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Zusammenfassung

In dieser Arbeit werden Modelle fiir molekulare Netzwerke bestehend aus gewhnlichen Differential-
gleichungen durch Terme erweitert, die die Wechselwirkung zwischen dem entsprechenden molekularen
Netzwerk und der Umgebung beriicksichtigen, in die das molekulare Netzwerk eingebettet ist. Diese
Terme modellieren die Effekte von externen Stimuli auf das molekulare Netzwerk. Die Nutzbarkeit
dieser Erweiterung wird mit einem Modell der circadianen Uhr demonstriert, das mit gewissen Termen
erweitert wird und Daten von mehreren verschiedenen Experimenten zugleich reproduziert.

Sobald das Modell einschlieflich der externen Stimuli aufgestellt ist, wird eine Grundstruktur entwi-
ckelt um externe Stimuli zu berechnen, die einen gewiinschten vordefinierte Effekt auf das molekulare
Netzwerk haben. Zu diesem Zweck wird die Aufgabe, geeignete externe Stimuli zu finden, als ein
mathematisches optimales Steuerungsproblem formuliert, fiir welches, um es zu 18sen, viele mathema-
tische Methoden zur Verfiigung stehen. Verschiedene Methoden werden diskutiert und ausgearbeitet
um eine Losung fiir das entsprechende optimale Steuerungsproblem zu berechnen. Auf die Anwendung
dieser Grundstruktur pharmakologische Interventionspunkte oder effektive Wirkstoftkombinationen zu
finden, wird hingewiesen und diese diskutiert. Weiterhin wird diese Grundstruktur in Bezug zu existie-
renden Netzwerkanalysewerkzeugen gesetzt und ihre Kombination fiir die Netzwerkanalyse diskutiert
um zweckbestimmte externe Stimuli zu finden.

Die gesamte Grundstruktur wird mit biologischen Beispielen verifiziert, indem man die berechneten
Ergebnisse mit Daten aus der Literatur vergleicht. Zu diesem Zweck wird die Blutplattchenaggrega-
tion untersucht basierend auf einem entsprechenden genregulatorischen Netzwerk und damit assozi-
ierte Rezeptoren werden detektiert. Weiterhin wird ein Wechsel von einem T-Helfer Zelltyp in einen
anderen in einer Tumorumgebung analysiert, wobei fehlende Agenzien berechnet werden um den ent-
sprechenden Wechsel in vitro zu induzieren. Als néchstes wird ein genregulatorisches Netzwerk eines
Myokardiozyten untersucht, wobei gezeigt wird wie die prisentierte Grundstruktur genutzt werden
kann um verschiedene Behandlungsstrategien in Bezug auf ihre nutzbringenden Wirkungen und Ne-
benwirkungen quantitativ zu vergleichen. Dariiber hinaus wird ein konstitutiv aktivierter Signalweg,
der deshalb unerwiinschte Effekte verursacht, modelliert und Interventionspunkte mit entsprechen-
den Behandlungsstrategien werden bestimmt, die das genregulatorische Netzwerk wieder von einem
pathologischen Expressionsmuster zu einem physiologischen steuern.
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Summary

In this work models for molecular networks consisting of ordinary differential equations are extended
by terms that include the interaction of the corresponding molecular network with the environment
that the molecular network is embedded in. These terms model the effects of the external stimuli on
the molecular network. The usability of this extension is demonstrated with a model of a circadian
clock that is extended with certain terms and reproduces data from several experiments at the same
time.

Once the model including external stimuli is set up, a framework is developed in order to calculate
external stimuli that have a predefined desired effect on the molecular network. For this purpose the
task of finding appropriate external stimuli is formulated as a mathematical optimal control problem for
which in order to solve it a lot of mathematical methods are available. Several methods are discussed
and worked out in order to calculate a solution for the corresponding optimal control problem. The
application of the framework to find pharmacological intervention points or effective drug combinations
is pointed out and discussed. Furthermore the framework is related to existing network analysis tools
and their combination for network analysis in order to find dedicated external stimuli is discussed.

The total framework is verified with biological examples by comparing the calculated results with
data from literature. For this purpose platelet aggregation is investigated based on a corresponding
gene regulatory network and associated receptors are detected. Furthermore a transition from one to
another type of T-helper cell is analyzed in a tumor setting where missing agents are calculated to
induce the corresponding switch in vitro. Next a gene regulatory network of a myocardiocyte is in-
vestigated where it is shown how the presented framework can be used to compare different treatment
strategies with respect to their beneficial effects and side effects quantitatively. Moreover a constitu-
tively activated signaling pathway, which thus causes maleficent effects, is modeled and intervention
points with corresponding treatment strategies are determined that steer the gene regulatory network
from a pathological expression pattern to physiological one again.
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Chapter 1

Introduction

Biological research consists of collecting data by performing experiments and interpreting the corre-
sponding data in order to identify the relevant causes of the observed outcomes. These insights into
the study object and into the connections of the underlying mechanisms are summarized in a model
that includes all the relevant information about a study object. This process is called modeling. For
the purpose of further developing and improving a model of a study object hypotheses are generated
based on the existing model and tested with further experiments. Specifically the hypotheses are set
up and tested with respect to their ability to explain the connection of data of a corresponding exper-
iment or to predict its outcome. For this task mathematical structures are a useful tool as they allow
to formulate hypotheses as exactly as we like both qualitatively and quantitatively and thus to test
the hypotheses very accurately and obtain detailed models. This works by the virtue of mapping the
underlying mechanisms of a study object to appropriate mathematical structures. Once this assign-
ment has taken place the resulting mathematical object can be processed with a suitable mathematical
formalism where the results are now a matter of the logical structure of the mathematical object. The
results of the corresponding mathematical operations represent the hypotheses for the experiment that
one deals with.

In our case we consider molecular networks, especially the interplay of mutual activation and
inhibition of their molecular agents. These interactions of the single agents of a network with the
others are modeled with ordinary differential equations (ODESs). These equations describe the temporal
change of a quantity depending on the status of the other agents in the network. Thus they are an
ideal choice to describe that the mechanism of the change of the status of each network’s agent is
determined by the current status of the network, that means the status of the agents of the network.

Once the regulatory mechanisms of the agents of a molecular network are modeled by ODEs, this
approach also allows to include the interaction of this molecular network with its environment that
it is embedded in and the external influences. Examples for such external influences, called external
stimuli, are besides chemical substances like small molecules or proteins, physical external stimuli like
temperature [57], mechanical stress |15, 56, 34| or gravity [55]|. These external stimuli can be effectively
modeled by modifying the equations of the molecular network by terms that include the effects of these
external stimuli. That means they influence the temporal change of certain agents of the molecular
network beyond the influence that comes from the other agents of the molecular network. In this way
we only include the essential information with respect to the interaction of the molecular network with
its environment. The external stimuli also serve to create interfaces between the part of the experiment
that is of special interest and its environment with which the molecular network interacts as an open
system. An example can be different cell types communicating with each other. Each cell type is
modeled with a specific molecular network where the secretion from one cell serves as an external
stimulus for another cell type like T-cells that change the expression pattern of other immune cells by
interferon [28].

The effect of external stimuli on the network can have two basic effects depending on the intrinsic
features of the molecular network. The changes of the network caused by the external stimuli remain
although the external stimuli have already decayed or the changes only last as long as the external
stimuli are present. That is illustrated with different biological cases in the following. For the case that

13



14 CHAPTER 1. INTRODUCTION

the changes of the molecular network caused by the external stimuli remain although the external stim-
uli have already decayed is for example the differentiation of stem cells. By applying chemical agents,
which are the mentioned external stimuli, the stem cells differentiate to different tissues, corresponding
to the external stimuli, see for example [47, 31] and do not dedifferentiate if the corresponding chemical
agents are washed out. Another issue is that the cells can even be reprogrammed that means that the
cell being a certain type of tissue changes its type of tissue, see for example [62] and stably remains in
this tissue although the corresponding chemical agents are washed out. A further special case is the
switch from a cancer cell to apoptosis [51, 35| where the genetic expression program associated with
apoptosis is not left any more, even when the corresponding external stimuli are taken away from the
cell, once the effect of the responsible external stimuli have exceeded a certain threshold. However for
the second case there are molecular networks where the changes caused by external stimuli just last
as long as the corresponding external stimuli are active. When the external stimuli are not present
any more, then the system relaxes back to the “ground state”; that is the unperturbed status of the
molecular network, which it left because of the perturbation by the external stimuli. Examples for such
a framework are when a pathogen senses its host by certain chemical agents [12, 19, 23, 54| or other
pathogens [58, 38|, called quorum sensing. These agents differ in different environments and thus serve
as signals or in our framework external stimuli which change the gene expression of a bacterium or
pathogen for instance. A further example that also well illustrates the framework of effective modeling
is starvation. That means that the lack of nutrients can lead to cell cycle arrest [49] and can change the
expression pattern |48, 7|. Thus starvation acts as an external stimulus that is active when nutrients
have been consumed and where the expression pattern changes as soon as the external stimulus decays
that means nutrients are available again. Other external stimuli of that type are medical treatments
where the desired effect declines when the active ingredient is excreted from the body. This means that
in this case when the active ingredients decrease the network relaxes back to the pathological state in
contrast to the case above where the effect stays although the active ingredients decline. The potential
for such a behavior is in the inner structure of the model of the molecular network.

Experiments are not only performed to understand the underlying mechanisms that cause the
behavior of a study object as an end in itself but also for the purpose how to manipulate the study
object to induce desired effects. A huge research field where this question is often asked is pharmacology.
The question is what pharmacological intervention points of a molecular network cause a change from
a pathological state to a physiological one. Once the corresponding molecular network is mapped to
an appropriate mathematical model, effects of different treatment strategies can be simulated in a
computer, called in silico. Moreover there is a systematical way to search for effective intervention
points in a molecular network or drug combination for a desired effect to maximize beneficial effects
while reducing maleficent side effects at the same time. This means for instance just to perturb the
pathologically expressed genes while the physiologically expressed ones are not perturbed.

For this purpose the corresponding task is formulated as a mathematical optimal control problem
as follows. The effects of the external stimuli on the network and the interaction of all the agents of
the molecular network with each other are covered by a model discussed so far. Subject to this model
that determines the behavior of the agents of the network depending on external stimuli, we formulate
a functional that has a small value if the state of the molecular network is close to a desired one.
Then the question of finding effective intervention points or drug combinations is now formulated as
a mathematical issue where a functional is supposed to be minimized subject to that the time curves
of the agents of the molecular network are determined by the corresponding model that describes the
interplay of the external stimuli and the molecular network. For the task of finding a solution to a
mathematical optimal control problem there are a lot of systematical ways and rational methods to
calculate one. The advantage of this proposed method is that we can figure out promising treatment
strategies in silico and just have to verify that the calculated treatment strategy has the desired effect
instead of finding the best candidate by trial and error by different real experiments that might turn
out to be time consuming and cumbersome. By this method the information that is already contained
in the interaction of the agents of the molecular network with each other and the external stimuli can
be better exploited.

In Chapter 2 we motivate and illustrate the basic concepts and ideas behind the presented thesis
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in order to give an overview over the used techniques without giving to many mathematical details.

In Chapter 3 we briefly describe the mathematical methods that we use for modeling and for solving
the mathematical tasks that come up during this work. Furthermore we name the used hardware
and the software environments in which the solution algorithms are implemented for the numerical
experiments. Then we explain the procedure of validating the proposed framework.

In Chapter 4 we introduce our special ODE framework that is extended by terms that describe
the effect of external stimuli. Specifically in Section 4.1 we introduce an ODE model from [37] that
is useful for describing the behavior of molecular networks. The main feature of this model is that
effects in the network only become noticeable if specific thresholds of molecular agents are exceeded.
In Section 4.2 we extend this model by terms that include the effect of external stimuli and relate
these terms to different molecular regulation mechanisms. In Section 4.3 we validate our framework
to include the effects of external stimuli with a further biological example that concerns the circadian
clock. We use the model presented in [22] that describes circadian rhythms by enzyme kinetics where
the concentration of molecular agents oscillates with a 24 hour period. We extend this model by terms
including the effect of external stimuli like light and demonstrate that a lot of experimental results
concerning the circadian clock can be obtained with this single and small extended model where
also species specific differences are apparent in the results. The fact that a lot of experiments can
be described with a single model mechanism demonstrates the usability of our proposed framework
for modeling biological networks and their interaction with their environment. Furthermore that
mechanism models the effects of the external stimuli that allows an effective modeling where only
necessary information are considered such that the model stays clear.

In Chapter 5 we discuss a basic mathematical framework for optimal control problems that is used
to calculate external stimuli that cause a desired effect on a molecular network. As discussed above
external stimuli can have two principal effects on molecular networks. The effect of the perturbation
by the external stimuli can last permanently although the external stimuli are not present any more
if the ODE model for the corresponding molecular network includes different stable states. In Section
5.1, we develop a mathematical framework that is specific for the task to switch the state of the
molecular network between an initial stable state to a desired stable state. Furthermore algorithms
are presented that calculate external stimuli for the desired task. In Section 5.2 we show how to
modify that framework to obtain methods for the second case, that is to determine external stimuli
that keep the molecular network in a desired state where the network relaxes back to the initial state
if the external stimuli decline. Also here algorithms are given that calculate corresponding external
stimuli. In Section 5.3 we give an overview over existing software solutions for network analysis and
explain their limits with respect to the calculation of external stimuli that cause a desired network
behavior. However, we point out how the existing software can be bunched together with our approach
to generate a network analyzing tool to plan experiments and perform them in silico.

In Chapter 6 we demonstrate how to use the mathematical framework for biological applications
and validate our framework with data from biological experiments. In Section 6.1 we use a small T-
helper cell network from [37, Figure 5| in order to illustrate the basic use of the mathematical optimal
control framework and how to reinterpret the numerical results for biological experiments. In Section
6.2 we investigate the following two molecular networks. Firstly, a gene regulatory network from [39]
modeling the aggregation of platelets and secondly, a gene regulatory network of a T-helper cell from
[36] modeling the maturation of a naive T-cell to different differentiated T-cell types. In the first case,
we would like to trigger irreversible platelet aggregation and, in fact, we identify the two receptors
that are associated with irreversible platelet aggregation upon activation by adenosine diphosphate
according to [39] with our framework. In the second case for the T-helper cell network we investigate
a switch from a Th17 cell to a regulatory T-cell. This switch is reported in the tumor setting [17]
where soluble factors of ovarian cancer ascites are able to preform the transdifferentiation from a Th17
cell to a regulatory T-cell. However according to [17] the essential factors are not determined yet by
experiments to induce the switch in vitro while we give a promising prediction of factors that are able
to switch from a Thl7 cell to a regulatory T-cell in accordance to already known contributing factors.
In Section 6.3 we deal with a gene regulatory network of a myocardiocyte and show how the presented
framework can be used to find and quantitatively compare different treatment strategies with respect
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to their beneficial effects and maleficent side effects. Afterwards we model a constitutively activated
pathway that results in a pathogenic expression pattern and show how to find treatment strategies
that drive the regulatory network towards a physiological expression pattern.

In Chapter 7 we give the bagic intention of this work and discuss where our presented framework
extends existing tools for biological network analysis in order to allow further theoretical investigations
of biological experiments. Additionally we summarize the theoretical results and their validation by
comparing them to published results. The discussion is concluded with an outlook how the proposed
framework can be extended to a database driven approach where the experimental time curves of
molecular agents upon the effect of external stimuli can be exploited.

In the Appendix we show how to characterize stable states in a molecular network. Furthermore we
illustrate some important issues solving ODEs numerically and interpreting the corresponding results.



Chapter 2

INlustration of the basic concepts of the
thesis

This chapter briefly motivates the main ideas behind the Chapters 4 to 6 where the results of the work
are presented including a detailed explanation of the underlying framework. This framework contains
mathematical modeling of molecular networks with ordinary differential equations (ODEs) including
the effects of external stimuli and the systematical computational investigation of intervention points
to achieve desired effects on a molecular network.

A model of a molecular network contains the regulatory connections by which the different agents
of a considered experiment are related to each other, see for example Figure 2.0.1 for an illustration of
models of molecular networks. The information can be both qualitative and quantitative.
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Figure 2.0.1: Representations of molecular networks. Left figure is a simplified T-helper cell network,
see Section 6.1 for details. Right figure is the negative feedback loop for the oscillatory period gene
expression for the circadian rhythm where also the model parameters are incorporated, see Section 4.3
for details. Notice that an arrow is associated with an activating interaction and a t-shape arrow is
associated with an inhibiting interaction. The node on the top of an arrow is activated from the one
at the bottom and the node on the top of a t-shape arrow is inhibited by the one at the bottom of the
t-shape arrow.

per transcription

First we start explaining illustratively why ODEs are appropriate for modeling molecular networks.
These type of equations describe how a quantity alters in time. The change per time of a quantity
x1 is expressed by the derivative of the quantity with respect to time, denoted by % and in general
its physical meaning is the one of a rate. On the other hand the mechanism how other agents of the
network, for example x9 and x3, influence z; is described by a functions, for instance f (x1, z2, x3) where
the current value of f in this case depends on x1, 9 and x3. Then we have a mathematical model,
denoted by % = f (x1,z2,23), that describes how the quantity 27 will change per time depending on

the current value of the other agents. Analogously for zo and z3. The function f can for example be

17
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given by xy — x3, denoted by f (x2,x3) = x9 — x3. That means the rate how the quantity z; changes
depends only on z9 and x3. The quantity xo has increasing effects and the quantity xs has decreasing
effects on the rate % and thus on the current alteration of the quantity x;. Depending on the sign of
xo — x3 the quantity 1 increases, for xo — x3 positive, decreases, for x5 — x3 negative or stays constant
if x9 — 23 = 0. If we give an initial value for z;, 9 and x3 we can calculate the value of each of all
three quantities by integrating dd% = f(x1,x2,z3) on both sides over time starting from the initial
time to the final time. This concept of ODEs modeling molecular networks can be illustrated with two
genes regulating each other such that a stable expression pattern is obtained. For example if a protein
from a corresponding gene 1 enhances the expression of a second gene 2 and in turn the corresponding
protein that is synthesized from gene 2 inhibits the expression of gene 1. Then, in this example, we
have that the change per time of the protein of gene 1 depends on the current concentration of protein
of gene 2 since these proteins inhibit the transcription of mRNA and consequently the rate of synthesis
of protein of gene 1 varies depending on the current concentration of protein of gene 2.

Furthermore, let the rate of protein synthesis not only depend on the interaction of the proteins
within the network but also on the interplay with external stimuli that come from the environment.
For this purpose it is necessary to extend the model by quantities that correspond to the activity of
the relevant external stimuli. For example if light or a chemical agent that is sensed by a receptor

enhancing gene expression or the digestion of a protein with concentration x1, then the corresponding

equation can be mathematically formulated as dd% = f (x1, w2, w3, u1,uz) where uy is associated with

the intensity of light and wy correlates with the concentration of the chemical agent. For example the

function f can be given by xo — x3 — u; where u; has decreasing effects on the rate %, denoted by

f (x2,x3,u1) = o2 — x3 — uy, or the function f can be given by x9 — x3 + ug where uy has increasing

effects on the rate dd%, denoted by f (x2,x3,u2) = o — x3 + ug. For mathematical details, especially

further examples for f , see Chapter 4.

By these equations the alterations of the quantities x1, 22 or x3 can be described for any time. An
important special feature of such equations, which has turned out to be useful for biological modeling,
is having solutions that are associated with a stable state or steady state. These states are defined that
all rates are zero, that means dd%l = ddif = % = 0. This means that the quantities do not change their
values any more and stay constant. A biological example is an expression pattern that is associated
with a certain tissue, specifically the differentiation of stem cells into a certain type of tissue. Once
the differentiation is finished the cell remains in the corresponding expression pattern if there are no
sufficiently strong perturbations. A mathematical example is the following. If we take the system of
equations % = T9 — X3 — UL, dstz = I3 — 21, ddif = 21 — T9 + ug where we assume uy and us to be
constant zero functions, u; = us = 0, that means the system is unperturbed, then we see that there
are two different steady states. For x1 = 29 = 3 = 0 and for 1 = 29 = x3 = 1, we have that the

corresponding rates are zero, 9 = dc‘% = dc‘% = 0. External stimuli, if active, modeled by u; and

uo having values greater than zcgro, cause changes of the quantities x1, o and x3 as the rates are not
zero any more according to the equations % = T9 — T3 — U1, d% = x3 — T1, %3 =x1 — T9 + ug. If
the network is for example initially in the steady state where all the quantities x1, 2 and x3 have the
value 0, then a certain combination of active external stimuli w1 and wg might cause a switch from the
steady state where we have 1 = 9 = x3 = 0 to the steady state x;1 = z9 = x3 = 1. The biological
meaning is for instance that a stable expression pattern of a cell is changed and thus a differentiated

stem cell transdifferentiates to another cell type.

In this thesis we propose a general mechanism to include the effects of external stimuli and validate
this mechanism by theoretically describing experiments of the circadian clock, see Section 4.3 for
details. We show that with this mechanism the circadian clock can be entrained to external phases
and induce a phase shift of the circadian clock. Furthermore we investigate our mathematical model
under constant light and compare the results with experimental data from the literature. Next we give
two different sets of parameters for the model such that we obtain different phase response curves. One
curve is typical for flies and one curve is typical for mammalians. Then we demonstrate how to couple
different clocks by interpreting the output from one clock as an external stimulus for another clock. We
set up a food entrained peripheral clock similar to liver cells that shift their clock according to signals
from the brain and food intake. Also we discuss that by coupling several microscopic clocks whose
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coupling strength to light slightly differs results in a macroscopic behavior where the total rhythm of
all clocks can be stopped by a strong light pulse and then again be restarted by another strong light
pulse.

Once a mathematical model with external stimuli is created the mathematical optimal control
theory offers a systematical way to calculate a selection of external stimuli that has a desired effect on
the network. For this purpose, besides a mathematical model that describes the effect of the external
stimuli on the molecular network and the interaction of the molecular agents among each other, the
desired effect needs to be formulated in mathematical terms. This can be done as follows. If we consider
for example a gene regulatory network, then each gene has a desired expression pattern. However if
the actual expression pattern differs in a pathological manner, the difference between the actual value
and the desired value is greater than zero. This now paves the way for the mathematical formulation
of this problem. If we sum up the square of all differences from each expression level and its desired
value, then we have to minimize this functional, called target functional, with the available external
stimuli subject to the model describing the interaction of genes and external stimuli. These external
stimuli that fulfill the desired task are called solution to the optimal control problem. In order to find
external stimuli that cause the smallest target functional value there are several methods provided
with this thesis, see Chapter 5 for details.

Solutions to optimal control problems can be determined in several ways. There are so called local
optimization methods that, for the calculation, exploit features of an optimal solution that it has to
fulfill since it is mostly computationally too expensive to calculate these solutions directly by testing all
the possible admissible values for the external stimuli and then choose the combination that caused the
smallest target functional value. Such a feature that a solution to an optimal control problem fulfills
under certain conditions is that the first derivatives are zero. For example if we consider the function
Ji (z1) = (z1 — 0.5)%, then the minimum is at 21 = 0.5 where the first derivative % = 2(z1 —0.5)
is zero at 21 = 0.5. Another example is the function Jp (21, 22) = (21 — 0.1)* + (22 — 0.6)? where the
minimum is located at (x1,x2) = (0.1,0.6). Also the first derivatives C%]l = 2(r1—0.1) and % =
2 (z2 —0.1) are zero at (z1,22) = (0.1,0.6). For illustration see Figure 2.0.2. The local optimization
methods are combined with global optimization methods that are provided with this work. By an
appropriate combination of a representative of each class of methods efficient and tailored calculation
methods can be generated to investigate molecular networks with respect to useful intervention points.

Ji

0.25
0.20
0.15
0.10

0.05

TR Y H

0.2 0.4 0.6 0.8 1.0

Figure 2.0.2: Tllustrations of the function Jj.

Now, we have a framework that first allows us to include the effects of external stimuli into molecular
networks and second formulate the experimental question of finding appropriate external stimuli to
influence a molecular network in a desired way in mathematical terms. In the next step, we demon-
strate that a solution to the resulting mathematical optimal control problem can be reinterpreted in a
biological context and thus validate the framework. A detailed discussion of biological applications of
the framework including validating results can be found in Chapter 6.

For the first example we use a gene regulatory network that describes the irreversible aggregation
of platelets. The irreversible aggregation is associated with a high concentration of integrin. For our
calculations we let the corresponding network start with a low concentration of integrin and equip
the network at several points with external stimuli. For irreversible platelet aggregation we desire
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that the value of integrin is high in the molecular network. The result is that by our calculations we
exactly determine two receptors that are associated with irreversible platelet aggregation when they
are activated by adenosine diphosphate.

In a second example we consider a gene regulatory network that describes the maturation of T-
helper cells from a naive T-cell. We have the situation that the corresponding network starts with
initial values that are associated with a Th17 cell type. The task is to find intervention points to
transdifferentiate the Th17 cell type to a regulatory T-cell type. This transformation is reported in
an ovarian tumor setting where not all the soluble factors are known that are contained in the ascites
that mediate the transdifferentiation. We figure out two additional intervention points to the one that
is already known from experiments to play a major role in the process of transdifferentiation.

In a third example we consider a gene regulatory network of a myocardiocyte. Also in this setting we
demonstrate how promising treatment strategies can be computationally developed and quantitatively
compared. For this purpose we can use our target functional where the sum of all squared differences of
the actual expression levels and their desired values serves as a measure for the quality of a treatment
strategy. The closer each gene expression is to the desired value, the smaller is the target functional
value and thus the better the treatment strategy is. Specifically that means that side effects are
reduced while beneficial effects are maximized. As our presented framework determines the given
external stimuli such that the target functional attains its smallest value possible with the given set
of external stimuli, the method is objective in order to compare different treatment strategies. This
means that for each strategy different genes in the molecular network are equipped with an external
stimulus that can either activate or inhibit the corresponding gene expression.

In a further investigation with the gene regulatory network of the myocardiocyte we show how
to model a constitutively activated pathway and how to find a treatment strategy to eliminate the
maleficent effects. This also plays a role in oncogenesis, see [14, 20, 29] for instance where the proposed
way of modeling constitutive activated pathways might also turn out to be useful. In our case we
have a constitutively activated receptor that triggers a hypertrophic stimulus for the myocardiocyte
which is associated with maleficent effects. After we have used our framework to figure out the most
effective treatment strategy to eliminate the maleficent effects and to intensify the beneficial effects,
we compare this strategy to a treatment where only a receptor is activated that is associated with
a non-hypertrophic stimulus which has just beneficial effects. In the calculations it turns out that
a homo-dimerization of a protein has to be inhibited. Furthermore we investigate to what degree
the homo-dimerization has to be inhibited such that the treatment subject to the conditions of the
constitutively activated receptor causing a hypertrophic stimulus is still as good as an activation via
a receptor that is associated with a non-hypertrophic stimulus where no receptor is constitutively
activated. We predict a threshold for the homo-dimerization where no hypertrophic effects occur.



Chapter 3

Materials and methods

In this chapter, we note the methods that are used to generate the results of the thesis. Furthermore
required hardware and software packages are named.

The calculations can conveniently be performed on a desktop PC with 16 GB RAM and a processor
with 4 kernels with each 3.5 GHz, specifically we used an Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz.
For the implementation of the mathematical algorithms Mathworks Matlab is used. For the execution
of the provided Matlab Files the Matlab Symbolic math toolbox is required and the parallel computing
toolbox is recommended but not necessary. The basic implementations that are used in the next part
of the thesis are provided with this work. The codes are commented. The experiments for Section 4.3
are performed with Wolfram Mathematica, version number 10.1.0.0. The corresponding files are also
commented and provided with this thesis. No further software solutions are used for the present thesis
than the already named ones.

The mathematical methods are the following. The mathematical models are based on ordinary
differential equations. These equations are solved with an explicit Euler scheme implemented with
Matlab throughout this work except in Section 4.3 where the equations are solved with NDSolve of
Mathematica.

There are several implemented methods provided with this thesis in order to solve the resulting
optimal control problems. There are heuristic global optimization methods that have been developed
during the research for this thesis. Local optimization methods, taken from the literature, are provided
with this work. These are first a projected gradient method and second a sequential quadratic Hamil-
tonian method. Both were implemented for the thesis to have an exactly tailored software solution.

For the validation of the theoretical experiments, we have not performed experiments in vivo or in
vitro. We validate our framework indirectly by comparing our results to already published data in the
literature. Corresponding references are pointed out at the corresponding site in this thesis.
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Chapter 4

Modeling of biological systems and
external stimuli

This section is about modeling biological systems with ordinary differential equations. Specifically, a
certain type of ordinary differential equations that is based on 37| is introduced and extended with a
mechanism that models the effect of external stimuli. We remark that the considerations of this section
also hold for any well posed model of ordinary differential equations. The following two sections are
based on [10, Section 2|.

4.1 A system of differential equations to model regulatory networks

A biological system for our purposes consists of the interplay of different agents that we are interested
in. An agent can be a gene, a RNA or a protein. It is our goal to set up an effective model of just the
agents of interest. The agents that we assume to be important for the understanding of the dynamics
of the corresponding biological system can interact by activating or inhibiting agents of the network.

For the procedure of our effective modeling with regulatory networks we start with identifying
each of the n agents, n € N, of our biological system that we would like to model with one node
k € {1,...,n} of an interaction graph. Additionally, this interaction graph contains all the information
which node regulates which node by either activation or inhibition. Then from this information a
system of ordinary differential equations can be set up as proposed in [37, Equation 3| for instance.
For each activity level z; : R — R, k € {1, ...,n} of a node k, we have the following equation

oy —ebh et .
_— = — ’ykl‘k A
dt (1 — e%h) (1 + efh(w’f%)>
where
w,’:‘wlﬁ if node k has activators and inhibitors
wE = w,? if node k has only activators
wl if node k has only inhibitors
and

Wit = L4+ 5ea, 0‘? djcA, O‘?xj 7 ol =1 - L4+ e, Bf dicl foj .
ZjEAk Oé? 1+Ej€Ak aé?xj Zjelk’ Bjk 1 +2j61k Bjkxﬂ
Model (4.1.1) describes the time depending changing of the activity level xy, k € {1,...,n} from the
initial time ¢ = 0 to a final time horizon 7" > 0 for a given initial state xo € R™ with x (0) = zo. The
time depending changing ddit’“ of node k depends on the network dynamics modeled according to the
right hand-side of (4.1.1) whose parameters we explain in the following. The activators of node k are

elements of the subset {x;| j € Ay C {1,...,n}} C{zx| k € {1,...,n}} where A}, contains all the indices
of the nodes {1, ...,n} which activate node k. The corresponding ozé‘? > (0 weights the contribution of
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the activity level z; of node j to the total activation of node k. Analogously, the inhibitors of node
k are elements of the subset {z;| j € I, C {1,...,n}} C {xy| k € {1,...,n}} where I}, contains all the
indices of the nodes {1,...,n} that inhibit node k. The corresponding ﬁf > 0 weights the contribution
of the activity level x; of node j to the total inhibition of node k. Furthermore, h > 0 where A models
the cooperativity. If h is large, then the behavior of the equation is close to a switcher while small h
are closer to a linear behavior of the activity level with respect to the input activity level. We remark
that h for the presented case is equal for all nodes of the network. However it can be extended in that
way that hy differs for each node k if the biological system modeled with (4.1.1) makes it necessary.
According to [37], the first term of (4.1.1) is called the activation function or activation term.

The activity level of a node in an experiment is defined by the interaction with other nodes. The
activity of a node can be measured by any concentration of a product of transcription or translation
such as mRNA or proteins for instance that is in a biologically active form such that it interacts with
other agents in the network. If for example node k& models a gene, then the activation term models
the rate of transcription or translation and the product of this process, either RNA or proteins, can
interact with other agents. Consequently if in the model a node stands directly for a protein, then
activity of the protein can also mean the concentration of its biological active form.

The second term is called the decay where v, > 0 models the speed of decay of the activity level
xk of node k. As an example the decay can be the digestion of protein by for example ubiquitination.
In general the decay is a term that subsumes all the effects that irreversibly transform the agent the
node stands for to a biologically inactive form.

Following this consideration we have two possibilities to interpret the activity level z; of a node
k. The first possibility is that the activity level takes values between 0 and 1 where 0 means that
the concentration of the biologically active agent that is associated with the node is zero or 1 means
that the biologically active agent has the highest concentration that can be measured in the system.
The second possibility is that the activity level xy is the concentration of the agent corresponding to
the node k. This is the usual case if the network parameters are fitted to experimental data where
concentrations of agents are measured.

If the network is used in the framework of activity, we have that solutions to (4.1.1) only take
values between 0 and 1. This can be seen as follows. If the initial value z¢ € [0, 1], then wy € [0, 1]
for all k € [0,1]. If wy € [0,1] for all &k € {1,...,n} then the activation term takes only values between
0 and 1. The activation term takes 0 for wy = 0. If we factor out a minus sign in the numerator
and the denominator of the activation term, then if w; increases, the numerator of the activation term
increases and the denominator decreases where it takes its maximum value at wy = 1 where for the
denominator it holds

— (e%h — 1) (1 + e_%h> =1- e%h + e_%h —1= —e%h + e_%h.

Thus the value of the activation term takes at most 1 and thus the value for x; growth until, as
vk = 1, x is at most 1 and thus the two terms of the right hand-side of (4.1.1) cancel out and z, stays
constant. If the decay has a bigger value than the activation term, then the sign of the right hand
side is negative and the value of x; decreases until the decay equals the activation term. The value of
xi cannot go below 0 as the decay scales with x. Thus if once z = 0 the decay is zero and cannot
contribute to a further decrease of xj; below zero.

An important property of (4.1.1) is that for certain network configurations there are stable activity
levels whose values stay the same for all times after a transient if xg is not already such a stable state.
Such states are called steady states, see Section 8.1 in the appendix for details. These stable activity
levels can also be found in biological systems like a stable expression pattern. We stress that once the
system is in a steady state, it cannot switch its current state by itself that means without external
stimuli by definition of a steady state.

4.2 The extension of regulatory networks by external stimuli

The application of external stimuli aims at two different kinds of changes of the network’s activity
pattern. The first one is to drive the network from one steady state to another desired one where
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the network again rests although the external stimuli have already decayed. That means that the
whole network is driven from one steady state to another because the perturbation of the activity level
of certain nodes is such that the steady state, in which the whole network is, is left and is brought
sufficiently close to the desired steady state such that the network relaxes into that one. This is one
possible way to switch between two different steady states of a network. The second kind of change
of the network’s activity pattern is to alter the activity levels of certain nodes for the duration of
application of the external stimuli where these activity levels relax to the values of the steady state in
which the whole network still is after the external stimuli have decayed. That means in this case that
there is no switch between two different steady states.

To be able to affect a network by external stimuli, especially activity levels of certain nodes, we
have to introduce some mechanism into (4.1.1) which we explain in the following.

Now, we set up a mechanism that includes the effect of external stimuli on the activity level xj of
a node k. For this purpose, we introduce a function u; : R — [0, 1] that models the activity level of
each external stimulus j € {1,...,m}, m € N. In our model u; = 0 means that the external stimulus is
not active. The activity level of the stimulus is supposed to be linearly interpolated to its maximum
activity level that is modeled by u; = 1.

For the next step, we have to distinguish two cases. In the first one, the activity level xy, k €
{1, ...,n}, takes only values between 0 and 1. This is achieved by setting 7, = 1 for all k € {1,...,n}
as the activation term takes only values between 0 and 1. Then the activity level z; increase at most
until the activation term equals iz and thus %’“ = 0 which means that the node k has reached a
steady state. If the initial value zo has only values between 0 and 1, then wy, takes only values between
0 and 1.

An activation of node k by an external stimulus j is modeled by adding o;u; (1 — x1) to the right
hand-side of (4.1.1). That means if for the external stimulus u; = 0, then there is no activation of node
k by the external stimulus j. If node k has full activity, then the external stimulus has also no effect
on the activity level xj of node k. Analogously, an inhibition of node k by an external stimulus j can
be modeled by subtracting ny;u;jzy from the right hand-side of (4.1.1). That means, if for the external
stimulus u; = 0, then there is no inhibition of node k by the external stimulus j. If node k£ has no
activity, then the external stimulus j has no effect on the activity level xj of node k. The parameters
or; > 0 and ng; > 0 are used to fit the value u; to experimental activation or inhibition of the modeled
external stimulus. The parameters can also be used to weight the contribution of external stimulus j
to the activation or inhibition, respectively, of node k& where o; = 0 or n;; = 0 means that external
stimulus j does not directly effect node k. Concluding, our first extended model for the activity level
xy, of node k is given as in the discussion above but exchanging (4.1.1) by

1 1
dy, _esh 4 g h(wr—3) m m
- = — Wk + Y opjuj (1 —xp) — g NhjUjThe (4.2.1)
dt (1—e%h> (1+e—h(wk—é)> Z 7 P U

j=1

for k e {1,...,n}.

The model (4.2.1) can be extended to external stimuli which act on the activation term in the
following way. We model the following situation where a substrate cannot decrease the activity level
xi of a corresponding node k but its activation term. For example, if one blocks areas in the promoter
region by oligopeptides such that transcription factors can bind worse to the DNA | then the expression
of the corresponding gene product slows down as the activation term is smaller. Such a model can be
formulated as follows

d(L‘k —e%h —|—e7h(w 7%) m m m
— = (1= Crjug) | —mezn+ ) owjuj (1 — ) — Y mejujzy
dt <1—e%h> <1+e—h(Wk—%)> 31;[1 77 Z J7 ]; 77

J=1

(4.2.2)

for all k € {1,...,n} where 0 < (i; < 1. If (; = 0 for all k£ and j, then model (4.2.2) transforms into
(4.2.1). By the coefficients (i;, one can adjust how much the external stimulus j affects the activation
term of the node k even at full activity of u;. That means that for (x; = 0, the external stimulus j has
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no effect on node k. For (; = 1, a fully activated external stimulus j, which corresponds to u; = 1,
totally prevents the expression of the product of node k. If 0 < (3; < 1, then even a fully activated
external stimulus j cannot totally prevent the corresponding expression. This captures the nature
of an equilibrium reaction as it appears when, for example, transcription factors compete with other
substrates in binding to the DNA. Therefore, (j; can also be used to fit the effect of u; to experimental
data.

Remark 1. We compare (4.2.1) with (4.2.2) where np; = 0 for all k € {1,...,n} and all j € {1,...,m}
from a numerical point of view to model a decay of an activity level zp. We have that the numerical
treatment of (4.2.2) is easier. The reason for this comes from the fact that for large parameters 7y,
ke {l,..,n}, j € {1,..m} we possibly have to choose small step sizes for the numerical solution to
obtain a stable numerical solution procedure, see the considerations for (8.2.4) for details. That is the
reason why as long as it is just important that the activity level of the corresponding node decreases
when the activity level of an external stimuli increases, we recommend (4.2.2) with 7;; = 0, for all
ke {l,..,n}and j € {1,..m}. This shows that a good model has to contain different issues ranging
from capturing all the relevant effects that play a role for the biological system that is to be modeled
up to numerical aspects that ensure that the corresponding equations are solvable within a reasonable
time.

For the second case where x > 0 and xj is interpreted as a concentration of an agent, we have
the following possibilities to include the effects of external stimuli. The only difference to (4.2.2) is
the activation by external stimuli. The terms for inhibition are well defined as they cannot bring the
value of xp below zero as discussed above. However, if we would like to have that if there is already a
large value of x; and thus the external stimuli is supposed to have a lesser effect in this case, then we
cannot use the term (1 — x) to dampen the effect as there is no sharply defined upper bound for xy.
In this case, we can use a term that decreases when zj, increases. We choose e #¢% with 5, > 0 for all
k €{1,...,n} where i can be fitted to experimental data. Then we obtain from (4.2.2) the following

O e I £ m m

@ (i )E g (L0 G | ot e 3

j=1 j=1

(4.2.3)

for all k € {1,...,n}. If the upper bound for the intended purpose is not that important, we can
simplify the term that implements the activation of the external stimuli of (4.2.3) by replacing e~ P+®x
with 1 such that we have

da (1 — e%h> (1 + e_h(w’“_%))

for all k € {1,...,n}. This can be used to have an easy possibility to just increase the activity level by
the action of an external stimulus.

1 1
dxy, _ezh 4 g~h(wr—3) s Uk n
H iju] — YTk + Z OkjUs — anjujxk (4.2.4)

Remark 2. Notice that in the case of u; = 0 for all j € {1,...,m} our extended Equations (4.2.1),
(4.2.2), (4.2.3) and (4.2.4) transform into (4.1.1) which is the unperturbed network. That especially
means that the values of the steady states and other model parameters of (4.1.1) of a regulatory
network are independent of the external stimuli. Thus these steady states and model parameters are
a priori given or computable, respectively, without knowing what external stimuli might effect the
regulatory network. This is reasonable because if for instance the steady states of regulatory network
model all the genetic programs which a cell can perform, then these programs are an intrinsic property
of this cell independent of possible external stimuli which ever can exist. However, an external stimuli
might cause a change from one genetic program to another if applied. In our framework, the cell or the
system modeled with a regulatory network, respectively, is considered as an open system, that means
an independent system which is able to interact with its environment via the effects of external stimuli.

Next, we illustrate how these external stimuli uj, j € {1,...,m} can be realized in a real experiment.
In general, we say that the activity level of a node is high if the product which corresponds to the node
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has a high concentration and is low if the corresponding product’s concentration is low. An example
is the expression of a protein of a gene. If the concentration of the protein is high, then we say that
the corresponding gene is at a high activity level and analogously reverse.

That means, that activation of a node by the term >, ogju; (1 —xy), D0, opjuje” PR or
Z;”Zl ojju; is every operation on the node which increases the concentration of the product associated
with a certain node. Therefore, increasing the activity level can be done by adding the product of
the corresponding node to the system with which it influences other nodes, like RNA or protein. This
simulates a higher activity level of the corresponding node. Another effect which increases the activity
of the node is adding a substrate to the system which improves transcription or translation. Imaginable
is the activation of an enhancer region close to a promoter associated with a node. We emphasize that
these effects are not like a knock in of a gene as this operation changes the topology of the network
which means that nodes or edges are added to the network’s graph.

The inhibition of a node by the term Z;”Zl Nk;ju; Tk means that the concentration of the product
associated with that node is decreased, like an additional decay. This can be done, for example, by
antibodies which bind to the product, digestion of the product by enzymes or any other modification,
like post transcriptional or post translational modifications, at the product which inhibits its intended
function in the system and thus converts the product into a biologically inactive form. Then the
concentration of the biologically active product decreases and this is considered as a decay of the
activity level of the corresponding node. The inhibition by the term HT:l (1 — Crjuj) is associated with
decreasing the activation term which can be the inhibition of transcription or translation factors like a
competitive binding to the DNA binding zone of a promoter. The presented inhibition mechanisms are
associated with a so called knock down. Analogously to a knock in, a knock out changes the topology
of the network as well and corresponds to the deletion of a node or an edge from the network. This
operation is not modeled by the action of the external stimuli within the framework proposed in this
work.

Besides drugs or some other chemicals acting as external stimuli, there are further external stimuli
like physical signals. Our presented framework provides the possibility to effectively model the effects
of these external stimuli on certain nodes. For example light or mechanical stress, which is detected by
receptors and is converted into activation or inhibition of a node. For example, DNA damage caused for
example by X-rays activates p53 [32] that can be associated with a node in a network or temperature
sensed by RNA thermometers can chance expression patterns [57]. This can be modeled within our
framework by covering the effects of these external stimuli by the functions u;, j € {1,...,m} that
activate or inactivate the corresponding nodes. We remark that this is a very effective modeling as we
just consider the essential effects of the interactions within a real system that we model.

In order to compare the results from these models with results from an experiment in detail, one
has to check if the behavior of the real network is the same like the one of the model network when
applying an external stimulus as far as the nodes’ activity is concerned. Furthermore, one can check if
an external stimulus has the same effect on a node’s activity like used in the model in order to adjust
the coefficients oy, nrj and (;;. In this way, the coupling strength of an external stimulus can be
taken into account. For example, if an inhibiting external stimulus j supposed to cause a knock down
of node k cannot force a node’s activity level below a certain level although fully applied, then one can
adjust the corresponding coefficient n;; or (j; until the model has the same behavior. Analogously, if
an external stimulus cannot steer a node’s activity level to its full amplitude or not above a certain
value although fully applied, then one can adjust the corresponding coefficient o; or B, until the model
shows the same behavior like the real system. One should also check if the external stimulus like a
certain molecular agent used to put the external stimulus from the model into effect has an exclusive
effect on the corresponding node in the real system or if the utilized agent has a multi target effect on
several nodes at once in the real system. If the utilized external stimulus has multi target effects on
several nodes, then such an external stimulus j can be considered with the model above in that way
that the coefficients (j;, ox; or ni; are greater than zero for more than just one k. Then the external
stimulus j appears in more then one equation meaning that it has an effect on the corresponding nodes.
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4.3 External stimuli and a circadian clock model

This section is based on 9] and is intended to demonstrate that the framework that includes external
stimuli into a model of ordinary differential equations in an effective way reproduces experimental data
and thus validates this mechanism of the regulatory networks introduced in Section 4.2. By effective
we mean that we only include the essential effects of the external stimuli to certain agents oft the
network. In order to show the functionality of our framework we chose a model for the circadian clock
which describes oscillations of molecular agents. Circadian clocks are daily time-keeping mechanisms
that help organisms to anticipate the usual 24 hour fluctuations on earth. The rhythms generated
by circadian clocks are of endogenous nature and persist even in the absence of environmental cues
with a species-specific period that usually deviates from 24 hours. They are synchronized, which
means entrained to the 24 hour rhythm on earth by several environmental cues, called Zeitgebers, of
which light has the largest impact. According to [40], circadian clocks have the following well defined
properties. First they entrain to Zeitgeber cycles with a limited range of entrainment, second they can
follow phase shifts of Zeitgeber cycles, but they need a certain number of transient cycles until they
have established their previous phase to the Zeitgeber cycle. Third they can be phase shifted by light-
pulses in a time-dependent manner that is characterized in a phase-response curve and fourth they
run freely under constant conditions with a species-specific period, which is light-dependent. Constant
light either lengthens or shortens the free-running period and constant light of high intensity dampens
the clock and finally leads to arrhythmicity.

Specifically we use the model from [22| which is based on enzyme kinetics that is modeled by
ordinary differential equation. This system of ordinary differential equations provides a limit cycle
and thus can be used to model endogenous oscillation of proteins in a cell, which is associated with
endogenous clocks. Furthermore the model describes the oscillations of the Drosophila period protein
(PER) and its multiple phosphorylation. A schematic of the network and a detailed description is
given in Figure 4.3.1 and the corresponding system of ordinary differential equations is given by

%M K“K1 Py Km]\j— M (4.3.)
%PO e K1Jj- Py VQKzT Py 43.2)
jt V1K1]j- Py V2K2]-D|i Py —VSK?)]—D; Py +VA‘KALP‘EPQ (4:3:3)
%PN = k1 Py — kyPy (4.3.5)

where M is the concentration of per mRNA in the cytosol, Py is the concentration of unphosphorylated,
P is the concentration of monophosphorylated, P> is the concentration of biphosphorylated PER pro-
tein and Py is the concentration of the biphosphorylated PER protein in the nucleus. Concentrations
are defined with respect to the total cell volume.
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Figure 4.3.1: Model for circadian PER oscillations, see [22]. Scheme of the model for circadian oscil-
lations in PER and per mRNA. The corresponding system of equations is given by (4.3.1) to (4.3.5).
The per mRNA (M) is transcribed in the nucleus and exported to the cytosol, where it accumulates
at a maximum rate vg; at the same time it is degraded by an enzyme of maximum rate v, and
Michaelis constant K,,. The rate of translation of the PER protein is assumed to be proportional to
M and is characterized by a first-order rate constant ks. The parameters V; and K;, ¢ = 1,2, 3,4,
denote the maximum rate and Michaelis constant of the kinase(s) and phosphatase(s) involved in the
reversible phosphorylation of Py into P, and P; into P» of the PER protein, respectively. The fully
phosphorylated form (P) is degraded by an enzyme of maximum rate vy and Michaelis constant Ky
and imported into the nucleus at a rate characterized by the first-order rate constant k. Export of the
nuclear, biphosphorylated form of PER (Py) into the cytosol is characterized by the first-order rate
constant ko. The negative feedback exerted by nuclear PER protein on per transcription is described
by an equation of the Hill type, in which n denotes the degree of cooperativity and K the threshold
constant for inhibition.

Also in the work of [22], the model used in the present work is validated with experimental results.
For our calculations we use the following values for the parameters which can be found in [22, Figure 2].
We have v, = 0.764M v, = 0.65/ | K,, = 0.5uM, ks = 0.38%, vg = 0.955M &y = 1.9%, ky = 1.31,
Ki=1uM, K4 = 02uM, n =4, K1 = Ky = K3 = K4 = 2uM, Vi = 3.2V, = 15840 13 = 540
Vi= 2.5% with the initial values M (0) = 0.5, Py (0) = 0.5, P, (0) = 0.5, P» (0) = 0.6, Py (0) = 1.5.
We always calculate the model from time ¢t = 0 to a final time. The calculations in this work are
performed with Wolfram Mathematica. In Figure 4.3.2, we have a plot of the model where we see an

almost 24 hours rhythm analogous to |22, Figure 2].
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Figure 4.3.2: A plot of the model (4.3.1) to (4.3.5) with the parameters v; = 0.76“Y, vy, = 0.654Y
Ky = 0.5uM, ks = 0381, vg = 0.9558M k= 1.91 ky = 1.31, K7 = 1uM, K4 = 0.2uM, n = 4,
Ky = Ky = Ky = Kq = 2uM, V; = 328 v, = 1.584M V3 = 540 1) = 2,54 with the initial
values M (0) = 0.5, Py (0) = 0.5, P; (0) = 0.5, P, (0) = 0.6, Py (0) = 1.5. The time is plotted on the
abscissa and the corresponding concentration with respect to the whole cell volume is plotted on the
ordinate.

Entrainment to light-dark cycles

Now, we extend the model of [22] by a mechanism that allows to include the effect external stimuli.
In the following experiment we would like to have that an external stimulus influences the circadian
clock such that it synchronizes to the rhythm of the external time phase. Such an external stimulus is
for example light, see [25] or any other substance that influences the concentration of an agent of the
model (4.3.1) to (4.3.5). In our first experiment, we synchronize the phase of the endogenous clock to
the phase of an external Zeitgeber. We start our discussion by assuming that the external stimulus
leads to a further decay of per mRNA (M) in order to compare these results to different molecular
mechanisms like a degradation of PER protein which is considered later. We model the further decay
of per mRNA by

d K7

M
I om0y M 4.3.6
at” T UK+ Py "RKa+M (43.6)

instead of (4.3.1). The term —uM models the effect that if the external stimulus is strong and M is
large, then the decay of M is strong, that means a lot of per mRNA is degraded and if the external
stimulus is weak and M is small, then there is almost no additional decay of M. The constant s is a
coupling constant that weights the contribution of the term —uM to the time variation of M. For our
experiment, we use s = 0.05.

Our first experiment is as follows. We assume that light is our external stimulus and causes an
increased degradation of per mRNA and the light intensity oscillates with a period of 24 hours according
to

w(t) == cos (%2’54 + g0> +1 (4.3.7)

where ¢ is the time shift of external and internal time of the cell. We start with ¢ = 0. Then, the
external stimulus has the same phase as the endogenous time of the cell, see Figure 4.3.3 and the
curves almost look like the unperturbed ones from Figure 4.3.2. That means that our framework is in
accordance with the model proposed in [22]. Furthermore, we see that the period stays the same and
is not changed by the mechanism that includes the effect of the external stimulus. Representing the
proteins, we present only a detailed plot of M in Figure 4.3.3b as the other plots look similar. This is
done throughout this section.
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(a) Time curves where the superscript u indicates that (b) Time curve of the external stimulus u defined in
these time curves belong to the solution to the extended (4.3.7), of M calculated from the model (4.3.1) to
model consisting of (4.3.6) and (4.3.2) to (4.3.5) with (4.3.5) and of M" calculated from (4.3.6) and (4.3.2)
(4.3.7) for ¢ = 0 and 3 = 0.05. to (4.3.5) with (4.3.7) for ¢ = 0 and » = 0.05.

Figure 4.3.3: The model (4.3.6) and (4.3.2) to (4.3.5) does not differ from the original model (4.3.1)
to (4.3.5) if the molecular clock is in the phase of the external Zeitgeber. The time is plotted on the
abscissa and the corresponding concentration with respect to the whole cell volume is plotted on the

ordinate.

If the external time is shifted compared to the endogenous time of the cell by for example ¢ = 7,
then we see in Figure 4.3.4 that the endogenous time is shifted by approximately 12 hours after a
transient of about 48 hours. The external stimulus synchronizes the endogenous time with the external
time such that the phase of the cell’s endogenous time is again in sync with the phase of the external
time. We remark that the period of about 24 hours is unperturbed after the transient.
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) Time curve of the external stimulus u defined in
3.7), of M calculated from the model (4.3.1) to
3.5) and of M" calculated from (4.3.6) and (4.3.2)
o (4.3.5) with (4.3.7) for ¢ = 7 and » = 0.05.

(a) Time curves where the superscript u indicates that (b
these time curves belong to the solution to the extended (4.
model consisting of (4.3.6) and (4.3.2) to (4.3.5) with (4.
(4.3.7) for ¢ = mand » = 0.05. t

Figure 4.3.4: The external stimulus induces a shift of the molecular clock’s phase of 12 hours. The time
is plotted on the abscissa and the corresponding concentration with respect to the whole cell volume

is plotted on the ordinate.

For illustration, we have the figures analogous to the results above for ¢ = 5 and have a shift of
about 6 hours after a transient, see Figure 4.3.5.
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(a) Time curves where the superscript u indicates that (b) Time curve of the external stimulus v defined in
these time curves belong to the solution to the extended (4.3.7), of M calculated from the model (4.3.1) to
model consisting of (4.3.6) and (4.3.2) to (4.3.5) with (4.3.5) and of M™ calculated from (4.3.6) and (4.3.2)

(4.3.7) for ¢ = 7 and » = 0.05. to (4.3.5) with (4.3.7) for ¢ = % and » = 0.05.

Figure 4.3.5: The external stimulus induces a shift of the molecular clock’s phase of about 6 hours.
The time is plotted on the abscissa and the corresponding concentration with respect to the whole cell
volume is plotted on the ordinate.

Phase shifts by a strong stimulus

In the next experiment, we show that we can restart the endogenous clock with a strong knock down
of the per mRNA (M) modeled by

u(t) = (4.3.8)

0 else

{5 if0<t<t,

where t; > 0.

In Figure 4.3.6, we depict the results. We have that as soon as the external stimulus u stops, then
the oscillation starts again with a shift of the endogenous time’s phase.

W L il 1 L ) L 1 L L ! ! )
20 40 60 80 100 120 time 20 40 60 80 100 120 time

(a) Time curves of all molecular agents where the super- (b) Time curve of M calculated from the model (4.3.1) to
script ugo indicates that these time curves belong to the (4.3.5) and of M™“2° calculated from (4.3.6) and (4.3.2)
solution to the extended model consisting of (4.3.6) and to (4.3.5) for (4.3.8) with t5; = 20 and s = 0.05.

(4.3.2) to (4.3.5) for (4.3.8) with ¢t; = 20 and » = 0.05.

Figure 4.3.6: The external stimulus stops the oscillations which restart after the external stimulus has
decayed. The time is plotted on the abscissa and the corresponding concentration with respect to the
whole cell volume is plotted on the ordinate.

In Figure 4.3.7, we see that if the knock down of the mRNA takes longer, then the beginning of
the oscillation is retarded and thus the shift of the endogenous time’s phase is greater. In this way, by
knocking down the per mRNA we can restart the endogenous time whenever we desire.



4.3. EXTERNAL STIMULI AND A CIRCADIAN CLOCK MODEL 35

30}

L Mo
10 /

W W W

1 L ) L 1 L L ! ! _
100 120 tirne 20 40 60 &0 100 120 time

(a) Time curves where the superscript ugs indicates that (b) Time curve of M calculated from the model (4.3.1)

these time curves belong to the solution to the extended to (4.3.5), of M“2% calculated from (4.3.6) and (4.3.2) to

model consisting of (4.3.6) and (4.3.2) to (4.3.5) for (4.3.5) for (4.3.8) with ¢, = 25, s = 0.05 and of M™“2°

(4.3.8) with t; = 25 and s = 0.05. calculated from (4.3.6) and (4.3.2) to (4.3.5) for (4.3.8)
with ¢t = 20 and » = 0.05.

Figure 4.3.7: Depending on the point of time when the external stimulus decays, we obtain a differ-
ent shift of the molecular clock’s phase. The time is plotted on the abscissa and the corresponding
concentration with respect to the whole cell volume is plotted on the ordinate.

Next, we show that analogous results can be obtained with different models. If we model inhibition
of the transcription of the per gene by

d K7 M
—M =v,—— (1 —u) — vypy—— 4.3.9
i =gy Y T (4.3.9)
instead of (4.3.1) while the remaining equations are given as in (4.3.2) to (4.3.5) with
1 ifo<t<t
u(t) = BEsEsh (4.3.10)
0 else
ts = 20, then we can recognize a shift of the phase similar to the one in Figure 4.3.8.
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(a) Time curves where the superscript u indicates that (b) Time curve of M calculated from the model (4.3.1)
these time curves belong to the solution to the extended to (4.3.5) and of M™ calculated from (4.3.9) and (4.3.2)
model consisting of (4.3.9) and (4.3.2) to (4.3.5) for to (4.3.5) for (4.3.10) with ¢, = 20.

(4.3.10) with ¢, = 20.

Figure 4.3.8: Inhibiting the transcription of per gene restarts the molecular clock as soon as the
inhibition stops. The time is plotted on the abscissa and the corresponding concentration with respect
to the whole cell volume is plotted on the ordinate.

The inhibition of the translation of the per mRNA can be modeled by

d
P =k M(1—u) -V,
a0 (I-u) =W

0 Py
+ Vi
K+ P Ky + Py

(4.3.11)

instead of (4.3.2) in the system of equations (4.3.1) to (4.3.5). In Figure 4.3.9, we see the results.
These results where the concentration of PER protein goes to zero and starts oscillating again when
the translation of PER starts again can also be seen experimentally in [61, Figure 3|. In this experiment
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cells are exposed to cycloheximide which inhibits the protein synthesis at the ribosomes. Then the
oscillations of PER protein decay in all cells and when the cycloheximide is washed out the oscillations
start again such that all the cells then have the same phase of their endogenous clock. Furthermore
in Figure 4.3.9, we see that the concentration of mRNA increases as there is no protein inhibiting the

transcription of the per mRNA.
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(a) Time curves where the superscript u indicates that (b) Time curve of M and Py calculated from the model
these time curves belong to the solution to the extended (4.3.1) to (4.3.5) and of M"“ and P§' calculated from
model consisting of (4.3.1) to (4.3.5) where (4.3.2) is (4.3.1) to (4.3.5) where (4.3.2) is replaced by (4.3.11)
replaced by (4.3.11) for (4.3.10) with ¢, = 20. for (4.3.10) with ¢, = 20.

Figure 4.3.9: Inhibiting the translation of per mRNA restarts the molecular clock as soon as the
inhibition stops. The time is plotted on the abscissa and the corresponding concentration with respect
to the whole cell volume is plotted on the ordinate.

For the same model as in the last experiment but with the external stimulus

w(t) = % (cos (27r2t4 + go) + 1) (4.3.12)

with ¢ = 7, we have an analogous result as for the first experiment for (4.3.6) and (4.3.2) to (4.3.5)
with (4.3.7) that is depicted in Figure 4.3.4. We can compare these results by looking at Figure 4.3.10
where the synchronization of the endogenous time with the external time for a shift of 12 hours is
shown for the model consisting of (4.3.1) to (4.3.5) where (4.3.2) is replaced by (4.3.11) for (4.3.12)
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(a) Time curves where the superscript u indicates that (b) Time curve of the external stimulus u defined in

these time curves belong to the solution to the extended (4.3.12), of M and Py calculated from the model (4.3.1)

model consisting of (4.3.1) to (4.3.5) where (4.3.2) is to (4.3.5) and of M* and Py’ calculated from (4.3.1) to

replaced by (4.3.11) for (4.3.12) with ¢ = 7. (4.3.5) where (4.3.2) is replaced by (4.3.11) for (4.3.12)
with ¢ = 7.

Figure 4.3.10: Inhibiting the translation of the per mRNA with an external stimulus with a period
of 24 hours according to (4.3.12) shifts the phase of the molecular clock. The time is plotted on the
abscissa and the corresponding concentration with respect to the whole cell volume is plotted on the

ordinate.
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Fly and mammalian models

Next, we set up two models, one specific for flies and one specific for mammalians. We have a degra-
dation of the PER protein caused by the external stimulus modeled with

—Py =ksM -V, Vz

dt 0 s 1K1—|—P0+ 2K2+P1
where p > 0. We take our minimal model (4.3.1) to (4.3.5) where (4.3.2) is exchanged by (4.3.13)
for flies. We show that, analogously to Figure 4.3.10, the unperturbed rhythm is shifted by about 12

hours if we apply (4.3.12) with ¢ = 7, see Figure 4.3.11.

— puPy (4.3.13)

22 BEXREF

2.0 m s;: slo 100 12'0 tirme ; zln- a0 a0 ; slo 160 12|0 time
(a) Time curves where the superscript u indicates that (b) Time curve of the external stimulus w defined in
these time curves belong to the solution to the extended (4.3.12), of M and Py calculated from the model (4.3.1)
model consisting of (4.3.1) to (4.3.5) where (4.3.2) is to (4.3.5) and of M™* and Py’ calculated from (4.3.1) to
replaced by (4.3.13) for (4.3.12) with ¢ = 7 and p = 1. (4.3.5) where (4.3.2) is replaced by (4.3.13) for (4.3.12)
with ¢ =7 and p = 1.

Figure 4.3.11: A further anti phase degradation of PER protein shifts the phase of the molecular clock.
The time is plotted on the abscissa and the corresponding concentration with respect to the whole cell
volume is plotted on the ordinate.

In mammals we have that light induces per transcription. This can be modeled by the following
equations where we replace (4.3.1) by

d KD

—M=vg——— —Vypy—— —oM 4.3.14
dt USK{L—FP]\L[ Ume—FM —|—’yuexp( 0 ) ( )

while we still use (4.3.2) to (4.3.5) with v, 0 > 0. The term exp (—pM) models the fact that if there
is a lot of per mRNA, then a light stimulus is supposed to be not that effective as it is when there is
almost no per mRNA. In this section we use o = 1.

Range of entrainment

In the next experiment we show the entrainment to different periods. For this purpose we choose the
external stimulus

wr, (£) = 0.06- (cos (zﬂ;;) + 1) (4.3.15)

whose period can be set to any period T;, where T}, > 0. The periods are determined by the peaks of
the simulated oscillating concentrations of the per mRNA detected with the FindArgMax function of
Mathematica in the range t € [170,220] hours to exclude effects from the transient. We start with the
model (4.3.1) to (4.3.5) where (4.3.2) is exchanged by (4.3.13) with p = 2. We call this model the fly
model. We obtain a period of 27.8 hours for T}, = 29, a period of 27.7 hours for T, = 28, a period of
26.9 hours for T}, = 27, a period of 26.0 hours for T, = 26, a period of 25.0 hours for T}, = 25, a period
of 24.0 hours for 7T}, = 24, a period of 23.0 hours for T, = 23, a period of 22.0 hours for 7, = 22, a
period of 21.0 hours for T), = 21, a period of 19.9 hours for T}, = 20, a period of 20.3 hours for T, = 19
and a period of 20.0 hours for 7}, = 18. The values are plotted in Figure 4.3.12a.

Now, we use the model (4.3.14) instead of (4.3.1) and still use (4.3.2) to (4.3.5) with v = 2.5. We
call this model the mammalian model. The parameters have different values to adapt each model
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to obtain a more or less realistic range of entrainment to the external period. We obtain a period of
23.8 hours for T}, = 26, a period of 24.3 hours for T, = 25, a period of 23.6 hours for T}, = 24, a period
of 22.6 hours for T}, = 23, a period of 23.8 hours for T}, = 22 and a period of 22.0 hours for 7}, = 21.
The values are plotted in Figure 4.3.12b.

In both cases we have a limited range of entrainment, whereby the latter is much larger in flies (8
hours, Figure 4.3.12a) than in mammals (2 hours, Figure 4.3.12b). This effect of a limited range of
entrainment is reported, for example, in [4, Figure 2|.
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Figure 4.3.12: On the abscissa the period T}, of the external Zeitgeber is plotted and on the ordi-
nate the entrained period of the endogenous clock is plotted. The orange line is the ideal entrain-
ment where the period of the external Zeitgeber is exactly adopted. (a) Data points for the blue
graph: (18,20.0), (19,20.3), (20,19.9), (21,21.0), (22,22.0), (23,23.0), (24, 24.0), (25, 25.0), (26, 26.0),
(27,26.9), (28,27.7), (29,27.8). (b) Data points for the blue graph: (18,23.7), (19,22.4), (20,23.3),
(21,22.0), (22,23.8), (23,22.6), (24,23.6), (25,24.3), (26,23.8), (27,21.7), (28,23.0), (29,24.3).

In the next experiment, we that the entrained period is constant for the range of entrainment after
a transient show for the mammalian model, while the periods outside the range of entrainment are only
constant for a certain range followed by a range where the period changes, see Figure 4.3.13. These
ranges follow each other and thus oscillate. This effect is known as relative coordination, see [43] for
example. The periods are determined as follows. With the Mathematica function FindArgMax, we
subtract the time of the peak of the mRNA M in the interval [190 + T},,210 + T},] from the time of
the peak of the mRNA M in the interval [167 + T,,, 180 + T,,] where T,, := 24n, n >0. The time is
given in hours. We choose n € {1, ...,15} which means that we determine the entrained period at each
day. In Figure 4.3.14 we plot the corresponding time curves of M where we also see corresponding
effects for the amplitude, that means constant amplitudes for the range of entrainment and oscillating
amplitudes outside the range of entrainment. From these time curves the data for Figure 4.3.13 is
generated.
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Figure 4.3.13: Period oscillations for different periods of the external Zeitgeber for the mam-
malian model.  The entrained periods are constant after a transient for the range of en-
trainment and oscillate outside the range of entrainment. On the abscissa the day n is
plotted and on the ordinate the entrained period is plotted. @ The data points are as fol-
lows. For T = 21: (0,22.1), (1,22.0), (2,21.9), (3,22.0),(4,22.2), (5,22.5), (6,23.1), (7,23.6),
(8,23.8),(9,23.5),(10,23.0),(11,22.5),(12,22.2),(13,21.9), (14,21.9), (15,22.0). For T = 22
(0,23.8), (1,23.4),(2,23.1), (3,22.8), (4,22.6),(5,22.4), (6,22.3), (7,22.2), (8,22.2), (9,22.1),(10,22.1),
(11,22.1),(12,22.1), (13,22.0), (14,22.0), (15,22.0). For T'= 23: (0,22.6),(1,22.7), (2,22.8), (3,22.9),
(4,22.9), (5,22.9), (6,23.0), (7,23.0), (8,23.0), (9,23.0), (10,23.0), (11,23.0), (12,23.0), (13,23.0),
(14,23.0), (15,23.0). For T' = 24: (0,23.6), (1,23.7), (2,23.8), (3,23.8), (4,23.9), (5,23.9), (6,23.9),
(7,23.9),(8,23.9), (9,23.9), (10,24.0), (11,24.0), (12,24.0), (13,24.0), (14,24.0),(15,24.0). For T' = 25:
(0,24.3),(1,24.3), (2,24.3), (3,24.3), (4,24.2), (5,24.0), (6,23.8), (7,23.4), (8,22.7), (9,22.0),(10, 21.5),
(11,21.9), (12,22.9), (13,23.6), (14,24.0), (15,24.2). For T = 26: (0,23.8), (1,23.0), (2,22.1), (3,21.6),
(4,22.2), (5,23.4), (6,24.1), (7,24.3), (8,24.3), (9,24.1), (10,23.5), (11,22.7), (12,21.8), (13,21.7),
(14 22.8), (15,23.8).
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Figure 4.3.14: Time curves of M for the mammalian model for different periods of the external Zeitge-
ber. We see a constant behavior of the amplitude for the external periods that are within the range of
entrainment and an oscillation of the amplitude for the periods of the external Zeitgeber that do not
belong to the range of entrainment. The time is plotted in hours on the abscissa and the corresponding
concentration with respect to the whole cell volume is plotted on the ordinate.

Constant light

We choose a constant external stimulus modeled by
ue (t) =c (4.3.16)

that causes a degradation of Py or a further transcription of M. We determine the periods by detecting
the peaks of the simulated oscillating concentrations of the per mRNA with the FindArgMax function
of Mathematica in the range t € [80,120] hours.

We start with the fly model with u = 1 and, by increasing the intensity of the external stimulus,
we first obtain a shortening of the period and from a turning point an elongation of the period until
we have no oscillation any more which we call arrhythmic behavior. See Figure 4.3.15 for a strong
intensity where the oscillations fade until there is no rhythm any more and see Figure 4.3.16 for a weak
intensity of the external stimulus where the amplitude of the oscillations is damped compared with
the unperturbed oscillations. In detail, we have (in hours) a period of 23.7 for ¢ = 0, a period of 23.5
for ¢ = 0.1, a period of 23.4 for ¢ = 0.2, a period of 23.7 for ¢ = 0.3, a period of 24.5 for ¢ = 0.4, a
period of 25.4 for ¢ = 0.5, a period of 26.4 for ¢ = 0.6, a period of 27.4 for ¢ = 0.7, a period of 28.5
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for ¢ = 0.8, a period of 29.6 for ¢ = 0.9 and from ¢ = 1 the oscillations are that weak that we call this
state arrhythmic.
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(a) Time curves where the superscript v indicates that (b) Time curve of M calculated from the model (4.3.1)
these time curves belong to the solution to the extended to (4.3.5) and of M™ calculated from (4.3.1) to (4.3.5)
model consisting of (4.3.1) to (4.3.5) where (4.3.2) is where (4.3.2) is replaced by (4.3.13) for (4.3.16) with
replaced by (4.3.13) for (4.3.16) with p=1andc=1. p=1and c=1.

Figure 4.3.15: A strong permanent external stimulus causes arrhythmic behavior as the oscillations
are dampened off. The time is plotted in hours on the abscissa and the corresponding concentration
with respect to the whole cell volume is plotted on the ordinate.
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(a) Time curves where the superscript « indicates that (b) Time curve of M calculated from the model (4.3.1)
these time curves belong to the solution to the extended to (4.3.5) and of M™ calculated from (4.3.1) to (4.3.5)
model consisting of (4.3.1) to (4.3.5) where (4.3.2) is where (4.3.2) is replaced by (4.3.13) for (4.3.16) with
replaced by (4.3.13) for (4.3.16) with y =1and ¢ =0.5. p =1 and ¢ = 0.5.

Figure 4.3.16: A weak permanent external stimulus causes dampening of the amplitude of the oscilla-
tions, however they are still visible. The time is plotted in hours on the abscissa and the corresponding
concentration with respect to the whole cell volume is plotted on the ordinate.

Now, we investigate the mammalian model for v = 2. This causes that the model also shows
arrhythmic behavior for c = 1. We remark that p and v are chosen such that the arrhythmic behavior
always occurs for ¢ = 1. As these constants are multiplied with the external stimulus u, we could also
take the values for p and v from the experiment about the range of entrainment which would cause
that the arrhythmic behavior for the fly model and the mammalian model would appear for different
c.

We have that the period for the mammalian model becomes shorter until ¢ = 0.4 and then the
period becomes longer until the stimulus is so strong that no oscillation is detectable any more. The
figures in this experiment look similar to the ones from the last experiment. In detail, we have (in
hours) a period of 23.7 for ¢ = 0, a period of 22.8 for ¢ = 0.1, a period of 22.2 for ¢ = 0.2, a period of
21.7 for ¢ = 0.3, a period of 21.5 for ¢ = 0.4, a period of 21.5 for ¢ = 0.5, a period of 21.8 for ¢ = 0.6,
a period of 22.3 for ¢ = 0.7, a period of 22.9 for ¢ = 0.8 and a period of 23.7 for ¢ = 0.9. From ¢ =1
the oscillations are that week that we call this state arrhythmic.

From our experiments, we conclude that for a small range a weak illuminance causes a shortening of
the period in the fly model while there is a huge range where a permanent external stimulus lengthens
the period. In the mammalian model, there is also a turning point in the illuminance where the period
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is lengthened by a permanent external stimulus and this point comes later than in the fly model, see
Figure 4.3.17. Furthermore, we conclude that the question if the period is shortened or lengthened by
a permanent external stimulus can depend on the model (fly or mammalian) and the corresponding
parameters. These differences cause different positions of the turning points when the model changes
its behavior from shortening the period to lengthening it or influence the slope from one data point to
the next one, see Figure 4.3.17. Moreover we have to consider that if the turning point is not in the
range in what we perform our measurements, then we just find a monotone behavior of the period. We
remark that measurements are mostly just in a short range of natural illuminance which is maximum
about 100000 lux. Therefore if the measurement is orders of magnitudes below this natural daylight
illuminance then it may happen that one discovers just the shortening of the period. If the illuminance
is too strong and the model has just a short range at the beginning where the period is shortened
(fly model), then one also just experiences the lengthening of the period. In [3, Figure 2|, we see the
dependence of the period under constant light for different species. We stress that most curves there are
polygon-like which is in accordance to our experiments considering just the data points. Furthermore
almost all curves (except one as far as we can recognize) either first fall and then rise (nocturnal birds)
or only rise which is also in accordance to our numerical experiment assuming that in these cases the
range where the period is shortened is small or the measurement takes place above the mentioned
turning point.

Furthermore, considering [30, Table I1I] and our model, we have that different organisms or mutants
have different ranges of intensity where a constant stimulus causes shortening or lengthening of the
period of the endogenous clock. Thus if a period increases or decreases if the organism or mutant is
exposed first to constant light and then constant darkness or the other way round, depends on if the
intensity of the constant light is in the range where the corresponding graph is below the endogenous
period or above. Then when the molecular clock takes its free running period, it shortens or lengthens
depending on its period in constant light. We stress that especially with mutants the corresponding
turning point might be at a intensity being so high that an external stimulus cannot be applied without
causing damage to the considered organism in order to see both behaviors of the period, that means
shortening and lengthening.

We remark that if we would like to do this experiment for different orders of magnitude for the
illuminance, we can replace u by In (1 4+ u), for instance, fitting the corresponding parameter p or .

—— o
22+
.
L I L L
0.6 0.8

L
0.2 0.4 1.0

Figure 4.3.17: Oun the abscissa we have the illuminance ¢ and on the ordinate we have the period
length. The data points are from the fly and the mammalian model under constant stimulus, see text
above. The brown and blue line is from the fly model and the green and red one is from the mammalian
model.

Phase response curves

Now we show that in our model it is essential when a short pulse of light is given with respect to the
phase of the oscillation of the endogenous clock in order to cause a shift of the phase of the endogenous
clock. We start with the fly model. If we give the light pulse when the concentration of PER protein
is high, then we restart the circadian clock, see Figure 4.3.18 and shift it by about eight hours. If we
give the light pulse when the concentration of PER protein is low, then the clock is hardly effected,
see Figure 4.3.19. We remark that we obtain similar figures for the mammalian model. We have a
shift of the clock if the concentration of per mRNA is low and almost no effect if the concentration of
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per mRNA is high. The one hour light pulse with which we perturb the endogenous clock is given as

follows
if t € [to,to + 1
g (1) = ¢ LT € Hofo L (4.3.17)
0 else

where ¢ > 0 and ty > 0.
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(a) Time curves where the superscript v indicates that (b) Time curve of M calculated from the model (4.3.1)
these time curves belong to the solution to the extended to (4.3.5) and of M™ calculated from (4.3.1) to (4.3.5)
model consisting of (4.3.1) to (4.3.5) where (4.3.2) is where (4.3.2) is replaced by (4.3.13) with g = 1 for
replaced by (4.3.13) with p = 1 for (4.3.17) with to = 14 (4.3.17) with ¢, = 14 and ¢ = 20.

and ¢ = 20.

Figure 4.3.18: A one hour light pulse causing a degradation of PER protein at a high concentration of
PER protein induces a phase shift of the PER oscillation. The time is plotted in hours on the abscissa
and the corresponding concentration with respect to the whole cell volume is plotted on the ordinate.
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(a) Time curves where the superscript « indicates that (b) Time curve of M calculated from the model (4.3.1)
these time curves belong to the solution to the extended to (4.3.5) and of M™ calculated from (4.3.1) to (4.3.5)
model consisting of (4.3.1) to (4.3.5) where (4.3.2) is where (4.3.2) is replaced by (4.3.13) with pu = 1 for
replaced by (4.3.13) with g =1 for (4.3.17) with o = 2 (4.3.17) with {o = 2 and ¢ = 20.

and ¢ = 20.

Figure 4.3.19: A one hour light pulse does not shift the phase of the molecular clock if the pulse is
given when the concentration of PER protein is low. The time is plotted in hours on the abscissa and
the corresponding concentration with respect to the whole cell volume is plotted on the ordinate.

In Figure 4.3.20, we see the phase response curves for both models where we choose (4.3.17) with
¢ =1 and correspondingly u = 2 and v = 2.5. The difference of the phase is given in hours where we
subtract the time of the peak of the concentration of per mRNA from the perturbed model between
t =85 and t = 95 from the time of the peak of the concentration of per mRNA from the unperturbed
model (4.3.1) to (4.3.5) between ¢t = 80 and ¢t = 90. The maximum of concentration is detected by the
Mathematica function FindArgMax. Phase response curves are known from experiments and given for
example in [46, 42, 45]. Furthermore, the peak of the concentration of per mRNA is about 5 hours
ahead of the maximum concentration of Py, see Figure 4.3.2 for instance. Therefore, in the case of the
mammalian model we shift {5 by 5 hours such that we are in the same phase with the fly model in
order to compare both phase response curves more easily in one figure. We remark that our theoretical
phase response curves have the same qualitative course as experimental curves and even the order of
magnitude of the shift fits well to experimental data.
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Figure 4.3.20: On the abscissa we have the time ¢y when the external stimulus (4.3.17) for ¢ = 1 is
given. The model parameters are given as follows p = 2 and v = 2.5. The duration of the external
stimulus is one hour. On the ordinate we have the time difference of the maximum peak of M and
M", that means arg max;c(gp,99) M — arg max;c[go,90) M* where M is calculated from the unperturbed
model (4.3.1) to (4.3.5) and M* once from the fly model, brown curve, and once from the mammalian
model, green curve.

Central and peripheral oscillators

In the next experiment, we show that several oscillators can be coupled by our external stimuli frame-
work as follows to further illustrate its range of applicability. A first oscillator reacts to external stimuli
in the way as discussed above in this section. A second oscillator receives a signal from the first oscilla-
tor that correlates to an agent involved in the first oscillator and thus this signal acts as the “external
stimulus” for the second oscillator.

A Dbiological application, which concerns the endogenous clock, of coupled oscillators is the sig-
naling from the suprachiasmatic nucleus (SCN) to the peripheral tissue to synchronize the peripheral
clocks [24]. The SCN is a part of the brain of mammals that controls the circadian clock and can
be considered as a master clock that entrains the body clocks in peripheral tissue. Our model in this
example is as follows. The SCN is the first oscillator and its external stimulus is light, the external
stimulus for the peripheral clock, which is the second oscillator, can be hormones, neuronal activity
or body temperature. If one of these signals correlates with the occurrence of per mRNA or of the
(phosphorylated) PER protein, we can couple these two oscillators for example as follows.

We take the basic equations (4.3.1) to (4.3.5), where the first oscillator is sensitive to an external
stimulus, that means (4.3.2) is replaced by (4.3.13). The second oscillator with its corresponding agents
M, Py, P1, P, and Py is also modeled by analogous equations as (4.3.1) to (4.3.5) and is coupled to
the first by replacing also (4.3.2) by

P ~
! 5 ~ PRy (4.3.18)

with i > 0. That means there is a degradation of Py if the concentration of Py and Py is high at
the same time. The concentration of Py is transmitted by for example some signaling pathway to the
second oscillator. More specific, the degradation of ]50 correlates to a high concentration of Py and ]50
at the same time. In Figure 4.3.21, we see that the second oscillator is synchronized to a phase shift
of m compared to the first one after the transient.



4.3. EXTERNAL STIMULI AND A CIRCADIAN CLOCK MODEL 45

~
— M
- — M
Pa
u
B p
— W
— P,
2 —M
— By
L 1 = o 7 ! _ : b i, T, et o :
20 0 &0 0 100 20 time ) a0 &0 0 100 20 time

(a) Time curves of the second oscillator where the (b) Time curve of the external stimulus u defined in

agents M Po, Pl, P, and Py fulfill analog equations (4.3.12), of M calculated from the model (4.3.1) to

corresponding to (4.3.1) to (4.3.5) where (4.3.2) is re- (4.3.5), of M calculated by an analogous model like

placed by (4.3.18) and i = 0.5. (4.3.1) to (4.3.5) where (4.3.2) is replaced by (4.3.18)
with # = 0.5 and of M™ calculated from (4.3.1) to
(4.3.5) where (4.3.2) is replaced by (4.3.13) with u =1
for (4.3.12).

Figure 4.3.21: A peripheral oscillator coupled with a phase shift of 7 to the molecular clock. The time
is plotted in hours on the abscissa and the corresponding concentration with respect to the whole cell
volume is plotted on the ordinate.

A synchronization which no phase shift can be achieved by the following model

d -~ Py P o~
—P —kM V; — + V5 — — uPoexp (—BF 4.3.19
il 1K1+P0 2K2+P1 fiPg exp (—BFy) ( )

where § > 0. Here, in this model, a higher concentration of Py causes a lesser degradation of Py, where
the concentration of Py is transmitted by some signaling pathway to the second oscillator for example.
More specific, a lesser degradation of By correlates to a higher concentration of FPy. In Figure 4.3.22,
we see the synchronization of both oscillators with a shift of 0 after the transient.
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(a) Time curves of the second oscillator where the (b) Time curve of the external stimulus u defined in

agents M Po, Pl, P5 and Py fulfill analog equations (4.3.12), of M calculated from the model (4.3.1) to

corresponding to (4.3.1) to (4.3.5) where (4.3.2) is re- (4.3.5), of M calculated by an analogous model like

placed by (4.3.19) with g = 0.5, 8 = 2. (4.3.1) to (4.3.5) where (4.3.2) is replaced by (4.3.19)
with i = 0.5, 8 = 2 and of M" calculated from (4.3.1)
o (4.3.5) where (4.3.2) is replaced by (4.3.13) with
w=1 for (4.3.12).

Figure 4.3.22: A peripheral oscillator coupled in phase to the molecular clock. The time is plotted in
hours on the abscissa and the corresponding concentration with respect to the whole cell volume is
plotted on the ordinate.

If we take the model of two coupled oscillators mentioned above and replace (4.3.18) by

1PP—/<:M Vi i + Va Py —uPPPP. (4.3.20)
e ° 'Ky + BY Kyt PP ot -

where the additional decay of 1557 depends on the product of ]557 and P, instead of Py and Py as in
(4.3.18), then we can see in Figure 4.3.23 that the shift of P, compared to Py provides a system of
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two coupled oscillators where the shift of phase can have more values than just inphase courses, i.e.
a phase shift of 0, see Figure 4.3.22 or anti phase courses, i.e. a phase shift of m, see Figure 4.3.21.
By this mechanism of coupling different oscillators, nature might create peripheral endogenous clocks
which have peaks of the concentrations of certain quantities with any fixed shift of phase to the SCN
that appears advantageous.
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Figure 4.3.23: Time curve of the external stimulus v defined in (4.3.12) where M and M are calculated
as in Figure 4.3.21. The quantity M? is calculated by an analogous model as M where (4.3.18) is
replaced by (4.3.20) with u” = 0.5. After the transient, we have a shift of about 12.7 hours between
M and M and of about 15.8 hours between M* and MP. The time is plotted in hours on the abscissa
and the corresponding concentration with respect to the whole cell volume is plotted on the ordinate.

Food entrained peripheral clocks

Now, we illustrate the discussion above with the following example. The SCN synchronizes the phase
of liver cells to its phase where food intake for example can cause a further shift of the phase of the
liver cells’ clocks for instance. For the experimental evidence see, [16] or [24]. We choose the model
that is used for the experiment depicted in Figure 4.3.22. Furthermore, we equip (4.3.19) with an
additional term that models the stimulus that is caused by the food intake as follows

d - ~ Py Py _ =
—Py=ksM —Vi———— + Vo——— — iPgexp (—Py) — vuF, 4.3.21
i ki TG p (—BF) 0 ( )
with v > 0 where the external stimulus is given by
: 2nk +@)+1) ift<t
a(t) = 4108 Cmay ) +1) i< (4.3.22)
u (t) else

with u (t) defined (4.3.12) and # > 0. Equation (4.3.21) induces a degradation of Py by the term
—viiPy. More specific, the model considers the case that food intake correlates with a degradation of
Py. We choose the external stimulus u such that it is inphase with the SCN, that means o =101n
(4.3.12) which models day light. Now we choose ¢ = 7 as food intake is supposed to happen at night
instead of the day which corresponds to ¢ = 0. That means that until £ food intake happens at night
and after £ food intake is at day time.

In Figure 4.3.24 we only depict the time curves for per mRNA to keep the figure clear for ¢ = 160.
We see that the phase of the peripheral clock (M ) is shifted by about 6 hours after the transient
compared to the phase of the central clock (M"). When the food intake takes place again at day time
as in Figure 4.3.24 after t = 160, i.e. there is no shift between w and 4, then the peripheral clock is
synchronized with the SCN again after a transient of about 1 day.

The behavior of the peripheral oscillator can be interpreted as follows. All the external stimuli or
signal inputs, respectively, are integrated by the peripheral clock and based on that input information
and the weight of the corresponding input information the cell makes a decision when the best time is
to be active to do its intended task in the organism. Reacting on different external stimuli at the same
time according to a mechanism mentioned above in (4.3.21) can also be seen as making a compromise to
meet all the circumstances at the same time that correspond to the simultaneously emerging external
stimuli.
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Figure 4.3.24: Time curve of the external stimulus u defined in (4.3.12) and @ defined in (4.3.22) with
t =160 and ¢ = 7, of M calculated from the model (4.3.1) to (4.3.5), of M calculated by an analogous
model like (4.3.1) to (4.3.5) where (4.3.2) is replaced by (4.3.21) with g = 0.3, 8 =2, v = 0.4 and of
M" calculated from (4.3.1) to (4.3.5) where (4.3.2) is replaced by (4.3.13) with u = 1 for (4.3.12) with
(o = 0. The time is plotted in hours on the abscissa and the corresponding concentration with respect
to the whole cell volume is plotted on the ordinate.

Notice that the closer ¢ is to ¢ the smaller the shift of the phases of the two oscillators is and the
stronger the stimulus @ is the closer the shift of the phases of the two oscillators comes to the phase
shift between u and .

Point of singularity

Our framework also provides an explanation for the effects called point of singularity by a principle
mechanism. The point of singularity describes the phenomena that one pulse of light can stop the
rhythmical behavior of a plant and another pulse of light can restart it again, see [18] for further
reading. The following two basic mathematical concepts can be used for explaining this.

The first possibility is to use a macroscopic model that describes a population of microscopic
oscillators as a single macroscopic oscillator. To describe the point of singularity the corresponding
equations have to contain a point of rest, sometimes called steady state. The discussion in this case
is the same as for the system of equations in Chapter 4 for the special choice of equations that are
used to model regulatory networks. Further see Section 8.1 in the appendix for a discussion about the
characterization of steady states. If the external stimulus brings the system sufficiently close to such a
steady state, then the system converges to that point of rest when time evolves. This means that at this
special point the values of the agents’ concentration are such that their alteration with respect to time
is (almost) zero and thus there are no oscillations anymore. If a second pulse of an external stimulus
brings the system sufficiently away from that steady state, the oscillations start again. However, in
our model based on (4.3.1) to (4.3.5) we have not observed such a behavior.

A second possibility to describe the effect of singularity is to consider several microscopic oscillators
whose output then is added up to a macroscopic oscillation. The key is that these microscopic oscillators
are coupled inhomogeneously to the external stimulus that means that each coupling constant defers
a little bit. This can be for instance because the cells are exposed differently to light because they are
covered differently by tissue.

For our experiment we take five oscillators according to (4.3.1) to (4.3.5) where (4.3.2) is replaced
by (4.3.13) with p; = 0.1, uo = 0.7, u3 = 1.1, pug = 1.5 and ps = 2 for the corresponding oscillator.
All oscillators start with the same initial values and thus have the same phase at the beginning. We
give four pulses of light. The first one (in hours) at ¢; = 40 with the intensity of 2 units, second
one at to = 149 with the intensity of 5 units, third one at t3 = 210 with intensity of 2 units and
the fourth one at t4 = 290 with intensity of 5 units. Since the coupling to the external stimulus is
different for each oscillator, the phase shift caused by the light is also different and thus the oscillators
are phase shifted to each other. Then the total macroscopic oscillation is weaker as the microscopic
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oscillators have different phases and thus the addition of all outputs provides a smaller amplitude of
the macroscopic oscillator. The reason for this that some microscopic oscillators are at the lowest point
of their oscillation and others are at their highest point. A second pulse brings all the microscopic
oscillators to approximately to the same phase again such that the macroscopic oscillation increases
or even has the initial amplitude, respectively. This works because the microscopic oscillators are all
influenced differently according to their current phase at the time when the second pulse of the external
stimulus is given such that all the microscopic oscillators are (almost) in the same phase again. In
Figure 4.3.25 we see that the macroscopic oscillation decreases after the first pulse, maybe below a
threshold such that it has no effect on the corresponding organism, and increases after the second
pulse. Analogously for the third and forth pulse.
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Figure 4.3.25: Five oscillators, each oscillators is described by equations analogous to (4.3.1) to (4.3.5)
where (4.3.2) is replaced by (4.3.13) and are coupled differently to light. The PER concentration
P}, i € {1,...,5} of each microscopic oscillator is on the ordinate as well as the oscillation of the
macroscopic oscillator where all the amplitudes of all microscopic oscillators are added up. The time
is on the abscissa.

We remark that the pulse 1 and 3 have no effect if the concentration of Py is low according to
the discussion about the phase response curves above. Furthermore if the intensity of the pulse is
too weak, then the shift of the single phases is that weak that the the macroscopic oscillations does
not increase noticeably. However if the external stimulus is not too weak, then the increasing of the
corresponding duration of application can provide the same effect as an external stimulus with a high
intensity shortly applied, see Figure 4.3.26 where pulse 1 and 3 have the intensity of 1 unit and applied
for 1 hour and in Figure 4.3.27 applied for 2 hours. The other two pulses are as in the first experiment.
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Figure 4.3.26: Five oscillators, each oscillators is described by equations analogous to (4.3.1) to (4.3.5)
where (4.3.2) is replaced by (4.3.13) and are coupled differently to light. The PER concentration
Pt i € {1,...,5} of each microscopic oscillator is on the ordinate as well as the oscillation of the
macroscopic oscillator where all the amplitudes of all microscopic oscillators are added up. The time
is on the abscissa. The weak external stimulus is applied for one hour.
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Figure 4.3.27: Five oscillators, each oscillators is described by equations analogous to (4.3.1) to (4.3.5)
where (4.3.2) is replaced by (4.3.13) and are coupled differently to light. The PER concentration
Pg, i € {1,...,5} of each microscopic oscillator is on the ordinate as well as the oscillation of the
macroscopic oscillator where all the amplitudes of all microscopic oscillators are added up. The time
is on the abscissa. The weak external stimulus is applied for two hours.
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Chapter 5

Pharmacological intervention as an
optimization problem

In the previous sections, we have seen how external stimuli can effectively be included into equations
that model biological systems and further how to implement the external stimuli in real biological
frameworks. Usually the application of external stimuli to a biological system is connected with a
certain purpose. A common task is to find external stimuli that trigger a desired behavior of the
biological system. Besides experiments, calculations and simulations are a useful tool to solve this
task. For this purpose a biological system is modeled with mathematical equations that are related to
the study question. Once the system is modeled and equipped with our framework of external stimuli,
we can interpret the task of finding appropriate external stimuli as a mathematical optimal control
problem. This represents a systematical way of finding external stimuli that steer the network to the
desired state by the virtue of optimization methods that are available to solve mathematical optimal
control problems. By this method, the information that is contained in the mathematical equations
that have been set up from measurement data can be efficiently exploited. In this section, we show how
to set up a mathematical optimal control problem to find external stimuli that steer the network to a
desired state and how to solve it numerically to determine the external stimuli sought. This general
framework can then be used to figure out optimal drug targets or drug combinations that serve as a
treatment where beneficial effects are maximized while side effects are reduced. This method is not
restricted to the models proposed in Section 4 but for any well defined system of ordinary differential
equations.

5.1 The switch between two different steady states

In this section we present a method how to systematically calculate external stimuli that cause a switch
from an initial steady state of the regulatory network to another. That means although the external
stimuli are switched off, the expression pattern remains in the new steady state. For the following
discussion we assume that the regulatory network is modeled with equations that are analog to the
ones discussed in Section 4.1 and Section 4.2. This section is based on [10, Section 3.

5.1.1 The mathematical formulation

In this section we present how to formulate a mathematical optimal control problem from our task to
calculate stimuli that steer the regulatory network into a new steady state. For this purpose a given
set of nodes is modulated such that a desired network state is achieved. Specifically, we present a way
how to calculate external stimuli which are able to switch the regulatory network from one steady state

to another.
i
Let g == : € R", n € N denote the steady state in which our regulatory network starts and
0
x’]’l

ol
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let x4 == : € R™ denote the steady state in which we desire our regulatory network to be. We

d

xn
consider x4 as a constant function over time. To track the desired steady state x4y with the activity
level xj within a time horizon T' > 0 we use a function that is the smaller the better the activity level

fits to the desired steady state. For this purpose we introduce the following sum of integrals

;;/OT (i (1) — ). (5.1.1)

The smaller the sum of integrals of the term (5.1.1) is, the faster each activity level zj reaches its
desired steady state :rz by the action of our external stimuli. Similar, we introduce a term that is the
smaller the less external stimuli are used as follows

m. T
> /0 uj () dt. (5.1.2)
j=1

The smaller the sum of integrals of term (5.1.2) is, the less external stimuli are needed for switching
the steady states, both the number of different external stimuli and the time they are applied to the
network. By construction, without any external stimuli, the regulatory network rests in the steady
state zo. If we multiply (5.1.2) by a > 0 and add it to (5.1.1), we obtain

T (2,0) = ;;/OT (s (t)—;cg)th—i—ag/oTuj () dt (5.1.3)

Z1 Ul
where x = : and u = : . The constant « weights which term of (5.1.3) is more

Tn Um
important to be little. If « is big, then it is more important to use few external stimuli than to
steer the regulatory network to x4. Consequently, increasing « can result into the desired behavior
of reducing the number of external stimuli while always bringing the network into the desired steady
state. However it can happen when « is too big, that the external stimuli are calculated as constant
zero functions for all times and the regulatory network remains in its initial steady state because its
too costly to have non-zero external stimuli which have the desired perturbation on the network. On
the other hand, little o makes it more important that the regulatory network is steered from zg to x4
while the number of non-zero external stimuli might be too many for experimental realization.

Minimizing (5.1.3) means to bring the regulatory network from the initial point of rest 2y as close

to the desired state x4 as possible, in the best case to the desired steady state x4, while using as few
external stimuli as possible subject to the constraint %xk = fi (z,u), 7 (0) = 2 for all k € {1,...,n}
and for ¢ € (0,7T) where fy (x,u) is the right hand-side of one of the models proposed in Section 4,
that is (4.2.1), (4.2.2), (4.2.3) and (4.2.4), for example

—e%h + e_h(wk_%)

m m
fr (z,u) = — YeTr + opiu; (1 —xp) — N iUWj Lk
(1 —e%h> <1+e—h(wk—l)> Z gty ; 3§ Uj

2 j=1

We remark that our considerations in this section hold also in the case where fi, (z, ) is the right hand
side of any well defined system of ordinary differential equations.

Roughly spoken, the larger T is and the smaller « is, the more it is important, that we obtain
external stimuli which steer the regulatory network from the initial steady state to the desired one,
according to (5.1.3). Finally, the mathematical formulation of the problem above is as follows.

Minimize (5.1.3) such that

d

%wk = fx (z,u), x (0) = xg (5.1.4)
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is fulfilled for all k& € {1,...,n} which reads in mathematical terms as follows

min J (z,u)
’ d (5.1.5)
such that k= fr (@, u) 21 (0) = 29 for all k € {1,...,n}

and is called optimal control problem.

5.1.2 A first-discretize-then-optimize approach with a gradient method

The formulation in Subsection 5.1.1 is for continuous functions. In order to find a solution to (5.1.5),
one possibility is that we can first discretize the time interval [0,7] and then find a solution to the
discretized optimal control problem (5.1.5). The discretization works as follows. We have t = [At where
At > 0 is the time step, [ € {0,..., N} and T'= NAt. We discretize the ordinary differential equation
%xk = fr (z,u) with the following explicit Euler scheme for each node k, see [13| for details about

discretizing and solving ordinary differential equations numerically. This means that %xk = fr (x,u)is

7 uy

= fi (2!, u") for each k where 2! = Co|, U= : and z} denotes

l ugn

l+1 1
_xk _

approximated by

the approximation to xy (Idt) for all k € {1,...,n} and ué denotes the approximation to or u; (ldt)

for all j € {1,...,m}. Considering %xk = fr (z,u) with the initial value z¢ in its discretized form

+1_ 1
% = fi (ZL’ ul) we obtain the following system of equations

zh =2 + Atfy (aco, uo)
x3 =z} + Atfy (xl,ul)

(5.1.6)
ap = xp 4+ Atfy (z N= 1,uN*1)

for every k € {1,...,n}. In the discretized framework, xj is not a function any more but a vector

1
Zy, 1
Tp = : € RY for all k € {1,..,n} and z = : € R™. Analogously, the vector
$;€V Tn
uj = : € RN and u == : € R™V. If we define
uév_l U,
Tk % fx (mo, uo)
Fi (x,u) == — : + : + At : eRY,
o V-1 i (@1 uN )

then (5.1.6) can be written as Fj (x,u) = 0 for all k£ € {1,...,n}. Discretizing the integrals in (5.1.3)
with the Riemann sum [2], we obtain the following discretized optimization problem

1 B d) m N—1
rgsuunJa:u 2;lz;<wk xy At—i—a;;qut -
such that F (z,u) =0, 2° = x¢ h
u € Uyyq
Fy (z,u)
where F' (z,u) = : € R™ and
F, (z,u)

Upg = {u eR™0< ué <1forall j€{l,..,m} andl€{0,....,N — 1}}
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which means that all components of v are constraint according to the definition of the external stimuli
uj in Section 4.2.

One method to determine the external stimuli v which solve (5.1.7), a so called optimal solution
o (5.1.7), is the Lagrange approach, see text books about mathematical optimization or Lagrange
optimization like [27, 5] for details. For this purpose, we have to formulate the Lagrange function
which reads as follows

1 n N 9 m N-—1 n
L (z,u,p) =3 Z < —:1:%) At—i—az ué-At—i—Zp;‘ng (x,u) At (5.1.8)
k=1 1=1 j=1 1=0 k=1
b1 p}g
where p = : € R™W, p = : € RN, k € {1,...,n} is a vector of so called Lagrange
N
Pn Dy

multipliers and pl Fj is the Euclidean scalar product of the vectors py and Fy for all k € {1,...,n}.
The Euclidean scalar product for two vectors v,w € R™ is defined by vTw = Yoy viw;.

Before we proceed, we introduce some symbols We use the following scalar product for the following
calculations. We have (v,w) = Y, Zl Lvbwl At for any v,w € R™. Analogously for vectors
v,w € R™Y . The gradient of the Lagrange function L with respect to p is denoted by

d
?L (357 %P)
1 BT@L(IE,%I?)

VoL = —

RTLN
At € R

oy L (2, u,p)

see [2] for details about the connection between gradient and derivative. Analogously, the gradient of
the Lagrange function L with respect to x is denoted by

)
@L (z,u,p)
1 aTC%L(%U,P)

VoL =—

RnN
At <

aow L (2, u,p)
and the gradient of the Lagrange function L with respect to u is denoted by

L (@, u.p)
d
1 aiuiL(xalhp)

At <

VL =

#L (l’a%p)

Applying these formulas to the Lagrange function (5.1.8), we calculate the gradients for the Lagrange
formalism that can be found in [5] for instance. We have

VoL (z,u,p) = F (x,u).

Next, we have

Ve, L (x,u,p)
VL (x,u,p) = ;
Ve, L (x,u,p)
where
xk_xk P+ PE+ 1pzax1f1( u') At
Th — Tf = Pp PR+ i D aﬁfl( Ju?) At
Vi, L (2, u,p) = : eRY  (5.1.9)
A S TN S U D 1Pf%fi (V= uNT) At

N
L — xk’ Pk
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for all k € {1,...,n}. Notice that %fi =..= %fi holds for the derivatives in (5.1.9) if considered
k ),

as functions from R™ x R™ to R. Finally, we have

Vi L (2, u, p)
VL (.%‘, uap) =

VUm,ll ('r?u?p)

where
a+dr, p,}%fi (20, u®) At
J
Vu, L (z,u,p) = : c RN (5.1.10)
a+ 30 oY g fi (N W) At

J

forall j € {1,...,m}. Notice that %fi =..= %fi holds for the derivatives in (5.1.10) if considered
3 U

as functions from R” x R™ to R.

Following the Lagrange approach as in [5] for instance to determine a solution u of (5.1.7) and thus
the desired external stimuli, we have to solve the following system of equations, see also [27, 1.5] for
example,

VL (z,u,p) =0 (5.1.11)
VoL (z,u,p) =0 (5.1.12)
VoL (2, u,p)" (@ —u) >0 for all & € Uyg. (5.1.13)

There are different strategies available to solve the proposed optimization problem by the virtue
of necessary equations like (5.1.11) to (5.1.13). In this subsection, we present the projected gradient
method to solve (5.1.11) to (5.1.13) numerically. We explain the procedure in the following.

For a given u and as the initial value x is given, Equation (5.1.11) can be solved as follows.
We can calculate z, for all k € {1,...,n} from the first row of the corresponding Fy (x,u). Then,
we can calculate z7 for all k € {1,...,n} from the second row of the corresponding Fj (x,u). This
procedure can be repeated, going forwards through all the rows of the corresponding Fy, (z,u) until
zl¥ for all k € {1,...,n} is calculated from the last row of the corresponding Fj (z,u). Analogously,
for a given u and x, (5.1.12) can be calculated, however, starting from the last row of V, L (z,u,p) to
determine the corresponding pév for each k € {1,...,n} and then going backwards through all the rows
of Vg, L (z,u,p) until the corresponding p; can be calculated from the first row of V, L (z,u,p) for
all k € {1,...,n}. The vector V, L (x,u,p) can be assembled for given u, z and p. Any vector u € U,q
which fulfills (5.1.13) for x and p solving simultaneously (5.1.11) and (5.1.12) is a minimizer of the
Lagrange function L (z,u, p). Equation (5.1.13) is a generalization of V, L (z,u,p) = 0 at a minimum.
The need for the generalization comes from the fact that the vector u is not calculated in R™¥ that
means we can choose any value for u, but in U,y, where there are restrictions on the choice of the
values of u, see |27, Proposition 1.2].

Remark 3. The gradient V,L (z,u,p) is associated with the gradient V.J (u) of the reduced target
functional J (u) := J (x (u),u), see [27, Proof of Theorem 1.17]. Actually, we have that for variations
in u, the function z (u) also varies as z and u are connected via (5.1.6). Furthermore, for a given
u, the function z (u) can be calculated by F (z,u) = 0 as discussed above. The gradient V.J (u) can
be used for any optimization method based on a steepest descent in order to find an optimal control
for (5.1.7), like for a nonlinear conjugated gradient (NCG) method or a Broyden-Fletcher—Goldfarb-
Shanno (BFGS) method, see [6] for instance. With these methods one can extend the algorithmic part
of this work with respect to the calculation of an optimal solution for (5.1.7).

There are various methods to calculate u such that (5.1.13) and simultaneously (5.1.11) and (5.1.12)
are fulfilled, see |5, 6, 27|. We choose a projected gradient method that is formulated in Algorithm
5.1 below since it illustrates the algorithmic method how to minimize the target functional in a very



56 CHAPTER 5. PHARMACOLOGICAL INTERVENTION AS AN OPTIMIZATION PROBLEM

direct way. For this purpose, we define the projection Pr : R"™ — R™ of a vector u as follows

for all j € {1,....,m} and l € {0,...., N — 1}.

Algorithmus 5.1 Projected gradient method
1. Choose 0 € (0,1),% =1, 8 € (0,1), Bo>1,e>0,£=0,% € Uyy

2. Calculate %z from (5.1.11) for “u and %p from (5.1.12) for %2 and %u

3. While (zu—Pr(u—V L(x U, p)))T(gu—Pr(u—V L(ac u, p))) €
For {15 = ¢s. B1, ¢ € Ny, determine the smallest ¢ such that

j(Pr(f Lsv L(x u, p)))

Sj(eu>_gv L(az u, p>T(Zu—P7’(£ —Hlgv L(a: u, p)))
is fulfilled.

Set “tlu = Pr (‘u =1 sV, L (‘2. u,' p))

Calculate “1z from (5.1.11) for ng1u and “1p from (5.1.12) for “'z and lu
Set 1 — BQZ—}—IS

Set f=0+1

End

Algorithm 5.1 iteratively determines a solution to the Equations (5.1.11) to (5.1.13). We give an
explanation of Algorithms 5.1. By ‘z € R™, ‘4 € R™V and ‘p € R™ we denote the vectors that
contain the values for the corresponding vectors x, u and p at the corresponding entry after the ¢-th
iteration of Algorithm 5.1. The parameter € is a measure how close the numerical solution of Algorithm
5.1 is to an analytical solution to the Equations (5.1.11) to (5.1.13). The smaller € is, the closer the
numerical solution is to an analytical one but the calculation time increases. Typically, the parameter
¢ ranges between 1073 to 107, We recommend ¢ = 10~* to obtain useful results for the original
task to determine external stimuli for pharmacological modulation for example. The step size ‘s is
determined such that it is associated with reducing J. The gradient VL (z,u, p) € R™V points out in
the direction of the steepest ascent of L (z,u,p) or J (u), respectively and thus —VuL (x,u,p) points
out in the direction of the steepest descent. The projection of ‘u—**1sV, L ( z,lu, p) on U,q is needed
to ensure that each iterate is in U,q and thus the output of Algorithm 5.1 is in U,q which means that
the external stimuli only take values between 0 and 1.

This formulation of a projected gradient method noted in Algorithm 5.1 has the advantage that
the step size stays in the size of magnitude from the last iteration. According to our experience the
step size stays in the same size of magnitude over several iterations. Therefore, in such a case, our
formulation has the advantage that the step size does not have to be found in each iteration from the
scratch and thus can save calculation time. Additionally, the step size is adaptively found from an
initial guess and varied by slightly enlarging it after each iteration in the case that a greater step size
might be suitable and thus generate a greater descent of the target functional. From our experience,
we recommend o = 0.01, 51 = 0.1 and B2 = 1.1 for a fast convergence of Algorithm 5.1.

5.1.3 A first-optimize-then-discretize approach with the sequential quadratic Hamil-
tonian scheme

In this section we provide another algorithm that is different from the projected gradient method
for the case that for instance the projected gradient method converges slowly for a special setting
consisting of a certain network equipped with external stimuli. For this case an alternative method
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is implemented and provided with this work which might perform better in such a case. The method
provided with this section is based on the Pontryagin maximum principle (PMP) and is a first optimize
then discretize approach.

For this reason we first characterize a solution (z, @) to the optimal control problem (5.1.5) with the
PMP, see for example [26, 2.4] for further reading on the PMP. Basic for the PMP is the Hamiltonian
H:RxR"xR"™ xR" =R, (¢t,z,u,p) — H (t,x,u,p) that is defined as follows

n

1 2 m n
H (t,z,u,p) ::§Z<mk—:pi) +aZuj—|—Zpkfk(x,u)
=1 k=1

k=1
for our problem. The PMP says that it holds

H (L3 (0),8(),p(0) = min H (1,7 (0),w,p(1) (5.1.14)

for almost every ¢t € [0,7] where the functions (Z,u) solve (5.1.5) inserted instead of (z,wu). Further-
more, the adjoint variable p is given componentwise by the following adjoint equation

U/ S S
il <zk - :L‘k,) - ;pzaxkﬁ (z,u) (5.1.15)

with pg (T') = 0 for all k € {1,...,n} where %fi (Z,u) = %fi (7, %) |(2,u)=(z,a) that means the partial
Ty
derivative of the i-th component of f with respect to the k-th component of z = : e R"”
T,
evaluated at (z,u).
If one has any solution (z*,u*) to (5.1.4), = (0) = xp, then minimizing H (¢,z* (), w,p* (t)) over
w € [0,1]™ is related to minimizing the target functional (5.1.3) as [26, 2.4.2] indicates where p* is a
solution to (5.1.15) for z* and u* instead of Z and u, respectively. This connection is made use of in
the sequential quadratic Hamiltonian method, see [8] for instance. For this method, the augmented
Hamiltonian is crucial which is given by K¢ : RxR"xR™xR™xR" — R, (t,x,u,v,p) — K. (t,z,u,v,p)
with K (t, 2, u,v,p) = H (t,,u,p) + €35, (uj — Uj)2. There are a number of different variants to
implement Pontryagin’s maximum principle. We use the following that can be found for example in
[8] where according to our experience this method converges faster to appropriate results than the
projected gradient method.

Algorithmus 5.2 Sequential quadratic Hamiltonian method

1. Choose € >0, x> 0,0 >1,( € (0,1),n € (0,00), u’ € Uyq, compute z° with (5.1.4) for u < u®
and pY from (5.1.15) for Z <— 2" and @ + u®, set [ < 0

2. Choose u such that
K (Lol (0, u (), (1),9' (1) < Ko (Lo ()0, (0),51 (1))
for all w € [0,1]" and all gird points ¢ € [0, T

2
3. Calculate z from (5.1.4) for u and § := |ju — u¥||? := Py fOT (uj (t) — ué (t)) dt
4. If J (z,u) — J (2!, u') > —nd: Choose € + oe
Else: Choose € + (e, 21 « z, u!*! « w, calculate p'*! from (5.1.15) for # « 2'*t! and
< uth L1+ 1,

5. If § < k: STOP and return !
Else go to 2.
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Algorithm 5.2 works as follows. First, one chooses an initial guess for €, recommended € = 0.1,
which weights the deviation from the current u! to the update where I counts the number of updates
to the initial guess u°, a tolerance s for the convergence criterion, o for increasing €, ¢ for decreasing
e, 11 for the comparison of the value of the target functional for the current control u* and its update.
We recommend o = 50, ¢ = 0.15 and = 107'2 and x = 1075, With the initial guess for the
control u® we compute 2% with (5.1.4), 2% (0) = x, for all k € {1,...,n} and «° instead of u, we write
u < u®, as well as p° with (5.1.15) for 2 instead of z, we write Z + 2% and @ < u®. Secondly,
we determine the minimum of K, (t, xl,w,ul,pl) for every grid point ¢ which is in our case given by
0= %KE (t,a:l,u,ul,pl), where %Ke (t,wl,u, ul,pl) is the partial derivative of K. with respect of

. . . afi(at, . . .
the j-th component of the control w in the third argument of K.. As fa(zj u), the partial derivative of

the i-th component of f with respect to the j-th component of the control u, does actually not depend
on u; in our case, that is the case if the right hand-side f; (x,u) of (5.1.4) is one of the following
(4.2.1), (4.2.2), (4.2.3) and (4.2.4), for instance, we have, considering the upper and lower bound of u,
the update

Afi(ztu
[ arTripeEs
uj (t) =max | 0,min | — 5 +u; (t),1

for each grid point ¢t € [0,T] for all j € {1,...,m} where pé is the i-th component of p'. In the next step,
we calculate  from (5.1.4) for u, z (0) = xg and the norm |Ju — u*||? and set & == |Ju — u*||%. In the
forth step, we check if the new update on u provides a smaller value of the target functional by at least
—nd. If not, we increase €, else we take the update for the state and control, decrease € and calculate
p! from (5.1.15) with p! (T) = 0, with the new 2!, # + 2! and u!, @ < u!. If at a certain iteration § is
less than the tolerance k, we stop and return the last iterate u' which has provided a descent of the
target functional by at least —nd. We remark that we have to discretize ||u —u*||?, (5.1.4) and (5.1.15)
for an implementation of Algorithm 5.2. We choose the Riemann sum [2] for ||u — u*||? and an explicit
Euler scheme [13] for (5.1.4) and (5.1.15).

5.1.4 Direct method to calculate appropriate external stimuli that induce a switch

In this subsection, we present a method to go systematically through all the combinations of external
stimuli in order to find a selection of external stimuli that steers the network into the desired steady
state. We recall that m € N is the number of external stimuli, n € N the number of nodes and T the
time horizon within the switch is supposed to happen. The method considers all the elements g of the
power set P of the set {1,...,m} up to a cardinality |g| < maxNum where maxNum € {1,...,m}. Then
for each g, we define the following controls

1 for0<t<nT
Uj(nT):{

0 else,
0O<np<lforall jeg. Forje{l,..,m}\g, weset u;(nT)=0for all 0 <t < T and define

uy (nT)

u(nT) = (5.1.16)

U, (n7T)

That means we pick systematically combinations of subsets of the index set {1,...,m} and apply the
corresponding controls for a certain period of time starting from ¢ = 0 until all the controls are switched
off after nT time units. If the perturbation of the selected external stimuli is successful that means
that the state z (T") of the network at the final time 7" equals the desired state x4 in each component
up to a tolerance tol > 0, then we figure out if the switch can be achieved with a shorter period of
the controls’ application than nT. For this purpose, we take u (TlnT) with the corresponding state

calculated by %xk = f(:z:,u(Tlr]T)) for all k € {1,...,n}, (5.1.5), or F (m,u (TZHT)) =0, (5.1.7),
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respectively, with 0 < 7 < 1, [ € Ny and enlarge [ until there is a state of one node, xy, k € {1,...,n},
for which we have |z (T') — (24),| > tol. We note the smallest number where the switch does not

happen any more [; € N. Then we take the duration of application TZs*lnT such that we define the
control u (TIS_IT]T> as the output of the combinatorial method. The method is given as follows.

Algorithmus 5.3 Combinatorial method
1. Choose maxNum € {1,...m}, 0<tol<1,0<n<1,0<7 <1,

2. Choose all the elements g € P C P of the power set P of {1,...,m} such that the cardinality
lg| < maxNum

3. Forallge P

e Set u=u(nT) according to (5.1.16)

e Calculate z with u from $x), = f (z,u) for all k € {1,...,n} defined in (5.1.5) or F' (z,u) = 0
defined in (5.1.7), respectively

o If |z (T) — (xq),] < tol for all k& € {1,...,n}, return u <TZS*177T) where I € N is the
smallest number such that there is one k € {1,...,n} with |z; (T) — (zq),] > tol with
%azk =f (x,u (TZSUT)) forall k € {1,...,n} or F (m,u (TinT)> = 0, respectively

Notice that 7 is chosen sufficiently small such that after the switch off of the external stimuli there
is still enough time for the network to relax sufficiently close to the desired steady state if the selected
external stimuli are able to steer the network into the desired steady state as the proposed method does
not identify the selected external stimuli as successful ones otherwise. On the other hand 7 must be
sufficiently large that the perturbation can last sufficiently long to activate or inactivate corresponding
nodes sufficiently long such that networks inertia effects are overcome.

The advantage of Algorithm 5.3 is that it checks directly if the desired switch is achieved with the
chosen set of external stimuli. However, the disadvantage is that it needs exponential time with respect
to the number of possible external stimuli. In contrast, Algorithm 5.1 or Algorithm 5.2 are linear in
time with respect to the number of possible external stimuli and at most quadratic with respect to
the total number of nodes and edges as one has to calculate the Jacobi matrix of f, see for example
(5.1.9).

We can combine these methods as follows in order to determine a selection of external stimuli
supporting the external stimuli determined by Algorithm 5.3 causing the desired switch. Even for a
large number of possible external stimuli, the number of combinations is not too big if maxNum is
small. If then Algorithm 5.3 returns a set of external stimuli causing the desired switch, we can use
this result as an initial guess for the external stimuli for Algorithm 5.1 or Algorithm 5.2 in order to find
more external stimuli supporting the desired switch which can be affected by the weight « in (5.1.3).
Roughly spoken, the less « is, the more different external stimuli will be found which are different from
constant zero function and the bigger « is, the less different controls are returned being different from
zero, but the more important these external stimuli are for the switch. In this case the cardinality
of the selection of external stimuli that is returned by Algorithm 5.1 or Algorithm 5.2 does not have
to change but some external stimuli may be replaced by one that are more effective with respect to
steering the network into the desired steady state. By supporting the desired switch we mean that the
network is steered faster to the desired state. That can be useful for dynamical reasons when time
matters that means a switch in an experiment is supposed to be accelerated or to enlarge the number
of external stimuli a bit to choose that ones that can be implemented in an experimental set up in the
easiest way.

There is a further reason why to take the result of Algorithm 5.3 for an initial guess of Algorithm
5.1 or Algorithm 5.2. When solving (5.1.5) or (5.1.7), respectively, in order to find a set of external
stimuli which causes the switch from the initial state zg to the desired state x4, it may happen, because
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of the highly non-linear constraint F' or fj, respectively, that there is a local optimum of the target
functional at which there is a node that does not equal its desired state at the final time. This can
happen because Algorithm 5.1 and Algorithm 5.2 are so called local optimization methods and therefore
they only determine their result with respect to necessary optimality conditions (5.1.13) or (5.1.14),
respectively. However, not all optima in this sense contain a switch of steady states. Thus if the
initial value xg is close to such a local minimum, it may happen that our utilized local optimization
method like projected gradient method or sequential quadratic Hamiltonian method, converges to
such a mentioned local optimum. Then, the corresponding external stimuli are optimal in the sense
of fulfilling the necessary optimality conditions (5.1.13) or (5.1.14) but may not cause the desired
switch. Moreover, varying the initial guess for the external stimuli w in Algorithm 5.1 or Algorithm
5.2 can cause convergence to different local optima and thus, considering even just the local minima
containing a desired switch, can result in different selections of active external stimuli. In order to
ensure converging a local optimum which includes a switch of the network’s state, one can take the
result of Algorithm 5.3 where the chosen external stimuli already cause the desired switch. Then this
initial guess for the external stimuli is maybe sufficiently close to an optimum where the corresponding
state equals the desired state at the final time. Notice that the shorter the time is where the external
stimuli are active in the result of Algorithm 5.3 the closer the initial guess is to an optimum that
contains the desired switch as the duration of application of the external stimuli enlarges the target
functional (5.1.3). For this purpose the subroutine in Algorithm 5.3 to approximate a duration of
application of the selected external stimuli causing the desired switch that is as short as possible is
necessary.

Furthermore, Algorithm 5.3 returns the first combination of external stimuli that it finds. However,
there might be a combination that is more effective for the switch that is more likely to be found from
Algorithm 5.1 or Algorithm 5.2, especially for big a. For this reason it is worth to additionally start
one of these algorithms with the result of Algorithm 5.3 as an initial guess.

Remark 4. We remark that the time horizon T used in Algorithm 5.1, Algorithm 5.2 and Algorithm
5.3 is supposed to be at least that large as in the steady state analysis in which one figures out the
steady states of the considered network in order to ensure that there is enough time for the network to
relax into the desired state after the external stimuli are switched off. This is reasonable because the
oscillations induced by the switch on and switch off of the external stimuli can decay and the network
can relax to the desired state x4 sufficiently much such that x (7") is close to x4 within the tolerance
tol for all k € {1,...,n}. Also the step size At is supposed to be at most that size as the one used in
the steady state analysis in order to ensure a stable numerical solution of the underlying differential
equations assuming that an explicit solver for the steady state analysis is used.

5.2 External stimuli keeping networks in desired expression patterns

In this section, we introduce a mathematical model for the optimal control of regulatory networks
where only the activity level of certain nodes is of interest and not necessarily the expression pattern
of the whole network. Furthermore the alteration of the activity levels of the nodes caused by the
action of the applied external stimuli may decay after the external stimuli are set off. This is in
contrast to Section 5.1 where the external stimuli are always supposed to effect the network such that
the alterations of the nodes’ activity levels stay although the applied external stimuli are switched off
due to the switch between two steady states. An application of this framework in the present section
is optimal drug targeting or pharmacological modulation which is discussed later. We assume that
the different agents of interests of a real (biological) network are modeled by a regulatory network
analogously to Section 4.1 and Section 4.2. Each agent is associated with a node k € {1,...,n} where
n € N is the number of nodes.
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5.2.1 The mathematical formulation as an optimal control problem

Once we have modeled the dynamics of the network, we have desired activity levels for certain nodes

of the network that means not necessarily for all nodes of the network. This can be the case if only

a few nodes of a network serve or are identified as an output that is relevant for the outcome of an

experiment while the other nodes that are left are still important for regulating these nodes of interest.

These desired activity levels xi : Rg — [0, 1] are functions which represent the desired activity level

of node k. These functions can be constant or vary their value over time. The set of desired activity

levels is defined by D = {:UZ\ ke N[}, Ny C {1,...,n} where Ny only contains the indices of the nodes

of interest. Consequently in the case that we are just interested in the activity level of a subset of

nodes of the whole network, then the cardinality of D is less than n.

The task for which we develop the framework in this section is to determine external stimuli, and

if necessary their time curve, such that each node of interest from the set Ny takes its desired value
T uq

as well as possible. For this purpose we define z := : € R" and u = : € R™ and the
Tn Um,

following target functional

n T
J (z,u) = % ng/o (xk (t) — ¢ (t))2 dt, (5.2.1)
k=1

where g, € R{ is the weight of the corresponding tracking term f(;[ (zg (t) — 2 (t))2 dt with g > 0 if
k € Ny and g = 0 else. These weights mean how important it is that the corresponding node achieves
its desired value compared to the other nodes of interest. The greater the value g of a certain node
k is compared to the weights of the other nodes of interest, the more important it becomes that the
corresponding node k attains its desired state :cz compared with the other nodes of interest where
gr > 0.

The value of J (z,u) also serves as a measure how well the desired activity levels are taken by their
corresponding nodes of interest subject to the constraint that (x,w) fulfills (5.1.4). That means the
smaller J is the better the desired activity levels are taken by the their corresponding node where in
the best case J = 0 which means that T = 5’3% for all kK € Ny. In order to include costs of the external
stimuli into the target functional, we add the term a 77", fOT uj (t)dt, « > 0, to (5.2.1) which extracts
the most effective external stimuli by increasing «. This works as follows. As for large values of « it
is more likely that the cost of an active external stimuli is greater than its effect on steering the nodes
of interest to the desired activity level and thus is set to zero. Then, we have the following extended
cost functional

T
0

n m T
To (2,10) = ;;gk/ (2 (1) 2 () e + az;/o w; (¢) dt. (5.2.2)
—1 j=

Notice that Jo (z,u) = J (z,u). Summarizing, we now have the following optimal control problem

min J, (z, u)
Y, u
d (5.2.3)
subject to P fr (x,u) forall k € {1,...,n}
where fi (z,u) is given by one of the right hand-sides of (4.2.1), (4.2.2), (4.2.3) and (4.2.4) for instance.
We remark that these considerations also hold for any well defined system of ordinary differential

equations that seems to be appropriate to model a real biological system.

Remark 5. An application of the framework discussed so far can be as follows. An interaction graph can
be set up where the governing ordinary differential equations model can be fitted to real data created
by the omics technology. All the possibilities of intervention by drugs can be modeled by external
stimuli which can affect even more than just one node if one drug has multi target effects. Then by
our optimization framework one can figure out the most effective drug combination that brings the
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activity level of the nodes of interest as close to the desired activity level as possible. In general it will
be not possible the meet the desired state exactly. If for some reason the user wishes to have some
certain nodes closer to a desired value than it is in the calculated solution because they are still to
far away from their desired value such that it is physiologically still not reasonable, they can increase
the corresponding g and perform the calculations again. Then these nodes might get closer to the
desired state, however maybe at the cost that others might get away a little bit more from their desired
state but still close enough such that the new expression pattern caused by the external stimuli makes
physiologically sense. If the expression pattern is still not as close to the desired activity level, then
one has to include more external stimuli and thus can identify new effective drug targets that have the
desired effect. This demonstrates how the optimization framework can be used to extract promising
drug combinations or drug targets out of a huge graph, containing all the available information, that
steer the experiment close to a physiological desired expression pattern.

Remark 6. Now, we are more specific with respect to the fitting procedure of the model parameters.
In order to induce changes in the expression pattern or activity pattern of a real network, the network
is perturbed with external stimuli. The resulting time curves of the agents are measured and the
model is fitted to them. That means that for the fitting procedure of a network given by for example
(4.1.1) we actually need a consistent framework that includes the effect of external stimuli. Such a
framework is given by the mechanisms discussed in Section 4.2. Within that framework the whole
fitting procedure works as follows. We measure the time curves of all expression levels or activity
levels of all nodes and model the time curve of the corresponding external stimulus according to its
application in the experiment. For example a scaled concentration of the external stimulus ranging
from 0 (no application) to 1 maximum concentration of application. We remark that also the effect of
several external stimuli can be measured at once and that there is no need for measuring the effect of
each external stimulus individually. Then we do this procedure until at least all external stimuli have
been active in at least one experiment. Thus each measurement generates a data set. Next, we have
to perform a parameter fitting for all the data sets at once. That means all the model parameters
are fitted such that the difference between the theoretical time curves of the activity levels and all the
corresponding time curves of the corresponding activity levels of the data sets, measured in a certain
norm, is as small as possible.

The procedure is not restricted to (4.2.1), (4.2.2), (4.2.3) or (4.2.4) but can be applied to any model
consisting of ordinary differential equations.

Considering Remark 6, we understand the huge beneficial potential of the proposed framework
to investigate the issue of determining appropriate external stimuli for a desired network behavior.
Instead of measuring different combinations of external stimuli that might have the desired effect,
one measures just die effect of each external stimulus on the network, fits the parameters of the
model equations from the corresponding data and can extract the information of the most effective
intervention that has the desired effect from the model. As the number of combinations of external
stimuli depends exponentially on the number of all possible single external stimuli, real experiments
can become very time consuming. For this reason it can be very advantageous to use the presented
framework to determine promising candidates of network intervention for a desired network behavior
since from the information of the effect of each external stimuli the best combination is figured out by
our mathematical formalism which may save a lot of time as the required measurements depend only
linearly on the number of possible single external stimuli.

5.2.2 Local optimization techniques

In this subsection we give the changes that have to be made to adapt the mathematical framework
discussed in Section 5.1 for the situation that not all nodes of the network have to follow a desired
activity level.

As in Subsection 5.1.2, we can discretize (5.2.3) before we optimize with a local optimization method
like the gradient method that is given by Algorithm 5.1 and obtain for a certain time step size At > 0,
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t=IAt,1€{0,..,N} and T = NAt the following optimal control problem

m N-1
man (r,u) = ngz <x§§—xz(lﬁt ) At—}—aZZu At
2.0 o J=1 1=0
subject to F (z,u) =0, z° = zg
Fy (z,u)
where F' (z,u) = : e R™V,
F, (z,u)
zi ¥ fie (20, u?)
F(zyu)=—| :+ |+ : + At : c RN
o~ V-1 Fi (2N uN )
o}
for all k € {1,...,n}. Notice that z; is not a function any more but a vector zj, := : € RV
7y
I
for all k € {1,...,n} and x = : € R™. Analogously, we have the definition for the vector
In
0 w
uj = : € RY and u = : € R™V with 0 < ué < 1forall j € {1,..,m} and
ué»v_l U,
b1
[ € {0,...,N —1}. Then, we just have to modify the adjoint equation for p = : e R™W,
Pn
P
P = : € RY which is given by
Py

gr (g, — 2 (1dt)) — pp + P + 20, 97 6361 fi (21, ub) dt
gr (zf — 2 (2dt)) — p} + P + X0, P} M fi (22, u2) dt
- : eRN
gk<mg_1_aﬁ(uv‘*0dﬂ>'—Pg_y+p?-%iﬁllpfai%7ﬁ(xN*%uN*QCu
g, (2 — zf (Ndt)) — pY
for all k € Ny and

—ph+ PR+ i piger fi (2t ut) dt
—pi 4+ pp+ > D d$2fz( , 2) dt
0= : c RN
—py R+ Z?zlpf-va%%fi (& w1 dt
_pé\f
for all k € {1,...,n} \Nr.
In order to use the sequential quadratic Hamiltonian method that is given by Algorithm 5.2, we

just have to modify some definitions made in Subsection 5.1.3. The Hamiltonian H : R x R™” x R™ x R"
now is given by

H (t,z,u,p) = ng(xk—xﬁ) —G—aZu]—i—Zpkkau
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The adjoint variables py, : Rar — R are given by the following adjoint equations

%:—gk (xk—xk> ZPZ z Z, )

if £ € Ny and by the following equations

dpk = sz fi (Z, )

if k€ {1,....,n}\N; with p; (T") = 0 for all k£ € {1,...,} where %fl (Z,u) = %fl (7, %) | (2,0)=(2,0)
that means the partial derivative of the i-th component of f with respect to the k-th component of
1
x = : € R” evaluated at (z,u) and (Z,u) is an optimal solution to (5.2.3).
Tn
Remark 7. As in this framework the desired activity level x4 can model a time-dependent expression
pattern where the values for each node vary with respect to time, we can think of pharmacological
applications where the expression pattern of a network is supposed to be different between day and
night time which can be achieved with external stimuli and a fitted regulatory network.

5.2.3 A global optimization technique

Besides local optimization approaches to solve (5.2.3) there is the possibility to systematically try
different external stimuli with constant value over the interval [0,7]. Moreover we can vary each value
of each point of time of each external stimulus and test each combination which of them generates the
smallest target functional value. However this method has a great number of different combinations
and this number growth exponentially with the number of external stimuli. To keep the number
of combinations as small as possible and reasonable in favor of our purpose to find a combination of
external stimuli that keep the network close to a desired expression pattern, we implement the following
idea in Algorithm 5.4. We choose the maximum number of external stimuli maxNum € {1, ..., m} that
are supposed to be active at once and the number numInt € N of parts in which the image of the
external stimuli [0, 1] is divided into. Then we choose from the power set P of the set {1,..m}
that elements g with cardinality |g| < maxNum. This defines the set P. Next, we choose g € P,
val € {znumlm\ 1=1, ...,numInt} and set u; = val if j € g and u; = 0 else. That means the active
external stimuli are constant functions with value val and the inactive external stimuli are constant
functions with value 0 in the whole time interval [0, T]. Next, we calculate the target functional value
Jo (z,u) for the corresponding external stimuli u where (z,u) fulfills (5.1.4). This is done for all g € P
and all val € {znumlnt] i=1,..., numInt}. We choose the combination of external stimuli that causes
the smallest target functional value as the output of Algorithm 5.4.

Algorithmus 5.4 Combinatorial method
1. Choose numMax € {1,...,m}, numInt € N

2. Choose all the elements g € P C P of the power set P of {1,...,m} such that the cardinality
lg| < maxNum

3. Calculate Jy (2, u) for all p € P and all val € {i
and u; = 0 else where (z,u) fulfills (5.1.4)

numInt} with u; =wval if j € g

numInt’ @ = 1

4. Return (x,u) with the smallest target functional value J, (z,u) defined in (5.2.2)

Notice that it is worth to parallelize an implementation of Algorithm 5.4 as the calculation for each
combination of external stimuli in Step 3 is independent of the others. Furthermore, we remark that
the calculation time of Algorithm 5.4 increases exponentially with respect to maxNum.
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The output of Algorithm 5.4 can be used as an initial guess of a local optimization method like
the projected gradient method, see Algorithm 5.1 or the sequential quadratic Hamiltonian method, see
Algorithm 5.2. Based on the initial guess from Algorithm 5.4, a local optimization method finds an
optimal solution for (5.2.3) in linear calculation time with respect to the number of external stimuli. As
the external stimuli are functions over time, the solution of a local optimization time is not necessary a
constant function but its value can vary with time. Determining also time resolved external stimuli with
a method as Algorithm 5.4 might be to costly. However the most promising combination determined
can be refined by a local optimization algorithm. This refinement of the time curves of the external
stimuli corresponding to a minimum of (5.2.3) may contain further information about the relation
of each external stimulus to each other. Additionally an optimal solution from a local optimization
method can differ with respect to the number of active external stimuli compared with the solution
from Algorithm 5.4. The local optimization method’s calculation might also be more efficient due to
the time scaling depending on the number of external stimuli.

With similar consideration as for Algorithm 5.3 due to the possibly high non-linearity of (5.1.4), a
further use of Algorithm 5.4 is to improve the initial guess for the local optimization methods such that
they converge to a global optimum of (5.2.3) and not to a local optimum that has possibly a greater
target functional value than the global optimum but is optimal in the sense of fulfilling the necessary
optimality conditions like (5.1.13) or (5.1.14) though causing that the local optimization methods stop.

5.3 State of research with respect to software solutions

Finally to calculate external stimuli for inducing a switch from one steady states of regulatory network
to a different one or for keeping the close to a desired expression pattern, a software solution is useful
that creates the system of ordinary differential equations from an interaction graph, fits parameters of
the system from experimental data and includes the effects of external stimuli to calculate an effective
selection of external stimuli that steers the network in our favor. This section is intended to give an
overview of existing software solution and how they are related to the task of determining external
stimuli. This section is based on [10, Section 6].

Specifically we point out differences to other software existing to analyze regulatory networks and
illustrate how to combine our provided software package with other tools. In particular, there is no
calculation of optimal modulation of networks by external stimuli available. However, the selection of
an optimal stimulus for a specified number of nodes to be modulated into a new state is central for
pharmacological interventions. Moreover, planning of knockdowns, RNAi experiments for instance, or
any kind of other inhibition, excitation or modulation of the network would highly profit from such an
application and this is offered here.

On the other hand each of them allows an efficient description of the system state including suitable
differential equations using either accurate or heuristic solutions. Iterative model refinement can be
done including studying the effect of different receptor inputs, activations and inhibitions. However,
none of these tools allows to directly calculate the optimal manipulation of the network for changing to
a prespecified new system state. Instead there would be numerous trials and iterative steps necessary
using any of the software below to achieve this.

We start with the SQUAD method (https://sbos.eu/docu/docu/SQUAD /doku.php.htm). One
can utilize SQUAD to analyze steady states of a network once one has the topology of the network
that means the interaction graph. Additionally, one can perturb the network for example by activating
receptors or by changing decay or gain of a node’s activity. However, this software does not provide a
systematical procedure how to search for perturbations to steer the network to a desired state. There-
fore our concept of providing a framework to calculate perturbations by techniques of mathematical
optimization supplements the pioneering idea implemented in the SQUAD software.

The next software package is called JIMENA
(https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/jimena-~c/) which focuses on an effi-
cient numerical steady state analysis. Therefore, this package as well as SQUAD serves as an excellent
tool to figure out the steady states of a network between which one would like to switch. Once the
steady states are found, our framework proposed in the present work can be utilized for the calculation
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of the desired switch.

The CELL NET ANALYZER (https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html)
provides, besides metabolic network analysis and steady state analysis, a method to calculate minimal
intervention sets that provide a network with desired steady states. However, this means that one gets
a list of knockins and knockouts of nodes of the network such that the network attains the desired
steady states. This is a very important tool, especially in the case of lacking experimental information
or conflicting information about the interaction of the considered agents, to design the topology of the
network in order to obtain a notwork that provides the steady states sought. Thus this method is
intended to change the topology of the network that means the interaction graph while our approach
deals with a fixed topology of the network during all calculations. The CELL NET ANALYZER is
hence well suited for metabolic modeling, modeling of signaling networks and the upstream use of
SQUAD or JIMENA to design an appropriate network but not for precalculation of the best and most
efficient stimulus combination to achieve a desired system state.

The ODEFY (https://www.helmholtz-muenchen.de/icb/software/odefy /index.html) is a tool in
order to convert boolean networks into networks whose dynamic is described by ordinary differential
equations which are the basic models in our framework. Therefore the ODEFY is a key tool to transform
network topologies into an ordinary differential equation model which is essential for our framework,
especially in the case of networks with many nodes and couplings between them. Thus ODEFY allows
the swift formulation of the differential equation system, however, there is no systematic approach to
identify the correct combination of external stimuli.

With our framework we provide in addition a straight forward tool to first define and second apply
functions u; : Ry — [0,1], 5 € {1,...,m}, m € N as pharmacological parameters.

Specifically, the COPASI toolbox (http://copasi.org/) focuses on the modeling and on simulating
of biochemical reaction networks, especially simulation of time curves and steady states, parameter
fitting of an underling model to experimental data, sensitivity analysis and dynamical behavior charac-
terization. Besides steady state analysis, a further step of network analysis is to compare the simulated
curves with experimental data. Therefore the COPASI is a very important tool to analyze different
models that fit the data best after fitting of the model’s parameters. Thus the COPASI can have a big
contribution to pharmacological modeling by first fitting parameters and then choose the model that
fits the data best which is essential for dose rate calculations, for example. As our framework does
not depend on special network equations that are set up from the interaction graph, our presented
framework extends the great range of functions in a useful way. Moreover, COPASI is maybe even
more powerful then ODEFY and wide ranges of parameters can be tested swiftly. Nevertheless, to find
a proper combination of external stimuli to change the system state is a challenge, cumbersome and
not systematic.

The software tool POTTERSWHEEL (http://www.potterswheel.de/Pages/index.php) can be
used for modeling with ordinary differential equations and best parameter fit to experimental data.
For this purpose, one can additionally include external driving functions or vary parameters. This can
be used to adapt parameters of the system of ordinary differential equations with which one would like
to model a particular real network such that the theoretical data fits best to the experimental data.
Moreover, POTTERSWHEEL is very efficient in model testing and model refinement. However, for
our task, pharmacological network modulation of the change of the network state by the best, most
efficient combination of external stimuli, the tool allows to quickly verify that a given combination is
right, but to find it is difficult and needs numerous iterations. On the other hand, individual parameters
are fast characterized regarding their sensitivity and importance for network behavior. Therefore, as
COPASI, the software POTTERSWHEEL is also very helpful to figure out an appropriate model and
can be extended by our framework with a further useful feature.

Next, we explain the need for the mentioned extension in detail. The last two software packages
are well known examples and perform, among other things, a fit of model parameters of a system of
coupled ordinary differential equations. This is similar to our framework. However, the main difference
between a parameter fit and our framework is, that the functions u;, j € {1,...,m} are time dependent
while a parameter is constant. Therefore we extend the idea of parameter fit, which is a special
application of mathematical optimal control theory, to a more general framework that also includes
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time dependent parameter fitting. In our case, the time dependence of the functions u; is important
as they are switched on for a certain time and after the switch off, the network can relax to the desired
state such that we can verify, after the application of certain external stimuli, that each node is close
to its desired state which would not be possible with a constant parameter as the network could not
relax with constitutively activated external stimuli. Furthermore if the desired activity levels are time
dependent then there is the need for external stimuli that can also vary in time.

Our framework provides the most important external stimuli that are responsible for a desired
network behavior by increasing the weight a in the cost functional (5.1.3). By this procedure, we can
reduce the number of pharmacological intervention points to a small but very effective number which
is for the purpose of pharmacological treatments. This issue is also not covered by classical parameter
fitting that is provided by COPASI and POTTERSWHEEL. However, as we mentioned before, our
framework of systematically finding external stimuli that steer the network to a desired expression
pattern is not restricted to a special type of ordinary differential equation model. Therefore the provided
Matlab files can also be integrated into existing software packages like COPASI or POTTERSWHEEL
to extend their already great and helpful tools for model analysis with respect to experimental data.
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Chapter 6

Application of the framework to biological
examples

In this chapter, we apply the the mathematical formalism from Chapter 5 to biological examples to
validate the proposed method and show the principle scope of the proposed framework. For this
purpose we first consider a gene regulatory network modeling platelets and a network modeling T-
helper cells. For the platelets we determine receptors that are associated with irreversible aggregation
in accordance to literature. For the T-helper cells we propose a treatment to switch the T-cell type
from Th17 cell type to a regulatory T-cell type and provide illustrating literature. Furthermore we
give several calculations to switch between different T-cell types Thl, Th2, Th17 and regulatory T-cell
type. In the last two sections we consider a gene regulatory network that models a myocardiocyte and
demonstrate how to determine treatment strategies that keep the nodes of interest of this network close
to a desired activity level and compare these different treatment strategies quantitatively. Furthermore
we show how to find out the most effective intervention points out of several choices. In the following
section we introduce into the application of our proposed framework for inducing a switch between two
different steady states of a network with basic examples.

6.1 Introducing examples how to determine external stimuli

In this section, which is based on [10, Section 4|, we demonstrate how to analyze a regulatory network
which includes interactions with external stimuli using our optimization approach presented in Section
5.1 with the model (4.2.1). For our numerical examples, we use the regulatory network from |37, Figure
5], Alternative Th network. The schematic of this network is given in Figure 6.1.1 where IFN-v is node
1, CSIF is node 2, IL-2 is node 3 and IL-4 is node 4. The network, although it is small, carries a typical
feature for for biological systems that is cross connectivity. Examples are the tumor necrosis factor
network [41], myocardiocytes [11] or a network describing proliferation vs. apoptosis in cells [52, 21].

Figure 6.1.1: The schematic of our example network analogous to [37, Figure 5|. Abbreviations are as
follows: IFN-~, interferon ~; IL-x, interleukin x; CSIF, cytokine synthesis inhibitory factor

In our first example, we analyze the transit of one steady state to another for a given set of

69
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external stimuli. We consider the corresponding equations containing external stimuli, see (4.2.1) with
up activating node 1, us activating node 4 and ug activating node 2, as follows

d Lo o 00 () (-1 e ) - 05) e
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where we choose h = 10, o = 1, B = 10 and 7 = 1 for all k € {1,2,3,4}. This choice applies
for the rest of this section. In our example, we switch the regulatory network (6.1.1) from the steady
state 2o = (0 0 0 0 ) to the steady state ( 0.8870 5.6662-10~* 0.8870 5.6662-10* ). We
round the numbers here in this work for the reason of notation. Utilizing Algorithm 5.1 with o = 0.1,
T =20, At =0.1, e = 107% and %u = 0, we obtain the results shown in Figure 6.1.2 and Figure 6.1.3.
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Figure 6.1.2: The time is plotted on the abscissa and the activity level is plotted on the ordinate. Switch
from the initial steady state to the desired steady state by the external stimuli uy, us calculated by
Algorithm 5.1.

In Figure 6.1.2, we see that the regulatory network is steered to the desired steady state by the
external stimuli u; and wuy. For this purpose, only a short application is necessary. Furthermore, we
see that the external stimulus ug is not needed for this switch. We remark that although we desire the
activity level x4 to be low, it is intermediately activated by us in order to steer the whole regulatory
network into the desired steady state. When wugy is switched off, the activity level x4 immediately
decreases. If the external stimulus 2 is not included into the system of equations (6.1.1), then the
desired switch is not performed which demonstrates that the external stimulus 2 is important for the
switch. Although it does not activate a node which is desired to have a high activity in the desired
state through the cross connectivity the network steers the other nodes into its desired steady state
though. This maybe counterintuitive information is revealed by our framework.
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Figure 6.1.3: The time is plotted on the abscissa and the activity level is plotted on the ordinate. The
external stimuli u, ue and ug in detail.

Even if we do not know the exact parameters of a system modeled by our equations described
in Section 4.2, we can use Figure 6.1.3 as a qualitative information, as the model in Section 4.2 is
also intended to be used in the lack of the exact values for the model parameters. The qualitative
information is that the external stimuli u; and us are essential for the desired switch. Because of the
qualitative character in this example, the duration of application proposed by Algorithm 5.1 is hardly
able to be recovered in a real experiment in general. However, in Figure 6.1.4, we apply u; and ug
much longer than proposed by Algorithm 5.1 while ug is switched off the whole time. Consequently,
we see that the model is robust with respect to a duration of application of the external stimuli that is
longer than proposed by the calculation of Algorithm 5.1 because we obtain the same switch. This is
important for the application in an experiment where it is difficult to apply an external stimuli for an
exactly given period. After the external stimuli are switched off, the regulatory network relaxes into
the desired steady state. We see that the activity level x4 of node 4 cannot exceed 0.5 although wus is
maximum active.
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Figure 6.1.4: The time is plotted on the abscissa and the activity level is plotted on the ordinate.
Switch from the initial steady state to the desired steady state by the external stimuli u; and us
applied longer than proposed by Algorithm 5.1.

We remark that there might exist several selections of single external stimuli and their duration
of application which steer the regulatory network from one steady state to another. Algorithm 5.1
calculates optimal external stimuli where optimal is meant in the sense of being a (local) solution to
(5.1.7). The model presented in Section 4.1 also offers the possibility to find external stimuli for the
desired switch by trial and error methods, like Algorithm 5.3. For this purpose, we can set values for



72 CHAPTER 6. APPLICATION OF THE FRAMEWORK TO BIOLOGICAL EXAMPLES

each point of time for the external stimuli and solve (5.1.6) to see if this choice has the desired effect
on the regulatory network. Of course, if the choice of external stimuli works, this choice might have a
bigger value of the target functional of (5.1.7) than its optimal solution and is not optimal in this sense
although it performs the desired switch. However, we focus on finding a selection of external stimuli
which performs a desired switch. Solving (5.1.5) or (5.1.7) can be interpreted as an additional tool of
systematic inspiration for us to find such a selection.

Algorithm 5.1 or Algorithm 5.2 in combination with the presented optimization approach provides
a tool for systematically figuring out what external stimuli are essential to switch the regulatory
network between different steady states. This is very useful for network analysis if the modeled system
contains a lot of possibilities for activation or inhibition by external stimuli because the number of
possible combinations of different external stimuli grows exponentially with the number of external
stimuli. Thus a trial and error method to determine a set of essential external stimuli might become
cumbersome, see the following example.

We demonstrate the principle procedure with a basic example. The biological relevance of an
optimal solution is then that it represents the pharmacological intervention, for instance, that induces
the desired switch in the experiment. This switch will surely happen if the model is sufficiently
appropriate to describe the corresponding experiment. This example also demonstrates how from the
amount of all combinations of all external stimuli that perform a desired switch the most important
ones are extracted which is also a crucial issue in pharmacological problems.

Fach node is equipped with an activating and an inhibiting external stimulus in order to determine
a selection of essential external stimuli. If a system is modeled with a regulatory network, we can
generate candidate nodes for which it is worth to develop drugs for activation or inhibition such that
we achieve the desired switch in the system. As an illustrative example, we use the following

d —e®+e <%<1E§ii4>( 1112232) 05> a )

—T] = —x+up (1 — 1) — ugay
dt (1—65 <1+e 10(%(12}?@)( }(1) 13%32 )

d Loy o0 () (- By 05) .

— T2 = —x2+u3 (1 — x2) — ugwo
T ey <1+e 10(3 (2 ) (B sty ) - )

(6.1.2)

d Loy o0 () (- ) 05) .

—x3 = —x3+us (1 — x3) — ugxs
T e <1+e 10(3 () (B 5 ) - )

d Loy o 0 () (- ) 05) .

—T4 = — x4+ ur (1 —x4) — ugy
g e (1 4o 003 (i) (-1 ok ) - )

where each node is equipped with an activating and an inhibiting external stimulus. We desire a
switch from the steady state zo = ( 0.8870 5.6662-10"* 0.8870 5.6662-107* ) to the steady
state ( 5.6662-107* 0.8870 5.6662-10* 0.8870 ). The results from Algorithm 5.1 with v = 0.1,
T =20, At =0.1, e = 1075 and % = 0 can be seen in Figure 6.1.5. This selection of external stimuli
presented in Figure 6.1.5 is able to cause the desired switch of steady states.



6.1. INTRODUCING EXAMPLES HOW TO DETERMINE EXTERNAL STIMULI 73

0.9 Uy Ua
1 1
5 ) 05
X, L
i ]
f [} 5 0 15 20 D 5 1 15 20
4 g time g time
& 1 1
" 05 0
: oL P
S [} 5 0 16 20 D 5 10 15
Kj Ug time Uug tirne
1 I 1
ns || 05
o Ll ol
s} 5 0 15 20 0 5 10 15 20
\ Uy time g time
\ Um 7
05 | ]
0 \'r-f S y 0 1
0 2 4 5 g 10 12 14 16 18 20 0 5 o 15 20 0 5 o 15 20

time time time

Figure 6.1.5: The time is plotted on the abscissa and the activity level is plotted on the ordinate.
An optimal selection of external stimuli performing the desired switch for & = 0.1 on the right hand-
side and the time course of the nodes’ activity level for the corresponding external stimuli on the left
hand-side.

For the same setting but with @ = 1.1 instead of @ = 0.1, we get a smaller number of non-zero
external stimuli, as us and ug are constant zero functions now, see Figure 6.1.6. Comparing Figure
6.1.5 and Figure 6.1.6, we see that the desired switch is performed faster in Figure 6.1.5 as more
external stimuli are involved. Such investigations are interesting for experiments where a fast switch
matters.
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Figure 6.1.6: The time is plotted on the abscissa and the activity level is plotted on the ordinate. An
optimal selection of external stimuli performing the desired switch for & = 1.1 on the right hand-side
and the corresponding time curves of the nodes’ activity level on the left hand-side.

From Figure 6.1.6, we see that external stimulus ug is applied longer than us and uwy. Applying
just us and wus or ws and wy also performs the desired switch, see Figure 6.1.7. In order to obtain
the desired switch, we observe a robustness with respect to the duration of application and the time
curves of the external stimuli comparing the external stimuli in Figure 6.1.7 with the optimal ones in
Figure 6.1.6 since both variants induce the desired switch. Roughly spoken, the exact time curves of
the applied external stimuli are not decisive for the desired switch.
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Figure 6.1.7: The time is plotted on the abscissa and the activity level is plotted on the ordinate. Two
suitable selections of external stimuli that are able to perform the desired switch.

Applying just us or us and u; as in Figure 6.1.8 does not have the desired effect on the network
that means the desired switch is not performed. This illustrates the fact that there exist effects in
biological networks such that a big duration and an intensive application of a single external stimulus
is not able to trigger a desired switch but rather the coordinated occurrence of different external
stimuli is crucial for the desired switch. Summarizing this experiment, from all eight external stimuli,
we identify five suitable ones and reduce the number of suitable external stimuli from five to three
utilizing our optimization framework, especially with Algorithm 5.1 by increasing «. From the three

non-zero external stimuli, we extract two tuples consisting each of two external stimuli which perform
the desired switch.
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Figure 6.1.8: The time is plotted on the abscissa and the activity level is plotted on the ordinate.
These selections of applied external stimuli cannot perform the desired switch.

As well from Figure 6.1.8, we see that the selected external stimuli do not cover sufficient interven-
tion points and do not affect the crucial network nodes and thus are not able to perform the desired
switch. That means that the selection of external stimuli has to interfere sufficiently many nodes from
which our proposed framework then figures out the external stimuli that perform the desired switch
of steady states. Consequently, not any selection of external stimuli can perform any desired switch.
This observation can be interpreted as a filter of the network as only selected and rare situations where
these coordinated external stimuli occur are able to induce changes of the cell behavior, for example.
Since uncoordinated external stimuli do not change the cell’s behavior, the need for a coordinated
occurrence of external stimuli to trigger the switch ensures that the cell is in the right place and right
time to change its behavior assuming that this coordinated occurrence of external stimuli is unlikely
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somewhere else where it is not the right place and the right time.

Another example for too few applied external stimuli is (6.1.1) where just uy is applied to node
4 in order to switch from o = (0 0 0 0 ) to ( 0.8870 5.6662-10"* 0.8870 5.6662-10"* ),
see Figure 6.1.9. The switching of the external stimulus us comes from the aim of Algorithm 5.1 of
minimizing the target functional of (5.1.5) or (5.1.7), respectively. By this switching of ug, the activity
level z3 comes closer to the desired state by the activation of x4 which has less costs than letting uo
be the constant zero function and the desired switch of steady states cannot be performed yet. If ug
is switched off, then the activity level x4 starts to decay immediately.
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Figure 6.1.9: The time is plotted on the abscissa and the activity level is plotted on the ordinate. The

switching of up minimizes the target functional (5.1.5) or (5.1.7), respectively and cannot perform a
switch of the steady state yet.

On the other hand if we analyze (6.1.1) where we would like to switch from 2o = (0 0 0 0)
to the steady state ( 0.8870 5.6662-10"* 0.8870 5.6662-10~* ) and for this purpose once u, uy
and ug are applied but us to node 3 instead of node 2, see Figure 6.1.10a and once just u; and us, see
Figure 6.1.10b, then there are more possible intervention points of external stimuli than needed for the
desired switch in the first case. As a consequence, the switch of steady states is performed faster.
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(a) Three external stimuli are applied.

time

(b) Two external stimuli are applied

Figure 6.1.10: The time is plotted on the abscissa and the activity level is plotted on the ordinate.

Also with the example above we can demonstrate how our framework can figure out the most
effective selection of external stimuli that performs the desired switch from all the possible intervention
points. This can be very useful if we have a network where the network parameters as well as the
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coupling constants of the external stimuli are fitted to data. By the application of Algorithm 5.2 the
most effective selection can be figured out that means where the switch can be achieved with the
smallest possible use of the potential external stimuli or intervention points, respectively. We remark
that the same holds for Algorithm 5.1. For our illustration we let u; activate node 1, us activate node
4 where the corresponding coupling constant o4o = 0.23 instead of 1, see (4.2.1), and let ug activate
node 3. We first use Algorithm 5.3 for maxNum = 4, tol = 0.1, n = 0.5 and 7 = 0.9 and obtain that
an application of a fully activated u; and wug for 6.56 time units can perform the desired switch. If we
use this output for the initial guess of Algorithm 5.2 for « = 1, we obtain that the application of uy
and us performs the desired switch faster although more shortly applied, see Figure 6.1.11 and thus
we can call this selection of external stimuli more efficient compared with the one from Algorithm 5.3.
If « is sufficiently small, then Algorithm 5.2 is more likely to detect more external stimuli than needed
for the desired switch. These additional external stimuli support the desired switch, see Figure 6.1.12
where a = 0.5. This information can be used to fasten up the switch in a real experiment. We obtain
the application of external stimulus 1,2 and 3 in our example.
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Figure 6.1.11: On the abscissa the time is plotted and on the ordinate the activity level is plotted. The
curves with a dashed line belong to the solution from Algorithm 5.3 and the curves with a solid line
belong to the solution from Algorithm 5.2 for &« = 1 where the result from Algorithm 5.3 is used as the
initial guess. The curves from the corresponding agents have the same color. We see that the solution

from Algorithm 5.2 achieves the desired steady state much faster than the solution from Algorithm 5.3
although the corresponding external stimuli are applied more shortly.
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Figure 6.1.12: On the abscissa the time is plotted and on the ordinate the activity level is plotted.
The curves with a dashed line belong to the solution from Algorithm 5.3 and the curves with a solid
line belong to the solution from Algorithm 5.2 for & = 0.5 where the result from Algorithm 5.3 is used
as the initial guess. The curves from the corresponding agents have the same color. We see that the
external stimuli 1 and 3 from Figure 6.1.11 are supported by the external stimulus 2 which is detected

by Algorithm 5.2 as « is sufficiently small such that also small contributions to the switch are worth
to be considered.

In our last experiment, we consider external stimuli which affect several nodes at once. This
example is the blueprint how our proposed framework can be combined with a data bank driven
approach combining the information of an interactom, which is the information what agent in the
network affects the others by activation or inhibition, and its affection by drugs. The information of
the interactom is used for setting up the system of ordinary equations and all the possible drugs, which
can possibly effect more than just one node, are represented within the system of ordinary equations
by external stimuli that act on the nodes. Then by the calculations with our optimization framework,
we figure out the most effective drug combination as follows for example.

We find a selection of external stimuli which steers our regulatory network from the steady state
o= (0 0 0 0)tothesteady state ( 0.8870 5.6662-10"% 0.8870 5.6662-10* ), called Switch
1, then from the steady state zo = ( 0.8870 5.6662-10"* 0.8870 5.6662-10* ) to the steady
state ( 5.6662-10"* 0.8870 5.6662-10~* 0.8870 ), called Switch 2 and finally from the steady
state zo = ( 5.6662-10~* 0.8870 5.6662-10~* 0.8870 ) to the steady state (0 0 0 0 ) again,
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called Switch 3. We consider the following network

d —e5 +e
=
dt

(1 —ed) <1—i—e !
d —e® e
gy =
dt

(1 —ed) <1+e !
d —e® +e 10<%
Z s =
dt (1—¢ed) <1+e !
d —e® +e 10(%(
Sy =
dt (1—¢€d) <1+e !

(6.1.3)

where u1 activates node 1 and node 3 and inhibits node 4, uy activates node 3, us activates node 2 and
inhibits node 3. The results from Algorithm 5.1 with o = 0.1, T =20, At = 0.1, ¢ = 1076 and %u = 0
for Switch 1 can be seen in Figure 6.1.13, for Switch 2 in Figure 6.1.14 where the oscillations of us and
ug are not necessary for the switch, see Figure 6.1.15 and finally, for Switch 3, see Figure 6.1.16.
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Figure 6.1.13: Switch 1. The time is plotted on the abscissa and the activity level is plotted on the

ordinate.
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Figure 6.1.15: The time is plotted on the abscissa and the activity level is plotted on the ordinate.
Applying uo and ug in this way performs the desired Switch 2 as well.
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6.2 Induced switches in a platelet network and in a T-cell network

While in Section 6.1 we demonstrate the principal function of the proposed optimal control problem that
is utilized for the search for effective network intervention, we relate the framework to well established
biological models in order to show the biological relevance of the method.

6.2.1 Application to a platelet network to trigger irreversible aggregation

This section is based on [10, Section 7] and presents a pharmacological illustration for which we use
a model that describes the aggregation of platelets. Furthermore we provide also experimental data
validating our work. For this purpose, we use the so called SQUAD model that can be found in
the supplementary information of [39]. The model is fitted to experimental data with the software
Potterswheel that is mentioned in Section 5.3. A schematic of the network can be seen in Figure 6.2.1.
For our Matlab implementation, we have the following numbers of the nodes. We have P2Y12 is node 1,
P2Y1 is node 2, Ca is node 3, Rapl is node 4, Akt is node 5, Int is node 6, Src is node 7, PI3K is node 8§,
PTP isnode 9, Throm is node 10 and ThromR is node 11. According to [39] a high integrin (Int) activity
is associated with irreversible platelet aggregation. We have identified two steady states. The first one
is( 000 0009 00 0 01 0 )which has a high integrin activity and thus it is associated
with irreversible platelet aggregation. The second one is ( 000O0O0O0OO0OTO0ODOTG 01O ) which
has a low integrin activity and thus it is associated with the reversible platelet aggregation. In [39],
we find that adenosine diphosphate (ADP) activates the irreversible aggregation by stimulating the G-
protein-coupled receptors (P2Y1 and P2Y12). For all our calculations we use a time horizon 7' = 100
time units and a discretization of the time At = 0.01 to obtain a stable numerical solution of the
system of ordinary differential equations with the correct asymptotic behavior.

Figure 6.2.1: Schematic of the platelet network analogous to [39, Figure 1]. The nodes are associated
with agents as follows. G-protein-coupled receptors, P2Y1 and P2Y12; Calcium, Ca; the small GTPase
Rapl, Rapl; sarcoma, Src; protein tyrosine phosphatases, PTP; phosphoinositide-3 kinase, PI3K;
protein kinase B, Akt; thromboxane A2, Throm; thromboxane A2 receptor, ThromR.

In the following experiment, we would like to induce a switch from the steady state that is associ-
ated with the reversible aggregation of the platelets to the steady state which is associated with the
irreversible aggregation of the platelets to demonstrate that the framework is able to find a biologi-
cal meaningful solution. We have the same system of equation as in [39, SQUAD model| where the
corresponding values for the parameters are shown in Table 6.1 with the parameters denoted in our
notation and h = 9.32960030789937.
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’ parameter ‘ value ‘ parameter ‘ value
Y2 0.473605541589502 a; 3.50022125981342
" 1.311224584243 By 29479.7033034441
o 0.262564903033411 Y 2.1894335236633
Y3 1.16006274259696 ozg 0.00192534456141202
o3 2.98605802899337-107° Yo 5.90147225148781
Y4 0.115178489403329 ag 0.000212925981051457
ag 0.0928794298272352 Y7 0.474687549992427
o 18.0666459776589 af 3.54074679376809
Y5 6.55297153762532 Y8 190.994110206951
al 38078.3609932499 al 3744.26406968954
al 0.476931510419281 Y10 9.37989945700861
a$ 17.5203571996 al} 0.0407260335395034
Y6 1.00168195221449 Y11 5.73705603581402

Table 6.1: Values for the parameters of the corresponding system of ordinary differential equations
according to (4.1.1).

However the activation of P2Y1 and P2Y12 is modeled as follows. We have

d
£$1 = —1.321 + 0.6u,

d
ﬁmg = —0.47x9 + 0.6uq

where u; and u9 are activating external stimuli, like ADP for example, for P2Y12 and P2Y1, respec-
tively. As by the fitting of the data, the nodes’ activity levels are not restricted to the interval [0, 1]
and thus we do not have to multiply the activating external stimuli by an additional term considering
the maximum activity level of the node forcing the activating external stimuli terms to zero if the
node’s activity level reaches its maximum, see (4.2.4). Furthermore, we equip PTP with an activating
external stimulus, ThromR with an inhibiting external stimulus and Akt with an inhibiting external
stimulus. We use the output from Algorithm 5.3 for maxNum = 2, tol = 0.1, n = 0.5 and 7 = 0.9 as
an input for Algorithm 5.2 for @ = 0.1 that converges here faster than the projected gradient method
(Algorithm 5.1). From Algorithm 5.3, we obtain that applying stimulus uy for 22 time units induces
already a switch. From Algorithm 5.1, we also obtain that additionally external stimulus us steers the
system towards irreversible platelet aggregation which is in accordance with the results that can be
found in [39]. The results from Algorithm 5.2 can be seen in Figure 6.2.2.
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Figure 6.2.2: On the left hand-side, we see the active external stimuli u; (activating P2Y12) and s
(activating P2Y1) where the others are not active. The others are ug activating PTP, u4 inhibiting
ThromR and wus inhibiting Akt if they are active. On the right hand-side we have the activity levels of
P2Y12 (1), of P2Y1 (x2) and of integrin (xg) where we see the decay of the receptors’ activity (P2Y12,
P2Y1) while the activity level of integrin converges to 90%. The time is plotted on the abscissa and
the activity level is plotted on the ordinate.

6.2.2 Application to a T-helper cell network to switch between types of T-cells

In this subsection, which is based on [10, Section 8], we consider T-cell maturation and predict interven-
tion points to change T-helper cell types. Specifically, one switch is discussed detailed and confirmed
with literature while for the others the results of the calculations are presented in a table. For this
purpose we analyze a network with 36 nodes modeling the differentiation of different types of T-helper
cells as well as CD4+ Foxp3+ regulatory T-cells (Treg) where the activity levels xy, k € {1,...,36} are
restricted to the interval [0, 1]. For our calculations we use the numbering of the nodes as in Table 6.2
and the schematic of the model is given in Figure 6.2.3. This model is investigated in [36] with respect
to its steady states and it is shown there that this network has five steady states, see [36, Table 2].
These steady states and the corresponding number of the nodes in our calculations are shown in Table
6.2. There is one steady state for each special type of CD4+ T-helper cell, namely Th0, Thl, Th2,
Th17 and, in addition, Treg.
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| Number of node | Name of node | Th0 | Thl | Th2 | Th17 | Treg |

1 Foxp3 0 0 0 0 [ 0.9998
2 GATA3 0 0 1 0 0
3 IFN-3 0 0 0 0 0
4 IFN-BR 0 0 0 0 0
5 IFN-—y 0 |0.9981| 0 0 0
6 IFNR 0 1 0 0 0
7 TL-10 0 0 1 0 0
8 TL-10R 0 0 1 0 0
9 -12 0 0 0 0 0
10 IL-12R 0 0 0 0 0
11 IL17 0 0 0 1 0
12 IL-18 0 0 0 0 0
13 IL-18R 0 0 0 0 0
14 L2 0 0 0 0 0
15 .23 0 0 0 0 0
16 TL-23R 0 0 0 0 0
17 2R 0 0 0 0 0
18 -4 0 0 1 0 0
19 IL 4R 0 0 1 0 0
20 IL-6 0 0 0 1 0
21 IL 6R 0 0 0 1 0
22 IRAK 0 0 0 0 0
23 JAK1 0 0 0 0 0
24 JAK3 0 0 0 1 0
25 NFAT 0 0 0 0 0
26 RORAt 0 0 0 1 0
27 SOCSI 0 1 0 0 0
28 STAT1 0 0 0 0 0
29 STAT3 0 0 1 0 0
30 STAT4 0 0 0 0 0
31 STAT5 0 0 0 0 0
32 STAT6 0 0 1 0 0
33 TCR 0 0 0 0 0
34 TGF-5 0 0 0 0 0
35 TGF-AR 0 0 0 0 0
36 Thet 0 1 0 0 0

Table 6.2: Numbering of the nodes from the T-helper cell network and its steady states.
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Figure 6.2.3: Schematic of the CD4+ T-helper and Treg network analogous to [36, Figure 2|. The
nodes are associated with the following agents. The lineage-specifying transcription factors (dark red
nodes) Tbet for Thl, GATA3 for Th2, Foxp3 for Treg and ROR~t for Th17; xR, receptor for agent x;
IL-x, interleukin x; [FN-x, interferon x; JAKx, Janus kinase x; STATx, signal transducer and activator
of transcription x; TCR, T-cell receptor; SOCS1, suppressor of cytokine signaling 1; NFAT, nuclear

factor of activated T-cells; IRAK, interleukin receptor-associated kinase; TGF-3, transforming growth
factor.

We use (4.2.1) where all the parameters are set to 1 except h = 50, see [36, Table 1|. First, we
concentrate on the switch from a Th17 cell to a Treg cell. For this purpose we introduce the following
external stimuli. External stimulus uq activates IFN-3, external stimulus us activates IL-12, external
stimulus us activates I1L-18, external stimulus uy activates IL-2, external stimulus ugs activates 1L-23,
external stimulus ug activates TCR, external stimulus u; activates TGF-3, external stimulus ug inhibits
RORAt, ug inhibits IL-6 and wjg inhibits IL-6R which is the receptor for I[L-6. With this selection
of external stimuli, we intend to induce a switch from Thl7 with the corresponding steady state
of the network [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0] which
serves as initial state for the network to Treg with the corresponding steady state
[0.9998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], see Table 6.2 for
all the steady states.

In Figure 6.2.4a, we see the result from Algorithm 5.3 for maxNum = 4, tol = 0.1, n = 0.5 and
7 = 0.9. We have that according to our model, inactivation of ROR~t and activation of IL-2 and
TGF-p for about 4.4 time units perform the desired switch. We take the result from Algorithm 5.3
as an initial guess “u for Algorithm 5.1 with the parameters o = 0.5, T = 20 and At = 0.1 where
the remaining parameters are set as in Subsection 5.1.2. In Figure 6.2.4b we see the results. We have
that the inhibition of IL-6, ug and IL-6R, w19 supports the switch, that means that by the supporting
external stimuli the network switches faster to the Treg cell. We stress that by virtue of the self
activation of ROR~t, according to our model, a direct knock down of ROR~t is necessary to induce
the switch.

A switch from Th17 to Treg is described for example in the tumor setting [17] where soluble factors
contained in ovarian cancer ascites are capable of mediating the transdifferentiation from Thl7 to
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Treg. While the Foxp3-inducing effect of the cancer ascites is mimicked by the addition of recombinant
TGF-S this is not the case concerning suppression of IL-17A expression. Consequently, the cancer
ascites must contain additional factors which suppress ROR~t expression. This is according to what
we show in the present work a prerequisite to complete the switch from Th17 to Treg.

Also with the example we can see the advantage of the presented framework with respect to
finding essential molecular agents in the ascites that are important for the switch from Th17 to Treg.
We get a hint by the calculation what other molecular agent is necessary for the switch. Then the
molecular agents contained in the ascites can be analyzed with respect to the question if they have the
required feature and thus decrease the number of experiments that have to be done in order to find
the responsible molecular agents. Another way to use the framework favorably for shorten series of
experiments is the following. We only have to analyze systematically the effect of the single molecular
agents contained in the ascites on the regulatory network. Once this information is available we can
figure out a promising selection out of all the molecular agents that is responsible for the switch
instead of performing real experiments for all combinations of possible molecular agents. This number
of experiments scales exponentially while the number of measuring each effect of each single molecular
agent scales only linearly. The method becomes more important the more different agents necessarily
have to interact for an observed outcome of an experiment and the more possible agents exist that
might contribute to the outcome of an experiment.
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(a) External stimuli calculated by Algorithm 5.3 where us (b) Result calculated by Algorithm 5.1 where u4 activates
activates IL-2, ur activates TGF-f and ug inhibts ROR~t. IL-2, ur activates TGF-3, ug inhibits ROR~yt, wg inhibits
IL-6 and w10 inhibits IL-6R.

Figure 6.2.4: External stimuli that cause a switch from Th17 to Treg where in the left figure there is a
small set of external stimuli that performs the desired switch calculated by Algorithm 5.3 and in the
right figure we calculate further external stimuli that support the desired switch with Algorithm 5.1.
The time is on the abscissa and the activity level is on the ordinate.

In our experiments which we perform with the present network, we notice that once the network
has taken a steady state corresponding to a T-cell type Thl, Th2, Th17, Treg, the corresponding
attractor is quite robust under perturbations of our external stimuli and is stable with respect to
switches between different cell types. However, according to our model presented here in the external
stimuli framework for desired switches, roughly spoken, mostly, one has to knock down the lineage-
specifying transcription factor of the cell type in which one starts and activate the related cytokines
and lymphokines of the desired cell type in order to induce the desired switch of cell types into any
desired one, that means Thl, Th2, Th17 or Treg, see Table 6.4.

We remark that perturbations by our external stimuli framework proposed in (4.2.1) or (4.2.2)
differ from just perturbing the initial values of the network. In the proposed framework of external
stimuli, the duration of application can be varied that cannot be done in the case of perturbing initial
values of the network’s nodes. Activating or inhibiting external stimuli can act sufficiently long such
that inertial network effects can be overcome, for example activated nodes can decay and inactivated
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nodes can be activated sufficiently long by others until they reach a certain threshold such that the
network relaxes into its desired state. For example, if one takes the steady state associated with the
Th17 cell type as an initial state of the network where additionally the initial value for RORA~t is set to
zero and the initial value for 1L-2 and TGF-{ is set to one according to the external stimuli proposed
in Figure 6.2.4a, then the network relaxes back to the steady state corresponding to the Th17 cell type.
This behavior results as just the perturbation of the initial state does not reach a necessary threshold
of the activity levels which would cause the relaxation of the network to the desired state, which is the
steady state associated with Treg. Thus these perturbations are not sufficient to perform the desired
switch. This shows that the inertial network effects can overcome perturbations of the initial states or
initial values, respectively, but not if the perturbations of the corresponding nodes last sufficiently long
and go beyond a perturbation of an initial state. Then a desired switch can happen. Furthermore, in
contrast to our external stimuli framework, it is difficult to implement perturbations of the initial state
of a real biological network in an experimental setting because this means, based on the example of the
Th17 cell mentioned above, that one has to set up a cell with an expression level where the expression
of ROR~t is low while at the same time the expression level of 1L-17 and IL-6 is high. This might
not be possible as the transcription of 1L-17 and IL-6 directly depends on the presence of ROR~t, see
Figure 6.2.3.

For the experimental realization of our predictions, cytokines and cytokine receptors can be readily
inhibited, for example by monoclonal antibodies or the receptors stimulated by recombinant cytokines.
For the T-cell lineage-specifying transcription factors like ROR~yt therapeutic targeting is more difficult
in principle. However, in the case of ROR~t with digoxin or with compounds like GSK805 specific
inhibitors are available also for clinical use [60, 59].

In addition a knock out of lineage-specifying transcription factors is also possible, but the knock out
changes the topology of a network and thus is not covered by our model so far. Nevertheless knocking
out the T-cell lineage-specifying transcription factor and activating cytokines for cell polarization into
the desired T-cell type might also work to induce the desired switch. This intuition comes from the
fact that each lineage-specifying transcription factor is connected to each other, see Figure 6.2.3, which
might provide a robustness with respect to a knock out of a lineage-specifying transcription factor
since an active lineage-specifying transcription factor is connected to all the others and thus inhibits
the remaining ones.

Next, we equip the network with the following external stimuli and calculate sufficient external
stimuli to switch from one T-cell type to another. The dark red nodes are equipped with an inhibiting
stimulus that means Tbet with uy, GATA3 with us, Foxp3 with ug and ROR~t with uy. All the yellow
nodes are equipped with an activating stimulus. That means TCR with us, IL-18 with ug, IL-12 with
uy, 1L-23 with ug, TGF-8 with ug, IL-2 with w19 and IFN-/ with uq1. It is summarized in Table 6.3 on
which node the external stimulus acts where a minus sign indicates that the external stimulus inhibits
the corresponding node.

| Thet | GATA3 | Foxp3 | RORyt | TCR | IL-18 | IL-12 | IL-23 | TGF-8 | IL-2 [ IFN-3 |

L cun [ ocue [ ug [ cwa | ows | ws | owr [ us | wg | wio [ un |

Table 6.3: The external stimuli that act on the corresponding node where a minus sign indicates
inhibition.

We take the output of Algorithm 5.3 as an initial guess for Algorithm 5.1 where the parameters
are set as above for the first experiment in this subsection. The results are shown in Table 6.4 where
the calculations are performed with two different o in (5.1.3). In the case where no external stimulus
is found we would have to insert more external stimuli into the network and in this way new network
interventions or targets can be found that cause the desired switch. We remark if no external stimulus
is found by our algorithms does not necessarily mean that there is no switch possible with the given
external stimuli. Next, we see that we do not find any external stimulus to dedifferentiate Th2 or Th17
back into Th0. However it is possible to transform a Th2 cell into a Thl, Th17 or Treg cell and a Th17
cell into a Treg cell. This might indicate that it is not necessary to completely first dedifferentiate a cell
and then differentiate it again into a new cell but to switch the molecular effects in a cell at a certain
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point such that the cell develops its expression pattern into the desired cell type without completely
shutting the specific expression pattern down.

‘ Switch a=0.1 o =2 Algorithm 5.3
ThO to Thl Ug Ug Ug
ThO to Th2 Us Us Uus
ThO to Th17 us us ug
ThO to Treg ug, (+ug; a = 0.001) Ug Ug
Thl to ThO Ul Uq Uq
Thl to Th2 UL, Us ul, Uus U1, Us
Thl to Thl7 U, ug Ui, Ug Ui, us
Thl to Treg U1, Ug U1, Ug U1, Uy
Th2 to ThO no stimulus no stimulus no stimulus
Th2 to Thl U2, U11, (+U4; o= 0.0001) U2, U1 U2, U1
Th2 to Th17 U2, U9, U1 U9, Ug, U1 U9, Ug, U1
Th2 to Treg Uo, U4, Uy, ULQ U, Ug, Ug, UL, (—Ug; @ = 3) Ug, Ug, U0
Th17 to Th0 no stimulus no stimulus no stimulus
Th17 to Thil g, 10 switch no stimulus no stimulus
Th17 to Th2 g, N0 switch no stimulus no stimulus
Th17 to Treg Uy, Ug, ULQ Ugq, U9, ULQ Ug, Ug, ULQ
Treg to ThO Uus U3 Uus
Treg to Thl us, Ug us, Ug usz, Ug
Treg to Th2 us, Us us, Uy us, Us
Treg to Th17 usz, Us ugz, U u3, Ug

Table 6.4: External stimuli causing the desired switch between two types of T-cells. The information in
brackets means that for the given « further external stimuli are found, indicated by the plus sign and
a minus sign indicates that if « is sufficiently big, Algorithm 5.1 reduces the corresponding selection of
external stimuli by the external stimulus given in brackets. For further explanation see the text above.

6.3 Finding external stimuli causing a desired expression pattern

In this section, we demonstrate how in principle the framework discussed in Section 5.2 can be used to
calculate external stimuli that keep the network in a desired expression pattern where not necessarily
all nodes have to have a given expression level. For this purpose, we consider a gene regulatory network
for a myocardiocyte given in [11] that is fitted to experimental data. The activity levels of the nodes
are restricted to [0, 1]. We equip the network with different selections of external stimuli several times
and compare the different results of the method that determines the optimal combination of certain
external stimuli. These external stimuli can be associated for instance with pharmacological targets or
any intervention that is intended with the corresponding experiment. Moreover, we show how (5.2.1)
can be used to order different selections of external stimuli with respect to their capability of steering
the network to its desired expression pattern. Based on this, we illustrate why the presented framework
is an objective method to compare different treatment strategies. The network’s graph, which we use,
is shown in Figure 6.3.1.
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non-hypertrophic stimulus hypertrophic stimulus
carbachol . q
angiotensin Il

i

Figure 6.3.1: The graph of a network associated with a myocardiocyte analogous to [11, Fig. 1]

We use (4.2.2) if not otherwise stated where h = 10 and wg, k € {1,...,26} are taken from [11]
and are given as in Table 6.5. The mechanism that implements the external stimuli is defined for each
experiment separately except ng; = 0 for all k£ € {1,...,m} and all j. The nodes AND and SYSTEM
STATE have no biological equivalent. The node SYSTEM STATE is not in the network but is used
to permanently activate RKIP and GRK2 to model their constitutive expression in our model of a
myocardiocyte. Furthermore, the node SYSTEM STATE activates the node AND such that we have
that ERK1/2 dim 3P can only be activated if ERK1/2 dim and GdB,y are acti\;e at the same time. The

L1 1

equations for node 1, node 10 and node 26 are given as follows <3t = —w1, 3% = —w10 that can be

supplemented by activating external stimuli according to (4.2.2) and d;:% = 1 — x9¢ that ensures that
the activity level of SYSTEM STATE is constantly one in order to activate node 14, node 16 and node
17.
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’ k ‘ name of the node ‘ W ‘
1 | non-hypertrophic stimulus
2 carbachol 141:13(6);1
3 Gi-coupled Ms receptor 1Jlr11f)2;2
3
4 RAS (GTP bound) e )
11 1.01
b Rafl 107, (1 B 1+0.0ﬁ414)
6 MEK1/2 £
7 ERK1/2 dim 2P B T
; DIORSK m
9 p70S6K o
10 hypertrophic stimulus
11 angiotensin 11 1242?0
12 | Gg-coupled AT} receptor 1?5;111
31
(10w3+10z12+10w20
13 PKC 1+10x3+101’12+10x20
2 11
14 RKIPD 2o (1 o)
15 RKIP dim et
2 31
16 GRK2 2o (1- )
2 101
17 AND )
18 isoproterenol 131%1;10
19 Gg-coupled 1 receptor lJlrllf)?lg — l}r'()lﬁfle)
TT
20 Epac 1 T T0as
22 (10z12+10x19)
21 G,y 210+10mz+10m19
22 ERK1/2 dim 3P dlea (1 - 2o )
23 Elk1 ot
24 MSK1 o
25 c-Myce 11%?22
26 SYSTEM STATE

Table 6.5: Parameters for the network shown in Figure 6.3.1 according to the model (4.2.2).

We have for the parameters o1; = (;; = 0 if the external stimulus u; has no effect on the node k,
or; = 1 if the external stimulus has an activating effect on the node k and (;; = 1 if external stimulus
has an inhibiting effect on node k. It is stated if we use different values for the parameters than these
ones in the present section.

In our case, we associate a high activity of the nodes p90RSK (node 8) and p70S6K (node 9) with
beneficial effects and a high activity of the nodes Elk1 (node 23), MSK1 (node 24) and c-Myc (node
25) with maleficent effects. Therefore, we desire a high activity for p90RSK and p70S6K and a low
activity for Elkl, MSK1 and c-Myc. We define these five nodes as our nodes of interest and choose
for the desired expression pattern the first two agents constant one and the last three agents constant
zero. The weights g for the first two agents in the target functional (5.2.2) are equal 5 and for the
other three equal 1 to compensate the fact, that we have two beneficial nodes and three maleficent
ones and thus give the beneficial effect altogether the same weight as the maleficent effect. However it
is not necessary that beneficial and maleficent effects have that same weight. It is just an exemplary
choice of the g, see Remark 5 for what g, can be utilized.

For our experiments, we always have xg the constant zero vector except the last entry is set to
1 which is the initial value of the node SYSTEM STATE. Furthermore, for the experiments, we use
Algorithm 5.4 for numMax = 10 or at most the number of external stimuli if there are less than 10
external stimuli and numInt = 3 to obtain the initial guess for the sequential Hamiltonian (SQH)
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method, see Algorithm 5.2, with its recommended parameter values except £ = 10714 and o = 0 if not
otherwise stated. The final time is chosen by T = 20.

For our first experiment, we have an activating external stimulus on the node carbachol, angiotensin
IT and isoproterenol. When the SQH method converges, we have Jy = 4.802759 and in Figure 6.3.2,
we can see the time curves of the external stimuli which are not the zero function and the time curves
of the states of interest. We see that we mainly obtain an activation of carbachol which one can expect
according to the schematic depicted in Figure 6.3.1. We see that an activation of carbachol leads to
the activation of the beneficial nodes. The short pulse of angiotensin IT supports this effect and the
maleficent nodes decay after a short and weak activation.
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(a) Time curve of the external stimuli where u; activates (b) Time curve of the nodes of interests where zs is the

carbachol and uy activates angiotensin II. activity level of p90RSK, zg is the activity level of p70S6K,
x23 is the activity level of Elkl, xo4 is the activity level of
MSK1 and x25 is the activity level of c-Myc.

Figure 6.3.2: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.

In Figure 6.3.3, we see the result where we just have an activating external stimulus on carbachol.
The target functional value Jy = 4.805384 when the SQH method converges. If we compare the target
functional value with the first experiment, we see that it is just a bit bigger and thus both selections of
external stimuli can be seen as equivalent with respect to causing an activity level close to the desired
one.
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(a) Time curve of the external stimulus where u; activates (b) Time curve of the nodes of interests where zs is the

carbachol. activity level of p90RSK, zg is the activity level of p70S6K,
23 is the activity level of Elkl, z24 is the activity level of
MSK1 and z25 is the activity level of c-Myec.

Figure 6.3.3: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.
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In our third experiment, we have an activating external control just on angiotensin II and isopro-
terenol. When the SQH method converges, we have Jy = 28.70478. In Figure 6.3.4, we have the time
curves of the external stimuli which are not zero and of the nodes of interest. Compared with the
two other experiments, the target functional is much higher which means that an activating external
stimulus on carbachol is essential for an activity level of the network’s nodes of interest close to our
desired activity level compared among carbachol, angiotensin IT and isoproterenol.
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(a) Time curve of the external stimuli where u; activates (b) Time curve of the nodes of interests where zs is the

angiotensin II and ug activates isoproterenol. activity level of p90RSK, zg is the activity level of p70S6K,
23 is the activity level of Elkl, z24 is the activity level of
MSK1 and x5 is the activity level of c-Myec.

Figure 6.3.4: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.

In our fourth experiment of the present section, we have activating external stimuli on angiotensin
IT and isoproterenol and one inhibiting external stimuli on ERK1/2 dim 3P. When the SQH method
converges, we have Jy = 5.513235 and the corresponding time curves shown in Figure 6.3.5. As the
target functional value is close to the one with the experiments where carbachol is activated, we can
say that the selection of external stimuli activating angiotensin II and isoproterenol while inhibiting
ERK1/2 dim 3P is equivalent to the one where we just activate carbachol compared on the basis of
the corresponding target functional values Jj.
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(a) Time curve of the external stimuli where u; activates (b) Time curve of the nodes of interests where zs is the

angiotensin II, up activates isoproterenol and ws inhibits activity level of p90RSK, zg is the activity level of p70S6K,

ERK1/2 dim 3P. 23 is the activity level of Elkl, z24 is the activity level of
MSK1 and z25 is the activity level of c-Myec.

Figure 6.3.5: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.
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In Figure 6.3.6 left one, we have the activity level of ERK1/2 dim 3P which is of course an extreme
case as we have a very strong inhibition. However, it demonstrates that for a strong inhibition of the
ERK1/2 dim 3P, this treatment strategy is almost as good as using an activating external stimulus
only on carbachol, see the first two experiments in the present section.

It is possible to fit an external stimulus’s ability for inhibition by the parameter (; in (4.2.4) such
that the corresponding node has the measured activity level when the inhibitor is active. For this
purpose, the parameter (22 3 can be decreased and thus the activity level of ERK1/2 dim 3P increases
for (22,3 tending to zero, see Figure 6.3.6 right one.
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Figure 6.3.6: The time is plotted on the the abscissa and the activity level of the ERK1/2 dim 3P in
the forth experiment is plotted on the ordinate. Left figure with (223 = 1 and right one with (223 = 0.8
in (4.2.2).

These four experiments of this section demonstrate how our optimization framework can be used
to compare different control strategies with respect to their ability for steering the activity level to the
desired activity level of the network’s nodes. Once the parameter like T and weights g are fixed, then
the smaller the target functional value of a certain control strategy is, the more beneficial effects and
the less maleficent effects the selection of external stimuli causes. By this procedure, we can determine
the most efficient external stimuli that drive the notwork to a desired state and then sort different
selections of external stimuli or asses them with respect to their corresponding target functional value
given by (5.2.1). The optimization framework serves as an objective method to determine the time
curves of the external stimuli such that we have the lowest target functional value possible for the
given selection of external stimuli. That means, by our calculations, we figure out the best achievable
target functional value that is possible with a certain selection of external stimuli. That means any
application of the corresponding treatment is objectively determined by the optimization algorithm
and is not liable to the user. We stress that the user just influence on which node an external stimuli
acts. Each time curve is then automatically given by the optimization framework, namely by solving
(5.2.3). This is where the objectivity comes in. See for example Figure 6.3.4.

However it is clear, that in a real experiment it may be difficult to meet the exact theoretically
time curve with the corresponding external stimulus. Also in this case, our framework provides the
possibility to compare in silico the corresponding treatments by comparing the target functional values
given by (5.2.1) where the time curves of the corresponding external stimuli are set according to their
application in the real experiment. The optimization framework gives the theoretically best value of
the target functional in order to compare treatment strategies in principal if one applies the external
stimuli according to the corresponding time curves given by the optimization. This means that the
target functional value from the optimization method is a lower bound for all the target functional
values that can be created with a therapy due to different time dependent applications where the
intensity of application varies.
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6.4 Comparing different treatment strategies quantitatively

In this section, we consider the case where a constitutively activated node alters the activity pattern
of a network. A constitutively activation of receptors can be caused by mutations in the receptor itself
or its corresponding signal protein. Another example is cell-cell-interaction where a constitutively
activated receptor can be caused by secretory cells that constitutively secret the corresponding signal
molecule. The presented framework in combination with constitutively activated receptors can also be
used in modeling oncogenesis where constitutively activated pathways play a role [14, 20, 29]. Another
example is the inhibition of p53 or Retinoblastoma (Rb) protein after a virus infection. This is caused
by constitutively translated proteins that bind to p53 or Rb to enhance cell proliferation which is needed
for the virus reproduction [44, 33, 63]. This can be modeled analogous to the constitutively activated
receptors where the other way round the activity level of the corresponding node is constitutively
inhibited by the external stimuli associated with this effect of the virus infection. That illustrates that
an external stimulus can also be a virus or the effect of its infection, respectively which the presented
framework is able to cover in the described way.

In our example we use the network from Section 6.3 where the Gg-coupled (1 receptor (node 19)
is constitutively activated such that it has continuously about 30% of its maximum activity level.
To model this, we equip its corresponding activating node isoproterenol (node 18) with the term
40.058 — 15 such that the corresponding equation is given by df# = 0.058 — x18. Furthermore in our
experiment node 10 (hypertrophic stimulus) is not activated and thus stays at zero if an initial value
of zero is chosen. This ensures that isoproterenol stays at a constant level of 5.8% of its maximum
activation which has the consequence that the Gg-coupled S receptor has about 30% of its maximum
activity level, see Figure 6.4.1.

As in Section 6.3, we associate a high activity of the nodes p9ORSK (node 8) and p70S6K (node
9) with beneficial effects and a high activity of the nodes Elk1 (node 23), MSK1 (node 24) and ¢-Myc
(node 25) with maleficent effects, that is why we desire a low activity for them. We define these five
nodes as our nodes of interest and choose the desired state for the first two ones constant one and for
the last three constant zero. The weights g for the the first two are again equal % and for the other
three equal 1. We always have xy equal the constant zero vector except the activity level for AND,
GRK2 and SYSTEM STATE equal 1 and we use Algorithm 5.4 for numMax = 10 and numInt = 3 to
obtain the initial guess for the sequential quadratic Hamiltonian (SQH) method (Algorithm 5.2) with
its recommended parameter values except £ = 10714 and o = 0 if not otherwise stated. The final time
is chosen by T = 60.

If the network is unperturbed, that means no further intervention to the network depicted in
Figure 6.3.1 is done, then the constitutively activated Gg-coupled Si receptor causes the following
activity pattern in the network, where we show the activity level of some nodes in Figure 6.4.1 with
Jo = 160.1896 given in (5.2.2). We see that the activity level of the nodes associated with maleficent
effects (node 23, 24, 25) are highly active while the nodes associated with beneficial effects (node 8,
9) are at a very low activity level. Furthermore, we see that a constitutively activated receptor is able
to hold the network in a certain state that means a constant expression pattern. Thus the expression
pattern of the network is also constitutively altered compared to the steady state in which the network
would be if the receptor was totally inactive.
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Figure 6.4.1: On the abscissa, we have the time and on the ordinate the activity level for PKC (node
13), RKIP (node 14), RKIP dim (node 15), GRK2 (node 16), isoproterenol (node 18), Gs-coupled
B1 receptor (node 19), p90RSK (node 8), p70S6K (node 9), Elkl (node 23), MSK1 (node 24), c-Myc
(node 25).

Now, we show how to apply our framework to discuss different treatment strategies that improve
the expression pattern in our favor. A strategy to reduce the target functional value which means
that it increases the beneficial effects is to inhibit the Gg-coupled 51 receptor which we call the g-block
strategy in this work. When the SQH method converges, we have Jy = 90.09628. The results are shown
in Figure 6.4.2 and some activity levels of nodes in Figure 6.4.3. The time curve of the corresponding
external stimulus is maybe a delicate issue in a real experiment. With a constant external stimulus
with value 0.2, we have the value of the cost functional Jy = 90.10581. Therefore, it is not needed to
have such a highly structured time curve as shown in Figure 6.4.2 because we get the same order of
magnitude of the target functional with the corresponding constant external stimulus. Notice that it
is sufficient to reduce the activity level of the Gg-coupled (37 receptor from about 30% to about 24%
such that the activity level of Elk1, MSK1 and ¢-Myc drops from about 100% to 1%. That means that
we have identified a threshold in the activity of the Gg-coupled (1 receptor for the activity of these
three nodes Elk1, MSK1 and c-Myec.
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(a) The external stimulus u; inhibits the Gs-coupled §;1 re- (b) Time curve of the nodes of interests where zs is the

ceptor. activity level of p90RSK, zg is the activity level of p70S6K,
23 is the activity level of Elkl, x24 is the activity level of
MSK1 and z95 is the activity level of c-Myec.

Figure 6.4.2: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.
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Figure 6.4.3: On the abscissa, we have the time and on the ordinate the activity level for PKC (node
13), RKIP (node 14), RKIP dim (node 15), GRK2 (node 16), isoproterenol (node 18) and Gg-coupled
p1 receptor (node 19) where the Gg-coupled 3 receptor is inhibited.

If it is not possible to inactivate the Gg-coupled (31 receptor, then one can inhibit the PKC instead.
The results are shown in Figure 6.4.4 with Jy = 90.09628.

bR}

0.8 J ‘
||

o7 i ‘

06 H

05 ‘

0.4 | ‘

0.3 H

02 |‘

0.1 ‘ ||

0 20 4n 80
time

1

05

0

0.04

002

0.04

0.0z

x10?

)

<103

Ly

0.5

o

20
T23

an

time

20 an
T4

time

ol

0n.04

n.n2

o

20
26

an

time

o Les

o

20

an

time

20 an

B0
time

(a) The external stimulus u; inhibits PKC. (b) Time curve of the nodes of interests where xg is the

activity level of p90RSK, zg is the activity level of p70S6K,
x23 is the activity level of Elkl, xo4 is the activity level of
MSK1 and z25 is the activity level of c-Myc.

Figure 6.4.4: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.

Alternatively, we can remove RKIP from the system. Notice that then there is no RKIP dim,
which is the dimerization of RKIP, in the system and thus, we have to inhibit the node corresponding
to RKIP dim simultaneously such that the activity level of RKIP dim decays. That means that the
corresponding external stimulus effects two nodes at once and appears in both corresponding equations
describing the evolution of the node RKIP and RKIP dim, respectively. The results can be seen in
Figure 6.4.5 with Jy = 90.09642. This means that this treatment strategy is equivalent to the one
presented in Figure 6.4.4. This comes from the fact that both treatment strategies inactivate Elk1,
MSK1 and c-Myec.
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(a) The external stimulus w; inhibits RKIP and RKIP dim (b) Time curve of the nodes of interests where zs is the

at once. activity level of p90RSK, zg is the activity level of p70S6K,
To3 is the activity level of Elkl, xo4 is the activity level of
MSK1 and z25 is the activity level of c-Myc.

Figure 6.4.5: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.

In Figure 6.4.6, we can compare the time curves for PKC, RKIP and RKIP dim for inhibiting PKC
(left picture) and inhibiting RKIP/RKIP dim. We see that it is sufficient to lower the activity level of
RKIP dim just from 1 to about 0.8, compare with Figure 6.4.1 for instance, in order to decrease the
activity levels of of Elkl, MSK1 and ¢-Myc to a low level. This makes sense according to the schematic
shown in Figure 6.3.1 because GRK2 is not inhibited and inhibits in turn the Gg-coupled S receptor.
By the fitting of the network we have in this example that already a small decreasing of the activity
level of RKIP dim causes the desired decreasing of the activity level of Elkl, MSK1 and c-Myec.

These treatments results at least in a low activity of Elkl, MSK1 and c-Myc. However, the time
curves for the nodes p90RSK and p70S6K stay at a very low level. This means that the used strategy
is not able to activate these nodes. However it reduces the activity level of the nodes Elkl, MSK1 and
c-Myc. To have a further improvement, we equip the network with further external stimuli in the next
experiment.

13 T T3 T4
1 - 1 . . L e e ——— 9 .
A /
fl " |
| Il |
| | it 0.2 ||
|
ospl | H 05 o6 || 05
|| | || | | |
h A bl 04 |
[ ——— | Nk Y | \
ob— p > > n2 [A J
0 20 40 G0 0 20 40 50 o] 20 40 50 0 20 40 50
fime time time time
Iys Ig
Ura - 1 :
[
[ |f \f \
- | [l ﬂ
0.5 o5 | il
‘ I
N [
f
i o
6 S LU~ —\ |
0 20 40 GO o 20 40 . GO
time time

Figure 6.4.6: On the abscissa, we have the time and on the ordinate we have the activity level of PKC
(node 13), RKIP (node 14) and RKIP dim (nodel5). On the left hand-side PKC is inhibited and on
the right hand-side RKIP and RKIP dim is inhibited which can be realized by for example removing
RKIP and RKIP dim from the system in a real experiment.

We equip the nodes PKC (u;), RKIP (u2), RKIP dim (u2), ERK1/2 dim 3P (us), Gs-coupled /1
receptor (u4) and Ras (GTP bound) (us) with inhibiting external stimuli and the nodes angiotensin 11
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(ug) and isoproterenol (u7) with activating external stimuli. We set (22,3 = 0.95 which means that the
external stimuli us cannot totally inactivate ERK1/2 dim 3P. In Figure 6.4.7, we can see the results.
Notice that we now have high activity levels for the nodes p90RSK and p70S6K and still a low activity
level for the nodes Elkl, MSK1 and c-Myc which results in a lower target functional value than in the

last experiment. We have a target functional value Jy = 6.594448.
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(a) Time curves of external stimuli where w1 inhibits PKC, (b) Time curves of the nodes of interests where xs is the
uz inhibits RKIP and RKIP dim, wus inhibits ERK1/2 activity level of p90RSK, z9 is the activity level of p70S6K,
dim 3P, us Gs-coupled 31 receptor, us inhibits Ras (GTP z23 is the activity level of Elkl, xo4 is the activity level of
bound), ue activates angiotensin II and w7 activates isopro- MSK1 and 25 is the activity level of c-Myec.

terenol.

Figure 6.4.7: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.

In Figure 6.4.7, there are many active external stimuli. By increasing v > 0, we reduce the number
of active external stimuli and thus we extract the most effective external stimuli which have much effect
on reducing the target functional value. For @ = 0.8, we only have uz, ug and u; as active external
stimuli. The results can be seen in Figure 6.4.8.
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(a) Time curve of external stimuli where us inhibits ERK1/2 (b) Time curve of the nodes of interests where zs is the

dim 3P, ug activates angiotensin IT and u; activates isopro- activity level of p90RSK, zg is the activity level of p70S6K,

terenol. 23 is the activity level of Elkl, z24 is the activity level of
MSK1 and z25 is the activity level of c-Myc.

Figure 6.4.8: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.
If we perform the same experiment just with the active external stimuli from Figure 6.4.8 for « = 0

where we only use Algorithm 5.4, then we obtain Jy = 7.118559 for the full activity of us and wur
where the activity level of the Gg-coupled 1 receptor is about 98% of its maximum activity level and
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Jo = 7.107087 for full activity of us and ug where the activity level of the Gg4-coupled AT; receptor
is about 98% of its maximum activity level which is almost the same target functional value as in the
case with many external stimuli more shown in Figure 6.4.7. This demonstrates that this combination
of external stimuli ug and w7 or ug and ug are the essential ones to obtain a beneficial effect on the
network, which means to have a low target functional value. While the other external stimuli also have
beneficial effects, their contribution is minor compared to the effects of ug and ur or ug and ug. We can
say that compared with the value of the target functional of the unperturbed system (Jp = 160.1896)
the treatment strategies us and wy or us and ug are equivalent with the one shown in Figure 6.4.7
where the big advantage is that only two stimuli have to be applied instead of seven.

We remark without the external stimulus us, we are just able to obtain a target functional value of
Jo =~ 89, which stresses the importance of the inhibition of ERK1/2 dim 3P for achieving of a beneficial
state for the network.

Next, we investigate to what activity level we have to knock down ERK1/2 dim 3P in order to
be still as good as just inhibiting the Gg-coupled f; receptor, PKC or RKIP/RKIP dim, that means
to obtain a target functional value Jy ~ 90 where only the maleficent nodes have a low activity level,
however also the beneficial nodes. We choose the treatment strategy where us inhibits ERK1/2 dim
3P (node 22) and ug activates angiotensin IT (node 11). For this purpose, we use Algorithm 5.4 for
different values of (223 which models the strength how much the activity level of ERK1/2 dim 3P
can be inhibited by the external stimulus us. The results are presented in Table 6.6, where for each
experiment the external stimuli are fully active. We see that if the activity level of ERK1/2 dim 3P
is at least at 10% of its maximum activity then, we still have a small target functional value Jy ~ 20
compared with Jy ~ 90 which is achieved by just applying our S—block strategy mentioned above.
Furthermore, as the activity level of p90RSK and p70S6K are at 1 for all (223 in Table 6.6, we have
that at about 5% of the maximum activity level of ERK1/2 dim 3P the maleficent effects abruptly
rise (activity levels of Elkl, MSK1 and c¢-Myc), see also Figure 6.4.9, which can be associated with
an abrupt worsening of the treatment which does not mean that the treatment is already worse. For
example it can be that also higher values of Jy are tolerable in vivo for the desired beneficial effects
while the maleficent effects are still not noticeable.

In addition if one has a further restriction like that the activity level of Elkl, MSK1 and c¢-Myc
is supposed to be below 15%, then one can see from Table 6.6 that the activity level of ERK1/2 dim
3P is supposed to stay below 5% of its maximum activity level. Additionally we still have a high
activity level of p90RSK and p70S6K in contrast to the treatment strategy where one inhibits just the
Gs-coupled B; receptor or PKC or RKIP/RKIP dim. Furthermore, we see from Table 6.6 that the
more we are able to inhibit ERK1/2 dim 3P the better it is for the treatment, that means the lower
the activity levels of Elkl, MSK1 and c-Myc are.

In Figure 6.4.10, we can see the corresponding time curve for the activity level of ERK1/2 dim
3P at 10% of its maximum level. In this case the activity level of p90RSK and p70S6K is 1 and of
Elk1, MSK1 and ¢-Myc is between 0.3 and 0.5. We conclude that if the activity levels of p90RSK and
p70S6K are low in spite of a constitutively activated Gg-coupled S; receptor, one can recommend to
activate the Gg-coupled (1 receptor even more by angiotensin IT until the activity levels of p90RSK
and p70S6K are high if one can manage it at the same time to have the activity level of ERK1/2 dim
3P at at most 10% of its maximum activity level by some treatment. In other words, when inhibiting
ERK1/2 dim 3P, we can have that a hypertrophic stimulus becomes a non-hypertrophic stimulus.
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Activity level in %

‘23 | o "ERKT/2 dim 3P [ Elkl [ MSKI [ c-Myc

1 [ 6.08 0 0 0 0
0.99 | 6.08 1 1 1 1
0.95 | 7.12 5 14 | 11 8
0.92 | 12.89 8 35 | 29 22
0.9 | 20.81 10 50 | 43 35
0.8 [ 63.57 20 88 | 8 80
0.7 [ 78.90 30 96 | 9 93
0.6 [ 83.98 40 98 | 97 97

Table 6.6: Results for different (29 3 from Algorithm 5.4.
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Figure 6.4.9: The activity level of ERK1/2 dim 3P is plotted on the abscissa and the value of Jy is
plotted on the ordinate. We see an abrupt rising of the value of Jy which can be interpreted as an

abrupt deterioration of the corresponding treatment. Data points are taken from Table 6.6.
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(a) Time curve of external stimuli where us inhibits ERK1/2 (b) Time curve of the nodes of interests where zs is the
activity level of p90RSK, zg is the activity level of p70S6K,
Z22 is the activity level of ERK1/2 dim 3P, x23 is the activity
level of Elk1, xo4 is the activity level of MSK1 and x5 is
the activity level of c-Myc.

dim 3P and wug activates angiotensin II.

Figure 6.4.10: The time is plotted on the the abscissa and the activity level is plotted on the ordinate.

Remark 8. The framework used in this section and introduced in Section 5.2 can also be used to induce
a switch between two different steady states of a network. We repeat the experiment from Subsection
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6.2.1 with the corresponding model to demonstrate that the presented framework also figures out the
receptors that are associated with irreversible platelet aggregation. We recall that as known from [39]
the irreversible platelet aggregation is associated with a high activity of integrin. We start with the
steady state associated with the reversible platelet aggregation where the activity of integrin is low
and choose as the node of interest the node that is associated with integrin. We desire this node to
have an activity level that equals 1. We use the result from Algorithm 5.4 for = 0.01, numMax = 2
and numlInt = 3 as the initial guess for the external stimuli for Algorithm 5.2 with the recommended
parameters except £ = 107, The constant non zero external stimuli from Algorithm 5.4 are set to
zero at the end of the interval [0, 7] from Algorithm 5.2 and thus the network relaxes into the desired
steady state. We obtain the results in accordance to Figure 6.2.2 left one which means that the system
is in the desired steady state and the same external stimuli are active and the same are inactive.

We also repeat the experiment from Subsection 6.2.2 with the corresponding model to induce a
switch from the steady state that is associated with a Th-17 cell to the steady state that is associated
with a regulatory Treg cell. The lineage-specifying transcription factor for Treg is Foxp3. For this
purpose, we choose only Foxp3 as our only node of interest and desire it to have the value 1. We use
the result from Algorithm 5.4 for & = 0.1, numMax = 5 and numlInt = 3 for the initial guess for the
external stimuli for Algorithm 5.2 with the recommended parameters except £ = 10~'* and obtain
results in accordance to Figure 6.2.4. This means that the network is in the same desired state at the
end of the interval [0, 7] where the non zero external stimuli from Algorithm 5.4 are set to zero at the
end of the interval [0,T] by Algorithm 5.2 such that the same external stimuli are active and the same
are inactive.
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Chapter 7

Discussion of the results

This section is devoted to a concluding discussion of the results that were presented in this thesis
and their relation to biology. The basic idea of this work was to apply the well developed theory of
mathematical optimal control problems to biomedical problems and to demonstrate its advantages for
the systematical search for new intervention points in molecular networks. The principal aim of the
work was to set up a framework based on mathematical control theory that allows a further exploiting
of already existing data for the issue of efficient manipulation of molecular networks to induce desired
effects to support biomedical and biological research. Thus a bioinformatic tool was generated that
contributed to efficient network analysis.

The work completely focused on tailoring the abstract formulation of optimal control theory to
concrete biological and biomedical applications. For this purpose the work firstly collected all the
theoretical mathematical concepts and methods that were necessary, secondly linked them to their
biological meaning and thirdly also provided a software implementation based on Mathworks Mat-
lab in order to perform concrete calculations whose results were reinterpreted for the initial bio-
logical problem. The corresponding examples also validated the framework. These Matlab imple-
mentations provided with this work can be integrated in already existing software, like Potters-
wheel (http://www.potterswheel.de/Pages/index.php) or Copasi (http://copasi.org/). In Jimena2
(https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing /jimena2/) the Matlab implementati-
ons have already been integrated for additional network analysis. This software package generates the
necessary equations automatically from an interaction graph like Figure 6.2.1 or Figure 6.2.3 and from
a table in which it is denoted where and in which matter certain external stimuli act. The result is an
executable Matlab file where also pre-assembled functions are provided to plot the results to enhance
the practical using.

Because of focusing on a framework that applies existing mathematical theory to biological and
biomedical problems in a practicable way, the presented work contained no mathematical proofs as
it would have been usual if it had been a mathematical thesis. Instead the mathematical equations,
concepts and results of calculations were linked to biology by developing a framework in which the
mathematics was interpreted as a tool for rational analysis of biological and biomedical problems.

Specifically, it was proceeded as follows. Mathematical models of molecular networks consisting of
ordinary differential equations were extended with terms that included the effect of external stimuli,
which could be the action of an experimenter, on the molecular network. Ordinary differential equations
are common to model biological molecular networks, see for example |11, 37, 36, 22, 39]. This extension
was validated on the example of a model of circadian clocks. For this purpose the following results of
experimental work were generated with a single model. In the following the experiments are named
and linked to evidence in literature. The synchronization of the circadian clock to external Zeitgebers
can be found in [25] and in the presented work in Figure 4.3.3, Figure 4.3.4, Figure 4.3.5 and Figure
4.3.10. The restart of the endogenous clock can be found in [61] and in this work in Figure 4.3.9. The
entrainment to different external periods can be found in [4] and in this thesis in Figure 4.3.12. In
addition the effect of relative coordination can be found in [43| and in the present thesis in Figure
4.3.13 and in Figure 4.3.14. The behavior upon a permanent light stimulus with constant intensity
can be found in [3, 30| and in this work in Figure 4.3.17. Phase response curves based on experimental

103



104 CHAPTER 7. DISCUSSION OF THE RESULTS

data can be found in [46, 42, 45] and the theoretical curves can be found in Figure 4.3.20 in the present
work. The synchronization of peripheral clocks to central clocks where also further external stimuli
like food intake for liver cells are considered can be found in [24, 16] and in the present thesis in Figure
4.3.21, Figure 4.3.22, Figure 4.3.23 and Figure 4.3.24.

Next based on the models that include the effect of external stimuli, a general framework was
developed to consider the issue of determining systematically intervention points and corresponding
external stimuli, like chemical agents or physical external stimuli that were detected by receptors.
For this purpose a target functional was defined where the squares of the difference between the
setpoint and the actual value of each relevant molecular agent were added up. Then the task was to
determine the stimuli such that they minimized this functional by steering the corresponding values
of molecular agents as close as possible to the desired values. This concept is also used for biological
problems where model parameters are fit to experimental data such that the theoretical curves fit best
to the experimental curves of the corresponding quantities. However the existing software solutions like
Potterswheel and Copasi are not yet optimized for the systematical investigation of molecular networks
with respect to the analysis of intervention points. The main reason is that these parameters are
constants that cannot change in time which is necessary for certain cases of network analysis for example
if external stimuli after a pulse have to be switched off. Furthermore in the presented framework there
was the possibility given to reduce the possible intervention point to a small number where only the
efficient external stimuli remain. This was done by increasing the weight « in the cost functional
(5.1.3) which was also not covered by the mentioned already existing software packages. For a further
discussion, see Section 5.3. In order to deal with the mathematical task to solve the mentioned optimal
control problem, several mathematical tools and their implementations in Matlab were provided with
this work. In the numerical experiments sometimes the local optimization algorithms took long for
convergence. Therefore for future work it can be put effort into figuring out termination criteria
that stop these algorithms at an iteration where the solution is already sufficiently good for biological
interpretation since mostly there is no need for a mathematical optimal solution in the sense discussed
in Chapter 5, especially (5.1.11) to (5.1.13) or (5.1.14).

The presented optimal control framework was then validated with different biological examples.

For this purpose a gene regulatory network of a platelet was considered with respect to the issue of
triggering irreversible platelet aggregation. The corresponding network had been fitted to experimental
data [39]. Several external stimuli were added to the network. The result of the optimization framework
was that clearly only the two receptors were found that were associated with irreversible platelet
aggregation if activated by adenosine diphosphate, see [39].

In a second example a gene regulatory network concerning the maturation of T-cells from a naive
T-cell into four types, namely Th1l, Th2, Th17 and a regulatory T-cell, was investigated. Specifically
the transdifferentiation from Thl17 to a regulatory T-cell was considered as it is reported in a tumor
setting [17] where soluble factors contained in an ovarian cancer ascites were capable of mediating the
transdifferentiation from Th17 to a regulatory T-cell. From experiments it was known that transforming
growth factor § (TGF-53) induced the expression of the lineage-specifying transcription factor of the
regulatory T-cell. However exposing the Th17 cells to TGF-3 did not perform the transdifferentiation
in vitro. The results of our calculations was that on the one hand TGF-5 was necessary, which was
in accordance to the experimental experience, but had to be supplemented by an agent or agents
that also knocked down the expression of the lineage-specifying transcription factor of the Th1l7 cell.
Additionally IL-2 is a necessary molecular agent for the transdifferentiation. For that matter it makes
no difference whether the expression of IL-2 is activated in the cell or exogenic IL-2 is given to the cell
and ends up in the cell nucleus. This example reveals another advantage that our framework has for
the biological experiments. By the theoretical investigation promising options are generated for the
observed effects and pave the way what to look for in a biological experiment. This can save a lot of
time when figuring out the responsible biologically active substances. Considering our example with
the T-cells an ascites may contain a lot of biologically active agents where, as it can be seen that,
not necessarily only one agent is responsible for an observed outcome. Thus also all combinations of
substances from the ascites would have to be considered. Once having a promising option of chemical
agents for an explanation of the observed outcome, for example from theoretical considerations as in
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the present case, it is only necessary to check the molecular agents contained in an ascites for their
potential with respect to activate or inhibit a certain gene according to the theoretical investigation
and finally check only that single option whether it causes the observed outcome. In the best case only
one experiment has to be done since there is no need for the procedure of finding promising options
by experiments as the already existing information is better exploited by mathematical methods.

In a third example, a gene regulatory network of a myocardiocyte was considered where it was
demonstrated how the presented framework, in particular the target functional, could be used to
compare different treatment strategies quantitatively. The model had been fitted to experimental data
and was taken from [11]. Once a certain selection of external stimuli is included into a model, the
optimization method serves as an objective method to compute the smallest target functional possible.
This means that the time curves of the external stimuli, which model the treatment, are determined
by objective and rational methods and are not subject to the user’s subjectivity. This way allows
a reasonable comparison of treatment strategies in silico. Furthermore the framework also makes it
possible to filter out the most effective external stimuli from a selection of external stimuli that are in
favor of a desired effect. This reduction of options to only few effective molecular agents is an important
consideration of pharmacological modulation. This is further discussed in the next paragraph.

In the case of the myocardiocyte, a constitutive activated receptor was modeled that triggered a
permanent hypertrophic stimulus which was associated with undesirable effects. In the thesis it was
demonstrated how to use the proposed framework to find an effective treatment that turned the effects
of the pathologically activated receptor into a non-hypertrophic beneficial effect. It turned out that for
this purpose a homo-dimerization of two proteins had to be inhibited. The level of inhibition was figured
out up to which the treatment was as good as activating a receptor that was directly associated with a
non-hypertrophic stimulus. Additionally a threshold of a maximum activity of homo-dimerization was
predicted up to which no hypertrophic effects occurred which made the framework further checkable.

In this last two paragraphs an outlook is given how the presented framework can be extended to a
data driven approach based on databases where experimental time curves of molecular agents and the
time curves of the corresponding external stimuli are stored. In connection with the omics technology
time resolved measurements of many agents of a molecular network are possible. Additionally the
effect of almost any number of available external stimuli like molecular agents can be step-by-step
systematically measured and the data can be stored in databases. Now several models can be set up
like standardized qualitative models as in [37], extended by an appropriate mechanism that includes
the effects of external stimuli as discussed in Chapter 4 and tested which model fits the data best.
For this test procedure software is already available like the software package Potterswheel where
the procedure of choosing the best data fitting model is demonstrated in [39] for example. The best
fitting model that includes all the possible interventions can then be further processed by the proposed
optimization framework where the mathematical methods calculate the most efficient external stimuli
combination for the desired effects that are to be induced on the molecular network. The most effective
combination of external stimuli represents the drug combination for the pharmacological modulation.
All these steps can be performed automatically with a software package if there is access to such a
database mentioned above. On the other hand, if the results are not satisfactory as for example the
target functional value is still too big which indicates that the desired expression pattern is not very well
taken by the molecular network with the given options of external stimuli or single expression levels
of molecular agents are too far away from a physiologically reasonable value, then further external
stimuli can be added to the existing ones and the calculations can be performed again until there
is a satisfactory result. If a new added external stimulus is active in the results of the calculations,
then this external stimulus represents a new pharmacological intervention point. This motivates the
development of its experimental realization since it is very likely that the effort results in the desired
effect in the corresponding experiment. In this case the experimental search for new intervention points
can be highly focused on relevant molecular targets coming from a rational theoretical investigation.
Consequently the development of drugs that later turn out to be inefficient can be avoided.

In general the advantage of the proposed framework is that first only measurements have to be
performed to obtain the effect of the external stimuli on the network and that second also very com-
plex models, containing many cross connections going beyond human comprehension, can be built up
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module-wise and processed. The number of measurements scales at most with the number of external
stimuli that are to be considered. There is no need for performing measurements for each combination
of external stimuli to determine the combination that has the desired effect. This information is al-
ready contained in the model where the proposed framework serves as a powerful tool, even for large
molecular networks with many agents and interactions between them, to make the desired information
of the best combination of external stimuli obvious for its user.



Chapter 8

Appendix

In the appendix, we provide background information about steady states of systems of ordinary equa-
tions. In addition, we illustrate characterizing steady states in regulatory networks with examples.
Then we consider important issues for the numerical treatment of ordinary differential equations.

8.1 The characterization of steady states of regulatory networks

As discussed in Section 4.1 a regulatory network in its basic form, that means without external stimuli,
in general is modeled usually by a system of ordinary differential equations of the form

Fr=[(x)
{Z’(O) S (8.1.1)

The right hand-side f (z) models a network of nodes interacting with each other where = (¢) : R — R",
n € N, is a vector whose components are the activity levels of the corresponding nodes and xg € R"
is the initial value of the activity levels. In our simulations where the activity level is modeled by the
state x, we observe that for certain networks the activity levels converge to an equilibrium, that means
that the activity levels do not change their values any more after a certain time. We say that the
system has gone to a steady state. This is characterized by

0= %x = f(x).

That means that the steady states are the roots of the right hand-side f. Another interpretation is
that the time derivative %x is zero for all times. That means that the function = has to be constant
for all times. We label a steady state by & € R™. If the network is in a steady state T, then we have
that the right hand side f(Z) = 0 . Thus, by (8.1.1), we have that the state x is constant, namely
x (t) = z for all the times left as the derivative with respect to time equals zero once the values of the
nodes have reached Z. Especially that means that there cannot occur oscillations between points of
rest without external stimuli.

We distinguish three different types of steady states. There are unstable ones. That means that a
little deflection from the steady state can cause that the system never reaches that steady state again.
There are stable ones. That means that a little deflection from the steady state lets the system remain
in a certain neighborhood around the steady state for all times. In this case, we observe that the values
of the corresponding quantities of x oscillate around their value of the steady state. The third type
is called asymptotically stable. That means that after a little deflection, the system converges to the
steady state again.

In order to investigate the type of a steady state, we need to know the behavior of the system
within an at least small environment around the steady state. Having the Taylor series of f around z,
there is a small environment E (Z) around & such that the Taylor series up to the first term is a good
approximation for f, that means

f@) ~f@+Df(z)(z—2x) (8.1.2)
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where Df (z) is the Jacobian of f evaluated at  and & € E (), see for example |2, VII| for details
about the Taylor series. As  is a steady state and thus f () = 0, we have that in a small environment
around z, the system (8.1.1) behaves like a system of liner differential equations which is given by

d . N NS
43— 1)~ Df @) (- 7)
due to (8.1.2) with the system matrix D f (z). After a coordinate transformation where we set z = z—7,

we have approximately

d
ﬁ(aﬁ-f) =Df(z)x
which is equivalent to
d
E= Df (z)x

as T is a constant. The general solution to a homogeneous system can always be calculated and the
asymptotic behavior is characterized by the real part of the eigenvalues of the matrix D f (Z), roughly
spoken. See textbooks about ordinary differential equations like [50, 53| for more details about solving
systems of homogeneous differential equations and their asymptotic behavior. The most important
case for our purpose is that the eigenvalues of the matrix D f (Z) are of the structure a + ib where the
real part a < 0 and the imaginary part b € R. Tllustratively stated, the real part is a measure for the
damping of the oscillations around the steady state z, which means how fast the system reaches its
point of rest again once deflected where a = 0 means that there is no damping and the absolute value
of the imaginary part |b| is a measure for how fast the values x oscillate where b = 0 means that there
is no oscillation. The sign of b affects the direction of the oscillation’s rotation. More detailed, the
steady states are characterized by the eigenvalues A\;, k = {1,...,n} of the Jacobian Df (Z) evaluated
at the corresponding steady state . We have an unstable one, if the real part of one eigenvalue is
greater than zero, i.e. Re(\;) > 0 for one k = {1,...,n}. We have an asymptotically stable one if all
the real parts of the eigenvalues are less than zero, i.e. Re(A;) < 0 for all £ = {1,...,n}. A stable
steady state is for purely imaginary eigenvalues, i.e. Re (A\x) =0 and Im (\;) # 0 for all k = {1,...,n}
and if all the eigenvalues are pairwise different.

We illustrate the discussion above with two examples. We consider a two dimensional system of
ordinary differential equations, namely a Lotka-Volterra system, given by

—I = YT — fr1T
dtl yx1 — Briwe

9 = 9 — 0xo
—X Qar1Ty — OX
dt !

where v, 8,a,0 > 0. We define

fi(z1,22) = yx1 — Brixg

fo (x1,29) = w29 — 02

o = (B,

f2 (z1,2)

In order to find the steady states, that means these points where the values of the quantities x1, 9 do
not chance any more for any time, we search for the roots of f, that means

fi(w1,22) =0
fa(z1,22) =0

and further

and equivalently,

yr1 — Brire =0

axri1ry — oxe =0
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where we have two steady states. The first one is for 1 = 0 and Zo = 0. The second and interesting
one is for ; = g and Tp = 2.

For the mathematical characterization, we need the Jacobian of the the system. The Jacobian is
given by the first derivative as follows

Df (x1,22) = ( o5

where 6%1 is the partial derivative with respect to 1 and 8%2 is the partial derivative with respect to
x2. For the Lotka-Volterra system, we obtain

Df ($1’$2) _ ( v — Bxa _/85516 ) '

AT ar, —

Evaluating Df (z1,x2) at the point of rest (z1,z2) = (g %) for our Lotka-Volterra system, we obtain

5 _Bs
o (33)-(% )

The eigenvalues of D f (g,%) are A} = —/—y0 = —iy/v0 and Ay = /—70 = iy/70 and therefore
purely imaginary and pairwise different. That means that x; and x9 oscillate around the point of rest
g, % once deflected at most up to certain distance from the point of rest ( , ﬁ)

The next example is according to our model (4.1.1). We have

1 1+8 B 1
d —eﬂﬂiﬁ‘*@@( h(l—‘ﬁw+ﬁa 5))
dt 1 45 B 1
(1= exp (3h)) (1+exp (=n (1- 2222~ 1))
1 1taiotas 3%: 1
d —exp (3h) +exp (—h (Lotos opntain 1))
— Ty = — 2
dt 1 1+aio+ + 1
(1= exp (3)) (14 exp (—h (Losptos o 1)) .
a —exp (3h) + exp (—h (Lo oz 1))
—x3 = -
dE" (1~ exp (3h)) (14 oxp (b (Lea cam 1 ’
p 2 p ag 1+agxy 2
a —exp (3h) +exp (—h (Lo poun 1)
— Ty = — 4
A (1= exp (3h)) (1+exp (—h (Lo pon 1))

where we set ;g = ay = a4 = 1, 8 = 10 and h = 10. In Figure 8.1.1, we have the schematic of the
network.

Figure 8.1.1: Schematic of the network (8.1.3).
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We use Wolfram Mathematica, namely FindRoot, to find numerically a root of the right hand-side
of (8.1.3) which is rounded given by

(%1, &, T3, Z4) = (0.196559,0.13822, 0.0756964, 0.147855) . (8.1.4)

By Wolfram Mathematica, we calculate the Jacobian of the right hand-side of (8.1.3), evaluate it at
(Z1,Z2,%3,%4) and obtain for its eigenvalues the following rounded values

()\la )\27 )\37 )‘4)
= (—1.6891 + 1.5129i, —1.6891 — 1.5129i, —0.3109 + 1.5129i, —0.3109 — 1.5129i) .

Consequently we have an asymptotically stable steady state. In other words, we can say that starting
our simulation sufficiently close to the point of rest (Z1,Z2,Z3,Z4), the state (z1,x2,x3,24) performs
a damped oscillation around (Zi, T2, T3, T4) converging to the values (Z1,Z2,Z3,Z4) when time goes
forward. We can see this in Figure 8.1.2 which is calculated with the Mathematica function NDSolve
where

(1 (100) , 5 (100) , 3 (100) , 24 (100)) = (0.196559, 0.13822,0.0756964, 0.147855)

and the initial point is (21 (0), 22 (0),23(0), 24 (0)) = (0,0,0,0).

0.3 x1

x2

0.2
x3

— x4
ot kil

\ \ \ \ \
[ 20 40 60 80 100

Figure 8.1.2: Plot of the solution to (8.1.3) calculated with NDSolve where the time is on the abscissa.

8.2 Remarks on the numerical treatment of ODEs

If we do not use a solver to find the roots of the right hand-side f but a solver for simulating the
network according to (8.1.1) and thus calculate the whole time-dependent course of x, we have to
be aware of numerical instabilities in some cases using certain numerical methods for solving (8.1.1).
The main issue of these instabilities is that the numerical solution to a system of ordinary differential
equation does not reproduce the asymptotic behavior of the analytic solution to the corresponding
system. However, the correct asymptotic behavior is crucial to determine the steady states. A subject
of this issue are stiff (differential) equations. We illustrate the basic problem with an example. We
consider the one dimensional system

{ix =A e —3) (8.2.1)

with A € R which is analytically solved by z (t) = exp (At) + 3 whose asymptotic behavior is given by
limyo0 z (t) = £ if A < 0. In order to solve (8.2.1) numerically, we have to discretize its differential
equation. There are several possibilities, see for example [13]. We choose the following explicit Euler
scheme

—a! ;1
_ 1 2.2
oy, A <a; 3> (8.2.2)
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where 2! is the approximated value of the analytical solution x (IAt) with At € RT and l € Np. From
(8.2.2), we can calculate the value z/*! from the known previous time step where 20 = 3 as follows

1
= At <x — 3> + 2

which is equivalent to
1
2= 1+ AtA) 2! — 3O (8.2.3)

Using (8.2.3), we iteratively obtain

-1 l

1 1 1— (14 AtN)
= oAt [ Y 1+ A 1+ At 20 = —SAIN—"" " 4 (14 At 2
v 3 (H * T+ AN e 3 1—(1+A75/\)+(Jr yo (8.2.4)

— (14 At

1+ At 20 =
AN +(1+ )z

1
= —gAt)\ (14 AN + (1 + AtA) 20

C»J\»—\
w\H

where we used the Geometric series [1]. If [1+ AtA| < 1, then limj_,o 2! = £ and thus the numerical
solution to (8.2.1) provides the correct asymptotic behavior. For example, if A = —4, then for At < %
the scheme (8.2.3) for calculating the numerical solution to (8.2.1) provides the correct asymptotic
behavior.

Now, we can also see this stability effects for our system (8.1.3). We solve (8.1.3) for ¢ € [0, 100] and
the initial values (21 (0), 2 (0),23(0),2z4(0)) = (0,0,0,0) with the Mathematica function NDSolve
where we set the options StartingStepSize — At, Method — {"FixedStep", Method — "Explici-
tEuler"}. This means that we use an explicit Euler scheme with fixed step size such that gl =
zt + Atf (z:l) where f is the right hand-side of (8.1.3). In Figure 8.2.1, we can see the numerical
solutions for different step sizes At. The convergence to the steady state can be seen first if the step
size At is sufficiently small. Figure 8.2.1f looks then identically to Figure 8.1.2.
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Figure 8.2.1: Plots of the numerical solution to (8.1.3) for different time steps At calculated with the
explict Euler method. The time is plotted on the abscissa.

Remark 9. Having numerical results like Figure 8.2.1a, Figure 8.2.1b or Figure 8.2.1c for any step
size At and simulation time, that means undampened oscillations, especially then it is worth using an
ODE-solver from Matlab like ode45 or NDSolve from Mathematica to solve the system of differential
equations belonging to the given network in order to check the numerical results obtained from the
tool used to analyze the given network.

d

Due to the fact that we approximate the time derivatives J;x (t) by their corresponding difference

quotients W for the numerical solution, we may not expect that the numerical solution equals
exactly the analytical solution. As a consequence it is reasonable to give the values of the nodes’
activity level of the numerically located points of rest with some error bars. Then, from the numerical
perspective, it is reasonable that we distinguish steady states pairwise if and only if there is at least
one component of the steady states where the corresponding error bars do not overlap.
Next, we present a procedure how to obtain an idea in what order of magnitude the error bars
In Table 8.1, we have the values for (z; (100),z2 (100), 23 (100), 24 (100)), which serve as an
estimation for the values of the steady state. These values converge to the values for our point of rest
calculated by the Mathematica function FindRoot, see (8.1.4) if At becomes smaller. If we compare
the values for At = 0.2 with At = 0.1, we realize that the difference is about +107°. Therefore, if
we perform the calculations for (8.1.3) with At = 0.1 and with different initial points in order to find

are.
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several points of rest, an error bar in the order of magnitude of £107° might be reasonable for the
identified point of rest with its best values for At = 0.1 in Table 8.1.

| At | 21(100) | 22(100) | w5(100) | x4(100) |
021 | 0.19673 | 0.13827 [ 0.0757159 [ 0.148116

0.20 | 0.196604 | 0.138243 | 0.0757134 | 0.147945
0.10 | 0.196559 | 0.13822 | 0.0756964 | 0.147855

Table 8.1

In general, it is a reasonable procedure to do the simulation for a network with the same initial
point but with different step sizes /At and compare the differences in the corresponding values of the
nodes’ activity level of the points of rest to get an idea for the order of magnitude of their error bars.
The step sizes for the calculation for the estimation of the error bar should not be too far from the
step size with which the real simulation is performed such that the error bar becomes not too big or
too small and the method is still stable.

If we take the absolute value of the difference between the corresponding values of the nodes’
activity level of two different steady states starting each from two different initial points from which
the network converges to the particular steady state and if this absolute value gets smaller and smaller
when we perform the simulation iteratively with decreasing At, then the two different steady states
might be the same as in fact the difference comes from the numerical error. But if the absolute value
of the difference between the corresponding values of the nodes’ activity level of two steady states
converges to a fixed number whose absolute value is greater than zero although decreasing /At, then
the steady states might really be different ones.

Remark 10. The procedure described above is one possibility to estimate the numerical error. In order
to compare the numerical results, that means the located steady states, with data from an experiment,
we have to be aware of the error bars with which the experimental data is provided. Normally, those
error bars are from an order of magnitude of about 10% of the maximum activity level or concentration
level, respectively. That means for example in our case where the activity level is between 0 and 1,
that the error bar is about £0.1 for the experimental data. Thus, in our example, we can neglect our
numerical error of about £107° compared to 0.1 and can subsume all the steady states whose values
correspond to an experimental steady state within that error bar of 0.1 to that one. We can say that
they are from an experimental point of view equivalent. In general, if we compare numerical results to
experimental data, it is reasonable to compare numerical and experimental error bars and provide the
numerical data with the greater one.
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