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Abstract

In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intra-

cellular effects. These complex tasks demand a highly organized orchestration of spatially

and temporally confined cAMP action which should be best achieved by compartmentaliza-

tion of the latter. A great body of evidence suggests that cAMP compartments may be estab-

lished and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs).

However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradi-

ents are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and

PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in

the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors

(<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathe-

matical models based on diffusion-reaction equations which describe the creation of nano-

compartments around a single PDE molecule and more complex spatial PDE

arrangements. The analytically solvable equations derived here explicitly determine how the

capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the

cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological

parameters. We apply these generic models to our experimental data and determine the dif-

fusive mobility and degradation rate of cAMP. The results obtained for these parameters dif-

fer by far from data in literature for free soluble cAMP interacting with PDE. Hence,

restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompart-

ments in cells.

Introduction

Cyclic nucleotides such as cyclic adenosine monophosphate (cAMP) act as second messengers,

transducing extracellular stimuli into intracellular signals and leading to various effects inside

the cell. In general, the cAMP concentration is assumed to be homogeneous throughout the
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entire cell body. However, more recent findings suggest that second messenger signaling dis-

plays an intriguing complexity requiring a more complex intracellular distribution to achieve

signaling specificity. These observations gave rise to the concept of cAMP compartmentation

—intracellular compartments with different concentrations of cAMP [1]. Key roles in the for-

mation of cAMP compartments are attributed to the cAMP production by adenylyl cyclases

(AC) and the degradation by phosphodiesterases (PDE) [2–16].

Although first reports on cAMP compartments in single living cells have been published sev-

eral decades ago [17–19], the molecular details of cAMP compartmentation are still unclear. In

principle, several mechanisms might contribute to local cAMP gradients. These are: local pro-

duction of cAMP by membrane-bound ACs, cAMP buffering by regulatory PKA subunits,

cAMP export by multidrug resistance proteins, restricted cAMP diffusion by yet undefined

physical barriers, cell shape, and local cAMP degradation by PDEs (reviewed in [20]). Most

prominently, local degradation of cAMP by PDEs has been shown to be responsible for experi-

mentally observed cAMP microdomains, as inhibition of PDEs eliminated cAMP gradients

within a cell [17, 21–24]. In addition, many computational studies have suggested that PDEs

play an essential role in shaping cAMP gradients within a cell (reviewed in [20]). However, two

important points should be considered. First, all reported studies to date focus on the descrip-

tion of rather large, so-called microdomains of cAMP, e.g. cAMP gradients between membrane

compartments and cytosolic compartments. Second, all computational studies indicating a role

of PDEs in shaping cAMP gradients have used either artificially high turnover rates, slow cAMP

diffusion or unphysiologically high enzyme concentrations (e.g. [2, 25, 26]). Hence, although

experimental data supporting the existence of cAMP microdomains have been obtained by

many groups and the involvement of PDEs is well documented, there are conflicting data as far

as the molecular mechanisms of cAMP compartmentation are concerned. In this study we

apply an interdisciplinary biophysical approach to study cAMP compartments surrounding

individual PDE molecules in intact cells. By using fusion proteins of cAMP FRET-sensors and

PDEs we measure cAMP concentrations in the direct vicinity of a single PDE molecule in living

cells. We find that the cAMP concentration next to a single PDE molecule is undetectable by

our FRET-sensor (<100nM) even when the cells are stimulated with a maximal concentration

of the β-adrenergic agonistüisoproterenol. Interestingly, this “shielding” of the cAMP sensor

from cAMP by the adjacent PDE molecule is partially persistent in diluted, crude cytosolic

preparations. This renders cAMP diffusion, PDE activity, and PDE clustering as the most prom-

inent and sufficient mechanisms to account for cAMP compartmentation by PDEs.

To establish a theoretical framework based on these experimental data, we develop analyti-

cally-solvable, diffusion-reaction equations to describe cAMP nanocompartments biophysi-

cally. By deriving estimates for the interrelation of diffusive mobility of cAMP and cAMP

degradation rates, the interdisciplinary experimental and modeling approach applied here nar-

rows down the possible mechanisms for cAMP compartmentation to three most important

factors, i.e. restricted cAMP diffusion, PDE catalytic activity, and, to some extent, PDE cluster-

ing. Taken together, our data indicate that cAMP diffusion must be significantly slower or

more heterogeneous than previously reported to allow for the observation of cAMP nanocom-

partments around a single PDE molecule in intact cells.

Methods

FRET measurements in living cells

Live single-cell FRET imaging was carried out in HEK-TsA cells as described previously [27].

In brief, HEK-TsA cells were plated on glass coverslips in 6 well-plates and transiently trans-

fected either with the fluorescent cAMP sensor Epac1-camps, a direct fusion between the

cAMP nanodomains
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sensor and PDE4A1, termed Epac1-camps-PDE4A1 or its catalytically-impaired derivative

Epac1-camps-PDE4A1(D352A).

48 h after transfection, cells were mounted in an imaging chamber and FRET ratios were

measured in single cells in real time before and after the addition of the β-adrenergic agonist

isoproterenol (1μM) and the PDE4-specific inhibitor rolipram (1μM). Ratiometric FRET

imaging was performed using an upright epifluorescence microscope (Axio Observer, Zeiss,

Germany) equipped with a water-immersion objective (63X/1.1 numerical aperture), a xenon

lamp coupled to a monochromator (VisiView, VisiChrome, Germany), filters for CFP (436/

20, 455LP dichroic) and YFP (500/20, 515LP dichroic) excitation, a beam splitter (DualView,

Photometrics, Germany) with a 505LP dichroic mirror and emission filters for CFP (480/30)

and YFP (535/40), and an electron-multiplied charge coupled device (EMCCD) camera

(Evolve 512, Photometrics, Germany). CFP and YFP images upon CFP excitation were cap-

tured every 5s with 50ms illumination time. FRET was monitored in real-time with the Meta-

Fluor 5.0 software (Molecular Devices) as the ratio between YFP and CFP emission. The YFP

emission was corrected for direct excitation of YFP at 436nm and the bleedthrough of CFP

emission into the YFP channel as previously described [28]. Images were analyzed utilizing the

Graph Pad Prism 6.0 software (GraphPad Software, La Jolla, California, USA).

In vitro measurements of cAMP-induced changes of FRET ratios

HEK-TsA cells were transfected with the cDNAs encoding either Epac1-camps, or the fusion

proteins Epac1-camps-PDE4A1, or Epac1-camps-PDE4A1 (D352A), or PDE4A1 using cal-

cium phosphate precipitation. 48h after transfection cells were harvested and ca. 1 × 107 cells

were resuspended in 300μl of 10mM TRIS-HCl, 10mM MgCl2 buffer (pH7.4) containing

1mM PMSF and protease inhibitors (20μg/mL soybean trypsin and 60μg/mL benzamidin).

Cells were broken by two 10s bursts of an Ultraturrax device. Cell debris and nuclei were

removed by centrifugation (1,000xg, 5min, 4˚C) and the supernatant was centrifuged again

(100,000xg, 30min, 4˚C) to yield the cytosolic fraction. For FRET experiments, 80 − 120μl of

the cytosol were diluted with buffer ad 600μl. Fluorescent spectra of the cytosolic fractions

between 460nm and 550nm were recorded upon illumination with 436nm before and after

addition of increasing concentrations of cAMP using the LS50B spectrometer (PerkinElmer

Life Sciences, Waltham, Massachusetts, USA). To ensure equal sensor concentration during

measurements, all cytosol preparations were adjusted to the same YFP emission intensity

(535nm upon direct illumination at 500nm). To quantify the effects of global PDE activity, two

cytosolic fractions expressing either Epac1-camps or PDE4A1 were mixed in a manner that

recapitulates the expression of Epac1-camps-PDE4A1. The amount of the Epac1-camps cyto-

sol was adjusted to the same YFP emission intensity measured in cytosolic fractions of

Epac1-camps-PDE4A1. The amount of the PDE4A1 cytosol was then adjusted to the same

PDE activity as measured with Epac1-camps-PDE4A1. Concentration-effect curves were gen-

erated by calculating the 535nm/480nm FRET emission ratios at different cAMP concentra-

tions. Data points were fitted with a three-parameter logistic equation using Graph Pad Prism

6.0 (GraphPad Software, La Jolla, California, USA). Data were then normalized to the lower

(absence of cAMP; set to 0%) and upper plateau (saturating concentrations of cAMP, set to

100%) of the concentration-effect curve.

Results

Experimental determination of cAMP-protected domains

To measure the cAMP concentration in direct vicinity of a single PDE molecule, we expressed

fusion proteins of the cAMP FRET-sensor Epac-1-camps [29] and PDE4A1 [27] in HEK-TsA

cAMP nanodomains
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cells. The live cell FRET experiments carried out here (Fig 1) show that no change in the FRET

ratio was recorded with isoproterenol when the sensor was fused to an active PDE (Epac1--

camps-PDE4A1). In contrast, activation of endogenous β-receptors upon isoproterenol stimu-

lation induced a nearly maximal decrease in the FRET ratio in cells expressing only the cAMP

FRET-sensor Epac1-camps. No further decrease in the FRET ratio was recorded upon inhibi-

tion of endogenous PDE4s with rolipram. The protection of Epac1-camps seen in the presence

of an active PDE is specific to the local PDE activity because first, it was partially lost upon

expression of a fusion protein containing a catalytically-impaired PDE mutant (Epac1-camps-

PDE4A1(D352A)), and second, the protection was completely lost, if the PDE was blocked by

the PDE4 specific inhibitor rolipram. These experiments indicate that the cAMP concentra-

tion in direct vicinity of an active PDE is below the detection limit of the sensor [29]. The effect

of isoproterenol on the different sensor proteins was mimicked also if more persistent cAMP

signals were elicited upon direct activation of adenylyl cyclases by forskolin (Fig 1c and 1d).

Overall these data suggest that PDE may act as a “sink” and thereby creates a local cAMP mini-

mum, regardless of the stimulus used to elicit a cAMP signal.

Fig 1. Fusion of PDE4A1 to Epac1-camps generates cAMP nanodomains in living cells. (a) and (c)

Representative traces of the normalized FRET (YFP/CFP) ratio of the indicated constructs. Increases of

cAMP were obtained by activation of endogenous β-receptors by isoproterenol (a) or upon stimulation with the

direct activators of adenylyl cyclase forskolin (c) and (d) Amplitude of the cAMP response elicited by

isoproterenol (b) or forskolin (d) expressed as a percentage of maximal stimulation induced by rolipram. Data

are shown as means ± s.e.m. of at least 6 independent experiments. Differences vs. Epac1-camps were

statistically significant by one-way ANOVA followed by Bonferroni post hoc-test **, P < 0, 001 ****,

P < 0,00001.

https://doi.org/10.1371/journal.pone.0174856.g001
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To check if a local cAMP minimum around a PDE persists even upon destruction of the

cellular architecture, we conducted biochemical in vitro FRET experiments in cytosolic frac-

tions of transfected HEK-TsA cells (S1 Fig). In contrast to the experiments in intact cells (c.f.

Fig 1) the fusion protein Epac1-camps-PDE4A1 did respond to cAMP. However, the sensitiv-

ity was significantly lower than that of Epac1-camps (note the rightward shift of the concentra-

tion-effect curve in Fig 2a). The observed 10-fold decrease in apparent cAMP affinity is due to

PDE activity as the catalytically-impaired construct Epac1-camps-PDE4A1 (D352A) had the

same apparent affinity for cAMP as Epac1-camps (S2 Fig). To exclude that the rightward-shift

of the cAMP concentration-effect curve is due to a global elevation of PDE activity, we

expressed Epac1-camps and PDE4A1 as separate proteins. To achieve a 1:1 stoichiometry of

the two proteins, we mixed the respective cytosols in amounts which matched (1) the concen-

tration of FRET-sensor as determined by YFP emission intensity and (2) the degree of PDE

activity as determined by real-time FRET measurements (S3 Fig). Usually, the ratio between

the cytosolic fractions expressing Epac1-camps and PDE4A1, respectively, was 1:2 to achieve

1:1 stoichiometry. Under these conditions, the cAMP concentration-effect curve was signifi-

cantly shifted to the right (Fig 2b), however, the rightward-shift was clearly not as pronounced

as with the fusion protein Epac1-camps-PDE4A1 (Fig 2c). These data demonstrate that PDE

activity can create a local cAMP minimum.

Fig 2. Local PDE activity creates a cAMP gradient in cytosolic fractions. Concentration-effect curves of cAMP-induced changes of the FRET ratios of

the cAMP sensors Epac1-camps (grey curve) and Epac1-camps-PDE4A1 (red curve) in soluble cytosolic preparations of transiently transfected HEK-TsA

cells. The presence of PDE activity in the fusion protein leads to a loss of apparent affinity of the FRET-sensor for cAMP (rightward shift of the concentration-

effect curve). (b)Separate expression of equal amounts of Epac1-camps and PDE4A1 (blue curve) leads to a right-shift of the concentration-effect-curve,

albeit to a lesser extent than the fusion protein. The curves for Epac1-camps and Epac1-camps-PDE4A1 are shown for comparison as grey and red dashed

lines, respectively. (c) Apparent affinities (pEC50) of Epac1-camps, Epac1-camps-PDE4A1, and Epac1-camps + PDE4A1 for cAMP are 5.60 ± 0.03(= 2.5μM),

4.60 ± 0.02(= 25μM), and 5.14 ± 0.02(= 7.2μM), respectively. This indicates that the cAMP concentration in close proximity to the PDE is less than the

concentration of the surrounding solution. Experiments were carried out in 10mM TRIS, 10mM MgCl2, pH7.4 and FRET changes were recorded upon addition

of increasing concentrations of cAMP. Data are normalized to the maximum change of the FRET ratio at saturating concentrations of cAMP (= 100%) and the

basal FRET ratio in the absence of cAMP (= 0%), respectively. The slope of all curves is not significantly different from n = 1 (P = 0.53, P = 0.37, P = 0.80 for

Epac1-camps, Epac1-camps-PDE4A1, and Epac1-camps + PDE4A1, respectively). Data are means ± s.e.m. of at least three independent experiments

carried out with 3-5 repetitions. ****, ####, (P < 0.0001) according to one-way ANOVA with Tukey’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0174856.g002
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Mathematical analysis of cAMP degradation on a single molecule level

Based upon the experimental data presented here, we develop a biophysical model for cAMP

degradation on a single molecule level (Fig 3). The sensor mechanism itself depends on the

Förster / fluorescence resonance energy transfer (FRET), yielding the cAMP binding ratio S of

the sensor molecule. This ratio depends on the cAMP concentration at the sensor molecule,

S ¼
rSensor� cAMP

rSensor þ rSensor� cAMP
¼

rcAMP

KD þ rcAMP

�
�
�
�

r¼RPDEþd

; ð1Þ

where KD is the dissociation constant of the sensor protein, RPDE the radius of the spherical

assumed PDE, and, hence, RPDE + d is the position of the sensor molecule, when the center of

the PDE is considered as reference.

To obtain the cAMP concentration rð~r; tÞ around the PDE we assume free and homoge-

neous diffusion. We further assume isotropic diffusion around the PDE, and isotropic reaction

conditions on the surface of the PDE, i.e. only a radial dependence of ρ remains when

expressed in spherical coordinates~r ¼ ðr; y; �Þ, i.e. rð~r ; tÞ ¼ rðr; tÞ. This symmetry allows to

write Fick’s diffusion laws as

@trðr; tÞ ¼ r~jðr; tÞ

¼ Dr� 2@rðr2jrðr; tÞÞ

jrðr; tÞ ¼ � D@rrðr; tÞ

ð2Þ

with diffusion coefficient D and diffusive flow density~j. As only the radial component of this

flow is of relevance, we omit the subscript r, i.e. jr = j. We also consider solely steady state con-

ditions, i.e. the cAMP concentration is stationary @tρ = 0, and, hence,

r2jðrÞ � const: : ð3Þ

This is justified as variations from the steady state are equilibrated within nanoseconds. The

absorption rate, quantified by the flux jðRPDEÞ4pR2
PDE through the reactive protein surface, is

Fig 3. Schematic description of the experimental design used to measure cAMP nanocompartments

on a single molecule resolution. The PDE molecule is modeled as an absorbing sphere of radius RPDE and

the sensor protein attached adjacent (distance d) is used to measure the cAMP concentration.

https://doi.org/10.1371/journal.pone.0174856.g003
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assumed to follow a Michaelis-Menten kinetic [30],

jðRPDEÞ4pR2
PDE ¼ �

kcat

ðKm þ rÞ
r

�
�
�
�

r¼RPDE

; ð4Þ

where kcat is the maximum degradation rate of a single PDE molecule and Km the Michaelis-

Menten constant which is defined as the substrate concentration at which the degradation rate

is half of kcat. As we consider only one reaction center, the cAMP concentration reaches a con-

stant asymptotic value far away from the center

lim
r!1

rðrÞ ¼ r0 ð5Þ

From Eqs (3) and (5) directly follows

r ¼ r0 1 � A
RPDE

r

� �

; ð6Þ

where the constant A is determined from the boundary condition on the protein surface—

describing the enzyme kinetics of the PDE (Eqs (2) and (4)),

D@rrðrÞ
�
�
�
�

r¼RPDE

¼
1

4pR2
PDE

kcatr

Km þ r

�
�
�
�

r¼RPDE

DAr0

1

RPDE
¼

1

4pR2
PDE

kcatr0ð1 � AÞ
Km þ r0ð1 � AÞ

ð7Þ

Re-scaling of the cAMP concentration by the Michaelis-Menten constant ρ! c = ρ/Km and

introducing the dimensionless absorptive action

Z ¼
kcat

4pRPDEDKm
ð8Þ

allows to rewrite Eq (7)

Ac0 ¼ Z
c0ð1 � AÞ

1þ c0ð1 � AÞ
ð9Þ

This equation has two solutions for A,

A1;2 ¼
ð1þ Zþ c0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Zþ c0Þ
2
� 4c0Z

q

2c0

; ð10Þ

but only

A ¼
ð1þ Zþ c0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Zþ c0Þ
2
� 4c0Z

q

2c0

ð11Þ

is of physical relevance, since only this solution satisfies the limiting constraint in the absence

of absorption limη! 0, where concentrations approach their asymptotic values far away from

the reaction center ρ! ρ0, or c! c0 (see Eq (6)). From this we finally obtain the solution for

the cAMP concentration around the PDE molecule

c ¼ c0 1 �
ð1þ Zþ c0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Zþ c0Þ
2
� 4c0Z

q

2c0

RPDE

r

0

@

1

A : ð12Þ

cAMP nanodomains
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Note that the dimensionless absorptive action η in Eq (8) is an important parameter which

describes the capability of a reactive center to create a concentration sink of cAMP. It relates

the time scale of cAMP degradation kcat to that of its diffusive mobility D. In addition it also

scales spatial dimensions to the extension of the reactive center RPDE.

Requirements for compartmentalization

To quantify the capability of a PDE molecule to generate a nanocompartment we define its

depth and width as follows. The width δ is the distance from the center of absorption, at which

cAMP concentration reaches the average of its maximum c0 = c(1) and minimum c(RPDE)

value,

cðdÞ ¼
c0 þ cðRPDEÞ

2
) d ¼ 2RPDE ; ð13Þ

and correspondingly the depth γ as the ratio between the minimum and maximum concentra-

tion of cAMP,

g ¼
cðRPDEÞ

c0

¼
c0 � 1 � Zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Zþ c0Þ
2
� 4c0Z

q

2c0

; ð14Þ

i.e. γ = 1 when there is no concentration gradient, and γ = 0 when there is no cAMP near the

PDE molecule. The width of the nanocompartment depends on the spatial extension of the

absorbing enzyme (δ = 2RPDE), which implies that a single molecule can only generate a nano-

compartment of roughly twice the size of the absorbing enzyme. The depth γ depends on the

absorptive action η, and, which is important, on the concentration c0 of the surrounding

cAMP (see Fig 4). The deepest compartments are found at low concentrations c0! 0 and vice

versa the compartments disappear (γ! 1) for high values of c0!1. This is due to the satura-

tion of PDE activity that starts at concentrations higher than the Michaelis-Menten constant

ρcAMP = Km, i.e. c0 = 1. Once the PDE approaches its highest performance, the compartment is

filled and the depth decreases when further increasing the cAMP concentration.

The above mentioned relationships may be quantified (see Fig 4). In the limit for vanishing

external cAMP concentration c0! 0, one gets

lim
c0!0

g ¼ lim
c0!0

cðr ¼ RPDEÞ

c0

� �

¼
1

1þ Z
ð15Þ

and in the other limit c!1

lim
c0!1

g ¼ lim
c0!1

cðr ¼ RPDEÞ

c0

� �

¼ 1 ð16Þ

This implies that the concentration, c1/2, at which the compartment is half way flooded, i.e.

when gðc1=2Þ ¼
1

2
ðgðc! 0Þ þ gðc!1ÞÞ, is

c1=2 ¼
ð1þ ZÞ

2

1þ Z=2
ð17Þ

These points are marked on the curves in Fig 4. Note that for vanishing enyme activity (η! 0)

this concentrations approaches the Michaelis-Menten constant as c0! 1. Literature values of

the kinetic data required in our model vary depending on the PDE subtype as well as methodi-

cal choices made in the experiments. For the diffusive mobility D values have been reported in

the order of from D = 136μm2/s [31, 32] while typical values for the absoprtion rate of the

cAMP nanodomains
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PDE4 family are in the order of kcat � 5s−1 and the Michaelis-Menten constant Km� 2.41μM
[33, 34]. The radius of the PDE molecule can be estimated from measurements of its crystal

structure [35, 36] to be in the order of RPDE = 2.5nm

Based on these data the absorptive action of the PDE is estimated as η1 = 7.7 � 10−4. Insert-

ing this value into Eq (14) gives the depth γ� 1, which implies that the absorptive action of a

single PDE molecule is much (more than 100-fold) too small to lead to any significant nano-

compartment. This is in strong disagreement with experiments (s. above) [27], in which the

binding curves of the Epac1-camps-PDE4A1 construct provide the depth of the nanocompart-

ments directly.

Even though we used values that are typical for the PDE4A1 subtype used in our experi-

ments, this result is also true if we assume higher values for kcat that have been reported for

other PDE families. For example [37] reported values of up to kcat = 20s−1 for the PDE2 family,

which yields η1 = 30.8 � 10−4.

Comparison of experimental data with analytical results

We will now compare our model with experimental data from the fusion protein Epac1--

camps-PDE4A1 measured in a crude cytosolic preparation (see Fig 2) to get an estimate of the

absorptive action η of the PDE. The dependence of the sensor signal intensity as a function of

the cAMP concentration at the sensor position is revealed by Eq (1). The spatial dependence of

the cAMP concentration as a function of the absorptive action is revealed by Eq (12). Combin-

ing these equations yields the FRET signal as a function of the absorptive action, external

cAMP concentration c0 = ρ0/Km and inter-spatial PDE-sensor distance RPDE + d as

S ¼
c0 �

1

2
ð1þ Zþ c0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Zþ c0Þ
2
� 4c0Z

q� �
RPDE

RPDE þ d
KD

Km
þ c0 �

1

2
ð1þ Zþ c0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Zþ c0Þ
2
� 4c0Z

q� �
RPDE

RPDE þ d

: ð18Þ

We fitted this equation to the experimental data described in the methods section. All fits were

Fig 4. Depth γ of the nanocompartments formed by a single PDE molecule as a function of the cAMP

concentration c for different values of absorptive action η. The concentration c is given in multiples of the

Michaelis-Menten constant of the PDE c ¼ r

Km
, the absorptive action η is defined as Z ¼

kcat
4pRPDEDKm

. The deepest

compartments are found in the limit c! 0, where g ¼ 1

1þZ
. When the cAMP concentration is increased (c!

1), the compartments get flooded and disappear due to saturation of the PDE. Dots indicate the

concentration at which the compartment is half way flooded and are found at c1=2 ¼
ð1þZÞ2

1þZ=2
.

https://doi.org/10.1371/journal.pone.0174856.g004
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performed using Mathematica (Wolfram Research, Inc., Champaign, Illinois, USA). Goodness

of fit was assessed using Pearson’s chi squared test. In the experiments (Fig 5) the FRET signal

S was determined for cAMP concentrations ranging from ρ0 = 10−9M to ρ0 = 10−3M. In control

experiments the free sensor protein Epac1-camps (with only basal PDE activity) was measured,

i.e. η = 0. Note that in this case the concentration-effect curve Eq (18) formally reduces to a

simple hyperbola S ¼ c0

KDþc0
, since η = 0, d! 0 and then RPDE! 0. Fitting this simplified con-

centration-response curve to Eq (18) revealed the dissociation constant KD of the sensor as KD

= 7.3 ± 0.66μM, with χ2 = 3.2, p = 0.66 indicating good fit results. In the other experiments the

sensor was directly fused to the PDE molecule, i.e. the intermolecular distance d was close to

zero, where the overall PDE concentration was the same as in the experiments with the free

sensor. The shift of the FRET signal curve to the right when the sensor is fused directly to the

PDE (see Fig 5) implies a significantly reduced cAMP concentration at the sensor, and, hence,

on the reactive PDE surface, when compared to the situation where PDE and Epac1-camps

were expressed separatly. We fitted our model (Eq (18)) to the concentration-effect curve mea-

sured in the experiments. To avoid overfitting we assumed d = 0 and therefore
RPDE

RPDEþd ¼ 1. Fur-

ther analysis of the mathematical properties of Eq (18) revealed that the fit did not converge

for Km, due to low sensitivity at high Km values. We therefore set Km to the literature value of

Km� 2.41μM [33, 34]. The fit then yields η2 = 6.1 ± 1.4, with χ2 = 9.6, p = 0.08. The fit quality

is good for lower concentrations of cAMP, but the fitted curve deviates significantly as the

cAMP concentration is increased. For high concentrations of cAMP our model predicts that

the nanocompartments should be flooded by cAMP and disappear, leading to a steeper slope

in the FRET signal. This was not observed in the experiments. It is yet unclear, how the nano-

compartments can be maintained even for high concentrations of cAMP.

On the other hand we derived an absorptive action of η1 = 7.7 � 10−4 from theory in the pre-

vious section. The two results differ by up to 4 orders of magnitude. This discrepancy might be

explained by the very different experimental setups of the two approaches—in the sensor

experiments local nano structures around the PDE might play a significant role in increasing

the absorptive action, e.g. by restricting cAMP diffusion. A higher absorptive action in vivo

implies either a higher ratio of the catalytic activity to the Michaelis-Menten constant, or a

Fig 5. Binding curves of the free sensor protein Epac1-camps + PDE (blue) and the fusion protein

Epac1-camps-PDE4A1 (red). The overall PDE activity is equal in both experiments, indicating that the right

shift of the binding curve is solely caused by local PDE degradation. The curves were determined by fitting Eq

(18) to the corresponding experimental data. The distance between sensor and absorbing enzyme was set to

d = 0nm as for an ideal sensor-enzyme construct. The fit of the free sensor data (blue) yields the dissociation

constant of the sensor KD = 7.3 ± 0.66μM (goodness of fit: χ2 = 3.2, p = 0.66). From the sensor-enzyme

construct (red) we obtain the absorptive action of a PDE η2 = 6.1 ± 1.4, (χ2 = 9.6, p = 0.08). The flooding of the

nanocompartment as predicted by our model could not be observed in the experiments.

https://doi.org/10.1371/journal.pone.0174856.g005
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lower diffusion coefficient of cAMP, when compared to literature data. However, as it does

not seem plausible that in vivo conditions enhance the enzymatic activity by several orders of

magnitude, the reduced diffusive mobility seems to be the most likely option to explain this

observation. Other authors come to similar conclusions and suggest reduced diffusive mobility

as a key factor in cAMP compartmentation [2, 38].

Clusters of PDE

A possible explanation for the existence of nanocompartments despite the small absorptive

action of a single PDE molecule could be the formation of larger clusters of PDE—as suggested

e.g. by Conti et al. [39]—as a possible mechanism of “protecting” larger regions from cAMP.

In this section we examine two idealized geometries of such clusters: first a sphere filled with a

constant concentration of PDE and second a spherical shell acting as an absorbing border. For

these simple geometries we were able to provide analytical solutions of the corresponding dif-

fusion-reaction equations and can thereby provide conditions for the formation of protected

regions within such a cluster of PDE—which we will call microcompartments of cAMP. Sche-

matic representations of the two cluster geometries, where PDEs are aggregated within a

sphere or on a spherical surface, respectively, are depicted in Fig 6.

Spherical PDE cluster

The PDE molecules are assumed to be aggregated within a spherical cluster with radius R• and

there are none outside of this cluster—i.e. absorption only exists for r� R•. We further sim-

plify the diffusion-reaction process by assuming a linear dependence of the absorption rate of

a single PDE molecule on the cAMP concentration, which is justified in the low concentration

range (ρcAMP <<Km). This simplifies the absorption rate of a single PDE molecule (see Eq (4))

to

4pR2
PDEj
�
�
�
�

r¼RPDE

�
kcat

Km
rcAMP

�
�
�
�

r¼RPDE

ð19Þ

Fig 6. Models of clusters of a degrading enzyme. Left: the degrading enzyme (here PDE) has a homogeneous

distribution within a spherical region of diameter R•. Right: the degrading enzyme forms a thin layer acting as a protective

border for the inner region.

https://doi.org/10.1371/journal.pone.0174856.g006
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We now focus on the cAMP degradation within the sphere. Here, the average PDE-free vol-

ume around a PDE molecule is just the inverse of the density of PDE molecules, ρPDE, within

the sphere, i.e.

V0 ¼ 1=rPDE : ð20Þ

We assume that the PDEs are packed sufficiently dense so that the cAMP concentration ρcAMP

is constant within V0, i.e.

rcAMPðrÞ � rcAMPðRPDEÞ : ð21Þ

This is justified as long as the diffusion time between neighboring PDEs is small when com-

pared to the degradation rate of the PDE. These different time scales allow to replace formally

the cAMP degradation at the PDE surface by a constant degradation rate ξ at each point within

V0. Self consistently the degradation within V0, i.e. ξV0ρcAMP must be equivalent to that in

Eq (19), i.e. ξ is determined as

x ¼
1

V0

kcat

Km

¼
4pDZRPDE

V0

ð22Þ

where the latter relation follows from Eq (8). With this degradation rate per volume we may

write the temporal evolution of the cAMP concentration in form of a diffusion reaction equa-

tion

@

@t
rðx; tÞ ¼ DDrðx; tÞ �

(
xrðr; tÞ r � R�

0 r > R�
; ð23Þ

which accounts for the fact that there is no cAMP degradation outside of the cluster (ξ = 0). In

the steady state one obtains for the cAMP concentration in-, and around the spherical cluster

rðrÞ ¼ r0

( sinhðz sÞ
zs cosh ðzÞ� 1 s � 1

1 �
z� tanhðzÞ

z s s > 1

ð24Þ

with the dimensionless parameter z ¼

ffiffiffiffiffi
xR2
�

D

q

and the radius scaled to the cluster radius r! s =

r/R•. So for this cluster geometry z is analogous to the absorptive action η in our model of the

single PDE molecule in the way that it is a dimensionless parameter that characterizes the

shape of the microcompartment.

With Eq (22) one gets

z ¼

ffiffiffiffiffiffiffi
xR2
�

D

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pZR2

�
RPDE

V0

s

ð25Þ

Or with respect to the number of PDE within the cluster NPDE ¼
4

3
pR3
�
=V0,

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3NPDE Z
RPDE

R�

r

: ð26Þ

This gives a simple expression for the shape of a compartment generated by a spherical cluster

of a given number of PDE molecules NPDE and radius R•. As shown above we obtain very dif-

ferent values of the absorptive action η in the microscopic model—depending on the approach
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used to determine it. Therefore we also obtain very different values for the absorptive action z

in the mesoscopic model of the spherical cluster.

For η1 = 7.7 � 10−4 (as derived from the kinetic data found in literature) we obtain

z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NPDE
6:9 � 10� 3nm

R�

s

ð27Þ

while η2 = 6.1 ± 1.4 (as derived from our experimental data) yields

z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NPDE
109nm

R�

r

ð28Þ

Conditions for microcompartments within a spherical cluster

In this section we derive conditions under which a spherical cluster of PDE can lead to a signif-

icant decrease in the local cAMP concentration. For the depth of the compartment γ as defined

by Eq (14) we obtain g ¼ 1

cosh ðzÞ or equivalently for a microcomparment of depth γ

z ¼ cosh � 1
1

g

� �

ð29Þ

We can use this equation to estimate number of PDE molecules required to shape a micro-

compartment of given size R• and depth γ. If we set R• = 100nm and g ¼ 1

10
then the corre-

sponding number of PDE molecules would be NPDE ¼
z2

3 Z RPDE
R� ¼ 130 000, for η1 = 9.2 � 10−4

(from theory) or NPDE = 8.5 for η2 = 6.1 ± 1.4 (from our experiments).

The total number of PDE in e.g. a pulmonary microvascular endothelial cell is estimated to

be about NPDE,total = 5000 [2]. This would by far not be enough to explain the formation of

microcompartments if we assume η1 = 9.2 � 10−4 as derived from theory.

In Fig 7 we show the concentration of cAMP in microcompartments of different size and

concentration of PDE under the conditions of η2 = 6.1 ± 1.4 as derived from our experiments.

Spherical shell PDE cluster

In this section we focus on a second cluster geometry, where the PDE molecules form an

absorbing spherical shell in order to protect the enclosed region from cAMP. The question of

interest is whether such a cluster of PDE could lead to a significantly decreased cAMP concen-

tration in the inner region of the spherical shell under physiological conditions. Further it

helps to understand the impact of cluster geometry on depth and shape of the microcompart-

ment. The mathematical treatment of this case is essentially analogous to the absorbing sphere

—therefore we will only discuss the main results in this section. To facilitate analytical treat-

ment of the corresponding diffusion-reaction equation we will again assume a linear relation-

ship between absorption rate and cAMP concentration—as argued in the previous section this

approximation is justified in the low concentration range. The corresponding diffusion reac-

tion equation reads

@

@t
r ¼ Dr � w rðr; tÞdðr � R� Þ ð30Þ

with reaction rate constant χ> 0 and the delta distribution δ(r − R˚) restricting absorption is
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to the shell surface. The steady state solution of this equation is given by

rðrÞ ¼

(
ri r � R�

r0 � ðr0 � riÞ
R�
r r > R�

ð31Þ

where the concentration on the inside of the absorbing spherical shell is given by

ri ¼ r0

1

1þ
wR�
D

ð32Þ

Note that in fact the concentration of cAMP is constant within the boundary of the absorbing

spherical shell. From this we also obtain the depth of the microcompartment

g ¼
ri

r0

¼
1

1þ
wR�

D

ð33Þ

Analogous to the treatment of the solid sphere we can relate the reaction rate constant χ to the

number of the absorbing centers NPDE on the surface of the spherical shell

w ¼
RPDE Z D NPDE

R2
�

ð34Þ

with η the absoprtive action of a single molecule of PDE in the microscopic model. Of particu-

lar interest is the relationship between the number of absorbing PDE molecules on the shell

surface and the “depth” of the compartment γ. In the case of a spherical shell it depends on the

ratio NPDE/R˚ as can be derived from Eqs (33) and (34)

g ¼
1

1þ ZNPDE
RPDE

R�
ð35Þ

This leads to very similar findings as in the previous section: to form a microcompartment of

depth γ and of radius R˚ the required number of PDE is NPDE ¼
1

g
� 1

� �
R�

Z RPDE
. This leads to

physiological values only if we assume η2 = 6.1 ± 1.4 (as obtained from our experiments)—for

Fig 7. Concentration of cAMP inside a spherical cluster of PDE for different numbers of degrading molecules NPDE. For both plots the absorptive

action of a single PDE was set to η2 = 6.1 ± 1.4. Left: cluster with radius R• = 100nm; to form a microcompartment of this size there required number of PDEs is

about NPDE = 10. Right: cluster with radius R• = 200nm. The depth of the microcompartment is smaller when the number of degrading molecules is kept

constant.

https://doi.org/10.1371/journal.pone.0174856.g007
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example γ = 0.1, R˚ = 100nm yields: NPDE� 25, while assuming η1 = 7.7 � 10−4 (as obtained

from theory) yields NPDE� 39 � 104 for the same compartment (Fig 8).

These numbers for the spherical shell are in the same order of magnitude as the numbers

found for the solid sphere in the previous section, which suggests that the cluster geometry has

only minor impact on the shape of the compartment. We could further show that the absorp-

tive action η of a single PDE molecule has to be in the order of magnitude of η� 1 in order to

form compartments under physiological conditions. This again suggests either dramatically

impeded diffusion speeds or increased absorption rates.

Summary of mathematical modeling

We sum up the results derived from our mathematical model as follows:

• The ability of a single molecule of PDE to create a nanocompartment can be described by its

absoprtive action Z ¼ kcat
4pRPDEDKm. Similar parameters can be introduced for clusters of PDE.

• The nanocompartments can be flooded when the concentration of cAMP is increased. The

concentration where the compartment is half way flooded is given by r1=2 ¼ Km
ð1þZÞ

2

1þZ=2

• Given current literature values for diffusive mobility and enzyme parameters, neither a sin-

gle molecule nor a large cluster of PDE would be sufficient to create cAMP compartments.

• Fitting of the concentration-signal curve of the Epac1-camps-PDE4A1 construct yields η =

6.1 ± 1.4—this value is about 104 times higher than the values estimated from theory.

Discussion

cAMP is a ubiquitous second messenger mediating a myriad of cellular functions. Although it

was initially believed that cAMP is uniformly distributed within the cell, a great body of evi-

dence supports the notion that cAMP is compartmentalized. cAMP is produced upon stimula-

tion of a variety of Gs-coupled receptors expressed in a cell and the concept of

compartmentation would allow a high degree of spatial and temporal cAMP signaling specific-

ity. Despite the fundamental importance of signal compartmentation, the molecular mecha-

nisms of the generation and dynamics of these compartments are largely unknown.

Fig 8. Concentration of cAMP inside a spherical shell cluster of PDE for different numbers of degrading molecules NPDE. For both plots the

absorptive action of a single PDE was set to η2 = 6.1 ± 1.4. Left: cluster with radius R• = 100nm; to form a microcompartment of this size there required

number of PDEs is about NPDE = 10. Right: cluster with radius R• = 200nm. The depth of the microcompartment is smaller when the number of degrading

molecules is kept constant.

https://doi.org/10.1371/journal.pone.0174856.g008
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In this paper we have studied the influence of PDEs in the formation of cAMP nanocom-

partments combining FRET-based measurements of cAMP concentrations and a mathemati-

cal analysis based on PDE activity and cAMP diffusion. To directly assess local cAMP

concentrations next to a PDE we have used fusion proteins comprised of the cAMP FRET-sen-

sor Epac1-camps and PDE4A1.

Based on these data, we provide a model for the binding curve of the sensor in such a fusion

protein in order to estimate the absorptive action of a single PDE molecule from these mea-

surements (Fig 2). Using this approach we found that the reaction rate required in order to

form such a nanocompartment is about three to four orders of magnitude higher than the

actual reaction rates of PDE, as long as free diffusible cAMP molecules are assumed. However,

the in vivo existence of such nanocompartments is shown by our experimental results (Fig 1)

as suggested already in earlier experiments [27]. Moreover, even upon disruption of the cellu-

lar environment, the tethered PDE shields the cAMP sensor from cAMP (Fig 2).

A possible explanation of these measurements could be the formation of clusters of PDE

that would lead to a decreased concentration of cAMP on a larger scale (which we refer to as

microcompartments). Such clusters would need to be formed by stabilizing proteins. In line

with this, compartmentation of PDEs by A-kinase anchoring proteins (AKAPs) has been

reported by other authors [39–41]. However, even if one considers PDE-anchofing by AKAPs,

we found that unphysiological amounts of PDEs would be required to achieve a substantial

change in the concentration of cAMP by a cluster of PDE’s. Therefore further yet unknown

mechanisms have to contribute to the compartmentation of cAMP in living cells.

Several other groups have reported mathematical models of cAMP degradation on a large

scale [6, 7] as well as numerical simulations [2, 38] and in line with these studies, our data

strongly support the finding that PDE activity alone should be insufficient to explain compart-

mentation of cAMP on a nanometer scale.

Therefore we suggest that cAMP diffusion within the nanodomain must be restricted.

Recent studies have provided first evidence that cAMP diffusion within cells may be 1 order of

magnitude (ca. 10μm2/s) slower than previously anticipated [26, 42]. However, based on our

calculation, this diffusion speed is still not sufficient to create a nanodomain in a cytosolic

environment. Future studies need to reassess the heterogeneity of cAMP diffusion within cells.

Moreover, the mechanisms which restrict cAMP diffusion are entirely unknown. One possible

physical parameter which could potentially restrict cAMP diffusion is locally increased micro-

viscosity [38, 42, 43]. This could lead to areas of impeded diffusion and therefore dramatically

increased values for the absorptive action η in our models. However it is yet unclear, whether

areas of highly impeded diffusion coincide with the localization of PDE enzymes.

Taken together, we have shown the existence of nanodomains of low cAMP in cells. Our

data suggest that PDEs are only capable of establishing such domains when the diffusion of

cAMP is restricted. Further experiments will investigate the role of inhomogeneous diffusion

in the formation of cAMP nanocompartments and will aim to measure the spatial extent and

shape of the cAMP nanocompartments.

Supporting information

S1 Fig. Fluorescence spectra of Epac1-camps and Epac1-camps-PDE4A1. Shown are fluo-

rescence emission spectra of cytosolic fractions of HEK-TsA cells expressing Epac1-camps (a)

and Epac1-camps-PDE4A1 (b) obtained in a 10mM TRIS − HCl/10mM MgCl2 buffer. A

cAMP-dependent decrease in the YFP/CFP ratio is demonstrated.

(TIF)
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S2 Fig. Tethering of PDE4A1 to Epac1-camps does not alter its apparent cAMP affinity.

Concentration-effect curve of cAMP-induced changes of the FRET ratio of the cAMP sensor

Epac1-camps-PDE4A1 (D352A) in cytosolic preparations of transiently transfected HEK-TsA

cells (black curve). The concentration-effect curves of Epac1-camps (grey) and Epac1-camps-

PDE4A1 (red) are shown for comparison. The apparent affinity (pEC50) of Epac1-camps-

PDE4A1 (D352A) is 5.56 ± 0.08(= 2.7μM) and thereby not different from Epac1-camps (see

manuscript text). Data are means ± s.e.m. of three independent experiments carried out with

2-3 repetitions.

(TIF)

S3 Fig. Adjustment of PDE4A1 protein levels based on catalytic activities calculated from

transient FRET changes. (a-c) Representative real-time, in vitro FRET measurements of cyto-

solic preparations of HEK-TsA cells transiently expressing the indicated constructs. Addition

of 100μM cAMP (red arrow) leads to a decrease in FRET (YFP/CFP) ratio due to binding of

cAMP to the sensors. (a) In case of Epac1-camps-PDE4A1 the FRET change is transient and

increases to the basal FRET ratio after�350s due to PDE activity. (b) At the same expression

level the FRET change is not transient in cytosolic preparations only expressing Epac1-camps

indicating that endogenous PDE activity is negligible. (c) Separate expression of Epac1-camps

and PDE4A1: the amount of PDE4A1 cytosol was adjusted to the same catalytic activity (Δτ as

surrogate parameter) as measured with Epac1-camps-PDE4A1. (d) Δτ values in cytosolic prep-

arations expressing Epac1-camps-PDE4A1 (red) or Epac1-camps + PDE4A1 (blue) are not

significantly different (P = 0.99, according to an unpaired t-test). Data in (d) are means ± s.e.

m. of 4 independent experiments, representatives of which are shown in (a) and (c).

(TIF)
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