stoichiometries (g-value<0.1). On the left-hand side of the Venn diagram the complexes
affected by both sex and age are listed, and the GO enrichment is shown (same as in (a)). On the right-hand side, the
ageing effect on the mitochondrial pyruvate dehydrogenase is shown: For each subunit of the complex, the bias towards
chow (yellow) - and highfat (darkgreen) diet is shown in the first column, and the ageing directionality (old/young t-
statistic, g-value < 0.1) in the second column. The bar plot on the side shows the amount of variance that can be
explained by diet. On the right-hand side the box-plot shows the z-score distribution of the median abundance of the

mitochondrial pyruvate dehydrogenase in the young and old rats.
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recent study on ageing in the naked mole rat (NMR) livers by Heinze et al. (in preparation,
2018). We found 43 protein complexes to be affected in their overall abundance, and 37
protein complexes to show stoichiometric alterations between young and old NMRs (Figure
2.10A/B, Table S2.6). Modules involved in translational processes, such as el[F2B and the
multi-tRNA synthetase, were both affected by the sex of an animal, and in ageing (q-
value<0.1) (Figure 2.10A/left). Diet, on the other hand, had a limited effect on ageing
modules; only the cytochrome bcl complex showed a significant abundance change due to
differential diet conditions and ageing in NMRs (Figure 2.10A /right). The mitochondrial
pyruvate dehydrogenase was another mitochondrial complex that had its diet-dependent
stoichiometry influenced in the longitudinal dimension. The dihydrolipoyl dehydrogenase
(DLD) in particular showed both a signficant down-regulation upon high-fat diet exposure
and upon ageing (g-value<0.1) (Figure 2.10B/right). This moonlighting protein has been
shown to be a regulator of several multi-enzyme complexes involved in the energy
metabolism, and might therefore be a mediating factor for nutrition-dependent
stoichiometric adjustment in the metabolic household.
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Figure 2.11. Sex- and age-dependent module stoichiometries. (a) Four sex- and ageing-dependent complexes are
shown. For each complex, all subunits are shown, along with their sex bias (stoichiometrically more abundant in female
(lightgreen), or in male (purple )) and how their relative stoichiometry changes between young and old NMRs
(old/young t-statistic, q-value<0.1). The bar plot on the right-hand side illustrates the amount of variance that can be
explained by the sex of the animal. (b) The box-plot shows the z-score distribution of the median abundance of the

indicated complexes in young and old rats.
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In contrast to translational processes being heavily affected by overall abundance changes
during ageing, modules involved in molecule transport were impacted in their stoichiometry
(Figure 2.10B/left), such as COPII, Fatty acid import complex, or the vacuolar H*
ATPase. A more detailed view on age- and sex-dependent stoichiometric patterns for some
of these complexes is shown in Figure 2.11A.

2.3 Discussion

The acquisition of large-scale proteotypes has become commonplace, and recent studies
encompass larger cohorts of monitored individuals and more rigorous quantifications to
assure reproducibility [Chick et al., 2016; Battle et al., 2015; Wu et al., 2013]. However,
integrating these different proteomics datasets and thereby providing a comprehensive
assessment on dataset quality as well as consistent biological features is scarcely
attempted. Incidentally, understanding the effects that genetic and environmental factors
have on the protein landscape and deducing robust conclusions remain hampered. Effects
of an individual’s sex on the proteotype, for example, remain largely centered around
well-known mechanisms such as dosage compensation and differential expression of
proteins due to their X/Y-chromosome location [Wu et al., 2013; Chick et al., 2016]; a
large-scale view to what extent the sex of an individual actually influences the respective
proteotype remains undescribed.

In this study, we comprehensively evaluated several aspects of the latter challenges by
interrogating 11 unrelated MS-shotgun proteomic datasets on their modular architecture
by co-variation analysis. Such an approach allowed us to both bench-mark the datasets
relative to each other and to recover networks of proteins that were effectively co-varying
across samples, specifically individuals. Protein complexes, for that matter, showed a
particular consistency in the presence of stable sub-structures and variable components,
such as the immuno-regulatory part of the proteasome complex. However, the underlying
mechanisms leading to such differential stoichiometric robustness of modules remain to
be further explored. So far both proteasomal degradation of unbound subunits [McShane
et al., 2016; Ryan et al., 2017], as well as regulatory mechanisms at the RNA level [Wu
et al., 2013] have been suggested as major drivers of stoichiometric robustness in
complexes. Such mechanisms are probably not restricted to protein complexes only; for
certain pathways, such as the complement pathway, we could observe very high and
consistent co-variation of all its protein members involved. Also proteins in very
coordinated processes such as the citric acid cycle showed a stable set-up in their relative
stoichiometry across individuals. Notably, such pathways should be further interrogated
to understand what variable members actually contribute to the differential proteotypes,
and whether they consistently do so.
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Our analysis further decomposes contributions to the proteotype variation from module
overall abundance as well as module stoichiometry, and establishes to what extent both
of these variations are determined by an individual’s sex and diet. The effect sizes on
variation in complex abundances were usually larger, with an average of more than 5%,
than in complex stoichiometries (average <5%), which was expected due to the rigor in
complex set-ups. Nonetheless, some clear-cut differential stoichiometry between male and
female mouse strains was identified in transport-related processes, prominently involving
the COPI- and COPII-complexes. At this point it remains unclear though whether the
given stoichiometry has a truly genetic cause which can be traced back to X- and Y-
associated gene expression, or whether it emerges from a different environmental effect,
such as from hormone and receptor transport.

The latter question can incidentally be asked in reverse by suggesting that the given pre-
defined stoichiometry of a functional module can ultimately change a cellular phenotype.
Indeed, it remains to be seen what systemic effects such subtle stoichiometry changes can
bring about, and how we can ultimately make use of it in a diagnostic and clinical context
as well.
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Chapter 3

Pervasive protein thermal stability

variation during the cell cycle

This chapter presents part of the results of the collaborative work with Dr. Mikhail
Savitski and Dr. Martin Beck on protein thermal profiles during the cell cycle. Not only
does this work shed light on the changing biophysical parameters during the cell cycle such
as stability and solubility, it also leverages the power of thermal profiles to understand
protein complex assembly during the cell cycle. I was not involved in the generation of
experimental data; experiments were primarily carried out by Dr. Isabelle Becher and Dr.
Amparo Andres-Pons at the EMBL. The computational analysis, on the other hand, was
handled by Dr. Frank Stein and me. My main contribution primarily encompassed
characterizing the ’co-melting’ behaviour of protein complexes throughout cell cycle
progression, as well as examining disordered proteins in context of mitotic phase transition
and a possible relation to mitotic phosphorylations.

The work in this chapter includes published material from the following article:

Pervasive protein thermal stability variation during the cell cycle. Becher 1., Andres-Pons

A., Romanov N., Stein F., Maike Schramm, Florence Baudin, Dominic Helm, Nils

Kurzawa, André Mateus, Marie-Therese Mackmull, Athanasios Typas, Christoph W.

Miiller, Peer Bork™®, Martin Beck™ and Mikhail M. Savitski*.Cell, 2018
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3.1 Introduction

MS multiplexing technologies [Gillet et al., 2012, Werner et al., 2012, Werner et al., 2014]
have substantially broadened the scope of possible proteomic quantifications that can be
made across a large number of biological conditions. Measuring protein melting or
aggregation curves on a proteome- wide scale (Savitski et al., 2014, coined as cellular
thermal shift assay (CETSA)) is a particularly exciting way of exploiting this potential as
it allows for the assessment of protein-drug, protein-protein interactions and post-
translational modifications [Savitski et al., 2014, Becher et al., 2016, Reinhard et al., 2015].
Thus, it adds another powerful dimension to the description of the cellular proteotype
capturing protein stabilities in context of the biological processes they are involved in.
The typical experimental scenario starts with cells being cultured under differential
conditions, and each culture being divided into 10 aliquots that get heated to different
temperatures, followed by extraction with phosphate-buffered saline (PBS). Proteins- when
reaching their melting temperature- then start to denature and gradually disappear from
the PBS-extracted samples by aggregation at higher temperatures [Martinez Molina et al.,
2013; Asial et al., 2013]. After protein extraction and trypsination, each sample gets labeled
with a different isotope-coded isobaric mass tag (TMT10); subsequently all 10 samples are
mixed and analyzed in a single liquid chromatography (LC) - MS run. In the resulting
MS/MS fragment spectra, a curve is fitted then the reporter ion intensities and a protein-
specific melting temperature (1) can be calculated and compared between conditions. The
melting curves, on the other hand, correspond to the level of protein aggregation occurring
at each temperature and thus directly reflect the protein-inherent unfolding behavior
(Figure 1.16). This unfolding behavior could be influenced by ligand-binding or interactions
with other protein, which should become evident in a respective shift of the melting point.
Given that the method robustly recovers results from thermofluor unfolding assays and
heat-induced precipitations in solution [Vedadi et al., 2006; Asial et al., 2013] it can be used
to reliably map thermal stability features to each protein, and quantify differences across
cellular conditions.

One particular cellular process that we explored with this methodology is the eukaryotic
cell cycle- a temporal process encompassing many fundamental changes in cellular
architecture. There are mainly four processes that need to be coordinated in order to ensure
cellular survival: i) cell growth (Gl-phase), ii) DNA replication (S-phase), along with
chromosome condensation, iii) alignment and distribution of chromosomes to daughter cells
(M-phase) and finally iv) cell division (cytokinesis) along with nuclear division which occurs
already in the mitotic stage. While cell growth is a continuous process, the subsequent
events (ii-iv) are sharply defined and bound to happen in a certain time-frame with cell
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cycle checkpoints ensuring that the environmental conditions are appropriate for cell
division [Morgan, 2007].

Using cell cycle synchronization protocols that enable to capture cells in one of those sharply
defined stages has led to a wide range of discoveries about processes and mechanisms
involved. For one thing, it is well-known that post-translational modifications (PTMs) play
a crucial control in signaling via phosphorylation of the anaphase-promoting -complex, for
example [Dephoure 2008, Olsen et al. 2010]. Ubiquitination also has been described as a
means throughout the cell cycle [Nakayama and Nakayama, 2006, Pines 2006]. Changes in
abundance levels due to degradation or stop of synthesis has also been well-characterized
for a number of proteins. Such dramatic shifts in the protein landscape need to be tightly
regulated to avoid “wasting” energy resources. De Lichtenberg et al. (2005) reported on a
yeast mechanism to activate and de-activate protein complexes at specific cell-cycle phases
by regulation of components of the complex critical for its functionality rather than the
whole ensemble. That just-in-time tuning of protein complexes optimizes transcription of
complex members while minimizing protein synthesis cost. It is in this chapter that we will
further enlarge the idea to entire pathways, to see whether this could be a general cellular
mechanism.

Arguably all these changes that have been described to occur during the cell cycle might
not only affect protein abundances but also protein stabilities. There are several lines of
evidence to suggest that: (i) mitotic processes lead to many proteins being exposed to
varying biophysical environments [Jongsma et al. 2015]; (ii) extensive post-translational
modifications might not only serve a signaling purpose but ultimately change the physical
features of the protein and its stability [Bachant et al. 2002, Olsen et al. 2010, Pelisch et
al. 2014]; (iii) protein complex rearrangements could induce stability changes to several
members of the same complex [de Lichtenberg et al., 2005]; (iv) the activity of several cell
cycle regulators is controlled by selective degradation [Pines et al. 2006]. However, proteome
organization during the cell cycle has never been explored with regard to protein stabilities,
and it remains unknown to which extent they are affected and potentially regulated
throughout the cell cycle.

In this work we have systematically measured protein melting curves during cell cycle
progression on a proteome-wide scale in situ, revealing that protein stability regulation
indeed affects various biological processes, such as transcription, spindle formation and key
metabolic pathways. Protein stabilities are particularly affected during the mitotic stage,
which coincides with the respective rearrangements occurring at this stage. Other phases,
for that matter, are much less affected with the exception of early G1 that still recovers
some of the protein stability changes that occurred during mitosis. The fact that mitosis
and G1 are quite distinguished in their morphology emphasizes that the concept of protein
stability is not confounded to morphological changes only, and is in fact a regulatory process
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that needs to be maintained during cell cycle progression. We also observed a tendency of
intrinsically disordered proteins to be stabilized during mitosis, coinciding with extensive
sumoylation and mitotic phosphorylation. Such a behavior could suggest that stability
regulation in general could serve the purpose of preventing protein aggregation during
mitotic spindle formation and chromosome separation. In summary, this work has provided
the research community with a comprehensive dataset that covers various aspects of
transcription, structural biology, intrinsically disordered proteins, metabolism and cell cycle
regulation.

This chapter will outline the main results of this work, and mainly the aspects that the
author of this thesis has been involved in. In line with the global theme of this thesis, a
particular focus will be the rearrangements of complexes during cell cycle progression.

3.2 Results

3.2.1. Profiling the thermal stability, abundance and solubility of proteins
during the cell cycle

To examine potential protein stability changes across different cell cycle stages in situ, the
thermal proteome profiling technology (TPP) was employed allowing to both measure
thermal stability and abundance [Savitski et al., 2014]. To this end synchronized HeLa cells
were collected in six different cell cycle stages, namely G1/S transition, early S phase, late
S phase, S/G2 transition, mitosis and early G1 phase (see Materials & Methods). For control
purposes asynchronous cells were collected as well (Figure 3.1). As described in the
introduction to this chapter, intact cells would then be heated to temperatures ranging from
37°C-66.3°C. Subsequently they were lysed with a mild detergent (NP-40) and soluble
proteins were quantified in the LC-MS setup using the tandem mass tag (TMT) labeling
[Werner et al. 2014].

To make sure that we can compare stabilities and abundances across cell cycle stages, a
two-dimensional TPP (2D-TPP) setup was established, multiplexing different cell cycle
stages at specific temperatures (Becher et al., 2016, see Materials & Methods) with G1/S
phase as the reference condition. Thereby out of 10.064 identified proteins, 4.970 proteins
passing quality control requirements would effectively have a two-dimensional data matrix
across cell cycle stages and temperatures (Table S3.1). Such a set-up made it then possible
to calculate abundance and stability scores for each protein and to assess significance based
on three biological replicates (see Materials & Methods) (Table S3.2). To further
disentangle whether protein abundance shifts might be due to altered protein solubility (i.e.
transition from organelle-bound to a free state due to cell-cycle dependent organelle
disintegration), the total protein amount (for 5.835 proteins) was quantified after
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solubilizing with a strong detergent (SDS), and solubility scores were calculated accordingly

(see Materials & Methods) (Table S3.3). Finally, in order to capture actual protein melting

curves, the TPP temperature range (TPP-TR) approach was applied to mitotic and G1/S-

cells, multiplexing ten different temperatures for each stage[Huber et al. 2015, Reinhard et
al. 2015, Savitski et al. 2014] and generating melting curves for 5.263 proteins (Table S3.4).
Thus, for at least half the proteome usually expressed in human cell lines [Beck et al. 2011,

Nagaraj et al, 2011] this work provides comprehensive information on abundances,

stabilities and solubilities in context of cell cycle progression.
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Figure 3.1. Overview on experimental design to assess protein abundance and stability changes across the cell
cycle (graph primarily designed by Isabelle Becher). After arrest of HeLa cells in respective cell cycle stage (G1/S,
early S, late S, S/G2, M and G1), samples were heated to 10 different temperatures followed by cell lysis with NP-40.
Protein aggregates get removed and soluble protein fractions are labelled with TMT10-plex for further protein
quantification. In TPP-TR mode (right panel), samples are combined to allow assesing melting curves for G1/S or
mitosis. In 2D-TPP mode (left panel), samples are combined according to a 2D-matrix with cell cycle stages pooled for
one thermal treatment (TMT7-plex de facto for each temperature). G1/S is always used as a reference for fold-change
calculation. The resulting matrix for each protein gets condensed to a respective abundance and stability score. Latter
are used to deduce significant changes, visualized in circle plots for each protein (inner circle (orange): abundance
changes; outer circle (purple): stability changes). An additional aliquot of cells is lysed with the strong detergent SDS

(not shown in scheme) in order to quantify protien abundance changes independent of protein solubility.

To make sure that the dataset indeed reflects characteristic biological features of the cell

cycle, we first checked on cyclin proteins as well as cyclin-dependent kinases (CDKs). For

example, we could recover the expected abundance profile of cyclin-A2 (CCNA2) —
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increasing in late G1 and declining in prometaphase [Morgan, 2007]; yet no stability
variation occurred with CCNA2 (Figure 3.2A, Figure S3.1A). CDKI1, on the other hand,
did not show any significant changes in relative abundance across the cell cycle stages at
lower temperatures, but did so at higher temperatures (Figure 3.2A, Figure S3.1A). Thus,
our data reveals that the thermal stability of CDK1 dramatically declines after G2. Apart
from these two examples, many other proteins that are known to play functional roles
during the cell cycle, were found to be either affected in their abundance or their stability.
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Figure 3.2. Abundance and stability changes of established cell cycle markers (graph primarily designed by
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Frank Stein). (a) CCNA2 and CDK1 are shown in circular plots (outer circle (purple): stability scores; inner circle
(orange): abundance scores). Color (blue to red) indicates decrease and increase of score, respectively. Line plots are

a9

depicted as well for additional illustration of the signal. All data presented is based on 3 independent biological
replicates, with * p <0.05, ** p <0.01, *** p <0.001, unless otherwise indicated. (b) Further exemplary circle plots of

cell-cycle related proteins with observed stability changes.

3.2.2. Protein abundance and stability vary independently from each other
during the cell cycle.

Significant cell-cycle dependent changes in protein thermal stability and abundance has
been detected for 1.592 and 1.044 unique proteins, respectively, with most abundance
changes occurring in early G1 and most stability changes occurring in mitosis (Table S3.2
and Figure 3.3A). Changes that occurred in both latter phases were notably much more
pronounced compared to any other cell cycle stage.

To understand which cellular processes and sub-structures were most prominently affected
by cell-cycle dependent changes in stability, we performed a gene ontology (GO) analysis
using DAVID (see Materials & Methods). Various biological processes, such as the nuclear
envelope breakdown, the purine salvage pathway and the pentose phosphate pathway
[Fridman et al, 2013] were identified to be affected (Table S3.5). During mitosis in
particular, a stabilization of signaling-, DNA- and chromatin-associated proteins occurred,
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whereas destabilization was primarily affecting proteins involved in metabolic processes. We
found no obvious differences in stability distributions of different subcellular compartments,
with the exception of the endoplasmic reticulum (Figure S3.2A). Strikingly, the
endoplasmic reticulum contained relatively more proteins with a variable stability,
especially stabilized proteins, than other organelles (p-value=3.04x10", Fisher Exact test,
Figure S3.2A/B). That might reflect morphological changes of the endoplasmic reticulum
[Schwarz and Blower, 2016] and/or the down-regulation of the secretory pathway during
mitosis [Yeong, 2013].

In order to explore a potential relationship between stability and abundance, abundance
and stability scores were combined and clustered using Fuclidean hierarchical clustering
using the ward-method (Figure 3.4, see Materials & Methods, Table S3.2). The resulting
21 clusters strongly delineate proteins that are either affected in their stability or
abundance, indicative of those features being controlled independently (Figure 3.4). To
further substantiate that stability-affected proteins are confounded by their abundance
metrics, we compared our data with previously determined protein half-lives [Boisvert al.,
2012]. Proteins significantly changing in abundance across cell cycle stages tend to turn
over faster, as opposed to proteins that are affected in their stability (Figure 3.5A).
Furthermore, protein melting points are not correlated with protein half-lives (Figure
3.5B), suggesting that cell-cycle dependent stability variation cannot be recapitulated from
standard protein abundance measurements.
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Figure 3.3. Overview on abundance and stability hits, and affected pathways. (a) Number of significantly affected
proteins in either stability (purple) or abundance (orange). (b) Selected pathways from Reactome database (see
Materials & Methods) with prominent protein stability changes (number of proteins associated with pathway given in
brackets). Size of circles relates to the fraction of the pathway affected in at least one cell cycle stage; circle colour
indicates the mean stability of the pathway components that significantly change their stability (full opacity: p<0.05;
transparency: no significant stability hits in given cell cycle stage despite protein quantification). Pathways are

categorized into broader functional groups.
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Figure 3.4. Clustering and Gene Ontology of Cell Cycle Hits. Hierarchical clustering of stability, abundance and
expression matrix of significantly changing proteins, resulting in 21 individual clusters. Each cluster was analysed with
DAVID (https://david-d.nciferf.gov) using all quantified proteins used as a background. For each cluster the top GO
result for different GO-categories are illustrated (FDR<0.05) on the right-hand side.

Recovering stability as an inherent feature of the protein proves useful to tackle challenges
in identifying metabolic enzymes that are more active due to increased substrate availability
rather than increased enzyme abundance. It has been established previously that substrate
binding indeed increases the thermal stability of enzymes [Feng et al., 2014; Savitski et al.,
2014], hence stability features in general can serve as a proxy for enzyme activity. In our
data we indeed observed cell-cycle dependent variation in enzyme stability in several
interconnected metabolic pathways (Figure 3.6, Table S3.5). The fatty acid biosynthesis
pathway, for example, which is required for mitotic exit, has its key enzymes significantly
stabilized in mitosis and early G1 [Scaglia et al., 2014]. The non-oxidative branch of the
pentose phosphate pathway (PPP) also has its respective enzymes significantly stabilized,
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which is in line with previous reports on increased metabolic flux at G1/S [Fridman et al.,
2013].
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Figure 3.5. Analysis on protein half-lives in context of cell cycle stability changes (graph primarily designed by
Mikhail Savitski and André Mateus). (a) Violin plots comparing protein half-lives [Boisvert et al., 2012] of proteins
changing significantly in abundance (orange (NP-40), green (SDS), and stability (purple))in comparison to non-
changing proteins. Significance levels obtained from Wilcoxon-rank test: * p<0.05, ** p<0.01, *** p<0.001. (b) 2D-
density plot of protein half-lives in comparison with protein melting points in G1/S. Linear model is fitted to it.
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Figure 3.6. Cell-cycle related changes in abundance and stability of metabolic pathways. On the left-hand side,
the pentose-phosphate (PP) pathway is depicted along with connected pathways, coloured according to average stability
across the stages from early S to S/G2. On the right-hand side, the same constellation is shown, coloured in stability
values derived from mitosis (left) and Gl-phase (right) for each protein. TKT and TALDOL (circle plots shown) are

two enzymes of the PP pathway that get significantly destabilized upon the onset of mitosis.
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3.2.3. Complex-dependent variation in stability across the cell cycle

In the following analysis we examined how members of protein complexes are coordinated
during cell cycle progression both in terms of their abundance and stability features. We
calculated the correlation of the abundance and stability scores of proteins that are members
of the same annotated complex (as defined by Ori et al., 2016) and compared the resulting
distribution to correlation values stemming from all other proteins that are not part of any
of the annotated complexes (Figure 3.7A). For both abundance and stability profiles of
protein complex subunits we observed a shift towards higher correlation values as opposed
to random protein-protein interactions (Figure 3.7B-C). The temporal adjustment of
complex subunit abundances has already been demonstrated before in Ori et al. 2016;
however, our observations on correlated protein stabilities actually suggest that protein
complexes mostly melt as a whole unit in situ once a critical temperature is reached. Indeed,
protein complex subunits have a significant tendency towards coherent melting behavior
(Figure S3.3A). Some complexes displayed strongly correlating subunits for stability while
others correlated better for abundance, which also held true for annotated cell cycle
complexes with temporally regulated assembly [Jensen et al. 2006] (Figure S3.3B).
Combining the stability and abundance values for each protein yielded the best
discrimination between proteins that are part of complexes from those that are not (Figure
3.7D).

Going into more detail we discovered that complex member correlation patterns were
actually reflecting stable sub-complexes, and vice versa loosely associated or potentially
moonlighting subunits (Mendeley graphs, http://dx.doi.org/10.17632/xrbmvv5srs.2). The
exosome complex provides an illustrative case in point (Figure S3.4A): While its core
components were collectively destabilized in mitosis and generally behaved in sync
throughout all stages, its two catalytic subunits, DIS3 and EXOSC10, were stabilized in
mitosis and fell out of pattern. Notably, latter stabilization is in agreement with previous
reports for fission yeast [Murakami et al. 2007] and Drosophila [Graham et al., 2009] where
those two subunits have been identified as uniquely required for mitotic progression. Such
sub-structural patterns could also be recovered for other complexes, i.e. the 26S proteasome,
and the condensin complex (Figure S3.4B, Figure S3.4C), substantiating the notion that
the presented method is indeed able to detect sub-complex specific changes.

That becomes especially apparent with the nuclear pore complex (NPC), which needs to be
dis-and re-assembled during cell cycle progression and consequently is subject to
fundamental stoichiometric changes. While membrane-bound in interphase, it resolves into
soluble sub-parts during mitosis after a phosphorylation trigger [Laurell et al., 2011]. It is
still not clear, however, what part of the nuclear pore complex is affected first, and how
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Figure 3.7. Co-stability of known protein complexes and sub-modules of the NPC. (a) Schematic illustration of
correlation analysis (see Materials & Methods for further details). (b/c¢/d) Density graph of correlation coefficient values
(Pearson) calculated from abundance (b), stability (¢), and concatanated abundance-stability (d) profiles between
proteins known to be members of the same complex (green). They grey density shows correlation values from all
combinations of proteins that are not associated to any complex. (e) Density graph of correlation valeus (Pearson)
calculated from concatanated abundance-stability profiles of all subunits of the Nuclear Pore Complex (NPC). (f)
Correlation matrix of NPC-subunits based on their concatanated abundance-stability profiles. The colours on the left-
hand side indicate their association with a specific sub-structure of the NPC, as coloured in the respective cartoon. The
scale on the bottom of the matrix indicates how many mitotic phosphorylation sites the corresponding protein subunit
contains as described by Olsen et al., 2010.
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such a dis-assembly would progress. Shedding light on the different stability and abundance
profiles of potential sub-complexes of the NPC might provide a means to tackle this
challenge (Figure 3.7E, Figure 3.7F). Indeed, combined stability- and abundance profiles
of nucleoporins (Nup) neatly cluster the proteins into known sub-complexes, such as the
NUP107, the inner ring sub-complex and accessory proteins. The major scaffolding
complexes show a minor destabilization in mitosis, coherent with it being detached from
the NPC scaffold; notably, the effect sizes for the so-called Y- and inner ring complexes are
slightly different, which is probably due to architectural disparities and subsequent influence
on extractability (Figure 3.7F, Figure S3.5). The most intrinsically disordered Nups, on
the other hand, remained stable in mitosis or were even strongly stabilized, such as Nup358
(RANBP2). Given that many of the Nups with high IDP content are prone to aggregation
[Lemke et al., 2016], this is indeed an unexpected observation.

3.2.4. Disordered proteins are stabilized during mitosis

There are two important characteristics of NUP358 that render its strong stabilization
during mitosis quite intriguing: For one thing, it is large, multifunctional proteins with
several folded domains linked by long, intrinsically disordered regions relevant for
nucleocytoplasmic exchange in interphase. On the other hand, NUP358 dissociates from the
Y-complex and localizes to the spindle region during mitosis [Joseph et al., 2004; Joseph et
al., 2002]; this translocation is crucial as a depletion of NUP358 notably leads to spindle
defects [Hashizume et al., 2013]. We therefore sought to investigate whether (i) spindle-
binding, and (ii) disordered proteins had a distinct (de-)stabilization behavior during the
cell cycle.

Similarly to NUP358, other confirmed spindle-binding proteins showed a strong mitotic
stabilization, such as the chromodomain-helicase-DNA-binding protein 4 (CHD4, Yokoyama
et al., 2013), chromosome-associated kinesin (KIF4A, Kurasawa et al., 2004), as well as
SMARCA4 (Yoyokama et al. 2009), as is illustrated Figure 3.8A and Figure 3.8B (Figure
S3.6A and B). Examining all annotated mitotic spindle-binding proteins (Sauer et al., 2005)
revealed that these proteins in general have a significantly lower thermal stability than
other proteins (Figure S3.6C, Table S3.6). Given that the aggregation of several of these
proteins is already substantial at 47°C (around 30% in case of NUP358, Figure 3.8A), we
assumed a severe dis-balance on spindle integrity due to these features, and experimentally
validated that (Figure 3.8C).

Generally, proteins that were severely stabilized in mitosis while their inherent stability was
rather low, were significantly enriched (FDR<5%) for GO-terms related to DNA-binding,
chromosome- and chromatin organization and transcription-related processes (Figure S3.7,
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Figure 3.8. Stabilization of spindle-associated proteins and the mitotic spindle (graph primarily designed by
Amparo Andres-Pons and Frank Stein). (a) Melting curves of RANBP2 in G1/S and mitosis (data again based on 3
biological replicates). (b) Scatter plot comparing the melting temperatures (Tm) for proteins in G1/S (x-axis) and M
(y-axis). Shift towards higher melting points in mitosis for spindle-related proteins CHD4, KIF4A, RANBP2 and
SMARCAA4 are indicated with colouring. (¢) Microscopy images of the mitotic spindle at different temperatures. Mitotic
HeLa Kyoto EGFP-alpha-tubulin/H2B-mCherry cells were imaged after heat treatment. Z-stacks maximum intensity
projections of samples treated at the indicated temperatures are shown. On the merged images, a-tubulin and H2B
are shown in magenta and cyan, respectively. After heat treatment at 47°C the mitotic spindle was barely visible, and

at higher temperatures was completely disintegrated.

Table S3.5). More specifically, however, we found that this particular set of proteins was
also enriched in proteins with large proportions of disordered regions (Figure 3.9A, see
Materials & Methods). We gathered that such a synchronized stability change of disordered
proteins during mitosis might be due to a regulatory switch, i.e. mitotic phosphorylations
which are known to occur in disordered regions [Dephoure et al., 2008; Olsen et al., 2010;
Typanova et al., 2013], thereby instantiating folding of disordered protein parts [Bah et al.,
2015; Desjardins et al., 2014].

We indeed found proteins with annotated mitotic phosphorylation sites (Olsen et al., 2010)
to be stabilized in mitosis and detected a considerable overlap of disordered and mitotically
phosphorylated proteins that exhibit the strongest stabilization (Figure 3.9B, Figure 3.9C,
Table S3.6). Notably, such a pattern could not be recovered for non-mitotic
phosphorylation, ubiquitination, acetylation or methylation sites (Figure S3.8A, Hornbeck
et al., 2015). Solely proteins with sumoylation sites showed a similar trend, emphasizing its

97



previously described connection to cell cycle progression and mitosis [Bachant et al., 2002;
Pelisch et al., 2014], crosstalk with phosphorylation [Yao et al., 2011], as well as phase
separation [Lallemand-Breitenbach and de The, 2010].

Overall, our findings indicate that chromatin- and spindle-associated proteins with low
stability and disordered regions are significantly stabilized in mitosis. This effect might also

be driven by mitotic phosphorylation sites in the first place.
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Figure 3.9. Stabilization during mitosis is prominent for disordered proteins and proteins containing mitotically
regulated phosphorylation sites. (a) Scatter plots depict the melting point shift from G1/S (x-axis) to M (y-axis) at
different cut-offs of the disordered state of a protein. (b) Shift of melting point for proteins containing mitocally
regulated phosphorylation sites as described in Olsen et al., 2010. (¢) Melting point difference for proteins with different

levels of disordered regions in their sequence and containing mitotic phosphorylation sites.

3.2.5. Persisting stability change at the transition between mitosis and G1

We found 984 proteins that show a significant stability change in mitosis that persists to
G1 as well. These are primarily components of the RNA-processing machinery including
RNA splicing, as well as the ribosomal complex. For the ribosomal complex, we already
described the likely biological underpinning for its “leaking” destabilization (part of the
subunits are recovered immediately in their stability; some subunits are not (primarily from
the small ribosomal subunit)). Besides RNA-binding proteins, there were two other enriched

processes worth pointing out: First, we found a persistent stabilization of proteins involved
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in histone ubiquitination, such as 4 out of 5 components of the polymerase associated factor
(PAF1) complex (PAF1, CDC73, LEO1, CTRY9), which associates with the RNA
polymerase II subunit POLR2A and with a histone methyltransferase complex. The complex
plays a role in histone modifications, primarily ubiquitylation and methylation. Along with
that we see a persistent stabilization of two E3 ubiquitin-protein ligases (RNF20, RNF40),
one E2 ubiquitin-conjugating enzyme (UBE2E1), and CBX8 (chromobox 8), which has been
related to ubiquitin protein transferase activity. Lastly, SUZ12 — a component of the very
histone methyltransferase complex the PAF1 complex attaches to, is among these proteins
that display increased stability in G1 as well. Both ubiquitination of histones, as well as the
specific methylation marks set by latter complex, are known to lead to transcriptional
repression. Since stability might serve as a proxy for enzyme activity, as we demonstrated
for POLR2A (see manuscript), we assume that this coherent stabilization pattern that leaks
from mitosis into G1, might be indicative of the onset of transcriptional repression as well.
The other process to be enriched in proteins with persisting stability patterns, is the
pyruvate metabolic process. Most prominently, the entire pyruvate dehydrogenase complex,
is being kept destabilized in mitosis and G1 (PDHA1, PDHB, DLAT, DLD), as well as
metabolic enzymes that lead to the production of pyruvate, such as the lactate
dehydrogenases LDHA, LDHB and the malic enzyme ME3, or use pyruvate for further
reaction, i.e. the pyruvate carboxylase PC. Notably, basigin (BSG) is also being kept
destabilized, which is normally important for targeting the monocarboxylate transporters
SLC16A1, SLC16A3 and SLC16AS to the plasma membrane. These transporters are pivotal
in getting lactic acid and pyruvate into the cell from outside; we quantify only SLC16A1
and SLC16A3 and both of them show the aforementioned “leaked” de-stabilization. It would
seem as if the cell is trying to put a number of safeguards into place to ensure that no

pyruvate is being processed and the energy-yielding machinery is completely shut down.

3.2.6. Solubility changes capture cell-cycle-dependent phase transitions

As specified in 3.2.1, protein abundances were measured under conditions using mild and
strong detergent, respectively, in order to disentangle protein expression from solubility. In
this manner the entire proteome could be de-convoluted into well-defined sub-proteomes
due to strong solubility transitions at specific cell cycle stages. For example, ribosomal
proteins, nuclear lamins, vimentin, plectin and their interactors [Lechertier et al., 2009]
displayed a strong transition from a non-soluble to soluble state in mitosis (Clusters 19, 20,
and 21; Figure 3.4, Figure 3.10A). These observations fall in line with properties of cellular
sub-structures observed during at this cell cycle stage: Nuclear lamins and vimentin both
get phosphorylated which leads to de-polymerization of filaments, and plectin transfers into
a soluble state by the same trigger [Chou et al., 1990; Foisner et al. 1996]. Remarkably,
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nuclear lamins remain insoluble in early G1 as well with high abundance and reduced
stability (Figure 3.10A/B).

Such strong solubility transitions primarily captured components of phase-separated,
membrane-less organelles that get dissolved in mitosis, such as nucleolar proteins
[Hernandez-Verdun, 2011] (Figure 3.10A) or components of nuclear speckles (Figure 3.4
cluster 8, Spector and Lamond, 2011; Table S3.2). To assess the fraction of proteins in
soluble and insoluble state in more detail, separate TPP-TR experiments were conducted
in mitosis and the G1/S-stage under mild and strong detergent conditions (as outlined in
4.2.1, Figure S3.9A, Table S3.7).
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Figure 3.10. Solubility transition of nucleolar, ribosomal and lamin proteins. (a) Abundance (orange: NP-40, green:
SDS), and stability (purple) profiles of three types of proteins (nucleolar, ribosomal, lamins and others from cluster
19,20,21 (Figure 5.4)). (b) Scatter plot comparing NP-40-based abundance score (x-axis) with SDS-based abundance
score (y-axis) for each protein. The functional groups from (a) are indicated. Lamins notably remain soluble during the
G1 phase.

The experiments revealed that a small fraction of the proteome remains consistently
insoluble throughout G1/S and mitosis, including core members of the chromosomal
passenger complex (CDCAS, INCENP, and AURKB, Figure S3.9A), as well as members
of the FACT complex (SUPT16H, SSRP1). Both these complexes are known to play key
roles during mitosis, with the chromosomal passenger complex being a key regulator
[Carmena et al., 2012] and the FACT complex being essential for microtubule growth and
bundling [Zeng et al., 2010] (Table S3.7). Curiously, we did not observe a single protein
that would transition significantly from a soluble to an insoluble state upon mitotic entry;
most of the proteins were in fact becoming more soluble in mitosis. Latter were enriched in
RNA-binding functions (Figure S3.10A), mitotic phosphorylations (Figure 3.11A/B) and
sumoylation (Figure S3.10B) (Table S3.6). As expected, many of these solubilized proteins
were part of the nuclear envelope [Thul et al., 2017; Wilkie et al., 2011], as well as
membrane-less organelles [Thul et al, 2017] (Figure 3.11C/D). The solubilized sub-
proteome of the membrane-less organelles were strongly enriched in disordered regions when
compared to other proteins of the same organelles (Figure 3.11A), such as nucleostemin
(GNL3, Romanova et al., 2009), fibrillarin (FBL, Tiku et al., 2016), nucleolar protein 7
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(NOL7, Kinor and Shav-Tal, 2011), nucleolar protein 11 (NOL11, Freed et al., 2012) and
SON, which has recently been proposed to be a key scaffolding factor for nuclear speckles
[Sharma et al., 2010] (Figure 3.11C). That very distinct regulated set of proteins could in
principle suggest that membrane-less organelles have a less extensive core proteome than
previously thought [Thul et al., 2017]. This could be of relevance given that the nucleolus
is the site of ribosome assembly [Kressler et al., 2010], which is also impacted by such strong
solubility transitions upon mitotic entry. Part of the observed ribosomal proteins solubilizes
in mitosis, which is probably represent non-assembled species (Figure 3.11D). Interestingly,
the insoluble interphase sub-populations of the ribosomal small (40S) and large subunit
(60S) components have very different effect sizes (Figure 3.11D/E), which is in agreement
with 408 proteins residing a shorter time period in the nucleolus than the 60S proteins [Lam
et al., 2007]. The ribosomal associated complex (defined by Havugimana et al., 2012) that
ensures the maturation of the 60S proteins showed the largest effect size suggesting that
the complex is primarily localized in the nucleolus in G1/S (Figure 3.11D/E).

This sub-part of the project has outlined a particular aspect of the proteome that so far
remains under-explored. The solubility landscape of proteins during different cell-cycle
stages, as well as the de-convolution of sub-proteomes that differ in their solubility, is useful
in light of current discussion on phase separation that occurs upon mitosis. It also remains
a challenge to understand exactly why disordered proteins are primarily affected, and
whether it stems from their inherent physique or a higher-order regulatory switch.

3.3 Discussion

The work presented encompasses an in-depth and large-scale analysis of protein thermal
stability and solubility in the eukaryotic cell cycle. Thus, the study adds substantial layers
to our understanding of the proteome, and its variability and re-organization during the cell
cycle. While we found most of the abundance changes to occur in G1, the mitotic stage was
particularly characterized by a large proportion of protein stability changes, mirroring the
respective morphological changes that occur at this stage. For example, the extensive re-
organization of the ER during mitosis coincides with strong stability changes of ER-residing
proteins [Schwarz and Blower, 2016], which has never been demonstrated before.

Another crude morphological change concerns the nuclear dis- and subsequent re-assembly
at the end of M-phase. We observed a pronounced delay of nuclear lamina proteins to get
insolubilized (Figure 3.10A/B), which could entail that lamin needs to be fully polymerized
before final re-assembly [Dechat et al., 2010; Moir et al., 2000]. Many subunits of the NPC
remain de-stabilized in early G1; thus, delayed lamin assembly could benefit NPC assembly
that occurs from inside out through the nuclear envelope [Otsuka et al., 2016].
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Figure 3.11. Sub-proteome transitioning in solubility in a cell-cycle dependent manner. (a) Proteins were stratified
by compartments (all, nuclear bodies, nucleoli, speckles, based on the Human Protein Atlas (HPA)). For each category
proteins are further dissected into hits (changing in solubility in mitosis vs. G1/S) and compared to other proteins in
the category in terms of their fraction of disordered regions. (b) Solubility differences in mitosis vs. G1/S for proteins
with different levels of disordered regions in their sequence and containing mitotic phosphorylation sites. (¢) Fraction
of organelle-specific sub-proteome significantly changing in solubility in mitosis vs. G1/S. Localization was defined by
HPA, except for nuclear envelope, which combines nuclear membrane annotated proteins as defined by HPA and
proteins annotated as inner nuclear membrane proteins by Wilkie et al, 2011. (d) Scatter plots comparing the
solubility of proteins in G1/S and the relative change in solubility of proteins in mitosis vs. G1/S, for different organelles,
for the cytoplasmic ribosomal subunits, andthe ribosome associated complex determined by Havugimana et al., 2012
(BOP1, RRS1, GNL3, EBNA1BP2, FTSJ3, MKIG7). Proteins with negative x-axis values and close to zero y-axis
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values are insoluble in G1/S and become more soluble in mitosis. Proteins that are significantly more soluble in mitosis
compared to G1/S are marked in red. (e) Solubility differences in mitosis vs. G1/S compared between proteins from
the small and large cytoplasmic ribosomal subunits and the ribosome associated complex (BOP1, RRS1, GNL3,
EBNA1BP2 FTSJ3, MKI67) determined by Havugimana et al., 2012.
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Specifically looking at the dis- and assembly process of the NPC, we observed that
intrinsically disordered Nups which usually tend to aggregate fairly easily, were stabilized
in mitosis, such as NUP358, which facilitates scaffold Nup oligomerization in interphase
[von Appen et al, 2015]. Generally the stabilization phenomenon was predominantly
occurring with highly disordered proteins that tend to have low stabilities and are targets
of mitotic phosphorylations [Olsen et al., 2010]. These observations are on par with the
extensive morphological changes that occur in these stages, exposing proteins to radically
different biophysical environments. One could speculate that IDPs get integrated into
specific protein complexes or other modularities in interphase such that local concentration
is restrained (i.e. NPC scaffold, Lemke et al.); in mitosis, however, such restraints would be
lifted allowing for IDP aggregation. Mechanisms such as phosphorylation and separation
from the membrane might help in preventing such aggregation scenarios during mitosis
[Jiang et al., 2015; Nott et al., 2015].

The broad picture on differential biophysical features of the proteome becomes even more
de-convoluted when taking into account actual solubility transitions and protein solubility.
Solubility transitions occurred for 356 proteins, which were primarily disordered and
mitotically phosphorylated, and primarily associated with the nucleolus. Notably, such
radical solubility changes confirm the scale of morphological alterations, such as the
dissolution of the nucleolus as shown by light microscopy. However, identifying the actual
molecular factors responsible proves difficult since phase-separating, membrane-less
organelles cannot be readily purified even from interphase cells.

Clearly, the presented landscape of biophysical properties of proteins varies extensively
across the cell cycle, and arguably affects metabolic activity, complex composition and
transcriptional activity (see manuscript). We demonstrated that stability is indeed a
characteristic that cannot be recovered from protein abundance variation, and used as a
proxy for protein activity and protein — protein interactions.

Indeed, we carefully studied protein-protein interactions in context of the cell cycle and
revealed that the combined stability and abundance variation of complex subunits can be
used for delineating major subcomplexes. In general, the subunits of well-annotated
complexes (Ori et al., 2016) exhibit concerted changes in their stability behavior. We
identify clear examples of complex subunits that have known moonlighting functions and
exhibit different cell cycle-dependent stability changes than other core subunits. This
highlights the utility of the present dataset for structural biologists, as it can be used for
hypothesis generation of cell cycle-dependent complex composition and subunit function (de
Lichtenberg et al., 2007).

103



Chapter 4

Cell-specific proteome analyses of
human bone marrow reveal
molecular mechanisms of age-

dependent functional decline

In this chapter, I describe a comprehensive effort to describe the changes that occur in
the proteomic landscape during the human ageing process and at the onset of
myelodysplastic syndrome (MDS). It has been a major effort of Dr. Anne-Claude Gavin and
Dr. Anthony Ho to gather the necessary data in the course of 3-4 years within the
SyStemAge-grant framework. The samples were obtained by Dr. Patrick Horn, and the
major proteomics analysis has been performed by Dr. Marco Hennrich. The computational
handling of the data was largely my responsibility, under the supervision of Dr. Anne-
Claude Gavin and Dr. Peer Bork. The chapter includes information from the following

manuscript:

Cell-specific proteome analyses of human bone marrow reveal molecular mechanisms of

age-dependent functional decline. Marco L. Hennrich, Natalie Romanov, Patrick Horn,

Samira Jaeger, Volker Eckstein, Violetta Steeples, Fei Ye, Ximing Ding, Laura Poisa-
Beiro, Mang Ching Lai, Benjamin Lang, Jaqueline Boultwood, Thomas Luft, Judith
Zaugg, Andrea Pellagatti, Peer Bork, Patrick Aloy, Anne-Claude Gavin*, Anthony D.

Ho*
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4.1 Introduction

The hype is big when it comes to discussions about ageing in connection to human stem
cells. Ageing of stem cells, in particular, has been considered to be the underlying cause for
the functional decline of tissues and organs that accompany this process and eventually
bring about the altered phenotype [Iscove and Nawa, 1997; Schlessinger and Van Zant,
2011]. The biological system maintained by stem cells encompasses haematopoiesis which is
characterized by a high turnover rate. If failing it might lead to several hallmarks of ageing
features, including anaemia, decreased competence of the adaptive immunes system, an
expansion of myeloid cells at the expense of lymphopoiesis and a higher frequency of
hematologic malignancies [Liang et al., 2005; Offner et al., 1999; Rossi et al., 2005].

These age-associated phenotypes have their origin at the very top of the haematopoietic
hierarchy, namely in the so-called haematopoietic stem and progenitor cells (HPCs) [Geiger
et al., 2013; Iscove and Nawa, 1997]. Previous research has shown that not only does the
number of stem cells in the HPC population decline, cells gradually lose their ability to
repopulate the bone marrow [Liang et al., 2005; Morrison et al., 1996; Offner et al., 1999;
Sudo et al., 2000]. Transcriptomic data have provided a blueprint of potential molecular
causes, including the HPC-specific up-regulation of genes associated with cell cycle
progression, myeloid lineage specification, as well as myeloid malignancies when becoming
older [Doulatov et al., 2010; Pang et al. 2011; Rossi et al. 2005]. However, these findings
have been made mostly, if not exclusively, in murine ageing models, and remain to be
validated in human subjects.

The effect that ageing might have on the microenvironment surrounding the HPC- coined
the bone marrow ‘niche’- also remains to be investigated. While specific adhesion molecules
that are essential for homing and maintenance of HPCs have been thoroughly described, it
is not clear to what extent they are affected by ageing processes as well [Beerman et al.,
2017; Calvi et al., 2003; Ellis and Nilsson, 2012; Lo Celso et al., 2009; Schofield, 1978;
Wagner et al., 2008a]. Similar to the intrinsic changes in HPC, the studies in that particular
area have also been highly restricted to transcriptomic and epigenetic alterations, especially
in the human mesenchymal stem and stromal cells (MSCs), which make up for the largest
part in the bone marrow niche [Bork et al., 2010; Wagner et al., 2009]. Other cellular
elements in the bone marrow such as monocytes and macrophages have also been shown to
be implicated in the restructuring of the niche upon ageing [Chow et al., 2011; Ehninger
and Trumpp, 2011; Winkler et al., 2010]. To date, however, mechanisms of ageing remain
restricted to individual cell populations of the bone marrow and are not analyzed in context
of the entire niche.

In the following work we provide a systematic study on the molecular mechanisms upon
ageing throughout a number of distinct cell populations constituting the human bone
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marrow, thereby dis-entangling intrinsic mechanisms (in the HPCs) from extrinsic ones as
well as identifying inter-dependencies. Beyond transcriptional analysis, we performed a
comprehensive, quantitative proteomics survey of the HPCs and their niche in a large cohort
of healthy human subjects from different age groups. We further consolidate our findings
using single-cell analysis to subdivide the HPCs into sub-populations, and dissect what
enzymes are affected by ageing or rather by hematopoietic lineage skewing, which is
characterized by the expansion of the myeloid sub-population of HPCs relative to the
lymphoid sub-population.

The underlying datasets should not only represent a valuable resource for mechanistic
analyses and for validation of knowledge gained from animal models, but they also provide
a first atlas of the proteomic signature of human ageing process within the cellular network
of the bone marrow. The systemic approach should build a foundation for a better
understanding of age-related diseases such as myelodysplastic syndromes (MDS) in the

future.

4.2 Results

4.2.1. Multi-scale, quantitative proteomics profiling of the human bone

marrow

Bone marrow samples from 59 healthy human subjects (45 male and 14 female) with ages
ranging from 20 to 60 years (median age ~ 33.2 years), were of sufficient and high quality
and therefore submitted to proteomics analysis (Figures 4.1A/B, Table S4.1). More
specifically, 6 cell sub-populations that constitute 94.2% (4 /- 2.8%) of all mononuclear cells
were isolated from each bone marrow sample, namely lymphocytes and respective precursors
(LYM), monocytes/macrophages and respective progenitors (MON), granulocytic (GRA)
and erythroid (ERP) precursors, mesenchymal stem /stromal cells (MSC) and finally HPCs
by enriching for CD34 as a positive marker. These different cell populations were analyzed
separately, and tryptic digests were labeled with tandem mass tag (TMT-6plex, Thompson
et al. 2003) with 5 different human subjects in one batch, plus the population-specific
internal standard for accurate quantifications across all donor (Figure 4.1C, see Method for
details). In total, 12,158 proteins were identified throughout all human subjects and cell-
populations, amounting to around 77% of the currently detectable human proteome
[Willhelm et al., 2014] (Figure 4.1D/E, Figure S4.1B, Table S4.2). The number of proteins
differed however between the cell populations, from 6,340 in ERPs to 9,454 in MSCs.
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Figure 4.1. Overview on experimental design of the study (graphic designed by Marco Hennrich and Patrick

Horn). (A) bone marrow samples were aspirated from 59 healthy human subjects: mono-nuclear cells were separated

by FICOLL gradient centrifugation. Different cell populatioins were isolated by FACS; MSCs were expanded in cell

culture. (B) Purity of 270 samples visualized from 70 (red)-100% (blue), according to cell population (circles). The age

of the respective donor is indicated at the periphery. The jitter graph inside the circle shows the age distribution of

the 59 subjects stratified by gender. (C) The 6 cell populations were processed separately prior to proteomics analysis:

Samples from given human subjects, plus a cell-type specific internal standard, were handled in one batch. Cells were

lysed, digested, TMT-labelled, and pooled. The pool was then subjected to reversed-phase HPLC fractionation, and

LC-MS/MS analysis. (D) Matrix showing the pairwise overlap of identified proteins between cell populations. The

diagonalindicates the total number of proteins identified in the respective cell population. (E) Total number of proteins

identified, TMT-quantified, and LF-quantified (label-free) in each cell population.

For quantification purposes, we exploited TMT-labeling to capture molecular changes in

the temporal dimension (ageing). The technical reproducibility for the TMT-based

quantification was above 0.9 (average 0.94; median coefficient of variation = 4.2%). In order

to simultaneously assess the proteomic differences between the different cell populations,

we specifically developed another MS-based quantification methods largely derived from the
label-free technique introduced by Schwanhausser et al. (2011) (see Methods). After

107



removing technical outliers (Figure S4.1C), a total of 270 samples were retained, with 7,375
protein abundance profiles across the donor cohort (TMT quantification) and 6,952 across
the cell populations (label-free (LF) quantification), Figure S4.1C.

A small fraction of inter-individual variability quantified in the TMT-dimension (3.1-21.8%
depending on the cell type) could be attributed to ageing (biological variability). At the
same time, however, proteins within specific pathways or protein complexes showed
coherent changes across donors (Figure S4.2A/B) [Ori et al., 2016; Ori et al., 2015]. To
additionally examine the quality of the label-free analysis, we looked at whether hierarchical
clustering of protein abundances would actually recover known lineage relationships, and
could confirm that (Figure S4.2C). Furthermore, the abundances from our label-free
analysis should recover profiles of known cell type specific markers of the corresponding
sub-populations, which is indeed the case as shown in Figure S4.2D. Given the quality of
the quantifications, the proteomics datasets were deemed reliable and appropriate to address
the questions on age-dependent differences across cell populations.

4.2.2. The proteomic landscape of HPCs, and five other cellular elements of

the human marrow niche

Examining the six major cell populations of the human bone marrow revealed only a small
fraction (8.3%; 578 proteins) to be expressed in a strictly cell type- specific manner, which
might be associated with specific functions and therefore serve as novel markers for isolation.
For HPC for example, 17 proteins- including relevant lymphoid and myeloid markers such
as DACH1, DNTT, BCL11A and BSPRY — had their expression restricted to the HPC
population only, which could be suggestive of their role in earlier stages of haematopoiesis.
MSCs, on the other hand, had the biggest set of proteins with unique expression (7.7% of
the quantified proteome, 452 proteins), with most being involved in the organization of the
extracellular matrix (ECM) and MSC-mediated HPC homing [Li and Wu, 2011]. Given that
these proteins were mostly expressed at the cell surface, they represent potential candidates
for the characterization of MSCs, which so far lacks clear-cut markers for isolation.
Remarkably we also found specific and highly abundant expression of nestin (NES) in the
human MSCs, which has been reported to play a pivotal role in HPC maintenance and
homing in mice [Mendez-Ferrer et al., 2010]. To our knowledge, our results reflect for the
first time that nestin is specifically expressed in MSCs of the human bone marrow as well.
The vast majority (73.3%) of the quantified proteins were present in more than one cell
type, with 950 proteins (18.6%) consistently quantified in all six cell populations (Table
S4.3). Commonly expressed proteins made up 70% of the total abundance of the quantified
proteome (Figures S4.3A/B), and were primarily enriched in essential, housekeeping
functions. The abundance patterns of these housekeeping proteins, i.e. their relative
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stoichiometry, could be used to define the six different populations to the extent of
recovering the actual lineage (Figure 4.2B). This observation might reflect the specific
metabolic requirements for lineage commitment and adaptation to cell-specific processes
and functions [Ori et al., 2016]. To understand which functional process required
stoichiometric adjustments in different cell populations, we quantified the fraction of
mapped pathways that differed between cell types (see Materials & Methods). Pathways
involved in metabolic processes were in general more prone to such stoichiometric
arrangements, when compared to pathways involved in translational processes (Figure
4.2C). One of the largest assembly of enzymes affected was found to be the glycolytic
pathway, converting glucose to pyruvate, allowing for subsequent ATP- and carbon
substrate production. The relative abundances of the relevant enzymes different between
cell populations, yet the actual stoichiometric ratios were rigorously maintained across the
different human donors (Figure S4.3C, Table S4.4). Interestingly, ERPs had the most
divergent enzyme stoichiometry with all enzymes downstream of GAPDH being less
abundant than in other cell types (Figure 4.2D). Such a deviation from the other cell types
could be explained by the Luebering-Rapoport glycolytic shunt in erythrocytes converting
1,3-biphosphoglycerate (BPG) to 2,3- BPG, which ultimately regulates oxygen release from
haemoglobin and its delivery to tissues [Benesch and Benesch, 1967; van Wijk and van
Solinge, 2005]. The observation of decreased abundance of downstream enzymes in the
glycolytic pathway in the production of 2,3-BPG could therefore be indeed an indicator for
an early-on specialization of the ERPs. Moreover, we found a cell type-specific expression
of isozymes of the hexokinase (HK1/2/3) representing the initial rate-limiting enzyme in
the pathway controlling the fate of glucose-6-phosphate (G6P) [Wilson, 2003] (Figure
4.2E). While HPCs, ERPs and MSCs primarily expressed HK1 channeling G6P to
glycolysis, MONs and GRAs mainly expressed HK3, which direct G6P to anabolic pathways
such as the pentose phosphate pathway. Given the supposed heightened flux into the
pentose phosphate pathway, we expected the corresponding enzymes to be more abundant
in MONs and GRAs as well: Indeed, enzymes in the oxidative and non-oxidative branches
of the pentose phosphate pathway alike were highly abundant in these particular cell
populations (Figure 4.2D). Since the pentose phosphate pathway is primarily responsible
for generating NADPH which serves as a precursor for nucleotide synthesis, our observations
are consistent with reports of nucleotide synthesis being pivotal for neutrophils, granulocytes
and macrophages [Azevedo et al., 2015]. While a thorough flux analysis and metabolic
validation is key to further widen our understanding of the metabolic adjustments during
cell differentiation in the bone marrow, our dataset provides a reasonable proxy by depicting
proteome adaptations to cell type- specific functions.
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haematopoietic subpopulations examined. The correlation coefficient was calculated based on the LF abundances of
proteins covered in > 85% of the samples of each cell population (950 proteins). Characteristic proteome clusters were
identified in samples derived from the same cell population. (¢) Bird-eye view on the pathways that are present at
different stoichiometry in the different cell populations. The fraction of a pathway that changed significantly between
at least two cell types (x-axis) is plotted against the mean label-free (LF) abundance of an entire pathway across the
different cell populations. The circles in the scatter plot signify Reactome pathways and their size corresponds to the
number of quantified proteins per pathway. The colour refers to the highest hierarchy of the particular pathway
according to Reactome. The highest hierarchies were filtered to have at least 30 pathways quantified in the dataset
with each containing 5-100 protein members. The numbers indicate the following pathways; 1 ethanol/oxidation; 2
His/Lys/Phe/Tyr/Pro/Trp catabolism; 3 RNA polymerase II transcription termination; 4 DNA replication pre-
initiation; 5 ER-phagosome pathway; 6 activation of ATR in response to replication stress. (d) The glycolytic pathway
and branching points to connected pathways e.g. the oxidative pentose phosphate pathway (Ox. PPP) or the Luebering-
Rapoport shunt (L.-R.-shunt) are depicted. Each bubble represents an enzyme with the area of the hubble encoding
for the cell type specific, relative LF abundance with 100% representing the sum of all proteins per cell population
depicted in (d). The colour codes for the cell population as depicted in the lower right corner. (e) Relative abundances
of the hexokinase isoenzymes in the respective subpopulations are shown analogous to Fig. 2d, but 5 fold enlarged to

better illustrate the difference.
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4.2.3. Impact of ageing on proteome landscapes

Apart from differences between cell-populations, we quantified proteomic alterations
associated with human ageing within each cell population, thereby capturing alternative
ageing procedures of cell types as well. We performed a Spearman correlation analysis
between the abundance of proteins (measured in >15% of all subjects, see Methods) and
the corresponding donor ages. An association with a p-value < 0.05 would be considered
significant (Table S4.5): For ERPs 175 proteins (5.2%) were affected, in HPCs 411 proteins
(9.1%), in MSCs 737 (12.4%) (Table S4.6). Interestingly, proteins affected by age in
different cell types would only partially overlap, which might be both suggestive of distinct
ageing phenotypes of those cell types or their varying half-lives. HPCs and MSCs, for that
matter, are relatively long-lived, persisting progenitor cells, while all the other cell
populations primarily represent lineage-committed precursors with high turnover rates and
hence considerably shorter half-lives.

To understand which biological processes and pathways were affected by ageing in each of
the different sub-populations, we examined protein alterations in context of associated
pathways as defined in the Reactome database (http://www.reactome.org, Figure 4.3,
Figure S4.4, and Table S4.7). Thereby we detected a significant increase in glycogen
breakdown, synthesis of prostaglandins and thromboxanes (arachidonic acid metabolism)
and metabolism of nitric oxide in older HPCs. In the other cell populations, named processes
remained largely unaffected. Strikingly, MSCs displayed very prominent alterations in
protein abundance patterns in pathways associated with cellular response to stress,
replicative senescence, white adipocyte differentiation and extracellular matrix organization.
Specifically our data also captures some of the few established ageing markers identified by
transcriptomic analyses, such as the interferon regulatory factor 8 (IRF8) in HPCs. The
abundance of the protein becomes considerably reduced in older HPCs, which is reported
to be associated with dysregulated proliferative activity and biased myeloid differentiation
[Stirewalt et al., 2009]. We also detected a significant reduction in abundance of DNA
methyltransferase 1 (DNMT1), which is responsible for maintaining DNA methylation
[Hermann et al., 2004]. It has been shown earlier that if down-regulated, a dysregulation of
methylation might lead to several age-related diseases [Benetatos and Vartholomatos, 2016],
such as acute myeloid leukaemia (AML) and myeloidysplastic syndromes (MDS). In mouse
models DNMT1 has been reported to be critical for HPC maintenance and their self-renewal
after transplantation [Trowbridge et al., 2009)].
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Figure 4.3. Age-affected pathways in the individual cell populations. A selection of pathways from the Reactome
database that show the most prominent changes upon ageing are depicted. Pathways were required to have between 5
and 150 members, to be sufficiently covered in at least one cell population (>30% of the proteins are quantified), and
to have at least 20% of its quantified components being significantly (p-value < 0.05) altered upon ageing. The figure
illustrates the five most up- and down-regulated pathways per cell population (see Methods). The area of the bubbles
represents the percentage of proteins quantified by TMT that are significantly (p-value < 0.05) altered. If no bubble
is shown, no protein of the pathway has been observed to be significantly altered in the respective cell population or
no protein of the pathway has been quantified. The colour of the bubbles codes for the direction of the alteration, with
red indicating an overall increase of the pathway members with at least three proteins heing upregulated and pink an
overall increase with one or two proteins being upregulated. Blue codes for pathways with an overall trend towards
downregulation, with strong blue coding for pathways with at least three proteins being downregulated and light blue
containing one or two proteins being downregulated. The colour white indicates that no overall tendency for the proteins
associated with the corresponding pathway could be observed. The bars on the right-hand side of each pathway
illustrate the number of proteins being significantly altered upon ageing regardless of the cell population (green), being
quantified by TMT (grey), and the total number of members of the pathway (black) as also mentioned in the pathway
annotation (n). The grouping of the pathways on the left side is hased on the highest hierarchy levels defined in
Reactome, e.g. extracellular matrix organisation (ECM org.).
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4.2.4. Ageing affects central carbon metabolism in HPCs

In line with metabolic adjustments between different cell populations, we sought to
investigate whether the metabolic household could be somehow affected by ageing. For
HPCs one of the most remarkable age-dependent changes indeed encompassed enzymes
involved in glycolysis, glycogen catabolism and fatty acid beta-oxidation (FAO). Briefly,
the changes were reflective of an enhanced metabolic and specifically anabolic activity of
old HPCs versus young HPCs, with protein abundances again serving as a reliable proxy
for metabolic flux and activity (Figure 4.4). Notably, the alterations were highly specific
to the HPCs, as corresponding enzymes in all the other cell populations remained unaffected
(data not shown, see manuscript).

The upstream and rate-limiting part of the glycolytic pathway showed a significant age-
associated increase in enzyme abundance, i.e. hexokinase 1 (HK1), phosphofructokinase M
(PFKM), as well as aldolase C (ALDOC) and triosephosphate isomerase 1 (TPI1) (Figure
4.4). At the same time enzymes involved in glycogen catabolism, glycogen
phosphosphorylases PYGB and PGYL, as well as the glycogen debranching enzyme (AGL)
were significantly more abundant in older HPCs as well. Our assumption that older cells
seemed to be more prone to fuel glycolysis with catalytic products of glycogen rather than
other glucose sources, was further supported by the increased abundance of
phosphoglucomutase 1 (PGM1). On top of actual resource shift, we also identified an
increase in abundance of transaldolase 1 (TALDO1) which plays a crucial role in the non-
oxidative branch of the pentose phosphate pathway. Given a similar increase of glycerol-3-
phosphate dehydrogenase (GPD2), an dihydroxyacetone kinase (DAK), it became clear that
the upstream part of the central carbon metabolism experienced a full blown increase in
activity, primarily consuming ATP and converting glucose to dihydroxyacetone phosphate
(DHAP) and D-glyceraldehyde 3-phosphate (GA3P). Notably, we did not see any age-
dependent changes in the subsequent part of the carbon metabolism, characterized by the
production of ATP, NADH and pyruvate in the so-called Krebs cycle (Figure 4.4A). Such
an abundance pattern and deduced metabolic flux is reminiscent of the Warburg effect
where excess of glycolytic carbons becomes redirected to pathways that branch out of the
glycolysis/Krebs cycle axis, thus producing co-factors and intermediates for anabolism
(nucleotides, lipids, amino acids, ..) [Heiden et al., 2009] and epigenetic processes [Smith et
al., 2016]. To provide orthogonal evidence to our observations at the proteomics level, we
additionally measured relative amounts of metabolites that play a role in glycolysis (Figure
4.4B). Two metabolites in particular - namely ribose-5-phosphate as well as ribulose-5-
phosphate show a tendency to get accumulated in old HPCs, suggesting that glucose is
increasingly shuttled through the pentose phosphate pathway for anabolic purposes.
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Figure 4.4. Prominent changes upon ageing in the central carbon
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of relative amounts of phosphorylated metabolites relevant to the preparatory phase of the glycolytic pathway and the
pentose phosphate pathway. The age of the respective donor (x-axis) is plotted against the relative amount of
metabolites (y-axis) after normalizing for the cumulative amount of the given metabolites detected in each donor. The
p-value (p) is based on the given Spearman correlation coefficient. (¢) Similar to (a) the scheme illustrates the effects
of ageing on a specific set of enzymes involved in the mitochondrial beta oxidation of fatty acids. (d) Volcano plots of
all proteins quantified in the respective cell populations. Proteins represented in (a) and (b) are colour coded according
to the legend. All other proteins are coloured grey. The dashed lines indicate p-values of 0.1 and 0.05.

Phosphoglycerate dehydrogenase (PHGDH), which we found to be increased in abundance
as well upon ageing, is such a branching enzyme converting 3-phospho-D-glycerate into 3-
phosphoonooxypyruvate for the serine biosynthesis. As a matter of fact, this enzyme is often
over-expressed in tumors [Locasale et al., 2011] as serine is required for nucleotide synthesis,
NADPH production and biosynthesis of S-adenosyl methionine (SAM), which eventually is
critical for epigenetic-mediated control of gene expression via DNA methylation [Heiden et
al., 2009; Maddocks et al., 2016].

Consistent with an increased metabolic branching, other enzyme abundances were increased
to adjust for the ageing flux pattern, e.g. the mitochondrial citric acid transporter SLC25A1.
Specifically, this enzyme shuttles citrate to the extra-mitochondrial periphery, where it can
be metabolized to acetyl-CoA and oxaloacetate by the soluble aconitase (ACO1) and ATP
citrate lyase (ACLY). Notably, both latter enzymes were found to be up-regulated as well;
ACLY in particular has been shown before to be a key regulator between aerobic glycolysis
and amino acid as well as de novo lipid synthesis involve in proliferation of tumor cells
[Zhao et al., 2016]. Thus, having these enzymes affected during ageing of the cells further
substantiates our hypothesis of an increased Warburg effect.

Another substantial pathway which is highly connected to glycolysis, and subject to age-
dependent alterations, is fatty acid beta-oxidation (FAO), encompassing enzymes, such as
the tri-functional enzyme subunit beta (HADHB), peroxisomal bifunctional enzyme
(EHHADH), propionyl-CoA carboxylase beta chain (PCCB), carnitine O-acetyltransferase
(CRAT), as well as carnitine palmitoyl transferase 1 (CAPT1A), and the carinitine-acyl-
carnitine transporter SLC25A20 (Figure 4.4B). Thus, the up-regulation involved the actual
fatty acid import machinery, the conversion of acyl-CoA to acyl-carnitine (CPT1A) in the
cytosol, its transport into mitochondria via SLC25A20, and the reconversion to acyl-CoA
by CRAT [Houten and Wanders, 2010], as well as the major enzymes of the FAO (HADHB
in mitochondria, EHHADH in peroxisomes).

Together with glycolytic catabolism, FAO has been reported to be an important hallmark
of HPC maintenance and quiescence [Ito et al., 2012; Shyh-Chang et al., 2013]. We can thus
conclude from the observed abundance alterations that ageing in HPCs is highly associated
with a rewiring of central metabolic pathways and the rerouting of metabolic intermediates
for the synthesis of co-factors pivotal for anabolic and epigenetic processes.
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4.2.5. Granulocytic, megakaryocytic differentiation at the expense of lymphoid
differentiation with ageing

Apart from metabolic rewiring, we also interrogated HPCs on their ability to self-renew and
differentiate into all functional blood cells when getting older. We found some of the
specifically expressed 17 proteins (see 4.2.2), to be decreased significantly upon ageing, such
as DNTT and BCL11A, which have been linked to lymphoid development and function
(Figure 4.5A). In contrast, the heterodimeric soluble guanylate cyclase (GUCY1A3 and
GUCY1B3), i.e. downstream signaling effectors of nitric oxide (NO), increased significantly
in abundance in older HPCs. NO/cGMP signaling has indeed been shown to modulate
haematopoiesis and might well be correlated with an increased differentiation bias towards
the myeloid lineage, coined lineage skewing [Ikuta et al., 2016]. To further substantiate this
hypothesis, we looked at potential lymphoid and myeloid markers that we manually
assembled from various previous publications, e.g. Doulatov et al., 2010. Lymphoid markers,
such as MME (CD10, official lymphoid markers for human haematopoetic progenitors),
IKZF1 (regulator of lymphocyte differentiation), and EBF1 decreased in abundance with
age. Several other proteins described by Doulatov et al., 2010 to be characteristic for human
lymphoid development, also tend to be down-regulated with age (Figure 4.5B). In sharp
contrast, proteins associated with myeloid lineages, such as PTGS1 (prostaglandin-
endoperoxide synthase 1), PSTPIP2, TBXASI, as well as PML show elevated abundance
levels in older HPCs (Figure 4.5C). We conclude therefore that using the proteomic
abundance patterns of lymphoid and myeloid markers, the increased tendency of lineage
skewing with age can successfully be delineated.

Given this observation, however, it is critical to understand whether the increase of
glycolytic enzymes reported in section 4.2.4 is indeed due to ageing of cells or rather the
expansion of the myeloid sub-population in the CD34* HPC cells. To address the issue, the
transcriptome of 519 single-sorted HPCs originating from young and old human subjects
(each n=2) was analyzed. Given the expression levels of the mRNA markers associated with
lymphoid or myeloid differentation (Figure 4.5C) (consistently measured in single cells),
we categorized cells into myeloid- or lymphoid-primed subsets. We generally observed that
the mRNA levels of age-increased glycolytic enzymes were higher in myeloid-primed than
in lymphod-primed HPCs. Transcripts of age-unaffected enzymes, on the other hand, tended
to be similar between sub-populations (Figure 4.5D). To delineate the effect of cell ageing
on enzyme transcript levels, we compared gene expression between young and old donors
in myeloid- and lymphoid-primed cells, respectively. We observed that enzymes of
the 'preparatory’ phase of the glycolytic pathway were mostly affected by ageing in the
myeloid-primed sub-population (Figure 4.5E). Thus, while the lineage skewing of the
CD347 cells towards myeloid differentiation upon ageing can explain the increase of enzyme
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abundances to some extent, we also observed a lineage-independent ageing effect (Figure
4.5E).
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Figure 4.5. Age-related alterations of lineage specific proteins in HPCs. (a) Scatter plot of the relationship between
the correlation coefficient (x-axis) and the corresponding p-value of proteins specifically expressed in HPCs (y-axis).
The colour assigned to each bubble is indicative of its function, as explained in the upper left legend. The area of the
bubbles represents the significance level (p-value [-log10]). The stars at the dashed lines indicate a p-value of 0.05 (*)
and 0.01 (**). (b) Scatter plot similar to (a), with proteins associated with common lymphoid progenitors (CLP)
compared to megakaryocytic and erythroid progenitors (MEP), common myeloid progenitors (CMP) and
haematopoietic stem cells/multipotent progenitors (HSC/MPP) in accordance with the GO annotation of immune
system process (GO:0002376) [Doulatov et al., 2010]. (¢) Significant alterations of the proteome landscape of HPCs
upon ageing. Each circle represents a successful quantification in an individual human subject, with the respective age
noted at the bottom. The colour codes for the z-score of relative intensity versus the internal standard (TMT protein
ratio) with red indicating an increase and blue a decrease in abundance upon ageing. The boxes indicate the age
boundaries where the majority of the respective age-dependent increase or decrease in protein abundance takes place.
(d) The density plot shows distributions of correlation coefficients between lineage markers and glycolytic enzymes.
The calculation is based on the results from the single cell RNA-seq data. Density distributions based on correlations
between myeloid (pink) or lymphoid (purple) markers with glycolytic enzymes that are up-regulated upon ageing, are
shown with thick lines. The corresponding individual correlation values are displayed as lines in the box below the plot
in the respective colours. Density distributions based on correlations of the respective markers with glycolytic and
TCA-related proteins that did not change upon ageing, are shown as dashed coloured lines. The grey distribution
represents the correlation values of all proteins against myeloid and lymphoid markers (e) Scatter plot illustrating the
effect of ageing on glycolytic enzymes in lymphoid- and myeloid-primed cells, as deduced from single-cell analysis. The
dots correspond to proteins in glycolysis that were not affected by age (grey), and glycolytic proteins that were altered
upon ageing according to the proteomics data. The x-axis illustrates the relative abundance of those enzymes in myeloid-
primed cells (left), and lymphoid-primed cells (right). The y-axis corresponds to the ageing slope derived as a measure
of age-effect in lymphoid- and myeloid-primed cells across donors (Mann-Whitney U-test, * p-value < 0.05). The data
from the scatter plots are collapsed into box plots on both axes.
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4.2.6. Alterations in the bone marrow niche and their relationships to changes
in HPCs as they become older.

As discussed in the Introduction to this chapter, the bone marrow is not only defined by
the cell types it is populated with, but also by the microenvironment surrounding the cells,
controlling for HPC maintenance and regulating haematopoeitic homeostasis. To
understand to what extent the microenvironment might be affected by ageing and metabolic
shifts that go along with it, we sought to specifically investigate essential factors and
adhesion molecules produced by the cellular niche and responsible for homing and egress of
HPCs [Dykstra et al., 2011; Mendelson and Frenette, 2014; Nakamura-Ishizu and Suda,
2014}, such as SDF1, VCAMI, and fibronectin (FN1) [Ley et al., 2016]. These factors
notably decreased in abundance in older MSCs (Figure 4.6), whereby other proteins
involved in glycosaminoglycan and collagen metabolism were significantly decreasing as
well. These observations suggested that the extracellular matrix might indeed get
substantially reorganized during ageing, which in turn would affect the entire bone marrow
niche.
Since ageing probably encompasses coordinated, concerted alterations in this network of cell
communities within the bone marrow, we reckoned that a direct correlation of extracellular
protein-ligand pairs between different cell types might be indicative of a direct or indirect
functional relationship mediated through the bone marrow niche (Figure S4.5). Our
correlative analysis based on the STRING database [Szklarczyk et al., 2017] demonstrated
that 28% of receptor-ligand pairs directly interacted with one another (p-value=0.0498),
while 62% showed an indirect functional relationship (p-value=0.047). A decrease in
VCAM1 and FNI1 in MSCs would then for example be complementary to their
corresponding ligand, a4/Bl-integrin (ITGA4/ITGB1), which decreased in HPCs upon
ageing. Interestingly, al/B2 integrin (ITGAL/ITGB2) followed a very similar pattern
(Figure 4.6 and Figure S4.5), supporting the notion that B2-containing integrins on HPCs
show synergy with a4/Bl-integrins, as reported previously [Papayannopoulou et al., 2001].
Soluble factors that get secreted were also affected as the bone marrow niche became
older, which might be linked to the functional attenuation of HPCs. TGF-betal — a secretory
factor that has been proposed to contribute to lineage skewing by stimulating myeloid-
biased HPCs [Challen et al., 2010; Mendelson and Frenette, 2014]- was elevated in LYMs
and ERPs from older subjects. Current literature also points towards another vital factor
released into the microenvironment to play a pivotal role in triggering lineage skewing and
hence serving as a major messenger molecule- nitric oxide (NO). While we did not
interrogate the metabolite directly, we again used our proteomics data as a proxy for
metabolic fluxes. We found a significant decrease in abundance of the nitric oxide (NO)
synthase inhibitor (NOSIP) in MSCs, while DDAH1 and DDAH2 (dimethylargininase 1 and
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2) - enzymes that degrade ADMA | an inhibitor of NO synthase- were significantly increased
in abundance in HPCs (Figure 4.6). These complementary changes suggested that the
secondary messenger NO-molecule gets increasingly abundant in the ageing niche, and its
downstream signaling effectors, i.e. the heterodimeric soluble guanylate cyclase (GUCY1A3,
GUCY1B3), and the cGMP-dependent kinase 2 (PRKG2) were significantly elevated in
older HPCs (Figure 4.6). These observations might indeed indicate that elevated levels of
both TGF-betal and NO in the bone marrow might represent initial triggers for lineage
skewing in general. Although our observations need to be further substantiated with
respective metabolic experiments, our analysis to comprehensively describe complementary
changes of extrinsic and intrinsic factors between different cell types could represent fertile
ground for further hypothesis on the ageing of the bone marrow niche and its connection to
the ageing of HPCs.
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Figure 4.6. Alterations of protein abundance in the haematopoietic stem cell niche with age (graph primarily
designed by Marco Hennrich). (a) CXCL12, VCAM1 and FN1 in MSCs and the integrins alpha4, alphal., betal and
beta2 (a4, al, B1, and B2) in HPCs decrease in abundance upon ageing. Age-related changes in connection with nitric
oxide (NO) synthesis, the urea cycle and potential NO crosstalk between MSCs and HPCs is depicted by arrows for
unidirectional reactions and strokes for bidirectional reactions. Dotted lines or dotted arrows illustrate reactions for
which no enzyme was detected or quantified in this study. The gene names of the respective enzymes are written in
capital letters. The colour encodes changes upon ageing, as described in the legend. (b) Box-plot representation of the
proteins depicted in (a). The dots represent the individual results from younger (age <30 years) and older (age > 50
vears) human subjects. Proteins known to have a direct effect on homing or egress of HPCs from or into the bone
marrow are shown in the upper and proteins associated with NO signalling and the urea cycle are plotted in the lower
graph.
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4.3 Discussion

In this collaborative effort an atlas of age-associated alterations in the proteomic landscapes
of human HPCs as well as five other sub-populations in the bone marrow niche has been
presented. While most of the work has been primarily aimed at understanding how proteins
are affected by ageing (40 years of time span), the application of orthogonal quantitative
methods allowed us to also directly compare abundance levels between the different cell
populations and appreciate stoichiometric adjustments. These were most apparent in
metabolic pathways, reflective of the respective adjustments that need to take place in the
changing microenvironment.

Among significant abundance changes of proteins upon ageing, the most prominent ones
suggested an enhanced metabolic and anabolic activity of older HPCs, with enzymes of the
upstream glycolytic pathway being particularly affected. Glucose metabolism has indeed
been shown to play a pivotal role in governing stem cell fate in terms of proliferation,
differentiation or dormancy [Shyh-Chang et al., 2013]; however, no evidence has been
provided so far on its role during the ageing process. Our observations point towards a
Warburg effect [Heiden et al., 2009; Smith et al., 2016] and is therefore compatible with
reports of increased proliferation rates of aged HPCs in the bone marrow [Geiger et al.,
2013]. Such a high proliferation of HPCs generally goes along with a diminished competence
of the adaptive immune system, an expansion of myeloid cells [Geiger et al., 2013] and an
increased platelet priming and functional platelet bias [Grover et al., 2016]. Our proteomic
analyses of HPCs supported previous findings, and in addition allowed for a quantitative
assessment of proteins pivotal to lineage skewing.

Moreover, investigating five other sub-populations in the bone marrow in context of their
interactions with HPCs substantiated a hypothetical triggering mechanisms for lineage
skewing, with key factors responsible for homing, egress and differentiation of HPCs
declining in abundance, whereas soluble factors instantiating myeloid expansion
significantly increased with age [Michurina et al., 2004; Mujoo et al., 2011]. Additional
changes in the proteomic make-up of MSCs suggested changes in the overall architecture of
the extracellular matrix in the bone marrow niche. Such a contextual analysis and profiling
of the niche could also prove useful to further provide a new foundation for better
understanding age-related diseases such as myelodysplastic syndromes (MDS) in the future.
Overall, the presented analysis captured for the first time the proteomics signatures of the
ageing process in a human tissue broadening the scope of our understanding regarding the
role of metabolic pathways, lineage skewing and niche elements.
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Chapter

Conclusions & Outlook

The advent of mass spectrometry technology provides us with the ability to comprehensively
describe the proteome, and interrogate a broad palette of its features. Beyond measuring
protein abundance levels, various techniques as well as combinations of those have allowed
the assessment of protein stabilities, post-translational modifications, interactions and
degradation rates in a large-scale manner. So far, however, the integration of published
proteomic datasets, along with an evaluation of the consistency have been lacking [Collins
et al., 2017]. In this work I have attempted to provide a comprehensive picture on such
datasets, and pointed at a protein complex landscape that is highly consistent across
different studies. Such efforts need to be extended to derive mechanistic insights that can
prove useful in extrapolation and clinical appliances. Beyond the characterization of protein
modules and their variation across individuals, I scrutinized potential modular rewiring on
the temporal scale- both short- and long-term. In the following section, I will give an
overview on the insights gained from each chapter, as well as potential caveats. Finally,
these elements will be connected for the purpose of gaining a more refined understanding of
the proteotype model.

5.1 Proteome modularity in context of temporal processes and variation
between individuals

To give the reader a better understanding of the actual findings and advancements in this
work, the novelty and potential answers to the questions posed in 1.4 are listed and
discussed here. At this point, however, it has to be iterated that the presented solutions
and answers to the problems tackled in this thesis, are more of an approximate nature, and
do need further validation to test for broad consistency.
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Question 1: To what extent are cellular proteins organized in macro-molecular

structures?

The work presented in Chapter 2 dissected proteomic data from various published resources
on both mice and human individuals, as well as cell types, according to the observed co-
variation in protein abundance. We found proteins to be consistently co-abundant in protein
complexes, when compared to other functional modules, including pathways. Stoichiometric
variation of those complexes proved to be highly consistent across datasets as well, with
chromatin-associated complexes prone to strong variation, and translation-associated
complexes more rigorous in their stoichiometric make-up. Moreover, we were able to define
complex components that were contributing most to the complex variation, and identified
the immunoproteasome as a highly variable entity of the proteasome complex.

Question 2: What factors impact the variation in protein and module abundance and

to what extent?

Chapter 2 further discusses for the first time the association of genetic and environmental
factors to module abundance and stoichiometry. The sex of the animals in the studied cohort
is taken as a proxy for genetic effects, whereas their diet conditions represent the measurable
environmental impact. We observed that the variability of the proteotype was driven to a
large extent by the variability of protein module abundance and stoichiometry, with sex
differences primarily impacting translation- and chromatin-associated complexes.
Interestingly, differential diet conditions affected a complementary set of complexes
associated with mitochondrial functions, such as cytochrome bcl complex, etc.

Question 3: Do changes in the modular organization of the proteotype have far-ranging

consequences?

Given our observation on dramatic stoichiometric re-arrangements in transport-associated
protein complexes COPI and COPII, we investigated how such alterations could potentially
impact receptor transport in general. We indeed observed a clear-cut clustering of receptor
molecules clearly correlated with one particular COPI/COPII constellation of paralogs,
while not being correlated with another constellation. We observe for example that the
abundance of the EGF receptor positively correlates with nearly all components of the
transport machinery, whereas integrin-associated receptors tend to be negatively correlated
with latter. Though correlative in nature, the analysis offers exciting new hypotheses
regarding distinct receptor transport mechanisms depending on the prevalent stoichiometric
composition of the COPI/COPII complexes. Further investigation with regard to particular

bio-physical features of the receptor clusters are currently underway as well.
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Question 4: What systematic changes in protein stability occur during the cell cycle?

To what extent do they reflect molecular cooperativity?

In Chapter 3 we discussed using a thermal profiling approach how protein thermal stability
gets extensively modulated during the progression of the cell cycle. Given that no other
method can capture protein thermal stabilities in a large-scale manner, we could recover
some important biological insights. One of the key observations concerned protein complex
assemblies, such as in the nuclear pore complex. The NPC assembly status apparently
affects the stability of its sub-complexes in a differential manner. The NPC scaffold
represents a grafting surface for FG-nucleoporins (NUPs) in order to maintain a defined
local concentration of those NUPs to prevent aggregation [von Appen et al., 2015]. Releasing
those proteins during mitosis should thus render them aggregation prone. Interestingly, the
exact opposite was observed, along with a concurring enhanced stability of those NUPs
during mitosis.

That stabilization phenomenon was generally observed with highly disordered proteins that
tend to have low stabilities, which is in line with the radical changes in the bio-physical
milieu surrounding the protein. To further enhance our understanding of how the proteome
is dynamically adjusted to such abrupt changes upon entering the mitotic stage, we also
monitored its solubility transitioning. Morphologically that phenomenon becomes visible
with the dissolution of the nucleolus by light microscopy [Stevens, 1965]; pointing at the
proteins driving those events is challenging, however, due to difficulties in purifying phase-
separating, membrane-less organelles. The presented data for the first time captures the
specific sub-proteome of around 300 proteins that is part of the membrane-less organelles,
especially the nucleolus. More specifically, these proteins- while being insoluble during
interphase- get solubilized in mitosis, and thus less aggregation-prone. Strikingly, we also
observed that the subset of proteins was predominantly characterized by highly disordered
regions (IDPs, or, intrinsically disordered proteins). Thus, work conducted in that
collaborative project effectively revealed a potential mechanism by which the mitotic cell
prevents aggregation in the wake of phase separation, which has arguably never been
demonstrated before on this scale.

With regard to our interpretation of molecular cooperativity as outlined in the Introduction,
the observed stability- as well solubility transitioning do allow for exciting speculations
about how the cell could have possibly evolved a mechanism to forestall aggregation. For
example, could the IDPs be deliberately installed into specific protein complexes, such as
the NPC, to manage their local concentration? [Lemke et al., 2016] Could biophysical
changes of sub-complexes (i.e. stability) or post-translational modifications be responsible
for triggering the ‘solubilization’ of IDPs? [Jiang et al., 2015; Nott et al., 2015] Such a
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cellular feat at the level of molecular cooperativity could indeed shed more light on the role

of IDPs in signaling pathways.

Question 5: How does ageing affect the proteomic landscape?

Chapter 4 delineates a proteomic map of different hematopoietic cell populations and bone
marrow stromal cells, and characterizes its age-associated changes. While recovering to a
large extent know alterations previously reported in murine studies, such as lineage skewing,
and the decrease of homing receptor-adhesive interactions with ageing, the work has also
captured some exciting novelties. We found that in HPCs the abundance levels of several
enzymes making up for the up-stream glycolytic pathway ate increased with age, hence for
the first time capturing a potential causative mechanism for metabolic rewiring in human
stem cells. To exclude that these ostensible age-dependent changes could be caused by
lineage skewing, hence the expansion of the myeloid sub-population, we layered our analysis
with an orthogonal methodology, namely single cell RNA-seq. The method allowed us to
truly dissect protein abundance changes according to lineage skewing effects and the age of
the human subjects, and effectively confirmed that the protein abundance changes observed
were coherently caused by the longitudinal factor.

Yet again that chapter also allows us to add another feature to the proteotype model,
pinning certain age-dependent abundance effects to very particular glycolytic factors. In
light of what has been discussed in Chapter 2 it would be exciting for example to explore
the effect the genetic composition and the environment has on that very particular set of
proteins that could be the causative agent for the Warburg effect, resulting in an aged-cell
phenotype.

5.2 Relevance of Exploring the Proteotype for Personalized Medicine

One of the prime goals for the 21 century is set to be the individualized health care model
for each patient, with a customized treatment plan and management [Chin et al., 2011].
The idea goes beyond clinical data from patients, expanding to their molecular profiles,
such as their genomic composition, as well as phenotypical measurements, i.e. metabolite
levels. Not only would that kind of information prove useful to speed up treatments in
general, it is also meant to decrease the frequency of so-called adverse drug effects (ADRs).
The cause of ADRs could be manifold, ranging from actual inherited factors [Philips et al.,
2001; Goldstein, 2003] and hepatic insufficiencies, to interactions with other proteins (i.e.
lipoprotein) and metabolites [DeVane, 2002]. Assessing what might be the causative agent
for the emergence of ADR-related symptoms remains strikingly difficult for each patient,
and is subject to the so-called Naranjo algorithm, which is nothing but a survey of 10
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yes/no-questions [Narano et al., 1981]. Paired with the WHO causality term assessment
criteria, the Naranjo score gives a likelihood of an ADR-reaction [Davies et al., 2011]. Given
the amount of inconsistencies in the expert judgements of that score, however, the
robustness of that causality assessment is highly questionable [Davies et al., 2011]. Even
more so that it does not allow to predict a patient’s potential reaction to a drug in advance,
to avoid ADR symptoms in the first place. Such symptoms could- depending on their
severity- entail death, hospitalization, disabilities and permanent damages, in general.

For all those reasons, the advent of technology to assess a patient’s personal metabolism
and biological data is critical. One of the most renowned efforts to boost our knowledge on
that matter is the Cancer Genome Atlas project (TCGA) which involves collecting and
analyzing tumor samples from around 10,000 cancer patients [Weinstein et al., 2013]. For
those specimens a multitude of omics-data was collected, such as copy number variations,
exome sequencing, somatic mutations, DNA methylation, gene expression, miRNA
expression, as well as clinical data. More efforts in recent years have also led to the
accumulation of data on the proteotype of those samples; yet due to technical limitations
and caveats in the quantification strategies using mass spectrometry (1.1.2), proteomic data
remains relatively scarce in that context.

We can assume, however, that the proteotype of an individual will be paramount to
interpreting the genetic information of a patient; not least because of the sophisticated
buffering mechanisms that the human cell has installed [Stefely et al., 2016]. This was also
apparent from the data analyzed in this work, and previous studies [Liu et al., 2016] (1.1.3),
demonstrating that transcript levels serve as a sufficient yet not accurate proxy for protein
abundance. Moreover, we can also assume that the cell needs to have rescuing mechanisms
in place to prevent a genetic mutation to propagate through entire cellular network, i.e. in
case of one pathway rendered inefficient, another possibly cross-talking pathway could
partly recover the original phenotype [Louden et al., 2013; Jamieson et al., 2000].

Another aspect to be considered in that regard is a particular feature of the proteotype
model as discussed in 1.2.1: The proteotype is already the result of the integrational process
involving transcriptional and translational control as well as RNA interference and
modulation. Knowing a somatic mutation and the gene expression level, however, does not
guarantee that a given signal is truly propagated to the downstream signaling layers as well.
Thus, for clinical purposes to quickly and (accurately) assess the proteotypic fingerprint
could eventually prove powerful indeed.

In Chapter 2 we enhance that notion with our observation on proteotype-dependent module
abundances and stoichiometries. Although we could effectively only point at 10-15% of their
variation to be explained by sex and diet, it leaves us with the intriguing question of what
the remainder of that variation could be attributed to. It has previously been demonstrated
by Ori et al. (2016) that the differential stoichiometry of protein complexes in particular
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could successfully distinguish cancer from benign cells. Thus, modular stoichiometries could
indeed prove to be a molecular footprint to exploit for diagnostic purposes in cancer research
as well. That hypothesis gets even more substantiated in Chapter 3, where we managed to
successfully distinguish modular sub-complexes due to their differential stability patterns.
We could thus envisage the application of thermal protein profiling (TPP) in personalized
diagnostic procedures to characterize the functionality of such modulated cellular processes.
With regard to Chapter 3 there are two other exciting issues to be put into perspective at
this point: (a) The first one relates to the idea of associating inherent protein stabilities
with genetic properties of an individual in a similar way as in GWAS studies. Given the
large-scale monitoring and reliable quantification of thermal stabilities of thousands of
proteins in a single MS-run, the idea is straightforward: For a given set of e.g. Yoruban
individuals (to overlay with existing protein abundance data as described in Chapter 2),
protein stabilities are measured in a TPP-setup. To our knowledge there has been no study
pinpointing at potential ‘stability-QTLs’. Could they possibly explain a large number of
eQTLs that seemingly do not have their effect propagated to the protein abundance level?
Could a QTL propagate its effect by changing the stability of a trans-target by binding to
its locally expressed gene product? It is intriguing to speculate that such an analysis could
indeed boost our understanding of what possible signaling layers might be affected by
genetic variation. (b) The second exciting issue relates to our findings of the drastic
solubility changes of intrinsically disordered proteins (IDPs), which needs to be discussed
within the scope of drug design in general.

5.3 Data Integration as a Major Challenge in the Future

Finally, data integration represents one of the key elements of this work; from the
integration of data from several published resources (Chapter 2) and overlapping transcript
and proteomic data (Chapter 4), to integrating information about a protein’s disordered
structure with its stability and solubility state (Chapter 3). It has become clear that while
each method or assay offers a peek into a complex biological system, the signaling layers
and events are inter-dependent or interactive [Huang et al., 2017]. To determine coherent
biological signatures, it is therefore crucial to combine different omics sources.

Methods capable of such integration are getting more and more prominent, yet generally
focus on well-characterized pathways and are not necessarily performed in an unbiased
manner. It is noteworthy that the methods presented in this thesis are also not offering a
pipeline that can readily be applied to other problems. MOFA, or Multi-Omics Factor
Analysis [Argelaguet et al., 2017], on the other hand, could provide an exciting means to
explore further sources of protein abundance variation. The method is based on an
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unsupervised dimensionality reduction that identifies the key sources of variation in multi-
omics data. For a future hands-on application, MOFA could be applied to protein
abundance data to infer the extent of heritability, ageing and diet effects, in a similar fashion
as it has been illustrated in Chapter 2. One could also envision to scrutinize data acquired
in Chapter 4 more carefully in an integrative manner. For example, is a protein varying
with age due to transcript variation, or are post-translational mechanisms primarily
responsible for that phenomenon? In fact, on top of the analysis that has been conducted
in regard to ageing, one could further explore whether age-dependent proteins are actually
enriched in certain bio-physical features. Could the degree of the disordered state of the
protein, for example, render it more prone to ageing? Clearly, there is more potential to be
investigated on that part as well.

We can also assume that the studies presented in this thesis could prove useful as a resource
that could be considered for applications on big data in biology. One particularly exciting
outlook concerns surveying such big data using deep-learning algorithms- an approach that
has been vividly discussed in 440 publications on the bioRxiv platform so far [Webb, 2018].
Though not without pitfalls such as prediction accuracy and sample quality and size, we
can probably expect great breakthroughs from that mix of computational and biological
sciences [Webb, 2018].

Taken together, this thesis presents a compendium of findings and hypotheses that could

help advance our understanding of proteome dynamics and the proteotype as a model to
incorporate into the current gap between the genotype and the phenotype.
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Appendix A

Computational Materials &
Methods

Code Dependencies and availability

Most of the presented computational analysis was performed in Python version 2.7.10 and
R (version 3.3.1), and all of it is available under GNU General Public License V3 as GitHub
projects (https://github.com/natalierom). Unless further specified, most of the figure design
and plotting was performed using Matplotlib version 1.4.3 [Hunter, 2007a] and Seaborn
version 0.8.0 [Waskom et al., 2014]. For numerical and statistical analysis the Python
modules Scipy 0.19.1 [Pedregosa et al., 2011] and Numpy 1.13.1 [der Walt et al., 2011] were
employed, as well as Pandas version 0.20.3 [McKinney and Others, 2010] for handling of
data frames. For R packages such a Limma version 3.30.0 [Ritchie et al., 2015] and DESeq2
version 1.18.1 [Love et al.,2014] have been used for differential expression analysis and
RNAseq analysis, specifically.

Related to Chapter 2:

Information Resource and Integration of Data. Protein-protein interactions were
obtained from the STRING database (version 10.5, Szklarzyk et al., 2017); interactions were
considered to exist if the combined score > 0, to be confident if the combined score > 500,
and high-confident interactions if the combined score > 700. The database of complexes
was manually compiled and curated from COMPLEAT and CORUM by Ori et al. (2016)
and quantified proteins from all published datasets considered for the analysis were mapped
accordingly. Pathways were obtained from the Reactome Pathway Database (downloaded
in February, 2017; Fabregat et al., 2016, https://reactome.org/download-data/); cellular
locations, on the other hand, were extracted from the Human Protein Atlas (downloaded
February 2017, Uhlen et al., 2015) considering protein mappings only if this assignment has
been either validated, supported or approved by antibody analysis. Chromosome locations
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were mapped using the Python package mygene (https://pypi.python.org/pypi/mygene)
using the hgl9 GenBank assembly for human and the mm9 genome assembly for mice,
respectively. Finally, essentiality of genes was defined based on the genetic screen performed
in the human cell lines KBM7, K562, Jiyoye, and Raji by Wang et al. (2015) (Table S2,
“Identification and characterization of essential genes in the human genome”); genes of a
housekeeping role were obtained from the supplementary files of the report by Eisenberg &
Levanon (2013).

Large-scale proteomic datasets. For the delineation of protein abundances across
individuals, we considered primarily large-scale shotgun proteomics studies on human
individuals, cancer patients and mouse strains. For control purposes we also included the
proteomic profiles of 11 human cell lines generated by Geiger et al. (2012). Technical
specificities of each dataset (i.e. sample number, MS-acquisition, ...), as well as the number
of quantified proteins, as well as all required module mappings are given in Table S2.1. For
the 60 Yoruban HapMap individuals [Battle et al., 2015] not only proteomic, but also the
respective data from RNASeq-analysis and ribosome profiling was available and therefore
included as well for control purposes. Also data on DO (diverse outbred) mouse strains were
available at the proteomic as well as transcript level [Chick et al., 2016]. The cancer
proteomics datasets were downloaded from the TCGA CPTAC project [Cancer Genome
Atlas Research Network, 2011; Zhang et al., 2016; The Cancer Genome Atlas Network,
2012; Mertins et al., 2016; The Cancer Genome Atlas Network, 2012; Zhang et al., 2014].

AUROC analysis. For the Receiver Operation Curve (ROC) analysis across different types
of modules in different datasets, true positive hits were defined based on the databases as
outlined above (STRING, complex interactions, pathway membership, etc.). For pathways,
in particular, we removed interactions that are known to occur in a complex context (i.e.
ribosome complex in the broader translation-related pathways). Notably, for the category
‘chromosome location” we would consider true positive ‘interactions’ to exist between genes
encoded on the same chromosome. For the categories ‘essentiality’ and ‘housekeeping role’
the true positive interactions would be defined as any interaction that might occur between
essential genes and housekeeping genes, respectively. The set of false positives, on the other
hand, was defined by protein-protein pairs that were not shown to exist in the particular
category in question; since the number of false positives thereby is much higher than true
positives, we randomly sampled from the potential false positives the same number of true
positives for ROC curve calculation.

Complex co-abundance. The database of complexes was manually compiled and curated
from COMPLEAT and CORUM by Ori et al. (2016) and quantified proteins from all
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published datasets considered for the analysis were mapped accordingly. Notably, we also
mapped a complex as ‘well-defined’ in case of increased literature content for the respective
complex. For further analysis only protein complexes with at least 5 quantified members
were considered. Proteins assigned to the same complex were correlated (Pearson method);
as a control proteins that were not part of any complex assembly were randomly assigned
into artificial complexes and cross-correlated as well (Figure S2.2B). In addition, the data
was also permuted and proteins subunits were again tested for co-abundance using the
Pearson correlation (Figure S2.2B).

Gene ontology analysis. For all gene ontology (GO) analyses in this study, respective genes
were analyzed using DAVID (version 6.7, Huang da et al., 2009). The GO-terms ‘Biological
Process’, ‘Molecular Function” and ‘Cellular Compartment’ were considered; the
background for the GO-analysis was represented by all quantified proteins in a given
dataset. Results were filtered according to FDR (Benjamini-Hochberg) of less than 0.01; the
fold-changes associated with those significantly enriched GO-terms were usually shown
(Figure S2.3; Figure 2.5C).

Identification of stable and variable protein complexes. As a general principle we used
median correlation of protein complex subunits as a proxy to differentiate between stable
and variable complexes. To cross-compare the extent of complex stability and variability,
the correlations were ranked in each dataset; finally the median correlation of each complex
as recovered from each considered dataset was calculated, and complexes were sorted
accordingly. The top quantile (25%) of these complexes were considered to be highly stable
(R? > 0.4), whereas the lowest quantile were considered highly variable (R? < 0.2). Fisher’s
exact test was used to assess the significance of the overlap of both variable complex

members and complexes between the datasets of reprogramming and 11 cell lines (Figure
2.2B).

Protein Complex Stoichiometry Analysis. To allow for an assessment of compositional
rearrangements of protein complexes as opposed to their overall abundance changes, a
module-wise normalization was performed, as previously described [Ori et al., 2013; Ori et
al., 2016]. Basically, protein belonging to the same complex were normalized by the
respective trimmed mean of the complex across all individuals/samples. In case of proteins
involved in multiple complexes, the average value from all the corresponding complexes was
taken into account. Given the complex-normalized abundances, the variance of each subunit
in a given complex was calculated. To cross-compare these variances between vastly
different proteomics datasets and approaches, those variances were converted to z-scores
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per complex (Figure 2.4). Proteins were considered ‘stable’ or ‘variable’ in case of the
associated p-value < 0.05.

Protein Modification Site Enrichment Analysis. Protein modifications sites were
extracted from PhosphoSitePlus (downloaded February 2017) [Hornbeck et al., 2015], and
mapped against all quantified proteins within the datasets in question. To perform a Fisher
exact test, contingency tables for each modification separately; briefly, proteins would be
grouped according to whether they tend to have less of a certain modification site (< median
of number of modification sites/protein), or more. For these two groups then, we checked
whether more or less variable complex subunits were enriched. For visualization purposes
(Figure S2.5A), we considered emphasizing enrichments with a p-value < 0.05, and to
specify whether stable or variable subunits are enriched in having more of a certain

modification site.

Sex- and diet-specific abundance and stoichiometry changes. To assess the differences
in abundances of entire complex structures between male/female mice, and mice exposed to
high-fat and chow diet, the median abundances of each complex was calculated in each
individual/sample (protein subunits were required to be quantified in at least 50% of
samples). For each complex it was then assessed via a t-test whether median complex
abundances in male mice were significantly different from the ones in female mice; the effect
size was monitored as the Cohen distance [Sullivan et al., 2012]. P-values were further
adjusted using the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995]
(significance a = 0.05), and complex structures were considered significantly different in
case of g-value < 0.01. For internal rearrangements of the complex (stoichiometry), we
performed a separate analysis applying the R-package LIMMA (Linear Models for
Microarray data analysis, [Ritchie et al., 2015]) using the complex-normalized protein
abundances as input. Contrasts were set accordingly to identify differences between
male/female mice and high-fat/chow mice, respectively. P-values were adjusted using the
false discovery rate (FDR) as described by Benjamini Hochberg, and protein complex
members were considered differentially expressed (termed DEP (differentially expressed
protein)) in case of g-value < 0.01. The corresponding fold-changes are highlighted in
volcano plots in Figure 2.5B. We also ran the LIMMA-analysis for each complex on the
not complex-normalized proteins to assess the extent of truly stoichiometric rearrangements.
The analysis was also performed for Reactome pathways, and can be readily applied to any
specified protein set/module.

Explained variance of module abundance and stoichiometry. To understand to what
extent both protein complex abundance and stoichiometry is affected by either sex or diet,
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a co-variate analysis has been performed using the scikit Python package (http://scikit-
learn.org).

Comparison of module stoichiometry across datasets. In order to cross-compare module
stoichiometries between the proteomics datasets, a LIMMA analysis was performed with a
different set-up. Specifically, for each complex the trimmed mean vector across all given
samples was calculated and compared against the non-complex-normalized abundances of
each complex member. For each complex (n=73) that were consistently quantified across
all given datasets we could then recover the respective fold-changes of involved subunits.
For each protein we then computed the variance in module-specific fold-changes discovered
in human and mouse proteomics datasets, respectively, and also assessed the level of
variance between human and mouse datasets (data not shown).

Software and Data Availability. Statistical tests and visualizations were performed using

Python version 2.7.10 and R version 3.3.1. All scripts and underlying data are available on
demand.

Related to Chapter 3:

MS Computational Analysis and Normalization (short summary on analysis prepared
by Frank Stein). Raw mass spectrometry files were processed with IsobarQuant [Franken
et al., 2015]; the Mascot 2.4 (Matrix Science) search engine was used for peptide- and protein
identification (human UniProt database with reversed protein sequences). Search
parameters are described in the manuscript. In total three independent datasets were
analyzed: i) 2D-TPP data, ii) SDS-data and iii) TPP-TR data. Potential batch effects were
removed using limma [Ritchie et al., 2015] and all datasets were normalized using variance
stabilization (vsn, Huber et al., 2002).

Thermal proteome profiling (TPP) analysis (short summary on analysis prepared by
Frank Stein). In order to identify melting points the normalized TPP-TR data was
subjected to the TPP package [Franken et al., 2015]. For the 2D-TPP dataset, on the other
hand, fold changes were calculated against 37°C and the G1/S data points with limma,
which are the base for abundance and stability scores. Finally, for SDS data, fold changes
were similarly calculated relative to the G1/S stage, and transformed into z-scores
corresponding to expression scores. For each expression score the global FDR was yielded
using fdrtool [Strimmer, 2008]; the local FDR by correcting limma p-values using the
Benjamini Hochberg procedure [Klipper-Aurbach et al., 1995] with the p.adjust method.
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Regarding the abundance and stability cores, an additional bootstrapping was performed
with 500 iterations for accurately quantifying a distribution of abundance and stability
values per protein and estimating the likelihood that the distribution is different from 0 (no
change). The averages were transformed into the z-distribution, reflecting more accurate
stability and abundance scores, and the global FDR was calculated using fdrtool. Proteins
are considered to change significantly in abundance, expression or stability in a given cell
cycle stage if the corresponding local and global FDR is < 0.01.

Clustering of proteins. Only proteins with at least one significantly changing score in
abundance, expression or stability, were considered for clustering. Abundance-, expression-
as well as stability vectors were concatenated for each proteins and used to calculate the
Euclidean Distance using the Ward.D2 clustering method. 21 different clusters were yielded,
describing the data most accurately.

Solubility. Similar to above calculations, the solubility scores and corresponding g-values
were calculated by comparing solubility in G1/S (abundance difference between NP40 and
SDS) and mitosis (abundance difference between NP40 and SDS). Additional requirements
were an FDR cut-off of 0.05, an effect size of >0.322 (25% regulation) for the log2 fold-
changes and a solubility in G1/S of <0.

Reactome pathway analysis. Using the mygene- package implemented in Python
(https://pypi.python.org/pypi/mygene), quantified proteins from this study were mapped
to Reactome pathways (http://reactome.org/pages/download-data/, February 2017;
Fabregat et al., 2016). Corrected p-values (local FDR) of the quantified protein components
of a pathway were combined for each pathway using the Empirical Brown method (EBM)
to account for dependent p-values [Poole et al., 2016]. Further, these combined p-values
were corrected using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).
In order to display pathways of biological relevance in the context of thermal stability, we
ensured that the pathway is sufficiently covered (>60% pathway coverage with 5-150
quantified protein members) and that at least 30% of its components change significantly
in at least one cell cycle stage (local FDR (stability) < 0.01). That way, 106 pathways were
considered and manually curated for proteins that would appear in several pathways;
overall, 30 non-redundant pathways were gathered that were visualized accordingly in
Figure 3.3 (Figure S3.2, Table S3.5). Full opacity in this figure occurs in case the combined
adjusted p-value for a pathway in a given stage is less than 0.05, otherwise bubbles would
stay transparent. The color signifies the overall tendency of a pathway to be stabilized or
de-stabilized as derived from the median stability score of its significantly changing protein
components (local FDR (stability) < 0.01) in each cell cycle stage.
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Gene ontology analysis. Proteins changing significantly during the cell cycle in either
stability or abundance were subjected to gene ontology analysis using DAVID (version 6.7)
[Huang da et al., 2009a, b]. The GO-terms ‘Biological Process’, ‘Molecular Function” and
‘Cellular Compartment’, as well as the SP-PIR keywords were considered. The background
for the GO-analysis was represented by all quantified proteins. Results were filtered
according to FDR (Benjamini-Hochberg) of less than 0.05 and shown accordingly in Figure
S3.2 (Table S3.5). Figure 3.4, on the other hand, represents a snapshot of fold enrichments
of the top-hits in each GO-category for each of the 21 clusters.

Complex correlation analysis. The database of complexes was manually compiled and
curated from COMPLEAT and CORUM by Ori et al. (2016) and quantified proteins from
the experiments were assigned accordingly. Stability- as well as abundance z-scores were
concatenated for each protein, or remained separate vectors, respectively. Proteins assigned
to the same complex were correlated (Pearson method); as a control proteins that are not
known to be part of any complex assembly were correlated with other proteins of this type
(Figure 3.7, Figure S3.3-S3.5).

Complex sub-clustering. In order to define sub-complexes in known complexes, we again
considered concatenated stability- and abundance vectors for each protein. For each
complex k-medoids were defined iterating from 2 to 5 potential clusters per complex, and
the Euclidean distance between those medoids was monitored at each iteration step. The
best possible clustering per complex is recovered from the maximum distance between the
respective medoids.

Analysis of disordered proteins. We hypothesized that disordered proteins might be
particularly affected in the observed shift in melting points in mitosis, and therefore
interrogated proteins with this particular phenotype on their disordered state. The fraction
of disordered parts of a protein is described in the d2p2-database, which combines
predictions of several algorithms and makes calls on regions if they have been found to be
disordered in at least 75% of those libraries (PONDR VL-XT PONDR VSL2b, PrDOS,
PV2, TUPred (+sub-versions of it), Espritz (+sub-versions if it)) (http://d2p2.pro/,
February 2017). Given the relative number of amino acid residues that are positioned in
supposed disordered regions, proteins were ranked (notably, the disordered region was
supposed to span at least 5 amino acids to be valid). Additionally, the relative disordered

rank was also corrected taking into account known structural motifs that might overlap
with the predicted disordered region using the PDB (see Table S3.6 and Table S3.7).
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Mapping of proteins to posttranslational modifications. Information on known
acetylation, methylation, ubiquitination, sumoylation and phosphorylation sites was
extracted from PhosphoSitePlus (http://www.phosphosite.org, March 2017; Hornbeck et
al., 2015), and cross-correlated with stability and abundance patterns of quantified proteins
across the cell cycle stages. Mitotically regulated phosphorylation sites, on the other hand,
were taken from Olsen et al., 2010 (Table S3.6 and Table S3.7).

Organelle/ Compartment Analysis. Cellular compartments were extracted from the GO-
terms (only experimental evidence is considered, as opposed to inference from computational
methods) and the Human Protein Atlas (http://www.proteinatlas.org/, May 2017; Uhlen
et al., 2012). For latter only data supported, validated or approved by antibody analysis is
considered. Notably, for the evaluation of the solubility transition data, we took into
account Human Protein Atlas data, as well as data from Wilkie et al. (2017) for nuclear
envelope annotations.

K-means clustering of thermal profiles of complex-subunits (data not shown).
Clustering of thermal profiles of protein subunits that have been previously assigned to
protein complexes (279 in total) with the k-means algorithm allowing up to 10 clusters at
each iteration step, respectively. For each iteration step we perform 250x resampling to
acquire cluster agreement probabilities. Thereby it can be assessed how likely a particular
complex could indeed be divided into X clusters. In addition we also calculate the
probability that a particular subunit is indeed in one cluster or the other (membership
probability).

Data and Software Availability. All analyzed data is made available in supplementary
tables and figures. Clustering of individual complexes can be found at Mendeley:
http://dx.doi.org/10.17632/xrbmvvbsrs.2. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD008646. All code used for data analysis is available on demand.

Related to Chapter 4:

MS data analysis. For the analysis of the aging MS-data two different strategies were
employed: i) TMT quantification to assess changes in protein abundance upon ageing within
the same cell population, and ii) a label-free (LF) approach to determine differences in
protein abundance across cell populations
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Data analysis for TMT based quantification (short summary from analysis as done by
Marco Hennrich). MS raw files were processed through a search pipeline set up in the
Thermo Proteome Discoverer (1.4.1.14) with spectra getting de-isotoped, deconvoluted and
the mass-range from 126-131.3 m/z being excluded prior to database search in Mascot
(version 2.5.1, UniProt database). Search parameters considered trypsin cleavage specificity,
1 permitted missed cleavage site, precursor mass tolerance < 20 ppm, fragment mass
tolerance of 0.02Da, carbamidomethylation and TMT as fixed modifications and methionine
oxidation as a variable modification. The false discovery rate (FDR) was calculated with
Percolator (version 2.04). For further analysis unprocessed peptide spectrum matches
(PSMSs) with FDR<1% were exported and processed.

PSM filtering and TMT ratio calculation. Prior to calculation of TMT ratios, PSMs were
filtered according to the following parameters: i) search rank <1, ii) isolation interference
<30%, iii) sum of intensities across TMT channels 127-131 >30,000, iv) no missed cleavages.
In case quantification values would be missing in the channels 127-131, they were replace
by the representative minimum value detected in the corresponding TMT experiment. For
each PSM the intensities of the TMT channels were used to calculate the ratios of the donor
samples against the internal standard (TMT channel 126). The ratios were normalized by
multiplication with the median ratio as derived from in between the internal standard and
the respective donor channel. To determine peptide ratios, the median ratio of the three
PSMs with highest precursor intensity was calculated. After assigning peptides to proteins,
latter were grouped according to gene names; for simplicity these groups are referred to as
proteins throughout the report. The eventual TMT ratio for each protein is defined as the
median ratio of peptides that are uniquely assigned to the protein group. We only consider
proteins with at least two unique peptides for quantification.

Data analysis for label-free (LF) quantification. In order to perform accurate comparisons
of protein abundances across different cell populations, all MS raw-files were additionally
analyzed with MaxQuant 1.5.3.17 [Cox and Mann, 2008] specifically with label-free (LF)
quantification (absolute protein abundance estimation). Search parameters were set as
mentioned above for Thermo Proteome Discoverer. For each peptide, the respective
precursor intensities were extracted in each LC-MS analysis and all associated PSMs
collected. Further detailed information on the PSMs were taken from the corresponding
evidence files, to the end that for each identified peptide in each LC-MS run one intensity
value can be assigned. For further analysis, only PSMs common to both the TMT
quantification approach as described above the MaxQuant analysis were taken into account
and filtered as described above. The TMT-ratio for a peptide were derived from the median
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of its top three PSMs with the highest sum of intensities, as it has been the case in the
above described procedure.

Given the MS1 intensity of an individual peptide species, we fractioned the total precursor
area according the TMT ratios as derived from the reporter ion intensities of the six TMT
channels. Area intensities per channel were then corrected for potential sampling aberrations
by multiplying them with the median ratio determined between the internal standard and
the respective donor channel. These normalized area intensities per channels were then
divided by the number of potentially observable unique tryptic peptides per protein
(criteria: peptide length 8-25 amino acids, no missed cleavage allowed). The label-free score
per protein then basically represent the sum of the label-free scores of the corresponding
unique peptides. To allow for comparison between donors across the different cell
populations, the LF-scores per protein were log-transformed, the median was calculated in
each TMT-6plex experiment and was subtracted from each log-transformed label-free score
in each donor. Notably, to summarize these normalized LF-scores across all donors in one
cell type, the sum of the unlogged LF-score was divided by the number of donors available
for the respective cell type (denoted as the LF sum-value in Table S4.3).

Quality assessment. Reproducibility. For reproducibility assessment one MSC lysate was
split into 3 aliquots prior to digestion, and treated as individual samples subsequently.
TMT-ratios were highly reproducible between these technical samples (mean R’=0.941,
median CV = 4.2%). Labeling Efficiency. All experiments were also searched for with TMT-
label defined as a variable modification; to estimate the labeling efficiency the number of
all completely labeled PSMs was divided by the total number of PSMs as identified in the
search-run (98.5%). Sample Exclusion. To determine outlier samples, principle component
analysis was performed using log2-transformed TMT-ratio and wusing Hyndman
visualization, samples were discarded when there was >97% probability that they were
indeed outliers. Thereby 14 samples of the original 284 samples had to be removed from the
study.

Analysis of protein expression with age and statistical significance calculation (TMT).
For identifying age-associated proteomic changes within each cell population, we performed
a Spearman correlation analysis to detect proteins whose expression changes with age. For
each protein with a donor coverage above 15% we calculated the Spearman correlation
between the quantified TMT-ratios and the respective donor ages to assess its behavior with
respect to age. Positive correlations indicate an increase of the abundance of a protein with
advanced age, while negative (or anti-) correlations indicate a decrease of its abundance
with age. Proteins with a p-value < 0.05 are considered to be significantly altered upon
ageing. We also checked for a possible effect of the gender disparity in the samples by re-
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analyzing the proteomic data after removing all female samples. The criteria for the male
only analysis was identical with the analysis of all samples. The comparison of the results
from the male only versus all samples is visualized in Figure S4.6.

Hierarchical clustering related to Figure 4.2B. Hierarchical clustering as depicted in
Figure 4.2B was performed using the scipy-python package (python.org) with the linkage
matrix based on the correlation metrics and using complete clustering.

Statistical methods to determine changes between cell populations related to Figure
4.2C (LF). Label-free abundances for proteins were leveraged to understand differences
between the six cell populations, and not for age differences as these are more reliably
analyzed by TMT ratios. Filtering criteria for protein inclusion were as strict as for TMT-
quantification, requiring proteins to be quantified in at least 15% of available donors of a
given cell population. In order to understand whether pathways differ in their abundance
or stoichiometry across the different cell populations (Figure 4.2C), we applied the following
pipeline: We considered proteins quantified in the LF-approach (7585 proteins) and mapped
those against the Reactome database (http://www.reactome.org/download-data/, February
2017) after filtering the database for pathway sizes of 5-100 proteins. For each cell
population, the abundance of a pathway was approximated by the median LF-abundance
of proteins associated with it. The average of those medians results in the mean abundance
of the pathway across the different cell populations (y-axis of Figure 4.2C). To estimate
the fraction of proteins in a pathway that change in their stoichiometry, we proceeded as
follows: For all 270 samples, protein abundances were normalized to the median pathway
abundance to avoid any significance stemming from abundance change of the entire
pathway. These normalized values if at least 15% of donors were quantified in an individual
cell population, were cross-compared between the cell populations (Wilcoxon test). From
the set of p-values obtained from those comparisons, the mean p-value is calculated. This
procedure is iterated across all proteins associated with pathways, and all p-values are
adjusted thereafter using the Benjamini-Hochberg procedure. To finally obtain the fraction
of the pathway that shows a significant alteration between the cell populations, we
considered the number of proteins per pathway with an adjusted p-value of less than 0.05.
Note that this procedure does not take into account cell-type specificity of proteins, and
does not restrict itself on proteins that are expressed throughout all cell populations. The
Supplementary Table 4 contains details for further exploration.

Complex & pathway co-abundance analysis (TMT). Complex annotations were based on
Ori et al. (2016) who manually curated a list of 279 non-redundant protein complexes
derived from CORUM AND COMPLEAT protein complex sources. Pathway annotations
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were sourced from Reactome as subsequently for the pathway analysis
(http://www.reactome.org/download-data/, February 2017; Fabregat et al., 2016). Proteins
assigned to the same complex were correlated against each other using their TMT-ratios
across donors per cell type. The densities represent the distribution of all correlation
coefficients as derived from Pearson correlation analysis from in between subunits of the
same complex; the same procedure is applied to pathways, with the exception that protein
pairs known to be in complexes were specifically excluded. The background distribution, on
the other hand, was derive from correlations of randomly selected proteins who are not
known to occur together in functional modules such as complexes or pathways.

Pathway enrichment related to Figure 4.3 (TMT).The Reactome Database
(http://www.reactome.org/download-data/, February 2017) was the basis for the analysis
of pathways. The displayed pathways of Figure 4.3 were selected based on their size, with
the requirement for at least 5 and a maximum of 150 proteins. More than 30% of these
needed to be quantified by TMT in at least one cell population and out of the quantified
more than 20%, but at least three proteins need to be significantly altered upon ageing (p-
value < 0.05). Thereby, we obtained 28 pathway hits for HPC, 44 for LYM, 3 for GRA, 4
for MON, 2 for ERP and 221 for MSC. In order to avoid redundancies, we removed
pathways whose significantly altered proteins were completely covered in another pathway.
If a pathway, however, contained at least one unique significantly altered protein, the
pathway was kept. In a scenario of pathways containing exactly the same altered proteins,
the largest pathway was reported. In case of equal pathway size, the pathway with a higher
hierarchy level was taken. Thereby, we obtained 109 pathways in total that were largely
non-overlapping and exhibiting considerable changes upon ageing. In order to decide
whether the proteins of a pathway have a general tendency of increasing or decreasing upon
ageing, we first calculated the slopes of all proteins based on the linear regression between
the donor to internal standard ratio (average normalized per TMT-6-plex experiment) and
the age. For the slope calculation normalization by studentization of the protein ratios was
avoided and average normalization was applied instead for normalization to avoid artificial
high slopes for slightly altered proteins (see section ‘Summary of the normalization steps of
the TMT data’). The slopes of all significantly altered proteins within a pathway were
averaged. Pathways with an average slope of the altered proteins between -0.001 and 0.001
per year of life were reported as having no tendency. A slope of 0.001 translates to an
estimated average increase of 4% in protein abundance in a life span from 20 to 60 years
(40 years). The results of the 109 pathways were displayed in Figure S4.7. Figure 4.3 is a
selection of these 109 pathways, which is based on taking the five most up- and down-
regulated pathways per cell population.
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Cross-cell population correlation related to Figure 4.6C. Extracellular protein-ligand
pairs extracted downloaded from http://fantom.gsc.riken.jp/5/ [Ramilowski et al., 2015]
and overlapped with the TMT quantifications. To be further considered for quantification,
receptor and ligand proteins were required to change upon ageing in the respective cell
population (p-value < 0.1). For each cellular interface (MSC to HPC, MSC to LYM, MSC
to GRA, MSC to MON, MSC to ERP), protein profiles (based on normalized TMT ratios)
of at least 85% overlapping donor individuals were correlated using the Spearman method.
Correlation coefficients were visualized in Figure 4.6C, highlighting significant correlation

results (p-value < 0.1).

Data analysis of the transcriptomics data of total HPC population.Reads were trimmed
for Nextera, Smart-seq2 adapter sequences using skewer-v0.1.125. Trimmed read pairs were
mapped to human genome hg38. ERCC using HISAT2 version 2.0.0-beta. Uniquely mapped
read pairs were counted using featureCounts subread-1.5.0, using exons annotated in
ENSEMBL annotations, release 75. The subsequent analysis is performed in the
programming language R. For the analysis of the raw counts retrieved from RNA-seq
experiments, we used the DESeq2 package (version 1.18.1). We applied a minimal pre-
filtering to remove rows that have only 0 or 1 read, as suggested in the DESeq2 manual.
To assess the quality of the data PCA was used after a ‘regularized log’ transformation
(rlog) of the data, accounting for the library size of each sample. Using HDR-plots on the
derived principal components similar as described in the section ‘Quality assessment and
sample inclusion of the proteomics analysis’, outliers were detected for HPC, GRA, MON
and MSC and removed. For comparison with the corresponding proteomics data, we defined
young as < 30 years, and old as = 50 years (similar to Figure 4.6B). For each fold-change
(old/young) a weighted p-value was calculated based on the IHW-package that takes into
account number of reads as a covariate for the adjustment of p-values. From the output-
table the log2 fold-change was extracted for Figure S4.6, which gives an estimate for the

effect size.

Single-cell data pre-processing. The single-cell data pre-processing is performed using
the programming language R. Raw reads were processed using the recent version of the
Salmon pipeline (v0.9.1), with the index derived from transcriptome data from the hg38
build for mapping purposes (http://ftp.ensembl.org/pub/release-

87 /fasta/homo_ sapiens/cdna/Homo_sapiens. GRCh38.cdna.all.fa.gz).

The count matrix generated for individual transcripts across cells in each sample was then
subjected to further processing using the Bioconductor package tximport. Thereby, the
transcript-specific count-tables were converted into gene-specific count tables across cells.
To filter for qualitative cells, we only retained cells where at least 1000 genes have been
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found to be expressed at a minimum of 10 reads each, and where the total read count is at
least 150.000. That filtering step has been adapted from Velten et al. 2017. Additionally,
only genes with at least 10 reads in at least 5 cells were kept for further processing. The
resulting count tables were analyzed using the Bioconductor package simpleSingleCell
(version 1.2.0). The pipeline was applied with the following steps: (a) additional quality
control on cells and filtering due to library size and possible batch effects, and (b)
normalization of cell-specific biases using computed size factors. For details on individual
samples, the table below is to be consulted. The normalized log-expression values were

further adjusted to the mean expression in each cell.

List containing information on donors used for single-cell analysis. The columns list the age and gender of the
donor, the number of cells analyzed per donor (# of cells retained), the median library size, the number of
unique genes, the average number of genes per cell, as well as the fraction of lymphoid- and myeloid-primed
cells per donor.

Sample # of cells % of cells Median #.Of average # of # of Iymp.hmd # of myek."d
meta-data . R " . unique cells (fraction of cells (fraction
ID retained retained library size genes/cell
genes all cells) of all cells)
1 el 101 52.6% 686,990 11,976 5,819 9 (8.9%) 49 (48.5%)
years old
2 female/30.6 152 79.2% 1,662,115 | 13,374 5,711 35 (23.0%) 58 (38.2%)
years old
3 el 127 66.1% 1,656,706 | 13,093 5,991 32 (25.2%) 48 (37.8%)
years old
4 fe;e‘:'r‘:/jlz'z 139 72.4% 1,212,586 | 12,693 5,274 28 (20.1%) 41(29.5%)

For the last two columns consider the Methods below (Clustering of single cells into lymphoid and myeloid

clusters.).

Clustering of single cells into lymphoid and myeloid clusters related to Figure 4.5E.
For clustering of single cells, we used Python version 2.7. We first determined whether
lymphoid and myeloid markers as delineated in Figure 4.5 for the proteomics data were
yielding signal in the single-cell RNA-seq dataset. To ensure signal consistency, we excluded
markers that did not correlate with the other lymphoid or myeloid markers, respectively
(p-value < 0.01). Thereby, ITGA6 had to be removed from lymphoid markers (remaining
12 genes), and IKZF1, ITGAL, PRAMI1 and BCL11A from myeloid markers (remaining 8
genes). The lymphoid and myeloid markers also had a significant correlation with other
known lineage markers, such as TFRC (CD71) and CD19 (data not shown). For further
analysis CD71 and CD19 were also included. To cluster cells into lymphoid /myeloid lineage,
cells were required to have at least half of the respective markers stably expressed (>0),
and none of either CD71, or CD19 (Figure S4.8). That way we could characterize cells in
a more conservative manner as being lymphoid-primed, or myeloid-primed cells; cells that
did not fall into either of those categories, were labeled as ‘undefined’. When compared to
the entire set of cells per donor, we could see that cells defined as lymphoid- or myeloid-
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primed were significantly different in their marker constellation (Fisher exact test: average
p-value (lymphoid) = 9.77 x 10, average p-value (myeloid) = 1.47 x 10?), whereas this
was not the case for the undefined cells (Fisher exact test: average p-value= 7.46 x 10).

Deriving lineage- and age-dependencies for gene expression changes in glycolysis.
Genes derived as age-dependent from the proteomics dataset (Figure 4.4) were subsequently
analyzed on whether they are affected by lineage, or the age of the donor in the single-cell
RNA-seq dataset. We correlated genes involved in the glycolysis, TCA cycle, and fatty acid
oxidation (FAO), with lymphoid and myeloid markers, respectively. We found that age-
regulated genes (p-value < 0.1, Figure 4.4) had a stronger disparity between lymphoid and
myeloid correlation distribution than genes not found to be age-dependent (Figure 4.5D)
(age-dependent: effect size (Cohen)=1.59, p-value=7.29x10%, age-independent: effect size
(Cohen)=0.9, p-value=3.06x10?). This lineage effect was further examined by calculating
the ratio between expression levels in lymphoid versus myeloid cells for each protein. Age-
regulated enzymes of the upper glycolytic pathway (p-value < 0.05) were found to be
significantly affected by lineage (p-value < 0.01, Mann-Whitney U-test) across samples, as
opposed to enzymes that had no age-dependency. Ageing effects on enzyme expression levels
were tested in lymphoid and myeloid cells, respectively, to remove lineage effects. The slope
calculated from the median expression levels across samples indicated that age-upregulated
glycolytic enzymes are indeed more prone to becoming higher expressed with age, at the
single-cell level as well (ANOVA-test: p-value = 0.079) (Figure 4.5E).

Data & Software availability. The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD007048. Raw data for both the single-cell RNA-seq and bulk RNA-seq
experiments have been uploaded to the Gene Expression Omnibus (GEO), and are accessible
by the accession number GSE115353. Result tables from the bulk RNA-seq analysis are
available as Supplementary Material to the manuscript. Code and pipelines are available
on demand; the computational pipeline for this chapter is outlined in Figure S4.9.

144



Appendix B

Experimental Materials & Methods

Related to Chapter 3:

Experiments were performed by Isabelle Becher and Amparo Andes-Pons from the Savitski
and Beck Lab. Please note that the following descriptions of experimental procedures can
be followed up in detail in the corresponding manuscript and is meant to provide a short

overview on the methodology underlying the data used in this report.

Cell culture and cell cycle arrest. HelLa Kyoto cells were cultured at 37°C (5% COs,
DMEM with 1mg/ml glucose, 10% FBS, 1mM glutamine) and synchronized in G1-S using
a double-thymidine block (2mM thymidine, Calbiochem) overnight (o/n). They were then
released for 8 hours, and blocked a second time o/n. After the second release cells were
collected at 0 hours (G1-S), 2 hours (early S), 4 hours (late S) and 6 hours (S-G2). For
synchronization in mitosis, cells were treated o/n with 2mM thymidine, released for 4 hours
and then treated with 100ng/ml nocodazole (Millipore) o/n. After a release of 0.5 hours
mitotic cells were collected. For synchronization in G1, cells synchronized for mitosis as
previously described, were collected by shake-off and released into fresh medium for 4.5
hours. Only attached cells were then collected (G1). A culture of asynchronous cells was
used as a control.

Flow cytometry. The synchrony of cells was checked upon by FACS with two bivariate
analyses: i) DNA /Proliferating Nuclear Antigen (PCNA, Sasaki et al. 1993) and ii)
DNA /phosphorylated serine 10 of histone H3 (pH3). For i) 1x10°¢ cells were permeabilized
for 10 min on ice with 0.1% Triton X-100/1% bovine serum albumin (BSA)/PBS, and fixed
with methanol at -20 °C for 3min. After pelleting, cells were re-suspended and stored in
PBS at 4 °C. For ii) 2x10° cells were fixed with 1 % formaldehyde for 15 min at RT. Cells

were then re-suspended in PBS and stored in 70 % ethanol at 4 °C. Both samples were spun
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and the cell pellet was re-suspended for 15min in PBS at RT before blocking in 1%
BSA/PBS for 10min prior to incubation with the primary antibodies (anti-PCNA PC10
conjugated with Alexa Fluor 488, Cell Signaling Technology or anti-Phospho-Histone H3
(Ser10) conjugated with Alexa Fluor 647, Cell Signaling Technology) for 1 hour (R). Cells
were washed and DNA was stained by 20 pg/ml propidium iodide (PI) in 0.1 % Triton X-
100 containing 0.2 mg/ml RNase. Samples were analyzed on a BD LSR Fortessa instrument
with the laser line of 561nm (75mV) used for PI detection (BP-filter of 610/20nm). The
actual cell cycle stage assessment was performed with FlowJo v10 software. Bivariate
analysis of PCNA vs DNA content presented an inverted U shape; cells with higher signal
were considered to be in S-phase. Cells with a G2/M DNA content, and positive for pH3
antibody (ii) were considered mitotic. The % of cells in G1 was calculated by fitting the PI
signal to a cell cycle distribution using the Watson pragmatic model approach.

Thermal protein profiling (TPP) and sample preparation for mass spectrometry. TPP
experiment was conducted as described in Becher et al., 2016. Briefly, cells were harvested,
washed with PBS and 10 aliquots were distributed in PCR tubes that were heated for 3min
to different temperatures, respectively. Lysis buffer (final concentration 0.8 % NP-40,
1.5mM MgCl2, protease inhibitor, phosphatase inhibitor, 0.4 U/ul benzonase) was added
and cells were incubated at 4 °C for one hour, whereupon protein aggregates were removed.
From the supernatant the protein concentration was determined and for sample preparation
10 pg of proteins were reduced, alkylated, digested with trypsin/Lys-C with a modified SP3
protocol and labeled with TMT10plex (Thermo Fisher Scientific). Here, samples were
combined in two ways: either all temperatures of one cell cycle arrest were combined
allowing the determination of melting curves (TPP-TR), or all cell cycle arrests were
combined for each temperature resulting in seven conditions analyzed together (2D-TPP).
Pooled samples were fractionated on a reversed phase C18 system running under high pH
conditions, resulting in twelve fractions. In addition, both samples from NP-40 lysis (37°C)
and SDS lysis from G1/S or M arrested samples were combined, allowing the determination
of protein solubility differences.

LC-MS/MS measurement. Peptides were separated on an UltiMate 3000 RSLC nano LC
system (Thermo Fisher Scientific, pre-column of C18 PepMap 100, 5pm, 300 pm i.d. x 5
mm, 100 A, and an analytical column (Acclaim PepMap 100, 75 pm x 50 cm Cis, 3 pm, 100
A)) The LC-system was directly coupled to a Q-Exactive Plus mass spectrometer (Thermo
Fisher Scientific) via a Nanospray-Flex ion source (spray voltage 2.3kV, 320°C). Solvent A
was 99.9% LC-MS grade water with 0.1 % formic acid and solvent B was 99.9% LC-MS
grade acetonitrile with 0.1 % formic acid. The elution scheme is described in detail in the
Materials & Methods in the publication. The MS was operated in positive ion mode with
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full-scan MS spectra collected within a mass range of 375-1200 m/z (resolution of 70,000)
and fragmenting top 10 peaks per MS-scan (normalized collision energy = 32, dynamic
exclusion = 30s)

RNAI experiments. HeLa Kyoto cells were transiently transfected using siRNA spotted cell
culture plates and CELLviewTM slides following a previously described [Erfle et al., 2007]
reverse transfection protocol using pre-designed Silencer® Select siRNAs (Ambion). A non-
transfected control (NTC) was included for each experiment, where cells were seeded on
non-spotted wells. The knock-down of target genes was validated at the level of mRNA by
qRT-PCR after 2 days of transfection, as well as at the level of protein by LC-MS/MS
analysis after 2, 3 and 4 days of transfection. Cell cycle stages were checked upon by FACS
using PI staining; in addition, apoptosis was measured using the Annexin V-FITC Detection
kit (Promokine). For assessment of live and dead cells a commercial assay was used
(Promega, MultiTox-Fluor Multiplex Cytotoxicity Assay).

Tubulin heatshock and microscopy. HeLa Kyoto EGFP-alpha-tubulin/H2B-mCherry
were synchronized at the G1/S transition. After the second thymidine block, cells were
released for 8 to 10 hours and mitotic cells were collected, washed, re-suspended in PBS,
and further subjected to a heat treatment as described above. After fixation (4% PFA,
15min RT), an aliquot of each sample was set onto a well of a CELLview slide (Greiner
Bio-One) previously coated with poly-L-Lys, and further imaged on an inverted Leica TCS
SP8 STED3x microscope (Leica Microsystems, Mannheim, Germany), using a HC PL APO
CS2 63x/1.40 OIL objective and a pulsed White Light Laser (WLL, emission from 470-
670nm). Standard, diffraction limited confocal images were recorded for mRFP (594 nm,
BP 600-690 nm) and EGFP (488 nm, BP 495-541 nm) and z-stacks were acquired (z-step
size of 1pm). Images were processed using the ImagelJ (Fiji).

Related to Chapter 4:

Experiments were performed by Marco Hennrich, Fei Ye and Ximing Ding and members of
the Gavin lab. Please note that the following descriptions of experimental procedures can
be followed up in detail in the corresponding manuscript referenced at the beginning of
Chapter 4 and is meant to provide a short overview on the methodology underlying the

data used in this report.
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Specimen and donor cohort. Bone marrow (BM) aspirates were collected from 59
healthy human subjects (20-60 years old, male & female), as approved by the Ethics
Committee for Human Subjects at the University of Heidelberg with written informed
consent obtained from each donor. BM samples were harvested through puncture at the
posterior iliac crest using a Yamshidi needle, with aspirations at 5 to 7 different levels of
approximately 10 ml at each level. For validation experiments (metabolomics and single
cell RNA-seq) ten additional subjects were collected for isolation and analysis of CD34"
cells. Mononuclear cells derived from umbilical cord blood (UCB) were used as internal
standards for the proteomics analyses. The acquisition and isolation have been described
in complete detail in previous publications [Wagner et al., 2004; Wagner et al., 2009].

Cell isolation. BM aspirates were processed by FICOLL density fractionation to isolate
mononuclear cells (MNCs). 5 different cell populations were isolated by staining CD34-
APC, CD45-FITC, and CD14-PE and sorting on a FACSAria II flow cytometry cell sorted
(BD Biosciences). Cells were checked for purity by mass spectrometry-based proteomics on
tiny aliquots of the 5 purified cell populations, and stored at -80°C. For each cell population
an individual internal standard was prepared from FACS sorted cells from umbilical cord
blood and bone marrow, respectively. For single-cell RNA-seq of CD34 positive cells, single
CD34 positive cells were sorted directly into 96-well plates containing 4.4 pul of lysis buffer
per well. The lysis buffer contained 0.2% Triton X-100 (Sigma), RNase inhibitor (Takara),
oligo-dTVN primer (Sigma) according to Picelli et al. 2014 and 2.2 mM dNTP
(Invitrogen). The lysed cells were frozen on dry ice cooled ethanol and kept at -80°C until
further processing.

Sample generation of different cellular subsets. Frozen cells were suspended and lysed
with lysis buffer containing protease inhibitors (Sigma P8340), RapiGest SF surfactant
(Waters) and 200mM HEPES buffer, and buffered to pH=8 with NaOH. The sample was
kept at 90°C (5min) and subjected to sonication for 20min afterwards. After centrifugation
the supernatant was mixed with dithiothreitol (Biomol, 2mM) for reduction of di-sulfide
bonds, followed by iodoacetamide (Merck, 5mM) for carbamidomethylation of cysteine side-
chains. Proteins were then digested with Lys-C (Wako Chemicals) for 3 hours (37°C) and
then trypsin (trypsin gold, Promega Corporation, 37°C) overnight.

Isolation, culture and sample preparation of human mesenchymal stem/stromal cells
(MSCs). Contrary to the 5 described cell populations above, MSC from the respective
human subjects were isolated from an in vitro culture. MNCs were seeded in a low FCS-
MSC medium (medium detailed in publication, density ~ 1x10° cells/cm?) in tissue culture
flasks coated with 10ng/ml fibronectin (Sigma). Culture medium was changed twice per
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week. After initial colony formation (10-14 days, ensuring 80% confluence), cells were
trypsinized, counted and re-seeded at 10* cells/cm? for further expansion. At passage 2, the
cells were scratched off, washed, and cell material stored at -80°C as a pellet for proteomics

analysis.

Quantification Labeling. Five samples of the same cell type and one internal standard
were subjected to tandem mass tagging (TMT 6-plex, Thermo Fisher Scientific). After
labeling, the reaction was quenched with hydroxylamine and the acid cleavable detergent
RapiGest was cleaved with tri-fluoro-acetic acid; the lipophilic part of RapiGest reagent
precipitates was pelleted by centrifugation. The supernatant was desalted on a C18-reversed
phase material. By first running an LC-MS/MS analysis on a small aliquot of the six TMT-
labeled samples, the mixing of the samples was adjusted to approximate an equimolar
amount of each sample as much as possible. After mixing, any residual organic solvent was
removed by a vacuum pump, and the pH of the total sample was adjusted to >10 with 25%
ammonia (total volume = 50pul). The sample was subjected to separation on an Agilent
1260 infinity HPLC system (Waters XBridge C18; 3.5um; 1 x 100 mm reversed phase
column, 75pl/min) with buffers of 20mM ammonium formate at pH 10 and 100%
acetonitrile. After the collection of 90 samples, organic solvent were again removed under
vacuum and desalted and pooled into 18 fractions in total.

Liquid chromatography coupled to mass spectrometry (LC-MS). 50% of each of the 18
pooled fraction was analyzed on a Waters nanoAcquity UPLC system (C18, 5 pm, 180 pm
x 20 mm trapping column (Waters), and nanoAcquity BEH C18, 1.7 pm, 75 pm x 200mm
analytical column (Waters)) coupled to an Orbitrap Velos Pro (Thermo Fisher Scientific).
Mobile phases A and B were composed of 0.1% formic acid and acetonitrile, respectively,
changing from 3% to 85% mobile phase B within 120 minutes (flow rate=300nL/min). The
spray voltage was set to 2.2kV. The MS operated in positive ion mode, with full-scan MS
spectra operating in a range of 350-1500m/z (resolution = 30,000), and the 10 most intense
precursor ions being subjected to HCD-fragmentation (normalized collusion energy = 40).
Singly charged ions were excluded, and the MS/MS-resolution set to 7,500.

Single-cell RNA-seq of HPCs. Sequencing libraries from 192 single CD34* cells per donor
were generated based on the smart-seq2 protocol of Picelli et al. 2014 and the tagmentation
procedure of Hennig et al. 2018 with slight modifications. Briefly, single CD34 positive cells
were FACS sorted directly into 96-well plates containing 4.4 pl of lysis buffer per well as
described above. The lysates were incubated for 3 min at 72°C and kept on ice while adding
reverse transcription mix. Our reverse transcription (RT) mix had a final volume of 6.35 pl
to have the final reaction volume of 10 pl and in contrast to the smart-seq2 protocol a final
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concentration of 10 mM MgCl,. Twenty-two cycles were applied for the PCR. The
subsequent washing procedure was optimized. 25 pl nuclease-free water and 30 pl of
SPRIselect (1:0.6 ratio) were added and no ethanol wash was performed. After incubation,
removal of supernatant, and drying 13 nl nuclease-free water was applied for elution and 11
nl were taken for a second purification step. 40 pl nuclease-free water and 25 jl of SPRIselect
(1:0.5 ratio) were added and after incubation, removal of supernatant, and drying 13 pl
nuclease-free water was applied for elution. 1.25 pl of the supernatant were used for
tagmentation, which was performed as previously reported. Briefly, Tn5 was mixed with
equal amounts of Tn5ME-A/Tn5MErev and Tn5ME-B/Tn5MErev and incubated at 23°C
for 30 min. Loaded Tn) and sample were incubated for 55°C for 3 min in 10 mM Tris-HC1
pH 7.5, 10 mM MgCI2 and 25% dimethylformamide. The mixture was cooled to 10°C and
the reaction was stopped with 0.2% SDS for 5 min. at room temperature. KAPA HiFi
HotStart ReadyMix was used for PCR amplification. One pl of each of the 192 samples of
one donor was combined and bead purification using 0.8 vol. of SPRIselect was performed
including two ethanol washing steps. The elution volume was 50 nl. Sequencing was
performed on an Illumina NextSeq 500 with 75bp single-end reads.

RNA sequencing of the total HPC population. RNA was extracted with trizol
(Invitrogen) using a linear acrylamide carrier. RNA was then treated with DNase I and
purified using Agencourt RNAClean XP beads. RNA quality and concentration were
assessed by using an RNA 6000 bioanalyzer pico kit (Agilent). Samples with concentrations
less than 30 pg/pl and/or an RNA integrity number (RIN) less than 6 were excluded from
further analysis. A ¢cDNA library was produced using the Smart-Seq2 protocol. Sequencing
was performed on an Illumina HiSeq4000 with 75 bp paired-end reads with the aim to
achieve coverage of 25 million reads per sample.
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Appendix C

Supplementary Figures

Related to Chapter 2:
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Figure 52.1. Recovery of known STRING interactions in different published datasets (related to Figure 2.1). For
all datasets as considered for the ROC-analysis, the distribution of Pearson correlation coefficients for protein-protein
pairs with STRING interaction score > 700 (combined score, orange), known interaction (combined score >0, vellow)

and random protein-protein pairs (grey) is shown. The Mann-Whitney U-test was used to assess significance of the

respective shifts (indicated in colored p-values).
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Figure S2.2. Technical bias in abundance assessment and complex correlations (related to Figure 2.2). (a) For

the datasets as indicated by their respective labeling, it is asssessed whether the complex median correlation (Pearson)

is biased by the abundance of the respective complex (first row, grey shading) or by the complex variance (second row,

blue shading). For comparability, abundances and variances are rank-sorted and further split into 25%-hins, the median

correlation is then monitored in each bin. While they were significant differences between some bins (Wilcoxon-test: *

p<0.1, ¥ p<0.05, *** p<0.01), no general trend could be observed and also those significancies could not be recovered

consistently across datasets. (b) For the same datasets as above, median correlation values (Pearson) were monitored

for randomly assembled complexes (decoy complexes) from permuted data (reshuffled data) (grey, first boxplot), decoy

complexes from original data (light-blue), and real complex sets from original data (purple).
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Figure S2.3. GO-enrichment for variable and stable modules (related to Figure 2.3). GO-enrichment analysis in 3
categories (Biological Processes, Cellular Compartment and Molecular Function) delineating the functional differences
between stable and variable complexes as recovered from Figure 2.2a. The x-axis represent fold-enrichment for stable
complexes to the left (blue), whereas to the right fold-enrichments are shown for variable complexes (red). Color opacity
correlates with the fold-changes. Only GO-terms with an FDR<1% (Benjamini-Hochberg) are shown.
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Comparing features of stable and variable module components (related to Figure 2.4). (a) Stable

complex members (defined in Methods) tend to be consistently more correlated with each other than variable
components between each other within the same complex (Wilcoxon-test: *** p<0.01). The trend was consistent for
all shown datasets (boxplots on the right-hand side); the data for the proteomics data for the DO mouse strains [Chick
et al., 2016] is enhanced on the left-hand side as a density plot. (b) The number of STRING interactions (very confident

interactions, experimental score >500) tends to be consistently higher for stable complex members than observed for

variable complex members. Again this is a consistent trend in all given datasets.
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Figure S2.5. Stable complex components tend to get ubiquitinated, variable components to be transcriptionally
regulated (related to Figure 2.4). (a) Matrix delineating enrichment of stable/variable complex members in protein
sets with certain modification sites. The size of the circle indicates the fold-enrichment; the edge thickness and opacity
relate to the significance of the given enrichment. For example, stable complex members are consistently found to be
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the variability of subunits per complex. Variable subunits (z-score > 1.5) were found to be enriched in thelast bin
(protein-transcript R?>0.4, p-value (ANOVA)=1.2x107 for DO mouse strains [Chick et al., 2016], p-value
(ANOVA)=3.77x10" for Human Individuals [Battle et al., 2015]). (¢) DO mouse strains: example of high protein-
transcript correlations for subunits of the immuno-proteasome, PSMB8/9 and 10, as well as the variable subunit
PSMD9. On the right, trend-lines for protein-transcript correlations of all other subunits of the proteasome complex

are shown.
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Figure S2.7. Stoichiometry effects are sex- and diet-specific (related to Figure 2.5). (a) Sex-specific stoichiometry
of complexes is not influenced by diet differences. Volcano plots are equivalent to Figure 2.5b, but illustrate diet
differences in stoichiometry. (b) Diet-specific stoichiometry of the mitochondrial pyruvate dehydrogenase: (left) the
overall complex median abundance is not affected, (center) volcano plot highlighting the complex-specific fold-changes
of particular subunits of the complex, (right) complex-normalized abundances with enhanced differentially expressed
proteins (high-fat = dark green, chow = light green).
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than in case of the complex analysis where latter are much more strictly defined.
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Related to Chapter 3:
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Figure S3.1. Checking data quality with known cell cycle markers (related to Figure 3.2). Heat map for CCNA2

and CDK1, from which abundance and stability scores were calculated. The vertical direction indicates the increase in

temperature and the horizontal direction progress in cell cycle.
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Figure S3.2. Analysis of cell cycle-dependent stability effects on organelle-specific proteins (related to Figure

3.3). (a) Bar plots displaying the fraction of organelle-specific proteins (GO-based) affected in either stability or

abundance, or both. (b) Heatmap depicting ER-associated/localized proteins that are significantly affected in

abundance (left), stability (right), or both (middle) in at least one cell cycle stage.
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Figure S3.3. Overview on complex co-stability and co-abundance (related to Figure 3.7). (a) Melting temperatures
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showing complex median co-abundance (across members of given complex, x-axis), versus complex median co-stability
(y-axis). Complexes related to the cell cycle are labeled in green [Jensen et al., 2000].
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Figure S3.4. Differential stability pattern of moonlighting subunits of complexes (related to Figure 3.7). (a)
Exosome structure with indicated catalytic subunits, DIS3 and EXOSC10 (light red). Correlation matrix calculated

from concatanated abundance- stability profiles of all members of the exosome complex. (b) Correlation matrix of

condensin [I-subunits based on their concatanated abundance-stability profiles. The colours on the left indicate their

association with a specific sub-structure of condensin 1I, as coloured in respective cartoon. (¢) Correlation matrix of

proteasome subunits based on their concatanated abundance-stability profiles. Colours on the left-hand side indicate

sub-structure of the proteasome as indicated in the respective cartoon.

159



AHCTF1 NUP37 NUP43 NUP85 NUP96 NUP107

: s s s s s
3

g. =10 =10 10 -10 10 10

3 Bt FFEF o L B FEFL e 0 & FFE e L FHFE S o
o

S

N NUP133 NUP160 SEC13 SEH1L

?_ 10 10 0 o

o

2

z

’ — : ‘ : ~ we Stability score

=== gbundance (NP-40) score

:
]
|
b

: - N : === abundance (SDS) score
- - " -
FEEF o FHFEL o FEFS e 0 FEEL e 0
ARAS GLE1 NUP88 NUP214 RAE1 RANBP2
o 10 10 0 10 10 \
o
o
=1 1 - B s s N :
z 3 ! 1
218 g g g § -e-ae §
g o g . . g . o .
|2 8 g *"w T~ | ¢ 8
g . -~ / B — ; 4 . o
j=] P 4 s
B o 0 ¥ o " 0 0
S HEE S e FHF S e By S e S o
NUP205 NUP35 NUP54 NUP93 NUP155 NUP188
w " o ) w “
5 5 5 5 5 L
. :
s, g, t, : g, £, —
S < - - \ s ¥ s -
o 0 v - - -0 w0
FEEF o FFEL s FHFEL o FHEEL B FFEL e
NUP153 NDC1 NUP50 NUPS8 NUP210 TPR
e w © ‘n w0 : "

5 P 5 5 5 5 5
e » v A e ] @ @
&g o g o g o g0 g0 e
] >
-5 N " -4 -5 -5 T -5 -5 -
-0 -0 -0 -0 -0 -10
s e‘\:q £ é“é\ B 0“’6‘9 E s&,« e 0“‘9 FFe e «é‘f s @“f; FF e é‘f &° w';me £ #‘{b s° @’4"\9*? B f

Figure S3.5. Detailed line plots for all measured subunits of the NPC-complex (related to Figure 3.7). Stability
is shown as a purple line, abundance (NP-40, orange) and abundance (SDS, green).
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Figure S3.6. Detailed melting patterns of spindle-associated proteins (related to Figure 3.8). (a) Melting curves
for CHD4, KIF4A, and SMARCA4 (data based on 3 replicates). (b) Circle- and line plots for RANBP2, CHD4, KIF4,
SMARCAA4 (purple: stability, orange: abundance). (¢) Boxplot comparing melting temperatures in mitosis of spindle

proteins annotated from Sauer et al. (left) against non-spindle proteins (right).
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Figure S3.7. Selection of stabilized proteins, GO-analysis for stabilized set of proteins (related to Figure 3.9).
(a) Melting temperatures for G1/S versus M. Proteins in red were selected for further GO-analysis shown in (b). (b)
GO for stabilized set (a). GO analysis using DAVID (https://david-d.nciferf.gov) was conducted on the protein set
that is stabilized in mitosis relative to the G1/S reference point. For filtering we considered proteins that were
significantly stabilized (p<0.1), and with their melting point in mitosis below 55°C and in G1/S below 50°C. The
resulting 161 proteins were primarily found to beinvolved in DNA-binding activity and chromatin-associated processes.

The scatter illustrates the fold-enrichment against the respective FDR for terms derived from the broad
categories 'molecular function’ and "biological processes’. The size of each bubble relates to the number of proteins
identified for each term.
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Figure S3.8. Stabilization of sumoylated proteins, and leak-over (related to Figure 3.9). (a) Difference in melting
points (G1/S versus M) of all proteins known to be modified with specific PTMs (specified in Materials & Methods).
(b) Leak-over of stabilized proteins. Mitotically stabilized protein sert used for Figure S3.7b (n=161) was overlapped
with 2D-TPP dataset. The graphs show the line plots of the 138 overlapping proteins, and the mean stability pattern

as a thicker line. The set of stabilized proteins tends to remain stabilized in G1 as well (leak-over).
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Figure S3.9. Detailed solubility track of proteins (related to Figure 3.10). Scatter plot comparing the solubility of
proteins in G1/S (x-axis) and the relative change in solubility of proteins in mitosis versus G1/S (y-axis). Proteins

with negative x-axis values and positive y-axis values are insoluble in G1/S and become more soluble in mitosis.
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Figure S3.10. Functions and modifications of proteins with prominent solubility transition during the cell cycle

(related to Figure 3.11). (a) GO-analysis using DAVID (https:

david-d.ncicrf.gov) was performed on the protein set

that is significantly more soluble in mitosis versus G1/S. x-axis: fold-enrichment, y-axis: FDR for terms derived from

broad category 'molecular function’. Sizes of circles correspond to the number of proteins identified for each term. (b)

Solubility differences in mitosis versus G1/S of all proteins that are known to have target sites for specific PTMs.
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Figure S4.1. Labeling efficiency, protein number and outlier analysis as part of the quality control analysis
(related to Figure 4.2). (a) Completely labeled, partially labeled and unlabeled peptide spectrum matches (PSMs)
expressed as a percentage of all PSMs are stacked. (b) Protein identification number for all experiments. Each point
indicates the number of proteins identified in a TMT-6-plex experiment. (¢) A principal component analysis (PCA)
was performed on the log2-transformed data and the first two principle components (PC1 and PC2) were plotted
against each other. Highest density regions (HDR plot) of 50, 90, 95 and 97 percent probability were visualized based
on Hyndman and samples with >97% probability were defined as outliers to be discarded. The discarded samples are

marked by arrows.
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Figure S4.2. Overview of the mRNA expression levels, functional classes, as well as cellular compartments of all
quantified proteins in comparison with the total human proteome (related to Figure 4.2). (a) Label-free (LF) and
TMT quantified proteins are grouped by their mRNA expression levels and their absolute and relative number are
visualized as fraction of the total human proteome. The expression classes are defined according to transcript levels
measured in the bone marrow tissue by Uhlen et al. (2015). (b + ¢) The quantified proteins are grouped by function
(b) and cellular compartment (¢). The functional classes are defined by the highest hierarchical level of the Reactome

pathway database (http://www.reactome.org) and the compartment classes are defined according to the Human

Protein Atlas [Uhlen et al., 2015]. The red and violet vertical lines illustrate the total coverages of the quantified
proteins across all bins in the presented class.
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Figure S4.3. Comparison of the proteomes of the six investigated cell populations (related to Figure 4.2). (a)
Density plots for each cell population visualizing the co-variation of proteins within a complex or pathway. Proteins
within a complex (purple) have a clear shift towards higher correlation compared to proteins that are not annotated to
a complex or pathway (other proteins). P-values were calculated using random sampling of the distributions and
calculating the Kolmogorov-Smirnov test statistic 1,000 times to then estimate the median p-value. Stars indicate the
significance value with (*) equaling a p-value < 0.05 and (**) a p-value < 0.01. The total number of proteins associated
to complexes, and pathways in each cell population, is presented in each subplot in the respective colour (n). (b) The
average label-free (LF) abundance of the members of the ribosomal large subunit (green) and the COPII complex are
plotted for all samples. (¢) Hierarchical clustering of all 270 samples quantified by label-free (LF) quantification. The
LF abundance (blue colour scale) of all proteins from all samples was used for clustering using Euclidean distances.
White colouring defines absence of a quantification event. The samples cluster according to their cell population. (d)
Visualization of the relative label-free (LF) abundance of surface markers used in FACS for sorting the cell populations.
The dots represent the results of the individual samples, if the protein was quantified. Protein abundance (top)
correlates well with gates (bottom) used for FACS with CD34 being specific for HPC, LYM and MON being CD45*
(PTPRC), GRA being CD45™4 ERP being CD45", and MON being gated for CD14". For comparison the results of all
quantified proteins are represented as a grey box plot for each individual cell population.
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Figure S4.6. Overview on gender effects in ageing, and transcript expression changes upon ageing. (a) The
Spearman correlation coefficients for protein changes upon ageing are calculated for all samples and for only male
samples per each cell population. The correlation coefficients of protein changes of all samples (x-axis) are plotted
against the male only correlation coefficients (y-axis). Proteins that are related to the glucose metabolism are
highlighted as grey dots, and all other (purple) dots represent all other quantified proteins (n is given in the upper left
corner, respectively). (b) The box-plots depict RNA fold-changes of proteins that are down-regulated (blue) or up-
regulated (red) with age according to the proteomics data (p-value<0.05). Fold-changes were calculated between old
(>50 years) and young (<30 years) donors (Mann-Whitney U-test: p-value < 0.01 (**), p-value < 0.05 (*)). (¢) The
box-plots depict RNA fold-changes of glycolytic and TCA-related proteins that are not altered upon ageing in HPC
(blue) and that are altered upon ageing (red). Proteins from Figure 4a-+c¢ were taken into account. Significance was
assessed using a Mann-Whitney U-test (p-value for HPC = 0.0522).
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Figure S4.7. Age-affected pathways in the individual cell populations (related to Figure 4.3). (a) A selection of
pathways from the Reactome database that show prominent changes upon ageing are depicted. Pathways were required
to have between 5 and 150 members, to be sufficiently covered in at least one cell population (> 30% of the proteins
are quantified), and to have at least 20% of its quantified components being significantly (p-value < 0.05) altered upon
ageing. The area of the bubbles represents the percentage of proteins quantified by TMT that are significantly (p-value
< 0.05) altered. If no bubble is shown, no protein of the pathway has been observed to be significantly altered in the
respective cell population or no protein of the pathway has been quantified. The colour of the bubbles codes for the
direction of the alteration, with red indicating an overall increase of the pathway members with at least three proteins
being upregulated and pink an overall increase with one or two proteins being upregulated. Blue codes for pathways
with an overall trend towards downregulation, with strong blue coding for pathways with at least three proteins being
downregulated and light blue containing one or two proteins being downregulated. The colour white indicates that no
overall tendency for the proteins associated with the corresponding pathway could be observed. The bars on the right-
hand side of each pathway illustrate the number of proteins being significantly altered upon ageing regardless of the
cell population (green), being quantified by TMT (grey), and the total number of members of the pathway (black) as
also mentioned in the pathway annotation (n). The grouping of the pathways on the left side is based on the highest
hierarchy levels defined in Reactome, e.g. extracellular matrix organisation (ECM org.) and developmental biology
(develop. biol.). (b) Ilustration of ageing effect on DNMT1 and IRF8 protein abundance in HPC. Box-plot
representation of DNMT1 and IRFS8. The dots represent the individual results from younger (age < 30 years) and older
(age > 50 years) human subjects.
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Figure S4.8. Single-cell analysis reveals lineage- and age-dependent increase of glycolytic enzymes (related to
Figure 4.5). (a) Matrices demonstrate correlations of lymphoid- and myeloid-associated marker genes across single
cells per sample. Marker genes (derived from Figure 5¢) and single cells were a priori filtered for quality (see Methods).
Sample 1 had less of the given marker genes quantified than the other samples. (b) The distribution of correlation
values between myeloid and lymphoid markers (grey), between myeloid markers only (pink), and between lymphoid
markers only (purple) is presented as box-plot. Correlation values are taken from all four samples. Significance was
assessed using a Mann-Whitney U-test (p-value < 0.01 (**)). (¢) Cells are classified into lymphoid- and myeloid-primed
cells based on markers (see Methods for details). The bar-plot gives an overview on the fraction size of lymphoid-
primed (purple), myeloid-primed (pink) and undefined (grey) cells in a given sample (‘undefined’ meaning that cells
could not be classified as myeloid or lymphoid). For each fraction and each sample (S1-S4) the heatmaps below show
the expression levels of lymphoid- and myeloid-associated marker genes, as scaled in the colour bar. Significance of
marker distribution for each fraction was assessed by a Fisher Exact test (p-values depicted). (d + e) Box-plots
representing expression values of a gene in lymphoid- primed (purple) and myeloid-primed (pink) cells in a given sample
(2 young (S4+S2), and 2 old (S3+51)). A trend line connects the respective box-plot medians; the respective slope is
further used for Figure 4.5e. (d) Box-plots representing genes of the preparatory phase of glycolysis that were found
to be age-regulated (p-value < 0.05), and quantified in the single-cell RNA-seq data. (e) Box-plots representing genes
of glycolysis that were found to be not age-regulated (p-value > 0.05), and quantified in the single-cell RNA-seq data.
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Figure 54.9. Overview on the computational data processing (related to Methods). (a) Delineation of the processing
pipeline after acquisition of mass-spectrometry data. (b) Data-processing after obtaining TMT-ratios and LF-scores in
(a). {¢) Single-cell RNA-seq processing pipeline after acquisition of raw reads. (d) Bulk transcriptome analysis with

DESeq2, as explained in Methods.
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