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Abstract

Increased aortic stiffness is known to be associated with atherosclerosis and has a predic-

tive value for cardiovascular events. This study aims to investigate the local distribution of

early arterial stiffening due to initial atherosclerotic lesions. Therefore, global and local pulse

wave velocity (PWV) were measured in ApoE-/- and wild type (WT) mice using ultrahigh field

MRI. For quantification of global aortic stiffness, a new multi-point transit-time (TT) method

was implemented and validated to determine the global PWV in the murine aorta. Local aor-

tic stiffness was measured by assessing the local PWV in the upper abdominal aorta, using

the flow/area (QA) method. Significant differences between age matched ApoE-/- and WT

mice were determined for global and local PWV measurements (global PWV: ApoE-/-: 2.7

±0.2m/s vs WT: 2.1±0.2m/s, P<0.03; local PWV: ApoE-/-: 2.9±0.2m/s vs WT: 2.2±0.2m/s,

P<0.03). Within the WT mouse group, the global PWV correlated well with the local PWV in

the upper abdominal aorta (R2 = 0.75, P<0.01), implying a widely uniform arterial elasticity.

In ApoE-/- animals, however, no significant correlation between individual local and global

PWV was present (R2 = 0.07, P = 0.53), implying a heterogeneous distribution of vascular

stiffening in early atherosclerosis. The assessment of global PWV using the new multi-point

TT measurement technique was validated against a pressure wire measurement in a vessel

phantom and showed excellent agreement. The experimental results demonstrate that vas-

cular stiffening caused by early atherosclerosis is unequally distributed over the length of

large vessels. This finding implies that assessing heterogeneity of arterial stiffness by multi-

ple local measurements of PWV might be more sensitive than global PWV to identify early

atherosclerotic lesions.
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Introduction

Arterial stiffening and accompanying elevated pulse wave velocities are an inherent character-

istic of vascular aging as well as of atherosclerosis [1, 2]. Moreover, pulse wave velocity (PWV)

has proven to be an independent predictor of cardiovascular risk and mortality as higher aortic

stiffness, assessed by PWV, was shown to be associated with increased incidence of cardiovas-

cular events [3, 4]. To determine the global PWV, the transit-time (TT) technique, e.g. mea-

surement of the carotid-femoral PWV has emerged as the gold standard in clinical practice. In

this approach, the pulse wave arrival times are determined at two separated sites along the ves-

sel. Global PWV can then be computed as the distance between the two sites over the delay

between the pulse wave arrival times [5, 6].

The examination of small animal models of human cardiovascular physiology adds to the

understanding of the origin, progression, and the treatment of cardiovascular disease (CVD).

Apolipoprotein E-deficient (ApoE-/-) mice are considered to be an important model of athero-

sclerosis, since they develop atherosclerotic lesions of morphology similar to those observed in

humans [7–9].

While cardiovascular MRI has been extensively used to characterize morphological and

biochemical processes during the progression of murine atherosclerosis [10–15], only few

studies investigated the evolution of arterial stiffening caused by atherogenesis. Those studies

were limited to echocardiographic [16, 17] or MR-based [18, 19] TT measurements of global

PWV corresponding to the mean stiffness of the vessel and thus leaving a gap of knowledge

regarding the spatial distribution of arterial stiffening along the vessel.

Recently, non-invasive techniques for the determination of the local PWV, like the flow/

area (QA)-method, have become available and have shown to provide additional information

regarding the arterial elasticity at a specific site of the vessel [20, 21]. In ApoE-/- mice, it has

lately been shown that local PWV, assessed by MRI, is elevated even before a morphological

thickening of the vessel wall occurs [22].

In the present work, local PWV in the abdominal aorta and global PWV were compara-

tively assessed in WT and ApoE-/- mice with early atherosclerotic lesions, to investigate the

local distribution of early arterial stiffening in the aorta. To measure global PWV in mice, a

recent publication demonstrated the feasibility of a two point TT-technique, using phase-con-

trast (PC) Cine-MR imaging [19]. We advanced this method to a multi-point TT-technique by

transferring the principles of the TT method to in-plane flow encoded MRI. All local and

global PWV-measurement techniques were validated in a vessel wall phantom prior to in-vivo

measurements.

Materials and methods

All MR experiments were performed on a Bruker AVANCE 750 (Bruker Biospin, Rheinstet-

ten, Germany) NMR spectrometer with a vertical main magnetic field of 17.6 T and a bore size

of 89 mm.

The system was equipped with a self-shielded gradient insert with an inner diameter of 40

mm capable of 1000 mT/m maximum gradient strength. Two laboratory built birdcage reso-

nators with an inner diameter of 20 mm and 25 mm were used for RF transmission and recep-

tion in mice with a weight of less than 24 g and above, respectively. Cardiac and respiratory

trigger signals were generated using a pressure sensitive balloon by detecting chest wall

motion. The pressure signal was transformed into an electrical signal outside the gradient coil

and was post processed in real-time with a homebuilt amplification unit. This mechanical trig-

ger technique allowed for a complete suppression of interferences with the rapidly switching

strong gradient fields.
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Multi-point transit-time method for measuring the global PWV

To determine the global PWV with the multi-point TT method, a 2D-PC-CINE data set with

1D axial velocity encoding parallel to the flow direction was acquired. The basic imaging

sequence consisted of a 2D fast low angle shot (FLASH) sequence with velocity compensated

gradients for all three gradient directions. Motion encoding was performed using bipolar gra-

dients along the frequency-encoding direction (venc = 1.7 m/s) in two additional symmetric

flow encoding steps, as depicted in Fig 1. The gradient pulses for motion compensation were

added to the bipolar gradients for motion encoding to minimize the total echo-time.

For in vivo experiments the imaging slice was oriented to align the flow direction in the

descending aorta with the frequency encoding direction. Since the stability of the cardiac heart

rate during the measurement is crucial to provide sufficient accuracy of the PWV calculation,

the total measurement time had to be minimized. Therefore only a one-dimensional flow-

encoding scheme was applied which restricted the PWV evaluation to the linear section of the

descending aorta. To increase the temporal resolution from 5 ms (TR) to 1 ms, a total of five

Fig 1. Phase-Contrast-Cine pulse sequence. Phase-Contrast-Cine pulse sequence to measure global and

local pulse wave velocities (PWV). The sequence was repeated five times (segment loop) starting with a

variable delay Δt = (0ms, 1ms, 2ms, 3ms, 4ms) thus yielding to an effective temporal resolution of 1000

frames per second. Further abbreviations: RF: radio frequency transmission; GP: phase encoding gradient;

GR: frequency encoding gradient; GS: slice encoding gradient; FEQA: axial flow encoding for the local PWV

measurement; FETT: 1D in-plane flow encoding for the global PWV measurement.

doi:10.1371/journal.pone.0171603.g001
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interleaved, time-delayed imaging experiments were performed starting with variable delays of

Δt = (0,1,2,3,4) ms [20].

QA Method for measuring the local PWV

Assuming that the forward traveling pulse wave is free of any reflected backward traveling

pulse, in the early systole, the local PWV can be estimated as a function of the blood volume

flow Q(t) and the cross sectional area A(t). Using the expression for the characteristic imped-

ance and the wave equation for inviscid flow, it can be shown that the local PWV can be

derived with the following equation [21]:

PWV ¼
dQ
dA

The time course of local cross-sectional area and flow were acquired simultaneously using a

2D-PC-CINE-pulse-sequence with 1D velocity encoding in through plane direction [20, 22].

Phantom experiments

Local and global PWV measurement techniques were compared and validated in a vessel wall

phantom made of polyvinyl alcohol cryogel (PVA-C) [23]. The experimental setup for the

MR-measurements was chosen accordant to the in vivo experiments. A PVA-C tube with 6 cm

in length, 6 mm inner diameter and a wall thickness of 0.25 mm was used. The phantom was

connected on one side to an electrical pulse generator and on the other side to a water reservoir

to hydrostatically adjust the pressure baseline inside the PVA-C tube (Fig 2A).

Fig 2. Phantom experimental setup. Panel (A) shows a schematic depiction of the PVA-C phantom with electrical pulse generator and

pressure sensor. The pulse wave velocity phantom actually mounted is shown in (B). The sites for the transit-time pressure measurements

and the transit-time MR measurements as well as the measurement slices for the QA-measurement are marked.

doi:10.1371/journal.pone.0171603.g002
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As reference standard for global PWV, an axial movable pressure catheter (TSK-Supra,

Ebhardt-Söhne GmbH, Geislingen, Germany) was inserted into the PVA-cryogel tube. Fig 2B

shows the mounted PVA cryogel phantom with the pressure catheter. The pressure signal was

converted into an electrical signal by a pressure transducer (Viggo-Spectramed, Inc., Oxnard,

CA, USA) and amplified with a dedicated amplification unit. For the further data processing,

the pressure signal was recorded with a sample rate of 2.5 kHz using a commercial storage

oscilloscope.

For all PWV measurements, the pulse rate of the electrical pump was adjusted to 1 Hz. All

MR experiments were triggered according to the electrical pulse generation signal. Pressure

measurements were performed at 16 locations along the pulse wave propagation pathway

(mimicking the multi-point TT approach of the MR measurements) with a distance between

adjacent measurements sites of 2 mm. All pressure wave acquisitions were averaged 16 times

to reduce noise. To estimate the PWV, the same post-processing routines were applied as used

for the MR-based multi-point TT method.

Animal protocol

Sixteen mice were investigated in this study. Four-week-old female ApoE−/− (n = 8) and WT

C57Bl/6 (n = 8) mice were obtained from Charles River Laboratories (Sulzfeld, Germany). The

ApoE−/− mice (B6.129P2-ApoEtm1Unc/J, Stock Number: 002052) had been backcrossed into

the C57BL/6J genetic background for at least 10 generations. ApoE-/--mice were fed a high

cholesterol diet (TD 88137, ssniff GmbH Soest, Germany), starting at the age of 4 weeks, while

the WT mice were fed a regular chow diet. MR imaging was performed at the age of 18 weeks.

During the MR experiments, the mice were anesthetized with an isoflurane inhalation (1.5–2.0

Vol.%) applied via a nose cone. The depth of anesthesia was controlled by monitoring of the

breathing rate. The temperature of the sample volume inside the RF coil was kept constant at

37˚C by adjusting the temperature of the gradient cooling unit. All experimental procedures

were in accordance with institutional guidelines and were approved by the Institute of Animal

Care of the district government of Lower Franconia.

In vivo experiments

In order to localize the descending aorta, a set of 2D FLASH experiments was obtained, as pre-

viously described [24].

Global PWV was measured in the descending aorta. To this end, the image slice was aligned

with the orientation of the descending aorta. To evaluate the local PWV with the QA method,

one image slice was positioned perpendicular to the abdominal aorta at a level ~2 mm below

the diaphragm as shown in Fig 3. For both methods, a time window of 40 ms, covering the sys-

tolic upstroke, was sufficient to acquire the relevant flow and area information.

The total measurement time for the QA method and the multi-point TT-method respec-

tively was approximately 6 min. Further imaging parameters for the global and the local PWV

measurements were: matrix 150 × 150; field of view: global: 3 × 3 cm2 / local: 2.2 × 2.2 cm2;

TE = 1.7 ms; slice thickness: global: 1.4 mm / local: 1.0 mm; flip angle: 40˚; total number of

time frames: 40.

Data processing

Basic data processing was performed using customized routines written with MATLAB (The

Mathworks Inc., Natick, MA). For morphometric analysis of the vessel geometry, magnitude

images were imported into AMIRA (Visage Imaging Inc., San Diego, CA) and segmented

manually. Velocity data for the QA- and the TT-method respectively were computed pixel-
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wise by a linear fit of the phase data as a function of the first moments of the velocity encoding

gradients. Using three different encoding steps allowed to estimate the error of the velocity val-

ues based on the R2 (squared correlation coefficient) calculation. All velocity data points of the

segmented areas with R2 less than 0.85 were excluded from further calculations.

Fig 3. Slice positioning in-vivo. In the abdominal aorta, local PWV was measured in a slice perpendicular to

the direction of the vessel. The global PWV was obtained from a slice parallel to the descending aorta.

doi:10.1371/journal.pone.0171603.g003
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• TT Method: To compute the global PWV with the multi-point TT-method, a manually seg-

mented linear section of the descending aorta was divided into 10 (phantom experiments:

20) evenly spaced regions of interests (ROIs). The distance between adjacent ROIs was calcu-

lated as the distance between the accordant centers of mass. The longitudinal extension of

each ROI was 0.9±0.2 mm (phantom experiments: 1.0 mm). For each segment, the foot of

the systolic upstroke was identified as the intersection point of a line fitted to the pre-systolic

data points (baseline) and a line fitted to the upslope portion of the early systolic pulse as

shown in Fig 4. Flow values greater than 2×standard deviation (SD) of the baseline data

points and less than 80% of the peak flow were considered as data belonging to the early sys-

tolic upstroke. For the in vivo experiments the mean number of data points for the baseline

and the systolic upstroke were 5±2 and 4±1 respectively. The distance from the first ROI was

plotted for each subsequent ROI against the accordant arrival time of the systolic pulse wave.

PWV was computed as the slope of a line fitted to this plot using a least square fit procedure.

• QA Method: The cross-sectional area of the vessel was segmented manually in each time

frame during the early systole using the magnitude information of the complex PC-CINE

datasets. All segmentations were repeated four times by the same observer and the mean

area was calculated for further computations. Blood flow was computed by adding pixel wise

Fig 4. Determination of global PWV. In vivo determination of global pulse wave velocity (PWV) with the multi-

point transit-time method in the descending aorta of a wild type mouse (A-C). Ten evenly spaced segments for the

global PWV measurements (red) and the derived flow curves are shown in a magnitude image of a PC-Cine-

FLASH scan (A). In each segment (B), the arrival time of the pulse wave is determined in the flow curve as the

intersection point of the pre-systolic baseline (A, green) and the systolic upslope (B, red). The slope of the linear fit

(C) of distance over the according pulse wave arrival times represents the global PWV.

doi:10.1371/journal.pone.0171603.g004
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all intraluminal velocity values multiplied with the corresponding cross-sectional areas. The

start of the systolic flow pulse was identified analogue as in the post-processing for the TT

method. Five subsequent data points where taken to evaluate the local pulse wave velocities

by fitting a line to the correspondent data points of the QA-plot. Applying a low-pass filter

to the data prior to the PWV calculation reduced random high frequency changes of the vol-

ume flow- and area-curves.

Statistical analysis

All data are expressed as mean ± SEM. Statistical analysis was conducted with SPSS software

(SPSS Inc, Chicago, IL). Normal distribution of data was confirmed using the Shapiro-Wilk

test and homogeneity of variances was tested with Levene’s test. Differences between ApoE-/-

and WT control mice were tested using an unpaired two-tailed Student‘s t-test for normally

distributed data and a non-parametric Mann-Whitney-U test for not normally distributed

data. A weighted least-squares regression analysis with correction for heteroscedasticity was

performed to evaluate the relationship between local and global PWV. A p-value of<0.05 was

considered statistically significant and a p-value of<0.01 was considered highly significant.

Results

Phantom experiments

In the vessel phantom, the pressure wire-based and the MR-TT method-based measurements

of global PWV were repeated five times. In addition, the MR-based local PWV was determined

at the center and two additional sites, distributed equidistantly around the center (Δx = 1 cm)

of the vessel phantom. The maximum pulse pressure generated by the electrical pump was 0.5

±0.1 kPa. The resulting maximum change of the vessel wall radius was 20±5% between maxi-

mum and minimum pulse pressure. Fig 5A shows the spatial position of the pressure wire at

different measurement sites plotted against the according arriving times of the pulse pressure

wave. The slope of the plot represents a value for the pulse wave velocity. Five measurements

with the pressure TT-method resulted in a mean PWV of 1.51±0.03 m/s. Fig 5B shows a repre-

sentative plot of the global MR-TT-measurement in the vessel phantom. The MR-based mean

global PWV for the same five repeated measurements was 1.51±0.04 m/s, thereby showing an

excellent agreement with the pressure wire measurement.

The MR-based local PWV measurements were also in good compliance with the pressure

wire based global PWV. The mean values for the MR-based local PWV at the three different

Fig 5. Validation of MR multi-point TT-measurement for global PWV. Direct comparison of the transit

time measurements using a pressure sensor (A) and the corresponding MR multi-point TT-measurements (B)

in the PVA-C phantom.

doi:10.1371/journal.pone.0171603.g005
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measurement sites were (from bottom to top): 1.57±0.07 m/s, 1.55±0.09 m/s and 1.51±0.10 m/

s. The results of all the validation experiment are summarized in Table 1.

In vivo study

The global PWV in the descending aorta was significantly higher in ApoE-/- mice compared

with WT mice (ApoE−/− 2.7±0.2 vs WT 2.1±0.2 m/s, P = 0.023), implying a significant increase

in global aortic stiffness due to initial atherosclerotic lesions.

Corresponding to the data from the global PWV, local PWV in the upper abdominal aorta

was also significantly elevated in ApoE-/- mice compared with the age-matched control group

(ApoE−/− 2.9±0.2 vs WT 2.2±0.2 m/s, P = 0.028).

Fig 6A shows a representative time course of the blood volume flow in the abdominal aorta

in a WT mouse and the corresponding cross-sectional area changes (Fig 6B). When plotting

cross-sectional areas versus flow-data, the linear relationship in early systole represents the

local PWV (Fig 6C).

Within the ApoE-/- as well as the control group, no significant difference for the mean val-

ues between local and global PWV values was found. A regression analysis comparing global

Table 1. Results of the validation experiments.

TT-Press. (m/s) TT-MR (m/s) QA-MR 1 (m/s) QA-MR 2 (m/s) QA-MR 3 (m/s)

PWV: n = 1 1.58 1.43 1.62 1.41 1.47

PWV: n = 2 1.43 1.56 1.34 1.58 1.81

PWV: n = 3 1.47 1.62 1.21 1.62 1.51

PWV: n = 4 1.49 1.43 1.77 1.32 1.45

PWV: n = 5 1.60 1.50 1.61 1.81 1.59

Mean ± SEM 1.51±0.03 1.51±0.04 1.51±0.10 1.55±0.09 1.57±0.07

P-Value* 0.91 0.97 0.72 0.50

Values of the PWV measured by MRI are in a good agreement with the PWV values obtained by examining transit time of the pressure pulse. Each

experiment was repeated five times (n = number of repetition). The results of all measurements and the mean ± SEM are given in the table.

*The differences of means of the MR-samples were tested against the TT-Pressure samples with a two sided T-Test. Abbreviations: MR, magnetic

resonance; PWV, pulse wave velocity; QA-MR, PWV measured by flow/area MR method; TT-MR, PWV measured by transit-time MR method; TT-Press,

PWV measured by pressure catheter.

doi:10.1371/journal.pone.0171603.t001

Fig 6. Determination of local PWV. Local PWV is assessed by simultaneously recording flow (A) and cross-sectional area (B) through an

imaging slice perpendicular to the upper abdominal. The slope of the flow/area plot (C) represents the local PWV at the examined location

(exemplarily dataset shown for a WT mouse).

doi:10.1371/journal.pone.0171603.g006
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and local PWV values within the individual groups revealed a highly significant linear relation

between local and global PWV in WT animals (R2 = 0.75, P<0.01) as shown in Fig 7A. The

strong correlation between local and global PWV in WT mice implies an even distribution of

the vessel wall elasticity in healthy vessels. In ApoE-/- mice, however, no correlation (R2 = 0.07,

P = 0.53) between local and global PWV in the individual mice could be found, which implies

an inhomogeneous distribution of early vascular stiffening caused by initial atherosclerotic

lesions (Fig 7B). The significantly better agreement between local and global PWV becomes

also evident by comparing the Bland-Altman plots of global and local PWV in WT (Fig 7C)

and ApoE-/- mice (Fig 7D).

Discussion

This work investigated the relation between global and local PWV in early murine atheroscle-

rosis using ultrahigh field MR microscopy. For the measurements of global PWV, a new MR-

based TT-method was introduced and validated in phantom measurements. The measure-

ments in a PVA-C phantom revealed an excellent agreement between the global PWV mea-

sured with the MR-based TT-method and the values determined with the pressure wire

measurement as reference standard. In addition, the MR-based measurements of local PWV

Fig 7. Correlation and agreement between global and local PWV in ApoE-/- and WT mice. Linear regression

between global PWV values obtained with the multi-point TT-method and the local PWV, assessed with the QA-method

for the WT group (A) and the ApoE-/- group (B, blue: regression line, red: identity line). The Bland-Altman plots show that

there is a higher agreement between local and global PWV in WT mice (C) as compared to ApoE-/- mice (D).

doi:10.1371/journal.pone.0171603.g007

Gotschy et al.: Local vs global PWV in early atherosclerosis

PLOS ONE | DOI:10.1371/journal.pone.0171603 February 16, 2017 10 / 14



were also in a good agreement with the pressure wire measurements, as expected in a uniform

phantom.

In vivo data acquired with the new TT-method resembles well global PWV values obtained

with a conventional two-point MR-TT measurement in five-months-old ApoE-/--and C57BL/

6J-mice [19]. An essential advantage of the new multi-point TT-method upon a two-point TT

method using through plane velocity encoding is the acquisition of just one flow encoded

image slice instead of two. In this matter, the reduced measurement time allows for an in-

creased stability of the heart rate during data acquisition, which is the most crucial physiologi-

cal parameter for an accurate PWV measurement. Furthermore, determination of the onset of

the flow pulse at multiple instead of just two sites along the pulse wave propagation pathway

reduces the statistical error of the PWV calculation. Since flow data for each ROI is calculated

by averaging the correspondent velocity information of each pixel, increasing the number of

ROIs decreases the statistical error of determination of the flow data. The determination of the

arrival time of the pulse wave is the process generating the most inaccuracy for the PWV calcu-

lation. Due to the restricted temporal resolution of 1 ms some kind of interpolation method

has to be applied identifying the arrival time at sub-millisecond precision.

Even though the measurement of global PWV, based on MR [25] or doppler ultrasound

[26] is widely used in clinical routine and has proven useful in predicting cardiovascular risk

[3, 4], it does not provide information on the vascular elasticity at a specific site of the vascular

tree. However, in the initial stages of atherosclerosis, local effects like disturbed flow trigger the

activation of the proinflammatory transcription factor nuclear factor κB to provoke recruit-

ment of inflammatory cells, leading to impaired vasodilator activity [27].

In contrast to the TT-method, the QA approach enables estimating the local PWV and thus

uncovers important insights into the pathophysiology of early atherosclerosis. Our in vivo

measurements revealed significantly higher PWV in the ApoE-/- group compared to WT ani-

mals, independent from the measurement method. However, a significant difference between

diseased and healthy animals becomes evident when evaluating the relation between global

and local PWV in individual mice. While a highly significant correlation of global and local

PWV values in the WT animals could be found, investigations in ApoE-/- animals showed no

significant linear relation between global and local elastic vascular properties. The correlation

between global and local PWV as found in the WT group implies a homogeneous elasticity

in healthy vessels. The inexistent correlation between local and global PWV in ApoE-/- mice

enforces the hypothesis of heterogeneously distributed initial effects of early atherosclerosis on

the mechanical properties of the vessel wall. In this view, the generation of an elasticity profile

of a vessel by multiple subsequent local PWV measurement may give superior information in

terms of characterizing the state of atherosclerosis compared to an averaged information from

global PWV measurements. Our results suggest that the heterogeneity of arterial stiffening

itself could be a useful marker of early atherosclerosis as compared to absolute local or global

PWV values as it has the benefit of compensating for between animal or group differences in

blood pressure—on which PWV highly depends. Therefore, future research is needed to inves-

tigate the role of elasticity profiles by multiple local PWV measurements in the assessment of

early atherosclerosis.

A recent study in a large, adult, multi-ethnic population demonstrated that while age, blood

pressure, and smoking are the main determinants of increased aortic stiffness, also the control

of cardiovascular risk factors like elevated blood pressure can influence the progression of aor-

tic stiffness[28]. In this study global PWV in the aortic arch was determined with a 10-year fol-

low up, in the light of our results, the use of local PWV at multiple sites may contribute to a

faster detection of the impact of therapeutic interventions by revealing early effects on local

aortic stiffness.
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Limitations

The study protocol did not include an ex-vivo analysis of aortic elasticity to corroborate the in-

vivo measurements. However, all MR-based methods were validated in-vitro in a vessel phan-

tom. The high flip angle of 40˚ leads to a relatively poor signal intensity of the outer regions of

the vessel wall almost comparable to static tissue, hence potentially resulting in an underesti-

mation of the vessel wall boundaries. However, the total loss of SNR by reducing the flip angle

was shown to affect the segmentation accuracy significantly in preliminary experiments,

exceeding a potentially systematic error due to a blood inflow effect. Apart from that only a

heterogeneous baseline shift of the estimation of the cross sectional area during early systole

would influence the PWV calculation since the estimation considers only incremental changes

of flow and area data.

Conclusion

We introduced a new MR-based multi-point TT measurement for a rapid and reliable mea-

surement of global PWV, which shows excellent reproducibility compared to the reference

standard of a pressure wire and allowed to halve measurement time compared to a conven-

tional two-point TT measurement. Comparative assessment of global and local PWV in

ApoE-/- and WT mice revealed that vascular stiffening caused by early atherosclerosis is inho-

mogeneously distributed over the length of a large vessel. This finding implies that assessing

the heterogeneity of arterial stiffness by multiple local PWV measurements may be more sensi-

tive than global measures to identify early atherosclerotic lesions.
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