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Abstract

Despite its history of more than one hundred years, the phenomenon of superconduc-
tivity has not lost any of its allure. During that time the concept and perception of the
superconducting state - both from an experimental and theoretical point of view - has
evolved in way that has triggered increasing interest. What was initially believed to
simply be the disappearance of electrical resistivity, turned out to be a universal and
inevitable result of quantum statistics, characterized by many more aspects apart from
its zero resistivity. The insights of BCS-theory eventually helped to uncover its deep
connection to particle physics and consequently led to the formulation of the Anderson-
Higgs-mechanism. The very core of this theory is the concept of gauge symmetry (break-
ing). Within the framework of condensed-matter theory, gauge invariance is only one
of several symmetry groups which are crucial for the description and classification of
superconducting states.

In this thesis, we employ time-reversal, inversion, point group and spin symmetries to
investigate and derive possible Hamiltonians featuring spin-orbit interaction in two and
three spatial dimensions. In particular, this thesis aims at a generalization of existing numer-
ical concepts to open up the path to spin-orbit coupled (non)centrosymmetric superconductors
in multi-orbital models. This is done in a two-fold way: On the one hand, we formulate
- based on the Kohn-Luttinger effect - the perturbative renormalization group in the
weak-coupling limit. On the other hand, we define the spinful flow equations of the
effective action in the framework of functional renormalization, which is valid for finite
interaction strength as well. Both perturbative and functional renormalization groups
produce a low-energy effective (spinful) theory that eventually gives rise to a partic-
ular superconducting state, which is investigated on the level of the irreducible two-
particle vertex. The symbiotic relationship between both perturbative and functional
renormalization can be traced back to the fact that, while the perturbative renormaliza-
tion at infinitesimal coupling is only capable of dealing with the Cooper instability, the
functional renormalization can investigate a plethora of instabilities both in the particle-
particle and particle-hole channels.

Time-reversal and inversion are the two key symmetries, which are being used to
discriminate between two scenarios. If both time-reversal and inversion symmetry are
present, the Fermi surface will be two-fold degenerate and characterized by a pseu-
dospin degree of freedom. In contrast, if inversion symmetry is broken, the Fermi sur-
face will be spin-split and labeled by helicity. In both cases, we construct the sym-
metry allowed states in the particle-particle as well as the particle-hole channel. The
methods presented are formally unified and implemented in a modern object-oriented



reusable and extendable C++ code. This methodological implementation is employed
to one member of both families of pseudospin and helicity characterized systems. For
the pseudospin case, we choose the intriguing matter of strontium ruthenate, which
has been heavily investigated for already twenty-four years, but still keeps puzzling re-
searchers. Finally, as the helicity based application, we consider the oxide heterostruc-
ture LaAlO;/SrTiO;, which became famous for its highly mobile two- dimensional elec-
tron gas and is suspected to host topological superconductivity.
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Zusammenfassung

Trotz seiner iiber hundertjahrigen Geschichte seit seiner Entdeckung hat das Phanomen
der Supraleitung nichts von seiner urspriinglichen Faszination eingebtifit. Vielmehr hat
sich in der Zwischenzeit der Begriff und das Verstandnis des supraleitenden Zustandes
in einer Weise weiterentwickelt, die das Interesse daran eher hat zunehmen lassen. Was
anfanglich ausschliefSlich fiir ein Verschwinden des elektrischen Widerstands gehalten
wurde, ist tatsdchlich ein universelles und unvermeidliches Resultat der Quantenstatis-
tik und besitzt viel mehr bemerkenswerte Eigenschaften als nur den widerstandslosen
elektrischen Transport. Die Erkenntnisse der BCS-Theorie haben schliefllich dazu ge-
fihrt die tiefe Verbindung zur Teilchenphysik zu offenbaren und trugen entscheidend
zur Formulierung des Anderson-Higgs-Mechanismus bei. Der wichtigste Baustein die-
ser Theorie ist das Konzept der (Brechung der) Eichsymmetrie. Im Rahmen der Festkor-
perphysik ist die Eichsymmetrie nur eine von mehreren Symmetrien, die eine essentielle
Rolle fiir die Beschreibung und Einordnung von Phdnomenen der Supraleitung spielen.

In dieser Arbeit wenden wir Zeitumkehr-, (rdumliche) Inversions-, Punktgruppen-
und Spin-Symmetrien an, um mdégliche Hamilton-Operatoren in zwei und drei rdum-
lichen Dimensionen, welche Spin-Bahn-Kopplung enthalten, herzuleiten und zu unter-
suchen. Diese Arbeit zielt auf eine Verallgemeinerung von existierenden numerischen
Konzepten ab und erschliefit den Weg die supraleitenden Eigenschaften von Modellen
mit starker Spin-Bahn-Kopplung und mit oder ohne Inversionszentrum zu untersuchen.
Dies geschieht mit Hilfe zweier methodischer Ansitze. Erstens formulieren wir aufbau-
end auf dem Kohn-Luttinger Effekt die storungstheoretische Renormierungsgruppe im
Limes schwacher Kopplung. Zweitens verwenden wir die spinaufgeldsten Flussglei-
chungen der effektiven Wirkung im Rahmen der funktionalen Renormierungsgruppe,
die auch fiir endliche Wechselwirkungsstirke giiltig sind. Die symbiotische Ergdnzung
der perturbativen und funktionalen Renormierungsgruppen ist darauf zurtickzufiih-
ren, dass es mit der perturbativen Methode zwar moglich ist die Cooper Instabilitit bei
infinitesimaler Wechselwirkung numerisch exakt zu berechnen, aber nur die funktiona-
le Renormierungsgruppe auch Teilchen-Loch Kondensate zugéanglich macht.

Zeitumkehr- und Inversionssymmetrie sind die beiden Schliisselsymmetrien, die ver-
wendet werden, um zwei Szenarien zu unterscheiden. Falls sowohl Zeitumkehr- als
auch Inversionssymmetrie giiltig sind, sind die Fermiflichen zweifach entartet und durch
einen Pseudospin-Freiheitsgrad charakterisiert. Im Gegensatz dazu fiihrt der Verlust
der Inversionssymmetrie zur Spinaufspaltung der Fermifldchen, die dann durch die
sogenannte Helizitdt gekennzeichnet sind. In beiden Fillen leiten wir alle symmetrie-
erlaubten Zustdande her, welche die entsprechenden Teilchen-Teilchen und Teilchen-Loch

vii



Kondensate beschreiben. Die vorstellten und verallgemeinerten Methoden sind im Rah-
men dieser Arbeit formal miteinander verbunden und in einem modernen objektorien-
tierten C++ Quellcode implementiert worden.

Als erste vorldufige Anwendungen fiir diese methodische Implementierung betrach-
ten wir zwei Systeme, die jeweils einer der beiden Familien zugeordnet werden kénnen.
Zum einen berechnen wir in der Pseudospin-Formulierung der perturbativen und funk-
tionalen Renormierungsgruppen die Instabilitdten eines Dreiorbital-Modells fiir Stron-
tiumruthenat, das seit seiner erstmaligen Synthese trotz intensiver Forschung immer
noch Rétsel aufgibt. Zum anderen betrachten wir das zweidimensionale Elektronengas,
das sich an der Schnittstelle zwischen LaAlO; und SrTiO; bildet und welches durch
seine hohe Ladungstragermobilitdt bekannt geworden ist.
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1. Introduction/Preface

Symmetry and superconductivity The concept of symmetry prevails in almost every
branch of modern physics [Mic80; Gel07]. Symmetries do not only provide a notion of
beauty [EA+94; Mol92; Rho06] but also a mathematical language that paves the way
for a convenient and elegant description of a plethora of physical phenomena [Wey27;
Wigl2]. The benefits of a language that makes use of underlying symmetries has not
only been appreciated in natural science but has even found its way into music theory
[Tym06; Tym10; Maz12]. The appeal of a theory may often be characterized from the
perspective of simplicity, which originates from an underlying symmetry. Landau es-
tablished his theory of phase transitions based on broken symmetries and associated order
parameters [ Lan37a; Lan37b; Lan57]. One particular phenomenon that is well-described
by Landau’s idea of phase transitions is the superconducting state. In the framework of
a Ginzburg-Landau theory [Gin50], the order-parameter of a superconductor is given by
a complex field ¥(r) = |¢(r)[e’? that turns out to be closely related to the Cooper pair
wave function [Gor59]. In fact, this order-parameter is sufficient to describe the entire
many-particle system since the Cooper pairs are able to form a coherent superposition
being characterized by a macroscopic wave function [Ann11] Therefore, superconduc-
tivity is also one rare example of a quantum phenomenon exhibiting macroscopic con-
sequences. An exception to the paradigm of symmetry breaking as an indication for a
phase transition is topological order that neither shows a broken symmetry nor a local
order parameter [Wen02b; Wen02a]. Henceforth, a valid classification of order is the
distinction of symmetry breaking and non-symmetry breaking order [Wen04] (Figure 1.1).
Well-known phenomena like (anti-)ferromagnetism, charge- and spin-density waves as
well as superconductors all belong to the category of symmetry breaking order, making
it advantageous to distinguish them by means of the particular symmetries they break.

While a conventional superconductor only breaks global U (1)-gauge symmetry, an un-
conventional superconductor breaks additional (spatial) symmetries. The “full” symme-
try group is denoted by Gy = § x T x U, where ( is the point group of the underlying
lattice, T is the time-reversal operation and U the gauge-group [MS94]. More precisely,
the symmetry group of a superconductor is the one that comprises all operations under
which the Cooper pair wave function or order parameter is invariant [ VG85]. Therefore,
the groups of both conventional and unconventional superconductors must obviously
be subgroups of (jo. The most general Cooper pair wave function must take spatial
or momentum k (assuming the system is invariant under translations), spin, sublattice
and orbital or band degrees of freedom of two electrons into account. Hence, the Cooper
pair wave function may be denoted by the entity A2 , (k) = <C1tb o U,> with band in-
dex b, spins ¢ and ¢’ and momentum k. While a conventional superconductor breaks
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Figure 1.1.: The classification of order into symmetry-breaking and non-symmetry breaking or-
der goes beyond Landau’s theory of phase transition and opens up the path to a
whole new class of phenomena (see [Wen04]) that are characterized by topologi-
cal order. In contrast, well-known concepts like ferromagnetism, charge- and spin-
density waves as well as superconductors fall into the paradigm of symmetry break-
ing order.

only U (1)-gauge symmetry, the concept of unconventional superconductivity opens up
the pathway to a myriad of pairing states characterized by their (broken) symmetries
in momentum, orbital and spin space. In mathematical terms, any possible subgroup
of (o may be realized as a Cooper pair. This zoo of unconventional pairing states hosts
a competition for the most stable energy balance between energy gain due to pairing
and repulsion being highly susceptible to material specific parameters like i.a. doping,
interaction strength and spin-orbit coupling.

From an experimental point of view, the discrimination between conventional and un-
conventional states can be done by looking at the low-temperature behavior of various
physical quantities like specific heat. On the one hand, a conventional superconduc-
tor possessing a fully gapped quasiparticle spectrum shows exponential temperature
dependence. On the other hand, an unconventional superconducting state, which has
symmetry protected nodes in its gap function, leads to power law dependencies in the
low-temperature regime. However, even a conventional fully gapped superconductor
may exhibit accidental nodes. Therefore, power law dependency in the low-temperature
regime is a necessary but not sufficient criterion for unconventional superconductivity.

Milestones of superconductivity Superconductivity has been a fascinating phenomenon
ever since [Onnl11] and nevertheless it took nearly fifty years to produce a theory ca-
pable of correctly reproducing the experimentally observed phenomena of a second
order phase transition, the exponential dependence of the specific heat, the Meissner-
Ochsenfeld effect, the infinite conductivity and the dependency of the critical tempera-



ture on the isotope mass [BCS57]. The very core of this theory is the concept of Cooper
pairs , i.e. electrons that are related by time-reversal symmetry (traditionally electrons
with opposite momentum k, —k and spin 1, |) that pair up to form a new state with to-
tal spin zero. As a consequence, a macroscopic number of Cooper pairs are allowed to
condense in the same quantum state as a coherent superposition (at sufficiently low tem-
peratures) [FS05]. Furthermore, the superconducting (BCS) wave-function appears to
be a superposition of states with an even number of electrons and hence violates particle
number conservation. The quasiparticle dispersion relation of the Cooper pairs shows a
characteristic energy gap A that defines the amount of energy required to break up a sin-
gle Cooper pair. Conventional superconductivity covers all cases where the gap function
A (k) = Ais independent of momentum k. A characteristic feature of BCS-theory is its
universality, which extraordinarily applies to many elemental metals. In contrast, this
means that BCS-theory is insensitive to any material specific parameters to account for
different critical temperatures (expect for the electron-phonon coupling strength g.¢r).
An improvement towards strong-coupling was provided by Eliasberg theory. It uses an
electron-phonon interaction that is local in space and retarded in time [Eli60], opposed
to the non-local, non-retarded coupling parameter g,¢rof BCS-theory [Umm13]. McMil-
lan used Eliashberg theory to predict a maximum transition temperature for phonon-
driven pairing in different classes of material [McM68]. Shortly after the formulation
of the BCS-theory, the idea of an anisotropic gap function came up [BW63], in partic-
ular a gap function with odd parity A(—k) = —A(k) associated to a spin triplet state.
Later, more generalizations of the BCS-gap function with even higher relative angular
momentum or odd frequency dependency were developed [SSW66; Ber74]. Soon, the
tirst experimental evidence for exotic superconducting states was found in the form of
heavy-fermion superconductors [Ste84; Gor87].

The first experimental signature of a d-wave superconductor was encountered in 1986
in copper-oxide compounds [ BM86;, BMT87 |, which showed a much higher critical tem-
perature than any elemental superconductor. This finding triggered activity for the
search of superconductors with even higher critical temperatures, the highest so far
being YBa,Cu30; with T, ~ 92K [BM88]. This line of research eventually led to the
discovery of superconductivity in strontium ruthenate (Sr,RuO,) [Mae+94 ] which was
latter assumed to be the “first” spin-triplet superconductor [Ish+98] and suspected to
break time-reversal symmetry [Luk+98]. The next experimental milestone dates back to
2008 when a critical temperature of about 26 K was found in the iron-based compound
LaO;_F,FeAs [Kam+08] and evidence for unconventional superconductivity in FeSe
[Kot+08]. This discovery established a whole new branch of research that continues
to bring forward new exciting results until today [Spr+17] (cf. (Figure 1.2)). Apart
from superconductivity itself, a new field has been emerging in the area of condensed
matter research based on the beforementioned notion of non-symmetry breaking and
topological order. The experimental investigations along these lines started with the veri-
fication of the quantum spin Hall effect [Kon+07]. A unique way to combine and reunite
both topological order and symmetry-breaking order in the form of superconductivity
is represented by (the idea of) topological superconductivity [Qi+09].
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Figure 1.2.: The epoch of forty-seven years after the discovery of (conventional) superconductiv-
ity [Onn11] is characterized by a plethora of failed attempts to explain superconduc-
tivity that eventually led to the formulation of the BCS-theory [BCS57]. Kohn and
Luttinger were the first to realize that Cooper pairing can emanate from a purely
electronic mechanism [KL65]. More than twenty years after its publication, Zanchi
and Schulz [ZS00] employed Wilson’s renormalization group idea [WK74] to the
dimensional weakly-correlated electron gas. In 2009, the pioneering work of Qi and
Zhang [Qi+09] layed the ground for the field of topological superconductors.

Quantum many-body effects Condensed matter physics is the subject concerned with
many quantum particles at finite density and temperature and their collective behav-
ior. Quantum many-particle systems have already been in the focus of intensive re-
search since shortly after the development of the foundation of quantum mechanics
[Tho27; Fer27]. The quest for understanding the quantum effects in multi-particle mod-
els started with the investigations in simple molecules and led to the concepts of Heitler-
London and Mulliken [HL27; Mul28]. Until today, the research is guided by the belief
that the (many-particle) Schrodinger equation [Sch26 | governs the dynamics of a quan-
tum many-body system. However, the derivation of macroscopic properties on the ba-
sis of the Schrédinger equation turns out to be unfeasible. Consider a single-particle

Hamiltonian 4, = — % + V (r) and the corresponding stationary Schrodinger equation
Hop = Eyp. Confining the particle to a cubic box of dimension L and employing a three-
dimensional discretization mesh of N3 points in real space, the numerical solution is
obviously given by a vector comprising N> complex values [Tho13; Ful12]. Adding a
second (identical) particle to the box, increases the size of the vector representing the
two-particle wave function ¥ (r1,1,) to (N® )2 = N°. Henceforth, an n-particle wave
function requires at least memory of size (N 3)" = N3 = ¢l98(N)3" (jgnoring the com-
putational cost to solve the system of N coupled differential equations), which means
the memory necessary to store the wave function of a quantum mechanical n-body sys-
tems, i.e. the complexity of the Hilbert space, scales exponentially. For example, taking
the mesh to comprise a moderate number of 100% = 1 x 10° points, the wave function
for only two particles already occupies 100° x 16 B ~ 16 TB of memory (assuming a sin-



gle complex number to be of size 16 B) (cf. [Fou+01]) The (apparent) impossibility to
calculate the wave functions of quantum many-body Hamiltonians comprising a critical
number of particles, is known as the exponential wall [Koh99; FS17]. Another example is
given by a spin—% chain, where every particle can only be found in two different states.
The computational complexity of this problem merely scales as 2" with the number of
particles n [Wen04] [Pen04, Chapter 23]. In contrast, a classical many-particle system
is a much less intractable problem, since at a fixed time f the system is completely spec-
ified by 61 coordinates in phase space (r;, p;), i.e. the problem scales linearly. Hence,
the development of algorithms and efficient code for classical many-body systems has
a (relatively) long history that dates back to the advent of the first modern computers
during the 1940’s [Zal] and found its application mainly in astrophysics [Hol41; Pee70;
PS74; Whi76]. The invention of tree algorithms reduced the computational complexity
to O (nlogn) [App85] and claimed its hitherto climax in the “Millennium run”, a sim-
ulation comprising up to 7.5 x 107 particles subject to the gravitational forces within
a three-dimensional cross-section of the universe of about 650 Mpc or 2Gly [SYWO01;
Spr05; Spr+05]. In contrast, the overall length scale of a typical quantum many-body
systemis 1 x 103 mto 1 x 102 m, while it contains about 10 x 10 particles. In particu-
lar, superconductivity is an inherent quantum many-body effect whose mechanism can
only be understood in an effective single particle picture. Therefore, we have to rely on
approximative methods that are supposed to capture the “important” information.

Methodological overview While the numerical methods and ab-initio approaches to
electronic structure calculations have been developed and advanced over several decades
culminating in elaborate formulations of density-functional theory (DFT) [HK64; KS65],
dynamical mean-field theory (DMFT) [ Geo04; Kot+06; Hel07a ], the GW-approximation
(GWA) [Hed65; ORR02; Hed99] and combinations thereof (like i.a. LDA+U [ Ani+92],
LDA+DMFT [KV04; Hel07b] and GW+DMFT [BAGO03]), the numerical approaches to
superconductivity lack a substantial amount of development compared to electronic
structure calculations in the sense that quantitative predictions still pose a severe chal-
lenge. On the one hand, there are ab-initio methods that start from the full many-
body Hamiltonian of the crystal featuring nuclei and electrons without relying on any
preliminary approximations. In order to solve the corresponding time-independent
Schrodinger equation the concepts of density functional theory are reused, modified
and extended to account for both electron-electron and electron-phonon interactions as
well as anomalous expectation values of the density-operators. [OGK88; CG97; Liid+05;
Mar+05]. Although this kind of density functional theory for superconductivity (SCDFT)
predicts critical temperatures and gap amplitudes with good experimental agreement
for simple metals [Lat+04], it suffers from its limitations regarding anisotropic band
structures and strong spin fluctuations. Hence, it is usually well-suited for phonon-
driven superconductors. On the other hand, there are methods that are based on the
formalism of Green’s functions and many-body perturbation theory. These methods,
however, rely on a set of phenomenological parameters describing the non-interacting
one-particle spectrum and two-particle interactions. As the most simple one of these
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Green’s function based methods, we have the mean-field theory, which takes the bare
interaction in band representation as the pairing potential to calculate the Cooper pair
properties [Inu+88; Ann90]. Although mean-field theory can often be done analytically
and provides important insights, it suffers from the fact that the interaction assumed
corresponds to a high-energy theory that does not agree with the actual effective low-
energy theory at the critical temperature that makes up the pairing potential and is a re-
sult of emergent quantum many-body effects. Another Green’s function approach is the
random phase approximation (RPA), which was originally introduced by Pines [PB53] and
formulated and justified in a diagrammatic fashion by Gell-Mann and Bruckner [GB57].
Shortly after that, Anderson employed this method to superconductivity [And58a]. In
diagrammatic language, the RPA amounts to a summation of all particle-hole bubbles
up to infinite order of the perturbative expansion. Due to the simple topology of the in-
volved diagrams, the series allows for an analytical solution. Extensions of the random
phase approximation to three spatial dimensions [Gra+10] and the inclusion of spin-
orbit coupling in multiple orbitals [Korl7; Nis+17] have been successfully employed.
A modification and extension of RPA that features an improved inclusion of orbital and
spin fluctuations is the fluctuation exchange approximation (FLEX) [BS66; BSW89]. It has
been employed in two and three spatial dimensions [AKA99] and is particularly popu-
lar in the investigation of superconducting order parameters in multi-orbital Hubbard
models [MYOO05; Mai+11b].

Among all these methodological approaches, a special position is held by determinant
quantum monte carlo, which evaluates an observable A by Tr(Ae_ﬁH ) / Tr(e‘ﬂH ) Here,

the partition function is rewritten as a functional integral and a Hubbard-Stratonovich
field is introduced into the interacting part of the Hamiltonian, which allows for the
fermions to be integrated out analytically. The results appear in terms of fermionc de-
terminants that play the role of the weights for the Hubbard-Stratonovich field to be
sampled [Yin+14; Whi+89a; Whi+89b; Sca+91; Est+18]. Another whole class of meth-
ods is based on the idea of renormalization. In the context of condensed matter physics,
it has been pioneered by Wilson in his attempt to gain more insight into the universality
of phase transitions [Wil71a; Wil71b; WK74]. In particular, since the superconduct-
ing state is impossible to obtain by means of perturbative means due to the logarith-
mic divergence of the particle-particle diagrams, the renormalization group offers the
particular tempting possibility to introduce a cutoff to avoid these divergences. This
is the punchline of the perturbative renormalization group (PRG), whose foundations are
the work by Kohn and Luttinger [KL65]. The perturbative treatment of the repulsive
electron-electron interactions are supplemented by an logarithmic renormalization flow
[Pol92; Sha94a] by feeding the effective interaction resulting from second order pertur-
bation theory into the flow equations [RKS10]. Although, it is asymptotically exact,
the perturbative renormalization suffers from its need to assume (in general) unrealis-
tic infinitesimal small interaction strength. The most modern version of Wilson’s idea
of renormalization is represented by the functional renormalization group (FRG) [ZS00;
HS01; KBS10]. The FRG integrates out the single-particle degrees of freedom by in-
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Figure 1.3.: At high energy scales about the bandwidth W the interacting theory only features
the bare Coulomb repulsion. We consider three cases that subdivide the space of
Hamiltonians into three sectors depending on which symmetries are or aren’t explic-
itly broken. The left column features Hamiltonians fully invariant under SU(2) and
spatial inversion, while the center column breaks spin rotation symmetry but keeps
spatial inversion. Finally, the right column abandons both spin and spatial inversion
symmetry. Correlations dominated by the microscopic details of the considered sys-
tem lead to effective low-energy theories that give rise to ordering tendencies corre-
sponding to phases of additional spontaneously broken symmetries.

troducing a cutoff that is successively lowered to finally obtain an effective theory of
n-particle correlation functions. Its strength is its account for the unbiased interplay of
particle and hole fluctuation on different energy scale and its applicability to interme-
diate and finite interactions. Unfortunately, the hierarchy of flow equations can only be
treated up to finite order to guarantee numerical feasibility.

As a side remark, we mention the parquet renormalization group and ladder renormal-
ization group approaches, which are well-controlled but have limited range of applica-
bility depending on which logarithmic divergences occur in the system to be studied
[MC10][Xin+17; Cla+17]. More recent developments, which are mainly (non-local)
extensions of dynamical mean-field theory are the dynamical vertex approximation DI'A
[HKTO08; Hell4; Kit+18], the one-particle irreducible approach (1PI) [Roh+13], and the
dynamical mean-field theory to functional renormalization group (DMF?RG) [Tar+14]. In
spite of all these important contributions, the calculation of superconducting properties
in strongly correlated systems still pose a significant challenge and universal numerical
approaches to predict the Cooper pair mechanism in a variety of systems are still not
available. A general obstacle for all methods to access superconductivity is the involve-
ment of very different energy scales. While the properties of the band structure are
characterized by the order of several eV, the critical temperature of most (elemental)
superconductors is about the order of meV (cf. (Figure 1.3)).
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Outline In the framework of this thesis a weak-coupling to intermediate coupling
renormalization group approach (and code) is developed, which is capable of identify-
ing not only superconducting phases in the presence of centro- and noncentrosymmetric
spin-orbit coupling, i.a. giving rise to mixed singlet-triplet pairing, but also their inter-
play with particle-hole condensates including such exotic types as mixed spin-charge
density waves in systems with broken spin and/or inversion symmetries. The thesis
is comprised of two parts. The first part serves as an introduction to unconventional
Cooper pairing states and the methodological novelties necessary to investigate them,
while the second part considers several prototypical models, whose electronic instabil-
ities are investigated by means of the presented methods. (Chapter 2) motivates the
concepts that give rise to Cooper pairing and superconducting states and briefly re-
views “traditional” BCS-theory. The Kohn-Luttinger effect is presented as one of the
tirst ideas on how to obtain superconductivity from purely electronic, repulsive interac-
tions. It turns out, that the associated pairing states are anisotropic in momentum space.
This is used as the starting point to generalize BCS-theory to incorporate both singlet
and triplet states in arbitrary angular momentum channels only restricted by parity and
the Pauli principle. We set up a formalism in terms of the d-vector making the associated
symmetries more transparent and analyze its transformation properties with respect to
spatial inversion, spin rotations, time-reversal and point group operations. (Chapter 3)
leaves the realm of spin rotation symmetric single-particle terms by deriving and classi-
tying various types of spin-orbit interaction in centro- and noncentrosymmetric models.
A particular emphasis is put on the definition of appropriate basis states, which enable
quantum-many body calculations. These calculations mostly involve the two-particle
vertex function, whose symmetry properties with respect to spin rotation, time-reversal,
point group operations and spatial inversion are described in a numerically accessible
formalism. To analyze possible exotic pairing instabilities that go beyond the paradigm
of singlet versus triplet Cooper pair states, mean-fields with broken SU(2)-symmetry
(and broken inversion symmetry) are introduced, classified and constructed for proto-
typical crystal symmetries. Since the functional renormalization group is able to keep
track of particle-hole condensates as well, the analogous formalism is set up for these
density—wave states, too.

(Chapter 4) sets up the Feynman path-integral formalism in terms of fermionic Grass-
mann fields and introduces the associated notation in order to prepare the stage for the
perturbative and functional renormalization groups, which essentially depend on these
concepts and make extensive use of it. In particular, the generating functionals rele-
vant for functional renormalization are recapitulated. The perturbative series’s of vari-
ous n-particle correlation functions and their resummations provide a path to compare
and benchmark the perturbative and functional renormalization groups to (established )
methods like i.a. random-phase approximation and fluctuation exchange calculations.
The perturbative renormalization group in (Chapter 5) is presented as a combination of
quantum-many body perturbation theory and logarithmic renormalization. Since the
perturbative part relies on infinitesimal coupling strength, the states arising from it op-
erate in an infinitesimal shell around the Fermi surface and therefore can only give rise



to particle-particle states since the Cooper instability is the only generic one of a Fermi
liquid. This restriction is remedied by the functional renormalization group presented
in (Chapter 6), which introduces an explicit cutoff, given as energy/momentum, tem-
perature or frequency, into the single-particle theory. This cutoff is used to integrate out
the degrees of freedom of the interacting Hamiltonian starting from the bare interaction
down to any critical scale that exhibits the low-energy effective theory. The evolution of
the effective interaction as a function of the cutoff parameter is described by a hierarchy
of flow equations expressing the change of the n-particle correlation function in terms
of a set of non-linear integro differential equations. We work out the close analogy be-
tween the perturbative and functional renormalization group, from which we benefit
in two ways: on the one hand, this similarity enables us to use the very same models
and their implementations as the input and on the other hand facilitates the process
of debugging. Furthermore, it is both educating and enlightening to see how different
physical states and orders emerge from two methods that only differ in the formulation
of the propagators they’re based on.

The second part of the thesis is dedicated to the application of the methods developed
in the first part to both simple toy models as well as realistic systems that are currently
and have already been subject to intensive research. (Chapter 7) provides an illustra-
tive treatment of toy models that introduces the methodological novelties in a numerical
context. This includes paradigm models like the Hubbard model on the square and hon-
eycomb lattice and including the spin degrees of freedom to prepare for the inclusion of
spin-orbit interaction. During the last decade, oxide heterostructures have been investi-
gated as promising systems for next generation of micro-electronic devices. In (Chap-
ter 8) we setup a minimal two-orbital model for the LaAlO;/SrTiO; interface including
Rashba spin-orbit interaction to account for the presence of the heavy ion Ti** and the
broken inversion symmetry. We show that the resulting low-energy fluctuations give
rise to nodal and nodeless superconducting states with topological non-trivial prop-
erties. The unconventional superconducting state in strontium ruthenate Sr,RuO, has
been studied for more than twenty years, while a convincing explanation of the order
parameter is still missing. In (Chapter 9) we use a three-orbital model including atomic
spin-orbit coupling and employ both perturbative and functional renormalization to in-
vestigate its order parameters and the system’s preference of singlet or triplet pairing
on particular Fermi sheets. An integral part of this thesis is devoted to the development
of a modern object-oriented implementation of the perturbative and functional renor-
malization group methods for two and three dimensional many-body problems that is
capable of analyzing the relevant particle-particle and particle-hole instabilities in the
presence of spin-orbit coupling and/or inversion symmetry breaking and of classifying
them in terms of irreducible representations of the respective symmetry groups in spin
and orbital space.

The project and its source code can be found at

www.physik.uni-wuerzburg.de/~mfink/FPRG/

where the acronym represents Funtional Perturbative Renormalization Group. The or-
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Table 1.1.: The methodological extension of both perturbative and functional renormalization
groups enables the treatment of various two- and three-dimensional systems in pres-
ence of different kinds of spin-orbit coupling.

perturbative RG functional RG

two spatial dimensions

three spatial dimensions X X
long-range interaction

particle-particle condensates

particle-hole condensates X

centrosymmetric SOC

non-centrosymmetric SOC

broken time-reversal X X

der of F and P is fixed in that way to avoid any ambiguity with respect to the pseudo-
fermion renormalization group (PFFRG) [RW10; RT11]. The computational possibil-
ities of this code with respect to the method, the spatial dimensionality, the range of
interactions and the possible ordering tendencies are summarized in (Table 1.1). In two
spatial dimensions we are able to employ both the perturbative as well as the functional
renormalization, unlike in three spatial dimension, where only perturbative RG is feasi-
ble while the computational effort of functional RG is too demanding. In contrast, due
to the limitation of infinitesimal coupling in the perturbative method, particle-hole in-
stabilities can only be accessed in the functional RG scheme. However, both of the two
implemented methods are able to deal with spin-orbit coupling and spatial inversion
symmetry breaking. The breaking of the beforementioned symmetries is done explicitly
as already given in the microscopic Hamiltonian in contrast to spontaneous symmetry
breaking.
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Part 1.

Methodology for superconductivity
with spin-orbit coupling
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2. The Cooper problem, BCS theory and the
Kohn-Luttinger effect

The microscopic Bardeen-Cooper-Schrieffer-theory (BCS-theory) [BCS57] is considered
to be one of the greatest intellectual achievements of the twentieth century [Fos14, Chap-
ter 4.1], and the solution to one of the hardest problems in physics. It marks the (prelim-
inary) end of a long series of failed theories formulated by the most distinct physicists
(including Einstein, Bohr, Landau, Bloch, Brillouin and Feynman) led astray by their
desperate attempts to formulate a microscopic explanation of superconductivity [Sch10].
Although the BCS-theory was the first microscopic theory, some phenomenological de-
scriptions already came about (shortly) after the discovery of the Meissner-Ochsenfeld
effect [MO33]. These include (among others) the work of Gorter and Casimir [GC34],
the London equations [LL35] and the Ginzburg-Landau theory [ GL50]. One of the most in-
teresting “failures” to derive a theory of superconductivity is probably the one by Feyn-
man, who correctly pointed out that the superconducting state is impossible to derive
by means of perturbation theory [Fey57]. Ironically enough, we will make extensive use
of perturbative formulations in (Chapter 5) and (Chapter 6) that are, however, supple-
mented by the idea of renormalization that was only employed to quantum many-body
problems starting from the early seventieth [Wil71a; Wil71b; WK74]. A valid theory of
(conventional) superconductivity is required to explain five properties [BCS57] :

second-order phase transition at the critical temperature T,

exponential temperature dependency of the electronic specific heat for T < T,
[Cor+54]

Meissner-Ochsenfeld effect [MO33]
e infinite conductivity

e dependence of T, on the isotopic mass [Max50; Rey+50]

Bardeen, Cooper and Schrieffer succeeded in formulating such a theory based on the
concept of Cooper pairs . A Cooper pair is a bound state of two electrons in a singlet (1, )
with opposite momenta (k, —k). Leon Cooper showed in an earlier paper that such a
bound state arises in a Fermi gas with arbitrarily weak attractive interactions between
electrons [Co056]. Schrieffer was then able to write down a product wave function of
Cooper pairs for the superconducting ground state by giving up the requirement of hav-
ing a system with a fixed number of particles. The chapter is comprised of three sections.
The (Section 2.1) about the Cooper problem shows how two electrons above a quiescent

13
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Fermi sea can lower their total energy and form a bound state. This is the basis for the
conventional BCS-theory in (Section 2.2) that builds up the superconducting ground
state by a coherent superposition of Cooper pairs. (Section 2.3) introduces the concept
of purely electronically mediated pairing in absence of any attractive phonon-electron
interaction by having Cooper pairs with finite angular momentum in singlet as well
as triplet spin states. Finally, (Section 2.4) analyzes the structure of these generalized
Cooper pairs and prepares the foundations for pairing in absence of spin rotation sym-
metry.

2.1. Cooper problem

Consider two electrons in the continuum with positions r; and r,, which interact via the
potential V (|r; — r,|) that only depends on their relative distance. The time-independent
Schrodinger equation for that problem yields

Hp (11,09,15,07) = Ep (11, 04,12,05) (2.1.1)

where the two-particle wave function can be split into orbital and spin part (since the
Hamiltonian is spinless and commutes with both the spin and orbital angular momen-
tum operators SZ and L2, respectively), i.e.

P (11,01,1p,02) = ¢(11,15) ® x (01,05) . (2.1.2)

Since 1 must be antisymmetric with respect to exchange of the electrons, the orbital
part must be symmetric and the spin part antisymmetric or vice versa. However, if we
limit our discussion to the case of an antisymmetric spin singlet (symmetric triplet) part,
the orbital wave function must be symmetric (antisymmetric). The Hamiltonian may
be simplified by transforming to the center of mass reference frame: !

pZ p2
H = 2 +V@E = (Z + V(r)> ¢(r) = Ep(r) (2.1.3)

withr = 1 — 1, and # = %. We can further simplify the Hamiltonian by going to
momentum space via

2 2
IThe original two-particle Hamiltonian / = ;—;1 + ;—fn + V (Jr; — 1,|) can be written in terms of the equiv-

2
alent effective one-particle problem H = ;—}4 + V(r) with the relative coordinate r = r; — r, and the
"My mlfmz

reduced mass p = o2k = % [GPS01], which makes sure the commutator [r, p] = i is still valid.

14
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1

S f dkerpk) . (2.14)

1 —ikr
pk) = W fdke k $(r) and ¢(r) =

The limitation to a singlet state requires ¢ (k) = ¢(—k) to ensure a symmetric orbital
wave function w.r.t. particle exchange, i.e. ¢(ry — 1) = +¢(r, — 7). The transformation
of V(r)¢(r) is most conveniently taken care of by the convolution theorem [ Arf85; BB86]
resulting in the Schrédinger equation in momentum space

(hk)* _ 1 , N e
( 7 —E)qb(k)_—mjdk Vik-K)pkK) . (2.1.5)

The interaction apparently only depends on the momentum transfer of the scattering
process. It is reasonable to assume that the overall direction of k and k" does not matter
for the value of V (k — k') but only the angle between both momenta. 2 Since only the

inner product is invariant w.r.t. rotations, we have [k — k'| = \/ k2 + (k’)2 —2cos () kk’
with v = £ (k, k') and k = |k| and k" = |k’|. Therefore, the interaction may only de-
pend on k, k" and the angle ¢, i.e. V(k—-k') = V (k,k’,7). Hence, we can expand the
interaction in terms of Legendre polynomials P;(x):

o0

V(k-K) =) (2+1)V;(kk)P(cos(7)) (2.1.6)
1=0

where the index [ serves as a label for the different angular momentum contributions
3. Later, when inserting the above back in the Schrédinger equation it will turn out the
be advantageous to express the Legendre polynomials in terms of spherical harmonics
YL, (6, ¢), splitting further up the angular momentum contributions into different pro-
jection indices m. This can be done by means of the spherical harmonic addition theorem
resulting in (cf. [MS99]) 4

2Suppose we had e.g. the momenta k = (5,3,-1) and k' = (=3,2,2), which results in V' (8,1, -3). If
we further assume an interaction of the form V' (q) = g3 — 24, + g, it would indeed matter what the
overall direction of momenta is, since V (q) = 59 # V (—q) = 69. However, this represents a highly
unphysical form of an interaction.

% The angular momentum coefficients (and correct normalization in terms of angular momentum indices [
2

> 2n+1

gration over polar and azimuth angles [ dQ) = [J "d¢ fon d@sin(6) (using the substitution u = cos(6)).

A simple calculation determines the coefficients to be V; (k, k') = ﬁ [dQ V (k—K') P, (cos(7y)).

* The spherical harmonics are defined by Y/, (6,¢) = ‘/21_21 E;IZ;P;”(COS(G))E‘”WP with P (cos(6))
being the associated Legendre polynomials [CS51]. They satisfy the spherical harmonic addition theorem
[Edm96] , i.e. Py(cos(7)) = == Y* YL (0,¢)Y., (6,¢) where 7 being the angle between two

21+1 m=—1
vectors whose direction are gix;en by (6,¢) and (¢',¢’). In general cos(y) = cos(0)cos(8') +
sin(6) sin(6") cos(¢p — ¢'), which simplifies to cos(y) = cos(6) when assuming that the second vec-

tor coincides with the z-axis, i.e. ' = 0.

in the expansion can be derived by means of the orthogonality [ _11 P,(x)P,,(x) = 6,,» and the inte-
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V (k- k’)_47rZVl (k, k") Z YL (6,0)YL, (0,9 (2.1.7)

m=—1

where we defined 0 = 6y, ¢ = ¢ and 0" = O, ¢’ = ¢y. The two-particle wave
function in momentum space can be expanded by [Jac99, Chapter 3.5]

&)

+1
pI) =) > PO (6,4) (2.1.8)

=0 m=-1

We are now in the position to insert the representations of the interaction and wave
function in terms of spherical harmonics into (Equation 2.1.5). The integration over k' is

written in terms of spherical coordinates [ dk’ = [dk’ [Q = [° dk’ d(p Jo (k" )? sin(6),
which enables us to employ the orthonormality of the spherical harmomcs and obtain

Zsk—E)Z Z P (OYL (8, ¢) = 3/2f dk’ 4n<k'>ZZvZ (k, k) Z P (kOYL (6,9)

1=0 m=—1 m=—1

(2.1.9)

(rko)®
2p
interested in the different orbital angular momentum channels but not the resolution
into the projections, we define the wave function component associated to a particular

channel I by ¢,(k, 0, ¢) = Zfﬂ:_l G (k) YL, (8, $). Hence, we get

where the kinetic energy of two free particles 2¢; =

is used. Since we are only

(Zsk—E)Z¢l(k 0,¢) = mf dk’ 47r(k’)ZZVl (kK'Y ¢ (K',0,¢) , (2.1.10)

Due to the spherical harmonics being a basis with orthonormal properties the (Equa-
tion 2.1.10) must be valid for every single component / as well (where we may omit the
remaining angular dependencies for now). Therefore, we obtain (cf. [Leg75])

(2¢ — E) ¢y (k) = — = 3/2f dk’ 4t (K)2V; (k,K) ¢y (k') (2.1.11)

which is an eigenvalue equation determining the wave function for a particular or-
bital angular momentum / and the energy E of the two electron system. We are looking
for any solutions of this equation that feature E < 0 and therefore correspond to a bound

5The orthonormality of the spherical harmonics with respect to I and m is given by
deY (9 (p)an (9 (P) - 5ll m,m’ [San04]
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Figure 2.1.: (Figure 2.1a) Illustration of the Cooper problem featuring two electrons with op-
posite momenta and a net attractive interaction due to phonon exchange within a
narrow energy shell above the Fermi level. (Figure 2.1b) The “traditional” BCS-
interaction is given by a rectangular potential well of depth V|, in energy space lo-
cated at the Fermi level. The energy E of the two-electron system exhibits a sharp
change of behavior at VyD(er) = 0 that is responsible for the Cooper instability. The
green graph shows the “exact” dependency in (Equation 2.1.17) while the magenta
curve is the approximation for a small negative (attractive) interaction. A net attrac-
tive interaction between the electrons V|, < 0 - no matter how small - will ultimately
result in an energy eigenvalue E < 0 and the formation of a bound state.

state of the system. Let’s consider a (uniformly) repulsive interaction V in real space,
transforming to Vyé6(k — k') in reciprocal space, which is itself expanded in terms of
Legendre polynomials with the coefficients V; (k, k") = %(5(k — k")P;(0) with P;(0) be-
ing the I-th Legendre polynomial at abscissa x = 0. Inserting into (Equation 2.1.11) we
find that there cannot be any bound state with E < 0 and even for a small attractive
interaction below a certain limit there won’t be any negative energy eigenvalue.

So far we exclusively considered two free particles in vacuum. We will now introduce
a filled and unimpeded Fermi sea into the presence of the two electrons. As a conse-
quence, the two original particles have to be positioned above the Fermi energy. How-
ever, we won't consider any interaction between the electrons in the Fermi sea and the
two original ones but retain the interaction between the two electrons themselves (cf.
(Figure 2.1a)). The eigenvalue equation (Equation 2.1.11) is still valid, but, however,
we have to limit all momentum summations to momenta larger than the Fermi momen-
tum. The energy of the two electron system in its new environment seems to have the
lower bound 2¢f. Referring back to (Equation 2.1.11) we now have (cf. [AM61])
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

]‘ OO / N2 / /
(%k—m¢ﬂgz_65§5&}M4mk>wwx)@@> , (2.1.12)

with the integration restricted to momenta above the Fermi level. We assume a con-
stant interaction between the two electrons, that may arise due to exchange of phonons
(see [Fro50; BP55; Mig58; Eli60]) and is assumed to be present in a narrow energy shell
near the Fermi surface:

Vo , kp<kk <kp+ks

, (2.1.13)
0 , otherwise

v&—qu{

with the width of the shell being very small compared to the Fermi level, i.e. ks < k.
It has been shown that this interaction can be attractive as a net result of phonon ex-
change and screened Coulomb repulsion when the energy difference between the elec-
trons involved is small, i.e. ey — €)s| ~ kgT [BCS57]. In a normal state metal with time-
reversal symmetry the associated momentum states are always given by |k) and |—k).
However, we may note that an interaction of this exact mathematical form implies an
highly oscillatory behavior in real space because of the Fourier expansion of the rectan-
gle functionAssuming an interaction of this form in (Equation 2.1.12), will restrict the
solutions to the | = 0 channel and cancel most of the integral but the thin momentum
shell above kg. The integration over the orbital angular momentum wave function pro-
duces a constant that may be canceled by doing the same integral for the wave function
on the left hand side as well, i.e.

kp+ks kp+ks 47tk2 V kp+ks
dk k2¢, (k) = — 0 dk’ (k)2 (k'
J. oy == [k A k)
kp+ks 47tk? Vo
1=— 2.1.14
< K (27022 26 — E ( )

Due to the presence of normalization factors is turns out to be convenient to use an
energy instead of an momentum integration, i.e. ©

1=-@2m*? Yo (ertes 4. D&

2.1.15
2 Jey 2 -E (2.1.15)

The density of states at the Fermi level is finite and can be approximately assumed to

¢ The energy vs. momentum integration substitution produces the differential dk = ‘{ % %ﬁds, which
47tk?

P dk = %D(s)ds with the density of states (taking into account both spin states) D(g) =

(@)3/2 Ve
h2 272

gives
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2.2. BCS-theory

be constant. This is in contrast to the case of two free electrons that had zero density of
states at the lowest possible energy due to the Ve-dependence of free particles in three
dimensions. Performing the integration we obtain

VoD 2
1=— <27T)3/2 #m (1 + Zg;j E) ) (2.1.16)

and finally find the energy eigenvalue to be

Vg—0_
E =2 25 4 2(s e exp[ 2 ! D (2.1.17)
[ N = F~& - , (2.1
e (2,33/2 v0£}<sF> 1 )32 |VolD(er)

with the curious dependency on V(D(¢ep) that is shown in (Figure 2.1b). At zero in-
teraction Vj = 0 the energy eigenvalue exhibits a distinct cusp, where it jumps from
2(ep + €4) to a value slightly below twice the Fermi energy. Therefore, already a tiny
attractive interaction will lead to a bound state of the two-electron system. This phe-
nomenon is known as the Cooper instability. Apparently, it is possible to construct a
two-particle state with an energy that makes this state favorable compared to putting
the two electrons in the lowest available states above the Fermi energy. Furthermore,
if it is energetically favorable to create such a state from two electrons, it appears to be
even more favorable, to let more electron pairs condense into this state. So far, we fo-
cused on the case [ = 0, but we may easily generalize the above result to channels with
I = 1,2 by introducing an appropriate interaction that produces non-zero components
in respective expansion coefficients V; (k, k") (cf. [AM61]). However, we should keep in
mind what kind of approximations and restrictions we introduced to obtain this result:
i) assuming zero temperature ii) neglecting any interactions between the two electron
and the Fermi sea. Therefore, we have to find a new ansatz to get rid of these restrictions.

2.2. BCS-theory

The “traditional” BCS-theory explains superconductivity and its associated phenomena
by introducing the concept of Cooper pairs that form a coherent condensate due to an
effective attractive interaction mediated by phonons [Mig58; De 89]. Like in the pre-
vious section discussing the Cooper problem we assume a constant interaction between
electrons that is present in a small energy shell above the Fermi level. The Hamiltonian
yields

_ t t ot
H = Z EkCl oClor — 8 Z Clo Cli 1Ok 1€, (2.2.1)
k,o k k'

where we denoted the attractive, isotropic coupling constant by ¢ > 0. We are allowed
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

to neglect all interaction except the one in the Cooper channel because the available
phase space (for a low-energy theory) is much larger for k = —k than for all other
states with k # —k. In order to calculate the resulting one-particle spectrum we apply
mean-field theory . The essential idea of BCS-theory is to introduce the “off-diagonal”
expectation value

by = <C—k,Tck,i> i = <c1t,lcik,T> , (2.2.2)

which is defined with respect to the (unknown) eigenstates of (Equation 2.2.1) and
which is usually zero in the normal state since the normal state Hamiltonian commutes
with the particle number operator. However, in the superconducting phase this mean-
tield acquires a non-zero expectation value, since the superconducting state is a coherent
superposition of Cooper pairs [BCS57]

WJBCS) = 1_[ (uk + vkclt,TCik,l) 0) (223)
k

where the normalization fixes the coefficients (¥pcs|¥pcs) 11 |uk|2 + |vk|2 =1
and we get (Ypcslel chy i |¢¥pcs) = iy Using the definition &y = (c_y 1, — i) the
interaction term in (Equation 2.2.1) can be written [ Wei07 ]

+ _(pt o st _pt + + +
ck,lc—k,Tc—k’,Tck',l = (bk + 51() (bkr + (Sk’) = bkbk’ + bkék, + 5kbk’ + 5k5k'
~ bt + tp _ _pt + t ot
~ bkbk’ + bkék’ + (Skbk’ = _bkbk’ + bkc—k’,Tck',l + bk’Ck,lC—k,T ,
(2.2.4)

in which we assume the fluctuations §; to be small and therefore justifying the ne-
glection of terms quadratic in the fluctuations, i.e. §{8 ~ 0. By defining another -
which will later become an important entity - “short-hand notation”, i.e. A == —g >, by
we squeeze the (interacting) Hamiltonian into its final (non-interacting) shape (rename
k < k' in the second term of the last equality of (Equation 2.2.4))

_ + t + ot +
H = Z &0y o Cl,0 + ATC g g0 B ey — g Z biby . (2.2.5)
o ok’

The resulting Hamiltonian is comprised of single-particle terms only and maybe diag-
onalized by employing the Nambu spinor notation Cy := ( Ci s cik’T) [Nam60; And58b |

(and fermionic antisymmetry {cg)cf};)} = 6, o) and implying degeneracy and inversion

symmetry on the single-particle spectrum ¢y ; = ¢y | = €_y ;
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2.2. BCS-theory

Hpcs =Y (cf jeoir) (Zli A ) ( e ) . (2.2.6)

.I.
M —€K C—k,T

The new quasiparticle energy is obviously given by Ey = i\/si +|A]®, whereas the
new eigenstates 7 that diagonalize (Equation 2.2.6) are a superposition of electrons
and holes, i.e.

A

U = ————

Tk, U O ([ Gk . V2E, (B~

<%+( +> = U Gy = <_5k ﬁk> <C+ kl with . a0 , o (227)
— -k k= B

where the normalization is fixed by the requirement |uk|2 + |vk|2 < 1 and we chose

an arbitrary (but simple) phase for the coefficients. We take the single-orbital Hubbard
model on the square lattice

H=t Z cle; = Z — 2t (cos(kx) + cos(ky)) doe (2.2.8)
(i,j) k =€k

as an example to illustrate the implications of the calculations above. (Figure 2.2)
shows the normal (¢;) vs. the superconducting (Ey ) state dispersion and the momen-
tum dependence of the eigenstate components u, and vy.. For example, at the I' point
the new quasiparticles 7y , are of pure hole character 1, = 0, while at X we have equal
electron and hole contribution and at M the quasiparticles have sole electron charac-
ter (cf. (Figure 2.2b)). In order to justify the introduction of the mean-field parameter
(Equation 2.2.2) a posteriori we have to actually calculate the corresponding expectation
value w.r.t. Hpcg (Equation 2.2.6), which is

<Ck,lc—k,Te_ﬁHBCS >
<Ck,1C_k,T> = <8_5H‘BCS>

(2.2.9)

This is most conveniently solved by rewriting the expectation value in terms of the
eigenstates of Hpcg, i.e. the new quasiparticles by means of (Equation 2.2.7) and their
inverse [Tim12]

(ik/l ) - (ﬁk _Uk) (%ﬁ) (2.2.10)
€k Uk Ui ) \Vk,
transforming the expectation value to
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect
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Figure 2.2.: (Figure 2.2a) The hubbard model 2.2.8 with its dispersion in the normal state (A = 0
and E,. — ¢) and the superconducting state (A = const > 0 and E,.). We set the con-
stants t = 1.0 and A = 0.9. (Figure 2.2b) The squares of the components 1, vy of the
eigenstates always add up to one and we see how the mixture of electron and hole
states in the quasiparticle states depends on the momentum. Particularly at the (nor-
mal state) Fermi momenta we see exactly the same electron and hole contribution to
the quasiparticle state (which is the case for e.g. X and the center betweenI" and M).
The quasiparticle at I' and M has pure hole and electron character, respectively.

= <(ﬁk7k,T - Uk’)’;:,l) (Uk’ht,T + ﬁk’Yk,¢)>
= (W ;) + (P rome) — <|Uk|271t,ﬂf£,T> — (T 1)

= mow (N7 ;) — (8 1 71)) (2.2.11)

<Ck,lc—k,T>

Using the thermal expectation value for the number operator <’)/ik,T7—k,T> = n(Ey)
and <’)’k,l71t,1> = <1 - 71J2,¢’Yk,l> = 1 —ng (Ey) of the new quasiparticle (where ng (Ey) is
the Fermi-Dirac distribution), we find

(ciicoir) = Wi (1 —2ng (Ey)) (2.2.12)

Herewith, we are able to express the self-consistency condition of the gap function (that
was introduced before (Equation 2.2.5)), i.e.

E _gE
1 _ —1+ePE —L"B2+L’ F3 _

7 : Di ; -
The Fermi-Dirac function may be expressed by 1 — 2ng(E) = 1 — 21+e*ﬂE = e T Tt T

tanh (ﬂg) where 8 = ﬁ

B

22



2.2. BCS-theory

y A (1 —2ng (Ex))

A=-g) mo (1 -2ng (Ey)) = —g 2,
K

k
_ A BEx

For a momentum dependent Cooper pair interaction we have (using the abbreviation
Vie-kx,—k = Vi)

Vi A BEw
A = — kz oE tanh (T) . (2.2.14)

We take a look at certain physical limits that provide a considerable simplification of

the gap equation, e.g. in the zero temperature limit T — 0 we have (limy_,q tanh (ﬁ%) =
1)

View D ViAo
Ae=-Y 1;; Kooy e (2.2.15)
KooK K 2ye2, + Ay

or the limit of infinitesimal gap amplitude A — 0 with lim,_, Ey, = ¢, and we get the
“linearized” gap equation

Vi ko tanh < % )

Ay = — kZ 50 Av . (2.2.16)

that reduces the upcoming task to solve the gap equation to a simple eigenvector
problem. We try further evaluate the gap equation with constant interaction. In (Equa-
tion 2.2.13) the sum/integral only depends on the momentum through the quasiparticle
energy, which makes it advantageous to rewrite it as energy integral (where we use the
Debye frequency wp as physical cutoff that represents the energy domain of attractive
interaction ¢ < 0 and V| := —|g| > 0) by means of the (normal state) density of states
D(e) (that is assumed to be constant in the considered energy window, i.e. D(¢f) at the
Fermi energy)

Vo +wn . AD(E(e)) BE(¢) VoD(ep) +wp tanh(ﬁEz(s))
8= [ e g e (57 ) =as i [ e
(2.2.17)
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

with E(¢) = V&2 + AZ. This form of the gap equation can be used to approximate the

critical temperature T that defines the transition from the normal to the superconduct-

ing state, i.e. the temperature with A(T.) = 0 which also simplifies ThrrT1 E = el (note
7 c

that B¢ := (kgTc) ™)

lel lel\ 1= PlEl
(01 B f+wD de tanh (ﬁczs ) \S\TH jﬂuD de tanh (ﬁczg ) LZ fﬁCwD/z du tanh (u)
VoD(ep) — J-wp 2l —Jo le] —Jo u

(2.2.18)

. . . d _
The last equation may be tackled by integration by parts where we note that - tanh x =

1 — (tanh(x))? = ﬁ and we get (Bwp > 1)
QBZ Bcwp/2 ln(u)
——=—=|In wp/2) tanh (Bwp/2) — dy ————— 2.2.19
Vw@)[<mp> (/) . P (22.19)

The integrand of the remaining integral decays exponentially and therefore justifying
to send the upper limit to infinity, which results in a definite integral that is

oo In(u) T
dy ———— = —y+In— , 2.2.20
J.O (Cosh(u))2 7 4 ( )

with the Euler constant « 8. Using it gives

QBZ _ T ZIBCwD
the estimate for the critical temperature in the weak-coupling limit
2e7 QBZ ) ( QBZ )
kgTc = —wpexp| ———=— | # 113387 wpexp | ——=— | . 2222
BT Tm P p( VoD(ep) DP | ~ 7 pen (2222)

By doing some numerics we may also determine the temperature dependency A(T)
of the gap amplitude derived from (Equation 2.2.17), i.e. using

n 1
8 The Euler y-constant is defined by 7 = lim [Z <E) - ln(n)] ~ 0.57721
k=1
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2.2. BCS-theory

BVe2+A? pe2+A?
VoD(ep) (+wn ta“h( . )”‘“’”T"” VoD(ep) («p tam‘( 2 )
1= DoDEp) frew Lo LoDt e g,

Qpz  J-wp 2JeZ 1 A2 Qpz  Jo JeZ 1 A2

(2.2.23)

and solving for A through a range of temperatures. It turns out, that the gap exhibits
a dependency on the temperature that is in the literature (poorly) approximated by

% = ,/ 1- Tlc [Tin96, Chapter 3.6], which is shown in (Figure 2.3b). First of all, let’s

check out the gap at zero temperature T - 0 &  — o

_ VOD(SF) J‘wD % 1 X:LZ VOD(’SF) J‘wD/Ad 1

1 = X
Qpz Jo A [ 2 AQpz o V1 + x2
A2
VoD wp/& VoD
— 0 (SF) arcsinh (x) P — M arcsinh (a]D/A) . (2224)
QBZ 0 QBZ

Henceforth, the gap amplitude at zero temperature is

w 0 VOD(EF)»l 0
AT =0) = —g :chsch(i) =~ ZwDexp<—i>
. VoD(e VoD(e
smh( VODB(%SF)) oD(eF) oD (er)
(2.2.25)

Although it suffered from a lot of flaws and (crude) approximations, the Cooper prob-
lem calculation already correctly predicted the exponential dependency of the binding
energy on the interaction and density of states at the Fermi level (cf. (Equation2.1.17)),
apart from the factor 2 that only arises in the Cooper calculation. Comparison with
(Equation 2.2.22) provides a universal ratio of zero temperature gap to critical temper-
ature, i.e.

AMT=0)
T o~ 1.76388 . (2.2.26)

The behavior of the integrand in the gap equation in (Equation 2.2.23) and its depen-
dency on temperature is shown in (Figure 2.3a). The temperature dependency of the
gap amplitude on temperature and the illustration the zero temperature gap A(T = 0)
and the critical temperature T is displayed in (Figure 2.3b).
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect
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Figure 2.3.: (Figure 2.3a) The behavior of the integrand of the gap equation in (Equation 2.2.23)
in terms of the energy is bell-shaped like and the integrand goes to zero for ¢ —
co. Increasing temperature renders the bell-shape more flat. This already sug-
gests what A(T) must look like. (Figure 2.3b) The temperature dependency of
the gap amplitude exhibits a zero derivative at zero temperature gap and an ver-
tical tangent at the critical temperature T-. While most literature uses a square

root Ay (T) = /1 —T/T, fit for the curve [Tin96, Chap. 3.6.2], the interpolation
Ag(T) = tanh (e% VI./T — 1) A(0) provide a much better agreement [Fra].

2.3. Pairing due to repulsive interactions/Kohn-Luttinger effect

After having discussed the origin of the idea of Cooper pairs and the implications of the
conventional BCS-theory on the superconducting state in (Section 2.1) and (Section 2.2),
we proceed with pairing instabilities that are not due to phonon exchange and uniform
effective interactions but due to purely electronic interactions. In contrast to the “phe-
nomenological” BCS-theory that makes use of a “nonphysical effective potential to de-
scribe the complex Coulomb and phonon-induced interactions between electrons” [ MA62],
we will derive the exact form of the effective interactions of electronic origin from first
principles. In particular, we will review the Kohn-Luttinger effect and see how pairing
may arise from short-range repulsive interaction between electrons [KL65]. It was al-
ready noted by Anderson and Morel, who calculated the critical temperature including
both phonon exchange and Coulomb interaction, that essentially all metals should be-
come superconducting at sufficiently low temperatures [MA62]. However, the Kohn-
Luttinger effect is independent of any phonon-electron interaction and shows that gener-
ically any Fermi liqguid must become superconducting eventually when approaching zero
temperature.

Anisolated pair of electrons in the vacuum will naturally interact via a repulsive Coulomb
potential of the form ¢ ~ +e?/r with r being the distance between them. If we place an
electron in a metal, the Coulomb potential will be strongly modified by screening effects
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2.3. Pairing due to repulsive interactions /Kohn-Luttinger effect

in the Fermi gas. This linear response of the electron gas to the (weak) disturbance by the
electron charge can be described by the Lindhard function in the static limit [GV05; Lin54

3 — 3
w=0 €k ~ Ek+qo

where f (¢) is the Fermi-Dirac function and ¢ the single-particle energy of the electrons.
The Lindhard function is most conveniently calculated by introducing a change of vari-
ables in the second term of (Equation 2.3.1) and making use of the rotational invariance
for free electrons. °. The integration can be done analytically and results in the Lindhard
functions

2
© (0 ok k2 — (1 + 2k
XL%D(IqI)'“l‘% 7 - @2 P ~ ke + = v/(Z) IH:Z ZkF: ’
— <A

(2.32)

for free electrons in two and three dimensions at zero temperature. Their momentum
dependency is shown in (Figure 2.4a). Since the Fermi surface is spherical, only the
absolute value of q matters. Obviously, the Lindhard function in one, two and three di-
mensions shows a characteristic change of behavior at the momentum |q| = 2kr. How-
ever, we are interested in the real space structure of x,(q), i.e. its Fourier transform
Xo(r) = (27‘()_d/ 2 [dq ey -(q) with d being the dimension. x,(r) exhibits a long-
range oscillatory behavior that is referred to as Friedel oscillations. So far, we only con-
sidered the cloud of free electrons with spherical Fermi surface and ignored any lattice
effects. Taking into account electrons living on a lattice will render the Fermi surface
non-spherical and turn the continuous symmetry of the Lindhard function w.r.t. to ro-
tations around the origin into a discrete symmetry that is determined by the lattice point
group (cf. (Figure 2.4b)). Although we introduced the susceptibility x,(q) as a result
of linear response theory, it can as well be interpreted as one particle-hole term of the
perturbative expansion of the two-particle vertex up to second order. Hence, x,(q) also
functions as a diagram contributing to the effective interaction between two electrons in
the normal state. Assuming the only finite contribution to the two-particle interaction
I' to be the Lindhard function, we find I _j .1 _v = U%x(k — k') with U being the bare
Coulomb repulsion. By making use of the attractive regions of the long-range oscilla-
tory interaction, we may expect to obtain a pairing instability at sufficiently low tem-
peratures. For a realistic normal state interaction the long-range oscillatory tail of the

9 Renaming the summation variable k — k + q in the second Fermi function, we find
"2 40
-k

—[dk flexa)Sewrar)  _ [ dk ( flewe)  flewe)

- ) For free electrons we have g, =
k+qo~Eko ko~ Ek—qo

ko~ Ek+qo
h2
2m

and get g, +qr — Eko (iqu+ qz). At zero temperature, we are left with x,(q,0) =

m m 242 . . .
zh—z f\k\<kr dk (thm + m) = zh—z f\kl<kp dkm, which reduces to an integration over k = [k
and the angle between k and q, that is cos(8(k, q)) (cf. [Mih11]).
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Figure 2.4.: (Figure 2.4a) The Lindhard function yx,(q) for free electrons exhibits a characteris-
tic cusp at the momentum 2k in all dimensions. Its Fourier transform x,,(r) has a
long-range oscillatory behavior that is referred to as Friedel oscillations [SG05]. (Fig-
ure 2.4b) The Lindhard function of the extended two-dimensional Hubbard model
on the square lattice with & = —2¢ (COS(kx) + COS(ky)) —4t' cos(k,) cos(ky) —pand
the parameters t = 1.0, ¢ = —0.1, # = —0.25 for nearest, next nearest neighbor hop-
ping and chemical potential demonstrates how the continuous symmetry of x (q) w.r.t.
to the polar angle breaks down to a discrete symmetry given by the lattice point group.

interaction is expected to decay more slowly than the bare direct Coulomb repulsion.
Therefore, it seems reasonable to assume that a pairing instability arises in a angular
momentum channel with L > 0.

After having captured the general idea we want to proceed to some more detailed state-
ments about the superconducting instabilities arising from repulsive short range inter-
action in particular in two dimensions. The original treatment of Kohn and Luttinger
calculated and found the logarithmic divergence of the effect exclusively in three dimen-
sions. About twenty years later, after the rise of the high temperature superconduc-
tors, the interest in the two dimensional version came about. Although, the effect was
believed to be absent in two dimension (due to the fact that the Lindhard function is
constant for momentum transfers smaller than twice the Fermi momentum g < 2k,
which can only give rise to s-wave symmetry pairing with L = 0), it was shown that
higher order terms actually can generate attractive regions in the effective interaction
giving rise to pairing instabilities with higher orbital angular momentum [Chu93]. The
general procedure is to calculate the diagrams up to second order contributing to the
interaction and to analyze the resulting effective two-particle vertex by expanding it in
terms of orbital angular momentum eigenfunctions. Kohn and Luttinger only claimed
that the coefficients of this expansion corresponding to odd angular momentum L must
be negative and therefore trigger an instability. However, it has been shown that the
scattering amplitudes may be attractive independent of L, where L can be any (higher)
angular momentum. In (Chapter 5) we will return to this idea in a more formal way by
explicitly finding and calculating all contributing diagrams as well as generalizing the
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2.4. Generalized multi-band BCS-theory

approach to multiple orbitals and the spin degree of freedom. By introducing the idea
of logarithmic renormalization to this perturbative treatment, we are able to give explicit
expressions for the critical temperature. On the contrary, one has to keep in mind, that
these calculations may only be employed to infinitesimal weak bare interactions, which
is mostly not the case for modern strongly correlated electrons systems of current inter-
est.

2.4. Generalized multi-band BCS-theory

Hitherto, we introduced Cooper pairing in the two-particle angular momentum channel
L = 0 (s-wave) (Section 2.1), worked out the corresponding BCS-theory (Section 2.2)
and motivated the extension to higher angular momentum pairing L > 0 by the idea of
Kohn-Luttinger, which may provide the microscopic mechanism for such Cooper states
(Section 2.3). In order to unify and generalize these concepts we introduce an effective
interaction that depends on momentum and band indices, since an L = 1 state requires
antisymmetry in the spatial domain, making k-dependency inevitable (assuming intra-
band pairing). BCS-theory relies on the validity of the approximation that the effective
interaction that is responsible for the formation of Cooper pairs is the only relevant in-
teraction of the Fermi liquid [And84b]. Therefore, the corresponding Hamiltonian is
denoted by

_ ot b1 b0 b TS+ 4

M=) (&r — 1) Gt + D0 D W e Ckbir, C kb, C kb 75 k' 7

¥ - K b 71,57
75

(2.4.1)

where the quantum numbers k, b and & refer to momentum, band and (pseudo)spin.
For the definition of pseudospin we refer to the case of centrosymmetric spin-orbit cou-
pling and (Section 3.2). Introducing the concept of pseudospin allows us to employ
the following results for spin-rotation symmetric as well as centrosymmetric spin-orbit
models by simply replacing spin ¢ with the pseudospin label ¢ and vice versa. In
both cases, we can actually drop the (pseudo)spin index in the single-particle term,
ie. &5 = €1p , Since we assume spin degeneracy. Although we start from a band basis
we could equally well employ an orbital basis, that, however, would disguise equal-
energy pairs, which we want to restrict our analysis to. Note that, although we have
only two different momenta we may have all kinds of (pseudo)spin combinations aris-
ing in the interaction term in contrast to conventional BCS-theory as this only takes into
account time-reversal partner states. As long as we restrict our analysis to equal energy
pairing, a single Cooper pair must be hosted by a single band in order to make sure that
the Cooper pair’s constituents are energetically degenerate. Therefore, only two differ-
ent band indices b and b’ arise in the interaction term (Equation 2.4.1). Later within
this section, we will briefly discuss the possibility of interband pairing and the exotic
symmetries it gives rise to (see (Table 2.1)). The (effective) interaction must satisfy the
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

constraints of fermionic antisymmetry

b, b,ap b T Y b b a b T, bbb ah b baaba b5l
Ui w1 = —Ule, Uy 1 = +U ok e
(2.4.2)
and self-adjointness
e A e e o
Ui w1 = U 10k, k : (2.4.3)

where we exchanged the pair of “outgoing” with the pair of “incoming” particles. The
bar denotes complex conjugation z = a + ib — z = a — ib. Note, that these requirements
for the interaction vertex must be satisfied independent a single or multi-band model,
spin rotation symmetry or the specific basis the Hamiltonian is given in.

2.4.1. Self-consistent BCS mean-field theory

In the spirit of finite “off-diagonal” expectation values we define the mean-fields

favzor = (Cwstivr)  fare = (ChpsCipr) (2.44)

that feature arbitary (pseudo)spin combinations of & and &’ and are used to approx-
imate the interaction term (in (Equation 2.4.1)) by neglecting all terms quadratic in the
fluctuations S5 = C_ypaCrps — frvse (and its adjoint 6f, -, = cf, - c'\ . — fipss)
that are assumed to be small, i.e.

t ot —(Ff - 4+t
Cxbir, € kb, C-K' b o5 Ckb' 5y = (fkbﬁ’zﬁ’l + 5kbfflaz> (fk’b’&;&; + 51«1;74:4)

T — + t
= faver,o v ey + fiboryor Ov ey + O, fib o, + Ospir o, Oty 7y,
<1

Q

— — t ot
— fiwboryofwv ooy Hiwo,a, C-ob oy vy + Copr, e Sl o (2.4.5)
ec

While (Equation 2.4.5) provides a fairly intuitive derivation of the mean-field approx-
imation to the interaction term, a mathematically more rigorous solution is to rewrite
the theory in terms of a path integral formulation, employ a Hubbard-Stratonovich trans-
formation and use the saddle-point approximation to find the mean-fields [Kar07]. This
then shows, that the fluctuations around the mean-fields actually scale intensively with
the volume and therefore vanish in the thermodynamic limit [Col15, Chapter 14.3]. We
insert (Equation 2.4.5) in (Equation 2.4.1) to get rid of the two-particle term and end up
with the mean-field BCS Hamiltonian 1°

10Tn particular, we took (Equation 2.4.1) and did
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2.4. Generalized multi-band BCS-theory

1 -
_ + +
Hpcs = Cib CrepCibir +3 Z (Akba'& C_kbrCibe + Db Ckb;fC_kbar) ,
Kb,o Kb &,0
(2.4.7)
where we neglected the complex number and defined the gap function
(Equation 2.4.2)
. b,1,b,55,b",05,b',5; 1 b,o4,b,0,,b',07,b",0)
Mooy i==2 Y W Moo = 2 Y WAL Phovae
Kb &},0, Kb &),0h
(2.4.8)
and its adjoint
b,o1,b,0,,b',05,b", 07—
Akbtrlaz =-2 Z Z U —k,—K' K 2 1fk’b’(réc”7{
K',b' 71,0,
(Equation 2.4.2) and (Equation 2.4.3)
1 v’ Ul,b ,05,b,01,b, 172—
= 2 Z Y U v - (2.4.9)
v &,

We introduced the seemingly arbitrary factor —2 to allow for a more convenient no-
tation in terms of Nambu spinors . Since Ay p, 5, 7, Will become the main focus of our
discussion we will make some remarks about its definition. In contrast to the gap func-
tion of the conventional BCS-theory (Equation 2.4.8), it has additional indices that not
only introduce a (possible) momentum dependency but also a dependency on band
and (pseudo)spin indices. Furthermore, the gap function may even not be diagonal in
(pseudo)spin space which allows for the occurrence of any singlet or triplet state (but
not a mixture of both, since we keep inversion symmetry, so far (see (Section 3.4))). In
order to diagonalize the BCS-Hamiltonian and determine the its eigenmodes we employ

bylby2h01b’52 — _— t +
Z Z u, 1K, —K (_fkbfrZEfl Kb oy, +fkb&2&1C—kfb'&§Ck'b'&; + Ckbﬁlc—kbbsz’b’fréfri)
kb Kb
01,02 51,07

b,01,b,09,b" 00,0 o b,o1,b,&2,b', &Y ,b Fh
= - Z Z Uy i, 2w FrvoryorSrevoyor + Z Z Uy i,k Frviryir, CxbroyCuonay

kb Kb Ko b
01,02 571,05 71,65 01,02
:=KeC 2Ak’b o (ré
b,y b, b5 b5 + 4
+ Y W oot Chvo, v, (2.4.6)
kb Kb
1,02 71,05
1
=5 By oy

where we note that in the second term of the right hand side the (pseudo)spin indices of the gap
function Ay, have the reversed order w.r.t. their operator basis to ensure the Hermiticity of the Hamil-
tonian.
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

the Nambu formalism and get

Cxvi 0 Ay

i1 7l

1 0 &oi Mo Dwi
Hpeo == Y CF I A T (2.4.10)

e Zkz,b A Az Dar —Gr 0 | €
At Dot 00 =Gt
where we defined

ct o= (ct ot T 2411
kb = (Cka’Cka’C—ka’C—k,bI) . (24.11)

and the constant complex number (cf. (Equation 2.4.6))

o b,o1,b,0,,b" 01,0, 07—
K = Z Z Uy w2 hao,o fuvoye (2.412)
kb X0
1,02 07,0,
which eventually vanishes for particular symmetries and structures of the gap func-
tion. We denoted the particular (pseudo)spin degrees of freedom by & € {f, 1} instead
of the purely “natural” spin ¢ € {1, !} as the single-particle Hamiltonian may feature
off-diagonal elements in spin space. For the sake of simplicity in (Equation 2.4.10) and
to more conveniently discuss the gap function we introduce the notation

s D -0
A e (B u) Gy i= (’5ka ) , (2.4.13
K (Akblf AW K0 0 G :

for the spinful gap function and the single-particle dispersion relation. Therefore,
(Equation 2.4.10) becomes

1 N
_ t (kb Dip
Hpcs = 3 ;; Co (Altb _gkb) Caop— K . (2.4.14)

Now, we are able to establish a proper definition of the expectation value for the mean-
fields introduced in (Equation 2.4.4),

Tr (c_pocrpereP'ecs)
fivoo = (c_wvsCive) = —i , (2.4.15)
Tr (e B ’BCS)

which was evaluated in (Section 2.2) in the context of conventional BCS-theory by
(analytically) calculating the eigenstates of the Bogoliubov-de Gennes Hamiltonian (Equa-
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choose

init — Ai=0
Akb = Akb

compare
i+1 i
A =Dl <€

calculate

o = (cwCip) gap function

Axp

Figure 2.5.

Figure 2.6.: In order to find the gap function A , we set up a self-consistent loop that makes sure
that the BCS-Hamiltonian built from the gap function actually produces the exact
same gap function as its off-diagonal expectation value. In principle, we may choose
an arbitary initial gap function. However, by chosing an eigenvector of the Cooper
pair interaction the convergence process is greatly accelerated. This gap function
is used to set up the BCS-Hamiltonian (Equation 2.4.14) and to determine the ac-
tual expectation value (Equation 2.4.15) from it, which is compared to the initial
gap function. Depending on its derivation from the previous one, it is adjusted and
reinserted in the BCS-Hamiltonian until the deviation between two succeeding gap
functions drops below some threshold e.

tion 2.4.10) and expressing the off-diagonal expectation value (Equation 2.4.15) in terms
of eigenstate operators that can be combined to number operators of the new quasipar-
ticles.

2.4.2. Quasiparticle states

Although, we can evaluate the expectation value (Equation 2.4.15) numerically in a
straightforward fashion in terms of the fermionic particle basis Cltb o cikb 5 » it is more
stable and elegant to employ the eigenstates of Hpcg, i.e. the new quasiparticle opera-
tors. Following up on (Equation 2.4.14), we denote the energy of the quasiparticles by
Eyp and use

A e — 0 A
P [SNRAY ) hgcs — Explas) = ( kb~ “kb”0 kb ) , (24.16
BCS ( A (hBcs — Explaxa) Al & — Exp 0 ( )

where 0, is the zeroth Pauli matrix. The determinant of a block matrix M = (zé g)
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

can be evaluated to det M = det (AD — BC) as long as C and D commute, i.e. [C,D] =0
[Sil00]. Since the single particle spectrum ¢y, is spin-degenerate, ¢,;; = {7, We have
Ciw ~ 0g and therefore ¢, commutes with the gap function Ay;,. Henceforth, the char-
acteristic polynomial is given by (in the following we use ¢y, interchangeable to denote
both the 2 x 2-matrix and the scalar quantity ¢y, = G7)

det (hpcs — Eyplyxa) = det [ (&g — Exp00) (=8 — Exp00) — ML, ]

2 2
_ det [(—ffb FE2) 00— ( il = Ao AkbﬁAkngAkbeAkgllﬂ
AstiBiiBariBiais Pt — Bl

2
(=G + Exp)” — (=82, + ERy) Tr (AipAy,) + det (Mg,
Lo, (2.4.17)

where the trace Tr refers to the sum of diagonal elements. Note, that this equation
has four algebraic solutions, in general. Solving successively for (-2, + EZ,) and the
quasiparticle energy E,, provides (inserting the factor 1/2 from (Equation 2.4.14) by
rescaling Ey;,)

1 1 1 2
Ekb = iE\J(:l%b + E Tr (AkbAir(b) + \J(E Tr (AkbAltb)) — det (AkbAltb) . (2418)

In the theory of unconventional superconductivity one distinguishes two types of gap
functions: unitary and non-unitary gaps [SAMO5]. In the case of a unitary gap function we
have AkbA]tb x 0y , the matrix AkbA;Qb has no off-diagonal elements and consequently

2
(% Tr (AkbAltb)) = det (AAl,). Therefore, (Equation 2.4.18) simplifies to the two
quasiparticle energy eigenvalues

1 1
Eyp = J—FE\} 62+ 5 Tr (Bupdy) - (2.4.19)

While the unitary superconductor has only two branches of quasiparticle energies like
in the conventional BCS-theory (Section 2.2), the non-unitary gap splits these eigenval-
ues further into two more bands.

For a unitary gap, we can determine the analytical eigenstates associated to (Equa-
tion 2.4.19) by making the ansatz

Ug = [ [0 %) =4 where uy, v € C2X2 (2.4.20)
U_kp U—_kb

with the requirement U, Uy;, = 14,4 that ensures that the new quasiparticles fulfill
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2.4. Generalized multi-band BCS-theory

fermionic anticommutation relations. The 2 x 2-matrices in the second row are asso-
ciated to momentum —k since Uy, is supposed to transform the vector of operators

T
CLb = (Cltbffcltblfc—kbf' C-k,bl) in (Equation 2.4.11) to the new basis Dy, := Uy, Cyp

with Dl‘:b = <dl+<bT’ dltbl’ d_ka, d—k,bI)T~ In contrast, when finding the eigenmodes of the
simple spinless BCS Hamiltonian (cf. (Equation 2.2.7)) we don’t have to care about
k versus —k assuming a trivial momentum independent state. While the single par-
ticle dispersion ¢y, = {_i; and the quasiparticle energy E;, = E_y; are symmetric
with respect to k, the gap function satisfies Ay, = (A_kb)T (anticipating the result in
(Equation 2.4.24)). For a unitary gap, we choose the 2 x 2 blocks of the (normalized)

eigenstates of hipcg to be

A Eyp —
iy = kb by = (B —Cup) %0 (2.421)

\/2Ekb (Exp — Sip) B \/2Ekb (Exp — Sib)

Note, that the new quasiparticle states in Dy, are in general a superposition of two
electrons and one hole or one electron and two holes. ! The symmetry of vy, is de-
termined by the single particle and quasiparticle dispersions ¢y, and Ey;, and therefore
always transforms trivial, i.e. according to the A, representation of the underlying point
group. In contrast, the symmetries of uy, are fully inherited from the gap function it-
self. For the sake of brevity (and since we’ll calculate them numerically, anyway) we
omit the determination of the eigenstates for a non-unitary gap, which can be found in
[SU91, Appendix A, 305f.].

2.4.3. Parametrization of gap function and d-vector

The spinful gap function Ay, in (Equation 2.4.13) takes into account all (pseudo)spin
channels. In this subsection, we will formulate another (more transparent) represen-
tation of the gap function by making use of the (pseudo-) SU(2) invariance, i.e. the in-
variance of the Hamiltonian under any transformation e~*¢"? with & being the vector
of (pseudospin) Pauli matrices (pseudospin and its associated transformation will be
introduced in (Section 3.3.2)). The possible two-particle states arising from the addi-
tion of two spin-% particles with momenta kq, k, and (pseudo)spins &,,0, are given in
product basis by

1 For example, the third eigenstate, i.e. third column of (Equation 2.4.20) is given by

Cieb 0 Awir Dwt) (Eww — i Sio (Exo — Gi) — (DB )55 —Ewp (Exp — Gi)
s US) = AL fi Biwii Diai 0 o (Bedl)y _ 0
Buii  Bueti  ~kp 0 A i Awit (Exp — v + Cicv) ~ExB 1wt
AkaI AkaI 0 _gkb A—kblf Km (Ekb - (fkb + (:,zkb) _EkbA—kaT

using the eigenvalues E2 = ¢2 + 1 Tr (A,AL, ) = &2, + (AkbAltb)ﬁ for the third equality.

35



2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

. ~ 1 . . . .
Y (ky,01,ky, 02) = E (k1,71) ® |ko, 02) — [kp, 02) ® [kq,07)) (24.22)

where the antisymmetrization ensures fermionic anticommutation ¥ (k,, 05;k,77) =
—Y¥ (kq,0¢;ky,07). In (pseudo)spin space, we obviously have the four possible states
0, 02) € {1,7),[1,T),|T,T),|T,1)}. Assuming spin rotation symmetry, the total spin
S € {0,1} is a “good quantum number” and may be used to classify these four states
by singlet S = 0 associated to % (T, 1) = [I,7)) and triplet S = 1 associated to |7, T),

% (T, 1) + |1, 7)) and [T, T) with projected angular momentum m = +1, m = 0 and
m = —1. These states are obtained by going from product basis to total angular momen-

tum basis by means of Clebsch-Gordan coefficients [ Weil2]. Note, that the triplet states are
even while the singlet state is odd under exchange of both particles. Consequently, when
looking at the entire two-particle wave-function (Equation 2.4.22) (note the “natural”
spins o; # 0;)

¥ (ky, 015k, 02) = [k, ko) ® |1PSGT/TPT> , (2.4.23)

we see that the spin triplet (TPT) state has to feature an odd spatial part [k, k) =
— |ky, k) while the spin singlet state (SGT) involves an even spatial part, i.e. |ky, ky) =
+ k5, kq ), in order to satisfy the fermionic statistics of the total wave function. Taking
into account further degrees of freedom like orbital or band index can give rise to exotic
pairing states with spin and momentum wave functions that are both odd or both even
(cf. (Table2.1)). However, note that the factorization into spatial and spin partin (Equa-
tion 2.4.23) is not generally applicable. As soon as we switch on any spin-orbit coupling,
we will couple spin and spatial degrees of freedom and promote the total angular mo-
mentum | = L + S to be the new “good quantum number”. Spin-rotation invariance is
still preserved with respect to pseudospin transformations (cf. (Section 3.3.2)). These
symmetry requirements have implications on the gap function (Equation 2.4.13) that
corresponds to a two-particle state with zero net momentum k; = k, k, = —k. Asa
consequence, the transformation k — —k corresponds to particle exchange. Treating
the gap function as the total two-particle wave-function we have

_ (B A—kbfl) " (Akbﬁ Akblf) __ T
A (A—kblf A o At (M) - (2.4.24)
Since the set of Pauli matrices o = {cy, 0, 0, 0.} ={09,01,02,03} = [Pau88] forms
a complete basis of C?*? space, we can exploit this property to parameterize the gap ma-
trix Ay,. To this end we introduce the four-vector d* (k) € C* providing the coefficients
for the Pauli matrices [BW63; Sam11]. We choose the singlet part to be described by the
d° element. Since the singlet part is o (Aigz; — Ay5) We require
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2.4. Generalized multi-band BCS-theory

Table 2.1.: We take into account Cooper pair wave functions with three degrees of freedom, i.e.
momentum k, spin ¢ and orbital or band index b. In order to satisfy the overall an-
tisymmetry required by the Pauli principle we can choose one degree of freedom to
be odd and the other two to behave even or all three to be odd. Note, that this classi-
fication is (fully) valid only in the absence of spin-orbit coupling. In the presence of
centrosymmetric spin-orbit interaction, inversion symmetry introduces a definite par-
ity of the gap function but we cannot separately transform spin and orbital degrees
of freedom, anymore. While the “usual” even parity singlet and odd parity triplet
solutions are mostly realized, the “exotic” possibilities of even parity triplet and odd
parity singlet are energetically disfavored (cf. [Hir; Hirl6]). Starting from an or-
bital basis perspective, it is the specific structure of the non-interacting microscopic
Hamiltonian and its eigenstates, which decide if the paired orbital states actually cor-
respond to equal energies and whether these exotic Cooper pairs are suppressed (cf.
[Fis13, Section 4.2]). The zoo of possible Cooper states may be further enlarged by
considering odd frequency pairing [Ber74; BB13; LB17].

momentum k spin ¢ orbital o or band b name
even odd even even L singlet
odd even even odd L triplet
even even odd even L triplet
odd odd odd odd L singlet

3 be =1 0 z
! —d¥, +id dl, +d |
iE o oy = A e i .0-)(7:( kb kb “kb kb | = A
kb 2 kb kb _ 40 z X . 7y kb
=0 . Y ey + diy iy + 1y,

(2.4.25)
Comparison with (Equation 2.4.13) provides
o _1 . 1
ey = 5 (Breit = Biars) iy = =5 (Bras — Biawni)
1 1
iy = 5 (Bt + Duatr) Ay = 5 (B + i) - (2.4.26)

Employing the antisymmetry of the gap with respect to inversion of momentum and
transposition (Equation 2.4.24) yields

0 10 XY,z XY,z
2y =dy, and d5; =—d;" (2.4.27)

which reflects the symmetry and antisymmetry of the spatial part of the singlet and
triplet gap function, respectively. Note, that we denote the total four-component d-
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

vector by dy;, while the zeroth component is d7, and the x, y, z components are indicated
by a bold letter d;;,. Now, that we have a more transparent notation of the gap func-
tion we reformulate the expression AkbAl‘:b in order to see what the difference between
a unitary and non-unitary gap is in terms of the d-vector. Using (Equation 2.4.25) and
assuming a pure spin singlet (SGT) gap we find

OF 0 2
M, = (' 0’ |d0|2) =% oy . (2.4.28)

In contrast, for a pure spin triplet (TPT) gap we obtain

AA+_

(le YR+ P+ id A — idVdE —d*dE + idYdE + dFdE — id dY )
kb —

A — id*dY + A5G0 +idVdE P+ P+ |8 — id d + idvdE
= |dip[op +i (diy x dip) -0, (2.4.29)

where we omitted the momentum and band index for compactness. Apparently, only
triplet pairing can represent a non-unitary gap function while the singlet part is always
unitary. For a triplet gap function to be non-unitary the entity (dkb X Hkh) must be non-
zero which necessarily requires a complex valued d-vector [SAMO09]. In order to provide
a physical intuition about a non-unitary state we consider the spin expectation value (at
zero temperature) ( > (Aep)S|Akp) Where S is the two-particle operator S := §; ® 0 +
0o ®3, and the state |A;, ) is expressed in terms of a four-vector |Ay,) = (Asz, Arp, Az, Arp)-
The two-particle spin operator for e.g. the x-component is given by

~ (Tx®0'0+0'0®0'x 1
Sx = 2 )

o~ oo
— o oo
oo or
oo o
cor~ o
oo or
— o oo
o~ oo
N =
o= = o
—_ 0 o -
[ N R
o= = o

(2.4.30)

With these prerequisites the spin expectation value for e.g. S, of the two-particle state
given by the gap function Ay is

1 _
(BiplSaltio) = 5 [ (g5 +Bgp) (Agp + Agg) + (Bgg + Bg) (M55 + ) |

(Equatzon 2.4.26)

= 2(—idd +idVd) =20 (di x di) - (2.4.31)

For the remaining y and z components we get analogous results that can be expressed

by means of the vector dy;, x dy. Therefore, the spin expectation value for a some
gap function Ay, is proportional to dy; x dy;, and obviously is only finite for a non-
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2.4. Generalized multi-band BCS-theory

unitary gap. As a consequence, a non-unitary pairing state features some finite “inter-
nal magnetization”. Any finite spin expectation value is associated to a particular mo-
mentum k (and band index b) while the net magnetization (averaged over the Fermi
surface) may still be zero. By means of the d-vector, the expression for the quasipar-
ticle energy E,;, in (Equation 2.4.18) can be reformulated in a much more transpar-
ent fashion. The gap matrix with both finite singlet and triplet contributions results
in A Al = |dkb|2¢70 + i(dkb X d_kb) - 0 by combining (Equation 2.4.28) and (Equa-
tion 2.4.29), where the absolute square of the d-vector contains all four components.
The trace and determinants occurring in the quasiparticle energy E,;, are hence given

by

2 4 -2
Tr (MpAf,) = 2ldigl” and  det (AAf,) = ldigl* — |dip x diy|” - (2.4.32)

Putting these results together, the energy E,;, describing the quasiparticle spectra for
both unitary and non-unitary gaps, reduces to the neat expression

1 5 J—
Ewp = ii\/Cfb + |dipl” £ |dip x di| (24.33)

where |d1dJ X d_kb| vanishes for a unitary gap.

2.4.4. Symmetries and d-vector transformations

In order to identify possible candidate d-vectors for certain models, it is advantageous
to consider symmetries and the (possible) restrictions they impose on the structure of
the d-vector. Therefore, we take four types of transformations into account, that are
time-reversal, spatial inversion, (pseudo)spin rotation and point group transformations. To be
able to perform the transformation more transparently, the d-vector is written as

— (40 y T'_ 40 %0 ca gy q 5
dp = (dYy, d,, dyy,dyy) =dp, 20 +df, 2 +dy, §+df, 2, (2.4.34)
where the basis of the d-vector is explicitly introduced in order to distinguish the
transformation of components and basis. The components incorporate the momentum
degree of freedom, while the basis represents the (pseudo)spin degrees of freedom. The
time-reversal operation for spin—% particles is given by ® = —io, K 12 and its inverse is

Q! = ic, K. Hence, the gap matrix transforms by (cf. appendix D)

12 Due to the complex conjugation K the operator @ = —ic, K is non-unitary [Wig12; SN11] [Sch05b,
Chap. 11.4, p.228]. Thus, we have to take care of the fact that @' # ©' and use ©~' = +io, K for all
transformations, since ®~1® = +i¢7yJC(—inJ€) =io,(+i)(=0,) = 0.
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oot TR D-1A, , 6 oot
Z (Bicv) 55 Cepe v — Z (® Akb@);,;,r CkboC kb

S0

S

A —Dligp
( kbi; kb”>cltbﬁcikb&’ : (2.4.35)

Inserting the transformed gap matrix elements into the definition of the d-vector in
terms of Ay;, (Equation 2.4.26) yields the behavior of dy;, under time-reversal. A more
elegant solution is to take the d-vector directly into account and considering that the
vector of (pseudospin) Pauli matrices, as being an operator of angular momentum, must

be odd under time-reversal, i.e. o IR —o, while the zeroth Pauli matrix is invariant, of
course. Note, that the transformation of Pauli matrices only affects the basis but not the
components in (Equation 2.4.34). Therefore, the d-vector must transform according to

. ) T /75— 5—\7
i[dg ooy, =i [(dﬁb, dip,) " - (U'O,U')T] oy IR z[(d?kb, d_kb> - (0o, —O')T] oy

(2.4.36)

Summarizing the above, we have dﬁb EEN d(_’kb and dy, EEN —d_kb: Concerning

the spatial inversion I, we know that the momentum behaves odd, k L, _k and the

(pseudo)spin (as being a pseudo/axial vector) must be even under spatial inversion, i.e.

o -4 o. While the momentum determines the behavior of the components, the Pauli

matrices only affect the basis in (Equation 2.4.34), i.e. the basis is invariant w.r.t. spatial

inversion. Therefore, the properties of the d-vector under inversion are already entirely

given by (Equation 2.4.24),i.e (dY,, dkh)T R (dD,, —dkb)T. In contrast, the transforma-

tion properties of the d-vector with respect to (pseudo)spin rotations require a more
extended analysis. An SU(2) transformation and spin rotation, respectively, is defined
by the operator

S (A, p) = e 99/2 = gy cos (¢/2) —ifi - osin (¢/2) (2.4.37)
where 71 (with 1] = 2?21 ﬁ]2 = 1) is the axis of rotation and ¢ is the angle of rotation.

Note, that this transformation has the well-known property of introducing a minus sign
on rotation by 27t about any axis, which usually requires the use of double groups [ Bet29].

Instead of proceeding straightforwardly with the transformation Ay, =, S~1AS, we
first determine the transformation behavior of every single Pauli matrix under spin ro-
tation. The i-th (pseudospin) Pauli matrix ¢; transforms like
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2.4. Generalized multi-band BCS-theory

. I 3
o; 3, (§ (ﬁ,q))) ! ;S (i1, @) = 0 (cos (go/Z))2 + 2cos (¢/2) sin (¢/2) [ Z el-]-kﬁjak]
j k=1

+ (sin (¢/2))* | o7 (222 = 1) + 27 i (1-6;) (fjﬁj] : (2.4.38)
j=1

By inserting the transformed Pauli matrices into the definition of the d-vector i [dy, - o] 7>
(insert components of ¢, but don’t substitute ¢, since 0, is only part of the notation) and
collecting terms with respect to Pauli matrices we find the transformed components of

the d-vector. The i-th component of the transformed d-vector is then given by

g, iy ((cos (912))* + (sin (9/2))* (27 - 1))
> ' 3
+ Z (1 - 5ij> &, (2 (sin (¢/2))? Aifi; + 2 cos (¢/2) sin (¢/2) Z eijk”k>
= =
] 1 (2.4.39)

The identities (cos (qo/Z))2 — (sin (go/2))2 = cos (@), 2cos (¢/2) sin (¢/2) = sin (@)
and 2 (sin (¢/ 2))2 = 1 — cos (¢) simplify this result to the transformed, for instance,
x-component of the d-vector

a5, ER d%, [cos (@) + 2 (1 —cos (9))] +dy, [ﬁxﬁy (1 —cos (¢)) + 7, sin ((p)]
+dZ, [, (1 - cos (9)) —fi,sin ()] (2.4.40)

which is exactly the first row of the SO(3) rotation matrix &R (i, ) that rotates a true/polar
vector r € R3 about the axis 7i by angle ¢. Henceforth, the d-vector describing the gap
function transforms according to

(i dkb)T = (d9, R(@, (P)dkb)T , (2.4.41)

under any SU(2) rotation. This transformation is exclusively a transformation of basis,
i.e. the Pauli matrices, while the components (momentum dependency) is not affected
at all. Although, the d-vector transforms like a polar vector under rotation, it behaves
unlike a polar vector w.r.t. to reflections. A reflection may be composed of a spatial in-
version followed or preceded by a rotation about the normal vector of the plane by 7. As
already noted, the spatial inversion doesn’t affect the basis of the d-vector, i.e. the Pauli
matrices. For instance, a reflection in the x-z plane therefore only involves a rotation by
7t about the y-axis, that is given by (Equation 2.4.38), the Pauli matrices transform ac-
cording to (U'x, 0y, 0. ) — (=0 0y, —(TZ). A further consequence of (Equation 2.4.39)

Y-z
is, that the d-vector does not obey any double group properties like the SU(2) spin de-
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

Table 2.2.: When transforming the d-vector, one has to distinguish the behavior of the basis (spin
degrees of freedom) and the behavior of its components (momentum degree of free-
dom). The properties given below are the result of the combined transformation of
both basis (spin) and components (momentum) (except for spin and orbital rotation,
respectively). Time-reversal affects both spin, introducing the overall minus in the
triplet part and momentum, which is inverted in both singlet and triplet part. The
spatial inversion only has an effect on momentum since (pseudo)spin represents an
pseudo/axial vector. Note, that spatial inversion corresponds to fermionic exchange
of the Cooper pair (Equation 2.4.24), which may be used to simplify the given results.
Unlike the SU(2) spin degrees of freedom the d-vector originates from, it rather be-
haves like a polar vector in real space, which becomes apparent for the spin-rotation.
The entity R.(7i, p) € R3 is the SO(3) rotation matrix for a polar vector about an axis
il by angle ¢ (cf. [SAMO05] and [SU91, p.244]). Remarkably, the d-vector therefore
doesn’t exhibit any double group properties and maps onto itself under a rotation by
27 about any axis, which is, however, a consequence of the d-vector carrying total spin

S=1.

transformation operator singlet (SGT) dﬁb triplet (TPT) dy,
time-reversal Q) rkb —rkb
inversion/fermionic exchange I dgkb d_y;

spin rotation S (71, ¢) dﬁb R (71, ¢)dyy
real space/orbital rotation R (71, ) d% () kb d R (72,0)kb

grees it originates from, but the simple group behavior of the real space entities. The
transformation properties of the d-vector are summarized in (Table 2.2).

When dealing with Hamiltonians corresponding to models on certain lattice types,
the crystal field will break down the continuous SO(3) transformations of the orbital/mo-
mentum part of the d-vector to the discrete operations of the corresponding finite groups.
The point groups provide a set of symmetry allowed basis functions representing the
momentum dependency of the d-vector up to any order. These will be worked out in
(Section 3.4). Since the transformations of orbital rotation and (pseudo)spin rotations may
be performed independently the sets of possible d-vectors are usually subject to de-
generacy. For instance, in the environment of a crystal with Dy, symmetry, possible d-
vectors for triplet pairing must feature odd basis functions and are given by i.a. the two-
dimensional E, representation featuring the basis functions sin k, cos k, and sink, cos k.
Assuming a “natural” spin degree of freedom with SU(2) invariance the total spin S = 1
of the triplet wave function may point anywhere, i.e. we are allowed to freely rotate
the d-vector in any direction according to (Equation 2.4.39). Therefore, by combining
the two basis functions with the three components of the d-vector, one ends up with a
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2.4. Generalized multi-band BCS-theory

six-fold degeneracy of possible triplet states. For instance, the allowed d-vectors may be

given as linear combinations of the basis functions by dl((lb’z) = (J? sink, + 7sin ky) cosk,,
d1(<3b'4) = (32 sink, + 7 sin kx> cosk, and df(5b'6> = (sin k, + (i) sin ky> cosk, z. The first two

states are aligned in the x-y-plane while the third state points along the z-direction. Fol-
lowing (Equation 2.4.29), we find that all of these states apparently exhibit the same
gap magnitude A Al = sin k, + sin? k, = . (cf. [Sig05; NS00]). As long as the
Hamiltonian doesn’t feature any spin off-diagonal terms all SU(2) rotations are symme-
try operations, i.e. [§, HO] = 0, since the spin doesn’t “feel” the crystal field. Hence, we
may arbitrarily transform the spin (hence the basis X,  and Z) such that all d-vectors
d++®) are simply connected by a spin rotation. Note, that under operations of the
point group Dy, the basis vectors %, i (Pauli matrices ¢, ¢,) transform according to
the E; and Z () like the A, representation. (cf. (Table A.1)). However, as soon as
spin-orbit coupling is introduced the orbital and (pseudo)spin degrees of freedom are
coupled. Therefore, we are not allowed to employ the corresponding transformations in
(Table 2.2) separately, anymore [ And84a]. As a consequence, the degeneracy of several
pairing wave functions is lifted. Mathematically, the coupling of orbital/momentum
and spin degrees of freedom and their simultaneous transformation is expressed by
[Gos|

E,® (B, ® Ay ) = A1, ® Ay, @By, By, ®E, . (2.4.42)

Hence, the six-fold degeneracy of possible triplet d-vectors splits up into four one di-
mensional and one two dimensional representation. By employing combined spin and
orbital transformation, i.e. transforming both components and basis, it is impossible to
transform any of the states d!-+) into another one. The classification of singlet and
triplet in the presence of spin-orbit coupling will be discussed in more detail in (Sec-
tion 3.4) and employed to a realistic Hamiltonians in (Chapter 9). We note, that the
d-vector as a smart parametrization and auxiliary entity may also be employed for the
characterization and classification of unconventional particle-hole states in the sense that
they feature nonzero angular momentum (cf. [Nay00; GC10]). Most of the properties
of the d-vector discussed in the previous two sections may be straightforwardly em-
ployed, except for the fermionic exchange (Equation 2.4.24). In contrast, to the particle-
particle states the particle-hole condensates are characterized by an additional parame-
ter Q, which specifies the momentum transfer and usually lowers the full symmetry of
the point group (Section 3.5).

Summary and preview

In this chapter we motivated the concept of Cooper pairs in correlated electron sys-
tems and reviewed the basics of BCS-theory. The Kohn-Luttinger effect was discussed
as one possible mechanism for the emergence of unconventional pairing as a result of
repulsive electron-electron interactions. We provided a generalization of BCS-theory
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

to multiband (-orbital) systems for gap functions with non trivial momentum depen-
dencies and introduced the basics for the description of pairing states in models with
(centrosymmetric) spin-orbit coupling. The following chapter will provide a charac-
terization and classification of spin-orbit interaction in (non-)centrosymmetric models.
Based on the possible spin-orbit terms and the symmetries that are conserved or broken,
we will define the concepts of pseudospin and helical spin degree of freedom and an-
alyze the structure of the corresponding effective interaction in orbital and band basis.
These generalized two-particle vertices will serve as an input for mean-field theories that
allow for singlet and triplet instabilities in terms of the pseudospin degree of freedom as
well as mixed singlet-triplet states. The chapter will be concluded by constructing basis
functions for unconventional particle-particle and particle-hole states that interweave
momentum and pseudospin or helical spin degrees of freedom.
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3. Mean-field theory in absence of spin
rotation invariance

In (Chapter 5) and (Chapter 6) we will formulate the perturbative and functional renor-
malization groups for fermionic systems and (in particular) for the corresponding ir-
reducible two-particle vertices with broken SU(2)-symmetry. In order to analyze the
occurring ordering tendencies and instabilities, we have to work out a mean-field the-
ory that takes into account the broken spin symmetry. Two different scenarios are dis-
tinguished depending on which additional symmetries are broken. On the one hand,
we will discuss the mean-field theory for Hamiltonians with time-reversal and inversion
symmetry, which ensure the two-fold spin degeneracy of the bands involved. On the
other hand, we will have systems where either inversion or time-reversal symmetry is
lost, which results in the spin-splitting of the corresponding Fermi surfaces. In the for-
mer case, spin symmetry is spoiled by atomic spin-orbit coupling L - S [Win03], and
the considerations of (Section 2.4) apply. Hence, we are still able to classify the pair-
ing states and gap functions by singlet and triplet states (and therefore by the d-vector)
as inversion symmetry requires a definite parity [ VG84; Ell54]. Broken inversion sym-
metry at the surface, at a heterointerface or in a non-centrosymmetric crystal supports
the presence of exotic spin-orbit interactions like Rashba [BR84a; RS88], Dresselhaus
[Dre55] or Kane-Mele terms [KMO05b| (which is the time-reversal invariant doublet of
Haldane’s model for the quantum anomalous Hall effect [Hal88; ZLW14]). These terms
lift the spin degeneracy and can in principle induce a mixture of spin singlet and triplet
states [GRO1]. An exception to this paradigm is given by the so-called in-plane-Rashba
Hamiltonian that preserves inversion symmetry and is realized in buckled honeycomb
structures, where the in-plane mirror symmetry is broken [L]Y11; Mar+18].

3.1. Origin and classification of spin-orbit interaction

It was first noted in the context of relativistic quantum mechanics, i.e. the unification
of quantum mechanics and special relativity that a fermionic wave function must in-
corporate an intrinsic degree of freedom [Dir28; FP39], that is nowadays called spin.
Therefore, we cannot rely on non-relativistic methods to derive spin-orbit interaction.
The proper description of the electron (including its spin) is given by the Dirac equation
[Dir81; Dir36], that yields

ih% ¥)=(ca-p+pmc?)¥) , (3.1.1)
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3. Mean-field theory in absence of spin rotation invariance

where the momentum operator is p; = —ih%. The state [¥) is actually a two compo-
]

nent state (bispinor) that we denote by [¥) = (¥4, ¥5) T Using the standard convention
for @ and B matrices (cf. ¥ matrices ) that is [Shal2]

aj=0,®0; j€{1,2,3} and f=0,00y , (3.1.2)
where o = ((Tx, oy U'Z) are the Pauli matrices with 0y = 1,,,. Therefore, we can
express the Dirac equation in terms of a 2 x 2 matrix by

2

ih%ﬂ}’): ( me C‘T'f’) vy (3.1.3)

co-p —mc?

In order to see, how spin-orbit coupling originates from this equation, we have to
include an external potential (due to the atomic core or the lattice) V (r) whose sym-
metries are crucial for the types of spin-orbit interaction arising from it. For instance,
in the hydrogen atom, V (r) possesses spherical symmetry, in the perfect lattice we have
V(r + R) = V(r), while in a non-centrosymmetric crystal or at an heterostructure inter-
face, we have V(—r) # V (r). Hence, the Dirac Hamiltonian is

Hp=ca-p+pBm>+V() . (3.1.4)
The time-dependency of the bispinor may be split off by the ansatz [¥) = e~*E¥/ [y )
resulting in
., 0

This stationary version of the Dirac equation represents a coupled linear system in terms
of the components 14 and ¥, i.e.

mc? 4+ V (r) — Ey co-p YA\
( co-p —mc? + V (r) —E\y) (I,DB) =0 (3.1.6)

Solving for part ¢4 of the bispinor provides

{(mc2+V(r)—E\y)gbA+c0'-f)(E\y+mc2—V(r))_lccr-ﬁlpA:O G1n

g =—(—mc®+ V(r) — E\y)_lca ‘P a

We introduce the notation E := Ey — mc?, where E corresponds to the non-relativistic
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3.1. Origin and classification of spin-orbit interaction

energy that lacks the energy due to the rest mass. The first equation that determines ¢4

may be simplified to

2
C-pyPa=(E-V@®)¢Pa (3.1.8)

v pE +2mc? — V(r)
Since the non-relativistic energy E appears on the left and right hand side of (Equa-

tion 3.1.8) we employ the expansion ! (in terms of Z’—; 2)

)

1 ! 11 (1+E—V(r))_1
E+2mc2—-V(r) 2mc?1q 4+ B2V "~ 2mc? 2mc?
2mc?
E-V(@) (E-V()?
_ + 3.1.9
4m?2c4 ( )

2mc?

~

"~ 2mc?
By remembering the identity (o - p)> = p2, 3 we simply get the Schrodinger equation

in zeroth order of the expansion when employed to (Equation 3.1.8). However, the
interesting terms come up in the first order of the expansion. When inserting the first

1(1

order of (Equation 3.1.9) into (Equation 3.1.8) we geti.a.
(3.1.10)

(E-V@)o-pppa=0-p(E-V@) s+ [E-V(),0-p] s
)

=cpo At [P, VIOIYa

where we used the zeroth order result on the first term and the commutator [E, p] = 0.
Summarizing the hitherto results by using (Equation 3.1.9) and (Equation 3.1.10) in

(3.1.11)

(Equation 3.1.8) we have
(¢-p)(c-[p, V(D]
¥a

4
4m?2c?

P

132
Epa=|5m+ VO = oo =
The last term in (Equation 3.1.11) may be split into two by employing the identity
(0-a)(c-b) =a-b+ioc(axb)? Note, that the first term resulting from this identity,

x~0 1 2
—X+Xx"+ ...
v? by virtue of the virial theorem [Foc30;

! We simply use the Taylor expansion of (1 + x)~! thatis 1 "~
~ m

2 The expansion is justified by considering that E — V (r)
E-V(r) v?
) < 1.
% The identity is shown by dividing in pure and mixed terms of (o - f))2 = Zil o;p Z],:l o;p; which

Kal76] and therefore ———
gives Zij o:0P:p; ((5,7 + (1 - 51'])) and only the pure terms survive due to the anticommutation of the

—0,0; fori #j.
* We can prove this by collecting the pure and mixed terms w.r.t. the Pauli matrices, i.e. (¢ -a) (0 -b) =
(ﬂzxz +iy, ei]-kak>. Using the cyclic invariance € =

Pauli matrices, i.e. o0 =
o+ (1- 544)1704) = 23 ab,;
j ij/%i%j ij=1%4iY
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3. Mean-field theory in absence of spin rotation invariance

p[p VD]

ie. —
4m?2c2

is not Hermitian since (p - [IS,V(I‘)])Jr =p-[p,VID]-[p-p V] If
#0

Hp is not Hermitian, e~ is not unitary which means that the probability is not

conserved and is time dependent. Obviously, this was caused by having neglected the

second bispinor component g, so far. Taking it into account will fix the non-Hermiticity

and results in a correction term [Shal2, Chap. 20, p. 573] that is included into the

“effective” Dirac Hamiltonian that yields (cf. (Equation 3.1.11))

iMp It

/\2 /\4 o ~ ~ ~ ~
. _ P P ic-(px[p,VI]) [p[pVID]]
HDS = m + V(l‘) 8m3C2 4m2C2 8m2C2 . (3112)
Our interest, however, is focused on the fourth term of the Hamiltonian, that is sim-
plified by computing the commutator [p, V(r)] = [—ihV, V(r)] = —ihVV (r). This term
represents the spin-orbit interaction correction to the one-particle Hamiltonian and is fi-
nally given by (cf. [Sch68])

ic- (px (=ihVV(r)))  h
4m?2c2 T 4m2e2

HSOC = — o - (VV(I‘) X 13) . (3113)

For example, if we consider the spherically symmetric potential (e.g. the potential of

1

the hydrogen atom) V' (r) = —m§ we get

e%h e?

o-(rxp) = S-L , (3.1.14)

HEL - = — )
s0¢ 8m2c2meyr3

16m2c27'ce0|r|3

which is the well known atomic L - S term. The evaluation of specific matrix ele-
ments of L - S for the p and d-orbitals is given in appendix B. Apart from the atomic
spin-orbit coupling, a lot of important effects arise from (Equation 3.1.13), if we depart
from the spherical symmetry of V(r). As a side remark, we mention that spin-orbit
coupling may not only be the result of relativistic quantum mechanics, but may also
occur in strongly correlated, non-relativistic systems as dynamically generated spin-orbit
coupling due to Fermi surface instabilities with higher angular momentum [WZ04]. In
particular, we are interested in the spin-orbit coupling of the (itinerant) electrons on
the lattice. Consequently, V (r) inherits the symmetry of the lattice,i.e. V(r) = V(r+R)
with R being a real space lattice vector. On the one hand, we can proceed in the spirit
of k- p-theory and derive the spin-orbit terms in a (time-independent) perturbative way
[Sho50; DKK55]. Treating spin-orbit coupling as a perturbation in the k - p framework
is a method that was extensively used to investigate semiconductor band structures
[Kan56; Kan57; Kan66; Kan82]. It has been employed to derive model Hamiltonians
for the quantum spin Hall effect and topological insulators [BHZ06; QZ10]. More recently,
the method was extended and applied to two-dimensional nanostructures [Gal05], car-

€ij of the Levi-Civita symbol we find Zil ab; + izkij Ok€kija;ib; =a-b +io - (axb).
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3.1. Origin and classification of spin-orbit interaction

bon nanotubes and graphene nanoribbons [MM11]. Even more, k - p-theory proved to
be useful for the derivation of models for topological insulators [QZ10, Appendix A]
and the quantum anomalous Hall effect [ZLW14]. On the other hand, we can - based on
the point group of the underlying lattice - simply write down all invariant terms in or-
bital, spin and momentum space [LK55; Lut56]. As the theory of invariant or invariant
expansion [BP74; TRR79; Win03] this has been applied to i.a. graphene [WZ10; KIF17]
and silicene [GBT13].

3.1.1. k- p-theory

The k - p-theory is a well-established method in semiconductor physics and a variant of
perturbation theory for the calculation of band energies and wave function in the vicin-
ity of high symmetry points e.g. I', where the deviation k from I' in k-space is treated as a
small perturbation to the Hamiltonian at I' [ DKK55; Kan56; Kan66]. Consider the Bloch
wave function with spin dependency given by the spinor x, [WR28; Blo29] [Mahl1,
Chap. 3.1, p.32]

Picpor (1) =ty (£)e™ Ty, (3.1.15)

with momentum k, real space vector r and band index b. The cell periodic part u (1)
of the Bloch wave function satisfies 1, (r + R) = 4, (r) with R being a real space Bra-
vais lattice vector [Bra66]. The wave function is an eigenstate of the non-interacting

Hamiltonian H, = % + V(r) given that Hypo (1) = €10 Pipe(r) With €4, being the
single particle energy of band b and spin ¢ at momentum k. In order to determine the
matrix elements (k'b'c”’| Hy + Hgoc |kbo) of the total Hamiltonian we have to find the
action of Hsoc (Equation 3.1.13) as well as H; on the Bloch states. The non-interacting
Hamiltonian acts on the Bloch state as (cf. [MM11])

P2 Pipo (1) = (—ihV) 21, (1) Ty, = (—ihV)e™ (p + hK) 13, (1) X,
= ey, (p? + 2hk - p + (hK)?) uy, (DX - (3.1.16)

The spin-orbit part of the Hamiltonian Hgoc « ¢ - (VV (r) x p) has the effect

> €t (VV (D)), Prttip e Ty, = > (VV (1)), €™ (p + 1K) uiq, (), . (3.1.17)

Therefore, the Schrédinger equation of the total Hamiltonian yields

2m 2m
(3.1.18)

ez’kr - R hz ~ (flk)z
v [P +2hk - p + 2l (VV (@) x (p + hk))] Uy (DX = (€kba - —> Uy (X
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3. Mean-field theory in absence of spin rotation invariance

which is exactly valid only in the limit k — 0 at the I-point. Hence, we can treat k as
a small perturbation to find the band energies in the vicinity of the I'-point. The second
term is called the “k - p-interaction”, the third term with p is the atomic like spin-orbit
interaction, while the third term with k is responsible for the momentum dependent
spin-orbit coupling [Kan57]. However, we are interested in the matrix elements of the
spin-orbit interaction with respect to the Bloch states. These are extracted by multiplying
the spin-orbit part of the equation with another Bloch state and integrating over the
Wigner-Seitz cell, i.e. (cf. [Sam09, Section IL.])

h2 - R
(K'b'o'| Hgoc [kbo) = Py fws dr ey (0Xs 0 - (VV (1) X (P + HK)) 1 (1) X
=L (K) - 0y (3.1.19)

There are apparently two terms that arise from the action of the spin-orbit operator on
the Bloch wave function. The second one is usually neglected since it becomes very small
in the vicinity of the center of the Brillouin zone, but gives, however, rise to momentum
dependent spin-orbit coupling. The corresponding second quantized Hamiltonian can
be written as

Ho =) (e O0,005,5 + LEZ (1) - O ) €y st o (31.20)
k

bbb o,0'

This equations provides a basis to calculate not only the matrix elements but also the
absolute strength of the spin-orbit coupling terms by numerical evaluation of the Bloch
states and integrals [KMO05a; Min+06]. Apart from (trying to) straightforwardly eval-
uating the integral in (Equation 3.1.19) (over unknown Bloch wave functions), one can
already derive a lot of constraints on Ly "(k) if we require the Hamiltonian to be self-
adjoint and symmetric with respect to time-reversal and/or spatial inversion, which
will, however, be done in detail in (Section 3.1.2). k - p-theory is in particular useful
to provide estimates for the absolute strength of spin-orbit terms. However, it can only
calculate the Hamiltonian in the vicinity of high symmetry points, while we are in need
of the Hamiltonian in the overall Brillouin zone. Therefore, we have to rely on the in-
variant expansion as a complementary method to find Hgoc.

3.1.2. Invariant expansion

Apart from deriving spin-orbit coupling from the action and the perturbative influence
of the spin-orbit operator on the Bloch wave function and the corresponding band ener-
gies, we may also start from a generic point of view that only uses the lattice symmetries
and additional constraints given by Hermiticity, time-reversal and inversion symmetry.
Hence, we will also try to determine and classify spin-orbit coupling terms that emerge
from a theory of invariants . Note, that we have to entangle three different spaces with
each other, i.e.
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3.1. Origin and classification of spin-orbit interaction

momentum x orbital x spin

given by the direct product of their respective representations. When constructing a
spin-orbit Hamiltonian from scratch, there are four key symmetries that have to be taken
into account

e Hermiticity

e time-reversal symmetry

e odd/even parity, i.e. (anti-)symmetry w.r.t. spatial inversion
e point group symmetry

A general non-interacting multi-orbital Hamiltonian is given by the ansatz

Ho=3 3 3 (K0 (08eqr + A8 )]y plticwe (3.1.21)

where & = (s,0) is a multiindex for sublattice s and orbital 0 and ¢, ¢’ are the “natural”
spin degrees of freedom. While the first term t(k) represents the usual tight-binding
dispersion matrix elements and is diagonal in spin space, the second one (A(k)) hosts
spin-orbit coupling and may contain any off-diagonal elements in spin space. We focus
on the second spin-dependent term, for which we make the ansatz

3
ATT (k) =Y M (e, M (k) eC (3.1.22)
i=0

wherethe o; i€ {0,1,2,3} represent the Pauli matrices o, 0y, 0y including the unity
matrix 0, since these comprise a complete basis of C2*2. Later it will turn out to be
convenient to use the notation M := (M, M) as a abbreviation for the zeroth and first
to third components of M. Although, we are interested in the spin-dependent matrix
elements of the single-particle Hamiltonian we keep ¢, since there may be spin-diagonal
terms arising from (Equation 3.1.13) (cf. [Sam09, Section II. B., Eq.(18)]). Of course,
we require Hy to be Hermitian and the spin-dependent part AS u(cf” (k) to be Hermitian on

its own, as well. From the condition H} = My we get

, t . 3 . L3 , )
(A%%' 0) = 29700 = Y ME*A0ere £ Y M (e, (3.1.23)

where we used that the Pauli matrices are self-adjoint. Since the Pauli matrices are

linear-independent, we can infer the requirement for Hermiticity

M¥*(k) = M*' (k) i€{0,1,2,3} . (3.1.24)
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3. Mean-field theory in absence of spin rotation invariance

Next, we will implement time-reversal symmetry into our spin-orbit Hamiltonian. Since
we are dealing with spin—% fermions the time-reversal operator is given by © = —io, K
with K being the operator of complex conjugation [Wig12] [Sch05b, Chap. 11.4, p.228].
However, for a multi-orbital Hamiltonian the time-reversal operator is

®O = ]lnoxna ® @ = ]lnoxna 024 <—l(7_y/j€) , (3.1.25)

where 1, is the number of orbitals. Note, that time-reversal has indeed a non-trivial ef-
fect on orbitals, as well, since © affects the spherical harmonics by Y;” 6, 9) iy Y;” 6, ¢) =
(=1)™Y;"™(8, ¢) [SN11, Chap. 4.4, p. 276]. However, we assume to be using real orbital
basis that combines spherical harmonics with +m and —m and thereby canceling the
effect of time-reversal (cf. appendix B). Thus, the time-reversed spin-orbit Hamiltonian
is given by (momentum is odd with respect to time-reversal, k - —k)

;' HK)O, = ;127 k)0, =M (-K)oy + M* (-k) - (—=0)
= M& (K)o + M (k) - o . (3.1.26)
where we used that the spin (as being governed by angular momentum algebra) is

odd under time-reversal, i.e. @~ 16® = —¢ [SN11, Chap. 4.4, p. 275] [Wig32] °. Con-
sequently, the condition time-reversal invariance imposes on M (k) is

M& (k) = M (-k)  and ~ M*'(k) = —-M*'(-k) . (3.1.27)

Details and an alternative derivation are given in appendix D. As an example, let’s

consider the L - S term in the three d-orbitals d,, d,, and d,,,. In terms of the basis =

T T
(c}xz, c;yz, CZZX) ® (cf,cl)" itis given by (see its alternative derivation in appendix B)

1 0 —io, —io,
L-S= Ecz’r” ic, 0 iy, |¢op - (3.1.28)
io, —io, 0

If we express this operator in terms of the entities introduced above we get (cf. (Equa-
tion 3.1.39))

0 —iz —ix
Mg“’(k) -0 and me’(k) =1 0 iiy , (3.1.29)
ix —ij 0

> Note, that time-reversal is non-unitary, therefore we have @' # @' with @' = +ic, K.
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3.1. Origin and classification of spin-orbit interaction

with %, 77, Z being the unit vectors in Cartesian coordinates. Hermiticity (Equation 3.1.24)
is obviously fulfilled and time-reversal symmetry (Equation 3.1.27) is intact as well,
since apparently M’ = —M* due to M being momentum independent. In order to
check out the implications of parity, i.e. the behavior of the Hamiltonian w.r.t. to spatial
inversion, we split it into an inversion symmetric (gerade) and antisymmetric (unger-
ade) part, which amounts to the definition

M(k) + M(=k) M(k) — M(-k)
Mg(k) = > and M, (k) := 5 , (3.1.30)
that implies for the non-interacting Hamiltonian the form
Ho=Y (199 (K)6por + (MEY (K) + MEY (K)) - 0o | 0y ttiror - (31.31)
k aa 0,0

Physically, this symmetry or antisymmetry of the Hamiltonian is related to the sym-
metry of the potential V (r) in (Equation 3.1.13), which may similarly split up into sym-
metric and antisymmetric part. This enables us to even deal with arbitrary potentials
comprising parts of both symmetry. Let’s denote the parity operator or operator of spa-
tial inversion by I. Apparently, the symmetry of the Hamiltonian is inherited by M*¥ (k)
since I _1/\55' I = /\Z;T,’ (=k) = i/\gg,'(k) and the spin is a pseudo/axial-vector that
doesn’t transform under spatial inversion, i.e. I"'¢l = o. For simplicity, we assume
in the following the spin-orbit part of the Hamiltonian to be either fully symmetric or
antisymmetric (of course, t79 (k) is always symmetric). However, we may always get
back to an arbitrary potential V (r) by taking into account both finite symmetric and an-
tisymmetric parts. By summarizing the requirements and conditions for Hermiticity,
time-reversal and parity, for the symmetric case M(k) = M(—k), starting from (Equa-
tion 3.1.27), we get

(Equation 3.1.30)

M (k) = —M*@ (—k) = = —M&(k)
(Equation 3.1.24) T
L ~M¥E(k) = - [M* ()| (3.1.32)

Hence, the orbital matrix (with indices &, a") is antisymmetry and all diagonal terms
must vanish. Thus, there’s no single band model with symmetric spin-orbit interaction.
Besides, the first equality states that M (k) := iN** (k),N € R3 mustbe purely imagi-
nary. Note, that this is indeed the case for our example (Equation 3.1.29). Analogously,
Mg‘”"(k) € R is real and must be symmetric in the orbital indices. Let’s turn to the
antisymmetric case M (k) = —M(—k). Here, we get (starting from (Equation 3.1.27))
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3. Mean-field theory in absence of spin rotation invariance

Table 3.1.: The classification of spin-orbit interaction Hamiltonians that are subject to Hermitic-
ity, time-reversal symmetry and definite parity shows that all matrix elements must
be real or purely imaginary. The (anti-)symmetry of terms in orbital indices ensures
that in a single band model there’s only antisymmetric spin-orbit coupling and it re-
quires at least two orbitals to have finite spin-orbit interaction in a centrosymmetric
system. For the definition of M** (k) we refer to (Equation 3.1.22).

centrosymmetric non-centrosymmetric

M&¥ (k) M (k) M&¥ (k) M (k)
parity even even odd odd
number real imaginary imaginary real

orbital matrix symmetric antisymmetric antisymmetric symmetric

(Equation 3.1.30) (Equation 3.1.24) T
M@ =M (k) Mo 2 MY = [MR ()]

(3.1.33)

First, this tells us that M*¢' (k) € R3 is real. Second, its orbital matrix is symmet-
ric, which opens up the possibility for finite spin-orbit interaction in a single band « =
«'. Like expected, the antisymmetric zeroth component Mg“"'(k) = iNg"" (k), Ny €
R is purely imaginary and antisymmetric w.r.t. to its orbital indices, i.e. Mf)“"'(k) =
- [Mg“"/ (k) ]T. For the single band case « = a’ = 1 with finite antisymmetric spin-orbit
interaction, M** (k) is denoted by y(k) € R3 with y(—k) = —y(k) most commonly
in the literature [Gmi+09; Smi+17a; BS12]. Please note, that due to its antisymmet-

ric property (—k) is zero not only at k = 0 but at some high-symmetry points with
k + G = —k as well, where G is some reciprocal lattice vector.

After fixing and classifying most of the constraints that must be imposed on a phys-
ical reasonable spin-orbit interaction we have to focus on the point group and lattice
symmetry at last, that also enable us to derive particular Hamiltonians featuring phe-
nomenological parameters. Let’s introduce some nomenclature for the transformation
of real space and reciprocal space vectors (momenta), spin transformations and sublat-
tice/orbital transformations w.r.t. to point group G with element ¢ € G and g € GP for
the spinor transformation, where GP is the corresponding double group . We define
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3.1. Origin and classification of spin-orbit interaction

ke R? - K =Pk with P(g) € R¥3 (3.1.34)
XE C2 - X =58@yx with  5(g) € C?*? (3.1.35)
a, € C™" - aj =.JL(9)a, with  L(g) € CMosXMols | (3.1.36)

with a, being an “orbital spinor” whose size is determined by the number of sublat-
tices ng times the number of orbitals 1, in the Hamiltonian. The reducible representa-
tions P(g) and L(g) are associated to a subgroup of the full continuous rotation group
SO(3). The SU(2) transformation representation 5(g) consists of twice the number of
elements compared to the group (;. The rotations are given by 5(#, @) = e~ Moel2
Tcos(p/2) — ifiosin(@/2) where the rotation is about the axis 71 by angle ¢. The re-
flection in the plane given by its normal vector 7 is constructed by a inversion (whose
representation is unity due to spin being a pseudovector) followed by a rotation about
the axis 7i by 7, i.e. 5(1) = —ific [Mer98]. The (reducible) transformation 2 (g) of the
spinful Hamiltonian necessarily features an element g € QD of the double group and is
given by

D(g) = L(g) ®5(g)  with D(g) € Coltx2nats (3.1.37)

Analogously to the invariant expansion or theory of invariants we require the Hamilto-
nian Hy(k) (cf. (Equation 3.1.21)) to satisfy [BP74; LK55; Lut56; Win03]

D Hy D (g) = Ho(P(k)  Vge P . (3.1.38)

By exploring the transformation behavior of the sublattices/orbitals involved we are
able to classify subspaces of these sublattice/orbitals according to irreducible represen-
tations of (; and to split the Hamiltonian into blocks of size nr, x nr, where nr,  are the
dimensions of the irreducible representations. Every block may then be expanded in
terms of products of basis functions of k and invariant matrices that transform like the
irreducible representations I'; that are contained in the product I'; xI';. [TRR79; Win03].
The details of this treatment for d-orbitals on a tetragonal lattice are given in appendix C.

Centrosymmetric spin-orbit coupling

After having assembled all necessary tools and prerequisites, we will continue by trying
to reconstruct the L - S term in (Equation 3.1.29). We have to stick to the centrosymmet-
ric case in (Table 3.1). Since we are not allowed to have finite diagonal elements in the
orbital matrix we can already exclude the representations A, and By, in the upper left
2 x 2 block as basis in orbital space as these correspond to the 7 and 7, orbital Pauli ma-
trices. We also learned from (Table 3.1) that M**' (k) has to be purely imaginary, which
excludes By, too and leaves us with Aj, and 7, corresponding to ¢, in spin space. The
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3. Mean-field theory in absence of spin rotation invariance

block with By, ® By, = Ajq has to be zero as well, which means that we are left with the
4 x 2 block of the E; ® By, = E, representation. As mentioned above, the Pauli matrices
0y, 0, behave according to the E, representation. To fix the order of the two components,
we look, for instance, at the o, operation. We find that ¢, must be associated to d,., and
0, must be associated to the d,, since Uxaizaxy transforms into (—Ux)a;rcz(—axy) under
0y This choice renders the Hamiltonian invariant with respect to the point group in the
sense (Equation 3.1.38). The operation e.g. Cy fixes the opposite sign while the overall
sign is arbitrary, i.e. given by the associated phenomenological coefficient. Therefore,
we end up with the spin-orbit matrix for a centrosymmetric, momentum-independent
model with d,,, d,, and d,, that yields

0 —iz —ix
M@ (k)y=|iz 0 if | , (3.1.39)
i* —ig 0

and fully agrees with the L - S term given in (Equation 3.1.29) (up to prefactors) that
was calculated by evaluating the matrix elements explicitly by considering the action of
the angular momentum operator on the d-orbitals. We now proceed by exploring the
possibility of momentum dependent spin-orbit interaction in centrosymmetric crystals.
(Table 3.1) shows that this is possible only in a multi-orbital model . We begin with the
three orbital case that leads to (Equation 3.1.39) for momentum-independent terms and
try to take into account momentum dependent basis functions. Firstly, the associated
basis functions in k-space must be even and therefore can only be one-dimensional rep-
resentations of Dy,. Secondly, the orbital matrix M*“*" must be antisymmetric in the
orbital indices. Thirdly, M** must be purely imaginary. In contrast to the momentum
independent case before, where we simply used the same representation in both orbital
and spin space to make sure that the entire block is invariant (transforms as Ayy), we
now have to “entangle” all three different spaces:

momentum x orbital x spin

It turns out to be most convenient to work out the product representations successively,
which may be done in three ways. Here, we first couple orbital and spin space and use
their product representation to be merged with the one in momentum space. We start
with the upper left 2 x 2 block of the d,, and d,, orbitals, where we already proved
that the only valid orbital basis matrix is Ty associated to Azg- Hence, the direct prod-
uct of Ay, (orbital space) and the representation in spin space must consist of one-
dimensional representations, which excludes E, with ¢, and ¢,. The remaining Pauli
matrix ¢, transforms like Aj, and fixes the representation in momentum space to be
Lorbital ® spin = Agg ® Apy = A, Consequently, in d,, and d,, space we get for first
nearest neighbors:

Mgl = (COS (k) + cos (ky)) T, @0, . (3.1.40)
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3.1. Origin and classification of spin-orbit interaction

The remaining derivation and final result of non-local spin-orbit terms in the five-d-
orbital Hamiltonian are given in appendix C.1. As we respected both time-reversal and
inversion symmetry for the spin-orbit coupling terms in centrosymmetric models, we
expect the bands to be doubly degenerate. However, due to the spin-off-diagonal terms
the SU(2) spin rotation symmetry is obviously broken. Therefore, we will introduce the
pseudospin degree of freedom in (Section 3.2) to describe centrosymmetric spin-orbit
coupled models in band basis.

Non-centrosymmetric spin-orbit coupling

The simplest non-centrosymmetric spin-orbit coupling Hamiltonian is actually a single
band model (in contrast to centrosymmetric spin-orbit coupling that does only exist
for multi-orbital Hamiltonians). Hence, we introduce the notation [BS12, Chap. 4.2.1,
p.131]

y(k) :=M*' (k) with a=a"=1 , (3.1.41)

for the antisymmetric y(—k) = —y(—k) and real y(k) € R3 spin-orbit field -y (k) (cf.
(Table 3.1)). ¢ (k) introduces a momentum dependent spin quantization axis that lifts
the spin degeneracy. We refer back to the Hamiltonian (Equation 3.1.21) that yields

Hy = Z Z [S(k)5aa' +y(k) - 17‘7”'] al me (3.1.42)
k o,0'

in our specific case of a single-orbital Hamiltonian with broken inversion symme-
try where the spinless term ¢, , := ¢ is already diagonal in orbital and spin indices.
While the spinless term is invariant under spin-rotations, of course, (k) transforms
like a polar vector, i.e. a spin rotation about the axis 71 by angle ¢ affects ¢ by y(k) —
R (1, @)y (k), where R (ii, ) is the SO(3) rotation matrix (for details, see analogous case
of d-vector in (Section 2.4.4)) The eigenvalues ¢ (k) of (Equation 3.1.42) are straightfor-
wardly calculated

_ e+ =¢ v —ivY _

= (=8 =) - () - (")’ =(-*-hP=0 , (3.1.43)

and therefore given by

¢, =el) £ ly@)| . (3.1.44)

The new spin-like degree of freedom characterizing the spin-split states is called the
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3. Mean-field theory in absence of spin rotation invariance

helicity A = + of the bands [SAMO09; Sam09]. The eigenvectors of (Equation 3.1.42), we
label with helicity A, are determined by

+ z __ X _ inY 1
(Ho = Gaop) mr =0 = (879( Z_ Wf Ery_ 7211 C) (Z}:/‘A) =0 , (3.1.45)

and therefore given by (cf. [SAMO09, p. 7, eq. (15)])
)=o)
U, = o . 3.1.46
@ (ukij 7* +Ah (3:1.46)
In order to write the eigenstate in a clearly arranged form we introduce the momentum-
dependent phase
2 2
()" + (1Y)

Expressing (Equation 3.1.46) in terms of that phase, we find

elf = (3.1.47)

ei‘Pk ei‘Pk ei‘Pk .
( 77+ Al ) = ( 77 +Ah ) = ( mmz) N (\/Ivl —?vfej”k) . (3.148)
Vo2 ()2 (79 (=) =77 i+ Ay

The corresponding norm is given by

T= (A (A =2h] . (B149)

VA=A +|Vhl+ A7

Therefore, the normalized eigenstates are given by

1 /1—/\’72/|7| P . —AX Y
Wy = (ZP) - ( 1 2}\ /|e| with ik = r , (3.1.50)
+A9? 2 2
i V5 ()" + (1Y)
where the phase satisfies elP-x = —elPx due to the antisymmetry y(=k) = —y(k).

These eigenvectors are used to define new quasiparticle states in terms of which the
Hamiltonian assumes the compact form

Ho=) > Gablibia (3.1.51)
k A
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3.1. Origin and classification of spin-orbit interaction

with the eigenvalues (Equation 3.1.44) and the new helical quasiparticle operators
that are given by the unitary transformation

1=9%/Y i 1+9%/1
(bk+) R e A (”RT>:(”1< Ek) (”RT> . (3.152)
by _ \/ 1+97/l Jl—vz/lvle—@k Ay —Ox U ) \Ax

2 2 =y

The matrix elements of the Bogoliubov transformation defining the helical states in
terms of the “natural” spin states satisfy the relations #, = e 2Puy, Ty = vy, u_y =
—e'?xv, and v_, = e "Pxu,.. Therefore, the new quasiparticle states fulfill

byt boyy ) _ by_e'Px

(bk—> - (b—k—> - (—bk+€_i""‘> ' (3159

under inversion of k and do, like expected, not yield a degenerate state. The behavior
of the new quasiparticle states by, under time-reversal is givenby by, — U_k@U; b =

diag(ei"’k,e_i‘l’k) by, with © = —iayJC 6. Hence, the operator of time-reversal in helical

basis Q := U_, OU! is diagonal and the helical quasiparticle states are invariant un-

der time-reversal up to a k-dependent phase ¢ (k) and the inversion of momentum. In

contrast, time-reversal for “natural spin” states, usually exchanges both spin states. As

a consequence of the broken spin symmetry and the k-dependent quantization axis, we
have a momentum dependent spin expectation value that is

(o), = (Ao [k,A)

=A (Ekvk + 51(1/[1(, —zﬁkvk + zﬁkuk, Hkuk — 5kvk) = —/\% . (3155>
k

The spin expectation value points opposite to the momentum dependent direction of

v (k) for helicity +. Therefore, the normal non-interacting state of the Hamiltonian with
antisymmetric spin-orbit coupling already exhibits a highly non-trivial spin structure.
Note that the physical origin of the antisymmetric spin-orbit field (SOF) [Gmi+09] is
very diverse. Here, we mainly distinguish two situations. On the one hand, we have
bulk inversion asymmetry (BIA) originating from the intrinsic lack of an inversion center
in a crystal that gives rise to the Dresselhaus term. On the other hand, one encounters
structure inversion asymmetry (SIA) that can be traced back to a heterostructure-interface
that breaks inversion symmetry along a specifically engineered crystal direction and is
linked to Rashba spin-orbit interaction [ BR84a; BR84b]. Note that there’s also the effect

6 In detail we have:

317 _ : (use v\ (0 =1\ (u T\ _ [e?® 0
u,k®uk1bm_u,k(—zay)ug_(_ik ﬂ_k)<1 0)<vk ﬂk)_< 0 et | (3154)
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3. Mean-field theory in absence of spin rotation invariance

of Interface Inversion Asymmetry (IIA) that results from the different kinds of atoms on
both sides of the interface [Fab+07, Section III. G.].

We didn't take any point group symmetries of the underlying lattice into account so
far to determine the momentum structure of the spin-orbit field -y (k), since our single-
band model was generic. We will catch up on this by using a two-orbital d,,, d,, model
on the tetragonal lattice with inversion symmetry breaking induced by e.g. a heterostructure-
interface along the [001] direction. Therefore, the point group to be considered is Cy,
that has the five irreducible representations Ay, A, By, B, and E, whereas the d,,, d,,
orbitals transform according to E. Only the two-dimensional dispersion along the k,,

k, planes for fixed k; are calculated. Henceforth, basis functions of the representation

E are the only antisymmetric ones, where we have sin(k,) and sin(ky> in first order. In
contrast, to a purely orbital Hamiltonian we have to entangle orbital and spin spaces
with each other. The Pauli matrices 7, 7,, 7, and 7, in orbital space are used again to

Y

construct the invariant in terms of orbitals. However, T, may be excluded since the non-

centrosymmetric matrix M**" must be real (cf. (Table 3.1)). Since the basis functions
are E representation like, the combined orbital-spin space direct product representation
(or irreducible representations contained therein) must transform like E, as well. Since
the remaining Pauli matrices 7, 7, and 7, transform like A;, B; and B,, the Pauli ma-
trices used in spin space must consequently be of E character, too, being ¢, and 0. This
is the result of the product representations of A; ® E=E,B; ® E=Eand B, ® E = E.
To sum it up, we can expand the spin-orbit Hamiltonian in d,,, d,, orbitals in terms of
the invariants

Hsgl = +sin (k,) 79 ® 0, —sin (k) 79 ® 0,
+ sin (k) T, ® 0, —sin (ky) T, ® 0y,
+sin (k,) T, ® 0y +sin (k) T, ® 7, . (3.1.56)

To determine, if we have to connect k, and to o, or to ¢, (in any of the three in-

variants) and what the relative sign is, we consider, for instance, the operations CI
and o,. (Equation 3.1.56) being first order in the basis functions may be arbitrarily ex-
panded to higher orders involving e.g. sin (k,) cos (ky> and sin (ky) cos (k, ) in second
order. For completeness, we assemble the remaining terms for the full five d-orbital
model with non-centrosymmetric spin-orbit interaction. We split the Hamiltonian into
the sectors involving the d,,, d,, orbitals combined with d,,, d,>_,> and d_> and the
3 x 3 block containing all one-dimensional representations. The one-dimensional or-
bital blocks may be easily composed by firstly entangling momentum and spin space,
corresponding to a product of E ® E with basis terms sin(k,), sin(ky) and oy, 0. Since
E®E =A; ® A, ® B; ® By, we expect to get all four one-dimensional representations
by combining these terms. Indeed, we find that sin (k) 0, — sin (k ) o, behaves like

Y
A4, sin (k,) 0, + sin (ky) o, transforms like A, sin (k,) 0, + sin (ky) o, is associated to
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3.2. Pseudospin and definition of Bloch states

Table 3.2.: We summarize the most common types of spin-orbit coupling classified with respect
to inversion symmetry. On the one hand, centrosymmetric crystals only exhibit the
well-known atomic L - S spin-orbit coupling, which is momentum independent (in
zeroth order). On the other hand, non-centrosymmetric crystals may show numerous
types of spin-orbit interaction like Rashba and Dresselhaus terms. These are bound to
exhibit spin-momentum locking due to symmetry requirements.

SOC atomic Rashba Dresselhaus Kane-Mele
Hamiltonian L-S (ke&o), ko,+ko, i(d®dy)- o
inversion symmetry X X X
momentum dependency /X

spatial dimension 3 2 3 2

B; and sin (k,) o, — sin (ky> 0, corresponds to B,. In the sectors involving the d,, d,,
orbitals we observe that the product of E in momentum space and E in orbital space
requires a one-dimensional representation in spin space, leaving us with ¢ and o,. The
non-centrosymmetric spin-orbit matrix M**' (k) for the five d-orbitals is therefore given
by (up to first order)

2% kE-kg ke k2 k2
ki—kg -2k —k2 k.2 k2
M (k) = k.2 —kz  kj-kFE kX+ky ki-kg| , (3.157)
k2 ke kE+kg kg—kE kg 4k
K ki ki—kg kg+kE kg -k
where («,a') = (xz,yz,xy,x* — y?,2?). For the sake of simplicity we abbreviated

sin(kxly) by k., throughout. Note, that there are different phenomenological constants
corresponding to every orbital block and representation (which are, however, not dis-
tinguished in (Equation 3.1.57)) We find some well-known models in the Hamiltonian,

in particular the Rashba term k, — k, ¥ the Dresselhaus term k,/ + k, ¥ and some unfa-
miliar terms k, ¥ + k7 and k. — ki as well as the k, 2, k,Z terms in the two-dimensional
representation sectors. The resulting non-trivial spin structures arising from these non-
centrosymmetric spin-orbit terms are shown in (Figure 3.1). A summary and classifica-
tion of different types of spin-orbit interaction in centrosymmetric and non-centrosymmetric
models is given in (Table 3.2).

3.2. Pseudospin and definition of Bloch states

A spinful single-particle Hamiltonian M, that doesn’t feature any spin-orbit coupling is
denoted by

61



3. Mean-field theory in absence of spin rotation invariance

Y Y Y
—T T R
iGN SRNEN AN
/ / N / \ / \
J %\ [/ O Iy \
[ | k [ L vk i . k
{ N . / [ \'\ /'/ x
\ \\ /) \\\ J/ N\ /
\ ~ul / \ A \\ ~NAalae s /’
el — S~ . o~

(a) (b) (c)

Figure 3.1.: (Figure 3.1a) illustrates the Rashba term 7, = (ky, —kx,O) resulting in a spin-split
Fermi surface with momentum dependent spin expectation values (o), = —/\‘%
(cf. (Equation 3.1.55)). In particular, the spin expectation value is aligned in the
x-y-plane and is perpendicular to the Fermi momentum in the case of Rashba spin-
orbit interaction (evolving counter clock-wise). Note that the length of arrows does
not reflect the actual magnitude of the spin expectation value. The Rashba term ap-
pears on the diagonals of (Equation 3.1.57). (Figure 3.1b) shows the Dresselhaus term
Y = (ky, k., 0) resulting in a spin-split Fermi surface with spins rotating clock-wise
around the Fermi surface (in contrast, to the Rashba spin structure). The Dressel-
haus term shows up in the x? — y?, z? orbital matrix elements in (Equation 3.1.57).
In (Figure 3.1c), the spin structure of the unnamed term 7, = (kx, —k,, 0) is shown,
which reassembles the one of the Dresselhaus up to a shift 77/4 along the Fermi sur-
face.

Ho=3 (taar (K) ® 00) o i (32.1)
k

a,n 0,0’

where a = (s, 0) represents the sublattice and orbital degrees of freedom and ¢y, is the
2x2 identity matrix. Since the Hamiltonian is diagonal in spin space we can easily write
down a set of eigenstates, i.e.

1 0
Ujqy = Uiq ® (0> Upey) = Ugy ® (1) ’ (3.2.2)

with (¢, ® 09) st = CrarUiar and (ty, ® 0g) Uy = CiarUi, With the eigenvalues
Ckats Ckay € R. Due to the two-fold degeneracy, this definition of eigenstates is arbitrary
and there is an infinite number of equally valid choices given by

/ -—_
Wi i= @ Uiqp + buy,,

, _ a,beC P +pF=1, (3.2.3)
W, = —buyy + a3 Uy,
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3.2. Pseudospin and definition of Bloch states

in terms of the original eigenstates (Equation 3.2.2). We denote the new spin degree
of freedom by & € {f, [} and call it pseudospin since it corresponds to a superposition of
both eigenstates of the ¢, operator. Here, we will stick to the convention of expressing
SU(2)-symmetric eigenstates in terms of the “pure” o, -eigenstates

|T>=<(1)> |¢>=(‘1)) . (3.2.4)

In this context, the distinction between “natural” spin |1, |) and pseudospin |T, 1) is
artificial since both definitions are simply related by a spin rotation (Equation 3.2.3).
This applies for multi-orbital systems with SU(2) as well since we can always choose
the superposition of degenerate eigenstates that corresponds to the o, states in the par-
ticular band. As long as we treat both orbital- and spin- angular momentum separately,
we have a convenient description in terms of the orbital and spin operator eigenstates
at hand. In contrast, a non-interacting Hamiltonian including (centrosymmetric) spin-
orbit interaction is given by (cf. (Section 3.1.2))

’ ’

+L8=) tew ® 09 + (@, A LS 10, o)) ¢ error (3.2.5)
k o,0 —h”” 10

o0

Spin-orbit interaction intertwines orbital and spin space such that we have to rely ona
new description in terms of the total angular momentum J = L+S that serves as the new
“good quantum number”. As a consequence, the Hamiltonian neither exhibits symme-
try with respect to neither spin rotations nor to orbital transformation but only w.r.t. to
a combined transformation of spin and orbital degrees of freedom, whose generators
are given by the total angular momentum, i.e. 1) = e~1%_ Henceforth, in contrast to
(Equation 3.2.4) a description in pure o, state is impossible and we have to rely on a
new definition. In the former case, the requirement of using pure ¢, states made the
definition of the (pseudo)spin degree of freedom unique. But how do we get rid of this
ambiguity for a Hamiltonian with finite A L - S ? The idea is to switch on the spin-orbit
coupling adiabatically in A (and therefore introducing spin off-diagonal terms) and con-
tinuously connect the new pseudospin states with the pure o, states [URS85, Section II.
A.]. This is illustrated by some exemplary three band model and the definition of its
pseudospin 1 state, i.e.
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3. Mean-field theory in absence of spin rotation invariance

/ . . u
”16 adiabatically iy

. Uu-
0 switch on A ¥
Uy = Uy, R — zt%T
T 0 b1 ”/Zi
A=0 A
us; U,
0 ugl

The adiabatic process of switching on the spin-orbit coupling implies that all compo-
nents of the respective eigenvector u,; behave continuously and smooth as a function of A.
The condition for unambiguous, adiabatic definition of pseudospin may be expressed by

A=0

lim uyp =y,

where b is some band index. This definition relies on the definition of the “natu-
ral” spin state (cf. (Equation 3.2.4)) and amounts to finding the linear combination of
“intrinsic” (e.g. numerically given) eigenstates that helps to satisfy this condition (cf.
(Equation 3.2.3)). The required set of coefficients a,b € C generally depends on the
specific value of the spin-orbit strength A, i.e. the coefficientsa = a4, and b = b, are a
(discontinuous) function of A (cf. (Equation 3.2.3)). Note, that the pseudospin degree of
freedom ¢ is used for Hamiltonians including the centrosymmetric spin-orbit coupling
only (cf. (Section 3.1.2)) while the helical spin degree of freedom A (not to be confused
with the phenomenological parameter A controlling the strength of atomic spin-orbit
coupling) is used for non-centrosymmetric Hamiltonians (cf. (Section 3.1.2)). In the
latter case, the definition of the spin degree of freedom is unambiguous since there is no
degeneracy that allows for a superposition of spin states. However, both spin degrees of
freedom, the pseudospin as well as the helical spin, still suffer from some vagueness in
their definitions due to the gauge symmetry of the corresponding eigenstates. No matter,
if we determine the (pseudospin or helical) eigenstates wuy;,, 5y of a generic one-particle
Hamiltonian hgg,' (k) including orbital and spin degrees of freedom numerically or an-
alytically, we will find that the phases of the eigenstates are arbitrary in the sense that
the redefinition uy;, () 7 — e_iq’(k'b'(A'ﬁ))ukb( A, still yields a valid set of eigenvectors. In
particular, in the former numerical case, the phases of the eigenvectors along a closed
and continuous path through the Brillouin zone are varying in a random and messy
way. This intricacy was also noted in the context of topological insulators and the defini-
tion of the Berry phase [BH13, chap. 2.2]. However, in contrast, to our case, the Berry
phase can be computed gauge independent circumventing the problem of the chaotic
phases. But this is possible only since the Berry phase is a scalar entity, while we are
to deal with vertex functions that essentially depend on their basis and their phases.

64



3.2. Pseudospin and definition of Bloch states

The solution is to regauge the eigenstates in such a way that the phases behave smooth
and continuous along a closed path through the Brillouin zone [BH13, chap. 2.1]. It
turns out, that for particular Hamiltonians, it is actually impossible to find a continu-
ous phase that is also single-valued. This lack of single-valuedness indicates a non-zero
Hall conductance [HK10]. To emphasize and confirm this result we have a look at the
Hamiltonian of the single-band Hubbard model

H= Z Z (cos(kx) + cos(ky)) oo Ch kot (3.2.7)
K

o,0’

whose k-independent eigenstates can obviously be chosen to be the ¢, eigenstates
Ity = (1,0)T and |L) = (0,1)T. Another set of eigenstates is given by |1) = ¢~ (1,0)T
and 1) = e"#® (1,0)T where v (k) and u(k) may represent any discontinuous and ex-
otic function you can think of. Although, these are valid eigenvectors, the interaction
that is rewritten in terms of this basis is not the one corresponding to the original model,
anymore. Even in this simple example, we are destined to employ a smooth and con-
tinuous (and even more constant, in this case) phase along a closed path through the
Brillouin zone. Up to a global k-independent phase the requirement of smoothness and
continuousness is sufficient to remove the arbitrariness of the phase. This requirement
rules out the possibility of employing the Bloch states in an irreducible (asymmetric)
part of the Brillouin zone and implying the remaining ones by means of point group
symmetries since this introduces some unwanted and unphysical discontinuities in the
phase of eigenvectors and therefore in the Bloch wave functions across the border of the
irreducible units (cf. [SC04, V. Discussion] and [MHW13, Summary and Outlook]).
More technically, after fixing the global phase at a randomly chosen k-point one may
proceed by determining the phase at a neighboring k-point by minimizing the overall
phase difference between the eigenvectors at the respective momenta. In particular, we
shift the phase of the subsequent eigenvector such that the overlap (inner product) of
both eigenstates has the phase ¢ = 0, i.e. the inner product is real. Consider the two
subsequent momenta, along a closed path e.g. the Fermi surface in two dimensions,
and their associated eigenvectors denoted by k,, k,,; and u,, u,,;. Their overlap is
given by (u,|u,, 1) = re’?. Thus, in order to ensure the smoothness of the given eigen-
vectors, we shift the phase of the second (at k) state by u,,; — e '%u,,; where
¢ = arg(u,|u,,q). This is illustrated in (Figure 3.2), which shows the two-component
eigenstates of a p,-orbital tight-binding model on the honeycomb lattice before and after
the smoothing procedure. For clarity, we simply chose the Fermi surface as the closed
path through the Brillouin zone. However, in general, we require the phase of eigen-
states to be continuous throughout the Brillouin zone. Furthermore, we only included
the eigenstates of the lower band with the Fermi surface. To get some insight into the
structure of the phase of eigenstates, we consider the analytical solution of the first near-
est neighbor tight-binding Hamiltonian
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3. Mean-field theory in absence of spin rotation invariance
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Figure 3.2.: As an example for the definition of the proper phase of eigenstates we provide the
Hubbard model on the honeycomb lattice featuring p, orbitals. The Hamiltonian is
given by (Equation 3.2.8) with the chemical potential set to 4 = —t. (Figure 3.2a)
shows the numerically given eigenstates as produced by any linear algebra pack-
age, i.a. [And+90; San10; GJ+10]. An arrow represents a single complex compo-
nent of the eigenvector in the complex plane, where the yellow arrows indicate the
weight of the A sublattice and the blue arrows the weights of sublattice B. Going
along the Fermi surface, the arrows, i.e. the phases of the eigenvectors are uncorre-
lated and change randomly. The inset in the upper right shows the real and complex
parts of both sublattice components in the respective eigenstates along the Fermi sur-
face in counter-clockwise direction. In contrast, the arrows in (Figure 3.2b) change
smoothly and continuously along the Fermi surface, which becomes apparent, in
particular, in the corresponding inset.

Hy(k) =t Z (e k(Ta=Ta)  pmik(-a1+Tp=T4) | p=ik(-a+Tp=Ta)) ot

CakCa'k
an’ k :=h(k)
0 h(k) Cak
t; CAk’ Bk (E(k) 0 )(CBk ’ (3.2.8)

where 7, = (0,0)T and 73 = (4,0)7 are the positions of the sites of sublattices A
and B in the unit cell. The real space basis vectors are given by a; = (3, \/5) zand a; =
(3, -3 ) 5. The eigenvalues ¢, and eigenvectors u, may be straightforwardly calculated
to be ¢, = +|h(k)| and uy = % (ih(k)/sk,l)T. The k-dependency of h(k) suggests

that the eigenvectors are expected to transform according to the By representation of
the point group, which is confirmed in the plot of the smoothed phases in (Figure 3.2).
Note, that the plot of smoothed phases may still look differently depending on the global
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3.2. Pseudospin and definition of Bloch states

phase, that may be chosen freely. By adjusting the phases of eigenvectors smoothly along
a closed path through the Brillouin zone, the phases are usually even continuous across
the border of the Brillouin zone. Therefore, one may as well choose the Fermi surfaces
in the extended zone scheme as the closed path, since eigenvectors at k-points related
by a reciprocal lattice G = n1by + n,b, are the same. An exception, however, is given
by a Hamiltonian on a lattice with multiple sites in the unit cell, e.g. the tight-binding
Hamiltonian on the honeycomb lattice. Setting up the Hamiltonian (Equation 3.2.8) at
a momentum k + G we find

T 0 e_iG(TB_TA)h(k) CAk
Ho(k) = t; (et chi) (eiG(TB_TA)E(k) 0 ) (CBk) , (3.2.9)

where we used G - a; , = 27tn with n € Z. While the additional phase cancels in the
expression for the eigenvalues, the eigenstates at a momentum shifted by a reciprocal

. T
lattice vector are given by uy , g = % (ie_lG(TB_TA)h(k) /€, 1) . Henceforth, one has to

take special care of how the eigenvectors are (continuously) connected to the next zone,
which is of particular importance for the calculation of scattering processes and the back-
folding of quasiparticle states. Finally, we comment on the relationship of the presented
definition of eigenstates to previous works on this topic. [Ful5; KF15] present a defini-
tion of basis states in the presence of inversion and time-reversal symmetry for spin-orbit
coupled metals. The combined application of inversion and time-reversal symmetry en-
ables the definition of a Kramers doublet. The orthogonality of the two states belonging to
the doublet allows for a unitary U(2) transformation. This transformation can be used
to redefines both states in order to satisfy the condition for the “manifestly covariant
Bloch basis” (MCBB). This condition requires the Bloch wave function spinor at the ori-
gin of real space, i.e. r = 0 (where the Bloch theorem (Equation 3.1.15) assumes the
simple form ¥, (r = 0) = 1, (r = 0)x,-) to be fully spin-polarized along a global spin-
quantization axis, which is employed for all k-points in the entire Brillouin zone. As a
consequence, the MCBB exhibits a particular simple transformation behavior with re-
spect to point group operations, which is in contrast, to a generic basis choice that only
respects the point group operations on basis states only up to a complicated and ran-
dom phase along the Fermi surface (cf. [Blo85]). However, this definition contradicts
the requirement of a continuous phase since it exhibits discontinuities of the eigenvec-
tor components at the borders of the sectors of the Brillouin, which define the star of k
(cf. previous discussion and [SC04, V. Discussion]). These discontinuities can be aban-
doned at the prize of introducing k-dependent representation matrices in orbital-spin
space, which, unfortunately, don’t reflect the physical symmetries of orbital and spin
degrees of freedom, anymore [ MHW13] (see appendix E). We will, however, make use
of and assume momentum independent representation matrices (as introduced in (Sec-
tion 3.3.1) ) in orbital-spin space that directly stem from the transformation behavior of
spherical harmonics and the SU(2)-spin degree of freedom. In contrast, the definition
of basis states we presented (for k-independent representation matrices, as well) not
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3. Mean-field theory in absence of spin rotation invariance

only removes the apparent “arbitrariness” of phases (which are actually not arbitrary
but part of the Hamiltonian (cf. (Figure 3.2b))), but also respects the condition of con-
tinuity resulting in an equally unique set of basis states (up to a global phase). More
about the issues associated to this “gauge freedom” and other choices of Bloch states is
found in appendix E.

3.3. Structure and symmetries of the two-particle vertex

Before we embark on the endeavor of a mean-field theory in absence of spin rotation
symmetry (and inversion symmetry), we will try to gain more insight into the structure
of the two-particle interaction to be analyzed. The presence or absence of time-reversal,
spin-rotation and inversion symmetries determines the specific form of the interaction to
a great extend. We will derive the effect of the corresponding transformations on two-
particle vertices in both orbital and band space. In orbital space, the spinful interaction

. 0102010%
is denoted by Llalaza,la,2

(with o being the “natural” spin degree of freedom and « repre-
senting all other quantum numbers). The interaction is apparently comprised of 2* = 16
spin sectors. In particular, in a numerical context it is important to distinguish between

the entire object of the two-particle vertex (denoted by T'®), being an operator, and the

rank four tensor UZ;Z;Z]ZZ e Cmn (which is all we deal with numerically). Their
172

relation is given by

7 7
4) _ § 2 01020105 _+ +
™= uoclazucaoc’z aa’ldia%néaazlfza“ﬂﬁ / (3.3.1)

&q,42, 071,02

! ’ r !

&y 01,0,

withal,/a,, creating/annihilating a fermion with spin -and collected quantum num-
bers a. We introduce the basis

t (gt gt gttt gt gt gt oot
AL = (@B Gy B B Gy By ) (3.3.2)

where a represents all quantum numbers except spin. On the one hand, in orbital basis,
these are « = (k,s,0,0) momentum k, sublattice s, orbital 0 and spin ¢. On the other
hand, in band basis, the quantum numbers are & = (k, b, 0’) momentum k, band b and
pseudospin 7. Using any of these bases the two-particle vertex can be written as

" Ml mit 1Ml

aqaonal, uuclvczpcgzx’z ul)élﬂlzﬂlllxlz uleozzucaoc’z

1 ., unt . Ut ., U .

Ko, X KXo X K ko X K o X

T Y T JF S St H Al (33.3)
aqapa] aqapa]an aqapa]an Qaqapa]an

Wit Wl LT WL

aqaonal, aqaonl g, aqaonlal, aqoon
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3.3. Structure and symmetries of the two-particle vertex

The vertex function is required to satisfy fermionic antisymmetry upon particle ex-
change, self-adjointness and eventually time-reversal symmetry . Mathematically, we have

e fermionic particle exchange

’ ’ ! ! ! ! ’ ’
0102010, - _ 001010, - _ 01020,04 — Op010,0q (3 34)
aqapaag, apoq o ay aqapann apmqaha o~

e self-adjointness

01020105 1101050105 (335)
L Y Y. T SN Y. 2Y. ) o~

as a natural consequence of fermionic exchange statistics of the operators in (Equa-

tion 3.3.2) and the requirement (TXL))Jr = FXL). More precisely, the “self-adjointness”
amounts to the Osterwalder-Schrader positivity of the action in imaginary time functional
integral formalism [OS73; Wet07; Ebel4]. Although, the two-particle vertex in (Equa-
tion 3.3.4) and (Equation 3.3.5) is given in orbital-spin basis, analogous relations apply
to any other basis, e.g. band-pseudospin basis, which is related to orbital-spin basis by a
unitary transformation. The antisymmetry with respect to fermionic particle exchange
and the Hermiticity of the two-particle vertex impose constraints on the structure of the
vertex that significantly reduces the number of independent elements. In particular, the
sixteen “spin sectors” in (Equation 3.3.3) are reduced to six independent tensors. A
two-particle vertex, which satisfies Hermiticity and fermionic antisymmetry must have
the structure (the pseudospin indices {7} indicates the general validity of the statements
below)

Alezxzzx’lzx’z Bleazzx’lzx’z _Bleazzx’zzx’l Calaza’lzx'z
010,010, Buc’la’zleucz szlucza’lzx'z _szlzxza&zx'l Ealzxzu’la’z (3 3 6)
wqaontal, T — — ’ ~
1725172 Ba’za’lalaz Dazala’laé Da2ala’2a’l Eazala’la&

Ca’ltx'zulaz Ea’laétxlaz _sz'la’ztxzle thltxzzx'la’z

where the introduced tensors {A, B, C, D, E, F} must satisfy the constraints

szlaza'la’z = _Xazalac’la’z = _Xalacza’zzx’l = Xazleac’za’l where X € {A,C,F}
X where X € {A,D, F}

wqpn

szlazzx’za’l = sz’la’zzxzle where X € {D}

X 1o
0410(2041042

(3.3.7)

Hence, A, C, F satisfy antisymmetric conditions under particle exchange with respect
to the residual indices and A, D, F have to be self-adjoint. Combining both constraints
on D, we obtain D, iy, = D, a,arar - as well. Note, that B and E are restricted by

the antisymmetry with respect to ex2cﬁange of unprimed (for B) and primed indices
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3. Mean-field theory in absence of spin rotation invariance

(for E), only (in contrast to A, C and F, that are antisymmetric with respect to both
unprimed and primed), while they are both symmetric with respect to exchange of both
pairs of indices at a time. As a final remark, we mention that a similar parametrization
of the two-particle vertex was introduced in [EM10] for the Nambu vertex of a singlet
superconductor.

3.3.1. Orbital space

Both single-particle and interaction term of a multi-orbital Hamiltonian describing strongly
correlated electrons on a lattice are naturally given in orbital-spin basis. Henceforth,
we will analyze the two-particle vertex with respect to a basis (Equation 3.3.2) whose
quantum numbers («, o) refer to @ = (s,0,k) sublattice s, orbital o, momentum k and
“natural” spin indices first. The fermionic Grassmann fields ¢, ¥, are more conve-
nient to work with than the corresponding fermion operators af , , 4, and will be used
throughout the methodological development of the renormalization group techniques

in (Chapter 4), (Chapter 5) and (Chapter 6). Note that, in general there’s no complex
conjugated version of ¢ , , being ¢y, , since both are simply different generators of
the Grassman algebra. 7

Time-reversal

To see what the implications of time-reversal symmetry on the spinful two-particle vertex
in orbital-spin basis are, firstly we have a look at the transformation of a spinful single-
particle state, i.e. [SN11; Sch05b]

Ykao — © Yxao = Z (_igy)mr, P _xao (3.3.8)

o’

l/}kzxa — 67! l/}—kom = Z Y_xao’ <+i‘7y)g,g = Z Y_xao’ (i0y>a,g ’ (3.3.9)
o’ o’

where the multiindex « is resolved into momentum k and any residual indices & and ¢
It was taken into account in (Equation 3.3.9) that momentum is odd under time-reversal.
Using (Equation 3.3.1) in its functional integral formulation featuring Grassmann fields
we can apply the passive time-reversal transformation given by (Equation 3.3.9) and
obtain (a detailed calculation for single particle Hamiltonian is given in appendix D)

7 Although, ¥, and 1, are two different generators of the Grassmann algebra one can define a bijective
mapping relating ¢, and , with each other by conjugation. This is possible only for an algebra with
an even number of generators divided into two sets of generators. Hence, the conjugation is ¢y, =
¢, ¢ € C [NOS88b, chap 1.5] and ¢, ¢ = 1, in order to satisfy the “superreal” condition ¢ =
1P [Nak03, chap. 1.5.8]. However, the operators c! and ¢, behave according to ¢f. =5 ¢*, and ¢, = ¢_y
under time-reversal.
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3.3. Structure and symmetries of the two-particle vertex

B .Y Y Y

“1/“2/ kl k2 TerZ/
al,az k’ k’ Tl,T2

01020105 - , , , ,
x Z u L2k, ko, kG, k (—1(7 ) (—za ) (—1(7 ) (—za )
01,02, DCMZD(],XZ( vy 2) Y10 Yty Yoty Y ot
71,05
X Y1 i vy P-syaty s Pkyry o P-kyay 7y - (3.3.10)

The vertex function inside the brackets in (Equation 3.3.10) denoted by U evaluates
to (using the basis (Equation 3.3.2) in terms of spin indices {7y, T, 71, T5})

Wl _qrit _rlnl AN
aqapnal ualtlex’laé uleaztx’la’z ualtxza’laé
ity it Uit _
aqoont aqaont ol aqoont ol aq oot ol o
e g 2 et e | (ke ko K k) L (33.11)
aqaou g, aqapaal aqaoaal, aqaonal,
L L B XV gt
aqapalal aqapaqal aqopnal aqapaqal

i.e. the spin structure of the two-particle vertex is significantly altered. To find the
complete transformation behavior of the two-particle vertex elements, we have to com-
pare the indices of the basis in (Equation 3.3.10) with the ones in the original vertex
function (Equation 3.3.3). Comparing “coefficients” in terms of Grassmann fields, im-
plies the transformation behavior of the tensor elements:

UT2%1% (I kok k) B 71927172 (—k, -k}, —k;, =k, )

Délﬂézﬂ (X 0(10620(10(2

~ 010,07 0% , ,
= Uﬂlla;a,lla,; (—ki, —ky, k7, -k5) (3.3.12)

where we used the Hermiticity of the vertex function (Equation 3.3.5) and the spin
structure of U is given by (Equation 3.3.11). Hence, time-reversal invariance of the two-
particle vertex then implies i.a. the conditions (cf. [Ebel4] for two-particle vertices in
Nambu representation)

u”N (kl’k2’k’1’k,) uTllT ! ’(_kll_k21_k’11_k’2)

Kqapn o) e 2N
" ) = ’ d
ualaza w (ki ky, ki, Kk5) = _urxlazwl% (=kqi, —ko, =Kk, —Kk5) . (3.3.13)
01702701/02

We note, that the two-particle vertex U (kl, ky, ki, K ) must obey momentum

Xq,&p,&7 0%
conservation and implicitly depends on three momenta only since the fourth one is fixed
by ki = k; + k, — Ki.
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3. Mean-field theory in absence of spin rotation invariance

Spin-rotation

Implying any spin symmetries w.r.t to SU(2) transformations or a subgroup thereof,
will introduce dependencies between the spin sectors and eventually requires some el-
ements to be zero. To see the consequences of these symmetries on the level of the two-
particle vertex, we first introduce the general SU(2) transformation Sai, P) = e op/2 —
ogcos(¢/2) —i(ii - o) sin(¢/2) of the fields/operators corresponding to a rotation by ¢
about the axis given by 71 (o = (00, Oy Oys (fz) is the vector of Pauli matrices)

Yoo — g(ﬁ/ PV Ppo = Z gmf’(ﬁr P)Puo (3'3'14>

lrl_]cuf - Z Qﬁaa’g‘;’g(ﬁ/ q)) = ZE(T{T'(ﬁ’ q))lﬁlX(T' ’ (3315)
o’ o’

where SA*(ﬁ,go)g(ﬁ,go) = 0g and ZT§+(ﬁ, go)mg(ﬁ,go)wf = 04, respectively, due to
unitarity. Applying this transformation to each of the four fermionic fields of the two-
particle vertex, results in a transformed vertex, whose elements are given by

1020105 Z 01020105 =

aapaiay ay oyl STiUiSTéﬂésTZU'ZST]U] . (3.3.16)
01,02
01,0%

In particular, under spin rotations about the z-axis, i.e. S, Q) = e~172%/2 the vertex
transforms to

unttei(3+5-3-2) i d(3tE-5+3) (5 +5+5-3) g d(3tEHE+s)
utttei(3-5-5-%) g d(3-2-5+3) g i(E-5+5-3) (53 +E+s)
Ui (F+3-5-%) i d(F+E-3+3) (T H5+3-3) (T HEes+s)
i (m5-5-5-%)  puni(-3-3-3+%)  puund(-5-5+5-%) [ i(-T-3+3+3)
(3.3.17)

For the two-particle vertex to be invariant under such a rotation, the transformed ver-
tex must evaluate to the original vertex. Therefore, the ten transformed vertex elements
that feature an unequal number of ingoing to outgoing up and down spins must be
zero. Fermionic antisymmetry furthermore requires the four “inner” elements to be in-
terdependent, i.e. UM = -4 = 4™ = i .= v, ', while the elements

(Xlﬂézﬂlﬂé
M . ! Wil . 1 : ;
u = Valwza,1 o, and U = Va1u2a’1 «, have to be antisymmetric as well. Therefore,

the e~/7:%/2_symmetric two-particle vertex is given by
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3.3. Structure and symmetries of the two-particle vertex

! !
202 = (V] Syq + V 8.1 ) O0r, a8t 16
- aqpaah,” 01l + aqapaah, 01l ) Y0103 oiopY o107

aqoonh
+ Voclaézuc a&édldiévzaé - Voczleuc a'z(SUlUé(SU‘ZU‘i ’ (3'3'18)
with V1 = -y = -y and V =V  »» which means
aqapnal apmq aqapann ajaonay Xplqlp0

it only contains three independent spinless coupling functions (cf. [MH14, Sec. 1.3,
p- 21] [MEH14; MH12]). If we require full SU(2) spin rotation symmetry, we will get
even more interdependencies resulting in a single spinless coupling function Vi 4,4 a-

Hence, the vertex function must be invariant under the most general S(ii, ¢) (Equa-
tion 3.3.16) associated to an arbitrary axis of rotation 7i and an arbitrary angle ¢. This
is possible only, if the matrix elements of S sum up to unity by employing the unitary
relation } S(A, @) oS, ) rr = Sy0r- To this end, the primed and unprimed spins oy,
0, and oy, 0, have to be pairwise identical, e.g. either ¢y = ¢} and 0, = 0 or 07 = 07
and o, = 07 (cf. (Equation 3.3.16)) All vertex elements that don't satisfy this condition
must vanish. Hence, the fully spin symmetric two-particle vertex has the form

01020105
ajapnal, szlzxza zx’z(stﬁaiéaza - szzlea zx’zémaé&azal ’ (3'3'19>

which may be represented in matrix form (Equation 3.3.3) by

Vuclazzx’luc’z - Vazuclzx’la’z 0 0 0
0 Voclazac’loc’z _Vazacltx’lﬂ(’z 0 (3 3 20>
, .
0 _Vazlezx’ltx’z quzxzzx’lzx’z 0
0 0 0 szlaza’lzx’z - Vazlea’lzx’z

where the single spinless coupling function satisfies

Voqzxzzx’loc’z = szzoz]zx’zuc’l sz]oczzx’lzx’z = sz’loc’zzx]zxz ’ (3'3'21>

which can be shown by employing the fermionic particle exchange (Equation 3.3.4)
in (Equation 3.3.19) twice and using the Hermiticity (Equation 3.3.5). The relation
(Equation 3.3.19) also determines how a spinful two-particle vertex describing a SU(2)-
invariant spinless interaction like e.g. the Coulomb interaction U looks like. Because the

spinless coupling function V, , 2yl equals the Coulomb interaction, we simply have

21122022 = Udy,0100,0; — Udy,0405,0:- This relation will be employed extensively
for spinful (renormalization group) calculations since it extends straightforwardly to
multi-orbital interactions exhibiting SU(2) invariance.
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3. Mean-field theory in absence of spin rotation invariance

Inversion

The operation of spatial inversion P affects the relevant quantum numbers of momentum,
sublattice, orbital and spin according to

momentum k5 K (3.3.22)
sublattice s 2>f(s) (3.3.23)
orbital 0L (-Dlo (3.3.24)
spin Lo, (3.3.25)

where f (s) is a function of permutation that shuffles the sublattice indices and de-
pends on the specific lattice geometry. The orbital degree of freedom may acquire a
minus sign depending on the specific angular momentum quantum number / [Bal98].
Finally, spin ¢ is unaffected by spatial inversion since it is a pseudovector/axial vector.
Hence, we find that the two-particle vertex (Equation 3.3.1) in orbital space behaves
under inversion according to

! !
F(4) = u0—10—20—10—2 [N 1ol o I’Bk’ ! ’lpk/ ’ ’l/Jk ¢k
(k15101) (k35,0,) (kys707) (ky5505) 1K 5107 TK;5,05 TKp5205 7K15101
5185, 09 .05, 1.0 1°171 2°272
kl,'k%' Sl,’sz,’ 01,’02,’ 01,’ %
ki K, 51,52 01,02 01,03

D ’ ’
E) ual 02010
z z z z (k15101 (kp5207) (K}s]0]) (k;y8505)
oy ko, 51,52 01,02 01,03
ki K, 51,52 01,03 01,03

X l/]—k’lf(s’l)(—l)lllo’l l’b—k’zﬂs'z)(—1>I'10'21'b—k2f(52><—1>1202w—klﬂsl)(—l)’lm !
(3.3.26)

Note, that the requirement of inversion symmetry on the two-particle vertex r®

which results in T® 5 T@® L T® imposes constraints on the vertex structure that
significantly reduces the number of independent couplings.

Point-group symmetries

An important property of any n-body correlation function for electrons on the lattice
is, that it must transform according to the underlying point group symmetry. Albeit
we're dealing with the irreducible two-particle vertex, its transformation behavior is
essentially determined by the transformation properties of the single-particle states the
vertex is based on. Let’s consider the point group (; and one of its elements denoted
by ¢ € (. Since we consider single-particle states involving sublattice, orbital, spin
and momentum degrees of freedom, we have to establish all (reducible or irreducible)
representations that operate in the respective spaces. The two- or three-dimensional
momentum space representation is denoted by P(g). The representations in sublattice
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3.3. Structure and symmetries of the two-particle vertex

and orbital space are given by A(g) and L(g). Finally, the most crucial transformation
matrices, denoted by 5(g) with double group element g & QD that actually form a double
group are the ones operating in spin space. Although, its double group properties can
be ignored in some cases (e.g. symmetry of the spinful Hamiltonian) it’s important to
keep in mind that 5(g) behaves as a double group representation when acting on single-
particle states. The fermionic single-particle basis states given by the fields 1 and ¢ are
therefore transformed according to

8€§
Prsor — Z (A’(g) ® 06(8) ® ‘5(g))(50g)(5'0'g') Yrs'o'or = ED\D(g—l)ks’o’a’ (3.3.27a)

s'o’'c’

- gEQ + - _

Prsor — Z (A(g) ® oC/(g) ® ‘S(g))(sgg)(sfglgf) Prs'o'or = lp;@(g—l)ks’o’a’ , (3.3.27b)
s’ 0,0’

where the indices s, 0 and ¢ represent sublattice, orbital and spin. The collective in-
dices (soc) and (s'0’c”) refer to a single index each in direct product space. For brevity
of notation, we denote A (g) ® L () ®5(g) := D(g). We took into account that the opera-
tion ¢ in real space corresponds to ¢! in reciprocal space [DDJ08, chap. 13.3 “Symmetry
of k-Vectors and the Group of the Wave Vector”]. For future reference and simplified
notation the multiindices a,f = (s —1)n,2 + (0 —1)2 + ¢ (n, being the number of
orbitals) are defined and the point group transformation of fields is summarized by

8eqGP

¢kso(7 - Z ‘l)’(g)(soa)(s’o’(f’)ll]ks’o’a’ = Z ‘i)’(g)mc’lrbka’ = ¢Q(g—1)ka’ (332861)
s’ 0,0’ o

_ geGP - _ [ -

‘kaOU' - Z lpks’o’a’i)(g)(S/DIUI)(SOU) = Z l'bk“,@/(g>06'tx = lp,@(g_l)kt)(' 7 (3328b)
s’ 0,0’ o’

where ¢ is an element of the double group gD . Note, that one has to distinguish
the transformations associated to real space, which are given by the matrices acting on
momentum, sublattice and orbital degrees of freedom and the ones operating in spin
space. In general, the transformation in real space affecting the combined momentum,
sublattice and orbital degrees of freedom may be performed independently from the one
in spin space. However, in the presence of spin-orbit interaction, the real space and spin
space degrees of freedom are coupled. Therefore, the corresponding Hamiltonian will
exhibit symmetries only with respect to combined real and spin space transformations.
Before we proceed to the two-particle vertices, we have a look at the transformation of
the single-particle Hamiltonian, i.e. the non-interacting action Sy [, ¢]:
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3. Mean-field theory in absence of spin rotation invariance

[ p Z Z l/]koc (1(‘} 5040( - hmx’ (k)> ¢ka

DétX

K
Xﬁl )(g_l)kﬁ'@(g)'g',x' (i bppr — My (K)) @/(g)[xlslp@(g—l)kﬁ

QM

Yl =
Z 17[]D(g hHkp’ (lw 5[3[3 Z i)(g)ﬁ« g’ (k)ﬁ)(g)aﬁ) 77[Jp(g Hkg 7 (3329)
BB

iw,

where the second equality made use of the unitary property »’ Wﬁ,“ﬂ(g) ap =
g for the first term involving the Matsubara frequency. Comparing coefficients in
terms of Grassmann fields, yields the transformation rule for the single-particle matrix
elements that is

hzxzx’ (k) ge—g Z ﬂ(g)ﬁrarhzxa’(k>ﬂ(g)u¢,8 é hzxa’(v@(g_l)k) . (3-3-30>

The invariance of the non-interacting action under this transformation is ensured by
construction (cf. appendix A and (Section 3.1.2)). Here, it is important to note, that
we can neglect the double group character of the spinful transformation because all
extended group elements § = Eg don't differ from their simple counterparts ¢ since
the additional sign D (E) = — (E) cancels in (Equation 3.3.30). The generalization of
(Equation 3.3.29) to the transformation of the two-particle vertex is straightforward. Re-
ferring to (Equation 3.3.1) and denoting the momenta explicitly the two-particle vertex
becomes

4) 1.7 _ a o o
TPl = ) ) UG P oy Yo Vioe,
a1,02, kq ko,
al “2 k’ k’

gEQ o oy
Z Z Z ukllpzzlpzrkrzﬂ(g)ﬁr r@(g)ﬁr r@(g)pgzﬁzﬂ(g)pclﬁl
B1.B2, ky ko, X142,
B1.Bs Kk 1,05

X P pgie P o1k s Do Y PE Diaps (3.3.31)

resulting in the transformation of the tensor elements with respect to the same Grass-
mann fields

76



3.3. Structure and symmetries of the two-particle vertex

Kqapo ol gi? utxltxzzx’la’z
kikoki k) P(g=DHk P(g Dk P(g~ 1K P(g 1)K,

— B1B2p1P: Doy \
- Z uklkzk’k'2 @(8&353c‘D(g)afzﬁfzﬁ)(g)/;zazﬂ(g)ﬁlal . (3.3.32)

Let’s assume, there are n,n, different single-particle states (due to the number of de-
grees of freedom 7, in sublattice, orbital and spin space and 7, discretized momenta in
rec1procal space) descrlbed by 1, Hence, the two- partlcle Vertex contains nin$ cou-

, all nn? coupling constants

“ K

if

are already determined by a particular set of

(Equation 3.3.32).

couplings and the transformation rule

So far, we dealt with the two-particle vertex in orbital-spin basis. However, in (Chap-
ter 5) and (Chapter 6) we will see, that these quantum many-body calculations are most
conveniently performed in band space, i.e. in the basis where the one-particle Hamil-
tonian (and therefore the single-particle propagator) assumes diagonal form. Further-
more, the band basis allows for a more transparent interpretation of the resulting phys-
ical entities. Unfortunately, the shape and spin structure of the two-particle vertex will
also change due to the fact that it’s expressed in terms of the new basis featuring the
pseudopsin or helical spin degree of freedom. Both pseudospin and helical spin amount
to a superposition of “natural” 1 and | spins eventually associated to different orbitals.

3.3.2. Band space

The correlation and vertex functions in band space are the ones, which provide conclu-
sive information about physical properties like e.g. superconducting gap functions, low
energy behavior of specific heat. The correlation functions in band space correspond
to specific Fermi surfaces while the orbital space vertex functions cannot be associated
to any particular Fermi sheet. Furthermore, the loop integrals occurring in the frame-
work of perturbation theory are most conveniently evaluated in band space, because
it is the basis that the non-interacting Green’s functions are diagonal in (cf. (Chap-
ter 5)). Henceforth, we need the transformation rule in band-pseudospin/helical-spin
space corresponding to (Equation 3.3.32) in orbital-spin space. The path from orbital to
band space is paved by the unitary basis transformation

b)) = Z UST™M (K) Yoo = Z UL Py, = dra (3.3.33a)
s,0,0

‘f’kb(&,)\) = Z ( go(g)\ (k)) Prsor = Z¢ka = Pra (3.3.33b)
s,0,00

where we again abbreviated the indices (s, 0, ¢) by # and the band and pseudospin/helical-
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3. Mean-field theory in absence of spin rotation invariance

spin indices by & = (b, (77,1)). We introduced the new fermionic fields ¢ and ¢ repre-
senting the states in band space. Here, Uy is the matrix of eigenvectors of the single-
particle Hamiltonian H, at k, which crucially depends on the gauge of phases of eigen-
states and eventually on the definition of the pseudospin discussed in (Section 3.2). In or-
der to find the transformation behavior of the two-particle vertex in band space, we first
have to work out the transformation behavior of an eigenvector uy ; of the single-particle
Hamiltonian H, at k for band/pseudospin/helical-spin & with eigenvalue/band-energy
Cxa- Based on how Hj, transforms (see (Equation 3.3.30)), the eigenvalue equation re-
veals what the eigenvector u p,-1),; at the transformed momentum £ ¢ Dklooks like,
ie.

Horties = Gt = Hox (D))" D) wea
=1

= D) o (D))" D@ = D()atis = G D) - (3.3.34)

:‘/{Oﬁ(gfl)k

Consequently, in terms of the original eigenvector u,; at k, the eigenvector at 2(¢ 1)k
is given by U p 1),z = L (g)uys. However, this eigenvector generally differs from the
eigenvector up 1) 4 defined at momentum P(g~Hk. In case of degenerate bands
characterized by pseudospin, the transformed eigenstate @ p,-1); equals a superpo-
sition of both pseudospin states of the specific band at the respective momentum, i.e.

D) Uper = CFUpg-1)17 + CTUP(g-1yip]  /
2 2
where ¢;,c;eC and o+ =1 . (3.3.35)

Thanks to the orthonormality of eigenstates at 2(g~!)k the coefficients are given by
c; = <u\9(g_1)kbf| Q) [uyps) and cp = <u@(g_1)kb1‘ D(g) lugpz)- In contrast, if we have
non-degenerate bands labeled by helicity, the eigenstate at k must be mapped by the
point group operation onto an eigenstate at 2 g_l )k associated to the same energy and
therefore the same helicity, i.e.

D()wpr = e_i(Pu\p(g—])kb)\ . (3.3.36)

the two states can only differ by a phase shift. It is important to note, that the inversion
operation is not part of the point group g € ( for the case of helical spin by definition,
since helicity arises from broken inversion symmetry. Numerically, it is most efficient to
encode these phase shifts and coefficients for all bands in a matrix 8y (¢) that amounts to
the “representation” matrix J)(g) in band space including the momentum dependency
due to the particular choice of gauge and eventually pseudospin. It it given by
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3.3. Structure and symmetries of the two-particle vertex

Bi(g) = Upgan DUy (3.3.37)

where Uy and U p,-1y, are the matrices of eigenvectors at the respective k-points.
By (g) describes the transformation of single-particle states #y(7,1) in band space. To
see this, consider (Equation 3.3.33a) at the transformed momentum P( g_l )k, i.e.

¢ pg-ika = U1y Yot = Upig1 (i)(g) Uﬁuk) Pip

=D() apPrp =1 “ap
— (u@(g_1>k@(g>u;)m (W) (3.3.38)
=(Bu(®)) iz =Pup

where we used (Equation 3.3.28a). We simply wrote down the orbital to band trans-
formation of the fields at some transformed momentum given by £( g_l)k. After in-
troducing a resolution of identity in terms of matrices of eigenvectors, we can apply
the one on the right hand side to the orbital field at the untransformed momentum, re-
sulting in the field in band space at the untransformed momentum. Consequently, the
matrix product of remaining entities on the right hand side must necessarily provide
the desired transformation in band space. Based on these results we can summarize
the transformation of single-particle states in band space associated to pseudospin or
helicity by

gegP
bro(on) — Z B (&) (o 1)) (v (0 A Pt (07 A7) = Zﬁk(gm'%&' = P pg-1yka
v, (oA g
(3.3.39a)
_ geGP _ I R — _
b ) — Z P (o' A BKE) o Ay o)) = quko?’ﬁk(g)&f& =Pp-yka
v, (oA g
(3.3.39b)

Like already suggested above, the transformation matrices J3, (g) are expected to be
2 x2-block-diagonal in band-pseudospin-space and diagonal in helical-spin space. Only
in the pseudospin case with degenerate bands, we may have off-diagonal elements in
the spin degree of freedom (which is apparent from (Equation 3.3.34)). Note, that the
entities By (¢) (Equation 3.3.37) also form a representation of the simple group § that
is parametrized by momentum k. We can see this by looking at the group composition
rule
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3. Mean-field theory in absence of spin rotation invariance

“‘Bﬁ(gfl)k@) ' “‘Bk<g) = up(gfl)ﬁ(gfl)k@(g) UL(g_l)kUﬁ(g,Uki)(g) Ult
= UJ)((gog)—l)kQ)(g Og) u+ = Bk<g Og) . (3340)
Analogously to the transformation of the two-particle vertex in orbital-spin-space (Equa-
tion 3.3.32) we can by means of (Equation 3.3.39a) and (Equation 3.3.39b) work out the

transformation of the two-particle vertex function in band-pseudospin/helical space. It
yields

~ o~ ~f o~ Ey ~ o~ o~ o~
A 8f a5 & G TR

Kok Ky T P(ghky P(g ko P(g- kK, P(g 1k,

_ Brfafs - \ | |

= NZ ukllkzzk,llk’; JBk(8)&,15,1Bk(g)%ﬁ;&cj?lk(g)ﬁ;ﬂzﬁk(g)Blal . (3‘3‘41)
,BNlrﬁNz/

B1.Bo

In spite of the transformation matrices 43, (¢) not being a (double group) representa-
tion of the group ¢ € (, the vertex function is single-valued. However, because By (¢) is
derived from the orbital space transformation £ (g) it also inherits the minus sign from
its double group elements, which is essential for the single-particle states in band space
and the two-particle vertex to be consistent with time-reversal, because for fermions
we have ® = —1. More intuitively, for the states belonging to the first half of the
(two-dimensional) Brillouin zone (corresponding to rotations around the z-axis with
@ € [0, 7]), the time-reversal states are located in the second half of the Brillouin zone
(corresponding to rotations around the z-axis with ¢ € [7,27]). However, when time-
reversal is employed to the states in the second half, the momenta are mapped back to
the first half but acquire an additional minus sign due to @ = —1. This is consistent
with rotations by ¢ € [277,37], where the double group property comes into play. As
a consequence, we always have to pair up time-reversal partners e.g. for helical states
lk, +) and |-k, +), to get a simple point group transformation behavior of the associ-
ated correlation functions that The detailed analysis of point group operations for pseu-
dospin and helical spin states is also used to reduce the number of states involved in
numerics. However, the reduction scheme for the pseudospin degree of freedom differs
from the one for helical bands as shown in (Figure 3.3).

Time-reversal

How do the single-particle states (Equation 3.3.33a) and (Equation 3.3.33b) in band
space behave with respect to time-reversal? The time-reversal operator © = —icfyﬂe is
only valid for “natural” spin states. For instance, this becomes evident from the fact
that @ inverses the “natural” spin, while the helical spin state (in presence of time-
reversal symmetry) must be mapped to a state with the same energy. However, since
both pseudospin and helical spin can be expressed in terms of the “natural” spin degree
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Figure 3.3.: The symmetry reduction of single-particle states by means of point group opera-
tions for e.g. a model on the square lattice with C,, -symmetry works differently
for pseudospin and helical states. Since the pseudospin (like the “natural” spin)
is inverted by a reflection, we can limit the reduced sector of the Brillouin zone to
one pseudospin state. In contrast, for helical spin there’s no point group operation
that mediates between both helical spin states. However, the symmetry reduction
for helical bands works for pseudospin as well and the amount of phase space, i.e.
the number of states in the reduced sector(s) is the same for both pseudospin and
helical-spin.

of freedom, we can still apply © to the fields in band space, or equivalently, transform
the time-reversal operator to band space, i.e.

2. =U_ 6w, (3.3.42)

where the new time-reversal operator & in band space is momentum dependent.
When acting on a field in band space, Z transforms it to orbital-spin-space, employs
the usual time-reversal operator ® and transforms the resulting state at —k back to band
space. Therefore, we get the transformation rule for the fields

Pra =y Uiy = EP s = o (3.3.43a)
44
—ai ﬁ~~ -1 - =~
P =Y Tl B (8F) G =9 (3.3.43b)

14

In presence of time-reversal symmetry, this operation connects states that are degen-
erate, i.e. for a state in band-helical space the symmetry properties of U ensure that
(Equation 3.3.43a) and (Equation 3.3.43b) always map a state with helicity A to a state
with the same helicity that can only differ by a phase (cf. (Section 3.1.2) and (Equa-
tion 3.1.53)). However, in contrast to the case of helicity, time-reversal maps the pseu-
dospin at k to its opposite state at —k, which still yields an equal-energy state due to

inversion symmetry and Kramers degeneracy. Hence, the matrices 5, are diagonal in
helical spin space and have off-diagonal elements, only, in pseudospin space. Since
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3. Mean-field theory in absence of spin rotation invariance

time-reversal inverts the pseudospin degree of freedom (exactly like it does the “natu-
ral” spin, cf. the discussion at the beginning of (Section 3.4.1)), the requirement of time-
reversal imposes strong constraints on the structure of the two-particle vertex. There,
the constraints are the same as in (Equation 3.3.13) up to a phase.

Inversion

In contrast to the inversion of the two-particle vertex in orbital space (Section 3.3.1), the
corresponding transformation in band space appears to be considerably simpler since
only momentum and helical spin are affected, i.e.

momentum kB K (3.3.44)
band b2 b (3.3.45)
pseudospin L (3.3.46)
helicity AR emiey (3.3.47)

where, however, the appearance of the helical spin degree of freedom already pre-
sumes broken inversion symmetry. A denotes the opposite helicity with respect to A
and the additional phase ¢ depends on the untransformed momentum k (cf. (Equa-
tion 3.1.53)). Hence, an eigenstate at momentum k characterized by helicity A maps
to an eigenstate at —k with opposite helicity and a different energy, which is to be ex-
pected since the corresponding Hamiltonian breaks inversion symmetry and does not
commute with P. This already suggests that the inversion operation is not well suited
to find Cooper states for equal energy pairing (in contrast to time-reversal, cf. (Sec-
tion 3.4.2)). However, the transformation of the two-particle vertex characterized by
pseudospin degrees of freedom is

4) _ by&1bybaby 710575 ¢ L . . .
=73 > > Up 1ok k) P, b, &y P by &7, Py iy Py 17y
k11k2/ b11b2/ 5"1 rﬁZ/
KKy b b, &5
P b 010,k 010505 = 7
Sy Y ) U i 1, x5 P-xyp oy Pkl Pk, - (3.348)
kl/k2/ b1,bz &1/&2
KK b b %

The requirement of inversion symmetry T® 5 4 £ T4 does not only restrict the
number of independent couplings for pseudospin quasiparticles that exhibit inversion
symmetry but also limits the possible non-zero pseudospin sectors for Cooper pairs and
therefore facilitates the mean-field theory in the particle-particle channel (Section 3.4.1).
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3.4. Generalized Cooper pairs

In (Section 2.2) and (Section 2.4) we discussed the mean-field theories for SU(2)-invariant
and time-reversal symmetric models on lattices with inversion symmetry. Then it is pos-
sible to classify the superconducting pairing states by means of singlet and triplet part.
In this section we will generalize the concept of Cooper pairs to particle-particle con-
densates to effective interactions in systems lacking SU(2)-symmetry (and eventually
inversion symmetry). If inversion symmetry is present, the corresponding mean-fields
are continuously connected to the ones with full SU(2)-symmetry (that were discussed
in (Chapter 2)) with respect to the strength of spin-orbit interaction.

Let’s consider the discrete symmetry operator of parity , denoted by P. The effect of this
unitary operator on some state [(r)) is given by (1)) — P[p(r)) = €7 [p(—1)) with
v € R [Bal98, Chap. 13.1, p. 371]. Applying the operator twice, yields P? (1)) =
Pe [p(—1)) = €?7|ip(r)). Since the phase factor has no physical implications [SN11,
Chap. 4.2, p. 252] we can safely set it to unity. Hence, the operator satisfies P> = 1 and
its eigenvalues must be +1. As a consequence, the expectation value (¢ (r)|A|y(r)) of
any observable A, that is invariant under spatial inversion must either feature a symmetric
or an antisymmetric state | (r)), since

(@A) ™S (p(r)[PTAPjY (1) = (p(—1)|Ajp(-1))
= (+pMIAl£P®) = (POIAlpm) . (3.4.1)

In contrast, a state |¢(r)) with a non-specific parity, that is however expressable as a
superposition of symmetric and antisymmetric parts, i.e.

_[p@) +ip-0) | 1p) — Ip(-x)

p(0)) 5 S S lpw), +lpm), . (342)
=lpm), =lpm),
where |<,‘b(—r))g =+ |<]>(r)>g and |p(—1)) = —|p(r)) , cannot produce an expectation

value (¢(r)|A|¢(r)) that is invariant under spatial inversion. The presence of a center
of inversion forbids the existence of a superconducting phase without definite parity and
the mixing of even and odd pairing wave functions can only occur in systems without
inversion symmetry [MS94]. As a reminder, that the definition of Bloch states with re-
spect to their gauge and eventually their pseudospin discussed in (Section 3.2) is essential
for the numerical evaluation of the upcoming analysis, we want to establish the con-
nection between the “properly gauged” Bloch states and Anderson’s recipe to build up
pairing states using inversion and time-reversal symmetry [And84a]. To do this, we
tirst summarize the effect of inversion and time-reversal on both pseudospin-states and
helical-states (cf. (Section 3.3.2)). A properly defined pseudospin state [ko) and a heli-
cal state [kA) are affected by inversion P and time-reversal © by (for their effect on helical

83



3. Mean-field theory in absence of spin rotation invariance

states we refer to (Equation 3.1.53))

k&) o> ek |—k&) ki) 2 ik |-k&) (3.4.3a)

Ay Lo ) ko) D e k), (3.4.3b)

where ¢ and A denote the opposite state, respectively. The states |-k&),

—ko) and
|—k}_t>, |-kA) are the numerically determined Bloch states at the respective k-points.
Hence, the inversion operation doesn'’t affect the pseudospin degree of freedom but in-
verts the helical spin. In contrast, time-reversal inverts the pseudospin and keeps the
helical degree of freedom. Here, we assume the pseudospin degree of freedom to be
properly defined but assume the Bloch states to have arbitrary phases (Section 3.2).
Therefore, we have to take into account the phases ¢ and ¢’ for pseudospin and
helicity, since the Bloch states at k and —k don’t have a fixed phase relation. However,
iT]I: ’

. PT T
by applying inversion and time-reversal twice, we find, thate'¥x  and e must satisfy

the following constraints:

P2 k&) = Pel? |—k&r) = /PXe'?"x ki) £ k&) = ¢k = ¢TIk (3.4.4)
02 ki) = Oc'¥k |-kF) = e k¥ k k) = — k&) = el = —eiPk  (345)
P2ty = Pel™ |—1ct) = e i i) £ [kh) = T = eIk (3.4.6)
O2 k) = O™ |—kA) = e T Tk KA £ — [kA) =Tk = ¢ |, (347)
since P? = 1 and ©2 = —1. The entities T and P denote the phases ¢t and '™ as-

sociated to the opposite pseudo/helical-spin degrees of freedom. Apparently, the func-

tions ¢'?% and '™« describing the phase difference between Bloch states related by the
inversion operation, are transformed to their complex conjugate under k — —k, while
the corresponding functions ¢'?% and ¢/ for time-reversal must be odd in momentum
k. Apart from these constraints these functions may behave arbitrarily and discontin-
uous. However, for a smooth gauge of the Bloch states (cf. (Section 3.2)), they show an
exceptionally simple behavior. For instance, in case of a smooth gauge, ¢'?k = 1is con-
stant and ¢'%k = +1 in the first/second half of the Brillouin zone (cf. (Section 3.2) and
(Figure 3.2)). Finally, we consider the Cooper pairs built from these inversion and time-
reversal operation related partner states. In case of pseudospin states we can easily get
rid of the relative phases by either adjusting the Bloch states or transforming the Cooper

vertex appropriately. This will result in ¢'P = 1and ¢ = 1 = —¢"%x. Henceforth, a
(singlet) Cooper pair in pseudospin basis comprised of time-reversal partner states is
given by
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<C1tﬁ@CL~7> = <Cltacik,=7> (3.4.8)

The pseudospin triplet state made up of inversion symmetry related states is ex-
pressed by (including the relative phase)

(choPels) = <cltaei¢£’ ct k5> (3.4.9)

Checking the parity of this pairing state, we find

t o0t \ = [t ikt \ o —i20f [ b i ot
<C_k;7€ “Ck(~7>— <Ck(~76 kel z) = —¢ k{cze kel s) (3.4.10)

where the fermionic anticommutation of the operators and (Equation 3.4.4) were
used. This shows, that for the odd parity of the pseudospin triplet state to be satis-
fied, we have to require a trivial phase relation of the inversion symmetry related states,
i.e. L = 0. In contrast to pseudospin pairing states, the phase relation of time-reversal
partners based on helical states must remain non-trivial because the time-reversal op-
eration conserves helicity. This necessarily results in the even parity states discussed in
(Section 3.4.2).

3.4.1. Degenerate Fermi surface and pseudospin

In this section firstly we handle the case of inversion symmetric spin-orbit coupling and
a two-particle vertex satisfying both time-reversal and inversion symmetry. Therefore, all
Fermi surfaces are doubly degenerated. However, since the SU(2)-symmetry may be
broken - because of centrosymmetric spin-orbit coupling - we have to rely on a pseu-
dospin degree of freedom accounting for the double degeneracy. Assuming that the
normal-state Hamiltonian respects both inversion and time-reversal symmetry, we can
construct its degenerate eigenstates by the following procedure: We start with an ar-
bitrary eigenstate labeled by & at momentum k, denoted by |k, &). By applying both
inversion and time-reversal on that state, we obtain @P k, o) = PO k, o) := |k, "), not-
ing that parity and time- reversal commute and denoting the newly produced state by
|k, &'). How is that state related to the original one? We know that both inversion and
time-reversal transform the momentum to k — —k, so that we end up at the original k,
but what is the new pseudospin degree of freedom? Due to the property ©2 = —1 for
fermionic spin—% particles, [k, &) must be orthogonal to [k, &) 8. Therefore, we have two

8 Both unitary and antiunitary transformed states satisfy [(«|8)| = |(a’|8}|, where in the unitary case we
simply have (a'|8') = («aU'UB) = («|B) [Wig32]. In contrast, time-reversal is an antiunitary opera-
tion that transforms expectation values according to («|8) — (a’|B’) = (a|B) = (B|a) [SN11, chap.
44, p. 269]. Therefore, we have (k, ok, &’) = <@P Ik, 5”)|@13 Ik, ﬁ')> = <®P®f’ Ik, 5’)|@P Ik, 5’)) =
—(k, o]k, &') = 0, using P2 = 1 and ©2 = —1.
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3. Mean-field theory in absence of spin rotation invariance

component eigenstates at every k-point and we are able to define k-dependent Hermi-
tian operators by [Yip14; Smi+17a]

o (k) = [k, &) (k,&| + |k, &) (k, 7]
oy (k) = —i|k, &) (k,&'| + |k, &) (k, 7]
o5 (k) = [k, &) (k, 7] — [k, &) (k, 7] . (3.4.11)

Since this construction is done using a two component basis, ¢ (k), 75 (k) and o5 (k)
can simply be expressed as the Pauli matrices (not necessarily in this order!). This state-
ment is based on the general fact that the form of the Pauli matrices is independent of
the basis. However, for one particular basis |k, 7), |k, ') (or by applying another uni-
tary transformation to the states in (Equation 3.4.11) that induces the change of basis),
one can make o (k), 0, (k) and o3 (k) coincide with the usual “natural” spin Pauli ma-
trices. This is the more intuitive and simplified statement of the more general deriva-
tion of transformation matrices in band basis for multiple bands of centrosymmetric
spin-orbit coupling Hamiltonians, which are are simply comprised of Pauli matrices (cf.
(Equation 3.3.39a) and (Equation 3.3.39b)). More precisely, the transformation matri-
ces B (k) are 2x2-block-diagonal in band space and may therefore be expanded in terms
of Pauli matrices. Analogously to (Equation 3.4.11), one can define the ¢ , 3 matrices
at —k by applying the parity and time-reversal operation to the states |k, &), |k, '), i.e.
Pl,o") = |-k o), Ok ) = Plk,&') and O [k,&') = —P |k, 7). This shows that the
matrices ¢ , 3(k) are even under inversion and odd under time-reversal in full corre-
spondence with the “natural” Pauli matrices 0, ,, . [Yip14]. The Cooper channel of the
two-particle vertex in band-pseudospin basis discussed in (Section 3.3.2) is given by the
coupling constants

bY' &, 550" 7 = - by, by, b o b T, - -
Upge e z‘f’k’b’ﬁi‘P—k’b’ﬁé‘f’—kbﬁz‘f’kbﬁl = uk,—]k,k’z,—k’l 2‘Pk'b'&;¢—k'b'&§¢—kb&2¢kb&1
(3.4.12)

where we took into account that - in the weak-coupling regime - a Cooper pair must
be hosted by a single band. Inversion symmetry requires the two-particle vertex (Equa-
tion 3.4.12) to satisfy (cf. (Equation 3.3.48))

bb' 01020175 % < P bb' 01050175 % -
Uge = 2o PwvoyP-wvo, Prvo, —  Uige ' ° 1 2 Piewor Prr oy Prvir, P—wir,
PaPp=—¢pPa
1 bb' 52 T« - 1 b 55 -
= Uy Puv oy P-wb o P—xber, Prvr, = Upge Prv o P—xv oy P—xbo, Pube, -

(3.4.13)

where the summation is implicit. Note, that the original momentum structure was
restored by anticommuting twice, while the pseudospin structure changed. Assuming
Hermiticity of the vertex on top of inversion symmetry and comparing the pseudospin
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sectors in (Equation 3.3.6) with the corresponding ones in (Equation 3.4.13), we find

that both By iy -k = =Bprp-kerir -k = 0 and Byt -1 = —Epkp—rier -1 =
0 must be zero. Henceforth, in the pseudospin Cooper channel, there are only eight
non-zero pseudospin sectors including the four independent elements A, C, D and F (cf.
(Equation 3.3.6) ). Note, that this is a consequence of the weak-coupling condition, which
assumes that a Cooper pair is hosted by a single band. These prerequisites considerably
simplify the mean-field theory derived in (Section 2.4). The gap function (Equation 2.4.8)
for the interaction (Equation 3.4.12) yields

bb?f&aa —d¥ +idy a0 + d?
bunes =22 3, W e == (LR BT
0 5’
(3.4.14)

where we used the parametrization in terms of the d-vector (Equation 2.4.25). Solv-
ing for the four components of the d-vector and performing the summation over pseu-
dospins 07, 05, where we get two contributions in every component since A, C, D and F
are the only non-zero vertex elements, we find the gap equations:

a9, = = 3 [ (U™t = Ul ™) fugrs + (U = W) fopr | (3.4.15)
Kk',b’

== 3 (U U g+ (U U ] 3416
K',b’

dpy =iy [ (U + Ul s + (U + U fop (3.4.17)
Kb’

dig == ) [(uﬁi + Ut T~I)fk piE T (uﬁi'NINT + Uy TIT)fk'b m] - (34.18)
k', b’

These four coupled gap equations for singlet d, = d°,, and triplet components

dﬁ’by = —df’zif have to be solved self-consistently according to (Figure 2.6). In the

SU(2)-symmetric case the vertex elements ubt' il and UPY W must be zero (cf. (Equa-
tion 3.3.19)) and all three d-vector components are degenerate. Therefore, the pseu-
dospin sectors U797 (where & denotes the opposite pseudospin state to &) are es-
sential to lift the d-vector’s degeneracy and find its preferred direction. fi55 is defined
by the thermal expectation value (c_ysCps) (Equation 2.4.15). For a unitary gap we
can express the operators c_y;s and cy;,5 in terms of the new quasiparticle states d_;,5
and dy5- by Cy, = U;:kab (see (Equation 2.4.20)). For instance, the hole states ¢y
are given by
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3. Mean-field theory in absence of spin rotation invariance

c_xpr = (Exp = Ci) Bl = Drcvoid—svt — Drvori9 s
Crbr = Dpritint + Drws1hiwr + Exp — Cip) Ay - (3.4.19)

We insert these operators into the expectation values (c_y;5Cips) and evaluate them
with respect to the eigenstates of the Bogoliubov-de Gennes Hamiltonian. Hence, all
anomalous expectation values <d(§+)d$)> must be zero. The only terms that contribute to

the expectation values are the number operators <dld “,> = <1 —d a,dw x 0, (anticom-

mutation relations of fermion operators c}, ¢, are preserved by the unitary transforma-

tion). The results for all pseudospin combinations can be summarized by

1
(c_wboupor) = s (B — ) ((Exp — &) (Drvor Ao — Drvor o 1501t ))

Avo's A
= S22E (n(Ewp) — (1= n(Eippn))) = o5 (2n(Exp) = 1), (34.20)
2E, 2Ewp

where the quasiparticles energies of the Bogoliubov-de Gennes Hamiltonian (Equa-

tion 2.4.14) for a unitary gap are given by Ey;, = i%\/ &2, + 3 Tr (AL, (cf. (Equa-

tion 2.4.19)) and n(Ey;) = (1 + eﬁEkb)_l denotes the Fermi-Dirac distribution. Employ-
ing this result and 2n(Ey;) — 1 = tanh (BE,;,/2) in (Equation 3.4.14), the spinful unitary
gap equation yields (cf. [SU91; SAMO5])

tanh(@)

’ 34.21
Eklb! ( >

3 DY 5,55,
Dipiryoy = — Z Uy A
k/,bl

01,0,

which determines the momentum anq P§e1~1/c%?spin structure of the unitary gap Ay, 7,
from the effective Cooper interaction Ufi,gl 7271792 Although the numerically exact gap
magnitude |Ay,|, the critical temperature f-! = kT, and its momentum/band/pseu-
dospin dependency can only be calculated self-consistently and iteratively from (Equa-
tion 3.4.21), it is helpful to calculate the eigenmodes of the effective interaction. The
eigenvectors of Uﬁi,ﬁ 727172 provide a good starting point for the self-consistency itera-
tion and already exhibit the symmetries of the exact solution. °. Since the effective inter-
action must be Hermitian Uﬁi,&l 720172 Uﬁ:iﬁl 720152 (Equation 3.3.5), we can choose
a parametrization for the pseudospin indices, i.e. a mapping of both indices to a single

one by writing the four possible pseudospin states as a four-vector, e.g. by means of the

° In the (unphysical) limit of zero gap magnitude |A| — 0 resulting in limy o Eypy = ngb and infinite

the gap equation (Equation 3.4.21)

Eyryy Eyryy
temperature with the consequence limg_,, tanh (ﬁ%) = ﬁ%
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d-vector, represent it as a Hermitian matrix llkb 1720172 & CNuxNu (Ny = 4nyny, with
ny, 1y being the number of bands and momenta), and determine its spectral decomposi-
tion /eigen decomposition [ GG95; Mey00; Ste98 |

Ny
bY 55,5, L
U2 =Y G s, (fl?'b'a;aé) =Ug - (3.4.23)
n
with the eigenvalues ¢,, and e1genveb(;tors fkb »5 thatare subject to the conditionf", , .. =
~fupz 5 due to the antisymmetry of Ukk,gl it under particle exchange. The last equal-

ity defines the Cooper channel interaction as a matrix Ulli’,y " in terms of the pseudospin
parametrization given by the indices p, v € {0,1,2,3}. The most transparent and con-
venient parametrization of the two-particle pseudospin states in the Cooper channel is
defined by the bilinear in the fields

Py = (“7;4‘7y)~~,4’ kb Pube' (3.4.25)

with the Pauli matrices oy and 0y € {09, 0y, 0y,0,}. The summation over pseudospin
indices is implicit on the right hand side. In analogy to the d-vector (Section 2.4.3), this
parametrization has the spatial symmetries P(_)kb = Pgb and P Kb = —P{:b Vue{l,2,3}.
Using the parametrization (Equation 3.4.25) and including the basis in terms of fields
in (Equation 3.4.23), we find

bb' 0,0, 7} bb' 1/
Upge "> 2 Py Pt oo, Prvr, = Uge' Plow Py - (3.4.26)

The spatial inversion symmetry of the two-particle vertex (Equation 3.4.13) requires

becomes
B bb' oy 25" &7 75 oy s )
B, = =5 9 Ud " 2N By = =5 3 Y G fi "k, b) (1720, 0)) Aeyiose

Kb Kb n=0
71,05 71,05

Nl“m

(3.4.22)

Assuming that the gap Ay, 5, is proportional to one particular eigenvector f0 “172 (K, b) with eigenvalue
Sorie Doz, =8 fJ1%2(k, b) with ¢ € R and taking into account that the eigenvectors are orthonor-

mal, i.e. fff] = J;, we find 1 = §§O = B! = kgT. = —2&,, i.e. the most negative eigenvalue
determines the transition temperature.
10 An alternative parametrization that corresponds to the product pseudospin basis, in contrast to the total

angular momentum basis, is given by

pll —

o, + (=Dlro,o,
w =T iE e

D 1o Prver With (y):—”—3+ 2 M (34.24)
PE - kb P 8 6 H 6 e

that does, however, not exhibit, the symmetry/antisymmetry w.r.t. to spatial inversion in the zeroth
and first to third components, unlike the d-vector like parametrization.
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3. Mean-field theory in absence of spin rotation invariance

every element in the newly parametrized vertex U, IV that mixes u = 0withv €

{1,2,3} to vanish, since the right hand side of (Equat1on 3.4.26) can only be invariant
with respect to spatial inversion, if both of the two bilinears are either even or odd under
k — —k (cf. appendix F). Taking the spectral decomposition of the vertex matrix Uﬁf;’,
(Equation 3.4.23) into account, we can represent the Cooper vertex by

Ny
bl &, 55 5 ~ .
Ue > 2 Puovor P oy kb, Picvir, = Z@nffby (fl ) Pk,b,PV

= Z Z Z fom (fen) Py Py, (3427)

m=1n=

where the eigenmodes f), , must be irreducible representations of the underlying point
group (Section 3.3.1). Here, I denotes an irreducible representation of the point group
and dr is the dimension of the representation I'. This representation of the Cooper vertex
closely resembles the decomposition of the two-particle interaction in the continuum in
terms of spherical harmonics (Equation 2.1.7).

3.4.2. Non-degenerate bands and helicity

If inversion symmetry is broken, the eigenstates |k, b, A) of the single-particle Hamilto-
nian are characterized by momentum k, band index b and helicity A. The spatial inver-
sion operation [k, b,A) — Pk, b,A) does not yield a degenerate state anymore like in
(Section 3.4.1), but a state with opposite helicity A (cf. (Equation 3.1.53))

k,b,A) > Plk,b,A) = |-k,b,A) =P [k,b,A) (3.4.28)

the eigenenergies of which differ by |1 — €3] > 0. Here, we restrict our analysis
to equal energy pairing (weak-coupling limit), which is to assume that the splitting due
to non-centrosymmetric spin-orbit coupling, e.g. the Rashba term o Ay is much larger
than any critical temperature scale kgT., i.e. Ag > kgT.. Hence, we can apparently
not rely on inversion to produce a degenerate state. However, we can enforce equal
energy pairing by simply taking two states at opposite momenta k and —k with the
same helicity A, i.e. we pair up |k, b,A) and |-k, b, A). In (Section 3.1.2), we encountered
that these two states are related by time-reversal up to a k-dependent phase. The recipe
to pair up states that are related by time-reversal was first noted in the context of “dirty”
superconductors [And59; And84c]. In order to produce the equal energy pairing states,
which make up a Cooper pair, we have to use an operation that reflects a symmetry of the
Hamiltonian. Before we investigate its consequences on the symmetries of the resulting
pairing states, we have a look at what the corresponding structure in the helicity degree
of freedom is. Since we restrict our analysis to equal energy pairing in the weak-coupling
limit, we are limited to Cooper pairs with the same helicity. Therefore, we only have to
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3.4. Generalized Cooper pairs

care about four helical spin sectors (out of sixteen) in the effective two-particle vertex, that
are given by

Uppb™ = PN with AN € (+,-) (3.4.29)
satisfying Hermiticity UYA" = UPA'PA, like expected. The corresponding gap equa-

tion (Equation 2.4.8) in the helical degrees of freedom is greatly simplified by the weak-
coupling restriction and is given by

— bAD'A! — bAD'A!
Akb/\ = —2 Z Ukk, KA = —2 Z ukk' <C_klbl/\ICklbl)\l > , (3430)
k/,b/,)\’ k/,b’l/\l

which reflects that there are only two helical spin components of the gap, opposed to
the gap matrix, or d-vector, in pseudospin space. Independent of the symmetries and
specific basis of the two-particle vertex, we can analysis the object (c_jpicipa ). Since
we require the helical states c_;;, and cy;, to be time-reversal partners, they must be
related by By = ePerc_ ), where & = U_ O (le)_1 is the time-reversal operator
for helical states (cf. (Section 3.3.2)) with ® = —ioy K. The matrix of eigenstates Uy of
the single-particle Hamiltonian transforms between spin and helical basis. Employing
the time-reversal operation twice, we find

2. _ A _ i it L
Cipp = Be'Punc_jg, = e PanePiarey, = —cppy (3.4.31)

[xp

since the fermionic property dictates 2 = —1. This shows that the additional phase
e'Pxr arising from time-reversal must be odd in momentum e'#x4 = —e'?-k02 which may
also understood as a result of the double group properties of the fermionic state involved.
In the context of non-centrosymmetric spin-orbit coupling (Section 3.1.2), we analyti-
cally worked out the phase arising between time-reversal partners and showed that this
phase is (at least, for a single-band model) odd in momentum (Equation 3.1.47). Taking
these results into account, the pairing state between time-reversal partners

Aoy = P (c_yprcipn) (3.4.32)

must be even in momentum

= Ay =P (e i) = (—R00) (= (coin) = Br (3.4.33)

as a result of the phase being odd in momentum and the fermionic anticommutation.
Hence, Cooper pairs on non-degenerate bands characterized by helicity A always trans-
form according to even irreducible representations [SC04]. Naively, one could straightfor-
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3. Mean-field theory in absence of spin rotation invariance

wardly try to investigate the superconducting order parameter by calculating the eigen-
modes of Uﬁ{\(,b ‘A However, a simple argument shows that this results in gap functions
in momentum space that do not transform according to any irreducible representations
due to the branch cut that deals with the double-valuedness of the pair wave function
along the Fermi surface that is introduced by the fermionic double group property [Blo85;
SZB04]. More precisely, if we go around the Fermi surface by more than 277, we acquire a
minus sign due the single-particle states obeying double group transformation behavior
(cf. (Section 3.3.1)). Equivalently, one can look at a state at k that is paired with a state
at —k of the same helicity (its time-reversal partner), which in turn has a time-reversal
partner that differs from the original state by a minus sign. To resolve this contradic-
tion, we restrict ourselves to states in the first half of the Brillouin zone and pair them
up with their time-reversal partners in the second half. Hence, the non-classifiable gap
function is given by Ay, related to the straightforward pairing of Bloch states. These are
related to the time-reversal paired gap functions by Ay, = eP1 Ay, ,, i.e. exactly the
phases that arise from the time-reversal operation. In order to investigate the possibility
of singlet /triplet mixing more closely, we have to transform the gap function obtained in
helical space back to pseudospin basis. Thanks to the evenness of the gap function in
helical space Ay, we can straightforwardly write down the singlet and triplet part of
the pair wave function in pseudospin space by symmetrization and antisymmetrization,
i.e. [SAMO9; Smi+17b]

0 _
R T

Aoy — A
dy = Lk kbt — Fkbo (3.4.34)
This relations can be inverted to yield the helical gap function in terms of singlet and
triplet contributions

3 Y
Akb)\ = dl(ib + A% . dkb . (3435)

From (Equation 3.4.34) we can already see that a mixing of singlet and triplet Cooper

pairs occurs if the helical gaps have different amplitude on the two non-degenerate
Fermi surfaces characterized by A = +.

3.4.3. Construction of symmetrized particle-particle basis states

In the preceding two sections, we worked out the mean-field theories for generalized
Cooper pair states in presence of time-reversal and with or without inversion symmetry.
In presence of inversion symmetry, the single-particle Hamiltonian assumes its diagonal
form when written in pseudospin basis, while in absence of inversion symmetry, the band
energies are characterized by the helical spin degree of freedom. In both cases we found
that the effective two-particle interaction can be most conveniently analyzed with respect
to the possible particle-particle instabilities that may arise from it, by using its represen-
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tation in pseudospin basis and employing the parametrization (Equation 3.4.26)

bb' 50,0 7 bb' 1/
Uge > 2 Py Pt ooz, Prv, = Uige' Phow Py (3.4.36)

in pseudospin basis where the bilinear P}, is defined by

P{:b = (1‘7;4‘7y)~ P oo Prve - (3.4.37)
The spectral decomposition of Ulli,” " then reveals the symmetries and harmonic compo-
sition of possible gap functions Ay

bb
kkl;u/ Z g”fkby k/br ) ’ (3438)

that are given by its eigenmodes flfb In (Section 3.3.2) we worked out the behav-

ior of the two-particle vertex Uﬁi,gl%al% with respect to time-reversal, point group and

eventually inversion transformations. These symmetries restrict the range of possible
eigenmodes f}}, L in which the spatial k and pseudospin i degrees of freedom are inher-

ently coupled. The bilinear P{:h exhibits transformation behavior that is quite similar to
the one of the d-vector discussed in (Section 2.4.4). In particular, we have

inversion P L, p* "o = 8"PL, (3.4.39)
time-reversal P” —gV pv,, =g"Py, (3.4.40)
rotation p” R, Q)ﬂ”pl}/%(n kb (3.441)

where ¢V = diag(+1,-1,—1,-1) and i)é“/ = diag(1, R(#, ¢)) with R(71, ¢) € R>3
being the SO(3) rotation representation in real space. In (Equation 3.4.39) we took
into account the fermionic anticommutation of fields and the fact that the singlet part
is odd and the triplet part even with respect to the exchange of spin indices. (Equa-
tion 3.4.36) suggests, that the four component eigenmodes f, " transform conjugate

to Pﬁb. These properties can be employed to construct basis functions in band/pseu-
dospin/momentum space corresponding to arbitrary irreducible representation of the par-
ticular point group (. Due to the fermionic anticommutation of Grassmann fields and
(Equation 3.4.39), the eigenstates must obey f_i;,, = (fkby:O/ _fkby:1,2,3) (cf. (Equa-
tion 2.4.24)).

Tetragonal point group Dy, In particular, the possible pairing states governed by the
tetragonal point group Dy, are inspected. The definition and notation of its group el-
ements and irreducible representations are given in appendix H. The tetragonal point
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3. Mean-field theory in absence of spin rotation invariance

group gives rise to ten irreducible representations, which are divided into two classes
by their even (g) or odd (u) parity, each of which contains four one (Ayg, Ay, Byg, Bog
and Ay, Ay, Byy, Byy) and one two-dimensional (E, and E,) irreducible representa-
tions. Since Dy, contains inversion i as one of its group elements, the constraint of a
definite parity forbids states f/, " with finite components in both = 0 and > 0 sec-
tors (cf. appendix F). In principle, the p = 0 component f, of the pairing function
may transform according to any of the even parity representations Az, Ayg, By, Bog
or E;, i.e. given by an arbitrary superposition of lattice harmonics corresponding to
these representations. In contrast, the ¢ = 1,2,3 components f, " must each contain
an odd function in k, i.e. one of Ay, Ay, By or By,. In (Section 2.4.3) we saw that
if spin-orbit interaction couples spin and spatial degrees of freedom, the Hamiltonian
only exhibits symmetries with respect to the combined transformation of all degrees of
freedom, which are pseudospin, band and momentum. Therefore, we have to consider the
product representations

(A1y ® Ay, ® By, © By, ®F,) ® (B, © Ay ) =A;, ® Ay, By, By, ©F,
(3.4.42)

The first bracket on the left hand side corresponds to all available momentum space
functions in f}/} 4=123 while the second bracket on the left hand side describes the trans-
formation behavior of the (pseudospin) Pauli matrices (cf. (Table A.1)). Note that these
basis functions can only be employed in three dimensions since in two dimensions, i.e.
for a fixed k,-component at e.g. k, = 0 or k, = 7, there is only one odd representation
being E,, (only consider the representation basis functions featuring cos(k,) and hence
cos(k, = 0) = 1). However, this implies the same possible triplet pairing functions al-
ready obtained in (Equation 3.4.42) since E, ® (Eg ® Azg) =A,9A,,®B,®By ®E,.
In order to explicitly construct these pairing functions, one may either consider all avail-
able constraints and play around with the residual degrees of freedom to find the form
that resembles the behavior of the five possible triplet functions or one may construct
them “by hand”. First of all, we denote the pairing function (in analogy to the d-vector
in (Section 2.4.3)) by

far =f Xt h X G T+ 52 and fi =0+ x+fRg+f2 . (3443)

in reciprocal space with momentum k and real space with lattice site i, respectively.
Next, we take all lattice sites corresponding to n-th nearest neighbors into account and
successively apply all group operations to flilb and prepend their characters x1 of the
respective irreducible representation I' of the point group. The transformation involves
both spatial and spin degrees of freedom. In particular, the components fl?b transform
according to (Equation 3.4.41) and exactly like the d-vector in (Section 2.4.4). The pro-
cedure is illustrated for the case of 4th nearest neighbors in (Figure 3.4). More precisely,
we set up the sum of sixteen (number of point group elements) terms that yields
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Jp C’b CZ SZ Oy CZ

ig 16 i1 ig iy
(a) (b)

Figure 3.4.: The construction of particle-particle states governed by the point group Dy, in (Fig-
ure 3.4a) and C,, in (Figure 3.4b) is performed by transforming and summing up f},
for all operations including their characters for the desired representation. Here, the
process is illustrated for 1st and 4th nearest neighbors basis functions on the tetrag-
onal lattice and square lattice, respectively. While inversion symmetry is present in
(Figure 3.4a), the loss of inversion symmetry corresponding to (Figure 3.4b) enables
the mixing of singlet and triplet states.

— xr(B) (FOR° + fLy % + 2,0+ F2,2) + X0 (Co) (£ 20— fly2 = f2,0 +£,2)
+xr(Cy) (fobx + 2% =il +f3bz> +xr(Cy) (fobx — [k + ¥ +fi4bz>
X000 (FO50 = FL % + 2,0 = 12,2) + oo+ 20 ) (F0 20 + £ %+ f2, 5+ £ ) 2)
ot 20 (Cy) (420 =R = FL L+ F22) (3.4.44)

160

where both real space lattice coordinates (site index i) and spin degrees of freedom are
transformed at once, since they are assumed to be coupled due to spin-orbit interaction.
Note, that although the (pseudospin) Pauli matrices transform like the components of
a polar vector under rotations, they behave unlike the components of a true vector with
respect to reflections, which becomes obvious for the operation o, for instance. The
characters xr (given in (Table H.6)) have to be inserted into the sum (Equation 3.4.44)
for the respective irreducible representation in (Equation 3.4.42). The singlet compo-
nents will cancel for any odd representation since the singlet components do transform
in the same way for the first eight operations (belonging to C,,) and the second eight
operations (taking into account the inversion and three-dimensionality for Dyy,). After
collecting terms with respect to site index and basis X, i/ and Z, they are transformed to
k-space to yield the desired order parameters given in (Table 3.3) and (Table 3.4).
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3. Mean-field theory in absence of spin rotation invariance

Table 3.3.: The point group Dy, allows for five singlet pairing functions each. Since spin-orbit in-
teraction is assumed to be present, the unit vectors X, i and Z represent the pseudospin
structure of the two-particle states. Note, that combined transformation of all degrees
of freedoms, i.e. momentum, band and pseudospin are implicit in this classification.
However, the singlet pairing states with total spin S = 0 do not change under spin
transformations anyway.

singlet
irr. repr. T pairing function £
Aqg (cos(kx) + cos(ky)) cos(k,)
Agg (sin(x) sin(Zky) — sin(2k,) sin(ky>) cos(k;)
By, (COS(kx) - cos(ky)) cos(k,)
By, sin(k,) sin(ky) cos(k,)
E, sin(k,) sin(k,), sin(ky) sin(k,)

Square lattice point group C4, If inversion symmetry is broken, the tetragonal point
group Dy, breaks down to the square lattice point group C,, that is merely comprised
of eight group elements and has only five irreducible representations A, A,, B;, B, and
E. The singlet part that has to be even in momentum and must transform according to
one of the one-dimensional representations Ay, A,, By, By, while the triplet part has to
be comprised of E in k-space. Due to the lack of the inversion operation, the system is
allowed to host pairing with an order parameter that features both a finite singlet and
a triplet part. Obviously, valid order parameters of mixed parity are not given by com-
bining singlet and triplet parts in an arbitrary way. Rather, the entire pairing function
must transform according to a specific irreducible representation as well. Including the
transformation behavior of the d-vector basis, which is (E @ A, ), we find the product
representations for the triplet part:

To construct these pairing functions explicitly, we state the transformation of all sin-
glet/triplet components with respect to the eight operations, i.e. (cf. (Figure 3.4b) )

96



3.4. Generalized Cooper pairs

Table 3.4.: The point group Dy, allows for five triplet pairing states corresponding to the irre-

ducible representations A, A,,, B, and B, in the presence of spin-orbit interaction.
The unit vectors X, i/ and Z represent the pseudospin structure of the two-particle
states. The second column of the table shows the general structure of the pairing
states in terms of basis functions fk Kk, I Momentum space associated to a certain

irreducible representation I' (given in (Table H.7)) and the pseudospin unit vectors.
The third column gives the lowest order (mostly next nearest neighbor) contributions
to the pairing states. Note, that some of these states exploit the three-dimensionality
and have to vanish in the limit of two dimensions k, — 0 with k,, k,-dependence, only
(cf. [Sig+99; ZMO5; HY18]). Since the triplet pairing states carry total spin S = 1
and spatial and spin degree of freedom are assumed to be coupled, we always have

to take combined transformations of momentum and spin into account.

triplet
irr. repr. T’ k/o-structure pairing function ffb
An (2sin(k, ) — 7 sin(k,)) cos(k,)

At xfk kT yfk k2 ke (sm(k ) m(2k ) — sin(2k,) sin(ky)) sin(k,)

N P - o (J?sm(k )+ysm( y))cos(kz)
Aau gk, = Ve, i +2 (cos(ky) + cos(k, ) ) sin(k;)

P By, (xsm( ) 7 sin(k, )) cos(k,)
Bra *fiok, yfkykz tif, kyk +2zsin(k,) sin(k, ) sin(k;)

< B, | ~(E, By, xsin(k,) — 7 sin cos(k, )
Bay xfkykz + ykakz + kalk k. —(G-Z (cos(k ) — COS<( ))))

o By - By L E, . /E, sin(k, )X, sin(k, )i
E, X T ek, yfnsz kaxkzr kaykz zsin(k,) cos(k,), zsm( ) cos(k,)

— 20 (B) (FO,80 + 1,3 + 12,0+ £2,2) + xr(C) (fObe — L =120+ £)2)
2 (CD) (£O,2° + 12 —f;by +f22) + 20 (C) (£,2 fibx +fL0+£2,2)

AT (0y) (fiSb 0 — fn® +fod — f; bz) +xr(oy) (f v = find = f16bz)
+xr(04) (fi(;b’?o = fon® = fiud f17bz) +xr (o) i+ il _fl’?;bz> '
(3.4.46)

where the characters of the irreducible representations of C,, are given in (Table H.4).
Taking the characters of the respective representations and transforming to k-space into
account, we find the order parameters given in (Table 3.5). Here, we restrict the treat-
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3. Mean-field theory in absence of spin rotation invariance

Table 3.5.: The point group C,, with its five irreducible representations allows for five pairing
functions. Since spin-orbit interaction is assumed to be present, the unit vectors %, i
and Z represent the pseudospin structure of the two-particle states. Note, that com-
bined transformation of all degrees of freedoms, i.e. momentum, band and pseu-
dospin have to be performed in this classification. Since the point group C,, does not
contain the inversion operation, mixing of singlet and triplet components in a single
order parameter is possible. The pseudospin basis states 2, &, j and Z are defined by

(Equation 2.4.26).
mixed singlet/triplet
irr. repr. T fi) foo  fi b
Ay Bf i GfE
A, 2f3 i -uff
Bi AL, R -UR
B,  2f5, IS
E 2fe 2t

ment to two-dimensional pairing functions, which means that only two-dimensional
momentum functions will be involved. This is why the contributions to Z components
in the one-dimensional representations have to vanish. To acquire a more intuitive un-
derstanding of the states, we translate the superposition of singlet and triplet in the By
representation to a more transparent form, i.e.

%0 lilky + JAkaF; +iff =2 (cos(kx) - cos(ky)) + J?sin(ky) + ysin(ky)
= (|f1) = |11)) (cos(ky) — cos(k, ) ) — [17) (sin(k,) + isin(k, ) ) + [1T) (sin(k,) —isin(k,))
(3.4.47)

where we used the definition of the d-vector components (Equation 2.4.26). Note,
that (Equation 3.4.47) is not a normalized state.

3.5. Particle-hole condensates

The effective low-energy interaction, whose properties were discussed in (Section 3.3), may
not only give rise to superconducting Cooper pair states but also to particle-hole con-
densates like charge-density wave (CDW) and spin-density wave (SDW). In contrast to the
particle-particle condensates, these states usually exhibit a lower degree of symmetry
since they correspond to scattering processes described by the two-particle vertex with
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3.5. Particle-hole condensates

finite momentum transfer, while the Cooper pairing partner states |k, &), |-k, &) always
have zero total momentum. In the framework of a mean-field theory, the particle-hole
states correspond to the expectation value <cltb [yck+qb¢~7’>/ which is characterized by the
momentum transfer q that determines the real space structure of the particle-hole state.

3.5.1. Mean-field theory of particle-hole instabilities

Once more, our starting point is the two-particle vertex describing the low-energy effec-
tive two-particle interaction. In terms of fields and momentum/band/pseudospin basis,
the two-particle vertex and its couplings corresponding to the density-wave channel are
given by (see (Equation 3.3.1) and (Section 3.3.2))

by &1 by 0201 710507 ot ot c _c B

ki kok/ k) K by o1 "k by 575 koba 02"k by 01 | =k +ko— k)
bllzbl,b(zzbz

bﬁlb’ﬁzbﬁ'ib’ﬁé 1-

= +
=u Clerqber, kb, Ok +qb' 0, Ckbry (3.5.1)

kK +qk+qk’

Similar to the (anomalous) expectation value of Cooper pairs in (Section 2.4), we
define the mean-fields

a .t T _ [t
Svor = (Cvoticrare’)  Skpoo = <Ck+qbﬁckbﬁ'> ’ (3.5.2)

.l.
. . q R P | q — Af L
and associated fluctuations 6, . . := 5 Cktqbo’ —Siprs AN (5kb)(~7,~7' = Ciey qbrCkbe

Sss - By neglecting the terms quadratic in the fluctuations, one may approximate the
quartic operator terms in the interaction (Equation 3.5.1) by

t t o _ 4 q 4 .t ]
Ck+qb(~71 Ck’b’ﬁ’éck"i‘qb’ﬁzckbﬁ'l ~ gkbﬁl [Tigk/brﬁ.éﬁ.z + gkbﬁl 51 Ck,b,a_éck/_i_qb,o,z
q i
T 8k oy, Ck+ qbir by - (3.5.3)
Taking the non-interacting part J; of the total Hamiltonian, characterized by the

single-particle dispersion ¢y, in pseudospin basis ¢ into account, the mean-field Hamil-
tonian for particle-hole states with momentum transfer q yields

1 [
MF = * q t q t
Hyr = Z CkbCipaCicb + 5 Z Dipirer CuvsCicrabe” + e Cierqua v = M

kbo kbo o’
(3.5.4)

where the scalar term quadratic in mean-fields is givenby M = Yy v > 5, 7, glc(lb 516" gf(l, b,
bt &l ! 2

The charge/pseudospin gap is defined by the gap equation
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3. Mean-field theory in absence of spin rotation invariance

q . b[flb,&Zb(NTib,ﬁé q
Akbrrlff; =2 Ui i 4 q ket q & Sk oy,
Kb'o,5,
N _ Vohba b oybey —q
and Ay 5 =2 Ui irqii+qk Skvoo, (3.5.5)
Kb o5

that has to be solved self-consistently (cf. (Figure 2.6)) with respect to the expectation
value g, -, = Tr (cltbﬁck+qh5,eﬁ} fMF) / Tr (eﬁHMF), which feeds back into the density-
wave mean-field Hamiltonian (Equation 3.5.4)

q q
gkbf 0 Alc(lbﬁ Aq I
0 Gt At A

1
Hyp + M = = ol Civg (3.5.6)
zkb;rf' E Akbﬁ AkaI €k+qbf 0 1
q q
kbIF AkaI 0 §k+qb1

with the particle-hole Nambu spinor for momentum transfer q (cf. [RRMO07])

T
Cltbq = (clth,clth,clt+qu,clt+qu) ) (3.5.7)

Note that - despite the notation - the single-particle dispersion ¢,z must be indepen-
dent of the pseudospin index. If it isn’t, the spectrum will already be non-degenerate
in the normal state and we have to resort to a different basis to solve the gap equation
with respect to particular band indices b. Therefore, we may denote the single-particle
dispersion in matrix form by ¢y, = diag(gy,7, Gipp)- The eigenvalues of (Equation 3.5.6)
can be calculated analytically by exploiting the commutation of ¢ ;, with Alc(lb s and are
given by (cf. (Equation 2.4.17))

q
Ekb - 2

t t 2
b + Cktqb G — Gerqp . Tr(AL) AL, Tr (A),) AY,
- + 2 LA o || e —

(3.5.8)

Assuming a unitary charge/spin gap with (Al‘(lb)Jr A, o 0y, the eigenvalue expression
for the mean-field Hamiltonian simplifies to (cf. [Ebe+16])

-
kb + Cictqb G — g\~ Tr(A3) Al

q _ q q k) kb

E, = > + ( 5 ) + — (3.5.9)
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3.5. Particle-hole condensates

Spin/charge order that is characterized by a momentum transfer q that satisfies 2q =
G, where G is a reciprocal lattice vectors is called commensurate order. In contrast, if the
momentum transfer q is not related to a reciprocal vector by an integer, we talk about
incommensurate order. The matrix elements of the gap Al in terms of pseudospin can be
parameterized by

q q q
' qO Akbn+Akbu s — Buvii it
AL = (I o Skb = 2 4 Skp = a 2.4 . 3.5.10
kbo o’ ( kb ﬂ) U kaﬁ'Akb“ qQz _ A= Bn ( >
kb — 2i kb — 2

skb and s, ¥"* are sometimes called the singlet and triplet density-wave states [Nay00].

In case of SU(Z)—symmetry, they correspond to the conventional charge-density wave (CDW)
and spin-density wave (SDW) [GC10]. Shifting the expectation value (Equation 3.5.2)
by q provides the requirement glc(l rqprr = of +qveCk +2qb(~7,> = <clt . qbﬁckb(,,> = gﬂbﬁ_,
for commensurate particle-hole states. Hence, commensurate particle-hole states must

satisfy gl o = Supso- Consequently, commensurate states must eventually be real
or purely imaginary (depending on the actual formfactor), while an incommensurate
state may feature any phase [Voj09]. In absence of spin-orbit coupling, the states A/, - .
may be factorized into spin and momentum part, which is, however, not allowed in
our general case, that implies coupling of spin and spatial degrees of freedom [NJK91].
In contrast to the particle-particle states <cltb&cikb&,> in (Section 3.4), that are essen-
tially determined and restricted by Fermi statistics, while establishing a one-to-one cor-
respondence between pseudospin structure and momentum dependency, the particle-
hole states <Cltb&ck +qb,~7/> are now longer governed by Fermi statistics (cf. [Nay00]) and
may well be comprised of an odd momentum dependency in the singlet and an even
momentum dependency in the triplet part (in presence of SU(2) and inversion symme-
try) [Cha02; GC10].

3.5.2. Construction of particle-hole basis states

According to (Equation 3.5.1) the relevant couplings in the density-wave channel are given
by (switching to a basis in terms of fermionic fields ¢y )

bor b Gab5 BT, .
Up o sqirqr - Prrqve; Prvoy Picvqpo, Prver, - (3.5.11)

Analogously to the definition of particle-particle states (Equation 3.4.25), we define
the bilinear in the fields

Qu = (o ) , Prvo Pt qvi qu_( ) , PrrqpeProe’ (3.5.12)

with the Pauli matrices 0, € {00, 0x, 0y, 0} Again, it turns out to be helpful to inves-
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3. Mean-field theory in absence of spin rotation invariance

(b) (c)

Figure 3.5.: The charge/spin order on a tetragonal lattice governed by D, symmetry is in pres-
ence of spin-orbit coupling characterized by the superposition of charge order, re-
sulting in a shift of the Fermi surface, and spin order, that features a k-dependent
spin expectation value around the Fermi surface. The shown charge/spin orderings
correspond to A, in (Figure 3.5a), A, in (Figure 3.5a) and By, in (Figure 3.5a)
irreducible representations as given in (Table 3.6). While the black line shows the
normal state Fermi surface, the red line represents the shifted Fermi surface of the
ordered state. The color map indicates the z-components of the spin expectation
value.

tigate the symmetries of this entity. Under inversion, time-reversal and rotation the bilinear
(Equation 3.5.12) behaves according to

inversion qu P Qq (3.5.13a)

time-reversal Q S, g”"Qq (3.5.13b)
. R

rotation qu QDWQR(H IKb 7 (3.5.13¢c)

where ¢V = diag(+1,-1,—1,-1) and @gv = diag(1, R(#, ¢)) with R(7i, ¢) € R>3
being the SO(3) rotation representation in real space (cf. (Equation 2.4.39)). Again, we
assume that the rotation must affect both spatial and pseudospin degrees of freedom
since the spin is “frozen” to the lattice due to spin-orbit interaction. The bilinears (Equa-
tion 3.5.12) are used to parametrize the reduced two-particle vertex in the particle-hole
channel (Equation 3.5.11) by

b b Gybe b, < - LAY
Up wo+qirqk - Pirqve; P o Prc+qpr oy Prcvr, = Upge Q ol (3.5.14)

where y parametrizes ¢, FT{ and v accounts for 0, 0. Although less obvious than in

the particle-particle case, ng, "M is Hermitian and may therefore be expanded in terms
of eigenmodes by
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3.5. Particle-hole condensates

bb’ 1
U " =3 Gufi, (flp) (3.5.15)
n

with eigenvalues ¢, and eigenvectors £, v Every eigenvector may be decomposed into
its singlet/charge and triplet/pseudospin components by f,1 = x4l '+ 2f1 + yfl?by +

zf,) . The structure of Uﬂif’/” " in absence/presence of SU(2)-symmetry and inversion
symmetry can be most easily investigated by expressing its elements in terms of the
coupling of the reduced two-particle vertex in the particle-hole channel. This is done
by collecting all matrix elements y, v that contribute to a specific pseudospin sector of
the right-hand side in (Equation 3.5.14) (cf. to particle-particle case in appendix F). As
a reference, we state some exemplary elements and their relation to the particle-hole
couplings:

bTb'TbTb'T bTb'Tb1b'T bIb'T1b'T bIb'IbIb']
qbb'00 uk,k’+q,k+q,k’ + uk,k’+q,k+q,k’ + uk,k’+q,k+q,k’ + uk,k’+c1,k+q,k’
ugs ™ = 1 (3.5.16a)
0 LALLM L1 e T R 11V S T A1
qbb'33 kk'+qk+qk kK +qk+qk kK +qk+qk’ kK +qk+qk
U > = 1 (3.5.16b)
bbb’ T _ pbT'IbIb'T bIb'Tbib'] __ 7blv'IbIb'T
qbb'03 uk,k’+q,k+q,k’ uk,k’+q,k+q,k’ + uk,k’+q,k+q,k’ uk,k’+q,k+q,k’
ug, ™ = 1 (3.5.16¢)
_ bt TbIb’T bib' TbTb'] __ 7 7blv'TbIb'T bIb' Tbb'T
uqbb'lz _ uk,k’+q,k+q,k’ + uk,k’+q,k+q,k' uk,k’+q,k+q,k’ + uk,k’+q,k+q,k’
kK’ - 4i

(3.5.16d)

Assuming full SU(2)-symmetry and letting the pseudospin degree of freedom be-
come the “natural” spin, which is accounted for by the relation (Equation 3.3.19)

01020105 _
aqapaial, Vmocza’la’z(sa'la'{&zfzzfé Vaﬂquc’luc’zfso']o'é&zfzzfi ’ (3'5'17)
we find
qbb’00 _ 1 bb'bb’ _ y/b'bbl’ qbb'33 _ 1 bb'bb’ _ 779bb'11 _ 4 4qbb'22
u1<k’ - 2Vk,k’+q,k+q,k’ Vk’+q,k,k+q,k’ ukk’ - 2Vk,k’+q,k+q,k’ - ukk’ - ukk’ ’
(3.5.18)

while all other matrix elements Ugllz?’” Y with u # v vanish. Hence, while SU(2)-

symmetry suppresses finite elements with y = 0Oand v = 1, 2, 3, i.e. singlet/triplet mixing,
the presence of spin-orbit coupling is sufficient to introduce mixing of charge and spin or-
der. At the end of the previous section, it was already mentioned that particle-hole states
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3. Mean-field theory in absence of spin rotation invariance

are, in contrast to the particle-particle states, not restricted by a definite parity of their
singlet/triplet part. However, in order to preserve inversion symmetry, all finite sin-
glet and triplet components (in particular, in a mixed state due to spin-orbit coupling)
have to have the same (either odd or even) parity. This becomes apparent from (Equa-
tion 3.5.15) by considering a single eigenmode and requiring Uglif’,” " to be invariant
under spatial inversion. The loss of inversion symmetry (in addition to finite spin-orbit
interaction) further enables the mixing of odd and even parity eigenmodes in both sin-
glet and triplet components. In order to further investigate the possible charge-/spin-

order-parameters and in particular the transformation behavior of the eigenmodes ff;y,
we limit our considerations to commensurate order with 2q = G. For instance, possi-
ble (in-plane) g-vectors on the tetragonal lattice with point group Dy, are given by
q = (ir,m) and q = (71,0). While q = (7, 77) is invariant with respect to all opera-
tions of Dy, up to a reciprocal lattice vector, i.e. q = (77, 1) LR q =q+ G Vg € Dy,

q = (77,0) breaks the set of symmetry operations down to D, since q = (7, 0) 2, q =
q + G Vg € Dy,. Here, Dy, and Dy, are called the group of the wave-vector q = (7, 1)
and q = (7r,0), respectively [DDJ08, Chap. 10.3.2]. Hence, the eigenmodes flzlbny trans-
form according to any irreducible representation of the group of the wave vector q. The
possible charge-/spin order-parameters associated to q = (7, 77) on the tetragonal lat-
tice with Dy,-symmetry are given in (Table 3.6). In order to visualize some of these
order parameters, we take a simple Hubbard Hamiltonian on the square lattice with

G = —2t (cos(kx) + cos(ky)) —4t" cos(ky) cos(ky) —u (p=-14tand t' = —0.03t) and

q

introduce a charge/spin gap A, -, i.e.

1 _
_ t q + q +
Hyr + M = 2 CkborCicparCrbe + 5 2 DyporoCibrCitqpe T Dy Ccrqpior kb 7

kbo kbo o’
(3.5.19)
that is, for instance, associated to the Blg representation
Ao < (cos(ky) —cos(ky)) 095 + ... + sin(ky) sin(k, )oZ,, (3.5.20)

In (Figure 3.5), we see that the resulting Fermi surface is k-dependently shifted against
the normal state Fermi surface and the spin expectation value rotates along the Fermi
surface.

Summary and preview

In this chapter we explored the vast range of possible spin-orbit Hamiltonians featuring
either centrosymmetric or non-centrosymmetric spin-orbit interaction by means of the
invariant expansion. We discussed the symmetries and transformation behavior of the
resulting single-particle states and two-particle vertices and introduced the pseudospin
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3.5. Particle-hole condensates

basis and helical spin degrees of freedom. In particular, the choice of the single-particle
basis turned out to be essential for the reasonable definition of effective two-particle
vertices. Based on the properly defined two-particle interaction, we investigated the
mean-field theories for interactions in pseudospin and helical basis. The structure of
the allowed order parameters and gap functions that intertwine spatial and spin degrees
of freedom were derived. The following chapter will introduce the formal basics and
techniques to set up the perturbative renormalization group and functional renormalization
group in terms of functional path integrals. We will derive the second order perturbative
expansion as basic tool for the derivation of the effective two-particle interaction in the
weak-coupling limit and the flow equation of the two-particle vertex in the framework of
functional renormalization that enables us to explore the effective two-particle quanti-
ties for finite interactions as well. Finally, we propose advanced schemes that employ the
previously discussed symmetries to pave the way towards high momentum resolution
and computational efficiency.

105



3. Mean-field theory in absence of spin rotation invariance

Table 3.6.: Since the group of the wave vector q = (7, 1) is Dy, there are charge-/spin order-
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parameters corresponding to ten irreducible representations. Due to finite spin-orbit
interaction, the unit vectors %,  and Z represent the pseudospin structure of the two-
particle states and only combined transformation of all degrees of freedoms, i.e. mo-
mentum, band and pseudospin have to be performed in this classification. For the
notation of components we refer to (Equation 3.5.15) Note, that mixing of charge-
and spin-ordering only occurs for finite spin-orbit coupling. This classification of or-
der parameters applies to q — (0,0), as well. The required basis functions are given
in (Table H.7). If inversion symmetry is broken and Dy, — C,,, possible states are
formed by combining even and odd states from the left and right column of the same
row to comprise the corresponding irreducible representation of C,,. For example,

~ B -
the B; representation may be associated to the state Z f, ** + x° flf' e,

charge/spin ordering

irr. repr. I’ fl?b flgb fk2b fl?b
Ay OLE R A UG R
Agg RRE RS -TfA ERT
B Wt e “Pfh ERT
Bag R RS TR A
By WAGLRLS R 0 2hiZhi
A, PR Rfh TRy ERM
Az R RER PRS2
B, Y R
B2 2 f o ifl. Ef
SR S AW A S SRS WS




4. Generating functionals and quantum
many-body perturbation theory

All information about a quantum many-body system in thermodynamic equilibrium
described by Hamiltonian 4{ with a fixed average number of particles and a fixed average
energy is hidden in the associated partition function of the grand-canonical ensemble, which
is given by [Hua63; Thol3]

Z =Tre Pl = Tre UL (4.0.1)

The trace refers to the sum over all possible microstates and the temperature of the
system is determined by p = — with kp ~ 1.38 x 10~ BJK~! being the Boltzmann con-

stant. The total Hamiltonian H is spht into the non-interacting (single-particle) part H,
and the interacting part J}{;:

H = HO + J{I Z (tmx V‘Szm )Coccuc Z uucl,ocz,pc’],pc’z C;1CZ2CD('2CD('1 : (4-0-2)

e 12
a0k
Unfortunately, for an interacting system, the partition function is generally inacces-
sible since it is too hard to calculate. Henceforth, one has to rely on approximations to
deduce properties of the interacting system from the partition function. One of the most
frequently used approximations is based on the assumption of weak interactions and an
expansion of the exponential in terms of the interacting part.

4.1. Fermionic functional integral formalism

The trace in (Equation 4.0.1) can be evaluated by means of a complete set of (fermionic)
Fock space states [n) & ea;fzojﬁn, where F,, is the antisymmetrized n-particle Hilbert
space. Employing these states in the partition function, we find

Z =Tre P = Z (mle Py . (4.1.1)
n

Since |n) contains any number of particles it is not an eigenstate of the Hamiltonian
H, in general. In order to compute the partition function as a functional integral, we
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4. Generating functionals and quantum many-body perturbation theory

have to make use of a basis that simultaneously diagonalizes the creation and annihi-
lation operators of the Hamiltonian H (Equation 4.0.2). The fermionic coherent states are
perfectly suited to serve this purpose and are defined by [NO88a]

) = exp (— > %cl) 0y . (4.1.2)

The sum runs over all single-particle states « and the components 1, represent Grass-
mann numbers. Note, that the coherent state (Equation 4.1.2) may contain any number
of particles including the vacuum state |0). The coherent state |¢f) is an eigenstate of
the annihilation operator c,, because of ¢, |¢) = ¥, |¢) with the eigenvalues being the
Grassmann fields 1,. In contrast, the creation operator satisfies the adjoint equation
(¢|cl, = (¥| P,. The coherent states feature a closure relation, i.e. they can be used to
form a resolution of identity:

1= [[]ddudpue™ =Py} (91 (413)

Here, the integral sign has the meaning of a linear mapping without any analogy to
a Riemann integral. Inserting the closure relation of coherent states into the partition
function in terms of Fock states (Equation 4.1.1) results in

Z=Y ol [ [ dfudipue =PV jg)yle Py . (4.1.4)

While the exponentials commute with (n|i), the inner products of Fock states and
coherent states do not. It can be shown that (n|y) (¢|n) can be brought into the form
(—y|n) (n|y), where the new state (—¢| = (0le” Lo ¥ arises from the anticommuting
property of the Grassmann numbers. By exploiting the closure relation in Fock space to
get rid of the |n) states, we end up with

Z=] Udl/}ad%e_z“‘/_’“% (—yle P lp) . (4.1.5)

Since e~ resembles the time-evolution operator e=/M, we introduce the imaginary

time parameter T by means of the Wick rotation T := i t/h [Wic54], which may vary in

the domain 7 € [0, 5]. We adapt the idea of Feyman'’s path integral [Fey48; Fey49] by

dividing the interval T € [0, 8] into N equally spaced slices of width 67 := I% and using
N

B
) After inserting N more closure relations (Equation 4.1.3) in

e P = limy_, o (e_ﬁ
between these N factors, we assume normal ordering in the Hamiltonian terms #{ to ex-
ploit the property of the coherent states being the eigenstates of the operators ¢}, ¢,. Un-
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4.1. Fermionic functional integral formalism

fortunately, normal ordering will introduce an error O.((8/N y2) due to the mixed terms

B

that arise in second order of the expansion of e_l%’){ [FHS05; CD97; AHMO08]. However,
in the limit N — oo this error is negligible. Note, that the Grassmann fields of the N clo-
sure relations acquire an additional index depending on which time slice they’re associ-
ated to. In particular, the Grassmann fields are labeled with indicesj =0,1,2,..., N —1,
where the “initial” and “final” coherent states (— | and |¢) are related and correspond to
the indices ¥ = ¢N and —¢p = —N = 0. To proceed, we need the inner product of two
coherent states |ip) and |¢'), which is given by (') = e2a ¥«¥* and is used to evaluate
the overlap of the coherent states associated to consecutive time slices. By assembling
all time slices, calculating their overlaps and employing the eigenvalue equations of the
creation/annihilation operators of the Hamiltonian, we obtain the expression

— hm H fl_[d%(dlp{i ‘STZ] 0 (H(l/){x )+—Z %(l/)/aﬂ—lploz)) . (416>

The Hamiltonian # is now written in terms of Grassmann fields instead of second
quantized operators. (Equation 4.1.6) shows that Z is calculated by sampling over all

possible states for any field ¢, at some particular time slice j. This process is illustrated

i+1
by (Figure 4.1). By introducing the symbolic notation l’b] %‘ = d; /+1 and taking

the limit N — oo, the fields gbfx can be perceived as a functlon of T and the exponent in
(Equation 4.1.6) can be expressed by a Riemann integral. Therefore, we end up with
the partition function (cf. [AS10])

Z= D[P, e SP¥] with D[P, ] = lim n_[nd%dl)b{x

PO=—(B) N—oo

and S[y, ¢ f dt [Z(tpu(r)aT%(r)HM(% (1), %(T))] , (4.1.7)

with the action S [¢, 1]. Due to the structure of the path integral the Grassmann fields
in the first term of the action always involve the same single-particle state a, while the
fields in the Hamiltonian H may differ. Hence, the Hamiltonian doesn’t have to be repre-
sented in the basis which diagonalizes the single-particle term since the creation/anni-
hilation operators simply “extract” the matching fields from the coherent states. Instead
of using the domain of imaginary time, we can equally well switch to the representation
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4. Generating functionals and quantum many-body perturbation theory

Grassmann field ¢, (T)

imaginary time slice 7;

Figure 4.1.: The fermionic Grassmann fields along the imaginary time axis from 7 = 0to 7 =
have to be antiperiodic, (75 = 0) = =9 (75 = B) and are generally neither contin-
uous nor differentiable with respect to the imaginary time parameter 7. Here, we
show three different exemplary and randomly chosen paths. Note, that this illustra-
tion incorrectly assumes that a Grassmann field is (in some way) representable by a
real number.

in frequency space by performing the transformation [Mat55]

1 , 1 (B ‘
PolD) = =) Punt T Yoy = —= | ATy (e (4.1.8a)
VB G
h 1 7 —iw, T T 1 p n iw, T
Pu(T) = T Z Pane " Yan = T fO dip, (T)e'“n ’ (4.1.8b)
g p
with Matsubara frequencies w,, = % due to the antisymmetry constraint (0) =
—9(B). Plugging this representation into (Equation 4.1.7) we find that the “partial
derivative” term results in e_w;:_l ~ 1_1“;";_57_1 = —iw, up to first order. The imag-

inary time integral then implicitly states energy conservation by ff dre ™ (@Wn—wn)T =

Bé(w, —w,) and ff dre = ,B(S(wnfl + Wy, — Wy — W) Assuming
a Hamiltonian with single-particle term .- and interaction V4 4 o, (Equation4.0.2),

_z(wnrl+wn/2—wnl—wn2)r
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4.2. Generating functionals

the entire path integral is given by

Z= fﬁ) B, 0] e S where D[¢,y] = hm n ndgbmdgbm (4.1.9a)

® = Oa,n’

and S l/J lﬁ Z Zlfba n( mx’ + huc’a) $an

1
+ ‘E Z Z V"‘1“20( ﬂ2¢a1n1¢a2n2¢a2n2¢alnl . (419b>

The Jacobian of the transformation to frequency representation is unity [Sha94b].

Note, that we omitted the factor e7'“»°T in the quadratic and oW T n)T i the quar-

tic term of the action, which occur due to the fact that the fields ¢, are evaluated at
infinitesimal later imaginary time than ¢, . These factors will, of course, cancel in the
limit N - oo but may, however, become important if the path integral suffers from con-
vergence issues (cf. [Sha94b, Section III. C]). Note, that there is some arbitrariness to
the definition of the fields in Matsubara representation. Another popular choice for
the fields, in contrast to (Equation 4.1.8a) and (Equation 4.1.8b), is given by shifting
the normalization entirely to the summation resulting in ¥, (7) = % h Pun€n™ and

= ff dty,(T)e ™nT. As a consequence, both non-interacting and interacting part

of the action require a temperature dependent normalization which is % for the non-

interacting and = for the interacting action (in contrast to (Equation 4.1.9b)).

‘BS

4.2. Generating functionals

In the previous section, we derived the coherent state path integral formulation of the
partition function Z that featured an action of the form

S[, 9] =So [, 9]+ S 9] (42.1)

with the non-interacting part

= Z Z lpa’n (_iwnéua’ + hzx’w) ¢om = (775/ G61¢) ’ (422)

and the interacting part
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4. Generating functionals and quantum many-body perturbation theory

- 1 - -
SI [l/J, 11[]] = B ocZ Z Vaqaqa&aﬁ”a&nilpa’zn’zlpaznzwalnl . (423)
%

We assumed that both single-particle Hamiltonian k., and interaction V,, wp, o, ATE
independent of frequency. The notation (..., ...) represents the fermionic bilinear form
($,¢) = [, ¥atpo, where [ is the integral/sum over appropriate quantum numbers
[SHO1]. The free propagator G is defined by its inversion and given by Gy (iw,,, a,a") =
(=i, 0, + ha,a)_l. Going to the basis ¢z, = Yo UL, Pin = Ugatan (with UL Uz, =
1) that diagonalizes the single-particle term, the free propagator can be written as

1

mém with  &0zp = Ugahp UL, . (4.2.4)

Goliw,, & &) =
In order to compute correlation functions, we make use of several kinds of generating
functionals. Among the commonly used generating functionals are the generating func-
tionals (; and (. of the disconnected and connected Green functions, the generating
functional U of amputated connected Green functions (also known as effective inter-
action [Sal99]) and the effective action I', which generates one-particle irreducible vertex
functions. A generating functional is defined by introducing additional source fields into
the partition function (Equation 4.1.9a). By deriving with respect to these source fields,
one can produce any correlation function. The generating functional of disconnected
Green functions is simply

g[ﬁ,q] = % f;D [1/}, l/J] e SLP.Y1-(,9)—(P.1) , (4.2.5)

where 7], 17 are the source fields, which are coupled to the “sampled” fields ¢, ¢ by
the additional terms (7, %) and (¥, #). The functional integral is normalized with the
interacting partition function Z = [ D[, ¢]e~5[¥¥]. (Equation 4.2.5) is employed to
generate n-particle disconnected Green functions G by taking functional derivatives
with respect to the source fields [NO88a ]

G@n) (p(’l,...,oé;,;ﬂél,...,ocn) = (—])” <¢“/1 "'lzbué’nlpﬂcn ...1/3“1>
_ 821G (77, 7]
Ol v OT] 1, O] +en O],

(4.2.6)

;7:77:0

The n prefactors of (—1) originate from anticommuting Grassmann fields and func-
tional derivative operators, i.e. 6, (,17) = —. Taking higher order correlation func-
tions of (Equation 4.2.6), it becomes apparent that these are comprised of disconnected
parts. The linked cluster theorem states that the connected parts of G‘*™ are obtained by
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4.2. Generating functionals

collecting terms that are proportional to n [NO88a]. This requires the generating func-
tional of connected Green functions (. [}, 77] to be defined as

Ge[7,m] =In [Z—Og[ﬁ,n]] , (4.2.7)

with Zy = [ D[y, ] e~ Sol#¥] being the non-interacting partition function. The gen-
erating functionals of disconnected and connected Green functions serve as a prerequi-
site for the definition of the effective action I, which is defined in terms of ;. and given
by [PS10]

U(¢,¢] = =G 7,11 = (§m) — (7. ¢) + (. Ggl¢) . (42.8)

The effective action depends on the average fields ¢ and ¢, which are

9G] L 6Ge [17,1]

0= W= G=id),= ] (429)

The notation (...), 5 indicates an expectation value that is not obtained by setting the
source fields to zero after the functional derivative but by keeping them finite. (Equa-
tion 4.2.8) and (Equation 4.2.9) show that the definition of the effective action I' [¢, ¢]
amounts to the Legendre transform of the generating functional of the connected Green
functions (G, [77,77]. The former source fields 7, 7 now depend on the average fields ¢,
¢. Their dependency 77 = 77 (¢) and n = 5 (¢) is determined by inversion of (Equa-
tion 4.2.9). The one-particle irreducible vertex functions are straightforwardly given by

32T [$, 9]
@D/] (S(ﬁwaégban (5(}5“1 43:4):0

YO (@, e Wy g, e, 0y) = 5 (4.2.10)

The set of flow equations that are derived in (Chapter 6) are the ones for the one-
particle irreducible vertex functions, which are entirely given in terms of the effective
action (Equation 4.2.8) [Met+12a]. As a useful ingredient for the formulation of this
flow equation, we derive the reciprocity relations and the tree expansion, which relate cer-
tain functional derivatives of the generating functional of connected Green functions to
functional derivatives of the effective action [KBS10]. The first derivative of the effective
action (Equation 4.2.8) with respect to the field ¢, results in
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4. Generating functionals and quantum many-body perturbation theory

oU[§,9) _ ¢ Gl nl o ¢ 0G Al ong ¢ _ ( S
__-[ﬁ __fﬁ __fﬁ ’3<_ )

5"’& 577,3 5"’& 577,8 5¢a 54)04
ofg ¢
~Lsgetn Iyie (i )+ [ L g ooy, (5gt) - w21
—5(/3 ) =6(y—a)

Employing the definition (Equation 4.2.9) of the fields, we see that the first four terms
cancel. The analogous derivative with respect to the adjoint field ¢, completes the reci-
procity relations [NO88b |

ULP ¢l _ 1Tz LD Q] _
GO SR RYc S CENE
To find the lowest order tree expansion, we employ the identities 6(« — ) = 547”‘ ,0=
;SZ; , the definition of fields (Equation 4.2.9) and the Legendre correspondence between

Ge [77,17] and the effective action. The resulting second functional derivatives can be
expressed in matrix form by (cf. [Met+12b])

s (C _ 6 g _52F + (G—l) 5T
f 0710 017,014 0ppoP, 0 /By 0PpoPy =1-.6 (IX - ﬁ)
N 529 682G, _52F_ 52r_ _ ( _1)T ’
T 30,00, 011,07, Sppdd,, Sppop., 0 /gy
-:Géz) =(2)

(4.2.13)

which shows i.a. that the two-leg one-particle irreducible vertex function amounts to
the negative of the irreducible self-energy.

4.3. Berezin integrals and Wick’s theorem

The n-particle correlation functions (Equation 4.2.6) we encountered in the previous
section can in general not be computed directly since the interacting partition func-
tion Zis unknown. Therefore, we have to rely on perturbative expansions of the parti-
tion function in order to calculate these correlation functions approximately (see (Sec-
tion4.4)). As an essential ingredient of these perturbative expansion, we will encounter
non-interacting expectation values involving any number of fields, which have the form

(g o Y, B, - Py ), With <...)=zfﬂ[l/),l/)]...e_sow’w] , (43.1)
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4.3. Berezin integrals and Wick’s theorem

and can be calculated analytically. Taking the functional integral measure (Equa-
tion 4.1.9a) and the definition of the free action (Equation 4.1.9b) into account, the in-
tegral is given by

f [, ] e Sol¥ ¥ —ﬁgrgonnfdlpmd%n = s L Paru G e ) e
(43.2)

n=0 a,a’

which is an infinite product of integrals of the form

| dpdye 9% = [ dgdy (1-apy) = —a [ dfdy (—pf) =a with aeC
(4.3.3)

Weused [dy ¢ = 1and [ dy 1 = 0 [Ber66; MS10a; Zin05] and the additional minus
sign originates from the anticommutation of Grassmann fields and their differentials.
The generalization of the Berezin integral to a set of fields ¢ = (Y1, ¢, ..., ¥n), P =
(P1, Py, ..., Pr) and A € CN*N is (cf. [Str14])

N N -
[T [ ddady, e >0 4% = deta . (4.3.4)
n=1

Note, that in this case the expansion of the exponential does not terminate at linear
but at N-th order. This is because at n-th order we have terms of 2n fields and there are
2N different Grassmann fields available. Therefore, at N-th order every field appears
exactly once in the finite terms, while at N + 1-th order some fields must appear twice
in every term, which therefore vanish. Furthermore, only the terms that feature every
field exactly once survive the integration. The structure of the coefficients A;; resembles
the Laplacian determinant expansion [ AW05]. For instance, for N = 2 we find

_yN=2 DA _ _ _ _
R P1ANYL — PrAvY — PohAo P — YAty

1 _ -
+ 5 P1ayn 2 (Andzn — Andp) (4.3.5)

Next, we have to consider additional linear terms in the exponent to take care of the
source fields necessary to produce non-vacuum expectation values. Hence, we now
have the Berezin integral

N N b1+77
1_” A, dp, e =i PAEEPAEIY gy (4.3.6)
n=1
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4. Generating functionals and quantum many-body perturbation theory

Since the Berezin integral exhibits translation invariance, we can easily solve this inte-
gral by a shift of variables [Wip09]. First, we introduce the additional term ), J 7:Aj 1 1

which transforms the exponent into

N N
Z PiAgY; + P + Tt + Ay — A g = Z (p—7A7"), Ay (9 - A_1’7>]' — A
if 1

The Jacobian for the new variables () — fA~! and ¢ — A7 is unity. Therefore, we can
simply rename the fields to be integrated, employ (Equation 4.3.4) and find

N SN GA WA AT Y NG A1,
[T [ dipudy, e™ 0 PAvrmimtiin _ geg g ¢~ 2 B0 (4.3.7)

n=1

Now, we take the limit N — co and resort to the notation for inner products introduced
in (Section 4.2), resulting in

[ DG, ] e EAD+ED+EY) = deta T4 (43.8)

This integral represents the origin of all non-interacting fermionic correlation func-
tions. We give it a try by ditching some source fields 7, 77 by several functional deriva-
tives on both sides of (Equation 4.3.8) and setting the source fields to zero afterwards.
Any odd number of functional derivatives with respect to 7, # will produce zero. For an
even number, for instance, 2, we obtain

52 i} ' e 52 -
_ fﬁ)[wl p] e~ PANFT@ N+ Y) - det A (A7)
5170¢5771x’ i7=n=0 5770(5’70(’ f7=n=0
o f D[§, 9] e PANGp, = detAAT (4.3.9)

Note, that in this notation the functional derivative acts as

51711/ _ _
o =P (43.10)

Sla—a’)

5 - 6 - _
% (¢/ 77) = % J'Dé, Pty = — J.a’ (Y

The generalization of (Equation 4.3.9) to an arbitrary (but even) number of fields
P4, P involves a sum of terms given by elements of A~!, whose sign is determined by
the necessary permutations of functional derivatives and features all distinct pairs of
the fields ¢,/, ,. Getting back to (Equation 4.3.1), we have the result of Wick’s theorem
[Wic50]
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4.4. Perturbation theory

<lp“’1 P, P, - P >0 - Z (=D <l/]""p<1>1’z7"‘9<1>>0 <¢“3)(n)lp“ﬁ<rr>>0 o (4310)

all pairs

where the sign is determined by the number of permutations of anticommuting fields
(anticommutations).

4.4. Perturbation theory

The starting point for perturbative calculations of correlation functions are the gener-
ating functionals in (Section 4.2), which are defined in terms of the functional integral
partition function Z . For instance, the generating functional of disconnected Green
functions (Equation 4.2.5)

_ 1 _ S T
g[ﬂ/ﬂ] = ij)[¢,¢]e SolP.9]-Si[9.9]1- () (P.77) , (4.4.1)

basically consists of the interacting partition function Z and features the external
sources 7, 17 coupled to the fields i, . Before we proceed, we will (Equation 4.1.9b)
and introduce a more general and more convenient notation for the non-interacting and
interacting action. The free action is given by

Sol¢, 9] = f(K,M,) (GoM(K)) . PratPkar (4.4.2)

including the single-particle propagator

(Go(K))ppr = —it0 e + hyrg (k) (443)

Here, we defined the multiindex K = (iw,, k) denoting both Matsubara frequency
iw, and momentum k. In correspondence with (Section 3.3), any remaining quantum
numbers like sublattice, orbital and spin « = (s, 0, 0) are hidden in the multiindex «. We
assume h,, to be independent of frequency. The interacting action is taken to consist of
a two-particle interaction, only, which is

) 1 o o
S [,y = BﬁK],M),(KZM)F(Kl,Kz,Kl,Kz)alaz,sz P Prcsee, Vicpay Vi, - (444)
(Kq,a)),(K5,a%)

Every integral [ (K. indicates the summation (iw,, s,0, c) and integration (k) of ap-
propriate quantum numbers and is normalized by (cf. (Equation 4.1.8a) and (Equa-
tion 4.1.8b))
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4. Generating functionals and quantum many-body perturbation theory

LK,@ - wZ éfkeg ; ;; : (4.4.5)

where () denotes the volume of the 1st Brillouin zone. Since the only correlation
functions, which can be evaluated exactly are the non-interacting ones, we rely on an
expansion of the exponential of the interacting part of the action. Hence, the partition
function is expressed as

Z = fg)[l/;, p]e~SlPv] = fﬁ)[gﬁ/ ] e~ SolP¥le=Sildy] = 7, <e—51[l/3,1/)]>0 , (4.4.6)

where we used the definition of the non-interacting expectation value (Equation 4.3.1).
The perturbation expansion amounts to a functional Taylor expansion of the exponential
in terms of the interacting action

z ey,
z=<z( D <SI[¢,¢]>> . (447)

v!
v=0 0

Before we check out the first few orders of the series by plugging in the action (Equa-
tion 4.4.4), the indices of I'(Ky, Ky, K7, K3) 4, wpya, Are reduced to Ty 4,41 o, for the sake
of simplicity. Up to second order in S;, (Equation 4.4.7) is given by

Z 1 o
Z_O = <1>0 - ‘E j”‘}f“? roclpc21x’1a'2 <¢o¢’1 lrbuc’zlzbzleppcl >0

Xp,8,
1 B ho -3
" E .[“1/“2 f"%r"‘z’; ralaza’la&r%awga; <¢zx’1 ¢a§¢a2¢a1 ¢a’3¢ag¢a4¢a3>o +0 (:B )
(4.4.8)

! ! l
Xl K30y

By virtue of Wick’s theorem (Equation 4.3.11), the non-interacting averages are evalu-
ated to yield all possible contractions of the four and eight fields, respectively. In first
order, we find

<lpa’] ¢a§¢a2¢vz1>0 = <lpﬂc’2¢0¢2>o <1pzx’1 l/):xl >0 - <1)Ep(/1 ¢a2>0 <lpw'2¢,xl >O . (44.9)

The contractions of the second order term including eight fields result in 4! = 24
terms, which are given by
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4.4. Perturbation theory

OO

@ . m
(a) (b)

Figure 4.2.: The two vacuum diagrams in (Figure 4.2a) correspond to the first order contribu-
tions to the perturbative expansion of the partition function. Here, the wavy line
represents the two-particle interaction I'y ,,41,, and all solid lines are free fermionic
propagators. All external legs are indicated by colored dots. The expansion of the 2-
point function in first order features two connected and irreducible diagrams, given
in (Figure 4.2b) (cf. [AGD12, Sec. 3 p.113]).

<l/}zx’1 1/}aél/}agl/}aﬁllpa2¢al¢a3¢a4>o = <l/3ajll/)a2>0 <1/3a’31/]zx1 >O <l/}zx’21/]zx3>0 <1/;zx’11/]a4>0

- <l/}1xg1/)a2>0 <1/3aﬁll/]zx1 >0 <l/}zx’21pzx3>0 <1/;zx’11/]a4>0
+... 22moreterms ... . (4.4.10)

Taking (Equation 4.3.9) into account, we find that the expectation values involving two
fields are matrix elements of the free propagator Gy, i.e.

(Fartpa) = Zofﬂ §, 9] Porpae™ SV = (Go(K)) - (4411)

To go beyond the vacuum diagrams, we employ the generating functional of discon-
nected Green functions (Equation 4.2.5) to generate the 2-point (disconnected) Green
function and its expansion:

_ 1 _ ) i ]
G® (ki i1) = = (W Pu) = = [ DDAy 9,014 = % (P TS0

Up to linear order of the expansion we find the following contributions:
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4. Generating functionals and quantum many-body perturbation theory

- ST 2 _ 1 o
<1/7]1'1 %1@ 51[1/7/1}’]>0 = 7 (<¢y’1¢y1>0 - B fa},w? rle,acz,uc’l,a’z <l/]y’1¢;41 1/704’1 l/]a’zlpbazl/]u1>0 + )
a0y

Z4 1 _ _ _
= 7 ((GO(K))}/MH - E fz}:ii ral,zxz,a’l,a’z <<1/J;4’11/7;41 >0 <¢zx’11pa1 >O <lpa’21/]tx2>0

— <1’Eﬂi ¢a2>0 <¢1x’1 ¢a1>0 <1,Ea,21py1>0 + ...4 more terms )) . (4.4.13)

o)
Z

The six terms in linear order comprise two disconnected and four connected dia-

Zo

grams. However, taking the prefactor = and its expansion in terms of vacuum diagrams
into account, it turns out that all disconnected parts are canceled. The connected dia-
grams can be further divided into reducible and irreducible ones, where the irreducible
diagrams - produced by means of the effective action - cannot be separated into two parts
by cutting a single propagator line [AGD12; Kle16]. The diagrammatic representation
of first order vacuum graphs and connected (and irreducible) parts of the 2-point func-
tion are shown in (Figure 4.2).

Summary and preview

This chapter introduced the formalism of the fermionic functional path integral, the
concept of generating functionals and the perturbative techniques required to tackle
quantum many-body Hamiltonians by means of the perturbative and, in particular, the
functional renormalization group. In order to properly define the fermionic path inte-
gral, we made use of Grassmann fields and fermionic coherent states. Based on the path
integral formulation of the partition function in imaginary time, we defined the gen-
erating functionals of the disconnected and connected Green functions, as well as the
effective action, which is used to produce one-particle irreducible vertex functions. We
recapitulated Wick’s theorem as an essential ingredient for the evaluation of all terms
and diagrams appearing in the perturbative expansion. The next chapter about the per-
turbative renormalization group motivates the Cooper instability from a diagrammatic
point of view and shows how to deal with the corresponding logarithmic divergence of
the particle-particle bubble by introducing a cutoff into the theory.
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5. Perturbative renormalization group

In (Chapter 2), it was already mentioned, that the superconducting state is impossible
to obtain by means of perturbation theory. However, we skipped the details of how and
why the perturbative expansion eventually breaks down when approaching the super-
conducting phase, which is what we will catch up on in the following chapter. At any
order, the perturbative expansion of the two-particle vertex (cf. (Section 4.4)) involves
diagrams, which have a ladder-like structure and are shown in (Figure 5.1). The se-
lection of these diagrams is justified if they represent (eventually for some particular
momentum channel of the two-particle vertex) the dominant contribution to the two-
particle vertex, which indeed turns out to be the case for external legs carrying opposite
momentum and spin. The divergence of this series indicates onset of the Cooper instabil-
ity and the breakdown of perturbation theory. The sum inside the bracket of the second
equality in (Figure 5.1), which corresponds to the irreducible part of the two-particle
vertex, can be evaluated as geometric series. Assuming the most simple one-band model
with spin rotation invariance, the bare interaction V; and employing the rules for the
graphical representation of propagators and vertices stated in (Section 4.4) we can write
the sum as (cf. (Equation 5.1.14))

Ut =1+ [ _Goliw,@VoGo(—iew, ~a)

+[ [ Goliw, @ VoGol—iw, )Gy i, q') VoGo(—ie', —q') + ...
iw,q Yiw',q

1
- _ . ) (5.0.1)
1-V, fiw’q Go(iw, q)Go(—iw, —q)

where we attached the momenta k, —k and —k’, k’ to the external legs. Using (Equa-
tion 4.4.3) for a single band G (iw, q) = (iw,, + §q)_1 with single-particle dispersion (;‘q
we find a logarithmic divergence o log (8W) for zero temperature (8 = (kgT)~!) upon
performing the momentum integration, where W represents the upper band edge of
the dispersion ¢y. At the critical temperature, perturbation theory breaks down, which
means that one cannot obtain the superconducting state by perturbative expansion to
any finite order and that it is not adiabatically connected to the (non-interacting limit) of
the Fermi liquid. Similar subtleties occur in the single-particle properties [Mat12, Chap.
15.4].

To avoid running into the logarithmic divergence of particle-particle terms in the per-
turbation series, one can introduce an infrared cutoff () and treat the residual degrees
of freedom below the cutoff by means of a renormalization group procedure. Hence,
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—e

= 1 + + + ...

—e

Figure 5.1.: The perturbative expansion of the irreducible two-particle vertex involves - among
many others - types of diagrams that have ladder-like structure. These diagrams drive
the Cooper instability and their sum eventually diverges at the critical temperature.

the perturbative renormalization group method consists of two steps (cf. [RKS10])

1. All modes outside a narrow range of energies specified by infrared cutoff () about
the Fermi energy are integrated out perturbatively resulting in an effective inter-
action at energy ().

2. The remaining low-energy modes are treated using the logarithmic RG technique,
which thereby identifies the leading superconducting order in the Cooper insta-
bility

This procedure can be viewed as a generalization of the Kohn-Luttinger effect [KL65]
described in (Section 2.3), where the evaluation of the Lindhard function revealed the
generation of an attractive effective interaction in non-zero angular momentum channels
from bare repulsive interactions. Although the combination of these two procedures has
first been systematically worked out by Raghu and Kivelson [RKS10; RK11; Rag+12],
similar approaches have already been used some time ago [Hlu99]. More recently,
this methodology has been extended to take the effects of multiple bands [RKK10b;
Cho+13], atomic spin-orbit coupling [SRS14; Scal6] and inversion symmetry breaking
[VW11; WV14] into account.

The first section of the chapter will set up the general formalism for a second order
perturbation theory of the two-particle vertex and present the resulting effective inter-
action for SU(2)-invariant and SU(2)-broken Hamiltonian with or without inversion
symmetry. Simplifying the result to the example of the single-band Hubbard, we eval-
uate the particle-particle loops explicitly to find the logarithmic divergence discussed
above and to properly define the infrared cutoff. The second section introduces the log-
arithmic renormalization group, that makes use logarithmic divergence and identifies
the dominant pairing channel by calculating the renormalization group flow of the non-
zero angular momentum channels in the effective Cooper pair interaction. Finally, the
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5.1. Perturbative expansion of the irreducible two-particle vertex

last section tries to compare the results of the perturbative renormalization group with
the methodology of the random phase approximation by working out the similarities
and differences between the two methods.

5.1. Perturbative expansion of the irreducible two-particle
vertex

The first step of the perturbative renormalization group procedure is to identify and
calculate the perturbative corrections to the one-particle irreducible (1PI) two-particle
vertex Uy, u,a!a, (up to second order). To find these perturbative corrections we con-
sider the 4-point function

584G (7, 1]

= = , 511
017,017 017,017, (11)

<¢y ¢V¢K¢/\>

where the expectation value is the fully interacting one, which is generated by the
functional ([, 7] (Equation 4.2.6). The source fields 7, 77 have to be set to zero after
performing the functional derivative. In more detail, the 4-point function is given by
the functional integral

- 1 - _ 5
(FuPutretn) = = [ DD Y1 bupcpre P9 (512)

with Zbeing the interacting partition function. The action S [, ¢] (cf. (Equation4.4.2)
and (Equation 4.4.4)) is defined by

(G51 (K) )M/ ¢K0¢¢K1x’

Syl =Solg 9l +sildl=[
1

! ! T T
+ B _f(Kl 1), (Kp,a0) I'(Ky, Ky, Kl/ Kz)ulzxz,zx’lw’z IPK’lw’l ¢1<§u/21l}1<2a2¢1<1a1 ’
(Kq,a),(K5,a5)

(5.1.3)

with the multiindex K = (iw,,, K) comprising Matsubara frequency and momentum.
Here, G5! (K) specifies the inverse free propagator given by (Equation 4.4.3)

(Go(K))par = —it0 8 + g (k) (5.14)

Exactly like in (Section 4.4), the perturbative series is given by calculating the non-

interaction average of the four fields and the exponential of the interacting part of the
action, which is
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5. Perturbative renormalization group

> f DU 4] Fufutpne ST = 2 = (Fuutpupne PV (5.15)

Since we don't intend to perform any resummation of an infinite series, in contrast to
what we will do in (Section 5.4) in the context of the random phase approximation (RPA),
we are content with the first few orders of the expansion. For the sake of brevity, we
hide both particle indices (K, a) — « in a single one and up to third order we find

<¢y¢v¢x¢/\e_sl[ > <¢y¢vwk¢/\ fyl 1/1 ylvl K1 <¢y¢’v¢x¢’/\¢y1 1101/1 1701(1 ¢A1>

K1,

f#l 1/1 fﬂz Va #11/17(1/\1 rﬂszKzf\z <lpﬂ¢V¢K¢/\¢#1 I/JV1 l/JKl l/]/\1 lpﬂzl/JVzlpKzl/J/\2>

2'32 Ky,Ay " Kp A

r

6‘33 fﬂl V1 fﬂz vp jﬂs v3 H1V1K1/\1FP’2V2K2/\2 H3V3K3As

K1, A1 K Ap T3 A3

<l/7;4 %%%%1 lljvl l/JK1 l/J)\l 1/_7;42 1/_}1/2 lpicz l/)/\z 1/}]43 1/;1/3 l/JK3 ¢A3 >0 +0 (18_4) .
(5.1.6)

Employing Wick’s theorem in (Section 4.3) to the non-interacting correlation functions,
we find that the number of contractions quickly increases from zeroth up to third order.
Only expectation values with the same number of ¢ and ¢ fields provide a finite con-
tribution, because we assume absence of spontaneous symmetry breaking. In fact, there
are two contractions in zeroth order, 24 in first order, 720 in second order and 40320 in
third order. Fortunately, these numbers comprise all disconnected, connected, reducible
and irreducible diagrams, while we are only interested in the connected and irreducible

ones. The disconnected ones are canceled by the prefactor % in (Equation 5.1.5), whose
expansion was discussed in (Section 4.4). The number of disconnected, connected, re-
ducible and irreducible diagrams is given in (Table 5.1). Here, we will focus on the
second order of the expansion, denoted by 6T'‘? JKAT
agrams out of 80 irreducible terms, which all have the same weight. Note, that these
terms correspond to connected Green functions (cf. (Section 4.2)) and we have to re-
move the propagators at the (four) external legs to find the irreducible vertex part. The
irreducible vertices of the five terms in second order are hence given by

that features five inequivalent di-

2
r( )K/\ :B J;,[ (GO)y K’ <GO)V’/\’ ( yvx’/\’ry’v’x)\ + Fyy’/\’xrv’w\x’

+FW,K, ALwonre + T T = T Toaer ) (5.1.7)

The different signs of the terms originate from the number of anticommutations nec-
essary to get the required arrangement of fields in (Equation 5.1.6). Their diagrammatic
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5.1. Perturbative expansion of the irreducible two-particle vertex

Table 5.1.: Although the number of contractions increases like (2n)! with order n of the expan-
sion of the two-particle vertex, the number of inequivalent irreducible diagrams is
manageable. The number of spinful diagrams is even lower than the spinless version
since the bare spinful two-particle interaction exhibits a higher degree of symmetry.
In particular, the spinless two-particle interaction is symmetric only with respect to ex-

change of both pairs of fields ata time, i.e. I', , « 1, = I'1,1,x,- In contrast, the spinful

vertex features the fermionic antisymmetry relations, like i.a. I', ,, 2, = —T0,0000,-
ordern total disconnected connected
reducible irreducible
total inequivalent

spinless  spinful

0 2 2 0 0 0 0
1 24 20 0 4 1 1
2 720 512 128 80 5 3

representation is given in (Figure 5.2) and the order in which they appear corresponds
to the order of terms in (Equation 5.1.7). The visual representation reveals that the
tirst term in (Equation 5.1.7) is the particle-particle contribution while the second to fifth
terms are the particle-hole terms. All five diagrams have the same weight and hence con-
tribute to the second order correction with the same absolute prefactor. So far, we didn’t
assume any particular properties or symmetries of the pair interaction FWK 1. Since we
are interested in spinful, fermionic models, we a assume a pair interaction that satisfies
(cf. (Equation 3.3.4) and [AGD12, Sec. 13, p. 115])

U‘MVK/\ = _U]/]/IK/\ = _u‘u]//\K = +uyy)\;{ . (5.1.8)

Inserting this pair interaction into the second order perturbative correction (Equa-
tion 5.1.7) by substituting I',,, .y with Uy, we find for the terms inside the bracket

uyvx’/\’uy’v’x/\ + uyy’/\’icuv’w\x’ + va’x’/\uy’w\’x + U‘I/IV’/\K’ kA T uyy’x/\’ uv’w\x’
= UW,K,A, uyler/\ + zu‘uyr,{/\r UVVI/\KI — ZUHV,/\K, UVH:K)U . (5.1.9)

In the first line we employed the antisymmetry (Equation 5.1.8) to the first interac-
tion of the third term, such that it coincides with the second term, and to the second
interaction of the fifth term, such that it equals the fourth term. Henceforth, the second
order perturbative correction for a spinful fermionic pair-interaction yields (cf. [Sha%4a;
BBDO03])
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5. Perturbative renormalization group

Figure 5.2.: There are five diagrams, which contribute to the second order perturbation expan-
sion of the two-particle vertex (Equation 5.1.7). Note, that all five diagrams have the
same weight, i.e. they contribute with the same (absolute value of the) prefactor.

These five diagrams correspond to the perturbative expansion of a SU(2)-invariant
bare pair interaction (cf. (Equation 5.2.1)).

1 1
2
5u;n/)ic/\ :E fy’,v’(G0>#’K’(GO)v’A’ (Euﬂwc’/\’ Uprvrer = Uy Uyprns + Uy uVV%K')
x' A
(5.1.10)

The diagrammatic representation of the spinful perturbative correction is given in
(Figure 5.3b). Some of the literature refers to these contributions as BCS, ZS” and ZS
terms [Sha%4a; WV14]. Note, that ¢ LI;IZV) ., must fulfill the antisymmetry relations (Equa-

tion 5.1.8) as well. In order to evaluate the perturbative correction & U;zl/)x . several steps
are necessary. First of all, we reimplement the full index structure by substitution of all
indices according toa — (K, &) = (iw, k, «) (cf. (Equation 5.1.3)). Next, we focus on the
free propagators (Gg) /. and (Gg) 1+ given by (Equation 5.1.4). To be able to conve-
niently calculate the integrals over the inner propagators - the loop integrals - we change
to a basis, where the propagators assume diagonal a form in all indices. The represen-
tation of propagators and pair-interaction U, ., in the new basis is found by means of
a unitary transformation of the fields (cf. (Equation 3.3.33a) and (Equation 3.3.33b))

~ - - —ndX
P = Z U4y, Pra = lekauk , (5.1.11a)
44 44

with U being the eigenvectors of 11, (k) (cf. (Equation 5.1.4)). The collective in-
dices « in orbital and & in band space may feature such indices as sublattice, orbital, spin
and band, pseudospin and helicity (cf. (Section 3.3.1) and (Section 3.3.2)). We use the
notation

G = U e (UE™)' (51.12)

where (4 is diagonal and corresponds to the single-particle spectrum. Henceforth,
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5.1. Perturbative expansion of the irreducible two-particle vertex

I3 Kk H A
u = - u
v AV K
(a)
I3 A H K
V\ / K H K u u
SU®@ = +3 | U u - +
1// \ A v A u u
v K v A

(b)

Figure 5.3.: The fermionic spinful pair interaction is antisymmetric with respect to exchange of
the ingoing or outgoing particle indices, which is reflected by its diagram in (Fig-
ure 5.3a). The spinful fermionic bare pair interaction reduces the number of dia-
grams that contribute to the perturbative correction to the 1PI two-particle vertex
in second order to three diagrams, which consist of one particle-particle and two
particle-hole terms (Figure 5.3b). Note, that the antisymmetry of 6U® is ensured
by the opposite signs of direct and crossed particle-hole terms.

the propagators are, in diagonal form, given by

(Goliw, k), = (5.1.13)

- iwn + gkzi

At this point, we are left with two integrals only in (Equation 5.1.10), because the
propagators introduce 6, and 6,y due to their diagonal form. We assume the bare
interaction U,,, . to be independent of frequency and fix the external legs of the vertices
at zero frequency by iw, = 0 = iw, = iw, = iw,. However, an scattering process at
any order represented by 5U}<ﬁ/>}< 2 or Uy, ) must be subject to energy/frequency conser-
vation. This has profound consequences for the propagators and results in important
differences for particle-particle terms in contrast to particle-hole terms. The frequency
balance for the particle-particle term (the first term) in (Equation 5.1.10) is summarized
by iw, +iw, = 0 = iw, +iw, resulting in iw, = —iwy and iw,, +iw,, =0 = iw, +iw,
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5. Perturbative renormalization group

resulting in iw,, = —iw,,. Since the propagators require ¢, and 6,,,,, we are left
with a single frequency iw in the loop integrals with opposite sign in both propagators,
ie. iw, = —iw,. Analogous considerations apply to the particle-hole terms resulting,
however, in a single frequency with same sign in both propagators, ie. iw, = iw,
Finally, any vertex must obey momentum conservation, which results in characteristic
momentum transfers for every diagram and a single momentum integration for the
loop integrals. For instance, the particle-particle term features the momentum trans-
fer k := kv =k, + k, — k), while the particle-hole terms have k := k,, =k, —k, + k,,
and k := k,» = k, — k,, + k,, respectively. Employing these preparations, we end up
with the second order correction (Equation 5.1.10) that looks like

a AR’ u“"‘ ”‘1“2
(Ut = 15> [k ] Jalabsebic i
kilakik, ~ B L £ 2 (i, + G, 41y 1) (— 1w, +§ka>
Ry o ) NN o’
Ky kK kg — Kbk “ ko kg —K +k K]k Ky —ky +kG oK kT koK), —kg +G £k

(—iwy + Ci, iy +ka ) (—1Wy + Q) (—iwy + C i i) (1w + Cya)
(5.1.14)

where the indices # and &' sum over any band, pseudospin or helicity indices. Assum-

ing the orbital/spin interaction U“lpfakixzk, , the bare interaction in band space is given

by

{08 & Z — By —=fpry g T R A LA, A A

3P U g Yoot e (5.1.15)
Ko
a0,

with uf® being the eigenvectors of /1, (k). The Matsubara sums with fermionic fre-
2n+1)mr

quencies w,, = (see (Equation 4.1.8b)) are evaluated by means of contour inte-
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5.1. Perturbative expansion of the irreducible two-particle vertex

gration (cf. e.g. [AS10, Chap. 4.2][BF04, Chap. 15.2]) and give !

1 1 _ tanh (/3€fq—k&/2) + tanh (Blua/2)  f(=Plq-xa) —f (Bxa)
B & Giwy + Sqi) (=i, + Gar) 2 (8qoxa + G ) B Cq—ki + Cka
(5.1.17a)
1 Z 1 _ tanh <ﬁ§q+k&/2) — tanh (B /2) _ f(Bxar) — f(BCqrka)
B i (iwn + Gqia) (—iwn + G 2 (Giar — Squra) Ckar — Gqki '
(5.1.17b)

for the particle-particle and particle-hole loops, respectively. In a renormalization
group sense, the effective interaction in the Cooper channel is the only relevant interac-
tion and the only generic instability of the Fermi liquid in the weak-coupling limit. Anal-
ogously to the discussions in (Section 3.4.1) and (Section 3.4.2), we have to distinguish
the case of degenerate Fermi surfaces characterized by pseudospin degree of freedom
from the case of a Fermi surface labeled by helicity, which simplifies the structure of
pairing states in the weak-coupling limit. The Cooper vertex in terms of pseudospin
indices is given by (cf. (Equation 3.4.12))

bb' 55,55, o (bi b T T
ukk! = uk’_k’k/’_kl 7 (5-1-18)

and its second order perturbative correction (Equation 5.1.14) reduces to

((5u<2)>bb"~71‘~72‘~71f~fé -y j dq (1ubﬁlbﬁzm%m%’um%m%’b’?f{b’ﬁé f(=BS_qmz) —f(ﬁfqm%'))
pp =

kK’ =, O \ 2 7k-k-qq -q,9k',—k &_qmz + Cqmz
(5.1.19a)
(5U(2) >bb'l~711~72‘~7{‘~7§ _ Z J‘ dq (ub[ﬁmi’b’&ém’%’ubﬁzm’%’b’[f{m% f(ﬁ§k+k’+qm’%’) _f<ﬁ§qm%)>
, - e} k,q,—k’ k+k’ —kk+k'+q,k’, —
WP a mTm't’ 0 1 e Teraka €k+k'+q‘rn’i" gqm%
(5.1.19b)
(&I(Z) )bb'ﬁlﬁzﬁiﬁé B f dq (ubﬁlm’%’b’(f{m%ubfrzmib’(rém’%’ f(BS s +qm) —f<,3§qu)>
- -~ _ ’ ’ _ 1 ’ ’
Cph kkr m;l‘-mli—/ Q k, k+k +q;k /q qu/ k 7 k+k +q g—k+k'+qm'7~” —_ gqmi_

(5.1.19¢)

with m, m" and T, ¥’ being the “inner” band indices and pseudospin states, respec-
tively, associated to the propagators. While the pseudospin indices 7, T’ attached to the

! The tangens hyperbolicus tanh(x) is related to the Fermi-Dirac function f (x) by

x eZ—e 7 e4ez-_22 2
tanh(—) S S S . s (5.1.16)
2/ erye2 e2 +e 2 l+e

which satisfies f(—x) = 1 — f(x).
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band energies ¢ of the propagator sum may be omitted because of pseudospin degen-
eracy, the pseudospin indices attached to the vertex functions play an important role
in describing the correct pseudospin structure of the resulting pairing states. Note the
formal similarity to the multiband extension in [Cho+13, IIL.B.]. Let’s proceed to the
case of helicity based vertex functions and non-degenerate Fermi surfaces. The Cooper
channel in terms of helicities is determined by (cf. (Section 3.4.2))

DAV'A" . 1 TABAL'A'D'A’
UPY = UMY (5.1.20)

where, in contrast to the pseudospin case, the structure in the spin degree of freedom
is restricted by the requirement of equal-energy pairing. In this case, (Equation 5.1.14)
reduces to the three contributions

2 k-k-q94q "-qqk’-K g—qu"'gqm;c
(5.1.21a)

dq (uh/\mxb’)\’m’x’ bAm'x"b' A mx f(ﬁ§k+k’+qm’;c’) _f<ﬁ§qm’<)

(5u;(7%)>b/\b,/\’ f dq (1ubAb/\meKumexb’A’b'A’f(_’Bg_qu) _f(ﬁgqu)>

( o) >b)xb)\ _

aph ) e - ; k,q,—k’ k+k'+q -k k+k'+qk',q

§k+k’+qm’x’ - gqu
(5.1.21b)

ub/\m'K'b'/\'mK ub/\me/AlleI f(ﬁé—k-'rk,"rqm/’(l) _f(ﬁéqmlf)
q

5u(2) bAD'A _ Z d_q
crh)yae O k,—k+k'+qk',q " —k,q k' ,—k+k'+q

3
A
§\
R\
//~

g—k+k’+qm’7c’ - gqu
(5.1.21¢)

for the particle-particle, direct particle-hole and crossed particle-hole diagrams. In
contrast to the particle-hole channels with momentum transfers k' — k and k — k’, the
particle-particle channel features zero momentum transfer. Here, the indices m, m’ and
x, " denote the inner bands and helicities. So far, we used the most general fermionic
pair interaction allowed with respect to the restrictions given in (Section 3.3.2). In the
next section, we will limit our considerations to the case of SU(2)-invariant interactions
and see how (Equation 5.1.14) and be simplified. Furthermore, we only treated the
second order of the perturbative expansion, while ignoring the first order completely.
In the next section, we will also discuss what the influence of the first order on the
superconducting order is and under what circumstances it can be neglected.

5.2. Effective vertex for (non-local) Coulomb interaction

According to (Section 3.3) a spinful SU(2)-invariant two-particle vertex in orbital-spin
space can be written by
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u;u/ic)\ = V‘I/lI/K/\éo'MO'Ké(TVU'/\ - V‘MV/\Kéo'Mo'/\ég'vg'K . (5.2.1)

where V1 = V0, and the multiindices attached to V' are implied to lack spin
dependency in contrast to the ones of U. The spin symmetry results in a free propaga-
tor (Equation 5.1.4), which is diagonal in spin space, i.e. Go(iw, k), o §,,. Inserting
(Equation 5.2.1) into the expansion (Equation 5.1.10), we find two sets of terms/dia-
grams corresponding to the two spin sectors given by the spin combinations in (Equa-
tion 5.2.1). Both sets of equations, each including five terms (one particle-particle and
four particle-hole contributions) are equivalent to each other and to the general expan-
sion (Equation 5.1.7). They represent the second order perturbative expansion of a
SU(2)-invariant bare interaction. Let’s assume a SU(2)-invariant (non-local) Coulomb
repulsion in a single-orbital model. The corresponding interacting part of the Hamilto-
nian is

H; = UOZ Nty + th Z Z Nighigr (5.2.2)

z:ﬁ] 0’(7

with the occupation number operator n,, = c}_c;,. The parameters Uy and U; deter-
mine the strength of on-site and nearest nelghbor repulsion, respectively. Hence, the
antisymmetrized bare pair interaction is fully characterized by its momentum and spin
dependency. For instance, on the two dimensional square lattice with lattice constant a
it is given by

(7](72(7 (7
uklk k’lk’2 =Uo (5010 50205 - 501055020{>

+U, [(cos((kz —K5) ) + COS((kZ - k’z)ya)> S0y 000r,
- (cos((kl —K5).a) + cos((k1 - k’z)ya)) 01%50201] , (5.2.3)

and satisfies all the requirements developed in (Section 3.3.1), where momentum con-
servation k; + k, = ki + k;, is implied. The effective vertex in pseudospin basis com-
prised of (Equation 5.1.19a), (Equation 5.1.19b) and (Equation 5.1.19¢) can be further
simplified to account for the SU(2)-invariant Coulomb interaction (Equation 5.2.3) in
a single-band model. Setting U; = 0 and only taking the on-site repulsion U into ac-
count, we find that only the particle-particle and direct particle-hole terms contribute,
while the crossed particle-hole diagram vanishes due to the given spin structure. Hence-
forth, we find (cf. [RKS10, Section II.])

(5u]§]20))TlTl — U2 dqf(_ﬁg—q) _f(ﬁéq) (

nt w2 dqf (Béicrie+q) —f(BGq)
Kk o) o Zqtig )

ph e [9) Ck+k'+q ~ Oq
(5.2.4)
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where the resulting momentum structure of the effective vertex exclusively arises
from the progatator terms. Due to the presence of SU(2)-invariance, we only consid-
ered a single spin sector, which can be used to generate all others. The sum over spins
contributed a factor of two to the particle-particle term. Obviously, the particle-particle
contribution is a constant with respect to k and k' and further evaluation of the term
reproduces the logarithmic divergence for temperature T — 0, we introduced at the be-
ginning of the chapter by means of particle-particle ladders. In particular, by assuming
inversion symmetry of the single-particle spectrum, _, = &g, the particle-particle term
can be written as

dqf (=B q) —f(BE) _ dqtanh(BZe/2) f P9
Q {_q+8q U 244 1/8 ¢

~ p(0)log (BW)
(5.2.5)

where we introduced the density of states p(¢) and the upper band edge W of the dis-
persion ¢, which was assumed to be particle-hole symmetric. The integrand in (Equa-
tion 5.2.5) tanh ( Béq/ 2) /(254) is symmetric about the energy axis and features a peak at
zero energy that scales according to 3/4 and eventually diverges for zero temperature,
resulting in the logarithmic divergence. Although the general case of (Equation 5.1.19a)
involves an integral featuring the k-dependent eigenvectors (Equation 5.1.15), that can
only be integrated numerically, the logarithmic divergence at zero temperature is, how-
ever, not spoiled by these factors. Summarizing the result of the perturbative expansion
of the two-particle vertex up to second order in the antiparallel spin channel for bare
on-site Coulomb repulsion, we have

BU)IHY ~ Uy + U2 (p(0) log (BW) + x(k +K)) . (5.2.6)

where we abbreviated the susceptibility

X(k) =

49/ (Fg) /o) o da, ¢

Q §k+q gq QO ﬁ—»O
=—5<c;‘>

=p0) . (527)

The susceptibility is a positive definite quantity, since in the zero temperature limit
B — oo and for zero momentum transfer q — 0 it reduces to the non-interacting density
of states p(0) at the Fermi level. The parallel spin channel doesn’t have the bare U, but
contributions from both particle-hole terms, which give (neglecting the particle-particle

part)

U ~ UZ (x(k+K) —x(K —k)) . (5.2.8)
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The result (Equation 5.2.6) can be used to find the singlet and triplet part of the ef-
fective Cooper channel by either symmetrization (antisymmetrization) in momentum
space or antisymmetrization (symmetrization) in spin space. Hence, we find SUSeT =
u+ LI% (x(k+ k) + x(k —k)) and sUTPT = Ug (x(k + k') — x (K" —k)), where the
triplet part corresponds to the parallel spin channel (cf. (Section 5.4)). Within the range
of weak-interaction strength U, where the perturbative expansion is valid, the (short
range) first order contribution will be much larger than the second order, which may be
comprised of attractive channels. Only in the strong coupling limit Uy > 1, where the
perturbative expansion becomes invalid, the second order contribution will overcome
the bare repulsion (see [AK11]). However, assuming a strongly-screened bare inter-
action, the second order term may well contribute to an overall attractive long-range
channel. Furthermore, since the on-site interaction is constant in k-space, the non-local
second order contribution may well generate a pairing state with finite angular momen-
tum since the constant interaction of the first order is projected out in any channel with
finite angular momentum, even if the second order attraction is much weaker. More
technically, a Cooper vertex 5Ul(i), comprised of both repulsive first-order and (weaker)
attractive second order parts, may still feature bound states by choosing an angular mo-
mentum channel, which is part of the kernel (null space) of the vertex part associated
to the repulsive channel(s). Hence, if the first order bare interaction contributes a non s-
wave like repulsion, one has to take it into account and perform a careful analysis of the
balance between both first and second order. To get rid of the restriction of a local bare
interaction, we take the second term in (Equation 5.2.3) associated to a finite nearest
neighbor interaction U; > 0 into account. On the one hand, the nearest neighbor inter-
action produces a non-local first order contribution, which suppresses the pairing states
corresponding to basis functions and associated angular momentum channels, the bare
interaction is comprised of. As a result, the inclusion of the long-range interaction may
promote former subleading channels of the Cooper vertex to represent the leading insta-
bility (cf. [Rag+12]). On the other hand, the k-dependent bare interaction allows, even
in the presence of SU(2)-symmetry for more contributing terms in the perturbative ex-
pansion. In particular, U; > 0 generates a finite contribution in the direct particle-hole
channel (Equation 5.1.19b). As a matter of fact, perturbation theory alone cannot re-
produce the superconducting state and associated properties. In order to deal with the
logarithmic divergence (Equation 5.2.5), an energy cutoff is introduced and only de-
grees of freedom above this cutoff are taken into account in the perturbative expansion.
In the next section, we will work out how to deal with the residual degrees of freedom in
the vicinity of the Fermi surface by integrating them out by means of a renormalization
group treatment. Finally, we note the special case of a logarithmic divergence that arises
in the particle-hole channel channels as well. In case of a single-particle spectrum that
features i1 +q = —Gq in (Equation 5.2.4), the crossed particle-hole term will resemble
the integral and the log-divergence of the particle-particle term [BBD03]. This repre-
sents the basis for concept of the parquet renormalization group [MC13]. In particular,
this case occurs in the iron pnictides where the momentum transfer connects particle
and hole pockets with opposite energies [ CEE08; Chul2].
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5. Perturbative renormalization group

5.3. Logarithmic renormalization

The residual low-energy degrees of freedom below the cutoff A are treated by means of
a (logarithmic) renormalization group flow in the spirit of [Pol92; Sha94a]. The starting
point of this procedure is the effective two-particle vertex generated in the first step by
means of the perturbation expansion in (Section 5.1). First of all, we have to properly
define the cutoff Aj. The cutoff is supposed to avoid the infrared singularity caused by
the particle-particle ladders (Equation 5.2.5), while at the same time being small enough
so that only a narrow range of residual energies about the Fermi surface remains, in
order to be able to safely linearize the single-particle dispersion in the vicinity of the
Fermi level. The lower bound for the cutoff is determined by the log-divergence by
assuming that the particle-particle ladder grows to be of order one at the point where
the two-particle vertex is significantly affected, i.e. U(z, 0(0) log ((Aé)_1W) ~ 1. The
upper bound has to ensure that the remaining degrees of freedom lie within an energy
shell much smaller than the bandwidth W of the single-particle spectrum, i.e. Aj =
U3 /W. Summarizing the above, we find for the valid range of the cutoff the condition
(cf. [RKS10, Sec. IV.])

__1 2
Ay =We B0« Ay <« % =AY . (5.3.1)
In contrast to Al and AY, which are related to physical energy scales, the actual cutoff
/g is not and represents a purely mathematical tool. Hence, the starting point of the
renormalization group flow can be summarized by an effective action (unrelated to the
generating functional of the effective action) in terms of Grassmann fields 1, i associ-
ated to energy scale Ay, which includes the effective two-particle vertex in the Cooper
channel and the corresponding quadratic term of the theory:

S [lrb/ 1/7] = f(K,a) (iwn - vipck) J’Ka’ﬁ](a

1 - _

A ’ /

+ B (Kq,a1),(Ky,p) r 0(K11K21K1/K2)0410(2,0c’104’2 EDKitx’l ¢K§a’2¢K2a2¢K1¢xl ’
(Kq,a),(K5,a5)

(5.3.2)

where K = (iw,,, k) is the combined Matsubara and momentum index. The effec-
tive two-particle vertex [0 associated to A is given by (Equation 5.1.14). The single-
particle spectrum §, = €, — # ~ vk kis linearized in the vicinity of the Fermi surface
with Fermi velocity Uﬁ, . and the parameter k, which is measured relative to the Fermi
momentum. The fields are separated by the cutoff A into “fast” and “slow” modes and

likewise the non-interacting part of the action by setting [KBS10]

S[P. 9] =So[¢s, 91+ So [P, Y] + St [P, 9] (53.3)
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5.3. Logarithmic renormalization

while the interacting part mixes both fast and slow modes. The corresponding func-
tional integral can now be written as [Sha94a|

Z = fg[),[l/}, p]e S Y] = fﬂ)[¢<,¢<] jg),[lr/;>,¢>]e—So[¢<,¢<]—So[¢<,¢<]—51[1/7<,¢<]

(5.34)
The functional integral over the fast modes is easily evaluated to obtain
Z= j D [l/}<, l/)<] e_SO[Itz’<'ltb<] f D [1/}>, 1/]>] e_SO[II’</¢<]_Sl[II’</4’<]
- f D[, p]eSolP<¥<lz <e—51[¢<,¢<]>0> .= f D, ] o~ SelPtp<l
(5.3.5)

where Z, is the non-interacting partition function of fast modes and we defined the
effective action S,¢r[¢., ] associated to the slow modes. Note, that even for an e.g.
k-independent bare interaction, the integration of fast modes may in general produces
an effective action of slow modes that is momentum dependent and involves all orders.
The change of the effective action due to the integration of fast modes may be calcu-
lated perturbatively and generates for the two-particle vertex in second order the same
diagrams that were already encountered in the context of “conventional” perturbation
theory (Section 5.1). However, in contrast, to the previous case, the integration is re-
stricted by the cutoff and confined to modes in a small shell around the Fermi level. It
can be shown that only the particle-particle (BCS) diagram (cf. (Equation 5.1.10)) con-
tributes to the renormalization flow [Sha94a]. Using the linearized spectrum, the flow
equation in the particle-particle channel can be expressed by [RKS10]

d(su?). 0 dg (OUS ), (6L
1 i Ju =~ (o)’ [ gl ==t

A Sp ,/vﬁvﬁ \/vﬁvi,

with the flow parameter | := log % For a numerically more convenient calculation
and notation we define the normalized matrix

oF 2) oF
i = PO (OU )\ (5.3.7)
Uk ZJk,

with Uﬁ = |V x| being the Fermi velocity of a particular Fermi sheet at the respective k-
point and 7% being averaged Fermi velocity of the specific Fermi sheet. Since the Cooper
vertex (5[1;%)) , is a symmetric and Hermitian matrix we can easily write it in terms of

Kk
its normalized eigenbasis. Each eigenvector corresponds to an angular momentum state

, (5.3.6)
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5. Perturbative renormalization group

and a basis function associated to some irreducible representation of the underlying
lattice. Using the eigenbasis of the Cooper channel, we see that every eigenvalue ¢,
renormalizes independently by

_ o
1+ 20

dd,
dl - _gn én(b

(5.3.8)

with 0 being the n-th unrenormalized eigenvalue. The eigenvalue, which first grows
tobe of order one, determines the symmetry of the Cooper instability. The flow equation
of eigenvalues shows that a positive initial coupling 9 flows down to zero (irrelevant)
and an initial negative ¢ is relevant with respect to the renormalization flow .

5.4. Random phase approximation and spin fluctuations

While the perturbative renormalization took all diagrams up to second order in the weak-
coupling limit into account, one might as well consider particular kinds of diagrams
up to infinite order and thereby overcome the restriction of weak-coupling. One way
of doing this is usually called the random phase approximation (RPA) [BS66]. Here, we
consider it briefly due to its formal similarity to the perturbative renormalization and
its use as a benchmark. Let’s go back to the perturbative expansion of the two-particle
vertex in (Equation 5.1.6), which produces (in case of an SU(2)-invariant bare interac-
tion) five diagrams in second order as shown in (Figure 5.2). Later, we found that for
the on-site Coulomb interaction only the first and second diagrams contribute to the
effective two-particle vertex with antiparallel spins (cf. (Equation 5.2.4)). Instead of
stopping in second order of the expansion, we now include the diagrams of these two
types up to infinite order. The first few diagrams in these series are sketched in (Fig-
ure 5.4). For both the singlet and triplet part of the two-particle vertex these diagrams
may be summed up by means of a geometric series analogously to the particle-particle
ladders in (Figure 5.1). The opposite (antiparallel) spin Cooper channel of the effective
two-particle vertex can be expressed by (cf. [BK08])

(URPAYME g Upr(e+k)  Ugx*(k—K)
K 1—Upx(k+Kk) ' 1-UZ2(k—K)

, (5.4.1)

with the on-site Coulomb interaction U (cf. (Equation 5.2.3)) and the non-interacting
susceptibility (Equation 5.2.7). The equal (parallel) spin part has only the “bubble”
terms, which result in

U2x(k — K
(L N p— ( . (5.4.2)
1-Uzx?k—Xk)
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5.4. Random phase approximation and spin fluctuations

These results may be more conveniently expressed by defining the RPA charge-/spin-
susceptibilities x° = x /(1 + x) and x°* = x/(1 — x), respectively. With these, the effective
two-particle vertex in antiparallel and parallel spin channels is given by (cf. [HKM11])

1 1
(URPA)EI:,l = Uy + Uj ()ﬂk + KD+ 510 (k=K — Zx(k — k')) , (5.4.3)

and

1
(urrAy = —u? (xs (k= K) + 5x°(k - k’>> . (5.4.4)
The singlet and triplet parts of the effective two-particle interaction are then deter-

RPANTUL RpANTTT RpANTTT
mined via (Ué{gﬁ)kk, _ A )kk'z_ (U e and (U%ﬁ?)kk, — M The pair-
ing strength is evaluated by integration of the eigenmodes of singlet and triplet ver-
tices along the Fermi surface. Multi-orbital extensions of the RPA-approximation for
the treatment of superconductivity require the formulation of the RPA vertices in terms
of orbital matrices and the inclusion of additional diagrams. This has been extensively
worked out for the iron-pnictides in two [Gra+09; Mai+11a; Mai+11b; Alt+16] and
even three spatial dimensions [ Gra+10; Wan+13b; Kre+13]. The inclusion of spin-orbit

coupling has been achieved only recently [Korl17; Nis+17; Zha+17].

Summary and preview

This chapter introduced the perturbative renormalization group for multi-orbital sys-
tems including any kind of spin-orbit interaction. This kind of perturbative renormal-
ization group is comprised of two steps. The first involves the perturbative expansion
of the (spinful) two-particle vertex up to second order in the bare (repulsive) interac-
tion, which generates a momentum dependent effective interaction. During the second
step this effective interaction generated during the first step is employed as the input to
a logarithmic renormalization group flow and only takes the modes within a small en-
ergy window in the vicinity of the Fermi level into account. Since the perturbative step
requires the limitation to infinitesimal interaction strength, we consider the compari-
son to the random phase approximation as a method that remedies this shortcoming
by infinite resummation of particular types of diagrams. While the random phase ap-
proximation appears to be numerically well-controlled, it suffers, in contrast to the per-
turbative renormalization group, from its limited applicability due to the selection of
types of diagrams. The next chapter is devoted to the functional renormalization group
as a method, which incorporates the advantages of the perturbative renormalization by
cosidering all diagrams and it is at the same time extending the analysis to weak but
finite interaction strength.
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5. Perturbative renormalization group

10— —o1t
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Figure 5.4.: The random phase approximation in a single-orbital model includes “bubble” and
“ladder” type diagrams up to infinite order. Apart from the first order represented
by the bare interaction, the singlet part features both “bubble” and “ladder” type
diagrams. The “bubble” diagrams only appear in every even order. In contrast, in
the triplet part only the “bubble” diagrams contribute and they only do in every even
order.
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6. Functional renormalization group

The functional renormalization group is one of the (modern) implementations of Wil-
son’s renormalization group idea [ Wil71c; Wil71d | among the Migdal-Kadanoff real space
RG [Mig76; Kad76], the momentum space RG [WK74], the numerical RG [Wil75] and the
density-matrix renormalization group (DMRG) [Whi92; Sch05a]. The common feature of
all these versions of the renormalization group is the concept of iterative integration of
all degrees of freedom that appear in the partition function describing the system under
consideration. A single iteration is comprised of the decimation step (mode elimination)
and the rescaling of momenta and fields . A key step towards the development of the
functional renormalization group was the realization that the decimation step may be
carried out in an infinitesimal way, thereby enabling the description of the effective ac-
tion’s change in terms of a functional differential equation [WH73]. In this chapter, we
introduce and derive the flow equation of the effective action based on the correspond-
ing generating functional supplemented by a cutoff dependent free propagator. The
straightforward integration of this flow equation turns out to be unfeasible. Henceforth,
by an expansion of the effective action in term of fields, particular n-particle correlation
functions and their associated flow equations are derived. We are interested in the first
two orders of the expansion which provide the flow equations of the self-energy and the
irreducible two-particle vertex. The spinful flow equation of the two-particle vertex is
parameterized in a way that allows for a convenient and numerically stable implemen-
tation.

6.1. Cutoff schemes and temperature flow

The functional renormalization group is based on the idea of calculating the partition
function and generating functionals, respectively in an iterative way. To this end, a cutoff
function is introduced which separates “fast” (high-energy) from “slow” (low-energy)
modes and is characterized by the cutoff-scale A, defining the boundary between both.
The cutoff function © , is supposed to suppress all modes below A and keep all modes
above unmodified. In the limit A — oo the theory (and therefore the generating func-
tional) is expected to be trivial and therefore exactly solvable. By reducing the cutoff A,
the original theory and corresponding solution is (in principle) eventually obtained in
the limit A — 0. Starting from the limit A — oo, the change of the generating functional
- when reducing the cutoff by an infinitesimal amount dA - can be described by a (non-
linear) functional differential equation. While these functional flow equations can be
derived for any generating functional, we focus on the generating functional of the effec-
tive action which turns out to provide the most convenient initial condition for A — .

139



6. Functional renormalization group

First of all, we have to introduce the cutoff dependency into the effective action, which
is done by modifying the free propagator G (K) to incorporate the scale dependency on
A. In a more formal way, the modified free propagator G} (K) is required to satisfy (cf.
[KBS10, Chap. 7.1])

0 A — oo
Gy(K)={GMK) A finite (6.1.1)

The cutoff function itself can be implemented in a variety of ways. On the one hand,
one distinguishes between a multiplicative cutoff function C, and an additive cutoff func-
tion (regulator) R, which are introduced into the free propagator and the inverse free
propagator, respectively (cf.[KBS10, Chap. 7.1]):

-1 -
G)=GoCx  (G))™ :=(Go) ™ =Ry . (6.1.2)

On the other hand, cutoff functions can be realized in i.a. energy, temperature and
frequency space. Although the most obvious way to separate fast from slow modes in
energy space is by means of the Heaviside step function as the cutoff function, this should
generally be avoided since the sharp cutoff leads to technical complications in the flow
equations which involve the scale derivative of the cutoff function, resulting in a Dirac
delta function. A smooth cutoff function ®¢ is characterized not only by the scale A but
also by the width € of the step. For example, a multiplicative smooth cutoff function in
energy space ¢ and its derivative with respect to A are given by [Hon+01; GHMO08]

. 1 d . . o
OA0) =1 - T nrem 1 TR OA@) = (O —1) OAO)— 7+ (613)

resulting in the associated modified Gaussian propagator G{)\(K) = O5(£)Gy(K),
where the implicit dependency of the single-particle energy ¢, on momentum k is im-
plied. The smooth cutoff in energy space and its derivative with respect to the cutoff
scale are illustrated in (Figure 6.1). Later, we may also require the derivative of the
inverse of the cutoff function with respect to the cutoff parameter, which is given by

d _ 1 1— @5 (&)
5 (OA©) L 0,050 = AC) 1o , (6.1.4)

For the applications in (Part II) we will mainly make use of a temperature cutoff,
which, however, does not comply to any of the above scheme categories of a cutoff or reg-
ulator cutoff. An energy/momentum cutoff like (Equation 6.1.3) artificially suppresses
ferromagnetism since it excludes small momentum transfers until shortly before the
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6.1. Cutoff schemes and temperature flow
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Figure 6.1.: (Figure 6.1a) The smooth cutoff function in energy space features a broadened step
function of width e. The derivative of the cutoff function with respect to the cut-
off scale, which appears in the flow equations, scales reciprocal to the stepwidth
A. (Figure 6.1b) The dependence of the cutoff function on energy and cutoff scale
shows that the sign of its derivative with respect to the cutoff scale must be neg-
ative. (Figure 6.1c) The Fermi surface of the single-band Hubbard model &, =
—2t(cos(k,) +cos(ky))—4t’ cos(k,) cos(ky) —puwitht =1.0,t' = -025and y = —1.1)
is shown in solid red, while the upper and lower limits of the region of k-space en-
closed by the cutoff A, which has to be integrated out, are shown in dashed green
and blue.

very end of the renormalization flow, which may even be not reached due to the di-
vergence of another channel. In order to circumvent these issues, one may introduce
the temperature T or the thermodynamic 3, respectively, as the scale parameter [HS01].
Unfortunately, introducing the temperature as flow parameter, results in a renormaliza-
tion group scheme, which does not allow for a separation of slow and fast modes but
still for some intuitive interpretation of the flow parameter (see (Figure 6.2)). Before
we can introduce the temperature flow parameter, we have to identify all temperature
dependencies in the action (Equation 4.2.1). Apparently, only the interaction term in-
corporates a temperature-dependence in its prefactor % (Equation 4.2.3). Defining the

new Grassmann fields

Yo = Po = 151/417004 and J’a - 4_)11 = :Bl/4lptx ’ (6.1.5)

by a (temperature-dependent) rescaling of the fields, we can shift the temperature
dependency from the interacting part to the non-interacting part. Note, that this trans-
formation may look different depending on the original definition of fields in Matsubara
representation (Equation 4.1.8a) and (Equation 4.1.8b). Hence, we obtain the action in
terms of the rescaled fields
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S [4_)/ (P] = 131/2 fa o (I_Ja’ (_iW(Szm’ + hzx’zx) (Pa T |aq,a, Valaza’la’z(ﬁa'l 9504’247042(!’0(1 ’ (6~1-6)

T
D{l,az

with the (inverse) scale dependent Gaussian propagator

-1 . _ . —
(GB). = BY2 (miwbye + har) (G, = B7V? (miwdy + )™ . (6.17)

Using B as a flow parameter only partially satisfies the requirement (Equation 6.1.1)
of the scale-dependent free propagator since limg_, (GS\:'B ) = Obutlimg_, (Gé\:ﬁ ) *
Gy. Fortunately, for the definition of the proper initial condition of the effective action
only the limit § — oo is important, as we will see at the end of (Section 6.2.2). Finally,

we mention the frequency cutoff or ()-scheme that is realized by a multiplicative cutoff
function of the form [HS09 ]

2

w
C = —"—, 6.1.8

satisfying lima _, ., Ca(w,,) = 0 and lim,_,y Cx (w,,) = 1. However, for the derivation
of the flow equation the concrete implementation of the cutoff function does not matter
yet and it is sufficient to assume that the Gaussian propagator features a parameter A,
which incorporates a scale dependency resulting in proper boundary condition.

6.2. Fermionic functional flow equations

By means of the modified Gaussian propagator in (Equation 6.1.1) we introduce a cut-
off/scale dependency into the (non-interacting) action

S[p,¢] = SN[, 91 =S, 0] + S [, 9] = (b, (G ') + S, [, 9], (62.1)

the (non-interacting) partition function Z, — Z(%) and thereby into any generating
functional like i.a. the generating functional of (dis)connected Green functions or the
effective interaction. However, because of its useful and physical initial condition we
focus on the generating functional of the one-particle irreducible vertex functions, the
effective action I' (cf. (Chapter 4)). Unfortunately, before we start to derive the flow
equation of the effective action, we have to find the flow equation of the generating
functional of connected Green functions, since the flow equation of the effective action
turns out to depend on it.
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Figure 6.2.: The Fermi-Dirac function (Figure 6.2a) itself can be used as a regulator, where the
temperature derivative determines the modes that are integrated out during a renor-
malization group step specified by some temperature (Figure 6.2b). Reducing the
temperature, only modes inside an increasingly narrow shell around the Fermi sur-
face contribute to the renormalization flow. If the band energies occurring in the
loop integral are degenerate, the loop integrand is most conveniently expressed as

the two-fold derivative of the Fermi-Dirac function with respect to temperature and
energy.

6.2.1. Flow equation of the generating functional of (dis)connected Green
functions

Imposing the scale dependency on the generating functional of disconnected Green
functions (Equation 4.2.5), we find

_ 1 o eAth g
G 0] = =x [ DR yle S Pvan-n (6.2.2)

with the scale dependency A entering through the interacting partition function Z*
and the action S”. The total derivative of QA with respect to the cutoff A is

d .. 1 (dzh i i
LG ) = - _(ZA)Z( )f”@ 5, ] e~ SA LI~ ~Gom)

L o GO =S85~
+=x [ DY) (w, - w)
1 (dzAr -
:_<ZA)2( )fo@#’lﬁ SALGYI- (1) ()
Ay—1
f@ (‘5 d<G_)<_£)>e—sA[zﬁ,w]—(ﬁ,zp)—@,m ,
an \ 757

(6.2.3)
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6. Functional renormalization group

where in the second equality we substituted the fields ¢, ¢ by functional derivatives
with respect to the source fields 7, #. The expression is simplified by recollecting the
terms making up the generating functional of disconnected Green functions, itself. In
the next step, we decompose the fermionic bilinear into its integral form and evaluate
the functional derivatives with respect to the source fields. As a result we obtain

s =25 ()6 - (3 25 ) 6o

ZA \"dA o
(o)=L (55 (U)o
= (g2 )Gr - [ ], (d(GA) 1)ﬁ(%)ﬁ
:_<%lnz/\) GA i) _L(dﬁi)—l (5295’:7(EZ,11])T) ,
:_<%1nz/\)g" (7,7~ Tr d(ioAA)_l (52%7([52’”])1 -2

Here, we introduced the notation of the trace Tr referring to the integration over di-
agonal elements in superfield space . Henceforth, the flow equation of the generating
functional of disconnected Green functions can be summarized by (cf. [KBS10, Chap.
7.2] [Met+12b])

(6t (2Galnm
d(;\ ( 16T )] . (62.5)

350 [ == (g5 2 ) Ga i)

Let’s proceed to the flow equation of the generating functional of connected Green
functions g[{\ defined in (Equation 4.2.7), which becomes

A
GA 1] = 1n[§—OAgA 7, 77]} , (6.2.6)

when imposing all cutoff dependencies. The total derivative of gg\ with respect to A
results in
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d . zZH d /zn
mgc[\ [7,71] ZAQA—M_A (?QA [Uﬂ?])

:Z—f?i fﬁ) TR o= SMPPI=(T1.9) = (P.17)
ZAgA 7,1 dA ZA
A
dZ f D[, p] e~ S HWI=9)= ()
ZAQA 7, 17] (ZA)2

f Dliv (¢ d<GA> 1¢)e—sA[zIz,w]—(ﬁ,w—@,m) (627)

Again, we employ the functional derivatives with respect to the source fields 77, 77 to
substitute the fields ¢, ¢, pull the derivatives out of the integration and reassemble the
generating functional g/\. Hence, we obtain

d A o1 1 d A 9 d(GA) - 5 AGA
(6.2.8)

where we used % (¥, ) = —1 to get the correct sign of the second term. The term
ZAGA [77, ] involving the interacting partition function and the generating functional of
disconnected Green functions can be expressed by the non-interacting partition function
Z{* and the generating functional of connected Green functions Qé\ Inverting (Equa-

tion 6.2.6) provides ZAG” [77, 7] = Zé\eg?[ﬁ’”]. Inserting this relation into (Equation 6.2.8),
we find

denmme—(Linza Gotam (8 4G 5 G811
anye Ll __<dA1nZ )_e 5 A 57)° o (629)

where the non-interacting partition function is canceled since it is independent of the
source fields 7, 7. Performing the functional derivatives with respect to these fields
produces two terms that are given by

e‘gé\[ﬁﬂ?] (i d<GA0_> 57 ) _CiA —e_QA 1] ( 0 d<GA) N 59[\ 77’ )egc[\[’_?r’?]
Ui

oy’ dA oy’ dA o7
595 77/ d(GA) -1 ‘Sgc 77/ J‘ J‘ d(GA) -1 5QCA [77/ 77] (6 2 10)
on dA o p ooy

where the integral arises from the decomposition of the fermionic bilinear and the
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matrix property of the inverse Gaussian propagator. The second derivative of the gen-
erating functional QL{\ with respect to the source fields can be written as the superfield
matrix of second functional derivatives. By using the transposed of the superfield ma-
trix, the second integral becomes implicit and the second term may be expressed as the
trace over superfield space. Hence, we obtain (cf. [KBS10, Chap. 7.2]

d . d ., . G (71,1 d(GA> LoGe [y
mgc [77'77]_ (dAh’IZ ) ( 17 dA 517 =Tr

It can be shown that the derivative of the non-interacting partition function with re-
spect to the cutoff can be expressed by the Gaussian propagators only, i.e. !

dA 51107,
(6.2.11)

d(GM)~ (59? [71,1] ﬂ

d(GMH™1

d
—an{)\:Tr[ A

1A G{)\] , (6.2.13)

which inserted into (Equation 6.2.11) yields the flow equation of the generating func-
tional of connected Green functions, which is given by

d(GA)—l 59/\ GA) 15g/\
M OAT5 _ 0 A
aade Ll = Tr[ dA GO] ( oy dA 57 )
T
d(G]~T (6G4 [77,1]
= Tr| —% ( i ) . (6.2.14)

On the one hand, this flow equation is disadvantageous since it produces connected
Green functions in contrast to irreducible vertex functions and on the other hand fea-
tures an unphysical boundary condition for A — co, which results in an ill-defined initial
value problem. However, the flow equation (Equation 6.2.14) turns out to be essential
for the derivation of the effective action’s flow equation.

! The scale derivative of the non-interacting partition function % InZp = 71,\ dcll\ Z4 is calculated by in-
<0

troducing source terms into the functional integral of Z§* to be able to employ the “source trick”, once
more, i.e

1d . = dGT N (3G ) -
v 2 == j,D b, ¢] (1/1, 1A w)e 0 o
B 5 d(GH 6 ~(#AGH )= 9)- ()
- _<517 —dn ) S [ 17yl ‘17 =0 21

Using the shift ¢ » ¢+ G, rr7and p — P+ G[ ,77in the integrating fields, they are decoupled from the

—_(7.GN
source fields and the integration produces Z'e (7.G5n) canceling the non-interacting partition function.
Performing the two-fold functional derivative with respect to the source fields and setting them to zero
afterwards, yields the desired result.
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6.2. Fermionic functional flow equations

6.2.2. Flow equation of the effective action

The effective action with scale dependency acquired by including the modified free
propagator is given by (see (Equation 4.2.8))

TA[g, ¢] = =G& [7,1] — (§,1a) — (T, @) + (6, (GY ) . (6.2.15)

The fields 7, 1 are the source fields that were introduced by the definition of the gen-
erating functional of disconnected Green functions (Equation 4.2.5). Here, we have to
discriminate between these cutoff independent source fields 7, 7 and the fields 775, 75
with cutoff dependency arising from the inversion of the definition of “average” fields

9" 7,1] R U] I . . :o
¢ =— and ¢ = —,  &ivenin (Equation 4.2.9). Note, that the fields ¢, ¢ in
terms of Wthh the effective action is defined are taken to be cutoff independent. In order

to find the flow equation of the effective action, we simply compute the total derivative
of A with respect to A, i.e.

d Az o dGA[77] drja dija _d(GH™!
AT B = - (6 ) - (e ) + (¢’ 4’)

_(dﬁA 5G2 [7,1) )_(dm 5GA [7,1] )_dg? 7]

dA ! 577/\ dA ! 517[\ dA ‘77:7']=c0nst
dia dija d(GpH!
(<P dA) (H"” +| o — T4 (6.2.16)

The second line contains the terms that originate from the derivative of the gener-
ating functional QCA with respect to the cutoff. On the one hand, QCA is scale depen-
dent through the fields 775, 774 and on the other hand may feature an explicit scale de-
pendency. To correctly write down the derivative of gCA with respect to the implicit
scale dependency through the fields, one has to resolve the ambiguity of the chain rule
for Grassmann numbers 2. The derivative (Equation 6.2.16) may be simplified by in-
serting the definition of the average fields (Equation 4.2.9). This causes the first and
fifth and second and fourth terms to cancel, where we have to take into account that
(¢, ¢) = — (¢,9) for two Grassmann fields ¢, i. Hence, we are left with the derivative

2 The chain rule for Grassmann numbers and functionals of Grassmann fields requires the inner deriva-
tives to be placed prior to the outer derivatives [Med06]. The order of inner and outer derivative of
a Grassmann function(al) can be fixed by looking at a simple functional like e.g. F(#(A), n(A\)) =
FN A A) withf (A) € C and Grassmann fields 7(A), 77(A). The total derivative of F(77(A), (/\))
with respect to A produces three terms as given by the product rule, which are

g
dA ~

dif 6F  6F dy
an T anor Sy dA TRl o

A, A=const.

A 1MNA) +f(A)m17(A) +f(A)17(A)

which shows that the inner derivatives must be placed in front as a consequence of the anticommutation
of derivative operators with respect to Grassmann fields and Grassmann fields itself.
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6. Functional renormalization group

of the generating functional of connected Green functions and the term involving the
inverse free propagator (Gé‘)_l. To further evaluate the expression we need the flow
equation of the generating functional of connected Green functions, given by (Equa-
tion 6.2.14). Plugging it into (Equation 6.2.16), yields

d .- _d(GM! dGH™
Al el = (<P <P) Tr[TGo}
QA 17, R R UV LI RS UTINS
dA o7f dA onof

(6.2.17)

Whne inserting the definition of the fields ¢, ¢ (Equation 4.2.9), the first and third
terms cancel. Similar to (Equation 6.2.14), we prefer a flow equation, which features a
right hand side that depends on the generating functional itself. Hence, we have to ex-
press the second derivative of the generating functional of connected Green functions in
terms of the effective action. This can be achieved by means of the “reciprocity relation”
(Equation 4.2.13), which states that the second functional derivative of the generating
functional of connected Green functions equals the inverse of the matrix of the effective
action’s second functional derivative. Henceforth, the derivative and therefore the flow
equation of the effective action yields

Ay—1
d [& (@) | - (6.2.18)

d(GHH™
—TA = —207
aal 0] =Tr| —5x r{

Al
6p| - 1| “%

To be able to formulate a well-defined initial value problem, we have to find the initial
condition of the effective action, i.e. the limit of the effective action for infinite cutoff
scale. It can be shown (by means of the generating functional of the effective interaction)
that (cf. [Met+12b])

im Tp [§,¢] = S1[¢, ¢] (6.2.19)

A—co

the effective action reduces to the bare interaction for A — co. A more intuitive way to
understand this result is given by the fact that in a perturbative expansion of the effective
action and its vertex functions in the limit of infinity cutoff scale, lim, _, 7(2”) the only
term that does not vanish must be the bare two-particle vertex, since all non-interacting
degrees of freedom are turned off by the modified Gaussian propagator [Hed+04].
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6.3. Hierarchy of flow equations

6.3. Hierarchy of flow equations

The previous section introduced and derived the flow equations of the generating func-
tional of (dis)connected Green functions and the effective action, which also provides a
well-defined initial value problem due to its physically meaningful behavior in the limit
of an infinite cutoff scale A — oco. Unfortunately, the flow equation (Equation 6.2.18)
represents a complicated functional integro-differential equation, which poses a both
analytically and numerically unfeasible problem. Hence, we have to rely on approx-
imative solutions of the flow equation. Here, we employ an expansion in the fields to
approximate the flow equation. The expansion of the effective action (Equation 4.2.8)
in terms of its fields ¢, ¢ is given by [Med06]

k
_ < (—1) i _
A _ ( (2k)
'™, 9] = Z 2 flxl,...,ak;’y[\ (@), .. ap, aq, ..., ) Py -+ Pt Py -+ Py
k=0 (k) LS
i, 1 o
0 2 4
=7y — L N (@0 00) Gy Py + 7 Jay o, VA (210001, 02) Py Py Py P, + -
1 )

(6.3.1)

where the coefficients are represented by the irreducible k-particle vertex functions
defined in (Equation 4.2.10). While the left hand side of the flow equation (Equa-
tion 6.2.18) can be expanded straightforwardly, the right hand side requires some fur-
ther treatment, because the effective action is hidden in the diagonal element of the
inversion of the matrix of second functional derivatives 9‘?, which is given by (Equa-
tion 4.2.13) (including its scale dependency)

52T A~ —1 A 82T
v | 5909 T (0 +x o909 (6.3.2)
52T 2ra GAY-1 4 yA T ’ e
5559 spag — ((GHT+I0)

where we used the Dyson equation (GM1 = (G{)\)_1 —¥M o express the scale depen-
dent free propagator in terms of the full propagator and the self-energy [FW71]. The
matrix of second functional derivatives is recast and separated into a field independent
and field dependent part by
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_ 52
2) _ GA) 1 0 + Mcﬁ,(p —5¢5¢
’y - O _(GA)_1>T 52FA

_mT
w05 Moy
— (SZFA
(e (5 (g )
Bl — ((GM1 0 (G L EA Y ’
’ (@) A T
=p
::fy(z)
(6.3.3)
where we defined the new matrix
2TA _ 52TA B
Mo = 5555 + Z 00 = 5 =12 @) (63.4)

and used the fact that the self-energy equals the negative of the two-leg irreducible

vertex function 7? (cf. (Equation 4.2.13)). Apparently, by using the form and defini-
tions in (Equation 6.3.3), the inverse of the matrix of second derivatives is given by

_ _ A
(@) = (3?) 1'<Go _((gA)T) ) (6.3.5)

since the inverse of a product A = B- C of two matrices is A1 =(B. C)_l =Cl.p~L
In contrast to the inverse of 4@, the inverse of % = 1

— p can be calculated by means
of an expansion as a geometric series, i.e. [Ste98]

(1—p) ' = Zpk:]l+p+p2+0(p3) , (6.3.6)
k=0

where

ANT TN ~ANT AT

G, —GAE
0= ( L 5909 (6.3.7)

Up to second order in p the upper diagonal element of the inverse of the matrix of
second functional derivatives is therefore given by
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PN oayr T

3P0 343

-1
(1)) = (1 — GM,p + G My G MMy — G N o(,ﬁ)) GA

(6.3.8)

Since we are ultimately interested in the terms that arise on the left hand and right
hand side of the flow equation in a particular order of the expansion in terms of the

fields, we have to gain some insight into the expansion of Mg , and :55;1:;; ﬁ;g 7 which
are the only terms on the right hand side incorporating any field dependency. Up to
third order, all three of them contain only terms, which are quadratic or quartic in the

fields. In particular, the first two orders of Mq’:,4> are (cf. (Equation 6.3.4))

52 A 4 ) B
‘Méﬁ'l’gbﬁl - 54_’ﬁ' 5(!7’3 _7(2)((]5:31 ¢ﬁ1) - _J ,)/1<\) “1/131’0‘1/,31) gbzx’lgbocl
1
1 (6) / / ’ - =
4 “1 &2, A (“1'“2’131’0‘%“2/,31) (Puc’lgbuc’ngocz(ybtxl +.. (6-3'9>
a0

since the two-particle irreducible vertex is canceled. The factorial in the denominator
of the prefactor in (Equation 6.3.1) is partly canceled by the multiplicities of terms gen-
erated by the two-fold functional derivative. More precisely, two functional derivatives

2
produce (]1() terms at order k, which, however, turn out to be equivalent, when anticom-
muting and renaming the appropriate fields. The two fold derivatives of the effective
action originating from the off-diagonal terms in p yield (up to second order)

M _ 1 <4) (BY Bas 01, 02) Py P

0pp,0pp, 2l
1 (6) ! / / -
t g Jras YA (a1, By By 1, 0, 3) Put Py PuyPay + -, (6.3.10)
X3, 061
and
TN [, ¢ o
—’ — (4) / B
5¢ﬂ15¢,32 2 f txl’“Z’ 131/132) (Pal(f)az
1 (6) / i Vi - — -
6 061 Dél ,)/A (all lxzf lX3/ 051/,31/,82) ¢“'1¢“'2¢“'3¢D¢1 =+ ... , (6311)
ay,0

since the two-fold functional derivative of the effective action with respect to fields
of the same “kind” will remove the one-particle vertex. We have now prepared all pre-
requisites needed to determine the flow equations associated to the first few order of
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6. Functional renormalization group

the expansion in the fields of the flow equation of the effective action (Equation 6.2.18).
Starting with the zeroth order vertex 7/(\0) representing the interaction correction to the
free energy, we find the flow equation (cf. [Kop01])

d(GHH) ™! d(GH! d(GH~!
R {%cg] T [%GA] T [% cr-cny|
(63.12)

which produces a renormalization flow, which is characterized by the difference be-
tween the free Gaussian G4 and the full propagator G*. Note, that the flow equation
may be formally integrated since the vertex function 7}?) does not appear on the right
hand side. Besides, this is the only flow equation of the entire hierarchy of flow equa-
tions that contains the first term of the right hand side of (Equation 6.2.18), since only
the second term features field dependent contributions.

6.3.1. Self-energy

The flow equations of all higher order vertex functions are obtained by comparing the
coefficients associated to the terms with the corresponding number of fields on the left
and right hand side of (Equation 6.2.18). The flow equation of the single-particle vertex
75\2) (a}, a1) - the negative of the self-energy - is hidden in the terms being quadratic
in the fields. Referring to (Equation 6.3.8) and (Equation 6.3.9), we find that only the

two-particle vertex ’)/XD contributes to the right hand side. More precisely, we obtain

d o/, . d(GMH™1 A A
_d_A')/A (al,al) 47“'1470(1 +..==-Tr d—A (—G M‘ﬁ/‘PG ) , (6313)

where + ... indicates that higher order terms may be present on the right hand side.
In (Section 6.2.1) we introduced Tr as the short-hand notation for the integration over
diagonal terms. Recovering the integration of the trace (and one more “inner” integra-
tion), employing its cyclic invariance in order to shift the second full propagator in front
and neglecting the fields, we find the flow equation of the single-particle vertex to be

i 2 (af, )—f G/\d(G—é\)_lGA (4) (), By, a1, Br)
dAr)/A 1,%41) — ,3’1,}31 d.A ﬁ&,ﬁ] ’)/A 17 P17 %1/ P1
= ,B, ,Bl SA (ﬁ’l’lgl) ,)/[(il) (alllﬁllllxl/,gl) ’ (6314)
1’

where we defined the single-scale propagator S™ by [SHO1]
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d(GH~!

A ._ CA
SH:=G an

GN . (6.3.15)

The diagrammatic representation of (Equation 6.3.14) shown in (Figure 6.3a) bears
close pictorial similarity to the Hartree term in first order perturbation theory but is
mathematically very different due to the occurrence of the single-scale propagator. In
the presence of SU(2) symmetry the propagator terms must be diagonal in spin space,
SN « 0y, and the two-particle vertex is given by (cf. (Equation 3.3.19))

4)

/ / / / _ ;A _ oA
o (ozl,(71,0(2,0'2,061,(71,0(2,0'2)—galazarafzfsala{‘svzaé gazala’ag‘stﬁ%é”z”{ ’

1 1
(6.3.16)

where the multiindices on the right hand side are redefined to lack the spin degree
of freedom. Inserting this relation and the diagonal single-scale propagator into (Equa-
tion 6.3.14) leads to the spinless SU(2)-invariant flow equation (cf. [UH12, Sec.II],[ Met+12b,

Eq.(109)])

d

LA A (g A _ oA
TN R (B1.1) [2 w1 ot By gﬁzwaﬁ’z] / (6.3.17)
where we defined the spinless single-particle vertex by si\,l PRINCRS ')//(\2) (af, ).

The diagrammatic illustration of (Equation 6.3.17) is given in (Figure 6.3b). Remem-
ber, that the single-particle vertex actually equals the negative of the self-energy I (cf.
(Equation 4.2.13)).

6.3.2. Irreducible two-particle vertex

The quantity, which directly governs the properties of possible particle-particle and
particle-hole instabilities is the effective irreducible two-particle vertex. The low-energy
effective two-particle vertex is calculated via its flow equation, that is derived by taking
the second, third and fourth orders of the expansion (Equation 6.3.8) into account and
inserting them into (Equation 6.2.18). We find the following expression that contributes
to terms quartic in the fields:

d1 (4) ’ ’ oy
EYV o;lll,,u;%z, TA (“1/“2/“1/“2) ¢a’1¢zx’2¢a2¢tx1 + ..
d(GH™! A A A AT A p TN

(6.3.18)
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SA
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X1 oy &1

(b)

Figure 6.3.: The flow equation of the irreducible spinful single-particle vertex 7'Z - the negative

of the self-energy ¥, - has only one contribution from the irreducible two-particle
vertex. The SU(2)-invariant version of the flow equation features two terms with
opposite sign and different weighting factors.

The first term incorporates the three-particle vertex 7/(\6) in (Equation 6.3.9) contribut-
ing a term quartic in the fields, while the second term on the left hand side of (Equa-
tion 6.3.18) features the product of two two-particle vertices with “mixed” fields. Sim-
ilar, the third term hosts the product of two two-particle vertices with “anomalous”
field terms originating from (Equation 6.3.10) and (Equation 6.3.11). By employing the
cyclic invariance of the trace in (Equation 6.3.18) we find that each term features one
full propagator G* and one single-scale propagator S**. Comparing and collecting the
coefficients of all terms quartic in the fields on the left and right hand side of (Equa-
tion 6.3.18), results in

d ! / 4 / ! /
571(\4) (@), a5, a1,02) = fﬁafﬁl M (B1 1) TR (1, By, 1, 2, B )

—4 f;;ll,/;z,, S™ (By B2) G™ (By B1) 7R (a4, By 1, B1) 7R (1, B, 2, B2)
1772

+ Jo,.6,, S™ (B1 B1) G (B, B2) 1 (a1, 5, B1, B2) 7Y (B B n ) (6.3.19)
B1.B2
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In the last term, we used that G* (,3’2,,82)T = G (By, By) = —G* (B5, B2)- Note, that
we require the two-particle vertex on the left hand side of the flow equation to satisfy
all constraints and symmetries discussed in (Section 3.3), which is, in particular, anti-
symmetry and self-adjointness. Hence, the problem with (Equation 6.3.18) is that, in
contrast to the left hand side with 71(\4) (af, &b, aq, ), the right hand side is obviously
not antisymmetric with respect to exchange of primed or unprimed indices because of
the second term. However, by splitting up the second term into two parts, exchanging
appropriate pairs of indices and adjusting the sign in the second one, the antisymmetry
can be restored [KBO01; Sal99]. The terms including two two-particle vertices each, re-
quire an additional propagator term with exchanged “inner” indices. Henceforth, the
flow equation becomes (cf. [KBS10, Chap.10.2.2] and [Sch+16; Sch+17])

d

AN (@0, 05,00, 05) = [ SN (BB (aay B a0, B1)

B1.B1
« 1 ! ! ! I
+ f;;l% [SA (B1,B1) G™ (B2 B2) + ﬁ;?ﬁ] x [5%\4) (@), a5, B1,B2) 7R (B, Bor 1, 2)
1772

=78 (03, B 1, B) 75 (B, ) + 787 (a5, B2, B2) 1Y (B, )|
(6.3.20)

This flow equation shows, that there are - apart from the three-particle particle term
- three contributions of the irreducible two-particle vertex to the renormalization flow
of the two-particle vertex. The first term corresponds to the particle-particle channel
(BCS) and the second and third terms represent the direct and crossed particle-hole
channels (ZS and ZS") [Met+12a; HMO0Oa]. The diagrammatics of the flow equation
(Equation 6.3.20) are illustrated in (Figure 6.4).

Starting from the self-energy and the irreducible two-particle vertex, the derivation
of flow equations can be continued up to any irreducible 2n-particle vertex to obtain
an infinite hierarchy of flow equations, since exactly like the flow equations of the self-
energy, which features input from the two-particle vertex, and the two-particle vertex,
which is influenced by the three-particle vertex, any 2n-particle vertex is associated to a
flow equation that includes the contribution of an 2(n 4 1)-particle vertex. Because the
calculation of the entire hierarchy of flow equations is obviously not feasible, we have
to truncate the interdependencies at some order by setting the vertex function ,Y[(\n+2) in
the flow equation of 'y/((“) to 'y(”_fozo). Since this truncation is usually done on the level of
the two-particle vertex, this amounts to the negligence of the contribution of the three-
particle vertex in the flow equation of the two-particle vertex. This approximation may
be justified by the fact that effective irreducible vertex functions of the order n > 6 can
be classified as irrelevant due to power counting arguments [Met+12a]. However, the
truncation will result in the violation of Ward identities [Kat04]. In order to provide a
self-contained presentation of the flow equations and full correspondence with pertur-
bative renormalization (Chapter 5), we also show how the spinless flow equation for
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SA
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Figure 6.4.: The flow equation of the irreducible spinful two-particle vertex "’ has - apart from
a term involving the three-particle vertex - one particle-particle contribution (BCS)
and two particle-hole terms (ZS and ZS’) including the irreducible two-particle ver-
tex. Note, that the diagrams including the two-particle vertices are topologically
equivalent to (Figure 5.3b).

SU(2)-symmetric models arises from (Equation 6.3.20). Here, we neglected the three-
particle vertex contribution in the first place. Analogously to (Equation 6.3.16) we use
the structure (Equation 3.3.19) of the fully SU(2)-invariant two-particle vertex:

4)

/ o / — oA _ o\
o (“1/0-1/0‘2/0'2/“1/0-1'0‘2/0.2)_galaza’la’25010{517217§ gazala’la’z(sﬁtfééﬂzv{ ’

(6.3.21)

with {07, 03, 01,05} being the spin indices and {«4, a5, &7, a5} being the multiindices
representing all remaining quantum numbers. Like before the new coupling function
¢” is symmetric with respect to exchange of both primed and unprimed indices at once
and therefore satisfies g;\l ey = g;\z e, (cf. (Equation 3.3.21)). Inserting the two-
particle vertex (Equation 6.3.21) into (Equation 6.3.20) produces two terms on the left
hand side and twelve terms on the right hand side of the flow equation. The terms on
the right hand feature products of four Kronecker deltas each and may be simplified by
performing the spin summation of the loop integrals. Note that the propagator terms are
proportional to the identity in spin space. For instance, in the particle-particle and direct
particle-hole terms, we encounter the following identities (the inner spin summations
are denoted by 7, 75)
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Ogi 7, = O0u /00,5 O 5707 7,005,510 205,016

5(71 T 5(72 T 50{ 719057, = Yoq01Y0,05 010111 10%0,05 01115 = “C0y01C0y0)
Z - 501 T 5(72 T, 50{ T 50'é T - T 501 ah 5(72 o] Z - 501 o] 51’1 T5 502 T 50& T, — 5(71 o} 5172 ah

T1,T2 _50'17250'271517{T15(7£T2 = _501055020{ T1,T2 _5(717150'17250'20551'172 - _50'10'150205

5(71 T 5(72 L 50{ T, 50& T, = 5(71 o} 5(72 o 501 () 5(7{ T, 5(72 L 5aé T, = 501 oy 5(7{ ah

The ensemble of these Kronecker deltas separates the spinful flow equation into two
sectors corresponding to the ones defined by the left hand side of the flow equation
(Equation 6.3.21), which are completely decoupled. Henceforth, we compare coeffi-
cients in terms of the two kinds of Kronecker identities and find two equivalent sets
of spinless flow equations, each of which is made up of two particle-particle and four
particle-hole terms. Collecting the terms corresponding to e.g. the 6, +0,,,; spin sec-
tor, we find the spinless SU(2)-invariant flow equation of the irreducible two-particle
vertex to be (cf. [KBS10, Chap.10.2.3], [PHT13], [Met+12b, Eq.(110)-(112)])

d

A /
dAgzx]oczzx al _[31 f;z [ (lgl’ﬁl) (182’ 132) ,Ble»ﬁz] [guc1a2ﬁ1ﬁ2g,31,32a o,
B1.B>

A A A A A A
= 2800 o 1 sy F 8o B 8 Brany By T Sfiorat rSnpraysy gﬁz“z“iﬁigﬁlal%ﬁ&]
(6.3.22)

where all multiindices {aq, &y, &7, a5} are taken to lack the spin degree of freedom.
The diagrammatic representation of this flow equation corresponds to the diagrams
in (Figure 5.2). Finally, we want to shortly comment on the numerical evaluation of
loop integrals. To this end, we first note that (exactly like in (Section 5.1)) the vertex
functions are taken to be frequency independent by projecting all external fields to zero
Matsubara frequency iw = 0. Employing frequency and momentum conservation for
all two-particle vertex functions, this results in individual restrictions for the propa-
gator terms S™ (B7, B1) G* (B, B2 ) associated to the particle-particle and particle-hole
contributions of the flow equation. Note, that these considerations are independent of
using the spinful (Equation 6.3.20) or spinless (Equation 6.3.22) flow equation. In the
following, we resort to the combined frequency-momentum notation K = (iw, k). On
the one hand, the particle-particle term in the flow equation glel BB, gé\l Bott, gives
Ky, + Ky, = Kp + Kg with = Kg = K, + K, — K. On the other hand, for the
particle-hole term(s) g2 ﬁzalﬁlgﬂlé\zﬁla .8, We find K,, + Kg, = Ky, + K with = Kg =
Ky =Ky, + Kp, . Henceforth, the propagators in band basis can be written as (using the
propagator (Equat10n 4.2.4), the single-scale propagator (Equation 6.3.15), the regula-
tor cutoff function and its derivative (Equation 6.1.4))
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d
JCA(CNJ CA(gﬁZkM‘Lk“z_k’Sl) ,  (6.3.23)

A / A / —
% (B1 P1) G (Ba, B2) Op,p, 918, = i@ + o O F Cpe ek
1 2Raq ay T RB

1

for the particle-particle term and

S G CrGk iy

—iw, + §g,k —iw, + gﬁzkaa—kal+kﬁ,1

S™ (B B1) G™ (B B2) 0,5, 0py8, = , (6.3.24)

for the (direct) particle-hole term with momentum transfer, where the self-energy
contribution to the full propagator G* was neglected. When assuming the vertex func-
tions to be frequency independent, the Matsubara summation can be performed ana-
lytically with the result given in (Equation 5.1.17a) for the particle-particle and (Equa-
tion 5.1.17b) for the particle-hole terms. Using an energy /momentum cutoff like (Equa-

tion 6.1.3), the particle-particle and particle-hole loops in the flow equations are ob-
tained in terms of

1 / / «
3 D [SA (B1,B1) G™ (Ba, B2) + §§H§§]5ﬁaﬁl5ﬁ5ﬁz
iw,

f(=B&p ) _f(ﬁgﬁzq—kﬁl )

%p1k+Cpya-kg,
F+BEp 10— (Bpyqikg ) ’
- e particle-hole

c% (CA(gﬁlk)CA(gﬁzq—kﬁl >>

oy (CA(gﬁlk)CA(gﬁzq-rkﬁl))

particle-particle

Sp1k~%prakg,
(6.3.25)

where the momentum transfer q is given by q = k,, +k,, for the particle-particle, by
q =k, —k,, for the direct particle-hole and by q = k,. —k,, for the crossed particle-
hole terms. In case of a temperature flow the free propagator in band basis is given by

(G0 )y = B2 (—iw + &) (Equation 6.1.7). The scale derivative of the inverse free
propagator is

dGhH-1 4 ‘ TP _
# =9A [BY? (—iw, + Ca) ] : = Eﬁ_l/z (iwy, + Cka) ,  (6.3.26)

where the derivative is performed with respect to A = B. Hence, the full propagator
(by means of G = (G4 — ZA)_l) and the single-scale propagator are
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N R SN DA AL e

~iw + dA 2 (—iw, + &g)?
(6.3.27)

GA K, w) =

where the self-energy contribution ¥/ was neglected. Therefore, the loop terms in
the temperature flow scheme are

(B1 B1) G* (B B2) + ﬁi:gi]%aﬁﬁﬁ;ﬁz

FL[s
B % ; [ iwy + Cp, —iw, + Cig, ]

+ ,
2 (- iw, + gk,Bl (+ZCU + €q+k,32 (—iw, + gkﬁl)(ilwn + (;111(‘52)2

Z —wp; + 1B, CqTKB, (63.28)
,B ﬁz( —iw, +€k,3 )2(+1w +€q+kﬁ2 ’ o

where the + applies for the particle-particle and particle-hole case, respectively. The
expression in the last line can be conveniently simplified by means of a derivative with
respect to the flow parameter by 3

Z —wii + Gip, CqTKp, 1 Z d [_ 1 1
B & « B2 (=i, + Giep, )2 (Hiwy + Cqzip,)? B L A | B (—iw, + Gip,) (iwy + Cgip,)
(6.3.30)

After exchanging the summation and the derivative, the Matsubara sum can be per-
formed with the well-known result (cf. (Equation 5.1.17a) and (Equation 5.1.17b))

d f(FBSkg,) —f (Béqwxs,)
IgZ[SA (B}, B1) GA (ﬁzfﬁz)"‘ﬁl ﬁz]‘sﬁlﬁl‘sﬁzﬁz dg - -

gkﬁ1 * g‘likﬁz
(6.3.31)

This final form of the loops in the framework of the temperature flow scheme provides
the most transparent analogy to the perturbative renormalization group. More pre-
cisely, the loops of functional renormalization in the temperature flow scheme (Equa-
tion 6.3.31) and the loops of perturbative renormalization ((Equation 5.1.17a) and (Equa-

3 The derivative of the propagator product with respect to the flow parameter 8 is

df1_ 1 LN O S ol 4
dB | B (miw, + &) (+iw, + &) |~ B? (—iw, + E)2(+iw, + &')?

, (6.3.29)

d - _ .
where we used griw, = —iw,/B.
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tion 5.1.17b)) only differ in the preceding temperature derivative.

6.4. Parameterization of the flow equation

The flow equations presented in the preceding section can be formulated in a numeri-
cally more efficient way by taking the constraints and symmetries given in (Section 3.3)
into account. Here, we limit our considerations to the irreducible two-particle vertex.
Apart from that, there are numerous more symmetries and resulting interdependen-
cies in the two-particle vertex due to time-reversal and point group operation, which
can, however, only be exploited numerically.

6.4.1. Parametrization of the two-particle vertex

The antisymmetry and self-adjointness of the irreducible two-particle vertex have been
shown to reduce the number of independent spin-sectors from sixteen to six (cf. (Equa-
tion 3.3.6) ). These considerations enable us to rewrite the spinful flow equation (Equa-
tion 6.3.20) in terms of these six spinless tensors, named {A, B, C, D, E, F}. This parametriza-
tion of the flow equation effectively suppresses the spin degree of freedom by implicitly
performing the spin summation in the first place. Since we work in band basis, both full
and single-scale propagators are assumed to be diagonal. Hence, the spin summation
of the loop integral is limited to four terms only for each of the diagrams. By inserting
the parametrization (Equation 3.3.6) into the spinful flow-equation (Equation 6.3.20),
we find six coupled flow equations, i.e. one for each of the independent spin sectors
{A,B,C,D,E,F}. Here, we only give the expressions for the flow equation of tensors A
and B. The flow equation of A depends on A, B, C, D only, and is given by

d
_ AN ~A A ~A
JAM“z“ﬁ“'z - fﬁyﬁz [Sﬁlcﬁz +5 zGﬁl]
1 - -
X [E (A“MzﬁlﬁzAﬁth“ﬁ“’z + B“lﬂzﬁlﬁzB“ﬁ“'zﬁlﬁz - B“1“2ﬁ2ﬁ18“’1‘xl2:81,32
+ CM“zﬁlﬁzC"‘ﬁ“,zﬂﬁz) - (A“1ﬁ2“/151A“251“’2ﬁ2 + Bﬂ/lﬂl”‘lﬁzB“Zﬁl”‘Iz,BZ

+ B“lﬁzaiﬁlB“'zﬁz“zﬁl + D“lﬁﬂxllﬁlDﬂQﬁl‘X/z:BZ) + (Aﬂlﬁlﬂ'zﬁzA“zﬁz“ﬁﬁl

+ B“lﬁl“'zﬁzB“'lﬁlﬂézﬂz + B“'252W1ﬂ1B“2;32“'151 + Dl’é1ﬁ1“'252D042/32“'1ﬁ1>] : (6:4.1)

In contrast, the flow equation of B depends on the five tensors A, B, C, D, E and appears
to be
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d A A A A
d_ABlX]“z”‘ﬁ“'z = ’[31/,32 [Sﬁ1G,32 +5 2G51]

x [% (AalazﬁlﬁzBﬁlﬁzaaa'z * Buyaopp.Dp1 oy ~ Buinappi Doy

+ Co«wﬁﬁﬁaﬁa&&&) - ( = Ao 1 Basp oy, + Bai g poCarprasp,

= Baypont g1 s o, + D“lﬁz“ﬁﬁ1E“2ﬁ1“'zﬁz) + ( ~ By o, Aapon o

* Carprayo B praspy + Doy prpony Baspopray + EwlﬁlaaﬁzDazﬁzwaﬁl)] - (642)

Both flow equations don’t involve any explicit spin degree of freedom anymore, since
the six tensors represent the full spin structure of the two-particle interaction and the
spin summation of the spinful flow equation was already taken care of. The remaining
four flow equations for {C, D, E, F} can be derived analogously.

Summary and preview

This chapter introduced the functional renormalization group based on the generating
functional of the effective action. After introducing the cutoff dependency into the free
propagator and deriving the flow equation of the effective action, we used the expansion
of the effective action in terms of fields to obtain an infinite hierarchy of coupled flow
equations. In particular, we are interested in the flow equations at first and second or-
der, i.e. the (spinful) flow equations of the self-energy and the irreducible two-particle
vertex. We discussed the mathematical details necessary for the numerical implemen-
tation of these flow equations. Based on the considerations of the symmetries of the
two-particle vertex in (Section 3.3) we gave a parametrization of the flow equation of the
two-particle vertex that allows for a numerically efficient calculation of all spin-sectors,
while avoiding the inclusion of any redundant couplings.
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7. Methodological benchmarking by means
of toy models

In the first part of this thesis we introduced the methodological novelties and concepts
for perturbative ((Chapter 5)) and functional renormalization group ((Chapter 6)) ap-
proaches to fermionic systems with broken SU(2) spin symmetry, for instance with size-
able spin-orbit interaction. Furthermore, the developed methods are well-suited to deal
with additional broken symmetries. In particular, these computational tools enable us
to perform renormalization group calculations in absence of spacial inversion symme-
try or time-reversal symmetry. In (Chapter 3) we discussed and derived the possible
results and allowed quantum states, which may occur in these system, from a symme-
try point of view. The second part of this thesis will employ these methods to physically
interesting systems that are subject to current research interest. The first of these being
the oxide-heterostructure represented by LaAlO;/SrTiO; , which features broken spa-
cial inversion symmetry and Rashba interaction. The second one is the intriguing matter
of strontium ruthenate, which will be introduced by a three-orbital Hamiltonian includ-
ing centrosymmetric spin-orbit coupling. However, before we dive into these (realistic)
models, we proceed by making sure that in the limit of vanishing spin-orbit interaction
and zero magnetic field the developed computational tools reproduce the phases and
quantum states of well-known toy models, which serve as a reference for the reliability
of the proposed methods.

7.1. Hubbard model on the two-dimensional square lattice

The Hubbard model has been around for already more than fifty years [Hub63 ] and repre-
sents one of the simplest models for interacting correlated electrons. Nevertheless, it has
been shown to exhibit metal-insulator transitions, (high-temperature) superconductiv-
ity and (antiferro-)magnetism [LeB+15]. The (extended) repulsive Hubbard model on
the square lattice is defined by

Ho = —t;; Z (c;rgcjg + h.c.) — U Zcfgcjg + LIZn,-Tnil +V Z Nighjgr . (7.1.1)
ic i

ijo (ijyoo’

with on-site Coulomb repulsion U > 0, nearest neighbour interaction V' > 0 and the
number operator 1;, = ¢! _c;,. The non-interacting band structure and Fermi surface of
the Hamiltonian (Equation 7.1.1) on the square lattice are shown in (Figure 7.1a) for
two sets of parameters given by nearest neighbor t = 1.0 eV and next nearest neighbour
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g(k) [eV]
x(q) [au.]

(a) (b)

Figure 7.1.: The band structure and Fermi surface of the single-orbital Hubbard model given by
(Equation7.1.1) for the two sets of parameters ' = 0t, —0.25¢ and the chemical poten-
tial 4 = 0t, —1.0t. The bare susceptibility x(q) is strongly enhanced for fluctuations
with momentum transfer q = (7, 77)7.

hopping t' = 0t, —0.25¢ and the chemical potential y = 0t, —1.0t. For the first parameter
sett’ = 0 and p = 0, the Fermi surface is perfectly nested with respect to the momen-
tum transfer q = (71, 1) and the band structure shows particle-hole symmetry. The
finite next nearest neighbour hopping t' = —0.25¢ and the shift in the chemical potential
destroys the perfect nesting by slightly warping the Fermi surface. In (Figure 7.1b) we
plotted the bare susceptibility x (q) defined in (Equation 5.2.7). For both sets of parame-
ters, the susceptibility is strongly enhanced at the M point corresponding to q = (77, 7)T
fluctuations, which is a consequence of the (almost) perfect nesting of the Fermi surface
and the van-Hove singularity in the density of states at zero energy ¢ (k) = 0.

7.1.1. Antiferromagnetic fluctuations and d-wave superconductivity

Judging from (Figure 7.1b) and the bare susceptibility, we can expect antiferromagnetic
fluctuations with ordering vector q = (77, 77)T to be strong in the single-band Hubbard
model near half-filling. Indeed, the half-filled Hubbard model has been shown to order
antiferromagnetically already on the mean-field level [KU75]. To go beyond the mean-
tield approximation, we employ the perturbative renormalization group approach in
(Chapter 5). However, the perturbative method ceases to be exact when approaching
half-filling due to the strong particle-hole fluctuations. Hence it is only valid away from
the perfectly nested case with the van-Hove singularity at the Fermi level. Consequently,
we use the perturbative method to calculate the phase diagram with respect to electron
filling n and nearest neighbor interaction V for sizeable chemical potential > 0 of
the extended Hubbard model (Equation 7.1.1) to avoid half-filling. The phase diagram
(Figure 7.2a) is dominated by singlet d-wave pairing states with symmetry represen-
tations By, and By,. While the symmetry protected nodes of By, are located along the
main axis’, i.e. k, = 0 and k,, the B, representation features nodes along the diagonals

166



7.1. Hubbard model on the two-dimensional square lattice

e O IR R
g P Hum ’:\;&
— FCDW ; \:0\"'\‘
@ - i =
FSPW ] 28
is) — grom | 9
§ HtAmr { —— ¢fM r‘r E
5 i [T\ 8D
20 R R |
0 v I T 0 s 1
10-1 10° 10!
04 06 08 momentum k;
filling n temperature !

(a) (b)

Figure 7.2.: (Figure 7.2a) shows the phase diagram of the single-band Hubbard model (Equa-
tion 7.1.1) with respect to the electron filling # and nearest neighbor interaction V. It
is qualitatively similar to the phase diagram of [HIu99] and the transition between
B, and B, along the axis of n agrees quantitatively with [Rag+12]. In (Figure 7.2b),
the functional renormalization group flow for = —t and t' = —0.25t exhibits the
singlet pairing instability with B;, symmetry and the associated order parameters

£ and £ (plotted along the Fermi surface given by discrete Fermi points kL) of
the spin-density wave with ordering vector q = (7, 77) and the singlet pairing (cf.
notation in (Section 3.5) and (Section 3.4)).

with k, = +k,. By shifting its anti-nodal regime towards the van-Hove singularity at
X, the By, pairing state gains condensation energy. To approach the half-filled case, we
make use of the functional renormalization group in (Chapter 6). The functional renor-
malization group flow of the eigenvalues of various kinds of particle-hole and pairing
channels and associated order parameters is given in (Figure 7.2b). By analyzing the
harmonic content of the gap functions in (Figure 7.2b) for y = —t and t' = —0.25¢, we
find that the By, state is mostly comprised of short range first nearest neighbor pairing
and has a small contribution from longer range third nearest neighbor pairing described
by the order parameter:

d) = Ay (cos(ky) — cos(k,)) + Ay (cos(2k,) —cos(2k,)) (7.12)

where Aq, A5 specify the overall and relative gap magnitudes with |A;| = 2|Az|. The
required lattice harmonics are given in appendix H. The interplay and competition be-
tween antiferromagnetism and d-wave superconductivity in the Hubbard model near
half-filling have been investigated extensively and appear to be an established result
[2598; HMOOb .
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7.2. Chiral superconductivity on the honeycomb lattice

Since the first experimental realization of graphene about a decade ago [Nov+05], the
community has been showing immense interest in this hexagonal honeycomb struc-
ture made of carbon atoms. Besides having extraordinary mechanical properties, the
graphene sheets feature an exotic dispersion relation of the electrons at the K-points
of the Brillouin zone reminiscent of relativistic massless Dirac particles [GM07; Gei09].
An illustration of the honeycomb lattice structure with sublattices A, B and basis vectors

T T
a; = % (3, \/5) and a, = % (3, —\/5) is provided in (Figure 7.3a). In order to derive a
simple tight-binding model for a perfectly plane graphene sheet, we assume rotationally
invariant p, orbitals that make up the electronic states at the Fermi surface. Taking only

tirst nearest neighbor hoppings into account, we find the non-interacting tight-binding
Hamiltonian:

0= t t T tzhz(k> — U tlhl(k) CkAc
HO - ; (CkAa’ CkB(T) ( tlh_l (k) tzhz(k) — ﬂ) (CkB(7> 7 (721)

where cltA(B) o CkA(B)o Creates (annihilates) an electron on sublattice A (B) and y is
the chemical potential. The momentum dependency is given by

() = e~k + 202 cos((k,/3/2)  and (7.2.2)
hy (k) = cos<\/§ky> + cos<(3kx + \/gky)/Z) + cos((3kx — \/gky)/2> , (7.2.3)

where the lattice constant was set to unity 2 = 1. For second nearest neighbor hopping
being zero t, = 0 the single-particle spectrum and the eigenstates of (Equation 7.2.1)
can be calculated analytically. The eigenvalues are given by

£, (10 = £yl (0] = J_r\]1 + 4cos (k,/3/2) cos (k. 3/2) + 4 cos? (k,3/2)
(7.2.4)

and they are plotted along the high symmetry points of the Brillouin zone in (Fig-
ure 7.3b). The eigenstates show that the “orbital weight” of a Bloch state is equally
distributed among both sublattices, i.e.

hy (k) ip(k)/2
bt 1 (el
u, (k) = <§+(k) ) = (e__i¢<k)/2 , ae€eC , (7.2.5)

v )

with & being the normalization constant, which may carry any phase. In the second
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(a) (b)

Figure 7.3.: (Figure 7.3a) illustrates the structure of the honeycomb lattice with basis vectors

a; = 53, V3T and a, = 53, —V/3)T and sublattices A and B. The band structure

(Figure 7.3b) is characterized by the Dirac cone at the Fermi surface. In its vicinity
the dispersion can be approximated by &, ~ vik, + vlk, with the Fermi velocities v}
and v} perpendicular and parallel to the Fermi surface. The density of states is zero
at the Dirac point and increases linearly in its vicinity.

equality we defined the phase ¢ (k) by h; (k) = ¢, (K)e'?®)/2 and chose a = %e‘w(k)/z.

2
Although both sublattices contribute the same “weight” to any Bloch state, the eigen-
state components feature a relative phase between both sublattice parts. Note, that this
relative phase is the origin of the non-zero Berry phase in graphene [ Zha+05; XCN10a;
PM11].

7.2.1. Singlet pairing in the E,, representation

The structure of the eigenstates (Equation 7.2.5) has profound consequences on the mo-
mentum dependency of the bare interaction in band basis. To obtain the band repre-
sentation (Equation 5.1.15) of a on-site interaction U, we employ the transformations
(Equation 3.3.33a) and (Equation 3.3.33b). However, taking higher order hoppings in
(Equation 7.2.1) into account, will result in a Hamiltonian whose eigenstates can in gen-
eral not be represented analytically. This poses a numerical challenge with respect to the
phases of Bloch states. To render the resulting order parameters associated to instabili-
ties of the renormalization group flow gauge-invariant, we either have to fix a particu-
lar gauge (cf. (Figure 3.2) and discussion in (Section 3.2) ), which results in eigenstates,
which coincide with the analytically given states for hopping parameterst, =0, Vn > 1
(cf. appendix E), or we have to rely on pairing between time-reversal and inversion sym-
metry partner states as explained in (Section 3.4). The interacting Hamiltonian with on-
site repulsion U, and nearest neighbor interaction U; between electrons on sublattices
A and Bis:
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HI = UO Z Ny, + Ul Z Z 7’11'0-7’1]'(71 P (726)
f W oo

with n;, = cf ¢;,. Note, that while the on-site interaction U, requires antiparallel
spins, the longer-range interaction U; may have finite contributions in both antiparal-
lel and parallel interaction matrix elements, which becomes important for the proper
setup of the spinful antisymmetric two-particle vertex (cf. appendix G). However, in
this subsection we limit our considerations to the spinless interaction. Henceforth, the
bare (spinless) two-particle vertex in band basis for an on-site interaction U, is deter-
mined by (using the notation given in (Equation 3.3.19))

_ ~biaq =bras byay bia)
Viabikoboki bikyby = Z“kl e, *Viqaiomkiaikoas i, Ui

OCI
_bya -boa bha bia
= U U2 U2 U ) 7.2.7
uO; K g e e (7.2.7)

where we substituted the notation + in (Equation 7.2.5) with appropriate band in-
dices b = + and used the summation over all four pairs of A, B sublattice indices with
a; € {A;, B;}Vi € {1,2,3,4}. The simplification of the transformation in the second line
is due to the on-site interaction having the same sublattice index associated to any of the
four fermionic fields. Inserting the eigenstates (Equation 7.2.5) into (Equation7.2.7), we
find that the remaining two terms contributing to the vertex in band space are complex
conjugated to each other. As a result, the momentum dependency of the two-particle
interaction in band space is described by cos ((—¢(k; — ¢(ky) + ¢(k)) + ¢(k5)/2) and
sin (...) for the upper and lower band, respectively. Consequently, the two-particle ver-
tex in band space for on-site interaction and only nearest neighbor hopping must al-
ways be real for “properly gauged” eigenstates. As a second indicator for a proper band
basis, we note that the Cooper channel of the vertex turns out to be momentum in-
dependent on the mean-field level since the phase ¢ (k) satisfies ¢(—k) = —¢ (k) due
to h;(=k) = hy(k). The renormalization group flow for the bare interaction (Equa-
tion 7.2.7) and corresponding Fermi surface topology for the setup 4 = —1.2¢; and t, = 0
are shown in (Figure 7.4). While the perfect nesting condition of the Fermi surface and
the van-Hove singularity at the Fermi level will give rise to a spin-density wave with

ordering vector q = (7T, 7T/ \/§)T, a shift in the electron filling that destroys the perfect
nesting of the Fermi surface will promote the singlet pairing in the two-dimensional E,
representation of the hexagonal point group to be the leading instability. The harmonic
analysis of the associated gap function given in the right part of (Figure 7.4) reveals
that it is mostly comprised of first and third nearest neighbor pairing. Since the two
eigenvectors associated to basis functions are degenerate, any superposition of both can
be realized. Mean-field theory shows that a complex superposition with relative e+/77/2
will maximize the condensation energy. The “chiral” d +id singlet pairing state has been
proposed in several works, that made use of various renormalization group schemes
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Figure 7.4.: The Fermi surface for 4 = —t; and ¢, = 0 is perfectly nested and promotes a spin-
density wave instability with momentum transfer q = (7, 7t/ \/§)T. However, de-
forming the Fermi surface to get rid of the nesting condition by shifting the electron
filling (4 = —1.2¢;) will enhance the singlet pairing channel and eventually result
in an instability with the symmetry of the E,, representation of the hexagonal point
group.
[NLC12; NC12; Kie+12].

Summary and preview

In this chapter we established the connection between our spinful renormalization group
framework of perturbative and functional kind with previous work in the field by means
of toy models. We firstly took the single-band Hubbard model to reproduce well-known
results at and away from half-filling. We found that the perturbative renormalization
group scheme cannot be employed directly at half-filling due to the perfect nesting con-
dition, the van-Hove singularity at the Fermi level and the resulting strong particle-hole
fluctuations. However, since the functional renormalization group scheme takes both
particle-particle and particle-hole channels into account, we are able to fill this gap. This
shows that the perturbative and functional renormalization group schemes represent a
symbiotic set of methods. Furthermore, we employed the functional renormalization
group scheme to competing instabilities of the Hubbard model on the honeycomb lat-
tice and found the chiral superconducting instabilities widely known as d + id state. In
the next chapter, we will make use of further capabilities of our renormalization group
schemes by taking finite noncentrosymmetric spin-orbit coupling terms into account.
As a physical interesting example, we show how topological superconducting may arise
in the oxide heterostructure of LaAlO5/SrTiO; .
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8. Topological superconductivity in oxide
heterostructures

As a first step into the realm of spin-orbit physics we consider the oxide-heterostructure
of LaAlO;/SrTiO3 . The research in LaAlO3/SrTiO; is part of an exciting new field of
condensed matter research in complex oxide interfaces [MS10b]. It is based on the
discovery that a well-defined interface made up of (otherwise insulating) oxides can
give rise to an electron gas with astonishing properties like i.a. high mobility [OH04].
The diversity of this new field of research is driven by the complex interplay between
spin, lattice, charge and orbital degrees of freedom [ Zub+11] and results in unusual be-
havior of electronic, (ferro-)magnetic, magnetoelectric and superconducting properties
[Li+11]. Here, we are interested in the superconductivity in the LaAlO;/SrTiO; oxide
heterostructure featuring a critical temperature of T ~ 200 mK [Rey+07]. Obviously,
the most striking difference of the two-dimensional electron gas at the heterostructure
interface to any bulk system is the broken inversion symmetry, which allows for an ad-
mixture of singlet and triplet pairing states (cf. (Section 3.4.2)). Concerning the nature
of the pairing state, there have been proposals for a mixed singlet-triplet state with d,
and (py + ip,)-wave symmetry (given in pseudospin basis) [Yad+09] based on Eliash-
berg theory and a s, | versus s, _ state (given in helical basis) with same or alternating
sign on the spin-split Fermi surfaces [SS15].

8.1. Electronic properties

The two-dimensional electron gas at the heterointerface of LaAlO;/SrTiOj is constituted
by the SrTiO; layer and its usually empty 3d,,, 3d,, and 3d,, orbitals (f,,) states of Ti*
that are occupied by the charge carriers from the LaAlO; film [OH04; San+11]. We
describe the single-particle properties in the orbital o, o’ (and spin ¢, ¢’) degrees of
freedom by the Hamiltonian

HO = Z Z alio’zr’ (hk00’>ag—' oo 7 (8.1.1)

k oo'co’

where af and ay,, create and annihilate an electron in orbital o with crystal mo-
mentum k and spin projection quantum number ¢. Magnetotransport and magneto-
conductance measurements suggest that the d,, and d,, orbitals play an important role
in contributing to and hosting superconductivity in the interface. Therefore, we focus
on the description of an effective non-interacting Hamiltonian in these orbitals, which
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is comprised of a spinless orbital term and a term that features both centro- and non-
centrosymmetric spin-orbit coupling:

e = hQ + B3O (8.1.2)
The matrix elements of the d,, and d,, orbital degrees of freedom in hy,, must be

consistent with C4, symmetry and time-reversal symmetry. Up to second order in mo-
mentum, they are given by

0 _ (Ear00) + a0 — p 2 (K) )
e = ( 2 (k) Ea1 () + &y (k) —p ® 0o (8.1.3)

with the Pauli matrix oy representing identity in spin space. The dispersion relations
are defined by

k) =4 (cos(kx) + cos(ky)) (8.1.4)
(k) =ty (sin® (k) + sin® (k,) ) (8.1.5)
¢po (k) = t3sin(k,) sin(ky) , (8.1.6)

and where the subscripts describe the irreducible representations, the dispersions are
associated to. The phenomenological parameters that were chosen to closely match the
experimental data and ab-initio calculation of [Kin+14][ZTH13] are given by (in eV)
t; = 031, t, = 0.0032, t3 = 0.1432, p = 0.0004. The spin-orbit part is composed of
an atomic (centrosymmetric) term 7, ® ¢, and a Rashba-Dresselhaus term (up to first
order) due to the broken inversion symmetry: (cf. (Section 3.1))

h3OC = acTy ® o +agsin(k,) 7o ® 0, — ag Sin(ky)To ® Oy

—agsin(k,) T, ® 0, + ag sin(ky)rx ® 0,

—agsin(k,) T, ® 0, — ag sin(ky)Tz 0, . (8.1.7)

While 7, , , denotes the Pauli matrices in spin space, 7, ,, , represent the Pauli matrices
ind,,, d,, orbital space. The parameters specifying the strength of spin-orbit interactions
are (ineV) ac = 0.0108 and ag = 0.0016. The resulting two-dimensional band structure
and related properties are shown in (Section 8.1). The upper band does not produce any
Fermi sheet, while the Fermi surface of the lower band has a small cloverleaf-like shape
centered around the I'-point. As the starting point for the renormalization group pro-
cedure, we assume an interacting Hamiltonian, which includes intra- and interorbital
density-density interaction:
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band energy ¢ (k) [eV]

Figure 8.1.: The two-dimensional band structure that results from equation ((Equation 8.1.2))
features only one band which intersects with the Fermi level. Although there is only
one Fermi sheet the two orbital character of the band structure is revealed in the
non-trivial orbital and spin character of the states along the Fermi surface. The color
code indicates the orbital and spin content of a particular band. The density of states
shows a very prominent peak slightly above the Fermi level. The resulting Fermi
surface has a cloverleaf like shape and covers only a tiny part of the Brillouin zone.
Note, that only a fraction of the Brillouin zone is shown.

My = Z Z‘ Uy 11, + % Z Z Z Uy Mipghiorgr (8.1.8)

i o#o0' 0,0’

where the indices 0 and o’ again denote the orbitals d,, and d,,. The parameters U,
and U, specify the interaction strength of the intra- and interorbital terms among these
two orbitals. Since the spin-orbit coupling term /17°C introduces spin off-diagonal terms
into the non-interacting Hamiltonian, the new basis that diagonalizes (Equation 8.1.2)
does not only superpose different orbitals but also different spin degrees of freedom.
The new quasiparticle basis is characterized by band index b and helicity A = + [BS12].
The corresponding operators bl‘:b 1 (bxppr) which create (annihilate) a quasiparticle with
crystal momentum k in band b with helicity A are defined by the eigenstates u, of
(Equation 8.1.1), and are given by the unitary transformation

_ to_ ot =
bipr = Uipp 00fkoo Dipr = AxootkoobA — + (8.1.9)

where the sum over repeated indices is implicit. Hence, they fulfill the eigenvalues
equation Iy, = Cpathpy With gy being the eigenvalues or band energies.
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8. Topological superconductivity in oxide heterostructures

Table 8.1.: The character table of the two dimensional point group C,, contains four one- and one
two-dimensional irreducible representations. In the absence of inversion symmetry
and the pairing of time-reversal partners, the representation E is forbidden since all
pairing states in the helical basis must have even parity.

E 2C4Z sz 20 ZUd

Ay +1 +1  +1 +1 +1
A, 41 +1 +1 -1 -1
By +1 -1 +1 +1 -1
B, +1 -1 +1 -1 +1

8.2. Nodal versus nodeless gap and singlet-triplet mixing

To generate the renormalization group flow, we employed the spinful flow equation
(Equation 6.3.20) (with the contribution from the three-particle vertex being discarded)
and evaluated the eigenmodes of the Cooper channel (Equation 3.4.29). The initial con-
dition of the flow equation is required to be the bare interaction and is provided by the
two-particle interaction (Equation 8.1.8) in helical basis. The (functional) renormal-
ization group flow of the Cooper channel’s eigenvalues ¢" for U; =1.0eV and U, = 0
is shown in (Figure 8.2a). The eigenstate of the leading (most negative) eigenvalue
may be characterized by the irreducible A; representation (s-wave) of the correspond-
ing point group C4,. The subleading instabilities can be associated to By, B, and A,
representations. The absence of any eigenstate that transforms according to the irre-
ducible E representation is not a coincidence but required by time-reversal symmetry
and fermionic anticommutation rules (as discussed in (Section 3.4.2)). The remaining
symmetry-allowed irreducible representations of the point group and their characters
are listed in (Table 8.1). (Figure 8.2b) plots the momentum dependency of the pair-
ing states along the Fermi pockets associated to the helicities A = 4, where A = +
labels the outer pocket and A = — the inner one. The plot shows the two leading in-
stability eigenvectors with A; and B; symmetry. The peculiar feature of the pairing
eigenstates is their sign change between the spin-split Fermi pockets. According to the
analysis in (Section 3.4.2) the corresponding pairing state in pseudospin representation
has mainly of triplet character. This sign change not only implies the main triplet char-
acter of the pairing state but also topologically non-trivial properties [Smi+17a]. In two
dimensions, this property is described by the topological index for time-reversal invariant
non-centrosymmetric superconductors defined by [SF09; Sam15; QHZ10]

Nop = 1_[ [sgnA]™ (8.2.1)

S

where the product is over all (well-separated) Fermi sheets with index s and m is
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8.2. Nodal versus nodeless gap and singlet-triplet mixing
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Figure 8.2.: The flow of the Cooper channel’s eigenvalues in (Figure 8.2a) show that the eigen-
mode with A; representation is the leading instability for U; =1.0eV and U, = 0. In
(Figure 8.2b), we show the momentum dependency along the two spin-split Fermi
sheets of the eigenstates corresponding to the two largest eigenvalues, i.e. A;, B;. The
left and right half of the plot correspond to the outer + and inner — Fermi pockets
as labeled in (Section 8.1). Apparently, both A; and B; pairing states are of simi-
lar shape on both pockets but feature opposite signs on two spin-split Fermi sheets.
According to the analysis in (Section 3.4.2) the corresponding pairing state in pseu-
dospin representation is mainly of triplet character. The plot in (Figure 8.2c) shows
the change of the eigenvalues relative to the eigenvalue associated to A; as a function
of interorbital interaction strength. Hence, when decreasing the interorbital interac-
tion, the strength of the B, representation increases until there’s a transition from
“extended” s-wave to “extendend” d-wave in the weak-coupling limit.

the number of time-reversal invariant points enclosed by the respective Fermi pocket.
However, even the nodal pairing instability corresponding to B; and B, turn out to be
associated to topological invariants [SR11; SBT12] describing different types of edge
states. We observe a strong “extended” s-wave instability for an interorbital interaction
of the order of the bandwidth W. When reducing the interaction strength, the d-waves
states associated to B; and B, become more important relative to the s-wave (cf. (Fig-
ure 8.2c)). Finally, in the (weak-couling) limit U; << W, the d-wave state B; with nodes
located along the main axis’ is the leading pairing instability.

Summary and preview

In this chapter we entered the realm of spin-orbit physics by investigating the pairing in-
stabilities in the LaAlO3/SrTiO; oxide heterostructure by means of a simple two-orbital
dyz, d,; model. The renormalization group flow has to be performed in the helical spin
band basis. The associated pairing functions turn out to be all even parity, i.e. described
by the one-dimensional representations of the point group C,,. For interorbital inter-
actions of the order of the bandwidth, the leading instability appears to be a fully gap
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8. Topological superconductivity in oxide heterostructures

“s-wave” given by the A, representation. However, by reducing the interaction strength,
we find a transition from the fully gap A; state to a nodal B, pairing state. The pecu-
liar feature of both of these pairing states is their sign change between the both Fermi
pockets labeled by helicity A = +. This sign change implies a non-trivial topological
invariant for both the nodal as well as the nodeless pairing state. In the next and last
chapter, we investigate the properties of the superconducting gap function in Sr,RuQ; .
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9. The curious case of Strontium Ruthenate

The physics of strontium ruthenate (Sr,RuQO, ) has been puzzling condensed-matter
experimentalists as well as theorists for more than twenty years [Mae+94]. The very
core of the confusion generated by contradicting experimental results on Sr,RuO, over
the past two decades is the debate over the nature and symmetry of its superconduct-
ing order parameter [Mac+17]. Early proposals suggested an odd parity chiral spin triplet
state [RS95], which was later supported by experimental results of muon spin rotation
(#SR) [Luk+98] and polar Kerr effect [ Xia+06 | measurements with evidence for a time-
reversal symmetry breaking pairing state. However, this chiral “p + ip” state results in
the existence of edge currents, which, unfortunately, have never been observed so far
despite extensive efforts [Kir+07; Cur+14]. Possible order parameters may be derived
from the tetragonal symmetry of crystal of strontium ruthenate (see (Figure 9.1a)) and
the associated point group Dgy,. However, the superconducting state in Sr,RuO, de-
velops out of a normal state with properties, which are consistent with Fermi liquid
parameters [Ber+03]. Moreover, resistivity measurements in the normal state show a
highly anisotropic behavior with an interlayer to in-plane resistivity ratio p./p,;, ~ 850 at
2.0K [Mae+94] and the Fermi surface of Sr,RuQ, is quasi two-dimensional and shows
only a weak dispersion along the c-axis [Mae+97]. Both the enlarged spatial separa-
tion between layers (cf. caption of (Figure 9.1)) and the strong anisotropy in electronic
and transport properties have been taken as indicators to rule out pairing states that
require finite interlayer coupling [Sig+99]. In particular, these pairing states are as-
sociated to the even two-dimensional irreducible representation E, (see (Table H.6)).
Nevertheless, some theoretical works (i.a. [ZMO05]) make use of exactly this irreducible
representation - called chiral spin singlet - since it is equally well consistent with the phase
shifts observed in Josephson junction experiments [Nel+04 ]. More recently, temperature-
dependent heat capacity measurements suggest the existence of vertical line nodes in
the order parameter [Has+17].

When discussing possible superconducting order parameters in Sr,RuO, we have to
distinguish two scenarios: The limit of zero spin-orbit interaction where spatial and spin
degrees of freedom are decoupled and the limit of strong spin-orbit coupling, which in-
tertwines orbital and spin degrees of freedoms (cf. (Section 2.4.4)). For instance, the
possible order parameters in the odd E,, representation of Dy, are six fold degenerate for
zero spin-orbit interaction and split into four one-dimensional and one two-dimensional
representations in the presence of strong spin-orbit coupling (Equation 2.4.42). The role
and importance of spin-orbit coupling in Sr,RuO, has been emphasized both from a the-
oretical [NS00] and from an experimental [Vee+14] point of view.

179



9. The curious case of Strontium Ruthenate
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Figure 9.1.: The crystal of strontium ruthenate forms a layered perovskite structure, exactly
like La,CuO,, which is the parent compound of the high-T, superconductors (Fig-
ure 9.1a). The ions are represented in the colors green (Sr), red (Ru) and blue (O).
The RuO, layers are separated by two layers of SrO that are shifted by half a lattice
constant relative to each other along the horizontal plane. Thus, the Ru-atoms are
enclosed in octahedra of O atoms. The crystal is characterized by two lattice con-
stants: The in plane constants are 2 = b = 3.87 A and the lattice constant along the
c-direction is ¢ = 12.74 A [WL93] at 300K. The influence of the octahedral crystal
field splits the 4d-states of Ru** into the low-lying t,, and the unoccupied e, states
(see (Figure 9.1b)).

Previous numerical studies of the superconducting instabilities in Sr,RuOy in the
weak-coupling limit without [RKK10a] and with [SRS14; Sca] spin-orbit coupling have
provided important insights concerning the question, if the order parameter is mainly
located on the quasi one-dimensional or two-dimensional Fermi sheets. While renor-
malization group calculations for finite interactions suggest the quasi two-dimensional ¢
band to host the superconducting state [ Wan+13a |, weak-coupling calculations [ RKK10a |
suggest the pairing to arise from the quasi one-dimensional a and  bands.

9.1. Ab-initio and single-particle properties

A generic three-orbital model of the low-energy electronic structure of Sr,RuQO, that
involves the t,,-orbitals of the Ru** ions, namely the d,, d,, and d,, orbitals, is given
by
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9.1. Ab-initio and single-particle properties

Hy = hoo, al iyer , hOS, € CO6 . (9.1.1)

i oo oo

The indices refer to the lattice site (i), the orbital (0,0") and the spin (c,0") degree
of freedom. Hence, the operators al . (a;,,) create (annihilate) an electron on site i
in orbital o with spin o, respectively. The spin was included to incorporate spin-orbit
coupling at a later stage. The orbital index is ordered according to (dxz,dyz, dxy) 4
(1,2,3). For the time being we assume matrix elements that are diagonal in spin space
and take only orbital-dependent hoppings into account. The matrix elements of the non-
interacting Hamiltonian in orbital space are obtained by considering the symmetries of
the lattice and the t,, orbitals (see appendix A). The most generic matrix elements and
their momentum dependencies are [PK12]

00" _
ho, =

nk) &y (k)
0 0 Gyl

with their dispersions defined by (k = (k,, ky))

gxz (k) 77(1() 0
0 ® 1y , (9.1.2)
k)

(k) = =2 (t1 cos(ky) +t5 cos(ky))
Gyz(k) = =2 (t2 cos(ky) + t; cos(ky))
Gry(K) = =213 (cos(kx) + cos(ky))
— 4 tycos(ky) cos(ky) — 2t (cos(ka) + cos(Zky))

(k) = —4 tgsin(k,) sin(k,) . (9.1.3)
Estimates for the corresponding overlap integrals resulting in the hopping parame-
ters t; are given in (Table 9.1), which were derived from i.a. LDA calculations, dHvA
measurements and ARPES data. Since spin-orbit coupling is suggested to be an es-
sential ingredient to the unconventional properties of Sr,RuO, , we include the on-
site term Hsoc = AY,.L; - S; into the single-particle Hamiltonian. The matrix ele-

ments of Hsoc term may be evaluated in terms of the combined orbital/spin basis, e.g.
<a}Z,U|A L- Sla;zlg> and provide (cf. appendix B and [NS00])

. . 0 -0 o
iA a ot iA + z x

Hsoc = D} Z Z €lmn Z TooMkioHamo’ = Z 7 A 7z 0 —oylag ,
k Immn o0’ k —0y U'y 0

(9.1.4)

with the orbital indices /, m. In the first equality we used the orbital ordering (1,2, 3) =
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9. The curious case of Strontium Ruthenate

Table 9.1.: The hopping parameters of the single particle Hamiltonian (Equation 9.1.2) were de-
rived from the fit of the model (Equation 9.1.3) to ARPES data [Zab+12]. However,
this data only provides the renormalized quasiparticle band structure and experi-
ments determining the shape and topology of the Fermi sheets (dHvA) only suggest
the relative strengths of the hopping parameters but not the bare bandwidth. There-
fore, we rely on LDA calculations and multiband quasiparticle calculations based on
perturbation theory and dynamical mean-field methods to fix the absolute bandwidth
of about 3.5eV [MS97; LL00; Mra+11]. All parameter are given in units of eV.

[eV] tl t2 t3 t4 t5 t6 H A

0.6042 0.0667 0.3375 0.1625 0.0208 0.0583 —0.5083 0.1333

(yz,xz,xy), where €;,,,,, is the total antisymmetric Levi-Civita symbol. In contrast, in the
second equality we introduced the basis

t— (gt gt gt gt gt gt
a; = (asz, Brzyr Byzps Byzyr Oxyps Oy ) . (9.1.5)

Based on these prerequisites we are able to write down the entire single particle term
of the three orbital model including atomic spin-orbit coupling, which is given by } =
Ho+ Hsoc. Any higher order non-local centrosymmetric spin-orbit terms may be incor-
porated into the Hamiltonian by considering the combined symmetry groups of orbital,
momentum and spin spaces as discussed in (Section 3.1). The electronic properties that
arise from this Hamiltonian are shown in (Figure 9.2). In (Figure 9.2a) we illustrate the
shift of the Fermi surface sheet due to increasing spin-orbit interaction strength. Appar-
ently, spin-orbit coupling has the largest influence on the a Fermi pocket at the M-point.
The band structure in (Figure 9.2b) features spin-orbit interaction and shows the orbital
weight of the associated eigenstates for the three bands. On the one hand, the « and g-
bands are comprised of mixed d,, and d,, orbital content depending on the momentum.
On the other hand, the v is exclusively made up of d,,, orbital states. This result changes
when turning on spin-orbit interaction by introducing mixed d,., and d,, orbital weight
into the 7 band as well.

9.2. Quasi one- versus two-dimensional superconductivity

In order to find the bare two-particle interaction representing the starting point of any
renormalization group calculation, we turn to the interacting part of the Hamiltonian
of the three-orbital model. To this end, we consider only on-site (momentum inde-
pendent) interaction. The multi-orbital character of the Hamiltonian is taken into ac-
count by considering intra-orbital, inter-orbital interaction, Hund’s rule coupling and
pair hopping processes. Although we use a SU(2)-spin symmetry breaking single-
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Figure 9.2.: The influence of spin-orbit coupling on the Fermi surface is illustrated in (Fig-
ure 9.2a). Apparently, the electron pocket at M associated to the a-band experiences
the largest shift. The non-interacting band structure with zero spin-orbit coupling
shows three bands ((Figure 9.2b)). The color code indicates the orbital content of the
bands. While x and p bands have mixed d., d,.-orbital weight, the yband is made up
of d,-orbital states only. In contrast, spin-orbit interaction introduces mixed orbital
content of opposite spin states into the states of the v Fermi surface. (Figure 9.2c)
exhibits the properly defined - taking the adiabatic pseudospin and “smooth gauge”
into account - eigenstates along the Fermi sheets.

particle Hamiltonian (Equation 9.1.4), we assume the interacting part of the Hamil-
tonian to be spin rotation invariant. The implications and subtleties of spinful interact-
ing multi-orbital Hamiltonians regarding the numerical implementation are discussed
in appendix G. These arise from the requirement of total antisymmetric with respect to
particle exchange for fermionic interactions. The multi-d-orbital Hamiltonian is adapted
from a Kanamori Hamiltonian and can be written as (cf. [GMM12])

1

MI = Z uintra Z an”ll + uinter Z annml + (uinter - ]) Z Z NNy o
1

j 1£m I+m O

+ 1 + 1
_]Hund Z alTamlamTall + ]Pair Z alTallamTaml . (9'2'1>
I#m I#m

A set of reasonable interaction parameters for (Equation 9.2.1) can be obtained by
means of constrained RPA calculations. The literature provides several sets of these pa-
rameters that tend to slightly differ. Some of them are given in (Table 9.2). The exact
output of these calculations actually gives orbital-dependent values for the interaction.
However, what we are interested in are the fixed points of the renormalization group
flow and therefore these details are usually negligible. Before we can start to calculate
the renormalization group flow, we have to find the representation of the interacting
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9. The curious case of Strontium Ruthenate

Table 9.2.: The interaction parameters of multi-orbital Hamiltonians can be obtained by con-
strained RPA calculations [MAO8]. The parameters were adapted from [Mra+11;
VJB12] for the case of U(1)c ® SU(2)s ® SO(3), symmetry and | = [ = Jp re-
sulting in Uyer = Uinga — 2J [Sugl2]. Besides, we list some a set of parameters that
were used in the literature for the interacting Hamiltonian of Sr,RuQ; .

[eV] uintra Uinter ] Hund ] Pair Ref.
2.3 15 0.4 0.4 Mra+11]

[
256 194 026 026 [V]B12]
3.2 1.3 0.3 03 [Wan+13a]

Hamiltonian in band-pseudospin basis. To this end, the definition of the eigenstates of
the non-interacting part of the Hamiltonian is crucial regarding the proper pseudospin
and definition and “gauge”. Alternatively, one can rely on the pairing of time-reversal
and inversion symmetry partners (as discussed in (Section 3.4) ), which, however, is ob-
viously not applicable for the investigation of particle-hole instabilities in the context of
the functional renormalization group.

The phase diagram of the three orbital Hamiltonian of Sr,RuQO, with respect to in-
terorbital interaction and Hund’s rule coupling is given in (Figure 9.3). The phase di-
agram comprises a large section with odd parity triplet pairing (TPT) with eigenstates
that transform according to the E, representation of the point group. The opposite side
of the phase diagram is dominated by different particle-particle and particle-hole insta-
bilities, which comprise even parity singlet pairing and ferromagnetic tendencies. The
fact that Hund’s rule promotes ferromagnetic instabilities can already be understood
on a mean-field level by considering the energetically favored states with parallel spin
orientation due to Hund’s coupling. Regarding the pairing instabilities, we see that the
singlet pairing (SGT) transforms like a B, representation is located on the y band. In
contrast, the large portion of triplet pairing in the phase diagram is dominated by gap
functions, which are located on the quasi one-dimensional « and § bands. Performing
an harmonic analysis of the triplet state, we find that the pair wave function is domi-
nated by longer range second nearest neighbor pairing. Taking the degeneracy of the
two-dimensional irreducible representation E,, into account, we can describe the triplet
state in terms of the d-vector

dip, = (sin(kx) cos(ky) +el? sin(ky> cos(kx)) z , (9.2.2)
where we projected on the k, = 0. By considering a renormalized mean-field theory

for this triplet state, we find that the phase ¢’ = i will maximize the condensation
energy associated to the Bogoliubov-de Gennes quasiparticle spectrum.
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Figure 9.3.: The phase diagram of three-orbital Hamiltonian zero spin-orbit coupling with re-
spect to interorbital interaction U, and Hund’s rule coupling Jij,,q exhibits are
large portion of odd parity triplet pairing (TPT). The abbreviations represent ferro-
magnetic (FM), antiferromagnetic (SDW), singlet pairing (SGT) and triplet pairing
(TPT) instabilities. The pair hopping parameter is fixed by [p.i; = Jgunq While the
intraorbital interaction U, is given by 3.2V at all data points. The sets of inter-
action parameter given in the literature are mainly located in the triplet pairing sec-
tion of the phase diagram. The shown triplet pairing function (right) is located at
Uinter = 1.8, Jqung = 0.2 in the phase diagram and the singlet pairing function (left)
corresponds to the flow at U, = 0.2, Jyung = 0.4

Summary

This chapter dealt with the problem of the superconducting order parameter in Sr,RuO,
and discussed the role of spin-orbit coupling for the intricate pairing state in this ma-

terial. We introduced a generic three-orbital model in terms of d.,d, . d,,-states for the

low lying t,, multiplet of the Ru** ions. The single-particle Hamiltonian and the re-
sulting electronic properties were adjusted to the results of ab-initio electronic structure
calculations and the experimentally determined Fermi surface topology. We made use
of a set of interaction parameters for a multi-orbital Kanamori-Hamiltonian, that are
adapted from the literature and based on the constrained RPA method to find screened
interaction values. This Kanamori Hamiltonian was used as the starting point for a the
functional renormalization group (see (Chapter 6)) flow based on three-orbital model
of Sr,RuQ, . We found a rich phase diagram with respect to interorbital interactions
and Hund’s rule coupling made up of singlet and triplet pairing as well as ferromag-
netic states. However, the interaction parameters found in the literature all coincide with
points in the phase diagram where the competing orders are dominated by odd parity
triplet pairing located on the quasi one-dimensional « and 8 Fermi sheets. To overcome
the strict and unnatural separation of order parameters being hosted by either the < or
« and p bands, the influence of spin-orbit coupling must be taken into account.
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10. Summary and outlook

The development of numerical approaches to unconventional and topological super-
conductivity in strongly correlated systems of itinerant fermions with substantial spin-
orbit interaction has been the major objective of this thesis. These methods are based on
a combination of functional and perturbative renormalization group approaches.

In (Chapter 2), we motivated the concept of Cooper pairing and reviewed the basics
of BCS-theory. In contrast to traditional BCS-theory, which is based on a phonon-driven
attractive effective interaction, the Kohn-Luttinger effect has a purely electronic nature
and is able to establish pairing in higher angular momentum channels L > 0. Conse-
quently, we worked out a generalized BCS-theory for any spin and angular momentum
channel that is characterized by the interplay between spin and spatial symmetries. As
a convenient description of this theory, we introduced the d-vector formalism.

The (Chapter 3) served as the starting point to mean-field theories beyond SU(2)-
symmetric effective two-particle interactions. The first section provided an exhaustive
derivation and classification of various types of spin-orbit interaction in both centro- and
non-centrosymmetric systems. This derivation is mainly based on the concept of the in-
variant expansion. As a result, we found spin-orbit Hamiltonians for multi-d-orbital
models on the tetragonal lattice and square lattice. Among these Hamiltonians we ob-
tained atomic and non-local L - S couplings as well as Rashba and Dresselhaus terms
in multi-orbital models. To be able to deal with these Hamiltonians numerically, we
discussed the proper choice of a pseudospin basis and the implications of the “gauge-
freedom” of Bloch states. The third section analyzed the key symmetries of the spinful
two-particle vertex in orbital and band basis. There are four types of important contin-
uous and discrete transformations that were taken into account: SU(2)-rotations, time-
reversal, spatial inversion and point-group operations. The presence or absence of the
associated symmetries has important implications on the structure of the two-particle
vertex. In orbital space we worked out the relationship between the spinful and spinless
vertices. In band space, we further distinguished between the pseudospin basis and the
helical basis depending on the presence or absence of spatial inversion symmetry. The
two-particle vertex in band space was the central object of the instability analysis of the
effective action in terms of mean-field theories since we limited the treatment to equal
energy pairing. In the fourth section and in the context of generalized Cooper pair-
ing with broken spin symmetry, the equivalence of pairing between time-reversal and
inversion symmetry partners states and Bloch states with “smooth” gauge was empha-
sized. The mean-field theories for Cooper pairing in a pseudospin and a helical basis
showed that, while pairing in a pseudospin basis is still characterized by means of sin-
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glet and triplet states, Cooper pairs in a helical basis can exhibit singlet triplet mixing.
Analogously to the particle-particle instabilities, the corresponding particle-hole con-
densates were shown to feature mixing of charge- and spin density-wave states already
in the presence of spin-orbit coupling and inversion symmetry. The absence of inver-
sion symmetry further allows for the superposition of states associated to irreducible
representations with even and odd symmetries.

The (Chapter 4) served as a reminder and setup of the fermionic functional integral
formalism for the quantum-many body partition function in terms of Grassmann fields.
The notation and formalism of the partition function were established to introduce the
generating functionals that were required in the following chapters. The connection to
the perturbative expansion of the partition function and correlation functions was given
and evaluated by means of Wick’s theorem.

The perturbative renormalization group in (Chapter 5) uses the perturbative expan-
sion of the irreducible two-particle vertex to generate an effective two-particle interac-
tion, which is fed into a logarithmic renormalization group scheme in order to investi-
gate the dominant instabilities. We state the relevant diagrammatic contributions to the
perturbative two-particle vertex both for spinful and spinless interactions. We briefly
draw the connection to the random phase approximation.

Finally, the functional renormalization group method was introduced in (Chapter 6)
based on the modified Gaussian propagator with cutoff or scale dependency. The mod-
ified single-particle propagator is inserted into the generating functionals to yield scale
dependent functionals. By calculating the total derivative of the generating functionals
with respect to the cutoff, we obtained a set of flow equations. The flow equations for
the self-energy and the irreducible two-particle vertex were explicitly derived by means
of an expansion in the fields and the truncation of all three particle contributions. In the
framework of the temperature flow renormalization group scheme, the close connection
to the perturbative renormalization was worked out, which can be easily exploited in
the numerical context in order to obtain an efficient implementation.

To establish the methodological novelties and check the numerical stability of our im-
plementation, two types of well-known toy models with established results were con-
sidered in (Chapter 7).

The application to oxide-heterostructures in the form of LaAlO;/SrTiO; in (Chap-
ter 8) revealed the possibility of topological superconductivity in the form of an “ex-
tended” s-wave state, which amounts to a fully gapped order parameter with opposite
signs on the two spin split Fermi sheets originating from the strong Rashba coupling in
the presence of inversion symmetry breaking. This state corresponds to an order param-
eter with dominant triplet contribution. In the weak-coupling limit, we find a similar
but “extended” nodal d-wave state.
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In (Chapter 9), the intriguing matter of strontium ruthenate Sr,RuO, was discussed.
Based on the well-established three-orbital model of the 5, states, we found triplet pair-
ing on the quasi-one-dimensional bands and singlet d-wave pairing on the y-sheet de-
pending on the set of multi-orbital interaction. However, taking the results of available
c-RPA calculations into account, the interaction setup appears to be close to the one,
which produces the triplet pairing on the quasi-one-dimensional bands.

Although this thesis already put a main focus on the methodological development,
there are a variety of open issues, which should be considered in future work. First
of all, in order to reliably access the discussed exotic particle-hole condensates, a con-
tinuous and point-group symmetry conserving momentum discretization of the vertex
functions is essential. Furthermore, the frequency dependency of vertex functions and
the renormalization of the self-energy should be included in order to enable a systematic
comparison with other quantum many-body approaches like RPA. The applications dis-
cussed in this thesis can, of course, only cover a certain portion of the full potential of the
functional and perturbative renormalization group schemes for multi-orbital systems
with spin-orbit interaction. Among other interesting candidate systems, we mention the
heavier nuclei cousins of graphene, called Xenes, with substantial (in-plane) Rashba in-
teraction (on a substrate) and the five orbital pnictide models, for which the influence of
atomic spin-orbit coupling has been discussed lately. Therefore, the presented method-
ological development promises to provide many useful insights into spin-orbit physics
of correlated electrons and awaits future applications.
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A. Construction of SU(2)-symmetric
d-orbital Hamiltonians

Most of the strongly correlated systems that are studied i.a. in the context of high-
temperature superconductors and transition metal-oxides have states at the Fermi level
that posses 3d or 4d-orbital character [Eme93] [Vol12] (cf. (Chapter 8) and (Chap-
ter9)). The general (analytical) construction of these bands may be done by considering
the symmetries of the underlying lattice and the orbitals themselves. The d-orbitals are
the eigenstates of the | = 2 angular momentum operator L. The Lie algebra associated
to the angular momentum is given by [Lie88; Pau65]

I:]:l', i]:I = Zel]kik ’ (A.Ol)

with the generators ii i € {1,2,3} and the structure constant €jjk- First of all, we have
to determine the representation of the generators for the | = 2 case, where we have
L; € CCHDLxCHD e [, € C>3. Their matrix elements are most conveniently found
lfy exploiting the action of L, and L, := L, +iL, on the eigenstates |/, m) of the L2 and
L, operators, i.e. [Bal98, Chap. 7]

L |,m)=m|l,m) and L,|l,m)= VIA+1) —mm+ 1) |Lm+1) . (A.0.2)
Henceforth, for [ = 2 and the basis 1" := (a*,, ail,a{),ail,aiz)T we find the matrices
) 0 (2
-1 2 0 (/e
L, = 0 and L, = J6 0 (/6 , (A.0.3)
i o 0 @
+2 ) 0
. . = L,+L_ = L.-L_
while the other two generators are consequently givenby L, = =—and L, = =5—

Note, that L2 = 1.2 + I:ﬁ + 12 « 1 is the Casimir operator of the corresponding space,
which has to commute with any operator of that space. Since we don’t want to work in
the |I, m) basis but in the most commonly used basis of real orbitals, we employ linear
combinations of the |/, m) states that amount to the unitary transformation
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A. Construction of SU(2)-symmetric d-orbital Hamiltonians

01 0 -1 0

Lo -0 -0
Uj=—|i 0 0 0 —i| , (A.0.4)

2/1 0 0 o0 1

00 =2 0 0

with UYU, = 1 that results in the orbital basis

T
to_ (4 4t +
df = (adxz’adyz’adxy’adxz,yz’adzz> . (A.0.5)

with d = Uyl. The generators transform according to L; — L} = LIdI:l-LI;. In the
new basis (and the old one) we can express any SO(3) transformation of the orbitals
by means of the exponential parametrization and the generators by e~1"¢ [Ge099]. In
particular, a rotation about the z-axis is given by

cos(¢p) —sin(g) 0 0 0
sin(¢) cos(g) 0 0 0
emilze = 0 0 cos(2¢) —sin(2¢) 0 (A.0.6)
0 0 sin(2¢) cos(2¢) 0
0 0 0 0 1

We see that in the new basis the orbitals form invariant subspaces with respect to
rotations about the z-axis. On the one hand, the d,, and d, , orbitals transform into each
other and on the other hand the d,, and d,._,» orbitals stay among themselves while
the d,> doesn’t hook up with anyone.

A.1. Four-fold symmetry groups Dy, and Cg,

A lot of the strongly correlated 3d/4d orbital systems are found in compounds com-
prised of i.a. transition metals that form a perovskite structure. Hence, we will assume
a four-fold symmetry (with inversion) corresponding to the point group Dy, that is
comprised of sixteen elements given in appendix H. The representation of the four-fold
rotation about the z-axis and the reflections in the (x,z), (y,z), (x =y,2), (x = —y,2)
and (x,y) planes is
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A.1. Four-fold symmetry groups Dy, and Cy,

cos(p;) —sin(gp;) 0 0 O
- sin(¢;) cos(¢;)) 0 0 O 37
e_le(Pi = 0 0 ]_ 0 O 4’1 S {O/ =, 7T, ?}
0 0 010
0 0 0 01
e Lu™ = diag(+1,F1,-1,1,1)
_i—LHUyn 0 +1
V2 = - i -
e (il 0 ) ® diag(1,-1,1)
p—iLim — diag(-1,-1,1,1,1) . (A.1.1)

Note that a reflection is comprised of an inversion followed by a rotation by 7 about
the normal vector of the plane of reflection [Mer98, Chap. 17, p. 440]. However, since
angular momentum is a pseudovector (axial vector), the representation of the inver-
sion is the identity operation. The matrix representations for the remaining elements
of Dy, may be inferred from (Equation A.1.1) and the multiplication (Table H.2). (Ta-
ble A.1) provides the explicit transformation behavior of all orbitals under Dy,. We
already noted the invariant subspaces of orbitals with respect to the rotations. This is
true as well for all reflections and (improper) rotations of Dy, C SO(3). The transforma-
tion behavior of the d-orbitals under Dy, is summarized in (Table A.1). Checking out
all the representations, we finally see that the matrices of orbital transformation £l]3= =
are comprised of four irreducible representations:

D,
L5 =E; @By, @B, ® Ay . (A.1.2)

Note, that we may only have even representations due to the angular momentum be-
ing | = 2 in d-orbitals. In general, we have the parity (—1)’ for orbital angular momen-
tum [Bal98, Chap. 13, p. 372]. In order to derive a non-interacting, phenomenological
Hamiltonian in orbital space, we make use of the invariant expansion (theory of invari-
ants) [BP74]. The 5 x 5 Hamiltonian # (k) in orbital basis (Equation A.0.5) is required
to satisfy [Win03, Chap. 2.5]:

LHW L () = H(P (g k) (A13)

with L(g) and P being the representations of g in orbital and three dimensional mo-
mentum space, respectively. Due to (Equation A.1.2) that reflects the fact that certain
orbital subspaces don’t mix, we can write

Lr, (@) Hr,r, 0L () = Hr,rp (P(gH) k), (A14)
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A. Construction of SU(2)-symmetric d-orbital Hamiltonians

dim(l“i)xdim(l“]»)

where the Hamiltonian block Hri,rj e C is characterized by the irre-

ducible representations I'; and I';. Every block of the Hamiltonian may be expanded
in terms of matrices X € CHMT*dmIT}) 514 basis functions (of k) that transform ac-
cording to the irreducible representations of Dy, that are contained in the product rep-
resentation I'; ® I; [TRR79]. Here, we also require the basis functions f (k) to satisfy
f(k+G) = f (k) where G is a reciprocal lattice vector. The illustration of the beforemen-

tioned is

%Egmg HEg®B2g HEgeaBlg MEgeaAlg

H H

B,,®E B,,®B B,,®B By, ®A

Hk) =dt| 2%  "s772% 26 g 250 | d (A.1.5)
By, ®E, B1,®Bs, B1,®By, B1,®Aqg
A1,®F, A15®By, A15®B1g A1g®A1,

The product representations can be disassembled according to [Gos]|

® Eg Bzg Blg Alg
Eg Alg <) Azg @ Blg <] Bzg Eg Eg Eg
BZg g Alg AZg BZg
Blg Eg AZg Alg Blg
Alg Eg BZg Blg Alg

into irreducible representations of Dyy,. Since all but the E; representation are one-
dimensional we only really have to care about the 2 x 2 block in the upper left of the
Hamiltonian (Equation A.1.5). Therefore, we make the ansatz

){Egmg = fr, K)oy + fr K)oy +fry (K)o, +fr. (o, (A.1.6)

in terms of the Pauli matrices 0 . ,, . € C?*? and the basis functions frO,x,v,z associated
to a specific Pauli matrix but an unknown representation Iy , ,, .. The transformation of
the matrix elements associated to the d,, and d, , orbitals given in (Equation A.1.1) for
all operations of Cy, is conveniently expressed in terms of Pauli matrices by

(dys,dy.) Efi Cyloy, Ci/Sy Cq/Si 0./C, 0,/Cy 0,/Cy 0/C,

0o —0y iy, —ioy, o, -0, Oy —0y

making it easy to show that ¢y transforms like Ay, 0 transforms like B,g, 0y, trans-
forms like Ay, and 0, transforms like B;,. We note, that the effect of the remaining eight
operations of Dy, can also be obtained by considering that this block is governed by the
E, representation. Henceforth, we have the assignments I'y = A, I'y = By, I') = Agg
and I'; = By, for the basis functions frO,x,u,z (k). In the block comprised of the E; and a
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A.1. Four-fold symmetry groups Dy, and Cy,

one-dimensional representation we don’t have to care about any matrix X but only have
to make sure that we use two linear independent basis functions for the two compo-
nents of the block. In the blocks of single matrix elements we simply have to insert the
associated basis function up to the desired order. An exemplary d-orbital Hamiltonian
with phenomenological parameters and up to second nearest neighbor basis functions

is given by

Hk) =dt

with the

(cf. [Gra+09; Gra+10, Appendix])

G () + G () g (0 —ig( (o g (o)
G, (0 + i3 () g1 (o) = G (k) Y (K)

G (k) rY (k) G, ()
x2_gy2 Nxzfyz xz_;;/z

&, (&) G, "0 G,
G (k) g, (%) 85, ()

matrix elements of the Eg ® Eg block

& o
RS
x?—y?

Cn ! 0
x2_y2

Ca (0
%, (0

Gz (0
i ()
G5, () |d
G,, 00
i, 00
(A.17)

(A.1.8)

szyz(k) = (tflgz’l cos(k,) + tfli;xz’l cos(k, ) + tfgzl’j cos(k,) cos (ky)> cos(k,)
é‘z: (k) = tﬁj: (cos(kx) - cos(ky)) cos(k,)
&b, (k) = tgjf sin(k,) sin(k, ) cos(k,)
Cay, 0 =0,

the six matrix elements of the E, ® By, B1g, A1z blocks (with a = xy, x% —y? and z?)

ot (k) = (tg; sin(k,) + tgf sin(k,) cos(ky)) sin(k.)
5€g(k) = (tg; sin(ky) + tgf sin(ky) cos(kx)) sin(k,) ,

(A.1.9)

and the nine matrix elements of the one-dimensional representation blocks
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A. Construction of SU(2)-symmetric d-orbital Hamiltonians

ng = (tj;yl’gl (cos(ky) + cos(ky)) + tf;yl’gz cos(k,) cos(ky)> cos(k,)

2_ .2 5 . .
Gh,” =0 G =ty sin(ky) sin(k, ) cos(k.)

Cﬁi;yz = <t221;y2'1 (Cos(kx) + cos (ky)) + tfl;yz’z cos(k,) COS(ky)> cos(k,)
Gi: = i1 (cos(ky) — cos(k,)) cos(k)
éizlg = <tfj1’g (cos(kx) + cos(ky)) + tZAzl’: cos(k,) cos(ky)) cos(ky) . (A.1.10)

where we used the basis functions of the Dy, and Cy, group in (Table H.7), respec-
tively. Note, that Hermiticity was implied to reduce the number of matrix elements from
twenty-five to fifteen. Furthermore, in the first nearest neighbor terms of A;, on the di-
agonal associated to the xz and yz orbitals, we introduced different hopping parameters
t for the k, and k, contributions since these are symmetric w.r.t. k, < k,. A non-zero
A, contribution is obtained only starting up from the fourth nearest neighbor terms.
Furthermore, the Hamiltonian is obliged to obey time-reversal symmetry . For the present
spinless case the time-reversal operation on the Hamiltonian is simply given by complex
conjugation ® = K and inversion of momentum k — —k. Therefore, the condition for
time-reversal symmetry is

OHEK)O ! = H(—k) = (H(-K)" £ HX) , (A.1.11)

where we exploited the Hermiticity of H (k). This restricts the diagonal elements of
the Hamiltonian to be even in momentum, i.e. #;;(—k) = #;;(k), which is indeed the
case in (Equation A.1.7) since all diagonal matrix elements are associated to the even
representations Alg and Blg. The off-diagonal elements Hij(k) with 7 # j are subject to
the condition Hl-j(—k) = Hﬁ(k) that forbids e.g. a non-zero Azg contribution in the Eg ®
E, block of (Equation A.1.7). Generically speaking, the off-diagonal elements must be
either real and even in momentum or purely imaginary and odd in momentum. Finally,
we want to know what the consequences of the breakdown of the inversion symme-
try, i.e. Dy, — C4, for the Hamiltonian (Equation A.1.7) are. First of all, if we imply
inversion symmetry corresponding to the full Dy, group but want to consider a two-
dimensional Hamiltonian / = H(k,, ky) we have to get rid of k, which results in basis
functions of Eg that are odd instead of even in k. Therefore, we have to set all matrix
elements in (Equation A.1.9) to zero. To see this, consider the inversion i operation that
leaves the orbitals invariant but introduces k - —k = (—k,, —ky, —k,) into the basis
functions resulting in a sign change for the Eg functions, if we don’t explicitly include
sin(k,), which is obviously a contradiction of (Equation A.1.3). If we explicitly break
inversion symmetry z — —z, we can actually have non-zero (Equation A.1.9) but omit
the z-component, of course. In this case, we have to prepend an imaginary +i to the
éﬁ‘g (k) and 5€g (k) elements to ensure time-reversal symmetry.
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A.1. Four-fold symmetry groups Dy, and Cy,

Table A.1.: The five d-orbitals, the Pauli matrices and their transformation behavior under all

operations of the Dy, group are used to construct Hamiltonians that comply with
the required symmetry. We divided the table into two parts where the first half cor-
responds to the operations of the subgroup C,, and the second half introduces the
group elements that exploit the three-dimensionality. The d,. orbital is invariant w.r.t.
the entire group, i.e. it transforms according to the A, representation. The orbitals
dy, and d,>_,» behave like the B,, and B, representations, respectively. Since the or-
bitals d, and d,, do mix and have even parity (due to angular momentum L = 2)
they must obviously transform according to E, . The transformation of the Pauli ma-
trices is to be understood as 0; — 5(¢)0;5(g) ¢ € Dy, where 5(g) = e77%/2, Like
expected, the inversion is the only operation that leaves the Pauli matrices invariant
since spin is a pseudovector. The irreducible representation for ¢, is A, and o, and
o, behave like E, .

Dy, dxy dxz dyz dxz —y? dzz Ux Oy U,
E dxy dxz dyz dxz_yz dzz Oy O'y o,
Ci Ay —dyy —dy, dp_p do —0x —0, 0
Ci —dy —dy, dyy —dp_p do -0y Oy o,
CZ —dxy dyz _dxz —dxz_yz dzz U'y —0y o,
O gy Ay dy, dye 2 d,» —0x 0, —0
oy Ay =l dy,  delp dp 0y =0y —0
o, dey dyy  dyy —dp_p do -0y, =0y —0,
oy Ay —dy, —dy, —do_p do o, Ox  —0y
o dyy Ay —dy, dyop d —0x —0, 0
i . dey dyy  dyy  dop do oy 0, 0
84 _dxy dyz _dxz —dxz_yz dzz O’y —0y o,
SZ _dxy _dyz dxz —dxz_yz dzz —U'y Oy o,
C. Aoy —dye dyz  dep dp oy —0y —0,
C:y ~dyy,  dye —dy de_p da -0, 0, -0,
Ca dxy _dyz _dxz _dxz—yZ d22 ay Ox —0y
C,b dxy dyz dxz —dxz_yz dzz —(Ty —0, —0,
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B. L S-coupling in p- and d-orbitals

The orbital basis that is used for the evaluation of the spin-orbit interaction operator
must be the same as the one for the corresponding SU(2) -invariant tight-binding model.
The matrix elements of the L-S-operator are evaluated by considering the representation
of this operator in terms of raising and lowering operators

Ly=Ly+il, L,=L,—ilL, (B.0.1)
of the orbital angular momentum, i.e.
1/L,+L_ L, -L_
L-S= > ( > Ux + 5y + LZU'Z) . (B.0.2)

The actions of the ladder operators and the L,-operator on the eigenstates of the L,
operator are (h = 1)

L |l,m)= VIA+1) —mm+ 1) |,m+ 1) and L,|,m)y=m|l,m) . (B.0.3)

This representation can be used to find the matrix elements of L - S by writing the
different p- and d-orbitals in terms of the L,-eigenstates. These are plugged into ex-
pressions like e.g. (p,,0|L - S|p,, o), (px,0]L-S ‘py, c7> for the p-orbitals. Since we are
satisfied with a matrix representation in terms of Pauli matrices, we only have to em-
ploy the orbital angular momentum operator and leave the spins alone. In a numerical
context (which seems almost obligatory for angular momentum [ > 2) we may proceed
as follows: first determine the operator L, and L, that are € C?+D*@+D) jn the |, m)
basis whose matrix elements are given above, set up the unitary transformation matrix
U, ,,, that takes the |/, m) states and constructs superpositions of these to get the new ba-

!

sis, e.g. the p,, p,, etc. states (cf. (Equation B.1.3)), the new L, , . are then obtained

from the “intrinsic” operators by L , . = U ,,Ly .U, , which results in the operator

t

I,m’
L-Soe._ Yz L; ® 0;. Besides, the new basis in terms of linear combinations of |/, )
states is invariant w.r.t. time-reversal. This is due to the fact that |/, m) transforms accord-
ing to ol m) = (=1)"|l, —m) [SN11, Chap. 4.4, p.276][Shal2, Chap. 12.5, p.337] under
time-reversal and we used linear combinations that combine +m and —m making these
states invariant w.r.t. time-reversal (also cf. appendix D ). Note, thatthe L’ = (L}, L’y, L))
as generators of the group imply the orbitals’s transformation behavior by means of the

operator e~ "¢,
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B. L - S-coupling in p- and d-orbitals

B.1. Angular momentum L = 1: p-orbitals

We choose the three p-orbitals states to be real in terms of the spherical harmonics
Y57 o sinfe™?, Y'Y o« cos6 and YI'T! o« sinfet’? (cf.[AWO05; CS51]) and in-
clude the spin degree of freedom (Y7"5! is denoted by |I,m)) (cf. [Chr+15, Appendix
B])

11_1/ - ]—/ 1/
Ipx) ® 10} = [py, 0) = | 2159 (B.1.1)
V2
|1/ _1/ U> + |1/ 1/ U)
py) ®lo) =|p,0) = (B.1.2)
‘ ]/> | Y > \/EZ

|pZ> o)y = |pz/ U) =11,0,00 , (Bl?))

corresponding to the unitary transformation and bases

(1 0 -1 ;
U=—|-i 0 —i pf = (a;f,x,a;f,y,a;gz) , (B.1.4)

where we assume that the states are orthonormal. We note that this definition of or-
bitals implies their transformation behavior for rotations about the z-axis by its generator
L,, which is

cos(p) —sin(gp) O
el = (sin((p) cos(@) O) : (B.1.5)
0 0 1

Therefore, the p,, p,-orbitals transform into each other while th p, is invariant. Look-
ing at the representation of the p-orbitals and L - S (Equation B.0.2) we see that we can
only get non-zero matrix elements in between different orbital states since both L, and
iy change the magnetic quantum number by one and the |p,), > contain magnetic
quantum numbers that differ by two while the eigenvalue of |p,) is zero. For example,
we have

(1,1, 0+ (1,-1, 0 L o, 11,1, a)
(oL Sy, o) = ( )
‘ y > \/E 2
1 0,
<<1 Lo+ A, -1,0) 0, (1,1,0)+1,-1,0)) = 2— (B.1.6)

Employing the basis cg,,, = (c we can summarize the

R BT e
results by
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B.2. Angular momentum L = 2: d-orbitals

1 0 —io, ioy,
L~s:§cg,(, ic, 0 —ioy|cy, - (B.1.7)
—ioy, 10y 0

B.2. Angular momentum L = 2: d-orbitals

The same procedure can be applied for spin-orbit coupling in the five d-orbitals d,,, d, ., d
Choosing a real orbital basis, we have (that complies to (Equation A.0.4))

2,-1,00-12,1
4oy BTLO 210 (B21)

V2

|21 _1/ 0> + |2/ 1/ U>
., 0) = (B.2.2)

V2i

|2/ _2/ 0_> - |2/ 2/ U)
dyy, o) = — (B.2.3)

V2i

2,-2,00+12,2,0
de_y2,0) = | )220 (B.2.4)

V2

|d,2,0) ==12,0,0) , (B.2.5)

In the following, we employ the basis

T
T
to=1(ct et b et + t ot
CO,(T - (CdXZ,CdyZ’Cdx]/’Cdx2—y2’Cdzz) ® (CT’Cl) , (B26)

and find the matrix elements of the L - S- operator to be (cf. [Kon11, p. 25] [KGF10])

0 —ic, —io, —ioy, —\/§in

| i, 0 io,  —ioy \/gio*x

L-S=5¢,| io, —io, 0 =2, 0 |Co - (B.2.7)
iy, i, 2ic, 0 0
V3io, —\3ic, 0 0 0

Note that a non-interacting Hamiltonian J{{) including any L - S terms does neither

break time-reversal © nor inversion symmetry I since both L and S are odd under time
reversal and both even under inversion. If we combine both of these symmetries, we
see that the energy spectrum is doubly degenerate. More technically, we have
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B. L - S-coupling in p- and d-orbitals

[H,0]=0  [HI]=0 . (B.2.8)

Consider the eigenvalue equation H_ [k, b, o) = ¢y , |k, b, o) and the fact that time-
reversal and inversion operation commute, i.e. [@, I ] = 0. The combined action of inver-
sion and time-reversal on some eigenstate is O |k, 0) = ® |-k, ¢) = |+k, 7) where 7 de-
notes the spin state opposite to ¢. On the one hand, we have ®I}{ |k, o) = H)OI [k, o) =
H|+k, ) = e p,5]+k, b, o) and on the other hand @THE ko) = Oley ok o) =
ex b0 | +K, b, 7). Therefore, the eigenvalues must fulfill &y j, ; = €y -
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C. Non-local spin-orbit interaction

Here, we focus on the derivation of possible spin-orbit Hamiltonians for the five d-
orbitals dy, d, ., dy,, d,2_,» and d > on the tetragonal lattice corresponding to the point
group Dy;,. It is straightforward to determine the transformation behavior of the dif-
ferent orbitals. In particular, d,, and d,, transform according to the irreducible repre-
sentation Ey, d,, like Byg, d,>_,» like By and d_> like behaves like A;z. For details see
appendix A. The second ingredient is the transformation behavior of the Pauli matri-
ces that is determined by o; — é(g)JrUié(g). To summarize, the Pauli matrices o, and
0, transform like E; and o, transforms like the Ay irreducible representation of Dyj,.
This becomes apparent in (Table A.1). Note, that orbitals as well as Pauli matrices must
transform according to even representations since they are both pseudovectors and are
therefore invariant under spatial inversion. To construct the d-orbital spin-orbit inter-
action Hamiltonian, we employ the basis

T
T
+ (.t + + + + + ot
Ao,0 = <ak,dxz'ak,dyz'ak,dxy’ak,dxz_yzfak,d22> ® (a,a;) (C.01)

In terms of this basis, the representation blocks that characterize the orbital’s trans-
formation behavior are given by

E,®E, E,®By, E,®Bj, E,®A]
t| Bg ®Eg Byy ®Byy By, ® By, By ® Ay
k B, ®E, Bj;®By; Bi;®Bj, B, ®Ag,

Alg ® Eg Alg ® Bzg A1g ® Blg Alg ® Alg

MHy=a (C.0.2)

These product representations split up into the direct sums [Gos]:

® Eg B2g B1g A1g
E, A®Ay®B®B,, E, E, E
B2g Eg Alg AZg B2g
Blg Eg A2g Alg Blg
Alg Eg BZg Blg Alg

The lower right 3 x 3 block consists of one-dimensional representations, only. Firstly,
we will focus on the upper left block involving the product of two E, representations.
The Pauli matrices are used to expand the matrix of the 2 x 2 orbital structure in this
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C. Non-local spin-orbit interaction

block. In this context, we will label these Pauli matrices in d,, and d,, orbital-space by
To, Tx, Ty and T,. Considering the transformation of the d., and d,, orbitals (cf. (Ta-
ble A.1)), we can determine that 7, transforms like By, 7, transforms like Ay, 7, trans-
forms like By, and 7 obviously transforms like A;,. The point group operations may
be implemented by {E,C»,Cy,Cy,0+,0,,04,0%} = {To, =T, iTy, —iTy, Toy =Tz, Ty —Tyh.
We note, that one may actually avoid the double group treatment in this context by
dealing with the transformation properties of the Pauli matrices exclusively, instead of
considering the transformation behavior of the actual states and spinors. This way, the
additional minus signs related to the additional group elements given by E describing
the more sophisticated transformation properties of the double group simply cancels.

C.1. Centrosymmetric spin-orbit coupling in d-orbitals

For the upper 2x2 block representing the d,, and d,, orbitals of the five-d-orbital Hamil-
tonian we found (Equation 3.1.40)

Mgl = (cos (ky) + cos (ky)) T, 80, . (C.1.1)

We proceed with the orbital sectors that involve the d., and d, . times the d,,, dxz_yz
and d,» orbitals. They're all governed by the E representation. To geta one-dimensional
representation in k-space, spin space must be described by E, i.e. 0, 0, since E;®E, =
A1y @ Agg ® B ® By, Inthed,, and d,, times d,, matrix elements ((Tx, O'y) behave like
B4, (O'y, Ux) like A,, (ax, —Uy) like A and (Uy, —ax) transforms according to B,. In

the d,, and d,, times d.>_,» matrix elements ((Tx, O'y) behave like B,, ((Ty, ax) like A4,

y
(Ux, —O’y) like A, and ((Ty, —O’x) transforms according to By. Atlast, in the d,, and d,,

times d,» matrix elements (O’x, O’y) behave like A,, (O’y, Ux) like By, (O’x, —o*y) like B,
and (U'y, —Ux) transform like A;. If we only consider up to second order basis functions

in momentum space, we can omit the A, contribution. The corresponding part of the
orbital matrix is hence given by

ifM 0% +ifP1 k)% +ifB2(k) g —if M k)7 + if Br (k)7 — if B2 (k)%
M (k) = (z‘fAl X7 +ifPr(k)g +ifB2(k)x  if M1 (k)% — ifB1 (k)% + if B2 (k)7 ) ,
ifM 7 +ifP1(k)j +ifP2 (k) —if M (k)x + if Br (k)R — if B2(k)§
(C.12)

where we used f21 (k) = cos (k,) +cos (ky),fBl (k) = cos (k,) —cos (ky) and fB2(k) =
sin (k,) sin (ky). Lastly, we deal with the purely one-dimensional orbital sectors in the
lower right part of the Hamiltonian and orbital matrix, respectively. As a consequence
of the one-dimensional representation in the orbitals and the requirement of the even
one-dimensional representations in k-space, our only option for spin space is ¢, asso-
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C.1. Centrosymmetric spin-orbit coupling in d-orbitals

ciated to A,. The d,, x dxz_yz matrix element is determined by A, ® A, = Ay, ie. an
A representation basis function in k-space. The d,, x d,. matrix element is provided
by B, ® A; = B;. Thed,, x d,» matrix element determines the momentum space repre-
sentation basis function to be B; ® A, = B,. To summarize, this results in the d-orbital
spin-orbit matrix being given in the basis (Equation C.0.1):

0 —i(2-k2-k2)z 2i(1—k2)x+ikh,g 2i(1—k2)g+ikk,® 2i(1—k2)G+ikk,*
, 0 —2i (1—k2) g —ikk,® 20 (1—k2) % +ikk,§ 2i (1—k2)% — ikok,)
M** (k) = 0 i(2-k2-k2)z —i (k2 —k2)z
0 ik k2
0
(C.1.3)

where we abbreviated cos (k, ) + cos (ky) ~2—kZ— kﬁ, sin (k, ) sin (ky) ~ kck, and
cos (k,) — cos (ky) ~ —kZ + k;. The matrix elements of the left lower triangle are given
by the requirement of antisymmetry M (k) = —M* (k).

207






D. Time-reversal operation for
single-particle terms

Consider the single particle Hamiltonian

k) RN LK)\ (e
]’l k +’, — +,,+/ T(zxa’ an’ )(kwT) ,
Mo Z 0; 02(7: (k) Cxa’ o' Ckaor ; 0; (Ckzx 1 Cru l) hiTa,(k) hiclu’ (k) Ckay

(D.0.1)

with momentum k, orbital indices a, &’ and spins ¢, ¢’. The (antiunitary) time-
reversal operator for spm—— particles is given by © = —io, K with the inverse ©~1 =

+i(TyJ€ where ¢, and K are the second Pauli matrix and the operator of complex conju-
gation, respectively [Wig12; SN11] [Sch05b, Chap. 11.4, p.228]. Assuming we work in a
(real) orbital basis that is time-reversal invariant, we don’t have to care about the orbital
transformation, since the complex conjugation of matrix elements is already taken care
of by ® (cf. appendix B). To find the time-reversal of (Equation D.0.1), it is convenient
to use the transformation of creation and annihilation operators w.r.t. time-reversal, that
is !

t IR &) ® O
k't T Oc Cka lT Z C—kzx T : (D'O‘Z)

Note, that the momentum is not affected by the operator itself and must be inverted
“by hand”. To see, that the time-reversed operator may be written as a sum over matrix
elements of a single operator, we may best take a simple spin state > With these prereq-
uisites the time-reversal of (Equation D.0.1) is

OH O ! ZZ Z OhLZ (K) ¢ i uae® 1 = h7% () Oct , cwe®t
a,n 0,0’ k a,un 0,0’
(D.0.3)

! Consider the state |1p) = ¢ |¢) which is generated by the action of c® on some state |¢). Using the
time-reversal operator © and its inverse @1, we have |¢) = cP @~ 1@ |¢). The action of time-reversal
on [p) is @ ) = OcPO1@ |p). Therefore, the operators must transform like ¢ — @cM @1

2 Let |p) = xI1) be a “pure” spin-up-state, that can also be expressed by |¢) = )CC‘TL |0). The effect of
time-reversal is ©® l$) = —x L) = —xc! 10). However, we can also transform the operator ¢} — @c}r@*l
which results in @ |¢) = YOc!©~!|0). Therefore, we must have Oc!®@~1 =y O, ;.
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D. Time-reversal operation for single-particle terms

where we let the complex conjugation part K of the operator from the left act on the
matrix element of the Hamiltonian. The transformation of the operators can be evalu-
ated by inserting an identity in terms of time-reversal operators ©~1@ = ¢, in between.
Now, we can employ the property (Equation D.0.2) to find the transformed Hamiltonian

O} 6~ Z D Y00 g with BET (K0 = Z W7 (k) 0,021,
o, o' T, T’

(D.0.4)

Keeping the original basis with operators at k and transforming the matrix elements
only (compare coefficients in terms of operators), we obtain

, W (—k) =k (k)
hoo' (k) B[ Taa o . D.0.5
aa’ (K) (—hlfa,(—k) W, (—k) ( )

Instead of the Hamiltonian, we often consider the non-interacting action S, (like e.g.
in (Section 3.3), (Chapter 4) and (Chapter 6)) in terms of the Grassmann fields ¢ and

.

Z Z Z/ lpnkzx’a (Zw hmT k))¢nkmf . (D.0.6)

In contrast to the creation/annihilation operators, the Grassmann fields are actually
conjugated under time-reversal and transform according to (cf. [KBS10, chap. 6.3.2])

Prac = @1/) kao = Z ( ) —kat
l/_)kmr B’ ®_17~/_7— Z (+IU ) lrb kat — Z lab—ka’r ( y)TU ’ (D-0~7>

where the conjugation of Grassmann fields, however, must not be taken as complex
conjugation. Inserting the transformed fields into the non-interacting action (Equa-
tion D.0.6), yields

Sold 9] = D Y Yo (—ivy) , , (iw =T 10) (=ivy) $oyar

ka,a 0,0’

= Z Z/ ZI<—in)T,U (lw hmT (k)>( ) ( l/J kat¥— ksz) ’

| (D.0.8)

ko, T, T

where the anticommutation of Grassmann fields produces an additional minus sign.
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The inner bracket evaluates to (neglecting the Matsubara frequency that does not trans-
form, anyway)

, / , —-ht k) R (k
Z <_lay)ffgl ]’ZZD(Z; (k) <_lay)g1 = ( hTfC?(i()) _ﬁﬁf(li)) , 4 (D09)

o,0’

To obtain the final transformation behavior, we have to compare the basis in (Equa-
tion D.0.8) with the untransformed basis o Piqo in (Equation D.0.6). To summarize,
the orbital and spin indices are exchanged, the momentum is inverted to —k and we get
a minus sign from the Grassmann fields. Therefore, the transformation of the matrix
elements is given by

L ( hi}i %(—k) —i:%}ﬁ—k)) _ ( hi ., (=Kk) —hifx,(k)) | (D.010)
au e A N e I S TS S
where we made use of the Hermiticity of the Hamiltonian. We may also directly
transform the matrix elements by

hgg (k) BB OhgY 0O~ = (—ic, K) hgs (=k) (+io, K)

n(—k) —hl_T,(—lo)
= an' o . D.0.11
(—h;m—k) OANICE NIV ( :

Apparently, the result (Equation D.0.10) of the passive transformation is fully consis-
tent with the one (Equation D.0.11) of the active transformation. Hence, the Grassmann
tields enable us to perform the time-reversal operation as a passive as well as an active
transformation. In contrast, by using creation/annihilation operators we’re unable to
disentangle the transformation of basis and matrix elements for time-reversal (which
is in general true for any antiunitary (antilinear) transformation). In particular, in a
numerical context, this is an essential result since we usually (have to) keep the basis
while transforming the matrix elements. In particular, for higher-order vertex functions
the passive (basis-) transformation turns out to be of extraordinary convenience. Fur-
thermore, the time-reversal operation by means of transformation of fields is equally
well applicable to off-diagonal or anomalous terms like the superconducting gap (cf.
(Section 2.4.4)).
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E. Local basis transformation and
BCS-Theory

In (Section 3.2) it was shown how the Bloch states can be uniquely and unambiguously
defined by requiring the components and phases of eigenstates of the single-particle
Hamiltonian to be continuous and differentiable along any path through the Brillouin
zone. In fact, this definition is only unique up to global phase. Here, we will discuss and
comment on different choices of Bloch states and their restrictions regarding the inves-
tigation of the BCS ground state and its symmetry. The relevance of the phase of Bloch
states was noted a long time ago in the context of Wannier functions [Koh59; Koh73] and
this degree of freedom in the definition of Bloch states has been exploited ever since
to obtain maximally localized Wannier functions [MV97; Mar+12]. The eigenstates of a
single-particle Hamiltonian # in the presence of the potential V (r) exhibiting the peri-
odicity V(r + R) (R being a real space lattice vector) of the lattice are given by [Blo29]

Howpo = Gavolicve  Where Py = Prper (1) = €5 1, (1) X (E.0.1)

with crystal momentum k, band index b, cell periodic function u;,(r) = 1, (r + R)
and spinor ). By means of the Bloch states (Equation E.0.1), we are able to construct
Wannier functions given by [Wan37; HS75]

1 . .
Proc (D) = =— | dke™™ Ry (1) and  Pipe() = ) ige™R prop(r) . (E02)
QB 7 VYBZ o
that relate to the Bloch states by (inverse) Fourier transformation. Both Bloch and
Wannier functions provide an equally valid description of the system. The Bloch func-
tions exhibit a “gauge freedom” that amounts to the transformation

Yivr (1) = PO (1) or g (), = () = P Oug(x) , (E03)

with ¢;,(k) € R being a real function periodic in reciprocal space. Note that this
gauge freedom - although introduced in the Bloch states - equally affects the Wannier
functions and their properties by (Equation E.0.2) but does not change the physical
description and properties of the system. In particular, as long as we require the phase
@po (k) tobe “smooth”, which is to say Vi iy, (r) is well-defined throughout the Brillouin
zone, the Wannier functions are “well-localized” [Blo62][Mar+12, I A 1.]. Another
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E. Local basis transformation and BCS-Theory

important aspect that arises in the context of the phases of Bloch states is the concept of
the Berry phase [Ber84]. Although the Berry phase has a gauge-invariant formulation,
a proper and “smooth” treatment of the Bloch phases is capable of revealing the Berry
phase as well and may therefore serve as a double check for a suitable definition of Bloch
states [Zak89; XCN10b]. So far, we only discussed the properties of Bloch functions and
related quantities themselves without actually making use of the Bloch states as a basis
for a transparent representation and convenient calculation of correlation functions in
the context of i.a. RPA and FRG methods. Henceforth, it is of particular importance
to distinguish between the dependency of Bloch and Wannier functions on their gauge
and the corresponding basis transformation. In order to choose a suitable gauge to work
with, we present two different basic recipes to fix the gauge freedom of the eigenstates
of the single-particle Hamiltonian:

1. require the eigenstates to transform trivially under all point group operations

2. require all components of the eigenstates (including their phases) to evolve con-
tinuously through k-space

Looking at the first concept, let’s first define what trivially is supposed to mean. Con-
sider an eigenstate u, at k, which is mapped to the corresponding eigenstate i, at
k' = P(g)k for an operation ¢ € (, with (; being the point group and £ the repre-
sentation of operation g in k-space. If the mapping can be written as G, = D(g)uy
without employing any additional phase, where £ (g) is the representation of g in the
space of the single-particle Hamiltonian, the eigenstates are said to transform trivially.
In contrast, if the eigenstates lack the trivial transformation behavior, they satisfy ), =
e'Pr D ( g)uy, in general (which is sometimes called the “natural” and “non-natural” ba-
sis, see [MHW13]). Trying to implement a natural basis (trivial point group transfor-
mation behavior) in conjunction with a momentum independent representation 4)(g),
inevitably leads to contradictions in the definition of basis states at special k-points along
lines (in two spatial dimension) and planes (in three spatial dimensions). This is due

toD(g) # 1Vg e {Q\E} for k with k = P(9)k.

Momentum dependent representation In (Section 3.1.2), (Section 3.3.1) and (Sec-
tion 3.3.2), we consequently stuck to a (unique) single-particle basis in orbital-spin
space, which gives rise to point group representation matrices 1(g), that are momen-
tum independent. This is motivated by finding representation matrices, which directly
reflect the physical transformation behavior of the orbitals and the spin degree of free-
dom. However, we also could have introduced (local) representation matrices 2, (g)
parameterized by momentum k by requiring the single-particle Hamiltonian Hg in
band basis - which is equivalent to the diagonal matrix containing the band dispersions
- to transform trivially, assuming a suitable band labeling, i.e. (cf. (Equation 3.3.33a))

uk}f()kult = diag(gklf’ ngnl) = u@(g)k}ﬂol?(g)ku})(g)k 7 (EO4-)
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where the dimension of the Hamiltonian - given by the number of orbitals and sub-
lattices - is n. The momentum dependent representation can be read off from (Equa-
tion E.0.4) by solving for # p(qy in terms of Hy, which gives

Hopge = UpgncUidHoc g pgyic = D@ HorDie ()T (E.0.5)

and defines the k-dependent representation D (g) = U}) ( g)kllk in orbital-spin space
(cf. [MHW13, Sec. 5.2]). Assuming a trivial transformation behavior in band basis in
(Equation 3.3.37), i.e. By (g) = u‘j)(gfl)kﬁ)/(g) U{ = 1 and solving for the representation
L( g1 )kuk'
Using these k-dependent representations will eliminate the inconsistencies in the defi-
nition of a natural basis, since Dy (g) = U}D (g)kllk = 1 for all k with P(g)k = k, at the

matrix in orbital-spin space, leads to the equivalent result D(g) = Dy (g) = U

price of introducing a basis with obscure transformation behavior that does not reflect
the physical properties of orbital and spin degree of freedom.

Minimal two-orbital model for the pnictides To make our consideration regarding
the phase of eigenstates more transparent, we employ a two-orbital model that is used
in the context of the pnictides. It is defined in terms of d,, and d, ,-orbital states and is
given by [Rag+08] (cf. (Equation A.1.7))

C-r T
Ho= Y el [0, 0070 + G, 007+ o, (0T e, el = (257) (B0
ko yz o

where 7y, 7, and 7, are the Pauli matrices in d,, and d,,-orbital space. The matrix
elements and their dispersions are defined by

CAlg(k) + @Blg(k) = —2t; o cos(k,) — 2t5 4 cos(ky) — 4t cos(k,) cos(ky) —u
CBZg(k) = —4t,sin(k,) sin(ky) , (E.0.7)

with the tight-binding parameters t; = —1,t, = 1.3t,t3 = t; = —0.85¢t; and p =
1.45t;. The resulting band structure, density of states and Fermi surface pockets are
shown in (Figure E.1). The eigenmodes ¢, and u; , of the single-particle Hamiltonian
(Equation E.0.6) can be calculated analytically and are given by !

! The unitary transformation from orbital to band space is given by
N L i B R P
2 2|gd 2 2|¢id

1 00 1, Ty 10
2 2 20 20g

which is not affected by any k-dependent phase e~'#x multiplied to the first/second row (or both).

U, = and obeys UfU, =1, , (E.0.8)
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Figure E.1.: The single-particle spectrum of the two-orbital model of LaFeOAs features two
bands, which give rise to two hole pockets at I' and M and two electron pockets X
and X'. The color and shape code indicates the dominant orbital weight - 4., versus

d, - of the Fermi surface states.

_—, —_ + —_
210 N2 20g]

with [ = [ 0+ () (E0.9)

T
11 G0 |1 _ G, (0
ke = Ca, O £ 10 ey = | F e

Due to the analytic expression (Equation E.0.9) in terms of the matrix elements of the
Hamiltonian that transform according to irreducible representations of Dy, the trans-
formation behavior of the eigenstates is obvious. Under a rotation about the z-axis by
5 the absolute values of the components of 1, are exchanged. This is illustrated by
(Figure E.1), where we can see that the dominant orbital weight is exchanged under
this rotation on all pockets. Furthermore, the transition from dominantd, to d, .-orbital
weight and vice versa coincides with the line nodes of the By, representation basis func-
tions along the diagonals with k, = k,. The normalized eigenstates still have a degree

of freedom being the overall sign or any k-dependent phase e'Px, ie. the transforma-
tion uy, — e 'kuy , obviously does not affect the considerations above and the prop-
erty of uy, being a normalized eigenvector of the Hamiltonian. By employing some
k-dependent phase to the eigenvectors, one can generate an infinite number of differ-
ent sets of eigenvectors. However, we are interested in the two particular choices for
¢4 that will either let the eigenstates transform trivially under any point group oper-
ation of the underlying lattice or make the absolute values and phases of all eigenvec-
tor components change continuously along a closed path through k-space (except for
single-particle Hamiltonians with topologically non-trivial properties). Both of these
two sets of eigenstates are shown in the two right panels of (Figure E.2), while the left

216



Xz Yz Xz yz Xz

«\ |
a2 L B e
e
kx

Figure E.2.: The phases of eigenstates of the Hamiltonian usually vary in a random and arbi-
trary way along the Fermi surface (left panel). Here, a single arrow represents one
real eigenstate uy, and its d,.; and d,, components along the k, and k, coordinates
at the respective Fermi momentum. To find a more suitable “gauge” for the cal-
culation of correlation functions, one can either employ point group symmetries to
make the eigenvectors transform trivially (“natural basis” in center) or let them be-
have “smoothly” (right panel) along a closed path through the Brillouin zone. Note
that, the “smooth” eigenstates on the right are the only set of eigenstates with V) 1,
being well-defined for all k € BZ. The insets plot the #}* and u;~ components of the
eigenstates along the particular Fermi pockets.

one illustrates the usually random phases of eigenvectors as generated by numerics.

The eigenstates in the center represent the basis states that transform trivially un-
der all point group operations (where we assumed the “physical” k-independent point
group representations), i.e. w = D(g)w with k' = P(g)k for an operation g € g,
with (; being the point group and P the representation of the operation g in k-space (cf.
(Section 3.3.1)). For instance, the rotation by = > about the z-axis, denoted by ¢ = C4 will

Ci Ci
transform the orbitals according to d,., —> —d,, andd,, — d,.,. Therefore, we have the
representation

D@ =Cy = (? _01> , (E.0.10)

in the space of the Hamiltonian. Furthermore, the reflection in the y-z-plane is rep-
resented by 1) (c,) = diag(-1,1). Applying the rotation by 7 twice and the reflection
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E. Local basis transformation and BCS-Theory

once, an eigenstate i, k,)+ = (™%, u¥*)y, transforms to (—u**, —u¥* ) (k)4 and
(—u™*, u¥*) (—hey )47 respectively. However, for a momentum in the limit of ky — 0 both
operations map tok' = (—k,,0), which results in a contradicting definition of the eigen-
state at k’. By considering all other operations and the multiplication table of the point
group, we can see that the requirement of trivially transforming eigenstates necessar-
ily leads to inconsistencies (more specifically discontinuities) along all high-symmetry
lines, which are indicated by the dashed green lines in (Figure E.2). Even worse, tak-
ing into account the actual three dimensional point group reflecting the symmetry of
the Hamiltonian, which is Dy, and considering the reflection in the x-y-plane that maps
both orbitals xz and yz to its negative, the inconsistent definition of all states in the x-y-
plane becomes apparent.

Extended s* versus s-wave in the iron pnictides To appreciate the consequences of a
“wrong” basis choice, we make use of the widely accepted s, -wave, which is believed
to be the pairing symmetry in the pnictides [Maz10]. Its lowest order harmonic in k-
space corresponds to the second order harmonic of A;, and is f** (k) = cos(k,) cos (ky).
Hence, for a Fermi surface like (Figure E.2) it corresponds to nodeless gaps on all pock-
ets, since the nodes of f °+ do not intersect with any Fermi sheet, but with opposite signs
for pockets around I and M versus pockets around X and X'. According to the analysis
of order parameters in (Section 3.4.1) the relevant interaction responsible for the forma-
tion of s, pairing is given by (cf. eg. [Tho+11a; Tho+11b])

+
t ot — 5+ ( 5+ t ot
Vka% CkPTC—kFlC—k;cTCk;cl _fkp (fk’P> CkaC—kplC_k%TCk%l . (EO]l)

Note, that compared to the formalism introduced in (Chapter 3) the two band indices
of the basis states were omitted in favor of a more transparent notation, by simply having
twice the number of momentum states for the single band index. Furthermore, all basis
states are restricted to the Fermi surface denoted by the subscript F. Let’s assume the
basis operators in (Equation E.0.11) are the basis states corresponding to the “smooth”
basis of the right panel in (Figure E.2). We setup the basis transformation

1—sgn (COS(kx) cos(ky)>
2

t it . At —ipyn . & : —
Chep = €PCy, =0, Cip = €77k, = O, with ¢y =

(E.0.12)

which brings the “smooth” basis cltp to the new basis c”lf(F. Inserting the new operators

(Equation E.0.12) in (Equation E.0.11) will yield the order parameter to be of s-wave

symmetry. While, it is, of course, invalid to change the basis at will, the example shows
that an arbitrary choice of basis will eventually result in a wrong pairing symmetry.
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Free energy of the BCS-Hamiltonian Consider a Hamiltonian in basis cf, . with single-
LT Y

particle dispersion {5 and effective interaction Uy /" )"\ ), ,l.e.

_ + b,o1,b,0,,b",01,b",05 + +
=) Gaotlpstaor ) ) D Ul e Ciebir, Cocbir, C—Kb 5 Ckrb' 7
Kbor W& b0 7,0,

U103

(E.0.13)

Employing a mean-field theory with fi,55 = (c_1p5CKps ) according to (Equation 2.4.6)
will result in the BCS-Hamiltonian

1
_ + +t
Hpcs = Z Ckbir ChpCbe T+ 5 Z Z (Akbfr’& C_kbCkbi T Dveo Ckb(rc—kbff’) +K£
b

k,b,o 7,0
(E.0.14)
with the definition
_ b,o,b,0,,b",07,b",55
Meviry v, = 2 Z Z Uy o ™ heveyer (E.0.15)
A
and the complex number
b,&‘l,b,ﬁ‘z,b',ﬁ' /blla'l
K=~ Z Z U w2 haose e - (E.0.16)
kb Kk',b
01,02 01,0,
Consider the basis transformation
hpe m ePeoct, =l and  oge - e TPy = Ggy (E.0.17)

The transformation of (Equation E.0.13) to the new basis is most conveniently done
by inserting appropriate terms like 1 = ¢~ #woe'Pe into the Hamiltonian. While the
total Hamiltonian must of course be invariant under this basis transformation, the k-
dependence of the interaction generally changes, according to

~b,o,b,5,,b 7 b5 —irps. =IO _1pen 1 70,01,0,52,b" 5 0,5, Firy s P s
Ul w2 2 =e Pz =100, Uy T 2 v e T T (B0.18)

with flll: ‘Zi(’,l’lfi’ﬁ’,’gi’b”% being the interaction in the basis CNltb 5 Taking the transfor-
mation of the remaining entities into account, one finds that the gap equation (Equa-
tion E.0.15) is form-invariant under the basis transformation, while the gap itself trans-
forms like
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E. Local basis transformation and BCS-Theory

Nviry, = e—z¢kb&1—l¢_szAkb&1&2 = Akbalaz ) (E.0.19)

Note, that this statement is not related to the lowering of the free energy by a complex
superposition (introduction of a relative phase e'*) of two degenerate gap functions to

form a topologically non-trivial state [Che+10]. Let’s have a look at the free energy of
the BCS-Hamiltonian, which is given by

J = (Hpcs) =

Tr (MBCSe_ﬁ}{BCS) p) . N
Tr (e_IBH’BCS) = —a—ﬁan with Z2="Tr (e :BMBCS) . (E.0.20)

Evaluating the trace with respect to the eigenbasis (Equation 2.4.21) and the quasi-
particle energies E,;, (Equation 2.4.19), we find

F=-p1 ;m (14 e PRw) + ; Ep+ K . (E.0.21)

While the quasiparticle energies Ey;, must be gauge-invariant, i.e. invariant w.r.t. to

the basis transformations, we have a closer look at the constant K, which transforms
under (Equation E.0.17) to

K i, ~iP_wbory ubﬁyb,ffz,b',ﬁ{,b’,ﬁé +i¢k'b'n’7i +i¢—k’b’[7é
S € Kk K,k €
kb K,b'
P N A
01,02 01,0,

iPubory TiP vy Fobs

—i¢_ ’ /~/+i(l) 10t
(7’[7’6 kba2 kbgl:%
2¥1

kab?fzﬁ’le , (E.0.22)
and therefore appears to be “gauge-invariant” as well. Hence, all superconducting
states and their associated BCS-Hamiltonians that arise from the basis transformation

have the same free energy and cannot be distinguished.
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F. Parametrization of Cooper channel
interaction

According to (Equation 3.4.26), one can decompose the Cooper channel of a spinful
two-particle interaction by

bl 5,555 7~ , bb i
Uge 2 " Puovor v oy P—xvo, Prvor, = Upgd” PropPiy (F0.1)

with 4, v € {0,1, 2,3} and the bilinear

P_1wiPuvt — P-icoi Pucvt

- ~P_ 1Pt + P-i1Prcv
Pl = (i0,0,)  $rpodups = | T iPr T PweiPuaer | (F.0.2)
ko = (10379 5. Ovatio 1 _weiPrvi + P11 Prce
PrwiPret + Pt Pt 7,
This expansion is justified by the four Pauli matrices representing a complete basis of
complex 2 x 2 space. We have 4 x 4 x 4 = 64 terms on the right hand of (Equation F.0.1),
while on the left hand side only 2* = 16 different terms in pseudospin space occur.
Hence, every vertex element on the left is related to four element on the right hand
side. However, the linear system of equations is neither under- nor overdetermined
but exactly balanced since there are sixteen degrees of freedom on either side. Note

sy . . bb' uv t b'bvu
that the Hermiticity of the two-particle vertex ensures that <Ukk, ) = Uy, " For
instance, the definition of the bilinear (Equation F.0.2) suggests that the vertex element
Uﬁﬁ’,”” is connected to the elements Uﬁlb(l,” "with ,v € {1,2} only. In particular, by
looking for all coefficients on the right hand side that are associated to the basis term
Prvri P_1ep 7P 1 Prpi, We find the relation

bb' 1111 bb'11 _ ;77bb’12 | ;717bb'21 bb'22

; bo'TTIT 7 pbb'TITT bb'T1IT ;
Analogous expressions for the elements U, ', U, ;""" and U, """ depending on

Ulli’,” Ywith i, v € {1,2}, exclusively, can be worked out straightforwardly. By inverting

this linear system of four equations, we find expressions for Uﬁil,” "with u, v € {1,2} in
terms of the original vertex elements on the left hand side, e.g. we get
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F. Parametrization of Cooper channel interaction

b TIFE g bl TITT
) . , U+ Uy,
Uit = — Kk kk e (F.0.4)

The elements Uﬁﬁ,lz, Uﬁlb(l,ﬂ and Uﬁ’(l,zz depend on the same vertex elements but in-

volve different combinations of signs. The linear systems of equations for the remaining
elements split up into thf?e: sets: Uﬁﬁl,ool . l:lﬁi’,og: , ULE'30 and UPY'33 are determined by the
four vertex elements UYL, 7977 and UPY,7997 (7 is the opposite pseudospin state w.r.t. to

) that involve an equal number of both (%, [)-pseudospin states, Uﬁﬁ,m, Uﬁﬁl,oz, Uﬁlb('?l

and ULY'3? are determined by the four vertex elements ULY,777% and UPY, 7777 that in-

volve three equal pseudospin states, two of which are the primed indices and finally

bb'10 77bb'20 77bb'13 bb'23 . bb' 5555
U™, U=, Uy and Uy~ are determined by the four vertex elements U, )},

and Uﬁﬁiﬁﬁ& 7 that involve three equal pseudospin states, two of which are the unprimed
indices. In particular, we have e.g.

bb'1171 bb'1111 bb' 1111 bb' 1111
LIPb'03 Uge ~ +Uge — —Uger™ —Uge
kk’ 4
DYTRFT _ bt TFIE g bU'TIT g b0 TIFD
Lbb'20 — Upge Uy U™ + Upge F05
Kk = 4 - (F.0.5)

Referring back to (Equation 3.3.48) that shows that spatial inversion symmetry re-
quires the Cooper pair vertex to be invariant under exchange of both primed and un-
primed pseudospin indices, we can check what happens with the newly parameterized
vertex elements under spatial inversion. While we find that

QoA _ T _ b T b T
bb'11 bb'11 _ KK’ kK’ kK’ kK’ _ 77bb'11
ubbal bkl — N = Uttt (R0.6)

is invariant under inversion anyway the terms that involve # = 0 and v > 0, like

ubb T + ubb il _ Ubb Nl _ ubh Tt

! ! kk’ kk’ kk’ kk’ !
ubbios - ybbos, = 1 =-utt =0 , (F0.7)

must actually vanish in presence of spatial inversion symmetry. Henceforth, in pres-
ence of spatial inversion symmetry the vertex Uﬁi,ﬂ " must have the block diagonal struc-

ture
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i.e. there is no mixing between singlet and triplet sectors, which becomes apparent
from (Equation F.0.1) as well, by considering that its right hand side can be invariant
under inversion only if both bilinears are either even or odd with respect to k — —k.
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G. Multi-orbital interactions

In multi-orbital systems with fermionic Coulomb repulsion, the interacting matrix ele-
ments can be modeled by a SU(2)-symmetric Kanamori Hamiltonian with five indepen-
dent, local parameters (see [Kan63; GMM12])

H; = Z [Uannm +u Z ngnp + (U =) Z annbg

i a#b a<b 0
/ T ot " t At
—J Z ChCh CorCay + ] Z caTcalcblch]
a#b a#b
.— t +
= Z Z Z uadl,bnz,a’dib’aécg'giCb'gécb@cual : (G-O-l)
i ab, 171/172,,
ll’,b’ 01,02

with lattice site index i, orbital indices a, b and spin indices ¢, ¢’. The electron number
operator is defined by n,,, = ¢} _c;,,. Note, that if Hund’s rule coupling is defined by
J S-Sy withS, =%, 0 yo'ChoCpor being the spin operator, there’s an “overlap” of
matrix elements of interorbital interaction and Hund’s rule coupling for parallel spins.
In a numerical context, which makes use of the full spin-dependency of #;, we have

to make sure that the interaction tensor U,y i, 4’0 ', 1S antisymmetric under particle

exchange as indicated by the fermionic operators ¢}, , c;,,. Due to the combination of
orbital and spin degrees of freedom this requirement bears some intricacies. The inter-
action tensor for a intraorbital interaction U, which is a density-density interaction of

electrons in the same orbital, is simply given by (cf. (Equation 3.3.19))

uintra — _
ao’llbg'z,a’g'ib’g'é - uintra (50101 5U2U£ (Sglgé(sﬂ’zﬂ’i) (Sﬂﬂ’(sbb’éﬂb . (G'0'2>

In the language of (Equation 3.3.19), the spinless interaction V is simply V;“;Z‘}?, =

Uintra- However, for the interorbital interaction U, the orbital structure has to be adapted.
Choosing (any) two orbitals a, b the structure of the interaction tensor is

uinter

uag'llbg'zla/g'ib’g'é = Uinter (_5(71(7{5020£5aa’5bb’ + 5(71(755(72(7151117’5%1’) <1 - 5ab) ’ (GO?’)

which amounts to the spinless interaction tensors Viﬁ;‘fij, = —UinterCaa Opp (1 —9,p) and
V;i‘;,‘%r, = —UinterOap Opar (1 — d,p). Both of them satisfy V%ﬁ;‘,‘;f, = V;;igfj;,, as required. Al-

though we won’t mention them explicitly, the same requirements apply to the remaining
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G. Multi-orbital interactions

types of interaction. To go beyond density-density interactions, we consider Hund'’s rule
coupling corresponding to the (partly) third and fourth terms in the Kanamori Hamil-
tonian (Equation G.0.1). The associated tensor takes the form

u{;g—‘f:ig—zlﬂ’g'ib’gé = ]Hund (_5171173 5172(75 ab’éba’ + 51711755020{ 5aa’5bb’) (1 - 511!1) ’ (G'O'4>

where we have to assume | = ]’ in order to get a SU(2)-symmetric form of the inter-
action. Finally, the pair hopping interaction tensor is given by

UL]zI:;ilr,baz,u’Uib'Ué = ]Pair <_5V1‘7{ 5‘72% + 5‘71‘755172‘7{> 5’1h5’1'h' (1- 5’1’1') ’ (G'O'5>

To summarize, the total interaction tensor U,., v, ! by for a two orbital system

contains eight finite intraorbital matrix elements, sixteen interorbital and Hund’s rule
coupling matrix elements and eight pair hopping interaction matrix elements.
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H. Point groups in two and three
dimensions

As a reference for the definitions and notations of the point groups and their elements
used in the main text, we recapitulate the basics of point groups C,, and D, in two and
three dimensions. To this end, we list the

e definition of point group elements
e multiplication table
e character table

e basis functions for irreducible representations

for each point group.

zZ— —Z
+ N /_\ WY
o ® -
E
/ X /'E‘x

(a)
(b)

Figure H.1.: (Figure H.1a): The point group C,, is made up of eight elements including four
rotations and four reflections. (Figure H.1b): The point group D, is comprised of
sixteen operations, eight of which are elements of the subgroup C,,,. The additional
eight elements are obtained by multiplication of all C,, elements with the reflection
in the horizontal plane perpendicular to the z-axis. These additional elements are
the reflection in the horizontal plane ¢, the inversion i, the rotoreflections S} and
S; and the rotations about four different axis’ in the x-y-plane C;, C,, C; and Cj,.
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H. Point groups in two and three dimensions

Table H.1.: The multiplication table of C,, shows the products g1,8, € Cyp, £192 = 3 € Cyp
of all point group elements. Apparently, the group is non-Abelian. Therefore, we
defined the elements g; to be the ones in the column on the left.

E CZZ C‘IZ CZZ Ux Oy  Oda  Odp
E E C. C Cp 0o 0y 0u 0g
Ci, CI, Cpp E Ci 04 0gp Ty
Co, Cio, E Cyp CL og o4 oy
Co, Cp. Cpp Cf E 0y o0 ogy 04
Ox Ox Ugp Uga Oy E Ca; CAIZ le-z
o, 0y 04 0@y 0x Cop E Cp Cp
Oda  Uda Ux Oy  Oap Ciz CAIZ CZZ
Oap Oap Oy Ox 0gn Cp Cp Gy E

Table H.2.: The multiplication table of the point group Dy, shows that the group is constructed
by the direct product of the group C,, and the reflection in the horizontal plane, i.e.
D4h = C4’() ® 0y,.

Dy, E G C C o o0, 0, 0, 0, i S S5 C. C, C G
E E G ¢ C o o0, 0, 0, 0, i S S5 C C C G
G G E G C o, oo 0 0, i o0 S S5 C C G G
GG ¢ G G E o, o 0, 0o S§ S i o G C C C
C; CG CG E G o0 o0, 0o 0, S§ Si o i C G C C
o oy o, 0 0, BE G C C C C G C o, i S Sf
oy o, o 0, 0 G E C C C C C C i o0 S S
o, o0, o0, o0p 0, CG C E G C C C C S§ S o i

o oy 0, 0, 0o C4 C C E G C C C S S i o
op o i S§ S C C C G E G C C o o0, 0, 0
i i o, S S5 C C G C G E C C o, oo 0, o0,
S S S i o C G C, C C C G E o o0, 0, 0y
Sy S Si o i G C C C C C E G o, 0, 0y o0
C, C C C C o i S Sf oy o, 0, 0, E G C C§
¢, ¢ C G G i o0, S S o, oo 0, 0, C E C G
¢ C G C C S S o i o, 0 oo o0, C4 C E i

G & C ¢ C S S i o o 0, 0, 0o C4 Cf C E
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Table H.3.: By constructing all adjoint group elements, by evaluating ¢1,9, € Cyo, &1 — $38182
for all elements of C,,,, we find that there are five classes of the point group.

+ -

E C Cp Cx Oy  Oda  UOdp

E E E E E E E E
+ 3 3 3 3 = = = =
C4z C4z C4z C4z C4z C:L_z C:L_z C:L_z CA_L'_Z
C4z C4z C4z C4z 4z C4z C4z C4z C4z
C2z sz CZz CZz CZz CZz C2z CZz CZz
Oy Ox Oy 0y 0y oy 0y 0y
oy o, 0y Oy Oy oy Oy Oy
90 Oqa Oga Ogp Ogp Ogp Ogp Oda O4g
Ogb Y9ab Cdb Y9da Uda Y94a UOda UOgp Ogp

Table H.4.: The character table of Cy, lists the five irreducible representations. There are four one-
dimensional representations, namely A, A,, By, B, and one two-dimensional repre-
sentation given by E.

E 2C4, Gy, 20 20y
Ay 41 +1 +1 +1 +1
A, +#1 +1 +1 -1 -1
By +1 -1 +1 +1 -1
B, +1 -1 +1 -1 +1
E +2 +0 -2 O 0

Table H.5.: The basis functions of the square lattice for all irreducible representations of C,, are
constructed by considering all n-th nearest neighbor on the lattice and by employing
all operations and associated characters (cf. (Figure 3.4b)).

1st

2nd

cos(x) + cos(y)
0
cos(x) — cos(y)
0
sin(x), sin(y)

sin(x) cos(y),sin(y) cos(x)

cos(x) cos(y)

0
0

sin(x) sin(y)

3rd 4th
cos(2x) + cos(2y) cos(2x) cos(y) + cos(x) cos(2y)
0 sin(x) sin(2y) — sin(2x) sin(y)
cos(2x) — cos(2y) cos(2x) cos(y) — cos(x) cos(2y)
0 sin(x) sin(2y) + sin(2x) sin(y)
sin(2x),sin(2y) sin(2x + y),sin(—x + 2y)
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H. Point groups in two and three dimensions

Table H.6.: The elements of Dy, are grouped into ten classes. Hence, the character table of the
point group Dy, contains ten irreducible representations, which are distinguished

by their even or odd parity.

Dy, {E} {C} {CiCi} {owoy} {owop} {ow} {i} {SiSi} {CuCy} {CuCp)
A +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
Age 1 +1 +1 -1 -1 +1  +1 +1 -1 -1
By +1 +1 -1 +1 -1 +1  +1 -1 Sl -1
By, 41 +1 -1 -1 +1 +1  +1 =1 =1 +1
Eg +2 -2 0 0 0 2 +2 0 0 0
Ay, +1 +1 +1 -1 -1 -1 -1 =1 +1 +1
Ay, +1 0 41 +1 +1 +1 -1 -1 -1 -1 -1
B, +1 +1 -1 -1 +1 =1 -1 +1 +1 -1
By, +1 Rl -1 +1 -1 -1 -1 +1 -1 +1
B, +2 -2 0 0 0 +2 -2 0 0 0

Table H.7.: The n-th nearest neighbors basis functions, which transform according to any irre-
ducible representation of the point group, are constructed by means of the character
table,. Note, that these lattice harmonics may be constructed for up to an arbitrary
number of nearest neighbors. However, particular lattice harmonics may vanish for
a particular order 7, e.g. there’s no finite A, lattice harmonics for up to third nearest
neighbors, while the By, function is zero for first nearest neighbors.

Dy, 1st NN 2nd NN

A1g (cos(x) + cos(y)) cos(z) cos(x) cos(y) cos(z)

A2g 0 0

By (cos(x) —cos(y)) cos(z) 0

By, 0 sin(x) sin(y) cos(z)

E, sin(x) sin(z), sin(y) sin(z)  sin(x) cos(y) sin(z),sin(y) cos(x) sin(z)
Alu 0 0

Ay, (cos(x) + cos(y)) sin(z) cos(x) cos(y) sin(z)

By 0 sin(x) sin(y) sin(z)

By, (cos(x) —cos(y)) sin(z) 0

E, sin(x)cos(z),sin(y) cos(z) sin(x) cos(y) cos(z),sin(y) cos(x) cos(z)
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