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Summary

Summary

Chapter I — General introduction

Modern agriculture is the basis of human existence, a blessing, but also a
curse. It provides nourishment and well-being to the ever-growing human
population, yet destroys biodiversity-mediated processes that underpin
productivity: ecosystem services such as water filtration, pollination and biological
pest control. Ecological intensification is a promising alternative to conventional
farming, and aims to sustain yield and ecosystem health by actively managing
biodiversity and essential ecosystem services. Here, I investigate opportunities and
obstacles for ecological intensification. My research focuses on 1) the relative
importance of soil, management and landscape variables for biodiversity and wheat
yield (Chapter II); 2) the influence of multi-scale landscape-level crop diversity on
biological pest control in wheat (Chapter I1T) and 3) on overall and functional bird
diversity (Chapter IV). I conclude 4) by introducing a guide that helps scientists to
increase research impact by acknowledging the role of stakeholder engagement for

the successful implementation of ecological intensification (Chapter V).

Chapter II - Ecological pathways to high yields in conventional cereal
systems

Ecological intensification relies on the identification of natural pathways
that are able to sustain current yields. Here, we crossed an observational field study
of arthropod pests and natural enemies in 28 real-life wheat systems with an
orthogonal on-field insecticide-fertilizer experiment. Using path analysis, we
quantified the effect of 34 factors (soil characteristics, recent and historic crop
management, landscape heterogeneity) that directly or indirectly (via predator-prey
interactions) contribute to winter wheat yield. Reduced soil preparation and high
crop rotation diversity enhanced crop productivity independent of external
agrochemical inputs. Concurrently, biological control by arthropod natural enemies
could be restored by decreasing average field sizes on the landscape scale, extending
crop rotations and reducing soil disturbance. Furthermore, reductions in

agrochemical inputs decreased pest abundances, thereby facilitating yield quality.
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Chapter III - Landscape-level crop diversity benefits biological pest
control

Landscape-level crop diversity is a promising tool for ecological
intensification. However, biodiversity enhancement via diversification measures
does not always translate into agricultural benefits due to antagonistic species
interactions (intraguild predation). Additionally, positive effects of crop diversity on
biological control may be masked by inappropriate study scales or correlations with
other landscape variables (e.g. seminatural habitat). Therefore, the multiscale and
context-dependent impact of crop diversity on biodiversity and ecosystem services
is ambiguous. In 18 winter wheat fields along a crop diversity gradient, insect- and
bird-mediated pest control was assessed using a natural enemy exclusion
experiment with cereal grain aphids. Although birds did not influence the strength
of insect-mediated pest control, crop diversity (rather than seminatural habitat
cover) enhanced aphid regulation by up to 33%, particularly on small spatial scales.
Crop diversification, an important Greening measure in the European Common
Agricultural Policy, can improve biological control, and could lower dependence on
insecticides, if the functional identity of crops is taken into account. Simple

measures such as ‘effective number of crop types’ help in science communication.

Chapter IV - Landscape heterogeneity rather than crop diversity
mediates bird diversity in agricultural landscapes

Although avian pest control did not respond to landscape-level crop
diversity, birds may still benefit from increased crop resources in the landscape,
depending on their functional grouping (feeding guild, conservation status, habitat
preference, nesting behaviour). Observational studies of bird functional diversity
on 14 wheat study fields showed that non-crop landscape heterogeneity rather than
crop diversity played a key role in determining the richness of all birds. Insect-
feeding, non-farmland and non-threatened birds increased across multiple spatial
scales (up to 3000 m). Only crop-nesting farmland birds declined in heterogeneous
landscapes. Thus, crop diversification may be less suitable for conserving avian
diversity, but abundant species benefit from overall habitat heterogeneity. Specialist

farmland birds may require more targeted management approaches.
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Chapter V - Growing TREEs for a sustainable future — a guide to the
implementation of ecological farming

Identifying ecological pathways that favour biodiversity and ecosystem
services provides opportunities for ecological intensification that increase the
likelihood of balancing conservation and productivity goals. However, change
towards a more sustainable agriculture will be slow to come if research findings are
not implemented on a global scale. During dissemination activities within the EU
project Liberation, I gathered information on the advantages and shortcomings of
ecological intensification and its implementation. Here, I introduce a guide
(‘TREE’) aimed at scientists that want to increase the impact of their research.
TREE emphasizes the need to engage with stakeholders throughout the planning
and research process, and actively seek and promote science dissemination and
knowledge implementation. This idea requires scientists to leave their comfort zone
and consider socioeconomic, practical and legal aspects often ignored in classical

research.

Chapter VI — General discussion

Ecological intensification is a valuable instrument for sustainable
agriculture. Here, I identified new pathways that facilitate ecological intensification.
Soil quality, disturbance levels and spatial or temporal crop diversification showed
strong positive correlations with natural enemies, biological pest control and yield,
thereby lowering the dependence on agrochemical inputs. Differences between
functional groups caused opposing, scale-specific responses to landscape variables.
Opposed to our predictions, birds did not disturb insect-mediated pest control in
our study system, nor did avian richness relate to landscape-level crop diversity.
However, dominant functional bird groups increased with non-crop landscape
heterogeneity. These findings highlight the value of combining different on-field
and landscape approaches to ecological intensification. Concurrently, the success
of ecological intensification can be increased by involving stakeholders throughout
the research process. This increases the quality of science and reduces the chance

of experiencing unscalable obstacles to implementation.
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Zusammenfassung

/usammenfas sung

Kapitel I — Allgemeine Einfihrung

Die moderne Landwirtschaft ist die Grundlage menschlichen Lebens, ein
Segen, aber auch ein Fluch. Sie stellt Nahrung und Wohlstand fir die immerfort
wachsende menschliche Bevolkerung bereit, und zerstort  gleichzeitig
Biodiversitits-geforderte Prozesse, welche die Produktivitit unterstiitzen:
Okosystemdienstleistungen wie Wasseraufbereitung, Bestiubung und biologische
Schidlingsbekimpfung. Okologische Intensivierung ist eine vielversprechende
Alternative zur konventionellen Landwirtschaft, und zielt darauf aus, Ertrige und
die Gesundheit von Okosystemen zu erhalten indem Biodiversitit und essentielle
Okosystemdienstleistungen aktiv gemanagt werden. In meiner Doktorarbeit
untersuche ich die Chancen und Hiirden Okologischer Intensivierung. Das
Hauptinteresse meiner Forschung liegt bei 1) der relativen Bedeutung von Boden,
Bewirtschaftung und Landschaftsaspekten fiir Biodiversitit und Weizenertrige
(Kapitel IT); 2) dem Einfluss regionaler Anbauvielfalt auf verschiedenen riumlichen
Skalen auf die biologische Schidlingsbekimpfung in Weizen (Kapitel 11I) und 3)
auf die gesamte und funktionelle Artenvielfalt von Végeln (Kapitel IV). Zum
Schluss 4) stelle ich einen Leitfaden vor, der Wissenschaftlern hilft die Wirkung
ithrer Forschung zu erhéhen, indem die fundamentale Rolle von Stakeholdern ftr

die Umsetzung Okologischer Intensivierung besser genutzt wird (Kapitel V).

Kapitel IT — Okologische Wege zu hohen Ertragen in konventionellen

Getreide Anbausystemen

Okologische Intensivierung bedarf der Identifizierung von natiirlichen
Prozessen, die zum Erhalt landwirtschaftlicher Ertrige beitragen. Zu diesem Zweck
verknipften wir eine Beobachtungsstudie, in der Schidlinge und natirliche
Gegenspieler in 28 realen Weizen Anbausystem aufgenommen wurden, mit einem
orthogonalen Feldexperiment (Insektizid und mineralische Dingung). Anhand
einer Pfadanalyse quantifizierten wir den FEinfluss von 34 Faktoren
(Bodencharakteristiken, —gegenwirtige und  vergangene Bewirtschaftung,

Landschaftsheterogenitit), die direkt oder indirekt (iber Riuber-Beute-
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Interaktionen) Einfluss auf den Winterweizenertrag ausiiben. Reduzierte
Bodenbearbeitung und vielfiltige Fruchtfolgen erhohten die Ertrige unabhingig
von der Ausbringung von Agrochemikalien. Gleichzeitig kénnte die biologische
Schidlingsbekdimpfung durch riduberische Insekten wiederhergestellt werden,
indem durchschnittliche SchlaggréB3en auf der Landschaftsebene verringert,
Fruchtfolgen erweitert und die Bodenbearbeitung reduziert wird. Des Weiteren
senkte der Verzicht auf Agrochemikalien das Schidlingsaufkommen einiger Arten,

und trug zu einer hoheren Ertragsqualitat bei.

Kapitel III — Regionale Anbauvielfalt erhoht die biologische
Schidlingsbekdimpfung

Regionale Anbauvielfalt ist ein vielversprechendes Mittel zur Okologischen
Intensivierung. Doch  die  Erhéhung  der  Artenvielfalt  durch
Diversifizierungsmalnahmen fithrt nicht immer zu Vorteilen in der Landwirtschaft,
vor allem auf Grund antagonistischer Wechselwirkungen zwischen verschiedenen
Arten (intraguild predation). Weiterhin kénnen positive Effekte der Anbauvielfalt
durch die Wahl der falschen rdumlichen Skala oder durch Korrelationen mit
anderen Landschaftsvariablen (z.B. halbnatiirliche Habitate) iberdeckt werden. Aus
diesem Grund bestehen Unklarheiten iber die Wirkung von Anbauvielfalt auf
Biodiversitit und Okosystemdienstleistungen in unterschiedlichen riumlichen
Skalen und Kontexten. Durch Ausschlussexperimente mit Getreideblattlausen
untersuchten wir die biologische Schidlingsbekimpfung durch rduberische
Insekten und Vogel in 18  Winterweizenfeldern innerhalb  eines
Landschaftsgradienten der Anbauvielfalt. Vogel hatten keinen Einfluss auf die
biologische Schidlingsbekimpfung durch Insekten. Anbauvielfalt (nicht das
Vorkommen halbnatirlicher Habitate) erhohte die Schidlingsbekimpfung um bis
zu 33%, vor allem auf kleinen rdumlichen Skalen. Somit kann die Steigerung der
Anbauvielfalt, eine wichtige Siule der Europiischen Gemeinsamen Agrarpolitik,
die biologische Schidlingsbekimpfung verbessern und den Finsatz von
Agrochemikalien verringern, solange die funktionelle Gruppe der Anbaupflanzen

berticksichtigt wird. Einfache Maleinheiten wie die ‘effektive Anzahl an



Zusammenfassung

Kulturpflanzengruppen® helfen in der Kommunikation wissenschaftlicher

Ergebnisse.

Kapitel IV — Landschaftsheterogenitit nicht Anbauvielfalt bestimmen
die Vogelvielfalt in Agrarlandschaften

Obwohl die Schadlingsbekimpfung durch Vogel nicht durch regionale
Anbauvielfalt beeinflusst wurde, konnten Vogel, abhingig von der Zugehorigkeit
zu bestimmten funktionellen Gruppen (Ernihrung, Gefidhrdungsstatus,
Lebensraum, Nistplatzwahl), dennoch von erhéhten Ressourcen —auf
landwirtschaftlichen Flichen profitieren. In einer Beobachtungsstudie wurde die
funktionelle Vielfalt von Vogeln auf 14 Winterweizenfeldern aufgenommen. Die
Studie zeigte, dass die nicht agrarisch genutzte Landschaftsheterogenitit im
Vergleich zur regionalen Anbauvielfalt eine ibergeordnete Rolle fiir die
Artenvielfalt spielte, vor allem fir Insektenfresser, Vogel die aullerhalb
landwirtschaftlicher Flichen siedeln oder nicht in ihrem Bestand gefihrdet sind.
Effekte waren auf allen Skalen sichtbar (bis zu 3000m). Nur Acker-nistende
Agrarvogel zeigten negative Beziehungen zu Landschaftsheterogenitit. Der Nutzen
der Anbaudiversifizierung scheint weniger Bedeutung fir den Vogelschutz zu
haben als die tbergeordnete Vielfalt der Landschaft, welche den Artenreichtum
hiufiger Vogelarten erhohte. Spezialisierte Vogelarten dagegen bediirfen eines

gezielten, angepassten Managements.

Kapitel V - Baume (TREESs) pflanzen fir eine nachhaltige Zukunft —
ein Leitfaden zur Umsetzung Okologischer Intensivierung

Um Okologische Intensivierung voranzutreiben und ein Gleichgewicht
zwischen Naturschutz- und Produktivititszielen zu erreichen, bedatf es der
Identifikation 6kologischer Prozesse, die zur Steigerung von Biodiversitit und
Okosystemdienstleistungen beitragen. Doch der die Wende zu einer nachhaltigeren
Landwirtschaft wird nur langsam voran schreiten, wenn Forschungsergebnisse
nicht global umgesetzt werden. Wihrend der Offentlichkeitsarbeit im EU Projekt

Liberation konnte ich Informationen uber die Vor- und Nachteile Okologischer
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Intensivierung und deren Umsetzung sammeln. Hier stelle ich einen Leitfaden
(‘TREE’) vor, der Wissenschaftlern helfen soll die Wirkung ihrer Forschung zu
erhohen. TREE verdeutlicht wie wichtig es ist, Stakeholder in den Planungs- und
Forschungsprozess eines Projektes mit einzubeziehen, und aktiv die Verbreitung
von Wissen und die Umsetzung wissenschaftlicher Ergebnisse voranzutreiben.
TREE fordert Wissenschaftler dazu auf, die eigene Komfortzone zu verlassen und
sozio6konomische, praktische und rechtliche Aspekte zu berticksichtigen, welche

oft in der klassischen Forschung unbeachtet bleiben.

Kapitel VI — Allgemeine Diskussion

Okologische Intensivierung ist ein bedeutender Schritt in Richtung
nachhaltige Landwirtschaft. In dieser Arbeit identifiziere ich neue Wege zur
okologischen Intensivierung. Bodenqualitit, Stérungsgrad des Bodens und die
raumliche oder zeitliche Anbauvielfalt zeigten starke positive Korrelationen mit
natirlichen Gegenspielern, biologischer Schidlingsbekimpfung und Ertrigen auf,
wodurch die Abhingigkeit von Agrochemikalien verringert wird. Unterschiede
zwischen funktionellen Gruppen verursachten gegensitzliche Beziehungen zu
Landschaftsvariablen auf verschiedenen rdumlichen Skalen. Entgegen unserer
Erwartungen nahmen Vo6gel in unserem System keinen Einfluss auf die biologische
Schidlingsbekimpfung durch Insekten. Die Vogelvielfalt war auBlerdem
unbeeinflusst von der regionalen Anbauvielfalt. Doch dominante funktionelle
Vogelgruppen  profitieren von der Vielfalt nicht agrarisch genutzter
Landschaftsaspekte. Diese Ergebnisse betonen den Wert einer Mischung aus
unterschiedlichen lokalen und landschaftsbezogenen Ansitzen zur Okologischen
Intensivierung. Gleichzeitig kann der Erfolg Okologischer Intensivierung vor allem
dadurch erhoht werden, dass Stakeholder in den Forschungsprozess eingebunden
werden. Dies steigert die Qualitit der Forschung und reduziert die
Wahrscheinlichkeit, wahrend der Umsetzung auf untberwindbare Hirden zu

stof3en.
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griculture plays an integral role in the history of human civilization, as

it builds the foundation of population growth, wealth and well-being.

At the same time, however, intensive agricultural practices threaten the
stability and resilience of natural ecosystems, as biodiversity and associated
ecosystem services are eroded. Humanity faces the challenge of drastically changing
the ways in which food is produced, or suffering from the long-term negative
consequences, if natural resources and ecological processes are deteriorated beyond
repair. Using ecological theories and knowledge of traditional farming systems,
researchers investigate alternative ways of farming that could increase the
sustainability of modern agriculture. One such approach is ecological
intensification, which actively manages on- and off-farm biodiversity to enhance
essential ecosystem services such as nutrient cycling, pollination and biological pest
control. The EU-funded project Liberation (LInking farmland Biodiversity to
Ecosystem seRvices for effective ecological intensification) aimed to provide the
evidence base for ecological intensification. Within this framework I aimed to
identify ecological pathways to ecological intensification. My research focused on
1) the relative effects of soil, management and landscape on biodiversity and yield
in winter wheat (Chapter II), 2) the role of landscape-level crop diversity on the
ecosystem service pest control (Chapter III) and overall and functional bird
diversity (Chapter IV), and 4) obstacles and opportunities for implementing
ecological intensification, based on numerous dissemination activities conducted

within the project Liberation (Chapter V).



Chapter I

Agriculture / wgrikaltfa(t)/ noun
The science or practice of farming. Middle English adaptation of the Latin word

agricultira, from ager (field) and cultura (cultivation)

I.1 Sculpting the earth with scythe and plough

The history of agriculture began with the unwillingness and inability of
humankind to continue living as hunters and gatherers, chasing animal prey and
relying on naturally grown resources to provide nourishment. So, in a gradual
process starting around 10,000 years ago (Smith, 1998), humans settled. They tried
themselves on cultivating and domesticating crops and livestock, thereby increasing
the global carrying capacity that previously restrained population growth. While the
benefits of agriculture were soon mirrored in human demography, the biggest
break-through came with the green revolution starting in the 1960s, when global
food productivity skyrocketed and undernourishment decreased due to the creation
of high-yielding varieties of staple crops (wheat, rice, maize), technical advancement
and agricultural intensification (Tilman e a/, 2002; Pingali, 2012). Today,
agricultural production areas cover ¢ 40% of terrestrial land (Foley ¢z a/., 2005) and
provide us with the basis of human existence: agricultural products such as cereals,
fruit, vegetables and meat. However, despite its benefits, the green revolution has
come at a price, as social, environmental and ecological costs of intensive agriculture

accumulate.

First gradually, almost unbeknownst, then (over the last decades)
increasingly self-evident has agriculture and human ingenuity chiselled its marks
onto the surface of the earth: it has turned heterogeneous, biodiverse landscapes
into endless monocultures, and benign natural systems into pesticide- and nitrogen-
laden artificial mass production areas (FAOSTAT, 2001; Tilman e al., 2002; Foley
¢t al., 2005). It has also reshaped human culture, the way we live, affect and perceive
nature. Urbanization has dramatically increased, idyllic small-scale subsistence
agriculture has been replaced by large-scale industrial farming businesses.

Landscape simplification, farm specialization and intensive agricultural practices
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have caused unprecedented environmental damage (e.g. nutrient overloading,
erosion) and biodiversity losses (Benton e# al., 2003; Foley ez al., 2005). Biodiversity
losses are particularly heavy for insects and farmland birds (Hallmann ez a/., 2017,
BirdLife International, 2018), which suffer from the decline in resource availability

and habitat diversity.

The impacts of agriculture on the environment and biodiversity in itself beg
the question whether it is the moral obligation of humankind (the causal factor of
change) to mitigate and counteract these trends. Should we preserve global diversity
for the enjoyment of future generations and in its own interest? Yet there is more
at stake than the loss of species. Intensive agricultural practices influence essential
ecosystem services provided by functional diversity, such as pollination, pest
regulation and soil services (e.g. nutrient cycling) (Altieri, 1999; Millenium
Ecosystem Assessment, 2005; Bianchi e7 a/., 2006). Worldwide, the annual value of
these ecosystem services has been estimated as topping US$117 billion (US$19.6
billion for cropland), US$417 billion (US$33.6 billion for cropland), and US$17

trillion (no values for cropland available), respectively (Costanza ef al., 1997).

With biodiversity and ecosystem services threatened by intensive
agriculture, trade-offs between environmental (biodiversity conservation,
ecosystem health), economic (productivity) and social goals (food security, public
health) are inevitable (Foley ez al, 2005; Birkhofer e# al, 2008; Kleijn ez al., 2011;
Kremen & Miles, 2012; Seufert ef al, 2012). Benign, healthy ecosystems with
copious amounts of natural habitat and limited or extensive agriculture harbor a
high diversity of plant and animal taxa. In contrast, intensively managed, high-
productivity regions with large amounts of agrochemical inputs, simple crop
rotations, high levels of soil disturbance and lack of seminatural structures are likely
to be species poor. Focusing on individual, economic benefits of farming, intensive
agroecosystems offer the greatest rewards, but associated negative externalities are
not restrained within farm boundaries, and extent across regions and society as a
whole (Stoate e¢# al., 2001). Thus, the long-term direct (investment) and indirect
(ecological, socioeconomic and environmental) costs of agricultural practices such
as pesticide application often outweigh the perceived benefits for farmers and crop

productivity, especially if considering expenses for externalities that cannot be
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accurately valued (Wilson & Tisdell, 2001; Pimentel, 2005). Nevertheless,
humankind has become reliant on high-yielding agriculture to feed the ever growing
human population and ward off recurrent food shortages. Accordingly, current
research efforts focus on the development of alternative ways of farming able to
maintain or enhance agricultural productivity while reducing environmental and

ecological externalities.

.2 Thinking outside the box

Underlying recent research efforts aimed at mitigating the negative effects
of agricultural intensification are two approaches that are opposing means to the
same end: land-sparing vs. land-sharing (Green ef 4/, 2005). In the first case,
wildlife-friendly farming (conservation of natural habitat, extensive management of
seminatural habitat, and reduction of fertilizer and pesticide inputs) favours wildlife,
yet often depresses yields (Rosenzweig, 2003). Considering the growing demand for
food, this may require further conversion of natural habitats for agriculture,
although species of conservation concern are often limited even on extensive
cropland. In the land-sparing approach, yields on existing cropland are increased to
compensate for yield losses resulting from habitat restoration efforts (Green ez al,
2005). In the end, the greatest likelihood of achieving a positive balance of
productivity and conservation goals may be positioned somewhere in the middle
between the land-sharing and land-sparing continuum, as demonstrated by
‘ecological intensification’ (Figure 1.1). Ecological intensification aims to minimize
external inputs and enhance agricultural sustainability by actively managing
biodiversity and yield-supporting ecosystem services (Doré e al., 2011; Bommarco
et al., 2013; Pywell ez al., 2015; Gurr ef al, 2016). Its success depends on the
identification of ecological pathways that enhance productivity, and on the
thorough assessment of their effectiveness. This generally requires researchers and
practitioners alike to think outside the box, to delve into practical aspects of farming
or extend their horizon beyond the field boundary, respectively. This has uncovered
a range of on- and off-field factors that enhance biodiversity, ecosystem services

and, in numerous cases, yields.
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Figure I.1 Ecological intensification (left)
enhances biodiversity and associated
ecosystem services such as biological pest
control and soil fertility via beneficial
landscape and management aspects. This
allows for the reduction of practices (e.g.
pesticide and fertilizer application)
associated with agricultural intensification
(tight). Graphic © Liberation

[.2.1 On-field pathways to ecological intensification

As the intensity of agricultural management is a key determinant of
biodiversity, it stands to reason that various tools of ecological intensification rely
on the adaption of management processes. This includes, infer alia, the amount of
agrochemical inputs, soil and crop management regimes and field diversification

practices.

Agrochemical inputs play a vital role in productivity growth, yet
concurrently (and unintentionally) cause environmental change and biodiversity
declines. For instance, mineral fertilization attracts pests to fields by enhancing crop
quality, and detrimentally affects some soil-dwelling, predatory insects (Birkhofer ez
al., 2008; Garratt ez al., 2011). Spraying of herbicides and insecticides may reduce
pollination and biological pest control by affecting non-target beneficial organisms,
with negative follow-on effects for productivity and higher trophic levels (Birkhofer
et al., 2008; Geiger et al., 2010; Brittain & Potts, 2011; Krauss ef a/., 2011; Jonsson ez
al., 2012). Moreover, the practice of mixing different substances for plant protection
may further accelerate the negative impacts on plant and animal biodiversity by
creating new, deadly chemical compounds. In contrast, the targeted culprits, be it
pathogenic fungi, weeds or pests, often evade decimation by evolving resistances
against fungicides, herbicides and insecticides, consequently lowering the utility of
pesticide application (Gould ez a/., 2018). Seed dressing with neonicotinoids only
superficially lessens the influence of insecticides by locally and systemically acting

on arthropod pests (Goulson, 2013). Studies show, that neonicotinoids accumulate



Chapter I

in soils and travel through the food chain via herbivores, nectar or pollen, impairing
or killing non-target predators and pollinators, and consequently decreasing yields
(Goulson, 2013; Douglas ¢ al., 2015). Furthermore, direct or indirect consumption
of these toxic chemicals causes mortality in vertebrates such as birds and mammals

(Goulson, 2013; Hallmann ez 4/, 2014).

In light of the long list of externalities and future potential deficits in non-
renewable resources required for the production of some agrochemicals, a
reduction in their use seems unavoidable. Although this may in some cases translate
to lower productivity, the long-term socioeconomic, ecological and environmental
benefits outweigh the disadvantages. For instance, decreased mineral fertilizer and
insecticide input can facilitate pollinators (Brittain & Potts, 2011), predators (Geiger
et al., 2010; Krauss ¢t al., 2011; Gagic et al., 2017) and parasitism rates (Jonsson ez al.,
2012), while at the same time lowering pest pressure and crop damage (Birkhofer ¢#
al., 2008; Geiger et al., 2010; Krauss ef al., 2011; Garratt ef al., 2018b). Vertebrates
such as birds also benefit from reduced pesticide application (Filippi-Codaccioni ez
al., 2010; Geiger et al., 2010). Accordingly, adaptation of agrochemical input regimes
offers ecological pathways for augmenting biodiversity, ecosystem services and

productivity.

In addition to agrochemical inputs, unsustainable soil management in form
of low organic carbon input or soil disturbance is a major driver of soil-related
biodiversity declines. Apart from enhancing soil quality, nutrient availability, water
retention and plant growth, soil organic carbon (SOC) plays a vital role in
agricultural systems by sustaining detritivore communities that act as alternative
prey for soil-dwelling predators throughout the year (Birkhofer e a/, 2008).
However, ploughing alters the physical characteristics of the soil and speeds
decomposition of soil organic matter (Tilman ef a/, 2002). Hence predators and
biological pest control benefit from farming practices that enhance SOC (organic
farming and fertilization, (Kromp, 1999; Birkhofer ¢z a/., 2008; von Berg ¢f al., 2010)
and lower soil disturbance (reduced tillage (Kromp, 1999; Tamburini ez a/, 2015,
2010)), as do farmland birds that either rely on insect prey or undisturbed on-field

nesting sites (McLaughlin & Mineau, 1995). Additionally, soil characteristics such
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as soil pH and soil type define biodiversity and productivity, but farmers are mostly

unable to control these variables.

Other crop management factors are directly influenced by the farmer’s
decision of how to manage her land within the limits and regulations set by
agricultural policies and socioeconomic boundaries. Biodiversity and ecosystem
services respond to current and historic aspects of crop management, including
sowing date and density of crops (Ozturk ez al, 2006; Valério et al, 2013),
fertilization regimes (Edmeades, 2003), length of crop rotation (O’Rourke ez @/,
2008; Rusch ez al., 2013) or the frequency and intensity of ploughing (Tamburini ez
al., 2015, 2016).

Of all potential on-field management measures utilising ecological pathways
for a sustainable agriculture, field-scale diversification has received the greatest
attention — at least from the scientific community. Diversification practices
counteract the recent trends of homogenizing agroecosystems on spatial and
temporal scales, which has lowered the availability of resources and habitats for
biodiversity (Benton ez al., 2003). Examples of diversification practices include
mixed cropping, extended crop rotation schemes and the establishment of complex
edge structures and flower plantings. Recent studies show that diversified cropping
can enhance biodiversity and ecosystem services such as pollination and pest
control (Kromp, 1999; Rusch ez al., 2010; Ratnadass ez a/., 2012; Kennedy ez al., 2013;
Dassou & Tixier, 2016; Tschumi e al., 2016; Lichtenberg ¢ al., 2017; Boetzl et al.,
2018). Furthermore, and depending on the type of diversification practice, it may
even promote win-win situations between conservation and productivity
(Letourneau ef al., 2011; Pywell ez al., 2015; Gurr ez al., 2016; Tschumi ez al., 2016).
However, this is not always the case if main crops are replaced with non-crops or
cropping density increases in schemes with additive planting (Poveda ez a/, 2008;
Letourneau ez al., 2011; Iverson et al, 2014). In the context of organic farming,
extended crop rotations and mixed cropping reduce the often pronounced yield gap
compared to conventional farming (Ponisio e al, 2014), providing additional

socioeconomic and environmental benefits.
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[.2.2 Off-field pathways to ecological intensification

Similar to on-field homogenization (simple crop rotations, monocultures),
landscape wide loss of habitat diversity and heterogeneity is a major cause of change
in agroecosystems, directly or indirectly affecting insect and bird biodiversity and
associated ecosystem services (Benton ez a/, 2003). Management for ecological
intensification and functional biodiversity comprises increases in heterogeneity of
two landscape aspects: composition and configuration (Fahrig ez a/, 2011). The
effects of both aspects strongly depend on the study region, taxon and spatial scale
considered (Gabriel ez al., 2010; Miguet ef al., 2013; Rusch et al., 2013; Shackelford
et al., 2013; Jackson & Fahrig, 2015; Martin ez al, 2016). At the same time,
composition and configuration variables are often strongly correlated, thus

disentangling their individual and interactive effects is inevitable (Fahrig ef a/, 2011).

Compositional aspects of heterogeneity include the amount of habitat
within a landscape (e.g. natural or seminatural habitats, cropland, urban areas) or
the overall assemblage of different habitat types (e.g. the diversity of habitats).
Depending on the taxon and its required resources, low compositional
heterogeneity often implies low functional diversity and abundance. This is
particularly true for mobile species and the ecosystem services they provide.
Pollinators, predators and birds are known to benefit from seminatural habitat and
the availability of additional non-crop resources and habitats (Gardiner e a/., 2009;
Fahrig et al.,, 2011; Kirk ez al., 2011; Chaplin-Kramer & Kremen, 2012; Siriwardena
et al., 2012; Josefsson et al., 2013; Gil-Tena e al., 2015; Dainese ¢z al., 2016; Rusch ez
al., 2016; Boesing ez al., 2017). Biological pest control can also respond positively to
interannual changes in host plant cover (Schneider ¢z a/., 2015; Bosem Baillod e 4/,

2017).

A compositional aspect rarely considered is landscape-level crop diversity
(i.e. the number and evenness of crops grown within a given landscape) (Fahrig ez
al., 2011). Similar to non-crop aspects of landscape composition, crop diversity can
enhance biodiversity and ecosystem services by providing complementary
resources and habitats in space and time, facilitating the co-existence of species with
multiple, seasonal extended resource requirements or different niches (Fahrig ez al.,

2011; Kremen & Miles, 2012; Rusch ez a/., 2013; Palmu ¢/ al., 2014; Schellhorn ez a/.,
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2015). The importance of crop resources may rise with increased homogeneity of
non-crop habitats that are often deteriorated beyond functional importance (Martin
et al., 2016; Tscharntke et al, 2016). Nevertheless, its role for biodiversity is
ambiguous, showing very context-specific and opposing effects for insects (Palmu
et al., 2014; Fahrig ez al., 2015) and birds (Firbank ez /., 2008; Lindsay ez al., 2013;
Fahrig e al., 2015; Hiron ez al., 2015; Josefsson ez al., 2017). Even less clear is the
function of crop diversity for ecosystem services such as biological pest control
(Chaplin-Kramer & Kremen, 2012; Holland e7 a/., 2012; Bosem Baillod ez /., 2017).
Nevertheless, it is now an integral part of the European Common Agricultural
Policy, requiring farmers to reach specific levels of crop diversification (‘Greening’,
EU Regulation No. 1307/2013). Similar to the enhancement of landscape-level
hedgerow cover (Dainese e/ al., 2016), this measure precludes yield losses due to
cropland conversion or plant competition common to small-scale diversification
practices (Lin, 2011). Concurrently, crop diversification enhances global food
security and resilience against climate change by maintaining the functional
redundancy of beneficial organisms (Lin, 2011; Bommarco ez /., 2013; Aguilar ez al.,
2015; Schellhorn ez al., 2015).

Landscape configuration has received less attention than composition,
despite evidence for its relevance as conservation measure and potential tool for
ecological intensification. The spatial arrangement of habitats determines their
connectivity and the dispersal ability of plants and animals, especially in strongly
fragmented agricultural landscapes (Fahrig e¢f a4/, 2011). In heterogeneous
landscapes, this often translates into benefits for ecosystem services. For instance,
the distance to source habitats and the density of habitat patches affects wild bee
richness and the pollination of wild plants (Hopfenmiiller ez 4/, 2014; Ekroos et al.,
2015), although other taxa such as farmland birds may respond negatively to
configurational heterogeneity (Hiron ef al, 2015). Nevertheless, recent studies
highlight the value of small field sizes for both birds (Lindsay ez @/, 2013; Fahrig ez
al., 2015; Jeliazkov et al., 2016; Josefsson ez al., 2017) and invertebrates (Kromp,
1999; Fahrig ez al., 2015; Bosem Baillod e# a/., 2017). Similar advantages for the
biodiversity of mobile predators have been found in landscapes with high edge
density (large amount of ecotones, i.e. transition zones between habitats) (Martin ez

al., 2016).
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[.2.3 Interactive effects of on- and off-field variables

In many cases, management and landscape factors do not act in isolation,
but interactively influence biodiversity, ecosystem services and yield (e.g.
(Tamburini ez al., 2016; Bosem Baillod ez al., 2017; Gagic ef al., 2017)). For instance,
the intermediate landscape complexity hypothesis states that management for
biodiversity conservation is most effective in structurally simple rather than cleared
out or complex landscapes (T'scharntke 7 /., 2012). Similarly, landscape-scale crop
diversity may be most relevant in landscapes with limited non-crop habitat (Palmu
et al., 2014; Josefsson et al., 2017). Here, diversification or other extensification
practices (i.e. lowering the intensity of farming) can provide additional habitats or
essential resources otherwise lacking in the surrounding non-crop matrix

(T'scharntke ef al., 2005; Josefsson ez al., 2017).

I.3 Liberating biodiversity

Disentangling the individual and interactive effects of on- and off-field
practices for biodiversity and ecosystem services as well as their usefulness for
ecological intensification is a major chore, especially in real-life ecosystems. Yet this
was the main objective of the EU funded project Liberation (LInking farmland
Biodiversity to Ecosystem seRvices for effective ecological intensification,
http:/ /www.fp7liberation.eu/home). The Europe-wide project (2013 — 2017)
aimed to provide the evidence base for ecological intensification, and examined
ecological, economic and social aspects of this approach (Figure 1.2 B). It was novel
in its assessment of synergies and trade-offs between different aboveground (pest
control, pollination) and belowground (soil fertility, nitrogen mineralization)
ecosystem services. For instance, a large joint experiment across the seven
participating countries (Figure 1.2 A) explored how local management practices
(fertilizer application, insecticide input, field soil organic carbon) in combination
with changes in cropland area at the expense of seminatural habitat determine the
abundance of pests and predators, biological pest control, and crop yields in winter
wheat (Gagic ef al, 2017). Additional analyses of existing datasets, modelling

approaches and field or greenhouse studies examined, zufer alia, general or
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interactive effects of management practices and landscape complexity on
biodiversity, ecosystem service delivery and agronomic yield or income (e.g. (Marini
¢t al., 2015; Tamburini ez al, 2015; van Gils ez al, 2016). Although some of these
studies used alternative cropping systems, the majority of research was conducted
within cereal-dominated agroecosystems, with winter wheat being the main study

crop.

The project Liberation was the setting of my doctoral thesis research, in
which I investigated ecological pathways to ecological intensification in winter
wheat, with a focus on 1) the relative effects of soil, management and landscape on
biodiversity and yield in winter wheat (Chapter II), 2) the role of landscape-level
crop diversity on biological pest control (Chapter III) and overall/functional bird
diversity (Chapter 1V), and 4) obstacles and opportunities for implementing

ecological intensification (Chapter V).

1.3.1 Introducing the system

Winter wheat (Triticum aestivum 1..) provides ¢ 19% of the global dietary
energy, highlighting its vital role as staple food. Despite steady increases in global
winter wheat productivity over the past decades, yields have stagnated or declined
in 37% of winter wheat production areas, indicating limits to growth (Ray ez 4/,
2012). These limits are not necessarily set by factors that initially drove major
productivity rises during the green revolution (crop breeding and the intensive use
of agrochemical). Instead, they may be dictated by above mentioned on- and off-
tield factors (Chapter II) that are either out of practitioner’s control (soil type, soil
pH) or open for adjustment and adaption on farm or regional scales (crop
management, landscape heterogeneity). These factors control some of the most
limiting, scarcest resources in modern agricultural landscapes: biodiversity-
mediated ecosystem services (application of Liebig’s law of the minimum, first

developed by Carl Sprengel in 1828).



Chapter 1

Field studies

Greenhouse
experiments

Figure I.2 Countries participating in the project Liberation (A) and methods used to
explore ecological, social and economic aspects of ecological intensification (B).

Although winter wheat is wind pollinated and therefore does not depend
on pollination by wild animals, this staple crop is highly susceptible to pests, with
the total potential (without crop protection) and actual (with crop protection) losses
to wheat yield estimated at around 50 and 28%, respectively (Oerke, 2006). Next to

weeds and pathogenic fungi such as Fusarium spp., Septoria spp. and rust, winter
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wheat is highly susceptible to bird, rodent and arthropod pests, especially
infestations and virus transmission by aphids (Hemiptera: Sternorrhyncha, most
notably in Europe the cereal grain aphid Szobion avenae (Fabricius)) and feeding
damage by cereal leaf beetle larvae Oulema spp. (Figure 1.3) (Oerke, 2006; Dedryver
et al, 2010). For winter wheat in Germany, the economic threshold of pest
infestation has been estimated at 3 to 5 aphids per ear (milk ripening phase) and 0.5

to 1 Oulema eggs/larvae per leaf (Landwirtschaftskammer NRW, 2012).

Pests in winter wheat are regulated by a diverse array of natural enemies
(Figure 1.3) ranging from specialized biological control agents such as parasitoids
(Hymenoptera, Parasitica) and ladybird larvae (Coleoptera: Coccinellidae) to
generalist predators such as ground beetles (Coleoptera: Carabidae) and spiders
(Araneae, various families) (Dedryver ef al., 2010). In the US, the value of insect-
mediated pest control is estimated at US$13.6 billion (Losey & Vaughan, 20006).
Biological control of Sitobion avenae in Southeast England alone may be worth up to
US$ 3 Million. Therefore, losses in insect biodiversity and abundance observed over
the last decades (75% in some areas of Germany (Hallmann ez 4/, 2017)) will
inevitably translate into economic ramifications. While this insect ‘Armageddon’
(Dave Goulson, highlighting the ecological consequences of insect declines), has
only recently attracted global public and political attention, negative trends in bird

biodiversity are well documented and widely bemoaned.



Chapter I

Figure 1.3 Examples of protagonists (or their damage) associated with temperate winter

wheat systems. Cereal leaf beetle Oulemna larvae can cause serious feeding damage to leaf
tissue (A). The most dominant and damaging pest is the cereal grain aphid Sizobion avenae
(B) and regulated by a variety of parasitoids (C) and predators such as syrphid larvae (D),
web-building spiders (E), ladybird adults (F) and larvae and hoverfly larvae (G). Weeds and
pathogenic fungi such as rust (H) greatly influence wheat productivity. Pictures © Redlich

Birds are a charismatic taxon of great cultural and economic importance.
Bird watchers and recreational hunters in the US spent over US$2 billion a year on
a chance to encounter birds in their natural habitats (Pimentel, 2005). However, of
the 1923 bird species listed as threatened or near-threatened on the global IUCN
Red List, 37% and 45% of species, respectively, are endangered by intensive
farming (Green et al., 2005; Kirk et al., 2011). This risk is greater for birds directly
dependent on farmland habitat. 30 European farmland birds show significantly
negative population trends (Gregory e al, 2005; Voiisek et al., 2010) and their
overall abundance nearly halved over the last three decades (Gregory ef al., 2005;
BirdLife International, 2018). Yet birds also occupy an important ecological niche.
Some species actively contribute to biological pest control by feeding on
herbivorous arthropods, thereby enhancing plant biomass and productivity in
tropical and temperate crop and non-crop environments (Tremblay e# a/., 2001;
Puckett ez al., 2009; Mooney e/ al., 2010; Maas ¢z al., 2013; Ndang’ang’a ez al., 2013b).
On the other hand, they can constrain insect-mediated biological control via

intraguild predation on intermediate predators (Mooney ef al., 2010; Mantyld ef al.,
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2011; Martin ez al., 2013). These antagonistic species interactions (Straub ez a/., 2008,
Letourneau ez al, 2011) often counteract positive biodiversity-ecosystem service
relationships (Altieri, 1999; Harrison e al., 2014), emphasising the importance of
not only assessing biodiversity effects, but also measure the actual ecosystem service

provided by naturally-occurring assemblages of predators (Chapter I1I).

Insect and bird natural enemies vary in their importance for biological pest
control (Schmidt e a/, 2003; Caballero-Lépez et al., 2012; Holland ez al, 2012;
Martin ez al., 2013; Rusch ez al., 2013; Tamburini e/ al., 2016; Dainese ¢f al., 2017).
Furthermore, they respond to different management and landscape aspects across
a range of spatial and temporal scales, depending on their mobility and resource
dependence, and the study region or system (Gabriel ez al., 2010; Miguet e7 al., 2013;
Rusch ¢7 al., 2013; Shackelford ez al., 2013; Jackson & Fahrig, 2015; Martin e# al.,
20106). In fact, not all functional animal groups benefit from non-crop habitat and
diversification, as exemplified for the bird taxon (Chapter IV). For instance,
farmland birds, despite the generally detrimental influence of agricultural
intensification on their diversity and abundance, are highly adapted to open, prairie-
like landscapes associated with agroecosystems. It is therefore essential to
investigate functional group responses to management and landscape factors that
serve as potential tool of ecological intensification (Chapter II & 1V), and study
effects on overall ecosystem service provisioning (Chapter I1I). The winter wheat-
pest-antagonist system provides ample opportunities to assess aspects of ecological
intensification on different levels of the system, not only for one scale (Chapter II),
but also using multiscale approaches (Chapter III & IV) that help to identify the
optimal scale of landscape management. The high level of pesticides used and the
strong responsiveness to agrochemical inputs and ecological processes suggests that
opportunities for ecologically intensifying this system exist by compensating
potential yield losses via the enhancement of ecosystem services such as biological

pest control.

1.3.2 Introducing the overall research design
One major component of the project Liberation was a large-scale, joint field

experiment assessing impacts of agrochemical use and landscape simplification on
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pest and natural enemy biodiversity, ecosystem services and yield (Gagic e al., 2017,
Garratt e/ al., 2018b). For this purpose, a common field study was developed, with
an average of 16 paired winter wheat fields in each participating country. My
doctoral research, conducted in 2014 near Wirzburg, Germany (49°47"° N, 9°57°
E), built upon this design by extending it to 28 fields in 14 landscapes, paired
according to contrasting soil organic carbon content (Figure 1.4, details in Chapter
IT). The study area has a long history of intensive agricultural management.
Dominant agricultural crops are cereals, sugar beet, maize and oil crops that require
high inputs of agrochemicals, especially fertilizer. At the same time, the region is
still comparatively heterogeneous on larger scales due to forest remnants,
calcareous grasslands and vineyards along the river Maine. This creates a mosaic of
landscapes of various degrees of heterogeneity ranging from highly simplified (up
to 95 % arable land) to more complex (around 15 % arable land). Landscapes were
situated along this gradient of landscape heterogeneity, and, in addition, were
selected to minimize correlations of compositional and configurational landscape
aspects with landscape-level crop diversity at multiple spatial scales (100 to 3000 m
radii around focal fields, Figure 1.4). Depending on the study question, all or a

subset of fields were used for my thesis research (Figure 1.4).

The standard experimental design of the Liberation project was
implemented on all study fields, with four subplots of 12 x 14 m size located on
one of the field edges. A crossed insecticide-fertilizer treatment was applied
haphazardly (Figure 1.5 A & B, details see Chapter II). Pictures of fields were taken
at every visit (Figure 1.5 C — E) and plant growth monitored regularly (Figure 1.5 F)

to synchronize treatment application and experiments with collaborators.
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Figure 1.4 Map of paired study sites (A) each with

a focal winter wheat field. Landscape variables
were calculated for different spatial scales. Shown
are 1000m (filled circles) and 3000m (open circles)
|| radii. All 28 sites were included in the path analysis
'-_; (Chapter II), 18 fields in the natural enemy
exclusion experiment (Chapter III, black stripes)
and 14 in bird surveys (Chapter IV, black and grey
stripes). (B) shows a field pair (yellow) with
adjacent habitat types (red = settlement, lightgreen
= seminatural habitat, darkgreen = forest, blue =

water, brown = cropland).
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1m buffer 1m buffer

Figure I.5 Experimental set-up of study plots in 28 winter wheat fields (A). Four subplots

were established on one of the open field edges. Fertilizer and insecticide treatments were
applied randomly on subplot level (B, see Chapter II). Plant growth and development was
documented with pictures (C-E, fields at establishment, midseason and at harvest,
respectively) and assessment of the BBCH (F, plant growth stage). Within each subplot,
transect surveys (dashed lines) and pitfall traps (circles) were used to assess the abundance
and diversity of pests and natural enemies (A). Natural enemy exclusion cages (black cross
= open control, red cross = full exclosure, green cross = bird exclosure) measured
biological control potential in non-insecticide plots on 18 selected fields (see Chapter 111I).
Pictures © Redlich

We conducted transect surveys and pitfall trap sampling on all 28 fields to
assess the abundance and diversity of arthropod pests and natural enemies (Figure
1.5 A). Data on weed pressure and infestations of winter wheat with pathogenic

fungi was collected along the same transects. At the end of the growing season,
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samples of wheat were harvested from every subplot. This complete data set,
coupled with detailed information on soil characteristics, present/histotic crop
management and landscape aspects was used to assess the relative effects of on-
and off-field factors on biodiversity and yield in winter wheat (Chapter II). Effects
of landscape-level crop diversity on biological pest control (Chapter III) were
investigated by establishing a natural enemy exclusion experiment on nine field pairs
(Figure 1.6, details see Chapter III). Point counts along 14 fields assessed landscape-

level crop diversity effects on bird biodiversity (Chapter IV). Full details of the

experimental setup are available in Chapters II to IV, and in Gagic ez. @/ 2017.

Figure 1.6 Initial stages of the natural enemy exclusion experiment to assess effects of
landscape-level crop diversity on biological pest control (Chapter III). Cereal grain aphids
Sitobion avenae were reared on winter wheat (A), fiber tents (B) were erected and all pests
and natural enemies within removed by hand and using pitfall traps (C) prior to aphid
inoculation, with four tents within each non-insecticide plot (D). Ten days later, exclusion
treatments were established (see Chapter III). Pictures © Redlich
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[.4 Going the extra mile — from research to action

Disentangling the individual and interactive effects of on- and off-field soil,
management and landscape aspects on biodiversity and ecosystem services helps to
close the knowledge gap related to the mitigation of agricultural externalities.
Although progress is comparatively slow, mostly due to the complexity of real-life
ecosystems and potential synergies and trade-offs of mitigation methods, some
important advances have been made in the field of ecological intensification.
Unfortunately, research findings are rarely implemented, more commonly in social,
health and conservation than in agricultural sciences (Ormerod et al, 2002;
Anonymous, 2007; Born ez al., 2009; Agre & Leshner, 2010; Memmott ez a/., 2010;
Eagleman, 2013; Hulme, 2014). This knowledge and implementation gap
jeopardizes the utility of alternative farming approaches such as ecological
intensification. Research can only promote change if it reaches the end users of

knowledge: practitioners and policy makers.

Accordingly, an important component of the EU project Liberation was the
dissemination of knowledge to stakeholders and the general public. Supported by
my colleague Dr. Audrey St-Martin, I organized and conducted numerous outreach
activities ranging from an information booth at the bi-annual agricultural exhibition
of the German Agricultural Society in (DLG), talks (e.g. within the DLG forum
during field exhibition, as invited speaker in the plant protection committee of the
DLG or the seminar series of the biosphere reserve Rhon), a radio interview (SWR2
Impuls — Das Wissensmagazin), several press releases and, most importantly, two
stakeholder workshops on a regional demonstration farm (Figure 1.4). These
dissemination activities were the foundation of TREE, a guideline aimed at
enhancing the uptake of ecological intensification or other ecological farming
approaches by emphasizing the crucial role of stakeholder engagement before,

throughout and after implementing a research project (Chapter V).
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Figure 1.4 Impressions of the public outreach activities within the project Liberation.
Information booth (A) and flower strip (B) at the DLG agricultural exhibition, public talk
in the DLG forum (C), showcasing identification guides and nests of solitary bees (D) and
sampling methods for pollinators and ground-dwelling arthropods (E), stakeholder
workshop (F) and guided tour of demonstration farm (G) led by collaborating farmer
Werner Kuhn (owner of demonstration farm). Pictures © Redlich & Wischemann
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1.5 Thesis in a nutshell

This thesis is a compilation of research I conducted within the project
Liberation, with the main aim of exploring the role of soil, management and
landscape factors on biodiversity, ecosystem services and ecological intensification.
It comprises four parts, covering different aspects of a cereal-pest-antagonist
system, and highlighting the contribution of stakeholder engagement in the transfer

from research to action.

Biodiversity and yield can be influenced by a variety of on- and off-field
factors, and assessing their relative importance is an essential first step towards
identifying alternative pathways to ecological intensification. Therefore, I used the
combined set of 28 winter wheat fields to investigate the role of 34 soil, crop
management (recent and historic) and landscape variables for arthropod pests,
natural enemies and yield components. For this purpose, I crossed an observational
study of biodiversity in real-life agroecosystems with an on-field insecticide-
fertilizer experiment. This is one of the first studies to concurrently quantify the

effects of numerous drivers usually studied in isolation. (Chapter II).

Landscape effects on biodiversity vary depending on the spatial scale
considered, so that choosing an inappropriate scale could mask existing beneficial
effects. Simultaneously, positive relationship between landscape heterogeneity and
natural enemy diversity and abundance does not always translate into enhanced
biological pest control, as intraguild predation may interfere. This is particularly true
for trophic interactions related to birds and their arthropod (predatory) prey. Using
a natural enemy exclusion experiment, I assessed the influence of multi-scale
landscape-level crop diversity on biological pest control of the cereal aphid Sizobion
avenae on 18 winter wheat fields. The role of avian predation for total and insect-
mediated biological control was examined with the selective exclusion of

insectivorous birds (Chapter III).

Responses to landscape aspects such as crop diversity strongly depend on
the taxon and functional group considered, as resource and niche requirements
vary. For example, farmland, insectivorous or red-listed birds may show diverging

relationships with crop diversification, both in relation to its importance and the
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scale of effect. These diverging responses between functional groups (feeding guild,
conservation status, habitat preference, nesting behaviour) were assessed in an

observational study of bird biodiversity on 14 winter wheat fields (Chapter IV).

Identifying ecological pathways that favour biodiversity and ecosystem
services provides tools for ecological intensification that increase the likelihood of
balancing conservation and productivity goals. However, change will be slow to
come if research findings are not implemented on a global scale. In my last paper,
I develop the “TREE’ concept (Target-Research-Engage-Exploit), which builds
upon feedback and stakeholder opinions collected in numerous dissemination
activities. TREE acts as a guide for scientists aiming to increase the applied impact

of their research and facilitate the uptake of ecological intensification. (Chapter V).
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Chapter 11

Ecological pathways to high yields in conventional cereal

systems
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onventional farming is associated with large-scale threats to biodiversity,

the disruption of ecosystem services and long-term risks for food security

and human health. Here, we use a real-life ecosystem approach to explore
ecological pathways to high yields in German cereal systems, whereby enhanced
natural pest control allows for the reduction of intensive agricultural practices. On
28 conventional winter wheat fields selected along a gradient in landscape
heterogeneity, we conducted field experiments with crossed insecticide-fertilizer
treatments. We then used path analysis to assess the direct and indirect effects of
pesticide use, landscape heterogeneity, soil characteristics, weed and disease
pressure, historic and current field management, pest and natural enemy
abundances on yield. We identify a range of soil and management characteristics
that enhanced productivity independently of external agrochemical inputs (e.g.
reduced soil preparation, high crop rotation diversity). Simultaneously, pest control
potential could be restored by strengthening observed links between natural
enemies and landscape heterogeneity (mean field size) or local management aspects
(crop rotation diversity, no-till). We conclude that wheat systems offer a range of
ecological pathways by which ecosystem services could be enhanced while reducing
agrochemical usage and negative environmental impacts of conventional

agriculture.
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11.1 Introduction

Functional biodiversity generates essential ecosystem services to agriculture
such as biological pest control, pollination and soil services (e.g. nutrient cycling).
Yet intensive agricultural practices cause large-scale threats to biodiversity, and
consequently they disrupt ecosystem services and pose long-term risks for food
security and human health. A potential solution is offered by the ecological
intensification of farming, which aims to manage yield-supporting ecosystem
services to minimize external inputs and enhance agricultural sustainability
(Bommarco et al, 2013; Pywell et al, 2015; Gurr et al., 2016). For ecological
intensification to be effective, it is essential to identify ecological pathways able to

sustain yields while using less intensive conventional farming practices.

Winter wheat (Triticum aestivum L.) is one of the most important staple foods
in the world, providing ¢. 19% of global dietary energy. Although global wheat
productivity has increased steadily over the last decades, 37% of production areas
show stagnating yields, indicating limits to growth (Ray e# a/., 2012). These limits are
set by a variety of on- and off-field factors: soil characteristics including soil organic
matter content (Tamburini ez a/, 2015; Gagic ez al., 2017), crop management (e.g.
sowing density, fertilization regime (Edmeades, 2003; Ozturk ez /., 2006; Valério ef
al., 2013)), and natural processes such as herbivory, infections with pathogenic fungi
and pest control (Dedryver ef al, 2010). Additional indirect effects on yield are
mediated by the consequences of soil conditions (Birkhofer ¢z a/, 2008; Kremen &
Miles, 2012), agricultural management (von Berg ez al, 2010; Garratt ez al, 2011;
Krauss ez al, 2011; Jonsson et al, 2012; Tamburini e al, 2016) and landscape
heterogeneity (Fahrig e al, 2015; Martin e al., 2016; Bosem Baillod e# al., 2017,
Redlich e @/, 2018) on pest-enemy interactions and soil services (e.g. nutrient
cycling). Further, these soil, management and landscape factors often do not act in
isolation, but may interactively influence predators, prey, and yield (e.g. (Tamburini
et al., 2016; Bosem Baillod ez al., 2017; Gagic et al., 2017)). To date, it is still unclear
how multiple factors influence yields, and which ecosystem services could be
utilized for ecological intensification by replacing or reducing current external

inputs. Furthermore, not all potential direct or indirect drivers of wheat productivity
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lend themselves to manipulation. Yet, these need to be acknowledged in order to

assess the relative importance of alternative pathways for yield provision.

In this study, we aim to identify ecological pathways able to maintain high
yields in conventional wheat systems by utilizing biological pest control services.
Within a landscape heterogeneity gradient, we implemented a factorial on-field
pesticide experiment and quantified potential drivers of yield related to five broad
categories (Figure II.1), based on agro-ecological theory. We deliberately chose a
real-life exploratory approach to account for criticism by practitioners regarding the
transferability of results from small-scale, controlled experiments to real
agroecosystems. In real-life systems, interactions among management or landscape
factors commonly result in unexpected outcomes (Tylianakis ez a/., 2008), thereby
curtailing anticipated benefits for farmers and their trust in the practical applicability
of research. We thus specifically included factors usually studied in isolation (e.g.
pathogen occurrence, soil characteristics and historic crop management). We used
structural equation modelling (SEM) to disentangle direct and indirect linkages
between drivers and yield components (Figure 11.1). We expected that 1) local crop
management, soil characteristics and landscape heterogeneity determine pest
pressure (including weeds and diseases) and the abundance of natural enemies; 2)
relationships between trophic levels (crop-pests-predators) can be either negative
(top-down processes, i.e. herbivory and pest control) or positive (resource-driven,
bottom-up processes, i.e. host and prey availability) (Vidal & Murphy, 2018); and 3)
combined effects of agrochemical inputs, soil services and pest control determine

realised yields. .

11.2 Materials and Methods

I1.2.1 Study design

Study design followed a paired-field design described in (Gagic ez a/., 2017)
(Appendix 1, Figure I1.S1). Fourteen pairs of winter wheat fields (28 fields) were
selected in 2014 near Wiirzburg/Germany (49°47° N, 9°57" E) along a landscape
heterogeneity gradient defined by the % seminatural habitat cover within a 1 km

radius around fields. Fields were paired according to contrasting soil organic carbon
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content (SOC). Average distance (meantSD) within and between field pairs was
1.0720.9km and 11.21%£3.75km. On each field, a randomized, fully-crossed

experiment with pyrethroid insecticide (yes/no) and mineral fertilizer application

(yes/no) was implemented in four treatment plots (12x14m each) (Appendix 1).

Soill Weed/
characteristics Diseases
Landscape Natural ] — —3 Yield
heterogeneity enemies | < components
Insecticide Crop
management

Figure II.1 Conceptual diagram used for path analysis, showing expected direct and
indirect effects of ecosystem services on yield components (grain yield, thousand kernel
weight, plant biomass; white). Drivers of productivity may relate to pest regulation
(approximated by natural enemy abundances, insecticide application; blue), pests and
diseases (pest abundances, weed cover, incidence of pathogenic fungi; red), landscape
heterogeneity (aspects of landscape composition and configuration such as mean field size;
orange), soil characteristics (soil type, pH, organic matter content; yellow) and current and
historic crop management (e.g. sowing density, fertilization, crop rotation diversity; green).
Arrows indicate the expected direction of the effect. Double-ended arrows show potential
species interactions within groups.

I1.2.2 Direct and indirect drivers of yield

A total of 34 explanatory variables were considered as direct or indirect
drivers of yield in our system. A first set of environmental variables related to soil
characteristics and SOC content as a proxy for SOM. Crop management data was
derived from the experimental set-up (fertilizer application) and from farmer
surveys performed in autumn 2014. Farmer surveys covered past (mean data
availability 11.25 *

0.43 years) and recent crop management information.

Landscape heterogeneity was assessed in circular areas of 1 km radius around study
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fields using ArcGIS v. 10.4 (ESRI) with a focus on variables relevant for pests and
arthropod antagonists, including variables of landscape configuration and

composition (see Supplement, Table I1.S2).

A second set of biotic variables included the abundance and activity density
of pests and natural enemies in treatment plots (#=112). For this we considered
eight functional groups of pests and natural enemies. Leaf-dwelling predators and
pests were assessed in three consecutive visual transect counts (one before, two
after insecticide application), then summed to estimate pest pressure and pest
control potential throughout the growing season (Appendix 1). Due to differences
in the feeding behaviour of aphids (Hemiptera: Sternorrhyncha), we distinguished
between the English grain aphid S##obion avenae (Fabricius) which preferentially feeds
on the grain, and the rose-grain aphid Mezopolophinm dirhodum (Walker) which feeds
on stem and leaves. Cereal leaf beetles Oulerna spp. (Coleoptera: Chrysomelidae)
were grouped as cither larvae (sessile) or adults (winged). Leaf-dwelling predators
were classed as ‘active flyers’ (ladybirds [Coccinellidae, adults and larvae], hoverflies
[Syrphidae, larvae], lacewings [Chrysopidae, larvae]) or ‘passive flyers’ (wind-
dispersed web-building spiders [Araneae]). Activity density of two groups of soil-
dwelling predators (ground beetles [Carabidae] and ground-hunting spiders [mainly
Lycosidae]) was determined using pitfall traps within each treatment plot for ten
consecutive days (one sampling round after insecticide application). Additionally,
we surveyed forb and grass weed cover in each treatment plot. As grass cover was
low, only forbs were used in analyses. Incidence of the pathogenic fungi Fusarium
and rust (Puccinia spp.) was assessed in two visual pathogen surveys (Appendix 1).
These biotic variables covered the potential drivers related to pest or disease
occurrence and pest regulation, the latter also including the experimental treatment

‘insecticide application’ (Figure II.1).

Details of variable measurement, sampling and summary statistics per plot

are provided as supplementary material (Supplement, Table I1.S1).
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[1.2.3 Estimation of yield components

In every treatment plot (#=112), we measured three aspects of yield, namely
moisture-adjusted grain dry weight (‘grain yield’, t ha'), thousand kernel weight
(TKW, @) and air-dried plant biomass (without grain, kg m™). These three yield
components were treated as final response variables in our analysis (Supplement,

Table IL1.S1).

[1.2.4 Statistical analysis

To quantify direct and indirect effects of explanatory variables on yield
components we developed a piecewise structural equation model (SEM) (Figure
II.1). The SEM consisted of eleven individual path models with the response
variables grain yield, plant biomass, TKW, . avenae, M. dirbodum, Oulema larvae,
Oulema adults, ground spiders, predatory carabids, active and passive flyers.
Abundances of pests and predators were log-transformed to improve normality of
residuals. A random intercept of Field nested in Pair accounted for multiple
sampling within landscapes and fields. The linkages of individual path models were
defined by performing linear mixed effects models of the responses against
hypothesized, preselected predictors, with preselection based on ecological theory
and Pearson’s correlation values (Table I1.S2). The SEM was then simplified by
removing non-significant terms (p-values > 0.05) from resultant full individual path
models using backwards elimination (Tables 11.S2 & II.S3). Fixed terms with
marginal p-values (0.05 — 0.1) or initially excluded from models for lack of known
ecological theory only entered individual models if their inclusion increased SEM
fit (based on AICc, mean field size influencing S. avenae abundance) or the directed
separation test (D separation test (Shipley, 2009) revealed missing links with
significant path coefficients (effects of sowing date on M. dirhodum and predatory
carabids), respectively. As preliminary analyses did not reveal any interactive effects
of soil characteristics and fertilisation regime on yield and soil-dwelling predators
(Table I1.S4), no interactions were included in individual path models. If partial
correlation plots suggested non-linear relationships between response and
explanatory variables, polynomial terms (quadratic or cubic) were fitted. For trophic
relationships, we first assumed top-down, negative effects of enemies on pests and

of pest variables on yield. However, if positive, resource-driven correlations were



Opportunities and obstacles of ecological intensification

observed, the direction of links was adapted accordingly (Table I1.S2). Final
individual path models (Table II.S3) were validated graphically for normality,
homoscedasticity and spatial auto-correlation (Moran’s I, p-values >0.802).

Collinearity in models was low (variance inflation factor <3).

The final, simplified SEM showed a good fit (D separation test, Fisher’s C
= 356.2, P = 0.215 (Shipley, 2009)). Conditional model fit (R? of individual path
models was high, ranging from 37 to 74% of variance explained (Figure 11.2). The
relative importance of predictors included in the final SEM was assessed using

standardised path coefficients scaled by mean and variance (Schielzeth, 2010).

We used additional mixed effects models to assess whether responses to
insecticide were masked by pooling abundance data across surveys. We fitted
separate models for all pests and leaf-dwelling predators (no temporal sampling for
soil-dwellers). Fixed terms were ‘Survey’ (three levels), insecticide application
(ves/no) and their interaction. Post hoc Tukey multiple compatisons evaluated
significant differences in abundance between surveys. A random term

(Pair/Field/Plot) accounted for repeated sampling within each treatment plot.

All analyses were performed in R version 3.3.2 (R Development Team,
2016) using packages ‘nlme’(Pinheiro ez al., 2016), ‘PiecewiseSEM’ (Lefcheck, 2016),
‘car’(Fox & Weisberg, 2011) and ‘visreg’(Breheny & Burchett, 2017).

11.3 Results

Our results reveal the combined direct effects of local management, insect
pests, weeds and soil processes, and indirect effects of mainly natural enemy-
mediated landscape factors on yield components. Grain yield, plant biomass and
TKW per plot varied between 2.8 and 14.7 t ha'! (mean®SE: 7.61+0.24), 0.2 to 1.7
kg m™ (0.810.03) and 36.7 to 53.3 g (44.03£0.32), respectively. Differences in yield
were directly related to soil characteristics, crop management and pest pressure, and
to a range of indirect effects via trophic interactions (Figure I1.2). Of the 18143
pests recorded, Sizobion avenae was the most abundant species (89% of individuals),

tollowed by Oulema larvae (5%), Metopolophinm dirhodum (4%), and Oulemna adults
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(2%). Pest abundances were largely management and resource-driven (Figure I1.2).
Similarly, predators (2594 in total) responded to prey abundances, yet were also
influenced by crop management practices and soil characteristics (Figure 11.2). The
predator community sampled with visual surveys and pitfall traps was dominated
by web-building spiders (48%) and predatory carabids (30%), whereas ground-
hunting spiders (14%) and active flyers (8%, primarily Coccinellidae and Syrphidae)

were least abundant.

soc Proportion Soil Topsoil Weed
organic fertilizer | | preparation type cover
Arable Edge | 0.3.. E -
Density | : s
| Ground spiders 1%
R?=0.45 A"
Bi
Mean field R?:E.a;f
size ‘ :
Seminatural R?=0.74
habitat
R2=0.73

Crop rotation Proportion Nitrogen
diversity residue fertilization

Figure IL.2 Path diagram of final SEM. Shown are direction (arrow), sign (negative =
dashed line, positive = solid line), and strength (thickness of lines) of relationships between
landscape heterogeneity (orange), soil characteristics (yellow), crop management (green),
natural enemies (blue), pests and diseases (red) and yield components (white). The relative
amount of explained variance (R? of individual path models, standardized path coefficients
and their statistical significance ((*)P<0.1, *P<0.05, **P<0.01, **P<0.001)) are given.
Letters and footnotes indicate effects and coefficients of the three-level factors soil type (L
= loam, S = sandy, C = clay) and intensity of soil preparation (L = low, M = medium, H
= high).
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[1.3.1 Effects on yield

The yield components plant biomass and grain yield were strongly
correlated (Figure I1.2), and were both enhanced by fertilizer application (26% and
30% increase, respectively, Figure I1.3 A+D). Grain yield (but not plant biomass)
was significantly lower on soils with a high sand content (-36%, Figure 11.3 B+E).
However, weed cover and the frequency of residue left-over reduced plant biomass
and indirectly grain yield (indirect effect via biomass, product of standardized path
coefficient = -0.15 and -0.06). TKW was larger on fields with a high crop rotation
diversity or no-till soil management (Figure I1.S2 B+C). §. avenae had the strongest
herbivory effect on yield quantity, reducing grain yield and plant biomass, with the
negative slope being steeper for biomass (Figure 1.3 C + F). In contrast, high
population densities of Ouwlema larvae resulted in lower TKW (i.e. yield quality,
Figure I1.S2 A). Although the plant pathogens Fusarium and rust had no effect on
yield, weed cover directly (plant biomasss) and indirectly (only indirect effect on
grain yield via biomass -0.06) influenced yield (Figure 11.2). Additionally, yield
components were indirectly influenced by responses of pests to landscape and

management variables.
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Figure I1.3 Main direct drivers of yield. Effects of fertilization, soil type and abundance of
Sitobion avenae (log-transformed) on grain yield (t ha!, A-C) and plant biomass (kg m=2, D-
F). For continuous variables, partial residuals, prediction lines and 95% confidence bands

are shown. ‘n.s.” non-significant relationship.
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[1.3.2 Effects on pests

The main direct drivers of pest abundances were related to resource
availability. M. dirbodum and Oulema adults occurred in greater densities in plots with
high grain yield or large plant biomass, respectively (Figure I1.S3 B + C). Indirectly,
both pests were therefore enhanced by nitrogen fertilization (indirect effects 0.17
and 0.2, respectively; Figure 11.2). Moreover, Oulerza adults (and indirectly offspring)
were more common in landscapes with large seminatural habitat cover (Figure I1.S3
F + G). In contrast, insecticide application decreased Owlesma larvae abundances by
78% (Figure I11.83 D), which led to increased TKW (indirect effect 0.2). No other
pest showed a similar response to insecticide in models with accumulated
abundances used in the SEM. However, additional analyses using separate survey
rounds showed 60% less S. avenae in plots sprayed with pyrethroid before the
second survey, although aphid abundances recovered quickly (Tukey test insecticide
vs. no insecticide, Survey 1: P = 0.22, Survey 2: P < 0.001, Survey 3: P = 0.822;
Figure I1.54 A). For Oulemalarvae, this effect was longer-lasting (Survey 1: P = 0.99,
Survey 2: P < 0.001, Survey 3: P = 0.026; Figure 11.54 B). Along with short-term
insecticide effects, S. avenae abundance was negatively correlated with mean field
size in the landscape (Figure I1.S3 A). Consequently, mean field size indirectly
influenced grain yield and plant biomass (indirect effects 0.06 and 0.07, respectively;
Figure 11.2). Lastly, M. dirhodum showed positive responses to sowing date, with

aphids being more abundant in fields sown later in the year (Figure 11.83 E).

11.3.3 Effects on natural enemies

Both groups of soil-dwelling predators strongly responded to reduced soil
disturbance, i.e. no-til as opposed to deep ploughing (Figure 114 A+D).
Furthermore, predatory carabids had higher activity densities on fields with
frequent organic fertilizer application and late sowing of winter wheat (Figure I1.4
E, Figure IL.S5 F). Densities of ground-hunting spiders increased with SOC
content, yet declined with residue addition (Figure I1.4 B, Figure I1.S5 E). Leaf-
dwelling predators were not affected by soil management, but wind-dispersed
spiders were enhanced on fields with diverse crop rotations (Figure 11.4 F). In
contrast to soil-dwellers, both groups of leaf-dwellers also showed strong positive

responses to prey density, in particular abundances of S. avenae (active flyers) and
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Oulema larvae (passive flyers; Figure I1.S5 B + C). Insecticide application indirectly
affected wind-dispersed spiders by reducing Oulemza larvae abundances (indirect
effect = -0.30), yet we did not observe direct effects of insecticide on leaf-dwelling
predators in our SEM analysis using accumulated abundances, nor in additional
analyses using distinct survey rounds. Temporal effects of insecticide application
could not be tested on soil-dwellers, as pitfall traps were only opened once after
insecticide application (see Methods). Landscape variables were negatively related
to predators, in particular ground-hunting spiders. Their activity density was lowest
in landscapes with large fields and high arable edge density (Figure 11.4 C, Figure
I1.S5 D).
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Figure II.4 Direct effects of management and soil variables on natural enemies (log-
transformed). Relationships between activity density of soil-dwelling predators and soil
preparation intensity (‘Low’ = no-till, ‘Medium’ = surface cultivation, ‘High’ = deep
ploughing, A + D), soil organic carbon content (‘SOC’, B), mean field size (ha, C) and
frequency of organic fertilization (E). Influence of crop rotation diversity on wind-
dispersed spiders (F). For continuous variables, partial residuals, prediction lines and 95%
confidence bands are shown.

11.4 Discussion

Growing food demand accompanied by ongoing health and environmental

pressures call for more sustainable farming systems able to maintain current levels
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of productivity. Ecological intensification (i.e. utilizing ecosystem services) is a
promising tool to achieve this goal. In this study, we investigated current
multifactorial drivers of yield components in a real-life cereal agroecosystem, and
reveal potential pathways for ecological intensification as alternative to external

input-driven crop production.

Ambiguous effects of fertilizer and insecticide highlight alternative options
for maintaining yield quality and quantity under conditions of reduced agrochemical
inputs and extensified management. Even though grain yield and biomass were
reduced in non-fertilized plots, so was pest pressure by M. dirbodum and Oulema
larvae. Consequently, TKW, an important indicator for seeding vigour and milling
quality of wheat, increased (Botwright e @/, 2002). While insecticides decreased
Oulema larvae, S. avenae, the most abundant and yield-damaging pest, was not
effectively controlled, as its numbers quickly rebounded after short-term
insecticide-driven reductions, as has been found elsewhere (Krauss ef al., 2011).
Negative effects of insecticide on relatively mobile leaf-dwelling predators were not
found, possibly due to rapid resettlement after spraying. Pitfall traps were
established after insecticide application, so we were unable to assess whether soil-
dwelling spiders and predatory carabids were more abundant before insecticides

were sprayed.

Yet our results highlight additional ecological pathways to higher yield,
primarily by enhancing soil-dwelling predators via local soil and crop management.
High soil organic matter content favours saprophagous insects such as springtails
that are important alternative prey for soil-dwellers early in the year, and allow for
the build-up of large predator populations. However, ploughing alters physical
characteristics of the soil and speeds decomposition of soil organic matter (Tilman
et al., 2002), causing unfavourable conditions for below-ground prey. Soil-dwelling
predators and associated pest control (Tamburini ez a/, 2015, 2016) therefore
benefit from the combined effects of soil conservation practices (no-till, high SOC).
High initial densities of soil-dwelling predators at the beginning of the growing
season are imperative for reducing initial pest infestations, but top-down control by
this predator group may be lower or non-significant later on, as observed here

(Barrios, 2007; Birkhofer ez al., 2008). Predators such as wind-dispersed spiders may
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also rely on increased temporal resource diversity and reduced chemical inputs
inherent to diverse crop rotations (McLaughlin & Mineau, 1995). Moreover the
enhanced condition and nutritional balance of diversely cropped, no-till soils also
provides optimal growing conditions for a high quality crop (McLaughlin &
Mineau, 1995; Ratnadass ¢ al., 2012), as shown here by enhanced TKW. In addition,
timely (as opposed to late) sowing of wheat allows for earlier crop maturation and
can reduce pest pressure (Acreman & Dixon, 1985), as seen for M. dirbodum. While
we observed a similar effect on predatory carabids, this response was less

pronounced.

In contrast to soil and crop management, the role of landscape
heterogeneity was low in our system. Although 1000m radius is commonly used in
ecological studies of pest control (e.g. (Rusch ez al, 2013; Tamburini et al., 2016;
Bosem Baillod e al, 2017)), the spatial scale of heterogeneity effects differs
depending on the life history and movement capability of taxa (Chaplin-Kramer ez
al., 2011; Martin et al, 2016; Redlich ef al., 2018). Here, we observed opposing
relationships between measures of configurational heterogeneity and ground-
hunting spiders, with spiders responding positively to small field sizes, but not to
increased edge density. Predators in landscapes with small fields benefit from easy
access to field boundary habitat and on-field prey (Fahrig e a/, 2015), yet a high
density of crop-non crop borders may hinder their dispersal into fields if their
structure acts as barrier or provides competing resources (Ratnadass e a/., 2012).
Opposed to previous studies, we did not observe reduced pest densities with
increased landscape heterogeneity (Bianchi e 4/, 2006; Bosem Baillod ez /., 2017)
or host crop cover (Schneider ez al, 2015), but more Oulerna and S. avenae in
landscape with high amounts of seminatural habitat and smaller fields. Additional
habitats and easy access to fields may favour these pests. Alternatively, these
landscape may experience lower, landscape-wide spraying intensities, a possible

correlation we did not measure.

Lastly, we observed no effects of some factors often considered important,
or found differences in the responses of yield components. This may be due to the
ability of wheat to compensate for unfavourable soil conditions, weed competition

and crop damage caused by pathogenic fungi or herbivory via changes to other yield
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components (e.g. tiller density, number of grains per spike) (Freeze & Bacon 1990).
For instance, crop damage by the plant pathogens rust and Fusarium (maximum
infestation rate 58% and 34%, respectively), and feeding damage by Owulermna larvae
were very obvious on some fields, yet with the exception of TKW, our data did not
confirm fears of participating farmers that this would lead to important yield losses.
In addition, yield reductions due to weed cover and S. avenae infestation had a
greater negative effect on plant biomass than on grain yield, indicating that at the
levels reached in our system, controlling these factors by agrochemical means is less

critical than expected for final crop productivity.

11.5 Conclusion

In this study, we linked complex farming systems set along a landscape
gradient with a factorial field-scale experiment to identify main direct and indirect
drivers of winter wheat yield. Although we initially assumed top-down control
across all trophic levels, resource-driven relationships were dominant in this study:
yield was primarily determined by nutrient supply, pests and predators by host and
prey availability, respectively. Lacking evidence of expected negative relationships
between predators and pests suggests that pest control in this system is insufficient
to compensate for bottom-up resource availability. Strengthening observed links
between natural enemies and landscape (mean field size) or local management
aspects (intensity of soil management, addition of soil organic matter, crop rotation
diversity) may restore the pest control potential and lessen reductions in yield
quality and quantity associated with herbivory. These ecological pathways, together
with expected benefits of agrochemical reductions and improved soil quality,
provide additional tools for ecological intensification. Accordingly, weak links
between other ecosystem services (e.g. pollination) and yield could be fostered by
future adaptive crop and landscape management. Considering the large-scale threats
of conventional agriculture to biodiversity, the environment, food security and
human health, anticipated, limited yield losses are an acceptable price compared to
the economic and environmental benefits of a turnaround to more sustainable

agriculture.
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I11.6 Supplement

II1.6.1 Detailed description of experimental design

This research was conducted as part of a larger field experiment within the
framework of the project Liberation (“LInking farmland Biodiversity to Ecosystem
seRvices for effective ecological intensificATION®), funded by the European
Union (grant number: 311781). This major study explored how local management
practices (fertilizer application, insecticide input, field soil organic carbon) in
combination with changes in cropland area at the expense of seminatural habitat
determine the abundance of pests and predators, biological pest control, and crop
yields. For this purpose, a common field experiment was designed and implemented
in seven European countries participating in the research (Germany, Hungary, Italy,

Poland, Sweden, The Netherlands, United Kingdom).

The common experiment incorporated a paired-field design (Figure I1.S1,
(Gagic et al., 2017)), in which pairing was achieved by joining two conventional
winter wheat fields of contrasting soil organic carbon content (= SOC, high/low)
yet similar soil texture, pH (less than 0.5 unit difference) and field margin quality
(mostly grassy edge) along a gradient of landscape simplification defined by the
proportion of seminatural habitat in 1000m radius (Table IL.S1). Fields were
additionally chosen to minimize correlations between seminatural habitat and other
configurational (mean field size, density of field edges) and compositional (%
grassland and cereal, spatial crop diversity) landscape variables (Table 11.S2). A total
of 28 fields (14 field pairs, within-pair distance between fields mean+SD

1.0740.9km, range 0.19-2.5m) were selected in this manner.

The paired design allowed to separate effects of increasing soil organic
carbon from those of soil texture and pH. At the same time, fields were selected to
include different management practices (e.g. till or no-till, long or short crop
rotations, mineral vs. organic fertilizer input) to ensure that SOC effects were not
in fact driven by specific field management types. Soil conditions of potential fields
were assessed by collecting five soil cores (30mm diameter, 15cm deep). Samples
were pooled within fields, homogenized and stored at 5°C before analyses of pH

and SOC. In Germany, soil texture within potential fields was determined using soil
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maps (Bayerische Vermessungsverwaltung 2010). Correlations between landscapes
variables, soil characteristics and management were low (Pearson’s | <0.5|, Table

11.52).

Study plots (> 50x15m) were established along the edge of each field, at
least 15m from headlands. A crossed insecticide (pyrethroid insecticide, yes/no)
and fertilizer treatment (yes/no). The broad spectrum pyrethroid insecticide (active
substance of beta-cyfluthrin = 7.5 g ha) was applied once using backpack sprayers
after the first visual arthropod count irrespective of actual pest attack rates.
Fertilizer treatments comprised three applications of ammonium sulphate nitrate
following regional recommendations at tillering (~BBCH 20, N = 90 kg ha™), stem
elongation (~BBCH 30, N = 50 kg ha™) and heading (~BBCH 55, N = 50 kg ha™).
Farmers were not allowed to use insecticides or fertilizers on or near study plots.

Herbicides and fungicides were applied as usual.

I11.6.1.1 Quantifying drivers of yield

Including the implemented experimental treatments insecticide and
fertilizer application, 34 explanatory variables were considered as direct or indirect

drivers of yield in our system. These included both abiotic and biotic drivers.
Soil characteristics

A first set of environmental variables related to the soil characteristics

assessed during field selection (soil type, pH and SOC content).
Present and historic crop management

Crop management data was derived from the experimental set-up
(‘Nitrogen fertilizer application’) and from farmer surveys performed in autumn
2014. Farmer surveys covered past (mean data availability 11.25 £ 0.43 years) and
recent crop management information related to sowing and general management
(Table I1.S1). We aimed to include variables known (or assumed) to affect pests and

natural enemies, as well as yield.
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Influence of landscape heterogeneity

Landscape heterogeneity was assessed in circular areas of 1 km radius
around study fields using ArcGIS v. 10.4 (ESRI) with a focus on variables relevant
for pests and arthropod antagonists, including variables of landscape configuration
and composition (Table I1.S1). Due to the type of pests and natural enemies in this
system, we especially considered the amount of alternative hosts (permanent
grassland, proportion of cereal grown in the landscape) and the availability of
resources and habitat (amount of seminatural habitat), as well as the spatial

configuration hindering or favouring dispersal (mean field size, arable edge density).
Drivers of pest regulation

Effects of agrochemical application, landscape and management were
explored by sampling leaf- and soil-dwelling predators on treatment plots using two
distinct methods. Leaf-dwelling predators such as ladybirds (Coccinellidae, adults
and larvae), hoverflies (Syrphidae, larvae), lacewings (Chrysopidae, larvae), and web-
building spiders (Araneae) were assessed in three consecutive visual counts at stem
elongation, heading and fruit development. Abundances of natural enemies were
counted on 50-100 randomly selected tillers per treatment plot, then standardized
to counts per 50 tillers and summed across surveys to estimate pest control potential
throughout the wheat growing season. Due to differences in their response to
agricultural intensification, we distinguished between leaf-dwelling predators
actively dispersing as winged adults (‘active flyers’: ladybirds, hoverflies, lacewings)

and wind-dispersed web-building spiders (‘passive flyers’).

We determined activity density of two groups of soil-dwelling predators,
namely predatory ground beetles (Carabidae) and ground-hunting spiders (mainly
Lycosidae), by placing one pitfall trap within each treatment plot (distance from
edge >10m) at wheat flowering stage. Traps remained in the field for 10 days. They
consisted of polypropylene beakers (155mm high, 95mm diameter) filled with 200
mlL propylene glycol:water solution (ratio 1:3) and a drop of detergent to reduce
surface tension. Traps were covered with roofs (20x20cm, 10cm above traps) to

prevent flooding by rain.
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The experimental treatment ‘insecticide application’ was also regarded as

driver of pest regulation and therefore included in this category.
Pests and diseases

During the visual counts we also recorded the abundance of pests — aphids
(Hemiptera: Sternorrhyncha) and cereal leaf beetles (Coleoptera: Chrysomelidae).
Abundances were pooled across three surveys to assess the accumulated effect of
pest pressure on yield across the growing season, and standardized to counts per
50 tillers. The English grain aphid Sitobion avenae (Fabricius) preferentially feeds on
the grain, whereas the rose-grain aphid Metopolophinm dirbodum (Walker) is mostly
found on stem and leaves. Counts were therefore kept separate. Cereal leaf beetles
included Owlema melanopus (Linnaeus) and Ouwlema gallaeciana (Heyden), yet we
distinguished between larvae (sessile, ‘Owulerna larvae’) and adults (winged, ‘Oulerna

adults’), that differ in their mobility and effect on yield.

To assess effects of plant pests on insects and yield we conducted a weed
survey (forbs and grasses) during fruit development of wheat within four 0.25 sqm
subplots in each treatment plot. Weed pressure was then estimated as percent cover
per sqm, rounded to the nearest 5%. As grass cover was low, only forb cover was
used for analysis. Additionally, incidence of the pathogenic fungi Fusarium and rust
(Puccinia spp.) were assessed by averaging the number of infested leaves (out of 50)

recorded during two visual pathogen surveys at booting and flowering stage.
Yield components

During harvest time, 1 m-2 of wheat was hand harvested from every
treatment plot (four randomly located 0.25 m-2 subplots), and grain dry weight per
hectare (t ha-1) adjusted to 12% grain moisture was estimated. In addition, we
determined moisture-adjusted thousand kernel weight (TKW, g) and air-dried plant
biomass (without grain, kg m-2). These three yield components were treated as final

response variables in our analysis.

Despite having a total of 112 plots, only 94 to 108 data points could be used
for the analyses (see Table 11.S3) as some of the data was incomplete (missing data
of visual surveys in four treatment plots, seven plot samples of predatory carabids

and 18 of ground-dwelling spiders collected with pitfall traps).
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Table I1.54 Interactive effects assessed in preliminary analyses using simple linear mixed
effects models with the random term ‘Field” nested in ‘Pair’. Aim was to only include
interactions in the SEM that were found to be significant in these analyses. Interactions
were tested for the response variables grain yield, plant biomass, thousand kernel weight
(TKW), ground spiders and predatory carabids, with explanatory variables related to soil
characteristics (soil type, SOC content) and fertilization practices (nitrogen fertilization,
frequency of organic fertilizer application). For each response variable, separate models
testing listed interactions were run (30 models in total). As none of the interactions were
found to be significant, individual component path models only included main effects
(Table 11.S2). All models were graphically validated for normality and homogeneity of
variance.

Response Fixed effects and interactions tested
SOC + soil type + SOC x soil type

SOC + fertilization + SOC x fertilization

SOC + frequency of organic fertilizer
application + SOC x frequency of organic

yield/ biomass/ thousand kernel fertilizer application

weight/ ground spiders/ predatory  soil type + frequency of organic fertilizer
carabids application + soil type x frequency of organic
fertilizer application

soil type + Fertilization + soil type x fertilization

fertilization + frequency of organic fertilizer
application + fertilization x frequency of organic
fertilizer application
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Table I1.S5 Results of structural equation model combining eleven individual path
models (Table I1.S2). Given are standardized coefficients (estimates), standard error
(SE), P-values and significance ((*)P<0.1, *P<0.05, **P<0.01, ***P<0.001)) for each path.

Response variable
Yield
Yield
Yield
Yield

Yield

Thousand kernel
weight
Thousand kernel
weight
Thousand kernel
weight
Thousand kernel
weight

Plant biomass
Plant biomass
Plant biomass
Plant biomass

Sitobion avenae
Metopolophium
dirhodum
Metopolophium
dirhodum

Oulema adults

Oulema adults
Oulema larvae

Oulema larvae
Ground spiders
Ground spiders

Ground spiders
Ground spiders
Ground spiders

Ground spiders

Predatory carabids
Predatory carabids
Predatory carabids

Predatory carabids
Active flyers
Active flyers
Active flyers
Passive flyers
Passive flyers

Predictor variable

Plant biomass

Nitrogen application
Sitobion avenae

Soil type (loam vs sand)

Soil type (loam vs. clay)
Soil preparation (Low vs.
High)

Oulema larvae

Crop rotation diversity

Soil preparation (Medium vs.

High)

Nitrogen application
Sitobion avenae

Weed cover

Frequency residue left-over
Mean field size

Yield

Sowing date

Plant biomass
Seminatural habitat
Insecticide application
Oulema adults

Arable edge density

Soil organic carbon content
Soil preparation (Low vs.
High)

Mean field size

Frequency residue left-over

Soil preparation (Medium vs.

High)

Soil preparation (Low vs.
High)

Sowing date

Frequency organic fertilizer

Soil preparation (Medium vs.

High)

Sitobion avenae
Metopolophium dirhodum
Arable edge density
Oulema larvae

Crop rotation diversity

Estimate
0.43
0.46
-0.19
-0.65
-0.41

-0.99

-0.16

0.34

0.02
0.59
-0.22
-0.15
-0.35
-0.33

0.37

0.33
0.35
0.27
-1.27
0.14
-0.32
0.36

-0.76
-0.29
-0.28

-0.25

-1.03
0.37
0.32

-0.20
0.41
0.25
-0.25
0.28
0.33

SE

0.08
0.11
0.07
0.23
0.32

0.31

0.06

0.13

0.25
0.10
0.09
0.06
0.14
0.16

0.09

0.10
0.09
0.13
0.11
0.07
0.09
0.11

0.25
0.10
0.09

0.20

0.34
0.13
0.13

0.28
0.10
0.09
0.11
0.07
0.14

P-value

<0.001 *xx
<0.001 B
0.011 *
0.013 *
0.227

0.008 **
0.009 i
0.030 o
0.935

<0.001 B
0.014 *
0.017 *
0.024 *
0.068 *
<0.001 *xx
0.005 **
<0.001 *xx
0.048 ks
<0.001 whk
0.050 *
0.009 *x
0.012 S
0.016 *
0.017 S
0.019 *
0.256

0.013 *
0.015 ks
0.031 *
0.498

<0.001 wkk
0.006 **
0.047 *
<0.001 B
0.032 *

* Abundance of Sitobian avenae, Metopolophium dirhodum, Oulema (adults and larvae), active and passive
flyers, and activity density of ground-dwelling spiders and predatory carabids log-transformed



Opportunities and obstacles of ecological intensification

AP

Field pairing
I High soc

Field Treatments
ﬁ Fertilization
E Insecticide

Figure II.S1 Experimental set-up of field experiment in winter wheat near Wiirzburg,
Germany (49°47° N, 9°57" E). (a) 14 field pairs (colored circles) wete selected along a
gradient of landscape complexity (seminatural habitat cover). Shown are 3 km radii around
fields. (b) Each pair comprised two fields of contrasting soil organic matter content
(high/low). Fertilizer (no/yes) and insecticide treatments (yes/no) were applied on the
subplot scale.
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Oulema larvae Crop rotation diversity Intensity soil preparation

Figure I1.S2 Main direct drivers of thousand kernel weight (TKW). Effects of Owlema
larvae abundance (A), crop rotation diversity (B) and soil preparation (C, ‘Low’ = no-till,
‘Medium’ = surface cultivation, ‘High’ = deep ploughing). For continuous variables, partial
residuals, prediction lines and 95% confidence bands are shown.
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Figure I1.84 Effects of insecticide application and survey round (three levels) on
abundances of S#tiobion avenae (A) and Ounlema larvae (B). Pyrethroid insecticide was applied
between survey round one and two, as indicated by the arrows. Additional models using
distinct survey rounds and Tukey post hoc tests with FDR correction showed significant
effects for both S. avenae (Sutvey 1: P = 0.22, Survey 2: P < 0.001, Survey 3: P = 0.822)
and Owlema larvae (Survey 1: P = 0.99, Survey 2: P < 0.001, Survey 3: P = 0.026). No effect
was observed for Metopolophinm dirhodunz, Onlema adults and the two groups of leaf-dwelling

predators (active and passive flyers) in additional models testing for effects of survey round.
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Figure IL.S5 Main direct drivers of predator abundances and activity densities.
Relationships of active flyers (primarily syrphid larvae and ladybirds) with arable edge
density and Sitobion avenae (A+B), passively dispersed leaf-dwelling spiders and Ouwlema
cereal leaf beetle larvae (C), ground-hunting spiders with arable edge density and frequency
of residue left-over (D+E), and predatory carabids with sowing date (F). Partial residuals,
prediction lines and 95% confidence bands are show
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Landscape-level crop diversity benefits biological pest control
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andscape-level crop diversification is a promising tool for ecological

intensification, whereby biodiversity and ecosystem services are

enhanced, and pesticide applications reduced. Yet evidence for the effects
of crop diversity at multiple scales and in different landscape contexts is lacking.
Here, we investigate the potential benefits and context-dependencies of multiscale
crop diversity on natural enemies and overall biological control in winter wheat.
Simultaneously, we examine the mediating effects of bird predation on aphid
regulation in this system. Eighteen conventional winter wheat fields were selected
along two independent gradients of crop diversity and seminatural habitat cover
(SNH). We assessed biological control using a natural enemy exclusion experiment
(‘Open Treatment’, ‘Bird Exclosure’, ‘Full Exclosure’). Biological control, predator
and parasitoid densities within cages were analysed as functions of landscape (crop
diversity x SNH), bird predation (yes/no) and temporal change (three surveys) on
six spatial scales (100-3000 m). Crop diversity rather than SNH enhanced aphid
regulation in our study system. Biological control in fields with high landscape-level
crop diversity was 8 to 33 % higher than in low diversity landscapes, with main
effects observed on scales <500 m. Predator and parasitoid densities increased with
crop diversity on small (100-250m) and large (2000-3000 m) spatial scales,
respectively. Nevertheless, our findings suggest that natural enemies other than
birds, parasitoids and aerial arthropods facilitated biological control. Our study
shows that landscape-level crop diversification can improve biological control in
agroecosystems. Therefore, increased crop diversity could lower dependence on
insecticides while enhancing yield stability through ecological intensification of
farming. We also highlight the need to assess biological control rather than natural
enemy abundances to avoid bias due to sampling artefacts or species interactions.
Lastly, simple measures of crop diversity (e.g. ‘effective number of crop types’) help

in science communication and the development of farm management guidelines.
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I11.1 Introduction

Worldwide, natural enemy communities and biological pest control suffer
from increased homogenization of food production and the removal of natural
habitats (Altieri, 1999; Rusch ez al, 2016). In addition, replacement of biological
control agents with chemical insecticides results in long-term risks (biodiversity loss,
pesticide resistance, groundwater contamination) that largely outweigh the
perceived short-term yield and cost benefits (Wilson & Tisdell, 2001). However,
ecological intensification practices such as field-scale diversification via flower
plantings (Letourneau e al, 2011; Gurr et al, 2016), and extensification of
agricultural processes (pesticide reductions; (Jonsson ef al, 2012)) can enhance
natural enemies and biological control (Bommarco ef al, 2013). Scaling up,
landscape complexity (e.g. the quantity of seminatural habitat; (Schmidt ez 2/, 2003;
Gardiner e7 al., 2009; Chaplin-Kramer & Kremen, 2012)) and interannual changes
in host plant cover (Schneider ¢ a/., 2015; Bosem Baillod ¢ a/., 2017) also contribute
to biological control. It is yet unclear whether increasing the number of crop types

cultivated within a landscape has similar benefits.

In theory, landscape-level crop diversification (hereafter ‘crop diversity’)
should enhance natural enemies by providing diverse plant-derived resources such
as pollen, nectar and shelter throughout the year (Fahrig ez a/, 2011; Schellhorn ez
al., 2015). Biological control can thereby be sustained in landscapes where non-crop
resources are scarce (Martin e# /., 2016; Tscharntke ez al., 2016). Furthermore, crop
diversity precludes yield losses due to cropland conversion or plant competition
common to small-scale diversification practices (Lin 2011), while enhancing global
food security and resilience against climate change via functional redundancy of
beneficial organisms (Lin, 2011; Bommarco ez al, 2013; Aguilar et al, 2015;
Schellhorn ez al., 2015). Nevertheless, few studies explore the link between crop
diversity and natural enemy density or richness (e.g. (Palmu ez 4/, 2014; Fahrig ez al.,
2015)). Even fewer do so for the biological control service these organisms provide
(Chaplin-Kramer & Kremen, 2012; Holland e7 a/., 2012; Bosem Baillod e7 a/., 2017),
although the mostly positive relationship between enemy diversity and biological
control (Altieri, 1999; Harrison ez al., 2014) can be disrupted by antagonistic species

interactions (Straub ez al., 2008; Letourneau ef al., 2009).



Whether and at which spatial scale biological control responds to crop
diversity depends on the specialization, life-history and movement capability of
different natural enemy guilds, and their relative importance to pest suppression
(Chaplin-Kramer ez al., 2011; Rusch ez al., 2013; Shackelford ez al., 2013; Henti ¢t al.,
2015; Martin ef al., 2016). For example, specialist natural enemies (e.g. parasitoids)
often respond to smaller spatial scales than large-bodied generalists (Chaplin-
Kramer ef al, 2011). In systems with parasitoid-mediated biological control,
landscape complexity at small spatial scales can therefore enhance pest suppression
(Schmidt e al., 2003). Yet the relative importance of specialist parasitoids, epigeal
or aerial arthropod predators and insectivorous birds is highly disputed and varies
among systems (Schmidt ez a/., 2003; Caballero-Lépez ef al., 2012; Holland et 4/,
2012; Martin e al., 2013; Rusch e al., 2013; Tamburini e# 4/, 2015; Dainese ¢# al.,
2017). At the same time, crop diversity benefits might only emerge in resource-
depleted, simplified landscapes with low seminatural habitat cover. Here, crop
diversification adds essential resources otherwise lacking in the non-crop matrix
(T'scharntke e al., 2005; Josefsson ez al., 2017). However, correlations between crop
diversity and seminatural habitat often impede our ability to infer causal
relationships (Fahrig ¢ al, 2011, 2015). Disentangling the independent and
interacting effects of both variables across multiple spatial scales is of prime

importance — both for separate natural enemy guilds and overall biological control.

Owing to differences in the mobility and specialization of natural enemies,
cereal-aphid-antagonist food webs in temperate agroecosystems are well suited for
multiscale landscape studies on biological control. Aphids (Hemiptera:
Sternorrhyncha), most notably the species S#zobion avenae (Fabricius), are major pests
in these systems (Dedryver ef al, 2010). The suite of associated natural enemies
ranges from specialized biological control agents such as parasitoids (Hymenoptera,
Parasitica) and ladybird larvae (Coleoptera: Coccinellidae) to generalist predators
such as ground beetles (Coleoptera: Carabidae) and spiders (Araneae, various
families). Additionally, insectivorous birds can suppress pests, but might also
constrain insect-mediated biological control via intraguild predation on
intermediate predators (Mooney ef al., 2010; Martin ez al., 2013). In cereal systems,

this so-called omnivorous intraguild predation is potentially more disruptive than
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coincidental intraguild predation (intermediate predators consuming parasitoid

larvae with their aphid host) due to large differences in body size (Straub ez a/., 2008).

In this study, we aimed to gain a comprehensive understanding of the
potential benefits and context-dependencies of multiscale crop diversity in
conventional winter wheat systems. We used repeated pest and natural enemy
surveys within a natural enemy exclusion experiment to evaluate the link between
crop diversity and biological pest control, while testing for interacting effects with
seminatural habitat cover across six spatial scales (100 to 3000 m radii around
fields). Additionally, the complex natural enemy community in this system allowed
us to evaluate the individual contribution of different natural enemy guilds to
biological control, and their response to crop diversity. We hypothesized that crop
diversity increases overall biological control (i) and the density of arthropod natural
enemies (ii), yet these benefits depend on spatial scale and natural enemy guild
(parasitoids vs. predators). We further assumed that crop diversity effects are most
pronounced in landscapes with low seminatural habitat cover (low landscape
complexity) (iii). Lastly, we assessed whether natural enemy guilds differ in their
contribution to overall biological control (iv), and whether insectivorous birds
constrain biological control by affecting arthropod enemies and their ability to

suppress aphids (v).

II1.2 Materials and Methods

I11.2.1 Study area and experimental design

The study took place in an intensively cultivated region of ¢ 40 x 40 km in
Lower Franconia/Germany (49°47" N, 9°57" E), an area dominated by high-input
crops such as cereal, sugar beet and maize. Here, we selected 18 conventional winter
wheat fields along independent gradients of crop diversity and seminatural habitat
at six spatial scales. The research was conducted within the project LIBERATION
("Llnking farmland Biodiversity to Ecosystem seRvices for effective ecological
intensificATTION®), which explored the interactive effects of landscape
simplification and local management on pests and antagonists. Following the joint

design (Figure III.1, Supplement I1.6.1 in Supporting Information), fields were



grouped in nine pairs of contrasting soil organic carbon content (= SOC, high/low).
A fertilizer treatment (yes/no) was applied in two experimental subplots at the field
edge. Both SOC and fertilization might influence pests and natural enemies, yet
these relationships and effects on yields are investigated elsewhere (Gagic ef 4/,
2017). We nevertheless accounted for both factors in the statistical analyses.
However, pest densities (preliminary analyses), natural enemies and biological
control were unaffected by SOC and fertilization in our exclusion experiment
(Table I11.1, Figure I11.S1, Supplement 11.6.1). This corroborates previous studies
related to the grain aphid Szobion avenae (Garratt ef al., 2010) and biological control

(van Gils ¢ al., 2016). Hence, local management factors are not discussed further.

b) N c) - -
Field pairing JL I JL

. A—Full B - Bird C—-Open
I:l High SOC Exclos‘dre Excloslure Treatrﬁent
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Figure III.1 Experimental set-up of the natural enemy exclusion experiment in winter
wheat using sentinel aphid populations of Sizbion avenae. a) Nine field pairs were selected
along independent gradients of crop diversity and seminatural habitat cover in central
Germany. Shown are 3 km radii around fields. b) Fach pair comprised two fields of
contrasting soil organic matter content (high/low). Fertilizer treatments (no/yes) wete
applied on the subplot scale. ¢) Each subplot received three exclusion treatments: ‘Full
Exclosure’ (all natural enemies excluded), ‘Open Treatment’ (all natural enemies present),
and ‘Bird Exclosure’.

I11.2.2 Landscape variables

Crop diversity (CropDiv, overall range 0 — 1.48) was calculated on six spatial
scales (100, 250, 500, 1000, 2000, 3000 m radii around fields) as Shannon Wiener
Index in the ‘vegan’ package in R (Oksanen ez @/, 2015). The index used 12 arable
crop categories provided by the Bavarian State Ministry of Nutrition, Agriculture
and Forestry: cereals, 1- to 2-year fallows, cultivated flowers, temporary grassland,
legumes, maize, oilseed rape, root crops, sunflower, vegetables and other industrial

crops (Table IIL.S1). To ease interpretation of CropDiv, we also calculated the
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‘effective number of crops’ using exp (CropDiv) (= ENCS, Table II1.S1; (Jost,
20006)). ENCS estimates the number of equally abundant crop types required to
achieve a specific amount of CropDiv and associated levels of biological control.
We use ENCS to illustrate diversification effects in a way that improves
communication of research results to farmers and policy makers, and helps in the

development of farm management guidelines.

Seminatural habitat cover (= SNH, overall range 1.2 — 76.9 %) included
perennial grassland, orchard meadows, hedgerows, forest edges, and grass margins
along rivers and roads. SNH was calculated in ArcMap v. 10 (ESRI 2011) using
official ~ digital  topological ~maps ATKIS DTK 25  (Bayerische
Vermessungsverwaltung, 2010)(Table I11.S1). Correlations of CropDiv with SNH
and other influential landscape factors not included in analyses (crop cover
(Caballero-Lopez et al., 2012), field size (Fahrig ez al, 2015), and habitat diversity
(Gardiner ef al., 2009; Martin et al., 2016)) were low at all spatial scales (Pearson’s
|7| = 0.51, Table I11.S2).

[11.2.3 Biological control

Overall levels of biological control and the influence of bird predation on
aphid suppression were assessed with a natural enemy exclusion experiment
(Figures. 1I1.1b & III.1c, Appendix S1). Three standardized populations of Sitobion
avenae were established in each fertilization subplot (initial aphid density ~ 100). We
then exposed populations to one of three exclusion treatments: ‘Open Treatment’
(aerial and epigeal invertebrate predators, parasitoids and birds), ‘Bird Exclosure’
(birds excluded) and ‘Full Exclosure’ (all natural enemies excluded). Aphid densities
in each exclusion treatment (total » = 108, 6 cages per field) were recorded non-
destructively on ten randomly selected tillers in 5-day intervals (days 0, 5, 10, 15).
We estimated the overall level of biological control attributable to natural enemies
by comparing 5-day aphid growth rates in treatments allowing access to some or all
natural enemies (‘Open Treatment’, ‘Bird Exclosure’) with growth rates in the
baseline treatment (‘Full Exclosure’) of the same subplot. This biological control
index (= BCI; Appendix S1, (Gardiner ez al, 2009)) ranges from zero (no pest

suppression) to one (high pest suppression). Negative values were set to zero



(Gardiner ef al., 2009). The index was calculated separately for ‘Open Treatments’
and ‘Bird Exclosures’, thereby yielding 216 BCI estimates (two treatments x two
subplots x 18 fields x three 5-day survey intervals). The difference in BCI between
the two open treatments was used to investigate the effect of birds on biological

control.

I11.2.4 Sampling of arthropod enemies

Biological control relates to a variety of biodiversity components (Harrison
et al., 2014). One such component, natural enemy richness, can negatively affect
pest suppression via antagonistic species interactions (Straub e al, 2008;
Letourneau ez a/., 2009). While we specifically tested for bird intraguild predation by
manipulating taxonomic richness of predator groups, we otherwise aimed to avoid
this potential bias by using the abundance of arthropod enemies instead.
Furthermore, enemy abundance drives the magnitude of biological control, whereas
species richness is mostly thought to increase the stability of this ecosystem service
(Shackelford ez al., 2013; Harrison e al., 2014). We recorded the density of leaf-
dwelling natural enemies on ten randomly selected tillers during the last three aphid
surveys. Due to the low occurrence of individual subgroups, all arthropod predators
were pooled across families (‘predator density’ for days 5, 10, 15). To avoid double
counting, we used the number of parasitized aphids on day 15 as estimate of
parasitoid density (Shackelford e a/, 2013). This allowed us to compare the effect
of CropDiv on large arthropod predators and small specialist parasitoids, assess
their contribution to overall biological control and potential mediating effects of

bird predation via intraguild predation.

I11.2.5 Statistical analysis

We assessed the scale-dependent and landscape-specific effect of CropDiv
on overall BCI (hypotheses i + iii) by building separate linear mixed effect models
with Gaussian error distribution for each spatial scale (Table II1.S3). We
concurrently tested for the contribution of bird predation to BCI (hypothesis v),

and temporal delays in CropDiv effects. Therefore, explanatory variables for each
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scale-specific landscape model were CropDiv, SNH, bird exclusion (yes/no),
CropDiv x SNH and CropDiv x survey. We controlled for fertilization (yes/no)
and SOC (low/high) by adding both factors as covariates. All models used a nested
random structure (Pair/Field/Subplot/Cage).

Effects of CropDiv, SNH and bird predation on predator and parasitoid
fitting generalized linear mixed effects models with Poisson error distribution
(Table I11.S3). These landscape models also accounted for aphid density (fixed
term). No temporal effects were investigated for parasitoid densities (data restricted
to day 15). Using parasitism rate as response yielded similar results (aphids pasasitized
/aphids ww, binomial error distribution), therefore only the effects on parasitoid

densities are shown to improve comparability with arthropod predators.

Two additional linear mixed effect models (Gaussian distribution)
investigated the influence of predator and parasitoid densities on BCI (hypothesis
iv, Table I11.54). Potential modulating effects of bird predation (hypothesis v) and
changes over time (predator model only) were assessed by including interactions

with bird exclusion and survey date.

All continuous explanatory variables were z-standardized. Normality and
homoscedasticity of model residuals was validated graphically. We found no
significant overdispersion in Poisson models (P-values > 0.12) or multicollinearity
of independent variables (variance inflation factors < 3; (Zuur ez al., 2009)). Residual
spatial dependence was rejected for all models (P-values > 0.19, Moran’s I test). We
calculated marginal (fixed effects) and conditional (random and fixed effects)
coefficients of determination (R to assess overall model fit (Tables I11.S3 - T11.S5;
function ‘r.squaredGLMM’; (Nakagawa & Schielzeth, 2013)). Full landscape models
with the highest R*indicate the spatial scale with the greatest predictive value.
Marginal model fit (average across all scales = SE) was reasonably high for all
landscape models (BCI: 0.21+0.01, predator density: 0.23%0.01, parasitoid density:
0.3%0.03), and for models relating predator and parasitoid densities to BCI (R* =
0.2 and R*= 0.13, respectively).



We employed an information-theoretic approach (Burnham & Anderson,

2002) to quantify the strength of alternative competing models with A AICc < 7

(Burnham ez 4/, 2011). Model averaging across the model sets yielded estimates with

associated confidence intervals (95% Cls), and the sum of Akaike weights O, w; )

for each predictor variable (Tables II1.S5 & IIL1.S6). ), w; (range O to 1) can act as

indicator of relative variable importance, yet due to some controversy relating to its

use we focus on effects where 95% Cls of estimates exclude zero (Galipaud ef 4/,

2014). All analyses were performed using the packages ‘nlme’ (Pinheiro ez a/, 2016),
‘lme4” (Bates ¢ al., 2015), ‘MuMIn’ (Barton, 2013), ‘ape’ (Paradis ez al., 2004), and

‘base’ implemented in R v.3.2.2 (R Development Team, 2016).

I11.3 Results

Over the 15-day survey period, we counted 65 601 aphids across all

exclusion treatments. Of the 576 natural enemies recorded, the majority were aerial

or vegetation-dwelling predators such as Coccinellidae (adults 28.5%, larvae 13.9%),
Araneae (26.7%, mostly Linyphiidae) and Syrphidae (larvae 12.7%). On day 15, the

number of parasitized aphids observed in cages ranged from zero to ten (mean+SE

‘Bird Exclosure’ 1.17+0.43, ‘Open Treatment’ 1.47+0.03). Mean aphid densities in

cages without natural enemies (‘Full Exclosures’ 250.67+£17.49) were 3.13 times

higher than in ‘Bird Exclosures’ (80.0348.92), and 2.29 times higher than in ‘Open

Treatments’(109.42+12.01). This difference, and consequently estimates of BCI,

increased over time (Figures. I11.2 & II1.S2).
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Figure II1.2 Multiscale effects of crop diversity on biological control estimated for day 5,

10 and 15 of the natural enemy exclusion experiment. Regression lines show predicted

results based on model-averaged estimates (including models with A AICc < 7).
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[11.3.1 Scale-dependent crop diversity effects

The benefits of CropDiv to BCI varied with time and scale considered
(Figures. 111.2 & 111.3, Table II1.1). Across all landscapes, BCI correlated negatively
with CropDiv in the first survey period (day O to 5, Figures 111.2a & III.3a).
However, in subsequent surveys this relationship reversed (CropDiv x survey
interaction). CropDiv on small spatial scales (100, 250 and 500 m) had the strongest
positive effect on BCI, which weakened with increasing spatial scale (Figures I11.2b,
III.2¢c & 1II.3a). Translated to ENCS, an increase from one to three dominating
crop types at the most predictive 250 m scale (highest R”) equated to an average
33% rise in biological control (Figure I11.4). In contrast, a similar increase in
CropDiv at 2000 m scale (second highest R?) only improved BCI by around 8%.
Due to the contrasting relationships over time, high diversity landscapes (CropDiv
> 1.38, ENCS > 4) showed the strongest temporal increase in BCI, which more
than tripled over the 15-day survey period (BCI means (SE) across all spatial
scales: day 5 = 0.18 £ 0.04, day 10 = 0.32 £ 0.04, day 15 = 0.76 £ 0.03, Figure
I11.2).

The density of arthropod predators increased over time and with CropDiv
at small spatial scales (100 m & 250 m, Figure IIL.3c, Table III.1). Large-scale
CropDiv also positively affected parasitoids (2000 m & 3000 m, Figure I11.3e, Table
IIL1.1). In addition, both natural enemy groups showed strong density-dependence
with aphids (Table II1.1, Figures I111.S1b & II1.S1c).
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Figure III.3 Effect of crop diversity (CropDiv) and seminatural habitat (SNH) on
biological control (a, b), predator (c, d) and parasitoid density (e, f) at six spatial scales.
Values are model-averaged estimates + 95% confidence intervals (A AICc < 7). Cls
excluding zero indicate effect sizes with strong support. In biological control and predator
models estimates were calculated for separate survey intervals for CropDiv or across survey
intervals for SNH. Estimates for parasitoid density were calculated for day 15 only. Effect
sizes > zero indicate a positive regression slope between standardized landscape predictors
and response variables (positive effect). Estimates of CropDiv x survey and CropDiv x
SNH interactions with Cls excluding zero are marked with asterisks and <’ respectively,
yet only estimates of main landscape effects are shown here. The most predictive scales
(highest R* values of the full models) are indicated by dashed vertical lines.

I11.3.2 Landscape-dependence of crop diversity effects

The effect of CropDiv on BCI and predator densities was not influenced
by SNH (no CropDiv x SNH interaction, Table III.1, Figures I11.3b & III.3d). The
only observed interaction relates to parasitoid densities at the most predictive 500
m scale (Table IIL.1). Here, the response to CropDiv changed from positive to

negative with increasing landscape complexity.



[11.3.3 Natural enemies and biological control

We found no relationship between BCI and the density of arthropod
predators (O, w; = 0.55, estimate (95% Cls) = -0.007 (-0.1, 0.08)) or parasitoids
> w; = 0.88, estimate = -0.02 (-0.07, 0.02)). Furthermore, the presence of birds did
not affect overall biological control (Figure I11.S1, Tables III.1 & II1.S6) or aphid
suppression by predators and parasitoids (bird exclusion x predator: Y, w; = 0.18,
estimate = -0.006 (-0.116, 0.05), bird exclusion x parasitoid: ), w; = 0.47, estimate
=-0.003 (-0.139, 0.003).

5 Figure III.4 Conversion of
Spatial scale crop diversity (CropDiv) to
® 250m ‘effective number of crops’

41 A 2000m (ENCS, (Jost, 2006)). CropDiv

was calculated as Shannon

Wiener index based on 12 arable
crop types (Table IILST).
Therefore, ENCS (exp
(CropDiv)) indicates the number

of equally abundant crop types
BCI required to achieve a specific
+33% CropDiv. In this graphic, crop
diversification increases from

0.0 015 1.|0 15 the  bottom left  (low
Crop diversity diversification) to the top right

(high diversification). Benefits of
crop diversification to BCI are shown for two spatial scales: on small scales (250m, circles),
BCI increased by 33 %, on larger scales (2000m, triangles) by 8 %. Illustrated using
minimum and maximum CropDiv/ENCS values (Table II1.S1) and model-averaged
estimates of BCI for the two most predictive scales (highest R* values of full models).

111.4 Discussion

Our study explored the scale- and landscape-specific influence of crop
diversification on biological control of aphids in winter wheat. By disentangling the
effects of landscape-level crop diversity and seminatural habitat cover (SNH) on six
spatial scales, we demonstrate that crop diversity augments natural enemies and
biological control (BCI). On small scales below 500 m, an increase from one to

three dominating crop types enhanced BCI by up to 33 %. This contradicts
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previous studies linking biological control primarily to non-crop landscape
composition and configuration rather than crop diversity (Holland ez @/, 2012;
Rusch ¢z al., 2013). However, our findings corroborate recent evidence for benefits
of crop diversification on aphid suppression (Bosem Baillod ¢z a/., 2017). Opposed
to our predictions, arthropod predators and parasitoids did not differ greatly in the
strength of their response to crop diversity and SNH. However, our findings
suggest that natural enemies other than birds or the recorded arthropod predators
and parasitoids were responsible for pest suppression in our system. This highlights
the need to study the ecosystem service itself rather than individual natural enemy

guilds.

I11.4.1 Time and scale effects

We found delayed biological control most likely linked to the deferred
arrival of predators, and higher attractiveness of treatment patches with increasing
aphid densities (Chaplin-Kramer e7 a/., 2013; Martin e al., 2016). Furthermore, the
response of BCI to crop diversity switched from negative to positive during the
course of the exclusion experiment. This suggests that initial dilution-concentration
effects (Schneider e al., 2015; Bosem Baillod ef al., 2017) were replaced by diversity-
and abundance-mediated processes. Importantly, we show that the benefits of crop
diversity would have gone unnoticed in experiments lasting less than ten days or
restricted to a single spatial scale (e.g. 1000 m, commonly used in ecological studies).
Crop diversity was most influential on small (<500m, biological control, predator
densities) and large (>2000m, parasitoid densities) spatial scales, whereas SNH had

no or weak effects across all scales.

To our knowledge, scale effects on overall biological control using
comparable crop diversity indices and exclusion experiments have not previously
been investigated. However, two recent studies report reduced aphid densities
(1000 m scale; (Bosem Baillod e af, 2017)) and increased levels of predation by
epigeal predators (750m scale; (Holland ez /., 2012)) with crop diversification in
similar cereal systems in Germany and the UK, respectively. These effects occurred
on slightly larger scales than in our system. Yet scale-specific differences in the

response to landscape variables are common, and depend on study region and



system. For example, non-crop landscape complexity may influence overall or
taxon-specific pest suppression and predator densities either at small (< 500 m;
(Holland e al., 2012; Tamburini et al, 2015)), intermediate (> 500 m — 2000 m;
(Gardiner ez al., 2009; Chaplin-Kramer ef al., 2013; Rusch ez al., 2013; Bosem Baillod
et al., 2017)) or large spatial scales (> 2000 m; (Gardiner ez al, 2009; Woltz ef al.,
2012; Chaplin-Kramer ¢z al., 2013)). Due to their specialist diet and greater dispersal
limitation, specialist parasitoids may be less responsive to resource diversification
than generalist predators, and influenced more locally (Chaplin-Kramer ez 2/, 2011).
Nevertheless, strong responses to large-scale landscape complexity were reported
elsewhere, and compare well with our findings (1500 — 2000 m; e.g. (Thies e a/.,
2003)).

[11.4.2 Seminatural habitat and landscape interactions

Perennial non-crop structures are important sources of natural enemies in
agroecosystems (T'scharntke ez a/., 2005; Bosem Baillod e¢7 a/., 2017), and therefore
have the potential to enhance pest regulation (Rusch e a/, 2016). Yet a growing
evidence base suggests that natural habitat is not a panacea to improve biological
control (Martin e# al., 2016; Tscharntke ez al., 2016). Some predators, especially those
primarily relying on crop resources, benefit from non-crop removal, so that SNH
enhancement might weaken overall biological control (Caballero-Loépez ez al., 2012,
Shackelford ef al., 2013). Alternatively, local habitat disturbance and pesticide
intensity can override resource-related landscape complexity effects (Jonsson e al,
2012). Natural habitat cover may also act as barrier to dispersal for natural enemies,
lead to host/prey dilution or provide more favourable resources, thereby drawing
natural enemies away from the crops (Holland e7 @/, 2012; Ratnadass ez al, 2012).
This could explain the negative effect of SNH on parasitoid densities at the 500 m
scale, especially in landscapes with a diversity of additional crop resources. In
contrast, higher crop diversity in simple landscapes might sustain parasitoids by
providing alternative hosts across the season, as seen here (Schellhorn ez @/, 2015).
Apart from this interaction between crop diversity and landscape complexity, we
found no evidence for landscape-dependent effects of crop diversification (Woltz

¢t al., 2012; Rusch ez al., 2013).
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[11.4.3 Natural enemies and biological control

We expected natural enemy guilds to differ in their contribution to
biological control, but this hypothesis was not confirmed. Surprisingly, we observed
no correlations of biological control with the density of specialist parasitoids and
(aerial) arthropod predators, although both groups were enhanced by crop
diversification at different scales. These findings suggest that taxa not captured well
with our sampling method, particularly epigeal Carabidae and Staphylinidae, or
cryptic leaf-dwelling Chrysopidae, were primary drivers of pest suppression in our
system. Epigeal predators can be important biocontrol agents (Martin ef a/, 2013;
Tamburini ez al., 2015) and contribute to increased predation in oilseed rape fields
(Dainese et al, 2017) and crop-diversified landscapes (Holland ez al, 2012).
However, they are generally less mobile and more likely to depend on crop rather
than non-crop resources (Shackelford ez a/., 2013). Our results support this idea
owing to strong small-scale effects of crop diversity on BCI, yet a lack of correlation

with SNH at the same scales.

Our finding and previous research therefore highlights the importance of
assessing overall biological control rather than the density of natural enemy guilds
alone. Sampling deficits related to distinct guilds could mask influential correlations
(Henti ez al., 2015). Moreover, species-specific predation and overall parasitism rates
may not translate to high biological control owing to species interactions at the
community level (Letourneau ¢# al., 2009; Woltz ez al., 2012; Shackelford ez al., 2013;
Tamburini e al, 2015). For example, insectivorous birds interfere with pest
suppression by feeding on intermediate predators (Mooney ez al., 2010; Martin ez al.,
2013). In our study, we did not observe reductions in overall biological control in
the presence of birds (Tamburini ez a/., 2015). However, the strength of intraguild
predation by birds is known to vary strongly, depending on the system (temperate
vs. tropical) or pest organism studied (e.g. chewing vs. sap-sucking insects; (Straub

et al., 2008)).



II1.5 Synthesis and management implications

Agricultural landscapes are primarily crafted by market forces dictating
farmers choices of what, where and how to produce (Bowman & Zilberman, 2013).
Hence, the scope for implementing beneficial diversification practices is often
limited. Societal, economic and bureaucratic obstacles deter conventional farmers
from joining agri-environment schemes (state-subsidized wildlife conservation
programs such as off-field flower plantings) or creating natural habitat in an attempt
to extensify farming (e.g. by reducing insecticide applications, (Wilson & Tisdell,
2001; Lin, 2011)). Policy-based tools such as the inclusion of ‘crop diversification’
in the European Common Agricultural Policy (‘Greening’, EU Regulation No.
1307/2013) can favour positive changes. Nevertheless, potential ‘Greening’
benefits are probably lower than expected, as the minimum number of crops that
needs to be grown is low (~ 3 crop species, (Pe’er et al., 2014; Josefsson et al., 2017)).
Furthermore, the lacking requirement to cultivate functionally different crops could
result in resource bottlenecks for natural enemies (Schellhorn ez a/., 2015). Our study
indicates that at least three functional crop groups (not crop species per se) ought to
be cultivated to increase biological control. Hence, the conversion of crop diversity
to ‘effective number of crop types’ (ENCS) can aid in the development of
appropriate farm management guidelines that facilitate ecosystem services, and in

the communication of research results to farmers and policy makers.

Although hypothesized links between crop diversity and yield, agrochemical
usage, ecosystem resilience and farm economic stability need yet to be confirmed
(Lin, 2011; Aguilar ez al, 2015), our study is one of the first to highlight the
importance of crop diversity for biological control. From a farmet’s perspective,
landscape-level crop diversification for the sake of biological control is a promising
alternative to on-field or non-crop diversification measures. Increasing the number
of crop types on small landscape scales allows for a certain flexibility of
implementation using extended crop rotation schemes and co-operation with
neighbouring farms. Considering the adverse effects of agricultural intensification
and climate change, this finding opens new potential pathways for the future of

sustainable farming.
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II1.6 Supplement

II1.6.1 Detailed description of experimental design and natural enemy

exclusion experiment

I11.6.1.1 Basic study design

This research was conducted as part of a larger field experiment within the
framework of the project Liberation (“LInking farmland Biodiversity to Ecosystem
seRvices for effective ecological intensificATION®), funded by the European
Union (grant number: 311781). This major study explored how local management
practices (fertilizer application, insecticide input, field soil organic carbon) in
combination with changes in cropland area at the expense of seminatural habitat
determine the abundance of pests and predators, biological pest control, and crop
yields. For this purpose, a common field experiment was designed and implemented
in seven European countries participating in the research (Germany, Hungary, Italy,

Poland, Sweden, The Netherlands, United Kingdom).

The common experiment incorporated a paired-field design (Figure III.1,
main text), in which pairing was achieved by joining two conventional winter wheat
fields of contrasting soil organic carbon content (= SOC, high/low) yet similar soil
texture, pH (less than 0.5 unit difference) and field margin quality (mostly grassy
edge) along a gradient of landscape simplification defined by the proportion of
arable land in 1000m radius. In Germany, the 18 fields (nine field pairs, within-pair
distance between fields mean+SE 12464328, range 185-2496m) were also selected
to cover landscapes with varying crop diversity at six spatial scales: 100, 250, 500,
1000, 2000 and 3000m (12 crop categories, Table IIL.S1, (Eurostat, 2012).
Correlations between crop diversity and the amount of seminatural habitat,
cropland cover, field size and overall habitat diversity on all spatial scales were kept

to 2 minimum.

The paired design allowed to separate effects of increasing soil organic
carbon from those of soil texture and pH. At the same time, fields were selected to

include different management practices (e.g. till or no-till, long or short crop



rotations, mineral vs. organic fertilizer input) to ensure that SOC effects were not
in fact driven by specific field management types. Soil conditions of potential fields
were assessed by collecting five soil cores (30mm diameter, 15cm deep). Samples
were pooled within fields, homogenized and stored at 5°C before analyses of pH
and SOC. In Germany, soil texture within potential fields was determined using soil

maps (Bayerische Vermessungsverwaltung, 2010).

Study plots (> 50x15m) were established along the edge of each field, at
least 15m from headlands. A crossed insecticide (pyrethroid insecticide, yes/no)
and fertilizer treatment (no=0 kg/ha, yes= three applications of ammonium sulfate
nitrate at ~BBCH 20 (90kg/ha), ~BBCH 30 (50kg/ha) and ~BBCH 55 (50kg/ha))
was established by randomly assigning each treatment combination to one of the
four established subplots (12x14m each). Farmers were not allowed to use
insecticides or fertilizers on or near study plots. Herbicides and fungicides were
applied as usual. Natural enemy exclusion cages (see below) were only employed on
non-insecticide plots, hence the treatment ,insecticide® is irrelevant for this study

and therefore not shown in Figure II1.1 (main text).

Owing to the underlying experimental design, we included both SOC and
fertilization as covariates in our analysis. However, no effect on natural enemy
abundances and SOC was observed (see Table III.1 main text, Figure II1.ST).
Additionally, preliminary analyses relating local field management to recorded aphid
densities using a generalized mixed effects model with Poisson distribution did not
reveal any effects of SOC () w;=0.306, estimate (95% confidence intervals)= -0.08
(-0.72, 0.3)) or Nitrogen (3, w;=0.29, estimate(CIs)= 0.01 (0.3, 0.39)), nor their
interaction (), w;=0.03, estimate(CIs)= -0.006 (-0.81,0.49)).

I11.6.1.2 Natural enemy exclusion experiment

During the grain milk stage (BBCH 66 to 77), aphid populations (3
populations per subplot = 6 populations per field, Figure III.1 in main text) were
established on patches of winter wheat (30cm diameter, initial aphid density ~100),
in which natural enemies had previously been removed manually and using pitfall

traps. Patches were separated by at least 2m and covered with fiber web tents to
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prevent re-colonization of predators. We used lab-reared cereal aphids Sizobion
avenae (Katz Biotech AG) that had been acclimated to local conditions for 14 days
prior to establishment. Establishment success was monitored after five days, and
patches were re-inoculated if necessary. Day 10 after the first inoculation marked
the starting date of the natural enemy exclusion experiment. Three exclusion
treatments were set up: ‘Open Treatment’ (access for flying and ground-dwelling
arthropods, birds and parasitoids), ‘Bird Exclosure’ (only bird predators excluded)
and ‘Full Exclosure’ (=control all birds, arthropod predators and parasitoids
excluded) (Figure I11.1, main text). Due to variable establishment success, care was
taken to achieve similar starting densities for aphids across all treatments (mean+SE
aphid densities ‘Bird Exclosure’ 86.44+17.47, ‘Full Exclosure’ 94.33419.61, ‘Open
treatment’ 126.19+30.73, Figure I11.S1). Exclusion cages consisted of 30x100cm
plastic mesh cylinders (‘Bird Exclosure’ mesh size 20x20mm, ‘Full Exclosure’ mesh
size 5x5mm). Additionally, ‘Full Exclosure’ cages were covered in sticky glue (Thies
et al., 2011), and metal rings (32cm diameter, 25cm high) were inserted 10cm into
the ground to prevent re-colonization of flying and ground-dwelling predators. In
total, each field received two replicates per exclusion treatment (6 cages per field),

one per fertilization subplot (fertilized »s. non-fertilized; Figure I11.1).

Within each exclusion treatment, aphids were counted non-destructively on
10 randomly selected tillers in 5-day intervals (day 0O, 5, 10, 15). Additionally, we
recorded the number of aphid mummies and natural predators such as vegetation-
dwelling hoverfly, ladybird and lacewing larvae and spiders, and aerial predators
such as adult ladybirds and parasitoids in order to investigate effects on predator
density and parasitism rate. The strength of biological control for each five-day
interval was assessed by calculating a biological control index (BCI, (Gardiner e/ 4/,

2009) for the treatments ‘Bird Exclosure’ and ‘Open treatment’ as

Atreatment end

Biological control index = 1 —
rfull exclosure * Atreatment start



where Atreatment ,ng 18 the number of aphids in the treatment on the final

day, Tru1t exclosure 18 the ratio of final to initial aphid numbers in the ‘Full exclosure’

(aphid population growth when all predators are excluded), and A¢reatment gy 1S
the initial number of aphids in the treatment. The BCI metric ranges from 0 (no
net reduction in aphid densities in open treatments) to 1 (optimal biological control,
100% of aphids consumed). Following (Gardiner ez a/., 2009) negative BCI values
were set to zero as these indicate ineffective biological control. BCI was calculated
separately for ‘Bird exclosure’ and ‘Open treatments’ for three 5-day intervals
(‘BCP’, days 0 to 5, 5 to 10, 10 to 15). Predator densities were pooled across all
predatory guilds for each sampling round (days 5, 10, 15). Due to the low rate of

parasitism, analysis of parasitism rate (the fraction of parasitized to total aphids)

was restricted to day 15.
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Table ITI.S1 Summary statistics of landscape parameters used in analyses (crop diversity
and proportion of seminatural habitat) for each of the six landscape scales (18 fields). For
crop diversity, the minimum and maximum effective number of crop species (ENCS) was
calculated as exp(crop diversity) (Jost, 2000).

Scale N Mean SD SE Min El\l\/ll_CS Max =S Description
in Max
Crop diversity
Shannon index calculated
100 18 0.58 0.37 0.09 0.00 1.00 1.32 3.72 from the proportional
cover of twelve crop types:
250 18 0.66 0.32 0.08 0.00* 1.00* 1.24* 3.45* cereals (excluding grain
maize), 1- or 2-year old
fallows, flowers and
500 18 0.90 0.26 0.06 0.50 1.65 1.44 4.23 ornamental plants,
temporary grassland and
green fodder (green
maize), legumes, maize,
oilseed and fiber crops
2000 18 1.21 019 004 0.89* 244* 148 441+ (excludingrape), rape and
turnips, root crops,
sunflowers, vegetables,
3000 18 1.24 0.14 0.03 1.03 2.79 1.47 4.34 other industrial crops
(Eurostat, 2012)

1000 18 106 023 0.06 074 210 144 423

Seminatural habitat cover

Proportional cover (%) of

100 18 2495 2477 584 219 - 76.88 - . . .
natural habitats including
extensive perennial

250 18 26.47 2320 547 116 - 76.55 - grassland, orchard
meadows, hedgerows,

500 18 2491 16.08 3.79 451 - 53.00 - forest edges (10 m into the
forest), field and grass

1000 18 24.15 1357 320 835 - 53.50 - margins along linear
elements (rivers and

2000 18 2195 1045 246 7.98 - 40.66 - roads)

3000 18 21.28 860 203 10.08 - 36.98 -



Table III.S2 Correlation matrix (Pearson’s 1) of predictor and landscape variables for
each spatial scale (100m, 250m, 500m, 1000m, 2000m, 3000m). Landscape-level crop
diversity (CropDiv) is the Shannon Wiener index of 12 arable crop categories. SNH =

seminatural habitat cover, HabDiv = landscape-level habitat diversity based on the

Shannon Wiener index of 6 broadly classified land use types in the study area (annual crops,

perennial crops, seminatural habitat, forest, water, urban), SOC = soil organic carbon

content (low, high), Fertilization (yes, no), Aphids= aphid densities recorded within each

treatment. Values above and below diagonals report correlations at successive spatial scales.

CropDiv
% SNH
% Arable
HabDiv
Field size
Aphids
Fertilization*
SOocC*

CropDiv
% SNH
% Arable
HabDiv
Field size
Aphids
Fertilization*
sSocC*

CropDiv
% SNH
% Arable
HabDiv
Field size
Aphids
Fertilization*
sSocC*

0.22
0.092
0.27
0.51
0.13
0
0.044

0.47
0.34
0.17
0.17
0.018

0.24

0.25
0.11
0.12
0.2
0.12

0.13

0.026
0.95
0.56
0.36
0.11

0
0.12

0.28

0.9

0.77

0.24

0.24

0.14

0.33

0.86
0.82
0.4
0.22

0.049

0.054
0.99
0.74
0.42

0.1
0
0.17

0.21
0.92
0.94
0.4
0.16
0
0.051

0.022
0.87
0.95
0.63
0.12

0

0.001

0.41
0.65
0.74
0.43
0.14
0
0.023
250m

0.018
0.8
0.93
0.56
0.13
0
0.12

1000m

0.07
0.81
0.97
0.72
0.1
0
0.037

3000m

0.48
0.55
0.6
0.66
0.046
0
0.012

0.47

0.11

0.23
0.4

0.032

0.046

0.067

0.34

0.44

0.6

0.04

0.13

0.23
0.11
0.11
0.14
0.21
0
0.14

0.082
0.16
0.12
0.09
0.02

0.14

0.16
0.22
0.12
0.12
0.015

0.14

0

O O O o o

CropDiv. % SNH % Arable HabDiv Field size Aphids Fertilization* SOC*

0.28
0.18
0.21
0.3
0.16 100m
0.14
0

0.2
0.057
0.042
0.003
0.022

0.14

500m

0.16
0.074
0.032
0.028 2000m
0.096
0.14

* Fertlization (fertilization treatment yes/no) and SOC (soil otrganic catbon content

low/high) are shown due to the nature of the experimental design and analysis, yet not

further developed in this paper (see Methods).
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Table ITI.S3 Full landscape models (general or generalized linear mixed effects models)
for biological control, predator density and parasitism rate. Separate models were built for
each of the six landscape scales around study fields (100m, 250m, 500m, 1000m, 2000m,
3000m). The random effect structure accounted for the nested design: fields within a pair
(‘Pair’), two fertilization treatment levels per field (‘Field’), three exclusion treatments in
every fertilization subplot (‘Subplot’). For predator density the random term ‘Cage’
accounted for replication within each exclusion treatment (three predator and aphid
surveys). Model fit of full models was assessed with marginal (R?m) and conditional (R%c)

R-squared for every landscape scale, and average R? values (= SE) were calculated across

scales.

Response variable

Scale Distribution Fixed effects* Random effects R?m R%c
Biological control
100m  normal F+SOC+B Pair/Field/Subplot/Cage 0.22 0.27
250m + S + CropDiv 0.23 0.28
500m + SNH + 0.22 0.26
1000m CropDiv:S + 0.2 0.23
2000m CropDiv:SNH 0.19 0.22
3000m 0.21 0.23
Mean R?(+SE) 0.21 0.25
(£0.005) (+0.009)
Predator density
100m  Poisson A+F+S0OC Pair/Field/Subplot/Cage 0.27 0.30
250m +B+S+ 0.27 0.30
500m CropDiv + 0.23 0.29
1000m SNH + 0.20 0.30
2000m CropDiv:S 0.21 0.31
3000m CropDiv:SNH 0.21 0.30
Mean R2(+SE) 0.23 0.30
(x0.01)  (x0.002)
Parasitoid densityt
100m  Poisson A+F+S0OC Pair/Field/Subplot 0.23 0.4
250m + B + CropDiv 0.26 0.36
500m + SNH + 0.43 0.47
1000m CropDiv:SNH 0.26 0.39
2000m 0.35 0.43
3000m 0.29 0.38
Mean R?(+SE) 0.3 0.41
(x0.03)  (x0.01)

* Fixed effects abbreviations: A = Aphid density, B = Bird exclusion (bitds excluded yes/no),
CropDiv = Crop diversity, F = Nitrogen fertilization (fertilizer applied yes/no), SNH = Propottion
of seminatural habitat, SOC = Soil organic carbon content (soil organic carbon content low/high),
S = Survey interval (days 0 to 5, 5 to 10 and 10 to 15), CropDiv:S = Interaction Crop diversity x
Survey interval, CropDiv:SNH= Interaction Crop diversity x Proportion of seminatural habitat.
Fertilization and SOC are included due to the nature of the experimental design and analysis, yet not
further developed in this paper

T Parasitoid density was only analyzed for day 15, as parasitoid density was very low on days 5 and
10. No temporal effect was tested thus a random effect for Cage was not included.



Table II1.S4 Full models (general linear mixed effects models) relating bird predation,
predator and parasitoid densities to biological control. Model fit of full models was assessed
with marginal (R?m) and conditional (R%c) R-squared. The random effect structure
accounted for the nested design: fields within a pair (‘Pair’), two fertilization treatment
levels per field (‘Field’), three exclusion treatments in every fertilization subplot (‘Subplot’).
For predator density the random term ‘Cage’ accounted for replication within each
exclusion treatment (three predator and aphid surveys).

Response Model

> o Fixed effects* Random effects R2m RZ%
variable distribution
Biological B+ S + PR + PR:S Pair/Field/Subplot/Cage
control normal + PR:B + B:S:PR 02 023
Ec')?:t?g:cal normal B + PA + PA+B Pair/Field/Subplot 0.13 042

* Fixed effects abbreviations: B = Bird exclusion (birds excluded yes/no), PR = predator
density, PA = parasitoid density, S = Survey interval (days O to 5, 5 to 10 and 10 to 15).

T Effect of parasitoid density on biological control was only analyzed for day 15, as
parasitoid density was very low on days 5 and 10. No temporal effect was tested thus a
random effect for Cage was not included.
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Table III.S6 Model-averaged estimates with unconditional lower and upper 95%

confidence Intervals for biological control, predator density and parasitoid density as

function of local and landscape factors on six spatial scales (100m, 250m, 500m, 1000m,
2000m, 3000m). Model averaging was based on a set of top models (AAICc<7). Estimates
are highlighted in bold if 95% confidence intervals do not overlap zero.

Response 100
Biological control
CropDiv -0.053
S5 (-0.142, 0.036)
CropDiv 0.085
S10 (-0.1, 0.27)
CropDiv 0.123
S15 (-0.062, 0.307)
CropDiv:S 0.139
5-S10 (0.042, 0.235)
CropDiv:S 0.176
5-S15 (0.081, 0.272)
CropDiv:S 0.038
10-S15 (-0.059, 0.134)
-0.005
SNH (-0.081, 0.046)
CropDiv:S -0.0001
NH (-0.068, 0.066)
-0.029
S5-S10 (-0.127, 0.068)
0.254
S5-S15 (0.157, 0.351)
0.284
S10-S15 (0.186, 0.382)
-0.029
B (-0.141, 0.019)
0.011
SocC (-0.096, 0.17)
-0.01
F (-0.13, 0.067)
Predator density
0.275
CropDiv 5 (0.015, 0.536)
CropDiv 0.398
10 (-0.097, 1.022)
CropDiv 0.2
15 (-0.423, 0.743)
CropDiv 0.122
S5-S10 (-0.112, 0.486)
CropDiv -0.075
S5-S15 (-0.438, 0.207)
CropDiv -0.198
S10-S15 (-0.559, -0.046)
0.093
SNH (-0.04, 0.343)
CropDiv:S -0.0025
NH (-0.16, 0.125)
0.818
S5-10 (0.502, 1.135)
0.699
S5-15 (0.359, 1.038)
-0.12
S10-15 (-0.401, 0.161)
0.031
B (-0.133, 0.335)
0.253
A (0.147, 0.359)
0.048
SoC (-0.164, 0.432)
-0.011
F (-0.271, 0.183)

250

-0.103
(-0.19, -0.015)
0.048
(-0.136, 0.233)
0.132
(-0.05, 0.314)
0.151
(0.054, 0.248)
0.235
(0.14, 0.33)
0.084
(-0.015, 0.182)
-0.003
(-0.079, 0.057)
0.0003
(-0.093, 0.103)
-0.031
(-0.129, 0.068)
0.25
(0.154, 0.346)
0.281
(0.181, 0.381)
-0.023
(-0.133, 0.026)
-0.005
(-0.138, 0.098)
-0.006
(-0.117, 0.07)

0.245
(0.048, 0.476)
0.258
(-0.202, 0.861)
0.221
(-0.414, 0.687)
0.013
(-0.25, 0.385)
-0.024
(-0.462, 0.211)
-0.037
(-0.461, 0.075)
0.127
(-0.023, 0.385)
0.0104
(-0.197, 0.315)
0.864
(0.561, 1.167)
0.715
(0.375, 1.054)
-0.149
(-0.42, 0.122)
0.031
(-0.132, 0.333)
0.27
(0.166, 0.374)
0.051
(-0.158, 0.462)
-0.012
(-0.276, 0.177)

500

0.1
(-0.187, -0.014)
0.057
(-0.124, 0.238)
0.09
(-0.091, 0.272)
0.157
(0.063, 0.251)
0.191
(0.096, 0.286)
0.033
(-0.064, 0.131)
-0.002
(-0.072, 0.061)
0.0141
(-0.034, 0.162)
-0.03
(-0.127, 0.066)
0.254
(0.156, 0.351)
0.284
(0.183, 0.384)
-0.029
(-0.141, 0.022)
-0.005
(-0.145, 0.104)
-0.009
(-0.126, 0.063)

0.09
(-0.058, 1.171)
0.087
(-0.403, 1.405)
0.084
(-0.497, 1.348)
-0.003
(-0.345, 0.234)
-0.006
(-0.439, 0.177)
-0.004
(-0.327, 0.175)
0.046
(-0.113, 0.348)
-0.0039
(-0.398, 0.26)
0.872
(0.573, 1.171)
0.721
(0.383, 1.059)
-0.151
(-0.419, 0.117)
0.029
(-0.138, 0.327)
0.282
(0.177, 0.387)
0.063
(-0.177, 0.539)
-0.015
(-0.282, 0.17)

1000

-0.104
(-0.202, -0.016)
0.017
(-0.17, 0.206)
0.041
(-0.146, 0.234)
0.12
(0.032, 0.222)
0.145
(0.057, 0.25)
0.025
(-0.222, 0.126)
-0.027
(-0.12, 0.026)
-0.0011
(-0.111, 0.095)
-0.03
(-0.128, 0.069)
0.254
(0.153, 0.354)
0.283
(0.18, 0.387)
-0.026
(-0.141, 0.026)
-0.011
(-0.164, 0.086)
-0.009
(-0.126, 0.064)

-0.003
(-0.292, 0.269)
-0.004
(-0.677, 0.488)
-0.004
(-0.716, 0.489)
-0.001
(-0.385, 0.219)
-0.001
(-0.424, 0.22)
0.001
(-0.283, 0.244)
0.011
(-0.247, 0.334)
0.0071
(-0.137, 0.61)
0.87
(0.571, 1.169)
0.717
(0.379, 1.054)
-0.153
(-0.421, 0.114)
0.028
(-0.137, 0.327)
0.278
(0.174, 0.383)
0.041
(-0.219, 0.497)
-0.014
(-0.283, 0.169)

2000

-0.072
(-0.192, 0.01)
-0.009
(-0.195, 0.203)
0.016
(-0.158, 0.244)
0.063
(-0.003, 0.194)
0.088
(0.035, 0.234)
0.025
(-0.064, 0.141)
-0.027
(-0.104, 0.016)
-0.001
(-0.064, 0.048)
-0.027
(-0.128, 0.074)
0.259
(0.156, 0.362)
0.286
(0.182, 0.39)
-0.023
(-0.139, 0.029)
-0.009
(-0.151, 0.086)
-0.009
(-0.129, 0.063)

-0.016
(-0.299, 0.189)
-0.016
(-0.622, 0.477)
-0.016
(-0.655, 0.48)
-0.001
(-0.323, 0.289)
-0.001
(-0.356, 0.291)
-0.001
(-0.275, 0.245)
0.024
(-0.168, 0.32)
0.0074
(-0.073, 0.384)
0.87
(0571, 1.168)
0.715
(0.378, 1.052)
-0.154
(-0.422, 0.113)
0.028
(-0.137, 0.327)
0.277
(0.173, 0.381)
0.039
(-0.216, 0.484)
-0.015
(-0.283, 0.169)

3000

-0.131
(-0.217, -0.045)
0.012
(-0.17, 0.194)
0.027
(-0.156, 0.211)
0.143
(0.047, 0.239)
0.158
(0.06, 0.256)
0.015
(-0.087, 0.118)
-0.021
(-0.094, 0.023)
-0.0119
(-0.111, 0.027)
-0.031
(-0.128, 0.067)
0.253
(0.154, 0.352)
0.284
(0.18, 0.388)
-0.025
(-0.139, 0.027)
-0.008
(-0.148, 0.089)
-0.011
(-0.13, 0.055)

0.001
(-0.24, 0.247)
0.002
(-0.454, 0.637)
0.001
(-0.521, 0.609)
-0.001
(-0.214, 0.39)
-0.001
(-0.281, 0.361)
-0.001
(-0.306, 0.21)
0.042
(-0.118, 0.354)
0.0025
(-0.183, 0.392)
0.869
(0.57, 1.168)
0.715
(0.378, 1.052)
-0.154
(-0.393, 0.116)
0.029
(-0.137, 0.328)
0.277
(0.172, 0.381)
0.042
(-0.213, 0.488)
-0.014
(-0.283, 0.169)



Response 100
Parasitoid density

0.042

CropDiv (-0.335, 0.648)
0.001

SNH (-0.495, 0.502)

CropDiv:S

NH NA
0.07

B (-0.226, 0.669)
0.651

A (0.361, 0.942)
0.22

SOoC (-0.347, 1.49)
-0.24

F (-1.423, 0.286)

250

0.013
(-0.406, 0.513)
-0.015
(-0.582, 0.456)
-0.0134
(-1.182, 0.157)
0.068
(-0.227, 0.668)
0.648
(0.359, 0.937)
0.168
(-0.357, 1.316)
-0.235
(-1.423, 0.296)

500

-0.115
(-0.526, 0.189)
-0.498
(-1.21, -0.148)
-0.819
(-2.012, -0.671)
0.059
(-0.12, 0.532)
0.639
(0.43, 0.848)
0.156
(-0.125, 1.064)
-0.257
(-1.19, 0.025)

1000

0.149
(-0.169, 0.873)
0.1
(-0.944, 0.4)
0.01
(-0.46, 1.077)
0.069
(-0.229, 0.669)
0.699
(0.376, 1.023)
0.225
(-0.326, 1.475)
-0.274
(-1.486, 0.264)
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2000

0.578
(0.173, 1.056)
0.018
(-0.348, 0.455)
0.038
(-0.083, 0.602)
0.0557
(-0.254, 0.649)
0.794
(0.454, 1.133)
0.521
(-0.017, 1.666)
-0.346
(-1.481, 0.16)

3000

0.348
(0.048, 0.893)
-0.031
(-0.557, 0.342)
0.013
(-0.271, 0.69)
0.062
(-0.243, 0.655)
0.697
(0.392, 1.001)
0.264
(-0.249, 1.46)
-0.277
(-1.471, 0.25)

Fixed effect abbreviations: A = Aphid density, B = Bird exclusion (bitds excluded yes/no),
CropDiv = Crop diversity, F = Nitrogen fertilization (fertilizer applied yes/no), SNH =

Proporttion of seminatural habitat, SOC = Soil organic carbon content (soil organic carbon
content low/high), S = Sutvey interval (5 = day 0 to 5, 10 = days 5 to 10, 15 = days 10 to
15), CropDiv:S = Interaction Crop diversity x Sutrvey interval e.g. CropDiv:S5-S10 =

difference in CropDiv effects between survey interval 5 (days O to 5) and 10 (days 5 to 10),

CropDiv:SNH = interaction crop diversity x proportion of seminatural habitat.

* Fertilization and SOC are included due to the nature of the experimental design and

analysis, yet not further developed in this paper.
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Figure III.S1 Model-averaged effect sizes and 95% confidence intervals explaining a)
biological control, b) predator and c) parasitoid density (based on day 15 only). Shown are
effects of the predictor variable bird exclusion (negative/positive effect sizes indicate
respective dectreases/increases in the response with birds present), and the covariates soil
organic carbon (SOC, high/low), fertilization (yes/no) and aphid included in models with
A AlICc < 7. Confidence intervals not including zero (horizontal line) indicate effect sizes
of large importance. Plotted for most predictive scales (highest R? values).
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Figure III.S2 Effects of natural enemy exclusion and treatment duration on aphid
densities on day zero (start of experiment), day 5, 10, and 15. The broad line, and the lower
and upper bounds of each box correspond to median, 25% and 75% quartiles, respectively;
open circles represent potential outliers. Initial aphid densities in exclusion treatments were
similar (generalized linear mixed effects model of initial aphid densities (Day 0) as function
of cage treatment; parameter estimates (95% confidence intervals) ‘Full Exclosure’ vs. ‘Bird
Exclosure™ -0.105 (-0.451; 0.241); ‘Full Exclosure’ vs. ‘Open Treatment™ 0.0483 (-0.298;
0.394); ‘Bird Exclosure’ vs. ‘Open Treatment™ 0.154 (-0.193; 0.5)).
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rop diversification has been proposed as farm management tool that

could mitigate the externalities of conventional farming while reducing

productivity-biodiversity trade-offs. Yet evidence for the acclaimed
biodiversity benefits of landscape-level crop diversity is ambiguous. Effects may
strongly depend on spatial scale and the level of landscape heterogeneity (e.g. overall
habitat diversity). At the same time, contrasting within-taxon responses obscure
benefits to specific functional groups (i.e. species with shared characteristics or
requirements) if studied at the community level. The objectives of this study were
to 1) disentangle the relative effects of crop diversity and landscape heterogeneity
on avian species richness across five spatial scales ranging from 250 to 3000 m radii
around focal winter wheat fields; and 2) assess whether functional groups (feeding
guild, conservation status, habitat preference, nesting behaviour) determine the
strength and direction of responses to crop diversity and landscape heterogeneity.
In central Germany, 14 landscapes were selected along independent gradients of
crop diversity (annual arable crops) and landscape heterogeneity. Bird species
richness in each landscape was estimated using four point counts throughout the
breeding season. We found no effects of landscape-level crop diversity on bird
richness and functional groups. Instead, landscape heterogeneity was strongly
associated with increased total bird richness across all spatial scales. In particular,
insect-feeding and non-farmland birds were favoured in heterogeneous landscapes,
as were species not classified as endangered or vulnerable on the regional Red List.
Crop-nesting farmland birds, however, were less species-rich in these landscapes.
Accordingly, crop diversification may be less suitable for conserving avian diversity
and associated ecosystem services (e.g. biological pest control), although
confounding interactions with management intensity need yet to be confirmed. In
contrast, enhancement of landscape heterogeneity by increasing perennial habitat
diversity, reducing field sizes and the amount of cropland has the potential to
benefit overall bird richness. Specialist farmland birds, however, may require more

targeted management approaches.
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IV.1 Introduction

Agrochemical inputs, intensive crop rotations and removal of non-crop
habitats directly and indirectly affect resource availability and habitat diversity in
agroecosystems. As a result, biodiversity and ecosystem services decline (Benton ez
al., 2003; Boesing et al., 2017). Agricultural extensification (the use of less intensive
farming methods) could mitigate these trends. To date, biodiversity conservation
efforts primarily focus on extensification measures that facilitate the often-
pronounced relationship between taxonomic biodiversity and the amount and
diversity of non-crop habitats. However, apparent biodiversity-productivity trade-
offs lower the profitability and uptake of extensification approaches such as flower
strip plantings or set-asides, which often require arable land to be taken out of

production (Khoury ez al., 2014).

Crop diversification (i.e. increasing the number and evenness of crops
grown within a given landscape) has been proposed as an alternative extensification
strategy that could reduce the negative effects of conventional farming without
jeopardizing productivity goals (Fahrig ez a/., 2011). Like non-crop habitat diversity,
landscape-level crop diversity can play a vital role in sustaining biodiversity and
ecosystem services. By providing a variety of complementary resources and habitats
in space and time, more species with multiple and seasonal extended resource
requirements or different niches are able to persist (complementation or niche
differentiation effects) (Fahrig ez 2/, 2011; Kremen & Miles, 2012; Rusch ez a/., 2013;
Palmu ¢z al., 2014; Schellhorn ez al., 2015; Redlich ef al., 2018). These additional
resources are particularly relevant in intensively farmed landscapes, where non-crop
elements such as seminatural habitats are often deteriorated beyond functional

importance (Tscharntke ez al, 2016).

Yet evidence for the benefits of landscape-level crop diversity (hereafter
‘crop diversity’) is ambiguous, especially with respect to birds. Birds, in particular
farmland birds, contribute a range of essential ecosystem services such as pest
control (herbivore and weed seed removal, (Mintyld e al, 2011; Boesing ez al.,
2017)) and nutrient cycling (Whelan ez a/, 2008). The composition of bird

assemblages relates to the quality, structural diversity, disturbance level and food



availability of cropping systems at local and landscape scales, thereby giving insights
into the state of plant, insect and vertebrate diversity as a whole (Gregory e# al,
2005). Yet previous findings showcase a range of very context-specific and
opposing effects (Firbank e a/., 2008; Lindsay e# al., 2013; Fahrig ez al., 2015; Hiron
et al., 2015; Josefsson e al., 2017).

Crop diversity benefits may vary depending on the spatial scale considered
(Gabriel ez al., 2010; Miguet e al., 2013; Jackson & Fahrig, 2015; Jeliazkov ez al.,
2016), and can be confounded by or interact with landscape heterogeneity
(Tscharntke ez al, 2012; Palmu e7 al., 2014; Josefsson ez al., 2017). Here, we define
landscape heterogeneity as an array of strongly interrelated components of
configuration (mean patch size) or composition (perennial habitat diversity,
seminatural habitat cover) that do not relate to the type of crops grown within the
landscape. Choosing an inadequate spatial scale or missing correlations with
landscape heterogeneity aspects could therefore result in false positive, negative or
absent effects of crop diversity. At the same time, crop diversity effects may not
equally apply to all bird species, owing to different resource, habitat and nesting
preferences of specific functional groups (i.e. species with shared characteristics or
requirements), so that individual responses could be masked in whole community
analysis (Filippi-Codaccioni ¢z al., 2010; Ndang’ang’a 7 al., 2013a; Chiron et al., 2014
Hiron et al., 2015). Whether effects are found may also depend on the choice of
crop diversity index (i.e. which crops are included or whether they are grouped)
(Josefsson et al., 2017). As most studies have been restricted to crop diversity
estimates based on a limited number of crops (Herzon & O’Hara, 2007; Gottschalk
et al., 2010; Wretenberg ef al., 2010; Miguet ez al., 2013), single-species responses
(Everaars ef al., 2014; Sauerbrei ¢ al., 2014), subsets of the whole community (e.g.
farmland birds, (Hiron ef al., 2015; Josefsson ez al, 2017)), or one spatial scale
(Wretenberg e al, 2010; Fahrig e al., 2015), this could explain some of the

contrasting crop-bird diversity patterns observed.

In this study, we explore the relationship between bird richness and crop
diversity, while uncovering factors mediating or limiting benefits for bird
communities in agroecosystems. To disentangle crop diversity effects from

landscape heterogeneity, 14 sites were selected along two independent gradients of
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crop diversity and perennial habitat diversity (here used as proxy for landscape
heterogeneity). At each site, landscape variables were calculated for five spatial
scales (250m, 500m, 1000m, 2000m, 3000m). Opposed to previous studies, we use
a crop functional diversity index based on all arable crops grown within the different
landscapes. Using bird surveys, we distinguished between influences on the whole
bird community, and four functional groups (defined by ‘feeding guild’, ‘habitat
preference’, ‘nesting behaviour’ and ‘conservation status’), while posing four
hypotheses: First, we expected a positive association between crop diversification
and overall bird species richness (complementation or niche differentiation effects,
(Fahrig et al, 2011)). Second, we anticipated varying responses of different
functional groups such as endangered vs. non-threatened species (Chiron ez al.,
2014). Third, we tested the hypothesis that crop diversity effects on the whole
community and functional groups depend on the level of landscape heterogeneity
(intermediate landscape complexity hypothesis (Tscharntke ez 2/, 2012)) or, fourth,

the spatial scale considered (Jeliazkov e al., 2016).

The landscape-level diversity of annual arable crops is associated with high
spatial and temporal variability. Crop diversity therefore represents a flexible and
adaptable component of a farm, which increases its utility as targeted biodiversity
enhancement measure (Aguilar e al, 2015). Here, we shed new light on the
possibilities and context-dependencies of crop diversity as conservation tool by

considering functional group identity, landscape context and spatial scale.

1V.2 Material and Methods

[V.2.1 Study region and field selection

Fieldwork was carried out in 2014 in a c. 25 km by 40 km area near
Wirzburg /Germany (49°47° N, 9°57" E). The intensively cultivated region is
dominated by cereals, sugar beets, maize and oil crops, and home to a number of
red-listed bird species (Bayerisches Landesamt fiir Umwelt 2016). Here, 14 focal
winter wheat fields were selected along gradients of crop diversity at various scales.
Focal fields were at least 1000 m apart (range 1012 m to 2560 m) and selected to

have structurally similar field margins (simple grass margins).



[V.2.2 Crop diversity

Resource complementation effects rely on the presence of functionally
different plant types (Fahrig ef al., 2011; Josefsson ez al, 2017). Indices estimating
diversity based on a large number of crops with similar structure, resources and
ecological functions (e.g. wheat, barley, triticale) may therefore overestimate the
functional diversity. However, the assignment of specific functions to crops
strongly depends on preferences of individual study organisms, which makes this
approach particularly difficult in whole community studies. In addition, the
inclusion of only a subset of main crops such as cereals, maize and rotational
grasslands - as done in previous studies (Herzon & O’Hara, 2007; Gottschalk ef a/.,
2010; Wretenberg ez al, 2010; Miguet et al., 2013) — may mask important crop
diversity effects of less prominent functional crop groups. Based on these
considerations, we therefore used all arable crops grown within the study region to
create 12 crop categories (Table IV.1) according to the structural similarity and
relatedness of the crops (Eurostat, 2012; Josefsson e al., 2017). Landscape-level
crop diversity (“CropDiv”’) was then calculated as Shannon Wiener index in the
‘vegan’ package in R (Oksanen ez al., 2015) for five spatial scales (250, 500, 1000,
2000 and 3000 m radius around a centroid placed halfway between the two bird
observation points, Table IV.S1). Scales were chosen based on known home ranges
of birds, and previous research. The regional agricultural land-use data for 2014 was
obtained from the Bavarian State Ministry of Nutrition, Agriculture and Forestry.
To assess the risk of underestimating crop diversity using this grouping approach,
all analyses were repeated using crop species diversity based on 58 arable crops. The
results did not change, but model fit was lower. This supports the use of crop

functional rather than crop species diversity (Josefsson e al., 2017).
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[V.2.3 Landscape heterogeneity

In contrast to CropDiv, other influential landscape aspects such as the
diversity of non-crop perennial habitats, arable field size, the proportion of
cropland and seminatural habitat cover can be viewed as indicators of landscape
heterogeneity not directly related to the type of crop grown. These aspects of
landscape composition and configuration can potentially confound crop diversity
effects (Fahrig ez a/., 2011). During field selection, correlations with CropDiv were
therefore kept to a minimum (Table IV.S1). However, as these variables were highly
correlated amongst themselves (Table IV.S1), only perennial habitat diversity
(hereafter “LandHet”, correlation with CropDiv 7=0.05 — 0.4, Table IV.S1) was
used in our analysis as proxy for the overall level of landscape heterogeneity.
Accordingly, heterogeneous landscapes had a high perennial habitat diversity, a high
proportion of seminatural habitat, low cropland cover and small arable field sizes.
The indicator variable LandHet was calculated as Shannon Wiener index of six
perennial habitat types (Table IV.1), which were digitized in ArcMap v. 10 (ESRI
2011) using official digital topological maps ATKIS DTK 25 (Bayerische

Vermessungsverwaltung).

IV.2.4 Bird observations

Birds were surveyed four times between May and July 2014 next to the focal
winter wheat fields. The observation period was chosen to coincide with the major
breeding season of birds in Germany. Each survey comprised two 10-minute point
counts, one located in the open grass field margin, the other close to the nearest
non-crop habitat, the type of which was also recorded (shrubs, forest, other).
Distance between field margins and nearest non-crop habitat ranged between 20 to
100 m, the midpoint acted as centroid for landscape calculations. Fields were visited
from 4:30 am to 9 am in the morning, or 5 pm to 8:30 pm in the evening. The order
and time of visits was randomized. All birds seen or heard within a radius of 100 m
were recorded (Bibby ez 4/, 1992). No distinctions were made between birds
breeding or foraging. Surveys were not conducted during windy or rainy weather.
All observations were done by a single observer (B.W.), and care was taken not to

double-count individual birds.
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Bird richness was then based on all species recorded in each landscape
during the four visits, with field and non-crop point counts pooled per site. Groups
of flocking birds crossing the fields were not included in species richness
calculations. Observed and rarefied species richness (estimated in the ‘vegan’
package in R) were highly correlated (Pearson’s » = 0.93), suggesting that sampling
effort was sufficient. Bird species richness was further partitioned into functional
groups (Table IV.1, Table IV.S2) based on overall ‘habitat preference’ and ‘feeding
guild’ (Henderson ez a/., 2009; Chiron ez al., 2014; EBBC, 2015). Birds primarily
foraging in cropland may also vary in their sensitivity to crop and non-crop
components of agroecosystems owing to their ‘nesting behaviour’ (Hiron ez al.,
2015; Josefsson et al, 2017). We consequently used the farmland bird subset to
distinguish between crop and non-crop nesting species. Finally, we assessed the
responsiveness of endangered and vulnerable species in comparison to those with
least conservation concern (‘conservation status’ as indicated by the regional Red

List assessment (Bayerisches Landesamt fur Umwelt, 20106)).

IV.2.5 Statistical analysis

The effects of crop diversity (CropDiv) and landscape heterogeneity
(LandHet) on bird richness were analyzed by applying linear models (total richness)
and linear mixed effects models (richness of functional groups; R package ‘nlme’;
(Pinheiro ez al., 2016)) R Statistical Software v.3.2.2 (R Development Team, 2016).
Separate models were fitted for each of the five spatial scales. The scale with the
strongest landscape effect was then determined by comparing AICc values of full
models. For total richness, fixed factors for each scale-specific model were
CropDiv, LandHet and their interaction. To identify guild-specific differences in
response, the models assessing effects on species richness of the functional groups
(‘Func’) feeding guild, conservation status, habitat preference and nesting behaviour
also included the interactions Func x CropDiv and Func x LandHet. Sample size
for functional group models varied depending on the number of functional guilds
per group (e.g. four feeding guilds in all but one landscapes; Table IV.2). In these
models, ‘study site’ was entered as random term, and variance structures (varldent)

were added for the functional groups feeding guild, conservation status and nesting



behavior, to account for variance heterogeneity. All models were fitted using
Gaussian distribution as graphical validation of normality and homogeneity of
residuals suggested that assumptions for linear models were met. In addition, the
complexity of our models and the need to include variance structures justifies the
use of Gaussian over Poisson distribution despite the count nature of the data
(Warton ef al., 2016). We did not observe significant spatial autocorrelation of
residuals (Moran’s I test in R package ‘ape’, all p-values > 0.096 (Paradis ez al., 2004)).
Both landscape variables were g-standardized (R package ‘base’, version 3.2.2) to
reduce multicollinearity and enhance interpretability of main effects. Model
simplification was performed using likelihood ratio-based manual stepwise deletion
of non-significant interaction terms. We assessed the significance of fixed effects
using F-tests for linear models (total species richness) and Wald chi-square tests for

linear mixed effects models with random terms (species richness of functional
groups).

In the presence of marginal or significant interactions, we used post hoc
multiple comparisons of slopes with manually defined contrast matrices (R package
‘multcomp’, (Hothorn ez a/., 2008)) to determine whether species richness responses
of individual functional guilds differed from zero. For this purpose, p-values were
adjusted for the False Discovery Rate (Benjamini & Yekutieli, 2001). We repeated
the functional groups analyses by excluding guilds with an average of less than three
species per field. As the results were qualitatively the same, we thereby confirmed
that findings were not affected by the imbalance between highly abundant and rare
groups. In addition, this approach highlighted the importance of further
investigating individual guild responses in the presence of marginal interactions

between functional groups and landscape variables.

Model fit was assessed using adjusted R’ for linear models (total species
richness) and marginal R? (considering fixed effects only) for linear mixed models
in functional group analyses (function ‘r.squaredGLMM’ in R ‘MuMIn’ package
(Nakagawa & Schielzeth, 2013)).
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1V.3 Results

During four field visits, we observed 63 bird species with a summed total
abundance of 1520 individuals. Bird richness varied significantly with the functional
group considered (Tables IV.1 & IV.2, Table IV.S1). Insect-feeding and non-
farmland bird species were most common, while 17 out of 25 species of farmland
birds were non-crop nesters. Although non-threatened birds were most prominent,
species listed as endangered and vulnerable on the Bavarian Red List 2016 were
recorded in all landscapes, with an average of six species per site encountered during
the four visits. The endangered skylark .A/auda arvensis was the most abundant
species (17.8% of observations) and occurred at all sites. The red-listed Eurasian
wryneck [ynx torguilla and the grey partridge Perdix perdix were recorded only once,

thereby each accounting for only c. 0.07% of all observations (Table IV.S2).

IV.3.1 Landscape and scale effects on bird communities

Crop diversity did not affect bird communities regardless of the scale or
functional group considered (Figure IV.1, Table IV.2). In contrast, landscape
heterogeneity enhanced several aspects of bird richness considered in this study.

Interactions between crop diversity and landscape heterogeneity were not observed.

354 a) 3000m | b) 3000m
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Figure IV.1 Landscape effects on total bird richness. Effects of a) landscape-level crop
diversity (CropDiv) and b) perennial habitat diversity (LandHet, proxy for overall landscape
heterogeneity) on total species richness. Exemplified for landscape effects at the 3000 m
scale (lowest AICc value) with predicted values for each study site (#=14). Regression line
and 95% confidence intervals shown.
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Extensive landscapes offering a variety of non-crop and perennial habitats,
smaller field sizes and lower cropland cover generally harboured the most diverse
bird assemblages across all scales (Figure IV.la, Table IV.2). This positive
relationship between landscape heterogeneity and total species richness was driven
by the response of dominant functional groups such as insectivores, non-farmland
birds or species of least conservation concern (Figure IV.2, Table IV.2, Table
IV.S3). Accordingly, birds preferentially feeding on arthropods were enhanced in
extensive landscapes across multiple scales, although the remaining feeding guilds
were unaffected (Figure IV.2a, Table 1V.2, Table IV.S3). Non-threatened birds
(‘least concern’ on the regional Red List) were facilitated by landscape heterogeneity
at the 250 to 1000 m scale (Figure IV.2b, Table IV.2, Table IV.S3). Although
functional group x LandHet interactions were only marginal on the larger scales,
post hoc comparisons showed strong increases in the species richness of this
dominant group, which was confirmed by single-guild analyses. Neither vulnerable
nor endangered species showed similar responses. We also observed a positive
influence of intermediate-scale landscape heterogeneity on non-farmland birds
(500-2000 m scale, Figure IV.2c, Table IV.2, Table IV.S3). In contrast, the group
of farmland specialists showed no benefits of landscape heterogeneity as a whole.
However, the differentiation between nesting preference of farmland birds revealed
strong reductions of crop-nesting birds at small scales (250-500m), whereas the
positive relationship between non-crop nesters and landscape heterogeneity was
non-significant due to high inter-field variability (Figure IV.2d, Table IV.2, Table
IV.S3).
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Figure IV.2 Habitat diversity effects on functional group richness. Effects of perennial
habitat diversity (LandHet, proxy for overall landscape heterogeneity) on species richness
of the functional groups a) feeding guild (2000m scale), b) conservation status (250m scale),
¢) habitat preference (1000m scale), and d) nesting behaviour (farmland bird subset, 250m)
shown for scales with lowest AICc values. Slopes were tested against zero using contrast
matrices with p-values adjusted for the False Discovery Rate ((Benjamini & Yekutieli, 2001)
(Table IV.S3). Shown are fitted lines and 95% confidence intervals. Signifance levels: ***
$<0.001, * p<0.05.

1V.4 Discussion

Our study assesses for the first time the individual and interactive effects of
crop diversification and landscape heterogeneity on bird species richness and
community structure across various spatial scales. We do this by disentangling crop

diversity effects from the confounding influence of landscape heterogeneity



variables such as perennial habitat diversity, mean field size, seminatural habitat and

cropland cover.

Contrary to our hypothesis, we did not observe higher bird species richness
in landscapes with diverse cropping systems, regardless of landscape context (low
vs. high landscape heterogeneity), functional group or spatial scale considered.
Therefore we cannot confirm previous findings that birds in general or functional
groups such as non-crop breeding farmland species in particular benefit from crop
functional diversity (Firbank e a/., 2008; Henderson ez al., 2009; Gottschalk e# al.,
2010, Lindsay ez al., 2013; Miguet e? al., 2013; Ndang’ang’a ez al., 2013a; Josefsson ez
al., 2017).

The spatial scale of a landscape often determines the outcome of landscape-
biodiversity studies (Gabriel ef al, 2010; Jackson & Fahrig, 2015; Jeliazkov e al.,
2016; Redlich ez al., 2018). We overcome this limitation by including a range of local
to landscape scales. We also accounted for different within-taxon responses that
could mask total richness effects by distinguishing between different functional
groups. For example, many farmland bird specialists show negative responses to
diversification practices, as they rely on homogeneous systems with large fields and
a large share of cereal crops, while non-farmland birds may benefit from the
increase of non-crop resources (Filippi-Codaccioni et al., 2010; Gabriel e al., 2010,
Chiron e al., 2014; Santana ef al., 2017). In our study, however, farmland birds did
not decline with crop diversification. These results are in line with studies that
found no or very weak effects of crop diversity on farmland birds, when crop
diversity measures were separated (uncorrelated) from other aspects of landscape

heterogeneity.

The absence of crop diversity-biodiversity relationships in previous studies
(Fahrig et al., 2015; Hiron e# al., 2015; Santana ez al., 2017) suggests that birds may
not rely on higher resource amount and continuity presumably provided by crop
diversification. This could be the case, if birds do not require crop resources, or are
otherwise able to compensate for reduced crop diversity by switching to non-crop
resources. Crop diversity may therefore rise in importance in simplified landscapes,
were non-crop resources are inadequate (Wretenberg e al., 2010; Tscharntke ez al.,

2016; Josefsson et al., 2017). Despite being located in an intensively farmed area,
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non-crop habitat cover in our study region was relatively high, and fields small
(average amount of seminatural habitat 18.6 £1.5%, mean patch size 1.6+0.1 ha
across study sites and all spatial scales). Accordingly, the mobile bird taxon may not
have been as reliant on additional crop resources as in more simplified

agroecosysterns.

On the other hand, crop-specific pesticide and fertilizer applications,
mowing, harvesting or grazing disturbance and other forms of agricultural
management could obscure or counteract the benefits of increased resource
availability (Jonsson et al., 2012). For instance, a Swedish study reported increased
ground beetle diversity with enhanced spatial crop diversity only after accounting
for land-use management influences associated with tillage (Palmu ez a/, 2014).
Negative impacts of chemical intensification on bird diversity have also been
reported on the farm scale, especially for ground-breeding farmland birds such as
the skylark (Jeliazkov ez al, 2016). Specialist farmland birds are still the most
endangered group of birds (Gregory et al, 2005), and although some species
respond positively to landscape and non-crop features, local reduction of
agricultural intensification may be especially relevant for the conservation of crop-
nesting birds (Guerrero et al., 2012). In our case, crop diversity showed a weak,
positive trend with the frequency of insecticide application on the study field
(Pearson’s r=0.42, p-value=0.139). Higher rates of local insecticide application in
landscapes with greater crop diversity could reduce invertebrate prey of
insectivores, the most abundant dietary guild. If local application rates are
comparable to farm-scale or regional values, this could explain the slight decline of
overall bird richness with diversification on all spatial scales (Figure IV.1). As we
do not have data on landscape-scale insecticide applications, this hypothesis
warrants further investigation. However, apart from insecticide-driven reductions,
crop-based invertebrate prey in diverse cropping systems may also be reduced due
to enhanced insect-mediated pest control (Roschewitz et al., 2005; Rusch et al.,
2013; Martin et al., 20106), although positive effects of landscape heterogeneity on
predators do not always translate to lower prey availability(Tscharntke ez a/., 2016).
This may also affect the resource base and thereby the population size and richness

of insect-feeding birds.



Lastly, specific crop types may be more important for avian communities,
particularly farmland birds, than crop diversity per se. For example, cereals,
pastures, set-asides and spring-sown crops have all been linked to changes in total
and functional bird species richness, especially for farmland birds (Butler ef 4/,
2010; Gil-Tena et al., 2015; Hiron ez al., 2015; Jeliazkov et al., 2016; Josefsson et al.,
2017; Santana ef al., 2017). At the same time, the absolute observed difference in
the number of crop types between low and high diversity landscapes was relatively
small (difference of four crop types on average across all scales, Table IV.S1),
although focal fields were selected to maximize the range of crop diversity. If
additional crops were only grown in low proportions, or increases in crop diversity
were driven by a more equal share of a selected number of main crops, then the

benefits of crop diversification could be negligible (Fahrig ¢f al., 2015).

Either of these explanations of our non-significant findings are possible, yet
other reasons are also worthwhile exploring. A taxon like birds, which covers a
variety of functionally different and highly mobile species, may require larger spatial
scales to detect benefits of crop diversity. For instance, prevalence of significant
findings at the largest scale studied may indicate that more significant effects
occurred outside the measured range (Jackson & Fahrig, 2015). Alternatively, weak
effects of crop diversity (if present) may best be observed using a larger crop

diversity gradient, and — due to high between-field variability- a larger sample size.

Opposed to crop diversity, the effects of landscape heterogeneity on bird
communities were mainly positive. Our study used perennial habitat diversity as
proxy for the overall level of landscape heterogeneity. Due to correlated landscape
heterogeneity variables, we emphasize that it is impossible to disentangle the actual
driver of the observed positive effects on bird diversity. They could either relate to
1) additional non-crop resources and habitats (resource complementation or niche
differentiation (Fahrig ef al., 2011; Siriwardena e7 al., 2012); 2) increased amounts of
seminatural habitat such as field edges for foraging and nesting (Josefsson ez a.,
2013); 3) smaller field sizes allowing for better access to adjacent non-crop habitats
with abundant invertebrate prey (Lindsay ez 4/, 2013; Fahrig e al., 2015; Jeliazkov et
al., 2016; Josefsson et al, 2017); or 4) lower proportions of cropland, another

indicator for heterogeneity and potentially reduced overall pesticide application
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(Fahrig e al., 2015; Jeliazkov ez al., 2016; Josefsson ez al., 2017). Drivers may vary
depending on the functional group and scale considered, with scales of response
(mainly 250 to 1000 m) comparing well with a previous study identifying the farm
as the most relevant management scale for bird conservation purposes (Jeliazkov ez

al., 2016).

Non-farmland birds include species that rely on forests, settlements or
water bodies for nesting and foraging. They are apt to benefit from agricultural
extensification and improved resource or habitat availability (Filippi-Codaccioni ez
al., 2010; Gil-Tena ez al., 2015), as supported by our results at intermediate scales.
The lack of enhancement at the 250 m scale may be due to the study design, which
comprised conventionally managed focal fields with simple grass borders and low
structural diversity at small spatial scales. Yet even these simple field boundaries
and habitats may provide important foraging grounds with abundant prey resources
for insectivores, patticularly specialist farmland birds such as the skylark (Josefsson
etal., 2013; Gil-Tena et al., 2015). Therefore, landscape heterogeneity may favour

the diversity of this functional guild independent of the scale considered.

The increase in species richness of the group with the conservation status
‘least concern’ (250 to 1000 m scale) was likely driven by the positive response of
insectivores and non-farmland birds, which made up almost 60% and 80% of ‘least
concern’ species, respectively. However, the increase was less pronounced than in
those guilds, possibly due to some common farmland species, that may have been
negatively influenced by high landscape heterogeneity at the cost of cropland
habitat and resources. Of the farmland birds, crop-nesters were the only functional
guild with declining species richness in heterogeneous landscapes. However, this
finding corroborates previous research highlighting the importance of
homogeneous, open cropland for some crop-breeding farmland specialists (Hiron
¢t al., 2015), and the potentially detrimental role of field management intensity on

this functional group (Guerrero et al., 2012).

The remaining functional groups did not show any specific responses to
landscape heterogeneity. These groups, including non-insectivores, vulnerable or
endangered species and non-crop nesters, may have very specific habitat or

resource requirements not met with general diversification efforts (Bayerisches



Landesamt fiir Umwelt, 2016), and were rarely sampled in our study. For example,
the Eurasian wryneck [ynx torguilla is more likely to benefit from targeted
enhancement of high-value calcareous grasslands than from the extension of other

seminatural habitat types (Bayerisches Landesamt fiir Umwelt, 20106).

IV.5 Conclusion

Three measures build the backbone of Greening, Pillar I of the European
Common Agricultural Policy for the period 2015 — 2020 (CAP, EU Regulation No.
1307/2013), namely 1) retention of permanent grasslands, 2) ecological focus areas,
and 3) crop diversification. All are intended to promote sustainable agriculture,
biodiversity and ecosystem services, yet only the advantages of grasslands and non-
crop habitats have been thoroughly studied. In support of Greening measure one
and two, our study confirms that avian diversity, particularly non-farmland species
and insectivores, can be enhanced by landscape heterogeneity (Fahrig ef a/, 2011,
Hiron ez al., 2015; Boesing ez al., 2017). We did not find, however, any benefits of
landscape-level crop diversity for bird richness in intensively managed winter wheat
systems, in contrast to studies on other taxa (e.g. Carabidae, (Palmu e a/., 2014)).
Nevertheless, benefits may not only depend on scale, landscape context and
functional groups, but also management intensity gradients or interspecific
interactions with other agricultural species. This research avenue warrants further
investigation. In general, we show that heterogeneity of agricultural landscapes and
diversification of non-crop habitats directly benefit overall bird diversity, in addition
to targeted, potentially field-based conservation measures aimed at increasing

specific nesting and food resources of endangered specialist species.
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Table IV.S1 Description of crop diversity and perennial habitat diversity. Summary

statistics of crop diversity (CropDiv) and perennial habitat diversity (LandHet, the proxy

for non-crop landscape heterogeneity) for different spatial scales. Shown are also the

correlation coefficients (Pearson’s t) of CropDiv and LandHet with the proportion of

cropland (r crop), seminatural habitat cover (r SNH, including margins along linear

elements such as roads and rivers) and average field size (r field). For CropDiv, the average

number of crop types (and range) at each spatial scale are listed.

Scale
CropDiv
250

500
1000
2000
3000
All scales

LandHet
250

500

1000
2000
3000

All scales

Min

0.5

0.74

0.984

1.025

0.052

0.14

0.371

0.426

0.551

0.052

1stQ

0.513
0.698
0.862
1.056
1.124

0.842

0.228
0.417
0.614
0.739
0.735

0.436

Median

0.67

0.914

1.037

1.184

1.199

1.055

0.364

0.53

0.727

0.848

0.89

0.709

Mean

0.686

0.915

1.056

1.2

1.225

1.016

0.396

0.554

0.764

0.837

0.859

0.682

3rd Q

0.888
1.021
1.223
1.332
1.305

1.209

0.574

0.752
0.89

0.957
0.97

0.899

Max

1.239

1.442

1.443

1.483

1.442

1.483

0.967

0.89

1.319

1.224

1.185

1.319

Average
crop types
3.3 (1-5)
5 (2-8)
5.4 (2-8)
8.8 (6-10)
9.4 (8-11)

6.38 (1-11)

r
LandHet

0.4

0.22

0.05

0.14

r
crop

0.12
0.05
0.32
0.02

0.16

0.82
0.292
0.-93
O.;E)G
0.53

r
SNH

0.06
0.24
0.41
0.35

0.28

0.53
0.8
0.8

0.82

0.8

7
field

O.;E,S
054
0.2I.8
0.2)4

0.24

0.56
-0.5

0.58
-0.7
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Chapter IV

Table IV.S3 Effects of landscape heterogeneity on functional groups. Effects of perennial
habitat diversity (LandHet, the proxy for non-crop landscape extensification) on species
richness of functional groups ‘Feeding guild’, ‘Conservation status’ ‘Habitat preference’ and
‘Nesting behaviour’. Only functional groups and spatial scales of models with significant
or marginal interactions between LandHet and functional groups are shown. Slopes were
tested against zero using contrast matrices and p-values of multiple comparisons were
adjusted for the False Discovery Rate (Benjamini & Yekutieli, 2001). Significant p-values
are indicated in bold and marked with asterisks: (*) p<0.1,* p<0.05, ** p<0.01, *** p<0.001.

Model Estimate SE z-value p-value
Feeding guild
250m
LandHet Carnivore vs Zero -0.34 0.32 -1.07 0.348
LandHet Granivore vs Zero 0.18 0.35 0.53 0.593
LandHet Insectivore vs Zero 2.54 0.97 2.63 0.029 *
LandHet Omnivore vs Zero 0.55 0.36 1.54 0.177
500m
LandHet Carnivore vs Zero -0.63 0.33 -1.91 0.094
LandHet Granivore vs Zero 0.02 0.4 0.05 0.957
LandHet Insectivore vs Zero 34 0.85 4.01 <0.001 ok
LandHet Omnivore vs Zero 0.29 0.41 0.7 0.601
1000m
LandHet Carnivore vs Zero -0.44 0.34 -1.29 0.328
LandHet Granivore vs Zero -0.12 0.35 -0.34 0.737
LandHet Insectivore vs Zero 3.47 0.69 5.05 <0.001 b
LandHet Omnivore vs Zero 0.3 0.39 0.78 0.485
2000m
LandHet Carnivore vs Zero -0.57 0.39 -1.44 0.214
LandHet Granivore vs Zero 0.06 0.43 0.14 0.889
LandHet Insectivore vs Zero 4.36 0.81 5.39 <0.001 ok
LandHet Omnivore vs Zero 0.33 0.47 0.7 0.602
3000m
LandHet Carnivore vs Zero -0.56 0.47 -1.2 0.328
LandHet Granivore vs Zero 0.33 0.5 0.66 0.634
LandHet Insectivore vs Zero 4.67 1.13 4.12 <0.001 ok
LandHet Omnivore vs Zero 0.31 0.57 0.55 0.648

Conservation status

250m
LandHet Endangered vs zero -0.26 0.7 -0.38 0.706
IZ_ZPOdHetI Least concern vs 24 0.7 3.42 0.004 x
LandHet Vulnerable vs zero 1.13 0.76 1.49 0.206

500m
LandHet Endangered vs zero -0.06 0.73 -0.09 0.932
LandHet Least concern vs zero 2.29 0.73 3.13 0.011 *
LandHet Vulnerable vs zero 0.94 0.84 1.12 0.392

1000m
LandHet Endangered vs zero 0.05 0.66 0.07 0.945
LandHetl Least concern vs 216 0.66 3.26 0.007 o

zero



Model
LandHet Vulnerable vs zero

Habitat preference
500m
LandHet Farmland vs zero
LandHet Non-farmland vs zero
1000m
LandHet Farmland vs zero
LandHet Non-farmland vs zero
2000m
LandHet Farmland vs zero
LandHet Non-farmland vs zero

Nesting behaviour
250m
LandHet Crop vs zero
LandHet Non-crop vs zero
500m
LandHet Crop vs zero
LandHet Non-crop vs zero

Estimate
0.81

-0.02
3.43

0.02
3.17

0.45
3.92

-0.78
1.02

-0.9
0.87

SE
0.74

1.07
1.07

0.97
0.97

1.2
1.2

0.32
0.95

0.32

z-value
1.1

-0.02
3.2

0.02
3.27

0.38
3.28

-2.4
1.08

-2.81
0.87

p-value
0.408

0.987
0.004

0.983
0.003

0.706
0.003

0.033
0.282

0.01
0.384

*%

*%

*%
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Chapter V

V.1 The burden of agricultural intensification

The green revolution, technological advances and intensive fertiliser and
pesticide use in agriculture have pushed productivity to an all-time high. This has
allowed for a gradual shift in the producer to consumer ratio in industrialized
countries, enhancing human well-being and global food security. However, farm
specialization, the removal of natural habitat and other intensive farming practices
also cause unprecedented biodiversity declines (Foley e# a/, 2011), environmental
and societal damage. Biodiversity losses are particularly heavy for insects and
farmland birds (Hallmann ez 4/, 2017; BirdLife International, 2018). Hence,
intensive farming also threatens nature-based ecosystem services, such as soil
fertility, biological pest control and pollination. The economic costs of excess
nitrogen in the environment, including ground water pollution, climate change and
biodiversity loss have been estimated to be twice as high as the contribution of
nitrogen fertilizers to European farmer’s income (Sutton ez al., 2011). High social
costs of intensive agriculture, e.g. the rapid transition of rural societies in Europe,
also need to be considered. Similarly problematic is the large-scale damage of
agricultural sectors in Africa by the subsidised export of crop overproduction from
the EU. Lastly, recent trends indicate a saturation or even decline of yields despite

ongoing intensification (Ray ez a/., 2012).

As ecological, economic and social costs of intensive farming accumulate,
new pathways for a more sustainable agriculture (‘ecological farming’) are at the
forefront of numerous research efforts. For instance, the EU-funded project
Liberation (“Llnking farmland Biodiversity to Ecosystem seRvices for effective
ecological intensificATION®) aimed to provide an evidence base for ‘ecological
intensification’, whereby yields in conventional farming systems are matched or
increased, and negative impacts on the environment minimized by managing
biodiversity and associated ecosystem services (Bommarco e a/., 2013). This is done
by introducing on- or off-field practices that strengthen the system’s natural
capacity to self-regulate and resist current and future changes. For example
improved habitat quality can promote crop pollinators and natural enemies of pests,
thereby reducing the need to spray insecticides or apply fertilizers (Boetzl e al,
2018).



However, despite recent advances in ecological farming, a large amount of
scientific knowledge required to tackle the negative externalities of intensive
farming is still lacking (‘knowledge gap’, Figure V.1). More detrimental, though, is
the even slower implementation of research findings (‘implementation gap’, Figure
V.1), although the importance of translating research into action has been widely
acknowledged, especially in social or health sciences, and conservation biology

(Ormerod ez al., 2002; Agre & Leshner, 2010; Memmott ¢f al., 2010; Hulme, 2014)

Environmental damage Implementation

= Scientific knowledge - == Threshold

Knowledge gap

Extent

[
1
1
_ I
Implemenmnon gap

h
g

Enhanced public outreach/collaborative research

Figure V.1 Closing the knowledge and implementation gap. Scientific knowledge (blue
line) needed to alleviate environmental damage (yellow line) accumulates slowly, yet even
greater is the divide for research implementation (green line). Enhanced public outreach
and collaborative research can reduce these gaps, especially once a certain threshold (grey
dashed line) is crossed, beyond which scientific advancement and implementation
accelerate due to socio-economic feedback loops (see text).

V.2 Growing TREE:s for a sustainable agriculture

What hinders the uptake of research findings related to ecological farming?

The list of potential obstacles is long: financial, legal or social constraints, lack of



Chapter V

knowledge and professional training prevent stakeholders (farmers, policy makers,
extension authorities) from implementing biodiversity-enhancing mitigation
methods. However, researchers can overcome some of these obstacles by realising
that successful implementation starts on the whiteboard used to sketch out research
projects, and extends well beyond the publication of scientific findings (Hulme,
2014). Unfortunately, toolboxes guiding researchers in evading obstacles and
creating actionable knowledge (i.e. scientific knowledge that supports stakeholder
decision-making) are rare when it comes to the implementation of ecological

farming (Geertsema ef al., 2016).

Here, we use the analogy of a “TREE’ (Figure V.2) to describe the
components required for the successful transfer of research to action, and highlight
four crucial steps involved in this process (see Figure V.3 for an illustrated example):
TARGET — RESEARCH - ENGAGE - EXPLOIT/ EVALUATE. TREE
builds on our discussions with stakeholders during public outreach activities
performed in Germany within the project LIBERATION. It challenges scientists
to go beyond classical research (Hulme, 2014) by framing their research questions
and scientific goals within a wider socio-economic and political context. We also
show how the dichotomy between researcher and practitioner perspectives may
hinder science implementation. Therefore, TREE is applicable to scientists aiming
to develop dissemination strategies or maximize the uptake of scientific knowledge.
This perspective is not an exhaustive presentation of the issues around science

implementation, but intended to rekindle discussions about ways of doing science.
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Figure V.2 The TREE concept — Similar to its botanical namesake, TREE requires
research to adapt to its environment. It needs a strong (scientific) foundation and a solid
(knowledge) base, extensive branching and healthy leaves (successful implementation) to
reap it rewards: sustainable farming. Four steps building on these different components are
inevitable: i) Target the challenge, ii) Research novel management options and mitigation
strategies, iii) Engage with stakeholders and iv) Exploit and evaluate the benefits. Feedback
strengthens and accelerates science implementation. Graphic © Sarah Redlich
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V.2.1 Step 1: TARGET - Identify relevant challenges and knowledge

gaps

Soil is the basis of life. In the context of TREE and ecological farming, the
soil entails the physical environment (e.g. study region), but also socioeconomic or
political aspects and stakeholder concerns driving or hindering research efforts
(Figure V.2, Table V.1). In classical research, where knowledge gaps and agricultural
challenges are primarily identified using observations, scientific theory and previous
work, ignorance of this wider context might lead to narrow research questions and
large amounts of unused knowledge (McNie, 2007). For instance, a farmer’s
perception of relevance goes well beyond the generalized picture of global
importance adherent to most academic research, and focuses on smaller scales
(farm or region), personal experiences or observations by peers (Hulme, 2014), and
financial, legal or social constraints (Table V.1). Instead of asking “What are the
global consequences of pesticide resistancer”, an economically driven farmer may
ask “Why do I have yield losses due to rape beetle infestations increase, even though
I spray expensive insecticides?”. Research looking into this matter will be highly
relevant to this farmer, especially if potential solutions are affordable, practical and

socially acceptable.

Similar considerations apply to most stakeholders: the higher the
environmental, economic or health-related costs of intensive farming and the
greater the economic and social incentives for solving the problem within the
contextual constraints (Table V.1), the greater the relevance of associated research.
Therefore, stakeholder consultation at the onset of research projects aids in
targeting the most relevant challenges — and increases the likelihood of science

implementation (“Target’, Figure V.3).



Opportunities and obstacles of ecological intensification

. N - b .—’/4' =
Growing human Increased inputs but ~ Homogenisation of ~ Environmental damage Loss of ecosystem

population, increased stagnating/reduced  agricultural landscapes (biodiversity loss, serviees (e.g. pollination,
food demand yields monocultures, pest control, soil
eutrophication, erosion) services)

Kosearch

Reduced soil Cover crops instead of ~ Enhancing resources Increasing crop Providing additional

disturbance (e.g. no-till)  bare land in winter (natural habitat, flower diversity nesting habitat
strips)

Opportunities

Internal training Demonstration sites Information-sharing  Stakeholder workshops ~ Publications, press
(capacily building) (highlight network (connect, grow  (scientific presentation, releases, public talks
opportunities/ network, collaborate) farmer experience, (raise awareness, -
implementation) practical demonstration)  initiate discussions)

55/0/0/?

Figure V.3 Illustrated example of TREE based on the EU project Liberation. Target:
Interrelated challenges are identified. Research: Mitigation methods are selected and
assessed. Engage: Interaction with stakeholders via public outreach. Exploit:

Implementation of ecological farming by stakeholders. Throughout the TREE process,
obstacles and opportunities feedback into previous steps. Graphic © Sarah Redlich
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Chapter V

V.2.2 Step 2: RESEARCH - identity and assess potential mitigation
methods

Research is the “basis of scientific knowledge” (Dicks ez al., 2014) - the roots
forming the foundation of scientific advancement and implementation. As a general
rule: the denser the root network, the stronger the tree. Yet its strength also depends
on the identification and evaluation of promising, feasible mitigation methods to

targeted agricultural challenges, and the quality of scientific research.

Mitigation methods in ecological farming should be grounded on ecological
theory and previous studies, and use self-regulating, natural processes (‘Research’,
Figure V.3). For instance, habitat and crop diversification provides additional
resources to beneficial organisms thereby fostering diverse pollinator and
antagonist communities (Boetzl ¢ 4/, 2018; Redlich ef 4/, 2018). However, in
addition to having ecological benefits, practices need to fulfil a range of criteria off
the scientific radar, including social, technical and legal aspects (Table V.1) (Dicks
et al., 2014). These vary among farming systems, municipalities and countries. For
instance, in multi-owner farming landscapes such as Germany the pressure to oblige
social standards is considerably higher than in landscapes where one’s farmland is
grouped around a central farmstead. To increase acceptance of proposed mitigation
methods by various stakeholders, researchers ought to be aware of potential

constraints, and adapt practices accordingly (Table V.1).

Subsequently, the effectiveness of beneficial practices is validated by
hypothesis-testing, which assesses influences on biodiversity, ecosystem services
and productivity. Research should fulfil the classical requirements regarding
replication (account for variability) and independence of data (test for spatial or
temporal dependence and correlations with other factors). Additionally, the
quantitative assessment using measurement units meaningful to practitioners is
integral to producing actionable knowledge. Far from being interested in statistical
significance levels, farmers in particular require reliable effect sizes indicating the

benefits gained from implementing specific measures (Table V.1).

Consultation with stakeholders and their active involvement in the research

process (collaborative research) provides the greatest opportunities for selecting



relevant practices, strengthening the experimental design, the reliability of data, and
subsequent uptake rates (Hulme, 2014). During the field selection process,
researchers should use existing networks established in extension offices or farmer’s
associations to contact suitable farmers that help to select fields and minimize

environmental variation (Memmott ¢ a/., 2010).

The accumulated knowledge (the tree trunk) of solid, reliable studies
provides the core of future public outreach activities. Ideally, this core takes the
shape of a decision support system providing alternative implementation options

depending on the farming system or context (Dicks ez al., 2014).

V.2.3 Step 3: ENGAGE - Effectively disseminate and communicate
research output

It is then time to step outside the relatively narrow confines of the academic
environment and branch out into the world (Figure V.2). Public outreach (i.e.
science dissemination and communication) provides the means to do so by

stimulating critical thinking and promoting the transition from theory to practice.

Dissemination is a targeted activity of promotion and awareness-raising, in
which research results are uni-directionally disclosed to stakeholders (research
peers, industry, policymakers). For communication, the target group is generally
wider (mass media, end users, general public), and the advantage of beneficial
practices for society and the environment is communicated through an iterative and
multidirectional process (Agre & Leshner, 2010). In classical research, however,
public outreach primarily involves scientific presentations and articles in scientific
journals, methods limited to a specialized scientific audience. Practitioners rarely
have access to the accumulated knowledge base (McNie, 2007), or struggle with a
range of barriers related to language and content (Table V.1). Other means of
knowledge dissemination (e.g. press releases, policy briefs) are seldom used, either

due to time-constraints, lack of funding, incentives or expertise (Wilson ez /., 2010).

Effective public outreach requires thorough planning early on, as it is
necessary to collate information on the available knowledge base, and identify

studies linked to one’s own that confirm and support the findings, or offer
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alternative options (i.e. create a decision support system). Internal training
workshops for capacity building among scientists can aid in the planning and
execution of outreach activities (define take-home messages, use of adequate

terminology; Table V.1).

Active engagement should then involve classical dissemination activities
and a range of broader, interactive communication events (‘Engage’ Figure V3).
During outreach activities, motivated practitioners, farmer organizations and
biodiversity conservation specialists should act as knowledge brokers (Lomas,
2007), intermediaries bridging the gap between knowledge producers (researchers)
and end users (farmers, policy makers). Knowledge brokers translate research
findings into appropriate language, set it in the right context (environmental,
agricultural, social challenges), add practical experience, guidance on
implementation, policy and management advantages or obstacles (Table V.1).
Accordingly, they facilitate knowledge transfer, the establishment of an information

sharing network (Figure V.3), capacity building and research use.

Visualisation of research is an important component of knowledge transfer,
and therefore essential to highlight how nature-based solutions can be implemented
and used to make a good living for farmers, and a good life for everyone.
Simultaneously, stakeholders need to be aware of uncertainties and emerging risks.
It is a scientific obligation to communicate them whenever possible, to enhance the
credibility of research and the success rate of implementation. This may involve a
clear definition of the environment and conditions under which experiments took
place (greenhouse vs. field experiments), how potential confounding factors were
controlled, or if results are only expected under specific circumstances (context-
dependence) (Hulme, 2014). Decision support systems offer practitioners a tool to

select appropriate interventions depending on their own settings (Dicks ez al., 2014).

Researchers should follow up all activities with a detailed description of
lessons learnt, challenges, opportunities and potential collaborators (e.g. for
collaborative research) (Memmott ez al., 2010). Recording successes and failures
(feedback) is an important step towards increasing the effectiveness of future
research, stakeholder engagement and implementation (Figure V.1). Ideally,

participating stakeholders spread actionable knowledge by word-of-mouth, and



practitioners inspire fellow farmers within their social and economic network by
implementing beneficial practices on their own farm (landmark farms’),

consequently creating new branches for knowledge transfer.

V.24 Step 4. EXPLOIT & EVALUATE - Implementation of
actionable knowledge

Framing targeted research questions related to agricultural challenges,
finding possible solutions and rigorously assessing their effectiveness lays the
groundwork for successful knowledge transfer — the roots and trunk, so to speak.
Effective public outreach using knowledge brokers helps to spread the idea,
comparable to the branching of a tree spreading water and nutrients (i.e. knowledge)
in different directions. Yet implementing knowledge and exploiting the benefits of

ecological farming is the decisive step required to achieve change.

Implementation of ecological farming can be driven by i) policy adaptation
to meet environmental goals (e.g. cross-compliance regulations, greening measures
or agri-environmental schemes as part of the European Common Agricultural
Policy, establishing new certification schemes to reward environmentally-sound
farming), ii) society (social and consumer pressure calling for biodiversity-friendly
alternatives to food production, inspiration by landmark farms or neighbours), ii)
economic incentives (related to agricultural policy or higher market value of
biodiversity), or iv) a farmer’s personal belief in the advantages of ecological
farming. Personal believes are of central importance, as high implementation rates
can only be sustained if farmers are convinced of benefits regardless of financial
incentives offered, making ecological farming self-sustaining. The scale of
implementation can range from small (individual fields or farms) to larger scales

(entire communities committing to and working towards a common goal).

There is no one-fits-all solution for the successful uptake of ecological
farming. Each practitioner or community needs to define specific goals and identify
feasible mitigation methods for her farm/the region, keeping potential
socioeconomic, practical and political restrictions and resultant opportunities in

mind (Table V.1). Researchers and knowledge brokers can aid in this process by
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contributing sound, scientific findings, translating and disseminating knowledge,
providing policy information and practical advice, as well as thoroughly evaluating
the effectiveness of implemented measures. Scientific evaluation strengthens
practitioners’ trust in ecological farming, and should be used for further

communication of findings both within the scientific and public domain.

V.3 Feedback loops facilitate transfer from research to action

Although the demand for ecologically produced food grows steadily, the
amount of land under ecological farming is comparably low, with organic
agriculture reaching a share of 6.7% and 1.2% in the European Union and
worldwide, respectively (Willer & Lernoud, 2018). Our experience indicates that
careful selection and assessment of research projects, public outreach, the use of
knowledge brokers and collaborative research act as catalysts, i) closing the
scientific knowledge gap, ii) accelerating the rate of research implementation and
i) mitigating some of the negative effects of conventional agricultural

intensification (Figures V1 & V.3).

Stakeholder involvement plays a crucial role in this process. The more
intense the stakeholder interactions (i.e. the greater the input and right of co-
determination of stakeholders), the higher the likelihood of successful
implementation. Ideally, the accumulated knowledge base and increased
exploitation of benefits (i.e. enhanced biodiversity, ecosystem services and yield)
will result in a threshold being crossed, beyond which scientific advancement and
uptake rates accelerate further due to positive socio-economic feedback loops
(Ormerod ez al., 2002; Memmott ez al., 2010; Geertsema ez al., 20106), which facilitates
the mitigation of environmental externalities (Figure V.1). As stakeholder
engagement is often limited by financial, legal or societal constraints (Table V.1),
special funding could increase the likelihood of active participating across all stages

of TREE.



V.4 A young TREE that needs to

grow

C

Highly collaborative approaches with stakeholder involvement generate a
rewarding two-way exchange, but may also reveal disagreements among researchers
and practitioners. Accordingly, all participants require considerable competence in
problem-solving and willingness to compromise. Furthermore, researchers may
experience low interest amongst the agricultural (and local government) community
in ecological farming approaches which can be only overcome by long-term
education, professional training of farmers and a new societal and policy
framework. Farmers may also be reluctant to implement new methods (risk
avoidance), especially if scientific evidence for their benefit is scarce. In the best
case, some practitioners may adopt the methods regardless of economic incentives,
e.g. because it fits current farm management, farmers are innovators or have
personal interests in conserving wildlife e.g. for hunting, bird watching, and others
will follow. Yet despite a long list of constraints jeopardizing the success of TREE
(Table V.1), identifying potential pitfalls is the first step towards turning obstacles
into opportunities (Table V.1). For instance, specific financial support by funding
agencies facilitates stakeholder engagement, knowledge brokers break down social
barriers and introduction of ecological farming methods in agricultural schools

raises awareness.

In the end, benefits of ecological farming (reduced environmental
externalities, food security, biodiversity conservation) are reaped and costs
shouldered by society as a whole. Consequently, ecological farming methods such
as ecological intensification oblige a range of stakeholders (farmers, farmers’
organizations, regional authorities, policy makers, scientists, non-governmental
organisations, industry and the general public) to contribute towards the TREE
process. All the more urgent is the need for researchers to transfer knowledge to
people outside the scientific realm and not necessarily familiar or receptive to
ecological ideas and concepts, i.e. to “preach beyond the converted”, for instance
by using social media outlets (Pyke, 2017). It may even pay off to swap scientific
reasoning for emotional appeals and ’framing’ [...] arguments in [catchy and often
repeated] ‘metaphors’ that people already understand and relate to” (Begon, 2017).

This is something many scientists will feel hesitant about. And, depending on their
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research topics and scientific goals, going this extra mile will not necessarily be
required. For others that recognize the wider socioeconomic value of their work,
TREE may offer some tools as to maximising the impact of research. TREE does
not require all-encompassing knowledge of every contextual constraint that may
hinder implementation (Table V.1), or flawless execution of each described step.
We believe that even inexperienced scientists and those without sufficient funding
for intensive stakeholder involvement or public outreach can contribute an
important puzzle piece towards closing the knowledge and implementation gap
related to ecological farming by planning their research with TREE and its

opportunities in mind.



1 Opportunities and obstacles of ecological intensification
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cosystem services such as biological pest control, pollination and nutrient

cycling are indispensable for crop production, yet suffer from neglect and

intensive agricultural management. Ecological intensification can alleviate
biodiversity loss and enhance ecosystem services while reducing our reliance on
agrochemical inputs. Here, I identified pathways, obstacles and opportunities for
ecological intensification. Responses to management or landscape-related
mitigation methods differed among functional groups and spatial scales. The
reduction of agrochemical inputs may not only mitigate environmental externalities,
but was shown to facilitate pest reduction and yield quality. The abundance of
natural enemies profited from reduced soil disturbance (no-till), small field sizes
and extended crop rotations at intermediate, and an increase in landscape-level crop
diversity at small scales. The spatial diversity of cropping systems also facilitated
biological pest control, with up to 33% higher pest regulation on local scales. These
benefits most likely stemmed from enhanced spatial and temporal resource
availability and ease of access to pest-infested fields, especially for epigeal crop-
dependent species. Species interactions can result in negative or non-significant
biodiversity — ecosystem service relationships, but birds did not affect insect-
mediated pest control in our study system. Additionally, bird responses varied from
those of natural enemies in that avian biodiversity showed no benefits of landscape-
level crop diversity at the spatial scales investigated here. In contrast, total and
functional groups richness (insectivorous, non-farmland and non-threatened birds)
were enhanced by non-crop landscape heterogeneity. These findings highlight the
value of combining on-field and landscape approaches to ecological intensification
to increase the overall benefit for biodiversity, productivity and the environment.
Yet the implementation of interventions requires scientists to actively engage with
stakeholders throughout the research process. Social, economic, technical and legal
obstacles to implementation need to be identified and overcome, and research goals

redirected to gain the greatest benefit for science, farming and society as a whole.
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“Tou can t 90 back and make a new start. but gou oan
start /1}4&‘ now and make a brand rew e/(c//}g/, ”

James R. Sherman



V1.1 Creating a sustainable future

y
o]

Humankind bears a great responsibility. Our actions and sometimes careless
ignorance of the value and importance of natural resources and processes threatens
the stability and resilience of nature, and jeopardizes not only our own existence,
but the future of most living organisms. While not the sole culprit, modern
industrialized agriculture is one major driver of environmental change. Agriculture
played an integral role in the evolution of human society away from hunters and
gatherers (Smith, 1998), but it has also dramatically reshaped the surface of the earth
by exploiting or deteriorating natural treasures that are not, as sometimes assumed,
unlimited and indestructible (Foley ez a/, 2005). Quite the contrary, we now know
that some of our biggest resources — indispensable, biodiversity-mediated
ecosystem services such as biological pest control, water filtration and nutrient
cycling — are collapsing worldwide, in many cases irretrievably. Human ingenuity
may have found ways to deal with these collapses. For instance, hand-pollination
of apples may partially substitute losses of wild pollinators in China (Partap & Ya,
2012), and attempts to develop autonomous pollinating microrobots
(https:/ /wyss.harvard.edu/technology/autonomous-flying-microrobots-
robobees) are ongoing. Nevertheless, human technology and manpower is unlikely
to successfully and cost-efficiently replace the whole suite of degraded ecosystem
services. Simultaneously, growing food demand accompanied by ongoing health
and environmental pressures call for more sustainable farming systems able to

maintain current levels of productivity.

Consequently, increased research efforts aiming to gain a comprehensive
understanding of biodiversity-ecosystem service relationships in real-life
ecosystems and their role in sustainable agriculture are inevitable. Associated
research projects build upon ecological theories and knowledge of traditional
farming systems, and thrive from the cooperation of scientists and practitioners.
One such project was Liberation (LInking farmland Biodiversity to Ecosystem
seRvices for effective ecological intensification). It aimed to provide the evidence
base for ecological intensification, an alternative way of conventional farming which
actively manages on- and off-farm biodiversity to enhance essential ecosystem

services such as nutrient cycling, pollination and biological pest control. Within this
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context, I conducted my doctoral thesis research and explored pathways to

ecological intensification in winter wheat.

In a comprehensive field study assessing direct and indirect drivers of
biodiversity and yield (Chapter II), I showed that reduced soil preparation and high
crop rotation diversity had the greatest benefit for crop productivity and the
enhancement of natural enemies irrespective of external agrochemical inputs. Yet
landscape variables also deserve consideration as tool for ecological intensification.
For instance, landscapes with small average field sizes at the 1000m scale and high
crop diversity, in particular at local scales up to 500m, respectively increased natural
enemy abundances (Chapter II) and biological control of the cereal grain aphid
Sitobion avenae (Chapter I1T). At the same time I showed that birds did not influence
biological control services in our temperate winter wheat systems (Chapter I1I), and
the response of birds differed from that of natural enemies. Crop diversity at the
scales considered here (up to 3000 m radii around study fields) did not influence
their richness (Chapter IV). In contrast, heterogeneous landscapes with high habitat
diversity, small field sizes, and seminatural habitat rather than cropland cover
favoured the diversity of birds, especially insect-feeding, non-farmland and non-
threatened birds, across multiple spatial scales (Chapter IV). The latter study also
highlighted the need to distinguish between functional groups, as some, such as
crop-nesting farmland birds, are disadvantaged by heterogeneity often set as goal
for conservation efforts. Last, I used feedback collected throughout Liberation
outreach activities to identify obstacles to transferring research into action. This
knowledge influenced the development of TREE, a guideline highlighting the role
of stakeholder involvement throughout the research process (Chapter V). It
encourages scientists to step out of their comfort zone and actively engage with the
end users of the knowledge they create: farmers, policy makers and the general

public.



V1.2 Field-scale management for ecological intensification

The farm has often been identified as relevant management scale for
biodiversity conservation. Accordingly, farm management is an integral part of
ecological intensification. Even though cultural, economic, legal and social
components also play an important (sometimes underestimated) role, practitioners
ultimately bear the responsibility for what happens on their farm and therefore the
brunt of the decision-making. This inevitably calls for biodiversity-enhancing
measures that are implemented on the farm scale and easily integrated into everyday

farm management activities.

Although winter wheat is in some cases grown as cover crop to manage soil
erosion, its primary cultivation as cash crop requires a substantial input of
agrochemicals. Yield losses are greatest for pathogenic fungi and weed competition,
so the application of fungicides and herbicides is seen as almost obligatory in
conventional farming systems. The economic damage resulting from arthropod
pests such as cereal grain aphids and cereal leaf beetles can be equally high, but is
extremely variable depending on growing region and farm. Nevertheless, insecticide
is applied prophylactically and usually mixed with other plant protection agents to
avolid excess soil compaction and labour linked to additional spraying rounds.
Unfortunately, agrochemicals have substantial influences on biodiversity,
ecosystem services and productivity (Vitousek Peter M. ez al., 1997; Birkhofer ez al.,
2008; Geiger et al., 2010; Garratt ez al., 2011; Krauss ez al., 2011; Otieno et al., 2011;
Jonsson et al., 2012; Goulson, 2013; Hallmann e# 4/, 2014; Douglas ¢ al., 2015),
partly by promoting the development of resistances to chemical substances (Gould
et al., 2018). While reductions in their use seem unavoidable, they come at a financial
cost with yield losses around 30 % if fertilizers are not applied (Chapter II)(Gagic
et al., 2017).

The upside is that reductions in mineral fertilizer input indirectly lowers pest
pressure by some arthropod pests. Pests such as Oulerza larvae or the rose-grain
aphid Metopolophium dirhodum respond positively to changes in plant quality and
density associated with increased nutrient availability, thereby causing enhanced

pest pressure (Otieno e al, 2011; Garratt et al, 2018b) and potentially even
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reductions in wheat quality (Chapter II). For wheat, which is commonly used for
breadmaking, milling quality is an important aspect of productivity that determines
its market value (Botwright e a/., 2002). Decreasing farming intensity may therefore
lower pest infestations (Hasken & Poechling, 1995) and to some extent buffer
against financial losses. As shown here (Chapter II & III) and elsewhere (Hasken &
Poehling, 1995; Garratt ez al., 2010; Gagic ez al., 2017; Garratt ef al., 2018b), however,
not all pests decrease with lower fertilizer inputs. Densities of the dominant pest
species Sitobion avenae were equally high in fertilized and non-fertilized plots
(Chapter II & III). Nevertheless, fertilizer amendments have the potential to
negatively affect tritrophic interactions and biological pest control (Chen ez 4l,
2010). Adjusting fertilization levels may therefore decrease the need for insecticide

applications.

In respect to pest control, my studies showed that the long-term regulation
of pests by insecticide was inefficient for most species (with the exception of Oulemza
larvae, Chapter II)(Krauss ez a/, 2011), and yield suffered from high aphid
abundances. Opposed to previous studies (Geiger ¢ al., 2010; Krauss e al., 2011,
Macfadyen & Zalucki, 2011; Otieno ez al., 2011; Jonsson e# al., 2012; Douglas ez al.,
2015) we did not observe or were unable to test for insecticide effects on predators
(Chapter II) and biological control (Chapter III, no natural enemy exclusion cages
in insecticide plots). The lack of response is in line with findings of the joint
Liberation experiment, although direct and indirect effects on highly mobile natural
enemies were likely underestimated because of immigration from adjacent non-
insecticide plots (Macfadyen & Zalucki, 2011). Although not directly investigated
in this thesis (Chapter IV), evidence for effects of insecticides and other pesticides
on birds also exists. Plant protection substances are known to travel through the
food chain or reduce the invertebrate prey of insectivorous birds (Geiger ez al., 2010;

Goulson, 2013; Chiron ¢# al., 2014; Hallmann ez al., 2014).

The mobility of pesticides and mineral nitrogen fertilizers extends their
impact beyond field boundaries and confronts numerous non-target animals and
plants with high, often detrimental levels of substances they are not adapted to

(Vitousek Peter M. et al, 1997; Goulson, 2013). Therefore, reduction of

agrochemical inputs is likely to have beneficial effects on different levels of



biodiversity (from terrestrial and freshwater to marine), ecosystem services and
environmental conditions (e.g. reduced acidification and eutrophication) (Vitousek
Peter M. ez al., 1997; Birkhofer ez al., 2008; Filippi-Codaccioni ¢z al., 2010; Geiger ez
al., 2010; Brittain & Potts, 2011; Krauss ez /., 2011; Jonsson ez al., 2012; Gagic et al.,
2017; Garratt ez al, 2018b). For instance, reduction of fertilizer inputs allows
farmers to harness below- and aboveground ecosystem services related to soil
fertility and pest control suppressed under high mineral nitrogen regimes (Gagic ez
al., 2017). Similarly, insecticide application could be reduced in fertilized fields with
low SOC, or unfertilized high SOC fields because of lower pest abundances and
high biological control (Gagic ¢ al., 2017). This practice of ecological intensification
is likely to increase the economic value of biological control services (Naranjo ez a/,

2015), with benefits primarily pocketed by farmers (Zhang ez al., 2018).

Apart from agrochemical inputs, the importance of soil characteristics and
management for biodiversity and ecosystem services repeatedly resurfaced in my
studies and related research within the project Liberation. Soil organic carbon
(SOC) content and low soil disturbance were major determinants of soil-dwelling
natural enemies and yield quality (Chapter II). Opposed to other studies (Garratt ez
al., 2018b), yield quantity was not affected. SOC provides important services to
biodiversity and productivity, including water retention, nutrient storage and
alternative prey (Tilman ef al, 2002). Yet the rate of SOC accumulation and
degradation greatly depends on the crop rotation, the amount of detrital subsidies,
levels of soil disturbance and the fertilization regime (Haddaway ez al, 2015).
Although organic farming with large amounts of organic fertilizer amendments is
usually considered beneficial for SOC, soil quality and productivity (Birkhofer ez al,
2008; Yang ez al., 2011), intensive soil management for weed control may accelerate
SOC depletion on organic (and conventional) farms (Tilman e 2/, 2002; Williams
& Hedlund, 2014). In addition, the mechanical disturbance of the soil causes direct
morality of soil-dwelling natural enemies such as predatory carabids and ground-
hunting spiders, reduces their abundance and potential to control pests (Tamburini
et al., 2015). These predators are particularly important at eatly stages of pest
infestations. They forage on dislodged aphids that have fallen on the ground, thus
preventing resettlement (Kromp, 1999). Accordingly, conservation tillage can not

only enhance soil fertility, water regulation and weed control, but also pest control
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(Tamburini ef al., 2016). While insectivorous birds also benefit from conservation
tillage, other functional groups such as specialist farmland birds may thrive in
conventional tillage systems (McLaughlin & Mineau, 1995; Filippi-Codaccioni ¢z a.,
2009). Overall, combined soil conservation practices including the addition of
detrital subsidies and organic fertilizer (Chapter II), cover crops and reduced soil
disturbance (Chapter II) favors aboveground arthropod biodiversity and a range of
ecosystem services (Kromp, 1999; Birkhofer ez al, 2008; von Berg ez al., 2010,
Tamburini ez al., 2015, 2016). Lastly, high soil quality reduces yield instability driven
by stochastic weather events, and lowers the dependence on external inputs (Cong

et al., 2014).

Other soil characteristics do not lend themselves easily to manipulation, and
can therefore not be considered appropriate management tools for ecological
intensification. Yet depending on the system, soil pH and type can influence crop
yield. We did not, however, find correlations between soil pH and wheat
productivity (Chapter II). As observed for oilseed rape (Bartomeus ez al., 2014),
positive effects of pH on yield may be cancelled out by high levels of pest
infestations. The amount of loam content in the soil, on the other hand, increased
grain weight (Chapter II). Properties such as soil type shape the abundance and
diversity of soil biota, thereby influencing essential soil-related ecosystem services

such as decomposition and nutrient cycling (Birkhofer ¢f al, 2012).

The benefits of field-scale diversification has often been shown (Kromp,
1999; Rusch ez al., 2010; Ratnadass e7 al., 2012; Kennedy e al., 2013; Dassou &
Tixier, 20106; Lichtenberg ez al., 2017). In particular, flower plantings next to crops
such as wheat, potato and oilseed rape fields facilitate natural enemies and biological
control (Tschumi ez al, 2015; Boetzl et al, 2018). They can even translate to
economic gains (Letourneau ef al, 2011; Pywell ¢t al., 2015; Gurr et al., 2016;
Tschumi ez al., 2016). In our study region, flower strips are relatively common due
to extensive agri-environmental schemes subsidizing their implementation, yet were
not assessed here. Neither was mixed cropping, which is rather uncommon because
of technical barriers (Chapter V). However, one ecological pathway promoting
web-building spiders and yield was uncovered: crop rotation diversity. Web-

building spiders are likely to benefit from increased temporal resource diversity and



reduced chemical input of diverse cropping systems (McLaughlin & Mineau, 1995),
while the enhanced nutritional balance increases crop quality (Chapter
IT)(McLaughlin & Mineau, 1995; Ratnadass ez a/., 2012). As with other management
factors, benefits of temporal crop diversity did not extend across all functional
natural enemy groups. The same applied to landscape-level (spatial) crop diversity

(hereafter ‘crop diversity’).

V1.3 Landscape approaches to sustainable agriculture

Next to soil and crop management factors, the role of landscape variables,
in particular crop diversity, for biodiversity and ecosystem services was the main
focus of my doctoral research. As landscape variables act upon different scales and
functional groups (Gabriel ez al, 2010; Miguet e al., 2013; Rusch et al., 2013;
Shackelford e al, 2013; Jackson & Fahrig, 2015; Martin e# al., 2016), scale- and

context-specific responses were evaluated whenever possible.

As shown, the effects of crop diversity on arthropod and bird biodiversity
and ecosystem services were variable. The abundance of predatory arthropods (leaf-
dwelling predators) and parasitoids only responded to crop diversity at small (up to
500m) and large (2000-3000m) spatial scales, respectively (Chapter II & III). These
natural enemy groups differ in their dispersal ability, and have been linked to
landscape aspects at a range of scales (e.g. 500m (Chaplin-Kramer ez a/, 2011,
Tamburini e al., 2015), 2000m (Thies ez al., 2003; Gardiner ez al., 2009)). In contrast,
bird diversity did not relate to the diversity of arable crop groups in the landscape

(Chapter IV).

While arthropod natural enemies (especially less mobile, crop-dependent
species such as epigeal predators, (Shackelford ez a/, 2013)) may rely on higher
resource availability and continuity provided by crop diversity (Chapter III,
(Schellhorn et al., 2015)), birds may be less reliant or otherwise able to switch to
non-crop resources in less diverse cropping systems (Chapter 1V). Accordingly,
crop diversity may be more important in landscapes with scarce (yet not absent)
natural resources (‘intermediate landscape complexity hypothesis’ (T'scharntke ez 4/,

2005; Josefsson e# al., 2017). However, this hypothesis could not be confirmed as
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no interactions between crop diversity and perennial habitat diversity (as proxy for
landscape heterogeneity, Chapter IV) were found. Our hypothesis that correlations
between crop diversity and the frequency and intensity of regional insecticide
applications could have cancelled out potentially positive effects of crop
diversification on bird diversity (Chapter IV) needs yet to be confirmed. As a final
thought, the scale of crop diversity effects on birds may have exceeded the spatial
scale used here (up to 3000 m) due to the great mobility and foraging distance of

some bird species (Jackson & Fahrig, 2015).

Opposed to other studies (Mooney ¢t al., 2010; Miantyla ef al., 2011; Martin
et al., 2013), bird predation did not influence insect-mediated biological control.
However, overall biological control (assessed using the natural enemy exclusion
experiment) related to crop diversity at a wide range of spatial scales (Chapter I1I).
Biological control increased over time and was enhanced by up to 33% at local
scales. Lacking correlations of aerial predators and parasitoids with biological
control may suggest that ground-hunting predators were responsible for aphid
regulation in this system, a correlation possibly masked by sampling deficits
(ground-dwellers not assessed) (Henri e7 2/, 2015). While this is in line with findings
of the joint Liberation field experiment (Gagic ez al., 2017), species interaction at
the community level may also dilute biodiversity-pest control relationships
(Letourneau ef al., 2009). Alternatively, functional group approaches using natural

enemy traits may have better predicted biological pest control (Gagic ef al., 2015).
¥ y % gical p g

Similar to crop diversity, I found opposing relationships between non-crop
landscape heterogeneity and biodiversity of different taxa. In general, natural
habitats such as hedgerows are key sources of many beneficial organisms, be it
pollinators or natural enemies, by providing valuable foraging habitat and dispersal
corridors (Dainese e7 al., 2016). However, positive impacts of non-crop habitat do
not always emerge if i) natural enemies are fully absent, ii) natural habitat favours
pests rather than predators, iii) crops provide better essential resources for natural
enemies than non-crop habitat, iv) natural habitat is insufficient, or v) agricultural
practices counteract benefits of natural habitat (T'scharntke e 4/, 2016). Concurrent
with these hypothesis, neither arthropod predators nor parasitoids increased with

seminatural habitat cover on either of six spatial scales in the natural enemy



exclusion experiment (Chapter III) or the visual surveys (Chapter II). Four of the
above mentioned hypotheses could explain these findings. Cereal leaf Oulema
beetles, which increased with seminatural habitat, benefitted more than arthropods
(Chapter II). Predators relying on crop resources, such as carabids, may display no
or negative relationships with non-crop habitat (Chapter II & III), with biological
control weakened in landscapes with high amounts of seminatural habitat
(Caballero-Loépez ef al., 2012; Shackelford ef al., 2013). Alternatively, local habitat
disturbance (Chapter II) and high pesticide inputs (Jonsson ez a/., 2012) can mask
resource-related landscape complexity effects or drive negative responses to
landscape simplification (Gagic e al., 2017). Lastly, natural habitat may distract
predators away from crops or act as physical barrier to dispersal, hindering
immigration into fields (Holland e# @/, 2012; Ratnadass ef al., 2012). The latter
hypothesis is partly confirmed by landscape configuration effects on epigeal spiders,
which were found to occur less often in landscapes with high edge density (i.e. a
large number of crop — non-crop ecotones). On the other hand, smaller fields
increase the ease of access into fields, both for epigeal spiders and aphid pests

(Chapter II) (Fahrig ef al., 2015).

In contrast to arthropods, bird diversity was mostly greater in landscapes
with high perennial habitat diversity, more seminatural habitat than cropland and
small fields (Chapter IV), despite difference among functional groups. Insect-
feeding, non-farmland and common birds increased with heterogeneity. All other
groups were unaffected, with the exception of crop-nesting farmland birds that
were reduced in heterogeneous landscapes (Chapter IV). Crop-nesting farmland
birds are highly adapted to homogeneous, prairie-like landscapes (Hiron ez al., 2015),
while at the same time being threatened by intensive on-field management

(Guerrero et al., 2012).

Neither overall, insect- nor bird-mediated biological control seemed to
benefit from seminatural habitat availability (Chapter III). This finding and
observed positive effects of crop diversity corroborates the theory that biological
control in our system may be determined by agrobiont species such as predatory
carabids that depend on crop rather than non-crop resources. Therefore, crop

diversification seems a viable option for ecological intensification of insect-
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mediated pest control and natural enemy abundance and biodiversity (Chapter I1I),
yet conservation of avian biodiversity requires different approaches. The
enhancement of compositional or configurational aspects of non-crop
heterogeneity (perennial habitat diversity, seminatural habitat, small average fields)
do not only promote the diversity of insect-feeding birds which may fulfil pest
control services in other agroecosystems (Chapter IV), but also furthers the
abundance of predatory spiders (Chapter II). At the same time, specialist functional
groups such as crop-nesting birds call for adapted management approaches directly
targeting major threats, for instance reduced mowing regimes (Chapter IV).
Although the greatest benefits for biological control were observed at the farm
scale, the different scales of effect identified here highlight the need to implement
landscape management schemes on a range of spatial scales to optimize the positive
influence on overall biodiversity and various ecosystem services (Bartomeus ez 4/,

2014).

V1.4 Interactive effects and the value of compensating growth

Although interactions between soil characteristics, on-field management
and landscape variables where investigated for natural enemy and bird diversity and
biological control in our study system, none where observed. Nevertheless, it is
essential to keep potential context-dependencies in mind, as they may influence the
effectiveness and success of environmental-friendly farming methods. For example,
reduced tillage was shown to be particularly valuable for increasing biological
control by predators or parasitoids if fields were located in simple landscapes
(Tamburini ez al., 2015), although trade-offs with weed control exist in complex
landscapes (Tamburini ef a/., 2016). Similar to tillage, SOC content may also interact
with landscape heterogeneity, so that biological control by predatory carabids on
high SOC fields suffered most from landscape simplification (Gagic e al., 2017).
This joint Liberation study also emphasized that management for high SOC buffers
against crop losses and enhances biological control if agrochemical inputs are

reduced (Gagic e al., 2017). Viewed from a different angle, ecological intensification



(e.g. reduced tillage, SOC management, fertilizer reduction) may prove unsuccessful

if landscape contexts and interacting management regimes are unconsidered.

Last, my studies also highlight the ability of wheat to at least partly
compensate for suboptimal conditions (e.g. weed competition, infestation with
pathogenic fungi, pest damage)(Freeze & Bacon, 1990). For instance, yield
reductions due to weed cover and . avenae infestation had a greater negative effect
on plant biomass than on grain yield. This indicates that at the levels reached in our
system, controlling these factors by agrochemical means is less critical than
expected for final crop productivity. While this offers options for reducing
prophylactic insecticide applications, additional enhancement of ecosystem services
for ecological intensification (e.g. increased pollination or pest control) may not
prove successful if other factors become limiting. For instance, oilseed rape can
compensate for suboptimal fertilizer inputs to some extent, but the benefits of
pollination can only be reaped under sufficient nutrient levels (Garratt ez a/., 2018a).
However, some oilseed rape varieties show different effects, with pollinator-
mediated crop yield highest at low nitrogen levels (Marini ez al, 2015). For
sunflower, pollination benefits were greatest at intermediate nitrogen levels (. 75
kg ha™), enhancing yield by 25% compared to pollinator exclusions (Tamburini ez
al., 2017). Following the idea of the minimum law, all essential resources need to be
considered, balancing biotic and abiotic inputs with the overall goal (sustainable
agriculture and reduction of externalities) in mind. Yet depending on the resource,

opportunities for replacement with ecological processes exist.
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VL5 Crossing boundaries and linking arms

Humankind has reached a crossroads. From here, there are two ways
forward, one accelerating the ongoing downward spiral of unsustainability, the
other forging a common future for all living beings, balancing economic and
conservation goals. The latter road is the hardest. Just as climate change requires
drastic, global decisions, such as the development of the Kyoto protocol
(https:/ /unfccc.int/process/ the-kyoto-protocol), biodiversity loss associated with
agricultural intensification necessitates humans to rethink set structures and habits
on a global scale. Thus farmers are not the only ones to bear the burden of
responsibility, since modern agriculture is dictated by social, economic and political

aspects that have to be considered (Chapter IV).

As the evidence for biodiversity loss and failures of ecosystem services
accumulate, public values regarding nature and biodiversity change. Scientists and
the public demand action. In the best case, political and legal responses follow suit
(Pe’er et al., 2014), as showcased by recent reforms to the European Common
Agticultural Policy (‘Greening’, EU Regulation No. 1307/2013). Greening obliges
farmers to conserve permanent grasslands, diversify their crop rotations and
implement ecological focus areas on 5% of their arable land (European
Commission, 2014). Similarly, national agri-environmental schemes offer subsidies
for the implementation of environmental-friendly farming practices (Stoate e /.,
2001). While this is certainly a step in the right direction, the effectiveness of these
measure is controversial (Kleijn & Sutherland, 2003; Kleijn ez a/., 2006; Ekroos ef
al., 2014; Pe’er et al., 2014; Batary et al., 2015; Josefsson ez al., 2017). Clearly, the
function of greening measures, agri-environmental schemes and cross-compliance
regulations has to be defined beforehand, as different spatial arrangements and
mitigation methods are required depending on the aim of optimizing biodiversity,
ecosystem services and health or productivity. At the same time, ecological
processes that help to achieve these goals need to be well understood, especially

potential synergies, trade-offs and context-specific outcomes.

This is where scientists have to step up to the plate of providing reliable

evidence for ecological intensification using methods easily, effectively and cost-


https://unfccc.int/process/the-kyoto-protocol

efficiently implemented by farmers. The list of potential obstacles to
implementation is long (Chapter V). For instance, interactions among different
management and landscape factors can result in unexpected outcomes when aiming
to transfer results from small-scale, controlled experiments to real agroecosystems
(Tylianakis e# al., 2008). Thus anticipated benefits for farmers can be limited and
their trust in the practical applicability of research lost (Chapter V). Researchers can
overcome this problem by using real-life approaches and agroecosystems, while
accounting for interfering correlations — and being honest about possible trade-offs
or limitations (Chapter II, III & 1V) (Hulme, 2014). Similarly, measurement units
of effect ought to be relevant to farmers and policy makers, and communicated in
an appropriate way (Chapter V)(Born ez al., 2009). Accordingly, measures of crop
diversity using the Shannon Wiener index are less useful than its translation into
‘effective number of crop types’ (Chapter III). Furthermore, some tools for
ecological intensification are more or less likely to be adopted (Naranjo ez al., 2015).
Although flower strips are subsidized by agri-environmental schemes, farmers in
Germany are hesitant to implement them. In many cases, valuable cropland has to
be taken from production, or farmers fear the additional work load (mapping,
maintenance), sanctions (by non-compliance in size etc.) or negative feedback from
colleagues (flower strips are often thought to propagate weed dispersal)(Chapter
V). In contrast, hedge conservation may provide cost-efficient interventions that
hardly disturb everyday farming business (Dainese ef al, 2016). Therefore, the

likelihood of adopting this measure is increased.

Understanding and recognizing potential pitfalls and opportunities (Table
V.1) is essential, and greatly facilitated by engaging stakeholders throughout the
research project (Chapter V)(Naranjo ez al, 2015). Their input is crucial in all four
steps of TREE, from targeting appropriate research questions (which agricultural
externality has the greatest relevance to farmers and society?), evaluating mitigation
methods (which approaches are practical and most effective?), disseminating
research findings (knowledge brokers transfer knowledge to action) to
implementing ecological intensification (results more credible, involved farmers
likely to adopt approaches and act as role model to neighbouring farms)(Chapter
V). Lastly, achieving real change requires researchers to leave their comfort zone,

step outside the box and integrate socioeconomic, cultural, practical and legal
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aspects often ignored in classical research (Stoate ef @, 2001). This postulates
linking arms with famers, policy makers and scientists with different academic

backgrounds.

Yet changing the way in which food is produced and thereby foisting the
responsibility off on farmers, politics or science is not enough. Sustainability also
relies on changes in consumer behaviour (shift towards a plant-dominated diet and
organic products) as well as strategies to reduce food wastage, on household,
national and global scales (Foley ¢ a/., 2011). For this to happen, stakeholders need
to be aware of the ecological value of ecosystem services such as biological control,
and how changing consumer/production behaviour benefits not only crop
production but also the wider society. Putting an economic value to ecosystem
services helps in this process, although numerous benefits associated with
extensified production (e.g. insecticide reductions) are difficult to assess (Naranjo
et al., 2015). How does one measure the value of human life and health, or the
extinction of an animal or plant species? Nevertheless, trying to assess the public
understanding of ecosystem services and their value, and the willingness to pay for
sustainably grown food is a first step towards increasing public awareness and
facilitating change. Additionally, emotional appeals that people understand (Begon,
2017) or calls for ethical considerations such as fairness and altruism encourages
behaviour, ‘which is profit sacrificing, but which improves economic efficiency by

reducing environmental externalities’ (Colman, 1994).

V1.6 Conclusion

Recent evidence of extensive biodiversity loss has spurred renewed
discussion about the sustainability of modern farming. While humankind greatly
relies on intensive crop production to meet the demands of an ever-growing
population, the resulting harm for the environment and society as a whole
outweighs the apparent benefits. Accordingly, changes in agricultural management
are urgently needed, and ecological intensification (i.e. utilizing biodiversity-
mediated ecosystem services to balance productivity — conservation goals) presents

itself as possible solution. Here, I offer evidence for the effectiveness of ecological



intensification on various scales, from adjustments of on-field management
practices to the preservation of valuable landscape characteristics. I highlight the
need to conserve soil services, temporal and spatial crop diversity and resource
heterogeneity. Simultaneously, ecological intensification requires scientists to
contemplate scale- and context-specific effects, and their differential influences on
functional species groups and ecosystem services. During repeated outreach
activities conducted within the EU project Liberation, my attention was also
directed towards possible obstacles to ecological intensification, mainly related to
the implementation of beneficial interventions. Although farmers are the ‘executive
organ’, their decisions and actions are largely driven by economic, social, technical
and legal factors. In turn, whatever happens on a farm feeds back to society as a
whole, influencing human well-being, political and socioeconomic structures.
Accordingly, solving environmental issues related to agriculture requires
interdisciplinary, whole-system approaches to research, with stakeholder
participation throughout. Concentrating on relevant research questions, practical
interventions and active dissemination of scientific findings will enhance our
understanding of mechanisms behind biodiversity loss and how to address them.
In this respect, my thesis is a small, yet important puzzle piece towards sustainable

agriculture.
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