Dongliang Peng

An Optimization-Based
Approach for Continuous
Map Generalization

Wiirzburg
University
Press

Dongliang Peng

An Optimization-Based Approach
for Continuous Map Generalization

Dongliang Peng

An Optimization-Based Approach
for Continuous Map Generalization

' Wiirzburg
. University Press

Dissertation, Julius-Maximilians-Universitat Wirzburg
Fakultat fir Mathematik und Informatik, 2017
Gutachter: Prof. Dr. Alexander Wolff and Prof. Dr. Dirk Burghardt

Impressum

Julius-Maximilians-Universitat Wiirzburg
Wirzburg University Press
Universitatsbibliothek Wiirzburg

Am Hubland

D-97074 Wirzburg
www.wup.uni-wuerzburg.de

© 2019 Wirzburg University Press
Print on Demand

Coverdesign: Jule Petzold

ISBN 978-3-95826-104-4 (print)

ISBN 978-3-95826-105-1 (online)

DOI 10.25972/wup-978-3-95826-105-1
URN urn:nbn:de:bvb:20-opus-174427

@ ®0 Except otherwise noted, this document—excluding the cover—is licensed under the
BT = Creative Commons License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/

@@@@ The cover page is licensed under the Creative Commons License
BY NG ND

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
https://creativecommons.org/licenses/by-nc-nd/4.0/

Preface

In his thesis, Dongliang Peng investigates computational aspects of a fundamental
problem in cartography called generalization. Cartographic generalization is the prob-
lem that has to be solved when producing a small-scale map (say, at scale 1 : 10,000)
from data collected at a larger scale (say, 1 : 2,000). Traditionally, this has been a
labor-intensive task that required highly-skilled cartographers with expertise in both
geodesy and map-making. How should a row of ten houses be represented if the dis-
tances between them are too small to be represented correctly at the desired scale?
By fewer, say, five houses? Or rather by a block of houses?

Dongliang attacks this and several other special cases of cartographic general-
ization in a modern setting. Think of online maps that users can (and want to!)
zoom and pan with their finger tips. Other than traditional paper maps that were
produced and printed for a fixed, small number of scales, online maps should ideally
be available at any scale (within a reasonable interval). The problem of computing
and displaying maps at arbitrary scales is called continuous generalization. Some
aspects of continuous generalization (such as the example with the houses above)
are inherently discrete, others (such as a wiggly river) can be treated more easily in
a continuous fashion.

In several chapters of this thesis, Dongliang approaches continuous generaliza-
tion problems in an innovative, yet formal way by using powerful tools from math-
ematical optimization such as integer linear programming. The main advantage of
such an approach is that it helps to get the model right. Many problems can be cast
into integer linear programs, which allows us to solve at least small examples to
optimality—according to our model. If these solutions don’t turn out as expected,
we know that our model is wrong—not the algorithm. In contrast, when using only
heuristics, solutions can come with errors of two types; those caused by the heuris-
tic and those caused by the model. In this case, it is hard to understand and fix the
errors.

In Chapter 2, Dongliang compares two potentially exact methods for the well-
known area-aggregation problem. He asks for an optimal sequence of operations
that aggregates, step-by-step, many “patches” of a detailed map into a single region
of a coarser map. Dongliang uses a graph-based model in which he finds shortest
paths (aka optimal aggregation sequences) using the A" algorithm and integer lin-
ear programming. The latter turns out to be much slower. He also compares the
A" algorithm to an obvious greedy approach, which is surprisingly good given its
simplicity. He also identifies a problem with his model.

vi

Chapter 3 treats a related problem: how to best transit between two levels of ad-
ministrative boundaries for zooming? The input consists of the two drawings at start
and target scale, and the task is to mediate between the two in a continuous and
topologically safe way. Dongliang finds the first topologically safe method of solving
this problem based on compatible triangulations (a tool from computational geome-
try). Unfortunately, the existing algorithm for compatible triangulations sometimes
introduces strong distortion locally. A way out may consist in choosing the Steiner
points for the compatible triangulations more carefully, but this is left as an open
problem.

In Chapter 4, Dongliang deals with the generalization of buildings. He shows
how to generalize building footprints continuously such that well-defined blocks
of buildings appear when the user of a digital map zooms out far enough. Here,
only the building footprints are given. The approach animates a growing-process
between the start scale and a target scale that can be set by the user. The algorithm
computes a drawing for the target scale by a wisely chosen sequence of dilations
and erosions (which have been used for building simplification before). In order to
animate the growing-process in a continuous fashion, the buildings are expanded
in a simple way: by moving their boundaries at constant speed and by clipping
any part that leaves the target footprint. In order to guarantee a certain minimum
distance between two buildings, the algorithm builds bridges between close-enough
buildings. The computation of the bridges is based on a minimum spanning tree of
the buildings. The resulting animations look very natural.

In Chapter 5, Dongliang explores an important subproblem that often appears
in continuous generalization: how to “morph” a polygonal chain from a start to a
target scale. He uses an existing algorithm to define a correspondence between the
two chains and then computes trajectories for each pair of corresponding vertices.
The aim is to find trajectories such that the angles and the edge lengths change in a
uniform and continuous fashion—if possible. Dongliang applies least-squares adjust-
ment in order to gradually move the chain from its start configuration to the target
chain. While the results on real-world data look quite good, Dongliang also found
artificial examples where self-intersection and numerical problems occur. Hence,
least squares is probably not the ideal method for this problem.

Finally, in Chapter 6, Dongliang presents a case study to highlight the difficulties
when working with geographic data naively. As a concrete example, he considers
the problem of finding, in a set of n points in the plane, all pairs of points that are
closer to each other than a given threshold €. He compares three approaches for this
problem, the text-book approach based on the sweep-line paradigm, a Delaunay-
triangulation-based approach, and a simple grid-based approach. While the grid-
based approach wins in terms of runtime, the different implementations of the
sweep-line algorithms are what makes the comparison interesting—a lot depends
on how the library methods are implemented, so the programmer should always
read the fine print.

Vii

In his thesis, Dongliang exemplifies the optimization-based approach at various
continuous generalization problems and demonstrates the strength of this approach.
We see this as a very valuable contribution to GIScience where very all too often,
problems are not modeled properly, and then algorithms are devised that happen to
produce good-looking results on a small set of benchmark instances. We hope that
many readers of this thesis will get inspired by Dongliang’s way of tackling spatial
problems!

Alexander Wolff (first supervisor)

Chair of Algorithms, Complexity and Knowledge-Based Systems
Faculty of Mathematics and Computer Science

University of Wiirzburg

Jan-Henrik Haunert (second supervisor)
Institute of Geodesy and Geoinformation
Faculty of Agriculture

University of Bonn

Abstract

Maps are the main tool to represent geographical information. Geographical infor-
mation is usually scale-dependent, so users need to have access to maps at different
scales. In our digital age, the access is realized by zooming. As discrete changes
during the zooming tend to distract users, smooth changes are preferred. This is
why some digital maps are trying to make the zooming as continuous as they can.
The process of producing maps at different scales with smooth changes is called
continuous map generalization.

In order to produce maps of high quality, cartographers often take into account
additional requirements. These requirements are transferred to models in map gen-
eralization. Optimization for map generalization is important not only because it
finds optimal solutions in the sense of the models, but also because it helps us to
evaluate the quality of the models. Optimization, however, becomes more delicate
when we deal with continuous map generalization. In this area, there are require-
ments not only for a specific map but also for relations between maps at difference
scales. This thesis is about continuous map generalization based on optimization.

First, we show the background of our research topics. Second, we find optimal
sequences for aggregating land-cover areas. We compare the A* algorithm and inte-
ger linear programming in completing this task. Third, we continuously generalize
county boundaries to provincial boundaries based on compatible triangulations. We
morph between the two sets of boundaries, using dynamic programming to compute
the correspondence. Fourth, we continuously generalize buildings to built-up areas
by aggregating and growing. In this work, we group buildings with the help of a
minimum spanning tree. Fifth, we define vertex trajectories that allow us to morph
between polylines. We require that both the angles and the edge lengths change lin-
early over time. As it is impossible to fulfill all of these requirements simultaneously,
we mediate between them using least-squares adjustment. Sixth, we discuss the per-
formance of some commonly used data structures for a specific spatial problem. Last,
we conclude this thesis and present open problem:s.

Zusammenfassung

Optimierung fiir die kontinuierliche Generalisierung von Landkarten

Landkarten sind das wichtigste Werkzeug zur Représentation geografischer Infor-
mation. Unter der Generalisierung von Landkarten versteht man die Aufbereitung
von geografischen Informationen aus detaillierten Daten zur Generierung von klein-
mafistibigen Karten. Nutzer von Online-Karten zoomen oft in eine Karte hinein
oder aus einer Karte heraus, um mehr Details bzw. mehr Uberblick zu bekommen.
Die kontinuierliche Generalisierung von Landkarten versucht die Anderungen zwis-
chen verschiedenen Mal3stdben stetig zu machen. Dies ist wichtig, um Nutzern eine
angenehme Zoom-Erfahrung zu bieten.

Um eine qualitativ hochwertige kontinuierliche Generalisierung zu erreichen,
kann man wichtige Aspekte bei der Generierung von Online-Karten optimieren. In
diesem Buch haben wir Optimierung bei der Generalisierung von Landnutzungskar-
ten, von administrativen Grenzen, Gebduden und Kiistenlinien eingesetzt. Unsere
Experimente zeigen, dass die kontinuierliche Generalisierung von Landkarten in der
Tat von Optimierung profitiert.

Contents

Preface v
Abstract iX
Zusammenfassung Xi
1 Introduction 1
1.1 Stateofthe Art 1
1.1.1 Continuous Map Generalization 1

1.1.2 Optimization in Map Generalization 2

1.1.3 Optimization in Continuous Map Generalization 4

1.2 Tools for Optimization 4
1.21 The A"Algorithm 5

1.2.2 Integer Linear Programming 5

1.2.3 Dynamic Programming 5

1.2.4 Least-Squares Adjustment 6

1.25 Minimum Spanning Tree 6

1.3 Overviewofthe Thesis 6

2 Finding Optimal Sequences for Area Aggregation—A" vs. Integer Linear Pro-

gramming 11
2.1 Preliminaries 13
211 Model 14
21.2 Notation 15
2.1.3 Exponential LowerBound 16
214 Methods e 16
2.2 CostFunctions e 16
221 Costof TypeChange 17
222 CostofCompactness 18
223 CostoflLength 19
2.2.4 Combining Cost Functions 20
2.3 NP-hardness Proof 20
2.4 AGreedy Algorithm L 22
25 Usingthe A" Algorithm 23
2.5.1 Estimating the Costof Type Change 24
2.5.2 Estimating the Cost of Compactness 25
2.5.3 Estimating the CostoflLength 27

2.5.4 Combining EstimatedCosts 27

Xiv

2.6 Integer Linear Programming 28
2.6.1 Variables 30
2.6.2 Objective 32
26.3 Constraints 33

27 CaseStudy 37
2.7.1 Using Costs of Type Change and Compactness 38
2.7.2 Using Costs of Type Change and Length 42

2.8 ConcludingRemarks 47

Continuously Generalizing Administrative Boundaries Based on Compatible

Triangulations 51

3.1 Methodology e 54
3.1.1 Finding Corresponding Polylines 55
3.1.2 Morphing a Polyline to Its Corresponding Polyline 56
3.1.3 Morphing a Polyline to Its Generated Corresponding Polyline 59
3.1.4 RunningTime 60

3.2 CaseStudy 62

3.3 ConcludingRemarks 65

Continuously Generalizing Buildings to Built-up Areas by Aggregating and

Growing 67

4.1 Methodology e 69
4.1.1 Growing Buildings by Buffering 69
4.1.2 Simplifying Grown Buildings Based on Dilating and Eroding 71
4.1.3 lteratively Aggregating Close Buildings by Adding Bridges 73
4.1.4 Simplifying Buildings Using the Imai—Iri Algorithm 75
4.1.5 Generating Buildings on Intermediate-Scale Maps 76
4.1.6 Eliminating Small Buildings and SmallHoles 76
417 RunningTime 77

42 CaseStudy 79

43 ConcludingRemarks 83

Morphing Polylines Based on Least-Squares Adjustment 85

51 RelatedWork 86

5.2 Methodology e 88
521 Preliminaries 88
522 SoftConstraints 88
523 HardConstraints 91
524 Weights e 91
525 Estimates 92
5.2.6 lterative Process 92

53 CaseStudy 92
5.3.1 Case Study on ArtificialData. 93

5.3.2 Case StudyonReal-WorldData. 95

XV

5.4 ConcludingRemarks 95

6 Choosing the Right Data Structures for Solving Spatial Problems 97
6.1 Algorithms e 99
6.1.1 The Sweep-Line Algorithm 99

6.1.2 The Delaunay-Triangulation-Based Algorithm 100

6.1.3 The Grid-Based Algorithm 101

6.2 CaseStudy 102
6.2.1 Case StudyonRandomData 103

6.2.2 Case StudyonReal-WorldData. 106

6.3 ConcludingRemarks 107

7 Conclusions and Open Problems 111
7.1 Conclusions 111
7.2 OpenProblems 112
Bibliography 115
Acknowledgments 131

Curriculum Vitae 133

Chapter 1

Introduction

Maps are the main tool to represent geographical information. As geographical in-
formation is usually scale-dependent [Miil+95; Wei97], users need to have access to
maps at different scales. In order to generate these maps, national mapping agencies
produce a base map and then derive maps at smaller scales by map generalization.
More specifically, map generalization is the process of extracting and arranging geo-
graphical information from detailed data in order to produce maps at smaller scales.
A requirement of map generalization is to emphasize the essential while suppress
the unimportant, and at the same time maintain logical relationship between ob-
jects [Wei97]. As manual generalization is labor-intensive [Duc+14], automating
map generalization is a promising way to produce up-to-date maps at high speed
and low cost [MBD16].

In our digital age, people interactively read maps on computers and mobile
phones. An often used interaction is zooming. When users zoom in or out, a map
must be changed to provide information appropriate to the corresponding zoom
level. However, large discrete changes may distract users. The on-the-fly general-
ization [WB17], which generalizes map features (e.g., polyglines and polygons) in
real time, can mitigate this problem. Still, large discrete changes can be introduced.
By a usability test, Midtbg and Nordvik [MNO7] have shown that a map is easier to
follow if the map extent transits smoothly than stepwise. In addition to smoothly
transiting map extent, we want to change also map features smoothly when users
are zooming. We believe that this strategy will allow users to follow maps even more
easily. The process of producing maps at any different scales with smooth changes is
known as continuous map generalization (CMG), or simply continuous generalization.
Ideally, there should be no discrete change in CMG. However, the term is also used
when the discrete changes are small enough not to be noticed as, e.g., Suba et al.
[SMO16] state.

1.1 State of the Art

1.1.1 Continuous Map Generalization

Continuous map generalization (CMG) has received a lot of attention from cartogra-
phers and computer scientists. Van Kreveld [Kre01] proposed five gradual changes
to support the continuous zooming of maps, which are moving, rotating, morph-
ing, fading, and appearing. He suggested using these gradual changes to adapt dis-

2 1 Introduction

crete generalization operators for CMG. Sester and Brenner [SB0O5] suggested sim-
plifying building footprints based on small incremental steps and to animate each
step smoothly. Li and Zhou [LZ12] built hierarchies of road segments, which they
then used to omit road segments from lower levels of the hierarchy. Moreover, they
evaluated similarities between their results and existing maps. Touya and Dumont
[TD17] progressively replaced buildings with blocks. In addition, their method au-
tomatically inferred landmarks and put the landmarks on top of the blocks. Suba
et al. [SMO16] continuously generalized road networks which are represented as
a set of areas. Their method repeatedly finds the least-important area and then ei-
ther merges it with an adjacent area or collapses it to a line segment. Danciger et
al. [Dan+09] investigated the growing of regions, while preserving topology, area
ratios, and relative positions. The strategy of using two maps at different scales to
generate intermediate-scale maps has been studied in multiple representations, e.g.,
with respect to the selection of roads or rivers [PDZ12; GT14]. Actually, this strategy
is the key idea of the morphing-based methods for CMG. In order to morph from
one polyline to another polyline, which respectively represent, say, roads on a larger-
scale map and a smaller-scale map, we first need to compute corresponding points
between them [e.g., Cec03; N61+08; Cha+10; DP15; LLX17; Li+17]. Then mor-
phing can be realized by interpolating a set of intermediate polylines. Nollenburg
et al. [N61+08] computed an optimum correspondence between two given polylines
according to some cost function. While straight-line trajectories are often used for
interpolation [e.g., Cec03; DP15], Whited and Rossignac [WR11] considered four
other alternatives, i.e., hat, tangent, circular, and parabolic paths based on so-called
ball-map [Cha+10]. Van Oosterom and Meijers [OM14] used a data structure called
smooth topological generalized area partitioning to support visualizing CMG. One of
their contributions is that a polygon is merged into another polygon continuously
by moving the boundary of the former. Huang et al. [Hua+17] proposed a matrix-
based structure to support CMG, using a river network as an example. For a given
scale, their structure yields the rivers that should be kept as well as how much these
rivers should be simplified.

1.1.2 Optimization in Map Generalization

Map generalization generally specifies and takes into account requirements in order
to produce maps of high quality [Sto+09a]. We categorize requirements as hard and
soft constraints. For example, when users zoom out, some land-cover areas become
too small to be seen. These areas need to be aggregated. When we aggregate one
area into another, the type of the former is changed to the type of the latter. In this
problem, a hard constraint could be that we aggregate only two polygons at each
step in order to keep changes small (see for example Figure 1.1). A soft constraint
could be that we wish to minimize the changes of types, e.g., we prefer aggregating
a grass area into a farm area rather than into a settlement area. This is a typical
optimization problem, where we stick to hard constraints and try to fulfill soft ones as

1.1 State of the Art 3

Start g g Goal
ﬁ

Figure 1.1: There are many ways of aggregating a set of land-cover areas to a single one.

well as possible. Optimization for map generalization is important not only because
it finds optimal solutions, but also because it helps us to evaluate the quality of a
model [HW17; HS08; HW16]. When we wish to minimize the changes of types in
aggregating areas one by one, a model could be to minimize the greatest change
over all the steps. Using a greedy algorithm, we can minimize the change at each
step, but the result does not necessarily minimize the greatest change over all the
steps. If a result is bad, we cannot tell if the bad result comes from the model or
from the greedy algorithm. Using optimization, we are able to find optimal solutions
of the model at least for small instances. If even an optimal solution is bad, then
we can exclude that the bad result is from the greedy algorithm. That is to say, the
bad result is because of the model. In this case, we should improve the model; we
may want to minimize the average change over all the steps. Moreover, optimization
is useful for evaluating heuristics. We need heuristics because many optimization
problems cannot be solved efficiently [e.g., HW10a; HM16]. While heuristics can
find some solutions in reasonable time, it is important to know the quality of these
solutions. Fortunately, we can often find an optimal solution when the size of an
instance is sufficiently small. Consequently, we are able to evaluate the quality of a
heuristic by comparing its results with optimal solutions on small instances.

Optimization has been widely used in map generalization. For example, Harrie
[Har99] displaced objects based on least-squares adjustments (LSA) to solve spatial
conflicts. In his problem, the soft constraints for shapes and locations may contra-
dict each other. Therefore, it is necessary to mediate between these constraints,
which can be done by LSA. Sester [Ses05] used LSA not only for displacing objects
but also for simplifying buildings. She required that the output boundaries should
be as close to the original buildings as possible. Tong et al. [Ton+15] generalized
land-cover areas, where LSA was used to preserve the sizes of the land-cover areas.
Regnauld [Reg01] grouped buildings based on minimum spanning trees in order to
typify the buildings in a group. Burghardt [Bur05] smoothed lines based on energy
minimization. According to his setting, a line contains less energy if it is smooth
and close to the original line. He repeatedly displaced the line until a stable state
in terms of minimizing his energy function is found. Haunert and Wolff [HW10a]

4 1 Introduction

aggregated land-cover areas based on mixed-integer linear programming to gener-
ate a map at a target scale. Their method is based on a global optimization. They
minimize a combination of type changes and cost for non-compact shapes while sat-
isfying constraints on the sizes of the output regions. Haunert and Wolff [HW10b]
simplified building footprints by solving an integer linear program (ILP). They aimed
at minimizing the number of edges in the output under the restriction that the sim-
plified buildings must be topologically safe, that is, the selected and extended edges
must not intersect with each other. Oehrlein and Haunert [OH17] aggregated the
departments of France according to unemployment rates based on integer linear pro-
gramming; they used a cutting-plane method to speed up solving their ILP Funke
et al. [Fun+17] simplified administrative boundaries based on an ILP. Their aim was
to minimize the number of edges while keeping the result boundaries close to the
original ones and avoiding any intersection. At the same time, they required that
every city, represented by a point, stays in the same face as before the generalization.

1.1.3 Optimization in Continuous Map Generalization

Optimization becomes more delicate when we deal with CMG. In this field, we have
requirements not only for a specific map but also for relations between maps at
difference scales. Some optimization techniques have been applied to CMG. In the
aforementioned article, Nollenburg et al. [N614+-08] used dynamic programming to
match points of two polylines to support morphing according to some matching cost.
Schwartges et al. [Sch+13] used mixed-integer linear programming to select points
of interest. They required that a point, once disappeared, should not show up again
during zooming out. They also required that any two points should be sufficiently far
away from each other. Based on these requirements, they wanted to show as many
points as possible for a given scale interval. Chimani et al. [CDH14] computed a
deletion sequence for a road network by integer linear programming and efficient
approximation algorithms. They wanted to delete a stroke, which is a sequence of
edges, at each step while keeping the remaining network connected. They assigned
each edge a weight, and their objective was to maximize the total weight over all
the road networks of all the steps.

1.2 Tools for Optimization

In this thesis, we use some well-known optimization methods, namely, the A" algo-
rithm [HNR68], integer linear programming [PS82, Chapter 13], dynamic program-
ing [Cor+09, Chapter 15], and least-squares adjustment (LSA) [Koc88, Chapter 3].
We also use the minimum spanning tree; see Cormen et al. [Cor+09, Chapter 23].
We use A" and integer linear programming to find optimal sequences for area ag-
gregation (see Chapter 2). Similar to Nollenburg et al. [N61+08], we use dynamic

1.2 Tools for Optimization 5

programming to compute corresponding points between polylines (see Chapters 3
and 5). We use the minimum spanning tree to group buildings, which is similar to
Regnauld [Reg01]; see Chapter 4. We define trajectories based on LSA for morphing
between polylines (see Chapter 5). In the following, we briefly recall these methods.

1.2.1 The A" Algorithm

Given a graph with nodes and weighted edges, a typical task is to find a shortest
path from a start node to a goal node. A breadth-first search [Cor+09, Chapter 22]
solves the shortest-path problem in unweighted graphs. Dijkstra’s algorithm [Dij59]
always chooses from the explored nodes the neighbor with minimum distance from
the start node. The A" algorithm is a generalized version of Dijkstra’s algorithm.
When A* chooses a node to explore the neighbors, the algorithm does not only take
into account the distance from the start node but also estimates the distance to the
goal node. By always choosing a node which is likely to be closer to the goal node,
A" often explores fewer nodes than Dijkstra’s algorithm in finding a shortest path.
If the estimated distances are always smaller than the exact distances to the goal
node, then A" will find a shortest path.

1.2.2 Integer Linear Programming

Linear programming models an optimization problem as objective functions subject
to constraints, where the objective functions and constraints are represented by lin-
ear functions of some variables. These constraints form a convex polyhedron. An
optimal solution lies on the boundary of the polyhedron and can be found efficiently.
Integer linear programming requires that the variables must use integers. Integer lin-
ear programming is NP-hard since many NP-hard problems such as vertex cover can
be formulated as integer linear programs. Intuitively, this is due to the fact that the
optimal solution may lie in the interior of the polyhedron, where geometry does
not help to find it. If only some of the variables are required to be integers (other
variables are allowed to be non-integers), then the problem is called mixed integer
linear programming, which is also known as NP-hard; see for more details Schrijver
[Sch86, Chapter 16].

1.2.3 Dynamic Programming

Dynamic programming decomposes a big instance of a complex problem into a col-
lection of smaller subinstances. The method solves each subinstance just once and
saves the solution. The next time when the same subinstance occurs, the method
will use the previously computed solution instead of resolving this subinstance. In
this way, the method saves computation time. Other than in the divide-and-conquer
approach used, e.g., in Mergesort, in dynamic programming subinstances of equal
size are usually not disjoint but overlap.

6 1 Introduction

1.2.4 Least-Squares Adjustment

Least-squares adjustment is a model for solving over-constrained problems. It han-
dles computes a set of unknowns based on a set of observations. Because of errors,
the observations may contradict each other. We have to adjust the observations so
that we can obtain a set of unknowns that agree all the adjusted observations. There
can be infinitely many sets of adjustments feasible, but we choose the one with the
least sum of squared adjustments. Based on this set of adjustments, we can finally
compute the unknowns.

1.2.5 Minimum Spanning Tree

Given a graph with nodes and weighted edges, a minimum spanning tree (MST)
of the graph is a minimum-weight subset of the edges that together connect all
nodes. Surprisingly, the MST can be computed by simple greedy algorithms such as
Kruskal’s algorithm [Kru56] or the algorithm of Jarnik-Prim [Jar30; Pri57]. Strictly
speaking, the MST by itself is not an optimization method, but it is a helpful structure
of low weight that helps to solve many optimization problems in graph theory at least
approximately, for example, the metric version of the famous Traveling Salesperson
Problem (TSP).

1.3 Overview of the Thesis

This thesis contains five chapters that deal with methods for continuous map gen-
eralization. First, we find optimal sequences for aggregating land-cover areas. Sec-
ond, we continuously generalize county boundaries to provincial boundaries. Third,
we continuously generalize buildings to built-up areas by aggregating and growing.
Fourth, we define moving trajectories based on least-squares adjustment for mor-
phing between polylines. Fifth, we discuss the performance of data structures for
spatial problems. In the remainder of this section, we present our results in more
detail.

Finding Optimal Sequences for Area Aggregation—A" vs. Integer Linear Program-
ming

To provide users with maps of different scales and to allow them to zoom in and
out without losing context, automatic methods for map generalization are needed.
We approach this problem for land-cover maps. Given two land-cover maps at two
different scales, we want to find a sequence of small incremental changes that grad-
ually transforms one map into the other. We assume that the two input maps consist
of polygons each of which belongs to a given land-cover type. Every polygon on the
smaller-scale map is the union of a set of adjacent polygons on the larger-scale map.

1.3 Overview of the Thesis 7

9 8
’ 1 ’ 2 ’ ’
Figure 1.2: Some intermediate aggregation results of a region (Buchholz in der Nordheide, Germany). There

are 9 polygons on the larger-scale map (top left). These areas are aggregated into one on the smaller-scale
map (bottom left). The digits are the numbers of the areas.

> > >

- - -

05krn

In each step of the sequence that we compute, the smallest area is merged with
one of its neighbors. We do not select that neighbor according to a prescribed rule
but compute the whole sequence of pairwise merges at once, based on global opti-
mization. We have proved that this problem is NP-hard. We formalize this optimiza-
tion problem as that of finding a shortest path in a (very large) graph. We present
the A" algorithm and integer linear programming to solve this optimization problem.
To avoid long computing times, we allow the two methods to return non-optimal
results. In addition, we present a greedy algorithm as a benchmark. We tested the
three methods with a dataset of the official German topographic database ATKIS.
Our main result is that A* finds optimal aggregation sequences for more instances
than the other two methods within a given time frame. Figure 1.2 shows some in-
termediate results obtained by A" for one of the regions. This is joint work with
Alexander Wolff and Jan-Hendrik Haunert, part of which has been published [see
PWH17].

Continuously Generalizing Administrative Boundaries Based on Compatible Trian-
gulations

Topological consistency is a key issue in cartographic generalization. Our aim in this
chapter is to ensure topological consistency during continuous map generalization
of administrative boundaries. To this end, we present a five-step method. Our inputs
are two maps of administrative boundaries at different scales, where the larger-scale
map has not only more details but also an additional level of administrative regions.

Our main contribution is the proposal of a workflow for generalizing hierar-
chical administrative boundaries in a continuous and topologically consistent way.
First, we identify corresponding boundaries between the two maps. We call the re-
maining boundary pieces (on the larger-scale map) unmatched boundaries. Second,
for the unmatched boundaries, we generate their corresponding boundaries on the
smaller-scale map based on compatible triangulations. Third, we simplify the gener-

8 1 Introduction

JOOgU

t=0.25 t=0.5 t=0.75

Figure 1.3: Continuously generalizing county boundaries to provincial boundaries of Tianjin province, China.

ated boundaries by Douglas—Peukcer algorithm. Fourth, we compute corresponding
points for each pair of corresponding boundaries using a variant of an existing dy-
namic programming algorithm. Fifth, we interpolate between the corresponding
points to generate the boundaries at intermediate scales.

We do a thorough case study on the provincial and the county boundaries of
Mainland China. Although topologically consistent algorithms for the third step and
the fifth step exist, we have implemented simpler algorithms for our case study. Fig-
ure 1.3 shows our results of continuously generalizing county boundaries to provin-
cial boundaries of Tianjin, China. This is joint work with Alexander Wolff and Jan-
Hendrik Haunert [see PWH16].

Continuously Generalizing Buildings to Built-up Areas by Aggregating and Growing

To enable smooth zooming, we propose a method to continuously generalize build-
ings from a given start map to a smaller-scale goal map, where there are only built-up
area polygons instead of individual building polygons (see Figure 1.4). We name the
buildings on the start map original buildings. For an intermediate scale, we aggre-
gate the original buildings that will become too close by adding bridges. We grow
the (bridged) original buildings based on buffering and simplify the grown build-
ings. We take into account the shapes of the buildings on both the preceding map
and the goal map to make sure that the buildings are always growing. The running
time of our method is in O(n®), where n is the total number of edges overall the
original buildings.

The advantages of our method are as follows. First, we grow the buildings con-
tinuously and, at the same time, simplify the grown buildings. Second, right an-
gles of buildings are preserved during growing: the merged buildings still look like
buildings. Third, the distances between buildings are always larger than a specified
threshold. We do a case study to show the performances of our method. This is joint
work with Guillaume Touya [see PT17].

1.3 Overview of the Thesis 9

Figure 1.4: Continuously generalizing buildings to built-up areas by aggregating and growing.

Morphing Polylines Based on Least-Squares Adjustment

One way of continuously generalizing polylines is to use morphing techniques. Most
often for morphing, the vertices of the polylines move on defined straight-line trajec-
tories at constant speeds. In this chapter we address morphing of polylines, but we
relax the requirement that the vertices of the polylines move on straight lines. Our
concern with straight-line trajectories is that characteristic properties (e.g., bends)
of the polylines change drastically during the morphing process. In particular, we
suggest that the angles and the edge lengths of the polylines should change lin-
early during the morphing process. This expectation is clearly not accomplished
with straight-line trajectories. In contrast, we present a new method based on least-
squares adjustment that yields close-to-linear changes of the angles and the edge
lengths. Figure 1.5 shows a comparison of morphing based on straight-line trajec-
tories and our new morphing method. This is joint work with Jan-Henrik Haunert,
Alexander Wolff, and Christophe Hurter [see Pen+13].

Choosing the Right Data Structures for Solving Spatial Problems

When we plan to implement a program, there are always many data structures that
we can use to achieve a certain goal. However, if we do not carefully choose and use
the data structures, the implemented program may be inefficient. As an example,
we consider the problem of finding pairs of close points from a dataset. We consider
two points to be close if they lie within a square of pre-specified side length €. We
compare three obvious algorithms to solve the problem: a sweep-line (SL) algorithm,
an algorithm based on the Delaunay triangulation (DT) of the input points, and a
hashing-like algorithm which overlays the input points with a rectangular grid. We
implemented the algorithms in C# and tested them on randomly generated data and
real-world data. We used the DT available in ArcGIS Objects. We used three different
data structures of balanced binary search tree, i.e., SortedDictionary (SD), SortedSet
(SS), and TreeSet (TS), to implement the sweep-line algorithm. The simple grid-
based algorithm turned out to run faster than any of the other algorithms by a factor
of at least 2 (see Figure 1.6). This is joint work with Alexander Wolff [see PW14].

10 1 Introduction

Straight-line trajectories Least-squares adjustment

Source /g}\

t=0.25

t =0.50 /\(\/\
t=0.75 /\f\’\
Target V\ V\
\ | < |
\ | A \\\ (!
. . T N Vo (R N Py
Trajectories \ Yoy ﬁ | [! RN
\ \ IR\ s \ Wy \\ ! ’
\ \ \ IW | e / ! ! ! \‘\ N > s /
Vs g ’/3\\\,«
/#/L‘ﬂ
Figure 1.5: A comparison of morphing based on the two different trajectories.
s (a) $ (b)
200 16 | o—SLC5 TS
—— SL C# SS
150 12 | —e— DT constr.
—— Grid
100 DT ry 8
50 4
SL C# SD
0 0
0 150 300 450 600 0 150 300 450 600
n/1,000 n/1,000

Figure 1.6: Time consumption of the algorithms for computing close point pairs. Two points are defined
as close if the differences of their x- and y- coordinates are both smaller than ¢ = 0.001267°, where the
coordinates are with unit degree. The DT-based algorithm took 262 s with radius r; = ¢- (1 + v/2)/2 ('DT ")
and 784s with radius r, = £ - (1 + +/7)/2 ("DT r,") for n = 553,984 points. The curve labeled "DT constr."
represents the time for constructing Delaunay triangulations for the input points.

Chapter 2

Finding Optimal Sequences
for Area Aggregation—
A" vs. Integer Linear Programming

The land-cover area is of significant importance on maps. When users zoom out,
some land-cover areas become too tiny to be seen, which result in visual clutter. In
order to provide users with good visual experience during zooming operations, we
propose to remove these tiny areas. We plan to achieve this goal by aggregating
them into neighboring land-cover areas. A land-cover map is a planar subdivision
in which each area belongs to a land-cover class or type. Suppose that there are
two land-cover maps of different scales that cover the same spatial region. We con-
sider the problem of finding a sequence of small incremental changes that gradually
transforms the larger-scale map (the start map) to the smaller-scale map (the goal
map). We use this sequence to generate and show land-cover maps at intermedi-
ate scales (see Figure 2.1). In this way, we try to avoid large and discrete changes
during zooming.

With the same motivation, a strategy of hierarchical schemes has been proposed.
This strategy generalizes a more-detailed representation to obtain a less-detailed
representation based on small incremental changes, e.g., the Generalized Area Par-
titioning tree (GAP-tree). This tree can be constructed if only the larger-scale map
is given [00s05] or if both the larger-scale map and the smaller-scale map are given
[HDOO9]. Typically, the next change in such a sequence is determined locally, in a
greedy fashion. If we insist on finding a sequence that is optimal according to some
global measure, the problem becomes complicated.

Input (start map) Output (intermediate-scale maps) Input (goal map)

Figure 2.1: The input and a possible output for an instance of our problem.

12 2 Finding Optimal Sequences for Area Aggregation

We assume that there exist many-to-one relationships between the areas of the
start map and the areas of the goal map. This assumption is based on the fact that
many algorithms [e.g., HW10a; Sma03; OH17] result in many-to-one relationships
when aggregating land-cover areas. Their inputs and generalized results together
can be used as our inputs. However, we should not use those algorithms to generate
a sequence of maps at different scales because those algorithms do not take into
account the consistence between the generated maps. We use both a start map
and a goal map instead of using only the start map because our generated maps
at intermediate scales should be able to benefit from a goal map with high quality.
We term the areas of the goal map regions. That is, every region is the union of a
set of areas on the start map. The type of a region may differ from the types of its
components. For example, a small water area together with multiple adjacent forest
areas may constitute a large forest region on the smaller-scale map. However, we
assume that every region, on the goal map, contains at least one area of the same
type on the start map. Our assumptions hold if the goal map has been produced
with an automatic method for area aggregation, for example, by the method of
Haunert and Wolff [HW10a]. That method produces a land-cover map at a single
smaller scale, given a land-cover map at a larger scale. Although Haunert and Wolff
[HW10a] attain results of high quality, they do not produce a sequence of land-cover
maps.

Our method can also be extended to find an aggregation sequence for two maps
(a start map and a goal map) that are from different sources. In that case, one
could compute a map overlay of the two maps and use the result (with combined
boundaries from both input maps and land cover classes from the given large-scale
map) as the start map.

In this chapter, we try to find an optimal sequence to aggregate the land-cover
areas on the start map one by one until we arrive at the goal map. We first inde-
pendently deal with each region of the goal map (with its components on the start
map). Once we have found an aggregation sequence for each region, we integrate
all the sequences into an overall sequence, which transforms the start map into the
goal map (see Figure 2.2). Our aggregation sequence may be cooperated with the
GAP-face tree [O0s05], the map cube model [Tim98], or ScaleMaster [BB07; TG13],
to support on-the-fly visualization. Smoothly (dis-)appearing areas can be realized
by integrating our results into the space-scale cube [OM14; Oos+14].

Contribution. We formally model our problem, analyze the size of our model in
a worst-case scenario, introduce our methods, and present the basic concepts of
our method (Section 2.1). We define our cost functions (Section 2.2). We prove
that our problem is NP-hard (Section 2.3). Then, we develop and compare three
methods for finding aggregation sequences. First, we present a greedy algorithm
(Section 2.4). Second, we develop a new global optimization approach based on
the A® algorithm (Section 2.5). Third, we model our pathfinding problem as an
integer linear program (ILP), and we solve this ILP with minimizing our cost function

2.1 Preliminaries 13

n-@-Qq OO0

Input Output Input Input Output Input
Sequence of the region on the left side Sequence of the region on the right side

—> —> e —>
Input Output Output Output Input
Integrated sequence of the two regions

Figure 2.2: Integrating two aggregation sequences of different regions: the resulting sequence contains the
given sequences as subsequences and always takes the subdivision with smallest patch next. The gray arrows
show the integration of the two regions.

(Section 2.6). Our ILP uses binary (0-1) variables. These variables help us to model
our problem, but in general, it is NP-hard to solve an ILP optimally. By comparing
with the greedy algorithm, which is used as a benchmark, we are able to see whether
A" or the ILP-based algorithm, which are more complex and slower, indeed perform
better. Our case study uses a dataset of the German topographic database ATKIS
(Section 2.7). In the concluding remarks, we show possible ways to improve our
methods (Section 2.8).

We do not deal with simplifying polylines in this chapter. The simplification can
be handled separately from the aggregation of areas by using one of the existing
methods [e.g., DP73; Saa99; WSMO04]. Those methods can be used to set up the bi-
nary line generalisation tree (BLG-tree) of van Oosterom and Schenkelaars [0S95],
which is a hierarchical data structure that defines a gradual line simplification pro-
cess. Although splitting polygons is a good step of generalizing land-cover areas, we
do not integrate it into our method at this moment. Some examples of splitting are
as follows. Smith et al. [Smi+07] and Thiemann and Sester [TS18] proposed to split
tiny polygons and then to merge the split parts into the neighboring polygons. Mei-
jers et al. [MSO16] developed an algorithm to split a polygon (the splittee) based
on a constrained Delaunay triangulation. During splitting, their algorithm is capa-
ble of taking into account the attractivenesses between the splittee and its neighbors.
When merging, a more attractive neighbor will get a larger portion from the splittee.

2.1 Preliminaries

We show how to compute an aggregation sequence for a single region, R. For a goal
map with many regions, we “interleave” the sequences for each of them with respect
to the order of the smallest patches (see for example Figure 2.2). This integration
is similar to the merge step in the Mergesort algorithm; see Cormen et al. [Cor+09,

14 2 Finding Optimal Sequences for Area Aggregation

Section 2.3]. To allow us to describe our method more easily, below we assume
that the goal map has only one region. This region consists of n land-cover areas
(components) on the start map. In other words, the union of the n land-cover areas
is the only region on the goal map.

To find a sequence of small changes that transforms the start map into the goal
map, we require that every change involves only two areas of the current map. More
precisely, in each step the smallest area u is merged with one of its neighbors v (v
does not have to be the smallest neighbor) such that u and v are replaced by their
union. The type of the union is restricted to be the type of either u or v. If the
union uses the type of u, we say that area v is aggregated into area u, and vice
versa. How to aggregate exactly is decided by optimizing a global cost function (see
Section 2.2). This requirement ensures that the size of the smallest area on the
map increases in each step. Hence, the sequence reflects a gradual reduction of the
map’s scale. From another perspective, we consider the smallest area as the least
important, rather than involving more rules for (non-)importance. Even though the
requirement reduces the number of possible solutions, there is still enough room
for optimization since we leave open with which of its neighbors the smallest area
is aggregated. We term a sequence of changes that adheres to our smallest-first
requirement simply an aggregation sequence.

2.1.1 Model

We consider a directed graph Gg, which we call the subdivision graph (see Figure 2.3).
The node set Vg of Gg contains nodes for all the possible maps (or subdivisions),
including the start map, all possible intermediate-scale maps, and the goal map. The
arc set Eg of Gg contains an arc (P, ;, P, ;) between any two maps P,; and P, ;
in Vg if P, ; can be reached from P, ; with a single aggregation operation, involving
a smallest area. On this basis, any directed path in G from the start map to the goal
map defines a possible aggregation sequence.

Pgoal = P4,1

Figure 2.3: The subdivision graph, Gs. The nodes of the graph are the subdivisions. There is an arc from
subdivision P, ; to subdivision P, ; if P,y ; is the result of an aggregation step from P, ;.

2.1 Preliminaries 15

bl [[T]
|L1| =1 |L2k+1| =1

IR SR w—

n=2k+1 . 1 patch

2k patches DE[D

—_—————
k + 1 patches

Figure 2.4: An example to show that the size of subdivision graph Gg has exponential lower bound.

&

Subdivision Graph G,

Figure 2.5: The adjacency graph of a subdivision, G,. Each polygon of the subdivision is represented as a
node in the graph. There is an edge between two nodes if the corresponding two polygons are adjacent.

2.1.2 Notation

We represent each land-cover area by a polygon with a type. We denote by P the set
of polygons on the start map. We use p, q, r, or o to denote polygons. A patch is a
set of polygons whose union is connected. Each patch also has a unique land-cover
type. We use u or v to denote the patches.

Recall that we are dealing with a single region and there are n land-cover areas
on the start map in this region. Hence, the desired aggregation sequence consists
of n—1 steps. There are n subdivisions on a path from the start map to the goal map.
Weuset € T ={1,2,...,n} to denote time. When t = 1, the subdivision consists
of n patches, and there is only one patch remaining when t = n. The subdivision
graph consists of layers Ly,...,L,, where layer L, = {P, 4,...,P, , } contains every
possible subdivision P, ; with n—t + 1 patches (see Figure 2.4).

Sometimes, we need a graph to represent the adjacencies of the land-cover areas
in a subdivision, we call such a graph G, (see Figure 2.5).

16 2 Finding Optimal Sequences for Area Aggregation

2.1.3 Exponential Lower Bound

We now analyze the size of subdivision graph Gg. Our analysis is inspired by Keane
[Kea75], where we also use a row of n land-cover areas. In our instance (see Fig-
ure 2.4), the start map consists of n = 2k + 1 rectangular patches, and the goal
map is simply the union of the n patches. The patches have area sizes 100 + %, 99 +
%, 100+ %, 99+ %, .., 99+ "%1, and 101, from left to right. According to our setting,
we always aggregate the smallest patch with one of its neighbors. Therefore, in
the first k steps from the start map, we aggregate every other patch with one of its
neighbors. However, we do not know which one is the right choice at each of the
steps in order to minimize our costs (see Section 2.2). We have to try both of the
two choices, aggregating with the left patch or with the right one. As a result, there
are 2K = 2("=1)/2 sybdivisions in layer L;,;. That is to say, the size of subdivision
graph Gg has exponential lower bound.

2.1.4 Methods

Our idea is to obtain an optimal aggregation sequence through computing a path
with minimum weight, from the start to the goal (see Figure 2.3). This idea obvi-
ously requires that the arc weights are set; then we try to find a minimum-weight
start—goal path that does actually correspond to an aggregation sequence of max-
imum cartographic quality. Putting the idea to practice is far from trivial since
graph Gg can be huge. We compare a greedy algorithm, A", and an ILP-based algo-
rithm in finding such paths. Note that our inputs are only subdivisions Py, and Py,
(see Figure 2.3). We generate a subdivision (node) only when we want to visit it.

In directed acyclic graphs, shortest paths can be found slightly faster than in
general directed or undirected graphs. An off-the-shelf shortest-path algorithm for
directed acyclic graphs (e.g., Cormen et al. [Cor+09, Section 25.2]), however, will
explore the whole graph, which has exponential size. Dijkstra’s algorithm [Dij59],
for a user-specified given source, computes shortest paths to all other nodes in an
edge-weighted graph. Dijkstra’s algorithm need to explore a large number of nodes
even when computing only a single shortest path to a user-specified destination. The
same holds for shortest-path algorithms that make use of a topological order of the
nodes in a directed acyclic graph. Compared to these algorithms, the A" algorithm
can greatly reduce the number of explored nodes. The challenge in our work was
to tune the A* algorithm such that it explores only a small fraction of the graph.

2.2 Cost Functions

Figure 2.3 shows that there are many ways to aggregate from the start map to
the goal map. Apparently, some of the ways are more reasonable than others. In
our example, we consider sequence (P, 1,P,;,P;,P, ;) more reasonable than se-
quence (Py 1, P, 4, P35, P4 1). This is because that the dark area should not expand so

2.2 Cost Functions 17

much when the target color is light gray. We want to provide users with a most rea-
sonable sequence because we believe that an unreasonable sequence irritates users.
To find a most reasonable sequence, we introduce cost functions. In the cost func-
tions, we charge a higher penalty when an aggregation step is less reasonable. As
a result, by minimizing the overall cost of an aggregation sequence, we find a most
reasonable sequence.

It is difficult to define what reasonable exactly means because users may have
different preferences. Four preferences have been discussed by Cheng and Li [CLO6];
see Figure 2.6. A small land-cover area can be aggregated into another area that
isolates the area (Figure 2.6b), that is the largest neighbor (Figure 2.6¢), that shares
the longest boundary (Figure 2.6d), or that has the most similar type (Figure 2.6€).
To keep our aggregation problem independent of user preferences, our cost function
takes two aspects into account: one based on semantics and the other based on
shape. In terms of semantics, we require that the type of a land-cover area changes as
little as possible. This requirement means that we prefer, for example, aggregating
an area with type swamp into an area with type wet ground rather than into an
area with type city. In terms of shape, we hope to have areas which are as compact
as possible. Our argument is that an area is easier to be identified by a human
being if it is more compact (less clutter). We also consider the total length of the
interior boundaries as an alternative compactness; we consider subdivision P, ; as
more compact than subdivision P, ;, if the total length of the interior boundaries
of P, ; is less than that of P, ;. We add this alternative because we want to make a
comparison involving an ILB where a linear cost function must be used. Note that
most compactness measures are not linear; for example, see Maceachren [Mac85]
and Li et al. [LGC13]. Although the length of interior boundaries is not sufficiently
precise to describe compactness [You88], it is often used as a fair alternative when
compactness is considered in an ILP [e.g., MH16; WRC83]. Haunert and Wolff
[HW10a] employed the centroids of a set of land-cover areas. One of their costs is
the sum of the distances from the centroids to a reference point. The reference point
is one of the centroids that minimizes the sum. The sum of the distances can be
computed linearly. We use the length of interior boundaries instead of the distance
of centroids because the former is more relevant to the shapes of the patches. Also,
Harrie et al. [HSD15] showed that longer lines generally yield lower map readability.

2.2.1 Cost of Type Change

Suppose that we are at the step of aggregating from subdivision P;; to subdivi-
sion P, ;. In this step, patch u is aggregated into patch v (see Figures 2.7a and
2.7b). We denote the types of the two patches by T(u) and T(v). We define the cost
of type change of this step by

Ay diype(T@, T()

3
AR dtypeimax

ftype(Ps,i:Ps+1,j) = (2.1

18 2 Finding Optimal Sequences for Area Aggregation

535) @

Figure 2.6: Aggregating land-cover areas according to different preferences by Cheng and Li [CL0O6]. Aggre-
gating a small land-cover area into another one that isolates the area (b), that is the largest neighbor (c), that
shares the longest boundary (d), or that has the most similar type (e).

y &

Pstart 2,y mt(P212)_ 17 mt(PZ 12)— 19.5

(a

Figure 2.7: An aggregation step, where patch u is aggregated into patch v; see Figures (a) and (b). Figures (c)
and (d) respectively show the number of edges and the lengths of the interior polylines after the aggregation.

where A, is the area of patch u, and Ay is the area of region R (see Section 2.1). We
use A and dype max to normalize the cost of type change. Constant dype max, the
maximum cost over all type changes, is known from the input. The input specifies
cost diype(Th, T5) of changing type T; to type T,. Specifically, we denote by T,y
the type of the patch on the goal map. For simplicity, we use a metric as the cost
function of type change (see Section 2.7). A metric distance is symmetric, which is
different from the asymmetric one used in Dilo et al. [DOH09]. In their definition,
for example, the distance from type building to type road is 0.5, but the distance
from road to building is 0.

For path IT = (P, Py,,..-,P,;), we define the cost of type change over the
steps by

gtype(H) - thype(S, s+1 15+1) (2-2)

2.2.2 Cost of Compactness

We use the compactness definition of Frolov [Fro75], i.e., the compactness value of

a patch, say, u is
24/ TA
c(w) = l—” (2.3)
u

2.2 Cost Functions 19

where A, and [, are the area and the perimeter. For subdivision P,;, we denote
by C(P; ;) the set of the patches’ compactness values.

We wish to maximize the sum of the average compactness values over all inter-
mediate maps, while our objective will be minimizing a cost function. To adapt the
average compactness to our methods, we define and minimize a cost related to com-
pactness. Recalling that there are n —s + 1 patches at time s, we define the cost of
compactness for subdivision P; ; as

1
1- n—s+1 ZCEC(PSJ) ¢
n—2

fcomp(Ps,i) = B (24)

where we use values n —s + 1 and n — 2 to normalize the cost of compactness.
For path II (see Section 2.2.1), we define the cost of compactness over all inter-
mediate maps (that is, neglecting P; ; and the last subdivision in the path) by

t—1
gcomp(n) = chomp(Ps,is)~ (2.5)
s=2

2.2.3 Cost of Length

We denote the set of interior boundaries for a subdivision P, ; by B(P; ;). The cost in
terms of interior length of this subdivision is defined as

(ZbeB(PS’i) |b])/D(s)

frgm(Ps) = —) (2.6)
where
n—s
D(s)=— > [bl. 2.7)
n—1
bEB(Pyar)

Function D(s) computes the “expected” total length of the interior boundaries at
time s, where we expect that this total length decreases linearly according to time s.
In special, D(1) = ZbeB(Psm) |b| and D(n) = 0. Similarly to Equation 2.4, we
use D(s) and n — 2 to normalize the cost of length.

For path II (see Section 2.2.1), we define the cost of length over all intermediate
maps (that is, neglecting P; ; and the last subdivision in the path) by

t—1
Zign (D) =D fion(P,)- (2.8)

s=2

Note that in theory, a patch, u, with a small perimeter can be extremely non-
compact according to measure c(u) in Equation 2.3, thus the two measures, feomp
and fjg, are not interchangeable. However, if we assume that all areas of the map
have the same size (i.e., A, of Equation 2.3 is a constant), it would make no dif-

20 2 Finding Optimal Sequences for Area Aggregation

ference whether we minimize an area’s perimeter or maximize the area’s compact-
ness c(u). Obviously, the areas in our dataset have different sizes. However, since
we iteratively remove the smallest area, the differences do not become too large.
Therefore, measuring the overall compactness of a map based on the total length of
all the interior boundaries is quite reasonable.

2.24 Combining Cost Functions

When we generate a sequence of intermediate-scale maps, we want to change the
types of the land-cover areas as little as possible and want to have compact land-
cover areas. Therefore, we combine the cost of type change (Equation 2.2) and the
cost of compactness (Equation 2.5). That is,

gl(n) =(1- A)gtype(n) + Agcomp(n): 2.9)

where A € [0, 1] is a parameter to assign importances of fiy,. and feom,. We simply
use A = 0.5 in our experiments. We want to find a path IT from Py, to P,; that
minimizes, among all such paths, g;(II). Slightly abusing notation, we denote the
cost of an optimal path from Py, to P,; by g;(P; ;). Using g;,(P;;), we compare a
greedy algorithm and A” in finding optimal sequences for area aggregation.

As said before, we want to make a comparison involving integer linear program-
ming while our cost of compactness (see Equation 2.3) cannot be computed linearly
in an integer linear program. Therefore, we combine the cost of type change (Equa-
tion 2.2) and the cost of length (Equation 2.8), which can be computed linearly in
an integer linear program. That is,

82(IM) = (1 = A)grype(TI) + Agigen (D). (2.10)

We compare the greedy algorithm, A*, and an ILP-based algorithm using g,.

2.3 NP-hardness Proof

Although we have shown that the graph of subdivisions has an exponential size
(see Section 2.1), one may develop a clever algorithm to find an optimal sequence
efficiently. In the following, we prove that finding such a sequence is indeed NP-hard.
In the proof, we neglect the cost of compactness or the cost of length. Considering
one of the two costs will make the computation even more difficult.

Theorem 1. AREAAGGREGATIONSEQUENCE is NP-hard even if we only consider the
cost of type change.

Proof. Our NP-hardness proof is by reduction from the NP-complete problem PLA-
NARVERTEXCOVER, which is to decide, for a given planar graph G, = (V,, E,), whether
there exists a vertex cover with at most a given number k, of vertices. For an in-
stance of PLANARVERTEXCOVER (Figure 2.8a), we define a corresponding instance

2.3 NP-hardness Proof 21

PLANARVERTEXCOVER AREAAGGREGATIONSEQUENCE

(a) Ga = (Va, Ea)
(b) Start map (c) Goal map

Figure 2.8: The reduction for our NP-hardness proof. The dashed polygon in (c) shows the merged vertices.

of AREAAGGREGATIONSEQUENCE whose start map consists of gray, black, and white
areas and whose goal map consists of only one large gray patch. The adjacency
graphs of the two maps are illustrated in Figures 2.8b and 2.8c, where the colors
of the vertices represent the colors of the corresponding areas. More precisely, for
each vertex of G, in Figure 2.8a, we define a gray vertex and a black vertex, which
we connect with an edge. For each edge {u, v} of G,, we define two white vertices
and connect each of them both with the black vertex for u and the black vertex for v
(Figure 2.8b).

We define the weights of the vertices in Figure 2.8b as follows:

* Every white vertex has weight 1.

* Every black vertex has weight 2.

* Every gray vertex has weight 2|V,| + 2|E,|, which is equal to the total weight
of all white and black vertices.

When we merge two vertices, the weight of the new vertex is the sum of the two. In
each aggregation step, we require the smallest area to be aggregated with one of its
neighbors. The area sizes correspond to the weights of the vertices in Figure 2.8b.
Therefore, our definition of the weights to a certain degree determines the order in
which the vertices are selected:

* Phase I: In each of the first 2|E,| steps, a white vertex is selected and merged
with one of its neighbors, such that the white vertex receives the neighbor’s
color or vice versa (Figure 2.9 shows a possible result).

¢ Phase II: In each of the next |V, | steps, a non-gray vertex is selected and merged
with one of its neighbors.

* Phase III: |V,| — 1 steps remain to reach the goal map.

To complete the reduction, we need to define the costs of color changes. For any
color change, we charge one unit of cost per unit weight. Due to our construction,
Phases II and III can be accomplished with a total cost of 2|V, | + 2|E,|, no matter
how Phase I is accomplished. This is because, after Phase I, every non-gray patch
will be adjacent to a gray patch (vertex). Thus, if any non-gray patch becomes
selected in Phase II, it can be aggregated with a gray patch (vertex) and receive the

22 2 Finding Optimal Sequences for Area Aggregation
BN ?(

Y

Figure 2.9: The situation after Phase | has been conducted such that all black vertices corresponding to a
vertex cover of G, have been recolored white. The dashed polygons show that the vertices are merged.

color gray. This implies that Phase II costs 2|V, | + 2|E,| (which is equal to the total
weight of all initially white and black vertices) and, since after Phase II all patches
are gray, Phase III does not cause any additional cost. It is also clear that there
is no cheaper way to accomplish Phases II and III, since it is impossible to color
a vertex gray in Phase I. Consequently, since the total cost of Phases II and III is
fixed, it is only interesting to ask at which cost Phase I can be accomplished. It turns
out that, if G, has a vertex cover C, € V,, then Phase I can be accomplished with
cost 2|C,|; only the black vertices corresponding to vertices in C, need to change
their color from black to white, and each of them has weight 2 (see Figure 2.9). To
summarize, if graph G, has a vertex cover C,, then the corresponding instance of
AREAAGGREGATIONSEQUENCE has a solution of total cost 2|C,| + 2|V, | + 2|E,|.

It remains to be shown that, if C; is a minimum vertex cover of G, then there
is no solution with total cost less than 2|Cj| + 2|V,| + 2|E,|. To see why, we assume
that such a solution exists. If we keep the black color of a vertex from C; (the total
cost decreases by 2), then we will need to at least change two white vertices to
black vertices (the total cost increases by 2 at least). Therefore, we have found a
contradiction to our assumption.

O

2.4 A Greedy Algorithm

A motivation for the greedy algorithm is that a very similar iterative algorithm has
been used by van Oosterom [Q0s05] for constructing the tGAP data structure. How-
ever, we have to make minor modifications to ensure that the computed aggregation
sequence ends with the goal map that, in our situation, is given as a part of the input.
We use our greedy algorithm as a benchmark so that we are able to see whether the
A" algorithm or the ILP-based algorithm indeed perform better.

At any time t, our greedy algorithm aggregates the smallest patch with one of
its neighbors. We pick the neighbor in a greedy way. We suppose that the smallest
patch, u, has k, neighbors, then there are 2k, ways to aggregate (when we aggre-
gate a patch into another patch, the union uses the type of the latter). In order
to guarantee that our final result (e.g., the polygon of layer L, in Figure 2.3) will

2.5 Using the A* Algorithm 23

have the type of T,,,, we add one more rule to our greedy algorithm. Suppose
that patch v is one of u’s neighbors. The greedy algorithm aggregates u into v if
the type distances fulfill that dyp,. (T(u), Tgoal) = diype (T(v), Tgoal); otherwise, the
algorithm aggregates v into u. This rule excludes, say, k, aggregation choices, and
we have 2k, —k, choices left. Then we compute the costs for each of the 2k, —k, ag-
gregation choices and select the aggregation that has the least cost. In other words,
we aggregate the smallest patch with its most compatible neighbor.

In accordance with our two combinatorial costs in Section 2.2.4, we define two
cost functions. Suppose that we are at the step of aggregating from subdivision P, ;
to subdivision P, ;. The first cost function is

fl(Ps,iJ Ps+1,j) = (1 - A’)ftype(Ps,iJ Ps+l,j) + A‘fcomp(Ps+1,j)- (211)

The second cost function is

fZ(Ps,i: Ps+1,j) = (1 - A)ftype(Ps,iﬂ Ps+1,j) + lflgth(Ps+l,j)' (212)

We take one of the 2k, —k, aggregation choices according to Equations 2.11 or 2.12
in our two experiments. The cost of a whole sequence can be computed by Equa-
tions 2.9 or 2.10.

2.5 Using the A" Algorithm

Section 2.1 has shown that the size of finding an optimal aggregation sequence can
be exponential. That is to say, the graph Gg—our search space—can be of expo-
nential size. In order to avoid computing the whole graph explicitly, we use the A*
algorithm [HNR68; Pat]. To save time and memory, we generate a subdivision, P, ;,
only when we are going to visit it. A" uses a clever best-first search to find a shortest
path from subdivision Py, to subdivision Py, . For P, ;, A" considers the exact cost
of a shortest path from Py, to P, ; and estimates the cost to get from P, ; t0 Pgyq. A"
explores the nodes earlier if they are estimated to be closer to the goal. A* can be
seen as a refinement of Dijkstra’s algorithm [Dij59].

We define g(P;;) to be the exact cost of a shortest path from Py, to P,; and
define h(P, ;) to be the estimated cost to get from P, ; to Py, Then, the (estimated)
total cost at node P, ; is

F(P.;) = g(P.;) +h(P;). (2.13)

We use either g; (Equation 2.9) or g, (Equation 2.10) for g(P, ;); accordingly, we
use either h; (Equation 2.23) or h, (Equation 2.24) for h(P, ;). If h(P, ;) is always
bounded from above by the exact cost of a shortest path from P, ; to Py, A" guar-
antees to find a shortest path from Py, t0 Py, that is, an optimal aggregation
sequence. Using estimate F (Equation 2.13), A" is able to reduce the search space.
The better the estimation part h, the more search space A“ can reduce. In the fol-
lowing, we show how to compute estimated cost h(P, ;).

24 2 Finding Optimal Sequences for Area Aggregation

To narrow down the search space, we set up estimation functions for type change
(Section 2.5.1), compactness (Section 2.5.2), and length (Section 2.5.3). These
functions are meant to direct A* towards the goal. Since the number of subdivisions
can be exponential, we may run out of the main memory before we find an optimal
solution. To handle this problem, we introduce overestimations to find a feasible
solution. Overestimations are popular when people cannot find optimal solutions
using A*. For example, Pohl [Poh73] overestimated using dynamic weighting. We
propose another strategy that fits our problem. We first try finding an optimal solu-
tion by A*. If we fail to find one after we have visited a predefined number, say, W
of nodes of graph Gg, then we restart. In the retrying, we overestimate the first K
steps starting at each node (see Sections 2.5.1, 2.5.2, and 2.5.3). We may need to
increase K and retry several times until we find a feasible solution. Because we do
not want to retry too many times, we define K by

K=2k—1, (2.14)

where k > 0 is the number of retryings. When k = 0, we have K = 0, which means
that the first attempt of finding a solution does not use overestimation. AsK < n—1,
it holds that k < log, n, which means that we need to retry [log, n] times at most.
Whenever overestimating (k > 1), A" cannot guarantee optimality anymore. When
we are at time t, there are at most n —t steps to arrive at the goal map. We define
the number of practical overestimation steps as

K’ =min{K,n—t}. (2.15)

2.5.1 Estimating the Cost of Type Change

To find a lower bound of the cost of type change, we simply assume that every patch
will be aggregated into a patch with type Tg,,. As long as the cost of type change is
a metric, this aggregation strategy indeed yields a lower bound. For subdivision P, ;,
let (P, ; = PritsPryrir, oo Py = Pyoa1), be the path that always changes the type of
a smallest patch to Tg,,. Then the estimated cost of type change is

n—1
htype(Pt,i) = thype(Ps,isﬁ Ps+1,iS’Jrl). (2.16)
S=t

As an example, for Figure 2.7b, we compute hyy,. according to the “aggregation
sequence” of Figure 2.10. Note that the step from subdivision P, ;; to subdivision Py
in Figure 2.10 is impossible in reality because the dark patch cannot be aggregated
into patch v as they are not neighbors. However, this aggregation is allowed for
estimation because we may find a shortest path as long as the estimated cost is
no more than the exact cost of a shortest path. When we need to overestimate,

2.5 Using the A Algorithm 25

(a) Pz,i; (b) P3,i§ (o) P4,ig (d) Ps,ig

Figure 2.10: An “aggregation sequence” for computing the estimated cost of type change htype (see Equa-
tions 2.16 and 2.17), based on the aggregation result of Figure 2.7b. Note that this aggregation sequence is
impossible in reality, but it is fine for estimating (see the argument in Section 2.5.1).

we multiply the estimated cost of the first K’ steps (see Equation 2.15) by K (see
Equation 2.14). As a result, Formula 2.16 is revised to

t+K'—1

e(Ptl) K Z ftype(S,i00 Ps+11)+ Z ftype(s,i02 Ps+1,is’+l)- (2~17)

s=t+K’

2.5.2 Estimating the Cost of Compactness

We estimate the cost of compactness based on regular polygons. The more edges
a regular polygon has, the more compact it is. We assume that, at each step, we
aggregate the two patches that are the least compact. Moreover, we assume that
the shared boundary of the two patches has the least number of edges. We use
Ny to denote the edge number of the region’s exterior boundaries. As the exterior
boundaries will not be changed by aggregation, N, is a constant. Note that the
boundary between two patches is not necessarily connected; for example, see the
dark boundary with three edges in Figure 2.11a. For subdivision P, ;, we denote
by B(P, ;) the set of interior boundaries and denote by b,;,(P, ;) the boundary with
the smallest number of edges. For our estimation, the set of interior boundaries at
time t +1is B(Pyy,17) = B(P;;) — {bpin(P,;)}. The estimated number of the edges
for such a subd1v151on Py s is

Nesi, =Nt 2, lIb, (2.18)

L
bEB(Pt+1,i;/+l)

where notation ||b|| represents the number of boundary b’s edges.

From subdivision P, ; to subdivision P, ;s , we get a new patch because of
the aggregation. The new patch is certainly less compact than a regular polygon
with NV, i edges. In order to estimate the compactness of the new patch, we
assume that the new patch has the shape of a regular polygon with NV, i edges
(see Equation 2.18). A regular polygon with A edges has compactness

Vi
reg(N) N/tan ﬁ

26 2 Finding Optimal Sequences for Area Aggregation

(a) (b) (c) (d)
3 —» 3 — —»
4 4 4 4

Nine(Po,i7) = 17 Nine(P3) = 15 Mine(Py i) = 12 Mine(Ps i) = 9

Figure 2.11: An "aggregation sequence” for computing the estimated cost of compactness h o, (see Equa-
tions 2.19 and 2.20), based on the number of edges. At each step we remove the boundary with the fewest
edges. The numbers represent the numbers of the interior boundaries’ edges. Note that this aggregation se-
quence is impossible in reality, but it is fine for estimating (see the argument in Section 2.5.1). This example
corresponds to the aggregation step in Figure 2.7b.

Note that compactness c,,(\) increases with increasing NV. A patch with N, +1,,
edges has compactness creg(/\/'prl,i;/+)). According to our previous assumption, at each
step we are always able to aggregate the two patches that are the least compact in
the subdivision. We denote the compactness values of the two patches by ¢ (P; ;)
and Cppp(P; ;). Recall that we use C(P;;) to denote the set of compactness values
of the patches in subdivision P, ; (see Section 2.2.2). Then the set of compactness
values for subdivision Py, ;» is

C(Piia,ir) = C(Py) U{creg(Nigaiz I\ {emin1 (Pe,i); Cmina(Pr1)}-

t+

We compute the estimated average compactness by calculating the average of the
values in set C (Pt+1,i§’+ 1). Finally, we compute the estimated cost of compactness for
subdivision Peiyir, by Equation 2.4.

For subdivision P, ;, let (P,; = P, Pry1r 5.+, Prin = Pgoa) be the path that
always removes the two smallest compactnesses and gains a compactness of the
constructed regular polygon. The estimated cost of compactness is

n—1
hcomp(Pt,i) = chomp(Ps,is”) (2.19)
s=t

When overestimating, we assume that each patch in the subdivision is extremely
noncompact, that is, each patch has compactness 0. One may ask if this assumption
is too much. It is indeed too much for one subdivision, but it is just fine for the whole
sequence as we overestimate for only a certain number of subdivisions. Based on
the assumption, the cost of compactness is fcomp(Ps,i;/) = 1/(n — 2), according to
Equation 2.4. When we need to overestimate K’ steps (see Equation 2.15), we
revise the estimated cost of compactness to

t+K'—1

n—1
1
hcomp(Pt,i)= Z m"’ Z fcomp(Ps,is”)- (2.20)

s=t s=t+K’

2.5 Using the A* Algorithm 27

(a) (b) ()] (d)
—» —» —»

ine(Poip) =9.4 Cine(P3 1) = 5.7 Cini(Py i) =2.8 ine(Ps) =0

Figure 2.12: An "aggregation sequence" for computing the estimated cost of length hlgth (see Equations 2.21
and 2.22), based on the lengths of interior boundaries. At each step, we keep the necessary number of
interior boundaries with least lengths in order to find a lower bound of the total length of the interior boundaries,
i.e., £ine(P; ;). The numbers represent the lengths of the interior boundaries. Note that this aggregation
sequence islimpossible in reality, but it is fine for estimating (see the argument in Section 2.5.1). This example
corresponds to the aggregation step in Figure 2.7b.

2.5.3 Estimating the Cost of Length

At time s, there are n—s+1 patches. There can be as few as n—s interior boundaries.
In order to find a lower bound for the cost of length, we keep only the necessary
number, n — s, of shortest boundaries at each step (see Figure 2.12). Then, we
compute the estimated cost of length according to Equation 2.6.

For subdivision P, ;, let (P,; = P, ;», P, +1,i7 5o Pogm = Pyoq1) be the path that

always keeps the necessary number of shortest interior boundaries. The estimated
cost of length is

n—1
Mg (Pr) = D figen(Psn). (2.21)
s=t

When overestimating, we use the interior length of subdivision P, ; as the cost of
length for each of the first K’ steps (see Equation 2.15), even though we are remov-
ing interior boundaries step by step. As a result, we revise Formula 2.21 to

t+K'—1 n—1
hga(Pe) = D fignP)+ D fign(Poon). (2.22)
s=t s=t+K’

2.5.4 Combining Estimated Costs

In accordance with our two combinatorial costs in Section 2.2.4, we define two
estimated-cost functions:

hl(Pt,i) = (1 -)L)htype(Pt,i) +)Lhcomp(Pt,i)’ (2-23)

and
hz(Pt,i) = (1 - A)htype(Pt,i) + Ahlgth(Pt,i)' (2.24)

28 2 Finding Optimal Sequences for Area Aggregation

2.6 Integer Linear Programming

Linear programming is a method to optimize a linear objective subject to a set of linear
constraints with some variables. Suppose that we are selling coffee. We have 3.5kg
of coffee powder and 10kg of water. We mix the powder and the water to provide
two kinds coffee with different intensities in terms of mass: 40% and 20%. The
profits of them are respectively 5€ and 4€. Our aim is to maximize the total profit
of selling coffee. If we offer x kg and y kg of the two kinds of coffee, then x and y
are our variables. Our objective is to

maximize 5x +4y.

To provide x kg of coffee with intensity 40%, we need to use 0.4x kg of coffee powder
and 0.6x kg of water. Analogously, we need 0.2y kg of powder and 0.8y kg of water
to produce y kg of coffee with intensity 20%. As a result, we have four constraints:

0.4x+0.2y < 3.5,
0.6x +0.8y <10, and
x,y =0.

With the objective and the constraints, we have set up a linear program (LP). We
observed that all the feasible solutions, i.e., pairs of (x, y), fall in the gray area of
Figure 2.13a. Drawing a line with slope —2, we see that every pair of (x, y) lying
on the line yields the same result for 5x + 4y, the profit we want to maximize.
For example, every pair of (x,y) lying on the dashed line in Figure 2.13a yields
profit 40€. If we move the dashed line to the upper right, then we are able to
achieve a larger value for 5x + 4y. In order to maximize the profit, we move the
dashed line to the upper right as much as possible and, at the same time, make
sure that it still intersects with the gray area. Note that if the dashed line does not
intersect with the gray area, then there is no feasible pair of (x,y) on the dashed
line anymore. As a result, we get the optimal solution when the dashed line hits
point A, where the profitis 5-4+4-9.5 = 58€ . Karmarkar [Kar84] proved that an
LP can be solved in polynomial time.

Now we change our problem a bit. We wish to sell coffee in jugs, where each jug
contains exactly 1kg of coffee with intensity 40% or 20%. Our question becomes
how many jugs of each kind of coffee we should sell in order to maximize the profit.
If we sell the two kinds of coffee respectively x’ and y’ jugs, then the problem
becomes:

maximize 5x’+ 4y’
subject to 0.4x’+0.2y’ < 3.5,
0.6x"+ 0.8y’ <10,
x',y' =0,
and x',y €.

2.6 Integer Linear Programming 29

y" (ugs)
(b)

0.4x’ +0.2y’ =3.5

x’ (jugs)

Figure 2.13: Examples of linear programming (a) and integer linear programming (b). In (a), any point in the
gray area is a feasible solution; in (b), only the gray points are feasible solutions.

For this problem, only the pairs of (x’,y’) represented by the gray dots of Fig-
ure 2.13b are feasible solutions (point A is no longer a feasible solution in this case).
In order to maximize our profit, we should move the dashed line to the upper right
as much as possible and, at the same time, make sure that it hits at least one of the
gray dots. To solve such a problem is known as integer linear programming, which is
NP-complete. Despite the fact, there are mathematical solvers yielding optimal so-
lutions for some NP-complete problems in reasonable time [HW17]. By using these
solvers, we benefit from every improvement, by their producers, for the same class
of problems [HW17]. The general form of an integer linear program (ILP) is

maximize CTX
subjectto FEX < H,
X >0,
and Xe7l,

where vector X represents integer variables, vector C € R!, vector H € R/, and E
is a (J x I)-matrix over the reals. Furthermore, if we require

X €{0,1},

then we have only binary variables for an ILP. Binary variables are important be-
cause they occur regularly in optimizations [BHM77, Section 9.2]. Also, an ILP
with general (bounded) integer variables can always be translated to an ILP with
binary variables [Wil09, Section 2.3]. We are going to use binary variables in our
ILP because it is more intuitive to model our problem using binary variables than
using other integers.

30 2 Finding Optimal Sequences for Area Aggregation

Xipr =0 X149, =0 Xopr =1 X9q, =0 Xgpr =1 X34, =1
y2,p,p,r: 1 yZ,q,q,r= 0 yS,p,p,r: 0 yS,q,q,r: 1
zZ,p,r,r =1 zZ,q,r,r =0

CLppr=1 Cippq=0

wyp, =1 wyg =0 Wy, =0 wy, =1

Figure 2.14: Some examples of the five sets of variables for our ILP, x, y, 2, ¢, and w. The arrows with curly
arms show the aggregation steps, and the dotted lines represent the removed boundaries by the aggregation
steps. There are some blank spaces in the rows of the variables because there is no corresponding variable at
the specific times.

We want to compare the A* algorithm with integer linear programming in finding
optimal sequences for our aggregation problem. Since integer linear programming
can handle only linear constraints, we define the compactness of a subdivision as the
length of the subdivision’s interior boundaries. That is, we use cost function g, (see
Equation 2.10). Our basic idea is to formalize the problem of finding a shortest path
as an ILP. Then we solve this ILP by minimizing the total cost. We define the center
of a patch as the polygon to which other polygons in the same patch are assigned.
At the beginning, every patch consists of only one polygon, and this polygon is the
center of the patch. When we aggregate patch u into patch v, all the polygons of u
are assigned to the center of v, and the type of u’s polygons are changed to the type
of v’s center. In the following, we show how to formalize our problem as an ILP. For
simplicity, we sometimes denote by patch r the patch using polygon r as the center
at time ¢.

2.6.1 \Variables

Our problem is to decide centers for polygons to be assigned. Each question of type
“Is polygon p assigned to center r?” can be answered with “yes” or “no”. Hence,
we use binary (0-1) variables. We need five sets of variables in order to formulate
our pathfinding problem as an ILP Recall that We use T = {1,2,...,n} to represent
the set of times and use P to denote the set of n polygons on the start map (see
Section 2.1). The first set of variables is used to tell the program our rules for area
aggregation. We introduce the variable

X¢pr €10,1} YteT,Vp,reP

2.6 Integer Linear Programming 31

with the intended meaning x, , . = 1 if and only if polygon p is assigned to polygon
r at time t (see Figure 2.14 for some examples). If a polygon is a center at time ¢,
then the polygon must be assigned to itself, that is, x, ., = 1.

We use the second set of variables in order to compute the cost of type change.
We introduce

Yepor €10,1} YteT\{1},Vp,o,r€P

with the intended meaning y, ,, , . = 1 if and only if polygon p is assigned to center o
at time t — 1 and assigned to center r at time t (see Figure 2.14). Specifically,
case y; ,,, = 1 means that polygon p is assigned to the same center at times t —1
and t.

We need a third set of variables for computing the cost of length. We introduce

Zt,p,q,re{o’]'} VtET\{lan}’Vp’q:rGP

with the intended meaning z,,,,. = 1 if and only if polygons p and q are both
assigned to center r at time t (p and g are in the same patch). In this case, their
common boundary should be removed (see Figure 2.14). When variable z , , . =1
and p = g, we define the length of their common boundary to be 0 because we
shall not remove any. Note that time t € T \ {1,n}. We do not need z, ., for
time t = 1 because there are no two polygons in the same patch. Namely, it always
holds 2, ,, , , = 0, which does not help in our ILP We do not need z, , , . for time t =n
because all the polygons will be in the same patch. In this case, Equation 2 =1
always holds, which does not help in our ILB either.

We use a fourth set of variables to guarantee contiguity of each patch. In other
words, we aggregate two patches only when they are neighbors (adjacent). We
introduce

n,p,q,r

Cepor €10,1} VeeT\{n—1,n},Vp,o,r € P witho #r,

with the intended meaning ¢, , , . = 1 if and only if, at time ¢, polygon p is assigned
to center o, and p has a neighbor assigned to center r (see Figures 2.14 and 2.15
for examples). We do not need variable ¢, , , . for time t = n—1 because there are
only two patches left, and they must be neighbors.

Our last set of variables is needed to enforce that every aggregation step involves
a smallest patch. We define

we, €1{0,1} Yte T\ {n},YoeP

with w, , = 1 meaning if and only if, at time t, patch o is the smallest patch that
is involved in the aggregation step from time t to time t — 1 (see for example Fig-
ure 2.14).

In total, the number of variables in our ILP formulation is O(n*).

32 2 Finding Optimal Sequences for Area Aggregation

0 1B 7| o

Figure 2.15: There are two patches, which respectively use polygons o and r as their centers. Polygons in the
same patch are separated by dotted lines. Polygon p, in patch o, has two neighbors assigned to center r, i.e.,
polygons q; and g,. In this case, patches o and r are neighbors and can be aggregated.

2.6.2 Objective

We want to minimize a weighted sum of the two costs, the cost of type change and
the cost of length (analogous to Equation 2.10). That is, our objective is to

minimize (1 —A)Fype + AFjg,
where 4, as in Equation 2.10, is a parameter to assign importances of Fyy,. and Fjg,.

According to the cost introduced in Section 2.2.1, we compute the total cost of type
change by

Fiype = ZZZZ(type(T(O) T(r)) yt’p’o’r)’

t=2 pEP 0€P reP type_max

where, similar to Equation 2.1, a,, is the area of polygon p, Ag is the area of the
region, and T (o) and T(r) are the types of centers (polygons) o and r.

We also wish to minimize the overall interior lengths of all the intermediate sub-
divisions. As discussed in Section 2.2.3, we use the length of the interior boundaries
as an alternative to compactness. Recall that B(Pyy,,) is the set of interior bound-
aries at time t = 1 (see Section 2.2.3). We sum up the normalized lengths of the
remaining interior boundaries of all the intermediate subdivisions by

1 nill 2iben(p,,) [Pl — 3 Dpep Dagep urep (1bpgl 20 pg.r)

Fi = , (2.25
lsth = 9 D(t) (2.25)

t=2

where variable b,, represents the common boundary between polygons p and q.
We define the length of the common boundary to be 0 (i.e., |by,| = 0) if p = q
because there is no boundary to be removed in this case. Function D(t), defined by
Equation 2.7, is used to normalize the cost of length. As in Equation 2.6, we use
denominator n—2 to balance between the cost of type change and the cost of length.
Integrating Equation 2.7 into Equation 2.25, we have

n—1 nilz(1 _ ZpEP qup ZrEP (|bpq| 'zt,p,q,r))

) n—t 2(n—t) ZbeB(Pm) 1b]

Figm =
=2

2.6 Integer Linear Programming 33

2.6.3 Constraints

In order to formulate our aggregation problem as an ILE we restrict the variables
introduced in Section 2.6.1 by setting up constraints. Recall that the intended mean-
ing of x, , . = 1is if and only if polygon p is assigned to center r at time t. To realize
this functionality, our first constraint is that polygon p is assigned to exactly one cen-
ter at time t. To this end, we require that

D ixep, =1 VteT,VpeP (2.26)

rep

The next constraint is that polygon r is available to be assigned by other polygons
only when r is a center. In our case, if polygon r is a center, then it must be assigned
to itself, that is, x, .. = 1. If r is not a center, we have variable x,, . = 0. In either
case, we have

Xepr < Xepr Yte T,Vp,reP. (2.27)

Aggregating a patch into another one results in the number of centers decreasing
by 1. We achieve that exactly one patch is aggregated into another by specifying the
number of centers for each point in time, that is,

D ixe,=n—t+1 VteT, (2.28)

repP

where polygon r is a center at time ¢ if and only if x, ., = 1.
When a patch is aggregated into another one, the center of the former will not
be used as a center anymore. Hence, we have

Xerr S Xe_1pr VeeT\{1},VrePr. (2.29)

On the start map, there are some polygons with the goal type, T, (see definition
in Section 2.5.1). At time t = n, all polygons are aggregated into one patch. This
patch must have type Ty, . In other words, the center of this patch must be one of
the polygons with type T, on the start map:

> X, =1 (2.30)

reP: T(r)=Tyo

where T(r) is the type of polygon r at time t = 1.

Next, we restrict binary variable y, , , ., introduced in Section 2.6.1. Recall that
the intended meaning of y, , , . = 1 is if and only if polygon p is assigned to center o
attime t—1 and to center r at time t. To enforce this, we use two types of constraints.

First, if polygon p is assigned to center o at time t—1 (x;_; , , = 1) and assigned
to center r at time ¢ (x;,, = 1), we have variable y, , , . = 1. This requirement is
expressed by

Yepor = Xe—1pot Xepr—1 VteT\{1},Vp,o,r €P. (2.31)

34 2 Finding Optimal Sequences for Area Aggregation

Second, if p is not assigned to o at t—1 (x,_ , , = 0) and/or p is not assigned to r
at time t (x,,, = 0), we have variable y, , , . = 0. This requirement is expressed

by

yt,p,o,r < xt—l,p,o
Vepor < Xep, } VteT\{1},VYp,o,r €P. (2.32)
In Section 2.6.1, we introduced binary variable z, , , .. Recall that the intended
meaning of z, , . . = 11is if and only if polygons p and q are both in patch r at time ¢.
To enforce this, we need three types of constraints.
First, if two polygons p and q are assigned to center r at time t (x;,, = 1
and x., . = 1), we have variable z, , , . = 1. This requirement is expressed by

Zepagr = Xepr T Xegr—1 VteT\{1,n},V¥p,q,r €P. (2.33)

Second, at time ¢, if p is not assigned to r (x,,, = 0) and/or q is not assigned
to r (x;4, =0), we have variable z, , , . = 0. This requirement is expressed by

Z¢ X¢

<
P 2Pt } VteT\{1,n},Vp,q,r €P. (2.34)

Zepqr = Xt,qr
Third, we introduce an abbreviation that will be helpful to express the last type
of constraint involving variable z, , , ,.:

Zt,p,q = Zzt,p,q,r Vt eT \ {1) Tl}, VP; q € P’ (235)

repP

where the reason we do not need z, , , for t =1 or t = n is the same as for z, , , ,
(see Section 2.6.1). Variable z, , , expresses whether, at time ¢, polygons p and q
are in the same patch (z[,p,q = 1) or not (zt)p,q = 0). Note that constraints (2.26)
and (2.34) ensure that polygons p and g can be assigned to one common center at
most; therefore, we have z., , < 1. We use our new variable z, , , to express the
following requirement: If two polygons have been aggregated into one patch, they
will always be in the same patch at later times—although the center of their common
patch may change. In other words, variable z, , , is monotonically increasing as a
function of time ¢:

Ztpq = Bt-1

tpg = Vte{3,4,...,n—1},Yp,q€P. (2.36)

P-4

Now we present our constraints of ensuring contiguity inside a patch. This prob-
lem has received considerable attention in integer linear programming. Usually, a
subdivision is represented by a graph (see Figure 2.5). Zoltners and Sinha [ZS83]
regarded each node as a center. For each center, they found a shortest path to each
of the other nodes. Then, they required that a center can be assigned by a node
only if at least one immediate predecessor of the node in the shortest path had been
assigned to the center. Although this requirement makes their problem easier to

2.6 Integer Linear Programming 35

be solved, it excludes many feasible patches. Williams [Wil02] built an optimal
spanning tree for the nodes. In order to ensure contiguity, the method picks a user-
specified number of nodes that constitute an optimal subtree of the previously built
spanning tree. For a given center, Cova and Church [CCO00] were able to find all
the contiguous patches. In their method, when a node is to be assigned to a center,
a path from the node to the center was demanded that each node of the path is
assigned to the center. Similarly, Shirabe [Shi05] modeled the contiguity problem
as a network flow. He required that there must be a path so that some fluid can flow
from a node to a sink (center). Oehrlein and Haunert [OH17] utilized a method
based on vertex separators. Given center r and node p, a separator is a set of nodes
such that any path from r to p will contain at least one node of the set. The conti-
guity between center r and node p is ensured if each of the separators contains at
least one node assigned to the center. The last four ideas can be adapted into our
method as we do not wish to exclude any possible solutions. However, we use an
idea that is more intuitive for our problem since we aggregate step by step.

We aggregate two patches only if they are neighbors. To ensure this, we need
binary variable ¢, , , . introduced in Section 2.6.1. Recall that the intended meaning
of ¢;,,, = 1is if and only if, at time ¢, polygon p of patch o has at least one
neighboring polygon in patch r. To enforce this behavior of ¢, , , ., we need four
types of constraints.

First, polygon p must actually be assigned to center o at time t (x.,, = 1). In
contrast, if p is not assigned to o (x,,, = 0), then variable c, , , . is impossible to
tell if patch o and patch r are neighbors. In this case, we must not aggregate the
two patches (¢, , » = 0); otherwise, we may end up having noncontiguous patches.
As a result,

Ct,p,o,r Sxt,p,o Vt S T\{n_l, Tl},

Vp,o,r €P witho #r. (2.37)

Second, at time t, at least one of polygon p’s neighbor(s), say, polygon ¢ has to
be assigned to center r (x; . = 1). If not, then variable c. , , . is impossible to tell
if patches o and r are neighbors. Analogous to the condition of constraint (2.37),
we have

Copor < Z Xtq,r VteT\{n—1,n},

4<Nowr (p) Vp,o,r € P with o # 1, (2.38)

where N, (p) represents the set of polygons adjacent to p.

Third, if polygon p is in patch o (x.,, = 1) and p has at least one neighbor,
say, polygon q in patch r (x.,, = 1), then we must enforce variable ¢, ,,, = 1
(according to the definition of this variable). We have

Ct,p,o,r = xt,p,o + xt,q,r -1 Vt eT \ {Tl - 1, Tl},

Vp,o,r € P with 0 # r,Vq € Ny, (p). (2.39)

36 2 Finding Optimal Sequences for Area Aggregation

Fourth, if we aggregate patch o into patch r from time t — 1 to time t, we have
variable y, , , . = 1 (see the definition of this variable in Section 2.6.1). In this case,
we must make sure that the two patches are actually neighbors at time t — 1. That
is to say, at least one of patch o’s polygons has at least one neighbor in patch r at
time t — 1. If not, we have y, , , . = 0. That is, it holds

Yioor < th,l,p’o,r VteT\{1,n},Vo,r € Pwitho #r. (2.40)
pEP

If we do not require that each aggregation step must involve a smallest patch,
then we only need constraints (2.26)-(2.40) and variables x;, ., Y¢por> Zepqrs
and ¢, ,. If we insist on involving a smallest patch at each step, then we need
more variables and more constraints.

Aggregation involving a smallest patch

In order to make sure that each of our aggregation steps involves a smallest patch,
we need another type of variable, w, ,. Recall that the intended meaning of w, , =1
is if and only if polygon o is the center of a smallest patch at time t. We will use this
to enforce that this patch is involved in the aggregation step from time t to t + 1. At
any time t, we pick exactly one smallest patch (there can be many) and aggregate it
with one of its neighbors; we do not care whether or not the neighbor is a smallest
one. Therefore, we have

wa =1 Vte T\ {n}. (2.41)

o€P

Assume that patch o is the smallest patch involved in the aggregation step from t
to t + 1 and that we are aggregating patch o and another patch, say, r. There can
be two cases. We aggregate o into r or aggregate r into o. In the first case, we have
variable y,,;,,, = 1, and, in the second case, we have y,,;,,, = 1. Either of the
two cases implies that polygon o is indeed a center at time ¢, that is, x,,, = 1. In
order to enforce that the aggregation step involves patch o and another patch, we
must make sure Yy, ,,, = 10r ¥¢41,,, = 1 when w, , = 1. Consequently, we use
the constraint

Wt,o < Z (yt+1,o,o,r + .yt+1,r,r,o) Vt eT \ {Tl}, VO €P (242)
reP\{o}

Now we need to make sure that patch o with w, , = 1 is indeed a smallest patch
at time t. We define variable A, , as the area of patch r at time t. That is, we have

A= E :ap “Xtp,rs

pEP

2.7 Case Study 37

where q, is the area of polygon p and, as viewed by the ILB is a constant. Area A ,.
is positive if and only if polygon r is a center at time t (x,,,. = 1). We define con-
stant M as a very large number to help us construct the corresponding constraints.
It suffices to set M to the area of the whole region, i.e., M = A (see Equation 2.1).
We require

Ao —MQA—w) <A +M(1—x,,) VeeT\{n},

Yo,r € P with o # r. (2:43)

This constraint takes effect only when w, , = 1 and x, ., = 1, which indicates that
patch o is smaller than or equal to all the other existing patches at time t.

In order to compute an aggregation sequence involving a smallest patch at each
step, we need all the five types of variables and all the constraints (2.26)-(2.43). In
total, the number of constraints is O(n*).

2.7 Case Study

We have implemented our methods based on C# (Microsoft Visual Studio 2017) and
ArcObjects SDK 10.6.0. We used the IBM ILOG CPLEX Optimization Studio 12.6.3.0
to solve our ILR Our prototype is open access on GitHub!. We ran our case study
under 64-bit Windows 10 on Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz with 4
cores; the computer has 16 GB RAM. We measured processing time by the built-in C#
class Stopwatch. As required by ArcObjects SDK 10.6.0, we specified our program to
run on the 32-bit platform. We added a post-build task about “largeaddressaware” in
Microsoft Visual Studio so that we were able to use up to 3 GB of the main memory?.
Our CPLEX version may declare an optimal solution while it is not really optimal.
To fix this problem, we had to disable both primal and dual presolve reductions>.
We tested our method on a dataset from the German topographic database ATKIS
DLM 50. The dataset represents the place “Buchholz in der Nordheide” at scale 1 :
50,000. Our start map is the result of collapsing areas by Haunert [Hau09, Chap-
ter 6]. The start map has 5,537 polygons. Our goal map was generalized from the
start map by Haunert and Wolff [HW10a], setting the scale to 1 : 250,000 (see Fig-
ure 2.16). The goal map has 734 polygons, which means that there are N = 734
regions. The distribution of region sizes is shown in Figure 2.17. We used a tree-
based method introduced by Rada et al. [Rad+89] to define the distances of the
types; the distance is the “number of edges” that we need to travel from one node to
another node in the tree of type hierarchy* (see Figure 2.18). For example, the dis-

L https://github.com/IGNF/ContinuousGeneralisation, Accessed: Jun 18, 2018.

2 The details of the setting can be found at http://stackoverflow.com/questions/2597790/
can-i-set-largeaddressaware-from-within-visual-studio, Accessed: Nov 1, 2017.

For more details about the problem, see http://www-01.ibm.com/support/docview.wss?uid=
swglRS02094, Accessed: Nov 12, 2017.

More information about land-cover types can be found at http://www.atkis.de/dstinfo/dstinfo2.
dst_gliederung, Accessed: Nov 1, 2017.

3

https://github.com/IGNF/ContinuousGeneralisation
http://stackoverflow.com/questions/2597790/can-i-set-largeaddressaware-from-within-visual-studio
http://stackoverflow.com/questions/2597790/can-i-set-largeaddressaware-from-within-visual-studio
http://www-01.ibm.com/support/docview.wss?uid=swg1RS02094
http://www-01.ibm.com/support/docview.wss?uid=swg1RS02094
http://www.atkis.de/dstinfo/dstinfo2.dst_gliederung
http://www.atkis.de/dstinfo/dstinfo2.dst_gliederung

38 2 Finding Optimal Sequences for Area Aggregation

L) Y ;
Start map, 5,537 polygons, Goal map, 734 polygons,
at scale 1 : 50,000 at scale 1 : 250,000

2301: Mining, pit, quarry
3103: Square
3302: Airport, air strip

4109: Specialized crop
4111: Wet ground
5112: Lake, barrierlake, pond

[1 2101: Village, town, city I 4101: Farm land
[] 2112: Industrial area I 4102: Grass land
[] 2114: Construction area I 4103: Garden land
[2201: Sport facility B 4104: Heath

[2202: Leisure facility B 4105: Swamp

[2213: Cemetery B 4107: Wood, forest
[0 2230: Golf course I 4108: Bosk

[[|

[[|

[[|

The 20 land-cover types appearing in our data

Figure 2.16: The data of our case study.

tance from type village to type fence is 2, to type street is 4, and to type farm land is 6.
In this tree, the maximum distance is 6, which means dyy,e max = 6 for Equation 2.1.
According to Rada et al. [Rad+89], the resulting cost function for type change is a
metric.

2.7.1 Using Costs of Type Change and Compactness

As illustrated in Section 2.2.4, we compare the A" algorithm and the greedy algo-
rithm using g, (P, ;), which is a combination of the costs of type change and com-
pactness (see Equation 2.9). For A*, we overestimated whenever we could not find
a solution after having visited W nodes (see Section 2.5). We tried W = 200,000

2.7 Case Study 39

#region

333
300
223
200
114
100
41 16
0 - Ll_n,

1-5 6-10 11-15 16-20 21-25 26-36

Figure 2.17: Distribution of the region sizes: the y-axis shows how many regions of a given size range are
contained in our dataset.

2101: o
Village, town, ci 1
2000: =< o '
[] Settlement . '
2352: '
; Fence 1
| Built-up “ 1
area 3101: : 6
Street 1
3000: . 1
| Traffic . :
3543: '
Antenna 1
. 1
Object (H AT '
: .
Farm land
1 4000: .
Vegetation .
4203:
Hedge
| | Natural “
spaces 5101:
(Major) river, stream |
| 5000: .
Waters hd
5321:
Shore protection

Figure 2.18: The tree of type hierarchy used in our case study. For example, the distance between types
village and farm land is 6.

and W = 400,000 (if we could use more main memory, then we could test by using
some larger W). The results are shown in Table 2.1. Comparing to A", the greedy al-
gorithm visited fewer nodes and arcs in graph Gg and used much less time. However,

40 2 Finding Optimal Sequences for Area Aggregation

Table 2.1: A comparison of the greedy algorithm and A* when using cost function g; (see Equation 2.9). For
A", we used two settings, i.e., W = 200,000 and W = 400,000. Column #OS shows the numbers of regions
that we obtained optimal solutions. Column #FS presents the numbers and the percentages of regions (out
of N = 734) that we obtained feasible (non-optimal) solutions. Variable kg, is the total number of repetitions.
Columns #nodes and #arcs are the total numbers of nodes and arcs that A" visited (for instances where we
needed overestimation, only the final attempt was counted). Columns . Ztype > &comp» and >" g, respectively
denotes the sums of guype(Pyoal)s Ecomp(Pgoat)s @nd g1(Pyoar) over all the 734 instances (see Equations 2.2,
2.5, and 2.9). The percentage in the Time column is the fraction of the runtime spent on solving the instances
that we obtained feasible solutions. For A*, the time needed for overestimation is included.

Methods #0S #FS keym #nodes #arcs D gune D.8comp 2,81 Time (min)

Greedy 408 326 (44.4%) 5.5-10° 4.8-10° 53.2 188.2 120.7 0.1(74.6%)
Kyoooo 702 32(4.4%) 102 3.6-10° 5.7-10° 51.4 183.2 117.3 51.6(93.2%)
A 704 30(4.1%) 89 6.5-10° 9.8-10° 51.4 183.1 117.2 93.1(95.5%)

400,000

A" managed to find solutions with lower total cost, 117.3 (or 117.2), which is 2.8%
less than the total cost of the greedy algorithm, 120.7. When W = 200,000, we
are sure that we have found optimal solutions for 702 of the 734 regions (95.6%),
while the greedy algorithm solved only 408 (55.6%) to optimality; see column #0S
in Table 2.1. For the other 32 regions, both algorithms have found feasible solutions
(see column #FS in Table 2.1). Although some of the feasible solutions may also be
optimal, we cannot verify that only from the cost values.

In accordance with Section 2.5, for region with ID i we define k; as the least num-
ber of repetitions that we do to find a feasible solution. We define the total number
of repetitions as kg, = levzl k;, where N = 734 is the number of the regions. After
increasing W to 400,000, A* found optimal aggregation sequences for only two more
regions, but kg, decreased quite a bit, from 102 to 89. The numbers of regions that
needed certain overestimation steps are shown in Figure 2.19. Besides, A" visited
more arcs and nodes, used more time, but got (slightly) less cost when increasing W
to 400,000. Although the number of regions that needed overestimation is relatively
small, A* spent most of the running time on those few regions: 4.4% and 4.1% of
the regions caused 93.2% and 95.5% of the total running time, respectively (see
Table 2.1).

The details of some regions are presented in Table 2.2. According to the entries
with overestimation factor K; = 0, we often have ratios Ry, = 1 and Ry, > 1.
When factor K; = 0, we did not overestimate for region i. The estimated cost must
be smaller or equal to the exact cost, which results in Ry, = 1 and Reomp = 1.
Ratio Ry, = 1 means that our estimation for the cost of type change is the best. A
larger R, means a poorer estimation for the cost of shape.

According to columns n and K of Table 2.2, A%, ,, managed to find optimal
solutions for all the regions with fewer than 15 polygons, and only found feasi-
ble solutions for any region with more than 21 polygons. Among the 702 regions
that A’ 5o solved to optimality, the greedy algorithm failed to find optimal solu-
tions for 294 regions. Solutions of the greedy algorithm cost at most 41.7% more

2.7 Case Study 41

#FS
20
Iz W =200,000
15 | |00 W =400,000 14 14 12
10 8
6 7
5 .H
1
1 3 7 15

Figure 2.19: The numbers of regions where A* was forced to use the given overestimation parameters in order
to find a solution without exploring more than W € {200,000; 400,000} nodes of the subdivision graph.

than solutions of A'%00,0005 for region 85, the greedy algorithm yields a solution of
cost 0.777, while the solution of A*zoo,ooo has cost 0.548 (see Figure 2.20). As the
patches in the two sequences are the same, the two results have the same cost of
compactness. The main difference is the choice of the first step, from 8 patches to 7.
When aggregating the smallest patch on the start map with the surrounding patch,
our greedy algorithm chooses the type which is closer to the goal type. In this case,
the smallest patch has type 5112, and the surrounding one has 2112. The type of the
goal patch is 4102. According to Figure 2.18, type distances dyy;,.(5112,4102) = 4
and d,.(2112,4102) = 6. As a result, our greedy algorithm uses 5112 as the type
for the new patch. This choice is a big mistake because the type of the largest
patch on the start map will have to be changed twice during the aggregation. These
changes cause a cost more than the sequence obtained by A’ ,,, where the largest
patch on the start map is changed to the target type directly.

Among the 32 regions that A%, failed to solve optimally, the greedy algo-
rithm outperformed A, ,, for 15 regions (46.9%). Among these, solutions of
the greedy algorithm cost at most 15.9% less than solutions of A'%00,0005 for re-
gion 543, the greedy algorithm yields a solution of cost 0.112, while the solution of
Ay00,000 COSts 0.134. For this instance, A% , used overestimation parameter K =7
(marked in Table 2.2). Figure 2.21 shows some intermediate results obtained by
Aygo,000 and the greedy algorithm. Interestingly, the two methods produced the
same sequence until there were 8 patches left. Then due to the overestimation,
A'y00,000 did some bad moves because the bad aggregation sequence still seemed bet-
ter than other sequences. In contrast, the greedy algorithm was looking for locally
good aggregations. Among the 32 regions that A%, ,,, failed to solve optimally, solu-
tions of the greedy algorithm cost at most 17.4% more than solutions of A'00,0000 for
region 155, the greedy algorithm yields a solution of cost 0.372, while the solution
of A%, 0o €Osts 0.317 (marked in Table 2.2).

Finélly, an optimal aggregation sequence of region 53 (third-last row in Table 2.2)

obtained by A", .o, iS shown in Figure 2.22.

42 2 Finding Optimal Sequences for Area Aggregation

Table 2.2: The costs in detail of some regions, where W = 200,000. Parameters n and m are the numbers
of patches and adjacencies on the start map, respectively. Parameter K is the overestimation factor, defined
in Section 2.1. We evaluate the quality of our estimations for type change and compactness by listing the
numbers Rtype = gtype(Pgoal)/htype(Pstart) and Rcomp = gcomp(Pgoal)/hcomp(Pstart)- Note that if htype(Pstart) =
0, then we have gtype(Pgoal) = 0; in this case, we define R,,. = 1. The marked entries are discussed in the
text.

type

ID n m K Ztype 8comp R Reomp Time (s)

type

94 32 74 15 0.029 0.266 0.135 0.531 177.9
590 30 64 15 0.216 0.273 0.164 0.510 153.0
436 27 56 15 0.273 0.330 0.439 0.550 123.3
386 26 61 15 0.280 0.296 0.279 0.474 152.6
112 26 60 15 0.216 0.306 0.173 0.490 126.3
424 20 42 7 0.339 0.292 0.623 0.746 63.9
543 20 40 7 0.000 0.267 1.000 0.681 72.7
165 20 38 7 0.102 0.355 0.347 0.903 66.2
537 19 45 7 0.525 0.328 0.702 0.791 77.4
503 19 36 7 0.199 0.246 0.525 0.595 59.9
343 19 33 7 0.164 0.355 0.586 0.857 73.1
179 22 44 3 0.355 0.308 0.967 1.716 50.8
298 22 43 3 0.176 0.268 0.948 1.471 41.1
177 22 40 3 0.046 0.276 0.853 1.578 51.8
462 18 40 3 0.130 0.239 0.682 1.155 57.3
463 17 35 3 0.234 0.238 0.799 1.087 42.0
155 15 32 3 0.324 0.310 0.878 1.243 34.5

53 21 38 0 0.047 0.315 1.000 5.160 16.8
358 21 32 0 0.044 0.337 1.000 6.264 0.6

0

410 20 36 0.135 0.334 1.000 5.553 17.3

2.7.2 Using Costs of Type Change and Length

We compare the greedy algorithm, A", and ILP using g,(P;;), a combination of the
costs of type change and length (see Equation 2.10). For A*, we overestimated
whenever we could not find a solution after having visited W = 200,000 nodes (see
Section 2.5). The most time-consuming instance for A was region 94, for which A
took 104.1s (including repetitions) to find a feasible solution with overestimation
factor K = 31. To avoid waiting too long, we set the time limit to 100s for our
ILP to run on one region. Note that the time limit included the time that our ILP
used to set up the variables and constraints (see Sections 2.6.1 and 2.6.3). If no
optimal solution was found in this time limit, a feasible solution (if found) would
be returned. For some large instances, the ILP could not find any solution.

2.7 Case Study 43

Start 0.5km Goal

A 7 6 3 2
— —» —» —» —
R —» —» —» —

Figure 2.20: Aggregation sequences of region 85 obtained by A* and the greedy algorithm. In order to save
space, we did not show the results when there are 4 or 5 patches. The numbers indicate the numbers of
patches. In the sequence obtained by A", the type of the largest polygon on the start map changed only once,
which is good; while by the greedy algorithm, the type of the largest polygon changed twice.

Start
9 20
—_— «

Greedy

Goal

Figure 2.21: Some intermediate subdivisions of region 543 obtained by A" and the greedy algorithm. In the
sequence obtained by A", a pair of circles or a pair of squares indicates that the two parts are actually in the
same patch. The numbers indicate the numbers of patches.

Using a similar format as in Table 2.1, we present the statistics in Table 2.3. A*
found optimal solutions for 695 of the 734 regions (94.7%). Again, it spent most
of the running time on the few regions that needed overestimation: 5.3% of the
regions caused 92.3% of the total running time. The solutions by A* cost 438.2 in
total, which is 3.9% less than 455.8, the total cost of the greedy algorithm.

44 2 Finding Optimal Sequences for Area Aggregation

Figure 2.22: An optimal sequence of intermediate subdivisions of region 53 obtained by A" using the costs of
type change and compactness. The numbers indicate the numbers of patches.

A" managed to find optimal solutions for all the regions with fewer than 15 poly-
gons, and found only feasible solutions for the regions with more than 21 polygons.
In the 39 (out of 734) regions that A" failed to solve optimally, the greedy algorithm
outperformed A" for 8 regions (20.5%), which is 26.4% less comparing to the first

2.7 Case Study 45

Table 2.3: A comparison of the greedy algorithm, the A" algorithm, and the ILP-based algorithm when using
cost function g, (see Equation 2.10). The notations are the same as in Table 2.1. Columns thype, Zglgth,
and) g, respectively represent the sums of gy e(Pgoa)s igth (Pgoal)> and g2(Pyoq1) Over all the 734 instances
(see Equations 2.2, 2.8, and 2.10).

Methods #0OS #FS kym #nodes —#arcs D gue 2. &ghn 2,82 Time (min)

Greedy 430 304 (41.4%) 5.5-10° 4.8-10° 53.0 858.5 455.8 0.1(70.7%)
Aypoooo 695 39(53%) 150 3.7-10° 7.3-10° 52.0 8245 438.2 44.8(92.3%)
ILPy 005 449 69 (9.4%) 421.5(27.3%)
ILPypo; 475 57 (7.8%) 719.2 (26.4%)

experiment (46.9%). ILP;,,, managed to find optimal solutions for all the regions
with fewer than 8 polygons, and failed to find optimal solutions for any region with
more than 8 polygons. In none of the 39 regions that A* failed to solve optimally
did ILP;, find a feasible solution. Overall, ILP,,, found optimal solutions for 449
regions and found feasible solutions for 69 regions. The distributions of these re-
gions are shown in Figures 2.23 and Figure 2.24 There are 216 regions for which
our ILP,,, failed to find any solution. For 22 of those regions, we did not have
enough main memory to set up the variables and constraints; each of these regions
has 21 polygons at least. For 67 of those regions, our ILP,,,, ran out of the main
memory before finding any feasible solution; these regions have 14 to 20 polygons.
Note that we allowed our program to use 3 GB of the main memory at most. For 123
of the 216 regions, ILP;, failed to find any solution during the time limit; these
regions have 9 to 13 polygons. For the remaining 4 regions, the reason of our ILP’s
fail is unclear due to the fact that the solver CPLEX is like a black box for us. After
we increased the time limit to 200s for each region, ILP,,,, solved 475 regions to
optimality, which is 26 regions more than using ILP,,,. Every of the 26 regions
has 6 to 10 polygons. Figure 2.23 shows the percentages of the regions that are
solved optimally by the three algorithms. Figure 2.24 shows the percentages of the
regions that the three algorithms found feasible solutions. Figure 2.25 shows the
number of regions for which the ILP found optimal, feasible, or no solutions when
using the two time limits, i.e., 100s and 200s.

Among all the instances that were solved to optimality by A* in both experiments
(i.e., Sections 2.7.1 and 2.7.2), region 358 (marked in Table 2.2) is the largest one.
In both experiments, the cost of type change is 0.044. The optimal aggregation se-
quences for this region obtained by using costs g; and g, are shown in Figure 2.26.
We, however, noticed some unpleasant aggregates. The step from 8 patches to 7
patches when using cost function g; is a bad move (see Figure 2.26b). Instead we
expect the result of Figure 2.26a. Using cost function g,, we had a similar problem.
The subdivision with 7 patches is such an example, where we expect the result of Fig-
ure 2.26c¢. In an earlier version of this chapter [see PWH17], we tried a combination
of minimizing type changes and maximizing the sum of the smallest compactness
values, over the whole sequence. For that objective, we had a similar problem as in

46 2 Finding Optimal Sequences for Area Aggregation

percent (%)

100
75
50
25

0

1-5 6-10 11-15 16-20 21-25 26-36

Figure 2.23: The percentage of regions that were solved optimally by the greedy algorithm, A*, and our ILP.
Note that the numbers of regions according to n are shown in Figure 2.17.

percent (%)

Greedy, A*zoo,ooo
100 0 0 O |
75 ILPyg
50
25
n
0 @ @

1-5 6-10 11-15 16-20 21-25 26-36

Figure 2.24: The percentage of regions for which we found at least feasible solutions by the three algorithms.
Note that the numbers of regions according to n are shown in Figure 2.17.

#regions
Iz 100s

475 00 200s
450 449772
300

216902
. i
optimal feasible failed

Figure 2.25: The number of regions for which our ILP found optimal, feasible, or no solutions when using time
limits 100s and 200s. Using more time, our ILP was able to solve more instances to optimality.

2.8 Concluding Remarks 47

Figure 2.26b. This problem, however, can be fixed easily by forbidding two patches
to aggregate if their common boundary is too short. Moreover, there are two more
possible solutions. First, we could integrate the shared length into our cost function,
as did by van Oosterom [O0s05]. Second, we could weight the cost of shape more
heavily (i.e., increasing weight factor A of Equations 2.9 and 2.10). According to
our experiences, the weight factor that we applied defines a reasonable trade-off be-
tween the different conflicting objectives, when considering a solution as a whole.
However, we are far from claiming that the applied weight factor has been optimally
chosen. This would probably require a user study.

2.8 Concluding Remarks

In this chapter, we investigated the problem of finding optimal sequences for area
aggregation. We compared three methods to solve this problem, namely, a greedy
algorithm, A", and an ILP-based algorithm. The greedy algorithm is used as a bench-
mark. Unsurprisingly, it ran faster than the other two methods by far. According
to our experiments, A" found area aggregation sequences with the least total cost
over all regions. For some instances, however, A" had to overestimate in order to
find feasible solutions. Compared to the greedy algorithm, A" reduced the total
costs by 2.8% and 3.9% in the two experiments. Although the amount is small, it is
worth to use A" because optimization methods can help us to evaluate the quality of
a model [HW17; HS08; HW16]. For example, Figure 2.26b shows that even an opti-
mal sequence can be bad. If it were not for A", we could not tell if the bad result was
caused by the greedy algorithm or the model. Because of A*, we are sure that the
bad result is from our model of minimizing the type change and the compactness.
The ILP-based algorithm finds optimal solutions for some regions, but for some of
the other regions it cannot even find a feasible solution. Compared to the ILP-based
algorithm, A" used less memory yet found optimal solutions for more regions.

Our A" has a good estimation for the cost of type change, which helps a lot to re-
duce the search space. Our estimation for the cost of shape (compactness or length)
is poor. There are two ways to improve A" in terms of solving more instances to
optimality while using the same limit of main memory. First, during the searching
we can forget a node of the graph (see Figure 2.3) if all the neighbors of this node
have been visited. By testing a case, we learned that half of the nodes can be forgot-
ten during the pathfinding process. In this way, we can release some main memory
and visit more nodes. Once we arrive at the goal, we know the cost for an optimal
solution (the least cost). As many visited nodes have been forgotten, we do not have
the shortest path so far. We need to run A" again. This time we know for sure that
a path is not optimal if its cost, the sum of the exact cost and the estimated cost, is
more than the least cost (of the optimal solution found previously). Consequently,
we are able to prune some branches earlier than the first time we run A*. In this
way, we manage to save some main memory. As a result, we are more likely to find

48 2 Finding Optimal Sequences for Area Aggregation

ty

—_
91
o
N
-
—_
91

0.5km

[

N
-
—_
—_
-
—_
—_

%
S

(b)

%
%

N

%
%

%
S

3
3

!

Figure 2.26: Some intermediate subdivisions of region 358 obtained by A* with different cost functions. The
numbers indicate the numbers of patches. The step from 8 patches to 7 patches when using cost function g;
is a bad move; see figure (b). Instead, we expect the result of figure (a). Using cost function g,, we had a
similar problem. The subdivision with 7 patches is such an example, where we expect the result of figure (c).

2.8 Concluding Remarks 49

optimal solutions when the main memory is limited. Second, if we obtain a solution
based on overestimation, then we know the cost of this non-optimal solution. We
may decrease the overestimation factor by pruning the branches that cost more than
the non-optimal solution.

We may speed up our ILP-based algorithm using a so-called cutting-plane ap-
proach as Oehrlein and Haunert [OH17]. Also, we can add more constraints to
reduce the choices of variables. For example, assignment to a given center r is sym-
metric, hence we have

Zepqr = Zrgp,r Vte T\{1,n}, Vp,q,r €P.

Whether adding such kinds of constraints always speeds up our ILP is not clear
because the solver, CPLEX, is a black box to us. Although integer linear programming
may be not good at finding optimal sequences for area aggregation, it is relatively
easy to formulate problems as ILPs. As stated by Cormen et al. [Cor+09, p. 861], “an
efficient algorithm designed specifically for a problem will often be more efficient
than linear programming both in theory and in practice. The real power of linear
programming comes from the ability to solve new problems.”

We may improve both the A" algorithm and the ILP-based algorithm by integrat-
ing the greedy algorithm. The idea is that we use the greedy algorithm to find a
solution. Then we can use the cost of the solution as an upper bound to prune the
branches of A" and the ILP Once we see that the cost of a branch is larger than
the upper bound, we can ignore that branch because it will not yield an optimal
solution.

In cartography, there are many more requirements for area aggregation. For
example, one requirement is to keep important land-cover areas for a longer time
(such as a settlement surrounded by farmlands). This requirement can be achieved
by incorporating the idea of Dilo et al. [DOH09]. They gave each type a weight,
then defined the importance of a patch by the product of the area size and the type
weight. While in our method, we used only the area size as importance. Another
requirement is that aggregating two areas may result in an area with a generalized
type, as did by van Smaalen [Sma03]. For example, aggregating farmland with
hedge yields an area with type vegetation. In our setting, we ignored the fact that
some features may inherently take linear forms (e.g., rivers). These issues can be
considered in our future work.

Chapter 3

Continuously Generalizing
Administrative Boundaries
Based on Compatible Triangulations

Nowadays people often browse through digital maps on computers or small displays
to get geographic information. To understand maps better, users interactively zoom
in and out to read maps from different levels. A typical strategy to support zooming
is based on a multiple representation database (MRDB). Such a database stores a
discrete set of levels of detail (LODs) from which a user can query the LOD for a par-
ticular scale [HSHO4]. A small set of LODs, however, leads to complex and sudden
changes during zooming. Since these changes distract users, hierarchical schemes
have been proposed that generalize a more-detailed representation to obtain a less-
detailed one based on small incremental changes, e.g., the binary line generalisation
tree (BLG-tree) [00s05] for line simplification or the generalized area partitioning
tree (GAP-tree) [00s95] for area aggregation. Such incremental generalization pro-
cesses are represented in data structures that allow users to retrieve a map at any
scale. Still, the generalization process consists of discrete steps and includes abrupt
changes. Discrete steps can easily cause users to lose their “mental map” during in-
teraction, which is annoying. To support continuous zooming, van Kreveld [Kre01]
proposed five ways of gradual changes, which are moving, rotating, morphing, fad-
ing, and appearing. These operations can be used in continuous generalization, which
generalizes a map to obtain a sequence of maps without abrupt changes. To achieve
continuous generalization, Sester and Brenner [SB04] suggested simplifying build-
ing footprints based on small incremental steps and to animate each step smoothly;
Danciger et al. [Dan+09] investigated the growing of regions, meanwhile preserving
their topology, area ratios, and relative positions. The strategy of using two maps
at different scales to generate intermediate-scale maps has been studied in multiple
representations, e.g., with respect to the selection of roads or rivers [GT14]. Actually,
this strategy is a key idea of the morphing-based methods for continuous general-
ization. For instances, several authors have developed morphing methods for poly-
lines [Cec03; N61+08; Pen+13; SH15; PDZ12; DP15] and for raster maps [RI04;
Pan+09].

52 3 Continuously Generalizing Administrative Boundaries Based on CTs

@ Computing
corresponding points

f ® Morphirg'

%

t=0.5
(c)
(D Finding (2 Transforming
corresponding thinner boundaries
boundaries

N

(d)

Figure 3.1: The framework of our method. The circled numbers indicate the steps. (a) The larger-scale
administrative boundaries of a region. (d) The smaller-scale administrative boundaries of the same region as
in (a). (b) & (e) Constructing compatible triangulations for thicker polygons in (a) and (d) in order to transform
thinner boundaries in (a) to (e). (f) The thinner boundaries are simplified from the ones in (e). (c) The result of
continuous generalization by morphing when t = 0.5. The thinner boundaries in (c) are being faded out.

Topological consistency is a property that must be attained in continuous gen-
eralization. In this chapter, we continuously generalize a two-level hierarchical
subdivision—from a larger-scale map of administrative boundaries to a smaller-scale
one. Our aim is to generate maps at any intermediate scales without introducing
topological conflicts. For example, we try to generalize from Figure 3.1a to Fig-
ure 3.1d. Our method consists of the following five steps.

In step (1), we find corresponding boundaries between the two maps, which are
the thicker polylines in Figures 3.1a and 3.1d. We call the remaining boundaries,
on the larger-scale map, unmatched boundaries (see the thinner polylines in Fig-
ure 3.1a). In order to achieve continuous generalization, we morph (that is, deform
continuously) between the thicker corresponding boundaries; see for example No6l-
lenburg et al. [N614+08]. The unmatched boundaries must be morphed in a way
that is consistent with the thicker corresponding boundaries. As there is no corre-
spondence for the unmatched ones, we generate the corresponding boundaries in

steps (2) and (3).

3 Continuously Generalizing Administrative Boundaries Based on CTs 53

In step (2), we transform the thinner boundaries based on compatible triangu-
lations (CTs); see Figures 3.1b and 3.1e. Two triangulations are compatible if they
have a correspondence of their vertex sets as well as the two triangulations are topo-
logically equivalent [SG01]. With CTs, we can transform a thinner boundary in one
triangulation (see Figure 3.1b) to a boundary in the other triangulation by travers-
ing the triangles correspondingly (see Figure 3.1e). Therefore, if there is no conflict
in one triangulation, then there is no conflict in the other triangulation.

In step (3), we simplify the thinner boundaries using the Douglas-Peucker al-
gorithm [DP73] so that the thinner boundaries have the same complexities as the
thicker ones (see Figure 3.1f). We use the simplified boundaries as the correspon-
dences for the thinner boundaries in Figure 3.1a. On this basis, we are able to morph
between each pair (both thicker pairs and thinner pairs) of corresponding bound-
aries. Since the thinner boundaries should not stay on the smaller-scale map, we
fade them out during morphing.

We compute corresponding points for each pair of corresponding boundaries in
step (4), then we morph by interpolating between corresponding points in step (5).

In order to achieve a topologically consistent workflow, we need to make sure
that any of steps (2), (3), or (5) must not introduce conflict. In this chapter, we
concentrate on accomplishing step (2), the transformation step, without introduc-
ing topological conflicts. The topological consistency of the other two steps can be
attained by employing the methods as proposed by Saalfeld [Saa99] for step (3) and
Gotsman and Surazhsky [GS01] for step (5).

For step (2), we tested the rubber-sheeting method of Doytsher et al. [DFE01],
making all vertices “influential”. We soon noticed that resulting boundaries from
that method often cross boundaries of the smaller-scale map. Figure 3.2 shows such
an example, which corresponds to Figure 3.1e. Similar problems occurred when we
applied other variants of rubber-sheeting (such as the one by Haunert [Hau05]).
That is why we decided to search for a more robust method. It turned out that
CTs [ASS93] can transform without introducing topological conflicts. The (quite
old) idea is as follows. Suppose that point r; is inside triangle Ap;p,ps. Then, this
point can be expressed as a unique convex combination of simplicial coordinates A, 3,
Aio, and A, 3 [Saa85]:

ri = Ai1P1+ AioPa + Ai3Ps,

where A;;, A;5, A;3 > 0, and A;; + A;, + 4,3 = 1. We can uniquely locate r;’s
corresponding point s; in a different triangle, say, Aq;q,q5 by using the simplicial
coordinates:

$i = Ai1q1 + Ai2qs + A4 3G3.

Moreover, if two distinct points r; and r; are in the same triangle, then we are able
to locate their corresponding points s; and s; in another triangle such that s; and s;
do not coincide. If points r; and r; are in two different triangles of a triangulation,
then s; and s; can be located correspondingly in two triangles of the compatible
triangulation. As a result, once we have CTs of two polygons, we can transform

54 3 Continuously Generalizing Administrative Boundaries Based on CTs

Figure 3.2: Crossings caused by the rubber-sheeting method of Doytsher et al. [DFEO1].

polylines consistently (see Figures 3.1b and 3.1e). CTs have been constructed by
hand in order to compare maps from different time periods Fuse and Shimizu [FS04].
By contrast, we construct CTs automatically, using the algorithm of Aronov et al.
[ASS93].

Our contributions are as follows. In Section 3.1, we propose a workflow based
on CTs for generalizing administrative boundaries in a continuous and topologically
consistent way. We do a thorough case study for the boundaries of the counties
and that of the provinces of Mainland China; we analyze the effectiveness and the
efficiency of our method in Section 3.2. We conclude this chapter in Section 3.3.

3.1 Methodology

Suppose that we have two maps of administrative boundaries: M, and M_. The two
maps represent the same area respectively at a larger scale and a smaller scale. We
use a parameter t € [0, 1] to define the process of continuous generalization. We
continuously generalize from M, to M_ when t increases from O to 1.

As map M, is more detailed than map M_, a region of M_ consists of several
regions of M,. Consequently, a boundary on M_ certainly has a corresponding
boundary on M,, but a boundary on M, may not have a correspondence on the
smaller-scale map. We first find the corresponding boundaries on the two maps. We
call the leftovers, on M_, the unmatched boundaries. For a pair of corresponding
boundaries, we use a dynamic programming algorithm similar to the algorithm OPT-
COR [N61+08] to determine corresponding points. Then, we morph between corre-
sponding boundaries by using straight-line trajectories. For an unmatched bound-
ary, we generate its correspondence on M_. We transform the unmatched boundary
based on compatible triangulations and then simplify the new boundary using the
Douglas-Peucker algorithm [DP73]. The boundary obtained from the simplification
is used as the correspondence for the unmatched boundary. As a result, we are able
to morph between the unmatched boundaries and the generated ones. We fade out
the morphing results of the unmatched boundaries so that they will disappear when
time t = 1.

3.1 Methodology 55

The administrative regions are represented as polygons. An administrative re-
gion usually shares its boundary with some other administrative regions. These
shared parts should be always shared even during the morphing. Furthermore, we
want to avoid processing a shared boundary twice. For these reasons, we some-
times work on administrative boundaries as a set of consecutive polylines instead of
polygons.

3.1.1 Finding Corresponding Polylines

We match to find corresponding polylines from map M, and map M_. The ba-
sic idea of our matching is the same as the polygon-based approach of Fan et al.
[Fan+16], where they matched road networks based on urban blocks. Given poly-
gons on map M, and map M_, we find corresponding polylines using three steps.
Note that if the inputs are boundaries of the polygons, i.e., polylines, we can easily
generate the polygons based on doubly-connected edge list [Ber+08, Chapter 2].

First, we copy the polygons on M, and merge the copied polygons according
to the polygons on M_. For each copied polygon, we try intersecting it with each
polygon on M_ and record the one that has the largest intersection area. Then, we
merge all the copied polygons that record the same polygon on M_.

Second, we obtain matched polylines (i.e., corresponding polylines) respectively
from the boundaries of the merged polygons and the polygons on M_. We define
that a vertex is an intersection node if the vertex has degree at least 3. As the merged
polygons and the polygons on M_ have corresponding intersection nodes, we utilize
these nodes to find corresponding polylines. We split the boundaries of the polygons
at every intersection node, respectively for the merged polygons and the polygons
on M_. (Note that two polygons on the same map may share some parts of their
boundaries, it is sufficient to take only one copy of the shared parts.) Then we
match the split boundaries of M, and M_ to get corresponding polylines. We use
thicker marks to present these corresponding polylines (see Figures 3.1a and 3.1d).
Although there is a data-matching system available [see MD08], we use a simple
method to attain the matching. We match the split boundaries according to their
intersection areas. The buffer-based method works well in our case study as corre-
sponding polylines have relatively close positions.

Third, we extract unmatched polylines on M,. We split the boundaries of the
polygons on M, at every intersection node, then we exclude all the split bound-
aries that overlay with the matched ones on M,. The remained polylines are the
unmatched polylines on M, for which we use thinner marks (see Figure 3.1a).

After the preprocessing, we have three types of polylines. The first one consists
of the thicker (matched) polylines on M, (see Figure 3.1a). Each of them has a
corresponding polyline on M_. The second type consists of the thinner (unmatched)
polylines on M, (see Figure 3.1a), each of which does not have a corresponding
polyline on M_. The third type consists of the thicker (matched) polylines on M_
(see Figure 3.1d).

56 3 Continuously Generalizing Administrative Boundaries Based on CTs
F Y f
—~——
G
\\ o—
w

8

Figure 3.3: Corresponding polylines: F and G, corresponding subpolylines: v and w, and corresponding line
segments: f and g.

3.1.2 Morphing a Polyline to Its Corresponding Polyline

For a pair of corresponding polylines, one being a thicker polyline on M, and the
other being a thicker polyline on M_, we use a variant of the dynamic programming
algorithm OPTCOR of Nollenburg et al. [N61+08] to compute corresponding points
(possibly injecting additional vertices). The algorithm, OPTCOR, models the problem
of computing corresponding points as finding an optimum correspondence, with
respect to a cost function. OPTCOR considers three cases of a correspondence for an
edge, namely, the edge corresponds to a vertex, to an edge, or to a merged sequence
of edges. We call all the three cases corresponding subpolylines as a point or an edge
can be regarded as a degenerate subpolyline.

For a pair of corresponding subpolylines, Nollenburg et al. [N61+08] defined the
cost as a combination of three values: (i) the average distance between the corre-
sponding points, (ii) the length difference of the pair of subpolylines, and (iii) the
changes of the vectors between corresponding points. Then, OPTCOR computes cor-
responding points by “looking back” to combine the last 1,2,...,or k edges as a
subpolyline, while minimizing the cost over the whole pair of corresponding poly-
lines. Here, parameter k gives a trade-off between quality and efficiency. It can be
specified by users according to the dataset.

To make the problem simple, our variant considers only the first value in their
cost, that is, the distance between corresponding points. We denote this distance
by 6. In order to compute the cost function, we linearly interpolate between each
pair of corresponding subpolylines so that each vertex on one subpolyline has a,
possibly injected, corresponding vertex on the other one. The pairs of correspond-
ing vertices subdivide the (sub)polylines into corresponding line segments (see Fig-
ure 3.3). A line segment is (part of) an edge of a polyline. The cost of a pair of
(whole) polylines is the sum of the costs for each pair of corresponding line seg-
ments. The cost for a pair of corresponding line segments is computed as follows.

3.1 Methodology 57

Let polyline F on M, and polyline G on M_ be a pair of corresponding polylines.
Let f = a(0)a(1) be a line segment on F, and let g = $(0)B(1) be a line segment
on G that corresponds to f. Let a(0) = (x1,¥1), a(1) = (xq,¥2), B(0) = (x3,¥3),
and (1) = (x4, y4), which are already known. The coordinates of a pair of corre-
sponding points a(u) € f and B(u) € g are

a(u)=(1—uw)a(0)+ua(l),
Bw)=1—u)B(0)+up(1).
When we morph f to g, we move each point a(u) to its corresponding point f3(u);

see Figure 3.4. We define the cost of this morphing as the integral over the distances
between all the pairs of corresponding points, that is,

1
o(f,g)= J |B(u) — a(u)ldu,
0

where |B(u) — a(u)| is the Euclidean distance between a(u) and f(u), which can
be represented as v au? + bu + c. The coefficients a, b, and ¢ are dependent on the
coordinates of a(0), a(1), (0), and B(1), as follows.

a=(x;=xy=x3+x)* +(y1 = Y2 = ¥3 + ya)%,
b= —2(x; —x3)(x; — x5 — X3+ X4)

=21 = y3) (1= Y2 — Y3+ Ya),
¢ = (x; —x3)" + (31 —y3)*.

Let X = au?®+ bu+c. We have a > 0 and, since X > 0 (X is the square of a Euclidean
distance), A = 4ac — b? > 0. Note that, if a = 0, then b = 0. Let

1 1
5(f,g)=J |/5(u)—a(u)|du=J vXdu.
0 0

Then 6(f, g) can be computed, according to Bronstein et al. [Bro+15, pp. 1080
and 1081, integrals 241 and 245], as follows:

Jeulg ifa=0,

Qauth)/X 1 ifa>0,A=0,
5(f’ g) = (2au+b)vVX |1

ot

8ﬁ/a In(2vaX +2au+b)|} ifa>0,A>0.

Cost 6 can be regarded as the average distance of moving each a(u) to each 3 (u).
Figure 3.5 shows a few examples of computing §. We obtain the optimum correspon-
dence by minimizing the cost of moving between corresponding points, where the
lengths of line segments are used as weights:

+
6(F,G)= min Z M5(f,g).
m: correspondence 2
between F and G f€F and g€G,

where f corresponds to g in

58 3 Continuously Generalizing Administrative Boundaries Based on CTs

(1)

a
(u)

a
a(0)

O//0/5(1)
p0)o” PW

Figure 3.4: Corresponding points of a pair of corresponding line segments.

a(0) a(1) a(0) a(l) a(0) a(l) a(0)
1 1 1.12 1
1 1.5 ; 15 X aM)Y 1
o——-0 Oo——0 O——0
p) p(1) B(0) B(1) B(0) B(1) p) B(1)
6=1 6=1 6=1.12 6 =0.81

Figure 3.5: Examples of computing 5(f, g). The values in the subfigures represent the lengths of the edges.

\/W%

Ty Ty T3

Figure 3.6: Three possible ways of defining corresponding points between the two polylines. Correspondence
7, is the one that minimizes cost 6 (F, G).

In other words, there can be many choices of defining corresponding points (see
Figure 3.6), but we choose the one that minimizes cost 6(F, G).

Recall that OPTCOR considers three cases of a correspondence for an edge. We
find that the first case, an edge corresponding to a vertex, may result in different
numbers of vertices on the two polylines. Our major modification is removing this
case from the algorithm. This change ensures that a pair of corresponding polylines
will eventually have the same numbers of vertices (or line segments). This property
is essential for constructing CTs, which are used later in our workflow. We name our
modified version OPTCOR-S, where letter S stands for Simplified.

3.1 Methodology 59

Figure 3.7: Morphing polyline F to its corresponding polyline G. The arrows show the moving trajectories of
the vertices.

Suppose that there are originally ny vertices on F and n, vertices on G, OPTCOR-S
requires that the look-back parameter k is bounded from below by np/ng; and ng/ng.
Otherwise, there will be at least one segment that corresponds to a vertex. In our ex-
periments, we always use a (large) value of k that produces results with high quality
(in the sense of the dynamic-programming algorithm). We morph by interpolating
between corresponding points using straight-line trajectories. Figure 3.7 shows an
example with 0.25, 0.5, and 0.75 for t.

Some other algorithms for computing corresponding points can be used (e.g., lin-
ear interpolation). We observed that an algorithm which computes corresponding
points more carefully can yield better results, meaning that the interpolated poly-
lines are more similar to the two sources and crossings are less likely introduced.
Some sophisticated algorithms can be considered to define the interpolation tra-
jectories, such as geodesic shortest paths [Ber05], b-morphs [WR11], or a method
based on least squares adjustment [Pen+13]. Specifically, it is possible to use CTs
not only for the transformation step (as in our method) but also to ensure the topo-
logical consistency in the morphing step [see GSO1; SG0O3; SG04].

3.1.3 Morphing a Polyline to Its Generated Corresponding Polyline
During Fade-out

For the thinner polylines on M, , morphing them must be consistent with what we
do to the thicker corresponding polylines. To achieve this, we generate their cor-
responding polylines, that is, thinner polylines on M_. We transform the thinner
polylines on M, based on CTs to get a set of new polylines. Then, we simplify these
new polylines to generate the thinner polylines on M_, where we use the Douglas—
Peucker algorithm [DP73].

We construct a pair of CTs for each pair of polygons correspondingly bounded
by the thicker polylines on M, and the thicker polylines on M_ (see Figures 3.1b
and 3.1e). We call them the triangulation on M, and the triangulation on M_. Con-
structing CTs requires that the two polygons have the same number of vertices,
which have been attained by using OPTCOR-S (see Section 3.1.2). We use the al-

60 3 Continuously Generalizing Administrative Boundaries Based on CTs

gorithm of Aronov et al. [ASS93] to construct CTs. For the two polygons both with
m vertices, we triangulate them independently (see Figures 3.8a and 3.8b). Then
we create a regular m-gon and map the chords of the two triangulations into the reg-
ular m-gon (see Figures 3.8c). The mapped chords may cross with each other. We
use the crossings as dummy vertices and split the mapped chords (see Figures 3.8d).
As a matter of fact, these dummy vertices are called steiner points [ASS93]. These
split chords may produce some convex faces (see Figure 3.8d). We triangulate each
convex face that has more than three vertices. To triangulate, we select one ver-
tex and add edges between this vertex to each of the other vertices, except the two
immediate-neighboring ones. After triangulating, we have a combined triangulation
(see Figure 3.8e). We map the combined triangulation (including steiner points and
new edges) back to modify the two original triangulations. By the modification, we
have a pair of CTs of the two original polygons (see Figures 3.8f and 3.8g).

With the CTs, we transform the thinner polylines in the triangulation on M, to
the polylines on M_, according to simplicial coordinates. The new polylines should
traverse exactly the “same” triangles as thinner polylines on M, . To this end, we
compute the crossings between thinner polylines and the edges of the triangulation;
then, we also transform these crossings into the triangulation on M_. Because of
the crossings, the new polylines have more vertices than the thicker polylines on M,
While our aim is to generate polylines that have the same density of vertices as the
thicker polylines on M_. Hence, we simplify the new polylines (see Figure 3.1f). For
a thinner hole (polygon) on M_, we keep at least three vertices during simplification
to avoid degenerating it to a straight line or a point. We call the simplified polylines
the thinner polylines on M_.

Again, we use algorithm OPTCOR-S to compute corresponding points for each
pair of corresponding thinner polylines, which are respectively on M, and M_. We
use straight-line trajectories to interpolate between corresponding points. As the
thinner polylines do not exist when t = 1, we fade them out during the morphing
process. An example is shown in Figure 3.1c.

3.1.4 Running Time

We analyze the running time for a pair of polygons correspondingly bounded by the
thicker polylines on M, and the thicker polylines on M_. We use N to denote the
number of vertices of the polygon on M., n the number of vertices of the polygon
on M_, and N’ the number of vertices of all the thinner polylines inside the polygon
on M, . For simplicity, we assume that O(N’) € O(N).

Constructing the CTs takes time O(N log N+1) according to Aronov et al. [ASS93],
where O(1) € O(N?) is the number of steiner points inserted during the construction.
Simplifying the polylines resulted from transformation, using the Douglas—Peucker
algorithm, costs time O(N(N +[)logN) [HS92]. OPTCOR-s takes time O(k®Nn) to
compute corresponding points, where k is the look-back parameter. Fortunately,
outputting the representation at a target scale only takes time O(N). Therefore, our

3.1 Methodology

D2 & Mapping
P4 chords

Mapping
chords r
Ty
Splitting
3
(o)
Ty
T's
(e
Mapping Mapping
edges and vertices edges and vertices

()

Figure 3.8: Constructing compatible triangulations.

62 3 Continuously Generalizing Administrative Boundaries Based on CTs

method is feasible in real time. In fact, for each (possibly injected) vertex p on F we
store a representation such as p(t) = (1 —t)p + tq, where q is the vertex on G that
corresponds to p. In our implementation, computing corresponding points is the by
far most time-consuming step.

3.2 Case Study

We implemented our method based on C# (Microsoft Visual Studio 2010) and Ar-
cGIS Engine 10.1. We ran our case study under Windows 7 on a 3.3GHz dual
core CPU with 8 GB RAM. We measured time consumption based on the built-in
C# method System.Environment.TickCount.

We tested our method on the administrative boundaries of Mainland China (see
Figures 3.9a and 3.9¢), which are from the National Fundamental Geographic Infor-
mation System and are based on the projected coordinate system Krasovsky 1940
Lambert Conformal Conic. We removed the enclave in Gansu province as well as all
the islands. We used county boundaries (see Figure 3.9a) and provincial boundaries
(see Figure 3.9¢), where the polylines have been preprocessed (see Section 3.1.1).
Since we can hardly see the details if we present the whole map, we focus on a
small portion, say, Tianjin province® (also known as Tianjin municipality); see Fig-
ures 3.9b and 3.9d.

Figure 3.10 shows our results of Tianjin. Recall that our aim is to continu-
ously generalize from counties M, to provinces M_. According to the provincial
boundaries in Figure 3.10c, we are able to distinguish the hierarchies of the county
boundaries in Figure 3.10a Then, we find the matched polylines (the thicker ones
in Figures 3.10a and 3.10c) and the unmatched polylines (the thinner ones in Fig-
ure 3.10a); see step (1).

In step (2), we transform the thinner boundaries in Figure 3.10a so that there are
corresponding thinner boundaries on M_ (see Figure 3.10d). Recall that we com-
pute corresponding points between corresponding thicker polylines using OPTCOR-S
and then transform thinner polylines based on CTs. When computing corresponding
points, we used the fact that the 90 thicker polylines (with 55,533 vertices) on M,
and the 90 thicker polylines (with 7,527 vertices) on M_ shared many vertices (M_
may be generalized from M,). We split the thicker polylines, on M, and M_, into
many subpolylines according to the shared vertices. We computed corresponding
points for each pair of subpolylines, which was much faster than computing with-
out the splitting. Using look-back parameter 145, the computation takes time 2665
with cost ». 6(F, G) = 125,050 km?. Value 145 is the smallest look-back parameter
that achieves the optimum result in the sense of the dynamic programming algo-
rithm. Constructing the CTs costs 168s. There is no conflict for the new polylines

5 Please try our interactive animations of provinces Tianjin, Fujian, and Shanghai at http://www1.

pub.informatik.uni-wuerzburg.de/pub/data/agile2016/. We recommend opening the website with
Google Chrome.

http://www1.pub.informatik.uni-wuerzburg.de/pub/data/agile2016/
http://www1.pub.informatik.uni-wuerzburg.de/pub/data/agile2016/

3.2 Case Study 63

30km
[I—
(a) County boundaries, (b) Tianjin at scale 1 : 5,000,000
at scale 1 : 5,000,000,
5,909 polylines, 493,625 vertices
agﬂ/\/j
e
(¢) Provincial boundaries, (d) Tianjin at scale 1 : 30,000,000

at scale 1 : 30,000,000,
90 polylines, 7,527 vertices

Figure 3.9: Administrative boundaries of Mainland China.

in Figure 3.10d. However, a flaw is that there are some zigzags caused by our trans-
formation (see for example the enlarged figure next to Figure 3.10d) We also tested
transforming by the rubber-sheeting method of Doytsher et al. [DFEO1], which, un-
fortunately, introduced 39 crossings.

In step (3), we simplified the thinner polylines in Figure 3.10d using the Douglas—
Peucker algorithm. This simplification took 29 s and caused 8 crossings as well as 2
overlaps. We corrected the 10 conflicts by hand. Note that we can avoid these
conflicts by using a topologically consistent line simplification method, e.g., the al-
gorithm of Saalfeld [Saa99].

64 3 Continuously Generalizing Administrative Boundaries Based on CTs

(5) Morphing

@ Computing
corresponding points

by dynamic programming

(2 Transforming
thinner boundaries

(Input)
P using CTs
(D Finding
corresponding
boundaries
(@ (d)
—»
®
/E/ Simplifying
(Input) (Output)

Figure 3.10: Case study on administrative boundaries of Tianjin province. The circled numbers indicate the
step orders, analogous to Figure 3.1. For the sake of legibility, we did not display the CTs. Continuous gener-
alization is achieved by morphing from (a) to (e). The thinner boundaries in (b) are being faded out during the
morphing.

In step (4), we use OPTCOR-S to compute corresponding points between the 5,819
thinner polylines (with 438,092 vertices) on M, and the 5,819 thinner polylines
(with 58,105 vertices) on M_. This time, there are no shared vertices. The com-
putation took about 16.5 hours with look-back parameter 203, where this value
was required by a pair of corresponding polylines to guarantee k > nz/n; (see Sec-
tion 3.1.2). The cost for the correspondences is Y. 6(F, G) = 477,185 km?.

In step (5), we morph from counties to provinces using straight line trajectories.
We show our continuous generalization of Tianjin in Figure 3.11. Generating 5,909
polylines (with 496,106 vertices) of Mainland China at any intermediate scale took
about 1.5s. Storing these polylines to shapefile format cost about 45 s, mainly due
to the slow creation of polylines in ArcGIS Engine. Unfortunately, this morphing

3.3 Concluding Remarks 65

(a) (b)

(d) (e) ®

t=0.6 t=0.8 t=1

Figure 3.11: The continuous generalization of Tianjin province.

caused conflicts on the intermediate-scale maps; two examples are shown in the
enlarged figures next to Figure 3.10b. For instance, there are 41 crossings on the
intermediate-scale map of Mainland China when t = 0.5. To avoid these crossings,
we can use an algorithm that guarantees topological consistency, for example, the
algorithm of Gotsman and Surazhsky [GS01].

3.3 Concluding Remarks

In this chapter, we have shown that rubber-sheeting, a popular method for trans-
forming polylines, can yield topological conflicts. Therefore, we turned to trans-
forming based on CTs, which apparently have not been used in GIScience before,
except by hand [e.g., FS04]. We have used CTs to transform unmatched polylines
and managed to achieve topological consistency. Although computing correspond-
ing points is slow, the computed results support real-time interactions, e.g., zooming.
Comparing to the rubber-sheeting transformation, our method resulted in larger dis-
tortions. An extreme instance is shown in Figure 3.12. To decrease the amount of
distortion, one could try constructing CTs that uses the maximum number of chords
common to both independent triangulations. To that end, we could extend the dy-

66 3 Continuously Generalizing Administrative Boundaries Based on CTs

20km

Figure 3.12: A comparison of the method based on CTs and the rubber-sheeting method for transforming
the thinner polylines on M, , using the data of Shanghai as instance. (a) M, and the CTs. (b) M_ and the
CTs, where the thinner polylines were transformed from (a) based on CTs. (c) M_, where the thinner were
transformed from (a) by the rubber-sheeting method of Doytsher et al. [DFEO1].

namic programming algorithm mentioned by Diwan et al. [Diw+11]. Whether this
idea actually yields better transformation results is a question that requires further
research. A similar problem is to minimize the number of steiner points when con-
structing CTs. This problem is NP-hard for polygons with holes and remains open
for simple polygons [LM17].

Our current implementation of constructing CTs are not able to deal with holes
on smaller-scale map M_. Fortunately, Babikov et al. [BSW97] suggested a solu-
tion. We used the Douglas—Peucker algorithm to simplify the polylines resulted
from transformation. As expected, this algorithm led to some topological conflicts.
To solve this problem, we may use Saalfeld’s variant of the Douglas—Peucker algo-
rithm [Saa99]. In the morphing process, we have used straight-line trajectories to
interpolate between corresponding points. Again, this interpolation has introduced
crossings. In order to guarantee topological consistency in the morphing process,
we can use an algorithm based on CTs to define the interpolation trajectories, e.g.,
the algorithm of Gotsman and Surazhsky [GS01]. With these two replacements, our
workflow can generalize two-level hierarchical subdivisions (such as administrative
boundaries) in a continuous and topologically consistent way.

Chapter 4

Continuously Generalizing
Buildings to Built-up Areas
by Aggregating and Growing

Digital multi-scale maps such as Google Maps and OpenStreetMap support zooming
by displaying maps at different levels. This discrete strategy may result in sudden
changes, which disturb user navigation. To provide better zooming experience, we
try to produce a sequence of maps with small incremental changes to transit from
a level to another level. This process is known as continuous map generalization (or
continuous generalization).

A way to achieve continuous generalization is to use morphing. Often, a start
map (at a larger-scale) and a goal map (at a smaller-scale) are used as input, then
maps at intermediate scales are produced while the start map is morphed to the goal
map. In order to morph, correspondences between two maps need to be defined.
For example, corresponding points between a pair of polylines have been investi-
gated based on dynamic programming [N61+08], by Delaunay triangulations and
binary line generalisation tree [DP15], and by simulated annealing [Li+17]. When
morphing from a point to its corresponding point, a straight-line trajectory is often
used to interpolate. Peng et al. [Pen+13] defined trajectories based on least-squares
adjustment in order to obtain more reasonable intermediate-scale polylines, in terms
of the angles and the edge lengths. Using morphing, Peng et al. [PWH16] contin-
uously generalized administrative boundaries based on compatible triangulations.
When the numbers of line features are different on the start map and the goal map,
a continuous selection is required; Chimani et al. [CDH14] proposed to generate a
removing sequence applicable for road network. They removed one road at each
step while keeping the remaining roads connected.

These methods are interesting but only work on lines. Our problem of build-
ing polygon interpolation cannot be achieved by similar morphings. Regarding the
continuous generalization of polygon features, Danciger et al. [Dan+09] grew poly-
gons during zooming out. Their method preserves polygons’ topology, area-ratios,
and relative positions. In the case where the goal map is an aggregated version
of a start land-cover map, Peng et al. [PWH17] computed optimal sequences for
aggregating land-cover areas.

68 4 Continuously Generalizing Buildings to Built-up Areas

Buildings are important elements on maps. Many methods have been proposed
to generalize them but not necessarily in a continuous way. For example, Haunert
and Wolff [HW10b] simplified a set of buildings based an integer program. Their
simplification minimizes the number of total edges and guarantees that the errors
are smaller than a user-defined tolerance. At the same time, their method does
not introduce any topological conflict. Buchin et al. [BMS11] simplified buildings
based on edge-move operations. Their method preserves orientations of the edges,
guarantees topological correctness, and works fast.

When users zoom out on digital maps, buildings become smaller and the dis-
tances between them decrease. In addition to simplifying the buildings, we also
need to aggregate them when they become too close [Wei97]. Several methods were
proposed to aggregate buildings while preserving their shapes (e.g., right angles);
see Regnauld [Reg01], Regnauld and Revell [RR0O7], and Damen et al. [DKSO8].
These algorithms can be used as inspirations to define a continuous transformation
of buildings.

Algorithms were also proposed to create built-up areas (that appear on our
goal map) from individual buildings (that appear on our start map). For instance,
Chaudhry and Mackaness [CMO08] identified the boundaries of urban settlement by
calculating ‘citiness’ based on buildings. However, it is difficult to use their method
to provide a continuous transformation from buildings to built-up areas because
using settlement boundaries will make the buildings lose their shapes quite fast.

Finally, some papers directly tackle the continuous transformation of buildings
when scale is reduced. Li et al. [LLX17] morphed between two buildings at different
scales. They managed to preserve the orthogonal characteristics of buildings, but
their algorithm cannot be used in our case as our goal map does not contain build-
ings anymore. Touya and Dumont [TD17] transformed buildings into built-up areas,
where they progressively replaced buildings by the shape of the blocks to which the
buildings belong. However, this last algorithm is not continuous enough because
each iteration directly transforms a set of buildings in a block to a polygon that cov-
ers the whole block. As a result, there is no existing solution for the continuous
generalization of buildings into built-up areas.

Our contributions are as follows. In Section 4.1, we continuously generalize
a start map of buildings (at a larger scale) to a goal map of built-up areas (at a
smaller scale). The generalization consists of aggregating, growing, and simplifying.
We aggregate the original buildings which will be too close at an output scale by
adding bridges. We grow (bridged) original buildings by buffering, where we use
so-called miter joins to keep the right angles of buildings. Because of using this
kind of joins instead of round ones, we have new problems. We show how to solve
these problems. We also simplify the buildings according to output scales. Finally,
we analyze running time at the end of this section. We carry out a case study and
discuss the performances of our method in Section 4.2. We conclude this chapter in
Section 4.3.

4.1 Methodology 69

4.1 Methodology

The input map is our start map. We denote the scale of the start map by 1 : M.
We generate the goal map at scale 1 : M, (M, > M) by generalizing the start
map. We use time t € [0,1] to define the process of continuous generalization.
We require that the generalization yields exactly the start map when t = 0 and the
goal map when t = 1. The start map should be continuously changed to the goal
map when t increases from 0 to 1. For the sake of convenience, we define scale
denominator M, = M; + t - (Mg — Mj).

We carry out the continuous generalization by growing the original buildings. If
some grown buildings become too close at time t, we aggregate the related original
buildings by adding bridges. We grow the (bridged) original buildings by buffering
with miter joins. At any time t, the grown buildings need to be simplified to look
like buildings. This simplification is carried out in two steps: the first one is to use
dilating and eroding to remove “dents” and “bumps”; the second step is to remove
vertices using the algorithm of Imai and Iri [1I88]. To make sure that buildings never
shrink when t is increasing, we merge the shape of a building at time t and its shape
at the preceding time (before t). We clip the buildings using the shape on the goal
map to ensure that the buildings will not grow out of the intended built-up areas.
Figure 4.1 shows the framework of our method; we explain the presented operators
in the following subsections.

4.1.1 Growing Buildings by Buffering

We denote by d; the growing distance for the goal map. At time ¢, the distance is

dg,=t-dg. 4.1

There are three typical joins when buffering a polygon, i.e., round, miter, and
square joins (see Figure 4.2). We choose the miter joins to grow buildings in order to
preserve right angles. If an angle is acute, however, an excessively long spike will be
produced. This spike may go across other buildings (see for example Figure 4.3a).
To avoid this kind of interruptions, we require that if the tip of a spike is more
than adg(a > 1) away from the original vertex, then we apply a square join (see
Figure 4.3b). To keep right angles of buildings, we must have miter limit a > 2.
We set a = 1.5. In this case, a square join will be applied when an angle is smaller
(more acute) than 83.6°.

70 4 Continuously Generalizing Buildings to Built-up Areas

(Input original buildings and time t)

Constitute a group for each of the original buildings
(number of groups: k;)

v

’ Aggregate original buildings in the same group based on MST Fi

v

’ Grow the aggregates ‘

v

’ Simplify based on dilating and eroding ‘

v =k, |
’ Detect close buildings ‘

v

Group original buildings according to the close buildings
(number of groups: k,)

Yes

k, <k
No

’ Simplify using the Imai-Iri algorithm ‘

’ Merge with the shapes at the preceding time ‘

v

’ Clip using the goal shapes ‘

’ Eliminate small buildings and small holes ‘

v

(Output built-up areas at time ¢t)

Figure 4.1: The framework of our method.

4.1 Methodology 71

Buffering with miter joins:
Preserving right angles

Buffering with square joins:
Avoiding long spikes
Polygon

Buffering with round joins:
Detecting if some buildings are too close

(O (O) |

Figure 4.2: Three ways of buffering a polygon and their applications.

/

dg [

i

(a) Buffering using miter joins with distance dg, (b) Squaring if spikes are too long

Figure 4.3: Using square joins instead of miter joins to avoid long spikes.

d
L
Dilating Eroding Dilating
= with d [with 2d with d
—_— —_— —_—

Figure 4.4: Removing dents and bumps by dilating and eroding with distance d.

4.1.2 Simplifying Grown Buildings Based on Dilating and Eroding

As mentioned earlier, methods of simplifying building have already been well stud-
ied. Damen et al. [DKS08] generalized buildings using morphological operators. A
drawback of their method is that the orientation of the buildings have to be iden-
tified. Meijers [Meil6] simplified buildings using offset curves generated based on
straight skeletons. Our method is similar to Meijers [Meil6]. We dilate and erode
the buildings to remove dents and bumps that can occur when buildings grow (see
Figure 4.4).

72 4 Continuously Generalizing Buildings to Built-up Areas

Eroding
d, . with d,
L Dilating with d, [(N_]
M Eroding
ith d
d, Dilating with d, WG [N\ /]
LI

Figure 4.5: Dilating and eroding a polygon with distances d; and d,, where d; < d,. The result of using d; is
the same as the original polygon, while the result of using d, become two polygons.

At time t, we should grow buildings with distance dg ,. In order to simplify the
grown buildings, we further dilate them with distance d,, (dp, > 0), erode with
dp, +dg (dg, > 0), and dilate back with dg,. A problem of this process is that a
building may be split into several parts by eroding (see Figure 4.5 for example). The
reason is that some parts of a building may be increased (by growing and dilating)
with distance dg , +dp, ;, but can be decreased (by eroding) as much as a(dp +dg).
If dg, +dp, < a(dp, + dg,) and the building is not thick enough, a thin part may
disappear (see Figure 4.5 when using distance d,). In order to avoid this problem,
we require that

dG,t + dD,t = a(dD,t + dE,t);
which means q d
dy, < Gt et 4.2)
’ a—1

We would like to use dp , = % - M, so that any dents and bumps narrower than !
will be removed. We set [= 0.3 mm on map, which was used as a length threshold
by, for example, Regnauld [Reg01]. Unfortunately, distance dg, can be arbitrarily
small according to Equation 4.1, but dg, is at least éMs. When time t is small,
dg —dg, < 0, which violates Equation 4.2, where dj, , > 0. To mediate this violation,

we set eroding distance
[
dE,[=t- EMg.
Still, we have to make sure that dg , —dg, > 0, which means t -dg —¢ - %Mg > 0. As
a result, we need to make sure that

(4.3)

2dg
Mg < T 4.4)
When we grow a bridged building, a “bay” may appear (see Figure 4.6b). We
remove such a bay by dilating (see Figure 4.6c) and then eroding (see Figure 4.6d)
with distance dp, .. We define the width of a bay as the diameter of the largest circle
that can be placed in the bay. If the width of a bay is smaller than 2dy, ;, then the bay
can be removed by dilating with distance dp, ,. We wish to remove bays which have

4.1 Methodology 73

(a) %; (o) ™/ (d

Figure 4.6: Removing a bay by dilating and eroding. (a) An aggregate from adding bridges (see Section 4.1.3).
(b) Growing the aggregate with distance dg ., where the region marked by the dashed circle is a bay. (c) Dilating
the grown building with dp, ,. (d) Eroding the dilated building with dp, , .

widths less than 2ry,. Variable r, = 24/ ay,/ 7 is the radius of a hole which is just large
enough to be presented on map. Following Chaudhry and Mackaness [CMO08], we
set area a;, = 8mm?* on map. Sometimes, our dj, , is not large enough to remove a
bay with width r;, because of the limitation from Equation 4.2. Therefore, we define

dG,t - d

dp , = min(——=% 1, M,). (4.5)
’ a—1

4.1.3 lteratively Aggregating Close Buildings by Adding Bridges

We grow all the original buildings (on the start map) and, as illustrated in Sec-
tion 4.1.2, simplify the grown buildings. If some buildings become too close to each
other after these operations, we aggregate them by adding bridges (see for example
Figure 4.7). Following Stoter et al. [Sto+09b], we define that two buildings are
too close if the distance between them is less than € = 0.2mm on map. The real
separation threshold at time ¢ is

d.,=¢-M,.

Our way of detecting close buildings is simple. We buffer buildings with distance
d,, / 2 using round joins (see Figure 4.2); then, we merge the buffers that intersect
with each other. On this basis, the original buildings intersecting with the same
merged buffer are identified as a group of close buildings. For each pair of the
original buildings in the same group, we connect them by adding a line segment to
link the pair of nearest points. There can be many such line segments, and they may
cross each other or may even intersect with buildings. To make the topology simple,
we select only some of the line segments as bridges. If we consider each building as
a node and each line segment as an edge, then we have a graph. By the algorithm

74 4 Continuously Generalizing Buildings to Built-up Areas

O []

[] t=04

Growing

] []

Aggregating

[EH] .
Aggregatin Growing
] ggregating s F= 0.6
O O []
Original
buildings
t=0 Aggregating

|

5:] Growing

Figure 4.7: Aggregating original buildings that will become too close at a certain time by adding bridges; then,
growing the bridged buildings.

of Prim [Pri57], we find a minimum spanning tree (MST) in the graph, where we
use the lengths of the line segments as the weights. As a result, we use the line
segments that corresponds to the edges in the MST as bridges. We aggregate the
group of original buildings by adding these bridges.

Aggregated and grown buildings may become too close because of the additional
bridges, so we have to iterate the aggregation process. Figure 4.8 shows such an
example. We grow and buffer buildings p, g, and r. As the buffers of g and r in-
tersect (see Figure 4.8c), we aggregate buildings g and r by adding a bridge (see
Figure 4.8d). There are two buildings left in Figure 4.8d: an original one and an
aggregate. We then grow and buffer the two buildings in Figure 4.8d, the buffer
of building p intersects with the buffer of the bridge of buildings q and r (see Fig-
ure 4.8f). Finally, we aggregate building p with bridged q and r (see Figure 4.8g),
and there is only one building left in Figure 4.8g. Then, we grow and buffer again
to get the final shape of the group. As the number of buildings does not decrease
from Figure 4.8g to Figure 4.8i, we stop the iteration.

When buildings have been grown and aggregated iteratively, bridges have been
added. These bridges have a width of 2d; , (see Equation 4.1)at time t. This setting
guarantees that no bridge will be thin when time ¢t = 1. As we aggregated all the
buildings that will become too close, all the separation distances between each pair
of buildings (or aggregates) are larger than distance d, ,. Specifically, if a group of
buildings will be aggregated at time t = 1, we say that these buildings are in the
same goal group.

4.1 Methodology 75

dG ¢ dg,+d. /2
[I—
(a) (b) ()
<> p Growing Buffering
with dg , with d, ,/2
— > — >

O O

-4
-

Aggregating

(@ (e 3]
<> Growing Buffering
with dg , with d, ,/2
— —_—

O 0O .

-4
-

Aggregating
® Growing) Buffering @
with dg , with dg /2
—

Figure 4.8: lteratively aggregating close buildings by adding bridges.

4.1.4 Simplifying Buildings Using the Imai-Iri Algorithm

When the scale is decreasing (M, increasing), we should remove more and more de-
tails. So, we simplify the (aggregated) grown buildings using the Imai-Iri algorithm
[1188]. First, this algorithm finds all the valid shortcuts of a polyline. A shortcut is
valid for a segment if the distance between the segment and the shortcut is at most
a specified value (see Figure 4.9). We set the value also as [= 0.3 mm on map (see
Section 4.1.2). That is, at time t, the distance threshold is

d,=1-M,. (4.6)

Second, the algorithm finds a sequence of valid shortcuts using breadth-first search.
The sequence of valid shortcuts is an approximation of the polyline and has the least
number of line segments, with error smaller than d, ,.

76 4 Continuously Generalizing Buildings to Built-up Areas

Invalid

Figure 4.9: Valid and invalid shortcuts for the Imai—Iri algorithm. Parameter [is the tolerance for errors.

In order to adapt the Imai-Iri algorithm to our problem, we add two more con-
straints for a shortcut to be valid. One is that a shortcut must be completely inside
the grown building. If a shortcut is outside, we may not be able to arrive at the
shortcut by growing. The other constraint is that a shortcut is not allowed to inter-
sect with the resulting building at the preceding time frame. We add this constraint
to avoid the building to shrink.

The classical way of simplifying a polyline or a polygon is using the Douglas—
Peucker algorithm [DP73]. However, it cannot simplify the shapes enough in our
case. This is why we choose the Imai-Iri algorithm.

4.1.5 Generating Buildings on Intermediate-Scale Maps

Both the eroding and the line simplification may result in a building to be shrunk.
Figure 4.10 and Figure 4.11 show such examples, respectively. To avoid these kinds
of shrinking, for a building, we merge its shape at time t and its shape at the pre-
ceding time (before t). For example, we generate a sequence of 10 maps, which
means t € {0.1,0.2,...,1}. Figure 4.10c shows the result at t = 0.6. In Fig-
ure 4.10f, the darker gray piece is included in the result at t = 0.6 but not in the
result at t = 0.7. In other words, the result at t = 0.7 shrinks at the darker gray
part. To prevent this shrinking, we merge the result at t = 0.7 with the result at the
preceding time, i.e., t = 0.6. The merged result is shown in Figure 4.12a. Similarly,
Figure 4.12b shows the merged result of buildings in Figure 4.11c and Figure 4.11h.
This merge also avoids bridges’ shrinking; Figure 4.13 shows such an example.

Added to this shrinking problem, a building aggregate on an intermediate map
should never leave the goal shape of the aggregated building. Otherwise, the build-
ing will need to shrink to achieve the goal shape. To avoid shrinking, we clip the
building using the goal shape and remove the parts outside.

4.1.6 Eliminating Small Buildings and Small Holes

Following the previous steps may result in some small isolated building aggregates.
We should remove these small aggregates during the continuous generalization be-
cause they become too small to be visible at some point. Therefore, we eliminate
a building aggregate if its area is smaller than a threshold. Following Stoter et

4.1 Methodology 77

dg, +dp,
o dG,tl - dE,tl dG’tl
U L
Eroding with Dilating
dp,;, +dg,, with dg |
_— _
(a) (b) ()]
dg., +dpy,
! dG,t2 - dE,t2 dG,fz
L L
Eroding with Dilating
dD,tz + dE,tz with dE,tz
— ——
(d) (e) ®

Figure 4.10: A building shrinks because of dilating and eroding, where t; = 0.6 and t, = 0.7. The gray poly-
gons in (a) and (d) represent the original building. The transparent polygon in (a) is from growing and dilating
the original building with distances dG,tl and dD,tl. The transparent polygon in (d) is obtained analogously as
in (a). The darker gray piece in (f) shows the part which is included in the polygon of (c) but not in the polygon
of (f).

al. [Sto+09b] and Chaudhry and Mackaness [CMO08], we set this threshold to a =
0.16 mm? on map. The real threshold at time t is

— 2
a,=a-M;.

For the buildings in the same goal group (see the definition in Section 4.1.3), we
consider the total area of all the buildings at time t, instead of considering each
building individually.

As mentioned in Section 4.1.2, we remove holes that have area less than a;, =
8 mm? on map. The real area threshold for a hole at time t is

_ 2
ah,t —ah‘Mt.

4.1.7 Running Time

Suppose that our input has n edges in total. Operations like growing, dilating, erod-
ing, merging, and clipping cost time O(n?); see Greiner and Hormann [GH98] and
Palfrader and Held [PH15]. We iteratively aggregate in Section 4.1.3. In the worst
case, we need to repeat O(n) times, which increases our running time to O(n®). It is
unlikely that we need to repeat the aggregation more than twice, though. Simplify-

78 4 Continuously Generalizing Buildings to Built-up Areas

dg,¢, +dp,,
— dg,¢, —dg,s, dg,q, dg,:,
L L L
Eroding
with Dilating Simplifying
dp, +dg,, with dg with d;
_— e —
(a) (b) (o) (@
dg, +dpy,
— dG,t2 - dE,t2 dG,t2 dG,tz
L L L
Eroding
with Dilating Simplifying
dD,tZ + dE>[2 with dE,t2 with dl,tz
(e) ® (®) (h)

Figure 4.11: A building shrinks because of line simplification, where t; = 0.7 and t, = 0.8. The gray polygons
in (a) and (e) represent the original building. The transparent polygon in (a) is from growing and dilating the
original building with distances th1 and dD,tl' The transparent polygon in (e) is obtained analogously as in (a).
Note that distances d;, < d;,, (see Equation 4.6); this is why the Imai-Iri algorithm does not remove any
vertex of the polygon in (c) but removes two vertices of the polygon in (g). The darker gray pieces in (h) are the
parts which are included in the polygon of (d) but not in the polygon of (h).

(a) (b)

Figure 4.12: Merging a polygon with the polygon at the preceding time. (a) Merging the transparent polygons
in Figures 4.10c and 4.10f. (b) Merging the transparent polygons in Figures 4.11d and 4.11h.

ing polygons using the Imai-Iri algorithm takes time O(n®). The improved version
of the Imai-Iri algorithm by Chan and Chin [CC96] does not help in our case be-
cause we have more constraints when simplifying (see Section 4.1.4). As a result,
the running time of our method is in O(n?).

4.2 Case Study 79

dgr, + dey, [2 dg,
p u U
1 | D
q
= ;
(a) (b) (© (d)
do, +dey,/2 dgy, de,c,
Sl I = E—
>)]
i -
(e) () (® (h)

Figure 4.13: Avoiding shrinking resulted by moved bridges, where t; = 0.5 and t, = 0.6. (a) Original
buildings. (b) Growing buildings with distance dg,, and dilating with de,tl/Z; buildings p and q are identified
as in the same group. (c) Aggregating p and q by adding a bridge. (d) Growing the (bridged) buildings in (c)
with distance dg . . (e) Growing original buildings with distance dg,, and dilating with d, ., /2; all the three
buildings are in the same group. (f) Aggregating by adding bridges according to the MST. (g) Growing the
bridged building in (f) with distance d ,, . The bridge in (d) shrinks comparing to (g). (h) Avoiding this shrinking
at time t, by merging buildings in (d) and (g).

4.2 Case Study

We have implemented our method based on C# (Microsoft Visual Studio 2015) and
ArcObjects SDK 10.4.1. The code is available in open source on Github®. The off-
setting function and clipping function are available from library CLIPPER of Johnson
[Joh14], which is based on the clipping algorithm of Vatti [Vat92]. The offsetting
function is used for the buffering, dilating, eroding, and merging operations. We
ran our case study under 64-bit Windows 7 on a 3.3 GHz dual core CPU with 8 GB
RAM. We measured processing time by the built-in C# class Stopwatch. Our testing
data is extracted from a dataset produced by the French Mapping Agency (IGN); see
Figure 4.14. The data is at scale 1 : 15,000, which means M, = 15,000. It represents
the buildings of four towns, i.e., Aussevielle, Denguin, Poey-de-Lescar, and Siros, in
the Pyrénées-Atlantiques county, south-western France. IGN also stores a dataset at
scale 1 :50,000. This dataset was obtained mostly from the data at scale 1 : 15,000
by buffering with distance 25m, where sometimes distance 50 m was also used in
order to identify towns. A restriction for the town from Boffet [BofO0] is that the
longest edge in an MST of the buildings should be shorter than 100 m.

6 https://github.com/IGNF/ContinuousGeneralisation

https://github.com/IGNF/ContinuousGeneralisation

80 4 Continuously Generalizing Buildings to Built-up Areas

Figure 4.14: Data for our case study, at scale 1 : 15,000. There are 2,590 buildings, which in total have
19,255 edges and have area 448,802.3 m?.

We set our goal scale to 1 : 50,000, which means scale denominator M, = 50,000,
and growing distance d; = 25 m so that we can compare our result with the existing
data. Also, this setting makes Equation 4.4 hold, where error tolerance [= 0.3 mm.
In Equation 4.5, the first part is always smaller than the second part because of our
settings. As a result, dilating distance dp, , = t - 35m, where eroding distance dg, =

t - 7.5m according to Equation 4.3 and miter limit a = 1.5.

Our program took 93.6 s to compute the goal shapes of the built-up areas. The 56
built-up areas have 2,095 edges before line simplification. Using the Imai-Iri algo-
rithm, we have 1,102 edges left. In comparison, there are 1,597 edges left when we
simplified using the Douglas—Peucker algorithm.

Figure 4.15 shows the bridged original buildings as well as the goal shapes.
We produced a sequence of 10 maps, i.e., t € {0.1,0.2,...,1}. This production
cost 668.2s in total. We show such a sequence of maps in Figure 4.16 for marked
region R; in Figure 4.15. The sequence of maps grows continuously, and the in-
termediate results well reflect the pattern of the original buildings. Unfortunately,
our method produced lengthy building aggregates, which may annoy users. Some
examples can be found in Figure 4.17 when time t = 0.3. To avoid this problem,
we could restrict the number of nodes when we group buildings based on an MST.
Using this restriction, however, we will not be able to guarantee that the distance
between any two (aggregated) buildings is larger than distance threshold d; , (see
Equation 4.6).

4.2 Case Study 81

4=

Figure 4.15: Bridged original buildings and goal shapes (darker polygons), without eliminating small buildings
and holes, where the goal shapes are for scale 1 : 50,000. There are 56 goal shapes, which have 1,135
edges in total.

We counted the numbers of buildings in our results and compared them to the
numbers calculated by the radical law of Topfer and Pillewizer [TP66]; see Fig-
ure 4.18. We have exaggerated-area symbols; so we use Cy; and C,; for Equation 2
of Topfer and Pillewizer [TP66]. As a result, we computed the numbers according

to
M, \?
n, = ng Mt 5 (47)

where n, = 2,590 is the number of buildings on start map and n, is the number of
buildings on the map at scale 1 : M,. Equation 4.7 is intuitive because it demon-
strates that the number of buildings in a unit area on map should be fixed. Accord-
ing to Figure 4.18, our numbers decrease faster than the numbers computed by the
radical law. Still, the radical law seems to agree with our results.

We also compared the areas on map of our results with the areas computed by
the radical law of Topfer and Pillewizer [TP66]. Our data, at scale 1 : 15,000, has
area 448,802.3m?, which is 1,994.7 mm? on map. The radical law concerns about
the number of objects, so we slightly abuse the law. In Equation 4.7, we replace the
number with area and have

M.\2
p=a (2
M,

4 Continuously Generalizing Buildings to Built-up Areas

82

50m

&?%? Q%%? O <2:;} o
<

@ N4 % <> O

3%

Figure 4.16: A sequence of maps at time t € {0,0.1,0.2,..., 1} of marked region R; in Figure 4.15.

o S Qy 100m
SN % N
o7 Oy Cm 2%
algbe Q%b 000000 @D 270 0% © o D\:Gb
S S, B g 0g? 2997 0 % @
I 28 N8 T e A0 0 @E
RALPESS %°z¢$a N EPIS AR 0@67 %7 Do& Qa
R &8 % @0 , i oacm%%% 053{5
) Ly @ 3
t=0 g 0;6:502 ¢ t =0.2
00000
57 C:D
% %
o

t=0.3 o 27 t=0.4 o
&5

Figure 4.17: Some intermediate-scale results of marked region R, in Figure 4.15. When time t = 0.3, there

are some lengthy aggregates.

The comparison is shown in Figure 4.19. The area on map of our results increases
from time t = O to time ¢t = 0.4. The reason is that there are many bridges appearing

during this period. Comparing the two curves in Figure 4.19, we see a disagreement
between the radical law and our results.

4.3 Concluding Remarks 83

#Buildings
3,000

2,250

1,500

Radical law
750

Our result

0.1 02 03 04 05 0.6 0.7 08 09 1 t

Figure 4.18: A comparison of the numbers of buildings between our result and the radical law.

mm
3,000

Our result

2,250
C
1,500

750

Radical law

0.1 02 03 04 05 0.6 0.7 0.8 09 1 t

Figure 4.19: A comparison of the total area on map of buildings between our result and the radical law.

In Figure 4.20, we show our built-up areas at time t = 1 (dark polygons) and
the data at scale 1 : 50,000 from IGN (transparent polygons). No small building
was removed in our result or the IGN data. The boundaries of our built-up areas
are more straight than that of the IGN data. We have 1,135 edges, while the IGN
data has 4,968 edges. From this perspective, our result is more reasonable than
the existing data. A questionnaire, however, is needed to make a more convincing
comparison.

4.3 Concluding Remarks

We proposed a method to continuously generalize buildings to built-up areas by
aggregating and growing. We managed to produce a sequence of maps in which the
buildings are always growing and, at the same time, are simplified. Our method,
however, may produce lengthy aggregates. For the goal map at scale 1 : 50,000, the
shapes of our built-up areas are more reasonable than the data from IGN.

84 4 Continuously Generalizing Buildings to Built-up Areas

Figure 4.20: A comparison of our built-up areas at time t = 1 and the data from IGN at scale 1 : 50,000
(transparent polygons). Some built-up areas from IGN are split because of streets’ crossing.

It is always interesting to know the quantity that we should keep on a map. We
compared the numbers of buildings, and it is quite consistent with the radical law
of Tépfer and Pillewizer [TP66]. We also compared the areas of our results and the
values computed by our variant of the radical law. The difference between them is
large. Eventually, our result is a set of settlement boundaries. An interesting prob-
lem is to compare our method with Chaudhry and Mackaness [CMO08]. Our method
is supposed to provide a smooth transition between the representation of individ-
ual buildings and that of built-up areas, but the only way to verify that smoothness
is to carry out a user survey. In the survey, we should compare our approach to
non-continuous generalization approaches.

Chapter 5

Morphing Polylines
Based on Least-Squares Adjustment

Digital maps such as Google Maps or OpenStreetMap have become important sources
of geographic information. When users interactively browse through such maps on
computers or small displays, they often need to zoom in and out to get the infor-
mation desired. Often, zooming is supported by a multiple representation database
(MRDB). This database stores a discrete set of levels of detail (LODs), from which a
user can query the LOD for a particular scale [HSHO04]. A small set of LODs, however,
leads to large and sudden changes during zooming, which distracts users. Therefore,
hierarchical schemes have been proposed that implement the generalization process
based on small incremental changes, for example, the binary line generalization tree
(BLG-tree) [00s05] for line simplification or the generalized area partitioning tree
(GAP-tree) [00s95] for area aggregation. The incremental generalization process is
represented in a data structure that allows a user to retrieve a map at any desired
scale. Still, the generalization process consists of discrete steps and includes abrupt
changes. To achieve a continuous generalization, Sester and Brenner [SB04] sim-
plified building footprints based on small incremental steps and smoothly animated
each step. Also aiming at a continuous generalization, several authors have devel-
oped methods for morphing between two polylines [Cec03; N61+08]. Most of these
methods consist of two steps [Cec03; N61+08; PDZ12]. The first step is to compute
the corresponding points of the two polylines. The second step is to define a tra-
jectory for each pair of corresponding points. Most often, straight lines are used
as trajectories. Then, morphing is realized by moving points along the straight-line
trajectories with constant speeds.

In this chapter, we relax the requirement of using straight-line trajectories for
morphing. Our concern with straight-line trajectories is that characteristics (e.g.,
bends) of the polylines can change drastically during a morphing process. To better
keep the characteristics, we suggest that the angles and the edge lengths of poly-
lines should change linearly during a morphing process. As Figures 5.1a and 5.1b
show, this is clearly not accomplished with straight-line trajectories. In contrast, the
new method that we present in this chapter yields a close-to-linear relationship, for
example, between time and edge lengths; see Figures 5.1c and 5.1d.

86 5 Morphing Polylines Based on Least-Squares Adjustment

€y Length
Source == 8
es3 160
t=0.25 —= 120 ¢,
t =0.50 —= 80
e
t=0.75 40 \/
0 t
Target 0 025 05 0.75 1
(a) (b)
€y Length

Source = 8

/ 63 160
t=0.25 120 e

pd 2

€3
t=0.75 /\ 40
0 t
Target 0 0.25 0.5 0.75 1
(c) (d)

Figure 5.1: Morphing between a source polyline and a target polyline. When morphing based on straight-line
trajectories (a), edge e; receives almost zero length at time ¢ = 0.75 and then grows again (b). With our
method (c), the edge lengths change almost linearly (d).

The chapter is organized as follows. We review related work in Section 5.1.
The details of our method are presented in Section 5.2, which include soft con-
straints, hard constraints, estimates for the unknowns, and the iterative process of
our method. We present a case study in Section 5.3.2, which shows that our method
generally performs well but also reveals new problems. We conclude the chapter in
Section 5.4.

5.1 Related Work

Different methods of morphing have been developed for map generalization. In
map generalization, there are many constraints that need to be satisfied [Har99].
These constraints should also be satisfied by intermediate-scale features displayed
when morphing. According to van Kreveld [Kre01], the amount of displacement
between the corresponding vertices of two maps at different scales is quite small;
thus, when using straight-line trajectories for morphing, hardly any features will be
in conflict with the interpolated features. We, however, argue that even in simple
situations, such as the one in Figures 5.1a and 5.1b, straight-line trajectories fail

5.1 Related Work 87

to generate satisfactory intermediate-scale features. In fact, there are methods that
use curves rather than straight lines as vertex trajectories, for example, circular arcs
or parabolas [WR09]. In contrast to these methods, our method does not require
the trajectories to be of any particular curve type. Instead, we define the morphing
process based on constraints that we impose on the features at intermediate scales.

Intermediate features are expected to be similar to the source feature and the
target feature. We consider the angles and the edge lengths to be very important
attributes of a feature, at least because similarity measures are often defined based
on the angles and the edge lengths; [e.g., Ark+91; LLOO; FE06]. Sederberg et al.
[Sed+93] morphed two polygons by changing the angles and the edge lengths lin-
early over time. The authors also showed how to tweak the edge lengths and/or
the angles to guarantee that the intermediate polygon is closed at any time. We use
an approach similar to Sederberg et al. [Sed+93]. We also try to achieve that the
angles and the edge lengths change linearly. Unlike Sederberg et al. [Sed+93], how-
ever, we simultaneously handle multiple constraints by defining (and solving) the
model of a least-squares adjustment. A completely different approach was taken by
Connelly et al. [CDRO03]. They proved that any polyline can be straightened, that is,
the vertices can be moved to a straight line such that the edge lengths never change
and the edges never intersect. Streinu [StrO0] showed that a quadratic number of
moves suffices and presented how to compute those. However, in order to morph a
polyline into another polyline (with the same edge lengths), Streinu [Str00] would
morph the former into a straight line and then into the latter. Thereby, that method
will significantly change the angles.

Least-squares adjustment (LSA) has been shown to be effective in handling mul-
tiple constraints in map generalization [Ses00; HS02]. Basically, it relies on func-
tion ¢ : R* — R™ that defines the relationship between vector X of u unknowns and
vector L of m observations. Given function ¢ and vector L, it is reasonable to ask
for vector X that strictly satisfies L = ¢(X). Such a vector, however, normally does
not exist since m is usually larger than u. Therefore, the corrections for observations,
vector v, is introduced. Then, our aim is to find X and v such that

L+v=¢X),

and vT Pv is minimal, where P is a matrix that allows us to set weights to observa-
tions. LSA is particularly easy to solve if a linear relationship between the unknowns
and the observations exists, that is,

pX)=AX +d, (5.1)

where both matrix A and vector d have constant values. An optimum solution is
given with
X =X, + (ATPA)'ATPI, (5.2)

where estimates X, can be any vector of dimension u and vector [= L — ¢ (X,).

88 5 Morphing Polylines Based on Least-Squares Adjustment

If the relationship between the unknowns and the observations is not linear, then
we have to compute iteratively in order to find an approximation of vector X. In
this case, matrix A is defined based on the partial derivatives of function ¢ at X,.
Usually, Equation 5.2 yields an approximation of the optimum unknown vector that
is better than X,. A good approximation of X can be found by iteratively solving
Equation 5.2. In each iteration (except the first), we assign the newly computed
vector, X, to vector X,. Before we start the iteration, we should choose a set of
initial estimates that is close to X. The smaller the difference between X, and X is,
the more likely we find an approximation of X.

Since eighty percent of all objects (points, lines, and areas) in a typical medium-
scale topographic map consist of lines [Mul91], we focus on morphing polylines in
this chapter.

5.2 Methodology

In this section, we present our LSA-based morphing method. We introduce some
definitions in Section 5.2.1. Then, we model multiple requirements as constraints.
The soft constraints are presented in Section 5.2.2. We set constant values to the
coordinates of some vertices to implement hard constraints in Section 5.2.3. The
estimates for the unknowns are given in Section 5.2.5. Finally, we sketch the stop
condition of the model in Section 5.2.6.

5.2.1 Preliminaries

Suppose that we have polyline B with vertices b4, ..., by, and polyline C with ver-
tices ¢q,...,cy, where B and C represent the same geographic feature. Vertices b,
and c; as well as by; and cy correspond to each other (see Figure 5.2a). For every
vertex of B, we find a corresponding point (not necessarily a vertex) on C, and vice
versa. As a result, we have two new polylines, i.e., B’ and C’, which have the same
number, say n, of vertices (see Figure 5.2b). How to find the corresponding pairs
of vertices is not discussed in this chapter. We apply a dynamic-programming algo-
rithm similar to Nollenburg et al. [N61+08], but any other method could be used as
well.

The morphing process starts at time ¢ = 0, from polyline B/, and ends at time t =
1, to polyline C’. Generally, we denote the polyline displayed at time t by D(t),
thus D(0) = B’ and D(1) = C’. We denote the i-th vertex of D(t) by d,(t).

5.2.2 Soft Constraints

We compute polyline D(t) by constraining its angles and the lengths of its edges.
That is, for each angle and each edge length, we define an expected value, which is
an observation in LSA. In most cases, these expected values cannot be achieved at
the same time because they may contradict with each other. Therefore, we require

5.2 Methodology 89

b, v

G

Ca

(a) Original polylines (b) Polylines after injecting vertices

Figure 5.2: lllustration of corresponding vertices.

that the computed angles and edge lengths are close to the expected values. More
precisely, we obtain the differences between the computed values and the expected
values, then we square the differences and sum up the squares; we want to minimize
the sum. These requirements for angles and edge lengths constitute soft constraints
in our method. In order to make polylines behave as in our motivating example
(see Figures 5.1c and 5.1d), we define the expected values by a linear interpolation
between the values of the source polyline and the target polyline. For the angles,
the expected values are

Bi(t) = (1 —1t)- ;(0) + ¢ - B;(1), (5.3)

where i = 2,...,n— 1. Angles f3;(0) and f3;(1) are respectively from polylines B’
and C’ (see Figure 5.3).
Similarly, for the edge lengths, we define

L()=0—¢t)-L(0)+t-1;(1), (5.9)

where i = 1,...,n— 1. Lengths [;(0) and [;(1) are respectively from polylines B’
and C’ (see Figure 5.3).

By applying LSA, our aim is to compute the adjusted coordinates of the ver-
tices for polyline D(t). Therefore, we need to express the relationships between the
adjusted coordinates, X;(t), J1(t),...,x,(t), §,(t), and the observations (i.e., the
expected angles and the expected edge lengths). In other words, the adjusted coor-
dinates are our unknowns for LSA. In the following, we express the relationships.

90 5 Morphing Polylines Based on Least-Squares Adjustment

B/

B3(0) B4(0)

LM 14(1)
C/

B5(1)

B2(1)

Figure 5.3: lllustration of initials and finals.

X-axis

Xx-axis Xx-axis

Figure 5.4: The x-axis angles of some edges. The thin line segments represent x-axes, and the thick ones
represent some edges.

Angles: Angle 3;(t) can be computed based on the difference between edge e;_;’s
x-axis angle and edge e;’s x-axis angle. The x-axis angle of an edge is the angle that
we rotate x-axis until it is parallel to the edge (see some examples in Figure 5.4).
Depending on the quadrants in which e;_; and e; lie relative to the vertex d;(t), a
multiple of 7t has to be added. As a result, for the adjusted angle ﬁi(t) of observa-
tion f;(t), we require that
Jia®©=3(0) _ 50 =5ia(0)
X1 (£) = %(2) xi(t) = %1 ()
where K; € Z is a constant that only depends on i. For the LSA, we have to com-
pute the partial derivatives of Bi(t) with respect to the unknowns. These partial
derivatives do not depend on the constant term K; - . Therefore, we can neglect it.

Edge lengths: Each edge length is a Euclidean distance. Hence, for adjusted edge
length [;(t), we require that

L) = /(i1 () = 2:(0)% + (Fiaa (6) = 3:(0))2. (5.6)

Here, Equations 5.5 and 5.6 constitute function ¢(X); see Equation 5.1. Since
functions f; and [; are not linear, we have to linearize them by computing partial
derivatives [Ses00; HS02].

B:(t) = arctan +K;-m, (5.5

5.2 Methodology 91

Without adding hard constraints to our model, there is no need for an adjustment.
We can perfectly satisfy every soft constraint simply by creating a new polyline with
the expected angles and the expected edge lengths. However, the new polyline can
be very different from our source polyline and target polyline; in order to avoid
this problem, we add hard constraints of prescribing some end vertices of the new
polyline.

5.2.3 Hard Constraints

There may be some common characteristic vertices on polylines B’ and C’. These
vertices should be kept during morphing. If we have vertices d;(0) = d;(1) for some
i €{1,...,n}, we require as hard constraints that vertices d;(0) = d;(t) = d;(1) for
time t € [0, 1]. That is to say, for these characteristic vertices, we do not introduce
unknowns in the LSA. Note that our method does not require the existence of such
common characteristic vertices, but it can handle them.

Even if vertex d;(0), on polyline B’, does not have the exact same position as its
corresponding vertex d;(1), on polyline C’, we may want to constrain computed ver-
tex d;(t) to lie at a prescribed position. In particular, by prescribing the end vertices
of some polylines that meet each other at these end vertices, we can guarantee that
these polylines always meet each other. This is useful if we need to deal with a geo-
metric graph that, for example, represents a road network. We suggest prescribing
the vertices with degree higher than two (e.g., road junctions), which allows us to
treat each path between two such vertices as an independent problem. When pre-
scribing vertex d;(t), we apply a simple linear interpolation between vertices d;(0)
and d;(1). That is, we set

Gio)=a-0-Gio) e Gi):

where x;(t) and y;(t) are the x- and y-coordinates of d;(t). However, we should not
constrain too many vertices this way; otherwise, we will achieve no improvement
compared to the existing method based on straight-line trajectories.

We note that some additional hard constraints may be needed. For example, we
may want to remain some right angles when morphing for buildings. However, we
do not handle those kinds of hard constraints in this chapter.

5.2.4 Weights

For simplicity, we set the weight for each edge length as 1. Because angles are
sensitive to coordinates’ changes (see Figure 5.5 for example), we give angles larger
weights in order to make them stable. An angle can suddenly change as much as
radian 27t. We assign weight 472 to angles because we are dealing with squares.
Our weights for angles and edge lengths constitute a diagonal matrix, that is,

P =diag(4n?,...,4n%,1,...,1).

92 5 Morphing Polylines Based on Least-Squares Adjustment

(a) U

Figure 5.5: Angle is sensitive to the changes of coordinates. (a) Vector v, vector v, and the angle between
them, 3. (b) Because of adjustments, we have two new vectors v’ and u’, where the angle has been signifi-
cantly changed (see f3').

5.2.5 Estimates

To define the morphing process, we compute k intermediate polylines, where pa-
rameter k should be large enough to give a smooth animation. We define each step

to take the same amount of time; in the i-th step, t = 7. We compute polylines

D(ﬁ), D(k%l), ... ,D(k%) in succession. Since the polyline at time ﬁ will be sim-
ilar to the polyline at time %, we use the vertex coordinates of the precedingly

computed polyline as estimates for the unknowns in the LSA.

5.2.6 lterative Process

Since our model contains non-linear constraints (see Equations 5.5 and 5.6), we
need to solve it iteratively. We define the corrections of the coordinates as

%(t) = (ATPA)'ATPI. (5.7)

We compute X, which represents angles and edge lengths of a polyline, by Equa-
tion 5.2. If the norm of corrections X(t) is larger than a user-set threshold, we use
the computed X as new X, and then compute again by Equation 5.2, also with new
[. We iterate this process until the norm of vector x(t) is small enough.

5.3 Case Study

To get reasonable corresponding points between two polylines that will be mor-
phed, we used a dynamic-programming algorithm similar to that of N6llenburg et al.
[NG1+08]. Their algorithm uses characteristic vertices (in our experiments, all the
vertices are regarded as characteristic vertices) and segments between consecutive
characteristic vertices as elements to match to minimize a defined cost function. To
make the soft constraints of angles meaningful, we always prescribe the first two
vertices and the last two vertices of the polylines.

5.3 Case Study 93

|
B N N Yo
NG v
\ \\ N
(\ INNY \ b\ |
\ VNN [
\ \ 7
\ \ \ })\ \ 1\ s
V\ . ! ’%\ S .
C L
(a) Two polylines (b) Corresponding vertices

Figure 5.6: An artificial data used in our case study.

5.3.1 Case Study on Artificial Data

We tested our method on an instance from Bereg [Ber05]; see Figure 5.6. The
corresponding vertices computed by the dynamic-programming algorithm (see Sec-
tion 5.2.1) are shown in Figure 5.6b. Figure 5.7 shows the results of morphing from
polyline B to polyline C based on straight-line trajectories and our LSA, respectively.
Based on straight-line trajectories, the left part of the “bend” shrinks, and a self-
intersection occurs at time t = 0.75. While based on LSA, the same part of the bend
moves to the right side and then moves to the target edges. Therefore, our method
is more reasonable.

Unfortunately, there are still problems with our method. First, if we define the
corresponding vertices between the polylines with a simple linear interpolation algo-
rithm (as shown in Figure 5.8a), then we obtain undesirable results when morphing
polyline C to polyline B based on LSA. Figure 5.8b shows that the “interpolated line”
jumped below polyline C.

Second, we may have self-intersections for some instances. Figure 5.9 shows
such an example, where we have several self-intersections at time t = 0.5. This is
because that we do not have a mechanism to guarantee topological correctness of
generated polylines.

Third, sometimes the iterative process (see Section 5.2.6) does not stop because
the norm of corrections X(t) (see Equation 5.7) does not converge to value 0. The
reason is probably that the polylines contain very short edges. Figure 5.10 shows
such a strange result. For the corresponding vertices shown in Figure 5.9b, we add
an extra pair of corresponding vertices presented by the black curve in Figure 5.10a.
The two extra vertices are very close to one of the pairs of corresponding vertices.
Now, we have a pair of very short corresponding segments. Because of that, our
LSA generated a strange polyline at time t = 0.83. Figure 5.10b shows the result,
where the circle represents the extra vertex on the strage polyline. By comparison,
our LSA generated a correct polyline when we did not add the extra pair of vertices.
Figure 5.10c shows the result, where the square represents the extra vertex on the
correct polyline. Moreover, our LSA does not converge at time t = 0.90 when we
have the extra vertices.

5 Morphing Polylines Based on Least-Squares Adjustment

94

Straight-line trajectories Least-squares adjustment

CHN
YN

Target
\ | < -
\ | A AN / d
"\ I oMY !
AR \ \l S) \
N <\ \ o Doy !\ \
. . (AN) Vo ! Ly v
Trajectories | e TR (\ Ny b ,
\
| ! VNN s \ Y Co b ’
\ \ VN Y / \ \ thy Y 7
\[l\\\\\ ' g I/\\\,«
4
/k/L‘

Figure 5.7: Morphing based on straight-line trajectories (left) and based on our method (right)

\ /
B 'n I/ o
/ N /}/\ o
/ N2 oy
‘ W I
/ \ [
| sk Y
\ / s’ /// * \ [/
bt /I\\\\ \ - ,
l\\\\ N
t=0.25

(a) Corresponding vertices (b) Morphing C to B at time t = 0.25

Figure 5.8: An undesirable result based on our LSA.

5.4 Concluding Remarks 95

C | /2/1, ///< %\\H\.\\.\\?\. !
(a) Two polylines (b) Corresponding vertices (c) Output at time t = 0.5

Figure 5.9: Some self-intersections generated by our LSA.

79)\

(a) The extra pair of (b) t =0.83, with extra (c) t = 0.83, without extra
corresponding vertices corresponding vertices corresponding vertices

Figure 5.10: A strange result by our LSA.

5.3.2 Case Study on Real-World Data

We tested our method on a part of the coastline of China (Figures 5.11a and 5.11d).
The scale of the source polyline is 1 : 5,000,000, the length is 1,002km, and the
number of vertices is 233; the scale of the target polyline is 1 : 30,000,000, the
length is 605 km, and the number of vertices is 66. Figures 5.11b and 5.11c show
the morphing results at times t = 0.25 and t = 0.75, where the prescribed vertices
are marked by dots. Overall, we got nice results, but there are still some problems.
In region R, the two segments almost intersect at time ¢t = 0.25; in region R,, the
“bend” first expands and then shrinks. The two phenomena are not appropriate.
There are two reasons for both problems. First, the changes (decrease or increase)
of the angles are faster than needed. Second, the decreases of the lengths are slower
than needed. Both reasons tend to make a bend expand and then shrink. To solve
this problem, we need a better model to simulate the changes of angles and edge
lengths, rather than use Equations 5.3 and 5.4.

5.4 Concluding Remarks

We have introduced a method for morphing polylines that tries to linearly change
the angles and the edge lengths over time. Our approach is based on LSA and can
handle soft and hard constraints. Our first results are promising. Still, there are
open problems. In particular, we have to ensure that our method always converges
to a good solution. We also aim to model more constraints, for example, to avoid self-
intersections. Besides, a further topic is to combine morphing and simplification.

96 5 Morphing Polylines Based on Least-Squares Adjustment
R /}j %&- .) v
1
. [
R,) 3\%\ m
‘ s 7 ‘ {"C\
id R AE NI EEN
k; }3}-« /'/I ‘§ /'/
e VN~

(a) Source polyline (b) t =0.25 (c) t=0.75 (d) Target polyline

Figure 5.11: Case study on real-world data.

Chapter 6

Choosing the Right Data Structures
for Solving Spatial Problems

Detecting corresponding objects, which represent the same real-world entity, from
two different spatial datasets has drawn a lot of attention in map generalization [e.g.,
No61+08; PWH16; DP15] and data conflation [e.g., ZM08; Mas06; TLJ14; Rui+11].
However, corresponding objects may have different coordinates because of many
reasons. For example, measurements introduce errors, and different organizations
may use their own approaches to produce spatial datasets [Bee+05]. An important
criteria of determining corresponding objects is to investigate if they have close po-
sitions. For example, Beeri et al. [Bee+05] assumed that the locations of objects
are given as points and required that corresponding objects should have a distance
smaller than a threshold. Based on the work of Beeri et al. [Bee+05], Safra et al.
[Saf+13] managed to match road networks. Volz [Vol06] matched street data start-
ing from so-called seed nodes. Each pair of their seed nodes should be within a
distance of 30 meters. We model the problem of looking for close points as follows.
For a given set of points, we want to find all the pairs of close points. We con-
sider two points to be close if they lie within a square of a pre-specified side length,
say, €. In other words, points p and q are close if we have distance L.,(p,q) =
max(Ax,Ay) < ¢, where Ax = |p, —q,| and Ay = |p, —q, | are the differences
of x- and y-coordinates, respectively (see Figure 6.1).

. °
°
° .
L4 °
° ¢ . i
L] 2¢e
. ° *Pe .
2¢ ®
. .
° °

Figure 6.1: For point p, the four linked points are its close points. These close points lie in the square with side
length 2¢ centered at p.

98 6 Choosing the Right Data Structures for Solving Spatial Problems

In order to solve the problem efficiently, we have implemented and tested some
ad-hoc solutions, including using different algorithms and different data structures.
During this process, we have made a number of observations in terms of running
time and memory consumption, cost by the different solutions. We think that it
is worth to share our observations with the GIS community. That is to say, the
ultimate goal of this chapter is not to identify the algorithm that performs the best
for the problem at hand. Rather, we want to address the issues that we had during
implementing and testing; we want to discuss the lessons we learned.

A brute-force approach for finding all pairs of close points requires ©(n?) time,
where n is the number of points. This running time is worst-case optimal since
the size of the output can be ©(n?) if side length ¢ is sufficiently large. Typically,
however, the size of the output is small. Hence, it is desirable to use algorithms
whose running time do not only depend on the size of the input (n, the number of
points), but also depend on the size of the output, that is, the number of pairs of
close points. Such an algorithm is called output-sensitive. Note that our problem is
different from Saalfeld [Saa88]. For a given point on one map, they wanted to find
the single nearest point in another map, which can be accomplished in O(nlogn)
time [SH75].

We consider three obvious output-sensitive algorithms: A sweep-line (SL) algo-
rithm, an algorithm based on the Delaunay triangulation (DT), and a hashing-like
approach that uses a grid. The sweep-line algorithm runs in O(k + nlogn) worst-
case time, where k is the number of pairs of close points, i.e., the size of output.
The same running time holds for the algorithm based on the Delaunay triangula-
tion under the assumption that the input points are randomly and independently
distributed in a unit square. The definition of this distribution will be shown in Sec-
tion 6.1. Under the same assumption regarding the distribution of the input, the
grid-based algorithm runs in O(k + n) time, which is the most efficient. We sketch
the three algorithms in Section 6.1. We have implemented them, and we have com-
pared their performances on random data and real-world data (see Section 6.2). We
conclude this chapter in Section 6.3.

We remark that we focus on methods that can be implemented easily. For this
reason, we have not included a method that uses two-dimensional range trees [e.g.,
Ben+77; Lue78; IW80], which is a two-level data structure based on balanced bi-
nary search tree (BBST); see Cormen et al. [Cor+09, Chapter 13]. The method
works as follows. It inserts all n input points into a range tree. For each point p,
it queries the tree with a range of size 2¢ x 2¢ centered at p. The running time of
that method is O(k + nlog®n), the memory consumption is O(nlogn); see Bentley
et al. [Ben+77]. Furthermore, the running time can be improved to O(k+nlogn) by
using the fractional cascading [Ber+08, Chapter 5], but we would need additional
implementation effort.

6.1 Algorithms 99

6.1 Algorithms

In the following, we sketch the three algorithms. We denote the set of input points
by P = {p1,ps,--.,Pn}, Where point p; has coordinates (x;, y;). While the algorithms
work for any input, our running-time analyses will assume that the input points are
uniformly and independently distributed (u.i.d.) in the unit square [0,1] x [0,1].
We do not record the pairs of close points but just count them, thus we need little
extra memory for recording the output.

6.1.1 The Sweep-Line Algorithm

The SL paradigm is a common tool in computational geometry [Ber+08, Chapter 2].
Shamos and Hoey [SH76] developed this algorithm to determine if two polygons
intersect. In their case, the SL algorithm runs in O(n’logn’) time, where n’ is the
total number of the edges of the polygons. Bentley and Ottmann [BO79] extended
the SL algorithm so that they could report all the intersections. This extension in-
creases the running time to O(k’+n’logn’), where k’ is the number of intersections.
Intuitively, the SL algorithm uses a line to sweep the plane, then the line stops at
certain events and changes its internal status (see Figure 6.2). The SL algorithm
usually employs two data structures: the event queue and the status. For our prob-
lem of searching for close points, we sweep a horizontal line from top to bottom.
Our sweep line [: y = y; stops at the y-coordinates in set {y,, y; —€li =1,2,...,n}.
We store these coordinates (together with references to the corresponding points)
in the event queue in decreasing order. The status contains all points in a horizontal
strip of height ¢ bounded by lines [and [, : y = y; + €. We store the points accord-
ing to their x-coordinates using a BBST in increasing order. To implement the event
queue, it suffices to sort the 2n y-coordinates and store the sorted coordinates in an
array.

We have only two types of events: enter and leave. Point p; enters the status
when the sweep line hits it, that is, when y; = y;. At the same time, we report each
pair (p;,p;), where p; is a point in the status with x; —& < x; < x; + €. Such a
points-in-interval query is supported by BBSTs. The query takes O(k; + logn) time,
where k; is the number of points that are reported for p;. Point p; leaves the status
when the sweep line reaches the y-coordinate y; —e. Summing up the running time
for each point yields a total running time of O(k +nlogn), where k is the size of the
output, that is, the number of close-point pairs. The memory consumption of the SL
algorithm is O(n).

The C# implementation of BBST is SortedDictionary (SD), which does not offer
a specific points-in-interval query. Instead, SD offers method where, which takes an
arbitrary predicate as argument and returns all currently stored objects that fulfill
the predicate, but this method takes linear time. The linear time is not a problem
as long as side length ¢ is so small that the strip, with height € and above the sweep
line, never contains many points. In the worst case, however, the running time

100 6 Choosing the Right Data Structures for Solving Spatial Problems

Figure 6.2: An illustration of our SL algorithm. The sweep line [is moving from top to bottom. The black points
are the data that we are looking for close points. The gray points are the references to the corresponding black
points. The gray strip represents the status which is implemented by a BBST. The black points in the status are
the potential close points. When the sweep line hits a black point, we search for close points in the status and
then enter the black point into the status; when the sweep line hits a gray point, we remove the corresponding
black point from the status. In this example, the sweep line hits point p; = (x;, y;). It is sufficient to search in
the interval [x; — &, x; + €] of the status. As a result, we find two close points, which are linked to p;.

becomes quadratic even if there is no pair of close points at all. Luckily, the BBST
implementations SortedSet (SS) from .NET Framework 4.0 and TreeSet (TS) from
library C5 both support the points-in-interval query. Library C5 is an open-source C#
data structure from Kokholm and Sestoft [KS06]. In addition, TreeSet of language
Java also supports the points-in-interval query.

6.1.2 The Delaunay-Triangulation-Based Algorithm

The DT is a useful tool for partitioning the plane such that spatially close points
are connected by the edges of the DT. For example, it is well-known that the line
segment between any point and its closest neighbor is an edge of the DT. Given the
DT, we go through the points and start a modified breadth-first search (BFS) from
each of them [e.g., MD10; RKW13]. BFS is a well-known graph traversal algorithm
[Cor+09, chapter 22]. For input point p, our BFS considers every point ¢ # p
with Loo(p,q) < (1 + v/2)g/2. We say that r; = (1 + v/2)e/2 ~ 1.2¢ is the radius
of our BFS. The reason for using r; is simply that a radius of ¢ is not sufficient; we
may, in rare cases, oversee some pairs of close points. In Figure 6.3, for an instance,
if we set ¢ = 0.003, then p and q are a pair of close points. But we cannot find this
pair if we only check points within a distance of € because there is at least one point
lying outside the square in every path from p to g or from g to p. It is not hard to
see that r; is necessary. Unfortunately, we cannot prove it. We conjecture that ry is
indeed sufficient. This conjecture is supported by our experiments where we found
all pairs of close points by using radius r;.

6.1 Algorithms 101

Here, we show that radius r = («/E + \/1_4) £/4 ~ 1.3¢ is sufficient. According
to Xia [Xial3], the DT contains, for any two input points p and g, a path of length
less than 2|pq| connecting p and q. We observe that such a path is contained in
ellipse E,,, which uses foci p and q and major axis 2|pq|. We are interested in the
maximum x- or y-coordinate of E,, for a fixed point p (say p = (0,0)) and any
point q of L,-distance at most €. One can show that the maximum x-coordinate
of E,, is maximized if ¢ = (¢, €); see Figure 6.4a. In this case, the maximum x-
coordinate of E,, is (1/5 + \/1_4)8 /4, which is the value we use for r. This can
be seen by some elementary geometry (see Figure 6.4b). We move p to (—1/2,0)
and q to (1/2,0). Then E,,, is described by equation 3x*+4y?* = 3. Tangent T, with
slope 1, can be described by equation y = x — +/7/2. The distance from point p to
tangent T is (\/E + «/1_4) £/4. In the original coordinate system (see Figure 6.4a),
this tangent corresponds to the vertical line x = (1/5 + \/1_4) €/4. However, in our
experiment, we use radius r, = (1 + ﬁ) €/2 ~ 1.8¢ (ry > r;) because we made
a mistake in an earlier version of the derivation. Using radius r, will not influence
our main result because the DT-based algorithm is slower than other algorithms even
when we use radius r;.

Constructing the DT takes O(nlogn) time and O(n) memory [Lea92]. Actually,
under our assumption concerning the input distribution, the DT can be constructed
in linear time [Buc09], but we will not exploit this here. Assuming that the points
are u.i.d. in the unit square, the running time of the DT-based algorithm is in O(k +
nlogn). The memory consumption of the DT-based algorithm is in O(n).

6.1.3 The Grid-Based Algorithm

The third algorithm that we consider overlays the input points with a regular rect-
angular grid. It makes sense to set the side length o of the grid cells to at least ¢
(see Figure 6.5). Then, for each input point p, it suffices to check the points in the
cell containing p and in the eight neighboring cells. To represent the grid, we use a
two-dimensional array of size (¥max—Ymin)/ O X (Xmax—Xmin)/ O, Where x,,,, denotes
the maximum x-coordinate among all the points; X, Ymax> ad Ymi, are defined
analogously to x,,,.. Each entry of the grid has a reference to a list (LinkedList in
C#) that stores the points in the corresponding cell. In order to ensure a memory
consumption of O(n), we set o to max(e, /c/n), where ¢ is the expected number
of points in each entry of the grid. This setting is similar to Bentley et al. [BWY80],
where they used the grid-based algorithm to find the closest point.

For each of the input points, we compute the two indices of the cell containing
that point. This computation includes (i) dividing the coordinates of p by o and (ii)
applying the floor function. If we assume that the input is w.i.d. in the unit square,
the expected number of point pairs we check in total is O(¢2n?) = O(k), and the
grid-based algorithm runs in O(k + n) time.

102 6 Choosing the Right Data Structures for Solving Spatial Problems

Figure 6.3: An instance of the DT. The line segments between the points are the edges of the DT. The
side length of the square is 2¢ = 0.006; p = (0.169134,0.264491) and ¢ = (0.171957,0.261496),

thus | Ax,,| = 0.002823 and |Ay,,| = 0.002995.

T x = (ﬁ+;/ﬁ)e

(a) (b)

Figure 6.4: Among all points of L, -distance at most ¢ from p, the point ¢ = (¢, €) gives rise to an ellipse Epq
whose right vertical tangent T has maximum x-coordinate (a). For deriving the equation of T more easily, we
transform p, g, E,4, and T into the coordinate system of (b).

6.2 Case Study

We implemented the three algorithms in C# (using the .NET Framework 4.0). We
ran our experiments under Windows 7 on a 3.3 GHz dual core CPU with 8 GB RAM.
We measured time and memory consumption by using the built-in C# methods Sys-
tem.Environment.TickCount and GC.GetTotalMemory(true). For the DT, we took
advantage of an implementation available in ArcGIS Engine 10.1. As we did not
find a way to measure the memory consumption of the DT directly, we saved the
files for the DT, i.e., files in .adf format from ArcGIS Engine 10.1 (an instance of the
DT consists of 10 files), to the hard disk and measured the sum of the 10 files’ sizes.

6.2 Case Study 103

Figure 6.5: Overlaying the points with a grid.

We show the results obtained by the DT-based algorithm with both radii r; and r,;
we use DT r; and DT r, to denote the respective total running times. We use DT total
to denote the memory consumption of the DT-based algorithm and use DT constr. to
denote the time or memory consumption of the DT construction; these values are
independent of the radius. Recall that we denote SortedDictionary from C# by SD,
SortedSet from C# by SS, and TreeSet from C5 by TS.

We tested the three algorithms on both random data and real-world data. There
were ten sets of points for each type of data. We used N to denote the number
of points in the set that had most points among the ten sets. We considered two
different ways to set side length . One way was that we set € to a certain value,
say €,, independent of the instance size. This means that the size of the output,
k = ©(e?n?), grows quadratically. The other way was to set £ = g,4/N/n, which
means that ¢ decreases from &34/ N /n to &, and k grows linearly.

6.2.1 Case Study on Random Data

We randomly generated ten point sets u.i.d. in the unit square. The sizes of the
point sets range from 20,000 to 200,000 with steps of size 20,000 (see for example
Figure 6.6). According to our definition, N = 200,000. We set &, = 0.003. For the
grid-based algorithm, we set side length o = ¢4/ N /n.

Time Consumption

In the experiment with ¢ = ¢, (see Figure 6.7), the quadratic size of the output domi-
nates the actual time consumption of the DT-based algorithm (see Figure 6.7a). The
same holds for the C# SortedDictionary implementation of the SL algorithm (see Fig-
ure 6.7a). The implementations of C# SortedSet and C5 TreeSet both perform in a
linearithmic way, and the grid-based algorithm performs linearly (see Figure 6.7b).
In the three cases, the actual time consumption is dominated by the term that de-
pends on the size of input, n.

104 6 Choosing the Right Data Structures for Solving Spatial Problems

Figure 6.6: As it is difficult to present too many points. we randomly select about 10%, 2046, of the points
from our dataset with 20,000 points u.i.d. in the unit square.

In the experiment with € = gy4/N/n (see Figure 6.8), the DT-based algorithm,
however, now shows a (near-)linear time consumption (see Figure 6.8a). Still, it
is much slower than the other four implementations. Interestingly, the implementa-
tion based on C# SortedDictionary still shows a quadratic behavior (see Figure 6.8a).
This is due to the fact that the height-¢ strip above the sweep line contains an ex-
pected linear number of points (ne), which are traversed by the where method of
the SortedDictionary data structure. According to Figure 6.8b, the C# SortedSet,
C5 TreeSet, and the grid-based implementations perform similarly as in the exper-
iment with ¢ = g;. In both experiments, the simple grid-based algorithm is by far
the fastest (by a factor of roughly 7); see Figures 6.7b and 6.8b.

We also observed that, in both experiments, the time of computing the DT was
about the same as the running times of the two SL implementations (see Figures 6.7b
and 6.8b). Indeed, the running time of computing the DT is also O(nlogn); see
Section 6.1.2. In addition, The DT-based algorithm with radius r; is faster than that
with radius r, by a factor of 2.

Output Size and Memory Consumption

The curves of the output size perform as expected (see Figure 6.9). The output
size grows in a quadratic way when we set ¢ = ¢, and grows linearly when we
set € = €94/ N/n (see Figure 6.9a). As said before, we did not record the pairs of
close points but just counted the number of pairs, we basically did not need any extra
memory for the output. Therefore, the two experiments with different values of side
length € need the same amount of memory. Figure 6.9b shows that the memory
consumption of all our methods grows linearly. Among the five implementations,
the grid-based algorithm uses the least amount of memory, which is less than the
DT-based algorithm by a factor of 1.2. We can also see that the C# SortedSet BBST
needs the least memory to implement the SL algorithm; about 10% less than the C5
TreeSet implementation.

6.2 Case Study

s (a
80 ®
DT r,
60
40 7 DT ry
20
SL C# SD
0 & e O0—0O0—0—0—0—0—0
0 50 10 150 200
n/1,000

S

—o—SLC5TS
—o— DT constr.

50 100
n/1,000

Figure 6.7: Time consumption of the algorithms when ¢ = ¢,. The DT-based algorithm took 109s with

radius ry (“DT r;”) and 217 s with radius r, (“DT ry”) for n = 200, 000.

s (a)
80 DT r,
60
40 DT ry
20
SL C# SD
0 _o_o—o=O=O:O:OM>
0 50 100 150 200
n/1,000

s (b)
—o—SLC5TS
—o— DT constr.
—e— SL. C# SS
—— Grid
0 50 100 150 200
n/1,000

Figure 6.8: Time consumption of the algorithms when ¢ = ¢y+/N /n. The DT-based algorithm took 106 with
radius r; (“DT r;”) and 216 with radius r, (“DT r,") for n = 200,000.

#Pairs/1,000 (a)
800

£=0.0034/N/n

600

400
200
0
0 50 100 150 200
n/1,000

MB

60

40

—o—SLC5TS
—— SL C# SD
—.— SL C# SS
—+— DT total
—o— Grid

--0-- DT constr.

50 100
n/1,000

Figure 6.9: Output size and memory consumption of the algorithms for the random data.

106 6 Choosing the Right Data Structures for Solving Spatial Problems

Figure 6.10: The point data of Bavaria. There are originally 277,034 points. We present about 1%, 2,722, of
the points in this figure. The presented points are selected randomly.

6.2.2 Case Study on Real-World Data

We use a set P of 277,034 points from OpenStreetMap that represent bus stops, mile-
stones, hotels, post boxes, etc. in the state of Bavaria, Germany (see Figure 6.10).
After deleting duplicates, we had N, = 276,992 points left. We computed the aver-
age distance as

davg = \/(Xmax - xmin) ' (.ymax - ymin)/N07

where coordinates X .x; Xmin> Ymax» ald Ymi, are defined as in Section 6.1.3. Ac-
cording to our data, X, = 13.846676°, x.;, = 8.974805°, ymn.x = 50.555617°,
and y,,, =47.270111°. Therefore, we have d,,, = 0.007602°.

We perturbed the points according to a Gaussian distribution. For each point,
we generated a pair of normally distributed numbers X and Y by the Box-Muller
transform [see BM58]. Then we set the new coordinates as

avg

x{=x;+06-X;
yi=yito-v

where x; and y; are the original coordinates, and standard deviation 6 = d,,/6 =
0.001267°. After perturbing, we had two points sets, i.e., the original set P and a
perturbed set P/, which models that we have two point sets from different sources.
Now, we try to find the corresponding points. In order to extract from P ten datasets
of different sizes, i.e., datasets Py, P,, ..., Pyo, we selected for P; each point in P with
probability j/10. Hence, datasets |P;| ~ |P|- j/10 and |P;,| = |P].
Forj=1,2,...,10,let dataset Pj =P; UPJ(, where P](is the set of perturbed points

obtained from the points in P;. These are the sets we used in our experiments (see
Figures 6.11, 6.12, and 6.13).

6.3 Concluding Remarks 107

We set ¢, = 6. Because of the perturbation, we have N = 2-276,992 = 553,984.
For the grid-based algorithm, setting o to £,4/N/n would yield too many grid cells
(18 times the number of points). We would need a lot of memory to record these
cells and a lot of time to initialize the LinkedList entries. To avoid this problem, we

set 0 to da—‘/vzf +/N/n. By this setting, the number of grid cells is roughly the same as
the number of points.

Time Consumption

We got similar results as in Section 6.2.1. An interesting difference is that although
the grid-based algorithm is still the fastest, the factor decreases to roughly 2 (see
Figure 6.11b). There are two reasons. One is that the ratio of o to ¢ has changed.
When n = N, the ratio is 1 for the case study on random data, while it is 3+/2 for
the case study on real-world data. This increasing leads the grid-based algorithm
to check more points in the case study on real-world data. The other reason is that
the size of the real-world output dominates the running time a bit more. There
are on average 10.8 close points for one point in the case study on real-world data
when N = 553,984 and ¢ = 6, while the number is 7.2 for the case study on random
data when N = 200,000 and ¢ = 0.003. Also note that now the construction time of
the DT is less than the running time of the two implementations of the SL algorithm
(e.g., comparing Figures 6.7b and 6.11b). The DT-based algorithm with radius r, is
faster than that with radius r, by a factor of roughly 3 (see Figures 6.11a and 6.12a).

Output Size and Memory Consumption

Also, the curves of the output size perform as expected (see Figure 6.13a). For the
grid-based algorithm, when we try to achieve that there are roughly the same num-
bers of entries and points, we need more memory compared to the case study on
random data (comparing Figures 6.9b and 6.13b). However, the grid-based algo-
rithm still uses less memory than the DT-based algorithm by a factor of 1.1, and
it still uses less memory than the SL implementations by a factor of 1.6; see Fig-
ure 6.13b.

6.3 Concluding Remarks

Although the grid-based algorithm was the clear winner of our comparison, we were
more interested in the results of the three implementations of the SL algorithm.
The SL paradigm can be used to solve many problems, e.g., computing the Voronoi
diagram [For87], for which the grid approach would not work. When implementing
the SL algorithm, it was tempting to use the data structures available in C# (for
example, the method where of SortedDictionary), but we have seen that it is worth
to read the fine print.

108 6 Choosing the Right Data Structures for Solving Spatial Problems

Even from the slowest algorithm, based on the DT, we have learned something.
By comparison with the other implementations, we noticed that the radius-¢ BFS
missed a few pairs of close points in the case study on random data (just 5 out of
the 718,775 pairs of close points that were reported in the 200,000-point instance
for e = 0.003). Then we conjectured that a radius of (14++/2)e/2 ~ 1.2¢ is sufficient,
which was supported by our experiments where we found all pairs of close points.
We also proved that a radius of (v2 + v/14)e/4 ~ 1.3¢ is sufficient. Of course,
enlarging the radius slowed down the method. It turned out that, however, a radius
of (1+ +/2)e/2 is sometimes necessary. An interesting future work is to prove that,
in the DT-based algorithm, radius (1 + v2)&/2 is sufficient for finding all the pairs
of close points.

s (a) s (b)
200 16 | o—SLC5 TS
—— SL C# SS
150 12 { —— DT constr.
100 DT ry 8
50 4
SL C# SD
0 0 —=
0 150 300 450 600 0 150 300 450 600
n/1,000 n/1,000

Figure 6.11: Time consumption of the algorithms when ¢ = 6. The DT-based algorithm took 262s with
radius r; (“DT ry”) and 784 s with radius r, (“DT ry”) for n = 553,984. The axes and the notations are as in
Figure 6.7.

s (a) s (b)
200 16 | —o—SL C5 TS
DT ry —o—SL C# SS
150 12 | —e— DT constr.
—— Grid
100 DT ry 8
50 4
SL C# SD
0 Lo—o—o—0—0—0—00202° 0—=
0 150 300 450 600 0 150 300 450 600
n/1,000 n/1,000

Figure 6.12: Time consumption of the algorithms when ¢ = §+/N/n. The DT-based algorithm took 267s
with radius r; (“DT r;”) and 810 s with radius r5 (“DT ry”) for n = 553,984.

6.3 Concluding Remarks 109
#Pairs/1,000 (a) MB (b)
/ —o—SL C5TS
3,000 160 | —3—SL C# SD
\/_ ——]S)I:FC# SiS
2,250 € =0.0034/N/n 120 +Gri<§Ota
-o--DT constr
1,500 80 -
£ =0.003
750 40
0 0

0 150 300

n/1,000

450 600

300
n/1,000

450

Figure 6.13: Output size and memory consumption of the algorithms for the real-world data.

Chapter 7

Conclusions and Open Problems

7.1 Conclusions

In this thesis, we have studied four topics of continuous map generalization. These
topics include area aggregation, morphing between administrative boundaries, build-
ing generalization, and defining trajectories for morphing polylines. Although we
focus on providing smooth transitions, the intermediate-scale results of the four
methods may be used as valid maps. Also, we have presented some lessons that
we learned from implementing our algorithms. In order to achieve continuous map
generalization of high quality, we have integrated optimization into our methods.
We made most of the drawings in this thesis using Ipe [see Sch95]. When we were
making drawings, we considered the suggestions of colors from ColorBrewer [see
HBO03; BHHO3].

A number of methods have been developed for continuous map generalization.
However, as maps are complicated, we need to develop more methods in order to
fully automate continuous map generalization. Besides, an urgent issue is to unify
the methods. Currently, each of our methods deals with only one type of feature, i.e.,
land-cover areas, buildings, or administrative boundaries. A map usually contains
many kinds of features. It would be interesting to work on a complete map, where
we would need to care about the relations between different kinds of features. For
example, depending on the situations, we may use streets to confine the growing of
buildings to built-up areas, or we may cover the streets with built-up areas because
we want to aggregate several blocks into one. Furthermore, we should make rules
for producing source maps to allow these maps to be generalized more easily.

The main goal of continuous map generalization is to provide users with better
zoom experience. Hence, more usability tests are needed to see if the results of con-
tinuous map generalization are indeed better than other zoom strategies. We planed
to compare our work about building generalization (see Chapter 4) with the results
of progressive block graying [see TD17]. As they and we have obtained results based
on different strategies, it is possible (and necessary) to make a comparison based on
some usability test. To this end, we should design some tasks (e.g., pointing out the
position of a building during zooming out), and then ask participants to complete
these tasks [e.g., MNO7]. Then we can compare the time and the accuracies of users’
working on the tasks. Moreover, Suba et al. [Sub+16] have already made a plan for
testing vario-scale maps, which is related to our research.

112 7 Conclusions and Open Problems

It is important to generate intermediate-scale results that have simple relations
among each other. These simple relations often result in small extra storage and
real-time visualization. Our intermediate-scale maps of area aggregation (see Chap-
ter 2) have simple relations. These maps can be stored easily using the generalized
area partitioning tree (GAP-tree). In order to display our morphing between two
sets of administrative boundaries, we only need to store the two datasets and a set
of relations between the two datasets. When users are zooming, we only need to in-
terpolate linearly between the two sets of administrative boundaries on the fly’. Our
intermediate-scale maps of buildings (see Chapter 4), however, have no simple rela-
tions. Currently, we clumsily store many intermediate-scale maps and then transfer
all these maps to users when they are zooming. This strategy may cause time lags.
We should either improve our method of generating intermediate-scale maps or find
a way to construct simple relations between our current intermediate-scale maps.

We want to make our prototype more easily accessible for other scientists. Al-
though our prototype is open access on GitHub®, one needs to install and configure
many libraries in order to run the prototype on their own computers. We wish to put
our prototype on a server and allow other scientists to access our prototype through
a website software as a service. The computation should be on the server, while the
users can input their own data and get the output. Also, We would like to make our
prototype more user-friendly.

7.2 Open Problems

In Chapter 2, we have shown how to compute optimal aggregation sequences for
land-cover maps. We tried solving this problem by a greedy algorithm, the A algo-
rithm, and a method based on integer linear programming. For the A* algorithm,
we have a good estimation for the cost of type change, which helps a lot to reduce
the search space, but our estimation for the cost of shape (compactness or edge
length) is rather poor. The ILP-based algorithm, on the other hand, could not even
find feasible solutions for some of our test instances. We have the following open
problems.

Open Problem 1. How to find a better estimation for the cost of shape (compactness
or edge length)?

Open Problem 2. Do we need to consider other aspects in our cost function? How
to set weights to different kinds of aspects?

Open Problem 3. Is there an ILP formulation that can be solved faster than ours?

7
8

For some examples, see www1.pub.informatik.uni-wuerzburg.de/pub/data/agile2016/.
See https://github.com/IGNF/ContinuousGeneralisation.

www1.pub.informatik.uni-wuerzburg.de/pub/data/agile2016/
https://github.com/IGNF/ContinuousGeneralisation

7.2 Open Problems 113

In Chapter 3, we have continuously generalized county boundaries to provin-
cial boundaries by morphing. Recall that there are more boundaries on the county
map. In order to morph a county boundary that is not at the same time a provincial
boundary, we generate the corresponding boundary based on compatible triangu-
lations. We observed that some of the boundaries that we generated are heavily
distorted. These distortions lead us to the following open problems.

Open Problem 4. How much can we reduce the distortion if we use common chords
as many as possible when constructing compatible triangulations?

Open Problem 5. Can we efficiently minimize the distortion over all generated
boundaries?

Open Problem 6. How to properly evaluate our continuous generalization of ad-
ministrative boundaries?

In Chapter 4, we continuously generalized buildings to built-up areas by aggre-
gating and growing. We managed to produce a sequence of maps in which we grew
and simplified the buildings. We compared the numbers of buildings with the num-
bers implied by the law of Topfer and Pillewizer [TP66]. Although this law has
been criticized by Jiang [Jial5], who proposed calculating the numbers of objects
according to the fractal nature of maps, there is no generally accepted formula for
computing the numbers so far. Therefore, the following questions remain open.

Open Problem 7. For a given map and a scale, how many buildings should be kept
after generalization?

Open Problem 8. Again, for a given map and a scale, how much total area of build-
ings should be kept after generalization? What about the total number of edges?

Open Problem 9. How to avoid the lengthy buildings generated by our method?

Open Problem 10. How to design a meaningful user study to evaluate our and
other approaches to continuous building generalization?

In Chapter 5, we have introduced a method for morphing polylines that tries to
change angles and edge lengths linearly over time. Our approach is based on least-
squares adjustment. The approach can handle both hard and soft constraints. Our
first results are promising. Still, there are open problems.

Open Problem 11. How can we ensure that our LSA-based method always con-
verges to a good solution?

Open Problem 12. Do we have better models for the changes of angles and edge
lengths, instead of using linear functions?

Open Problem 13. How to avoid self-intersections of a polyline during a morph?
How to avoid a polyline intersecting other polylines?

114 7 Conclusions and Open Problems

In Chapter 6, we have compared three methods for finding close-point pairs, i.e.,
a sweep-line algorithm, an algorithm based on the Delaunay triangulation, and a
grid-based algorithm. The grid-based algorithm was the clear winner of our compar-
ison. However, the sweep-line paradigm can be used to solve many problems, e.g.,
computing the Voronoi diagram [For87]. The following questions remain open.

Open Problem 14. What is the smallest radius such that the algorithm based on
Delaunay triangulation finds all pairs of close points?

Open Problem 15. Is the grid-based algorithm faster than other algorithms, includ-
ing those not mentioned in the chapter, in finding close edges or close polygons?

Open Problem 16. Will the grid-based algorithm be the winner when we extend
the three methods to higher dimensions?

Bibliography

[Ark+91]

[ASS93]

[BSW97]

[Bee+05]

[BO79]

[Ben+77]

[BWYS0]

[Ber05]

[Ber+08]

Arkin, E. M., Chew, L. B, Huttenlocher, D. P, Kedem, K., and Mitchell,
J. S. B. An efficiently computable metric for comparing polygonal sha-
pes. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
13.3 (1991), pp. 209-216. DOI: 10.1109/34.75509 [see p. 87].

Aronov, B., Seidel, R., and Souvaine, D. L. On compatible triangulations
of simple polygons. In: Computational Geometry 3 (1993), pp. 27-35.
DOI: 10.1016/0925-7721(93)90028-5 [see pp. 53, 54, 60].

Babikov, M., Souvaine, D. L., and Wenger, R. Constructing piecewise
linear homeomorphisms of polygons with holes. In: Proc. 9th Canadian
Conference on Computational Geometry (CCCG). 1997, pp. 6-10. URL:
http://www.cccg.ca/proceedings/1997/cccg1997.pdf [see p. 66].

Beeri, C., Doytsher, Y., Kanza, Y., Safra, E., and Sagiv, Y. Finding cor-
responding objects when integrating several geo-spatial datasets. In:
Proc. 13th Annual ACM International Workshop on Geographic Informa-
tion Systems. 2005, pp. 87-96. DOI: 10/dhfprh [see p. 97].

Bentley, J. L. and Ottmann, T. A. Algorithms for reporting and count-
ing geometric intersections. In: IEEE Transactions on Computers C-28.9
(1979), pp. 643-647. DOL: 10.1109/TC.1979.1675432 [see p. 99].

Bentley, J. L., Shamos, M. 1., Bentley, J. L., and Shamos, M. I. A problem
in multivariate statistics: Algorithm, data structure, and applications.
In: Proc. 15th Allerton Conference on Communication, Control, and Com-
puting. 1977, pp. 193-201. URL: http://www.dtic.mil/docs/citations/
ADA055818 [see p. 98].

Bentley, J. L., Weide, B. W, and Yao, A. C. Optimal expected-time algo-
rithms for closest point problems. In: ACM Transactions on Mathemati-
cal Software 6.4 (1980), pp. 563-580. DOI: 10.1145/355921.355927
[see p. 101].

Bereg, S. An approximate morphing between polylines. In: Interna-
tional Journal of Computational Geometry & Applications 15.2 (2005),
pp- 193-208. DOI: 10.1142/50218195905001658 [see pp. 59, 93].

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. Computa-
tional Geometry: Algorithms and Applications. 3rd ed. Springer-Verlag,
2008. DOI: 10.1007/978-3-662-03427-9 [see pp. 55, 98, 99].

https://doi.org/10.1109/34.75509
https://doi.org/10.1016/0925-7721(93)90028-5
http://www.cccg.ca/proceedings/1997/cccg1997.pdf
https://doi.org/10/dhfprh
https://doi.org/10.1109/TC.1979.1675432
http://www.dtic.mil/docs/citations/ADA055818
http://www.dtic.mil/docs/citations/ADA055818
https://doi.org/10.1145/355921.355927
https://doi.org/10.1142/S0218195905001658
https://doi.org/10.1007/978-3-662-03427-9

116

Bibliography

[Bof00]

[BM58]

[BHM77]

[BBO7]

[BHHO3]

[Bro+15]

[Buc09]

[BMS11]

[Bur05]

[Cec03]

Boffet, A. Creating urban information for cartographic generalisation.
In: Proc. 9th International Symposium on Spatial Data Handling (SDH),
Advances in GIS Research III. Ed. by P. Forer, A. Yeh, and J. He. Lec-
ture Notes in Geoinformation and Cartography. 2000. URL: http://
recherche.ign.fr/labos/util basilic/publicDownload.php?id=3284
[see p. 79].

Box, G. E. P and Muller, M. E. A note on the generation of random
normal deviates. In: The Annals of Mathematical Statistics 29.2 (1958),
pp. 610-611. DOI: 10.1214/aoms/1177706645 [see p. 106].

Bradley, S. P, Hax, A. C., and Magnanti, T. L. Applied Mathematical
Programming. Addison-Wesley Publishing Company, 1977. URL: http:
//web.mit.edu/15.053/www/AMPhtm [see p. 29].

Brewer, C. A. and Buttenfield, B. P Framing guidelines for multi-scale
map design using databases at multiple resolutions. In: Cartography
and Geographic Information Science 34.1 (2007), pp. 3-15. DOIL: 10/
dmb5jjb6 [see p. 12].

Brewer, C. A., Hatchard, G. W,, and Harrower, M. A. Colorbrewer in
print: A catalog of color schemes for maps. In: Cartography and Geo-
graphic Information Science 30.1 (2003), pp. 5-32. DOI: 10/df3png
[see p. 111].

Bronstein, I. N., Semendjajew, K. A., Musiol, G., and Miihlig, H. Hand-
book of Mathematics. 6th ed. Springer-Verlag Berlin Heidelberg, 2015.
DOI: 10.1007/978-3-662-46221-8 [see p. 57].

Buchin, K. Constructing Delaunay triangulations along space-filling cur-
ves. In: Proc. 17th Annual European Symposium on Algorithms (ESA).
Ed. by A. Fiat and P Sanders. Vol. 5757. Lecture Notes in Computer
Science. 2009, pp. 119-130. DOI: 10/bt8qfk [see p. 101].

Buchin, K., Meulemans, W., and Speckmann, B. A new method for sub-
division simplification with applications to urban-area generalization.
In: Proc. 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACMGIS). Ed. by 1. E Cruz, D. Agrawal,
C. S. Jensen, E. Ofek, and E. Tanin. 2011, pp. 261-270. DOI: 10.1145/
2093973.2094009 [see p. 68].

Burghardt, D. Controlled line smoothing by snakes. In: Geolnformatica
9.3 (2005), pp. 237-252. DOI: 10/dfjwz5 [see p. 3].

Cecconi, A. Integration of cartographic generalization and multi-scale
databases for enhanced web mapping. PhD thesis. Universitét Ziirich,
Switzerland, 2003. DOI: 10/c5kd [see pp. 2, 51, 85].

http://recherche.ign.fr/labos/util_basilic/publicDownload.php?id=3284
http://recherche.ign.fr/labos/util_basilic/publicDownload.php?id=3284
https://doi.org/10.1214/aoms/1177706645
http://web.mit.edu/15.053/www/AMP.htm
http://web.mit.edu/15.053/www/AMP.htm
https://doi.org/10/dm5jj6
https://doi.org/10/dm5jj6
https://doi.org/10/df3png
https://doi.org/10.1007/978-3-662-46221-8
https://doi.org/10/bt8qfk
https://doi.org/10.1145/2093973.2094009
https://doi.org/10.1145/2093973.2094009
https://doi.org/10/dfjwz5
https://doi.org/10/c5kd

Bibliography

117

[CC96]

[CMO08]

[Cha+10]

[CLO6]

[CDH14]

[CDRO3]

[Cor+09]

[CCO0]

[DKS08]

[Dan+09]

[DP15]

Chan, W. and Chin, E Approximation of polygonal curves with min-
imum number of line segments or minimum error. In: International
Journal of Computational Geometry & Applications 06.01 (1996), pp.
59-77. DOI: 10.1142/50218195996000058 [see p. 78].

Chaudhry, O. and Mackaness, W. A. Automatic identification of urban
settlement boundaries for multiple representation databases. In: Com-
puters, Environment and Urban Systems 32.2 (2008), pp. 95-109. DOI:
10.1016/j.compenvurbsys.2007.09.001 [see pp. 68, 73, 76, 77, 84].

Chazal, E, Lieutier, A., Rossignac, J., and Whited, B. Ball-map: Home-
omorphism between compatible surfaces. In: International Journal of
Computational Geometry & Applications 20.3 (2010), pp. 285-306. DOI:
10/dnrwhn [see p. 2].

Cheng, T. and Li, Z. Toward quantitative measures for the semantic
quality of polygon generalization. In: Cartographica 41.2 (2006), pp.
487-499. DOI: 10.3138/0172-6733-227U-8155 [see pp. 17, 18].

Chimani, M., van Dijk, T. C., and Haunert, J.-H. How to eat a graph:
Computing selection sequences for the continuous generalization of
road networks. In: Proc. 22nd ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems (ACMGIS). 2014,
pp. 243-252. DOIL: 10.1145/2666310.2666414 [see pp. 4, 67].

Connelly, R., Demaine, E. D., and Rote, G. Straightening polygonal arcs
and convexifying polygonal cycles. In: Discrete & Computational Geom-
etry 30.2 (2003), pp. 205-239. DOI: 10/cv63dt [see p. 87].

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction
to Algorithms. 3rd ed. The MIT Press, 2009. URL: https://mitpress.mit.
edu/books/introduction-algorithms-third-edition [see pp. 4, 5, 13, 16,
49, 98, 100].

Cova, T. J. and Church, R. L. Contiguity constraints for single-region
site search problems. In: Geographical Analysis 32.4 (2000), pp. 306~
329. DOI: 10.1111/§.1538-4632.2000.tb00430.x [see p. 35].

Damen, J., van Kreveld, M., and Spaan, B. High quality building gen-
eralization by extending the morphological operators. In: Proc. 12th
ICA Workshop on Generalisation and Multiple Representation (ICAGM).
2008. URL: https://bertspaan.nl/files / building - generalization . pdf
[see pp. 68, 71].

Danciger, J., Devadoss, S. L., Mugno, J., Sheehy, D., and Ward, R. Shape
deformation in continuous map generalization. In: GeoInformatica 13.2
(2009), pp. 203-221. DOI: 10/d24vxs [see pp. 2, 51, 67].

Deng, M. and Peng, D. Morphing linear features based on their entire
structures. In: Transactions in GIS 19.5 (2015), pp. 653-677. DOI: 10.
1111/tgis.12111 [see pp. 2, 51, 67, 971.

https://doi.org/10.1142/S0218195996000058
https://doi.org/10.1016/j.compenvurbsys.2007.09.001
https://doi.org/10/dnrwhn
https://doi.org/10.3138/0172-6733-227U-8155
https://doi.org/10.1145/2666310.2666414
https://doi.org/10/cv63dt
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://doi.org/10.1111/j.1538-4632.2000.tb00430.x
https://bertspaan.nl/files/building-generalization.pdf
https://doi.org/10/d24vxs
https://doi.org/10.1111/tgis.12111
https://doi.org/10.1111/tgis.12111

118

Bibliography

[Dij59]

[DOHO09]

[Diw+11]

[DP73]

[DFEO01]

[Duc+14]

[Fan+16]

[For87]

[FE06]

[Fro75]

Dijkstra, E. W. A note on two problems in connexion with graphs. In:
Numerische Mathematik 1.1 (1959), pp. 269-271. DOI: 10/dpvk8c [see
pp. 5, 16, 23].

Dilo, A., van Oosterom, P, and Hofman, A. Constrained tGAP for gener-
alization between scales: The case of Dutch topographic data. In: Com-
puters, Environment and Urban Systems 33.5 (2009), pp. 388-402. DOI:
10.1016/j.compenvurbsys.2009.07.006 [see pp. 18, 49].

Diwan, A. A., Ghosh, S. K., Goswami, P P, and Lingas, A. On joint tri-
angulations of two sets of points in the plane. In: Computing Research
Repository (CoRR) abs/1102.1235 (2011). URL: http://arxiv.org/abs/
1102.1235 [see p. 66].

Douglas, D. H. and Peucker, T. K. Algorithms for the reduction of the
number of points required to represent a digitized line or its carica-
ture. In: Cartographica 10.2 (1973), pp. 112-122. DOI: 10.3138/fm57-
6770-u75u-7727 [see pp. 13, 53, 54, 59, 76].

Doytsher, Y., Filin, S., and Ezra, E. Transformation of datasets in a linear-
based map conflation framework. In: Surveying and Land Information
Systems 61.3 (2001), pp. 159-169 [see pp. 53, 54, 63, 66].

Duchéne, C. et al. Generalisation in practice within national mapping
agencies. In: Abstracting Geographic Information in a Data Rich World:
Methodologies and Applications of Map Generalisation. Ed. by D. Burg-
hardt, C. Duchéne, and W. Mackaness. Lecture Notes in Geoinformation
and Cartography. 2014. Chap. 11, pp. 329-391. DOI: 10.1007/978-3-
319-00203-3 11 [see p. 1].

Fan, H., Yang, B., Zipf, A., and Rousell, A. A polygon-based approach for
matching OpenStreetMap road networks with regional transit author-
ity data. In: International Journal of Geographical Information Science
30.4 (2016), pp. 748-764. DOI: 10/c5kf [see p. 55].

Fortune, S. A sweepline algorithm for voronoi diagrams. In: Algorith-
mica 2.1 (1987), pp. 153-174. DOI: 10.1007 /BF01840357 [see pp.
107, 114].

Frank, R. and Ester, M. A quantitative similarity measure for maps. In:
Proc. 12th International Symposium on Spatial Data Handling (SDH).
Ed. by A. Riedl, W. Kainz, and G. A. Elmes. 2006, pp. 435-450. DOI:
10.1007/3-540-35589-8_28 [see p. 87].

Frolov, Y. S. Measuring the shape of geographical phenomena: a history
of the issue. In: Soviet Geography 16.10 (1975), pp. 676-687. DOI: 10.
1080/00385417.1975.10640104 [see p. 18].

https://doi.org/10/dpvk8c
https://doi.org/10.1016/j.compenvurbsys.2009.07.006
http://arxiv.org/abs/1102.1235
http://arxiv.org/abs/1102.1235
https://doi.org/10.3138/fm57-6770-u75u-7727
https://doi.org/10.3138/fm57-6770-u75u-7727
https://doi.org/10.1007/978-3-319-00203-3_11
https://doi.org/10.1007/978-3-319-00203-3_11
https://doi.org/10/c5kf
https://doi.org/10.1007/BF01840357
https://doi.org/10.1007/3-540-35589-8_28
https://doi.org/10.1080/00385417.1975.10640104
https://doi.org/10.1080/00385417.1975.10640104

Bibliography

119

[Fun+17]

[FS04]

[GT14]

[GSO01]

[GH98]

[HSHO04]

[Har99]

[HS02]

[HSD15]

[HB03]

Funke, S., Mendel, T., Miller, A., Storandt, S., and Wiebe, M. Map sim-
plification with topology constraints: exactly and in practice. In: Proc.
19th Workshop on Algorithm Engineering and Experiments (ALENEX).
2017, pp. 185-196. DOI: 10/c3s3 [see p. 4].

Fuse, T. and Shimizu, E. Visualizing the landscape of old-time Tokyo
(Edo city). In: Proc. 20th ISPRS Congress. Ed. by A. Gruen, S. Murai,
T. Fuse, and E Remondino. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences. 2004. URL: http:
/ /www.isprs.org/proceedings /XXXVI/5-W1 /papers/21.pdf [see pp.
54, 65].

Girres, J.-E and Touya, G. Cartographic generalisation aware of multi-
ple representations. In: Proc. 8th International Conference on Geographic
Information Science (GIScience). Ed. by M. Duckham, K. Stewart, and
E. Pebesma. Poster. 2014 [see pp. 2, 51].

Gotsman, C. and Surazhsky, V. Guaranteed intersection-free polygon
morphing. In: Computers & Graphics 25.1 (2001), pp. 67-75. DOI: 10.
1016/S0097-8493(00)00108-4 [see pp. 53, 59, 65, 66].

Greiner, G. and Hormann, K. Efficient clipping of arbitrary polygons.
In: ACM Transactions on Graphics 17.2 (1998), pp. 71-83. DOI: 10/
bm9qsg [see p. 77].

Hampe, M., Sester, M., and Harrie, L. Multiple representation databases
to support visualization on mobile devices. In: Proc. 20th ISPRS Con-
gress. Vol. XXXV (B4: IV). International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences. 2004, pp. 135-140.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.
3303 [see pp. 51, 85].

Harrie, L. The constraint method for solving spatial conflicts in car-
tographic generalization. In: Cartography and Geographic Information
Science 26.1 (1999), pp. 55-69. DOL: 10.1559/152304099782424884
[see pp. 3, 86].

Harrie, L. and Sarjakoski, T. Simultaneous graphic generalization of
vector data sets. In: Geolnformatica 6.3 (2002), pp. 233-261. DOI: 10.
1023/A:1019765902987 [see pp. 87, 90].

Harrie, L., Stigmar, H., and Djordjevic, M. Analytical estimation of map
readability. In: ISPRS International Journal of Geo-Information 4.2
(2015), pp. 418-446. DOI: 10.3390/ijgi4020418 [see p. 17].

Harrower, M. and Brewer, C. A. Colorbrewer.org: An online tool for
selecting colour schemes for maps. In: The Cartographic Journal 40.1
(2003), pp. 27-37. DOI: 10.1179/000870403235002042 [see p. 111].

https://doi.org/10/c3s3
http://www.isprs.org/proceedings/XXXVI/5-W1/papers/21.pdf
http://www.isprs.org/proceedings/XXXVI/5-W1/papers/21.pdf
https://doi.org/10.1016/S0097-8493(00)00108-4
https://doi.org/10.1016/S0097-8493(00)00108-4
https://doi.org/10/bm9qsg
https://doi.org/10/bm9qsg
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3303
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3303
https://doi.org/10.1559/152304099782424884
https://doi.org/10.1023/A:1019765902987
https://doi.org/10.1023/A:1019765902987
https://doi.org/10.3390/ijgi4020418
https://doi.org/10.1179/000870403235002042

120

Bibliography

[HNR68]

[HauO5]

[Hau09]

[HDOO09]

[HM16]

[HS08]

[HW10a]

[HW10b]

[HW16]

Hart, P E., Nilsson, N. J., and Raphael, B. A formal basis for the heuristic
determination of minimum cost paths. In: IEEE Transactions on Systems,
Science, and Cybernetics 4.2 (1968), pp. 100-107. DOI: 10.1109/TSSC.
1968.300136 [see pp. 4, 23].

Haunert, J.-H. Link based conflation of geographic datasets. In: Proc.
9th ICA Workshop on Generalisation and Multiple Representation (ICA-
GM). 2005. URL: http://www1.pub.informatik.uni- wuerzburg.de/
pub/haunert/pdf/HaunertMapGen05.pdf [see p. 53].

Haunert, J.-H. Aggregation in map generalization by combinatorial op-
timization. PhD thesis. Leibniz Universitdit Hannover, Germany, 2009.
URL: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-
626.pdf [see p. 37].

Haunert, J.-H., Dilo, A., and van Oosterom, P Constrained set-up of the
tGAP structure for progressive vector data transfer. In: Computers and
Geosciences 35.11 (2009), pp. 2191-2203. DOI: 10.1016/j.cageo.2008.
11.002 [see p. 11].

Haunert, J.-H. and Meulemans, W. Partitioning polygons via graph aug-
mentation. In: Proc. 9th International Conference on Geographic Infor-
mation Science (GIScience). Ed. by A. J. Miller, D. O’Sullivan, and N.
Wiegand. Vol. 9927. Lecture Notes in Computer Science. 2016, pp. 18-
33. DOIL: 10.1007/978-3-319-45738-3_2 [see p. 3].

Haunert, J.-H. and Sester, M. Assuring logical consistency and seman-
tic accuracy in map generalization. In: Photogrammetrie Fernerkundung
Geoinformation 2008.3 (2008), pp. 165-173. URL: https://www.dgpf.
de/pfg/2008/pfg2008 3 Haunert.pdf [see pp. 3, 47].

Haunert, J.-H. and Wolff, A. Area aggregation in map generalisation
by mixed-integer programming. In: International Journal of Geographi-
cal Information Science 24.12 (2010), pp. 1871-1897. DOI: 10/c8v8s2
[see pp. 3, 12,17, 37].

Haunert, J.-H. and Wolff, A. Optimal and topologically safe simplifica-
tion of building footprints. In: Proc. 18th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (ACMGIS).
Ed. by A. E. Abbadi, D. Agrawal, M. Mokbel, and P Zhang. 2010, pp.
192-201. DOI: 10.1145/1869790.1869819 [see pp. 4, 68].

Haunert, J.-H. and Wolff, A. Raumliche Analyse durch kombinatorische
Optimierung. In: Handbuch der Geoddsie (6 Bdnde). Ed. by W. Freeden
and R. Rummel. Springer Reference Naturwissenschaften. 2016, pp. 1-
39. DOI: 10.1007/978-3-662-46900-2_69-2 [see pp. 3, 47].

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
http://www1.pub.informatik.uni-wuerzburg.de/pub/haunert/pdf/HaunertMapGen05.pdf
http://www1.pub.informatik.uni-wuerzburg.de/pub/haunert/pdf/HaunertMapGen05.pdf
https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-626.pdf
https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-626.pdf
https://doi.org/10.1016/j.cageo.2008.11.002
https://doi.org/10.1016/j.cageo.2008.11.002
https://doi.org/10.1007/978-3-319-45738-3_2
https://www.dgpf.de/pfg/2008/pfg2008_3_Haunert.pdf
https://www.dgpf.de/pfg/2008/pfg2008_3_Haunert.pdf
https://doi.org/10/c8v8s2
https://doi.org/10.1145/1869790.1869819
https://doi.org/10.1007/978-3-662-46900-2_69-2

Bibliography

121

[HW17]

[HS92]

[Hua+17]

[1188]

[Jar30]

[Jial5]

[Joh14]

[Kar84]

[Kea75]

[Koc88]

[KS06]

Haunert, J.-H. and Wolff, A. Beyond maximum independent set: an ex-
tended integer programming formulation for point labeling. In: ISPRS
International Journal of Geo-Information 6.11 (2017). DOI: 10.3390/
ijgi6110342 [see pp. 3, 29, 47].

Hershberger, J. and Snoeyink, J. Speeding up the Douglas—Peucker line-
simplification algorithm. In: Proc. 5th International Symposium on Spa-
tial Data Handling (SDH). 1992, pp. 134-143. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.17.6932 [see p. 60].

Huang, L., Ai, T., van Oosterom, P, Yan, X., and Yang, M. A matrix-based
structure for vario-scale vector representation over a wide range of map
scales: the case of river network data. In: ISPRS International Journal
of Geo-Information 6.7 (2017). DOI: 10.3390/ijgi6070218 [see p. 2].

Imai, H. and Iri, M. Polygonal approximations of a curve—formulations
and algorithms. In: Machine Intelligence and Pattern Recognition. Ed. by
G. T. Toussaint. Vol. 6. Computational Morphology: A Computational
Geometric Approach to the Analysis of Form. 1988, pp. 71-86. DOI:
10.1016/B978-0-444-70467-2.50011-4 [see pp. 69, 75].

Jarnik, V. O jistém problému minimalnim [About a certain minimal
problem]. In: Prdce Moravské pfirodovédecké spole¢nosti 6.4 (1930), pp.
57-63 [see p. 6].

Jiang, B. The fractal nature of maps and mapping. In: International
Journal of Geographical Information Science 29.1 (2015), pp. 159-174.
DOI: 10.1080/13658816.2014.953165 [see p. 113].

Johnson, A. Clipper—an open source freeware library for clipping and
offsetting lines and polygons. Accessed: 2017-08-22. 2014. URL: http:
//www.angusj.com/delphi/clipper.php [see p. 79].

Karmarkar, N. A new polynomial-time algorithm for linear program-
ming. In: Combinatorica 4.4 (1984), pp. 373-395. DOIL: 10/czqmxn
[see p. 28].

Keane, M. The size of the region-building problem. In: Environment
and Planning A: Economy and Space 7.5 (1975), pp. 575-577. DOI: 10.
1068/a070575 [see p. 16].

Koch, K.-R. Parameter Estimation and Hypothesis Testing in Linear Mod-
els. Springer-Verlag New York, Inc., 1988. DOI: 10.1007/978-3-662-
03976-2 [see p. 4].

Kokholm, N. and Sestoft, B The C5 Generic Collection Library for C#
and CLI. IT University of Copenhagen, 2006. URL: https://www:.itu.
dk/research/c5/ [see p. 100].

https://doi.org/10.3390/ijgi6110342
https://doi.org/10.3390/ijgi6110342
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.6932
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.6932
https://doi.org/10.3390/ijgi6070218
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1080/13658816.2014.953165
http://www.angusj.com/delphi/clipper.php
http://www.angusj.com/delphi/clipper.php
https://doi.org/10/czqmxn
https://doi.org/10.1068/a070575
https://doi.org/10.1068/a070575
https://doi.org/10.1007/978-3-662-03976-2
https://doi.org/10.1007/978-3-662-03976-2
https://www.itu.dk/research/c5/
https://www.itu.dk/research/c5/

122

Bibliography

[KreO1]

[Kru56]

[LLOO]

[Lea92]

[LWS0]

[Li+17]

[LLX17]

[LGC13]

[LZ12]

[LM17]

[Lue78]

van Kreveld, M. Smooth generalization for continuous zooming. In:
Proc. 5th ICA Workshop on Generalisation and Multiple Representation
(ICAGM). 2001. URL: http://www.staff.science.uu.nl/ ~krevel01/
papers/smooth.pdf [see pp. 1, 51, 86].

Kruskal, J. B. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. In: Proceedings of the American Mathematical
Society 7.1 (1956), pp. 48-50. DOI: 10.2307/2033241 [see p. 6].

Latecki, L. J. and Lakamper, R. Shape similarity measure based on cor-
respondence of visual parts. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 22.10 (2000), pp. 1185-1190. DOI: 10.1109/
34.879802 [see p. 87].

Leach, G. Improving worst-case optimal delaunay triangulation algo-
rithms. In: Proc. 4th Canadian Conference on Computational Geometry
(CCCG). 1992. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.56.2323 [see p. 101].

Lee, D. T. and Wong, C. K. Quintary trees: a file structure for multidi-
mensional datbase sytems. In: ACM Transactions on Database Systems
5.3 (1980), pp. 339-353. DOI: 10.1145/320613.320618 [see p. 98].

Li, J., Ai, T, Liu, P, and Yang, M. Continuous scale transformations of
linear features using simulated annealing-based morphing. In: ISPRS
International Journal of Geo-Information 6.8 (2017). DOI: 10.3390/
ijgi6080242 [see pp. 2, 67].

Li, J., Li, X., and Xie, T. Morphing of building footprints using a turning
angle function. In: ISPRS International Journal of Geo-Information 6.6
(2017). DOL: 10.3390/1jgi6060173 [see pp. 2, 68].

Li, W,, Goodchild, M. E, and Church, R. An efficient measure of compact-
ness for two-dimensional shapes and its application in regionalization
problems. In: International Journal of Geographical Information Science
27.6 (2013), pp. 1227-1250. DOI: 10/c5kg [see p. 17].

Li, Z. and Zhou, Q. Integration of linear and areal hierarchies for con-
tinuous multi-scale representation of road networks. In: International
Journal of Geographical Information Science 26.5 (2012), pp. 855-880.
DOI: 10.1080/13658816.2011.616861 [see p. 2].

Lubiw, A. and Mondal, D. On compatible triangulations with a min-
imum number of steiner points. In: Proc. 29th Canadian Conference
on Computational Geometry (CCCG). 2017, pp. 101-106. URL: http:
//arxiv.org/abs/1706.09086 [see p. 66].

Lueker, G. S. A data structure for orthogonal range queries. In: Proc.
19th Annual Symposium on Foundations of Computer Science (SFCS).
1978, pp. 28-34. DOL: 10.1109/SFCS.1978.1 [see p. 98].

http://www.staff.science.uu.nl/~kreve101/papers/smooth.pdf
http://www.staff.science.uu.nl/~kreve101/papers/smooth.pdf
https://doi.org/10.2307/2033241
https://doi.org/10.1109/34.879802
https://doi.org/10.1109/34.879802
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.2323
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.2323
https://doi.org/10.1145/320613.320618
https://doi.org/10.3390/ijgi6080242
https://doi.org/10.3390/ijgi6080242
https://doi.org/10.3390/ijgi6060173
https://doi.org/10/c5kg
https://doi.org/10.1080/13658816.2011.616861
http://arxiv.org/abs/1706.09086
http://arxiv.org/abs/1706.09086
https://doi.org/10.1109/SFCS.1978.1

Bibliography

123

[Mac85]

[MBD16]

[Mas06]

[MD10]

[Meil6]

[MSO16]

[MNO7]

[MH16]

[Mul91]

[Miil+95]

[MDO8]

Maceachren, A. M. Compactness of geographic shape: Comparison and
evaluation of measures. In: Geografiska Annaler: Series B, Human Geog-
raphy 67.1 (1985), pp. 53-67. DOI: 10/c329 [see p. 17].

Mackaness, W. A., Burghardt, D., and Duchéne, C. Map generalization.
In: International Encyclopedia of Geography: People, the Earth, Environ-
ment and Technology. 2016, pp. 1-16. DOI: 10/cx89 [see p. 1].

Masuyama, A. Methods for detecting apparent differences between spa-
tial tessellations at different time points. In: International Journal of
Geographical Information Science 20.6 (2006), pp. 633-648. DOI: 10/
c9k3jg [see p. 971.

Maus, A. and Drange, J. M. All closest neighbors are proper delaunay
edges generalized, and its application to parallel algorithms. In: Norsk
Informatikkonferanse. Ed. by T. Fallmyr and E. Hjelmas. 2010, pp. 1-12.
URL: http://heim.ifi.uio.no/~arnem/Nik2010/PaperLatex.pdf [see p.
100].

Meijers, M. Building simplification using offset curves obtained from
the straight skeleton. In: Proc. 19th ICA Workshop on Generalisation
and Multiple Representation (ICAGM). 2016. URL: https://kartographie.
geo.tu-dresden.de/downloads/ica-gen/workshop2016/genemr2016
paper_11.pdf [see p. 71].

Meijers, M., Savino, S., and van Oosterom, P SPLITAREA: An algorithm
for weighted splitting of faces in the context of a planar partition. In:
International Journal of Geographical Information Science 30.8 (2016),
pp. 1522-1551. DOI: 10.1080/13658816.2016.1140770 [see p. 13].

Midtbg, T. and Nordvik, T. Effects of animations in zooming and pan-
ning operations on web maps: a web-based experiment. In: The Carto-
graphic Journal 44.4 (2007), pp. 292-303. DOI: 10/dgnjmj [see pp. 1,
111].

Minas, J. P and Hearne, J. W. An optimization model for aggregation
of prescribed burn units. In: TOP 24.1 (2016), pp. 180-195. DOI: 10.
1007/s11750-015-0383-y [see p. 17].

Muller, J.-C. Generalization of spatial databases. In: Geographical Infor-
mation Systems: Principles and Applications. Ed. by D. J. Maguire, M. E
Goodchild, and D. W. Rhind. 1991, pp. 457-475 [see p. 88].

Miiller, J.-C., Weibel, R., Lagrange, J.-P, and Salgé, E Generalization:
State of the art and issues. In: GIS and Generalization: Methodology and
Practice. Ed. by J.-C. Miiller, J.-P Lagrange, and R. Weibel. GISDATA 1.
1995. Chap. 1, pp. 3-17 [see p. 1].

Mustiere, S. and Devogele, T. Matching networks with different levels

of detail. In: GeoInformatica 12.4 (2008), pp. 435-453. DOI: 10.1007/
s10707-007-0040-1 [see p. 55].

https://doi.org/10/c329
https://doi.org/10/cx89
https://doi.org/10/c9k3jg
https://doi.org/10/c9k3jg
http://heim.ifi.uio.no/~arnem/Nik2010/PaperLatex.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2016/genemr2016_paper_11.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2016/genemr2016_paper_11.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2016/genemr2016_paper_11.pdf
https://doi.org/10.1080/13658816.2016.1140770
https://doi.org/10/dgnjmj
https://doi.org/10.1007/s11750-015-0383-y
https://doi.org/10.1007/s11750-015-0383-y
https://doi.org/10.1007/s10707-007-0040-1
https://doi.org/10.1007/s10707-007-0040-1

124

Bibliography

[N61+08]

[OH17]

[00s95]

[O0s05]

[OM14]

[Oos+14]

[0S95]

[PH15]

[Pan+09]

[PS82]

Nollenburg, M., Merrick, D., Wolff, A., and Benkert, M. Morphing poly-
lines: A step towards continuous generalization. In: Computers, Envi-
ronment and Urban Systems 32.4 (2008), pp. 248-260. DOI: 10/c7fgrw
[see pp. 2, 4, 51, 52, 54, 56, 67, 85, 88, 92, 97].

Oehrlein, J. and Haunert, J.-H. A cutting-plane method for contiguity-
constrained spatial aggregation. In: Journal of Spatial Information Sci-
ence 15 (2017), pp. 89-120. DOI: 10.5311/J0SI1S.2017.15.379 [see
pp- 4, 12, 35, 49].

van Oosterom, P The GAP-tree, an approach to On-the-Fly map general-
ization of an area partitioning. In: GIS and Generalization: Methodology
and Practice. Ed. by J.-C. Mueller, J.-P Lagrange, and R. Weibel. 1995,
pp. 120-132 [see pp. 51, 85].

van Oosterom, P Variable-scale topological data structures suitable for
progressive data transfer: The GAP-face tree and GAP-edge forest. In:
Cartography and Geographic Information Science 32.4 (2005), pp. 331-
346. DOI: 10/chr7sf [see pp. 11, 12, 22, 47, 51, 85].

van Oosterom, P and Meijers, M. Vario-scale data structures support-
ing smooth zoom and progressive transfer of 2D and 3D data. In: Inter-
national Journal of Geographical Information Science 28.3 (2014), pp.
455-478. DOI: 10.1080/13658816.2013.809724 [see pp. 2, 12].

van Oosterom, P, Meijers, M., Stoter, J., and éuba, R. Data structures for
continuous generalisation: tGAP and SSC. In: Abstracting Geographic
Information in a Data Rich World: Methodologies and Applications of Map
Generalisation. Ed. by D. Burghardt, C. Duchéne, and W. Mackaness.
Lecture Notes in Geoinformation and Cartography. 2014. Chap. 4, pp.
83-117. DOI: 10.1007/978-3-319-00203-3 4 [see p. 12].

van Oosterom, P and Schenkelaars, V. The development of an interac-
tive multi-scale GIS. In: International Journal of Geographical Informa-
tion Systems 9.5 (1995), pp. 489-507. DOIL: 10/fgzjvb [see p. 13].

Palfrader, P and Held, M. Computing mitered offset curves based on
straight skeletons. In: Computer-Aided Design and Applications 12.4
(2015), pp. 414-424. DOI: 10/c5zd [see p. 77].

Pantazis, D., Karathanasis, B., Kassoli, M., Koukofikis, A., and Stratakis,
P Morphing techniques: Towards new methods for raster based carto-
graphic generalization. In: Proc. 24th International Cartographic Con-
ference (ICC). 2009. URL: https://icaci.org/files /documents /ICC _
proceedings/ICC2009/html/refer/19 5.pdf [see p. 51].

Papadimitriou, C. H. and Steiglitz, K. Combinatorial Optimization: Algo-
rithms and Complexity. Dover Books on Computer Science Series. Dover
Publications, 1982 [see p. 4].

https://doi.org/10/c7fgrw
https://doi.org/10.5311/JOSIS.2017.15.379
https://doi.org/10/chr7sf
https://doi.org/10.1080/13658816.2013.809724
https://doi.org/10.1007/978-3-319-00203-3_4
https://doi.org/10/fgzjvb
https://doi.org/10/c5zd
https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/refer/19_5.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/refer/19_5.pdf

Bibliography

125

[Pat]

[PDZ12]

[Pen+13]

[PT17]

[PW14]

[PWH16]

[PWH17]

[Poh73]

[Pri57]

Patel, A. Amit’s A" Pages. Accessed: Jul 26, 2018. URL: http://theory.
stanford.edu/~amitp/GameProgramming [see p. 23].

Peng, D., Deng, M., and Zhao, B. Multi-scale transformation of river
networks based on morphing technology. In: Journal of Remote Sensing
16.5 (2012), pp. 953-968. URL: http://www.jors.cn/jrs/ch/reader/
view_abstract.aspx?file no=r11272&flag=1 [see pp. 2, 51, 85].

Peng, D., Haunert, J.-H., Wolff, A., and Hurter, C. Morphing polylines
based on least squares adjustment. In: Proc. 16th ICA Workshop on Gen-
eralisation and Multiple Representation (ICAGM). 2013. URL: https://
kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/
genemappro2013_submission_6.pdf [see pp. 9, 51, 59, 67].

Peng, D. and Touya, G. Continuously generalizing buildings to built-
up areas by aggregating and growing. In: Proc. 3rd ACM SIGSPATIAL
Workshop on Smart Cities and Urban Analytics (UrbanGIS). 2017. DOI:
10.1145/3152178.3152188 [see p. 8].

Peng, D. and Wolff, A. Watch your data structures! In: Proc. 22nd An-
nual Conference of the GIS Research UK (GISRUK). Ed. by J. Drummond.
2014, pp. 371-381. URL: https://www.gla.ac.uk / media / media
401742 _en.pdf [see p. 9].

Peng, D., Wolff, A., and Haunert, J.-H. Continuous generalization of
administrative boundaries based on compatible triangulations. In: Proc.
19th AGILE Conference on Geographic Information Science, Geospatial
Data in a Changing World. Ed. by T. Sarjakoski, Y. M. Santos, and T. L.
Sarjakoski. Lecture Notes in Geoinformation and Cartography. 2016,
pp. 399-415. DOI: 10/c5kh [see pp. 8, 67, 97].

Peng, D., Wolff, A., and Haunert, J.-H. Using the A" algorithm to find
optimal sequences for area aggregation. In: Proc. 28th International
Cartographic Conference (ICC), Advances in Cartography and GIScience.
Ed. by M. P Peterson. Lecture Notes in Geoinformation and Cartogra-
phy. 2017, pp. 389-404. DOI: 10.1007/978-3-319-57336-6_27 [see
pp. 7, 45, 671].

Pohl, I. The avoidance of (relative) catastrophe, heuristic competence,
genuine dynamic weighting and computational issues in heuristic prob-
lem solving. In: Proc. 3rd International Joint Conference on Artificial In-
telligence (IJCAI). 1973, pp. 12-17. URL: https:/ /exhibits. stanford.
edu/feigenbaum/catalog/sql127cx4634 [see p. 24].

Prim, R. C. Shortest connection networks and some generalizations. In:
The Bell System Technical Journal 36.6 (1957), pp. 1389-1401. DOI:
10.1002/j.1538-7305.1957.tb01515.x [see pp. 6, 74].

http://theory.stanford.edu/~amitp/GameProgramming
http://theory.stanford.edu/~amitp/GameProgramming
http://www.jors.cn/jrs/ch/reader/view_abstract.aspx?file_no=r11272&flag=1
http://www.jors.cn/jrs/ch/reader/view_abstract.aspx?file_no=r11272&flag=1
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf
https://doi.org/10.1145/3152178.3152188
https://www.gla.ac.uk/media/media_401742_en.pdf
https://www.gla.ac.uk/media/media_401742_en.pdf
https://doi.org/10/c5kh
https://doi.org/10.1007/978-3-319-57336-6_27
https://exhibits.stanford.edu/feigenbaum/catalog/sq127cx4634
https://exhibits.stanford.edu/feigenbaum/catalog/sq127cx4634
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

126

Bibliography

[Rad+89]

[RKW13]

[Reg01]

[RRO7]

[RI04]

[Rui+11]

[Saa85]

[Saa88]

[Saa99]

[Saf+13]

[SH15]

Rada, R., Mili, H., Bicknell, E., and Blettner, M. Development and ap-
plication of a metric on semantic nets. In: IEEE Transactions On Systems
Man And Cybernetics 19.1 (1989), pp. 17-30. DOI: 10.1109/21.24528
[see pp. 37, 38].

Rahmati, Z., King, V,, and Whitesides, S. Kinetic data structures for all
nearest neighbors and closest pair in the plane. In: Proc. 29th Annual
Symposium on Computational Geometry (SoCG). 2013, pp. 137-144.
DOI: 10.1145/2462356.2462378 [see p. 100].

Regnauld, N. Contextual building typification in automated map gen-
eralization. In: Algorithmica 30.2 (2001), pp. 312-333. DOI: 10.1007/
s00453-001-0008-8 [see pp. 3, 5, 68, 72].

Regnauld, N. and Revell, P Automatic amalgamation of buildings for
producing ordnance survey 1:50 000 scale maps. In: The Cartographic
Journal 44.3 (2007), pp. 239-250. DOI: 10.1179/000870407x241782
[see p. 68].

Reilly, D. E and Inkpen, K. Map morphing: making sense of incongru-
ent maps. In: Proc. Graphics Interface (GI). Ed. by W. Heidrich and R.
Balakrishnan. 2004, pp. 231-238. URL: https://dl.acm.org/ citation.
cfm?id=1006086 [see p. 51].

Ruiz, J. J., Ariza, E J., Urefia, M. A., and Blazquez, E. B. Digital map
conflation: a review of the process and a proposal for classification. In:
International Journal of Geographical Information Science 25.9 (2011),
pp. 1439-1466. DOI: 10.1080/13658816.2010.519707 [see p. 97].

Saalfeld, A. A fast rubber-sheeting transformation using simplicial co-
ordinates. In: The American Cartographer 12.2 (1985), pp. 169-173.
DOI: 10/cs5dt3 [see p. 53].

Saalfeld, A. Conflation automated map compilation. In: International
Journal of Geographical Information Systems 2.3 (1988), pp. 217-228.
DOI: 10.1080/02693798808927897 [see p. 98].

Saalfeld, A. Topologically consistent line simplification with the Doug-
las—Peucker algorithm. In: Cartography and Geographic Information Sci-
ence 26.1 (1999), pp. 7-18. DOI: 10/drcc5h [see pp. 13, 53, 63, 66].

Safra, E., Kanza, Y., Sagiv, Y., and Doytsher, Y. Ad hoc matching of vec-
torial road networks. In: International Journal of Geographical Informa-
tion Science 27.1 (2013), pp. 114-153. DOI: 10.1080/13658816.2012.
667104 [see p. 97].

Schneider, T. and Hormann, K. Smooth bijective maps between arbitra-
ry planar polygons. In: Computer Aided Geometric Design 35-36 (2015),
pp- 243-354. DOI: 10.1016/j.cagd.2015.03.010 [see p. 51].

https://doi.org/10.1109/21.24528
https://doi.org/10.1145/2462356.2462378
https://doi.org/10.1007/s00453-001-0008-8
https://doi.org/10.1007/s00453-001-0008-8
https://doi.org/10.1179/000870407x241782
https://dl.acm.org/citation.cfm?id=1006086
https://dl.acm.org/citation.cfm?id=1006086
https://doi.org/10.1080/13658816.2010.519707
https://doi.org/10/cs5dt3
https://doi.org/10.1080/02693798808927897
https://doi.org/10/drcc5h
https://doi.org/10.1080/13658816.2012.667104
https://doi.org/10.1080/13658816.2012.667104
https://doi.org/10.1016/j.cagd.2015.03.010

Bibliography

127

[Sch86]

[Sch+13]

[Sch95]

[Sed+93]

[SB04]

[Ses00]

[Ses05]

[SBOS]

[SH75]

[SH76]

Schrijver, A. Theory of Linear and Integer Programming. John Wiley &
Sons, Inc., 1986. URL: https://promathmedia.files.wordpress.com/
2013/10/alexander_schrijver theory of linear and integerbookfi-
org.pdf [see p. 5].

Schwartges, N., Allerkamp, D., Haunert, J.-H., and Wolff, A. Optimizing
active ranges for point selection in dynamic maps. In: Proc. 16th ICA
Workshop on Generalisation and Multiple Representation (ICAGM). 2013.
URL: https://kartographie.geo.tu-dresden.de/downloads/ica-gen/
workshop2013/genemappro2013_submission_5.pdf [see p. 4].

Schwarzkopf, O. The extensible drawing editor Ipe. In: Proc. 11th An-
nual Symposium on Computational Geometry (SCG). 1995, pp. 410-411.
DOI: 10.1145/220279.220326 [see p. 111].

Sederberg, T. W,, Gao, P, Wang, G., and Mu, H. 2-D shape blending: An
intrinsic solution to the vertex path problem. In: Proc. 20th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH).
1993, pp. 15-18. DOI: 10.1145/166117.166118 [see p. 87].

Sester, M. and Brenner, C. Continuous generalization for fast and smoo-
th visualization on small displays. In: Proc. 20th ISPRS Congress. Ed.
by O. Altan. Vol. XXXV (Part B4). International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences. 2004,
pp. 1293-1298. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.67.9129 [see pp. 51, 85].

Sester, M. Generalization based on least squares adjustment. In: Proc.
19th ISPRS Congress. Ed. by D. Fritsch and M. Molenaar. Vol. XXXIII
(Part B4). International Archives of Photogrammetry and Remote Sens-
ing. 2000, pp. 931-938. URL: http://www.isprs.org/proceedings /
Xxxiii/congress/part4/931 XXXIII-part4.pdf [see pp. 87, 90].

Sester, M. Optimization approaches for generalization and data abstrac-
tion. In: International Journal of Geographical Information Science 19.8—
9 (2005), pp. 871-897. DOI: 10.1080/13658810500161179 [see p. 3].

Sester, M. and Brenner, C. Continuous generalization for visualization
on small mobile devices. In: Proc. 11th International Symposium on Spa-
tial Data Handling (SDH). Ed. by P. Fisher. 2005, pp. 355-368. DOI:
10.1007/3-540-26772-7_27 [see p. 2].

Shamos, M. I. and Hoey, D. Closest-point problems. In: Proc. 16th An-
nual Symposium on Foundations of Computer Science (SFCS). 1975, pp.
151-162. DOI: 10.1109/SFCS.1975.8 [see p. 98].

Shamos, M. I. and Hoey, D. Geometric intersection problems. In: Proc.
17th Annual Symposium on Foundations of Computer Science (SFCS).
1976, pp. 208-215. DOI: 10.1109/SFCS.1976.16 [see p. 99].

https://promathmedia.files.wordpress.com/2013/10/alexander_schrijver_theory_of_linear_and_integerbookfi-org.pdf
https://promathmedia.files.wordpress.com/2013/10/alexander_schrijver_theory_of_linear_and_integerbookfi-org.pdf
https://promathmedia.files.wordpress.com/2013/10/alexander_schrijver_theory_of_linear_and_integerbookfi-org.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_5.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_5.pdf
https://doi.org/10.1145/220279.220326
https://doi.org/10.1145/166117.166118
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.9129
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.9129
http://www.isprs.org/proceedings/Xxxiii/congress/part4/931_XXXIII-part4.pdf
http://www.isprs.org/proceedings/Xxxiii/congress/part4/931_XXXIII-part4.pdf
https://doi.org/10.1080/13658810500161179
https://doi.org/10.1007/3-540-26772-7_27
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/SFCS.1976.16

128

Bibliography

[Shi05]

[Sma03]

[Smi+07]

[Sto+09a]

[Sto+09b]

[Str00]

[Sub+16]

[SMO16]

[SGO1]

[SGO3]

[SG04]

Shirabe, T. A model of contiguity for spatial unit allocation. In: Geo-
graphical Analysis 37.1 (2005), pp. 2-16. DOI: 10.1111/j.1538-4632.
2005.00605.x [see p. 35].

van Smaalen, J. Automated Aggregation of Geographic Objects. PhD
thesis. Wageningen University, 2003 [see pp. 12, 49].

Smith, G., Beare, M., Boyd, M., Downs, T., Gregory, M., Morton, D.,
Brown, N., and Thomson, A. UK land cover map production through the
generalisation of OS MasterMap®. In: The Cartographic Journal 44.3
(2007), pp. 276-283. DOI: 10.1179/000870407X241827 [see p. 13].

Stoter, J., van Smaalen, J., Bakker, N., and Hardy, P Specifying map
requirements for automated generalization of topographic data. In: The
Cartographic Journal 46.3 (2009), pp. 214-227. DOL: 10/fttg54 [see p.
2].

Stoter, J. et al. Methodology for evaluating automated map general-
ization in commercial software. In: Computers, Environment and Ur-
ban Systems 33.5 (2009). Geo-information Generalisation and Multiple
Representation, pp. 311-324. DOI: 10.1016/j.compenvurbsys.2009.
06.002 [see pp. 73, 76].

Streinu, I. A combinatorial approach to planar non-colliding robot arm
motion planning. In: Proc. 41st Annual Symposium on Foundations of
Computer Science (FOCS). 2000, pp. 443-453. DOI: 10.1109/SFCS.
2000.892132 [see p. 87].

Suba, R., Driel, M., Meijers, M., Eisemann, E., and van Oosterom, P Us-
ability test plan for truly vario-scale maps. In: Proc. 19th ICA Workshop
on Generalisation and Multiple Representation (ICAGM). 2016. URL: http:
/ /www.gdmc.nl/publications/2016/Usability Test Plan_Vario-scale_
Maps.pdf [see p. 111].

Suba, R., Meijers, M., and van Oosterom, P Continuous road network
generalization throughout all scales. In: ISPRS International Journal of
Geo-Information 5.8 (2016). DOI: 10.3390/ijgi5080145 [see pp. 1, 2].

Surazhsky, V. and Gotsman, C. Controllable morphing of compatible
planar triangulations. In: ACM Transactions on Graphics 20.4 (2001),
pp. 203-231. DOI: 10.1145/502783.502784 [see p. 53].

Surazhsky, V. and Gotsman, C. Intrinsic morphing of compatible trian-
gulations. In: International Journal of Shape Modeling 09.02 (2003), pp.
191-201. DOI: 10.1142/S0218654303000115 [see p. 59].

Surazhsky, V. and Gotsman, C. High quality compatible triangulations.
In: Engineering with Computers 20.2 (2004), pp. 147-156. DOI: 10/
c7hfws [see p. 59].

https://doi.org/10.1111/j.1538-4632.2005.00605.x
https://doi.org/10.1111/j.1538-4632.2005.00605.x
https://doi.org/10.1179/000870407X241827
https://doi.org/10/fttg54
https://doi.org/10.1016/j.compenvurbsys.2009.06.002
https://doi.org/10.1016/j.compenvurbsys.2009.06.002
https://doi.org/10.1109/SFCS.2000.892132
https://doi.org/10.1109/SFCS.2000.892132
http://www.gdmc.nl/publications/2016/Usability_Test_Plan_Vario-scale_Maps.pdf
http://www.gdmc.nl/publications/2016/Usability_Test_Plan_Vario-scale_Maps.pdf
http://www.gdmc.nl/publications/2016/Usability_Test_Plan_Vario-scale_Maps.pdf
https://doi.org/10.3390/ijgi5080145
https://doi.org/10.1145/502783.502784
https://doi.org/10.1142/S0218654303000115
https://doi.org/10/c7hfws
https://doi.org/10/c7hfws

Bibliography

129

[TS18]

[Tim98]

[Ton+15]

[TLJ14]

[TP66]

[TD17]

[TG13]

[Vat92]

[Vol06]

[Wei97]

Thiemann, E and Sester, M. An automatic approach for generalization
of land-cover data from topographic data. In: Trends in Spatial Analy-
sis and Modelling: Decision-Support and Planning Strategies. Ed. by M.
Behnisch and G. Meinel. Vol. 19. Geotechnologies and the Environment.
2018. Chap. 10, pp. 193-207. DOIL: 10/c5kj [see p. 13].

Timpf, S. Hierarchical Structures in Map Series. PhD thesis. Technical
University Vienna, Austria, 1998. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.62.4561&rep=rep1&type=pdf [see p.
12].

Tong, X., Jin, Y., Li, L., and Ai, T. Area-preservation simplification of
polygonal boundaries by the use of the structured total least squares
method with constraints. In: Transactions in GIS 19.5 (2015), pp. 780-
799. DOI: 10.1111/tgis.12130 [see p. 3].

Tong, X., Liang, D., and Jin, Y. A linear road object matching method
for conflation based on optimization and logistic regression. In: Inter-
national Journal of Geographical Information Science 28.4 (2014), pp.
824-846. DOI: 10.1080/13658816.2013.876501 [see p. 97].

Topfer, E and Pillewizer, W. The principles of selection. In: The Carto-
graphic Journal 3.1 (1966), pp. 10-16. DOI: 10.1179/¢caj.1966.3.1.10
[see pp. 81, 84, 113].

Touya, G. and Dumont, M. Progressive block graying and landmarks en-
hancing as intermediate representations between buildings and urban
areas. In: Proc. 20th ICA Workshop on Generalisation and Multiple Rep-
resentation (ICAGM). 2017. URL: https://kartographie.geo.tu-dresden.
de /downloads /ica- gen / workshop2017 / genemr2017 paper_1.pdf
[see pp. 2, 68, 111].

Touya, G. and Girres, J.-E ScaleMaster 2.0: A ScaleMaster extension to
monitor automatic multi-scales generalizations. In: Cartography and
Geographic Information Science 40.3 (2013), pp. 192-200. DOI: 10.
1080/15230406.2013.809233 [see p. 12].

Vatti, B. R. A generic solution to polygon clipping. In: Communications
of the ACM 35.7 (1992), pp. 56-63. DOI: 10/ct78wx [see p. 79].

Volz, S. An iterative approach for matching multiple representations of
street data. In: Proc. Joint ISPRS Workshop on Multiple Representations
and Interoperability of Spatial Data. 2006, pp. 101-110 [see p. 97].

Weibel, R. Generalization of spatial data: Principles and selected al-
gorithms. In: Algorithmic Foundations of Geographic Information Sys-
tems. Ed. by M. van Kreveld, J. Nievergelt, T. Roos, and P Widmayer.
Vol. 1340. Lecture Notes in Computer Science. 1997. Chap. 5, pp. 99—
152. DOL: 10.1007/3-540-63818-0 5 [see pp. 1, 68].

https://doi.org/10/c5kj
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.4561&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.4561&rep=rep1&type=pdf
https://doi.org/10.1111/tgis.12130
https://doi.org/10.1080/13658816.2013.876501
https://doi.org/10.1179/caj.1966.3.1.10
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2017/genemr2017_paper_1.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2017/genemr2017_paper_1.pdf
https://doi.org/10.1080/15230406.2013.809233
https://doi.org/10.1080/15230406.2013.809233
https://doi.org/10/ct78wx
https://doi.org/10.1007/3-540-63818-0_5

130

Bibliography

[WB17]

[WRO09]

[WR11]

[Wil09]

[Wil02]

[WRCS3]

[WSMO04]

[Xia13]

[You88]

[ZMO08]

[ZS83]

Weibel, R. and Burghardt, D. Generalization, on-the-fly. In: Encyclope-
dia of GIS. Ed. by S. Shekhar, H. Xiong, and X. Zhou. 2nd ed. 2017, pp.
657-663. DOI: 10.1007/978-3-319-17885-1_450 [see p. 1].

Whited, B. and Rossignac, J. B-morphs between b-compatible curves in
the plane. In: Proc. 2009 SIAM /ACM Joint Conference on Geometric and
Physical Modeling. Ed. by W. E Bronsvoort, D. Gonsor, W. C. Regli, T. A.
Grandine, J. H. Vandenbrande, J. Gravesen, and J. Keyser. 12. 2009,
pp. 187-198. DOI: 10.1145/1629255.1629279 [see p. 87].

Whited, B. and Rossignac, J. Ball-morph: Definition, implementation,
and comparative evaluation. In: IEEE Transactions on Visualization and
Computer Graphics 17.6 (2011), pp. 757-769. DOI: 10.1109/TVCG.
2010.115 [see pp. 2, 59].

Williams, H. P Logic and Integer Programming. 1st ed. Springer, 2009.
DOI: 10.1007/978-0-387-92280-5 [see p. 29].

Williams, J. C. A zero-one programming model for contiguous land
acquisition. In: Geographical Analysis 34.4 (2002), pp. 330-349. DOI:
10.1111/j.1538-4632.2002.tb01093.x [see p. 35].

Wright, J., Revelle, C., and Cohon, J. A multiobjective integer program-
ming model for the land acquisition problem. In: Regional Science and
Urban Economics 13.1 (1983), pp. 31-53. DOI: 10/dqgvs5 [see p. 17].

Wu, S.-T,, da Silva, A. C. G., and Marquez, M. R. G. The Douglas—
Peucker algorithm: Sufficiency conditions for non-self-intersections. In:
Journal of the Brazilian Computer Society 9.3 (2004), pp. 67-84. DOL:
10/cxwv [see p. 13].

Xia, G. The stretch factor of the delaunay triangulation is less than
1.998. In: SIAM Journal on Computing 42.4 (2013), pp. 1620-1659.
DOI: 10.1137/110832458 [see p. 101].

Young, H. P Measuring the compactness of legislative districts. In: Leg-
islative Studies Quarterly 13.1 (1988), pp. 105-115. DOI: 10.2307/
439947 [see p. 17].

Zhang, M. and Meng, L. Delimited stroke oriented algorithm-working
principle and implementation for the matching of road networks. In:
Geographic Information Sciences 14.1 (2008), pp. 44-53. DOI: 10.1080/
10824000809480638 [see p. 97].

Zoltners, A. A. and Sinha, P Sales territory alignment: a review and
model. In: Management Science 29.11 (1983), pp. 1237-1256. DOI: 10.
1287/mnsc.29.11.1237 [see p. 34].

https://doi.org/10.1007/978-3-319-17885-1_450
https://doi.org/10.1145/1629255.1629279
https://doi.org/10.1109/TVCG.2010.115
https://doi.org/10.1109/TVCG.2010.115
https://doi.org/10.1007/978-0-387-92280-5
https://doi.org/10.1111/j.1538-4632.2002.tb01093.x
https://doi.org/10/dqgvs5
https://doi.org/10/cxwv
https://doi.org/10.1137/110832458
https://doi.org/10.2307/439947
https://doi.org/10.2307/439947
https://doi.org/10.1080/10824000809480638
https://doi.org/10.1080/10824000809480638
https://doi.org/10.1287/mnsc.29.11.1237
https://doi.org/10.1287/mnsc.29.11.1237

Acknowledgments

Obtaining a Ph.D. in Germany was one of the best things I could dream of. When
I finally got the chance to study in Germany, I was thrilled and I wanted to do my
best. Now I feel so proud of myself because I have come this far. Of course, this
dissertation would not have been possible if it were not for the help of many people.

First of all, I would like to thank my first supervisor, Prof. Dr. Alexander “Sascha”
Wolff. T am grateful to him for giving me the opportunity to pursue my Ph.D. in his
group. The research work was challenging, but I enjoyed working with him. Sascha
has been very patient with me. When I first came to Germany, I could barely speak
English. He had to put a lot of effort into understanding me when we were doing
research. Sascha advised me to take lectures and sent me to conferences so that
I could learn as much as possible. Sascha always encouraged me to ask questions
because I can benefit from the answers. He told me not to be shy even when I fear
that the questions are stupid; other people in the audience may appreciate my asking
because they may have the same questions but don’t dare to ask. At some point,
Sascha even negotiated with my landlords when I moved from an apartment into
another. Moreover, Sascha has a good sense of humor, and we often cracked jokes
together. I was lucky to have him as my supervisor.

I also thank my second supervisor, Prof. Dr. Jan-Henrik Haunert. In his lecture
Algorithms for GIS, he taught me many fundamentals of GIScience. Later, he moved
to other universities and invited me to visit him there. During the visits, we sketched
many ideas together. In particular, he proposed using the A" algorithm to find op-
timal sequences for area aggregation, which led to the most important chapter of
my dissertation. Furthermore, he recommended many suitable conferences to me
when I wanted to publish my papers.

I am grateful to all the colleagues in our group: Moritz Beck, Johannes Blum,
Benedikt Budig, Steven Chaplick, Thomas van Dijk, Martin Fink, Oksana Firman,
Krzysztof Fleszar, Philipp Kindermann, Myroslav Kryven, Fabian Lipp, Andre Loffler,
Nadine Schwartges, Joachim Spoerhase, Sabine Storandt, and Johannes Zink. We
often had coffees together, and it was a lot of fun to play squash and to go out for
our excursions. It was nice that our group always had lunch together so that we had
plenty of chances to learn from each other. Indeed, I sometimes took advantage of
these lunches to get suggestions regarding my research work. I am also grateful to
Sigrid Keller. She found an apartment for me before I arrived in Germany. Then, she
picked me up at the train station of Wiirzburg and brought me to that apartment.
She was very kind to me and helped me to fill many forms related to my Ph.D. study.

132 Bibliography

I am indebted to Dr. Krzysztof Fleszar for helping me a lot during my Ph.D. study.
He is very warm-hearted. Whenever he found that I had problems to understand
a paper, he read that paper and then explained it to me. He always helped when
I needed a German-English translator. He helped me move twice using the van of
his family. On the day before my defense, he worked as hard as me in order to give
me feedback about my slides. He has always invited me to join his parties, which
brought me many great times.

I thank Dr. Guillaume Touya for inviting me to visit the French National Mapping
Agency (IGN). The visit was a great chance and gave me insight into practical re-
quirements regarding maps. Our collaboration resulted in a paper on continuously
generalizing buildings into built-up areas. I also thank Dr. Thomas van Dijk. He
helped me speed up my least-squares adjustment using Eigen, a C++ library. He
has proofread some of my papers and has given me helpful suggestions concerning
many aspects of my research.

I am grateful to Prof. Dr. Min Deng, the supervisor of my master’s study. He
introduced me into the research area of continuous map generalization and helped
me to get the chance of pursuing my Ph.D. at the University of Wiirzburg. Under his
supervision, we coauthored some nice papers.

I thank Prof. Dr. Dirk Burghardt for reviewing my dissertation within a short time
frame when my working contract in Wiirzburg was about to end. I also thank him
for introducing my research work to Prof. Dr. Peter van Oosterom, which certainly
helped me to get a postdoc position in Peter’s group. Before submitting the final
version of my dissertation, I have already been working in Peter’s group. I would
like to thank Peter and Dr. Martijn Meijers for allowing me to finish my paper about
area aggregation, which is part of this dissertation.

I would like to thank my parents for all their love and encouragement. I thank
them for their suggestions when I was making decisions. I thank all my friends in
Wiirzburg for their company. Because of them, I could better explore the city and
even the whole country.

I am very grateful to the University of Wiirzburg, which is a treasure trove of
knowledge. I had the opportunity to take many courses. In order to gain sufficient
credits for obtaining a Ph.D. degree in Computer Science, I took some courses (e.g.,
Theoretical Computer Science and Algorithms and Data Structures) in my own faculty,
the Faculty of Mathematics and Computer Science. In order to improve my language
skills, I took many courses offered by the Language Center (e.g., English for the
Natural Sciences and General Language Exercise of German) and by the Faculty of
Arts (e.g., Introduction to English Linguistics).

The reviewers of my dissertation were Prof. Dr. Alexander Wolff and Prof. Dr.
Dirk Burghardt. I defended my dissertation on December 21, 2017. The defense
examiners were Prof. Dr. Andreas Niichter (chair), Prof. Dr. Jan-Henrik Haunert,
and Prof. Dr. Alexander Wolff.

Curriculum Vitae

Dongliang Peng was born on October 26, 1987 in Yonghe,
Liuyang, Changsha, Hunan, China. In 2009, he obtained
his bachelor’s degree in Mapping Engineering at Central
South University (CSU), Changsha, China. His bachelor’s
thesis is entitled “Updating Geographical Data based on
AutoCAD”. He continued to study Cartography and Geo-
graphic Information Engineering at CSU. In 2012, he ob-
tained his master’s degree with thesis “A Methodology of
Morphing Transformation of Linear Features for Map Con-
tinuous Generalization”. Both the bachelor’s and master’s
theses were under the supervision of Prof. Dr. Min Deng.
From 2012 to 2017, he pursued his Ph.D. degree in Com-
puter Science at Julius Maximilian University of Wiirzburg (JMU), Germany. The
title of his dissertation is “An Optimization-Based Approach for Continuous Map
Generalization”, which was supervised by Prof. Dr. Alexander Wolff and Prof. Dr.
Jan-Henrik Haunert.

Since 2018, he became a postdoctoral researcher in Section of GIS Technology,
Delft University of Technology (TU Delft), The Netherlands. He works with Prof. Dr.
Peter van Oosterom and Dr. Martijn Meijers on the topic of vario-scale maps.

Maps are the main tool to represent geographical
information. Map generalization is the process of
extracting and arranging geographical information
from detailed data in order to produce maps at
smaller scales. Users of online maps often zoom in
and out to get more details or more overview, respec-
tively. Continuous map generalization tries to make
the changes between different scales smooth, which
is essential to provide users with comfortable zoo-
ming experience.

In order to achieve continuous map generalization
with high quality, we optimize some important
aspects when producing online maps. In this book,
we have used optimization in the generalization
of land-cover areas, administrative boundaries,
buildings, and coastlines. According to our experi-
ments, continuous map generalization indeed
benefits from optimization.

Wiirzburg University Press

ISBN 978-3-95826-104-4

7

839587261044

9|

	Preface
	Abstract
	Zusammenfassung
	Introduction
	State of the Art
	Continuous Map Generalization
	Optimization in Map Generalization
	Optimization in Continuous Map Generalization

	Tools for Optimization
	The A* Algorithm
	Integer Linear Programming
	Dynamic Programming
	Least-Squares Adjustment
	Minimum Spanning Tree

	Overview of the Thesis

	Finding Optimal Sequences for Area Aggregation—A* vs. Integer Linear Programming
	Preliminaries
	Model
	Notation
	Exponential Lower Bound
	Methods

	Cost Functions
	Cost of Type Change
	Cost of Compactness
	Cost of Length
	Combining Cost Functions

	NP-hardness Proof
	A Greedy Algorithm
	Using the A* Algorithm
	Estimating the Cost of Type Change
	Estimating the Cost of Compactness
	Estimating the Cost of Length
	Combining Estimated Costs

	Integer Linear Programming
	Variables
	Objective
	Constraints

	Case Study
	Using Costs of Type Change and Compactness
	Using Costs of Type Change and Length

	Concluding Remarks

	Continuously Generalizing Administrative Boundaries Based on Compatible Triangulations
	Methodology
	Finding Corresponding Polylines
	Morphing a Polyline to Its Corresponding Polyline
	Morphing a Polyline to Its Generated Corresponding Polyline
	Running Time

	Case Study
	Concluding Remarks

	Continuously Generalizing Buildings to Built-up Areas by Aggregating and Growing
	Methodology
	Growing Buildings by Buffering
	Simplifying Grown Buildings Based on Dilating and Eroding
	Iteratively Aggregating Close Buildings by Adding Bridges
	Simplifying Buildings Using the Imai–Iri Algorithm
	Generating Buildings on Intermediate-Scale Maps
	Eliminating Small Buildings and Small Holes
	Running Time

	Case Study
	Concluding Remarks

	Morphing Polylines Based on Least-Squares Adjustment
	Related Work
	Methodology
	Preliminaries
	Soft Constraints
	Hard Constraints
	Weights
	Estimates
	Iterative Process

	Case Study
	Case Study on Artificial Data
	Case Study on Real-World Data

	Concluding Remarks

	Choosing the Right Data Structures for Solving Spatial Problems
	Algorithms
	The Sweep-Line Algorithm
	The Delaunay-Triangulation-Based Algorithm
	The Grid-Based Algorithm

	Case Study
	Case Study on Random Data
	Case Study on Real-World Data

	Concluding Remarks

	Conclusions and Open Problems
	Conclusions
	Open Problems

	Bibliography
	Acknowledgments
	Curriculum Vitae

