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Abstract
West African summer monsoon precipitation is characterized by distinct decadal variability. Due to its well-
documented link to oceanic boundary conditions in various ocean basins it represents a paradigm for decadal
predictability. In this study, we reappraise this hypothesis for several sub-regions of sub-Saharan West Africa
using the new German contribution to the coupled model intercomparison project phase 5 (CMIP5) near-term
prediction system.

In addition, we assume that dynamical downscaling of the global decadal predictions leads to an enhanced
predictive skill because enhanced resolution improves the atmospheric response to oceanic forcing and land-
surface feedbacks. Based on three regional climate models, a heterogeneous picture is drawn: none of the
regional climate models outperforms the global decadal predictions or all other regional climate models in
every region nor decade. However, for every test case at least one regional climate model was identified which
outperforms the global predictions. The highest predictive skill is found in the western and central Sahel Zone
with correlation coefficients and mean-square skill scores exceeding 0.9 and 0.8, respectively.
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1 Introduction
In recent years, increasing scientific attention has been
drawn to the decadal predictability of climate (Mur-
phy et al., 2010). Decadal climate predictions are be-
tween seasonal forecasts which are operational by now,
and longer-term climate change projections, e.g. for
the end of the 21st century (Boer, 2011). They are of
particular relevance to decision making in public and
economic planning (Meehl et al., 2009). Decadal pre-
dictability is expected to arise from a combination of
predictable boundary conditions, especially scenarios
of greenhouse gas and aerosol concentrations (Booth
et al., 2012; Mehta et al., 2013), and an accurate ini-
tialization of slowly varying components of the cli-
mate system, most notably the three-dimensional state
of the oceans (Smith et al., 2007; Branstator and
Teng, 2012; Matei et al., 2012b; van Oldenborgh
et al., 2012; Hazeleger et al., 2013).

Previous studies in this context have revealed some
decadal prediction skill in the North Atlantic re-
gion (Matei et al., 2012a; Gastineau et al., 2013;
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University of Würzburg, Am Hubland, 97070 Würzburg, Germany, e-mail:
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Garcia-Serrano et al., 2015), associated with the At-
lantic Multidecadal Oscillation (AMO) and in various
tropical ocean basins (Keenlyside et al., 2008; Kim
et al., 2012; van Oldenborgh et al., 2012), whereas
the North Pacific appears to be less predictable at the
decadal time scale (Guemas et al., 2012). However,
Knight et al. (2014) have recently demonstrated that in
their modeling approach the correct simulation of cli-
mate variability in the tropical Pacific is a key to decadal
predictability in a global sense. There is also some pre-
dictive skill in temperature over maritime land masses
(Jia and DelSole, 2012). In addition, some prominent
features of 20th and early 21st century climate variability
could be reproduced by adequately initialized decadal
simulations with global climate models. This includes
the relatively warm 1970s (Müller et al., 2014), the
climate shift in the mid-1970s and the so-called hiatus
of the mid 2000s (Meehl and Teng, 2014). At present,
the first real-time decadal predictions for the upcoming
10 to 20 years are available (Smith et al., 2013; Meehl
and Teng, 2014).

Here, we investigate the decadal and multi-year pre-
dictability of the West African summer monsoon (WAM)
rainfall which is a key factor for livelihood and food se-
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curity in one of the poorest regions on Earth (Benson
and Clay, 1998). By means of initialized climate model
simulations, predictability is assessed for different time
scales and aspects of rainfall variability: (1) interan-
nual variations over 3 to 10 years within decades, and
(2) variations of 3-year to 10-year means over decades.
In this study, summer relates to the June-September pe-
riod because this represents the time of the year when
all considered regions of sub-Saharan West Africa ex-
perience a rainfall peak (Nicholson, 2001). Previous
studies have shown that the Guinea Coast (∼ 5–10° N)
and Sahel (∼ 10–20° N) exhibit different characteris-
tics in terms of interannual to decadal rainfall variabil-
ity and of teleconnections to remote oceanic boundary
conditions (e.g. Ward, 1998; Moron, 1997; Camber-
lin et al., 2001; Paeth and Stuck, 2003). The Guinea
Coast shows much larger year-to-year rainfall fluctua-
tions, whereas in the Sahel decadal-scale wet and dry pe-
riods alternated between 1921 and 2010 (Sanogo et al.,
accepted). From their study it is also evident that rainfall
anomalies on decadal scales co-vary between the two
regions with the well-known drought conditions in the
1970s and 1980s being much more pronounced in the
Sahel. Nonetheless, there is also a distinct decadal com-
ponent in rainfall variability along the Guinean Coast
region as revealed by AMIP (atmospheric model in-
tercomparison project) type simulations (Paeth and
Friederichs, 2004; Paeth and Hense, 2004). Rainfall
at the Guinea Coast is strongly correlated to sea-surface
temperature (SST) anomalies in the adjacent eastern
equatorial Atlantic (Paeth and Hense, 2004) with the
relation being robust and prominent on interannual time
scales in the last century (Diatta and Fink, 2014). The
latter authors used SSTs in the Atlantic 3 region (ATL3,
0–20° W, 3° S–3° N) that reflect Atlantic Benguela Niño
events to show that in a multilinear regression model the
ATL3 index outperforms all other predictors used for the
Guinea Coast rainfall that relate to the Mediterranean
Sea, Indian and Pacific oceans. The correlation between
ATL3 and Sahel rainfall was found to be non-stationary
with mostly non-significant correlations since about the
1970s. Losada et al. (2012) argue that the ATL3 SST
impact on WAM rainfall changed from a zonal dipole to
a monopole response over West Africa due to a preva-
lent anticorrelation between Atlantic and Pacific Niño
events since the 1970s. In other words, cold ATL3 SSTs
years having favored more rainfall in the Sahel before
the 1970s are in recent decades overcompensated by the
rainfall inhibiting influence of Pacific El Niño events.

Rainfall in the Sahel is also known to be related
to the AMO on decadal time scales. Diatta and Fink
(2014) found this correlation to be significantly non-
stationary over time with recent decades experiencing
an enhanced correlation. The latter is consistent with
the conclusion of Mohino et al. (2011) that the AMO
is largely responsible for the current upturn in Sahel
rainfall. Since tropical Atlantic SSTs have some forecast
potential at the multi-year time scale (Dunstone et al.,
2011; van Oldenborgh et al., 2012) it is thus not sur-

prising that Corti et al. (2012) identified Africa as one
among various continental regions with noticeable pre-
dictive skill at multi-year time scales. However, climate
models in the coupled model intercomparison project
phase 5 (CMIP5) decadal prediction system differ con-
siderably in terms of their decadal predictability of Sa-
helian precipitation (Gaetani and Mohino, 2013; Bel-
lucci et al., 2014; Martin and Thorncroft, 2014).
These authors concluded that the accuracy of SST hind-
casts in each model is the crucial factor, as well as the
models’ ability to reproduce the observed response of
Sahelian rainfall to the Atlantic meridional SST dipole.

There are also contributions to decadal variability of
WAM rainfall from other ocean basins than the tropi-
cal Atlantic. Paeth and Friederichs (2004) have sys-
tematically analyzed the time scales of these teleconnec-
tions and revealed coherence at multi-year and decadal
scales between WAM rainfall and the Indian Ocean SST
dipole, the North Atlantic basin SSTs as well as the
inter-decadal Pacific Oscillation pattern (cf. Paeth and
Stuck, 2003; Mohino et al., 2011; Gaetani and Mo-
hino, 2013; Martin and Thorncroft, 2014).

The research hypotheses underlying this study and
its experimental design follow the conceptual model il-
lustrated in Fig. 1 which presents the main drivers of
rainfall variability in sub-Saharan West Africa accord-
ing to our current process understanding. The spatio-
temporal pattern of rainfall in the Sahel zone and
along the Guinean Coast region emanates from a com-
plex interplay of oceanic forcing from various ocean
basins (e.g. Giannini et al., 2003; Paeth and Hense,
2004), interactions with the land surface – in particu-
lar, vegetation cover and soil moisture (e.g. Nichol-
son, 2001; Paeth et al., 2009) – and radiative forcing
by greenhouse gases (GHGs) and aerosols (e.g. Paeth
and Feichter, 2006). Oceanic forcing governs larger-
scale wind patterns, evaporation and moisture advection.
Land surface processes mainly impact on the local en-
ergy budget and hydrological cycle. Radiative forcing
affects all these processes in the climate system. African
rainfall responds to changes in SSTs, aerosol and GHG
concentrations, land cover characteristics and initial soil
moisture conditions. Thus, the predictability of African
rainfall should be proportional to the extent these pro-
cesses and boundary conditions are reliably represented
in climate model. We assume that this is more likely to
be the case in high-resolution regional climate models
rather than in state-of-the-art global climate models and,
hence, put high effort in downscaling global decadal pre-
dictions.

We assess as a first hypothesis that decadal pre-
dictability exists for various rainfall regions of sub-
Saharan West Africa using the current version of the
German decadal prediction system. Pohlmann et al.
(2013) have revealed that this global system exhibits a
very promising forecast skill in the form that observed
changes of near-surface air temperature and sea sur-
face temperature are well reproduced over several years
after initialization, especially in those oceanic regions
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Figure 1: Determinants of precipitation and its spatiotemporal variability in sub-Saharan West Africa, at the same time processes and
boundary conditions considered in this study to assess and enhance multi-year to decadal predictability of precipitation.

which are closely tied to precipitation in sub-Saharan
West Africa (cf. Paeth and Friederichs, 2004). Fur-
thermore, over the WAM region decadal-scale rainfall
variability and trends seem to be amplified or extended
in time by interactions with the land surface and vege-
tation (Nicholson, 2001; Giannini et al., 2003; Paeth
et al., 2009). Therefore, we test as a second hypothesis
that dynamical downscaling leads to an improved rep-
resentation of decadal climate variability in the WAM
region, compared with the driving global climate model.
In a recent study, we have shown that dynamical down-
scaling leads to an improved representation of West
African climate (Paxian et al., 2016) and assess now
whether this added value is transferred to enhanced pre-
dictability over several years up to one decade. Various
ensembles of global and regional climate model exper-
iments are presented with three-dimensional initializa-
tion of the ocean and atmosphere, according to the new
CMIP5 decadal predictions (Taylor et al., 2012). While
only one global prediction system is considered, the dy-
namical downscaling is performed by three regional cli-
mate models (RCMs), namely REMO, COSMO-CLM
(CCLM) and WRF, one of them (REMO) with differ-
ent parameterizations and with ocean coupling, in or-
der to account for model differences and peculiarities.
This leads to a large set of individual simulations and an
unprecedented insight into the potential added value of
RCMs in decadal climate predictions.

In the following section, the experimental design
and the statistical methods are described. Section 3 is
dedicated to the results which are further discussed in
Section 4. Conclusions are drawn in Section 5.

2 Experimental design and methods

We have set up two types of model experiments, span-
ning various decades within the 1960–2010 period:
(1) regional climate models are driven by reanalysis data
including observed SSTs, (2) regional climate models

Table 1: Number of available ensemble members of the considered
global and regional climate model simulations for each model pe-
riod. For model nomenclature see Section 2.

Model Model period

1966–1975 1981–1990 1991–2000 2001–2010

MPI-ESM 10 10 10 10
REMO-ERA 1 1 1 1
REMO-W 3 3 3 3
REMO-H 3 3 3 3
REMO-O1 3 3 3 3
REMO-O2 3 3 3 3
WRF 2 2 2 2
CCLM-ERA 1 1 1 1
CCLM 3 3 3 3

are driven by initialized coupled global climate model
simulations from the German decadal prediction system.

First, RCM experiments have been realized which
are nested in reanalysis data in order to assess the
models’ ability to reproduce interannual to decadal cli-
mate variability under more or less realistic lateral
and oceanic boundary conditions. One set of experi-
ments is carried out with REMO version 2009 (Jacob,
2001, REMO-ERA in Table 1) and one with the non-
hydrostatic RCM COSMO-CLM (Rockel et al., 2008;
CCLM-ERA in Table 1) which has been applied and
evaluated in CORDEX-Africa configuration (Panitz
et al., 2014). The reanalyses are taken from ERA40 (Up-
pala et al., 2005) before 1990 and from ERA-Interim
(Dee et al., 2011) after this year. Each RCM simula-
tion starts with steady-state soil characteristics from
ERA40/ERA-Interim driven spin-up experiments cov-
ering a six-year period prior to the hindcasts. The aim
is to avoid cold start problems in the lower soil layers.
We are aware that our results will also depend on the
choice of the driving reanalysis data. ERA40 and ERA-
Interim have been used in the described way in order
to be consistent with the atmospheric initialization of
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Figure 2: Domain for regional climate downscaling of MPI-ESM decadal predictions with REMO, CCLM and WRF. The framed regions
denote the Guinea Coast, West Sahel and Central Sahel as areas of spatial averaging.

the global MPI-ESM prediction system (cf. Pohlmann
et al., 2013).

Second, the coupled general circulation
model (GCM) decadal predictions for the second
type of RCM experiments are carried out with the new
version of the Max-Planck Institute for Meteorology
Earth System Model (MPI-ESM in Table 1) based on
the coupled global climate model ECHAM6/MPI-OM
in T63 resolution (∼ 1.9°) with 47 vertical levels in
the atmosphere and ∼ 1.5° with 40 levels in the ocean
(Stevens et al., 2013; Pohlmann et al., 2013). These
simulations represent the multi-year forecast potential
arising from the long-term memory of the ocean. In
contrast to former versions of the German decadal
prediction system (Matei et al., 2012b; Müller et al.,
2012), the oceanic component of the coupled MPI-ESM
system is initialized with salinity and temperature
anomalies from the ORAS4 ocean reanalysis (Bal-
maseda et al., 2013) and the atmosphere is initialized
with ERA40 before 1990 and ERA-Interim after 1990
(Pohlmann et al., 2013). Once initialized each MPI-
ESM simulation is run over 10 years. The first 10-year
hindcast period starts in 1961, the last one in 2012.
Four of these hindcast periods are used for downscaling
(see below). For every hindcast period 10 ensemble
members are realized using oceanic and atmospheric
initial conditions with a 1-day lag around 1st of January
in each starting year. After initialization these coupled
experiments are evolving without any nudging, accord-
ing to a real-time decadal forecast system, yet natural
(volcanic aerosols) and anthropogenic (greenhouse
gases and aerosols) forcings are prescribed.

The dynamical downscaling of the MPI-ESM runs is
conducted with a multi-model ensemble of three RCMs.
All RCM simulations are based on a 0.44° resolution
and cover the domain from 59.4° W to 59.4° E and from

44° S to 44° N (see Fig. 2). We use the same CCLM
version as for the ERA experiment mentioned above
(CCLM in Table 1), the non-hydrostatic weather re-
search and forecasting model (WRF, Skamarock et al.,
2008), and four different versions of REMO: the stan-
dard version REMO-W, REMO-H with improved pa-
rameterizations for tropical climate including cloud pro-
cesses, gravity-waves and soil properties. REMO-O1
and REMO-O2 use the setting of REMO-H and are fully
coupled to the Max Planck Institute Ocean Model (MPI-
OM) over the entire RCM domain. The MPI-OM con-
figuration was different from the one used in the stan-
dard MPI-ESM setup, having much higher resolution
(20–30 km) in the Tropical Atlantic. A detailed descrip-
tion of the coupling procedure can be found in Sein
et al. (2015). We assume that heat fluxes, wind stress and
precipitation from a higher-resolution RCM improve the
representation of the oceanic mixed layer and, hence, the
oceanic boundary conditions which, in turn, are a key to
multi-year to decadal predictability. Both versions only
differ with respect to how the 50-year spin-up period has
been implemented, using a more sophisticated approach
for REMO-01 than for REMO-02. REMO has been
widely used for climatological applications in Africa
and was found to simulate the main characteristics of
the WAM system in a reliable way when nested into re-
analyses and global GCMs (Paeth et al., 2005, 2009,
2011).

For reasons of limited computing resources, we have
restricted the RCM decadal predictions to four decades
and mostly 3 ensemble members for each RCM (see Ta-
ble 1). Nonetheless, this has led to a total of 720 model
years performed by our RCMs. To choose three out
of ten available MPI-ESM ensemble members for each
decade we rely on the following procedure: (1) based
on observed precipitation from CRU (Climatic Research
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Unit, Mitchell and Jones, 2005) and SSTs from
GISST (Rayner et al., 1996) the most relevant oceanic
regions for the West African summer monsoon rain-
fall are identified at a monthly scale (cf. Paeth and
Friederichs, 2004). (2) In each of the ten MPI-ESM
ensemble members the skill of the SST reproduction
in these ocean basins is assessed via correlation analy-
sis (cf. Gaetani and Mohino, 2013). On this basis a
weighted mean skill score for each MPI-ESM ensem-
ble member is determined in order to achieve a rating
into better and worse hindcasts of observed SST vari-
ability. (3) The three-member ensemble for the dynam-
ical downscaling comprises the best, the worst and an
intermediate MPI-ESM decadal hindcast experiment for
each decade. For WRF, only the best and worst simula-
tions are selected.

For the validation of simulated WAM rainfall and
the assessment of its decadal forecast potential three
commonly used gridded observational data sets are con-
sidered, CRU (Mitchell and Jones, 2005, updated),
GPCC (Rudolf, 1995, updated) and WMMA (Will-
mott and Matsuura, 2001, updated). All three data
sets are available at 0.5° resolution and cover the full
range of considered simulation periods. When compar-
ing regional mean time series of precipitation, all obser-
vational data sets and the MPI-ESM have been interpo-
lated to the common resolution of the RCMs.

The skill of the decadal predictions with MPI-ESM
and various RCMs is evaluated by means of two stan-
dard skill scores: the Pearson correlation coefficient
(Wilks, 2006) and the mean squared skill score (MSSS,
Goddard et al., 2013). While the former only measures
the phase relationship between time series, the MSSS
also depends on the ability of the prediction system to
reproduce the observed variance. While Hawkins et al.
(2014) argue that biases in decadal predictions should
experience more scientific attention in order to improve
the prediction systems, we put more stress upon the cor-
relation coefficient because it has been demonstrated
that the bias of decadal predictions can reasonably be
reduced via statistical post-processing (Kharin et al.,
2012). This is particularly true for West African rainfall:
sophisticated model output statistics applied to the RCM
REMO has led to fairly realistic precipitation charac-
teristics in terms of mean and variance (Paeth, 2011).
Note that when the simulated and observed variance are
identical, the MSSS is a linear function of the Pearson
correlation coefficient rxy according to MSSS = 2·rxy−1.

3 Results

This section is subdivided into the results from the
multi-year predictability within decades as derived from
the initialized MPI-ESM and RCM simulations and the
predictability between decades from the same model
runs.
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Figure 3: Time series of standardized WAM summer rainfall
during the 1966–1975 period in the Guinea Coast region from
WMMA observations (black) and the ensemble means from the
MPI-ESM (blue), REMO-W (green, with 95 % confidence inter-
val) and REMO-ERA (red, one member) decadal simulations. In
addition, the uninitialized MPI-ESM ensemble mean from the 20th-
century experiments according to IPCC (2013) is plotted (cyan).

3.1 Multi-year predictability within decades

In this subsection, the predictability of interannual vari-
ations within a decade is investigated based on RCM ex-
periments nested into the initialized MPI-ESM 10-year
hindcasts. This is the most ambitious and most practice-
oriented goal of decadal predictions because it offers
a year-by-year adaptation to near-time climate variabil-
ity. A prominent example for an ensemble-mean decadal
prediction from the MPI-ESM prediction system and
two types of dynamical downscaling with REMO-W,
one nested in MPI-ESM and one driven by ERA40,
is displayed in Fig. 3 for the Guinea Coast region in
the domain 13.6° W to 10.1° E and 4.4° N to 10.1° N
(cf. Fig. 2). For this region the SST impact is expected
to be highest on West African precipitation (cf. Gian-
nini et al., 2003, Paeth and Stuck, 2003; Paeth and
Hense, 2004). The period 1966–1975 has been chosen
since it was characterized by a substantial decrease of
summer monsoon rainfall in sub-Saharan West Africa
(e.g. Nicholson, 2001). All time series have been stan-
dardized in order to remove systematic biases in the
mean and variability and to highlight the phase relation-
ship between observed and predicted rainfall (cf. Sec-
tion 2). The bias in terms of precipitation totals in our
experimental setting has been addressed by Paxian et al.
(2016): all RCMs and the driving global climate model
exhibit a systematic wet bias in most parts of sub-
Saharan West Africa, arising from a warm bias in the
tropical Atlantic SSTs. Concerning the bias in variabil-
ity, Table 2 indicates that RCM simulations driven by
reanalyses overestimate the observed interannual rain-
fall variability. The observations indicate a change from
plus 2 to minus 2 standard deviations from the late 1960s
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Table 2: Time series characteristics of simulated and observed WAM
summer rainfall in the Guinea Coast region during the 1966–1975
period: correlation coefficient rxy and MSSS between decadal pre-
dictions from various models and the RCM multi-model ensemble
mean (RCM-MM) and WMMA; standard deviation sm in mm of
model runs and ensemble means, respectively, to be compared to
the standard deviation s0 = 83.26 from WMMA. For model nomen-
clature see Section 2.

Model rxy MSSS sm

MPI-ESM −0.18 −0.14 19.67
REMO-ERA 0.55 −0.08 96.67
REMO-W 0.72 0.37 27.43
REMO-H 0.01 −0.26 43.30
REMO-O1 0.05 −0.15 36.83
REMO-O2 0.59 0.31 33.01
CCLM-ERA 0.73 0.01 120.31
CCLM −0.05 −0.47 53.14
WRF −0.12 −1.35 87.11
RCM-MM 0.25 0.06 22.51

to the early 1970s, leading to the first severe drought in
the Sahel and Guinea Coast regions (Nicholson, 2001).
The ensemble mean from the MPI-ESM global predic-
tion system is closer to the observed anomaly in the
first and second year than the uninitialized MPI-ESM
simulations taken from the 20th-century experiments of
CMIP5 which are emanating from stochastic initial con-
ditions in the year 1850 (IPCC, 2013). This can be in-
terpreted as an improvement by ocean-atmosphere ini-
tialization in the global model. However, the initial-
ized MPI-ESM runs are uncorrelated with the observa-
tions for the subsequent years of the decade. In contrast,
the REMO-W ensemble nested in MPI-ESM is well in
line with the observed year-to-year variations. Under the
given conditions, the decadal prediction from REMO-W
would have predicted the first drought of the 1970s
with several years lead-time. Note that this statement
only holds for this particular global and regional climate
model ensemble, decade and region, and may simply
occur by chance. Therefore, a more systematic assess-
ment is presented below. The ERA40-driven REMO run
is also close to the observations but uses information
which would not be available for a real-time decadal
forecast. Comparing the REMO-W simulations driven
by the initialized MPI-ESM and by ERA40 with each
other allows for the assessment of errors in the RCM
that are inherited from the global model, assuming that
ERA40 is characterized by substantially less biases than
MPI-ESM. In this particular case however, the RCM run
nested in the global model is closer to the observed rain-
fall changes during the 1966–1975 period than the one
driven by reanalyses (r = 0.72 versus r = 0.55, see Ta-
ble 2). It will be shown later that this is not a consistent
result for all regions and decades. Therefore, we inter-
pret this finding as a compensation of structural errors
from the GCM and RCM, just by chance.

In order to understand the different performances of
MPI-ESM and REMO-W under the same oceanic forc-

ing during the 1966–1975 decade, we compare linear
trends over 10 years from both models, addressing vari-
ous atmospheric variables that are relevant to the gener-
ation of rainfall in West Africa (Fig. 4). Given the same
SSTs, the atmospheric response in REMO consists of a
noticeably stronger reduction of sea level pressure in the
tropical North Atlantic compared with MPI-ESM, which
is indicative of a northeastern shift of the North Atlantic
subtropical anticyclone (shading in top panels). This
leads to enhanced westerlies over the ocean at the south-
ern margin of the low pressure system and a stronger cy-
clonic circulation over the tropical North Atlantic (wind
vectors in top panels). Within this larger-scale circula-
tion pattern, a stronger offshore wind component oc-
curs west of Guinea and, hence, advection of humid
air masses over most of continental sub-Saharan West
Africa is reduced, notably to a larger extent in the RCM
than in the GCM. Decreasing moisture advection im-
plies decreasing vertically integrated liquid water con-
tent over the western Guinea Coast region and the Sa-
hel Zone. This effect is more pronounced and spatially
more extended in REMO-W than in MPI-ESM during
this decade (bottom panels). It is difficult to deduce what
causes the stronger response of sea level pressure in the
RCM to the same SST forcing as implemented in MPI-
ESM. The two models differ in terms of their radiation
schemes, horizontal resolution and various aspects of
model physics such that every interpretation is highly
speculative. It is also conceivable that the specific do-
main for downscaling, which cuts off the northwestern
part of the North Atlantic subtropical high, is respon-
sible for these different behaviors. Additional effects
may arise from the different land surface schemes in
REMO-W and MPI-ESM: soil hydrology in REMO-W
is based on the improved Arno scheme (Hagemann and
Dümenil Gates, 2003) which was found to substan-
tially improve the simulation of sub-Saharan precipi-
tation (Paeth et al., 2009). Note that a comparison of
these simulated trend patterns with observations is diffi-
cult because wind and liquid water content can only be
derived from low-resolution reanalyses and, especially,
the latter is partly subject to uncertain parameterizations
of convection and cloud processes in the model the re-
analysis is based on.

To assess whether predictability is systematically
larger in RCMs compared with the global model, Ta-
ble 2 lists the correlation coefficients and MSSS for all
considered RCM ensembles during the 1966–1975 pe-
riod. It is obvious that the models differ substantially
in terms of their predictive skill during this prominent
drought period in the Guinea Coast region. The best re-
sults are found for the ERA40-driven experiments, as
to be expected, for REMO-W, for one of the coupled
atmosphere-ocean REMO versions, and, to some extent,
for the RCM ensemble mean (without ERA40-driven
runs). Yet, not all RCMs exhibit an added value com-
pared with the MPI-ESM decadal prediction system.
The MSSS is mostly positive when the correlation co-
efficient is high, but with some prominent exceptions
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Figure 4: Means (left panels) and linear trends (middle and right panels) of summer sea level pressure (top), near-surface wind vectors (top)
and vertically integrated liquid water content (bottom) during the 1966–1975 period from the MPI-ESM and REMO-W initialized decadal
predictions, both using the same oceanic forcing. White dots mark trends significant at the 5 % level.

(see Table 2): REMO-ERA has a negative MSSS de-
spite rxy = 0.55 because it slightly overestimates the
observed standard deviation. In contrast, REMO-W ex-
hibits a much lower standard deviation due to ensemble
averaging, but has the highest MSSS. Given this asym-
metry of the MSSS (cf. Goddard et al., 2013) and the
assumption that systematic model biases with regard to
the observed variance can be accounted for by statistical
post-processing (e.g. Paeth, 2011), we prefer to use the
correlation coefficient as a measure of decadal predictive
skill which is standardized and easy to interpret.

Fig. 5 depicts the correlation coefficients between
observed and predicted summer monsoon for all con-
sidered model ensembles, decades and three different
sub-regions. These three regions have been adapted to
those sectors in sub-Saharan West Africa that, according
to Nicholson and Palao (1993), show homogeneous
rainfall variability. In addition to the Guinean Coast
region which has been defined above, the West Sahel
is marked by the following borders: 17.6° W – 7.0° W
and 10.1° N – 20.2° N. The Central Sahel extends from
7.0° W to 30.4° E and from 10.1° N to 20.2° N (Fig. 2).
At first sight, a rather incoherent picture is drawn: there
is no RCM which outperforms all other models over all
regions and decades. In most cases, the MPI-ESM meets
at least one initialized RCM which performs better. The
RCM simulations with forcing by reanalyses mostly re-

produce the observed year-to-year variations within the
analyzed decades, especially in the Guinea Coast region.
However, the skill is generally low and mostly not sig-
nificant, except for the Guinea Coast and the decade
1966–1975 where a strong trend over 10 years has oc-
curred. Nonetheless, we could not identify any relation-
ship between the predictive skill of a model and the
given strength of a climate anomaly within a certain
decade or the accuracy of SSTs reproduced by MPI-
ESM, nor highlight one single RCM which could serve
as a reliable decadal prediction system over all decades
or regions. Thus, it must be concluded that the observed
year-to-year variations over a whole decade cannot be
reproduced reasonably, neither by MPI-ESM nor by the
RCMs. On the basis of individual ensemble members, a
rather systematic finding for most regions and decades
is that the added value by downscaling is larger for the
worst than for the best MPI-ESM ensemble members
(not shown). Thus, a good performance in the global
model can only slightly be enhanced (or sometimes re-
duced) by RCMs, while distinct deficiencies in MPI-
ESM ensemble members can be more clearly and sys-
tematically overcome by dynamical downscaling.

The predictive skill of climate models as given by
Fig. 5 may also be a function of the considered obser-
vational data set. Indeed, Paeth et al. (2010) and Ring
et al. (2015) have revealed substantial discrepancies be-
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Decade 2001−2010

Figure 5: Correlation coefficients between observed (WMMA) and simulated WAM summer rainfall from various GCM and RCM decadal
predictions in three different regions and during four different decades. Each bar refers to the ensemble members indicated in Table 1. The
dashed line denotes the 5 % significance level for a one-sided test. The black circles mark the same result for every model, region and decade
but using CRU instead of WMMA as observations.

tween well-established data sets of observed precipita-
tion in Africa, especially at the seasonal scale. There-
fore, we have repeated the analysis with the CRU data
set, another commonly used source of rainfall informa-
tion that covers all considered decades. The grey dots
in Fig. 5 clearly demonstrate that the results for the
Guinea Coast region based on CRU hardly differ from
the ones achieved on the basis of WMMA (colored
bars in Fig. 5). In detail, correlation coefficients are vir-
tually identical during the first two decades, whereas
some very minor differences occur after 1990 when
WMMA and CRU slightly diverge. The following analy-
ses rely on WMMA, according to the recommendation
by Parker et al. (2011).

Complementary to the consideration of the full 10-
year hindcast period, we also assess the predictability of
shorter sub-periods within a decade. This is motivated
by two hypotheses: (1) models may have a higher skill
for the first than for the last years of a 10-year predic-
tion, and (2) the skill may increase after some initial

shock in the first year(s) caused by the imposed initial
conditions in the atmosphere and ocean (cf. Müller
et al., 2012; Pohlmann et al., 2013). All possible sub-
periods of at least three years length are accounted for
by varying the first and the last year of the sub-period
between the first and the 10th year of a decade, respec-
tively. In Fig. 6, the first year of these sub-periods, for
which the predictive skill is assessed, is indicated by
the x-axis and the last year by the y-axis. Correlation
coefficients are assessed over all decades for each re-
gion and model. The 95 % quantiles extend from 0.50
to 0.26 for the shortest and longest sub-periods, respec-
tively. There is at least one RCM, often REMO-W or
REMO-H, which outperforms the MPI-ESM global pre-
diction system: REMO-W displays the highest added
value of all RCMs in the Guinean Coast region, reach-
ing significance during the middle years of a decade. In
the Central Sahel, WRF shows higher and significant
correlations than MPI-ESM during the first years, but
no RCM is able to enhance the high skill of the global
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Figure 6: Correlation coefficients between observed and simulated
WAM summer rainfall for all considered regions (columns) and
GCM/RCM decadal predictions, including the RCM multi-model
ensemble mean (rows), assessing the correlation coefficients over
all four decades. The x-axis (y-axis) denotes the first (last) year
within a decade considered for correlation. Each coefficient refers
to the ensemble members indicated in Table 1. White dots indicate
correlations statistically significant at the 5 % level for a one-sided
test.

model during the middle years and the whole decade.
The West Sahel is marked by a low skill in all con-
sidered models and subperiods, but WRF outperforms
MPI-ESM during the first years and the whole decade,
yet not reaching statistical significance. The first three
years of the prediction are not necessarily characterized
by the strongest in-phase relationship with the observa-
tions, reflecting some initial shock (cf. Müller et al.,
2012; Pohlmann et al., 2013). In summary, none of the
considered prediction systems reaches a very high and
systematic forecast potential for year-to-year variations
of West African precipitation.

3.2 Predictability of climatological means
between decades

In the next step, we follow another approach of decadal
predictability, i.e. various sub-periods within a decade
are averaged and the correlation with observations is
built over different decades. According to Garcia-
Serrano and Doblas Reyes (2012), the underlying as-
sumption is that the correlation between time series in-
creases with the averaging period because the external
oceanic forcing stands out from the unpredictable inter-
nal variability. Fig. 7 displays the correlation coefficients
for different averaging periods, regions and models. The
MPI-ESM has hardly any predictive skill in the Guinea
Coast region with mostly negative correlation coeffi-
cients, except for the last years, but performs well in
both Sahelian regions with significant rxy larger than 0.8,
except for the last years of the decadal prediction. In the
Guinea Coast region, CCLM exhibits the highest skill,
partly significant at the 5 % level (rxy > 0.9). Espe-
cially, the decadal means have been captured in a re-
alistic way. Compared with MPI-ESM this represents
a striking added value in terms of a decadal prediction
system with potentially practical relevance: correlation
increases from about −0.6 in MPI-ESM to about 0.9
in CCLM. Note that this tremendous increase in pre-
dictability is based on four decades and, hence, should
not be over-interpreted. In fact, the other RCMs and the
RCM ensemble mean do not perform as well as CCLM.
This is totally different for the Central Sahel: all mod-
els exhibit a distinct predictive skill with respect to the
decadal means and to shorter sub-periods including the
first years of the prediction, except for WRF. Dynami-
cal downscaling still improves the prediction, especially
when using REMO-H. In addition, the first year of the
decades is much better reproduced by RCMs compared
with MPI-ESM. Thus, the initial shock in the Central Sa-
hel region appears to be overcome by dynamical down-
scaling which, however, is not the only reason for the
added value by RCMs since later sub-periods also per-
form better in several RCMs compared with MPI-ESM.
In terms of the West Sahel, the added value of RCMs
mainly refers to the last years of a decade, especially for
REMO-H, whereas MPI-ESM performs quite well for
the first years and the decadal mean. Again, none of the
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Figure 7: Same as Fig. 6 but now the x-axis (y-axis) denotes the
first (last) year of averaging when computing the correlation coeffi-
cients for averaged sub-periods over all decades.

RCMs outmatches all others in all regions, making it dif-
ficult to rely on a one-model decadal prediction system.
However, the RCM multi-model ensemble mean does
not outperform the added value of individual RCMs.

Figure 8: Same as Fig. 7 but for all available 41 decades
(1961–1970, 1962–1971, . . . , 2001–2010) and 10 ensemble mem-
bers of the MPI-ESM decadal prediction system.

Due to the RCM multi-model ensemble approach
and limited computing resources, the number of real-
ized decades and ensemble members is still quite small.
Thus, the question arises whether our results are repre-
sentative for other decades and ensemble members. This
issue still cannot be addressed on the basis of RCMs
but on the MPI-ESM for which 41 decadal predictions
are available, each one year apart with the first starting
year in 1961 and the last in 2001 (cf. Pohlmann et al.,
2013). The correlation coefficients in Fig. 8 are based
on these 41 decades and, in addition, 10 instead of three
ensemble members. They represent a much larger sam-
ple size and, hence, the critical value for statistical sig-
nificance is lower (rxy > 0.26). It is obvious that the
patterns are rather similar to the ones in the top row of
Fig. 7. There is hardly any predictive skill in the Guinea
Coast region but an excellent in-phase relationship with
observed rainfall in the West and Central Sahel reaching
correlation coefficients of up to 0.8 over all 41 decades
and 10 ensemble members, except for the last years of
a decade. The highest correlation of almost 0.8 is found
for the decadal means. Thus, we can conclude that the
findings from the selected four decades and three en-
semble members are more or less representative for the
overall decadal predictive skill of MPI-ESM. With re-
spect to the added value of RCMs, this conclusion can-
not be drawn with certainty yet.

4 Discussion

This study was dedicated to the decadal predictability
of the West African summer monsoon rainfall in var-
ious regions of sub-Saharan Africa and to the role of
dynamical downscaling in terms of the predictive skill.
For this purpose, we have set up two types of RCM ex-
periments – driven by reanalyses and driven by initial-
ized global coupled GCM simulations. Moreover, we
have assessed two time scales of predictability – year-
to-year variations within decades and changes of time
averages between decades. RCM simulations driven by
reanalyses, i.e. realistic oceanic and lateral atmospheric
boundary conditions, mainly reproduce the observed in-
terannual variability in the Guinea Coast region. This
is a promising result (cf. Paeth et al., 2005) but for
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the targeted real-time decadal predictions such observed
boundary conditions are not available.

The second type of experiments consisted of a multi-
model ensemble of three RCMs nested in the new Ger-
man decadal prediction system MPI-ESM (Pohlmann
et al., 2013). Concerning the year-to-year variations
within the whole decade, the MPI-ESM and most RCMs
failed in reproducing the observed rainfall dynamics.
An exception is given by REMO for the Guinea Coast
region during the 1966–1975 period when a substan-
tial decadal-scale decrease of rainfall occurred in sub-
Saharan West Africa (cf. Nicholson, 2001; Paeth
et al., 2005). However, this promising result could not
be confirmed for all considered decades and regions.
The predictive skill and the added value of RCMs are
more apparent when the analysis is based on sub-periods
within a decade. However, the highest predictive skill
is not reached by the same RCM in all regions and
decades, and the RCM multi-model ensemble mean
does not systematically enhance the added value and
skill of individual RCMs.

By far the best results are found when sub-periods
within decades are time averaged and compared be-
tween decades. In this case, the decadal predictive skill
for Central Sahel rainfall is very high and statistically
significant in most models, including the MPI-ESM.
In the West and Central Sahel the good performance
of MPI-ESM is still outmatched by at least one RCM
(e.g. REMO-H), in the Guinea Coast region MPI-ESM
fails but CCLM provides a useful prediction. Although
we have realized more than 700 model years with our
RCMs, these promising findings are derived from a rel-
atively low number of decades and ensemble members –
a drawback which is still due to limited computing re-
sources. At least for MPI-ESM, we can conclude that
our results are representative for the decadal predictive
skill of WAM rainfall during the second half of the
20th century.

In summary, there are unambiguous indications that
summer monsoon rainfall in sub-Saharan West Africa
exhibits a valuable prediction potential at multi-year
and, particularly, decadal time scales. This was al-
ready suggested by other studies (e.g. Paeth and
Stuck, 2003; Paeth and Hense, 2004; Knight et al.,
2006; Dunstone et al., 2011; Mohino et al., 2011;
Rodríguez-Fonseca et al., 2011; Corti et al., 2012;
van Oldenborgh et al., 2012; Gaetani and Mohino,
2013; Martin and Thorncroft, 2014). The novel as-
pect of our study pertains to the specific role of RCMs
in the reproduction of multi-year and decadal rainfall
fluctuations in the WAM region. Indeed, some added
value could be identified in almost all analyzed re-
gions and decades. However, there is no single RCM
that consistently improved the GCM decadal hindcasts.
The highest predictive skill, as indicated by correlation
coefficients between 0.6 and 0.9, was often given by
REMO-W and WRF for multi-year variations and by
REMO-H and CCLM for the decadal time scale. As a
consequence, we cannot suggest a reliable decadal pre-

diction system based on one given RCM. The multi-
model ensemble mean over all RCM predictions neither
was expedient in all decades and regions.

The crucial question is why different regional cli-
mate models and the driving global model vary in terms
of their skill in reproducing the observed year-to-year
and decadal variations of rainfall in the considered sub-
regions of sub-Saharan Africa. In fact, the investigated
climate models differ in so many respects and the vari-
ous model components and parameterizations cannot be
exchanged among each other ad libitum, that it is hardly
possible to identify those properties in the model physics
which favor a good performance of one model in one
specific region. The most relevant differences between
the models pertain to the used radiation schemes, con-
vection and cloud parameterizations, land-surface pro-
cesses and interactions and, with respect to the global
model, horizontal resolution. Indeed, Li et al. (2014)
have demonstrated how sensitive WAM rainfall and dy-
namics are to the radiation physics in their RCM. The
results of our process study (see Fig. 4) indicate that the
added value imposed by REMO compared with MPI-
ESM is not a simple outcome of a higher resolution of
convection and rainfall processes but rather involves all
elements of thermodynamics, including atmospheric cir-
culation and the distribution of mass and cloud water.
Although the question which characteristics of model
physics are superior is of utmost importance to the de-
velopment of improved climate models, analyses based
on multi-model ensembles typically have difficulties to
derive robust relationships between model performance
and model characteristics. This is also true for the model
uncertainties presented and discussed in the IPCC re-
ports (e.g. IPCC, 2013). Recently, Ring et al. (2015)
have analyzed the ability of CMIP3 and CMIP5 cli-
mate models to reproduce observed precipitation char-
acteristics worldwide and could not systematically relate
this ability to rather intuitive model properties such as
horizontal or vertical resolution. Paeth and Pollinger
(2010) reported the same problem concerning extrat-
ropical modes of atmospheric circulation. As a conse-
quence, our multi-model study may provide a reason-
able assessment of model uncertainty in multi-year and
decadal predictability of West African monsoon rainfall,
but we could neither identify a superior RCM nor an
ideal combination of model properties that may serve
for an ad hoc, ready-to-use operational forecast system.
In terms of the regional aspect, however, it can be con-
cluded that multi-year predictability appears to be higher
in the Sahel, especially the central Sahel, than along
the Guinean Coast region. The fact that the predictive
skill of each individual climate model also varies from
decade to decade is a clear indication that internal vari-
ability still plays a substantial role.

At first sight, the fact that the multi-model ensemble
mean does not perform a higher multi-year or decadal
predictability than the best individual RCM is against
expectation. Paeth et al. (2011) have shown that the
multi-model ensemble mean over nine RCMs is closer to



374 H. Paeth et al.: Decadal and multi-year predictability of the West African monsoon Meteorol. Z., 26, 2017

the observed rainfall characteristics than each individual
climate model. Krishnamurti et al. (1999) and Paeth
(2015) achieved the best seasonal and longer-term pre-
dictions for the multi-model ensemble mean when the
ensemble members were weighted by their ability to
reproduce observed climate features in the past. In the
present case, there is no such weighting and, hence, av-
eraging over RCM simulations, which are partly posi-
tively and partly negatively correlated with the observed
rainfall time series, leads to a worse overall result. Thus,
an operational forecast system, which relies on multi-
model information, would benefit from an appropriate
weighting metric, e.g. based on a Bayesian approach
(Paeth, 2015).

5 Conclusions

There are two important conclusions to be drawn from
this study: (1) There is a promising forecast potential
of WAM rainfall at the multi-year to decadal time scale
arising from oceanic forcing. (2) Dynamical downscal-
ing tends to enhance the predictive skill. Yet this finding
is still subject to uncertainty because only a low num-
ber of decades and ensemble members could be real-
ized and the picture is quite incoherent across different
decades and sub-regions in West Africa. The most likely
explanation for the added value of RCMs refers to the
better resolved atmospheric and land-surface processes
and to a more realistic response of the atmosphere to
interannual and decadal SST changes, especially in the
tropical Atlantic. While the added value of RCMs in the
presentation of rainfall climatologies in West Africa has
been reported before (e.g. Paeth et al., 2011, Nikulin
et al., 2012), we now have identified some first indica-
tions that dynamical downscaling also enhances the pre-
dictability of multi-year to decadal climate variations
(cf. Racherla et al., 2012). Note that a thorough analy-
sis of the WAM rainfall bias from the MPI-ESM driven
RCM simulations presented here has been addressed in
another paper (Paxian et al., 2016). Comparing the find-
ings from Paxian et al. (2016) with the results presented
here, it must be reasoned that there is no systematic rela-
tionship between rainfall bias and predictive skill of the
considered RCM simulations.

There remains a number of aspects to be further de-
veloped and addressed in future investigations. Besides
the relatively small samples, another source of uncer-
tainty is the selection of one global decadal prediction
system, i.e. MPI-ESM. Previous studies in the context
of the CMIP5 decadal predictions have revealed incon-
sistent results in terms of the predictive skill in vari-
ous ocean basins (e.g. Keenlyside et al., 2008; Gue-
mas et al., 2012, Kim et al., 2012; van Oldenborgh
et al., 2012; Gaetani and Mohino, 2013; Martin and
Thorncroft, 2014). In fact, the MPI-ESM decadal cli-
mate predictions seem to exhibit a stronger initializa-
tion bias within the first years than other CMIP5 models
(Müller et al., 2012). It was shown in this study that

this also affects the first predicted year of WAM rainfall,
but is often overcome by dynamical downscaling. It is
likely that when addressing a larger set of global decadal
predictions from several GCMs, the highest predictive
skill would sometimes be assigned to one of the GCMs
rather than the RCMs. As limited computer power still
does not allow for a larger experimental setting with sev-
eral GCMs and RCMs, a good option is certainly to im-
prove the initialization of the ocean (cf. Meehl et al.,
2009; Murphy et al., 2010). Dunstone et al. (2011)
have shown that predictability in the tropical Atlantic
is related to the correct representation of the North At-
lantic which may be a key player in decadal prediction
and, hence, a benchmark for a more regionally improved
ocean initialization.

Another option beyond the initialization problem is
the implementation of additional boundary conditions
which have some predictability over ten years, and im-
proved model components and processes which lead to
a generally better performance of climate models. Forc-
ing by realistic AODs and man-made land cover changes
represent promising candidates for enhanced predictive
skill in the WAM region (cf. Paeth and Feichter,
2006; Paeth et al., 2009; Mehta et al., 2013).
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