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Abstract 
   As a scintigraphic approach evaluating cardiac nerve integrity, 123I-

metaiodobenzylguanidine (123I-mIBG) has been recently Food and Drug 

Administration approved. A great deal of progress has been made by the prospective 

ADMIRE-HF trial, which primarily demonstrated the association of denervated 

myocardium assessed by 123I-mIBG and cardiac events. However, apart from risk 

stratification, myocardial nerve function evaluated by molecular imaging should also 

be expanded to other clinical contexts, in particular to guide the referring cardiologist 

in selecting appropriate candidates for specific therapeutic interventions. In the 

present issue of the Journal of Nuclear Cardiology, the use of 123I-mIBG for 

identifying cardiomyopathy patients, which would most likely not benefit from ICD due 

low risk of arrhythmias, is described. If we aim to deliver on the promise of cardiac 

innervation imaging as a powerful tool for risk stratification in a manner similar to 

nuclear oncology, studies such as the one reviewed here may imply an important 

step to lay the proper groundwork for a more widespread adoption in clinical practice.
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   Alterations of the myocardial sympathetic nervous system (SNS) in Heart Failure 

(HF) patients are primarily driven by cardiac norepinephrine (NE) spillover, which in 

turn provokes severe damage of cardiomyocytes, in particular by AMP-mediated 

calcium overload (1, 2). Notably, such a continous NE oversupply also triggers 

remodeling of the left ventricle or the development of hypertensive left ventricular 

hypertrophy (3). On a subcellular level, cardiac alterations of the SNS are reflected 

by impaired function of the NE transporter (uptake-1 mechanism) and by reduced 

plasma clearance of NE in the synaptic cleft (1, 4). As a physiological rationale, NE is 

stored inside presynaptic vesicles and if a firing impulse has arrived at the nerve 

terminal, NE is released into the synaptic gap and provokes further downstream 

cascades at postsynaptic ß-adrenoreceptors to achieve neurotransmission. After 

completing its primary task at the postsynapse, NE has to undergo a recycling 

mechanism via the uptake-1 and is stored in storage vesicles for potential re-use. 

Notably, as a non-invasive mean, cardiac SNS radiotracers using either single 

photon emission computed tomography (SPECT) or positron emission tomography 

(PET) technology, have been advocated to share similar pathways like physiological 

NE. Thus, impaired cardiac nerve integrity is either reflected by increased radiotraer 

washout or a significant decrease in radiotracer uptake. Taken together, those 

cardiac nerve imaging agents may allow for a precise assessment of sympathetic 

neurotransmission in the failing heart (5, 6).  

    As a a scintigraphic approach, 123I-metaiodobenzylguanidine (123I-mIBG) has been 

recently Food and Drug Administration approved and is extensively used in clinical 

practice (7-9). However, in recent years, the field is expanding, in particular as 

cardiac neuronal PET imaging agents may offer an even more thorough evaluation of 

cardiac nerve integrity, mainly due an increased spatio-temporal resolution and the 

capability of quantification. Thus, PET SNS radiotracer may reveal further underlying 

characteristics of myocardial nerve function, such as regional analysis of different 

“myocardial areas of interest“ (e.g., infarct area, border zone or remote myocardium). 

Among those PET imaging agents, 11C-Hydroxyephedrine (11C-HED) is currently at 

the forefront for assessing myocardial innervation non-invasively, but expenses for 

purchase, its short half-life of 20 minutes, and the maintenance of costly on-site 

cyclotrons, are considerations for practitioners as to what extent such a 

radiopharmaceuticals can be employed in the clinic. Notably, introduction of novel 18F 
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SNS imaging agents, such as 18F-LMI1195, may overcome these limitations: the long 

physical half-life of 110 min allows for the use of delivery systems from central 

cyclotron facilities or even distribution by commercial vendors, which has proven to 

be cost-effective for the most commonly used imaging agent in nuclear oncology, 2-

deoxy-2-18F-fluoro-D-glucose (5). However, if such cardiac nerve SPECT/PET probes 

should be one day become routinely available in the clinic to identify patients at 

highest risk for cardiac events, a precise understanding of the exact catecholamine 

radiotracer handling of such “false neurotransmitters“ at the nerve terminal is 

indispensable. Thus, efforts in recent years aimed to provide deeper insights of 

cardiac retention kinetics on a subcellular level, which may be fundamental for a 

proper interpretation of imaging results. An extensive body of evidence has 

confirmed the high affinity of 123I-mIBG to the neuronal uptake-1, which forms the 

backbone of SNS imaging of the heart: a significant decrease of the heart-to-

mediastinum ratio (HMR) after pretreatment with the potent uptake-1 blocker 

desipramine (DMI) in rabbit myocardium was proven (7). In an in-vivo triple-tracer 

comparison in healthy rabbits using 123I-mIBG, 11C-HED and 18F-LMI1195, a 

selective uptake-1 blockage using DMI was reported for all three investigated 

imaging agents. Notably, distinct radiotracer characteristics could be proven by using 

a DMI chase protocol, i.e. DMI injected after tracer delivery. Sharing the same 

benzylguanidine structure, retention kinetics of 123I-mIBG and 18F-LMI1195 remained 

stable, while 11C-HED demonstrated increased radiotracer washout (Figure 1 A, B). 

Thus, after being taken up via uptake-1, 123I-mIBG and 18F-LMI1195 are stably stored 

inside presynaptic vesicles and thus, closely mimick their physiological counterpart 

NE. This is in contradistinction to 11C-HED, which primarily undergoes a continous 

cycle of uptake and release at the nerve terminal (Figure 1 C) (10). Those distinct 

radiotracer characteristics were further corroborated in NE-expressing, vesicle-rich 

PC12 and vesicle-poor SK-N-SH cell lines: After using stimulants for storage vesicle 

turnover (reserpine, high potassium chloride), both 123I-mIBG and 18F-LMI1195 

demonstrated enhanced washout from PC12 cells, while retention for those cardiac 

SNS imaging agents remained stable in SK-N-SH cells (11).  

   After laying the proper groundwork of an exact understanding of radiotracer 

handling at the sympathetic nerve terminal, an imaging interpretor can have 

confidence that those imaging probes precisely reflect cardiac sympathetic 

neurotransmission and thus, can be truly described as “false neurotransmitters”. In 
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this regard, the next step are clinical applications of such imaging agents on a 

broader perspective, in particular for risk stratification of patients which are at highest 

risk to suffer from lethal cardiac events. A great deal of progress has been made by 

the prospective “AdreView Myocardial Imaging for Risk Evaluation in Heart Failure 

(ADMIRE-HF)” trial, which primarily demonstrated the association of denervated 

myocardium evaluated by 123I-mIBG HMR and HF-related events, independent of 

other common clinical parameters, such as left ventricular ejection fraction (LVEF) 

(12). Notably, in a sophisticated approach, Nakajima et al. created mortality risk 

charts using 123I-mIBG derived HMR and clinical parameters (LVEF, New York Heart 

Association Class) and suggested 2- and 5-year mortality risk estimations (13). 

However, if 123I-mIBG SPECT or other cardiac neuronal PET radiotracers become 

one day more routinely available in the clinic, those cardiac nerve radiotracers must 

be applicable to a wide array of particular clinical scenarios. Thus, apart from risk 

stratification for HF-related events, cardiac nerve integrity assessed by 123I-mIBG 

should also be expanded to other clinical contexts, in particular to guide the referring 

cardiologist in selecting the appropriate candidate for specific therapeutic 

interventions. In the present issue of the JNC, the use of 123I-mIBG for identifying 

cardiomyopathy patients, which would most likely not benefit from ICD due low risk of 

arrhythmias, is described. ICD shocks for ventricular tachyarrhythmias play a crucial 

role for secondary prevention of sudden cardiac death (relative risk reduction, 20%). 

Albeit the documented shock frequency is described inconsistenly among different 

studies, a considerable high number of subjects still receive an inappropriate shock 

(11.5%), which in turn results in deterioration of health-related quality of life or even 

fatal ventricular arrhythmia (14, 15). Such a malfunction is in contradistinction to 65% 

of the patients, which will never have an appropriate ICD discharge (5, 16, 17). 

Spearheaded by Scrima et al. in a multicentric setting, 81 patients suffering from 

either ischemic or non-ischemic cardiomyopathy and a LVEF ≤ 35% were enrolled. 

None of the included patients had any previous history of malignant ventricular 

arrhythmias. Using the well-established HMR cutoff of 1.6 on delayed 123I-mIBG 

derived planar images, 54 subjects were assigned to the HMR group beyond and 27 

patients to the group above the cutoff. After a mean follow-up of 13.3 (± 9.7) months, 

the primary end-point (malignant arrhythmias) occured in 13/81 (16%), and all of 

those patients had been allocated to the high-risk group according to planar 

scintigraphic assessment (late HMR < 1.6), while no such events occured in the low-
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risk group (HMR > 1.6). In addition, 7/81 (8.6%) patients died of cardiac events, with 

the majority (6/7, 85.7%) having previously assigned to the high-risk by cardiac nerve 

SPECT. Notably, an HMR ≥ 1.6 had a considerable high negative predictive value for 

cardiac death and worsening HF (up to 96%). The findings of Scrima et al. are in line 

with a previous performed post-hoc analysis which demonstrated that the 

combination of HMR and LVEF are associated with freedom of appropriate ICD 

therapy (17). Taken together, 123I-mIBG might be helpful in excluding those patients 

who might not benefit from ICD and thus, may significantly contribute to an improved 

guidance of such highly specific and costly therapeutic interventions. Thus, one might 

hypothesize that measuring cardiac nerve integrity with such non-invasive metrics 

may outperform current established criteria for patient selection, e.g. LVEF or QRS 

duration (18). However, larger clinical trials, preferably in a prospective setting, are 

warranted to corroborate those preliminary findings and to further establish precision 

cardiology through molecular imaging, e.g. by the use of cardiac neuronal PET 

radiotracers. 

   Compared to nuclear cardiology, molecular imaging has been extensively used for 

risk stratification in a large variety of oncological applications. Aiming at tailored 

medical treatment for different tumor entities, efforts in nuclear oncology aimed to 

provide decision-support in disease management, e.g. by identifying the prognostic 

capability of baseline somatostatin-receptor PET in neuroendocrine tumor patients 

scheduled for peptide receptor radionuclide therapy or the prognostic performance of 

prostate-specific membrane antigen PET in prostate cancer patients (19, 20). Thus, if 

we aim to deliver on the promise of cardiac innervation imaging as a powerful tool for 

risk stratification among HF patients in a manner similar to nuclear oncology, studies 

such as the one reviewed here may imply an important step to lay the proper 

groundwork for a more widespread adoption in clinical practice. 
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FIGURE and FIGURE LEGEND 
 
Figure 1. Cardiac nerve radiotracer handling at the sympathetic nerve terminal.  
(A) Representative short-axis images of in-vivo rabbit cardiac PET imaging. 
Desipramine (DMI) chase (i.e., DMI administered after tracer delivery) enhanced 11C-

Hydroxyephedrine (11C-HED) tracer washout, while 18F-LMI1195 washout was not 

impacted. (B) Results of in-vivo rabbit 123I-metaiodobenzylguanidine (123I-mIBG) 
planar scintigraphy of the chest. A high affinitiy of 123I-mIBG to neuronal uptake-1 

was confirmed by the DMI blocking protocol (DMI injection prior to radiotracer 

administration). Similar to 18F-LMI1195, DMI chase did not influence cardiac 

distribution of 123I-mIBG. Of note, both radiotracers share the similar underlying 

benzylguanidine structure. Dotted lines indicate regions of interest in both heart and 

mediastinum. (C) Schematic figure of radiotracer handling at the sympathetic 
nerve terminal. In light of those findings, distinct radiotracer characteristis has been 

proven: After being taken up via uptake-1, 123I-mIBG and 18F-LMI1195 are stably 

stored at nerve terminals and thus, closely mimick their physiological counterpart 

norepinephrine. This is in contradistinction to 11C-HED, which primarily undergoes a 

continous cycle of uptake and release at the nerve terminal (i.e. continous re-uptake 

via uptake-1). Therefore, the imaging interpretor can have confidence that those 

cardiac nerve imaging agents precisely reflect sympathetic neurotransmission in the 

(failing) heart. Altogether, such preclinical experiments using dedicated animal 

platforms may lay the proper groundwork for risk stratification studies in a clinical 

environment, such as the one reviewed in the present issue of JNC. Modified from 

Werner et al. (10), © by the Society of Nuclear Medicine and Molecular Imaging, Inc.  
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