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Abstract

Despite its history of more than one hundred years, the phenomenon of superconduc-
tivity has not lost any of its allure. During that time the concept and perception of the
superconducting state - both from an experimental and theoretical point of view - has
evolved in way that has triggered increasing interest. What was initially believed to
simply be the disappearance of electrical resistivity, turned out to be a universal and
inevitable result of quantum statistics, characterized by many more aspects apart from
its zero resistivity. The insights of BCS-theory eventually helped to uncover its deep
connection to particle physics and consequently led to the formulation of the Anderson-
Higgs-mechanism. The very core of this theory is the concept of gauge symmetry (break-
ing). Within the framework of condensed-matter theory, gauge invariance is only one
of several symmetry groups which are crucial for the description and classification of
superconducting states.

In this thesis, we employ time-reversal, inversion, point group and spin symmetries to
investigate and derive possible Hamiltonians featuring spin-orbit interaction in two and
three spatial dimensions. In particular, this thesis aims at a generalization of existing numer-
ical concepts to open up the path to spin-orbit coupled (non)centrosymmetric superconductors
in multi-orbital models. This is done in a two-fold way: On the one hand, we formulate
- based on the Kohn-Luttinger effect - the perturbative renormalization group in the
weak-coupling limit. On the other hand, we define the spinful flow equations of the
effective action in the framework of functional renormalization, which is valid for finite
interaction strength as well. Both perturbative and functional renormalization groups
produce a low-energy effective (spinful) theory that eventually gives rise to a partic-
ular superconducting state, which is investigated on the level of the irreducible two-
particle vertex. The symbiotic relationship between both perturbative and functional
renormalization can be traced back to the fact that, while the perturbative renormaliza-
tion at infinitesimal coupling is only capable of dealing with the Cooper instability, the
functional renormalization can investigate a plethora of instabilities both in the particle-
particle and particle-hole channels.

Time-reversal and inversion are the two key symmetries, which are being used to
discriminate between two scenarios. If both time-reversal and inversion symmetry are
present, the Fermi surface will be two-fold degenerate and characterized by a pseu-
dospin degree of freedom. In contrast, if inversion symmetry is broken, the Fermi sur-
face will be spin-split and labeled by helicity. In both cases, we construct the sym-
metry allowed states in the particle-particle as well as the particle-hole channel. The
methods presented are formally unified and implemented in a modern object-oriented
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reusable and extendable C++ code. This methodological implementation is employed
to one member of both families of pseudospin and helicity characterized systems. For
the pseudospin case, we choose the intriguing matter of strontium ruthenate, which
has been heavily investigated for already twenty-four years, but still keeps puzzling re-
searchers. Finally, as the helicity based application, we consider the oxide heterostruc-
ture LaAlO3/SrTiO3, which became famous for its highly mobile two- dimensional elec-
tron gas and is suspected to host topological superconductivity.
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Zusammenfassung

Trotz seiner über hundertjährigen Geschichte seit seiner Entdeckung hat das Phänomen
der Supraleitung nichts von seiner ursprünglichen Faszination eingebüßt. Vielmehr hat
sich in der Zwischenzeit der Begriff und das Verständnis des supraleitenden Zustandes
in einer Weise weiterentwickelt, die das Interesse daran eher hat zunehmen lassen. Was
anfänglich ausschließlich für ein Verschwinden des elektrischen Widerstands gehalten
wurde, ist tatsächlich ein universelles und unvermeidliches Resultat der Quantenstatis-
tik und besitzt viel mehr bemerkenswerte Eigenschaften als nur den widerstandslosen
elektrischen Transport. Die Erkenntnisse der BCS-Theorie haben schließlich dazu ge-
führt die tiefe Verbindung zur Teilchenphysik zu offenbaren und trugen entscheidend
zur Formulierung des Anderson-Higgs-Mechanismus bei. Der wichtigste Baustein die-
ser Theorie ist das Konzept der (Brechung der) Eichsymmetrie. Im Rahmen der Festkör-
perphysik ist die Eichsymmetrie nur eine vonmehreren Symmetrien, die eine essentielle
Rolle für die Beschreibung und Einordnung von Phänomenen der Supraleitung spielen.

In dieser Arbeit wenden wir Zeitumkehr-, (räumliche) Inversions-, Punktgruppen-
und Spin-Symmetrien an, um mögliche Hamilton-Operatoren in zwei und drei räum-
lichen Dimensionen, welche Spin-Bahn-Kopplung enthalten, herzuleiten und zu unter-
suchen. Diese Arbeit zielt auf eine Verallgemeinerung von existierenden numerischen
Konzepten ab und erschließt den Weg die supraleitenden Eigenschaften von Modellen
mit starker Spin-Bahn-Kopplung undmit oder ohne Inversionszentrumzuuntersuchen.
Dies geschieht mit Hilfe zweier methodischer Ansätze. Erstens formulieren wir aufbau-
end auf dem Kohn-Luttinger Effekt die störungstheoretische Renormierungsgruppe im
Limes schwacher Kopplung. Zweitens verwenden wir die spinaufgelösten Flussglei-
chungen der effektiven Wirkung im Rahmen der funktionalen Renormierungsgruppe,
die auch für endliche Wechselwirkungsstärke gültig sind. Die symbiotische Ergänzung
der perturbativen und funktionalen Renormierungsgruppen ist darauf zurückzufüh-
ren, dass es mit der perturbativen Methode zwar möglich ist die Cooper Instabilität bei
infinitesimalerWechselwirkung numerisch exakt zu berechnen, aber nur die funktiona-
le Renormierungsgruppe auch Teilchen-Loch Kondensate zugänglich macht.

Zeitumkehr- und Inversionssymmetrie sind die beiden Schlüsselsymmetrien, die ver-
wendet werden, um zwei Szenarien zu unterscheiden. Falls sowohl Zeitumkehr- als
auch Inversionssymmetrie gültig sind, sinddie Fermiflächen zweifach entartet unddurch
einen Pseudospin-Freiheitsgrad charakterisiert. Im Gegensatz dazu führt der Verlust
der Inversionssymmetrie zur Spinaufspaltung der Fermiflächen, die dann durch die
sogenannte Helizität gekennzeichnet sind. In beiden Fällen leiten wir alle symmetrie-
erlaubtenZustände her,welche die entsprechendenTeilchen-TeilchenundTeilchen-Loch
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Kondensate beschreiben. Die vorstellten und verallgemeinertenMethoden sind im Rah-
men dieser Arbeit formal miteinander verbunden und in einem modernen objektorien-
tierten C++ Quellcode implementiert worden.

Als erste vorläufige Anwendungen für diese methodische Implementierung betrach-
ten wir zwei Systeme, die jeweils einer der beiden Familien zugeordnet werden können.
Zum einen berechnenwir in der Pseudospin-Formulierung der perturbativen und funk-
tionalen Renormierungsgruppen die Instabilitäten eines Dreiorbital-Modells für Stron-
tiumruthenat, das seit seiner erstmaligen Synthese trotz intensiver Forschung immer
noch Rätsel aufgibt. Zum anderen betrachten wir das zweidimensionale Elektronengas,
das sich an der Schnittstelle zwischen LaAlO3 und SrTiO3 bildet und welches durch
seine hohe Ladungsträgermobilität bekannt geworden ist.
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1. Introduction/Preface

Symmetry and superconductivity The concept of symmetry prevails in almost every
branch of modern physics [Mic80; Gel07]. Symmetries do not only provide a notion of
beauty [EA+94; Mol92; Rho06] but also a mathematical language that paves the way
for a convenient and elegant description of a plethora of physical phenomena [Wey27;
Wig12]. The benefits of a language that makes use of underlying symmetries has not
only been appreciated in natural science but has even found its way into music theory
[Tym06; Tym10; Maz12]. The appeal of a theory may often be characterized from the
perspective of simplicity, which originates from an underlying symmetry. Landau es-
tablished his theory of phase transitions based on broken symmetries and associated order
parameters [Lan37a; Lan37b; Lan57]. One particular phenomenon that is well-described
by Landau’s idea of phase transitions is the superconducting state. In the framework of
a Ginzburg-Landau theory [Gin50], the order-parameter of a superconductor is given by
a complex field 𝜓(r) = ∣𝜓(r)∣𝑒𝑖𝜑 that turns out to be closely related to the Cooper pair
wave function [Gor59]. In fact, this order-parameter is sufficient to describe the entire
many-particle system since the Cooper pairs are able to form a coherent superposition
being characterized by a macroscopic wave function [Ann11] Therefore, superconduc-
tivity is also one rare example of a quantum phenomenon exhibiting macroscopic con-
sequences. An exception to the paradigm of symmetry breaking as an indication for a
phase transition is topological order that neither shows a broken symmetry nor a local
order parameter [Wen02b; Wen02a]. Henceforth, a valid classification of order is the
distinction of symmetry breaking and non-symmetry breaking order [Wen04] (Figure 1.1).
Well-known phenomena like (anti-)ferromagnetism, charge- and spin-density waves as
well as superconductors all belong to the category of symmetry breaking order, making
it advantageous to distinguish them by means of the particular symmetries they break.

While a conventional superconductor only breaks global 𝑈(1)-gauge symmetry, an un-
conventional superconductor breaks additional (spatial) symmetries. The “full” symme-
try group is denoted by 𝒢0 = 𝒢 × 𝑇̂ × 𝒰, where 𝒢 is the point group of the underlying
lattice, 𝑇̂ is the time-reversal operation and 𝒰 the gauge-group [MS94]. More precisely,
the symmetry group of a superconductor is the one that comprises all operations under
which the Cooper pair wave function or order parameter is invariant [VG85]. Therefore,
the groups of both conventional and unconventional superconductors must obviously
be subgroups of 𝒢0. The most general Cooper pair wave function must take spatial
or momentum k (assuming the system is invariant under translations), spin, sublattice
and orbital or band degrees of freedomof two electrons into account. Hence, the Cooper
pair wave function may be denoted by the entity Δ𝑏

𝜎𝜎′(k) = ⟨𝑐†
k𝑏𝜎𝑐†

−k𝑏𝜎′⟩ with band in-
dex 𝑏, spins 𝜎 and 𝜎 ′ and momentum k. While a conventional superconductor breaks
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Figure 1.1.: The classification of order into symmetry-breaking and non-symmetry breaking or-
der goes beyond Landau’s theory of phase transition and opens up the path to a
whole new class of phenomena (see [Wen04]) that are characterized by topologi-
cal order. In contrast, well-known concepts like ferromagnetism, charge- and spin-
density waves as well as superconductors fall into the paradigm of symmetry break-
ing order.

only 𝑈(1)-gauge symmetry, the concept of unconventional superconductivity opens up
the pathway to a myriad of pairing states characterized by their (broken) symmetries
in momentum, orbital and spin space. In mathematical terms, any possible subgroup
of 𝒢0 may be realized as a Cooper pair. This zoo of unconventional pairing states hosts
a competition for the most stable energy balance between energy gain due to pairing
and repulsion being highly susceptible to material specific parameters like i.a. doping,
interaction strength and spin-orbit coupling.

From an experimental point of view, the discrimination between conventional and un-
conventional states can be done by looking at the low-temperature behavior of various
physical quantities like specific heat. On the one hand, a conventional superconduc-
tor possessing a fully gapped quasiparticle spectrum shows exponential temperature
dependence. On the other hand, an unconventional superconducting state, which has
symmetry protected nodes in its gap function, leads to power law dependencies in the
low-temperature regime. However, even a conventional fully gapped superconductor
may exhibit accidental nodes. Therefore, power lawdependency in the low-temperature
regime is a necessary but not sufficient criterion for unconventional superconductivity.

Milestones of superconductivity Superconductivity has been a fascinatingphenomenon
ever since [Onn11] and nevertheless it took nearly fifty years to produce a theory ca-
pable of correctly reproducing the experimentally observed phenomena of a second
order phase transition, the exponential dependence of the specific heat, the Meissner-
Ochsenfeld effect, the infinite conductivity and the dependency of the critical tempera-
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ture on the isotope mass [BCS57]. The very core of this theory is the concept of Cooper
pairs , i.e. electrons that are related by time-reversal symmetry (traditionally electrons
with opposite momentum k, −k and spin ↑, ↓) that pair up to form a new state with to-
tal spin zero. As a consequence, a macroscopic number of Cooper pairs are allowed to
condense in the samequantum state as a coherent superposition (at sufficiently low tem-
peratures) [FS05]. Furthermore, the superconducting (BCS) wave-function appears to
be a superposition of states with an even number of electrons and hence violates particle
number conservation. The quasiparticle dispersion relation of the Cooper pairs shows a
characteristic energy gap Δ that defines the amount of energy required to break up a sin-
gle Cooper pair. Conventional superconductivity covers all cases where the gap function
Δ (k) = Δ is independent of momentum k. A characteristic feature of BCS-theory is its
universality, which extraordinarily applies to many elemental metals. In contrast, this
means that BCS-theory is insensitive to any material specific parameters to account for
different critical temperatures (expect for the electron-phonon coupling strength 𝑔𝑒𝑓 𝑓).
An improvement towards strong-coupling was provided by Eliasberg theory. It uses an
electron-phonon interaction that is local in space and retarded in time [Eli60], opposed
to the non-local, non-retarded coupling parameter 𝑔𝑒𝑓 𝑓 of BCS-theory [Umm13]. McMil-
lan used Eliashberg theory to predict a maximum transition temperature for phonon-
driven pairing in different classes of material [McM68]. Shortly after the formulation
of the BCS-theory, the idea of an anisotropic gap function came up [BW63], in partic-
ular a gap function with odd parity Δ(−k) = −Δ(k) associated to a spin triplet state.
Later, more generalizations of the BCS-gap function with even higher relative angular
momentum or odd frequency dependency were developed [SSW66; Ber74]. Soon, the
first experimental evidence for exotic superconducting states was found in the form of
heavy-fermion superconductors [Ste84; Gor87].

The first experimental signature of a 𝑑-wave superconductor was encountered in 1986
in copper-oxide compounds [BM86; BMT87], which showed amuch higher critical tem-
perature than any elemental superconductor. This finding triggered activity for the
search of superconductors with even higher critical temperatures, the highest so far
being YBa2Cu3O7 with 𝑇𝑐 ≈ 92K [BM88]. This line of research eventually led to the
discovery of superconductivity in strontium ruthenate (Sr2RuO4) [Mae+94] whichwas
latter assumed to be the “first” spin-triplet superconductor [Ish+98] and suspected to
break time-reversal symmetry [Luk+98]. The next experimental milestone dates back to
2008 when a critical temperature of about 26K was found in the iron-based compound
LaO1-xFxFeAs [Kam+08] and evidence for unconventional superconductivity in FeSe
[Kot+08]. This discovery established a whole new branch of research that continues
to bring forward new exciting results until today [Spr+17] (cf. (Figure 1.2)). Apart
from superconductivity itself, a new field has been emerging in the area of condensed
matter research based on the beforementioned notion of non-symmetry breaking and
topological order. The experimental investigations along these lines started with the veri-
fication of the quantum spin Hall effect [Kön+07]. A unique way to combine and reunite
both topological order and symmetry-breaking order in the form of superconductivity
is represented by (the idea of) topological superconductivity [Qi+09].
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Figure 1.2.: The epoch of forty-seven years after the discovery of (conventional) superconductiv-
ity [Onn11] is characterized by a plethora of failed attempts to explain superconduc-
tivity that eventually led to the formulation of the BCS-theory [BCS57]. Kohn and
Luttinger were the first to realize that Cooper pairing can emanate from a purely
electronic mechanism [KL65]. More than twenty years after its publication, Zanchi
and Schulz [ZS00] employed Wilson’s renormalization group idea [WK74] to the
dimensional weakly-correlated electron gas. In 2009, the pioneering work of Qi and
Zhang [Qi+09] layed the ground for the field of topological superconductors.

Quantummany-body effects Condensedmatter physics is the subject concernedwith
many quantum particles at finite density and temperature and their collective behav-
ior. Quantum many-particle systems have already been in the focus of intensive re-
search since shortly after the development of the foundation of quantum mechanics
[Tho27; Fer27]. The quest for understanding the quantum effects inmulti-particle mod-
els startedwith the investigations in simplemolecules and led to the concepts of Heitler-
London and Mulliken [HL27; Mul28]. Until today, the research is guided by the belief
that the (many-particle) Schrödinger equation [Sch26] governs the dynamics of a quan-
tum many-body system. However, the derivation of macroscopic properties on the ba-
sis of the Schrödinger equation turns out to be unfeasible. Consider a single-particle
Hamiltonian ℋ0 = − ∇2

2𝑚 + 𝑉 (r) and the corresponding stationary Schrödinger equation
ℋ0𝜓 = 𝐸𝜓. Confining the particle to a cubic box of dimension 𝐿 and employing a three-
dimensional discretization mesh of 𝑁3 points in real space, the numerical solution is
obviously given by a vector comprising 𝑁3 complex values [Tho13; Ful12]. Adding a
second (identical) particle to the box, increases the size of the vector representing the
two-particle wave function 𝜓 (r1, r2) to (𝑁3)2 = 𝑁6. Henceforth, an 𝑛-particle wave
function requires at least memory of size (𝑁3)𝑛 = 𝑁3𝑛 = 𝑒log(𝑁)3𝑛 (ignoring the com-
putational cost to solve the system of 𝑁 coupled differential equations), which means
the memory necessary to store the wave function of a quantum mechanical 𝑛-body sys-
tems, i.e. the complexity of the Hilbert space, scales exponentially. For example, taking
the mesh to comprise a moderate number of 1003 = 1 × 106 points, the wave function
for only two particles already occupies 1006 × 16B ≈ 16TB of memory (assuming a sin-

4



gle complex number to be of size 16B) (cf. [Fou+01]) The (apparent) impossibility to
calculate the wave functions of quantummany-bodyHamiltonians comprising a critical
number of particles, is known as the exponential wall [Koh99; FS17]. Another example is
given by a spin-1

2 chain, where every particle can only be found in two different states.
The computational complexity of this problem merely scales as 2𝑛 with the number of
particles 𝑛 [Wen04] [Pen04, Chapter 23]. In contrast, a classical many-particle system
is a much less intractable problem, since at a fixed time 𝑡 the system is completely spec-
ified by 6𝑛 coordinates in phase space (r𝑖,p𝑖), i.e. the problem scales linearly. Hence,
the development of algorithms and efficient code for classical many-body systems has
a (relatively) long history that dates back to the advent of the first modern computers
during the 1940’s [Zal] and found its application mainly in astrophysics [Hol41; Pee70;
PS74; Whi76]. The invention of tree algorithms reduced the computational complexity
to 𝒪 (𝑛 log𝑛) [App85] and claimed its hitherto climax in the “Millennium run”, a sim-
ulation comprising up to 7.5 × 107 particles subject to the gravitational forces within
a three-dimensional cross-section of the universe of about 650Mpc or 2Gly [SYW01;
Spr05; Spr+05]. In contrast, the overall length scale of a typical quantum many-body
system is 1 × 10−3m to 1 × 10−2m, while it contains about 10 × 1023 particles. In particu-
lar, superconductivity is an inherent quantum many-body effect whose mechanism can
only be understood in an effective single particle picture. Therefore, we have to rely on
approximative methods that are supposed to capture the “important” information.

Methodological overview While the numerical methods and ab-initio approaches to
electronic structure calculations have beendeveloped and advanced over several decades
culminating in elaborate formulations of density-functional theory (DFT) [HK64; KS65],
dynamicalmean-field theory (DMFT) [Geo04; Kot+06; Hel07a], the𝐺𝑊-approximation
(GWA) [Hed65; ORR02; Hed99] and combinations thereof (like i.a. LDA+U [Ani+92],
LDA+DMFT [KV04; Hel07b] and GW+DMFT [BAG03]), the numerical approaches to
superconductivity lack a substantial amount of development compared to electronic
structure calculations in the sense that quantitative predictions still pose a severe chal-
lenge. On the one hand, there are ab-initio methods that start from the full many-
body Hamiltonian of the crystal featuring nuclei and electrons without relying on any
preliminary approximations. In order to solve the corresponding time-independent
Schrödinger equation the concepts of density functional theory are reused, modified
and extended to account for both electron-electron and electron-phonon interactions as
well as anomalous expectation values of the density-operators. [OGK88; CG97; Lüd+05;
Mar+05]. Although this kind of density functional theory for superconductivity (SCDFT)
predicts critical temperatures and gap amplitudes with good experimental agreement
for simple metals [Lat+04], it suffers from its limitations regarding anisotropic band
structures and strong spin fluctuations. Hence, it is usually well-suited for phonon-
driven superconductors. On the other hand, there are methods that are based on the
formalism of Green’s functions and many-body perturbation theory. These methods,
however, rely on a set of phenomenological parameters describing the non-interacting
one-particle spectrum and two-particle interactions. As the most simple one of these
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Green’s function based methods, we have the mean-field theory, which takes the bare
interaction in band representation as the pairing potential to calculate the Cooper pair
properties [Inu+88; Ann90]. Althoughmean-field theory can often be done analytically
and provides important insights, it suffers from the fact that the interaction assumed
corresponds to a high-energy theory that does not agree with the actual effective low-
energy theory at the critical temperature that makes up the pairing potential and is a re-
sult of emergent quantum many-body effects. Another Green’s function approach is the
random phase approximation (RPA), whichwas originally introduced by Pines [PB53] and
formulated and justified in a diagrammatic fashion byGell-Mann and Bruckner [GB57].
Shortly after that, Anderson employed this method to superconductivity [And58a]. In
diagrammatic language, the RPA amounts to a summation of all particle-hole bubbles
up to infinite order of the perturbative expansion. Due to the simple topology of the in-
volved diagrams, the series allows for an analytical solution. Extensions of the random
phase approximation to three spatial dimensions [Gra+10] and the inclusion of spin-
orbit coupling in multiple orbitals [Kor17; Nis+17] have been successfully employed.
A modification and extension of RPA that features an improved inclusion of orbital and
spin fluctuations is the fluctuation exchange approximation (FLEX) [BS66; BSW89]. It has
been employed in two and three spatial dimensions [AKA99] and is particularly popu-
lar in the investigation of superconducting order parameters in multi-orbital Hubbard
models [MYO05; Mai+11b].

Among all these methodological approaches, a special position is held by determinant
quantum monte carlo, which evaluates an observable ̂𝐴 by Tr( ̂𝐴𝑒−𝛽𝐻̂)/Tr(𝑒−𝛽𝐻̂). Here,
the partition function is rewritten as a functional integral and a Hubbard-Stratonovich
field is introduced into the interacting part of the Hamiltonian, which allows for the
fermions to be integrated out analytically. The results appear in terms of fermionc de-
terminants that play the role of the weights for the Hubbard-Stratonovich field to be
sampled [Yin+14; Whi+89a; Whi+89b; Sca+91; Est+18]. Another whole class of meth-
ods is based on the idea of renormalization. In the context of condensed matter physics,
it has been pioneered byWilson in his attempt to gain more insight into the universality
of phase transitions [Wil71a; Wil71b; WK74]. In particular, since the superconduct-
ing state is impossible to obtain by means of perturbative means due to the logarith-
mic divergence of the particle-particle diagrams, the renormalization group offers the
particular tempting possibility to introduce a cutoff to avoid these divergences. This
is the punchline of the perturbative renormalization group (PRG), whose foundations are
the work by Kohn and Luttinger [KL65]. The perturbative treatment of the repulsive
electron-electron interactions are supplemented by an logarithmic renormalization flow
[Pol92; Sha94a] by feeding the effective interaction resulting from second order pertur-
bation theory into the flow equations [RKS10]. Although, it is asymptotically exact,
the perturbative renormalization suffers from its need to assume (in general) unrealis-
tic infinitesimal small interaction strength. The most modern version of Wilson’s idea
of renormalization is represented by the functional renormalization group (FRG) [ZS00;
HS01; KBS10]. The FRG integrates out the single-particle degrees of freedom by in-
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Figure 1.3.: At high energy scales about the bandwidth 𝑊 the interacting theory only features
the bare Coulomb repulsion. We consider three cases that subdivide the space of
Hamiltonians into three sectors depending on which symmetries are or aren’t explic-
itly broken. The left column features Hamiltonians fully invariant under SU(2) and
spatial inversion, while the center column breaks spin rotation symmetry but keeps
spatial inversion. Finally, the right column abandons both spin and spatial inversion
symmetry. Correlations dominated by themicroscopic details of the considered sys-
tem lead to effective low-energy theories that give rise to ordering tendencies corre-
sponding to phases of additional spontaneously broken symmetries.

troducing a cutoff that is successively lowered to finally obtain an effective theory of
n-particle correlation functions. Its strength is its account for the unbiased interplay of
particle and hole fluctuation on different energy scale and its applicability to interme-
diate and finite interactions. Unfortunately, the hierarchy of flow equations can only be
treated up to finite order to guarantee numerical feasibility.

As a side remark, we mention the parquet renormalization group and ladder renormal-
ization group approaches, which are well-controlled but have limited range of applica-
bility depending on which logarithmic divergences occur in the system to be studied
[MC10][Xin+17; Cla+17]. More recent developments, which are mainly (non-local)
extensions of dynamical mean-field theory are the dynamical vertex approximation DΓA
[HKT08; Hel14; Kit+18], the one-particle irreducible approach (1PI) [Roh+13], and the
dynamical mean-field theory to functional renormalization group (DMF2RG) [Tar+14]. In
spite of all these important contributions, the calculation of superconducting properties
in strongly correlated systems still pose a significant challenge and universal numerical
approaches to predict the Cooper pair mechanism in a variety of systems are still not
available. A general obstacle for all methods to access superconductivity is the involve-
ment of very different energy scales. While the properties of the band structure are
characterized by the order of several eV, the critical temperature of most (elemental)
superconductors is about the order of meV (cf. (Figure 1.3)).
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Outline In the framework of this thesis a weak-coupling to intermediate coupling
renormalization group approach (and code) is developed, which is capable of identify-
ing not only superconducting phases in the presence of centro- and noncentrosymmetric
spin-orbit coupling, i.a. giving rise to mixed singlet-triplet pairing, but also their inter-
play with particle-hole condensates including such exotic types as mixed spin-charge
density waves in systems with broken spin and/or inversion symmetries. The thesis
is comprised of two parts. The first part serves as an introduction to unconventional
Cooper pairing states and the methodological novelties necessary to investigate them,
while the second part considers several prototypical models, whose electronic instabil-
ities are investigated by means of the presented methods. (Chapter 2) motivates the
concepts that give rise to Cooper pairing and superconducting states and briefly re-
views “traditional” BCS-theory. The Kohn-Luttinger effect is presented as one of the
first ideas on how to obtain superconductivity from purely electronic, repulsive interac-
tions. It turns out, that the associated pairing states are anisotropic inmomentum space.
This is used as the starting point to generalize BCS-theory to incorporate both singlet
and triplet states in arbitrary angular momentum channels only restricted by parity and
the Pauli principle. We set up a formalism in terms of the d-vectormaking the associated
symmetries more transparent and analyze its transformation properties with respect to
spatial inversion, spin rotations, time-reversal and point group operations. (Chapter 3)
leaves the realm of spin rotation symmetric single-particle terms by deriving and classi-
fying various types of spin-orbit interaction in centro- and noncentrosymmetric models.
A particular emphasis is put on the definition of appropriate basis states, which enable
quantum-many body calculations. These calculations mostly involve the two-particle
vertex function, whose symmetry propertieswith respect to spin rotation, time-reversal,
point group operations and spatial inversion are described in a numerically accessible
formalism. To analyze possible exotic pairing instabilities that go beyond the paradigm
of singlet versus triplet Cooper pair states, mean-fields with broken SU(2)-symmetry
(and broken inversion symmetry) are introduced, classified and constructed for proto-
typical crystal symmetries. Since the functional renormalization group is able to keep
track of particle-hole condensates as well, the analogous formalism is set up for these
density-wave states, too.

(Chapter 4) sets up the Feynman path-integral formalism in terms of fermionic Grass-
mann fields and introduces the associated notation in order to prepare the stage for the
perturbative and functional renormalization groups, which essentially depend on these
concepts and make extensive use of it. In particular, the generating functionals rele-
vant for functional renormalization are recapitulated. The perturbative series’s of vari-
ous n-particle correlation functions and their resummations provide a path to compare
and benchmark the perturbative and functional renormalization groups to (established)
methods like i.a. random-phase approximation and fluctuation exchange calculations.
The perturbative renormalization group in (Chapter 5) is presented as a combination of
quantum-many body perturbation theory and logarithmic renormalization. Since the
perturbative part relies on infinitesimal coupling strength, the states arising from it op-
erate in an infinitesimal shell around the Fermi surface and therefore can only give rise
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to particle-particle states since the Cooper instability is the only generic one of a Fermi
liquid. This restriction is remedied by the functional renormalization group presented
in (Chapter 6), which introduces an explicit cutoff, given as energy/momentum, tem-
perature or frequency, into the single-particle theory. This cutoff is used to integrate out
the degrees of freedom of the interacting Hamiltonian starting from the bare interaction
down to any critical scale that exhibits the low-energy effective theory. The evolution of
the effective interaction as a function of the cutoff parameter is described by a hierarchy
of flow equations expressing the change of the n-particle correlation function in terms
of a set of non-linear integro differential equations. We work out the close analogy be-
tween the perturbative and functional renormalization group, from which we benefit
in two ways: on the one hand, this similarity enables us to use the very same models
and their implementations as the input and on the other hand facilitates the process
of debugging. Furthermore, it is both educating and enlightening to see how different
physical states and orders emerge from two methods that only differ in the formulation
of the propagators they’re based on.

The second part of the thesis is dedicated to the application of themethods developed
in the first part to both simple toy models as well as realistic systems that are currently
and have already been subject to intensive research. (Chapter 7) provides an illustra-
tive treatment of toymodels that introduces themethodological novelties in a numerical
context. This includes paradigmmodels like theHubbardmodel on the square and hon-
eycomb lattice and including the spin degrees of freedom to prepare for the inclusion of
spin-orbit interaction. During the last decade, oxide heterostructures have been investi-
gated as promising systems for next generation of micro-electronic devices. In (Chap-
ter 8) we setup a minimal two-orbital model for the LaAlO3/SrTiO3 interface including
Rashba spin-orbit interaction to account for the presence of the heavy ion Ti+4 and the
broken inversion symmetry. We show that the resulting low-energy fluctuations give
rise to nodal and nodeless superconducting states with topological non-trivial prop-
erties. The unconventional superconducting state in strontium ruthenate Sr2RuO4 has
been studied for more than twenty years, while a convincing explanation of the order
parameter is still missing. In (Chapter 9) we use a three-orbital model including atomic
spin-orbit coupling and employ both perturbative and functional renormalization to in-
vestigate its order parameters and the system’s preference of singlet or triplet pairing
on particular Fermi sheets. An integral part of this thesis is devoted to the development
of a modern object-oriented implementation of the perturbative and functional renor-
malization group methods for two and three dimensional many-body problems that is
capable of analyzing the relevant particle-particle and particle-hole instabilities in the
presence of spin-orbit coupling and/or inversion symmetry breaking and of classifying
them in terms of irreducible representations of the respective symmetry groups in spin
and orbital space.

The project and its source code can be found at

www.physik.uni-wuerzburg.de/~mfink/FPRG/

where the acronym represents Funtional Perturbative Renormalization Group. The or-
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Table 1.1.: The methodological extension of both perturbative and functional renormalization
groups enables the treatment of various two- and three-dimensional systems in pres-
ence of different kinds of spin-orbit coupling.

perturbative RG functional RG

two spatial dimensions 3 3

three spatial dimensions 7 7

long-range interaction 3 3

particle-particle condensates 3 3

particle-hole condensates 7 3

centrosymmetric SOC 3 3

non-centrosymmetric SOC 3 3

broken time-reversal 7 7

der of F and P is fixed in that way to avoid any ambiguity with respect to the pseudo-
fermion renormalization group (PFFRG) [RW10; RT11]. The computational possibil-
ities of this code with respect to the method, the spatial dimensionality, the range of
interactions and the possible ordering tendencies are summarized in (Table 1.1). In two
spatial dimensions we are able to employ both the perturbative as well as the functional
renormalization, unlike in three spatial dimension, where only perturbative RG is feasi-
ble while the computational effort of functional RG is too demanding. In contrast, due
to the limitation of infinitesimal coupling in the perturbative method, particle-hole in-
stabilities can only be accessed in the functional RG scheme. However, both of the two
implemented methods are able to deal with spin-orbit coupling and spatial inversion
symmetry breaking. The breaking of the beforementioned symmetries is done explicitly
as already given in the microscopic Hamiltonian in contrast to spontaneous symmetry
breaking.
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Methodology for superconductivity
with spin-orbit coupling
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2. The Cooper problem, BCS theory and the
Kohn-Luttinger effect

The microscopic Bardeen-Cooper-Schrieffer-theory (BCS-theory) [BCS57] is considered
to be one of the greatest intellectual achievements of the twentieth century [Fos14, Chap-
ter 4.1], and the solution to one of the hardest problems in physics. It marks the (prelim-
inary) end of a long series of failed theories formulated by the most distinct physicists
(including Einstein, Bohr, Landau, Bloch, Brillouin and Feynman) led astray by their
desperate attempts to formulate amicroscopic explanation of superconductivity [Sch10].
Although the BCS-theory was the first microscopic theory, some phenomenological de-
scriptions already came about (shortly) after the discovery of the Meissner-Ochsenfeld
effect [MO33]. These include (among others) the work of Gorter and Casimir [GC34],
the London equations [LL35] and the Ginzburg-Landau theory [GL50]. One of the most in-
teresting “failures” to derive a theory of superconductivity is probably the one by Feyn-
man, who correctly pointed out that the superconducting state is impossible to derive
by means of perturbation theory [Fey57]. Ironically enough, we will make extensive use
of perturbative formulations in (Chapter 5) and (Chapter 6) that are, however, supple-
mented by the idea of renormalization that was only employed to quantum many-body
problems starting from the early seventieth [Wil71a; Wil71b; WK74]. A valid theory of
(conventional) superconductivity is required to explain five properties [BCS57] :

• second-order phase transition at the critical temperature 𝑇𝑐

• exponential temperature dependency of the electronic specific heat for 𝑇 < 𝑇𝑐
[Cor+54]

• Meissner-Ochsenfeld effect [MO33]

• infinite conductivity

• dependence of 𝑇𝑐 on the isotopic mass [Max50; Rey+50]

Bardeen, Cooper and Schrieffer succeeded in formulating such a theory based on the
concept of Cooper pairs . A Cooper pair is a bound state of two electrons in a singlet (↑, ↓)
with opposite momenta (k, −k). Leon Cooper showed in an earlier paper that such a
bound state arises in a Fermi gas with arbitrarily weak attractive interactions between
electrons [Coo56]. Schrieffer was then able to write down a product wave function of
Cooper pairs for the superconducting ground state by giving up the requirement of hav-
ing a systemwith a fixed number of particles. The chapter is comprised of three sections.
The (Section 2.1) about the Cooper problem shows how two electrons above a quiescent
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Fermi sea can lower their total energy and form a bound state. This is the basis for the
conventional BCS-theory in (Section 2.2) that builds up the superconducting ground
state by a coherent superposition of Cooper pairs. (Section 2.3) introduces the concept
of purely electronically mediated pairing in absence of any attractive phonon-electron
interaction by having Cooper pairs with finite angular momentum in singlet as well
as triplet spin states. Finally, (Section 2.4) analyzes the structure of these generalized
Cooper pairs and prepares the foundations for pairing in absence of spin rotation sym-
metry.

2.1. Cooper problem

Consider two electrons in the continuumwith positions r1 and r2, which interact via the
potential𝑉 (∣r1 − r2∣) that only depends on their relative distance. The time-independent
Schrödinger equation for that problem yields

ℋ𝜓 (r1, 𝜎1, r2, 𝜎2) = 𝐸𝜓 (r1, 𝜎1, r2, 𝜎2) , (2.1.1)

where the two-particle wave function can be split into orbital and spin part (since the
Hamiltonian is spinless and commutes with both the spin and orbital angular momen-
tum operators S2 and L2, respectively), i.e.

𝜓 (r1, 𝜎1, r2, 𝜎2) = 𝜙(r1, r2) ⊗ 𝜒 (𝜎1, 𝜎2) . (2.1.2)

Since 𝜓 must be antisymmetric with respect to exchange of the electrons, the orbital
part must be symmetric and the spin part antisymmetric or vice versa. However, if we
limit our discussion to the case of an antisymmetric spin singlet (symmetric triplet) part,
the orbital wave function must be symmetric (antisymmetric). The Hamiltonian may
be simplified by transforming to the center of mass reference frame: 1

ℋ =
𝑝2

2𝜇 + 𝑉(r) ⇒ (
𝑝2

2𝜇 + 𝑉(r)) 𝜙(r) = 𝐸𝜙(r) , (2.1.3)

with r = r1 − r2 and 𝜇 = 𝑚
2 . We can further simplify the Hamiltonian by going to

momentum space via

1The original two-particle Hamiltonian ℋ = p2
1

2𝑚 + p2
2

2𝑚 + 𝑉 (∣r1 − r2∣) can be written in terms of the equiv-
alent effective one-particle problem ℋ = 𝑝2

2𝜇 + 𝑉(𝑟) with the relative coordinate r = r1 − r2 and the

reduced mass 𝜇 = 𝑚1𝑚2
𝑚1+𝑚2

𝑚1=𝑚2
↓= 𝑚

2 [GPS01], which makes sure the commutator [r,p] = 𝑖ℏ is still valid.
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2.1. Cooper problem

𝜙(k) =
1

(2𝜋)3/2 ∫dk 𝑒−𝑖kr𝜙(r) and 𝜙(r) =
1

(2𝜋)3/2 ∫dk 𝑒𝑖kr𝜙(k) . (2.1.4)

The limitation to a singlet state requires 𝜙(k) = 𝜙(−k) to ensure a symmetric orbital
wave function w.r.t. particle exchange, i.e. 𝜙(r1 − r2) = +𝜙(r2 − r1). The transformation
of 𝑉(r)𝜙(r) is most conveniently taken care of by the convolution theorem [Arf85; BB86]
resulting in the Schrödinger equation in momentum space

⎛⎜
⎝

(ℏk)2

2𝜇 − 𝐸⎞⎟
⎠

𝜙(k) = −
1

(2𝜋)3/2 ∫dk′ 𝑉 (k − k′) 𝜙(k′) . (2.1.5)

The interaction apparently only depends on the momentum transfer of the scattering
process. It is reasonable to assume that the overall direction of k and k′ does not matter
for the value of 𝑉 (k − k′) but only the angle between both momenta. 2 Since only the
inner product is invariant w.r.t. rotations, we have ∣k − k′∣ = √𝑘2 + (𝑘′)2 − 2 cos (𝛾) 𝑘𝑘′

with 𝛾 = ∡ (k,k′) and 𝑘 = ∣k∣ and 𝑘′ = ∣k′∣. Therefore, the interaction may only de-
pend on 𝑘, 𝑘′ and the angle 𝛾, i.e. 𝑉 (k − k′) = 𝑉 (𝑘, 𝑘′, 𝛾). Hence, we can expand the
interaction in terms of Legendre polynomials 𝑃𝑙(𝑥):

𝑉 (k − k′) =
∞
∑
𝑙=0

(2𝑙 + 1) 𝑉𝑙 (𝑘, 𝑘′) 𝑃𝑙 (cos(𝛾)) , (2.1.6)

where the index 𝑙 serves as a label for the different angular momentum contributions
3. Later, when inserting the above back in the Schrödinger equation it will turn out the
be advantageous to express the Legendre polynomials in terms of spherical harmonics
𝑌𝑙

𝑚 (𝜃, 𝜙), splitting further up the angular momentum contributions into different pro-
jection indices 𝑚. This can be done by means of the spherical harmonic addition theorem
resulting in (cf. [MS99]) 4

2Suppose we had e.g. the momenta k = (5, 3, −1) and k′ = (−3, 2, 2), which results in 𝑉 (8, 1, −3). If
we further assume an interaction of the form 𝑉 (q) = 𝑞2

𝑥 − 2𝑞𝑦 + 𝑞𝑧 it would indeed matter what the
overall direction of momenta is, since 𝑉 (q) = 59 ≠ 𝑉 (−q) = 69. However, this represents a highly
unphysical form of an interaction.

3 The angularmomentum coefficients (and correct normalization in terms of angularmomentum indices 𝑙
in the expansion can be derived bymeans of the orthogonality ∫1

−1 𝑃𝑛(𝑥)𝑃𝑚(𝑥) = 2
2𝑛+1 𝛿𝑛𝑚 and the inte-

gration over polar and azimuth angles∫dΩ = ∫2𝜋
0 d𝜙 ∫𝜋

0 d𝜃 sin(𝜃) (using the substitution𝑢 = cos(𝜃)).
A simple calculation determines the coefficients to be 𝑉𝑙 (𝑘, 𝑘′) = 1

4𝜋 ∫dΩ 𝑉 (k − k′) 𝑃𝑙 (cos(𝛾)).
4 The spherical harmonics are defined by 𝑌𝑙

𝑚 (𝜃, 𝜙) = √ 2𝑙+1
4𝜋

(𝑙−𝑚)!
(𝑙+𝑚)! 𝑃

𝑚
𝑙 (cos(𝜃))𝑒𝑖𝑚𝜙 with 𝑃𝑚

𝑙 (cos(𝜃))
being the associated Legendre polynomials [CS51]. They satisfy the spherical harmonic addition theorem
[Edm96] , i.e. 𝑃𝑙(cos(𝛾)) = 4𝜋

2𝑙+1 ∑+𝑙
𝑚=−𝑙 𝑌𝑙

𝑚 (𝜃′, 𝜙′)𝑌𝑙
𝑚 (𝜃, 𝜙) where 𝛾 being the angle between two

vectors whose direction are given by (𝜃, 𝜙) and (𝜃′, 𝜙′). In general cos(𝛾) = cos(𝜃) cos(𝜃′) +
sin(𝜃) sin(𝜃′) cos(𝜙 − 𝜙′), which simplifies to cos(𝛾) = cos(𝜃) when assuming that the second vec-
tor coincides with the z-axis, i.e. 𝜃′ = 0.
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

𝑉 (k − k′) = 4𝜋
∞
∑
𝑙=0

𝑉𝑙 (𝑘, 𝑘′)
+𝑙
∑

𝑚=−𝑙
𝑌𝑙

𝑚 (𝜃, 𝜙)𝑌𝑙
𝑚 (𝜃′, 𝜙′) , (2.1.7)

where we defined 𝜃 = 𝜃k, 𝜙 = 𝜙k and 𝜃′ = 𝜃k′, 𝜙′ = 𝜙k′. The two-particle wave
function in momentum space can be expanded by [Jac99, Chapter 3.5]

𝜙 (k) =
∞
∑
𝑙=0

+𝑙
∑

𝑚=−𝑙
𝜙𝑙𝑚(𝑘)𝑌𝑙

𝑚 (𝜃, 𝜙) . (2.1.8)

We are now in the position to insert the representations of the interaction and wave
function in terms of spherical harmonics into (Equation 2.1.5). The integration over k′ is
written in terms of spherical coordinates∫dk′ = ∫d𝑘′ ∫ Ω = ∫∞

0 d𝑘′ ∫2𝜋
0 d𝜙 ∫𝜋

0 d𝜃(𝑘′)2 sin(𝜃),
which enables us to employ the orthonormality of the spherical harmonics 5 and obtain

(2𝜀k − 𝐸)
∞
∑
𝑙=0

𝑙
∑

𝑚=−𝑙
𝜙𝑙𝑚(𝑘)𝑌𝑙

𝑚 (𝜃, 𝜙) = −
1

(2𝜋)3/2 ∫
∞

0
d𝑘′ 4𝜋(𝑘′)2

∞
∑
𝑙=0

𝑉𝑙 (𝑘, 𝑘′)
𝑙

∑
𝑚=−𝑙

𝜙𝑙(𝑘′)𝑌𝑙
𝑚 (𝜃, 𝜙) ,

(2.1.9)

where the kinetic energy of two free particles 2𝜀k = (ℏk)2

2𝜇 is used. Since we are only
interested in the different orbital angular momentum channels but not the resolution
into the projections, we define the wave function component associated to a particular
channel 𝑙 by 𝜙𝑙(𝑘, 𝜃, 𝜙) = ∑𝑙

𝑚=−𝑙 𝜙𝑙𝑚 (𝑘) 𝑌𝑙
𝑚 (𝜃, 𝜙). Hence, we get

(2𝜀k − 𝐸)
∞
∑
𝑙=0

𝜙𝑙(𝑘, 𝜃, 𝜙) = −
1

(2𝜋)3/2 ∫
∞

0
d𝑘′ 4𝜋(𝑘′)2

∞
∑
𝑙=0

𝑉𝑙 (𝑘, 𝑘′) 𝜙𝑙(𝑘′, 𝜃, 𝜙) , (2.1.10)

Due to the spherical harmonics being a basis with orthonormal properties the (Equa-
tion 2.1.10) must be valid for every single component 𝑙 as well (where we may omit the
remaining angular dependencies for now). Therefore, we obtain (cf. [Leg75])

(2𝜀k − 𝐸) 𝜙𝑙(𝑘) = −
1

(2𝜋)3/2 ∫
∞

0
d𝑘′ 4𝜋(𝑘′)2𝑉𝑙 (𝑘, 𝑘′) 𝜙𝑙(𝑘′) , (2.1.11)

which is an eigenvalue equation determining the wave function for a particular or-
bital angular momentum 𝑙 and the energy 𝐸 of the two electron system. We are looking
for any solutions of this equation that feature 𝐸 < 0 and therefore correspond to a bound

5The orthonormality of the spherical harmonics with respect to 𝑙 and 𝑚 is given by
∫dΩ 𝑌𝑙

𝑚 (𝜃, 𝜙)𝑌𝑙′
𝑚′ (𝜃, 𝜙) = 𝛿𝑙,𝑙′𝛿𝑚,𝑚′ [San04].
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2.1. Cooper problem

Fermi sea

k𝐹

∣k, ↑⟩

∣−k, ↓⟩

(a)

𝜀𝐹 𝜀𝐹 + 𝜀𝛿

0

𝑉0

𝑉
(𝜀

)

0

2𝜀𝐹

2(𝜀𝐹 + 𝜀𝛿)

𝑉0𝐷(𝜀𝐹)

𝐸

(b)

Figure 2.1.: (Figure 2.1a) Illustration of the Cooper problem featuring two electrons with op-
posite momenta and a net attractive interaction due to phonon exchange within a
narrow energy shell above the Fermi level. (Figure 2.1b) The “traditional” BCS-
interaction is given by a rectangular potential well of depth 𝑉0 in energy space lo-
cated at the Fermi level. The energy 𝐸 of the two-electron system exhibits a sharp
change of behavior at 𝑉0𝐷(𝜀𝐹) = 0 that is responsible for the Cooper instability. The
green graph shows the “exact” dependency in (Equation 2.1.17) while the magenta
curve is the approximation for a small negative (attractive) interaction. A net attrac-
tive interaction between the electrons 𝑉0 < 0 - no matter how small - will ultimately
result in an energy eigenvalue 𝐸 < 0 and the formation of a bound state.

state of the system. Let’s consider a (uniformly) repulsive interaction 𝑉0 in real space,
transforming to 𝑉0𝛿(k − k′) in reciprocal space, which is itself expanded in terms of
Legendre polynomials with the coefficients 𝑉𝑙 (𝑘, 𝑘′) = 𝑉0

2 𝛿(𝑘 − 𝑘′)𝑃𝑙(0) with 𝑃𝑙(0) be-
ing the 𝑙-th Legendre polynomial at abscissa 𝑥 = 0. Inserting into (Equation 2.1.11) we
find that there cannot be any bound state with 𝐸 < 0 and even for a small attractive
interaction below a certain limit there won’t be any negative energy eigenvalue.

So far we exclusively considered two free particles in vacuum. Wewill now introduce
a filled and unimpeded Fermi sea into the presence of the two electrons. As a conse-
quence, the two original particles have to be positioned above the Fermi energy. How-
ever, we won’t consider any interaction between the electrons in the Fermi sea and the
two original ones but retain the interaction between the two electrons themselves (cf.
(Figure 2.1a)). The eigenvalue equation (Equation 2.1.11) is still valid, but, however,
we have to limit all momentum summations to momenta larger than the Fermi momen-
tum. The energy of the two electron system in its new environment seems to have the
lower bound 2𝜀𝐹. Referring back to (Equation 2.1.11) we now have (cf. [AM61])
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

(2𝜀k − 𝐸) 𝜙𝑙(𝑘) = −
1

(2𝜋)3/2 ∫
∞

𝑘𝐹
d𝑘′ 4𝜋(𝑘′)2𝑉𝑙 (𝑘, 𝑘′) 𝜙𝑙(𝑘′) , (2.1.12)

with the integration restricted to momenta above the Fermi level. We assume a con-
stant interaction between the two electrons, that may arise due to exchange of phonons
(see [Frö50; BP55; Mig58; Eli60]) and is assumed to be present in a narrow energy shell
near the Fermi surface:

𝑉 (k − k′) =
⎧{
⎨{⎩

𝑉0 , 𝑘𝐹 < 𝑘, 𝑘′ < 𝑘𝐹 + 𝑘𝛿
0 , otherwise

, (2.1.13)

with the width of the shell being very small compared to the Fermi level, i.e. 𝑘𝛿 ≪ 𝑘𝐹.
It has been shown that this interaction can be attractive as a net result of phonon ex-
change and screened Coulomb repulsion when the energy difference between the elec-
trons involved is small, i.e. ∣𝜀k − 𝜀k′ ∣ ∼ 𝑘𝐵𝑇 [BCS57]. In a normal state metal with time-
reversal symmetry the associated momentum states are always given by ∣k⟩ and ∣−k⟩.
However, we may note that an interaction of this exact mathematical form implies an
highly oscillatory behavior in real space because of the Fourier expansion of the rectan-
gle functionAssuming an interaction of this form in (Equation 2.1.12), will restrict the
solutions to the 𝑙 = 0 channel and cancel most of the integral but the thin momentum
shell above 𝑘𝐹. The integration over the orbital angular momentum wave function pro-
duces a constant that may be canceled by doing the same integral for the wave function
on the left hand side as well, i.e.

∫
𝑘𝐹+𝑘𝛿

𝑘𝐹
d𝑘 𝑘2𝜙𝑙(𝑘) = − ∫

𝑘𝐹+𝑘𝛿

𝑘𝐹
d𝑘

4𝜋𝑘2

(2𝜋)3/2
𝑉0

2𝜀k − 𝐸 ∫
𝑘𝐹+𝑘𝛿

𝑘𝐹
d𝑘′ (𝑘′)2𝜙𝑙(𝑘′)

⇔ 1 = − ∫
𝑘𝐹+𝑘𝛿

𝑘𝐹
d𝑘

4𝜋𝑘2

(2𝜋)3/2
𝑉0

2𝜀k − 𝐸 . (2.1.14)

Due to the presence of normalization factors is turns out to be convenient to use an
energy instead of an momentum integration, i.e. 6

1 = − (2𝜋)3/2 𝑉0
2 ∫

𝜀𝐹+𝜀𝛿

𝜀𝐹
d𝜀

𝐷(𝜀)
2𝜀k − 𝐸 . (2.1.15)

The density of states at the Fermi level is finite and can be approximately assumed to

6 The energy vs. momentum integration substitution produces the differential dk = √ 2𝑚
ℏ2

1
2√𝜀d𝜀, which

gives 4𝜋𝑘2

(2𝜋)3dk = 1
2 𝐷(𝜀)d𝜀 with the density of states (taking into account both spin states) 𝐷(𝜀) =

( 2𝑚
ℏ2 )

3/2 √𝜀
2𝜋2
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2.2. BCS-theory

be constant. This is in contrast to the case of two free electrons that had zero density of
states at the lowest possible energy due to the √𝜀-dependence of free particles in three
dimensions. Performing the integration we obtain

1 = − (2𝜋)3/2 𝑉0𝐷(𝜀𝐹)
2 ln(1 +

2𝜀𝛿
2𝜀𝐹 − 𝐸) , (2.1.16)

and finally find the energy eigenvalue to be

𝐸 = 2𝜀𝐹 −
2𝜀𝛿

𝑒
− 2

(2𝜋)3/2
1

𝑉0𝐷(𝜀𝐹) − 1

𝑉0→0−
↓≈ 2 (𝜀𝐹 − 𝜀𝛿 exp [−

2
(2𝜋)3/2

1
∣𝑉0∣𝐷(𝜀𝐹)]) , (2.1.17)

with the curious dependency on 𝑉0𝐷(𝜀𝐹) that is shown in (Figure 2.1b). At zero in-
teraction 𝑉0 = 0 the energy eigenvalue exhibits a distinct cusp, where it jumps from
2(𝜀𝐹 + 𝜀𝛿) to a value slightly below twice the Fermi energy. Therefore, already a tiny
attractive interaction will lead to a bound state of the two-electron system. This phe-
nomenon is known as the Cooper instability. Apparently, it is possible to construct a
two-particle state with an energy that makes this state favorable compared to putting
the two electrons in the lowest available states above the Fermi energy. Furthermore,
if it is energetically favorable to create such a state from two electrons, it appears to be
even more favorable, to let more electron pairs condense into this state. So far, we fo-
cused on the case 𝑙 = 0, but we may easily generalize the above result to channels with
𝑙 = 1, 2 by introducing an appropriate interaction that produces non-zero components
in respective expansion coefficients 𝑉𝑙 (𝑘, 𝑘′) (cf. [AM61]). However, we should keep in
mind what kind of approximations and restrictions we introduced to obtain this result:
i) assuming zero temperature ii) neglecting any interactions between the two electron
and the Fermi sea. Therefore, we have to find a new ansatz to get rid of these restrictions.

2.2. BCS-theory

The “traditional” BCS-theory explains superconductivity and its associated phenomena
by introducing the concept of Cooper pairs that form a coherent condensate due to an
effective attractive interaction mediated by phonons [Mig58; De 89]. Like in the pre-
vious section discussing the Cooper problem we assume a constant interaction between
electrons that is present in a small energy shell above the Fermi level. The Hamiltonian
yields

ℋ = ∑
k,𝜎

𝜀k𝑐†
k,𝜎𝑐k,𝜎 − 𝑔 ∑

k,k′
𝑐†
k,↓𝑐

†
−k,↑𝑐−k′,↑𝑐k′,↓ , (2.2.1)

wherewe denoted the attractive, isotropic coupling constant by 𝑔 > 0. We are allowed
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

to neglect all interaction except the one in the Cooper channel because the available
phase space (for a low-energy theory) is much larger for k = −k than for all other
states with k ≠ −k. In order to calculate the resulting one-particle spectrum we apply
mean-field theory . The essential idea of BCS-theory is to introduce the “off-diagonal”
expectation value

𝑏k = ⟨𝑐−k,↑𝑐k,↓⟩ 𝑏†
k = ⟨𝑐†

k,↓𝑐
†
−k,↑⟩ , (2.2.2)

which is defined with respect to the (unknown) eigenstates of (Equation 2.2.1) and
which is usually zero in the normal state since the normal state Hamiltonian commutes
with the particle number operator. However, in the superconducting phase this mean-
field acquires a non-zero expectation value, since the superconducting state is a coherent
superposition of Cooper pairs [BCS57]

∣𝜓𝐵𝐶𝑆⟩ = ∏
𝑘

(𝑢k + 𝑣k𝑐†
k,↑𝑐

†
−k,↓) |0⟩ , (2.2.3)

where the normalization fixes the coefficients ⟨𝜓𝐵𝐶𝑆∣𝜓𝐵𝐶𝑆⟩ != 1 ⇔ ∣𝑢k∣2 + ∣𝑣k∣2 = 1
and we get ⟨𝜓𝐵𝐶𝑆∣𝑐†

k,↓𝑐
†
−k,↑∣𝜓𝐵𝐶𝑆⟩ = 𝑢k𝑣k Using the definition 𝛿k ≔ (𝑐−k,↑𝑐k,↓ − 𝑏k) the

interaction term in (Equation 2.2.1) can be written [Wei07]

𝑐†
k,↓𝑐

†
−k,↑𝑐−k′,↑𝑐k′,↓ = (𝑏†

k + 𝛿†
k) (𝑏k′ + 𝛿k′) = 𝑏†

k𝑏k′ + 𝑏†
k𝛿k′ + 𝛿†

k𝑏k′ + 𝛿†
k𝛿k′

≈ 𝑏†
k𝑏k′ + 𝑏†

k𝛿k′ + 𝛿†
k𝑏k′ = −𝑏†

k𝑏k′ + 𝑏†
k𝑐−k′,↑𝑐k′,↓ + 𝑏k′𝑐†

k,↓𝑐
†
−k,↑ ,

(2.2.4)

in which we assume the fluctuations 𝛿k to be small and therefore justifying the ne-
glection of terms quadratic in the fluctuations, i.e. 𝛿†

k𝛿k′ ≈ 0. By defining another -
which will later become an important entity - “short-hand notation”, i.e. Δ ≔ −𝑔 ∑k 𝑏k
we squeeze the (interacting)Hamiltonian into its final (non-interacting) shape (rename
k ↔ k′ in the second term of the last equality of (Equation 2.2.4))

ℋ = ∑
k,𝜎

𝜀k𝑐†
k,𝜎𝑐k,𝜎 + Δ†𝑐−k,↑𝑐k,↓ + Δ𝑐†

k,↓𝑐
†
−k,↑ − 𝑔 ∑

k,k′
𝑏†
k𝑏k′ . (2.2.5)

The resultingHamiltonian is comprised of single-particle terms only andmaybe diag-
onalized by employing the Nambu spinor notation 𝐶k ≔ (𝑐k,↓, 𝑐†

−k,↑) [Nam60; And58b]
(and fermionic antisymmetry {𝑐(†)

𝛼 𝑐(†)
𝛼′ } = 𝛿𝛼,𝛼′) and implying degeneracy and inversion

symmetry on the single-particle spectrum 𝜀k,↑ = 𝜀k,↓ = 𝜀−k,↑
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2.2. BCS-theory

ℋBCS = ∑
k

(𝑐†
k,↓, 𝑐−k,↑) (𝜀k Δ

Δ† −𝜀k
) ( 𝑐k,↓

𝑐†
−k,↑

) . (2.2.6)

The new quasiparticle energy is obviously given by 𝐸k = ±√𝜀2
k + ∣Δ∣2, whereas the

new eigenstates 𝛾k that diagonalize (Equation 2.2.6) are a superposition of electrons
and holes, i.e.

(𝛾k,+
𝛾†
k,−

) ≔ 𝑈k𝐶k = ( 𝑢k 𝑣k
−𝑣k 𝑢k

) ( 𝑐k,↓
𝑐†
−k,↑

) with
⎧{
⎨{⎩

𝑢k = Δ
√2𝐸k(𝐸k−𝜀k)

𝑣k = 𝐸k−𝜀k
√2𝐸k(𝐸k−𝜀k)

, (2.2.7)

where the normalization is fixed by the requirement ∣𝑢k∣2 + ∣𝑣k∣2 != 1 and we chose
an arbitrary (but simple) phase for the coefficients. We take the single-orbital Hubbard
model on the square lattice

ℋ = 𝑡 ∑
⟨𝑖,𝑗⟩

𝑐†
𝑖 𝑐𝑗 = ∑

k
− 2𝑡 (cos(𝑘𝑥) + cos(𝑘𝑦))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝜀k

𝑐†
k𝑐k , (2.2.8)

as an example to illustrate the implications of the calculations above. (Figure 2.2)
shows the normal (𝜀k) vs. the superconducting (𝐸k) state dispersion and the momen-
tum dependence of the eigenstate components 𝑢k and 𝑣k. For example, at the Γ point
the new quasiparticles 𝛾k,+ are of pure hole character 𝑢k = 0, while at X we have equal
electron and hole contribution and at M the quasiparticles have sole electron charac-
ter (cf. (Figure 2.2b)). In order to justify the introduction of the mean-field parameter
(Equation 2.2.2) a posteriori we have to actually calculate the corresponding expectation
value w.r.t. ℋBCS (Equation 2.2.6), which is

⟨𝑐k,↓𝑐−k,↑⟩ =
⟨𝑐k,↓𝑐−k,↑𝑒−𝛽ℋBCS⟩

⟨𝑒−𝛽ℋBCS⟩
. (2.2.9)

This is most conveniently solved by rewriting the expectation value in terms of the
eigenstates of ℋBCS, i.e. the new quasiparticles by means of (Equation 2.2.7) and their
inverse [Tim12]

( 𝑐k,↓
𝑐†
−k,↑

) = (𝑢k −𝑣k
𝑣k 𝑢k

) (𝛾k,↑
𝛾†
k,↓

) (2.2.10)

transforming the expectation value to
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Figure 2.2.: (Figure 2.2a) The hubbard model 2.2.8 with its dispersion in the normal state (Δ = 0
and 𝐸k → 𝜀k) and the superconducting state (Δ = const > 0 and 𝐸k). We set the con-
stants 𝑡 = 1.0 and Δ = 0.9. (Figure 2.2b) The squares of the components 𝑢k, 𝑣k of the
eigenstates always add up to one and we see how the mixture of electron and hole
states in the quasiparticle states depends on themomentum. Particularly at the (nor-
mal state) Fermi momenta we see exactly the same electron and hole contribution to
the quasiparticle state (which is the case for e.g. X and the center between Γ andM).
The quasiparticle at Γ and M has pure hole and electron character, respectively.

⟨𝑐k,↓𝑐−k,↑⟩ = ⟨(𝑢k𝛾k,↑ − 𝑣k𝛾†
k,↓) (𝑣k𝛾†

k,↑ + 𝑢k𝛾k,↓)⟩

= ⟨𝑢k𝑣k𝛾k,↑𝛾†
k,↑⟩ + ⟨∣𝑢k∣2𝛾k,↑𝛾k,↓⟩ − ⟨∣𝑣k∣2𝛾†

k,↓𝛾
†
k,↑⟩ − ⟨𝑢k𝑣k𝛾†

k,↓𝛾k,↓⟩

= 𝑢k𝑣k (⟨𝛾k,↑𝛾†
k,↑⟩ − ⟨𝛾†

k,↓𝛾k,↓⟩) (2.2.11)

Using the thermal expectation value for the number operator ⟨𝛾†
−k,↑𝛾−k,↑⟩ = 𝑛 (𝐸k)

and ⟨𝛾k,↓𝛾†
k,↓⟩ = ⟨1 − 𝛾†

k,↓𝛾k,↓⟩ = 1 − nF (𝐸k) of the new quasiparticle (where nF (𝐸k) is
the Fermi-Dirac distribution), we find

⟨𝑐k,↓𝑐−k,↑⟩ = 𝑢k𝑣k (1 − 2nF (𝐸k)) . (2.2.12)

Herewith, we are able to express the self-consistency condition of the gap function (that
was introduced before (Equation 2.2.5)), i.e. 7

7 The Fermi-Dirac function may be expressed by 1 − 2nF(𝐸) = 1 − 2 1
1+𝑒−𝛽𝐸 = −1+𝑒−𝛽𝐸

1+𝑒−𝛽𝐸 = −𝑒𝛽 𝐸
2 +𝑒−𝛽 𝐸

2

𝑒𝛽 𝐸
2 +𝑒−𝛽 𝐸

2
=

tanh (𝛽 𝐸
2 ) where 𝛽 = 1

𝑘𝐵𝑇
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2.2. BCS-theory

Δ = −𝑔 ∑
k

𝑢k𝑣k (1 − 2nF (𝐸k)) = −𝑔 ∑
k

Δ (1 − 2nF (𝐸k))
2𝐸k

= −𝑔 ∑
k

Δ
2𝐸k

tanh(
𝛽𝐸k

2 ) . (2.2.13)

For a momentum dependent Cooper pair interaction we have (using the abbreviation
𝑉k,−k,k′,−k′ = 𝑉k,k′)

Δk = − ∑
k′

𝑉k,k′Δk′

2𝐸k′
tanh(

𝛽𝐸k′

2 ) . (2.2.14)

We take a look at certain physical limits that provide a considerable simplification of
the gap equation, e.g. in the zero temperature limit𝑇 → 0wehave (lim𝑇→0 tanh(𝛽𝐸k′

2 ) =
1)

Δk = − ∑
k′

𝑉k,k′Δk′

2𝐸k′
= − ∑

k′

𝑉k,k′Δk′

2√𝜀2
k′ + ∣Δk∣2

. (2.2.15)

or the limit of infinitesimal gap amplitude Δ → 0 with limΔ→0 𝐸k = 𝜀k and we get the
“linearized” gap equation

Δk = − ∑
k′

𝑉k,k′ tanh(𝛽𝜀k′

2 )
2𝜀k′

Δk′ . (2.2.16)

that reduces the upcoming task to solve the gap equation to a simple eigenvector
problem. We try further evaluate the gap equation with constant interaction. In (Equa-
tion 2.2.13) the sum/integral only depends on themomentum through the quasiparticle
energy, which makes it advantageous to rewrite it as energy integral (where we use the
Debye frequency 𝜔𝐷 as physical cutoff that represents the energy domain of attractive
interaction 𝑔 < 0 and 𝑉0 ≔ −∣𝑔∣ > 0) by means of the (normal state) density of states
𝐷(𝜀) (that is assumed to be constant in the considered energy window, i.e. 𝐷(𝜀𝐹) at the
Fermi energy)

Δ =
𝑉0

Ω𝐵𝑍
∫

+𝜔𝐷

−𝜔𝐷
d𝜀

Δ𝐷(𝐸(𝜀))
2𝐸(𝜀) tanh(

𝛽𝐸(𝜀)
2 ) = Δ

𝑉0𝐷(𝜀𝐹)
Ω𝐵𝑍

∫
+𝜔𝐷

−𝜔𝐷
d𝜀

tanh(𝛽𝐸(𝜀)
2 )

2𝐸(𝜀) ,

(2.2.17)
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

with 𝐸(𝜀) = √𝜀2 + Δ2. This form of the gap equation can be used to approximate the
critical temperature 𝑇𝑐 that defines the transition from the normal to the superconduct-
ing state, i.e. the temperature with Δ(𝑇𝑐) = 0 which also simplifies lim

𝑇↗𝑇𝑐
𝐸 = |𝜀| (note

that 𝛽𝐶 ≔ (𝑘𝐵𝑇𝐶)−1)

Ω𝐵𝑍
𝑉0𝐷(𝜀𝐹) = ∫

+𝜔𝐷

−𝜔𝐷
d𝜀

tanh(𝛽𝐶|𝜀|
2 )

2|𝜀|

|𝜀|=|−𝜀|
↓= ∫

+𝜔𝐷

0
d𝜀

tanh(𝛽𝐶|𝜀|
2 )

|𝜀|

𝑢≔ 𝛽|𝜀|
2

↓= ∫
𝛽𝐶𝜔𝐷/2

0
d𝑢

tanh (𝑢)
𝑢 .

(2.2.18)

The last equationmaybe tackled by integration bypartswherewenote that d
d𝑥 tanh 𝑥 =

1 − (tanh(𝑥))2 = 1
(cosh(𝑥))2 and we get (𝛽𝜔𝐷 ≫ 1)

Ω𝐵𝑍
𝑉0𝐷(𝜀𝐹) = ⎡⎢

⎣
ln (𝛽𝐶𝜔𝐷/2) tanh (𝛽𝜔𝐷/2)⏟⏟⏟⏟⏟⏟⏟

=1
− ∫

𝛽𝐶𝜔𝐷/2

0
d𝑢

ln(𝑢)
(cosh(𝑢))2

⎤⎥
⎦

. (2.2.19)

The integrand of the remaining integral decays exponentially and therefore justifying
to send the upper limit to infinity, which results in a definite integral that is

∫
∞

0
d𝑢

ln(𝑢)
(cosh(𝑢))2 = −𝛾 + ln

𝜋
4 , (2.2.20)

with the Euler constant 𝛾 8. Using it gives

Ω𝐵𝑍
𝑉0𝐷(𝜀𝐹) = ln (𝛽𝐶𝜔𝐷/2) + 𝛾 − ln

𝜋
4 = ln(

2𝛽𝐶𝜔𝐷
𝜋 ) + 𝛾 , (2.2.21)

the estimate for the critical temperature in the weak-coupling limit

𝑘𝐵𝑇𝐶 =
2𝑒𝛾

𝜋 𝜔𝐷 exp(−
Ω𝐵𝑍

𝑉0𝐷(𝜀𝐹)) ≈ 1.133 87 𝜔𝐷 exp(−
Ω𝐵𝑍

𝑉0𝐷(𝜀𝐹)) . (2.2.22)

By doing some numerics we may also determine the temperature dependency Δ(𝑇)
of the gap amplitude derived from (Equation 2.2.17), i.e. using

8 The Euler 𝛾-constant is defined by 𝛾 = lim
𝑛→∞

[
𝑛

∑
𝑘=1

(
1
𝑘 ) − ln(𝑛)] ≈ 0.577 21
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2.2. BCS-theory

1 =
𝑉0𝐷(𝜀𝐹)

Ω𝐵𝑍
∫

+𝜔𝐷

−𝜔𝐷
d𝜀

tanh(𝛽√𝜀2+Δ2

2 )

2√𝜀2 + Δ2

sym.w.r.t.𝜀→−𝜀
↓=

𝑉0𝐷(𝜀𝐹)
Ω𝐵𝑍

∫
𝜔𝐷

0
d𝜀

tanh(𝛽√𝜀2+Δ2

2 )

√𝜀2 + Δ2
.

(2.2.23)

and solving for Δ through a range of temperatures. It turns out, that the gap exhibits
a dependency on the temperature that is in the literature (poorly) approximated by
Δ(𝑇)
Δ(0) ≈ √1 − 𝑇

𝑇𝑐
[Tin96, Chapter 3.6], which is shown in (Figure 2.3b). First of all, let’s

check out the gap at zero temperature 𝑇 → 0 ⇔ 𝛽 → ∞

1 =
𝑉0𝐷(𝜀𝐹)

Ω𝐵𝑍
∫

𝜔𝐷

0

d𝜀
Δ

1

√1 + 𝜀2

Δ2

𝑥= 𝜀
Δ

↓=
𝑉0𝐷(𝜀𝐹)

ΔΩ𝐵𝑍
∫

𝜔𝐷/Δ

0
d𝑥

1
√1 + 𝑥2

=
𝑉0𝐷(𝜀𝐹)

Ω𝐵𝑍
arcsinh(𝑥)∣

𝜔𝐷/Δ

0
=

𝑉0𝐷(𝜀𝐹)
Ω𝐵𝑍

arcsinh (𝜔𝐷/Δ) . (2.2.24)

Henceforth, the gap amplitude at zero temperature is

Δ(𝑇 = 0) =
𝜔𝐷

sinh( Ω𝐵𝑍
𝑉0𝐷(𝜀𝐹))

= 𝜔𝐷 csch(
Ω𝐵𝑍

𝑉0𝐷(𝜀𝐹))
𝑉0𝐷(𝜀𝐹)≫1

↓≈ 2𝜔𝐷 exp(−
Ω𝐵𝑍

𝑉0𝐷(𝜀𝐹)) .

(2.2.25)

Although it suffered from a lot of flaws and (crude) approximations, the Cooper prob-
lem calculation already correctly predicted the exponential dependency of the binding
energy on the interaction and density of states at the Fermi level (cf. (Equation 2.1.17)),
apart from the factor 2 that only arises in the Cooper calculation. Comparison with
(Equation 2.2.22) provides a universal ratio of zero temperature gap to critical temper-
ature, i.e.

Δ(𝑇 = 0)
𝑘𝐵𝑇𝐶

=
𝜋
𝑒𝛾 ≈ 1.763 88 . (2.2.26)

The behavior of the integrand in the gap equation in (Equation 2.2.23) and its depen-
dency on temperature is shown in (Figure 2.3a). The temperature dependency of the
gap amplitude on temperature and the illustration the zero temperature gap Δ(𝑇 = 0)
and the critical temperature 𝑇𝐶 is displayed in (Figure 2.3b).

25



2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

0 1 2 3 4 5
0

1
2Δ

1
Δ

energy 𝜀

ta
nh

(
𝛽√

𝜀2
+

Δ
2

2
)

/√
𝜀2

+
Δ2 𝑘𝐵𝑇 = 0.1

𝑘𝐵𝑇 = 0.25
𝑘𝐵𝑇 = 0.5
𝑘𝐵𝑇 = 1.0
𝑘𝐵𝑇 = 2.5

(a)

𝑘𝐵𝑇𝑐

0

0.5

1

temperature 𝑘𝐵𝑇

ga
p

Δ(
𝑘 𝐵

𝑇)
/Δ

(0
)

numerics
Δ𝑀(𝑇)
Δ𝑆(𝑇)

(b)

Figure 2.3.: (Figure 2.3a) The behavior of the integrand of the gap equation in (Equation 2.2.23)
in terms of the energy is bell-shaped like and the integrand goes to zero for 𝜀 →
∞. Increasing temperature renders the bell-shape more flat. This already sug-
gests what Δ(𝑇) must look like. (Figure 2.3b) The temperature dependency of
the gap amplitude exhibits a zero derivative at zero temperature gap and an ver-
tical tangent at the critical temperature 𝑇𝐶. While most literature uses a square
root Δ𝑀(𝑇) = √1 − 𝑇/𝑇𝑐 fit for the curve [Tin96, Chap. 3.6.2], the interpolation
Δ𝑆(𝑇) = tanh ( 𝜋

𝑒𝛾 √𝑇𝑐/𝑇 − 1) Δ(0) provide a much better agreement [Fra].

2.3. Pairing due to repulsive interactions/Kohn-Luttinger effect

After having discussed the origin of the idea of Cooper pairs and the implications of the
conventional BCS-theory on the superconducting state in (Section 2.1) and (Section 2.2),
we proceed with pairing instabilities that are not due to phonon exchange and uniform
effective interactions but due to purely electronic interactions. In contrast to the “phe-
nomenological” BCS-theory that makes use of a “nonphysical effective potential to de-
scribe the complexCoulombandphonon-induced interactions between electrons” [MA62],
we will derive the exact form of the effective interactions of electronic origin from first
principles. In particular, we will review the Kohn-Luttinger effect and see how pairing
may arise from short-range repulsive interaction between electrons [KL65]. It was al-
ready noted by Anderson and Morel, who calculated the critical temperature including
both phonon exchange and Coulomb interaction, that essentially all metals should be-
come superconducting at sufficiently low temperatures [MA62]. However, the Kohn-
Luttinger effect is independent of any phonon-electron interaction and shows that gener-
ically any Fermi liquidmust become superconducting eventuallywhen approaching zero
temperature.
An isolatedpair of electrons in the vacuumwill naturally interact via a repulsiveCoulomb
potential of the form 𝜙 ∼ +𝑒2/𝑟 with 𝑟 being the distance between them. If we place an
electron in a metal, the Coulomb potential will be strongly modified by screening effects
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2.3. Pairing due to repulsive interactions/Kohn-Luttinger effect

in the Fermi gas. This linear response of the electron gas to the (weak) disturbance by the
electron charge can be described by the Lindhard function in the static limit [GV05; Lin54]

lim
𝜔→0

𝜒𝜎 (q, 𝜔) = − ∫dk
𝑓 (𝜀k𝜎) − 𝑓 (𝜀k+q𝜎)

𝜀k𝜎 − 𝜀k+q𝜎
, (2.3.1)

where 𝑓 (𝜀) is the Fermi-Dirac function and 𝜀 the single-particle energy of the electrons.
The Lindhard function is most conveniently calculated by introducing a change of vari-
ables in the second term of (Equation 2.3.1) andmaking use of the rotational invariance
for free electrons. 9. The integration can be done analytically and results in the Lindhard
functions

𝜒2D
𝜎 (∣q∣) ∼ 1 −

Θ (𝑞 − 2𝑘𝐹)
𝑞

√𝑞2 − (2𝑘𝐹)2 𝜒3D
𝜎 (∣q∣) ∼ 𝑘𝐹 +

𝑘2
𝐹 − ( 𝑞

2)
2

𝑞 ln
∣𝑞 + 2𝑘𝐹∣
∣𝑞 − 2𝑘𝐹∣ ,

(2.3.2)

for free electrons in two and three dimensions at zero temperature. Their momentum
dependency is shown in (Figure 2.4a). Since the Fermi surface is spherical, only the
absolute value of q matters. Obviously, the Lindhard function in one, two and three di-
mensions shows a characteristic change of behavior at the momentum ∣q∣ = 2𝑘𝐹. How-
ever, we are interested in the real space structure of 𝜒𝜎(q), i.e. its Fourier transform
𝜒𝜎(r) = (2𝜋)−𝑑/2 ∫dq 𝑒−𝑖qr𝜒𝜎(q) with 𝑑 being the dimension. 𝜒𝜎(r) exhibits a long-
range oscillatory behavior that is referred to as Friedel oscillations. So far, we only con-
sidered the cloud of free electrons with spherical Fermi surface and ignored any lattice
effects. Taking into account electrons living on a lattice will render the Fermi surface
non-spherical and turn the continuous symmetry of the Lindhard function w.r.t. to ro-
tations around the origin into a discrete symmetry that is determined by the lattice point
group (cf. (Figure 2.4b)). Although we introduced the susceptibility 𝜒𝜎(q) as a result
of linear response theory, it can as well be interpreted as one particle-hole term of the
perturbative expansion of the two-particle vertex up to second order. Hence, 𝜒𝜎(q) also
functions as a diagram contributing to the effective interaction between two electrons in
the normal state. Assuming the only finite contribution to the two-particle interaction
Γ to be the Lindhard function, we find Γk,−k;k′,−k′ = 𝑈2𝜒(k − k′) with 𝑈 being the bare
Coulomb repulsion. By making use of the attractive regions of the long-range oscilla-
tory interaction, we may expect to obtain a pairing instability at sufficiently low tem-
peratures. For a realistic normal state interaction the long-range oscillatory tail of the

9 Renaming the summation variable k → k + q in the second Fermi function, we find

− ∫dk
𝑓(𝜀k𝜎)−𝑓(𝜀k+q𝜎)

𝜀k𝜎−𝜀k+q𝜎
= ∫dk ( 𝑓(𝜀k𝜎)

𝜀k+q𝜎−𝜀k𝜎
− 𝑓(𝜀k𝜎)

𝜀k𝜎−𝜀k−q𝜎
). For free electrons we have 𝜀k = ℏ2

2𝑚k2

and get 𝜀k±q𝜎 − 𝜀k𝜎 = ℏ2

2𝑚 (±2kq + q2). At zero temperature, we are left with 𝜒𝜎 (q, 0) =
2𝑚
ℏ2 ∫∣k∣<𝑘𝐹

dk( 1
q2+2kq

+ 1
q2−2kq

) = 2𝑚
ℏ2 ∫∣k∣<𝑘𝐹

dk 2𝑞2

𝑞4−4(kq)2 , which reduces to an integration over 𝑘 = ∣k∣
and the angle between k and q, that is cos(𝜃(k,q)) (cf. [Mih11]).
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Figure 2.4.: (Figure 2.4a) The Lindhard function 𝜒𝜎(q) for free electrons exhibits a characteris-
tic cusp at the momentum 2𝑘𝐹 in all dimensions. Its Fourier transform 𝜒𝜎(r) has a
long-range oscillatory behavior that is referred to as Friedel oscillations [SG05]. (Fig-
ure 2.4b) The Lindhard function of the extended two-dimensional Hubbard model
on the square lattice with 𝜀k = −2𝑡 (cos(𝑘𝑥) + cos(𝑘𝑦)) − 4𝑡′ cos(𝑘𝑥) cos(𝑘𝑦) − 𝜇 and
the parameters 𝑡 = 1.0, 𝑡′ = −0.1, 𝜇 = −0.25 for nearest, next nearest neighbor hop-
ping and chemical potential demonstrates how the continuous symmetry of 𝜒(q) w.r.t.
to the polar angle breaks down to a discrete symmetry given by the lattice point group.

interaction is expected to decay more slowly than the bare direct Coulomb repulsion.
Therefore, it seems reasonable to assume that a pairing instability arises in a angular
momentum channel with 𝐿 > 0.
After having captured the general idea we want to proceed to somemore detailed state-
ments about the superconducting instabilities arising from repulsive short range inter-
action in particular in two dimensions. The original treatment of Kohn and Luttinger
calculated and found the logarithmic divergence of the effect exclusively in three dimen-
sions. About twenty years later, after the rise of the high temperature superconduc-
tors, the interest in the two dimensional version came about. Although, the effect was
believed to be absent in two dimension (due to the fact that the Lindhard function is
constant for momentum transfers smaller than twice the Fermi momentum 𝑞 < 2𝑘𝐹,
which can only give rise to s-wave symmetry pairing with 𝐿 = 0), it was shown that
higher order terms actually can generate attractive regions in the effective interaction
giving rise to pairing instabilities with higher orbital angular momentum [Chu93]. The
general procedure is to calculate the diagrams up to second order contributing to the
interaction and to analyze the resulting effective two-particle vertex by expanding it in
terms of orbital angular momentum eigenfunctions. Kohn and Luttinger only claimed
that the coefficients of this expansion corresponding to odd angular momentum 𝐿 must
be negative and therefore trigger an instability. However, it has been shown that the
scattering amplitudes may be attractive independent of 𝐿, where 𝐿 can be any (higher)
angular momentum. In (Chapter 5) we will return to this idea in a more formal way by
explicitly finding and calculating all contributing diagrams as well as generalizing the
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approach to multiple orbitals and the spin degree of freedom. By introducing the idea
of logarithmic renormalization to this perturbative treatment, we are able to give explicit
expressions for the critical temperature. On the contrary, one has to keep in mind, that
these calculations may only be employed to infinitesimal weak bare interactions, which
is mostly not the case for modern strongly correlated electrons systems of current inter-
est.

2.4. Generalized multi-band BCS-theory

Hitherto, we introducedCooper pairing in the two-particle angularmomentum channel
𝐿 = 0 (s-wave) (Section 2.1), worked out the corresponding BCS-theory (Section 2.2)
and motivated the extension to higher angular momentum pairing 𝐿 > 0 by the idea of
Kohn-Luttinger, which may provide the microscopic mechanism for such Cooper states
(Section 2.3). In order to unify and generalize these concepts we introduce an effective
interaction that depends on momentum and band indices, since an 𝐿 = 1 state requires
antisymmetry in the spatial domain, making 𝑘-dependency inevitable (assuming intra-
band pairing). BCS-theory relies on the validity of the approximation that the effective
interaction that is responsible for the formation of Cooper pairs is the only relevant in-
teraction of the Fermi liquid [And84b]. Therefore, the corresponding Hamiltonian is
denoted by

ℋ = ∑
k,𝑏,𝜎̃

(𝜀k𝑏𝜎̃ − 𝜇)⏟⏟⏟⏟⏟
≔𝜉k𝑏𝜎̃

𝑐†
k𝑏𝜎̃𝑐k𝑏𝜎̃ + ∑

k,k′
∑
𝑏,𝑏′

∑
𝜎̃1,𝜎̃2
𝜎̃′

1,𝜎̃′
2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑐†

k𝑏𝜎̃1
𝑐†
−k𝑏𝜎̃2

𝑐−k′𝑏′𝜎̃′
2
𝑐k′𝑏′𝜎̃′

1
,

(2.4.1)

where the quantum numbers k, 𝑏 and 𝜎̃ refer to momentum, band and (pseudo)spin.
For the definition of pseudospin we refer to the case of centrosymmetric spin-orbit cou-
pling and (Section 3.2). Introducing the concept of pseudospin allows us to employ
the following results for spin-rotation symmetric as well as centrosymmetric spin-orbit
models by simply replacing spin 𝜎 with the pseudospin label 𝜎̃ and vice versa. In
both cases, we can actually drop the (pseudo)spin index in the single-particle term,
i.e. 𝜀k𝑏𝜎̃ = 𝜀k𝑏 , since we assume spin degeneracy. Although we start from a band basis
we could equally well employ an orbital basis, that, however, would disguise equal-
energy pairs, which we want to restrict our analysis to. Note that, although we have
only two different momenta we may have all kinds of (pseudo)spin combinations aris-
ing in the interaction term in contrast to conventional BCS-theory as this only takes into
account time-reversal partner states. As long as we restrict our analysis to equal energy
pairing, a single Cooper pair must be hosted by a single band in order to make sure that
the Cooper pair’s constituents are energetically degenerate. Therefore, only two differ-
ent band indices 𝑏 and 𝑏′ arise in the interaction term (Equation 2.4.1). Later within
this section, we will briefly discuss the possibility of interband pairing and the exotic
symmetries it gives rise to (see (Table 2.1)). The (effective) interaction must satisfy the
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constraints of fermionic antisymmetry

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ = −𝑈𝑏,𝜎̃2,𝑏,𝜎̃1,𝑏′,𝜎̃′

1,𝑏′,𝜎̃′
2

−k,k,k′,−k′ = −𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
2,𝑏′,𝜎̃′

1
k,−k,−k′,k′ = +𝑈𝑏,𝜎̃2,𝑏,𝜎̃1,𝑏′,𝜎̃′

2,𝑏′,𝜎̃′
1

−k,k,−k′,k′ ,
(2.4.2)

and self-adjointness

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ = 𝑈𝑏′,𝜎̃′

1,𝑏′,𝜎̃′
2,𝑏,𝜎̃1,𝑏,𝜎̃2

k′,−k′,k,−k . (2.4.3)

wherewe exchanged the pair of “outgoing”with the pair of “incoming” particles. The
bar denotes complex conjugation 𝑧 = 𝑎 + 𝑖𝑏 → 𝑧 = 𝑎 − 𝑖𝑏. Note, that these requirements
for the interaction vertex must be satisfied independent a single or multi-band model,
spin rotation symmetry or the specific basis the Hamiltonian is given in.

2.4.1. Self-consistent BCS mean-field theory

In the spirit of finite “off-diagonal” expectation values we define the mean-fields

𝑓k𝑏𝜎̃𝜎̃′ ≔ ⟨𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ 𝑓k𝑏𝜎̃𝜎̃′ ≔ ⟨𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′⟩ , (2.4.4)

that feature arbitary (pseudo)spin combinations of 𝜎̃ and 𝜎̃ ′ and are used to approx-
imate the interaction term (in (Equation 2.4.1)) by neglecting all terms quadratic in the
fluctuations 𝛿k𝑏𝜎̃𝜎̃′ ≔ 𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′ − 𝑓k𝑏𝜎̃𝜎̃′ (and its adjoint 𝛿†

k𝑏𝜎̃𝜎̃′ ≔ 𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′ − 𝑓k𝑏𝜎̃′𝜎̃)
that are assumed to be small, i.e.

𝑐†
k𝑏𝜎̃1

𝑐†
−k𝑏𝜎̃2

𝑐−k′𝑏′𝜎̃′
2
𝑐k′𝑏′𝜎̃′

1
= (𝑓k𝑏𝜎̃2𝜎̃1

+ 𝛿†
k𝑏𝜎̃1𝜎̃2

) (𝑓k′𝑏′𝜎̃′
2𝜎̃′

1
+ 𝛿k′𝑏′𝜎̃′

2𝜎̃′
1
)

= 𝑓k𝑏𝜎̃2𝜎̃1
𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

+ 𝑓k𝑏𝜎̃2𝜎̃1
𝛿k′𝑏′𝜎̃′

2𝜎̃′
1

+ 𝛿†
k𝑏𝜎̃1𝜎̃2

𝑓k′𝑏′𝜎̃′
2𝜎̃′

1
+ 𝛿†

k𝑏𝜎̃1𝜎̃2
𝛿k′𝑏′𝜎̃′

2𝜎̃′
1⏟⏟⏟⏟⏟⏟⏟

≪ 1

≈ − 𝑓k𝑏𝜎̃2𝜎̃1
𝑓k′𝑏′𝜎̃′

2𝜎̃′
1⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈ℂ

+𝑓k𝑏𝜎̃2𝜎̃1
𝑐−k′𝑏′𝜎̃′

2
𝑐k′𝑏′𝜎̃′

1
+ 𝑐†

k𝑏𝜎̃1
𝑐†
−k𝑏𝜎̃2

𝑓k′𝑏′𝜎̃′
2𝜎̃′

1
(2.4.5)

While (Equation 2.4.5) provides a fairly intuitive derivation of themean-field approx-
imation to the interaction term, a mathematically more rigorous solution is to rewrite
the theory in terms of a path integral formulation, employ a Hubbard-Stratonovich trans-
formation and use the saddle-point approximation to find the mean-fields [Kar07]. This
then shows, that the fluctuations around the mean-fields actually scale intensively with
the volume and therefore vanish in the thermodynamic limit [Col15, Chapter 14.3]. We
insert (Equation 2.4.5) in (Equation 2.4.1) to get rid of the two-particle term and end up
with the mean-field BCS Hamiltonian 10

10 In particular, we took (Equation 2.4.1) and did
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ℋ𝐵𝐶𝑆 = ∑
k,𝑏,𝜎̃

𝜉k𝑏𝜎̃ 𝑐†
k𝑏𝜎̃𝑐k𝑏𝜎̃ +

1
2 ∑

k,𝑏
∑
𝜎̃,𝜎̃′

(Δk𝑏𝜎̃′𝜎̃ 𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′ + Δk𝑏𝜎̃𝜎̃′ 𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′) ,

(2.4.7)

where we neglected the complex number and defined the gap function

Δk𝑏𝜎̃1𝜎̃2
≔ −2 ∑

k′,𝑏′
∑

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
2,𝑏′,𝜎̃′

1
k,−k,−k′,k′ 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

(Equation 2.4.2)
↓= 2 ∑

k′,𝑏′
∑

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

,

(2.4.8)

and its adjoint

Δk𝑏𝜎̃1𝜎̃2
= −2 ∑

k′,𝑏′
∑

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
2,𝑏′,𝜎̃′

1
k,−k,−k′,k′ 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

(Equation 2.4.2) and (Equation 2.4.3)
↓= 2 ∑

k′,𝑏′
∑

𝜎̃′
1,𝜎̃′

2

𝑈𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2,𝑏,𝜎̃1,𝑏,𝜎̃2
k′,−k′,k,−k 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

. (2.4.9)

We introduced the seemingly arbitrary factor −2 to allow for a more convenient no-
tation in terms of Nambu spinors . Since Δk,𝑏,𝜎̃1,𝜎̃2

will become the main focus of our
discussion we will make some remarks about its definition. In contrast to the gap func-
tion of the conventional BCS-theory (Equation 2.4.8), it has additional indices that not
only introduce a (possible) momentum dependency but also a dependency on band
and (pseudo)spin indices. Furthermore, the gap function may even not be diagonal in
(pseudo)spin space which allows for the occurrence of any singlet or triplet state (but
not a mixture of both, since we keep inversion symmetry, so far (see (Section 3.4))). In
order to diagonalize the BCS-Hamiltonian and determine the its eigenmodeswe employ

∑
k,𝑏

𝜎̃1,𝜎̃2

∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ (−𝑓k𝑏𝜎̃2𝜎̃1

𝑓k′𝑏′𝜎̃′
2𝜎̃′

1
+ 𝑓k𝑏𝜎̃2𝜎̃1

𝑐−k′𝑏′𝜎̃′
2
𝑐k′𝑏′𝜎̃′

1
+ 𝑐†

k𝑏𝜎̃1
𝑐†

−k𝑏𝜎̃2
𝑓k′𝑏′𝜎̃′

2𝜎̃′
1
)

= − ∑
k,𝑏

𝜎̃1,𝜎̃2

∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k𝑏𝜎̃2𝜎̃1

𝑓k′𝑏′𝜎̃′
2𝜎̃′

1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔𝒦∈ℂ

+ ∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

∑
k,𝑏

𝜎̃1,𝜎̃2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k𝑏𝜎̃2𝜎̃1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 1

2 Δk′𝑏′𝜎̃′
1𝜎̃′

2

𝑐−k′𝑏′𝜎̃′
2
𝑐k′𝑏′𝜎̃′

1

+ ∑
k,𝑏

𝜎̃1,𝜎̃2

∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 1

2 Δk𝑏𝜎̃1𝜎̃2

𝑐†
k𝑏𝜎̃1

𝑐†
−k𝑏𝜎̃2

, (2.4.6)

where we note that in the second term of the right hand side the (pseudo)spin indices of the gap
function Δk′𝑏′ have the reversed order w.r.t. their operator basis to ensure the Hermiticity of the Hamil-
tonian.

31



2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

the Nambu formalism and get

ℋ𝐵𝐶𝑆 =
1
2 ∑

k,𝑏
C†
k𝑏

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜉k𝑏 ̃↑ 0 Δk𝑏 ̃↑ ̃↑ Δk𝑏 ̃↑ ̃↓
0 𝜉k𝑏 ̃↓ Δk𝑏 ̃↓ ̃↑ Δk𝑏 ̃↓ ̃↓

Δk𝑏 ̃↑ ̃↑ Δk𝑏 ̃↓ ̃↑ −𝜉k𝑏 ̃↑ 0
Δk𝑏 ̃↑ ̃↓ Δk𝑏 ̃↓ ̃↓ 0 −𝜉k𝑏 ̃↓

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

Ck𝑏 − 𝒦 , (2.4.10)

where we defined

C†
k𝑏 ≔ (𝑐†

k𝑏 ̃↑, 𝑐
†
k𝑏 ̃↓, 𝑐−k𝑏 ̃↑, 𝑐−k,𝑏 ̃↓)

𝑇
. (2.4.11)

and the constant complex number (cf. (Equation 2.4.6))

𝒦 ≔ ∑
k,𝑏

𝜎̃1,𝜎̃2

∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k𝑏𝜎̃2𝜎̃1

𝑓k′𝑏′𝜎̃′
2𝜎̃′

1
, (2.4.12)

which eventually vanishes for particular symmetries and structures of the gap func-
tion. We denoted the particular (pseudo)spin degrees of freedom by 𝜎̃ ∈ { ̃↑, ̃↓} instead
of the purely “natural” spin 𝜎 ∈ {↑, ↓} as the single-particle Hamiltonian may feature
off-diagonal elements in spin space. For the sake of simplicity in (Equation 2.4.10) and
to more conveniently discuss the gap function we introduce the notation

Δk𝑏 ≔ (Δk𝑏 ̃↑ ̃↑ Δk𝑏 ̃↑ ̃↓
Δk𝑏 ̃↓ ̃↑ Δk𝑏 ̃↓ ̃↓

) 𝜉k𝑏 ≔ (𝜉k𝑏 ̃↑ 0
0 𝜉k𝑏 ̃↓

) , (2.4.13)

for the spinful gap function and the single-particle dispersion relation. Therefore,
(Equation 2.4.10) becomes

ℋ𝐵𝐶𝑆 =
1
2 ∑

k,𝑏
C†
k𝑏 (𝜉k𝑏 Δk𝑏

Δ†
k𝑏 −𝜉k𝑏

)Ck𝑏 − 𝒦 . (2.4.14)

Now,we are able to establish a proper definition of the expectation value for themean-
fields introduced in (Equation 2.4.4),

𝑓k𝑏𝜎̃𝜎̃′ = ⟨𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ ≔
Tr (𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′𝑒−𝛽ℋ𝐵𝐶𝑆)

Tr (𝑒−𝛽ℋ𝐵𝐶𝑆)
, (2.4.15)

which was evaluated in (Section 2.2) in the context of conventional BCS-theory by
(analytically) calculating the eigenstates of the Bogoliubov-deGennesHamiltonian (Equa-
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choose
Δinit
k𝑏 = Δ𝑖=0

k𝑏

set up
ℋ𝐵𝐶𝑆

calculate
𝑓k𝑏 = ⟨𝑐−k𝑏𝑐k𝑏⟩

compare
∣Δ𝑖+1

k𝑏 − Δ𝑖
k𝑏∣ ≤ 𝜖

update
Δ𝑖+1
k𝑏 → Δ𝑖+2

k𝑏

gap function
Δk𝑏

Figure 2.5.

Figure 2.6.: In order to find the gap function Δk,𝑏 we set up a self-consistent loop that makes sure
that the BCS-Hamiltonian built from the gap function actually produces the exact
same gap function as its off-diagonal expectation value. In principle, wemay choose
an arbitary initial gap function. However, by chosing an eigenvector of the Cooper
pair interaction the convergence process is greatly accelerated. This gap function
is used to set up the BCS-Hamiltonian (Equation 2.4.14) and to determine the ac-
tual expectation value (Equation 2.4.15) from it, which is compared to the initial
gap function. Depending on its derivation from the previous one, it is adjusted and
reinserted in the BCS-Hamiltonian until the deviation between two succeeding gap
functions drops below some threshold 𝜖.

tion 2.4.10) and expressing the off-diagonal expectation value (Equation 2.4.15) in terms
of eigenstate operators that can be combined to number operators of the new quasipar-
ticles.

2.4.2. Quasiparticle states

Although, we can evaluate the expectation value (Equation 2.4.15) numerically in a
straightforward fashion in terms of the fermionic particle basis 𝑐†

k𝑏𝜎̃, 𝑐†
−k𝑏𝜎̃′ , it is more

stable and elegant to employ the eigenstates of ℋ𝐵𝐶𝑆, i.e. the new quasiparticle opera-
tors. Following up on (Equation 2.4.14), we denote the energy of the quasiparticles by
𝐸k𝑏 and use

ℎBCS ≔ (𝜉k𝑏 Δk𝑏
Δ†
k𝑏 −𝜉k𝑏

) (ℎBCS − 𝐸k𝑏𝟙4×4) = (𝜉k𝑏 − 𝐸k𝑏𝜎0 Δk𝑏
Δ†
k𝑏 −𝜉k𝑏 − 𝐸k𝑏𝜎0

) , (2.4.16)

where 𝜎0 is the zeroth Pauli matrix. The determinant of a block matrix 𝑀 = (𝐴 𝐵
𝐶 𝐷)
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can be evaluated to det𝑀 = det (𝐴𝐷 − 𝐵𝐶) as long as 𝐶 and 𝐷 commute, i.e. [𝐶, 𝐷] = 0
[Sil00]. Since the single particle spectrum 𝜉k𝑏 is spin-degenerate, 𝜉k𝑏 ̃↑ = 𝜉k𝑏 ̃↓, we have
𝜉k𝑏 ∼ 𝜎0 and therefore 𝜉k𝑏 commutes with the gap function Δk𝑏. Henceforth, the char-
acteristic polynomial is given by (in the following we use 𝜉k𝑏 interchangeable to denote
both the 2 × 2-matrix and the scalar quantity 𝜉k𝑏 ̃↑ = 𝜉k𝑏 ̃↓)

det (ℎBCS − 𝐸k𝑏𝟙4×4) = det [(𝜉k𝑏 − 𝐸k𝑏𝜎0) (−𝜉k𝑏 − 𝐸k𝑏𝜎0) − Δk𝑏Δ†
k𝑏]

= det ⎡⎢
⎣
(−𝜉2

k𝑏 + 𝐸2
k𝑏) 𝜎0 − ⎛⎜⎜

⎝

∣Δk𝑏 ̃↑ ̃↑∣
2 − ∣Δk𝑏 ̃↑ ̃↓∣

2
Δk𝑏 ̃↑ ̃↑Δk𝑏 ̃↓ ̃↑Δk𝑏 ̃↑ ̃↓Δk𝑏 ̃↓ ̃↓

Δk𝑏 ̃↓ ̃↑Δk𝑏 ̃↑ ̃↑Δk𝑏 ̃↓ ̃↓Δk𝑏 ̃↑ ̃↓ ∣Δk𝑏 ̃↓ ̃↑∣
2

− ∣Δk𝑏 ̃↓ ̃↓∣
2

⎞⎟⎟
⎠

⎤⎥
⎦

= (−𝜉2
k𝑏 + 𝐸2

k𝑏)2 − (−𝜉2
k𝑏 + 𝐸2

k𝑏)Tr (Δk𝑏Δ†
k𝑏) + det (Δk𝑏Δ†

k𝑏)
!= 0 , (2.4.17)

where the trace Tr refers to the sum of diagonal elements. Note, that this equation
has four algebraic solutions, in general. Solving successively for (−𝜉2

k𝑏 + 𝐸2
k𝑏) and the

quasiparticle energy 𝐸k𝑏 provides (inserting the factor 1/2 from (Equation 2.4.14) by
rescaling 𝐸k𝑏)

𝐸k𝑏 = ±
1
2

√
√√
⎷

𝜉2
k𝑏 +

1
2 Tr (Δk𝑏Δ†

k𝑏) ± √(
1
2 Tr (Δk𝑏Δ†

k𝑏))
2

− det (Δk𝑏Δ†
k𝑏) . (2.4.18)

In the theory of unconventional superconductivity one distinguishes two types of gap
functions: unitary and non-unitary gaps [SAM05]. In the case of a unitary gap functionwe
have Δk𝑏Δ†

k𝑏 ∝ 𝜎0 , the matrix Δk𝑏Δ†
k𝑏 has no off-diagonal elements and consequently

(1
2 Tr (Δk𝑏Δ†

k𝑏))
2

= det (Δk𝑏Δ†
k𝑏). Therefore, (Equation 2.4.18) simplifies to the two

quasiparticle energy eigenvalues

𝐸k𝑏 = ±
1
2

√𝜉2
k𝑏 +

1
2 Tr (Δk𝑏Δ†

k𝑏) . (2.4.19)

While the unitary superconductor has only two branches of quasiparticle energies like
in the conventional BCS-theory (Section 2.2), the non-unitary gap splits these eigenval-
ues further into two more bands.

For a unitary gap, we can determine the analytical eigenstates associated to (Equa-
tion 2.4.19) by making the ansatz

𝑈k𝑏 = ( 𝑢k𝑏 𝑣k𝑏
𝑣−k𝑏 𝑢−k𝑏

) ∈ ℂ4×4 where 𝑢k𝑏, 𝑣k𝑏 ∈ ℂ2×2 , (2.4.20)

with the requirement 𝑈†
k𝑏𝑈k𝑏 = 𝟙4×4 that ensures that the new quasiparticles fulfill
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fermionic anticommutation relations. The 2 × 2-matrices in the second row are asso-
ciated to momentum −k since 𝑈k𝑏 is supposed to transform the vector of operators
C†
k𝑏 = (𝑐†

k𝑏 ̃↑, 𝑐
†
k𝑏 ̃↓, 𝑐−k𝑏 ̃↑, 𝑐−k,𝑏 ̃↓)

𝑇
in (Equation 2.4.11) to the new basis Dk𝑏 ≔ 𝑈k𝑏Ck𝑏

with D†
k𝑏 = (𝑑†

k𝑏 ̃↑, 𝑑
†
k𝑏 ̃↓, 𝑑−k𝑏 ̃↑, 𝑑−k,𝑏 ̃↓)

𝑇
. In contrast, when finding the eigenmodes of the

simple spinless BCS Hamiltonian (cf. (Equation 2.2.7)) we don’t have to care about
k versus −k assuming a trivial momentum independent state. While the single par-
ticle dispersion 𝜉k𝑏 = 𝜉−k𝑏 and the quasiparticle energy 𝐸k𝑏 = 𝐸−k𝑏 are symmetric
with respect to k, the gap function satisfies Δk𝑏 = (Δ−k𝑏)𝑇 (anticipating the result in
(Equation 2.4.24)). For a unitary gap, we choose the 2 × 2 blocks of the (normalized)
eigenstates of ℎBCS to be

𝑢k𝑏 =
Δk𝑏

√2𝐸k𝑏 (𝐸k𝑏 − 𝜉k𝑏)
𝑣k𝑏 =

(𝐸k𝑏 − 𝜉k𝑏) 𝜎0

√2𝐸k𝑏 (𝐸k𝑏 − 𝜉k𝑏)
. (2.4.21)

Note, that the new quasiparticle states in Dk,𝑏 are in general a superposition of two
electrons and one hole or one electron and two holes. 11 The symmetry of 𝑣k𝑏 is de-
termined by the single particle and quasiparticle dispersions 𝜉k𝑏 and 𝐸k𝑏 and therefore
always transforms trivial, i.e. according to the A1 representation of the underlying point
group. In contrast, the symmetries of 𝑢k𝑏 are fully inherited from the gap function it-
self. For the sake of brevity (and since we’ll calculate them numerically, anyway) we
omit the determination of the eigenstates for a non-unitary gap, which can be found in
[SU91, Appendix A, 305f.].

2.4.3. Parametrization of gap function and d-vector

The spinful gap function Δk𝑏 in (Equation 2.4.13) takes into account all (pseudo)spin
channels. In this subsection, we will formulate another (more transparent) represen-
tation of the gap function by making use of the (pseudo-) SU(2) invariance, i.e. the in-
variance of the Hamiltonian under any transformation 𝑒−𝑖𝜑𝑛̂𝝈̃ with 𝝈̃ being the vector
of (pseudospin) Pauli matrices (pseudospin and its associated transformation will be
introduced in (Section 3.3.2)). The possible two-particle states arising from the addi-
tion of two spin-1

2 particles with momenta k1, k2 and (pseudo)spins 𝜎̃1,𝜎̃2 are given in
product basis by

11 For example, the third eigenstate, i.e. third column of (Equation 2.4.20) is given by

ℎBCSU(3)
k𝑏 =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜉k𝑏 0 Δk𝑏 ̃↑ ̃↑ Δk𝑏 ̃↑ ̃↓
0 𝜉k𝑏 Δk𝑏 ̃↓ ̃↑ Δk𝑏 ̃↓ ̃↓

Δk𝑏 ̃↑ ̃↑ Δk𝑏 ̃↓ ̃↑ −𝜉k𝑏 0
Δk𝑏 ̃↑ ̃↓ Δk𝑏 ̃↓ ̃↓ 0 −𝜉k𝑏

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐸k𝑏 − 𝜉k𝑏
0

Δ−k𝑏 ̃↑ ̃↑
Δ−k𝑏 ̃↓ ̃↑

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜉k𝑏 (𝐸k𝑏 − 𝜉k𝑏) − (Δk𝑏Δ†
k𝑏) ̃↑ ̃↑

(Δk𝑏Δ†
k𝑏) ̃↑ ̃↓

Δk𝑏 ̃↑ ̃↑ (𝐸k𝑏 − 𝜉k𝑏 + 𝜉k𝑏)
Δk𝑏 ̃↑ ̃↓ (𝐸k𝑏 − 𝜉k𝑏 + 𝜉k𝑏)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

−𝐸k𝑏 (𝐸k𝑏 − 𝜉k𝑏)
0

−𝐸k𝑏Δ−k𝑏 ̃↑ ̃↑
−𝐸k𝑏Δ−k𝑏 ̃↓ ̃↑

⎞⎟⎟⎟⎟⎟⎟
⎠

,

using the eigenvalues 𝐸2 = 𝜉2
k𝑏 + 1

2 Tr (Δk𝑏Δ†
k𝑏) = 𝜉2

k𝑏 + (Δk𝑏Δ†
k𝑏) ̃↑ ̃↑ for the third equality.
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Ψ (k1, 𝜎̃1;k2, 𝜎̃2) =
1

√2
(∣k1, 𝜎̃1⟩ ⊗ ∣k2, 𝜎̃2⟩ − ∣k2, 𝜎̃2⟩ ⊗ ∣k1, 𝜎̃1⟩) , (2.4.22)

where the antisymmetrization ensures fermionic anticommutationΨ (k2, 𝜎̃2;k1, 𝜎̃1) =
−Ψ (k1, 𝜎̃1;k2, 𝜎̃2). In (pseudo)spin space, we obviously have the four possible states
∣𝜎̃1, 𝜎̃2⟩ ∈ {∣ ̃↑, ̃↑⟩ , ∣ ̃↑, ̃↓⟩ , ∣ ̃↓, ̃↑⟩ , ∣ ̃↓, ̃↓⟩}. Assuming spin rotation symmetry, the total spin
𝑆 ∈ {0, 1} is a “good quantum number” and may be used to classify these four states
by singlet 𝑆 = 0 associated to 1

√2
(∣ ̃↑, ̃↓⟩ − ∣ ̃↓, ̃↑⟩) and triplet 𝑆 = 1 associated to ∣ ̃↑, ̃↑⟩,

1
√2

(∣ ̃↑, ̃↓⟩ + ∣ ̃↓, ̃↑⟩) and ∣ ̃↓, ̃↓⟩ with projected angular momentum 𝑚 = +1, 𝑚 = 0 and
𝑚 = −1. These states are obtained by going from product basis to total angular momen-
tum basis bymeans ofClebsch-Gordan coefficients [Wei12]. Note, that the triplet states are
evenwhile the singlet state is odd under exchange of both particles. Consequently, when
looking at the entire two-particle wave-function (Equation 2.4.22) (note the “natural”
spins 𝜎𝑖 ≠ 𝜎̃𝑖)

Ψ (k1, 𝜎1;k2, 𝜎2) = ∣k1,k2⟩ ⊗ ∣𝜓SGT/TPT⟩ , (2.4.23)

we see that the spin triplet (TPT) state has to feature an odd spatial part ∣k1,k2⟩ =
− ∣k2,k1⟩ while the spin singlet state (SGT) involves an even spatial part, i.e. ∣k1,k2⟩ =
+ ∣k2,k1⟩, in order to satisfy the fermionic statistics of the total wave function. Taking
into account further degrees of freedom like orbital or band index can give rise to exotic
pairing states with spin and momentum wave functions that are both odd or both even
(cf. (Table 2.1)). However, note that the factorization into spatial and spin part in (Equa-
tion 2.4.23) is not generally applicable. As soon as we switch on any spin-orbit coupling,
we will couple spin and spatial degrees of freedom and promote the total angular mo-
mentum 𝐽 = 𝐿 + 𝑆 to be the new “good quantum number”. Spin-rotation invariance is
still preserved with respect to pseudospin transformations (cf. (Section 3.3.2)). These
symmetry requirements have implications on the gap function (Equation 2.4.13) that
corresponds to a two-particle state with zero net momentum k1 = k, k2 = −k. As a
consequence, the transformation k → −k corresponds to particle exchange. Treating
the gap function as the total two-particle wave-function we have

Δ−k𝑏 = (Δ−k𝑏 ̃↑ ̃↑ Δ−k𝑏 ̃↑ ̃↓
Δ−k𝑏 ̃↓ ̃↑ Δ−k𝑏 ̃↓ ̃↓

)
particle exch.

↓= − (Δk𝑏 ̃↑ ̃↑ Δk𝑏 ̃↓ ̃↑
Δk𝑏 ̃↑ ̃↓ Δk𝑏 ̃↓ ̃↓

) = − (Δk𝑏)𝑇 . (2.4.24)

Since the set of Pauli matrices 𝝈 = {𝜎0, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧} = {𝜎0, 𝜎1, 𝜎2, 𝜎3} = 𝝈 [Pau88] forms
a complete basis of ℂ2×2 space, we can exploit this property to parameterize the gapma-
trix Δk𝑏. To this end we introduce the four-vector 𝑑𝜇(k) ∈ ℂ4 providing the coefficients
for the Pauli matrices [BW63; Sam11]. We choose the singlet part to be described by the
𝑑0 element. Since the singlet part is ∝ (Δk𝑏 ̃↑ ̃↓ − Δk𝑏 ̃↓ ̃↑) we require
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Table 2.1.: We take into account Cooper pair wave functions with three degrees of freedom, i.e.
momentum k, spin 𝜎 and orbital or band index 𝑏. In order to satisfy the overall an-
tisymmetry required by the Pauli principle we can choose one degree of freedom to
be odd and the other two to behave even or all three to be odd. Note, that this classi-
fication is (fully) valid only in the absence of spin-orbit coupling. In the presence of
centrosymmetric spin-orbit interaction, inversion symmetry introduces a definite par-
ity of the gap function but we cannot separately transform spin and orbital degrees
of freedom, anymore. While the “usual” even parity singlet and odd parity triplet
solutions are mostly realized, the “exotic” possibilities of even parity triplet and odd
parity singlet are energetically disfavored (cf. [Hir; Hir16]). Starting from an or-
bital basis perspective, it is the specific structure of the non-interacting microscopic
Hamiltonian and its eigenstates, which decide if the paired orbital states actually cor-
respond to equal energies and whether these exotic Cooper pairs are suppressed (cf.
[Fis13, Section 4.2]). The zoo of possible Cooper states may be further enlarged by
considering odd frequency pairing [Ber74; BB13; LB17].

momentum k spin 𝜎 orbital 𝑜 or band 𝑏 name
even odd even even 𝐿 singlet
odd even even odd 𝐿 triplet
even even odd even 𝐿 triplet
odd odd odd odd 𝐿 singlet

𝑖
3

∑
𝜇=0

𝑑𝜇
k𝑏𝜎𝜇𝜎2

!= Δk𝑏 ⇔ 𝑖 (𝑑k𝑏 ⋅ 𝝈) 𝜎𝑦 = (−𝑑𝑥
k𝑏 + 𝑖𝑑𝑦

k𝑏 𝑑0
k𝑏 + 𝑑𝑧

k𝑏
−𝑑0

k𝑏 + 𝑑𝑧
k𝑏 𝑑𝑥

k𝑏 + 𝑖𝑑𝑦
k𝑏

) != Δk𝑏 .

(2.4.25)

Comparison with (Equation 2.4.13) provides

𝑑0
k𝑏 =

1
2 (Δk𝑏 ̃↑ ̃↓ − Δk𝑏 ̃↓ ̃↑) 𝑑𝑥

k𝑏 = −
1
2 (Δk𝑏 ̃↑ ̃↑ − Δk𝑏 ̃↓ ̃↓)

𝑑𝑦
k𝑏 =

1
2𝑖 (Δk𝑏 ̃↑ ̃↑ + Δk𝑏 ̃↓ ̃↓) 𝑑𝑧

k𝑏 =
1
2 (Δk𝑏 ̃↑ ̃↓ + Δk𝑏 ̃↓ ̃↑) . (2.4.26)

Employing the antisymmetry of the gap with respect to inversion of momentum and
transposition (Equation 2.4.24) yields

𝑑0
−k𝑏 = 𝑑0

k𝑏 and 𝑑𝑥,𝑦,𝑧
−k𝑏 = −𝑑𝑥,𝑦,𝑧

k𝑏 , (2.4.27)

which reflects the symmetry and antisymmetry of the spatial part of the singlet and
triplet gap function, respectively. Note, that we denote the total four-component d-
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vector by 𝑑k𝑏 while the zeroth component is 𝑑0
k𝑏 and the 𝑥, 𝑦, 𝑧 components are indicated

by a bold letter dk𝑏. Now, that we have a more transparent notation of the gap func-
tion we reformulate the expression Δk𝑏Δ†

k𝑏 in order to see what the difference between
a unitary and non-unitary gap is in terms of the d-vector. Using (Equation 2.4.25) and
assuming a pure spin singlet (SGT) gap we find

Δk𝑏Δ†
k𝑏 = ⎛⎜

⎝

∣𝑑0∣2 0
0 ∣𝑑0∣2

⎞⎟
⎠

= ∣𝑑0∣2𝜎0 . (2.4.28)

In contrast, for a pure spin triplet (TPT) gap we obtain

Δk𝑏Δ†
k𝑏 = ⎛⎜

⎝
∣𝑑𝑥∣2 + ∣𝑑𝑦∣2 + ∣𝑑𝑧∣2 + 𝑖𝑑𝑥𝑑𝑦 − 𝑖𝑑𝑦𝑑𝑥 −𝑑𝑥𝑑𝑧 + 𝑖𝑑𝑦𝑑𝑧 + 𝑑𝑧𝑑𝑥 − 𝑖𝑑𝑧𝑑𝑦

−𝑑𝑧𝑑𝑥 − 𝑖𝑑𝑧𝑑𝑦 + 𝑑𝑥𝑑𝑧 + 𝑖𝑑𝑦𝑑𝑧 ∣𝑑𝑥∣2 + ∣𝑑𝑦∣2 + ∣𝑑𝑧∣2 − 𝑖𝑑𝑥𝑑𝑦 + 𝑖𝑑𝑦𝑑𝑥
⎞⎟
⎠

= ∣dk𝑏∣2𝜎0 + 𝑖 (dk𝑏 × dk𝑏) ⋅ 𝝈 , (2.4.29)

where we omitted themomentum and band index for compactness. Apparently, only
triplet pairing can represent a non-unitary gap function while the singlet part is always
unitary. For a triplet gap function to be non-unitary the entity (dk𝑏 × dk𝑏) must be non-
zerowhich necessarily requires a complex valuedd-vector [SAM09]. In order to provide
a physical intuition about a non-unitary state we consider the spin expectation value (at
zero temperature) ⟨ ̂𝑆⟩ = ⟨Δk𝑏∣ ̂𝑆∣Δk𝑏⟩ where ̂𝑆 is the two-particle operator ̂𝑆 ≔ ̂𝑠1 ⊗ 𝜎0 +
𝜎0⊗ ̂𝑠2 and the state ∣Δk𝑏⟩ is expressed in terms of a four-vector ∣Δk𝑏⟩ = (Δ ̃↑ ̃↑, Δ ̃↑ ̃↓, Δ ̃↓ ̃↑, Δ ̃↓ ̃↓).
The two-particle spin operator for e.g. the 𝑥-component is given by

̂𝑆𝑥 =
𝜎𝑥 ⊗ 𝜎0 + 𝜎0 ⊗ 𝜎𝑥

2 =
1
2

⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

+
1
2

⎛⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

=
1
2

⎛⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

,

(2.4.30)

With these prerequisites the spin expectation value for e.g. ̂𝑆𝑥 of the two-particle state
given by the gap function Δk𝑏 is

⟨Δk𝑏∣ ̂𝑆𝑥∣Δk𝑏⟩ =
1
2 [(Δ ̃↑ ̃↑ + Δ ̃↓ ̃↓) (Δ ̃↑ ̃↓ + Δ ̃↓ ̃↑) + (Δ ̃↑ ̃↓ + Δ ̃↓ ̃↑) (Δ ̃↑ ̃↑ + Δ ̃↓ ̃↓)]

(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4.26)
↓= 2 (−𝑖𝑑𝑧𝑑𝑦 + 𝑖𝑑𝑦𝑑𝑧) = 2𝑖 (dk𝑏 × dk𝑏)

𝑥
. (2.4.31)

For the remaining 𝑦 and 𝑧 components we get analogous results that can be expressed
by means of the vector dk𝑏 × dk𝑏. Therefore, the spin expectation value for a some
gap function Δk𝑏 is proportional to dk𝑏 × dk𝑏 and obviously is only finite for a non-
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unitary gap. As a consequence, a non-unitary pairing state features some finite “inter-
nal magnetization”. Any finite spin expectation value is associated to a particular mo-
mentum k (and band index 𝑏) while the net magnetization (averaged over the Fermi
surface) may still be zero. By means of the d-vector, the expression for the quasipar-
ticle energy 𝐸k𝑏 in (Equation 2.4.18) can be reformulated in a much more transpar-
ent fashion. The gap matrix with both finite singlet and triplet contributions results
in Δk𝑏Δ†

k𝑏 = ∣𝑑k𝑏∣2𝜎0 + 𝑖 (dk𝑏 × dk𝑏) ⋅ 𝝈 by combining (Equation 2.4.28) and (Equa-
tion 2.4.29), where the absolute square of the d-vector contains all four components.
The trace and determinants occurring in the quasiparticle energy 𝐸k𝑏 are hence given
by

Tr (Δk𝑏Δ†
k𝑏) = 2∣𝑑k𝑏∣2 and det (Δk𝑏Δ†

k𝑏) = ∣𝑑k𝑏∣4 − ∣dk𝑏 × dk𝑏∣
2

. (2.4.32)

Putting these results together, the energy 𝐸k𝑏 describing the quasiparticle spectra for
both unitary and non-unitary gaps, reduces to the neat expression

𝐸k𝑏 = ±
1
2

√𝜉2
k𝑏 + ∣𝑑k𝑏∣2 ± ∣dk𝑏 × dk𝑏∣ , (2.4.33)

where ∣dk𝑏 × dk𝑏∣ vanishes for a unitary gap.

2.4.4. Symmetries and d-vector transformations

In order to identify possible candidate d-vectors for certain models, it is advantageous
to consider symmetries and the (possible) restrictions they impose on the structure of
the d-vector. Therefore, we take four types of transformations into account, that are
time-reversal, spatial inversion, (pseudo)spin rotation and point group transformations. To be
able to perform the transformation more transparently, the d-vector is written as

𝑑k𝑏 = (𝑑0
k𝑏, 𝑑𝑥

k𝑏, 𝑑𝑦
k𝑏, 𝑑𝑧

k𝑏)𝑇 = 𝑑0
k𝑏 ̂𝑥0 + 𝑑𝑥

k𝑏 ̂𝑥 + 𝑑𝑦
k𝑏 ̂𝑦 + 𝑑𝑧

k𝑏 ̂𝑧 , (2.4.34)

where the basis of the d-vector is explicitly introduced in order to distinguish the
transformation of components and basis. The components incorporate the momentum
degree of freedom,while the basis represents the (pseudo)spin degrees of freedom. The
time-reversal operation for spin-1

2 particles is given by Θ̂ = −𝑖𝜎𝑦𝒦 12 and its inverse is
Θ̂−1 = 𝑖𝜎𝑦𝒦. Hence, the gap matrix transforms by (cf. appendix D)

12 Due to the complex conjugation 𝒦 the operator Θ̂ = −𝑖𝜎𝑦𝒦 is non-unitary [Wig12; SN11] [Sch05b,
Chap. 11.4, p.228]. Thus, we have to take care of the fact that Θ̂−1 ≠ Θ̂† and use Θ̂−1 = +𝑖𝜎𝑦𝒦 for all
transformations, since Θ̂−1Θ̂ = +𝑖𝜎𝑦𝒦 (−𝑖𝜎𝑦𝒦) = 𝑖𝜎𝑦(+𝑖)(−𝜎𝑦) = 𝜎0.
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

∑
𝜎̃,𝜎̃′

(Δk𝑏)𝜎̃𝜎̃′ 𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′
TR⟶ ∑

𝜎̃,𝜎̃′
(Θ̂−1Δk𝑏Θ̂)

𝜎̃𝜎̃′ 𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′

= ∑
𝜎̃,𝜎̃′

( Δ−k𝑏 ̃↓ ̃↓ −Δ−k𝑏 ̃↓ ̃↑
−Δ−k𝑏 ̃↑ ̃↓ Δ−k𝑏 ̃↑ ̃↑

) 𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′ . (2.4.35)

Inserting the transformed gap matrix elements into the definition of the d-vector in
terms of Δk𝑏 (Equation 2.4.26) yields the behavior of 𝑑k𝑏 under time-reversal. A more
elegant solution is to take the d-vector directly into account and considering that the
vector of (pseudospin) Paulimatrices, as being an operator of angularmomentum,must
be odd under time-reversal, i.e. 𝝈 TR⟶ −𝝈, while the zeroth Pauli matrix is invariant, of
course. Note, that the transformation of Pauli matrices only affects the basis but not the
components in (Equation 2.4.34). Therefore, the d-vector must transform according to

𝑖 [𝑑k𝑏 ⋅ 𝝈] 𝜎𝑦 = 𝑖 [(𝑑0
k𝑏,dk𝑏)𝑇 ⋅ (𝜎0, 𝝈)𝑇] 𝜎𝑦

TR⟶ 𝑖 [(𝑑0
−k𝑏,d−k𝑏)

𝑇
⋅ (𝜎0, −𝝈)𝑇] 𝜎𝑦 .

(2.4.36)

Summarizing the above, we have 𝑑0
k𝑏

TR⟶ 𝑑0
−k𝑏 and dk𝑏

TR⟶ −d−k𝑏. Concerning
the spatial inversion ̂𝐼, we know that the momentum behaves odd, k ̂𝐼⟶ −k and the
(pseudo)spin (as being a pseudo/axial vector)must be even under spatial inversion, i.e.
𝝈 ̂𝐼⟶ 𝝈. While the momentum determines the behavior of the components, the Pauli
matrices only affect the basis in (Equation 2.4.34), i.e. the basis is invariant w.r.t. spatial
inversion. Therefore, the properties of the d-vector under inversion are already entirely
given by (Equation 2.4.24), i.e (𝑑0

k𝑏,dk𝑏)𝑇 ̂𝐼⟶ (𝑑0
k𝑏, −dk𝑏)𝑇. In contrast, the transforma-

tion properties of the d-vector with respect to (pseudo)spin rotations require a more
extended analysis. An SU(2) transformation and spin rotation, respectively, is defined
by the operator

̂𝑆 ( ̂𝑛, 𝜑) = 𝑒−𝑖𝑛̂𝝈𝜑/2 = 𝜎0 cos (𝜑/2) − 𝑖 ̂𝑛 ⋅ 𝝈 sin (𝜑/2) , (2.4.37)

where ̂𝑛 (with ∣ ̂𝑛∣ = √∑3
𝑗=1 ̂𝑛2

𝑗 = 1) is the axis of rotation and 𝜑 is the angle of rotation.
Note, that this transformation has the well-known property of introducing a minus sign
on rotation by 2𝜋 about any axis, which usually requires the use of double groups [Bet29].
Instead of proceeding straightforwardly with the transformation Δk𝑏

̂𝑆⟶ ̂𝑆−1Δk𝑏 ̂𝑆, we
first determine the transformation behavior of every single Pauli matrix under spin ro-
tation. The 𝑖-th (pseudospin) Pauli matrix 𝜎𝑖 transforms like
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2.4. Generalized multi-band BCS-theory

𝜎𝑖
̂𝑆⟶ ( ̂𝑆 ( ̂𝑛, 𝜑))

−1
𝜎𝑖 ̂𝑆 ( ̂𝑛, 𝜑) = 𝜎𝑖 (cos (𝜑/2))2 + 2 cos (𝜑/2) sin (𝜑/2) ⎡⎢

⎣

3
∑

𝑗,𝑘=1
𝜖𝑖𝑗𝑘 ̂𝑛𝑗𝜎𝑘

⎤⎥
⎦

+ (sin (𝜑/2))2 ⎡⎢
⎣
𝜎𝑖 (2 ̂𝑛2

𝑖 − 1) + 2 ̂𝑛𝑖

3
∑
𝑗=1

(1 − 𝛿𝑖𝑗) 𝜎𝑗 ̂𝑛𝑗
⎤⎥
⎦

. (2.4.38)

By inserting the transformedPaulimatrices into the definition of the d-vector 𝑖 [𝑑k𝑏 ⋅ 𝝈] 𝜎2
(insert components of 𝝈, but don’t substitute 𝜎𝑦 since 𝜎𝑦 is only part of the notation) and
collecting terms with respect to Pauli matrices we find the transformed components of
the d-vector. The 𝑖-th component of the transformed d-vector is then given by

𝑑𝑖
k𝑏

̂𝑆⟶𝑑𝑖
k𝑏 ((cos (𝜑/2))2 + (sin (𝜑/2))2 (2 ̂𝑛2

𝑖 − 1))

+
3

∑
𝑗=1

(1 − 𝛿𝑖𝑗) 𝑑𝑗
k𝑏

⎛⎜
⎝

2 (sin (𝜑/2))2 ̂𝑛𝑖 ̂𝑛𝑗 + 2 cos (𝜑/2) sin (𝜑/2)
3

∑
𝑘=1

𝜖𝑖𝑗𝑘𝑛𝑘
⎞⎟
⎠

.

(2.4.39)

The identities (cos (𝜑/2))2 − (sin (𝜑/2))2 = cos (𝜑), 2 cos (𝜑/2) sin (𝜑/2) = sin (𝜑)
and 2 (sin (𝜑/2))2 = 1 − cos (𝜑) simplify this result to the transformed, for instance,
𝑥-component of the d-vector

𝑑𝑥
k𝑏

̂𝑆⟶ 𝑑𝑥
k𝑏 [cos (𝜑) + ̂𝑛2

𝑥 (1 − cos (𝜑))] + 𝑑𝑦
k𝑏 [ ̂𝑛𝑥 ̂𝑛𝑦 (1 − cos (𝜑)) + ̂𝑛𝑧 sin (𝜑)]

+ 𝑑𝑧
k𝑏 [ ̂𝑛𝑥 ̂𝑛𝑧 (1 − cos (𝜑)) − ̂𝑛𝑦 sin (𝜑)] , (2.4.40)

which is exactly the first rowof the SO(3) rotationmatrixℛ( ̂𝑛, 𝜑) that rotates a true/polar
vector r ∈ ℝ3 about the axis ̂𝑛 by angle 𝜑. Henceforth, the d-vector describing the gap
function transforms according to

(𝑑0
k𝑏,dk𝑏)𝑇 ̂𝑆⟶ (𝑑0

k𝑏, ℛ( ̂𝑛, 𝜑)dk𝑏)𝑇 , (2.4.41)

under any SU(2) rotation. This transformation is exclusively a transformation of basis,
i.e. the Pauli matrices, while the components (momentum dependency) is not affected
at all. Although, the d-vector transforms like a polar vector under rotation, it behaves
unlike a polar vector w.r.t. to reflections. A reflection may be composed of a spatial in-
version followed or preceded by a rotation about the normal vector of the plane by 𝜋. As
already noted, the spatial inversion doesn’t affect the basis of the d-vector, i.e. the Pauli
matrices. For instance, a reflection in the 𝑥-𝑧 plane therefore only involves a rotation by
𝜋 about the 𝑦-axis, that is given by (Equation 2.4.38), the Pauli matrices transform ac-
cording to (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) ⟶ (−𝜎𝑥, 𝜎𝑦, −𝜎𝑧). A further consequence of (Equation 2.4.39)
is, that the d-vector does not obey any double group properties like the SU(2) spin de-
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2. The Cooper problem, BCS theory and the Kohn-Luttinger effect

Table 2.2.: When transforming the d-vector, one has to distinguish the behavior of the basis (spin
degrees of freedom) and the behavior of its components (momentum degree of free-
dom). The properties given below are the result of the combined transformation of
both basis (spin) and components (momentum) (except for spin and orbital rotation,
respectively). Time-reversal affects both spin, introducing the overall minus in the
triplet part and momentum, which is inverted in both singlet and triplet part. The
spatial inversion only has an effect on momentum since (pseudo)spin represents an
pseudo/axial vector. Note, that spatial inversion corresponds to fermionic exchange
of the Cooper pair (Equation 2.4.24), whichmay be used to simplify the given results.
Unlike the SU(2) spin degrees of freedom the d-vector originates from, it rather be-
haves like a polar vector in real space, which becomes apparent for the spin-rotation.
The entity ℛ( ̂𝑛, 𝜑) ∈ ℝ3 is the SO(3) rotation matrix for a polar vector about an axis

̂𝑛 by angle 𝜑 (cf. [SAM05] and [SU91, p.244]). Remarkably, the d-vector therefore
doesn’t exhibit any double group properties and maps onto itself under a rotation by
2𝜋 about any axis, which is, however, a consequence of the d-vector carrying total spin
𝑆 = 1.

transformation operator singlet (SGT) 𝑑0
k𝑏 triplet (TPT) dk𝑏

time-reversal Θ̂ 𝑑0
−k𝑏 −d−k𝑏

inversion/fermionic exchange ̂𝐼 𝑑0
−k𝑏 d−k𝑏

spin rotation ̂𝑆 ( ̂𝑛, 𝜑) 𝑑0
k𝑏 ℛ( ̂𝑛, 𝜑)dk𝑏

real space/orbital rotation ℛ ( ̂𝑛, 𝜑) 𝑑0
ℛ(𝑛̂,𝜑)k𝑏 dℛ(𝑛̂,𝜑)k𝑏

grees it originates from, but the simple group behavior of the real space entities. The
transformation properties of the d-vector are summarized in (Table 2.2).

When dealing with Hamiltonians corresponding to models on certain lattice types,
the crystal fieldwill break down the continuous SO(3) transformations of the orbital/mo-
mentumpart of the d-vector to the discrete operations of the corresponding finite groups.
The point groups provide a set of symmetry allowed basis functions representing the
momentum dependency of the d-vector up to any order. These will be worked out in
(Section 3.4). Since the transformations of orbital rotation and (pseudo)spin rotationsmay
be performed independently the sets of possible d-vectors are usually subject to de-
generacy. For instance, in the environment of a crystal with D4hsymmetry, possible d-
vectors for triplet pairingmust feature odd basis functions and are given by i.a. the two-
dimensional Eu representation featuring the basis functions sin 𝑘𝑥 cos 𝑘𝑧 and sin 𝑘𝑦 cos 𝑘𝑧.
Assuming a “natural” spin degree of freedomwith SU(2) invariance the total spin 𝑆 = 1
of the triplet wave function may point anywhere, i.e. we are allowed to freely rotate
the d-vector in any direction according to (Equation 2.4.39). Therefore, by combining
the two basis functions with the three components of the d-vector, one ends up with a
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2.4. Generalized multi-band BCS-theory

six-fold degeneracy of possible triplet states. For instance, the allowed d-vectors may be
given as linear combinations of the basis functions by d(1,2)

k𝑏 = ( ̂𝑥 sin 𝑘𝑥 ± ̂𝑦 sin 𝑘𝑦) cos 𝑘𝑧,
d(3,4)
k𝑏 = ( ̂𝑥 sin 𝑘𝑦 ± ̂𝑦 sin 𝑘𝑥) cos 𝑘𝑧 and d(5,6)

k𝑏 = (sin 𝑘𝑥 ± (𝑖) sin 𝑘𝑦) cos 𝑘𝑧 ̂𝑧. The first two
states are aligned in the 𝑥-𝑦-plane while the third state points along the 𝑧-direction. Fol-
lowing (Equation 2.4.29), we find that all of these states apparently exhibit the same
gap magnitude Δk𝑏Δ†

k𝑏 = sin2 𝑘𝑥 + sin2 𝑘𝑦 = ∣dk𝑏∣2. (cf. [Sig05; NS00]). As long as the
Hamiltonian doesn’t feature any spin off-diagonal terms all SU(2) rotations are symme-
try operations, i.e. [ ̂𝑆, ℋ0] = 0, since the spin doesn’t “feel” the crystal field. Hence, we
may arbitrarily transform the spin (hence the basis ̂𝑥, ̂𝑦 and ̂𝑧) such that all d-vectors
d(1,…,6) are simply connected by a spin rotation. Note, that under operations of the
point group D4h the basis vectors ̂𝑥, ̂𝑦 (Pauli matrices 𝜎𝑥, 𝜎𝑧) transform according to
the Eg and ̂𝑧 (𝜎𝑧) like the A2g representation. (cf. (Table A.1)). However, as soon as
spin-orbit coupling is introduced the orbital and (pseudo)spin degrees of freedom are
coupled. Therefore, we are not allowed to employ the corresponding transformations in
(Table 2.2) separately, anymore [And84a]. As a consequence, the degeneracy of several
pairing wave functions is lifted. Mathematically, the coupling of orbital/momentum
and spin degrees of freedom and their simultaneous transformation is expressed by
[Gos]

Eu ⊗ (Eg ⊕ A2g) = A1u ⊕ A2u ⊕ B1u ⊕ B2u ⊕ Eu . (2.4.42)

Hence, the six-fold degeneracy of possible triplet d-vectors splits up into four one di-
mensional and one two dimensional representation. By employing combined spin and
orbital transformation, i.e. transforming both components and basis, it is impossible to
transform any of the states d(1,…,6) into another one. The classification of singlet and
triplet in the presence of spin-orbit coupling will be discussed in more detail in (Sec-
tion 3.4) and employed to a realistic Hamiltonians in (Chapter 9). We note, that the
d-vector as a smart parametrization and auxiliary entity may also be employed for the
characterization and classification of unconventional particle-hole states in the sense that
they feature nonzero angular momentum (cf. [Nay00; GC10]). Most of the properties
of the d-vector discussed in the previous two sections may be straightforwardly em-
ployed, except for the fermionic exchange (Equation 2.4.24). In contrast, to the particle-
particle states the particle-hole condensates are characterized by an additional parame-
ter Q, which specifies the momentum transfer and usually lowers the full symmetry of
the point group (Section 3.5).

Summary and preview

In this chapter we motivated the concept of Cooper pairs in correlated electron sys-
tems and reviewed the basics of BCS-theory. The Kohn-Luttinger effect was discussed
as one possible mechanism for the emergence of unconventional pairing as a result of
repulsive electron-electron interactions. We provided a generalization of BCS-theory
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to multiband (-orbital) systems for gap functions with non trivial momentum depen-
dencies and introduced the basics for the description of pairing states in models with
(centrosymmetric) spin-orbit coupling. The following chapter will provide a charac-
terization and classification of spin-orbit interaction in (non-)centrosymmetric models.
Based on the possible spin-orbit terms and the symmetries that are conserved or broken,
we will define the concepts of pseudospin and helical spin degree of freedom and an-
alyze the structure of the corresponding effective interaction in orbital and band basis.
These generalized two-particle verticeswill serve as an input formean-field theories that
allow for singlet and triplet instabilities in terms of the pseudospin degree of freedom as
well as mixed singlet-triplet states. The chapter will be concluded by constructing basis
functions for unconventional particle-particle and particle-hole states that interweave
momentum and pseudospin or helical spin degrees of freedom.
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3. Mean-field theory in absence of spin
rotation invariance

In (Chapter 5) and (Chapter 6) wewill formulate the perturbative and functional renor-
malization groups for fermionic systems and (in particular) for the corresponding ir-
reducible two-particle vertices with broken SU(2)-symmetry. In order to analyze the
occurring ordering tendencies and instabilities, we have to work out a mean-field the-
ory that takes into account the broken spin symmetry. Two different scenarios are dis-
tinguished depending on which additional symmetries are broken. On the one hand,
we will discuss the mean-field theory for Hamiltonians with time-reversal and inversion
symmetry, which ensure the two-fold spin degeneracy of the bands involved. On the
other hand, we will have systems where either inversion or time-reversal symmetry is
lost, which results in the spin-splitting of the corresponding Fermi surfaces. In the for-
mer case, spin symmetry is spoiled by atomic spin-orbit coupling L ⋅ S [Win03], and
the considerations of (Section 2.4) apply. Hence, we are still able to classify the pair-
ing states and gap functions by singlet and triplet states (and therefore by the d-vector)
as inversion symmetry requires a definite parity [VG84; Ell54]. Broken inversion sym-
metry at the surface, at a heterointerface or in a non-centrosymmetric crystal supports
the presence of exotic spin-orbit interactions like Rashba [BR84a; RS88], Dresselhaus
[Dre55] or Kane-Mele terms [KM05b] (which is the time-reversal invariant doublet of
Haldane’s model for the quantum anomalous Hall effect [Hal88; ZLW14]). These terms
lift the spin degeneracy and can in principle induce a mixture of spin singlet and triplet
states [GR01]. An exception to this paradigm is given by the so-called in-plane-Rashba
Hamiltonian that preserves inversion symmetry and is realized in buckled honeycomb
structures, where the in-plane mirror symmetry is broken [LJY11; Mar+18].

3.1. Origin and classification of spin-orbit interaction

It was first noted in the context of relativistic quantum mechanics, i.e. the unification
of quantum mechanics and special relativity that a fermionic wave function must in-
corporate an intrinsic degree of freedom [Dir28; FP39], that is nowadays called spin.
Therefore, we cannot rely on non-relativistic methods to derive spin-orbit interaction.
The proper description of the electron (including its spin) is given by the Dirac equation
[Dir81; Dir36], that yields

𝑖ℏ
𝜕
𝜕𝑡 |Ψ⟩ = (𝑐 𝜶 ⋅ p̂ + 𝛽 𝑚𝑐2) |Ψ⟩ , (3.1.1)
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where the momentum operator is ̂𝑝𝑗 = −𝑖ℏ 𝜕
𝜕𝑥𝑗

. The state |Ψ⟩ is actually a two compo-

nent state (bispinor) that we denote by |Ψ⟩ = (𝜓𝐴, 𝜓𝐵)𝑇. Using the standard convention
for 𝜶 and 𝛽 matrices (cf. 𝛾 matrices ) that is [Sha12]

𝛼𝑗 = 𝜎𝑥 ⊗ 𝜎𝑗 𝑗 ∈ {1, 2, 3} and 𝛽 = 𝜎𝑧 ⊗ 𝜎0 , (3.1.2)

where 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are the Pauli matrices with 𝜎0 = 𝟙2×2. Therefore, we can
express the Dirac equation in terms of a 2 × 2 matrix by

𝑖ℏ
𝜕
𝜕𝑡 |Ψ⟩ = ( 𝑚𝑐2 𝑐 𝝈 ⋅ p̂

𝑐 𝝈 ⋅ p̂ −𝑚𝑐2 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=ℋ𝐷

|Ψ⟩ . (3.1.3)

In order to see, how spin-orbit coupling originates from this equation, we have to
include an external potential (due to the atomic core or the lattice) 𝑉(r) whose sym-
metries are crucial for the types of spin-orbit interaction arising from it. For instance,
in the hydrogen atom, 𝑉(r) possesses spherical symmetry, in the perfect lattice we have
𝑉(r + R) = 𝑉(r), while in a non-centrosymmetric crystal or at an heterostructure inter-
face, we have 𝑉(−r) ≠ 𝑉(r). Hence, the Dirac Hamiltonian is

ℋ𝐷 = 𝑐 𝜶 ⋅ p̂ + 𝛽 𝑚𝑐2 + 𝑉 (r) . (3.1.4)

The time-dependency of the bispinor may be split off by the ansatz |Ψ⟩ = 𝑒−𝑖𝐸Ψ/ℏ𝑡 ∣Ψ0⟩
resulting in

𝑖ℏ
𝜕
𝜕𝑡 |Ψ⟩ = 𝐸Ψ |Ψ⟩ = ℋ𝐷 |Ψ⟩ . (3.1.5)

This stationary version of theDirac equation represents a coupled linear system in terms
of the components 𝜓𝐴 and 𝜓𝐵, i.e.

(𝑚𝑐2 + 𝑉 (r) − 𝐸Ψ 𝑐 𝝈 ⋅ p̂
𝑐 𝝈 ⋅ p̂ −𝑚𝑐2 + 𝑉 (r) − 𝐸Ψ

) (𝜓𝐴
𝜓𝐵

) = 0 . (3.1.6)

Solving for part 𝜓𝐴 of the bispinor provides

⎧{
⎨{⎩

(𝑚𝑐2 + 𝑉 (r) − 𝐸Ψ) 𝜓𝐴 + 𝑐 𝝈 ⋅ p̂ (𝐸Ψ + 𝑚𝑐2 − 𝑉(r))−1 𝑐 𝝈 ⋅ p̂ 𝜓𝐴 = 0
𝜓𝐵 = − (−𝑚𝑐2 + 𝑉(r) − 𝐸Ψ)−1 𝑐 𝝈 ⋅ p̂ 𝜓𝐴

. (3.1.7)

We introduce the notation 𝐸 ≔ 𝐸Ψ − 𝑚𝑐2, where 𝐸 corresponds to the non-relativistic
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energy that lacks the energy due to the rest mass. The first equation that determines 𝜓𝐴
may be simplified to

𝝈 ⋅ p̂
𝑐2

𝐸 + 2𝑚𝑐2 − 𝑉(r)
𝝈 ⋅ p̂ 𝜓𝐴 = (𝐸 − 𝑉 (r)) 𝜓𝐴 . (3.1.8)

Since the non-relativistic energy 𝐸 appears on the left and right hand side of (Equa-
tion 3.1.8) we employ the expansion 1 (in terms of 𝑣2

𝑐2
2 )

1
𝐸 + 2𝑚𝑐2 − 𝑉(r)

=
1

2𝑚𝑐2
1

1 + 𝐸−𝑉(r)
2𝑚𝑐2

=
1

2𝑚𝑐2 (1 +
𝐸 − 𝑉(r)

2𝑚𝑐2 )
−1

≈
1

2𝑚𝑐2
⎛⎜
⎝

1 −
𝐸 − 𝑉(r)

2𝑚𝑐2 +
(𝐸 − 𝑉(r))2

4𝑚2𝑐4
⎞⎟
⎠

. (3.1.9)

By remembering the identity (𝝈 ⋅ p̂)2 = p̂2, 3 we simply get the Schrödinger equation
in zeroth order of the expansion when employed to (Equation 3.1.8). However, the
interesting terms come up in the first order of the expansion. When inserting the first
order of (Equation 3.1.9) into (Equation 3.1.8) we get i.a.

(𝐸 − 𝑉(r))𝝈 ⋅ p̂ 𝜓𝐴 = 𝝈 ⋅ p̂ (𝐸 − 𝑉(r)) 𝜓𝐴 + [𝐸 − 𝑉(r), 𝝈 ⋅ p̂] 𝜓𝐴

= 𝝈 ⋅ p̂
p̂2

2𝑚𝜓𝐴 + 𝝈 ⋅ [p̂ , 𝑉(r)] 𝜓𝐴 , (3.1.10)

whereweused the zeroth order result on the first term and the commutator [𝐸, p̂] = 0.
Summarizing the hitherto results by using (Equation 3.1.9) and (Equation 3.1.10) in
(Equation 3.1.8) we have

𝐸𝜓𝐴 = [
p̂2

2𝑚 + 𝑉(r) −
̂p4

8𝑚3𝑐2 −
(𝝈 ⋅ p̂) (𝝈 ⋅ [ ̂p, 𝑉(r)])

4𝑚2𝑐2 ] 𝜓𝐴 . (3.1.11)

The last term in (Equation 3.1.11) may be split into two by employing the identity
(𝝈 ⋅ a) (𝝈 ⋅ b) = a ⋅ b + 𝑖𝝈 (a × b) 4. Note, that the first term resulting from this identity,

1 We simply use the Taylor expansion of (1 + 𝑥)−1 that is 1
1+𝑥

𝑥≈0≈ 1 − 𝑥 + 𝑥2 + ….
2 The expansion is justified by considering that 𝐸 − 𝑉(r) ≈ 𝑚𝑣2 by virtue of the virial theorem [Foc30;
Kal76] and therefore 𝐸−𝑉(r)

2𝑚𝑐2 ≈ 𝑣2

𝑐2 ≪ 1.
3 The identity is shown by dividing in pure and mixed terms of (𝝈 ⋅ p̂)2 = ∑3

𝑖=1 𝜎𝑖𝑝̂𝑖 ∑3
𝑗=1 𝜎𝑗𝑝̂𝑗 which

gives ∑𝑖,𝑗 𝜎𝑖𝜎𝑗𝑝̂𝑖𝑝̂𝑗 (𝛿𝑖𝑗 + (1 − 𝛿𝑖𝑗)) and only the pure terms survive due to the anticommutation of the
Pauli matrices, i.e. 𝜎𝑖𝜎𝑗 = −𝜎𝑖𝜎𝑗 for 𝑖 ≠ 𝑗.

4 We can prove this by collecting the pure and mixed terms w.r.t. the Pauli matrices, i.e. (𝝈 ⋅ a) (𝝈 ⋅ b) =
∑3

𝑖,𝑗=1 𝑎𝑖𝑏𝑗 (𝛿𝑖𝑗𝜎𝑖𝜎𝑗 + (1 − 𝛿𝑖𝑗)𝜎𝑖𝜎𝑗) = ∑3
𝑖,𝑗=1 𝑎𝑖𝑏𝑗 (𝟙2×2 + 𝑖 ∑𝑘 𝜖𝑖𝑗𝑘𝜎𝑘). Using the cyclic invariance 𝜖𝑖𝑗𝑘 =
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3. Mean-field theory in absence of spin rotation invariance

i.e. − p̂⋅[p̂,𝑉(r)]
4𝑚2𝑐2 is not Hermitian since (p̂ ⋅ [p̂, 𝑉(r)])† = p̂ ⋅ [p̂, 𝑉(r)] − [p̂ ⋅ p̂, 𝑉(r)]⏟⏟⏟⏟⏟⏟⏟

≠0
. If

ℋ𝐷 is not Hermitian, 𝑒−𝑖ℋ𝐷/ℏ𝑡 is not unitary which means that the probability is not
conserved and is time dependent. Obviously, this was caused by having neglected the
second bispinor component𝜓𝐵, so far. Taking it into accountwill fix the non-Hermiticity
and results in a correction term [Sha12, Chap. 20, p. 573] that is included into the
“effective” Dirac Hamiltonian that yields (cf. (Equation 3.1.11))

ℋ𝐷𝑆 =
p̂2

2𝑚 + 𝑉(r) −
̂p4

8𝑚3𝑐2 −
𝑖𝝈 ⋅ (p̂ × [p̂, 𝑉(r)])

4𝑚2𝑐2 −
[ ̂p, [p̂, 𝑉(r)]]

8𝑚2𝑐2 . (3.1.12)

Our interest, however, is focused on the fourth term of the Hamiltonian, that is sim-
plified by computing the commutator [ ̂p, 𝑉(r)] = [−𝑖ℏ∇, 𝑉(r)] = −𝑖ℏ∇𝑉(r). This term
represents the spin-orbit interaction correction to the one-particle Hamiltonian and is fi-
nally given by (cf. [Sch68])

ℋ𝑆𝑂𝐶 = −
𝑖𝝈 ⋅ (p̂ × (−𝑖ℏ∇𝑉(r)))

4𝑚2𝑐2 =
ℏ

4𝑚2𝑐2 𝝈 ⋅ (∇𝑉(r) × p̂) . (3.1.13)

For example, if we consider the spherically symmetric potential (e.g. the potential of
the hydrogen atom) 𝑉(r) = − 1

4𝜋𝜖0

𝑒2

𝑟 we get

ℋ𝐻
𝑆𝑂𝐶 =

𝑒2ℏ
16𝑚2𝑐2𝜋𝜖0|r|3

𝝈 ⋅ (r × p̂) =
𝑒2

8𝑚2𝑐2𝜋𝜖0𝑟3S ⋅ L , (3.1.14)

which is the well known atomic L ⋅ S term. The evaluation of specific matrix ele-
ments of L ⋅ S for the 𝑝 and 𝑑-orbitals is given in appendix B. Apart from the atomic
spin-orbit coupling, a lot of important effects arise from (Equation 3.1.13), if we depart
from the spherical symmetry of 𝑉(r). As a side remark, we mention that spin-orbit
coupling may not only be the result of relativistic quantum mechanics, but may also
occur in strongly correlated, non-relativistic systems as dynamically generated spin-orbit
coupling due to Fermi surface instabilities with higher angular momentum [WZ04]. In
particular, we are interested in the spin-orbit coupling of the (itinerant) electrons on
the lattice. Consequently, 𝑉(r) inherits the symmetry of the lattice, i.e. 𝑉(r) = 𝑉(r+R)
with R being a real space lattice vector. On the one hand, we can proceed in the spirit
of k ⋅p-theory and derive the spin-orbit terms in a (time-independent) perturbative way
[Sho50; DKK55]. Treating spin-orbit coupling as a perturbation in the k ⋅ p framework
is a method that was extensively used to investigate semiconductor band structures
[Kan56; Kan57; Kan66; Kan82]. It has been employed to derive model Hamiltonians
for the quantum spin Hall effect and topological insulators [BHZ06; QZ10]. More recently,
the method was extended and applied to two-dimensional nanostructures [Gal05], car-

𝜖𝑘𝑖𝑗 of the Levi-Civita symbol we find ∑3
𝑖=1 𝑎𝑖𝑏𝑖 + 𝑖 ∑𝑘𝑖𝑗 𝜎𝑘𝜖𝑘𝑖𝑗𝑎𝑖𝑏𝑗 = a ⋅ b + 𝑖𝝈 ⋅ (a × b).
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3.1. Origin and classification of spin-orbit interaction

bon nanotubes and graphene nanoribbons [MM11]. Even more, k ⋅ p-theory proved to
be useful for the derivation of models for topological insulators [QZ10, Appendix A]
and the quantum anomalous Hall effect [ZLW14]. On the other hand, we can - based on
the point group of the underlying lattice - simply write down all invariant terms in or-
bital, spin and momentum space [LK55; Lut56]. As the theory of invariant or invariant
expansion [BP74; TRR79; Win03] this has been applied to i.a. graphene [WZ10; KIF17]
and silicene [GBT13].

3.1.1. k ⋅ p-theory

The k ⋅p-theory is a well-established method in semiconductor physics and a variant of
perturbation theory for the calculation of band energies and wave function in the vicin-
ity of high symmetry points e.g. Γ, where the deviation k from Γ in k-space is treated as a
small perturbation to the Hamiltonian at Γ [DKK55; Kan56; Kan66]. Consider the Bloch
wave function with spin dependency given by the spinor 𝜒𝜎 [WR28; Blo29] [Mah11,
Chap. 3.1, p.32]

𝜓k𝑏𝜎(r) = 𝑢k𝑏(r)𝑒𝑖kr𝜒𝜎 , (3.1.15)

with momentum k, real space vector r and band index 𝑏. The cell periodic part 𝑢k𝑏(r)
of the Bloch wave function satisfies 𝑢k𝑏(r + R) = 𝑢k𝑏(r) with R being a real space Bra-
vais lattice vector [Bra66]. The wave function is an eigenstate of the non-interacting
Hamiltonian ℋ0 = p̂2

2𝑚 + 𝑉(r) given that ℋ0𝜓k𝑏𝜎(r) = 𝜀k𝑏𝜎𝜓k𝑏𝜎(r) with 𝜀k𝑏𝜎 being the
single particle energy of band 𝑏 and spin 𝜎 at momentum k. In order to determine the
matrix elements ⟨k′𝑏′𝜎 ′∣ ℋ0 + ℋ𝑆𝑂𝐶 ∣k𝑏𝜎⟩ of the total Hamiltonian we have to find the
action of ℋ𝑆𝑂𝐶 (Equation 3.1.13) as well as ℋ0 on the Bloch states. The non-interacting
Hamiltonian acts on the Bloch state as (cf. [MM11])

̂p2𝜓k𝑏𝜎(r) = (−𝑖ℏ∇)2𝑢k𝑏(r)𝑒𝑖kr𝜒𝜎 = (−𝑖ℏ∇)𝑒𝑖kr ( ̂p + ℏk) 𝑢k𝑏(r)𝜒𝜎

= 𝑒𝑖kr𝜒𝜎 ( ̂p2 + 2ℏk ⋅ p̂ + (ℏk)2) 𝑢k𝑏(r)𝜒𝜎 . (3.1.16)

The spin-orbit part of the Hamiltonian ℋ𝑆𝑂𝐶 ∝ 𝝈 ⋅ (∇𝑉(r) × p̂) has the effect

∑
𝑚𝑛

𝜖𝑙𝑚𝑛 (∇𝑉(r))𝑚 p̂𝑛𝑢k𝑏(r)𝑒𝑖kr𝜒𝜎 = ∑
𝑚𝑛

(∇𝑉(r))𝑚 𝑒𝑖kr (p̂ + ℏk)𝑛 𝑢k𝑏(r)𝜒𝜎 . (3.1.17)

Therefore, the Schrödinger equation of the total Hamiltonian yields

𝑒𝑖kr

2𝑚 [ ̂p2 + 2ℏk ⋅ p̂ +
ℏ2

2𝑚𝑐2 𝝈𝜎𝜎′ ⋅ (∇𝑉(r) × (p̂ + ℏk))] 𝑢k𝑏(r)𝜒𝜎′ = (𝜀k𝑏𝜎 −
(ℏk)2

2𝑚 ) 𝑢k𝑏(r)𝜒𝜎 ,

(3.1.18)
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3. Mean-field theory in absence of spin rotation invariance

which is exactly valid only in the limit k → 0 at the Γ-point. Hence, we can treat k as
a small perturbation to find the band energies in the vicinity of the Γ-point. The second
term is called the “k ⋅ p̂-interaction”, the third term with p̂ is the atomic like spin-orbit
interaction, while the third term with k is responsible for the momentum dependent
spin-orbit coupling [Kan57]. However, we are interested in the matrix elements of the
spin-orbit interactionwith respect to the Bloch states. These are extracted bymultiplying
the spin-orbit part of the equation with another Bloch state and integrating over the
Wigner-Seitz cell, i.e. (cf. [Sam09, Section II.])

⟨k′𝑏′𝜎 ′∣ ℋ𝑆𝑂𝐶 ∣k𝑏𝜎⟩ =
ℏ2

4𝑚2𝑐2 ∫
𝑊𝑆

dr 𝑢k′𝑏′(r)𝜒𝜎′ 𝝈𝜎′𝜎 ⋅ (∇𝑉(r) × (p̂ + ℏk)) 𝑢k𝑏(r)𝜒𝜎

≔ L𝜎𝜎′

𝑏𝑏′ (k) ⋅ 𝝈𝜎′𝜎 . (3.1.19)

There are apparently two terms that arise from the action of the spin-orbit operator on
the Blochwave function. The second one is usually neglected since it becomes very small
in the vicinity of the center of the Brillouin zone, but gives, however, rise to momentum
dependent spin-orbit coupling. The corresponding second quantized Hamiltonian can
be written as

ℋ0 = ∑
k

∑
𝑏,𝑏′

∑
𝜎,𝜎′

(𝜀k𝑏𝜎 𝛿𝑏,𝑏′𝛿𝜎̃,𝜎̃′ + L𝜎𝜎′

𝑏𝑏′ (k) ⋅ 𝝈𝜎′𝜎) 𝑐†
k,𝑏,𝜎𝑐k,𝑏′,𝜎′ . (3.1.20)

This equations provides a basis to calculate not only the matrix elements but also the
absolute strength of the spin-orbit coupling terms by numerical evaluation of the Bloch
states and integrals [KM05a; Min+06]. Apart from (trying to) straightforwardly eval-
uating the integral in (Equation 3.1.19) (over unknown Bloch wave functions), one can
already derive a lot of constraints on L𝜎𝜎′

𝑏𝑏′ (k) if we require the Hamiltonian to be self-
adjoint and symmetric with respect to time-reversal and/or spatial inversion, which
will, however, be done in detail in (Section 3.1.2). k ⋅ p-theory is in particular useful
to provide estimates for the absolute strength of spin-orbit terms. However, it can only
calculate the Hamiltonian in the vicinity of high symmetry points, while we are in need
of the Hamiltonian in the overall Brillouin zone. Therefore, we have to rely on the in-
variant expansion as a complementary method to find ℋ𝑆𝑂𝐶.

3.1.2. Invariant expansion

Apart from deriving spin-orbit coupling from the action and the perturbative influence
of the spin-orbit operator on the Bloch wave function and the corresponding band ener-
gies, wemay also start from a generic point of view that only uses the lattice symmetries
and additional constraints given by Hermiticity, time-reversal and inversion symmetry.
Hence, we will also try to determine and classify spin-orbit coupling terms that emerge
from a theory of invariants . Note, that we have to entangle three different spaces with
each other, i.e.
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3.1. Origin and classification of spin-orbit interaction

momentum × orbital × spin

given by the direct product of their respective representations. When constructing a
spin-orbit Hamiltonian from scratch, there are four key symmetries that have to be taken
into account

• Hermiticity

• time-reversal symmetry

• odd/even parity, i.e. (anti-)symmetry w.r.t. spatial inversion

• point group symmetry

A general non-interacting multi-orbital Hamiltonian is given by the ansatz

ℋ0 = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

[𝑡𝜎𝜎′
𝛼𝛼′ (k)𝛿𝜎𝜎′ + 𝜆𝜎𝜎′

𝛼𝛼′ (k)] 𝑎†
k𝛼𝜎𝑎k𝛼′𝜎′ , (3.1.21)

where 𝛼 = (𝑠, 𝑜) is amultiindex for sublattice 𝑠 and orbital 𝑜 and 𝜎, 𝜎 ′ are the “natural”
spin degrees of freedom. While the first term 𝑡(k) represents the usual tight-binding
dispersion matrix elements and is diagonal in spin space, the second one (𝜆(k)) hosts
spin-orbit coupling and may contain any off-diagonal elements in spin space. We focus
on the second spin-dependent term, for which we make the ansatz

𝜆𝜎𝜎′
𝛼𝛼′ (k) =

3
∑
𝑖=0

𝑀𝛼𝛼′
𝑖 (k)𝜎𝜎𝜎′

𝑖 , 𝑀𝛼𝛼′
𝑖 (k) ∈ ℂ , (3.1.22)

where the 𝜎𝑖 𝑖 ∈ {0, 1, 2, 3} represent the Pauli matrices 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 including the unity
matrix 𝜎0, since these comprise a complete basis of ℂ2×2. Later it will turn out to be
convenient to use the notation 𝑀 ≔ (𝑀0,M) as a abbreviation for the zeroth and first
to third components of 𝑀. Although, we are interested in the spin-dependent matrix
elements of the single-particleHamiltonianwe keep 𝜎0 since theremay be spin-diagonal
terms arising from (Equation 3.1.13) (cf. [Sam09, Section II. B., Eq.(18)]). Of course,
we require ℋ0 to be Hermitian and the spin-dependent part 𝜆𝜎𝜎′

𝛼𝛼′ (k) to be Hermitian on
its own, as well. From the condition ℋ†

0
!= ℋ0 we get

(𝜆𝜎𝜎′
𝛼𝛼′ (k))

†
= 𝜆𝜎′𝜎

𝛼′𝛼 (k) =
3

∑
𝑖=0

𝑀𝛼′𝛼
𝑖 (k)𝜎𝜎𝜎′

𝑖
!=

3
∑
𝑖=0

𝑀𝛼𝛼′
𝑖 (k)𝜎𝜎𝜎′

𝑖 , (3.1.23)

where we used that the Pauli matrices are self-adjoint. Since the Pauli matrices are
linear-independent, we can infer the requirement for Hermiticity

𝑀𝛼′𝛼
𝑖 (k) = 𝑀𝛼𝛼′

𝑖 (k) 𝑖 ∈ {0, 1, 2, 3} . (3.1.24)
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3. Mean-field theory in absence of spin rotation invariance

Next, wewill implement time-reversal symmetry into our spin-orbit Hamiltonian. Since
we are dealing with spin-1

2 fermions the time-reversal operator is given by Θ̂ = −𝑖𝜎𝑦𝒦
with 𝒦 being the operator of complex conjugation [Wig12] [Sch05b, Chap. 11.4, p.228].
However, for a multi-orbital Hamiltonian the time-reversal operator is

Θ̂𝑜 ≔ 𝟙𝑛𝑜×𝑛𝑜
⊗ Θ̂ = 𝟙𝑛𝑜×𝑛𝑜

⊗ (−𝑖𝜎𝑦𝒦) , (3.1.25)

where 𝑛𝑜 is the number of orbitals. Note, that time-reversal has indeed a non-trivial ef-
fect on orbitals, aswell, since Θ̂ affects the spherical harmonics by𝑌𝑚

𝑙 (𝜃, 𝜙) TR→ 𝑌𝑚
𝑙 (𝜃, 𝜙) =

(−1)𝑚𝑌−𝑚
𝑙 (𝜃, 𝜙) [SN11, Chap. 4.4, p. 276]. However, we assume to be using real orbital

basis that combines spherical harmonics with +𝑚 and −𝑚 and thereby canceling the
effect of time-reversal (cf. appendix B). Thus, the time-reversed spin-orbit Hamiltonian
is given by (momentum is odd with respect to time-reversal, k → −k)

Θ̂−1
𝑜 ℋ(k)Θ̂𝑜 ⇒ Θ̂−1

𝑜 𝜆𝜎𝜎′
𝛼𝛼′ (k)Θ̂𝑜 = 𝑀𝛼𝛼′

0 (−k)𝜎0 + M𝛼𝛼′(−k) ⋅ (−𝝈)
!= 𝑀𝛼𝛼′

0 (k)𝜎0 + M𝛼𝛼′(k) ⋅ 𝝈 . (3.1.26)

where we used that the spin (as being governed by angular momentum algebra) is
odd under time-reversal, i.e. Θ̂−1𝝈̂Θ̂ = −𝝈̂ [SN11, Chap. 4.4, p. 275] [Wig32] 5. Con-
sequently, the condition time-reversal invariance imposes on 𝑀(k) is

𝑀𝛼𝛼′
0 (k) = 𝑀𝛼𝛼′

0 (−k) and M𝛼𝛼′(k) = −M𝛼𝛼′(−k) . (3.1.27)

Details and an alternative derivation are given in appendix D. As an example, let’s
consider the L ⋅S term in the three d-orbitals 𝑑𝑥𝑧, 𝑑𝑦𝑧 and 𝑑𝑥𝑦. In terms of the basis c†

𝑜𝜎 =

(𝑐†
𝑑𝑥𝑧

, 𝑐†
𝑑𝑦𝑧

, 𝑐†
𝑑𝑥𝑦

)
𝑇

⊗ (𝑐†
↑ , 𝑐†

↓)𝑇 it is given by (see its alternative derivation in appendix B)

L̂ ⋅ ̂S =
1
2c

†
𝑜𝜎

⎛⎜⎜⎜
⎝

0 −𝑖𝜎𝑧 −𝑖𝜎𝑥
𝑖𝜎𝑧 0 𝑖𝜎𝑦
𝑖𝜎𝑥 −𝑖𝜎𝑦 0

⎞⎟⎟⎟
⎠
c𝑜𝜎 . (3.1.28)

If we express this operator in terms of the entities introduced abovewe get (cf. (Equa-
tion 3.1.39))

𝑀𝛼𝛼′
0 (k) = 0 and M𝛼𝛼′(k) =

⎛⎜⎜⎜
⎝

0 −𝑖 ̂𝑧 −𝑖 ̂𝑥
𝑖 ̂𝑧 0 𝑖 ̂𝑦
𝑖 ̂𝑥 −𝑖 ̂𝑦 0

⎞⎟⎟⎟
⎠

, (3.1.29)

5 Note, that time-reversal is non-unitary, therefore we have Θ−1 ≠ Θ† with Θ−1 = +𝑖𝜎𝑦𝒦.
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with ̂𝑥, ̂𝑦, ̂𝑧 being the unit vectors inCartesian coordinates. Hermiticity (Equation 3.1.24)
is obviously fulfilled and time-reversal symmetry (Equation 3.1.27) is intact as well,
since apparently M𝛼𝛼′ = −M𝛼𝛼′ due to M being momentum independent. In order to
check out the implications of parity, i.e. the behavior of the Hamiltonian w.r.t. to spatial
inversion, we split it into an inversion symmetric (gerade) and antisymmetric (unger-
ade) part, which amounts to the definition

M𝑔(k) ≔
M(k) + M(−k)

2 and M𝑢(k) ≔
M(k) − M(−k)

2 , (3.1.30)

that implies for the non-interacting Hamiltonian the form

ℋ0 = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

[𝑡𝜎𝜎′
𝛼𝛼′ (k)𝛿𝜎𝜎′ + (M𝛼𝛼′

𝑔 (k) + M𝛼𝛼′
𝑢 (k)) ⋅ 𝝈𝜎𝜎′] 𝑎†

k𝛼𝜎𝑎k𝛼′𝜎′ . (3.1.31)

Physically, this symmetry or antisymmetry of the Hamiltonian is related to the sym-
metry of the potential 𝑉(r) in (Equation 3.1.13), which may similarly split up into sym-
metric and antisymmetric part. This enables us to even deal with arbitrary potentials
comprising parts of both symmetry. Let’s denote the parity operator or operator of spa-
tial inversion by ̂𝐼. Apparently, the symmetry of theHamiltonian is inherited byM𝛼𝛼′(k)
since ̂𝐼−1𝜆𝜎𝜎′

𝛼𝛼′ (k) ̂𝐼 = 𝜆𝜎𝜎′
𝛼𝛼′ (−k) = ±𝜆𝜎𝜎′

𝛼𝛼′ (k) and the spin is a pseudo/axial-vector that
doesn’t transform under spatial inversion, i.e. ̂𝐼−1𝝈 ̂𝐼 = 𝝈. For simplicity, we assume
in the following the spin-orbit part of the Hamiltonian to be either fully symmetric or
antisymmetric (of course, 𝑡𝜎𝜎′

𝛼𝛼′ (k) is always symmetric). However, we may always get
back to an arbitrary potential 𝑉(r) by taking into account both finite symmetric and an-
tisymmetric parts. By summarizing the requirements and conditions for Hermiticity,
time-reversal and parity, for the symmetric case M(k) = M(−k), starting from (Equa-
tion 3.1.27), we get

M𝛼𝛼′(k) = −M𝛼𝛼′(−k)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.30)

↓= −M𝛼𝛼′(k)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.24)

↓= −M𝛼′𝛼(k) = − [M𝛼𝛼′(k)]
𝑇

. (3.1.32)

Hence, the orbital matrix (with indices 𝛼, 𝛼′) is antisymmetry and all diagonal terms
must vanish. Thus, there’s no single band model with symmetric spin-orbit interaction.
Besides, the first equality states thatM𝛼𝛼′(k) ≔ 𝑖N𝛼𝛼′(k),N ∈ ℝ3 must be purely imagi-
nary. Note, that this is indeed the case for our example (Equation 3.1.29). Analogously,
𝑀𝛼𝛼′

0 (k) ∈ ℝ is real and must be symmetric in the orbital indices. Let’s turn to the
antisymmetric case M(k) = −M(−k). Here, we get (starting from (Equation 3.1.27))
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3. Mean-field theory in absence of spin rotation invariance

Table 3.1.: The classification of spin-orbit interaction Hamiltonians that are subject to Hermitic-
ity, time-reversal symmetry and definite parity shows that all matrix elements must
be real or purely imaginary. The (anti-)symmetry of terms in orbital indices ensures
that in a single band model there’s only antisymmetric spin-orbit coupling and it re-
quires at least two orbitals to have finite spin-orbit interaction in a centrosymmetric
system. For the definition of 𝑀𝛼𝛼(k) we refer to (Equation 3.1.22).

centrosymmetric non-centrosymmetric

𝑀𝛼𝛼′
0 (k) M𝛼,𝛼′(k) 𝑀𝛼𝛼′

0 (k) M𝛼,𝛼′(k)

parity even even odd odd
number real imaginary imaginary real
orbital matrix symmetric antisymmetric antisymmetric symmetric

M𝛼𝛼′(k) = −M𝛼𝛼′(−k)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.30)

↓= M𝛼𝛼′(k)
(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1.24)

↓= M𝛼′𝛼(k) = [M𝛼𝛼′(k)]
𝑇

.
(3.1.33)

First, this tells us that M𝛼𝛼′(k) ∈ ℝ3 is real. Second, its orbital matrix is symmet-
ric, which opens up the possibility for finite spin-orbit interaction in a single band 𝛼 =
𝛼′. Like expected, the antisymmetric zeroth component 𝑀𝛼𝛼′

0 (k) = 𝑖𝑁𝛼𝛼′
0 (k), 𝑁0 ∈

ℝ is purely imaginary and antisymmetric w.r.t. to its orbital indices, i.e. 𝑀𝛼𝛼′
0 (k) =

− [𝑀𝛼𝛼′
0 (k)]

𝑇
. For the single band case 𝛼 = 𝛼′ = 1 with finite antisymmetric spin-orbit

interaction, M𝛼𝛼′(k) is denoted by 𝜸(k) ∈ ℝ3 with 𝜸(−k) = −𝜸(k) most commonly
in the literature [Gmi+09; Smi+17a; BS12]. Please note, that due to its antisymmet-
ric property 𝜸(−k) is zero not only at k = 0 but at some high-symmetry points with
k + G = −k as well, where G is some reciprocal lattice vector.

After fixing and classifying most of the constraints that must be imposed on a phys-
ical reasonable spin-orbit interaction we have to focus on the point group and lattice
symmetry at last, that also enable us to derive particular Hamiltonians featuring phe-
nomenological parameters. Let’s introduce some nomenclature for the transformation
of real space and reciprocal space vectors (momenta), spin transformations and sublat-
tice/orbital transformations w.r.t. to point group 𝒢 with element 𝑔 ∈ 𝒢 and 𝑔 ∈ 𝒢𝐷 for
the spinor transformation, where 𝒢𝐷 is the corresponding double group . We define
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3.1. Origin and classification of spin-orbit interaction

k ∈ ℝ3 → k′ = 𝒫(𝑔)k with 𝒫(𝑔) ∈ ℝ3×3 (3.1.34)
𝜒 ∈ ℂ2 → 𝜒′ = 𝒮(𝑔)𝜒 with 𝒮(𝑔) ∈ ℂ2×2 (3.1.35)

a𝑜 ∈ ℂ𝑛𝑜𝑛𝑠 → a′
𝑜 = ℒ(𝑔)a𝑜 with ℒ(𝑔) ∈ ℂ𝑛𝑜𝑛𝑠×𝑛𝑜𝑛𝑠 , (3.1.36)

with a𝑜 being an “orbital spinor” whose size is determined by the number of sublat-
tices 𝑛𝑠 times the number of orbitals 𝑛𝑜 in the Hamiltonian. The reducible representa-
tions 𝒫(𝑔) and ℒ(𝑔) are associated to a subgroup of the full continuous rotation group
SO(3). The SU(2) transformation representation 𝒮(𝑔) consists of twice the number of
elements compared to the group 𝒢. The rotations are given by 𝒮( ̂𝑛, 𝜑) = 𝑒−𝑖𝑛̂𝝈𝜑/2 =
𝟙 cos(𝜑/2) − 𝑖 ̂𝑛𝝈 sin(𝜑/2) where the rotation is about the axis ̂𝑛 by angle 𝜑. The re-
flection in the plane given by its normal vector ̂𝑛 is constructed by a inversion (whose
representation is unity due to spin being a pseudovector) followed by a rotation about
the axis ̂𝑛 by 𝜋, i.e. 𝒮( ̂𝑛) = −𝑖 ̂𝑛𝝈 [Mer98]. The (reducible) transformation 𝒟(𝑔) of the
spinful Hamiltonian necessarily features an element 𝑔 ∈ 𝒢𝐷 of the double group and is
given by

𝒟(𝑔) = ℒ(𝑔) ⊗ 𝒮(𝑔) with 𝒟(𝑔) ∈ ℂ2𝑛𝑜𝑛𝑠×2𝑛𝑜𝑛𝑠 . (3.1.37)

Analogously to the invariant expansion or theory of invariants we require the Hamilto-
nian ℋ0(k) (cf. (Equation 3.1.21)) to satisfy [BP74; LK55; Lut56; Win03]

𝒟(𝑔)†ℋ0(k)𝒟(𝑔) = ℋ0(𝒫(𝑔)k) ∀𝑔 ∈ 𝒢(𝐷) . (3.1.38)

By exploring the transformation behavior of the sublattices/orbitals involved we are
able to classify subspaces of these sublattice/orbitals according to irreducible represen-
tations of 𝒢 and to split the Hamiltonian into blocks of size 𝑛Γ𝑖

× 𝑛Γ𝑗
where 𝑛Γ𝑖,𝑗

are the
dimensions of the irreducible representations. Every block may then be expanded in
terms of products of basis functions of k and invariant matrices that transform like the
irreducible representations Γ𝑘 that are contained in the product Γ𝑖 ×Γ𝑗. [TRR79; Win03].
The details of this treatment for d-orbitals on a tetragonal lattice are given in appendix C.

Centrosymmetric spin-orbit coupling

After having assembled all necessary tools and prerequisites, wewill continue by trying
to reconstruct the L ⋅S term in (Equation 3.1.29). We have to stick to the centrosymmet-
ric case in (Table 3.1). Since we are not allowed to have finite diagonal elements in the
orbital matrix we can already exclude the representations A1g and B1g in the upper left
2×2 block as basis in orbital space as these correspond to the 𝜏0 and 𝜏𝑧 orbital Pauli ma-
trices. We also learned from (Table 3.1) thatM𝛼𝛼′(k) has to be purely imaginary, which
excludes B2g, too and leaves us with A2g and 𝜏𝑦 corresponding to 𝜎𝑧 in spin space. The
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3. Mean-field theory in absence of spin rotation invariance

block with B2g ⊗B2g = A1g has to be zero as well, which means that we are left with the
4 × 2 block of the Eg ⊗B2g = Eg representation. As mentioned above, the Pauli matrices
𝜎𝑥, 𝜎𝑦 behave according to the Eg representation. To fix the order of the two components,
we look, for instance, at the 𝜎𝑥 operation. We find that 𝜎𝑥 must be associated to 𝑑𝑥𝑧 and
𝜎𝑦 must be associated to the 𝑑𝑦𝑧 since 𝜎𝑥𝑎†

𝑥𝑧𝑎𝑥𝑦 transforms into (−𝜎𝑥)𝑎†
𝑥𝑧(−𝑎𝑥𝑦) under

𝜎𝑥. This choice renders the Hamiltonian invariant with respect to the point group in the
sense (Equation 3.1.38). The operation e.g. C+

4 fixes the opposite sign while the overall
sign is arbitrary, i.e. given by the associated phenomenological coefficient. Therefore,
we end up with the spin-orbit matrix for a centrosymmetric, momentum-independent
model with 𝑑𝑥𝑧, 𝑑𝑦𝑧 and 𝑑𝑥𝑦 that yields

M𝛼𝛼′(k) =
⎛⎜⎜⎜
⎝

0 −𝑖 ̂𝑧 −𝑖 ̂𝑥
𝑖 ̂𝑧 0 𝑖 ̂𝑦
𝑖 ̂𝑥 −𝑖 ̂𝑦 0

⎞⎟⎟⎟
⎠

, (3.1.39)

and fully agrees with the L ⋅ S term given in (Equation 3.1.29) (up to prefactors) that
was calculated by evaluating the matrix elements explicitly by considering the action of
the angular momentum operator on the d-orbitals. We now proceed by exploring the
possibility of momentum dependent spin-orbit interaction in centrosymmetric crystals.
(Table 3.1) shows that this is possible only in a multi-orbital model . We begin with the
three orbital case that leads to (Equation 3.1.39) for momentum-independent terms and
try to take into account momentum dependent basis functions. Firstly, the associated
basis functions in k-space must be even and therefore can only be one-dimensional rep-
resentations of D4h. Secondly, the orbital matrix M𝛼𝛼′ must be antisymmetric in the
orbital indices. Thirdly, M𝛼𝛼′ must be purely imaginary. In contrast to the momentum
independent case before, where we simply used the same representation in both orbital
and spin space to make sure that the entire block is invariant (transforms as A1g), we
now have to “entangle” all three different spaces:

momentum × orbital × spin

It turns out to be most convenient to work out the product representations successively,
which may be done in three ways. Here, we first couple orbital and spin space and use
their product representation to be merged with the one in momentum space. We start
with the upper left 2 × 2 block of the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals, where we already proved
that the only valid orbital basis matrix is 𝜏𝑦 associated to A2g. Hence, the direct prod-
uct of A2g (orbital space) and the representation in spin space must consist of one-
dimensional representations, which excludes Eg with 𝜎𝑥 and 𝜎𝑦. The remaining Pauli
matrix 𝜎𝑧 transforms like A2g and fixes the representation in momentum space to be
Γorbital ⊗ Γspin = A2g ⊗ A2g = A1g. Consequently, in 𝑑𝑥𝑧 and 𝑑𝑦𝑧 space we get for first
nearest neighbors:

ℋ𝑥𝑧,𝑦𝑧
𝑆𝑂𝐶 = (cos (𝑘𝑥) + cos (𝑘𝑦)) 𝜏𝑦 ⊗ 𝜎𝑧 . (3.1.40)
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3.1. Origin and classification of spin-orbit interaction

The remaining derivation and final result of non-local spin-orbit terms in the five-d-
orbital Hamiltonian are given in appendix C.1. As we respected both time-reversal and
inversion symmetry for the spin-orbit coupling terms in centrosymmetric models, we
expect the bands to be doubly degenerate. However, due to the spin-off-diagonal terms
the SU(2) spin rotation symmetry is obviously broken. Therefore, we will introduce the
pseudospin degree of freedom in (Section 3.2) to describe centrosymmetric spin-orbit
coupled models in band basis.

Non-centrosymmetric spin-orbit coupling

The simplest non-centrosymmetric spin-orbit coupling Hamiltonian is actually a single
band model (in contrast to centrosymmetric spin-orbit coupling that does only exist
for multi-orbital Hamiltonians). Hence, we introduce the notation [BS12, Chap. 4.2.1,
p.131]

𝜸(k) ≔ M𝛼𝛼′(k) with 𝛼 = 𝛼′ = 1 , (3.1.41)

for the antisymmetric 𝜸(−k) = −𝜸(−k) and real 𝜸(k) ∈ ℝ3 spin-orbit field 𝜸(k) (cf.
(Table 3.1)). 𝜸(k) introduces a momentum dependent spin quantization axis that lifts
the spin degeneracy. We refer back to the Hamiltonian (Equation 3.1.21) that yields

ℋ0 = ∑
k

∑
𝜎,𝜎′

[𝜀(k)𝛿𝜎𝜎′ + 𝜸(k) ⋅ 𝝈𝜎𝜎′] 𝑎†
k𝜎𝑎k𝜎′ , (3.1.42)

in our specific case of a single-orbital Hamiltonian with broken inversion symme-
try where the spinless term 𝑡𝛼,𝛼′ ≔ 𝜀 is already diagonal in orbital and spin indices.
While the spinless term is invariant under spin-rotations, of course, 𝜸(k) transforms
like a polar vector, i.e. a spin rotation about the axis ̂𝑛 by angle 𝜑 affects 𝜸 by 𝜸(k) ⟶
ℛ( ̂𝑛, 𝜑)𝜸(k), where ℛ( ̂𝑛, 𝜑) is the SO(3) rotationmatrix (for details, see analogous case
of d-vector in (Section 2.4.4)) The eigenvalues 𝜉(k) of (Equation 3.1.42) are straightfor-
wardly calculated

ℋ0uk = 𝜉(k)uk ⇒ (𝜀 + 𝛾𝑧 − 𝜉 𝛾𝑥 − 𝑖𝛾𝑦

𝛾𝑥 + 𝑖𝛾𝑦 𝜀 − 𝛾𝑧 − 𝜉)uk = 0

⇒ (𝜀 − 𝜉)2 − (𝛾𝑧)2 − (𝛾𝑥)2 − (𝛾𝑦)2 = (𝜀 − 𝜉)2 − ∣𝜸∣2 != 0 , (3.1.43)

and therefore given by

𝜉(k)± = 𝜀(k) ± ∣𝜸(k)∣ . (3.1.44)

The new spin-like degree of freedom characterizing the spin-split states is called the
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3. Mean-field theory in absence of spin rotation invariance

helicity 𝜆 = ± of the bands [SAM09; Sam09]. The eigenvectors of (Equation 3.1.42), we
label with helicity 𝜆, are determined by

(ℋ0 − 𝜉k𝜆𝜎0)uk𝜆 = 0 ⇒ (𝜀 + 𝛾𝑧 − 𝜉 𝛾𝑥 − 𝑖𝛾𝑦

𝛾𝑥 + 𝑖𝛾𝑦 𝜀 − 𝛾𝑧 − 𝜉) (𝑢↑
k𝜆

𝑢↓
k𝜆

) = 0 , (3.1.45)

and therefore given by (cf. [SAM09, p. 7, eq. (15)])

uk𝜆 = (𝑢↑
k𝜆

𝑢↓
k𝜆

) ∝ (−𝛾𝑥 + 𝑖𝛾𝑦

𝛾𝑧 + 𝜆∣𝜸∣ ) . (3.1.46)

In order towrite the eigenstate in a clearly arranged formwe introduce themomentum-
dependent phase

𝑒𝑖𝜙k =
−𝛾𝑥 + 𝑖𝛾𝑦

√(𝛾𝑥)2 + (𝛾𝑦)2
. (3.1.47)

Expressing (Equation 3.1.46) in terms of that phase, we find

⎛⎜⎜⎜
⎝

𝑒𝑖𝜙k

𝛾𝑧+𝜆∣𝜸∣

√(𝛾𝑥)2+(𝛾𝑦)2

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑒𝑖𝜙k

𝛾𝑧+𝜆∣𝜸∣

√(∣𝜸∣+𝛾𝑧)(∣𝜸∣−𝛾𝑧)

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

𝑒𝑖𝜙k

√ ∣𝜸∣+𝜆𝛾𝑧

∣𝜸∣−𝜆𝛾𝑧

⎞⎟⎟⎟
⎠

→ ⎛⎜
⎝

√∣𝜸∣ − 𝜆𝛾𝑧𝑒𝑖𝜙k

√∣𝜸∣ + 𝜆𝛾𝑧
⎞⎟
⎠

. (3.1.48)

The corresponding norm is given by

∣√∣𝜸∣ − 𝜆𝛾𝑧𝑒𝑖𝜙k ∣
2

+ ∣√∣𝜸∣ + 𝜆𝛾𝑧∣
2

= (∣𝜸∣ − 𝜆𝛾𝑧) + (∣𝜸∣ + 𝜆𝛾𝑧) = 2∣𝜸∣ . (3.1.49)

Therefore, the normalized eigenstates are given by

uk𝜆 = (𝑢↑
k𝜆

𝑢↓
k𝜆

) =
⎛⎜⎜⎜⎜
⎝

√1−𝜆𝛾𝑧/∣𝜸∣
2 𝑒𝑖𝜙k

√1+𝜆𝛾𝑧/∣𝜸∣
2

⎞⎟⎟⎟⎟
⎠

with 𝑒𝑖𝜙k =
−𝛾𝑥 + 𝑖𝛾𝑦

√(𝛾𝑥)2 + (𝛾𝑦)2
, (3.1.50)

where the phase satisfies 𝑒𝑖𝜙−k = −𝑒𝑖𝜙k due to the antisymmetry 𝜸(−k) = −𝜸(k).
These eigenvectors are used to define new quasiparticle states in terms of which the
Hamiltonian assumes the compact form

ℋ0 = ∑
k

∑
𝜆

𝜉k𝜆𝑏†
k𝜆𝑏k𝜆 , (3.1.51)
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with the eigenvalues (Equation 3.1.44) and the new helical quasiparticle operators
that are given by the unitary transformation

(𝑏k+
𝑏k−

) ≔
⎛⎜⎜⎜⎜
⎝

√1−𝛾𝑧/∣𝜸∣
2 𝑒𝑖𝜙k √1+𝛾𝑧/∣𝜸∣

2

−√1+𝛾𝑧/∣𝜸∣
2

√1−𝛾𝑧/∣𝜸∣
2 𝑒−𝑖𝜙k

⎞⎟⎟⎟⎟
⎠

(𝑎k↑
𝑎k↓

) = ( 𝑢k 𝑣k
−𝑣k 𝑢k

)
⏟⏟⏟⏟⏟⏟⏟

≔𝑈k

(𝑎k↑
𝑎k↓

) . (3.1.52)

The matrix elements of the Bogoliubov transformation defining the helical states in
terms of the “natural” spin states satisfy the relations 𝑢k = 𝑒−2𝑖𝜙k𝑢k, 𝑣k = 𝑣k, 𝑢−k =
−𝑒𝑖𝜙k𝑣k and 𝑣−k = 𝑒−𝑖𝜙k𝑢k. Therefore, the new quasiparticle states fulfill

(𝑏k+
𝑏k−

) → (𝑏−k+
𝑏−k−

) = ( 𝑏k−𝑒𝑖𝜙k

−𝑏k+𝑒−𝑖𝜙k
) , (3.1.53)

under inversion of k and do, like expected, not yield a degenerate state. The behavior
of the newquasiparticle states 𝑏k𝜆 under time-reversal is given by 𝑏k𝜆 ⟶ 𝑈−kΘ̂𝑈−1

k bk𝜆 =
diag(𝑒𝑖𝜙k, 𝑒−𝑖𝜙k) bk𝜆 with Θ = −𝑖𝜎𝑦𝒦 6. Hence, the operator of time-reversal in helical
basis Ω ≔ 𝑈−kΘ̂𝑈−1

k is diagonal and the helical quasiparticle states are invariant un-
der time-reversal up to a k-dependent phase 𝜙(k) and the inversion of momentum. In
contrast, time-reversal for “natural spin” states, usually exchanges both spin states. As
a consequence of the broken spin symmetry and the k-dependent quantization axis, we
have a momentum dependent spin expectation value that is

⟨𝝈⟩𝜆 = ⟨k, 𝜆∣ 𝝈 ∣k, 𝜆⟩

= 𝜆 (𝑢k𝑣k + 𝑣k𝑢k, −𝑖𝑢k𝑣k + 𝑖𝑣k𝑢k, 𝑢k𝑢k − 𝑣k𝑣k) = −𝜆
𝜸k
∣𝜸k∣ . (3.1.55)

The spin expectation value points opposite to the momentum dependent direction of
𝜸(k) for helicity +. Therefore, the normal non-interacting state of the Hamiltonian with
antisymmetric spin-orbit coupling already exhibits a highly non-trivial spin structure.
Note that the physical origin of the antisymmetric spin-orbit field (SOF) [Gmi+09] is
very diverse. Here, we mainly distinguish two situations. On the one hand, we have
bulk inversion asymmetry (BIA) originating from the intrinsic lack of an inversion center
in a crystal that gives rise to the Dresselhaus term. On the other hand, one encounters
structure inversion asymmetry (SIA) that can be traced back to a heterostructure-interface
that breaks inversion symmetry along a specifically engineered crystal direction and is
linked to Rashba spin-orbit interaction [BR84a; BR84b]. Note that there’s also the effect

6 In detail we have:

𝑈−kΘ̂𝑈−1
k bk𝜆 = 𝑈−k (−𝑖𝜎𝑦) 𝑈𝑇

k = ( 𝑢−k 𝑣−k
−𝑣−k 𝑢−k

) (0 −1
1 0 ) (𝑢k −𝑣k

𝑣k 𝑢k
) = (𝑒𝑖𝜙(k) 0

0 𝑒−𝑖𝜙(k)) (3.1.54)
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3. Mean-field theory in absence of spin rotation invariance

of Interface Inversion Asymmetry (IIA) that results from the different kinds of atoms on
both sides of the interface [Fab+07, Section III. G.].

We didn’t take any point group symmetries of the underlying lattice into account so
far to determine the momentum structure of the spin-orbit field 𝜸(k), since our single-
band model was generic. We will catch up on this by using a two-orbital 𝑑𝑥𝑧, 𝑑𝑦𝑧 model
on the tetragonal latticewith inversion symmetry breaking induced by e.g. a heterostructure-
interface along the [0 0 1] direction. Therefore, the point group to be considered is C4v
that has the five irreducible representations A1, A2, B1, B2 and E, whereas the 𝑑𝑥𝑧, 𝑑𝑦𝑧
orbitals transform according to E. Only the two-dimensional dispersion along the 𝑘𝑥,
𝑘𝑦 planes for fixed 𝑘𝑧 are calculated. Henceforth, basis functions of the representation
E are the only antisymmetric ones, where we have sin(𝑘𝑥) and sin(𝑘𝑦) in first order. In
contrast, to a purely orbital Hamiltonian we have to entangle orbital and spin spaces
with each other. The Pauli matrices 𝜏0, 𝜏𝑥, 𝜏𝑦 and 𝜏𝑧 in orbital space are used again to
construct the invariant in terms of orbitals. However, 𝜏𝑦 may be excluded since the non-
centrosymmetric matrix M𝛼,𝛼′ must be real (cf. (Table 3.1)). Since the basis functions
are E representation like, the combined orbital-spin space direct product representation
(or irreducible representations contained therein) must transform like E, as well. Since
the remaining Pauli matrices 𝜏0, 𝜏𝑥 and 𝜏𝑧 transform like A1, B1 and B2, the Pauli ma-
trices used in spin space must consequently be of E character, too, being 𝜎𝑥 and 𝜎𝑦. This
is the result of the product representations of A1 ⊗ E = E, B1 ⊗ E = E and B2 ⊗ E = E.
To sum it up, we can expand the spin-orbit Hamiltonian in 𝑑𝑥𝑧, 𝑑𝑦𝑧 orbitals in terms of
the invariants

ℋ𝑥𝑧,𝑦𝑧
𝑆𝑂𝐶 = + sin (𝑘𝑦) 𝜏0 ⊗ 𝜎𝑥 − sin (𝑘𝑥) 𝜏0 ⊗ 𝜎𝑦

+ sin (𝑘𝑥) 𝜏𝑥 ⊗ 𝜎𝑥 − sin (𝑘𝑦) 𝜏𝑥 ⊗ 𝜎𝑦

+ sin (𝑘𝑦) 𝜏𝑧 ⊗ 𝜎𝑥 + sin (𝑘𝑥) 𝜏𝑧 ⊗ 𝜎𝑦 . (3.1.56)

To determine, if we have to connect 𝑘𝑥 and to 𝜎𝑥 or to 𝜎𝑦 (in any of the three in-
variants) and what the relative sign is, we consider, for instance, the operations C+

4
and 𝜎𝑥. (Equation 3.1.56) being first order in the basis functions may be arbitrarily ex-
panded to higher orders involving e.g. sin (𝑘𝑥) cos (𝑘𝑦) and sin (𝑘𝑦) cos (𝑘𝑥) in second
order. For completeness, we assemble the remaining terms for the full five d-orbital
model with non-centrosymmetric spin-orbit interaction. We split the Hamiltonian into
the sectors involving the 𝑑𝑥𝑧, 𝑑𝑦𝑧 orbitals combined with 𝑑𝑥𝑦, 𝑑𝑥2−𝑦2 and 𝑑𝑧2 and the
3 × 3 block containing all one-dimensional representations. The one-dimensional or-
bital blocks may be easily composed by firstly entangling momentum and spin space,
corresponding to a product of E ⊗ E with basis terms sin(𝑘𝑥), sin(𝑘𝑦) and 𝜎𝑥, 𝜎𝑦. Since
E ⊗ E = A1 ⊕ A2 ⊕ B1 ⊕ B2, we expect to get all four one-dimensional representations
by combining these terms. Indeed, we find that sin (𝑘𝑥) 𝜎𝑦 − sin (𝑘𝑦) 𝜎𝑥 behaves like
A1, sin (𝑘𝑥) 𝜎𝑥 + sin (𝑘𝑦) 𝜎𝑦 transforms like A2, sin (𝑘𝑥) 𝜎𝑦 + sin (𝑘𝑦) 𝜎𝑥 is associated to
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3.2. Pseudospin and definition of Bloch states

Table 3.2.: We summarize the most common types of spin-orbit coupling classified with respect
to inversion symmetry. On the one hand, centrosymmetric crystals only exhibit the
well-known atomic L ⋅ S spin-orbit coupling, which is momentum independent (in
zeroth order). On the other hand, non-centrosymmetric crystalsmay shownumerous
types of spin-orbit interaction like Rashba and Dresselhaus terms. These are bound to
exhibit spin-momentum locking due to symmetry requirements.

SOC atomic Rashba Dresselhaus Kane-Mele

Hamiltonian L ⋅ S (k ⊗ 𝝈)𝑧 𝑘𝑥𝜎𝑦 + 𝑘𝑦𝜎𝑥 𝑖 (d1 ⊗ d2) ⋅ 𝝈
inversion symmetry 3 7 7 7

momentum dependency 3/7 3 3 3

spatial dimension 3 2 3 2

B1 and sin (𝑘𝑥) 𝜎𝑥 − sin (𝑘𝑦) 𝜎𝑦 corresponds to B2. In the sectors involving the 𝑑𝑥𝑧, 𝑑𝑦𝑧
orbitals we observe that the product of E in momentum space and E in orbital space
requires a one-dimensional representation in spin space, leaving us with 𝜎0 and 𝜎𝑧. The
non-centrosymmetric spin-orbit matrixM𝛼𝛼′(k) for the five d-orbitals is therefore given
by (up to first order)

M𝛼𝛼′(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2𝑘𝑦 ̂𝑥 𝑘𝑥 ̂𝑥 − 𝑘𝑦 ̂𝑦 𝑘𝑥 ̂𝑧 𝑘𝑦 ̂𝑧 𝑘𝑦 ̂𝑧
𝑘𝑥 ̂𝑥 − 𝑘𝑦 ̂𝑦 −2𝑘𝑥 ̂𝑦 −𝑘𝑦 ̂𝑧 𝑘𝑥 ̂𝑧 −𝑘𝑥 ̂𝑧

𝑘𝑥 ̂𝑧 −𝑘𝑦 ̂𝑧 𝑘𝑥 ̂𝑦 − 𝑘𝑦 ̂𝑥 𝑘𝑥 ̂𝑥 + 𝑘𝑦 ̂𝑦 𝑘𝑥 ̂𝑥 − 𝑘𝑦 ̂𝑦
𝑘𝑦 ̂𝑧 𝑘𝑥 ̂𝑧 𝑘𝑥 ̂𝑥 + 𝑘𝑦 ̂𝑦 𝑘𝑥 ̂𝑦 − 𝑘𝑦 ̂𝑥 𝑘𝑥 ̂𝑦 + 𝑘𝑦 ̂𝑥
𝑘𝑦 ̂𝑧 −𝑘𝑥 ̂𝑧 𝑘𝑥 ̂𝑥 − 𝑘𝑦 ̂𝑦 𝑘𝑥 ̂𝑦 + 𝑘𝑦 ̂𝑥 𝑘𝑥 ̂𝑦 − 𝑘𝑦 ̂𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.1.57)

where (𝛼, 𝛼′) = (𝑥𝑧, 𝑦𝑧, 𝑥𝑦, 𝑥2 − 𝑦2, 𝑧2). For the sake of simplicity we abbreviated
sin(𝑘𝑥,𝑦) by 𝑘𝑥,𝑦 throughout. Note, that there are different phenomenological constants
corresponding to every orbital block and representation (which are, however, not dis-
tinguished in (Equation 3.1.57)) We find some well-known models in the Hamiltonian,
in particular the Rashba term 𝑘𝑥 ̂𝑦 − 𝑘𝑦 ̂𝑥 the Dresselhaus term 𝑘𝑥 ̂𝑦 + 𝑘𝑦 ̂𝑥 and some unfa-
miliar terms 𝑘𝑥 ̂𝑥 + 𝑘𝑦 ̂𝑦 and 𝑘𝑥 ̂𝑥 − 𝑘𝑦 ̂𝑦 as well as the 𝑘𝑦 ̂𝑧, 𝑘𝑥 ̂𝑧 terms in the two-dimensional
representation sectors. The resulting non-trivial spin structures arising from these non-
centrosymmetric spin-orbit terms are shown in (Figure 3.1). A summary and classifica-
tion of different types of spin-orbit interaction in centrosymmetric andnon-centrosymmetric
models is given in (Table 3.2).

3.2. Pseudospin and definition of Bloch states

A spinful single-particle Hamiltonian ℋ0 that doesn’t feature any spin-orbit coupling is
denoted by
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3. Mean-field theory in absence of spin rotation invariance

𝑘𝑥

𝑘𝑦

(a)

𝑘𝑥

𝑘𝑦

(b)

𝑘𝑥

𝑘𝑦

(c)

Figure 3.1.: (Figure 3.1a) illustrates the Rashba term 𝜸k = (𝑘𝑦, −𝑘𝑥, 0) resulting in a spin-split
Fermi surface with momentum dependent spin expectation values ⟨𝝈⟩𝜆 = −𝜆 𝜸k

∣𝜸k∣
(cf. (Equation 3.1.55)). In particular, the spin expectation value is aligned in the
𝑥-𝑦-plane and is perpendicular to the Fermi momentum in the case of Rashba spin-
orbit interaction (evolving counter clock-wise). Note that the length of arrows does
not reflect the actual magnitude of the spin expectation value. The Rashba term ap-
pears on the diagonals of (Equation 3.1.57). (Figure 3.1b) shows theDresselhaus term
𝜸k = (𝑘𝑦, 𝑘𝑥, 0) resulting in a spin-split Fermi surface with spins rotating clock-wise
around the Fermi surface (in contrast, to the Rashba spin structure). The Dressel-
haus term shows up in the 𝑥2 − 𝑦2, 𝑧2 orbital matrix elements in (Equation 3.1.57).
In (Figure 3.1c), the spin structure of the unnamed term 𝜸k = (𝑘𝑥, −𝑘𝑦, 0) is shown,
which reassembles the one of the Dresselhaus up to a shift 𝜋/4 along the Fermi sur-
face.

ℋ0 = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

(𝑡𝛼𝛼′(k) ⊗ 𝜎0) 𝑐†
k𝛼𝜎𝑐k𝛼′𝜎′ , (3.2.1)

where 𝛼 = (𝑠, 𝑜) represents the sublattice and orbital degrees of freedom and 𝜎0 is the
2×2 identity matrix. Since the Hamiltonian is diagonal in spin space we can easily write
down a set of eigenstates, i.e.

uk𝛼↑ = uk𝛼 ⊗ (1
0) uk𝛼↓ = uk𝛼 ⊗ (0

1) , (3.2.2)

with (𝑡𝛼𝛼′ ⊗ 𝜎0)uk𝛼↑ = 𝜉k𝛼↑uk𝛼↑ and (𝑡𝛼𝛼′ ⊗ 𝜎0)uk𝛼↓ = 𝜉k𝛼↑uk𝛼↓ with the eigenvalues
𝜉k𝛼↑, 𝜉k𝛼↓ ∈ ℝ. Due to the two-fold degeneracy, this definition of eigenstates is arbitrary
and there is an infinite number of equally valid choices given by

u′
k𝛼 ̃↑ ≔ 𝑎 uk𝛼↑ + 𝑏 uk𝛼↓

u′
k𝛼 ̃↓ ≔ −𝑏 uk𝛼↑ + 𝑎 uk𝛼↓

𝑎, 𝑏 ∈ ℂ |𝑎|2 + ∣𝑏∣2 = 1 , (3.2.3)
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3.2. Pseudospin and definition of Bloch states

in terms of the original eigenstates (Equation 3.2.2). We denote the new spin degree
of freedom by 𝜎̃ ∈ { ̃↑, ̃↓} and call it pseudospin since it corresponds to a superposition of
both eigenstates of the 𝜎𝑧 operator. Here, we will stick to the convention of expressing
SU(2)-symmetric eigenstates in terms of the “pure” 𝜎𝑧-eigenstates

|↑⟩ = (1
0) |↓⟩ = (0

1) . (3.2.4)

In this context, the distinction between “natural” spin |↑, ↓⟩ and pseudospin ∣ ̃↑, ̃↓⟩ is
artificial since both definitions are simply related by a spin rotation (Equation 3.2.3).
This applies for multi-orbital systems with SU(2) as well since we can always choose
the superposition of degenerate eigenstates that corresponds to the 𝜎𝑧 states in the par-
ticular band. As long as we treat both orbital- and spin- angular momentum separately,
we have a convenient description in terms of the orbital and spin operator eigenstates
at hand. In contrast, a non-interacting Hamiltonian including (centrosymmetric) spin-
orbit interaction is given by (cf. (Section 3.1.2))

ℋ0 + ̂L ̂⋅S = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

(𝑡𝛼𝛼′ ⊗ 𝜎0 + ⟨𝛼, 𝜎| ̂L ̂⋅S |𝛼′, 𝜎 ′⟩)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔ℎ𝜎𝜎′

𝛼𝛼′ (k)

𝑐†
k𝛼𝜎𝑐k𝛼′𝜎′ , (3.2.5)

Spin-orbit interaction intertwines orbital and spin space such that we have to rely on a
newdescription in terms of the total angularmomentum J = L+S that serves as the new
“good quantum number”. As a consequence, the Hamiltonian neither exhibits symme-
try with respect to neither spin rotations nor to orbital transformation but only w.r.t. to
a combined transformation of spin and orbital degrees of freedom, whose generators
are given by the total angular momentum, i.e. 𝒟 = 𝑒−𝑖J𝑛̂𝜑. Henceforth, in contrast to
(Equation 3.2.4) a description in pure 𝜎𝑧 state is impossible and we have to rely on a
new definition. In the former case, the requirement of using pure 𝜎𝑧 states made the
definition of the (pseudo)spin degree of freedom unique. But how do we get rid of this
ambiguity for a Hamiltonian with finite 𝜆 L ⋅ S ? The idea is to switch on the spin-orbit
coupling adiabatically in 𝜆 (and therefore introducing spin off-diagonal terms) and con-
tinuously connect the new pseudospin states with the pure 𝜎𝑧 states [UR85, Section II.
A.]. This is illustrated by some exemplary three band model and the definition of its
pseudospin ̃↑ state, i.e.
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3. Mean-field theory in absence of spin rotation invariance

u𝑏↑ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢𝜆=0
1↑
0

𝑢𝜆=0
2↑
0

𝑢𝜆=0
3↑
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

u𝑏 ̃↑ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢𝜆
1↑

𝑢𝜆
1↓

𝑢𝜆
2↑

𝑢𝜆
2↓

𝑢𝜆
3↑

𝑢𝜆
3↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

adiabatically
switch on 𝜆

The adiabatic process of switching on the spin-orbit coupling implies that all compo-
nents of the respective eigenvector u𝑏 ̃↑ behave continuously and smooth as a function of 𝜆.
The condition for unambiguous, adiabatic definition of pseudospin may be expressed by

⎧{
⎨{⎩

lim
𝜆→0

u𝑏 ̃↑ = u𝑏↑

lim
𝜆→0

u𝑏 ̃↓ = u𝑏↓
, (3.2.6)

where 𝑏 is some band index. This definition relies on the definition of the “natu-
ral” spin state (cf. (Equation 3.2.4)) and amounts to finding the linear combination of
“intrinsic” (e.g. numerically given) eigenstates that helps to satisfy this condition (cf.
(Equation 3.2.3)). The required set of coefficients 𝑎, 𝑏 ∈ ℂ generally depends on the
specific value of the spin-orbit strength 𝜆, i.e. the coefficients 𝑎 = 𝑎𝜆 and 𝑏 = 𝑏𝜆 are a
(discontinuous) function of 𝜆 (cf. (Equation 3.2.3)). Note, that the pseudospin degree of
freedom 𝜎̃ is used for Hamiltonians including the centrosymmetric spin-orbit coupling
only (cf. (Section 3.1.2)) while the helical spin degree of freedom 𝜆 (not to be confused
with the phenomenological parameter 𝜆 controlling the strength of atomic spin-orbit
coupling) is used for non-centrosymmetric Hamiltonians (cf. (Section 3.1.2)). In the
latter case, the definition of the spin degree of freedom is unambiguous since there is no
degeneracy that allows for a superposition of spin states. However, both spin degrees of
freedom, the pseudospin as well as the helical spin, still suffer from some vagueness in
their definitions due to the gauge symmetry of the corresponding eigenstates. No matter,
if we determine the (pseudospin or helical) eigenstates uk𝑏(𝜆,𝜎̃) of a generic one-particle
Hamiltonian ℎ𝜎𝜎′

𝛼𝛼′ (k) including orbital and spin degrees of freedom numerically or an-
alytically, we will find that the phases of the eigenstates are arbitrary in the sense that
the redefinition uk𝑏(𝜆,𝜎̃) → 𝑒−𝑖𝜑(k,𝑏,(𝜆,𝜎̃))uk𝑏(𝜆,𝜎̃) still yields a valid set of eigenvectors. In
particular, in the former numerical case, the phases of the eigenvectors along a closed
and continuous path through the Brillouin zone are varying in a random and messy
way. This intricacy was also noted in the context of topological insulators and the defini-
tion of the Berry phase [BH13, chap. 2.2]. However, in contrast, to our case, the Berry
phase can be computed gauge independent circumventing the problem of the chaotic
phases. But this is possible only since the Berry phase is a scalar entity, while we are
to deal with vertex functions that essentially depend on their basis and their phases.
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3.2. Pseudospin and definition of Bloch states

The solution is to regauge the eigenstates in such a way that the phases behave smooth
and continuous along a closed path through the Brillouin zone [BH13, chap. 2.1]. It
turns out, that for particular Hamiltonians, it is actually impossible to find a continu-
ous phase that is also single-valued. This lack of single-valuedness indicates a non-zero
Hall conductance [HK10]. To emphasize and confirm this result we have a look at the
Hamiltonian of the single-band Hubbard model

ℋ = ∑
k

∑
𝜎,𝜎′

(cos(𝑘𝑥) + cos(𝑘𝑦)) 𝛿𝜎𝜎′𝑐†
k𝜎𝑐k𝜎′ , (3.2.7)

whose k-independent eigenstates can obviously be chosen to be the 𝜎𝑧 eigenstates
|↑⟩ = (1, 0)𝑇 and |↓⟩ = (0, 1)𝑇. Another set of eigenstates is given by |↑⟩ = 𝑒−𝑖𝜈(k)(1, 0)𝑇

and |↑⟩ = 𝑒−𝑖𝜇(k)(1, 0)𝑇 where 𝜈(k) and 𝜇(k) may represent any discontinuous and ex-
otic function you can think of. Although, these are valid eigenvectors, the interaction
that is rewritten in terms of this basis is not the one corresponding to the original model,
anymore. Even in this simple example, we are destined to employ a smooth and con-
tinuous (and even more constant, in this case) phase along a closed path through the
Brillouin zone. Up to a global k-independent phase the requirement of smoothness and
continuousness is sufficient to remove the arbitrariness of the phase. This requirement
rules out the possibility of employing the Bloch states in an irreducible (asymmetric)
part of the Brillouin zone and implying the remaining ones by means of point group
symmetries since this introduces some unwanted and unphysical discontinuities in the
phase of eigenvectors and therefore in the Bloch wave functions across the border of the
irreducible units (cf. [SC04, V. Discussion] and [MHW13, Summary and Outlook]).
More technically, after fixing the global phase at a randomly chosen k-point one may
proceed by determining the phase at a neighboring k-point by minimizing the overall
phase difference between the eigenvectors at the respective momenta. In particular, we
shift the phase of the subsequent eigenvector such that the overlap (inner product) of
both eigenstates has the phase 𝜑 = 0, i.e. the inner product is real. Consider the two
subsequent momenta, along a closed path e.g. the Fermi surface in two dimensions,
and their associated eigenvectors denoted by k𝜅, k𝜅+1 and u𝜅, u𝜅+1. Their overlap is
given by ⟨u𝜅∣u𝜅+1⟩ = 𝑟𝑒𝑖𝜑. Thus, in order to ensure the smoothness of the given eigen-
vectors, we shift the phase of the second (at k𝜅+1) state by u𝜅+1 → 𝑒−𝑖𝜑u𝜅+1 where
𝜑 = arg ⟨u𝜅∣u𝜅+1⟩. This is illustrated in (Figure 3.2), which shows the two-component
eigenstates of a 𝑝𝑧-orbital tight-bindingmodel on the honeycomb lattice before and after
the smoothing procedure. For clarity, we simply chose the Fermi surface as the closed
path through the Brillouin zone. However, in general, we require the phase of eigen-
states to be continuous throughout the Brillouin zone. Furthermore, we only included
the eigenstates of the lower band with the Fermi surface. To get some insight into the
structure of the phase of eigenstates, we consider the analytical solution of the first near-
est neighbor tight-binding Hamiltonian
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Figure 3.2.: As an example for the definition of the proper phase of eigenstates we provide the
Hubbard model on the honeycomb lattice featuring 𝑝𝑧 orbitals. The Hamiltonian is
given by (Equation 3.2.8) with the chemical potential set to 𝜇 = −𝑡. (Figure 3.2a)
shows the numerically given eigenstates as produced by any linear algebra pack-
age, i.a. [And+90; San10; GJ+10]. An arrow represents a single complex compo-
nent of the eigenvector in the complex plane, where the yellow arrows indicate the
weight of the 𝐴 sublattice and the blue arrows the weights of sublattice 𝐵. Going
along the Fermi surface, the arrows, i.e. the phases of the eigenvectors are uncorre-
lated and change randomly. The inset in the upper right shows the real and complex
parts of both sublattice components in the respective eigenstates along the Fermi sur-
face in counter-clockwise direction. In contrast, the arrows in (Figure 3.2b) change
smoothly and continuously along the Fermi surface, which becomes apparent, in
particular, in the corresponding inset.

ℋ0(k) = 𝑡 ∑
𝛼,𝛼′

∑
k

(𝑒−𝑖k(𝝉𝐵−𝝉𝐴) + 𝑒−𝑖k(−a1+𝝉𝐵−𝝉𝐴) + 𝑒−𝑖k(−a2+𝝉𝐵−𝝉𝐴))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔ℎ(k)

𝑐†
𝛼k𝑐𝛼′k

= 𝑡 ∑
k

(𝑐†
𝐴k, 𝑐†

𝐵k)𝑇 ( 0 ℎ(k)
ℎ(k) 0 ) (𝑐𝐴k

𝑐𝐵k
) , (3.2.8)

where 𝝉𝐴 = (0, 0)𝑇 and 𝝉𝐵 = (𝑎, 0)𝑇 are the positions of the sites of sublattices 𝐴
and 𝐵 in the unit cell. The real space basis vectors are given by a1 = (3, √3) 𝑎

2 and a1 =

(3, −√3) 𝑎
2 . The eigenvalues 𝜀k and eigenvectorsuk may be straightforwardly calculated

to be 𝜀k = ±∣ℎ(k)∣ and uk = 1
√2

(±ℎ(k)/𝜀k, 1)𝑇. The k-dependency of ℎ(k) suggests
that the eigenvectors are expected to transform according to the B1 representation of
the point group, which is confirmed in the plot of the smoothed phases in (Figure 3.2).
Note, that the plot of smoothed phasesmay still look differently depending on the global
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3.2. Pseudospin and definition of Bloch states

phase, thatmaybe chosen freely. By adjusting the phases of eigenvectors smoothly along
a closed path through the Brillouin zone, the phases are usually even continuous across
the border of the Brillouin zone. Therefore, one may as well choose the Fermi surfaces
in the extended zone scheme as the closed path, since eigenvectors at k-points related
by a reciprocal lattice G = 𝑛1b1 + 𝑛2b2 are the same. An exception, however, is given
by a Hamiltonian on a lattice with multiple sites in the unit cell, e.g. the tight-binding
Hamiltonian on the honeycomb lattice. Setting up the Hamiltonian (Equation 3.2.8) at
a momentum k + G we find

ℋ0(k) = 𝑡 ∑
k

(𝑐†
𝐴k, 𝑐†

𝐵k)𝑇 ( 0 𝑒−𝑖G(𝝉𝐵−𝝉𝐴)ℎ(k)
𝑒𝑖G(𝝉𝐵−𝝉𝐴)ℎ(k) 0 ) (𝑐𝐴k

𝑐𝐵k
) , (3.2.9)

where we used G ⋅ a1,2 = 2𝜋𝑛 with 𝑛 ∈ ℤ. While the additional phase cancels in the
expression for the eigenvalues, the eigenstates at a momentum shifted by a reciprocal
lattice vector are given by uk+G = 1

√2
(±𝑒−𝑖G(𝝉𝐵−𝝉𝐴)ℎ(k)/𝜀k, 1)𝑇. Henceforth, one has to

take special care of how the eigenvectors are (continuously) connected to the next zone,
which is of particular importance for the calculation of scattering processes and the back-
folding of quasiparticle states. Finally, we comment on the relationship of the presented
definition of eigenstates to previous works on this topic. [Fu15; KF15] present a defini-
tion of basis states in the presence of inversion and time-reversal symmetry for spin-orbit
coupledmetals. The combined application of inversion and time-reversal symmetry en-
ables the definition of aKramers doublet. The orthogonality of the two states belonging to
the doublet allows for a unitary U(2) transformation. This transformation can be used
to redefines both states in order to satisfy the condition for the “manifestly covariant
Bloch basis” (MCBB). This condition requires the Bloch wave function spinor at the ori-
gin of real space, i.e. r = 0 (where the Bloch theorem (Equation 3.1.15) assumes the
simple form 𝜓k𝑏𝜎(r = 0) = 𝑢k𝑏(r = 0)𝜒𝜎) to be fully spin-polarized along a global spin-
quantization axis, which is employed for all k-points in the entire Brillouin zone. As a
consequence, the MCBB exhibits a particular simple transformation behavior with re-
spect to point group operations, which is in contrast, to a generic basis choice that only
respects the point group operations on basis states only up to a complicated and ran-
dom phase along the Fermi surface (cf. [Blo85]). However, this definition contradicts
the requirement of a continuous phase since it exhibits discontinuities of the eigenvec-
tor components at the borders of the sectors of the Brillouin, which define the star of k
(cf. previous discussion and [SC04, V. Discussion]). These discontinuities can be aban-
doned at the prize of introducing k-dependent representation matrices in orbital-spin
space, which, unfortunately, don’t reflect the physical symmetries of orbital and spin
degrees of freedom, anymore [MHW13] (see appendix E). We will, however, make use
of and assumemomentum independent representationmatrices (as introduced in (Sec-
tion 3.3.1) ) in orbital-spin space that directly stem from the transformation behavior of
spherical harmonics and the SU(2)-spin degree of freedom. In contrast, the definition
of basis states we presented (for k-independent representation matrices, as well) not

67



3. Mean-field theory in absence of spin rotation invariance

only removes the apparent “arbitrariness” of phases (which are actually not arbitrary
but part of the Hamiltonian (cf. (Figure 3.2b))), but also respects the condition of con-
tinuity resulting in an equally unique set of basis states (up to a global phase). More
about the issues associated to this “gauge freedom” and other choices of Bloch states is
found in appendix E.

3.3. Structure and symmetries of the two-particle vertex

Before we embark on the endeavor of a mean-field theory in absence of spin rotation
symmetry (and inversion symmetry), we will try to gain more insight into the structure
of the two-particle interaction to be analyzed. The presence or absence of time-reversal,
spin-rotation and inversion symmetries determines the specific form of the interaction to
a great extend. We will derive the effect of the corresponding transformations on two-
particle vertices in both orbital and band space. In orbital space, the spinful interaction
is denoted by 𝑈𝜎1𝜎2𝜎′

1𝜎′
2

𝛼1𝛼2𝛼′
1𝛼′

2
(with 𝜎 being the “natural” spin degree of freedom and 𝛼 repre-

senting all other quantumnumbers). The interaction is apparently comprised of 24 = 16
spin sectors. In particular, in a numerical context it is important to distinguish between
the entire object of the two-particle vertex (denoted by Γ(4), being an operator, and the
rank four tensor 𝑈𝜎1𝜎2𝜎′

1𝜎′
2

𝛼1𝛼2𝛼′
1𝛼′

2
∈ ℂ𝑛×𝑛×𝑛×𝑛 (which is all we deal with numerically). Their

relation is given by

Γ(4) = ∑
𝛼1,𝛼2,
𝛼′

1,𝛼′
2

∑
𝜎1,𝜎2
𝜎′

1,𝜎′
2

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

𝑎†
𝛼′

1𝜎′
1
𝑎†

𝛼′
2𝜎′

2
𝑎𝛼2𝜎2

𝑎𝛼1𝜎1
, (3.3.1)

with 𝑎†
𝛼𝜎/𝑎𝛼𝜎 creating/annihilating a fermionwith spin𝜎 and collected quantumnum-

bers 𝛼. We introduce the basis

A†
𝛼 = (𝑎†

𝛼↑𝑎†
𝛼↑, 𝑎†

𝛼↑𝑎†
𝛼↓, 𝑎†

𝛼↓𝑎†
𝛼↑, 𝑎†

𝛼↓𝑎†
𝛼↓) , (3.3.2)

where 𝛼 represents all quantumnumbers except spin. On the one hand, in orbital basis,
these are 𝛼 = (k, 𝑠, 𝑜, 𝜎) momentum k, sublattice 𝑠, orbital 𝑜 and spin 𝜎. On the other
hand, in band basis, the quantum numbers are ̃𝛼 = (k, 𝑏, 𝜎̃) momentum k, band 𝑏 and
pseudospin 𝜎̃. Using any of these bases the two-particle vertex can be written as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑈↑↑↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↑↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↑↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↑↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↓↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↓↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↓↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↓↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↑↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↑↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↑↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↑↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↓↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↓↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↓↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↓↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.3.3)
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3.3. Structure and symmetries of the two-particle vertex

The vertex function is required to satisfy fermionic antisymmetry upon particle ex-
change, self-adjointness and eventually time-reversal symmetry . Mathematically, we have

• fermionic particle exchange

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

= −𝑈𝜎2𝜎1𝜎′
1𝜎′

2
𝛼2𝛼1𝛼′

1𝛼′
2

= −𝑈𝜎1𝜎2𝜎′
2𝜎′

1
𝛼1𝛼2𝛼′

2𝛼′
1

= +𝑈𝜎2𝜎1𝜎′
2𝜎′

1
𝛼2𝛼1𝛼′

2𝛼′
1

(3.3.4)

• self-adjointness

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

= 𝑈𝜎′
1𝜎′

2𝜎1𝜎2
𝛼′

1𝛼′
2𝛼1𝛼2

(3.3.5)

as a natural consequence of fermionic exchange statistics of the operators in (Equa-
tion 3.3.2) and the requirement (Γ(4)

Λ )
†

= Γ(4)
Λ . More precisely, the “self-adjointness”

amounts to the Osterwalder-Schrader positivity of the action in imaginary time functional
integral formalism [OS73; Wet07; Ebe14]. Although, the two-particle vertex in (Equa-
tion 3.3.4) and (Equation 3.3.5) is given in orbital-spin basis, analogous relations apply
to any other basis, e.g. band-pseudospin basis, which is related to orbital-spin basis by a
unitary transformation. The antisymmetry with respect to fermionic particle exchange
and the Hermiticity of the two-particle vertex impose constraints on the structure of the
vertex that significantly reduces the number of independent elements. In particular, the
sixteen “spin sectors” in (Equation 3.3.3) are reduced to six independent tensors. A
two-particle vertex, which satisfies Hermiticity and fermionic antisymmetry must have
the structure (the pseudospin indices {𝜎̃} indicates the general validity of the statements
below)

𝑈𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
𝛼1𝛼2𝛼′

1𝛼′
2

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐴𝛼1𝛼2𝛼′
1𝛼′

2
𝐵𝛼1𝛼2𝛼′

1𝛼′
2

−𝐵𝛼1𝛼2𝛼′
2𝛼′

1
𝐶𝛼1𝛼2𝛼′

1𝛼′
2

𝐵𝛼′
1𝛼′

2𝛼1𝛼2
𝐷𝛼1𝛼2𝛼′

1𝛼′
2

−𝐷𝛼1𝛼2𝛼′
2𝛼′

1
𝐸𝛼1𝛼2𝛼′

1𝛼′
2

−𝐵𝛼′
2𝛼′

1𝛼1𝛼2
−𝐷𝛼2𝛼1𝛼′

1𝛼′
2

𝐷𝛼2𝛼1𝛼′
2𝛼′

1
−𝐸𝛼2𝛼1𝛼′

1𝛼′
2

𝐶𝛼′
1𝛼′

2𝛼1𝛼2
𝐸𝛼′

1𝛼′
2𝛼1𝛼2

−𝐸𝛼′
1𝛼′

2𝛼2𝛼1
𝐹𝛼1𝛼2𝛼′

1𝛼′
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.3.6)

where the introduced tensors {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} must satisfy the constraints

⎧{{
⎨{{⎩

𝑋𝛼1𝛼2𝛼′
1𝛼′

2
= −𝑋𝛼2𝛼1𝛼′

1𝛼′
2

= −𝑋𝛼1𝛼2𝛼′
2𝛼′

1
= 𝑋𝛼2𝛼1𝛼′

2𝛼′
1

where 𝑋 ∈ {𝐴, 𝐶, 𝐹}
𝑋𝛼1𝛼2𝛼′

1𝛼′
2

= 𝑋𝛼′
1𝛼′

2𝛼1𝛼2
where 𝑋 ∈ {𝐴, 𝐷, 𝐹}

𝑋𝛼1𝛼2𝛼′
2𝛼′

1
= 𝑋𝛼′

1𝛼′
2𝛼2𝛼1

where 𝑋 ∈ {𝐷}
.

(3.3.7)

Hence, 𝐴, 𝐶, 𝐹 satisfy antisymmetric conditions under particle exchange with respect
to the residual indices and 𝐴, 𝐷, 𝐹 have to be self-adjoint. Combining both constraints
on 𝐷, we obtain 𝐷𝛼1𝛼2𝛼′

1𝛼′
2

= 𝐷𝛼2𝛼1𝛼′
2𝛼′

1
, as well. Note, that 𝐵 and 𝐸 are restricted by

the antisymmetry with respect to exchange of unprimed (for 𝐵) and primed indices
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3. Mean-field theory in absence of spin rotation invariance

(for 𝐸), only (in contrast to 𝐴, 𝐶 and 𝐹, that are antisymmetric with respect to both
unprimed and primed), while they are both symmetric with respect to exchange of both
pairs of indices at a time. As a final remark, we mention that a similar parametrization
of the two-particle vertex was introduced in [EM10] for the Nambu vertex of a singlet
superconductor.

3.3.1. Orbital space

Both single-particle and interaction termof amulti-orbitalHamiltoniandescribing strongly
correlated electrons on a lattice are naturally given in orbital-spin basis. Henceforth,
we will analyze the two-particle vertex with respect to a basis (Equation 3.3.2) whose
quantum numbers (𝛼, 𝜎) refer to 𝛼 = (𝑠, 𝑜,k) sublattice 𝑠, orbital 𝑜, momentum k and
“natural” spin indices first. The fermionic Grassmann fields ̄𝜓k𝛼𝜎, 𝜓k𝛼𝜎 are more conve-
nient toworkwith than the corresponding fermion operators 𝑎†

k𝛼𝜎, 𝑎k𝛼𝜎 andwill be used
throughout the methodological development of the renormalization group techniques
in (Chapter 4), (Chapter 5) and (Chapter 6). Note that, in general there’s no complex
conjugated version of 𝜓k,𝛼,𝜎 being ̄𝜓k,𝛼,𝜎 since both are simply different generators of
the Grassman algebra. 7

Time-reversal

To see what the implications of time-reversal symmetry on the spinful two-particle vertex
in orbital-spin basis are, firstly we have a look at the transformation of a spinful single-
particle state, i.e. [SN11; Sch05b]

𝜓k𝛼𝜎
TR⟶ Θ̂ 𝜓−k𝛼𝜎 = ∑

𝜎′
(−𝑖𝜎𝑦)

𝜎𝜎′
̄𝜓−k𝛼𝜎′ (3.3.8)

̄𝜓k𝛼𝜎
TR⟶ Θ̂−1 ̄𝜓−k𝛼𝜎 = ∑

𝜎′
𝜓−k𝛼𝜎′ (+𝑖𝜎𝑦)

𝜎′𝜎
= ∑

𝜎′
𝜓−k𝛼𝜎′ (𝑖𝜎𝑦)

𝜎′𝜎
, (3.3.9)

where themultiindex 𝛼 is resolved intomomentumk and any residual indices 𝛼 and𝜎.
It was taken into account in (Equation 3.3.9) thatmomentum is oddunder time-reversal.
Using (Equation 3.3.1) in its functional integral formulation featuring Grassmann fields
we can apply the passive time-reversal transformation given by (Equation 3.3.9) and
obtain (a detailed calculation for single particle Hamiltonian is given in appendix D)

7Although, ̄𝜓𝛼 and 𝜓𝛼 are two different generators of the Grassmann algebra one can define a bijective
mapping relating ̄𝜓𝛼 and 𝜓𝛼 with each other by conjugation. This is possible only for an algebra with
an even number of generators divided into two sets of generators. Hence, the conjugation is 𝑐𝜓𝛼 =
𝑐 ̄𝜓𝛼, 𝑐 ∈ ℂ [NO88b, chap 1.5] and 𝜓𝛼𝜓𝛼′ = ̄𝜓𝛼′ ̄𝜓𝛼 in order to satisfy the “superreal” condition 𝜓 ̄𝜓 =
𝜓 ̄𝜓 [Nak03, chap. 1.5.8]. However, the operators 𝑐†

k and 𝑐k behave according to 𝑐†
k

TR⟶ 𝑐†
−k and 𝑐k

TR⟶ 𝑐−k
under time-reversal.
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Γ(4)
Λ

TR⟶ Γ̃(4)
Λ = ∑

𝛼1,𝛼2,
𝛼′

1,𝛼′
2

∑
k1,k2,
k′

1,k′
2

∑
𝜏1,𝜏2,
𝜏′

1,𝜏′
2

×
⎡⎢⎢⎢
⎣

∑
𝜎1,𝜎2,
𝜎′

1,𝜎′
2

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

(k1,k2,k′
1,k′

2) (−𝑖𝜎𝑦)
𝜏′

1𝜎′
1

(−𝑖𝜎𝑦)
𝜏′

2𝜎′
2

(−𝑖𝜎𝑦)
𝜎2𝜏2

(−𝑖𝜎𝑦)
𝜎1𝜏1

⎤⎥⎥⎥
⎦

× 𝜓−k′
1𝛼′

1𝜏′
1
𝜓−k′

2𝛼′
2𝜏′

2
̄𝜓−k2𝛼2𝜏2

̄𝜓−k1𝛼1𝜏1
. (3.3.10)

The vertex function inside the brackets in (Equation 3.3.10) denoted by 𝑈̃ evaluates
to (using the basis (Equation 3.3.2) in terms of spin indices {𝜏1, 𝜏2, 𝜏′

1, 𝜏′
2})

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑈↓↓↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↓↓↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↓↓↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↓↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↓↑↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↑↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↓↑↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↓↑↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↑↓↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↓↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↓↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↑↓↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↑↓↓
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↑↑↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

−𝑈↑↑↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

𝑈↑↑↑↑
𝛼1𝛼2𝛼′

1𝛼′
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(k1,k2,k′
1,k′

2) . (3.3.11)

i.e. the spin structure of the two-particle vertex is significantly altered. To find the
complete transformation behavior of the two-particle vertex elements, we have to com-
pare the indices of the basis in (Equation 3.3.10) with the ones in the original vertex
function (Equation 3.3.3). Comparing “coefficients” in terms of Grassmann fields, im-
plies the transformation behavior of the tensor elements:

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

(k1k2k′
1k′

2) TR⟶ 𝑈̃𝜎′
1𝜎′

2𝜎1𝜎2
𝛼′

1𝛼′
2𝛼1𝛼2

(−k′
1, −k′

2, −k1, −k2)

= 𝑈̃𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

(−k1, −k2, −k′
1, −k′

2) , (3.3.12)

where we used the Hermiticity of the vertex function (Equation 3.3.5) and the spin
structure of 𝑈̃ is given by (Equation 3.3.11). Hence, time-reversal invariance of the two-
particle vertex then implies i.a. the conditions (cf. [Ebe14] for two-particle vertices in
Nambu representation)

𝑈↓↑↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

(k1,k2,k′
1,k′

2) = 𝑈↑↓↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

(−k1, −k2, −k′
1, −k′

2)

𝑈↑↑↑↓
𝛼1𝛼2𝛼′

1𝛼′
2

(k1,k2,k′
1,k′

2) = −𝑈↓↓↓↑
𝛼1𝛼2𝛼′

1𝛼′
2

(−k1, −k2, −k′
1, −k′

2) . (3.3.13)

We note, that the two-particle vertex 𝑈𝜎1,𝜎2,𝜎′
1,𝜎′

2
𝛼1,𝛼2,𝛼′

1,𝛼′
2

(k1,k2,k′
1,k′

2) must obeymomentum
conservation and implicitly depends on three momenta only since the fourth one is fixed
by k′

2 = k1 + k2 − k′
1.
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3. Mean-field theory in absence of spin rotation invariance

Spin-rotation

Implying any spin symmetries w.r.t to SU(2) transformations or a subgroup thereof,
will introduce dependencies between the spin sectors and eventually requires some el-
ements to be zero. To see the consequences of these symmetries on the level of the two-
particle vertex, we first introduce the general SU(2) transformation ̂𝑆( ̂𝑛, 𝜑) = 𝑒−𝑖𝑛̂𝝈𝜑/2 =
𝜎0 cos(𝜑/2) − 𝑖( ̂𝑛 ⋅ 𝝈) sin(𝜑/2) of the fields/operators corresponding to a rotation by 𝜑
about the axis given by ̂𝑛 (𝝈 = (𝜎0, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is the vector of Pauli matrices)

𝜓𝛼𝜎 → ̂𝑆( ̂𝑛, 𝜑)𝜓𝛼𝜎 = ∑
𝜎′

̂𝑆𝜎𝜎′( ̂𝑛, 𝜑)𝜓𝛼𝜎′ (3.3.14)

̄𝜓𝛼𝜎 → ∑
𝜎′

̄𝜓𝛼𝜎′ ̂𝑆†
𝜎′𝜎( ̂𝑛, 𝜑) = ∑

𝜎′

̂𝑆𝜎𝜎′( ̂𝑛, 𝜑) ̄𝜓𝛼𝜎′ , (3.3.15)

where ̂𝑆†( ̂𝑛, 𝜑) ̂𝑆( ̂𝑛, 𝜑) = 𝜎0 and ∑𝜏
̂𝑆†( ̂𝑛, 𝜑)𝜎𝜏 ̂𝑆( ̂𝑛, 𝜑)𝜏𝜎′ = 𝛿𝜎𝜎′, respectively, due to

unitarity. Applying this transformation to each of the four fermionic fields of the two-
particle vertex, results in a transformed vertex, whose elements are given by

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

→ ∑
𝜎1,𝜎2
𝜎′

1,𝜎′
2

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

𝑆𝜏′
1𝜎′

1
𝑆𝜏′

2𝜎′
2
𝑆𝜏2𝜎2

𝑆𝜏1𝜎1
. (3.3.16)

In particular, under spin rotations about the 𝑧-axis, i.e. ̂𝑆( ̂𝑧, 𝜑) = 𝑒−𝑖𝜎𝑧𝜑/2, the vertex
transforms to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑈↑↑↑↑𝑒𝑖( 𝜑
2 + 𝜑

2 − 𝜑
2 − 𝜑

2 ) 𝑈↑↑↑↓𝑒𝑖( 𝜑
2 + 𝜑

2 − 𝜑
2 + 𝜑

2 ) 𝑈↑↑↓↑𝑒𝑖( 𝜑
2 + 𝜑

2 + 𝜑
2 − 𝜑

2 ) 𝑈↑↑↓↓𝑒𝑖( 𝜑
2 + 𝜑

2 + 𝜑
2 + 𝜑

2 )

𝑈↑↓↑↑𝑒𝑖( 𝜑
2 − 𝜑

2 − 𝜑
2 − 𝜑

2 ) 𝑈↑↓↑↓𝑒𝑖( 𝜑
2 − 𝜑

2 − 𝜑
2 + 𝜑

2 ) 𝑈↑↓↓↑𝑒𝑖( 𝜑
2 − 𝜑

2 + 𝜑
2 − 𝜑

2 ) 𝑈↑↓↓↓𝑒𝑖( 𝜑
2 − 𝜑

2 + 𝜑
2 + 𝜑

2 )

𝑈↓↑↑↑𝑒𝑖( −𝜑
2 + 𝜑

2 − 𝜑
2 − 𝜑

2 ) 𝑈↓↑↑↓𝑒𝑖( −𝜑
2 + 𝜑

2 − 𝜑
2 + 𝜑

2 ) 𝑈↓↑↓↑𝑒𝑖( −𝜑
2 + 𝜑

2 + 𝜑
2 − 𝜑

2 ) 𝑈↓↑↓↓𝑒𝑖( −𝜑
2 + 𝜑

2 + 𝜑
2 + 𝜑

2 )

𝑈↓↓↑↑𝑒𝑖(− 𝜑
2 − 𝜑

2 − 𝜑
2 − 𝜑

2 ) 𝑈↓↓↑↓𝑒𝑖(− 𝜑
2 − 𝜑

2 − 𝜑
2 + 𝜑

2 ) 𝑈↓↓↓↑𝑒𝑖(− 𝜑
2 − 𝜑

2 + 𝜑
2 − 𝜑

2 ) 𝑈↓↓↓↓𝑒𝑖(− 𝜑
2 − 𝜑

2 + 𝜑
2 + 𝜑

2 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.3.17)

For the two-particle vertex to be invariant under such a rotation, the transformed ver-
tex must evaluate to the original vertex. Therefore, the ten transformed vertex elements
that feature an unequal number of ingoing to outgoing up and down spins must be
zero. Fermionic antisymmetry furthermore requires the four “inner” elements to be in-
terdependent, i.e. 𝑈↑↓↑↓ = −𝑈↓↑↑↓ = −𝑈↓↑↑↓ = 𝑈↓↑↓↑ ≔ 𝑉𝛼1𝛼2𝛼′

1𝛼′
2
while the elements

𝑈↑↑↑↑ ≔ 𝑉↑
𝛼1𝛼2𝛼′

1𝛼′
2
and 𝑈↓↓↓↓ ≔ 𝑉↑

𝛼1𝛼2𝛼′
1𝛼′

2
have to be antisymmetric as well. Therefore,

the 𝑒−𝑖𝜎𝑧𝜑/2-symmetric two-particle vertex is given by
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3.3. Structure and symmetries of the two-particle vertex

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

= (𝑉↑
𝛼1𝛼2𝛼′

1𝛼′
2
𝛿𝜎1↑ + 𝑉↓

𝛼1𝛼2𝛼′
1𝛼′

2
𝛿𝜎1↓) 𝛿𝜎1𝜎2

𝛿𝜎′
1𝜎′

2
𝛿𝜎1𝜎′

1

+ 𝑉𝛼1𝛼2𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2
− 𝑉𝛼2𝛼1𝛼′

1𝛼′
2
𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
, (3.3.18)

with 𝑉↑,↓
𝛼1𝛼2𝛼′

1𝛼′
2

= −𝑉↑,↓
𝛼2𝛼1𝛼′

1𝛼′
2

= −𝑉↑,↓
𝛼1𝛼2𝛼′

2𝛼′
1
and 𝑉𝛼1𝛼2𝛼′

1𝛼′
2

= 𝑉𝛼2𝛼1𝛼′
2𝛼′

1
which means

it only contains three independent spinless coupling functions (cf. [MH14, Sec. 1.3,
p. 21] [MEH14; MH12]). If we require full SU(2) spin rotation symmetry, we will get
even more interdependencies resulting in a single spinless coupling function 𝑉𝛼1𝛼2𝛼′

1𝛼′
2
.

Hence, the vertex function must be invariant under the most general ̂𝑆( ̂𝑛, 𝜑) (Equa-
tion 3.3.16) associated to an arbitrary axis of rotation ̂𝑛 and an arbitrary angle 𝜑. This
is possible only, if the matrix elements of ̂𝑆 sum up to unity by employing the unitary
relation ∑𝜏

̂𝑆( ̂𝑛, 𝜑)𝜏𝜎 ̂𝑆( ̂𝑛, 𝜑)𝜏𝜎′ = 𝛿𝜎𝜎′. To this end, the primed and unprimed spins 𝜎1,
𝜎2 and 𝜎 ′

1, 𝜎 ′
2 have to be pairwise identical, e.g. either 𝜎1 = 𝜎 ′

1 and 𝜎2 = 𝜎 ′
2 or 𝜎1 = 𝜎 ′

2
and 𝜎2 = 𝜎 ′

1 (cf. (Equation 3.3.16)) All vertex elements that don’t satisfy this condition
must vanish. Hence, the fully spin symmetric two-particle vertex has the form

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

= 𝑉𝛼1𝛼2𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2
− 𝑉𝛼2𝛼1𝛼′

1𝛼′
2
𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
, (3.3.19)

which may be represented in matrix form (Equation 3.3.3) by

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉𝛼1𝛼2𝛼′
1𝛼′

2
− 𝑉𝛼2𝛼1𝛼′

1𝛼′
2

0 0 0
0 𝑉𝛼1𝛼2𝛼′

1𝛼′
2

−𝑉𝛼2𝛼1𝛼′
1𝛼′

2
0

0 −𝑉𝛼2𝛼1𝛼′
1𝛼′

2
𝑉𝛼1𝛼2𝛼′

1𝛼′
2

0
0 0 0 𝑉𝛼1𝛼2𝛼′

1𝛼′
2

− 𝑉𝛼2𝛼1𝛼′
1𝛼′

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.3.20)

where the single spinless coupling function satisfies

𝑉𝛼1𝛼2𝛼′
1𝛼′

2
= 𝑉𝛼2𝛼1𝛼′

2𝛼′
1

𝑉𝛼1𝛼2𝛼′
1𝛼′

2
= 𝑉𝛼′

1𝛼′
2𝛼1𝛼2

, (3.3.21)

which can be shown by employing the fermionic particle exchange (Equation 3.3.4)
in (Equation 3.3.19) twice and using the Hermiticity (Equation 3.3.5). The relation
(Equation 3.3.19) also determines how a spinful two-particle vertex describing a SU(2)-
invariant spinless interaction like e.g. the Coulomb interaction 𝑈 looks like. Because the
spinless coupling function 𝑉𝛼1𝛼2𝛼′

1𝛼′
2
equals the Coulomb interaction, we simply have

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

= 𝑈𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2
− 𝑈𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
. This relation will be employed extensively

for spinful (renormalization group) calculations since it extends straightforwardly to
multi-orbital interactions exhibiting SU(2) invariance.
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3. Mean-field theory in absence of spin rotation invariance

Inversion

The operation of spatial inversion 𝑃̂ affects the relevant quantumnumbers ofmomentum,
sublattice, orbital and spin according to

momentum k 𝑃̂→ −k (3.3.22)

sublattice 𝑠 𝑃̂→ 𝑓 (𝑠) (3.3.23)

orbital 𝑜 𝑃̂→ (−1)𝑙𝑜 (3.3.24)

spin 𝜎 𝑃̂→ 𝜎 , (3.3.25)

where 𝑓 (𝑠) is a function of permutation that shuffles the sublattice indices and de-
pends on the specific lattice geometry. The orbital degree of freedom may acquire a
minus sign depending on the specific angular momentum quantum number 𝑙 [Bal98].
Finally, spin 𝜎 is unaffected by spatial inversion since it is a pseudovector/axial vector.
Hence, we find that the two-particle vertex (Equation 3.3.1) in orbital space behaves
under inversion according to

Γ(4) = ∑
k1,k2,
k′

1,k′
2

∑
𝑠1,𝑠2,
𝑠′

1,𝑠′
2

∑
𝑜1,𝑜2,
𝑜′

1,𝑜′
2

∑
𝜎1,𝜎2,
𝜎′

1,𝜎′
2

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
(k1𝑠1𝑜1)(k2𝑠2𝑜2)(k′

1𝑠′
1𝑜′

1)(k′
2𝑠′

2𝑜′
2)

̄𝜓k′
1𝑠′

1𝑜′
1

̄𝜓k′
2𝑠′

2𝑜′
2
𝜓k2𝑠2𝑜2

𝜓k1𝑠1𝑜1

𝑃̂→ ∑
k1,k2,
k′

1,k′
2

∑
𝑠1,𝑠2
𝑠′

1,𝑠′
2

∑
𝑜1,𝑜2
𝑜′

1,𝑜′
2

∑
𝜎1,𝜎2
𝜎′

1,𝜎′
2

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
(k1𝑠1𝑜1(k2𝑠2𝑜2)(k′

1𝑠′
1𝑜′

1)(k′
2𝑠′

2𝑜′
2)

× ̄𝜓
−k′

1𝑓 (𝑠′
1)(−1)𝑙′1𝑜′

1

̄𝜓
−k′

2𝑓 (𝑠′
2)(−1)𝑙′1𝑜′

2
𝜓−k2𝑓 (𝑠2)(−1)𝑙2𝑜2

𝜓−k1𝑓 (𝑠1)(−1)𝑙1𝑜1
,

(3.3.26)

Note, that the requirement of inversion symmetry on the two-particle vertex Γ(4)

which results in Γ(4) 𝑃̂→ Γ̃(4) != Γ(4), imposes constraints on the vertex structure that
significantly reduces the number of independent couplings.

Point-group symmetries

An important property of any 𝑛-body correlation function for electrons on the lattice
is, that it must transform according to the underlying point group symmetry. Albeit
we’re dealing with the irreducible two-particle vertex, its transformation behavior is
essentially determined by the transformation properties of the single-particle states the
vertex is based on. Let’s consider the point group 𝒢 and one of its elements denoted
by 𝑔 ∈ 𝒢. Since we consider single-particle states involving sublattice, orbital, spin
and momentum degrees of freedom, we have to establish all (reducible or irreducible)
representations that operate in the respective spaces. The two- or three-dimensional
momentum space representation is denoted by 𝒫(𝑔). The representations in sublattice
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3.3. Structure and symmetries of the two-particle vertex

and orbital space are given by 𝒜(𝑔) and ℒ(𝑔). Finally, the most crucial transformation
matrices, denoted by𝒮(𝑔)with double group element 𝑔 ∈ 𝒢𝐷 that actually form a double
group are the ones operating in spin space. Although, its double group properties can
be ignored in some cases (e.g. symmetry of the spinful Hamiltonian) it’s important to
keep inmind that 𝒮(𝑔) behaves as a double group representationwhen acting on single-
particle states. The fermionic single-particle basis states given by the fields ̄𝜓 and 𝜓 are
therefore transformed according to

𝜓k𝑠𝑜𝜎
𝑔∈𝒢
⟶ ∑

𝑠′𝑜′𝜎′
(𝒜(𝑔) ⊗ ℒ(𝑔) ⊗ 𝒮(𝑔))(𝑠𝑜𝜎)(𝑠′𝑜′𝜎′) 𝜓k𝑠′𝑜′𝜎′ = 𝜓𝒫(𝑔−1)k𝑠′𝑜′𝜎′ (3.3.27a)

̄𝜓k𝑠𝑜𝜎
𝑔∈𝒢
⟶ ∑

𝑠′,𝑜′,𝜎′
(𝒜(𝑔) ⊗ ℒ(𝑔) ⊗ 𝒮(𝑔))†

(𝑠𝑜𝜎)(𝑠′𝑜′𝜎′)
̄𝜓k𝑠′𝑜′𝜎′ = ̄𝜓𝒫(𝑔−1)k𝑠′𝑜′𝜎′ , (3.3.27b)

where the indices 𝑠, 𝑜 and 𝜎 represent sublattice, orbital and spin. The collective in-
dices (𝑠𝑜𝜎) and (𝑠′𝑜′𝜎 ′) refer to a single index each in direct product space. For brevity
of notation, we denote 𝒜(𝑔)⊗ℒ(𝑔)⊗𝒮(𝑔) ≔ 𝒟(𝑔). We took into account that the opera-
tion 𝑔 in real space corresponds to 𝑔−1 in reciprocal space [DDJ08, chap. 13.3 “Symmetry
of k-Vectors and the Group of the Wave Vector”]. For future reference and simplified
notation the multiindices 𝛼, 𝛽 ≔ (𝑠 − 1) 𝑛𝑜2 + (𝑜 − 1) 2 + 𝜎 (𝑛𝑜 being the number of
orbitals) are defined and the point group transformation of fields is summarized by

𝜓k𝑠𝑜𝜎
𝑔∈𝒢𝐷

⟶ ∑
𝑠′,𝑜′,𝜎′

𝒟(𝑔)(𝑠𝑜𝜎)(𝑠′𝑜′𝜎′)𝜓k𝑠′𝑜′𝜎′ = ∑
𝛼′

𝒟(𝑔)𝛼𝛼′𝜓k𝛼′ = 𝜓𝒫(𝑔−1)k𝛼′ (3.3.28a)

̄𝜓k𝑠𝑜𝜎
𝑔∈𝒢𝐷

⟶ ∑
𝑠′,𝑜′,𝜎′

̄𝜓k𝑠′𝑜′𝜎′𝒟(𝑔)(𝑠′𝑜′𝜎′)(𝑠𝑜𝜎) = ∑
𝛼′

̄𝜓k𝛼′𝒟(𝑔)𝛼′𝛼 = ̄𝜓𝒫(𝑔−1)k𝛼′ , (3.3.28b)

where 𝑔 is an element of the double group 𝒢𝐷. Note, that one has to distinguish
the transformations associated to real space, which are given by the matrices acting on
momentum, sublattice and orbital degrees of freedom and the ones operating in spin
space. In general, the transformation in real space affecting the combined momentum,
sublattice and orbital degrees of freedommaybe performed independently from the one
in spin space. However, in the presence of spin-orbit interaction, the real space and spin
space degrees of freedom are coupled. Therefore, the corresponding Hamiltonian will
exhibit symmetries only with respect to combined real and spin space transformations.
Before we proceed to the two-particle vertices, we have a look at the transformation of
the single-particle Hamiltonian, i.e. the non-interacting action 𝑆0 [ ̄𝜓, 𝜓]:
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3. Mean-field theory in absence of spin rotation invariance

𝑆0 [ ̄𝜓, 𝜓] = ∑
𝑖𝜔𝑛,k

∑
𝛼,𝛼′

̄𝜓k𝛼′ (𝑖𝜔𝑛𝛿𝛼𝛼′ − ℎ𝛼𝛼′(k)) 𝜓k𝛼

𝑔∈𝒢
⟶ ∑

𝑖𝜔𝑛,k
∑
𝛼,𝛼′

∑
𝛽,𝛽′

̄𝜓𝒫(𝑔−1)k𝛽′𝒟(𝑔)𝛽′𝛼′ (𝑖𝜔𝑛𝛿𝛼𝛼′ − ℎ𝛼𝛼′(k)) 𝒟(𝑔)𝛼𝛽𝜓𝒫(𝑔−1)k𝛽

= ∑
𝑖𝜔𝑛,k

∑
𝛽,𝛽′

̄𝜓𝒫(𝑔−1)k𝛽′
⎛⎜
⎝

𝑖𝜔𝑛𝛿𝛽′𝛽 − ∑
𝛼,𝛼′

𝒟(𝑔)𝛽′𝛼′ℎ𝛼𝛼′(k)𝒟(𝑔)𝛼𝛽
⎞⎟
⎠

𝜓𝒫(𝑔−1)k𝛽 , (3.3.29)

where the second equality made use of the unitary property ∑𝛼 𝒟(𝑔)𝛽′𝛼𝒟(𝑔)𝛼𝛽 =
𝛿𝛽′𝛽 for the first term involving the Matsubara frequency. Comparing coefficients in
terms of Grassmann fields, yields the transformation rule for the single-particle matrix
elements that is

ℎ𝛼𝛼′(k)
𝑔∈𝒢
⟶ ∑

𝛼,𝛼′
𝒟(𝑔)𝛽′𝛼′ℎ𝛼𝛼′(k)𝒟(𝑔)𝛼𝛽

!= ℎ𝛼𝛼′(𝒫(𝑔−1)k) . (3.3.30)

The invariance of the non-interacting action under this transformation is ensured by
construction (cf. appendix A and (Section 3.1.2)). Here, it is important to note, that
we can neglect the double group character of the spinful transformation because all
extended group elements ̄𝑔 = 𝐸̄𝑔 don’t differ from their simple counterparts 𝑔 since
the additional sign 𝒟 (𝐸̄) = −𝒟 (𝐸) cancels in (Equation 3.3.30). The generalization of
(Equation 3.3.29) to the transformation of the two-particle vertex is straightforward. Re-
ferring to (Equation 3.3.1) and denoting the momenta explicitly the two-particle vertex
becomes

Γ(4) [ ̄𝜓, 𝜓] = ∑
𝛼1,𝛼2,
𝛼′

1,𝛼′
2

∑
k1,k2,
k′

1,k′
2

𝑈𝛼1𝛼2𝛼′
1𝛼′

2
k1k2k′

1k′
2

̄𝜓k′
1𝛼′

1
̄𝜓k′

2𝛼′
2
𝜓k2𝛼2

𝜓k1𝛼1

𝑔∈𝒢
⟶ ∑

𝛽1,𝛽2,
𝛽′

1,𝛽′
2

∑
k1,k2,
k′

1,k′
2

∑
𝛼1,𝛼2,
𝛼′

1,𝛼′
2

𝑈𝛼1𝛼2𝛼′
1𝛼′

2
k1k2k′

1k′
2

𝒟(𝑔)𝛽′
1𝛼′

1
𝒟(𝑔)𝛽′

2𝛼′
2
𝒟(𝑔)𝛼2𝛽2

𝒟(𝑔)𝛼1𝛽1

× ̄𝜓𝒫(𝑔−1)k′
1𝛽′

1
̄𝜓𝒫(𝑔−1)k′

2𝛽′
2
𝜓𝒫(𝑔−1)k2𝛽2

𝜓𝒫(𝑔−1)k1𝛽1
, (3.3.31)

resulting in the transformation of the tensor elements with respect to the same Grass-
mann fields
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𝑈𝛼1𝛼2𝛼′
1𝛼′

2
k1k2k′

1k′
2

𝑔∈𝒢
⟶ 𝑈𝛼1𝛼2𝛼′

1𝛼′
2

𝒫(𝑔−1)k1𝒫(𝑔−1)k2𝒫(𝑔−1)k′
1𝒫(𝑔−1)k′

2

= ∑
𝛽1,𝛽2,
𝛽′

1,𝛽′
2

𝑈𝛽1𝛽2𝛽′
1𝛽′

2
k1k2k′

1k′
2

𝒟(𝑔)𝛼′
1𝛽′

1
𝒟(𝑔)𝛼′

2𝛽′
2
𝒟(𝑔)𝛽2𝛼2

𝒟(𝑔)𝛽1𝛼1
. (3.3.32)

Let’s assume, there are 𝑛𝛼𝑛𝜅 different single-particle states (due to the number of de-
grees of freedom 𝑛𝛼 in sublattice, orbital and spin space and 𝑛𝜅 discretized momenta in
reciprocal space) described by 𝜓k𝛼. Hence, the two-particle vertex contains 𝑛4

𝛼𝑛3
𝜅 cou-

pling constants. Denoting the order of the group 𝒢 by ∣𝒢∣, all 𝑛4
𝛼𝑛3

𝜅 coupling constants

are already determined by a particular set of 𝑛4
𝛼𝑛3

𝜅

∣𝒢∣
couplings and the transformation rule

(Equation 3.3.32).

So far, we dealt with the two-particle vertex in orbital-spin basis. However, in (Chap-
ter 5) and (Chapter 6) wewill see, that these quantummany-body calculations aremost
conveniently performed in band space, i.e. in the basis where the one-particle Hamil-
tonian (and therefore the single-particle propagator) assumes diagonal form. Further-
more, the band basis allows for a more transparent interpretation of the resulting phys-
ical entities. Unfortunately, the shape and spin structure of the two-particle vertex will
also change due to the fact that it’s expressed in terms of the new basis featuring the
pseudopsin or helical spin degree of freedom. Both pseudospin and helical spin amount
to a superposition of “natural” ↑ and ↓ spins eventually associated to different orbitals.

3.3.2. Band space

The correlation and vertex functions in band space are the ones, which provide conclu-
sive information about physical properties like e.g. superconducting gap functions, low
energy behavior of specific heat. The correlation functions in band space correspond
to specific Fermi surfaces while the orbital space vertex functions cannot be associated
to any particular Fermi sheet. Furthermore, the loop integrals occurring in the frame-
work of perturbation theory are most conveniently evaluated in band space, because
it is the basis that the non-interacting Green’s functions are diagonal in (cf. (Chap-
ter 5)). Henceforth, we need the transformation rule in band-pseudospin/helical-spin
space corresponding to (Equation 3.3.32) in orbital-spin space. The path from orbital to
band space is paved by the unitary basis transformation

𝜙k𝑏(𝜎̃,𝜆) = ∑
𝑠,𝑜,𝜎

𝑈𝑏(𝜎̃,𝜆)
𝑠𝑜𝜎 (k) 𝜓k𝑠𝑜𝜎 = ∑

𝛼
𝑈 ̃𝛼𝛼

k 𝜓k𝛼 ≔ 𝜙k ̃𝛼 (3.3.33a)

̄𝜙k𝑏(𝜎̃,𝜆) = ∑
𝑠,𝑜,𝜎

(𝑈𝑏(𝜎̃,𝜆)
𝑠𝑜𝜎 (k))

†
̄𝜓k𝑠𝑜𝜎 = ∑

𝛼
̄𝜓k𝛼𝑈𝛼 ̃𝛼

k ≔ ̄𝜙k ̃𝛼 , (3.3.33b)

wherewe again abbreviated the indices (𝑠, 𝑜, 𝜎) by 𝛼 and the band andpseudospin/helical-
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3. Mean-field theory in absence of spin rotation invariance

spin indices by ̃𝛼 = (𝑏, (𝜎̃, 𝜆)). We introduced the new fermionic fields ̄𝜙 and 𝜙 repre-
senting the states in band space. Here, 𝑈k is the matrix of eigenvectors of the single-
particle Hamiltonian ℋ0 at k, which crucially depends on the gauge of phases of eigen-
states and eventually on the definition of the pseudospin discussed in (Section 3.2). In or-
der to find the transformation behavior of the two-particle vertex in band space, we first
have towork out the transformation behavior of an eigenvectoruk, ̃𝛼 of the single-particle
Hamiltonian ℋ0 at k for band/pseudospin/helical-spin ̃𝛼 with eigenvalue/band-energy
𝜉k ̃𝛼. Based on how ℋ0 transforms (see (Equation 3.3.30)), the eigenvalue equation re-
veals what the eigenvector u𝒫(𝑔−1)k ̃𝛼 at the transformedmomentum 𝒫(𝑔−1)k looks like,
i.e.

ℋ0kuk ̃𝛼 = 𝜉k ̃𝛼uk ̃𝛼 = ℋ0k (𝒟(𝑔))† 𝒟(𝑔)⏟⏟⏟⏟⏟⏟⏟
=𝟙

uk ̃𝛼

⇒ 𝒟(𝑔)ℋ0k (𝒟(𝑔))†
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=ℋ0𝒫(𝑔−1)k

𝒟(𝑔)uk ̃𝛼 = 𝒟(𝑔)𝜉k ̃𝛼uk ̃𝛼 = 𝜉k ̃𝛼𝒟(𝑔)uk ̃𝛼 . (3.3.34)

Consequently, in terms of the original eigenvectoruk ̃𝛼 atk, the eigenvector at 𝒫(𝑔−1)k
is given by ũ𝒫(𝑔−1)k ̃𝛼 = 𝒟(𝑔)uk ̃𝛼. However, this eigenvector generally differs from the
eigenvector u𝒫(𝑔−1)k, ̃𝛼 defined at momentum 𝒫(𝑔−1)k. In case of degenerate bands
characterized by pseudospin, the transformed eigenstate ̃u𝒫(𝑔−1)k ̃𝛼 equals a superpo-
sition of both pseudospin states of the specific band at the respective momentum, i.e.

𝒟(𝑔)uk𝑏𝜎̃ = 𝑐 ̃↑u𝒫(𝑔−1)k𝑏 ̃↑ + 𝑐 ̃↓u𝒫(𝑔−1)k𝑏 ̃↓ ,

where 𝑐 ̃↑, 𝑐 ̃↓ ∈ ℂ and ∣𝑐 ̃↑∣
2 + ∣𝑐 ̃↓∣

2 = 1 . (3.3.35)

Thanks to the orthonormality of eigenstates at 𝒫(𝑔−1)k the coefficients are given by
𝑐 ̃↑ = ⟨u𝒫(𝑔−1)k𝑏 ̃↑∣ 𝒟(𝑔) ∣uk𝑏𝜎̃⟩ and 𝑐 ̃↓ = ⟨u𝒫(𝑔−1)k𝑏 ̃↓∣ 𝒟(𝑔) ∣uk𝑏𝜎̃⟩. In contrast, if we have
non-degenerate bands labeled by helicity, the eigenstate at k must be mapped by the
point group operation onto an eigenstate at 𝒫(𝑔−1)k associated to the same energy and
therefore the same helicity, i.e.

𝒟(𝑔)uk𝑏𝜆 = 𝑒−𝑖𝜑u𝒫(𝑔−1)k𝑏𝜆 . (3.3.36)

the two states can only differ by a phase shift. It is important to note, that the inversion
operation is not part of the point group 𝑔 ∈ 𝒢 for the case of helical spin by definition,
since helicity arises from broken inversion symmetry. Numerically, it is most efficient to
encode these phase shifts and coefficients for all bands in amatrixℬk(𝑔) that amounts to
the “representation” matrix 𝒟(𝑔) in band space including the momentum dependency
due to the particular choice of gauge and eventually pseudospin. It it given by
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ℬk(𝑔) = 𝑈𝒫(𝑔−1)k𝒟(𝑔)𝑈†
k , (3.3.37)

where 𝑈k and 𝑈𝒫(𝑔−1)k are the matrices of eigenvectors at the respective k-points.
ℬk(𝑔) describes the transformation of single-particle states 𝜓k𝑏(𝜎̃,𝜆) in band space. To
see this, consider (Equation 3.3.33a) at the transformed momentum 𝒫(𝑔−1)k, i.e.

𝜙𝒫(𝑔−1)k ̃𝛼 = 𝑈 ̃𝛼𝛼
𝒫(𝑔−1)k 𝜓𝒫(𝑔−1)k𝛼⏟⏟⏟⏟⏟

=𝒟(𝑔)𝛼𝛽𝜓k𝛽

= 𝑈 ̃𝛼𝛼
𝒫(𝑔−1)k

⎛⎜⎜
⎝

𝒟(𝑔) 𝑈†
k𝑈k⏟
=𝟙

⎞⎟⎟
⎠𝛼𝛽

𝜓k𝛽

= (𝑈𝒫(𝑔−1)k𝒟(𝑔)𝑈†
k)

̃𝛼 ̃𝛽⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=(ℬk(𝑔))𝛼̃ ̃𝛽

(𝑈k𝜓k) ̃𝛽⏟⏟⏟⏟⏟
=𝜙k ̃𝛽

, (3.3.38)

where we used (Equation 3.3.28a). We simply wrote down the orbital to band trans-
formation of the fields at some transformed momentum given by 𝒫(𝑔−1)k. After in-
troducing a resolution of identity in terms of matrices of eigenvectors, we can apply
the one on the right hand side to the orbital field at the untransformed momentum, re-
sulting in the field in band space at the untransformed momentum. Consequently, the
matrix product of remaining entities on the right hand side must necessarily provide
the desired transformation in band space. Based on these results we can summarize
the transformation of single-particle states in band space associated to pseudospin or
helicity by

𝜙k𝑏(𝜎,𝜆)
𝑔∈𝒢𝐷

⟶ ∑
𝑏′,(𝜎′,𝜆′)

ℬk(𝑔)(𝑏(𝜎,𝜆))(𝑏′(𝜎′,𝜆′))𝜙k𝑏′(𝜎′,𝜆′) = ∑
̃𝛼′

ℬk(𝑔) ̃𝛼 ̃𝛼′𝜙k ̃𝛼′ = 𝜙𝒫(𝑔−1)k ̃𝛼

(3.3.39a)

̄𝜙k𝑏(𝜎,𝜆)
𝑔∈𝒢𝐷

⟶ ∑
𝑏′,(𝜎′,𝜆′)

̄𝜙k𝑏′(𝜎′,𝜆′)ℬk(𝑔)(𝑏′(𝜎′,𝜆′))(𝑏(𝜎,𝜆)) = ∑
̃𝛼′

̄𝜙k ̃𝛼′ℬk(𝑔) ̃𝛼′ ̃𝛼 = ̄𝜙𝒫(𝑔−1)k ̃𝛼 ,

(3.3.39b)

Like already suggested above, the transformation matrices ℬk(𝑔) are expected to be
2×2-block-diagonal in band-pseudospin-space and diagonal in helical-spin space. Only
in the pseudospin case with degenerate bands, we may have off-diagonal elements in
the spin degree of freedom (which is apparent from (Equation 3.3.34)). Note, that the
entities ℬk(𝑔) (Equation 3.3.37) also form a representation of the simple group 𝒢 that
is parametrized by momentum k. We can see this by looking at the group composition
rule
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3. Mean-field theory in absence of spin rotation invariance

ℬ𝒫(𝑔−1)k( ̃𝑔) ⋅ ℬk(𝑔) = 𝑈𝒫(𝑔̃−1)𝒫(𝑔−1)k𝒟( ̃𝑔)𝑈†
𝒫(𝑔−1)k𝑈𝒫(𝑔−1)k𝒟(𝑔)𝑈†

k

= 𝑈𝒫((𝑔̃∘𝑔)−1)k𝒟( ̃𝑔 ∘ 𝑔)𝑈†
k = ℬk( ̃𝑔 ∘ 𝑔) . (3.3.40)

Analogously to the transformation of the two-particle vertex in orbital-spin-space (Equa-
tion 3.3.32) we can by means of (Equation 3.3.39a) and (Equation 3.3.39b) work out the
transformation of the two-particle vertex function in band-pseudospin/helical space. It
yields

𝑈 ̃𝛼1 ̃𝛼2 ̃𝛼′
1 ̃𝛼′

2
k1k2k′

1k′
2

𝑔∈𝒢
⟶ 𝑈 ̃𝛼1 ̃𝛼2 ̃𝛼′

1 ̃𝛼′
2

𝒫(𝑔−1)k1𝒫(𝑔−1)k2𝒫(𝑔−1)k′
1𝒫(𝑔−1)k′

2

= ∑
̃𝛽1, ̃𝛽2,
̃𝛽′
1, ̃𝛽′

2

𝑈
̃𝛽1 ̃𝛽2 ̃𝛽′

1
̃𝛽′
2

k1k2k′
1k′

2
ℬk(𝑔) ̃𝛼′

1
̃𝛽′
1
ℬk(𝑔) ̃𝛼′

2
̃𝛽′
2
ℬk(𝑔) ̃𝛽2 ̃𝛼2

ℬk(𝑔) ̃𝛽1𝛼1
. (3.3.41)

In spite of the transformation matrices ℬk(𝑔) not being a (double group) representa-
tion of the group 𝑔 ∈ 𝒢, the vertex function is single-valued. However, because ℬk(𝑔) is
derived from the orbital space transformation 𝒟(𝑔) it also inherits the minus sign from
its double group elements, which is essential for the single-particle states in band space
and the two-particle vertex to be consistent with time-reversal, because for fermions
we have Θ̂2 = −1. More intuitively, for the states belonging to the first half of the
(two-dimensional) Brillouin zone (corresponding to rotations around the 𝑧-axis with
𝜑 ∈ [0, 𝜋]), the time-reversal states are located in the second half of the Brillouin zone
(corresponding to rotations around the 𝑧-axis with 𝜑 ∈ [𝜋, 2𝜋]). However, when time-
reversal is employed to the states in the second half, the momenta are mapped back to
the first half but acquire an additional minus sign due to Θ̂2 = −1. This is consistent
with rotations by 𝜑 ∈ [2𝜋, 3𝜋], where the double group property comes into play. As
a consequence, we always have to pair up time-reversal partners e.g. for helical states
∣𝑘, +⟩ and ∣−𝑘, +⟩, to get a simple point group transformation behavior of the associ-
ated correlation functions that The detailed analysis of point group operations for pseu-
dospin and helical spin states is also used to reduce the number of states involved in
numerics. However, the reduction scheme for the pseudospin degree of freedom differs
from the one for helical bands as shown in (Figure 3.3).

Time-reversal

How do the single-particle states (Equation 3.3.33a) and (Equation 3.3.33b) in band
space behave with respect to time-reversal? The time-reversal operator Θ̂ = −𝑖𝜎𝑦

̂𝒦 is
only valid for “natural” spin states. For instance, this becomes evident from the fact
that Θ̂ inverses the “natural” spin, while the helical spin state (in presence of time-
reversal symmetry) must be mapped to a state with the same energy. However, since
both pseudospin and helical spin can be expressed in terms of the “natural” spin degree
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Figure 3.3.: The symmetry reduction of single-particle states by means of point group opera-
tions for e.g. a model on the square lattice with C4v-symmetry works differently
for pseudospin and helical states. Since the pseudospin (like the “natural” spin)
is inverted by a reflection, we can limit the reduced sector of the Brillouin zone to
one pseudospin state. In contrast, for helical spin there’s no point group operation
that mediates between both helical spin states. However, the symmetry reduction
for helical bands works for pseudospin as well and the amount of phase space, i.e.
the number of states in the reduced sector(s) is the same for both pseudospin and
helical-spin.

of freedom, we can still apply Θ̂ to the fields in band space, or equivalently, transform
the time-reversal operator to band space, i.e.

Ξ̂k ≡ 𝑈−kΘ̂ (𝑈k)† , (3.3.42)

where the new time-reversal operator Ξ̂ in band space is momentum dependent.
When acting on a field in band space, Ξ̂k transforms it to orbital-spin-space, employs
the usual time-reversal operator Θ̂ and transforms the resulting state at −k back to band
space. Therefore, we get the transformation rule for the fields

𝜙k ̃𝛼 = ∑
𝛼

𝑈 ̃𝛼𝛼
k 𝜓k𝛼

TR⟶ Ξ̂ ̃𝛼 ̃𝛽
k 𝜙k ̃𝛽 = ̃𝜙−k ̃𝛼 (3.3.43a)

̄𝜙k ̃𝛼 = ∑
𝛼

̄𝜓k𝛼𝑈𝛼 ̃𝛼
k

TR⟶ (Ξ̂ ̃𝛼 ̃𝛽
k )

−1
̄𝜙k ̃𝛽 = ̃̄𝜙−k ̃𝛼 (3.3.43b)

In presence of time-reversal symmetry, this operation connects states that are degen-
erate, i.e. for a state in band-helical space the symmetry properties of 𝑈k ensure that
(Equation 3.3.43a) and (Equation 3.3.43b) always map a state with helicity 𝜆 to a state
with the same helicity that can only differ by a phase (cf. (Section 3.1.2) and (Equa-
tion 3.1.53)). However, in contrast to the case of helicity, time-reversal maps the pseu-
dospin at k to its opposite state at −k, which still yields an equal-energy state due to
inversion symmetry and Kramers degeneracy. Hence, the matrices Ξ̂ ̃𝛼 ̃𝛽

k are diagonal in
helical spin space and have off-diagonal elements, only, in pseudospin space. Since
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3. Mean-field theory in absence of spin rotation invariance

time-reversal inverts the pseudospin degree of freedom (exactly like it does the “natu-
ral” spin, cf. the discussion at the beginning of (Section 3.4.1)), the requirement of time-
reversal imposes strong constraints on the structure of the two-particle vertex. There,
the constraints are the same as in (Equation 3.3.13) up to a phase.

Inversion

In contrast to the inversion of the two-particle vertex in orbital space (Section 3.3.1), the
corresponding transformation in band space appears to be considerably simpler since
only momentum and helical spin are affected, i.e.

momentum k 𝑃̂→ −k (3.3.44)

band 𝑏 𝑃̂→ 𝑏 (3.3.45)

pseudospin 𝜎̃ 𝑃̂→ 𝜎̃ (3.3.46)

helicity 𝜆 𝑃̂→ 𝑒−𝑖𝜙k𝜆̄ , (3.3.47)

where, however, the appearance of the helical spin degree of freedom already pre-
sumes broken inversion symmetry. 𝜆̄ denotes the opposite helicity with respect to 𝜆
and the additional phase 𝜙k depends on the untransformed momentum k (cf. (Equa-
tion 3.1.53)). Hence, an eigenstate at momentum k characterized by helicity 𝜆 maps
to an eigenstate at −k with opposite helicity and a different energy, which is to be ex-
pected since the corresponding Hamiltonian breaks inversion symmetry and does not
commute with 𝑃̂. This already suggests that the inversion operation is not well suited
to find Cooper states for equal energy pairing (in contrast to time-reversal, cf. (Sec-
tion 3.4.2)). However, the transformation of the two-particle vertex characterized by
pseudospin degrees of freedom is

Γ(4) = ∑
k1,k2,
k′

1,k′
2

∑
𝑏1,𝑏2,
𝑏′

1,𝑏′
2

∑
𝜎̃1,𝜎̃2,
𝜎̃′

1,𝜎̃′
2

𝑈𝑏1𝜎̃1𝑏2𝜎̃2𝑏′
1𝜎̃′

1𝑏′
2𝜎̃′

2
k1k2k′

1k′
2

̄𝜙k′
1𝑏′

1𝜎̃′
1

̄𝜙k′
2𝑏′

2𝜎̃′
2
𝜙k2𝑏2𝜎̃2

𝜙k1𝑏1𝜎̃1

𝑃̂→ ∑
k1,k2,
k′

1,k′
2

∑
𝑏1,𝑏2
𝑏′

1,𝑏′
2

∑
𝜎̃1,𝜎̃2
𝜎̃′

1,𝜎̃′
2

𝑈𝑏1𝜎̃1𝑏2𝜎̃2𝑏′
1𝜎̃′

1𝑏′
2𝜎̃′

2
k1k2k′

1k′
2

̄𝜙−k′
1𝑏′

1𝜎̃′
1

̄𝜙−k′
2𝑏′

2𝜎̃′
2
𝜙−k2𝑏2𝜎̃2

𝜙−k1𝑏1𝜎̃1
, (3.3.48)

The requirement of inversion symmetry Γ(4) 𝑃̂→ Γ̃(4) != Γ(4) does not only restrict the
number of independent couplings for pseudospin quasiparticles that exhibit inversion
symmetry but also limits the possible non-zero pseudospin sectors for Cooper pairs and
therefore facilitates themean-field theory in the particle-particle channel (Section 3.4.1).
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3.4. Generalized Cooper pairs

In (Section 2.2) and (Section 2.4)wediscussed themean-field theories for SU(2)-invariant
and time-reversal symmetricmodels on latticeswith inversion symmetry. Then it is pos-
sible to classify the superconducting pairing states by means of singlet and triplet part.
In this section we will generalize the concept of Cooper pairs to particle-particle con-
densates to effective interactions in systems lacking SU(2)-symmetry (and eventually
inversion symmetry). If inversion symmetry is present, the corresponding mean-fields
are continuously connected to the ones with full SU(2)-symmetry (that were discussed
in (Chapter 2)) with respect to the strength of spin-orbit interaction.
Let’s consider the discrete symmetry operator of parity , denoted by 𝑃̂. The effect of this
unitary operator on some state ∣𝜓(r)⟩ is given by ∣𝜓(r)⟩ ⟶ 𝑃̂ ∣𝜓(r)⟩ = 𝑒𝑖𝛾 ∣𝜓(−r)⟩ with
𝛾 ∈ ℝ [Bal98, Chap. 13.1, p. 371]. Applying the operator twice, yields 𝑃̂2 ∣𝜓(r)⟩ =
𝑃̂𝑒𝑖𝛾 ∣𝜓(−r)⟩ = 𝑒2𝑖𝛾 ∣𝜓(r)⟩. Since the phase factor has no physical implications [SN11,
Chap. 4.2, p. 252] we can safely set it to unity. Hence, the operator satisfies 𝑃̂2 = 𝟙 and
its eigenvalues must be ±1. As a consequence, the expectation value ⟨𝜓(r)∣ ̂𝐴∣𝜓(r)⟩ of
any observable ̂𝐴, that is invariant under spatial inversionmust either feature a symmetric
or an antisymmetric state ∣𝜓(r)⟩, since

⟨𝜓(r)∣ ̂𝐴∣𝜓(r)⟩ inversion⟶ ⟨𝜓(r)∣𝑃̂† ̂𝐴𝑃̂∣𝜓(r)⟩ = ⟨𝜓(−r)∣ ̂𝐴∣𝜓(−r)⟩

= ⟨±𝜓(r)∣ ̂𝐴∣±𝜓(r)⟩ != ⟨𝜓(r)∣ ̂𝐴∣𝜓(r)⟩ . (3.4.1)

In contrast, a state ∣𝜙(r)⟩ with a non-specific parity, that is however expressable as a
superposition of symmetric and antisymmetric parts, i.e.

∣𝜙(r)⟩ =
∣𝜙(r)⟩ + ∣𝜙(−r)⟩

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔∣𝜙(r)⟩g

+
∣𝜙(r)⟩ − ∣𝜙(−r)⟩

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔∣𝜙(r)⟩u

= ∣𝜙(r)⟩g + ∣𝜙(r)⟩u , (3.4.2)

where ∣𝜙(−r)⟩g = + ∣𝜙(r)⟩g and ∣𝜙(−r)⟩u = − ∣𝜙(r)⟩u, cannot produce an expectation
value ⟨𝜙(r)∣ ̂𝐴∣𝜙(r)⟩ that is invariant under spatial inversion. The presence of a center
of inversion forbids the existence of a superconducting phase without definite parity and
the mixing of even and odd pairing wave functions can only occur in systems without
inversion symmetry [MS94]. As a reminder, that the definition of Bloch states with re-
spect to their gauge and eventually their pseudospin discussed in (Section 3.2) is essential
for the numerical evaluation of the upcoming analysis, we want to establish the con-
nection between the “properly gauged” Bloch states and Anderson’s recipe to build up
pairing states using inversion and time-reversal symmetry [And84a]. To do this, we
first summarize the effect of inversion and time-reversal on both pseudospin-states and
helical-states (cf. (Section 3.3.2)). A properly defined pseudospin state ∣k𝜎̃⟩ and a heli-
cal state ∣k𝜆⟩ are affected by inversion 𝑃̂ and time-reversal Θ̂ by (for their effect on helical
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states we refer to (Equation 3.1.53))

∣k𝜎̃⟩ 𝑃̂⟶ 𝑒𝑖𝜑𝑃
k ∣−k𝜎̃⟩ ∣k𝜎̃⟩ Θ̂⟶ 𝑒𝑖𝜑𝑇

k ∣−k ̄𝜎̃⟩ (3.4.3a)

∣k𝜆⟩ 𝑃̂⟶ 𝑒𝑖𝜏𝑃
k ∣−k𝜆̄⟩ ∣k𝜎̃⟩ Θ̂⟶ 𝑒𝑖𝜏𝑇

k ∣−k𝜆⟩ , (3.4.3b)

where ̄𝜎̃ and 𝜆̄ denote the opposite state, respectively. The states ∣−k𝜎̃⟩, ∣−k ̄𝜎̃⟩ and
∣−k𝜆̄⟩, ∣−k𝜆⟩ are the numerically determined Bloch states at the respective k-points.
Hence, the inversion operation doesn’t affect the pseudospin degree of freedom but in-
verts the helical spin. In contrast, time-reversal inverts the pseudospin and keeps the
helical degree of freedom. Here, we assume the pseudospin degree of freedom to be
properly defined but assume the Bloch states to have arbitrary phases (Section 3.2).
Therefore, we have to take into account the phases 𝑒𝑖𝜑𝑃,𝑇

k and 𝑒𝑖𝜏𝑃,𝑇
k for pseudospin and

helicity, since the Bloch states at k and −k don’t have a fixed phase relation. However,
by applying inversion and time-reversal twice, we find, that 𝑒𝑖𝜑𝑃,𝑇

k and 𝑒𝑖𝜏𝑃,𝑇
k must satisfy

the following constraints:

𝑃̂2 ∣k𝜎̃⟩ = 𝑃̂𝑒𝑖𝜑𝑃
k ∣−k𝜎̃⟩ = 𝑒𝑖𝜑𝑃

k 𝑒𝑖𝜑𝑃
−k ∣k𝜎̃⟩ != ∣k𝜎̃⟩ ⇒ 𝑒𝑖𝜑𝑃

−k = 𝑒−𝑖𝜑𝑃
k (3.4.4)

Θ̂2 ∣k𝜎̃⟩ = Θ̂𝑒𝑖𝜑𝑇
k ∣−k ̄𝜎̃⟩ = 𝑒−𝑖𝜑𝑇

k 𝑒𝑖𝜑𝑇̄
−k ∣k𝜎̃⟩ != − ∣k𝜎̃⟩ ⇒ 𝑒𝑖𝜑𝑇

−k = −𝑒𝑖𝜑𝑇̄
k (3.4.5)

𝑃̂2 ∣k𝜆⟩ = 𝑃̂𝑒𝑖𝜏𝑃
k ∣−k𝜆̄⟩ = 𝑒𝑖𝜏𝑃

k 𝑒𝑖𝜏𝑃̄
−k ∣k𝜆⟩ != ∣k𝜆⟩ ⇒ 𝑒𝑖𝜏𝑃

−k = 𝑒−𝑖𝜏𝑃̄
k (3.4.6)

Θ̂2 ∣k𝜆⟩ = Θ̂𝑒𝑖𝜏𝑇
k ∣−k𝜆⟩ = 𝑒−𝑖𝜏𝑇

k 𝑒𝑖𝜏𝑇
−k ∣k𝜆⟩ != − ∣k𝜆⟩ ⇒ 𝑒𝑖𝜏𝑇

−k = −𝑒𝑖𝜏𝑇
k , (3.4.7)

since 𝑃̂2 = 1 and Θ̂2 = −1. The entities 𝑇̄ and 𝑃̄ denote the phases 𝑒𝑖𝜑𝑇̄
k and 𝑒𝑖𝜏𝑃̄

k as-
sociated to the opposite pseudo/helical-spin degrees of freedom. Apparently, the func-
tions 𝑒𝑖𝜑𝑃

k and 𝑒𝑖𝜏𝑃
k describing the phase difference between Bloch states related by the

inversion operation, are transformed to their complex conjugate under k → −k, while
the corresponding functions 𝑒𝑖𝜑𝑇

k and 𝑒𝑖𝜏𝑇
k for time-reversal must be odd in momentum

k. Apart from these constraints these functions may behave arbitrarily and discontin-
uous. However, for a smooth gauge of the Bloch states (cf. (Section 3.2)), they show an
exceptionally simple behavior. For instance, in case of a smooth gauge, 𝑒𝑖𝜑𝑃

k = 1 is con-
stant and 𝑒𝑖𝜑𝑇

k = ±1 in the first/second half of the Brillouin zone (cf. (Section 3.2) and
(Figure 3.2)). Finally, we consider the Cooper pairs built from these inversion and time-
reversal operation related partner states. In case of pseudospin states we can easily get
rid of the relative phases by either adjusting the Bloch states or transforming the Cooper
vertex appropriately. This will result in 𝑒𝑖𝜑𝑃

k = 1 and 𝑒𝑖𝜑𝑇
k = 1 = −𝑒𝑖𝜑𝑇̄

k . Henceforth, a
(singlet) Cooper pair in pseudospin basis comprised of time-reversal partner states is
given by
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⟨𝑐†
k𝜎̃Θ̂𝑐†

k𝜎̃⟩ = ⟨𝑐†
k𝜎̃𝑐†

−k ̄𝜎̃⟩ (3.4.8)

The pseudospin triplet state made up of inversion symmetry related states is ex-
pressed by (including the relative phase)

⟨𝑐†
k𝜎̃𝑃̂𝑐†

k𝜎̃⟩ = ⟨𝑐†
k𝜎̃𝑒𝑖𝜑𝑃

k 𝑐†
−k𝜎̃⟩ (3.4.9)

Checking the parity of this pairing state, we find

⟨𝑐†
−k𝜎̃𝑒𝑖𝜑𝑃

−k𝑐†
k𝜎̃⟩ = − ⟨𝑐†

k𝜎̃𝑒−𝑖𝜑𝑃
k 𝑐†

−k𝜎̃⟩ = −𝑒−𝑖2𝜑𝑃
k ⟨𝑐†

k𝜎̃𝑒𝑖𝜑𝑃
k 𝑐†

−k𝜎̃⟩ , (3.4.10)

where the fermionic anticommutation of the operators and (Equation 3.4.4) were
used. This shows, that for the odd parity of the pseudospin triplet state to be satis-
fied, we have to require a trivial phase relation of the inversion symmetry related states,
i.e. 𝜑𝑃

k = 0. In contrast to pseudospin pairing states, the phase relation of time-reversal
partners based on helical states must remain non-trivial because the time-reversal op-
eration conserves helicity. This necessarily results in the even parity states discussed in
(Section 3.4.2).

3.4.1. Degenerate Fermi surface and pseudospin

In this section firstly we handle the case of inversion symmetric spin-orbit coupling and
a two-particle vertex satisfying both time-reversal and inversion symmetry. Therefore, all
Fermi surfaces are doubly degenerated. However, since the SU(2)-symmetry may be
broken - because of centrosymmetric spin-orbit coupling - we have to rely on a pseu-
dospin degree of freedom accounting for the double degeneracy. Assuming that the
normal-state Hamiltonian respects both inversion and time-reversal symmetry, we can
construct its degenerate eigenstates by the following procedure: We start with an ar-
bitrary eigenstate labeled by 𝜎̃ at momentum k, denoted by ∣k, 𝜎̃⟩. By applying both
inversion and time-reversal on that state, we obtain Θ̂𝑃̂ ∣k, 𝜎̃⟩ = 𝑃̂Θ̂ ∣k, 𝜎̃⟩ ≔ ∣k, 𝜎̃ ′⟩, not-
ing that parity and time- reversal commute and denoting the newly produced state by
∣k, 𝜎̃ ′⟩. How is that state related to the original one? We know that both inversion and
time-reversal transform the momentum to k → −k, so that we end up at the original k,
but what is the new pseudospin degree of freedom? Due to the property Θ̂2 = −1 for
fermionic spin-1

2 particles, ∣k, 𝜎̃ ′⟩ must be orthogonal to ∣k, 𝜎̃⟩ 8. Therefore, we have two

8 Both unitary and antiunitary transformed states satisfy ∣⟨𝛼∣𝛽⟩∣ = ∣⟨𝛼′∣𝛽′⟩∣, where in the unitary case we
simply have ⟨𝛼′∣𝛽′⟩ = ⟨𝛼𝑈†𝑈𝛽⟩ = ⟨𝛼∣𝛽⟩ [Wig32]. In contrast, time-reversal is an antiunitary opera-
tion that transforms expectation values according to ⟨𝛼∣𝛽⟩ → ⟨𝛼′∣𝛽′⟩ = ⟨𝛼∣𝛽⟩ = ⟨𝛽∣𝛼⟩ [SN11, chap.
4.4, p. 269]. Therefore, we have ⟨k, 𝜎̃∣k, 𝜎̃ ′⟩ = ⟨Θ̂𝑃̂ ∣k, 𝜎̃ ′⟩∣Θ̂𝑃̂ ∣k, 𝜎̃⟩⟩ = ⟨Θ̂𝑃̂Θ̂𝑃̂ ∣k, 𝜎̃⟩∣Θ̂𝑃̂ ∣k, 𝜎̃⟩⟩ =
− ⟨k, 𝜎̃∣k, 𝜎̃ ′⟩ = 0, using 𝑃̂2 = 1 and Θ̂2 = −1.
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3. Mean-field theory in absence of spin rotation invariance

component eigenstates at every k-point and we are able to define k-dependent Hermi-
tian operators by [Yip14; Smi+17a]

𝜎1(k) = ∣k, 𝜎̃⟩ ⟨k, 𝜎̃ ′∣ + ∣k, 𝜎̃ ′⟩ ⟨k, 𝜎̃∣
𝜎2(k) = −𝑖 ∣k, 𝜎̃⟩ ⟨k, 𝜎̃ ′∣ + 𝑖 ∣k, 𝜎̃ ′⟩ ⟨k, 𝜎̃∣
𝜎3(k) = ∣k, 𝜎̃⟩ ⟨k, 𝜎̃∣ − ∣k, 𝜎̃ ′⟩ ⟨k, 𝜎̃ ′∣ . (3.4.11)

Since this construction is done using a two component basis, 𝜎1(k), 𝜎2(k) and 𝜎3(k)
can simply be expressed as the Pauli matrices (not necessarily in this order!). This state-
ment is based on the general fact that the form of the Pauli matrices is independent of
the basis. However, for one particular basis ∣k, 𝜎̃⟩, ∣k, 𝜎̃ ′⟩ (or by applying another uni-
tary transformation to the states in (Equation 3.4.11) that induces the change of basis),
one can make 𝜎1(k), 𝜎2(k) and 𝜎3(k) coincide with the usual “natural” spin Pauli ma-
trices. This is the more intuitive and simplified statement of the more general deriva-
tion of transformation matrices in band basis for multiple bands of centrosymmetric
spin-orbit couplingHamiltonians, which are are simply comprised of Pauli matrices (cf.
(Equation 3.3.39a) and (Equation 3.3.39b)). More precisely, the transformation matri-
ces ℬ(k) are 2×2-block-diagonal in band space andmay therefore be expanded in terms
of Pauli matrices. Analogously to (Equation 3.4.11), one can define the 𝜎1,2,3 matrices
at −k by applying the parity and time-reversal operation to the states ∣k, 𝜎̃⟩, ∣k, 𝜎̃ ′⟩, i.e.
𝑃̂ ∣k, 𝜎̃(′)⟩ = ∣−k, 𝜎̃(′)⟩, Θ̂ ∣k, 𝜎̃⟩ = 𝑃̂ ∣k, 𝜎̃ ′⟩ and Θ̂ ∣k, 𝜎̃ ′⟩ = −𝑃̂ ∣k, 𝜎̃⟩. This shows that the
matrices 𝜎1,2,3(k) are even under inversion and odd under time-reversal in full corre-
spondence with the “natural” Pauli matrices 𝜎𝑥,𝑦,𝑧 [Yip14]. The Cooper channel of the
two-particle vertex in band-pseudospin basis discussed in (Section 3.3.2) is given by the
coupling constants

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

1
̄𝜙−k′𝑏′𝜎̃′

2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
≔ 𝑈𝑏𝜎̃1,𝑏𝜎̃2,𝑏′𝜎̃′

1,𝑏′𝜎̃′
2

k,−k,k′,−k′ ̄𝜙k′𝑏′𝜎̃′
1

̄𝜙−k′𝑏′𝜎̃′
2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
.

(3.4.12)

where we took into account that - in the weak-coupling regime - a Cooper pair must
be hosted by a single band. Inversion symmetry requires the two-particle vertex (Equa-
tion 3.4.12) to satisfy (cf. (Equation 3.3.48))

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

1
̄𝜙−k′𝑏′𝜎̃′

2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
𝑃̂⟶ 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′

1𝜎̃′
2

kk′ ̄𝜙−k′𝑏′𝜎̃′
1

̄𝜙k′𝑏′𝜎̃′
2
𝜙k𝑏𝜎̃2

𝜙−k𝑏𝜎̃1
𝜙𝛼𝜙𝛽=−𝜙𝛽𝜙𝛼

↓= 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

2
̄𝜙−k′𝑏′𝜎̃′

1
𝜙−k𝑏𝜎̃1

𝜙k𝑏𝜎̃2
!= 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′

1𝜎̃′
2

kk′ ̄𝜙k′𝑏′𝜎̃′
1

̄𝜙−k′𝑏′𝜎̃′
2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
,

(3.4.13)

where the summation is implicit. Note, that the original momentum structure was
restored by anticommuting twice, while the pseudospin structure changed. Assuming
Hermiticity of the vertex on top of inversion symmetry and comparing the pseudospin
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sectors in (Equation 3.3.6) with the corresponding ones in (Equation 3.4.13), we find
that both 𝐵𝑏k𝑏−k𝑏′k′𝑏′−k′ = −𝐵𝑏k𝑏−k𝑏′k′𝑏′−k′ = 0 and 𝐸𝑏k𝑏−k𝑏′k′𝑏′−k′ = −𝐸𝑏k𝑏−k𝑏′k′𝑏′−k′ =
0 must be zero. Henceforth, in the pseudospin Cooper channel, there are only eight
non-zero pseudospin sectors including the four independent elements 𝐴, 𝐶, 𝐷 and 𝐹 (cf.
(Equation 3.3.6)). Note, that this is a consequence of theweak-coupling condition, which
assumes that a Cooper pair is hosted by a single band. These prerequisites considerably
simplify the mean-field theory derived in (Section 2.4). The gap function (Equation 2.4.8)
for the interaction (Equation 3.4.12) yields

Δk𝑏𝜎̃1𝜎̃2
= −2 ∑

k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

= 𝑖 (𝑑k𝑏 ⋅ 𝝈) 𝜎𝑦 = (−𝑑𝑥
k𝑏 + 𝑖𝑑𝑦

k𝑏 𝑑0
k𝑏 + 𝑑𝑧

k𝑏
−𝑑0

k𝑏 + 𝑑𝑧
k𝑏 𝑑𝑥

k𝑏 + 𝑖𝑑𝑦
k𝑏

) ,

(3.4.14)

where we used the parametrization in terms of the d-vector (Equation 2.4.25). Solv-
ing for the four components of the d-vector and performing the summation over pseu-
dospins 𝜎̃ ′

1, 𝜎̃ ′
2, where we get two contributions in every component since 𝐴, 𝐶, 𝐷 and 𝐹

are the only non-zero vertex elements, we find the gap equations:

𝑑0
k𝑏 = − ∑

k′,𝑏′
[(𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↑ ̃↓

kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↑ ̃↓
kk′ ) 𝑓k′𝑏′ ̃↓ ̃↑ + (𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↓ ̃↑

kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↓ ̃↑
kk′ ) 𝑓k′𝑏′ ̃↑ ̃↓] (3.4.15)

𝑑𝑥
k𝑏 = − ∑

k′,𝑏′
[(𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↑

kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↑
kk′ ) 𝑓k′𝑏′ ̃↑ ̃↑ + (𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↓ ̃↓

kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↓
kk′ ) 𝑓k′𝑏′ ̃↓ ̃↓] (3.4.16)

𝑑𝑦
k𝑏 = 𝑖 ∑

k′,𝑏′
[(𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↑

kk′ + 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↑
kk′ ) 𝑓k′𝑏′ ̃↑ ̃↑ + (𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↓ ̃↓

kk′ + 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↓
kk′ ) 𝑓k′𝑏′ ̃↓ ̃↓] (3.4.17)

𝑑𝑧
k𝑏 = − ∑

k′,𝑏′
[(𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↑ ̃↓

kk′ + 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↑ ̃↓
kk′ ) 𝑓k′𝑏′ ̃↓ ̃↑ + (𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↓ ̃↑

kk′ + 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↓ ̃↑
kk′ ) 𝑓k′𝑏′ ̃↑ ̃↓] . (3.4.18)

These four coupled gap equations for singlet 𝑑0
k𝑏 = 𝑑0

−k𝑏 and triplet components
𝑑𝑥,𝑦,𝑧
k𝑏 = −𝑑𝑥,𝑦,𝑧

−k𝑏 have to be solved self-consistently according to (Figure 2.6). In the
SU(2)-symmetric case the vertex elements 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↓ and 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↑ must be zero (cf. (Equa-
tion 3.3.19)) and all three d-vector components are degenerate. Therefore, the pseu-
dospin sectors 𝑈𝑏𝑏′𝜎̃𝜎̃ ̄𝜎̃ ̄𝜎̃ (where ̄𝜎̃ denotes the opposite pseudospin state to 𝜎̃) are es-
sential to lift the d-vector’s degeneracy and find its preferred direction. 𝑓k𝑏𝜎̃𝜎̃′ is defined
by the thermal expectation value ⟨𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ (Equation 2.4.15). For a unitary gap we
can express the operators 𝑐−k𝑏𝜎̃ and 𝑐k𝑏𝜎̃′ in terms of the new quasiparticle states 𝑑−k𝑏𝜎̃
and 𝑑k𝑏𝜎̃′ by Ck𝑏 = 𝑈†

k𝑏Dk𝑏 (see (Equation 2.4.20)). For instance, the hole states 𝑐±k𝑏𝜎̃
are given by
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3. Mean-field theory in absence of spin rotation invariance

𝑐−k𝑏𝜎̃ = (𝐸k𝑏 − 𝜉k𝑏) 𝑑†
k𝑏𝜎̃ − Δk𝑏𝜎̃ ̃↑𝑑−k𝑏 ̃↑ − Δk𝑏𝜎̃ ̃↓𝑑−k𝑏 ̃↓

𝑐k𝑏𝜎̃ = Δk𝑏𝜎̃ ̃↑𝑑k𝑏 ̃↑ + Δk𝑏𝜎̃ ̃↓𝑑k𝑏 ̃↓ + (𝐸k𝑏 − 𝜉k𝑏) 𝑑†
−k𝑏𝜎̃ . (3.4.19)

We insert these operators into the expectation values ⟨𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ and evaluate them
with respect to the eigenstates of the Bogoliubov-de Gennes Hamiltonian. Hence, all
anomalous expectation values ⟨𝑑(†)

𝛼 𝑑(†)
𝛼′ ⟩ must be zero. The only terms that contribute to

the expectation values are the number operators ⟨𝑑†
𝛼𝑑𝛼′⟩ = ⟨1 − 𝑑𝛼′𝑑†

𝛼⟩ ∝ 𝛿𝛼𝛼′ (anticom-
mutation relations of fermion operators 𝑐†

𝛼, 𝑐𝛼 are preserved by the unitary transforma-
tion). The results for all pseudospin combinations can be summarized by

⟨𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ =
1

2𝐸k𝑏 (𝐸k𝑏 − 𝜉k𝑏) ⟨(𝐸k𝑏 − 𝜉k𝑏) (Δk𝑏𝜎̃𝜎̃′𝑑†
k𝑏𝜎̃𝑑k𝑏𝜎̃ − Δk𝑏𝜎̃′𝜎̃𝑑†

−k𝑏𝜎̃′𝑑−k𝑏𝜎̃′)⟩

=
Δk𝑏𝜎̃′𝜎̃
2𝐸k𝑏

(𝑛(𝐸k𝑏𝜎̃) − (1 − 𝑛(𝐸k𝑏𝜎̃′))) =
Δk𝑏𝜎̃′𝜎̃
2𝐸k𝑏

(2𝑛(𝐸k𝑏) − 1) , (3.4.20)

where the quasiparticles energies of the Bogoliubov-de Gennes Hamiltonian (Equa-

tion 2.4.14) for a unitary gap are given by 𝐸k𝑏 = ±1
2
√𝜉2

k𝑏 + 1
2 Tr (Δk𝑏Δ†

k𝑏) (cf. (Equa-

tion 2.4.19)) and 𝑛(𝐸k𝑏) = (1 + 𝑒𝛽𝐸k𝑏)
−1

denotes the Fermi-Dirac distribution. Employ-
ing this result and 2𝑛(𝐸k𝑏) − 1 = tanh (𝛽𝐸k𝑏/2) in (Equation 3.4.14), the spinful unitary
gap equation yields (cf. [SU91; SAM05])

Δk𝑏𝜎̃1𝜎̃2
= − ∑

k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ Δk′𝑏′𝜎̃′

2𝜎̃′
1

tanh(𝛽𝐸k′𝑏′

2 )
𝐸k′𝑏′

, (3.4.21)

whichdetermines themomentumandpseudospin structure of the unitary gapΔk𝑏𝜎̃1𝜎̃2

from the effective Cooper interaction 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ . Although the numerically exact gap

magnitude ∣Δk𝑏∣, the critical temperature 𝛽−1
𝑐 = 𝑘𝐵𝑇𝑐 and its momentum/band/pseu-

dospin dependency can only be calculated self-consistently and iteratively from (Equa-
tion 3.4.21), it is helpful to calculate the eigenmodes of the effective interaction. The
eigenvectors of 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′

1𝜎̃′
2

kk′ provide a good starting point for the self-consistency itera-
tion and already exhibit the symmetries of the exact solution. 9. Since the effective inter-
action must be Hermitian 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′

1𝜎̃′
2

kk′ = 𝑈𝑏′𝑏𝜎̃′
1𝜎̃′

2𝜎̃1𝜎̃2
k′k (Equation 3.3.5), we can choose

a parametrization for the pseudospin indices, i.e. a mapping of both indices to a single
one by writing the four possible pseudospin states as a four-vector, e.g. by means of the

9 In the (unphysical) limit of zero gap magnitude ∣Δ∣ → 0 resulting in lim∣Δ∣→0 𝐸k′𝑏′ = 𝜉k′𝑏′
2 and infinite

temperature with the consequence lim𝛽→0 tanh( 𝛽𝐸k′𝑏′
2 ) = 𝛽𝐸k′𝑏′

2 the gap equation (Equation 3.4.21)
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d-vector, represent it as a Hermitian matrix 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ∈ ℂ𝑁𝑈×𝑁𝑈 (𝑁𝑈 = 4𝑛𝑏𝑛𝑘, with

𝑛𝑏, 𝑛𝑘 being the number of bands and momenta), and determine its spectral decomposi-
tion/eigen decomposition [GG95; Mey00; Ste98]

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ =

𝑁𝑈

∑
𝑛

𝜉𝑛 𝑓 𝑛
k𝑏𝜎̃1𝜎̃2

(𝑓 𝑛
k′𝑏′𝜎̃′

1𝜎̃′
2
)

†
≔ 𝑈𝑏𝑏′𝜇𝜈

kk′ . (3.4.23)

with the eigenvalues 𝜉𝑛 and eigenvectors 𝑓 𝑛
k𝑏𝜎̃𝜎̃′ that are subject to the condition 𝑓 𝑛

−k𝑏𝜎̃′𝜎̃ =
−𝑓 𝑛

k𝑏𝜎̃𝜎̃′ due to the antisymmetry of𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ under particle exchange. The last equal-

ity defines the Cooper channel interaction as a matrix 𝑈𝑏𝑏′𝜇𝜈
kk′ in terms of the pseudospin

parametrization given by the indices 𝜇, 𝜈 ∈ {0, 1, 2, 3}. The most transparent and con-
venient parametrization of the two-particle pseudospin states in the Cooper channel is
defined by the bilinear in the fields 10

𝑃𝜇
k𝑏 ≔ (𝑖𝜎𝜇𝜎𝑦)

𝜎̃𝜎̃′ 𝜙−k𝑏𝜎̃𝜙k𝑏𝜎̃′ , (3.4.25)

with the Pauli matrices 𝜎𝑦 and 𝜎𝜇 ∈ {𝜎0, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}. The summation over pseudospin
indices is implicit on the right hand side. In analogy to the d-vector (Section 2.4.3), this
parametrization has the spatial symmetries 𝑃0

−k𝑏 = 𝑃0
k𝑏 and 𝑃𝜇

−k𝑏 = −𝑃𝜇
k𝑏 ∀𝜇 ∈ {1, 2, 3}.

Using the parametrization (Equation 3.4.25) and including the basis in terms of fields
in (Equation 3.4.23), we find

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

1
̄𝜙−k′𝑏′𝜎̃′

2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
= 𝑈𝑏𝑏′𝜇𝜈

kk′ 𝑃𝜇
k′𝑏′𝑃𝜈

k𝑏 . (3.4.26)

The spatial inversion symmetry of the two-particle vertex (Equation 3.4.13) requires

becomes

Δk𝑏𝜎̃1𝜎̃2
= −

𝛽
2 ∑

k′,𝑏′
𝜎̃′

1,𝜎̃′
2

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ Δk′𝑏′𝜎̃′

2𝜎̃′
1

= −
𝛽
2 ∑

k′,𝑏′
𝜎̃′

1,𝜎̃′
2

∑
𝑛=0

𝜉𝑛 𝑓 𝜎̃1𝜎̃2
𝑛 (k, 𝑏) (𝑓 𝜎̃′

1𝜎̃′
2

𝑛 (k′, 𝑏′))
†
Δk′𝑏′𝜎̃′

2𝜎̃′
1

.

(3.4.22)

Assuming that the gap Δk𝑏𝜎̃1𝜎̃2
is proportional to one particular eigenvector 𝑓 𝜎̃1𝜎̃2

0 (k, 𝑏) with eigenvalue
𝜉0, i.e. Δk𝑏𝜎̃1𝜎̃2

= 𝑔 𝑓 𝜎̃1𝜎̃2
0 (k, 𝑏) with 𝑔 ∈ ℝ and taking into account that the eigenvectors are orthonor-

mal, i.e. 𝑓 †
𝑖 𝑓𝑗 = 𝛿𝑖𝑗, we find 1 = − 𝛽

2 𝜉0 ⇒ 𝛽−1 = 𝑘𝐵𝑇𝑐 = −2𝜉0, i.e. the most negative eigenvalue
determines the transition temperature.

10 An alternative parametrization that corresponds to the product pseudospin basis, in contrast to the total
angular momentum basis, is given by

𝑃𝜇
k𝑏 ≔ (

𝜎𝜇 + (−1)𝜇𝜎𝜇𝜎𝑧

2 𝑒𝑖 𝜋
2 𝑔(𝜇)

)
𝜎̃𝜎̃′

𝜙−k𝑏𝜎̃𝜙k𝑏𝜎̃′ with 𝑔(𝜇) = −
𝜇3

6 + 𝜇2 −
5𝜇
6 , (3.4.24)

that does, however, not exhibit, the symmetry/antisymmetry w.r.t. to spatial inversion in the zeroth
and first to third components, unlike the d-vector like parametrization.
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3. Mean-field theory in absence of spin rotation invariance

every element in the newly parametrized vertex 𝑈𝑏𝑏′𝜇𝜈
kk′ , that mixes 𝜇 = 0 with 𝜈 ∈

{1, 2, 3} to vanish, since the right hand side of (Equation 3.4.26) can only be invariant
with respect to spatial inversion, if both of the two bilinears are either even or odd under
k → −k (cf. appendix F). Taking the spectral decomposition of the vertex matrix 𝑈𝑏𝑏′𝜇𝜈

kk′

(Equation 3.4.23) into account, we can represent the Cooper vertex by

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

1
̄𝜙−k′𝑏′𝜎̃′

2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
=

𝑁𝑈

∑
𝑛

𝜉𝑛 𝑓 𝑛
k𝑏𝜇 (𝑓 𝑛

k′𝑏′𝜈)† 𝑃𝜇
k′𝑏′𝑃𝜈

k𝑏

= ∑
Γ

𝑑Γ

∑
𝑚=1

∑
𝑛=1

𝑓 Γ𝑚𝑛
k𝑏𝜇 (𝑓 Γ𝑚𝑛

k′𝑏′𝜈)† 𝑃𝜇
k′𝑏′𝑃𝜈

k𝑏 , (3.4.27)

where the eigenmodes 𝑓 𝑛
k𝑏𝜇 must be irreducible representations of the underlying point

group (Section 3.3.1). Here, Γdenotes an irreducible representation of the point group𝒢
and 𝑑Γ is the dimension of the representation Γ. This representation of the Cooper vertex
closely resembles the decomposition of the two-particle interaction in the continuum in
terms of spherical harmonics (Equation 2.1.7).

3.4.2. Non-degenerate bands and helicity

If inversion symmetry is broken, the eigenstates ∣k, 𝑏, 𝜆⟩ of the single-particle Hamilto-
nian are characterized by momentum k, band index 𝑏 and helicity 𝜆. The spatial inver-
sion operation ∣k, 𝑏, 𝜆⟩ → 𝑃̂ ∣k, 𝑏, 𝜆⟩ does not yield a degenerate state anymore like in
(Section 3.4.1), but a state with opposite helicity 𝜆̄ (cf. (Equation 3.1.53))

∣k, 𝑏, 𝜆⟩ → 𝑃̂ ∣k, 𝑏, 𝜆⟩ = ∣−k, 𝑏, 𝜆⟩ = 𝑒𝑖𝜙k𝑏 ∣k, 𝑏, 𝜆̄⟩ , (3.4.28)

the eigenenergies of which differ by ∣𝜀k𝑏𝜆 − 𝜀k𝑏𝜆̄∣ > 0. Here, we restrict our analysis
to equal energy pairing (weak-coupling limit), which is to assume that the splitting due
to non-centrosymmetric spin-orbit coupling, e.g. the Rashba term ∝ 𝜆𝑅 is much larger
than any critical temperature scale 𝑘𝐵𝑇𝑐, i.e. 𝜆𝑅 ≫ 𝑘𝐵𝑇𝑐. Hence, we can apparently
not rely on inversion to produce a degenerate state. However, we can enforce equal
energy pairing by simply taking two states at opposite momenta k and −k with the
same helicity 𝜆, i.e. we pair up ∣k, 𝑏, 𝜆⟩ and ∣−k, 𝑏, 𝜆⟩. In (Section 3.1.2), we encountered
that these two states are related by time-reversal up to a k-dependent phase. The recipe
to pair up states that are related by time-reversal was first noted in the context of “dirty”
superconductors [And59; And84c]. In order to produce the equal energy pairing states,
whichmakeup aCooper pair, we have to use an operation that reflects a symmetry of the
Hamiltonian. Before we investigate its consequences on the symmetries of the resulting
pairing states, we have a look at what the corresponding structure in the helicity degree
of freedom is. Sincewe restrict our analysis to equal energy pairing in theweak-coupling
limit, we are limited to Cooper pairs with the same helicity. Therefore, we only have to
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care about four helical spin sectors (out of sixteen) in the effective two-particle vertex, that
are given by

𝑈𝑏𝜆𝑏′𝜆′

kk′ ≔ 𝑈𝑏𝜆𝑏,𝜆,𝑏′𝜆′,𝑏′𝜆′

k,−k,k′,−k′ with 𝜆, 𝜆′ ∈ {+, −} , (3.4.29)

satisfying Hermiticity 𝑈𝑏𝜆𝑏′𝜆′
kk′ = 𝑈𝑏′𝜆′𝑏𝜆

k′k , like expected. The corresponding gap equa-
tion (Equation 2.4.8) in the helical degrees of freedom is greatly simplified by the weak-
coupling restriction and is given by

Δk𝑏𝜆 = −2 ∑
k′,𝑏′,𝜆′

𝑈𝑏𝜆𝑏′𝜆′

kk′ 𝑓k′𝑏′𝜆′ = −2 ∑
k′,𝑏′,𝜆′

𝑈𝑏𝜆𝑏′𝜆′

kk′ ⟨𝑐−k′𝑏′𝜆′𝑐k′𝑏′𝜆′⟩ , (3.4.30)

which reflects that there are only two helical spin components of the gap, opposed to
the gap matrix, or d-vector, in pseudospin space. Independent of the symmetries and
specific basis of the two-particle vertex, we can analysis the object ⟨𝑐−k𝑏𝜆𝑐k𝑏𝜆⟩. Since
we require the helical states 𝑐−k𝑏𝜆 and 𝑐k𝑏𝜆 to be time-reversal partners, they must be
related by Ξ̂𝑐k𝑏𝜆 = 𝑒𝑖𝜙k𝑏𝜆𝑐−k𝑏𝜆, where Ξ̂ = 𝑈−kΘ̂ (𝑈k)−1 is the time-reversal operator
for helical states (cf. (Section 3.3.2)) with Θ̂ = −𝑖𝜎𝑦𝒦. The matrix of eigenstates 𝑈k of
the single-particle Hamiltonian transforms between spin and helical basis. Employing
the time-reversal operation twice, we find

Ξ̂2𝑐k𝑏𝜆 = Ξ̂𝑒𝑖𝜙k𝑏𝜆𝑐−k𝑏𝜆 = 𝑒−𝑖𝜙k𝑏𝜆𝑒𝑖𝜙−k𝑏𝜆𝑐k𝑏𝜆
!= −𝑐k𝑏𝜆 , (3.4.31)

since the fermionic property dictates Ξ̂2 = −1. This shows that the additional phase
𝑒𝑖𝜙k𝑏𝜆 arising from time-reversalmust be odd inmomentum 𝑒𝑖𝜙k𝑏𝜆 = −𝑒𝑖𝜙−k𝑏𝜆, whichmay
also understood as a result of the double group properties of the fermionic state involved.
In the context of non-centrosymmetric spin-orbit coupling (Section 3.1.2), we analyti-
cally worked out the phase arising between time-reversal partners and showed that this
phase is (at least, for a single-bandmodel) odd inmomentum (Equation 3.1.47). Taking
these results into account, the pairing state between time-reversal partners

Δ̃k𝑏𝜆 ≔ 𝑒𝑖𝜙k𝑏𝜆 ⟨𝑐−k𝑏𝜆𝑐k𝑏𝜆⟩ , (3.4.32)

must be even in momentum

⇒ Δ̃−k𝑏𝜆 = 𝑒𝑖𝜙−k𝑏𝜆 ⟨𝑐k𝑏𝜆𝑐−k𝑏𝜆⟩ = (−𝑒𝑖𝜙k𝑏𝜆) (− ⟨𝑐−k𝑏𝜆𝑐k𝑏𝜆⟩) = Δ̃k𝑏𝜆 , (3.4.33)

as a result of the phase being odd in momentum and the fermionic anticommutation.
Hence, Cooper pairs on non-degenerate bands characterized by helicity 𝜆 always trans-
form according to even irreducible representations [SC04]. Naively, one could straightfor-
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3. Mean-field theory in absence of spin rotation invariance

wardly try to investigate the superconducting order parameter by calculating the eigen-
modes of 𝑈𝑏𝜆𝑏′𝜆′

kk′ . However, a simple argument shows that this results in gap functions
in momentum space that do not transform according to any irreducible representations
due to the branch cut that deals with the double-valuedness of the pair wave function
along the Fermi surface that is introduced by the fermionic double group property [Blo85;
SZB04]. More precisely, if we go around the Fermi surface bymore than 2𝜋, we acquire a
minus sign due the single-particle states obeying double group transformation behavior
(cf. (Section 3.3.1)). Equivalently, one can look at a state at k that is paired with a state
at −k of the same helicity (its time-reversal partner), which in turn has a time-reversal
partner that differs from the original state by a minus sign. To resolve this contradic-
tion, we restrict ourselves to states in the first half of the Brillouin zone and pair them
up with their time-reversal partners in the second half. Hence, the non-classifiable gap
function is given by Δk𝑏𝜆, related to the straightforward pairing of Bloch states. These are
related to the time-reversal paired gap functions by Δ̃k𝑏𝜆 = 𝑒𝑖𝜙k𝑏𝜆Δk𝑏𝜆, i.e. exactly the
phases that arise from the time-reversal operation. In order to investigate the possibility
of singlet/triplet mixing more closely, we have to transform the gap function obtained in
helical space back to pseudospin basis. Thanks to the evenness of the gap function in
helical space Δ̃k𝑏𝜆, we can straightforwardly write down the singlet and triplet part of
the pair wave function in pseudospin space by symmetrization and antisymmetrization,
i.e. [SAM09; Smi+17b]

𝑑0
k𝑏 =

Δ̃k𝑏+ + Δ̃k𝑏−
2 dk𝑏 =

𝜸k
∣𝜸k∣

Δ̃k𝑏+ − Δ̃k𝑏−
2 . (3.4.34)

This relations can be inverted to yield the helical gap function in terms of singlet and
triplet contributions

Δ̃k𝑏𝜆 = 𝑑0
k𝑏 + 𝜆

𝜸k
∣𝜸k∣ ⋅ dk𝑏 . (3.4.35)

From (Equation 3.4.34) we can already see that a mixing of singlet and triplet Cooper
pairs occurs if the helical gaps have different amplitude on the two non-degenerate
Fermi surfaces characterized by 𝜆 = ±.

3.4.3. Construction of symmetrized particle-particle basis states

In the preceding two sections, we worked out the mean-field theories for generalized
Cooper pair states in presence of time-reversal andwith orwithout inversion symmetry.
In presence of inversion symmetry, the single-particleHamiltonian assumes its diagonal
formwhenwritten in pseudospin basis, while in absence of inversion symmetry, the band
energies are characterized by the helical spin degree of freedom. In both cases we found
that the effective two-particle interaction can be most conveniently analyzed with respect
to the possible particle-particle instabilities that may arise from it, by using its represen-
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3.4. Generalized Cooper pairs

tation in pseudospin basis and employing the parametrization (Equation 3.4.26)

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

1
̄𝜙−k′𝑏′𝜎̃′

2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
= 𝑈𝑏𝑏′𝜇𝜈

kk′ 𝑃𝜇
k′𝑏′𝑃𝜈

k𝑏 , (3.4.36)

in pseudospin basis where the bilinear 𝑃𝜈
k𝑏 is defined by

𝑃𝜇
k𝑏 = (𝑖𝜎𝜇𝜎𝑦)

𝜎̃𝜎̃′ 𝜙−k𝑏𝜎̃𝜙k𝑏𝜎̃′ . (3.4.37)

The spectral decomposition of 𝑈𝑏𝑏′𝜇𝜈
kk′ then reveals the symmetries and harmonic compo-

sition of possible gap functions Δk𝑏𝜎̃:

𝑈𝑏𝑏′𝜇𝜈
kk′ = ∑

𝑛
𝜉𝑛 𝑓 𝑛

k𝑏𝜇 (𝑓 𝑛
k′𝑏′𝜈)† , (3.4.38)

that are given by its eigenmodes 𝑓 𝑛
k𝑏𝜇. In (Section 3.3.2) we worked out the behav-

ior of the two-particle vertex 𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ with respect to time-reversal, point group and

eventually inversion transformations. These symmetries restrict the range of possible
eigenmodes 𝑓 𝑛

k𝑏𝜇 in which the spatial k and pseudospin 𝜇 degrees of freedom are inher-
ently coupled. The bilinear 𝑃𝜇

k𝑏 exhibits transformation behavior that is quite similar to
the one of the d-vector discussed in (Section 2.4.4). In particular, we have

inversion 𝑃𝜇
k𝑏

𝑃̂⟶ 𝑃𝜇
−k𝑏 = 𝑔𝜇𝜈𝑃𝜈

k𝑏 (3.4.39)

time-reversal 𝑃𝜇
k𝑏

Θ̂⟶ −𝑔𝜇𝜈𝑃𝜈
−k𝑏 = 𝑔𝜇𝜈𝑃𝜈

k𝑏 (3.4.40)

rotation 𝑃𝜇
k𝑏

𝑅̂⟶ 𝒟𝜇𝜈
𝑔 𝑃𝜈

ℛ(𝑛̂,𝜑)k𝑏 , (3.4.41)

where 𝑔𝜇𝜈 = diag(+1, −1, −1, −1) and 𝒟𝜇𝜈
𝑔 = diag(1, ℛ( ̂𝑛, 𝜑)) with ℛ( ̂𝑛, 𝜑) ∈ ℝ3×3

being the SO(3) rotation representation in real space. In (Equation 3.4.39) we took
into account the fermionic anticommutation of fields and the fact that the singlet part
is odd and the triplet part even with respect to the exchange of spin indices. (Equa-
tion 3.4.36) suggests, that the four component eigenmodes 𝑓 𝑛

k𝑏𝜇 transform conjugate
to 𝑃𝜇

k𝑏. These properties can be employed to construct basis functions in band/pseu-
dospin/momentum space corresponding to arbitrary irreducible representation of the par-
ticular point group 𝒢. Due to the fermionic anticommutation of Grassmann fields and
(Equation 3.4.39), the eigenstates must obey 𝑓−k𝑏𝜇 = (𝑓k𝑏𝜇=0, −𝑓k𝑏𝜇=1,2,3) (cf. (Equa-
tion 2.4.24)).

Tetragonal point group D4h In particular, the possible pairing states governed by the
tetragonal point group D4h are inspected. The definition and notation of its group el-
ements and irreducible representations are given in appendix H. The tetragonal point
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3. Mean-field theory in absence of spin rotation invariance

group gives rise to ten irreducible representations, which are divided into two classes
by their even (𝑔) or odd (𝑢) parity, each of which contains four one (A1g, A2g, B1g, B2g
and A1u, A2u, B1u, B2u) and one two-dimensional (Eg and Eu) irreducible representa-
tions. Since D4h contains inversion 𝑖 as one of its group elements, the constraint of a
definite parity forbids states 𝑓 𝑛

k𝑏𝜇 with finite components in both 𝜇 = 0 and 𝜇 > 0 sec-
tors (cf. appendix F). In principle, the 𝜇 = 0 component 𝑓 𝑛

k𝑏0 of the pairing function
may transform according to any of the even parity representations A1g, A2g, B1g, B2g
or Eg, i.e. given by an arbitrary superposition of lattice harmonics corresponding to
these representations. In contrast, the 𝜇 = 1, 2, 3 components 𝑓 𝑛

k𝑏𝜇 must each contain
an odd function in k, i.e. one of A1u, A2u, B1u or B2u. In (Section 2.4.3) we saw that
if spin-orbit interaction couples spin and spatial degrees of freedom, the Hamiltonian
only exhibits symmetries with respect to the combined transformation of all degrees of
freedom, which are pseudospin, band and momentum. Therefore, we have to consider the
product representations

(A1u ⊕ A2u ⊕ B1u ⊕ B2u ⊕ Eu) ⊗ (Eg ⊕ A2g) =A1u ⊕ A2u ⊕ B1u ⊕ B2u ⊕ Eu .
(3.4.42)

The first bracket on the left hand side corresponds to all available momentum space
functions in 𝑓 𝑛

k𝑏𝜇=1,2,3 while the second bracket on the left hand side describes the trans-
formation behavior of the (pseudospin) Paulimatrices (cf. (TableA.1)). Note that these
basis functions can only be employed in three dimensions since in two dimensions, i.e.
for a fixed 𝑘𝑧-component at e.g. 𝑘𝑧 = 0 or 𝑘𝑧 = 𝜋, there is only one odd representation
being Eu (only consider the representation basis functions featuring cos(𝑘𝑧) and hence
cos(𝑘𝑧 = 0) = 1). However, this implies the same possible triplet pairing functions al-
ready obtained in (Equation 3.4.42) since Eu⊗(Eg ⊕ A2g) = A1u⊕A2u⊕B1u⊕B2u⊕Eu.
In order to explicitly construct these pairing functions, onemay either consider all avail-
able constraints and play around with the residual degrees of freedom to find the form
that resembles the behavior of the five possible triplet functions or one may construct
them “by hand”. First of all, we denote the pairing function (in analogy to the d-vector
in (Section 2.4.3)) by

𝑓 𝜇
k𝑏 = 𝑓 0

k𝑏 ̂𝑥0 + 𝑓 1
k𝑏 ̂𝑥 + 𝑓 2

k𝑏 ̂𝑦 + 𝑓 3
k𝑏 ̂𝑧 and 𝑓 𝜇

𝑖𝑏 = 𝑓 0
𝑖𝑏 ̂𝑥0 + 𝑓 1

𝑖𝑏 ̂𝑥 + 𝑓 2
𝑖𝑏 ̂𝑦 + 𝑓 3

𝑖𝑏 ̂𝑧 , (3.4.43)

in reciprocal space with momentum k and real space with lattice site 𝑖, respectively.
Next, we take all lattice sites corresponding to 𝑛-th nearest neighbors into account and
successively apply all group operations to 𝑓 𝜇

k𝑏 and prepend their characters 𝜒Γ of the
respective irreducible representation Γ of the point group. The transformation involves
both spatial and spin degrees of freedom. In particular, the components 𝑓 𝜇

k𝑏 transform
according to (Equation 3.4.41) and exactly like the d-vector in (Section 2.4.4). The pro-
cedure is illustrated for the case of 4th nearest neighbors in (Figure 3.4). More precisely,
we set up the sum of sixteen (number of point group elements) terms that yields
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𝜎𝑏/C
′
𝑏

𝑖8,16

C−
4 /S

−
4

𝑖4,12

C+
4 /S

+
4

𝑖3,11

𝜎𝑎/C
′
𝑎

𝑖7,15

C2/i
𝑖2,10

𝜎𝑦/C
′
𝑦

𝑖6,14

𝜎𝑥/C
′
𝑥

𝑖5,13

E/𝜎ℎ

𝑖1,9

(a)

𝜎𝑏

𝑖8

C−
4

𝑖4

C+
4

𝑖3

𝜎𝑎

𝑖7

C2

𝑖2

𝜎𝑦

𝑖6

𝜎𝑥

𝑖5

E
𝑖1C2/𝜎𝑦
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C+
4 /𝜎𝑎

𝑖3/𝑖7

C−
4 /𝜎𝑏

𝑖4/𝑖8

E
𝑖1/𝑖5

(b)

Figure 3.4.: The construction of particle-particle states governed by the point group D4h in (Fig-
ure 3.4a) and C4v in (Figure 3.4b) is performed by transforming and summing up 𝑓 𝜇

𝑖𝑏
for all operations including their characters for the desired representation. Here, the
process is illustrated for 1st and 4th nearest neighbors basis functions on the tetrag-
onal lattice and square lattice, respectively. While inversion symmetry is present in
(Figure 3.4a), the loss of inversion symmetry corresponding to (Figure 3.4b) enables
the mixing of singlet and triplet states.

𝑓 𝜇
𝑖𝑏 ⟶ 𝜒Γ(E) (𝑓 0

𝑖1𝑏 ̂𝑥0 + 𝑓 1
𝑖1𝑏 ̂𝑥 + 𝑓 2

𝑖1𝑏 ̂𝑦 + 𝑓 3
𝑖1𝑏 ̂𝑧) + 𝜒Γ(C2) (𝑓 0

𝑖2𝑏 ̂𝑥0 − 𝑓 1
𝑖2𝑏 ̂𝑥 − 𝑓 2

𝑖2𝑏 ̂𝑦 + 𝑓 3
𝑖2𝑏 ̂𝑧)

+𝜒Γ(C+
4 ) (𝑓 0

𝑖3𝑏 ̂𝑥0 + 𝑓 2
𝑖3𝑏 ̂𝑥 − 𝑓 1

𝑖3𝑏 ̂𝑦 + 𝑓 3
𝑖3𝑏 ̂𝑧) + 𝜒Γ(C−

4 ) (𝑓 0
𝑖4𝑏 ̂𝑥0 − 𝑓 2

𝑖4𝑏 ̂𝑥 + 𝑓 1
𝑖4𝑏 ̂𝑦 + 𝑓 3

𝑖4𝑏 ̂𝑧)

+𝜒Γ(𝜎𝑥) (𝑓 0
𝑖5𝑏 ̂𝑥0 − 𝑓 1

𝑖5𝑏 ̂𝑥 + 𝑓 2
𝑖5𝑏 ̂𝑦 − 𝑓 3

𝑖5𝑏 ̂𝑧) + … + 𝜒Γ(i) (𝑓 0
𝑖10𝑏 ̂𝑥0 + 𝑓 1

𝑖10𝑏 ̂𝑥 + 𝑓 2
𝑖10𝑏 ̂𝑦 + 𝑓 3

𝑖10𝑏 ̂𝑧)

+ … + 𝜒Γ(C′
𝑏) (𝑓 0

𝑖16𝑏 ̂𝑥0 − 𝑓 2
𝑖16𝑏 ̂𝑥 − 𝑓 1

𝑖16𝑏 ̂𝑦 + 𝑓 3
𝑖16𝑏 ̂𝑧) , (3.4.44)

where both real space lattice coordinates (site index 𝑖) and spin degrees of freedomare
transformed at once, since they are assumed to be coupled due to spin-orbit interaction.
Note, that although the (pseudospin) Pauli matrices transform like the components of
a polar vector under rotations, they behave unlike the components of a true vector with
respect to reflections, which becomes obvious for the operation 𝜎𝑥, for instance. The
characters 𝜒Γ (given in (Table H.6)) have to be inserted into the sum (Equation 3.4.44)
for the respective irreducible representation in (Equation 3.4.42). The singlet compo-
nents will cancel for any odd representation since the singlet components do transform
in the same way for the first eight operations (belonging to C4v) and the second eight
operations (taking into account the inversion and three-dimensionality for D4h). After
collecting terms with respect to site index and basis ̂𝑥, ̂𝑦 and ̂𝑧, they are transformed to
k-space to yield the desired order parameters given in (Table 3.3) and (Table 3.4).
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3. Mean-field theory in absence of spin rotation invariance

Table 3.3.: The point group D4h allows for five singlet pairing functions each. Since spin-orbit in-
teraction is assumed to be present, the unit vectors ̂𝑥, ̂𝑦 and ̂𝑧 represent the pseudospin
structure of the two-particle states. Note, that combined transformation of all degrees
of freedoms, i.e. momentum, band and pseudospin are implicit in this classification.
However, the singlet pairing states with total spin 𝑆 = 0 do not change under spin
transformations anyway.

singlet

irr. repr. Γ pairing function 𝑓 0
k𝑏

A1g (cos(𝑘𝑥) + cos(𝑘𝑦)) cos(𝑘𝑧)

A2g (sin(𝑥) sin(2𝑘𝑦) − sin(2𝑘𝑥) sin(𝑘𝑦)) cos(𝑘𝑧)

B1g (cos(𝑘𝑥) − cos(𝑘𝑦)) cos(𝑘𝑧)

B2g sin(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)

Eg sin(𝑘𝑥) sin(𝑘𝑧), sin(𝑘𝑦) sin(𝑘𝑧)

Square lattice point group C4v If inversion symmetry is broken, the tetragonal point
group D4h breaks down to the square lattice point group C4v that is merely comprised
of eight group elements and has only five irreducible representations A1, A2, B1, B2 and
E. The singlet part that has to be even in momentum and must transform according to
one of the one-dimensional representations A1, A2, B1, B2, while the triplet part has to
be comprised of E in k-space. Due to the lack of the inversion operation, the system is
allowed to host pairing with an order parameter that features both a finite singlet and
a triplet part. Obviously, valid order parameters of mixed parity are not given by com-
bining singlet and triplet parts in an arbitrary way. Rather, the entire pairing function
must transform according to a specific irreducible representation as well. Including the
transformation behavior of the d-vector basis, which is (E ⊕ A2), we find the product
representations for the triplet part:

E ⊗ (E ⊕ A2) = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ E . (3.4.45)

To construct these pairing functions explicitly, we state the transformation of all sin-
glet/triplet components with respect to the eight operations, i.e. (cf. (Figure 3.4b) )
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Table 3.4.: The point group D4h allows for five triplet pairing states corresponding to the irre-
ducible representations A1u, A2u, B1u and B2u in the presence of spin-orbit interaction.
The unit vectors ̂𝑥, ̂𝑦 and ̂𝑧 represent the pseudospin structure of the two-particle
states. The second column of the table shows the general structure of the pairing
states in terms of basis functions 𝑓 Γ

𝑘𝑥𝑘𝑦𝑘𝑧
in momentum space associated to a certain

irreducible representation Γ (given in (Table H.7)) and the pseudospin unit vectors.
The third column gives the lowest order (mostly next nearest neighbor) contributions
to the pairing states. Note, that some of these states exploit the three-dimensionality
and have to vanish in the limit of two dimensions 𝑘𝑧 → 0 with 𝑘𝑥, 𝑘𝑦-dependence, only
(cf. [Sig+99; ZM05; HY18]). Since the triplet pairing states carry total spin 𝑆 = 1
and spatial and spin degree of freedom are assumed to be coupled, we always have
to take combined transformations of momentum and spin into account.

triplet

irr. repr. Γ k/𝜎̃-structure pairing function 𝑓 𝜇
k𝑏

A1u ̂𝑥 𝑓 Eu
𝑘𝑥𝑘𝑧

+ ̂𝑦 𝑓 Eu
𝑘𝑦𝑘𝑧

+ ̂𝑧 𝑓 A2u
𝑘𝑥𝑘𝑦𝑘𝑧

( ̂𝑥 sin(𝑘𝑦) − ̂𝑦 sin(𝑘𝑥)) cos(𝑘𝑧)
+ ̂𝑧 (sin(𝑘𝑥) sin(2𝑘𝑦) − sin(2𝑘𝑥) sin(𝑘𝑦)) sin(𝑘𝑧)

A2u ̂𝑥 𝑓 Eu
𝑘𝑦𝑘𝑧

− ̂𝑦 𝑓 Eu
𝑘𝑥𝑘𝑧

+ ̂𝑧 𝑓 A1u
𝑘𝑥𝑘𝑦𝑘𝑧

( ̂𝑥 sin(𝑘𝑥) + ̂𝑦 sin(𝑘𝑦)) cos(𝑘𝑧)
+ ̂𝑧 (cos(𝑘𝑥) + cos(𝑘𝑦)) sin(𝑘𝑧)

B1u ̂𝑥 𝑓 Eu
𝑘𝑥𝑘𝑧

− ̂𝑦 𝑓 Eu
𝑘𝑦𝑘𝑧

+ ̂𝑧 𝑓 B2u
𝑘𝑥𝑘𝑦𝑘𝑧

( ̂𝑥 sin(𝑘𝑦) + ̂𝑦 sin(𝑘𝑥)) cos(𝑘𝑧)
+ ̂𝑧 sin(𝑘𝑥) sin(𝑘𝑦) sin(𝑘𝑧)

B2u ̂𝑥 𝑓 Eu
𝑘𝑦𝑘𝑧

+ ̂𝑦 𝑓 Eu
𝑘𝑥𝑘𝑧

+ ̂𝑧 𝑓 B1u
𝑘𝑥𝑘𝑦𝑘𝑧

( ̂𝑥 sin(𝑘𝑥) − ̂𝑦 sin(𝑘𝑦)) cos(𝑘𝑧)
+ ̂𝑧 (cos(𝑘𝑥) − cos(𝑘𝑦)) sin(𝑘𝑧)

Eu ̂𝑥 𝑓 Eg
𝜋𝑘𝑧

, ̂𝑦 𝑓 Eg
𝜋𝑘𝑧

, ̂𝑧 𝑓 Eu
𝑘𝑥𝑘𝑧

, ̂𝑧 𝑓 Eu
𝑘𝑦𝑘𝑧

sin(𝑘𝑧) ̂𝑥, sin(𝑘𝑧) ̂𝑦
̂𝑧 sin(𝑘𝑥) cos(𝑘𝑧), ̂𝑧 sin(𝑘𝑦) cos(𝑘𝑧)

𝑓 𝜇
𝑖𝑏 ⟶ 𝜒Γ(E) (𝑓 0

𝑖1𝑏 ̂𝑥0 + 𝑓 1
𝑖1𝑏 ̂𝑥 + 𝑓 2

𝑖1𝑏 ̂𝑦 + 𝑓 3
𝑖1𝑏 ̂𝑧) + 𝜒Γ(C2) (𝑓 0

𝑖2𝑏 ̂𝑥0 − 𝑓 1
𝑖2𝑏 ̂𝑥 − 𝑓 2

𝑖2𝑏 ̂𝑦 + 𝑓 3
𝑖2𝑏 ̂𝑧)

+𝜒Γ(C+
4 ) (𝑓 0

𝑖3𝑏 ̂𝑥0 + 𝑓 2
𝑖3𝑏 ̂𝑥 − 𝑓 1

𝑖3𝑏 ̂𝑦 + 𝑓 3
𝑖3𝑏 ̂𝑧) + 𝜒Γ(C−

4 ) (𝑓 0
𝑖4𝑏 ̂𝑥0 − 𝑓 2

𝑖4𝑏 ̂𝑥 + 𝑓 1
𝑖4𝑏 ̂𝑦 + 𝑓 3

𝑖4𝑏 ̂𝑧)

+𝜒Γ(𝜎𝑥) (𝑓 0
𝑖5𝑏 ̂𝑥0 − 𝑓 1

𝑖5𝑏 ̂𝑥 + 𝑓 2
𝑖5𝑏 ̂𝑦 − 𝑓 3

𝑖5𝑏 ̂𝑧) + 𝜒Γ(𝜎𝑦) (𝑓 0
𝑖6𝑏 ̂𝑥0 + 𝑓 1

𝑖6𝑏 ̂𝑥 − 𝑓 2
𝑖6𝑏 ̂𝑦 − 𝑓 3

𝑖6𝑏 ̂𝑧)

+𝜒Γ(𝜎𝑎) (𝑓 0
𝑖7𝑏 ̂𝑥0 − 𝑓 1

𝑖7𝑏 ̂𝑥 − 𝑓 2
𝑖7𝑏 ̂𝑦 − 𝑓 3

𝑖7𝑏 ̂𝑧) + 𝜒Γ(𝜎𝑏) (𝑓 0
𝑖8𝑏 ̂𝑥0 + 𝑓 2

𝑖8𝑏 ̂𝑥 + 𝑓 1
𝑖8𝑏 ̂𝑦 − 𝑓 3

𝑖8𝑏 ̂𝑧) ,
(3.4.46)

where the characters of the irreducible representations of C4v are given in (TableH.4).
Taking the characters of the respective representations and transforming to k-space into
account, we find the order parameters given in (Table 3.5). Here, we restrict the treat-
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3. Mean-field theory in absence of spin rotation invariance

Table 3.5.: The point group C4v with its five irreducible representations allows for five pairing
functions. Since spin-orbit interaction is assumed to be present, the unit vectors ̂𝑥, ̂𝑦
and ̂𝑧 represent the pseudospin structure of the two-particle states. Note, that com-
bined transformation of all degrees of freedoms, i.e. momentum, band and pseu-
dospin have to be performed in this classification. Since the point group C4v does not
contain the inversion operation, mixing of singlet and triplet components in a single
order parameter is possible. The pseudospin basis states ̂𝑥0, ̂𝑥, ̂𝑦 and ̂𝑧 are defined by
(Equation 2.4.26).

mixed singlet/triplet

irr. repr. Γ 𝑓 0
k𝑏 𝑓 1

k𝑏 𝑓 2
k𝑏 𝑓 3

k𝑏

A1 ̂𝑥0 𝑓 A1
𝑘𝑥𝑘𝑦

̂𝑥 𝑓 E𝑘𝑥
̂𝑦 𝑓 E𝑘𝑦

A2 ̂𝑥0 𝑓 A2
𝑘𝑥𝑘𝑦

̂𝑥 𝑓 E𝑘𝑦
− ̂𝑦 𝑓 E𝑘𝑥

B1 ̂𝑥0 𝑓 B1
𝑘𝑥𝑘𝑦

̂𝑥 𝑓 E𝑘𝑥
− ̂𝑦 𝑓 E𝑘𝑦

B2 ̂𝑥0 𝑓 B2
𝑘𝑥𝑘𝑦

̂𝑥 𝑓 E𝑘𝑦
̂𝑦 𝑓 E𝑘𝑥

E ̂𝑧 𝑓 E𝑘𝑥
, ̂𝑧 𝑓 E𝑘𝑦

ment to two-dimensional pairing functions, which means that only two-dimensional
momentum functions will be involved. This is why the contributions to ̂𝑧 components
in the one-dimensional representations have to vanish. To acquire a more intuitive un-
derstanding of the states, we translate the superposition of singlet and triplet in the B1
representation to a more transparent form, i.e.

̂𝑥0 𝑓 B1
𝑘𝑥𝑘𝑦

+ ̂𝑥 𝑓 E𝑘𝑦
+ ̂𝑦 𝑓 E𝑘𝑥

= ̂𝑥0 (cos(𝑘𝑥) − cos(𝑘𝑦)) + ̂𝑥 sin(𝑘𝑦) + ̂𝑦 sin(𝑘𝑥)

= (∣ ̃↑ ̃↓⟩ − ∣ ̃↓ ̃↑⟩) (cos(𝑘𝑥) − cos(𝑘𝑦)) − ∣ ̃↑ ̃↑⟩ (sin(𝑘𝑥) + 𝑖 sin(𝑘𝑦)) + ∣ ̃↓ ̃↓⟩ (sin(𝑘𝑥) − 𝑖 sin(𝑘𝑦)) ,
(3.4.47)

where we used the definition of the d-vector components (Equation 2.4.26). Note,
that (Equation 3.4.47) is not a normalized state.

3.5. Particle-hole condensates

The effective low-energy interaction, whose propertieswere discussed in (Section 3.3), may
not only give rise to superconducting Cooper pair states but also to particle-hole con-
densates like charge-density wave (CDW) and spin-density wave (SDW). In contrast to the
particle-particle condensates, these states usually exhibit a lower degree of symmetry
since they correspond to scattering processes described by the two-particle vertex with
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3.5. Particle-hole condensates

finitemomentum transfer, while the Cooper pairing partner states ∣k, 𝜎̃⟩, ∣−k, 𝜎̃ ′⟩ always
have zero total momentum. In the framework of a mean-field theory, the particle-hole
states correspond to the expectation value ⟨𝑐†

k𝑏𝜎̃𝑐k+q𝑏𝜎̃′⟩, which is characterized by the
momentum transfer q that determines the real space structure of the particle-hole state.

3.5.1. Mean-field theory of particle-hole instabilities

Once more, our starting point is the two-particle vertex describing the low-energy effec-
tive two-particle interaction. In terms of fields andmomentum/band/pseudospin basis,
the two-particle vertex and its couplings corresponding to the density-wave channel are
given by (see (Equation 3.3.1) and (Section 3.3.2))

𝑈𝑏1𝜎̃1𝑏2𝜎̃2𝑏′
1𝜎̃′

1𝑏′
2𝜎̃′

2
k1k2k′

1k′
2

𝑐†
k′

1𝑏′
1𝜎̃′

1
𝑐†
k′

2𝑏′
2𝜎̃′

2
𝑐k2𝑏2𝜎̃2

𝑐k1𝑏1𝜎̃1
∣k′

1=k1+k2−k′
2

𝑏′
1=𝑏1,𝑏′

2=𝑏2

= 𝑈𝑏𝜎̃1𝑏′𝜎̃2𝑏𝜎̃′
1𝑏′𝜎̃′

2
k,k′+q,k+q,k′ 𝑐†

k+q𝑏𝜎̃′
1
𝑐†
k′𝑏′𝜎̃′

2
𝑐k′+q𝑏′𝜎̃2

𝑐k𝑏𝜎̃1
. (3.5.1)

Similar to the (anomalous) expectation value of Cooper pairs in (Section 2.4), we
define the mean-fields

𝑔qk𝑏𝜎̃𝜎̃′ ≔ ⟨𝑐†
k𝑏𝜎̃𝑐k+q𝑏𝜎̃′⟩ 𝑔qk𝑏𝜎̃𝜎̃′ = ⟨𝑐†

k+q𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ , (3.5.2)

and associated fluctuations 𝛿qk𝑏𝜎̃𝜎̃′ ≔ 𝑐†
k𝑏𝜎̃𝑐k+q𝑏𝜎̃′−𝑔qk𝑏𝜎̃𝜎̃′ and (𝛿qk𝑏)†

𝜎̃𝜎̃′ = 𝑐†
k+q𝑏𝜎̃𝑐k𝑏𝜎̃′−

𝑔qk𝑏𝜎̃′𝜎̃ . By neglecting the terms quadratic in the fluctuations, one may approximate the
quartic operator terms in the interaction (Equation 3.5.1) by

𝑐†
k+q𝑏𝜎̃′

1
𝑐†
k′𝑏′𝜎̃′

2
𝑐k′+q𝑏′𝜎̃2

𝑐k𝑏𝜎̃1
≈ −𝑔qk𝑏𝜎̃1𝜎̃′

1
𝑔qk′𝑏′𝜎̃′

2𝜎̃2
+ 𝑔qk𝑏𝜎̃1𝜎̃′

1
𝑐†
k′𝑏′𝜎̃′

2
𝑐k′+q𝑏′𝜎̃2

+ 𝑔qk′𝑏′𝜎̃′
2𝜎̃2

𝑐†
k+q𝑏𝜎̃′

1
𝑐k𝑏𝜎̃1

. (3.5.3)

Taking the non-interacting part ℋ0 of the total Hamiltonian, characterized by the
single-particle dispersion 𝜉k𝑏𝜎̃ in pseudospin basis 𝜎̃ into account, themean-fieldHamil-
tonian for particle-hole states with momentum transfer q yields

ℋMF = ∑
k𝑏𝜎̃

𝜉k𝑏𝜎̃𝑐†
k𝑏𝜎̃𝑐k𝑏𝜎̃ +

1
2 ∑

k𝑏𝜎̃𝜎̃′
Δq
k𝑏𝜎̃𝜎̃′𝑐†

k𝑏𝜎̃𝑐k+q𝑏𝜎̃′ + Δq
k𝑏𝜎̃𝜎̃′𝑐†

k+q𝑏𝜎̃′𝑐k𝑏𝜎̃ − ℳ ,

(3.5.4)

where the scalar termquadratic inmean-fields is given byℳ = ∑k,k′,
𝑏,𝑏′

∑𝜎̃1,𝜎̃2
𝜎̃′

1,𝜎̃′
2

𝑔qk𝑏𝜎̃1𝜎̃′
1
𝑔qk′𝑏′𝜎̃′

2𝜎̃2
.

The charge/pseudospin gap is defined by the gap equation
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3. Mean-field theory in absence of spin rotation invariance

Δq
k𝑏𝜎̃1𝜎̃′

1
≔ 2 ∑

k′𝑏′𝜎̃2𝜎̃′
2

𝑈𝑏𝜎̃1𝑏′𝜎̃2𝑏𝜎̃′
1𝑏′𝜎̃′

2
k,k′+q,k+q,k′ 𝑔qk′𝑏′𝜎̃′

2𝜎̃2

and Δq
k𝑏𝜎̃1𝜎̃′

1
= 2 ∑

k′𝑏′𝜎̃2𝜎̃′
2

𝑈𝑏′𝜎̃′
2𝑏𝜎̃′

1𝑏′𝜎̃2𝑏𝜎̃1
k′,k+q,k′+q,k 𝑔qk′𝑏′𝜎̃′

2𝜎̃2
, (3.5.5)

that has to be solved self-consistently (cf. (Figure 2.6))with respect to the expectation
value 𝑔qk𝑏𝜎̃𝜎̃′ = Tr (𝑐†

k𝑏𝜎̃𝑐k+q𝑏𝜎̃′𝑒𝛽ℋMF) /Tr (𝑒𝛽ℋMF), which feeds back into the density-
wave mean-field Hamiltonian (Equation 3.5.4)

ℋMF + ℳ =
1
2 ∑

k𝑏𝜎̃𝜎̃′
C†
k𝑏q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜉k𝑏 ̃↑ 0 Δq
k𝑏 ̃↑ ̃↑ Δq

k𝑏 ̃↓ ̃↑
0 𝜉k𝑏 ̃↓ Δq

k𝑏 ̃↑ ̃↓ Δq
k𝑏 ̃↓ ̃↓

Δq
k𝑏 ̃↑ ̃↑ Δq

k𝑏 ̃↑ ̃↓ 𝜉k+q𝑏 ̃↑ 0
Δq
k𝑏 ̃↓ ̃↑ Δq

k𝑏 ̃↓ ̃↓ 0 𝜉k+q𝑏 ̃↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Ck𝑏q , (3.5.6)

with the particle-hole Nambu spinor for momentum transfer q (cf. [RRM07])

C†
k𝑏q ≔ (𝑐†

k𝑏 ̃↑, 𝑐
†
k𝑏 ̃↓, 𝑐

†
k+q𝑏 ̃↑, 𝑐

†
k+q𝑏 ̃↓)

𝑇
. (3.5.7)

Note that - despite the notation - the single-particle dispersion 𝜉k𝑏𝜎̃ must be indepen-
dent of the pseudospin index. If it isn’t, the spectrum will already be non-degenerate
in the normal state and we have to resort to a different basis to solve the gap equation
with respect to particular band indices 𝑏. Therefore, we may denote the single-particle
dispersion in matrix form by 𝜉k𝑏 = diag(𝜉k𝑏 ̃↑, 𝜉k𝑏 ̃↓). The eigenvalues of (Equation 3.5.6)
can be calculated analytically by exploiting the commutation of 𝜉k𝑏 with Δq

k𝑏𝜎̃𝜎̃′ and are
given by (cf. (Equation 2.4.17))

𝐸q
k𝑏 =

𝜉k𝑏 + 𝜉k+q𝑏

2 ±

√
√
√
√
⎷

(
𝜉k𝑏 − 𝜉k+q𝑏

2 )
2

+
Tr (Δq

k𝑏)† Δq
k𝑏

2 ±

√
√
√
⎷

⎛⎜⎜
⎝

Tr (Δq
k𝑏)† Δq

k𝑏
2

⎞⎟⎟
⎠

2

− det((Δq
k𝑏)† Δq

k𝑏) .

(3.5.8)

Assuming a unitary charge/spin gap with (Δq
k𝑏)† Δq

k𝑏 ∝ 𝜎0, the eigenvalue expression
for the mean-field Hamiltonian simplifies to (cf. [Ebe+16])

𝐸q
k𝑏 =

𝜉k𝑏 + 𝜉k+q𝑏

2 ±

√
√√
⎷

(
𝜉k𝑏 − 𝜉k+q𝑏

2 )
2

+
Tr (Δq

k𝑏)† Δq
k𝑏

2 . (3.5.9)

100



3.5. Particle-hole condensates

Spin/charge order that is characterized by a momentum transfer q that satisfies 2q =
G, where G is a reciprocal lattice vectors is called commensurate order. In contrast, if the
momentum transfer q is not related to a reciprocal vector by an integer, we talk about
incommensurate order. The matrix elements of the gap Δq

k𝑏 in terms of pseudospin can be
parameterized by

Δq
k𝑏𝜎̃𝜎̃′

!= (𝑠q𝜇
k𝑏 𝜎𝜇)

𝜎̃𝜎̃′ ⇔ 𝑠q0
k𝑏 =

Δq
k𝑏 ̃↑ ̃↑+Δq

k𝑏 ̃↓ ̃↓
2 𝑠q𝑥

k𝑏 =
Δq
k𝑏 ̃↑ ̃↓+Δq

k𝑏 ̃↓ ̃↑
2

𝑠q𝑦
k𝑏 =

−Δq
k𝑏 ̃↑ ̃↓+Δq

k𝑏 ̃↓ ̃↑
2𝑖 𝑠q𝑧

k𝑏 =
Δq
k𝑏 ̃↑ ̃↑−Δq

k𝑏 ̃↓ ̃↓
2

. (3.5.10)

𝑠q0
k𝑏 and 𝑠q𝑥,𝑦,𝑧

k𝑏 are sometimes called the singlet and triplet density-wave states [Nay00].
In case of SU(2)-symmetry, they correspond to the conventional charge-densitywave (CDW)
and spin-density wave (SDW) [GC10]. Shifting the expectation value (Equation 3.5.2)
by q provides the requirement 𝑔qk+q𝑏𝜎̃𝜎̃′ = ⟨𝑐†

k+q𝑏𝜎̃𝑐k+2q𝑏𝜎̃′⟩ = ⟨𝑐†
k+q𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ = 𝑔qk𝑏𝜎̃𝜎̃′

for commensurate particle-hole states. Hence, commensurate particle-hole states must
satisfy 𝑔qk+q𝑏𝜎̃𝜎̃′ = 𝑔qk𝑏𝜎̃𝜎̃′. Consequently, commensurate states must eventually be real
or purely imaginary (depending on the actual formfactor), while an incommensurate
state may feature any phase [Voj09]. In absence of spin-orbit coupling, the states Δq

k𝑏𝜎̃𝜎̃′

may be factorized into spin and momentum part, which is, however, not allowed in
our general case, that implies coupling of spin and spatial degrees of freedom [NJK91].
In contrast to the particle-particle states ⟨𝑐†

k𝑏𝜎̃𝑐†
−k𝑏𝜎̃′⟩ in (Section 3.4), that are essen-

tially determined and restricted by Fermi statistics, while establishing a one-to-one cor-
respondence between pseudospin structure and momentum dependency, the particle-
hole states ⟨𝑐†

k𝑏𝜎̃𝑐k+q𝑏𝜎̃′⟩ are now longer governed by Fermi statistics (cf. [Nay00]) and
may well be comprised of an odd momentum dependency in the singlet and an even
momentum dependency in the triplet part (in presence of SU(2) and inversion symme-
try) [Cha02; GC10].

3.5.2. Construction of particle-hole basis states

According to (Equation 3.5.1) the relevant couplings in the density-wave channel are given
by (switching to a basis in terms of fermionic fields 𝜙k𝑏𝜎̃)

𝑈𝑏𝜎̃1𝑏′𝜎̃2𝑏𝜎̃′
1𝑏′𝜎̃′

2
k,k′+q,k+q,k′ ̄𝜙k+q𝑏𝜎̃′

1
̄𝜙k′𝑏′𝜎̃′

2
𝜙k′+q𝑏′𝜎̃2

𝜙k𝑏𝜎̃1
. (3.5.11)

Analogously to the definition of particle-particle states (Equation 3.4.25), we define
the bilinear in the fields

𝑄q𝜇
k𝑏 = (𝜎𝜇)

𝜎̃𝜎̃′
̄𝜙k𝑏𝜎̃𝜙k+q𝑏𝜎̃′ 𝑄q𝜇

k𝑏 = (𝜎𝜇)
𝜎̃𝜎̃′

̄𝜙k+q𝑏𝜎̃𝜙k𝑏𝜎̃′ , (3.5.12)

with the Pauli matrices 𝜎𝜇 ∈ {𝜎0, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}. Again, it turns out to be helpful to inves-
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(a) (b) (c)

Figure 3.5.: The charge/spin order on a tetragonal lattice governed by D4h symmetry is in pres-
ence of spin-orbit coupling characterized by the superposition of charge order, re-
sulting in a shift of the Fermi surface, and spin order, that features a k-dependent
spin expectation value around the Fermi surface. The shown charge/spin orderings
correspond to A1g in (Figure 3.5a), A2g in (Figure 3.5a) and B2g in (Figure 3.5a)
irreducible representations as given in (Table 3.6). While the black line shows the
normal state Fermi surface, the red line represents the shifted Fermi surface of the
ordered state. The color map indicates the z-components of the spin expectation
value.

tigate the symmetries of this entity. Under inversion, time-reversal and rotation the bilinear
(Equation 3.5.12) behaves according to

inversion 𝑄q𝜇
k𝑏

𝑃̂⟶ 𝑄q𝜇
−k𝑏 (3.5.13a)

time-reversal 𝑄q𝜇
k𝑏

Θ̂⟶ 𝑔𝜇𝜈𝑄q𝜈
−k𝑏 (3.5.13b)

rotation 𝑄q𝜇
k𝑏

𝑅̂⟶ 𝒟𝜇𝜈
𝑔 𝑄q𝜈

ℛ(𝑛̂,𝜑)k𝑏 , (3.5.13c)

where 𝑔𝜇𝜈 = diag(+1, −1, −1, −1) and 𝒟𝜇𝜈
𝑔 = diag(1, ℛ( ̂𝑛, 𝜑)) with ℛ( ̂𝑛, 𝜑) ∈ ℝ3×3

being the SO(3) rotation representation in real space (cf. (Equation 2.4.39)). Again, we
assume that the rotation must affect both spatial and pseudospin degrees of freedom
since the spin is “frozen” to the lattice due to spin-orbit interaction. The bilinears (Equa-
tion 3.5.12) are used to parametrize the reduced two-particle vertex in the particle-hole
channel (Equation 3.5.11) by

𝑈𝑏𝜎̃1𝑏′𝜎̃2𝑏𝜎̃′
1𝑏′𝜎̃′

2
k,k′+q,k+q,k′ ̄𝜙k+q𝑏𝜎̃′

1
̄𝜙k′𝑏′𝜎̃′

2
𝜙k′+q𝑏′𝜎̃2

𝜙k𝑏𝜎̃1
= 𝑈q𝑏𝑏′𝜇𝜈

kk′ 𝑄q𝜇
k𝑏 𝑄q𝜈

k′𝑏′ , (3.5.14)

where 𝜇 parametrizes 𝜎̃1, 𝜎̃ ′
1 and 𝜈 accounts for 𝜎̃2, 𝜎̃ ′

2. Although less obvious than in
the particle-particle case, 𝑈q𝑏𝑏′𝜇𝜈

kk′ is Hermitian and may therefore be expanded in terms
of eigenmodes by
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3.5. Particle-hole condensates

𝑈q𝑏𝑏′𝜇𝜈
kk′ = ∑

𝑛
𝜉𝑛 𝑓 q𝑛

k𝑏𝜇 (𝑓 q𝑛
k′𝑏′𝜈)† , (3.5.15)

with eigenvalues 𝜉𝑛 and eigenvectors 𝑓 q𝑛
k𝑏𝜇. Every eigenvectormay be decomposed into

its singlet/charge and triplet/pseudospin components by 𝑓 qk𝑏 = ̂𝑥0𝑓 qk𝑏0 + ̂𝑥𝑓 qk𝑏𝑥 + ̂𝑦𝑓 qk𝑏𝑦 +

̂𝑧𝑓 qk𝑏𝑧. The structure of 𝑈q𝑏𝑏′𝜇𝜈
kk′ in absence/presence of SU(2)-symmetry and inversion

symmetry can be most easily investigated by expressing its elements in terms of the
coupling of the reduced two-particle vertex in the particle-hole channel. This is done
by collecting all matrix elements 𝜇, 𝜈 that contribute to a specific pseudospin sector of
the right-hand side in (Equation 3.5.14) (cf. to particle-particle case in appendix F). As
a reference, we state some exemplary elements and their relation to the particle-hole
couplings:

𝑈q𝑏𝑏′00
kk′ =

𝑈𝑏 ̃↑𝑏′ ̃↑𝑏 ̃↑𝑏′ ̃↑
k,k′+q,k+q,k′ + 𝑈𝑏 ̃↑𝑏′ ̃↓𝑏 ̃↓𝑏′ ̃↑

k,k′+q,k+q,k′ + 𝑈𝑏 ̃↓𝑏′ ̃↑𝑏 ̃↑𝑏′ ̃↓
k,k′+q,k+q,k′ + 𝑈𝑏 ̃↓𝑏′ ̃↓𝑏 ̃↓𝑏′ ̃↓

k,k′+q,k+q,k′

4 (3.5.16a)

𝑈q𝑏𝑏′33
kk′ =

𝑈𝑏 ̃↑𝑏′ ̃↑𝑏 ̃↑𝑏′ ̃↑
k,k′+q,k+q,k′ − 𝑈𝑏 ̃↑𝑏′ ̃↓𝑏 ̃↓𝑏′ ̃↑

k,k′+q,k+q,k′ − 𝑈𝑏 ̃↓𝑏′ ̃↑𝑏 ̃↑𝑏′ ̃↓
k,k′+q,k+q,k′ + 𝑈𝑏 ̃↓𝑏′ ̃↓𝑏 ̃↓𝑏′ ̃↓

k,k′+q,k+q,k′

4 (3.5.16b)

𝑈q𝑏𝑏′03
kk′ =

𝑈𝑏 ̃↑𝑏′ ̃↑𝑏 ̃↑𝑏′ ̃↑
k,k′+q,k+q,k′ − 𝑈𝑏 ̃↑𝑏′ ̃↓𝑏 ̃↓𝑏′ ̃↑

k,k′+q,k+q,k′ + 𝑈𝑏 ̃↓𝑏′ ̃↑𝑏 ̃↑𝑏′ ̃↓
k,k′+q,k+q,k′ − 𝑈𝑏 ̃↓𝑏′ ̃↓𝑏 ̃↓𝑏′ ̃↓

k,k′+q,k+q,k′

4 (3.5.16c)

𝑈q𝑏𝑏′12
kk′ =

−𝑈𝑏 ̃↑𝑏′ ̃↑𝑏 ̃↓𝑏′ ̃↓
k,k′+q,k+q,k′ + 𝑈𝑏 ̃↑𝑏′ ̃↓𝑏 ̃↑𝑏′ ̃↓

k,k′+q,k+q,k′ − 𝑈𝑏 ̃↓𝑏′ ̃↑𝑏 ̃↓𝑏′ ̃↑
k,k′+q,k+q,k′ + 𝑈𝑏 ̃↓𝑏′ ̃↓𝑏 ̃↑𝑏′ ̃↑

k,k′+q,k+q,k′

4𝑖 .
(3.5.16d)

Assuming full SU(2)-symmetry and letting the pseudospin degree of freedom be-
come the “natural” spin, which is accounted for by the relation (Equation 3.3.19)

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
𝛼1𝛼2𝛼′

1𝛼′
2

= 𝑉𝛼1𝛼2𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2
− 𝑉𝛼2𝛼1𝛼′

1𝛼′
2
𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
, (3.5.17)

we find

𝑈q𝑏𝑏′00
kk′ =

1
2𝑉𝑏𝑏′𝑏𝑏′

k,k′+q,k+q,k′ − 𝑉𝑏′𝑏𝑏𝑏′

k′+q,k,k+q,k′ 𝑈q𝑏𝑏′33
kk′ =

1
2𝑉𝑏𝑏′𝑏𝑏′

k,k′+q,k+q,k′ = 𝑈q𝑏𝑏′11
kk′ = 𝑈q𝑏𝑏′22

kk′ ,
(3.5.18)

while all other matrix elements 𝑈q𝑏𝑏′𝜇𝜈
kk′ with 𝜇 ≠ 𝜈 vanish. Hence, while SU(2)-

symmetry suppresses finite elementswith𝜇 = 0 and 𝜈 = 1, 2, 3, i.e. singlet/triplet mixing,
the presence of spin-orbit coupling is sufficient to introduce mixing of charge and spin or-
der. At the end of the previous section, it was alreadymentioned that particle-hole states
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3. Mean-field theory in absence of spin rotation invariance

are, in contrast to the particle-particle states, not restricted by a definite parity of their
singlet/triplet part. However, in order to preserve inversion symmetry, all finite sin-
glet and triplet components (in particular, in a mixed state due to spin-orbit coupling)
have to have the same (either odd or even) parity. This becomes apparent from (Equa-
tion 3.5.15) by considering a single eigenmode and requiring 𝑈q𝑏𝑏′𝜇𝜈

kk′ to be invariant
under spatial inversion. The loss of inversion symmetry (in addition to finite spin-orbit
interaction) further enables the mixing of odd and even parity eigenmodes in both sin-
glet and triplet components. In order to further investigate the possible charge-/spin-
order-parameters and in particular the transformation behavior of the eigenmodes 𝑓 q𝑛

k𝑏𝜇,
we limit our considerations to commensurate order with 2q = G. For instance, possi-
ble (in-plane) q-vectors on the tetragonal lattice with point group D4h are given by
q = (𝜋, 𝜋) and q = (𝜋, 0). While q = (𝜋, 𝜋) is invariant with respect to all opera-
tions of D4h up to a reciprocal lattice vector, i.e. q = (𝜋, 𝜋)

𝑔
⟶ q′ = q + G ∀𝑔 ∈ D4h,

q = (𝜋, 0) breaks the set of symmetry operations down to D2h since q = (𝜋, 0)
𝑔

⟶ q′ =
q + G ∀𝑔 ∈ D2h. Here, D4h and D2h are called the group of the wave-vector q = (𝜋, 𝜋)
and q = (𝜋, 0), respectively [DDJ08, Chap. 10.3.2]. Hence, the eigenmodes 𝑓 q𝑛

k𝑏𝜇 trans-
form according to any irreducible representation of the group of the wave vector q. The
possible charge-/spin order-parameters associated to q = (𝜋, 𝜋) on the tetragonal lat-
tice with D4h-symmetry are given in (Table 3.6). In order to visualize some of these
order parameters, we take a simple Hubbard Hamiltonian on the square lattice with
𝜉k𝜎̃ = −2𝑡 (cos(𝑘𝑥) + cos(𝑘𝑦))−4𝑡′ cos(𝑘𝑥) cos(𝑘𝑦)−𝜇 (𝜇 = −1.4𝑡 and 𝑡′ = −0.03𝑡) and
introduce a charge/spin gap Δq

k𝑏𝜎̃𝜎̃′, i.e.

ℋMF + ℳ = ∑
k𝑏𝜎̃

𝜉k𝑏𝜎̃𝑐†
k𝑏𝜎̃𝑐k𝑏𝜎̃ +

1
2 ∑

k𝑏𝜎̃𝜎̃′
Δq
k𝑏𝜎̃𝜎̃′𝑐†

k𝑏𝜎̃𝑐k+q𝑏𝜎̃′ + Δq
k𝑏𝜎̃𝜎̃′𝑐†

k+q𝑏𝜎̃′𝑐k𝑏𝜎̃ ,

(3.5.19)

that is, for instance, associated to the B1g representation

Δq
k𝑏𝜎̃𝜎̃′ ∝ (cos(𝑘𝑥) − cos(𝑘𝑦)) 𝜎0

𝜎̃𝜎̃′ + … + sin(𝑘𝑥) sin(𝑘𝑦)𝜎𝑧
𝜎̃𝜎̃′ , (3.5.20)

In (Figure 3.5), we see that the resulting Fermi surface is k-dependently shifted against
the normal state Fermi surface and the spin expectation value rotates along the Fermi
surface.

Summary and preview

In this chapter we explored the vast range of possible spin-orbit Hamiltonians featuring
either centrosymmetric or non-centrosymmetric spin-orbit interaction by means of the
invariant expansion. We discussed the symmetries and transformation behavior of the
resulting single-particle states and two-particle vertices and introduced the pseudospin

104
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basis and helical spin degrees of freedom. In particular, the choice of the single-particle
basis turned out to be essential for the reasonable definition of effective two-particle
vertices. Based on the properly defined two-particle interaction, we investigated the
mean-field theories for interactions in pseudospin and helical basis. The structure of
the allowed order parameters and gap functions that intertwine spatial and spin degrees
of freedom were derived. The following chapter will introduce the formal basics and
techniques to set up the perturbative renormalization group and functional renormalization
group in terms of functional path integrals. Wewill derive the second order perturbative
expansion as basic tool for the derivation of the effective two-particle interaction in the
weak-coupling limit and the flow equation of the two-particle vertex in the framework of
functional renormalization that enables us to explore the effective two-particle quanti-
ties for finite interactions aswell. Finally, we propose advanced schemes that employ the
previously discussed symmetries to pave the way towards high momentum resolution
and computational efficiency.
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3. Mean-field theory in absence of spin rotation invariance

Table 3.6.: Since the group of the wave vector q = (𝜋, 𝜋) is D4h, there are charge-/spin order-
parameters corresponding to ten irreducible representations. Due to finite spin-orbit
interaction, the unit vectors ̂𝑥, ̂𝑦 and ̂𝑧 represent the pseudospin structure of the two-
particle states and only combined transformation of all degrees of freedoms, i.e. mo-
mentum, band and pseudospin have to be performed in this classification. For the
notation of components we refer to (Equation 3.5.15) Note, that mixing of charge-
and spin-ordering only occurs for finite spin-orbit coupling. This classification of or-
der parameters applies to q → (0, 0), as well. The required basis functions are given
in (Table H.7). If inversion symmetry is broken and D4h → C4v, possible states are
formed by combining even and odd states from the left and right column of the same
row to comprise the corresponding irreducible representation of C4v. For example,
the B1 representation may be associated to the state ̂𝑧 𝑓 B2g

k + ̂𝑥0 𝑓 B1u
k .

charge/spin ordering

irr. repr. Γ 𝑓 0
k𝑏 𝑓 1

k𝑏 𝑓 2
k𝑏 𝑓 3

k𝑏

A1g ̂𝑥0 𝑓 A1g
k ̂𝑥 𝑓 Eg

𝑘𝑥𝑘𝑧
̂𝑦 𝑓 Eg

𝑘𝑦𝑘𝑧
̂𝑧 𝑓 A2g
k

A2g ̂𝑥0 𝑓 A2g
k ̂𝑥 𝑓 Eg

𝑘𝑦𝑘𝑧
− ̂𝑦 𝑓 Eg

𝑘𝑥𝑘𝑧
̂𝑧 𝑓 A1g
k

B1g ̂𝑥0 𝑓 B1g
k ̂𝑥 𝑓 Eg

𝑘𝑥𝑘𝑧
− ̂𝑦 𝑓 Eg

𝑘𝑦𝑘𝑧
̂𝑧 𝑓 B2g
k

B2g ̂𝑥0 𝑓 B2g
k ̂𝑥 𝑓 Eg

𝑘𝑦𝑘𝑧
̂𝑦 𝑓 Eg

𝑘𝑥𝑘𝑧
̂𝑧 𝑓 B1g
k

Eg ̂𝑥0 𝑓 Eg
𝑘𝑥𝑘𝑧

, ̂𝑥0 𝑓 Eg
𝑘𝑦𝑘𝑧

̂𝑥 𝑓 Eu
𝜋𝑘𝑧

̂𝑦 𝑓 Eu
𝜋𝑘𝑧

̂𝑧 𝑓 Eg
𝑘𝑥𝑘𝑧

, ̂𝑧 𝑓 Eg
𝑘𝑥𝑘𝑧

A1u ̂𝑥0 𝑓 A1u
k ̂𝑥 𝑓 Eu

𝑘𝑥𝑘𝑧
̂𝑦 𝑓 Eu

𝑘𝑦𝑘𝑧
̂𝑧 𝑓 A2u
k

A2u ̂𝑥0 𝑓 A2u
k ̂𝑥 𝑓 Eg

𝑘𝑦𝑘𝑧
− ̂𝑦 𝑓 Eg

𝑘𝑥𝑘𝑧
̂𝑧 𝑓 A1u
k

B1u ̂𝑥0 𝑓 B1u
k ̂𝑥 𝑓 Eg

𝑘𝑥𝑘𝑧
− ̂𝑦 𝑓 Eg

𝑘𝑦𝑘𝑧
̂𝑧 𝑓 B2u
k

B2u ̂𝑥0 𝑓 B2u
k ̂𝑥 𝑓 Eg

𝑘𝑦𝑘𝑧
̂𝑦 𝑓 Eg

𝑘𝑥𝑘𝑧
̂𝑧 𝑓 B1u
k

Eu ̂𝑥0 𝑓 Eu
𝑘𝑥𝑘𝑧

, ̂𝑥0 𝑓 Eu
𝑘𝑦𝑘𝑧

̂𝑥 𝑓 Eg
𝜋𝑘𝑧

̂𝑦 𝑓 Eg
𝜋𝑘𝑧

̂𝑧 𝑓 Eu
𝑘𝑥𝑘𝑧

, ̂𝑧 𝑓 Eu
𝑘𝑥𝑘𝑧
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many-body perturbation theory

All information about a quantum many-body system in thermodynamic equilibrium
described byHamiltonianℋwith a fixed average number of particles and a fixed average
energy is hidden in the associated partition function of the grand-canonical ensemble, which
is given by [Hua63; Tho13]

𝒵 = Tr 𝑒−𝛽ℋ = Tr 𝑒−𝛽(ℋ0+ℋ𝐼) . (4.0.1)

The trace refers to the sum over all possible microstates and the temperature of the
system is determined by 𝛽 = 1

𝑘𝐵𝑇 with 𝑘𝐵 ≈ 1.38 × 10−23 J K−1 being the Boltzmann con-
stant. The total Hamiltonian ℋ is split into the non-interacting (single-particle) part ℋ0
and the interacting part ℋ𝐼:

ℋ = ℋ0 + ℋ𝐼 = ∑
𝛼,𝛼′

(𝑡𝛼𝛼′ − 𝜇𝛿𝛼𝛼′)⏟⏟⏟⏟⏟⏟⏟
=ℎ𝛼𝛼′

𝑐†
𝛼𝑐𝛼′ + ∑

𝛼1,𝛼2
𝛼′

1,𝛼′
2

𝑈𝛼1,𝛼2,𝛼′
1,𝛼′

2
𝑐†
𝛼1

𝑐†
𝛼2

𝑐𝛼′
2
𝑐𝛼′

1
. (4.0.2)

Unfortunately, for an interacting system, the partition function is generally inacces-
sible since it is too hard to calculate. Henceforth, one has to rely on approximations to
deduce properties of the interacting system from the partition function. One of themost
frequently used approximations is based on the assumption of weak interactions and an
expansion of the exponential in terms of the interacting part.

4.1. Fermionic functional integral formalism

The trace in (Equation 4.0.1) can be evaluated bymeans of a complete set of (fermionic)
Fock space states |𝑛⟩ ∈ ⊕∞

𝑛=0ℱ𝑛, where ℱ𝑛 is the antisymmetrized n-particle Hilbert
space. Employing these states in the partition function, we find

𝒵 = Tr 𝑒−𝛽ℋ = ∑
𝑛

⟨𝑛| 𝑒−𝛽ℋ |𝑛⟩ . (4.1.1)

Since |𝑛⟩ contains any number of particles it is not an eigenstate of the Hamiltonian
ℋ, in general. In order to compute the partition function as a functional integral, we
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4. Generating functionals and quantum many-body perturbation theory

have to make use of a basis that simultaneously diagonalizes the creation and annihi-
lation operators of the Hamiltonian ℋ (Equation 4.0.2). The fermionic coherent states are
perfectly suited to serve this purpose and are defined by [NO88a]

∣𝜓⟩ = exp(− ∑
𝛼

𝜓𝛼𝑐†
𝛼) |0⟩ . (4.1.2)

The sum runs over all single-particle states 𝛼 and the components 𝜓𝛼 represent Grass-
mann numbers. Note, that the coherent state (Equation 4.1.2) may contain any number
of particles including the vacuum state |0⟩. The coherent state ∣𝜓⟩ is an eigenstate of
the annihilation operator 𝑐𝛼, because of 𝑐𝛼 ∣𝜓⟩ = 𝜓𝛼 ∣𝜓⟩ with the eigenvalues being the
Grassmann fields 𝜓𝛼. In contrast, the creation operator satisfies the adjoint equation
⟨𝜓∣ 𝑐†

𝛼 = ⟨𝜓∣ ̄𝜓𝛼. The coherent states feature a closure relation, i.e. they can be used to
form a resolution of identity:

𝟙 = ∫ ∏
𝛼

d ̄𝜓𝛼d𝜓𝛼𝑒− ∑𝛼 ̄𝜓𝛼𝜓𝛼 ∣𝜓⟩ ⟨𝜓∣ . (4.1.3)

Here, the integral sign has the meaning of a linear mapping without any analogy to
a Riemann integral. Inserting the closure relation of coherent states into the partition
function in terms of Fock states (Equation 4.1.1) results in

𝒵 = ∑
𝑛

⟨𝑛| ∫ ∏
𝛼

d ̄𝜓𝛼d𝜓𝛼𝑒− ∑𝛼 ̄𝜓𝛼𝜓𝛼 ∣𝜓⟩⟨𝜓∣ 𝑒−𝛽ℋ |𝑛⟩ . (4.1.4)

While the exponentials commute with ⟨𝑛∣𝜓⟩, the inner products of Fock states and
coherent states do not. It can be shown that ⟨𝑛∣𝜓⟩ ⟨𝜓∣𝑛⟩ can be brought into the form
⟨−𝜓∣𝑛⟩ ⟨𝑛∣𝜓⟩, where the new state ⟨−𝜓∣ = ⟨0| 𝑒− ∑𝛼 ̄𝜓𝛼𝑐𝛼 arises from the anticommuting
property of the Grassmann numbers. By exploiting the closure relation in Fock space to
get rid of the |𝑛⟩ states, we end up with

𝒵 = ∫ ∏
𝛼

d ̄𝜓𝛼d𝜓𝛼𝑒− ∑𝛼 ̄𝜓𝛼𝜓𝛼 ⟨−𝜓∣ 𝑒−𝛽ℋ ∣𝜓⟩ . (4.1.5)

Since 𝑒−𝛽ℋ resembles the time-evolution operator 𝑒−𝑖ℋ/ℏ𝑡, we introduce the imaginary
time parameter 𝜏 by means of the Wick rotation 𝜏 ≔ 𝑖 𝑡/ℏ [Wic54], which may vary in
the domain 𝜏 ∈ [0, 𝛽]. We adapt the idea of Feyman’s path integral [Fey48; Fey49] by
dividing the interval 𝜏 ∈ [0, 𝛽] into 𝑁 equally spaced slices of width 𝛿𝜏 ≔ 𝛽

𝑁 and using

𝑒−𝛽ℋ = lim𝑁→∞ (𝑒− 𝛽
𝑁 ℋ)

𝑁
. After inserting 𝑁 more closure relations (Equation 4.1.3) in

between these 𝑁 factors, we assume normal ordering in the Hamiltonian terms ℋ to ex-
ploit the property of the coherent states being the eigenstates of the operators 𝑐†

𝛼, 𝑐𝛼. Un-
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4.1. Fermionic functional integral formalism

fortunately, normal ordering will introduce an error 𝒪((𝛽/𝑁)2) due to the mixed terms
that arise in second order of the expansion of 𝑒− 𝛽

𝑁 ℋ [FHS05; CD97; AHM08]. However,
in the limit 𝑁 → ∞ this error is negligible. Note, that the Grassmann fields of the 𝑁 clo-
sure relations acquire an additional index depending on which time slice they’re associ-
ated to. In particular, the Grassmann fields are labeled with indices 𝑗 = 0, 1, 2, … , 𝑁 − 1,
where the “initial” and “final” coherent states ⟨−𝜓∣ and ∣𝜓⟩ are related and correspond to
the indices 𝜓 = 𝜓𝑁 and −𝜓 = −𝜓𝑁 = 𝜓0. To proceed, we need the inner product of two
coherent states ∣𝜓⟩ and ∣𝜓′⟩, which is given by ⟨𝜓∣𝜓′⟩ = 𝑒∑𝛼 ̄𝜓𝛼𝜓′

𝛼 and is used to evaluate
the overlap of the coherent states associated to consecutive time slices. By assembling
all time slices, calculating their overlaps and employing the eigenvalue equations of the
creation/annihilation operators of the Hamiltonian, we obtain the expression

𝒵 = lim
𝑁→∞

𝑁−1
∏
𝑗=0

∫ ∏
𝛼

d ̄𝜓𝑗
𝛼d𝜓𝑗

𝛼𝑒−𝛿𝜏 ∑𝑁−1
𝑗=0 (ℋ( ̄𝜓𝑗

𝛼,𝜓𝑗+1
𝛼 )+ 1

𝛿𝜏 ∑𝛼 ̄𝜓𝑗
𝛼(𝜓𝑗+1

𝛼 −𝜓𝑗
𝛼)) . (4.1.6)

The Hamiltonian ℋ is now written in terms of Grassmann fields instead of second
quantized operators. (Equation 4.1.6) shows that 𝒵 is calculated by sampling over all
possible states for any field 𝜓𝑗

𝛼 at some particular time slice 𝑗. This process is illustrated

by (Figure 4.1). By introducing the symbolic notation 𝜓𝑗+1
𝛼 −𝜓𝑗

𝛼
𝛿𝜏 ≔ 𝜕𝜏𝜓𝑗+1

𝛼 and taking
the limit 𝑁 → ∞, the fields 𝜓𝑗

𝛼 can be perceived as a function of 𝜏 and the exponent in
(Equation 4.1.6) can be expressed by a Riemann integral. Therefore, we end up with
the partition function (cf. [AS10])

𝒵 = ∫
𝜓(0)=−𝜓(𝛽)

𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆[ ̄𝜓,𝜓] with 𝒟 [ ̄𝜓, 𝜓] = lim
𝑁→∞

𝑁−1
∏
𝑗=0

∫ ∏
𝛼

d ̄𝜓𝑗
𝛼d𝜓𝑗

𝛼

and 𝑆 [ ̄𝜓, 𝜓] = ∫
𝛽

0
d𝜏 [∑

𝛼
( ̄𝜓𝛼(𝜏)𝜕𝜏𝜓𝛼(𝜏)) + ℋ( ̄𝜓𝛼′(𝜏), 𝜓𝛼(𝜏))] , (4.1.7)

with the action 𝑆 [ ̄𝜓, 𝜓]. Due to the structure of the path integral the Grassmann fields
in the first term of the action always involve the same single-particle state 𝛼, while the
fields in theHamiltonian ℋ may differ. Hence, theHamiltonian doesn’t have to be repre-
sented in the basis which diagonalizes the single-particle term since the creation/anni-
hilation operators simply “extract” thematching fields from the coherent states. Instead
of using the domain of imaginary time, we can equally well switch to the representation
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𝜏0 𝜏1 𝜏2
… … … 𝜏𝑗

… … … 𝜏𝑁

imaginary time slice 𝜏𝑗

G
ra
ss
m
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n
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ld
𝜓 𝛼

(𝜏
)

Figure 4.1.: The fermionic Grassmann fields along the imaginary time axis from 𝜏 = 0 to 𝜏 = 𝛽
have to be antiperiodic, 𝜓(𝜏0 = 0) = −𝜓(𝜏𝑁 = 𝛽) and are generally neither contin-
uous nor differentiable with respect to the imaginary time parameter 𝜏. Here, we
show three different exemplary and randomly chosen paths. Note, that this illustra-
tion incorrectly assumes that a Grassmann field is (in some way) representable by a
real number.

in frequency space by performing the transformation [Mat55]

𝜓𝛼(𝜏) =
1

√𝛽
∑
𝑛

𝜓𝛼𝑛𝑒𝑖𝜔𝑛𝜏 𝜓𝛼𝑛 =
1

√𝛽
∫

𝛽

0
d𝜏𝜓𝛼(𝜏)𝑒−𝑖𝜔𝑛𝜏 (4.1.8a)

̄𝜓𝛼(𝜏) =
1

√𝛽
∑
𝑛

̄𝜓𝛼𝑛𝑒−𝑖𝜔𝑛𝜏 ̄𝜓𝛼𝑛 =
1

√𝛽
∫

𝛽

0
d𝜏 ̄𝜓𝛼(𝜏)𝑒𝑖𝜔𝑛𝜏 , (4.1.8b)

with Matsubara frequencies 𝜔𝑛 = (2𝑛+1)𝜋
𝛽 due to the antisymmetry constraint 𝜓(0) =

−𝜓(𝛽). Plugging this representation into (Equation 4.1.7) we find that the “partial
derivative” term results in 𝑒−𝑖𝜔𝑛𝛿𝜏−1

𝛿𝜏 ≈ 1−𝑖𝜔𝑛𝛿𝜏−1
𝛿𝜏 = −𝑖𝜔𝑛 up to first order. The imag-

inary time integral then implicitly states energy conservation by ∫𝛽
0 d𝜏𝑒−𝑖(𝜔𝑛′−𝜔𝑛)𝜏 =

𝛽𝛿(𝜔𝑛′ − 𝜔𝑛) and ∫𝛽
0 d𝜏𝑒

−𝑖(𝜔𝑛′
1
+𝜔𝑛′

2
−𝜔𝑛1

−𝜔𝑛2)𝜏
= 𝛽𝛿(𝜔𝑛′

1
+ 𝜔𝑛′

2
− 𝜔𝑛1

− 𝜔𝑛2
). Assuming

a Hamiltonian with single-particle term ℎ𝛼𝛼′ and interaction 𝑉𝛼1𝛼2𝛼′
1𝛼′

2
(Equation 4.0.2),
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4.2. Generating functionals

the entire path integral is given by

𝒵 = ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆[ ̄𝜓,𝜓] where 𝒟 [ ̄𝜓, 𝜓] = lim
𝑁→∞

𝑁
∏
𝑛=0

∏
𝛼,𝛼′

d ̄𝜓𝛼𝑛d𝜓𝛼𝑛 (4.1.9a)

and 𝑆 [ ̄𝜓, 𝜓] = ∑
𝛼,𝛼′

∑
𝑛

̄𝜓𝛼′𝑛 (−𝑖𝜔𝑛𝛿𝛼𝛼′ + ℎ𝛼′𝛼) 𝜓𝛼𝑛

+
1
𝛽 ∑

𝛼1,𝛼2
𝛼′

1,𝛼′
2

∑
𝑛1,𝑛2
𝑛′

1,𝑛′
2

𝑉𝛼1𝛼2𝛼′
1𝛼′

2
̄𝜓𝛼′

1𝑛′
1

̄𝜓𝛼′
2𝑛′

2
𝜓𝛼2𝑛2

𝜓𝛼1𝑛1
. (4.1.9b)

The Jacobian of the transformation to frequency representation is unity [Sha94b].
Note, that we omitted the factor 𝑒−𝑖𝜔𝑛𝛿𝜏 in the quadratic and 𝑒−𝑖(𝜔𝑛1

+𝜔𝑛2)𝛿𝜏 in the quar-
tic term of the action, which occur due to the fact that the fields 𝜓𝛼 are evaluated at
infinitesimal later imaginary time than ̄𝜓𝛼 . These factors will, of course, cancel in the
limit 𝑁 → ∞ but may, however, become important if the path integral suffers from con-
vergence issues (cf. [Sha94b, Section III. C]). Note, that there is some arbitrariness to
the definition of the fields in Matsubara representation. Another popular choice for
the fields, in contrast to (Equation 4.1.8a) and (Equation 4.1.8b), is given by shifting
the normalization entirely to the summation resulting in 𝜓𝛼(𝜏) = 1

𝛽 ∑𝑛 𝜓𝛼𝑛𝑒𝑖𝜔𝑛𝜏 and

𝜓𝛼𝑛 = ∫𝛽
0 d𝜏𝜓𝛼(𝜏)𝑒−𝑖𝜔𝑛𝜏. As a consequence, both non-interacting and interacting part

of the action require a temperature dependent normalization which is 1
𝛽 for the non-

interacting and 1
𝛽3 for the interacting action (in contrast to (Equation 4.1.9b)).

4.2. Generating functionals

In the previous section, we derived the coherent state path integral formulation of the
partition function 𝒵 that featured an action of the form

𝑆 [ ̄𝜓, 𝜓] = 𝑆0 [ ̄𝜓, 𝜓] + 𝑆𝐼 [ ̄𝜓, 𝜓] , (4.2.1)

with the non-interacting part

𝑆0 [ ̄𝜓, 𝜓] = ∑
𝛼,𝛼′

∑
𝑛

̄𝜓𝛼′𝑛 (−𝑖𝜔𝑛𝛿𝛼𝛼′ + ℎ𝛼′𝛼) 𝜓𝛼𝑛 ≔ ( ̄𝜓, 𝐺−1
0 𝜓) , (4.2.2)

and the interacting part
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4. Generating functionals and quantum many-body perturbation theory

𝑆𝐼 [ ̄𝜓, 𝜓] =
1
𝛽 ∑

𝛼1,𝛼2
𝛼′

1,𝛼′
2

∑
𝑛1,𝑛2
𝑛′

1,𝑛′
2

𝑉𝛼1𝛼2𝛼′
1𝛼′

2
̄𝜓𝛼′

1𝑛′
1

̄𝜓𝛼′
2𝑛′

2
𝜓𝛼2𝑛2

𝜓𝛼1𝑛1
. (4.2.3)

We assumed that both single-particle Hamiltonian ℎ𝛼′𝛼 and interaction 𝑉𝛼1𝛼2𝛼′
1𝛼′

2
are

independent of frequency. The notation (… , …) represents the fermionic bilinear form
( ̄𝜓, 𝜓) = ∫𝛼

̄𝜓𝛼𝜓𝛼, where ∫𝛼 is the integral/sum over appropriate quantum numbers
[SH01]. The free propagator 𝐺0 is defined by its inversion and given by 𝐺0(𝑖𝜔𝑛, 𝛼, 𝛼′) =
(−𝑖𝜔𝑛𝛿𝛼𝛼′ + ℎ𝛼′𝛼)−1. Going to the basis ̄𝜙 ̃𝛼𝑛 = ̄𝜓𝛼𝑛𝑈†

̃𝛼𝛼, 𝜙 ̃𝛼𝑛 = 𝑈 ̃𝛼𝛼𝜓𝛼𝑛 (with 𝑈†
̃𝛼𝛼𝑈 ̃𝛼𝛼 =

𝟙) that diagonalizes the single-particle term, the free propagator can be written as

𝐺0(𝑖𝜔𝑛, ̃𝛼, ̃𝛼′) =
1

−𝑖𝜔𝑛 + 𝜉 ̃𝛼
𝛿 ̃𝛼 ̃𝛼′ with 𝜉 ̃𝛼𝛿 ̃𝛼 ̃𝛼′ = 𝑈 ̃𝛼′𝛼′ℎ𝛼′𝛼𝑈†

̃𝛼𝛼 . (4.2.4)

In order to compute correlation functions, we make use of several kinds of generating
functionals. Among the commonly used generating functionals are the generating func-
tionals 𝒢 and 𝒢𝑐 of the disconnected and connected Green functions, the generating
functional 𝒱 of amputated connected Green functions (also known as effective inter-
action [Sal99]) and the effective action Γ, which generates one-particle irreducible vertex
functions. A generating functional is defined by introducing additional source fields into
the partition function (Equation 4.1.9a). By deriving with respect to these source fields,
one can produce any correlation function. The generating functional of disconnected
Green functions is simply

𝒢 [ ̄𝜂, 𝜂] =
1
𝒵

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂) , (4.2.5)

where ̄𝜂, 𝜂 are the source fields, which are coupled to the “sampled” fields ̄𝜓, 𝜓 by
the additional terms ( ̄𝜂, 𝜓) and ( ̄𝜓, 𝜂). The functional integral is normalized with the
interacting partition function 𝒵 = ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆[ ̄𝜓,𝜓]. (Equation 4.2.5) is employed to
generate 𝑛-particle disconnected Green functions 𝐺(𝑛) by taking functional derivatives
with respect to the source fields [NO88a]

𝐺(2𝑛) (𝛼′
1, … , 𝛼′

𝑛; 𝛼1, … , 𝛼𝑛) = (−1)𝑛 ⟨𝜓𝛼′
1

… 𝜓𝛼′
𝑛

̄𝜓𝛼𝑛
… ̄𝜓𝛼1

⟩

=
𝛿2𝑛𝒢 [ ̄𝜂, 𝜂]

𝛿 ̄𝜂𝛼′
1

… 𝛿 ̄𝜂𝛼′
𝑛
𝛿𝜂𝛼𝑛

… 𝛿𝜂𝛼1

∣
𝜂=𝜂̄=0

. (4.2.6)

The 𝑛 prefactors of (−1) originate from anticommuting Grassmann fields and func-
tional derivative operators, i.e. 𝛿𝜂 ( ̄𝜓, 𝜂) = − ̄𝜓. Taking higher order correlation func-
tions of (Equation 4.2.6), it becomes apparent that these are comprised of disconnected
parts. The linked cluster theorem states that the connected parts of 𝐺(2𝑛) are obtained by
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collecting terms that are proportional to 𝑛 [NO88a]. This requires the generating func-
tional of connected Green functions 𝒢𝑐 [ ̄𝜂, 𝜂] to be defined as

𝒢𝑐 [ ̄𝜂, 𝜂] = ln [
𝒵
𝒵0

𝒢 [ ̄𝜂, 𝜂]] , (4.2.7)

with 𝒵0 = ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆0[ ̄𝜓,𝜓] being the non-interacting partition function. The gen-
erating functionals of disconnected and connected Green functions serve as a prerequi-
site for the definition of the effective action Γ, which is defined in terms of 𝒢𝑐 and given
by [PS10]

Γ [ ̄𝜙, 𝜙] = −𝒢𝑐 [ ̄𝜂, 𝜂] − ( ̄𝜙, 𝜂) − ( ̄𝜂, 𝜙) + ( ̄𝜙, 𝐺−1
0 𝜙) . (4.2.8)

The effective action depends on the average fields ̄𝜙 and 𝜙, which are

𝜙 = ⟨𝜓⟩𝜂,𝜂̄ = −
𝛿𝒢𝑐 [ ̄𝜂, 𝜂]

𝛿 ̄𝜂
̄𝜙 = ⟨ ̄𝜓⟩𝜂,𝜂̄ =

𝛿𝒢𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂 (4.2.9)

The notation ⟨…⟩𝜂,𝜂̄ indicates an expectation value that is not obtained by setting the
source fields to zero after the functional derivative but by keeping them finite. (Equa-
tion 4.2.8) and (Equation 4.2.9) show that the definition of the effective action Γ [ ̄𝜙, 𝜙]
amounts to the Legendre transform of the generating functional of the connected Green
functions 𝒢𝑐 [ ̄𝜂, 𝜂]. The former source fields 𝜂, ̄𝜂 now depend on the average fields ̄𝜙,
𝜙. Their dependency ̄𝜂 = ̄𝜂 (𝜙) and 𝜂 = 𝜂 ( ̄𝜙) is determined by inversion of (Equa-
tion 4.2.9). The one-particle irreducible vertex functions are straightforwardly given by

𝛾(2𝑛) (𝛼′
1, … , 𝛼′

𝑛; 𝛼1, … , 𝛼𝑛) =
𝛿(2𝑛)Γ [ ̄𝜙, 𝜙]

𝛿 ̄𝜙𝛼′
1

… 𝛿 ̄𝜙𝛼′
𝑛
𝛿𝜙𝛼𝑛

… 𝛿𝜙𝛼1

∣
𝜙̄=𝜙=0

(4.2.10)

The set of flow equations that are derived in (Chapter 6) are the ones for the one-
particle irreducible vertex functions, which are entirely given in terms of the effective
action (Equation 4.2.8) [Met+12a]. As a useful ingredient for the formulation of this
flow equation, we derive the reciprocity relations and the tree expansion, which relate cer-
tain functional derivatives of the generating functional of connected Green functions to
functional derivatives of the effective action [KBS10]. The first derivative of the effective
action (Equation 4.2.8) with respect to the field 𝜙𝛼 results in
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𝛿Γ [ ̄𝜙, 𝜙]
𝛿𝜙𝛼

= − ∫
𝛽

𝛿𝒢𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂𝛽

𝛿 ̄𝜂𝛽

𝛿𝜙𝛼
− ∫

𝛽

𝛿𝒢𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂𝛽

𝛿𝜂𝛽

𝛿𝜙𝛼
− ∫

𝛽
̄𝜙𝛽 (−

𝛿𝜂𝛽

𝛿𝜙𝛼
)

− ∫
𝛽

𝛿 ̄𝜂𝛽

𝛿𝜙𝛼
𝜙𝛽 − ∫

𝛽
̄𝜂𝛽 (−

𝛿𝜙𝛽

𝛿𝜙𝛼
)

⏟⏟⏟⏟⏟
=𝛿(𝛽−𝛼)

+ ∫
𝛽

∫
𝛾

̄𝜙𝛽 (𝐺−1
0 )𝛽𝛾 (−

𝛿𝜙𝛾
𝛿𝜙𝛼

)
⏟⏟⏟⏟⏟

=𝛿(𝛾−𝛼)

. (4.2.11)

Employing the definition (Equation 4.2.9) of the fields, we see that the first four terms
cancel. The analogous derivative with respect to the adjoint field ̄𝜙𝛼 completes the reci-
procity relations [NO88b]

𝛿Γ [ ̄𝜙, 𝜙]
𝛿𝜙 = ̄𝜂 − (𝐺−1

0 )𝑇 ̄𝜙
𝛿Γ [ ̄𝜙, 𝜙]

𝛿 ̄𝜙
= −𝜂 + 𝐺−1

0 𝜙 (4.2.12)

To find the lowest order tree expansion, we employ the identities 𝛿(𝛼 − 𝛽) = 𝛿𝜙𝛼
𝛿𝜙𝛽

, 0 =
𝛿𝜙̄𝛼
𝛿𝜙𝛽

, the definition of fields (Equation 4.2.9) and the Legendre correspondence between
𝒢𝑐 [ ̄𝜂, 𝜂] and the effective action. The resulting second functional derivatives can be
expressed in matrix form by (cf. [Met+12b])

∫
𝛾

⎛⎜⎜⎜⎜
⎝

𝛿2𝒢𝑐

𝛿𝜂̄𝛾𝛿𝜂𝛼
−

𝛿2𝒢𝑐

𝛿𝜂𝛾𝛿𝜂𝛼

−
𝛿2𝒢𝑐

𝛿𝜂̄𝛾𝛿𝜂̄𝛼

𝛿2𝒢𝑐

𝛿𝜂𝛾𝛿𝜂̄𝛼

⎞⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≔𝐺(2)
𝑐

⎛⎜⎜⎜
⎝

𝛿2Γ
𝛿𝜙̄𝛽𝛿𝜙𝛾

+ (𝐺−1
0 )𝛽𝛾

𝛿2Γ
𝛿𝜙𝛽𝛿𝜙𝛾

𝛿2Γ
𝛿𝜙̄𝛽𝛿𝜙̄𝛾

𝛿2Γ
𝛿𝜙𝛽𝛿𝜙̄𝛾

− (𝐺−1
0 )𝑇

𝛽𝛾

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≔𝛾𝛾𝛾(2)

= 𝟙 ⋅ 𝛿 (𝛼 − 𝛽) ,

(4.2.13)

which shows i.a. that the two-leg one-particle irreducible vertex function amounts to
the negative of the irreducible self-energy.

4.3. Berezin integrals and Wick’s theorem

The 𝑛-particle correlation functions (Equation 4.2.6) we encountered in the previous
section can in general not be computed directly since the interacting partition func-
tion 𝒵 is unknown. Therefore, we have to rely on perturbative expansions of the parti-
tion function in order to calculate these correlation functions approximately (see (Sec-
tion 4.4)). As an essential ingredient of these perturbative expansion, wewill encounter
non-interacting expectation values involving any number of fields, which have the form

⟨𝜓𝛼′
1

… 𝜓𝛼′
𝑛

̄𝜓𝛼𝑛
… ̄𝜓𝛼1

⟩
0

with ⟨…⟩ =
1

𝒵0
∫ 𝒟 [ ̄𝜓, 𝜓] … 𝑒−𝑆0[ ̄𝜓,𝜓] , (4.3.1)
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4.3. Berezin integrals and Wick’s theorem

and can be calculated analytically. Taking the functional integral measure (Equa-
tion 4.1.9a) and the definition of the free action (Equation 4.1.9b) into account, the in-
tegral is given by

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆0[ ̄𝜓,𝜓] = lim
𝑁→∞

𝑁
∏
𝑛=0

∏
𝛼,𝛼′

∫d ̄𝜓𝛼,𝑛d𝜓𝛼,𝑛𝑒− ∑𝛼,𝛼′ ∑𝑛 ̄𝜓𝛼′𝑛𝐺−1
0 (𝑖𝜔𝑛,𝛼′,𝛼)𝜓𝛼𝑛 ,

(4.3.2)

which is an infinite product of integrals of the form

∫d ̄𝜓d𝜓𝑒−𝑎 ̄𝜓𝜓 = ∫d ̄𝜓d𝜓 (1 − 𝑎 ̄𝜓𝜓) = −𝑎 ∫d ̄𝜓d𝜓 (−𝜓 ̄𝜓) = 𝑎 with 𝑎 ∈ ℂ .
(4.3.3)

We used ∫d𝜓 𝜓 = 1 and ∫d𝜓 1 = 0 [Ber66; MS10a; Zin05] and the additional minus
sign originates from the anticommutation of Grassmann fields and their differentials.
The generalization of the Berezin integral to a set of fields 𝜓 = (𝜓1, 𝜓2, … , 𝜓𝑁), ̄𝜓 =
( ̄𝜓1, ̄𝜓2, … , ̄𝜓𝑁) and 𝐴 ∈ ℂ𝑁×𝑁 is (cf. [Str14])

𝑁
∏
𝑛=1

∫d ̄𝜓𝑛d𝜓𝑛 𝑒− ∑𝑁
𝑖𝑗 ̄𝜓𝑖𝐴𝑖𝑗𝜓𝑗 = det𝐴 . (4.3.4)

Note, that in this case the expansion of the exponential does not terminate at linear
but at 𝑁-th order. This is because at 𝑛-th order we have terms of 2𝑛 fields and there are
2𝑁 different Grassmann fields available. Therefore, at 𝑁-th order every field appears
exactly once in the finite terms, while at 𝑁 + 1-th order some fields must appear twice
in every term, which therefore vanish. Furthermore, only the terms that feature every
field exactly once survive the integration. The structure of the coefficients 𝐴𝑖𝑗 resembles
the Laplacian determinant expansion [AW05]. For instance, for 𝑁 = 2 we find

𝑒− ∑𝑁=2
𝑖𝑗 ̄𝜓𝑖𝐴𝑖𝑗𝜓𝑗 = 1 − ̄𝜓1𝐴11𝜓1 − ̄𝜓1𝐴12𝜓2 − ̄𝜓2𝐴21𝜓1 − ̄𝜓2𝐴22𝜓2

+
1
2

̄𝜓1𝜓1 ̄𝜓2𝜓2 2 (𝐴11𝐴22 − 𝐴21𝐴12) . (4.3.5)

Next, we have to consider additional linear terms in the exponent to take care of the
source fields necessary to produce non-vacuum expectation values. Hence, we now
have the Berezin integral

𝑁
∏
𝑛=1

∫d ̄𝜓𝑛d𝜓𝑛 𝑒− ∑𝑁
𝑖𝑗 ̄𝜓𝑖𝐴𝑖𝑗𝜓𝑗+ ̄𝜓𝑖𝜂𝑖+𝜂̄𝑖𝜓𝑖 with . (4.3.6)

115



4. Generating functionals and quantum many-body perturbation theory

Since the Berezin integral exhibits translation invariance, we can easily solve this inte-
gral by a shift of variables [Wip09]. First, we introduce the additional term ∑𝑖𝑗 ̄𝜂𝑖𝐴−1

𝑖𝑗 𝜂𝑗,
which transforms the exponent into

𝑁
∑
𝑖𝑗

̄𝜓𝑖𝐴𝑖𝑗𝜓𝑗 + ̄𝜓𝑖𝜂𝑖 + ̄𝜂𝑖𝜓𝑖 + ̄𝜂𝑖𝐴−1
𝑖𝑗 𝜂𝑗 − ̄𝜂𝑖𝐴−1

𝑖𝑗 𝜂𝑗 =
𝑁

∑
𝑖𝑗

( ̄𝜓 − ̄𝜂𝐴−1)𝑖 𝐴𝑖𝑗 (𝜓 − 𝐴−1𝜂)𝑗 − ̄𝜂𝑖𝐴−1
𝑖𝑗 𝜂𝑗 .

The Jacobian for the new variables ̄𝜓 − ̄𝜂𝐴−1 and 𝜓 − 𝐴−1𝜂 is unity. Therefore, we can
simply rename the fields to be integrated, employ (Equation 4.3.4) and find

𝑁
∏
𝑛=1

∫d ̄𝜓𝑛d𝜓𝑛 𝑒− ∑𝑁
𝑖𝑗 ̄𝜓𝑖𝐴𝑖𝑗𝜓𝑗+ ̄𝜓𝑖𝜂𝑖+𝜂̄𝑖𝜓𝑖 = det𝐴 𝑒− ∑𝑁

𝑖𝑗 𝜂̄𝑖𝐴−1
𝑖𝑗 𝜂𝑗 . (4.3.7)

Now,we take the limit𝑁 → ∞ and resort to the notation for inner products introduced
in (Section 4.2), resulting in

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−( ̄𝜓,𝐴𝜓)+( ̄𝜓,𝜂)+(𝜂̄,𝜓) = det𝐴 𝑒(𝜂̄,𝐴−1𝜂) . (4.3.8)

This integral represents the origin of all non-interacting fermionic correlation func-
tions. We give it a try by ditching some source fields ̄𝜂, 𝜂 by several functional deriva-
tives on both sides of (Equation 4.3.8) and setting the source fields to zero afterwards.
Any odd number of functional derivatives with respect to ̄𝜂, 𝜂 will produce zero. For an
even number, for instance, 2, we obtain

𝛿2

𝛿 ̄𝜂𝛼𝛿𝜂𝛼′
∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−( ̄𝜓,𝐴𝜓)+( ̄𝜓,𝜂)+(𝜂̄,𝜓)∣

𝜂̄=𝜂=0
=

𝛿2

𝛿 ̄𝜂𝛼𝛿𝜂𝛼′
det𝐴 𝑒(𝜂̄,𝐴−1𝜂)∣

𝜂̄=𝜂=0

⇔ ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−( ̄𝜓,𝐴𝜓) ̄𝜓𝛼′𝜓𝛼 = det𝐴 𝐴−1
𝛼′,𝛼 . (4.3.9)

Note, that in this notation the functional derivative acts as

𝛿
𝛿𝜂𝛼

( ̄𝜓, 𝜂) =
𝛿

𝛿𝜂𝛼
∫

𝛼′
̄𝜓𝛼′𝜂𝛼′ = − ∫

𝛼′
̄𝜓𝛼′

𝛿𝜂𝛼′

𝛿𝜂𝛼⏟
𝛿(𝛼−𝛼′)

= − ̄𝜓𝛼 . (4.3.10)

The generalization of (Equation 4.3.9) to an arbitrary (but even) number of fields
̄𝜓𝛼′, 𝜓𝛼 involves a sum of terms given by elements of 𝐴−1, whose sign is determined by

the necessary permutations of functional derivatives and features all distinct pairs of
the fields ̄𝜓𝛼′, 𝜓𝛼. Getting back to (Equation 4.3.1), we have the result of Wick’s theorem
[Wic50]
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4.4. Perturbation theory

⟨𝜓𝛼′
1

… 𝜓𝛼′
𝑛

̄𝜓𝛼𝑛
… ̄𝜓𝛼1

⟩
0

= ∑
all pairs

(−1)𝑛𝒫 ⟨𝜓𝛼′
𝒫(1)

̄𝜓𝛼𝒫(1)
⟩

0
… ⟨𝜓𝛼′

𝒫(𝑛)
̄𝜓𝛼𝒫(𝑛)

⟩
0

, (4.3.11)

where the sign is determined by the number of permutations of anticommuting fields
(anticommutations).

4.4. Perturbation theory

The starting point for perturbative calculations of correlation functions are the gener-
ating functionals in (Section 4.2), which are defined in terms of the functional integral
partition function 𝒵 . For instance, the generating functional of disconnected Green
functions (Equation 4.2.5)

𝒢 [ ̄𝜂, 𝜂] =
1
𝒵

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆0[ ̄𝜓,𝜓]−𝑆𝐼[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂) , (4.4.1)

basically consists of the interacting partition function 𝒵 and features the external
sources ̄𝜂, 𝜂 coupled to the fields ̄𝜓, 𝜓. Before we proceed, we will (Equation 4.1.9b)
and introduce a more general andmore convenient notation for the non-interacting and
interacting action. The free action is given by

𝑆0 [ ̄𝜓, 𝜓] = ∫
(𝐾,𝛼,𝛼′)

(𝐺−1
0 (𝐾))𝛼𝛼′

̄𝜓𝐾𝛼𝜓𝐾𝛼′ , (4.4.2)

including the single-particle propagator

(𝐺0(𝐾))−1
𝛼𝛼′ = −𝑖𝜔𝑛𝛿𝛼𝛼′ + ℎ𝛼′𝛼(k) . (4.4.3)

Here, we defined the multiindex 𝐾 = (𝑖𝜔𝑛,k) denoting both Matsubara frequency
𝑖𝜔𝑛 and momentum k. In correspondence with (Section 3.3), any remaining quantum
numbers like sublattice, orbital and spin 𝛼 = (𝑠, 𝑜, 𝜎) are hidden in the multiindex 𝛼. We
assume ℎ𝛼′𝛼 to be independent of frequency. The interacting action is taken to consist of
a two-particle interaction, only, which is

𝑆𝐼 [ ̄𝜓, 𝜓] =
1
𝛽 ∫(𝐾1,𝛼1),(𝐾2,𝛼2)

(𝐾′
1,𝛼′

1),(𝐾′
2,𝛼′

2)
Γ(𝐾1, 𝐾2, 𝐾′

1, 𝐾′
2)𝛼1𝛼2,𝛼′

1𝛼′
2

̄𝜓𝐾′
1𝛼′

1
̄𝜓𝐾′

2𝛼′
2
𝜓𝐾2𝛼2

𝜓𝐾1𝛼1
. (4.4.4)

Every integral ∫(𝐾,𝛼) indicates the summation (𝑖𝜔𝑛, 𝑠, 𝑜, 𝜎) and integration (k) of ap-
propriate quantum numbers and is normalized by (cf. (Equation 4.1.8a) and (Equa-
tion 4.1.8b))
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4. Generating functionals and quantum many-body perturbation theory

∫
(𝐾,𝛼)

= ∑
𝜔𝑛

1
Ω ∫

k∈Ω
∑

𝑠
∑

𝑜
∑
𝜎

, (4.4.5)

where Ω denotes the volume of the 1st Brillouin zone. Since the only correlation
functions, which can be evaluated exactly are the non-interacting ones, we rely on an
expansion of the exponential of the interacting part of the action. Hence, the partition
function is expressed as

𝒵 = ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆[ ̄𝜓,𝜓] = ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆0[ ̄𝜓,𝜓]𝑒−𝑆𝐼[ ̄𝜓,𝜓] = 𝒵0 ⟨𝑒−𝑆𝐼[ ̄𝜓,𝜓]⟩
0

, (4.4.6)

whereweused the definition of the non-interacting expectation value (Equation 4.3.1).
The perturbation expansion amounts to a functional Taylor expansion of the exponential
in terms of the interacting action

𝒵
𝒵0

= ⟨
∞
∑
𝜈=0

(−1)𝜈

𝜈! (𝑆𝐼 [ ̄𝜓, 𝜓])𝜈⟩
0

. (4.4.7)

Before we check out the first few orders of the series by plugging in the action (Equa-
tion 4.4.4), the indices of Γ(𝐾1, 𝐾2, 𝐾′

1, 𝐾′
2)𝛼1𝛼2𝛼′

1𝛼′
2
are reduced to Γ𝛼1𝛼2𝛼′

1𝛼′
2
for the sake

of simplicity. Up to second order in 𝑆𝐼, (Equation 4.4.7) is given by

𝒵
𝒵0

= ⟨1⟩0 −
1
𝛽 ∫𝛼1,𝛼2

𝛼′
1,𝛼′

2

Γ𝛼1𝛼2𝛼′
1𝛼′

2
⟨ ̄𝜓𝛼′

1
̄𝜓𝛼′

2
𝜓𝛼2

𝜓𝛼1
⟩

0

+
1

2𝛽2 ∫𝛼1,𝛼2
𝛼′

1,𝛼′
2

∫𝛼3,𝛼4
𝛼′

3,𝛼′
4

Γ𝛼1𝛼2𝛼′
1𝛼′

2
Γ𝛼3𝛼4𝛼′

3𝛼′
4

⟨ ̄𝜓𝛼′
1

̄𝜓𝛼′
2
𝜓𝛼2

𝜓𝛼1
̄𝜓𝛼′

3
̄𝜓𝛼′

4
𝜓𝛼4

𝜓𝛼3
⟩

0
+ 𝒪 (𝛽−3) .

(4.4.8)

By virtue of Wick’s theorem (Equation 4.3.11), the non-interacting averages are evalu-
ated to yield all possible contractions of the four and eight fields, respectively. In first
order, we find

⟨ ̄𝜓𝛼′
1

̄𝜓𝛼′
2
𝜓𝛼2

𝜓𝛼1
⟩

0
= ⟨ ̄𝜓𝛼′

2
𝜓𝛼2

⟩
0

⟨ ̄𝜓𝛼′
1
𝜓𝛼1

⟩
0

− ⟨ ̄𝜓𝛼′
1
𝜓𝛼2

⟩
0

⟨ ̄𝜓𝛼′
2
𝜓𝛼1

⟩
0

. (4.4.9)

The contractions of the second order term including eight fields result in 4! = 24
terms, which are given by

118



4.4. Perturbation theory

(a) (b)

Figure 4.2.: The two vacuum diagrams in (Figure 4.2a) correspond to the first order contribu-
tions to the perturbative expansion of the partition function. Here, the wavy line
represents the two-particle interaction Γ𝛼1𝛼2𝛼′

1𝛼′
2
and all solid lines are free fermionic

propagators. All external legs are indicated by colored dots. The expansion of the 2-
point function in first order features two connected and irreducible diagrams, given
in (Figure 4.2b) (cf. [AGD12, Sec. 3 p.113]).

⟨ ̄𝜓𝛼′
1

̄𝜓𝛼′
2

̄𝜓𝛼′
3

̄𝜓𝛼′
4
𝜓𝛼2

𝜓𝛼1
𝜓𝛼3

𝜓𝛼4
⟩

0
= ⟨ ̄𝜓𝛼′

4
𝜓𝛼2

⟩
0

⟨ ̄𝜓𝛼′
3
𝜓𝛼1

⟩
0

⟨ ̄𝜓𝛼′
2
𝜓𝛼3

⟩
0

⟨ ̄𝜓𝛼′
1
𝜓𝛼4

⟩
0

− ⟨ ̄𝜓𝛼′
3
𝜓𝛼2

⟩
0

⟨ ̄𝜓𝛼′
4
𝜓𝛼1

⟩
0

⟨ ̄𝜓𝛼′
2
𝜓𝛼3

⟩
0

⟨ ̄𝜓𝛼′
1
𝜓𝛼4

⟩
0

+ … 22 more terms … . (4.4.10)

Taking (Equation 4.3.9) into account, we find that the expectation values involving two
fields are matrix elements of the free propagator 𝐺0, i.e.

⟨ ̄𝜓𝛼′𝜓𝛼⟩0 =
1

𝒵0
∫ 𝒟 [ ̄𝜓, 𝜓] ̄𝜓𝛼′𝜓𝛼𝑒−𝑆0[ ̄𝜓,𝜓] = (𝐺0(𝐾))𝛼′𝛼 . (4.4.11)

To go beyond the vacuum diagrams, we employ the generating functional of discon-
nected Green functions (Equation 4.2.5) to generate the 2-point (disconnected) Green
function and its expansion:

𝐺(2) (𝜇′
1, 𝜇1) = − ⟨𝜓𝜇′

1
̄𝜓𝜇1

⟩ =
1
𝒵

∫ 𝒟 [ ̄𝜓, 𝜓] 𝜓𝜇′
1

̄𝜓𝜇1
𝑒−𝑆[ ̄𝜓,𝜓] =

𝒵0
𝒵

⟨𝜓𝜇′
1

̄𝜓𝜇1
𝑒−𝑆𝐼[ ̄𝜓,𝜓]⟩

0
,

(4.4.12)

Up to linear order of the expansion we find the following contributions:
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𝒵0
𝒵

⟨𝜓𝜇′
1

̄𝜓𝜇1
𝑒−𝑆𝐼[ ̄𝜓,𝜓]⟩

0
=

𝒵0
𝒵

⎛⎜
⎝

⟨𝜓𝜇′
1

̄𝜓𝜇1
⟩

0
−

1
𝛽 ∫𝛼1,𝛼2

𝛼′
1,𝛼′

2

Γ𝛼1,𝛼2,𝛼′
1,𝛼′

2
⟨𝜓𝜇′

1
̄𝜓𝜇1

̄𝜓𝛼′
1

̄𝜓𝛼′
2
𝜓𝛼2

𝜓𝛼1
⟩

0
+ …⎞⎟

⎠

=
𝒵0
𝒵

⎛⎜
⎝

(𝐺0(𝐾))𝜇′
1,𝜇1

−
1
𝛽 ∫𝛼1,𝛼2

𝛼′
1,𝛼′

2

Γ𝛼1,𝛼2,𝛼′
1,𝛼′

2
(⟨ ̄𝜓𝜇′

1
𝜓𝜇1

⟩
0

⟨ ̄𝜓𝛼′
1
𝜓𝛼1

⟩
0

⟨ ̄𝜓𝛼′
2
𝜓𝛼2

⟩
0

− ⟨ ̄𝜓𝜇′
1
𝜓𝛼2

⟩
0

⟨ ̄𝜓𝛼′
1
𝜓𝛼1

⟩
0

⟨ ̄𝜓𝛼′
2
𝜓𝜇1

⟩
0

+ … 4 more terms…)) . (4.4.13)

The six terms in linear order comprise two disconnected and four connected dia-
grams. However, taking the prefactor 𝒵0

𝒵 and its expansion in terms of vacuumdiagrams
into account, it turns out that all disconnected parts are canceled. The connected dia-
grams can be further divided into reducible and irreducible ones, where the irreducible
diagrams - produced by means of the effective action - cannot be separated into two parts
by cutting a single propagator line [AGD12; Kle16]. The diagrammatic representation
of first order vacuum graphs and connected (and irreducible) parts of the 2-point func-
tion are shown in (Figure 4.2).

Summary and preview

This chapter introduced the formalism of the fermionic functional path integral, the
concept of generating functionals and the perturbative techniques required to tackle
quantum many-body Hamiltonians by means of the perturbative and, in particular, the
functional renormalization group. In order to properly define the fermionic path inte-
gral, wemade use of Grassmann fields and fermionic coherent states. Based on the path
integral formulation of the partition function in imaginary time, we defined the gen-
erating functionals of the disconnected and connected Green functions, as well as the
effective action, which is used to produce one-particle irreducible vertex functions. We
recapitulated Wick’s theorem as an essential ingredient for the evaluation of all terms
and diagrams appearing in the perturbative expansion. The next chapter about the per-
turbative renormalization group motivates the Cooper instability from a diagrammatic
point of view and shows how to deal with the corresponding logarithmic divergence of
the particle-particle bubble by introducing a cutoff into the theory.
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In (Chapter 2), it was already mentioned, that the superconducting state is impossible
to obtain by means of perturbation theory. However, we skipped the details of how and
why the perturbative expansion eventually breaks down when approaching the super-
conducting phase, which is what we will catch up on in the following chapter. At any
order, the perturbative expansion of the two-particle vertex (cf. (Section 4.4)) involves
diagrams, which have a ladder-like structure and are shown in (Figure 5.1). The se-
lection of these diagrams is justified if they represent (eventually for some particular
momentum channel of the two-particle vertex) the dominant contribution to the two-
particle vertex, which indeed turns out to be the case for external legs carrying opposite
momentum and spin. The divergence of this series indicates onset of the Cooper instabil-
ity and the breakdown of perturbation theory. The sum inside the bracket of the second
equality in (Figure 5.1), which corresponds to the irreducible part of the two-particle
vertex, can be evaluated as geometric series. Assuming the most simple one-band model
with spin rotation invariance, the bare interaction 𝑉0 and employing the rules for the
graphical representation of propagators and vertices stated in (Section 4.4) we canwrite
the sum as (cf. (Equation 5.1.14))

𝑈Ladd
kk′ = 1 + ∫

𝑖𝜔,q
𝐺0(𝑖𝜔,q)𝑉0𝐺0(−𝑖𝜔, −q)

+ ∫
𝑖𝜔,q

∫
𝑖𝜔′,q′

𝐺0(𝑖𝜔,q)𝑉0𝐺0(−𝑖𝜔, −q)𝐺0(𝑖𝜔′,q′)𝑉0𝐺0(−𝑖𝜔′, −q′) + …

=
1

1 − 𝑉0 ∫𝑖𝜔,q 𝐺0(𝑖𝜔,q)𝐺0(−𝑖𝜔, −q)
, (5.0.1)

where we attached the momenta k, −k and −k′, k′ to the external legs. Using (Equa-
tion 4.4.3) for a single band 𝐺0(𝑖𝜔,q) = (𝑖𝜔𝑛 + 𝜉q)−1 with single-particle dispersion 𝜉q
we find a logarithmic divergence ∝ log (𝛽𝑊) for zero temperature (𝛽 = (𝑘𝐵𝑇)−1) upon
performing the momentum integration, where 𝑊 represents the upper band edge of
the dispersion 𝜉q. At the critical temperature, perturbation theory breaks down, which
means that one cannot obtain the superconducting state by perturbative expansion to
any finite order and that it is not adiabatically connected to the (non-interacting limit) of
the Fermi liquid. Similar subtleties occur in the single-particle properties [Mat12, Chap.
15.4].

To avoid running into the logarithmic divergence of particle-particle terms in the per-
turbation series, one can introduce an infrared cutoff Ω0 and treat the residual degrees
of freedom below the cutoff by means of a renormalization group procedure. Hence,
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= + + + + …

= ( 1 + + + … )

Figure 5.1.: The perturbative expansion of the irreducible two-particle vertex involves - among
many others - types of diagrams that have ladder-like structure. These diagrams drive
the Cooper instability and their sum eventually diverges at the critical temperature.

the perturbative renormalization group method consists of two steps (cf. [RKS10])

1. Allmodes outside a narrow range of energies specified by infrared cutoff Ω0 about
the Fermi energy are integrated out perturbatively resulting in an effective inter-
action at energy Ω0.

2. The remaining low-energy modes are treated using the logarithmic RG technique,
which thereby identifies the leading superconducting order in the Cooper insta-
bility

This procedure can be viewed as a generalization of the Kohn-Luttinger effect [KL65]
described in (Section 2.3), where the evaluation of the Lindhard function revealed the
generation of an attractive effective interaction in non-zero angularmomentum channels
frombare repulsive interactions. Although the combination of these twoprocedures has
first been systematically worked out by Raghu and Kivelson [RKS10; RK11; Rag+12],
similar approaches have already been used some time ago [Hlu99]. More recently,
this methodology has been extended to take the effects of multiple bands [RKK10b;
Cho+13], atomic spin-orbit coupling [SRS14; Sca16] and inversion symmetry breaking
[VW11; WV14] into account.

The first section of the chapter will set up the general formalism for a second order
perturbation theory of the two-particle vertex and present the resulting effective inter-
action for SU(2)-invariant and SU(2)-broken Hamiltonian with or without inversion
symmetry. Simplifying the result to the example of the single-band Hubbard, we eval-
uate the particle-particle loops explicitly to find the logarithmic divergence discussed
above and to properly define the infrared cutoff. The second section introduces the log-
arithmic renormalization group, that makes use logarithmic divergence and identifies
the dominant pairing channel by calculating the renormalization group flow of the non-
zero angular momentum channels in the effective Cooper pair interaction. Finally, the
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5.1. Perturbative expansion of the irreducible two-particle vertex

last section tries to compare the results of the perturbative renormalization group with
the methodology of the random phase approximation by working out the similarities
and differences between the two methods.

5.1. Perturbative expansion of the irreducible two-particle
vertex

The first step of the perturbative renormalization group procedure is to identify and
calculate the perturbative corrections to the one-particle irreducible (1PI) two-particle
vertex 𝑈𝛼1𝛼2𝛼′

1𝛼′
2
(up to second order). To find these perturbative corrections we con-

sider the 4-point function

⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆⟩ =
𝛿4𝒢 [ ̄𝜂, 𝜂]

𝛿 ̄𝜂𝜅𝛿 ̄𝜂𝜆𝛿𝜂𝜇𝛿𝜂𝜈
∣
𝜂=𝜂̄=0

, (5.1.1)

where the expectation value is the fully interacting one, which is generated by the
functional 𝒢 [ ̄𝜂, 𝜂] (Equation 4.2.6). The source fields 𝜂, ̄𝜂 have to be set to zero after
performing the functional derivative. In more detail, the 4-point function is given by
the functional integral

⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆⟩ =
1
𝒵

∫ 𝒟 [ ̄𝜓, 𝜓] ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆𝑒−𝑆[ ̄𝜓,𝜓] , (5.1.2)

with𝒵 being the interactingpartition function. The action 𝑆 [ ̄𝜓, 𝜓] (cf. (Equation 4.4.2)
and (Equation 4.4.4)) is defined by

𝑆 [ ̄𝜓, 𝜓] = 𝑆0 [ ̄𝜓, 𝜓] + 𝑆𝐼 [ ̄𝜓, 𝜓] = ∫
(𝐾,𝛼,𝛼′)

(𝐺−1
0 (𝐾))𝛼𝛼′

̄𝜓𝐾𝛼𝜓𝐾𝛼′

+
1
𝛽 ∫(𝐾1,𝛼1),(𝐾2,𝛼2)

(𝐾′
1,𝛼′

1),(𝐾′
2,𝛼′

2)
Γ(𝐾1, 𝐾2, 𝐾′

1, 𝐾′
2)𝛼1𝛼2,𝛼′

1𝛼′
2

̄𝜓𝐾′
1𝛼′

1
̄𝜓𝐾′

2𝛼′
2
𝜓𝐾2𝛼2

𝜓𝐾1𝛼1
,

(5.1.3)

with the multiindex 𝐾 = (𝑖𝜔𝑛, 𝐾) comprising Matsubara frequency and momentum.
Here, 𝐺−1

0 (𝐾) specifies the inverse free propagator given by (Equation 4.4.3)

(𝐺0(𝐾))−1
𝛼𝛼′ = −𝑖𝜔𝑛𝛿𝛼𝛼′ + ℎ𝛼′𝛼(k) . (5.1.4)

Exactly like in (Section 4.4), the perturbative series is given by calculating the non-
interaction average of the four fields and the exponential of the interacting part of the
action, which is
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5. Perturbative renormalization group

1
𝒵

∫ 𝒟 [ ̄𝜓, 𝜓] ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆𝑒−𝑆[ ̄𝜓,𝜓] =
𝒵0
𝒵

⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆𝑒−𝑆𝐼[ ̄𝜓,𝜓]⟩
0

. (5.1.5)

Since we don’t intend to perform any resummation of an infinite series, in contrast to
what we will do in (Section 5.4) in the context of the random phase approximation (RPA),
we are content with the first few orders of the expansion. For the sake of brevity, we
hide both particle indices (𝐾, 𝛼) → 𝛼 in a single one and up to third order we find

⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆𝑒−𝑆𝐼[ ̄𝜓,𝜓]⟩
0

≈ ⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆⟩
0

−
1
𝛽 ∫𝜇1,𝜈1

𝜅1,𝜆1

Γ𝜇1𝜈1𝜅1𝜆1
⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆 ̄𝜓𝜇1

̄𝜓𝜈1
𝜓𝜅1

𝜓𝜆1
⟩

0

+
1

2𝛽2 ∫𝜇1,𝜈1
𝜅1,𝜆1

∫𝜇2,𝜈2
𝜅2,𝜆2

Γ𝜇1𝜈1𝜅1𝜆1
Γ𝜇2𝜈2𝜅2𝜆2

⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆 ̄𝜓𝜇1
̄𝜓𝜈1

𝜓𝜅1
𝜓𝜆1

̄𝜓𝜇2
̄𝜓𝜈2

𝜓𝜅2
𝜓𝜆2

⟩
0

−
1

6𝛽3 ∫𝜇1,𝜈1
𝜅1,𝜆1

∫𝜇2,𝜈2
𝜅2,𝜆2

∫𝜇3,𝜈3
𝜅3,𝜆3

Γ𝜇1𝜈1𝜅1𝜆1
Γ𝜇2𝜈2𝜅2𝜆2

Γ𝜇3𝜈3𝜅3𝜆3

× ⟨ ̄𝜓𝜇 ̄𝜓𝜈𝜓𝜅𝜓𝜆 ̄𝜓𝜇1
̄𝜓𝜈1

𝜓𝜅1
𝜓𝜆1

̄𝜓𝜇2
̄𝜓𝜈2

𝜓𝜅2
𝜓𝜆2

̄𝜓𝜇3
̄𝜓𝜈3

𝜓𝜅3
𝜓𝜆3

⟩
0

+ 𝒪 (𝛽−4) .
(5.1.6)

EmployingWick’s theorem in (Section 4.3) to the non-interacting correlation functions,
we find that the number of contractions quickly increases from zeroth up to third order.
Only expectation values with the same number of 𝜓 and ̄𝜓 fields provide a finite con-
tribution, because we assume absence of spontaneous symmetry breaking. In fact, there
are two contractions in zeroth order, 24 in first order, 720 in second order and 40 320 in
third order. Fortunately, these numbers comprise all disconnected, connected, reducible
and irreducible diagrams, while we are only interested in the connected and irreducible
ones. The disconnected ones are canceled by the prefactor 𝒵0

𝒵 in (Equation 5.1.5), whose
expansion was discussed in (Section 4.4). The number of disconnected, connected, re-
ducible and irreducible diagrams is given in (Table 5.1). Here, we will focus on the
second order of the expansion, denoted by 𝛿Γ(2)

𝜇𝜈𝜅𝜆, that features five inequivalent di-
agrams out of 80 irreducible terms, which all have the same weight. Note, that these
terms correspond to connected Green functions (cf. (Section 4.2)) and we have to re-
move the propagators at the (four) external legs to find the irreducible vertex part. The
irreducible vertices of the five terms in second order are hence given by

𝛿Γ(2)
𝜇𝜈𝜅𝜆 =

1
𝛽 ∫𝜇′,𝜈′

𝜅′,𝜆′
(𝐺0)𝜇′𝜅′(𝐺0)𝜈′𝜆′ (Γ𝜇𝜈𝜅′𝜆′Γ𝜇′𝜈′𝜅𝜆 + Γ𝜇𝜇′𝜆′𝜅Γ𝜈′𝜈𝜆𝜅′

+Γ𝜇𝜈′𝜅′𝜆Γ𝜇′𝜈𝜆′𝜅 + Γ𝜇𝜈′𝜆𝜅′Γ𝜇′𝜈𝜅𝜆′ − Γ𝜇𝜇′𝜅𝜆′Γ𝜈′𝜈𝜆𝜅′) . (5.1.7)

The different signs of the terms originate from the number of anticommutations nec-
essary to get the required arrangement of fields in (Equation 5.1.6). Their diagrammatic
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5.1. Perturbative expansion of the irreducible two-particle vertex

Table 5.1.: Although the number of contractions increases like (2𝑛)! with order 𝑛 of the expan-
sion of the two-particle vertex, the number of inequivalent irreducible diagrams is
manageable. The number of spinful diagrams is even lower than the spinless version
since the bare spinful two-particle interaction exhibits a higher degree of symmetry.
In particular, the spinless two-particle interaction is symmetric onlywith respect to ex-
change of both pairs of fields at a time, i.e. Γ𝜈1𝜇1𝜅1𝜆1

= Γ𝜇1𝜈1𝜆1𝜅1
. In contrast, the spinful

vertex features the fermionic antisymmetry relations, like i.a. Γ𝜈1𝜇1𝜅1𝜆1
= −Γ𝜇1𝜈1𝜅1𝜆1

.

order 𝑛 total disconnected connected
reducible irreducible

total inequivalent
spinless spinful

0 2 2 0 0 0 0
1 24 20 0 4 1 1
2 720 512 128 80 5 3

representation is given in (Figure 5.2) and the order in which they appear corresponds
to the order of terms in (Equation 5.1.7). The visual representation reveals that the
first term in (Equation 5.1.7) is the particle-particle contribution while the second to fifth
terms are the particle-hole terms. All five diagrams have the same weight and hence con-
tribute to the second order correction with the same absolute prefactor. So far, we didn’t
assume any particular properties or symmetries of the pair interaction Γ𝜇𝜈𝜅𝜆. Since we
are interested in spinful, fermionic models, we a assume a pair interaction that satisfies
(cf. (Equation 3.3.4) and [AGD12, Sec. 13, p. 115])

𝑈𝜇𝜈𝜅𝜆 = −𝑈𝜈𝜇𝜅𝜆 = −𝑈𝜇𝜈𝜆𝜅 = +𝑈𝜈𝜇𝜆𝜅 . (5.1.8)

Inserting this pair interaction into the second order perturbative correction (Equa-
tion 5.1.7) by substituting Γ𝜇𝜈𝜅𝜆 with 𝑈𝜇𝜈𝜅𝜆, we find for the terms inside the bracket

𝑈𝜇𝜈𝜅′𝜆′𝑈𝜇′𝜈′𝜅𝜆 + 𝑈𝜇𝜇′𝜆′𝜅𝑈𝜈′𝜈𝜆𝜅′ + 𝑈𝜇𝜈′𝜅′𝜆𝑈𝜇′𝜈𝜆′𝜅 + 𝑈𝜇𝜈′𝜆𝜅′𝑈𝜇′𝜈𝜅𝜆′ − 𝑈𝜇𝜇′𝜅𝜆′𝑈𝜈′𝜈𝜆𝜅′

= 𝑈𝜇𝜈𝜅′𝜆′𝑈𝜇′𝜈′𝜅𝜆 + 2𝑈𝜇𝜇′𝜅𝜆′𝑈𝜈𝜈′𝜆𝜅′ − 2𝑈𝜇𝜈′𝜆𝜅′𝑈𝜈𝜇′𝜅𝜆′ . (5.1.9)

In the first line we employed the antisymmetry (Equation 5.1.8) to the first interac-
tion of the third term, such that it coincides with the second term, and to the second
interaction of the fifth term, such that it equals the fourth term. Henceforth, the second
order perturbative correction for a spinful fermionic pair-interaction yields (cf. [Sha94a;
BBD03])

125



5. Perturbative renormalization group

Figure 5.2.: There are five diagrams, which contribute to the second order perturbation expan-
sion of the two-particle vertex (Equation 5.1.7). Note, that all five diagrams have the
same weight, i.e. they contribute with the same (absolute value of the) prefactor.
These five diagrams correspond to the perturbative expansion of a SU(2)-invariant
bare pair interaction (cf. (Equation 5.2.1)).

𝛿𝑈(2)
𝜇𝜈𝜅𝜆 =

1
𝛽 ∫𝜇′,𝜈′

𝜅′,𝜆′
(𝐺0)𝜇′𝜅′(𝐺0)𝜈′𝜆′ (

1
2𝑈𝜇𝜈𝜅′𝜆′𝑈𝜇′𝜈′𝜅𝜆 − 𝑈𝜇𝜈′𝜆𝜅′𝑈𝜈𝜇′𝜅𝜆′ + 𝑈𝜇𝜇′𝜅𝜆′𝑈𝜈𝜈′𝜆𝜅′) .

(5.1.10)

The diagrammatic representation of the spinful perturbative correction is given in
(Figure 5.3b). Some of the literature refers to these contributions as BCS, ZS’ and ZS
terms [Sha94a;WV14]. Note, that 𝛿𝑈(2)

𝜇𝜈𝜅𝜆 must fulfill the antisymmetry relations (Equa-
tion 5.1.8) as well. In order to evaluate the perturbative correction 𝛿𝑈(2)

𝜇𝜈𝜅𝜆, several steps
are necessary. First of all, we reimplement the full index structure by substitution of all
indices according to 𝛼 → (𝐾, 𝛼) = (𝑖𝜔,k, 𝛼) (cf. (Equation 5.1.3)). Next, we focus on the
free propagators (𝐺0)𝜇′𝜅′ and (𝐺0)𝜈′𝜆′ given by (Equation 5.1.4). To be able to conve-
niently calculate the integrals over the inner propagators - the loop integrals - we change
to a basis, where the propagators assume diagonal a form in all indices. The represen-
tation of propagators and pair-interaction 𝑈𝜇𝜈𝜅𝜆 in the new basis is found by means of
a unitary transformation of the fields (cf. (Equation 3.3.33a) and (Equation 3.3.33b))

𝜙k ̃𝛼 ≔ ∑
𝛼

𝑈 ̃𝛼𝛼
k 𝜓k𝛼 ̄𝜙k ̃𝛼 ≔ ∑

𝛼
̄𝜓k𝛼𝑈𝛼 ̃𝛼

k , (5.1.11a)

with 𝑈 ̃𝛼𝛼
k being the eigenvectors of ℎ𝛼′𝛼(k) (cf. (Equation 5.1.4)). The collective in-

dices 𝛼 in orbital and ̃𝛼 in band spacemay feature such indices as sublattice, orbital, spin
and band, pseudospin and helicity (cf. (Section 3.3.1) and (Section 3.3.2)). We use the
notation

𝜉k ̃𝛼 = 𝑈 ̃𝛼𝛼′

k ℎ𝛼′𝛼(k) (𝑈 ̃𝛼𝛼
k )† , (5.1.12)

where 𝜉k ̃𝛼 is diagonal and corresponds to the single-particle spectrum. Henceforth,
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𝑈

𝜇

𝜈

𝜅

𝜆

= − 𝑈

𝜇

𝜈

𝜆

𝜅

(a)

𝛿𝑈(2)

𝜇

𝜈

𝜅

𝜆

= 𝑈+1
2

𝜇

𝜈

𝑈

𝜅

𝜆

𝑈

−

𝜇 𝜆

𝑈

𝜈 𝜅

𝑈

+

𝜇 𝜅

𝑈

𝜈 𝜆
(b)

Figure 5.3.: The fermionic spinful pair interaction is antisymmetric with respect to exchange of
the ingoing or outgoing particle indices, which is reflected by its diagram in (Fig-
ure 5.3a). The spinful fermionic bare pair interaction reduces the number of dia-
grams that contribute to the perturbative correction to the 1PI two-particle vertex
in second order to three diagrams, which consist of one particle-particle and two
particle-hole terms (Figure 5.3b). Note, that the antisymmetry of 𝛿𝑈(2) is ensured
by the opposite signs of direct and crossed particle-hole terms.

the propagators are, in diagonal form, given by

(𝐺0(𝑖𝜔,k)) ̃𝛼 =
1

−𝑖𝜔𝑛 + 𝜉k ̃𝛼
. (5.1.13)

At this point, we are left with two integrals only in (Equation 5.1.10), because the
propagators introduce 𝛿𝜇′𝜅′ and 𝛿𝜈′𝜆′ due to their diagonal form. We assume the bare
interaction 𝑈𝜇𝜈𝜅𝜆 to be independent of frequency and fix the external legs of the vertices
at zero frequency by 𝑖𝜔𝜇 = 0 = 𝑖𝜔𝜈 = 𝑖𝜔𝜅 = 𝑖𝜔𝜆. However, an scattering process at
any order represented by 𝛿𝑈(2)

𝜇𝜈𝜅𝜆 or 𝑈𝜇𝜈𝜅𝜆 must be subject to energy/frequency conser-
vation. This has profound consequences for the propagators and results in important
differences for particle-particle terms in contrast to particle-hole terms. The frequency
balance for the particle-particle term (the first term) in (Equation 5.1.10) is summarized
by 𝑖𝜔𝜇 +𝑖𝜔𝜈 = 0 = 𝑖𝜔𝜅′ +𝑖𝜔𝜆′ resulting in 𝑖𝜔𝜅′ = −𝑖𝜔𝜆′ and 𝑖𝜔𝜇′ +𝑖𝜔𝜈′ = 0 = 𝑖𝜔𝜅 +𝑖𝜔𝜆
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resulting in 𝑖𝜔𝜇′ = −𝑖𝜔𝜈′. Since the propagators require 𝛿𝜇′𝜅′ and 𝛿𝜈′𝜆′, we are left
with a single frequency 𝑖𝜔 in the loop integrals with opposite sign in both propagators,
i.e. 𝑖𝜔𝜇′ = −𝑖𝜔𝜈′. Analogous considerations apply to the particle-hole terms resulting,
however, in a single frequency with same sign in both propagators, i.e. 𝑖𝜔𝜇′ = 𝑖𝜔𝜈′.
Finally, any vertex must obey momentum conservation, which results in characteristic
momentum transfers for every diagram and a single momentum integration for the
loop integrals. For instance, the particle-particle term features the momentum trans-
fer k ≔ k𝜅′ = k𝜇 + k𝜈 − k𝜆′, while the particle-hole terms have k ≔ k𝜇′ = k𝜅 − k𝜈 + k𝜈′

and k ≔ k𝜇′ = k𝜅 − k𝜇 + k𝜈′ respectively. Employing these preparations, we end up
with the second order correction (Equation 5.1.10) that looks like

(𝛿𝑈(2)) ̃𝛼1 ̃𝛼2 ̃𝛼′
1 ̃𝛼′

2
k1k2k′

1k′
2

=
1
𝛽 ∑

𝑖𝜔𝑛

∑
̃𝛼, ̃𝛼′

∫
dk
Ω

⎛⎜⎜⎜⎜
⎝

1
2

𝑈 ̃𝛼1 ̃𝛼2 ̃𝛼 ̃𝛼′

k1,k2,k1+k2−k,k𝑈 ̃𝛼 ̃𝛼′ ̃𝛼′
1 ̃𝛼′

2
k1+k2−k,k,k′

1,k′
2

(𝑖𝜔𝑛 + 𝜉k1+k2−k ̃𝛼)(−𝑖𝜔𝑛 + 𝜉k ̃𝛼′)

−
𝑈 ̃𝛼1 ̃𝛼 ̃𝛼′

2 ̃𝛼′

k1,k,k′
2,k1−k′

2+k𝑈 ̃𝛼2 ̃𝛼′ ̃𝛼′
1 ̃𝛼

k2,k1−k′
2+k,k′

1,k

(−𝑖𝜔𝑛 + 𝜉k1−k′
2+k ̃𝛼′)(−𝑖𝜔𝑛 + 𝜉k ̃𝛼) +

𝑈 ̃𝛼1 ̃𝛼′ ̃𝛼′
1 ̃𝛼

k1,−k1+k′
1+k,k′

1,k𝑈 ̃𝛼2 ̃𝛼 ̃𝛼′
2 ̃𝛼′

k2,k,k′
2,−k1+k′

1+k

(−𝑖𝜔𝑛 + 𝜉−k1+k′
1+k ̃𝛼′)(−𝑖𝜔𝑛 + 𝜉k ̃𝛼)

⎞⎟⎟⎟⎟
⎠

,

(5.1.14)

where the indices ̃𝛼 and ̃𝛼′ sum over any band, pseudospin or helicity indices. Assum-
ing the orbital/spin interaction 𝑈𝛼1𝛼2𝛼′

1𝛼′
2

k1,k2,k′
1,k′

2
, the bare interaction in band space is given

by

𝑈 ̃𝛼1 ̃𝛼2 ̃𝛼′
1 ̃𝛼′

2
k1,k2,k′

2,k′
2

= ∑
𝛼1𝛼2
𝛼′

1,𝛼′
2

𝑢 ̃𝛼1𝛼1
k1

𝑢 ̃𝛼2𝛼2
k2

𝑈𝛼1𝛼2𝛼′
1𝛼′

2
k1,k2,k′

1,k′
2
𝑢𝛼′

2 ̃𝛼′
2

k′
2

𝑢𝛼′
1 ̃𝛼′

1
k′

1
, (5.1.15)

with 𝑢 ̃𝛼𝛼
k being the eigenvectors of ℎ𝛼′𝛼(k). The Matsubara sums with fermionic fre-

quencies 𝜔𝑛 = (2𝑛+1)𝜋
𝛽 (see (Equation 4.1.8b)) are evaluated by means of contour inte-
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5.1. Perturbative expansion of the irreducible two-particle vertex

gration (cf. e.g. [AS10, Chap. 4.2][BF04, Chap. 15.2]) and give 1

1
𝛽 ∑

𝑖𝜔𝑛

1
(𝑖𝜔𝑛 + 𝜉q−k ̃𝛼)(−𝑖𝜔𝑛 + 𝜉k ̃𝛼′) =

tanh (𝛽𝜉q−k ̃𝛼/2) + tanh (𝛽𝜉k ̃𝛼′/2)

2 (𝜉q−k ̃𝛼 + 𝜉k ̃𝛼′)
=

𝑓 (−𝛽𝜉q−k ̃𝛼) − 𝑓 (𝛽𝜉k ̃𝛼′)
𝜉q−k ̃𝛼 + 𝜉k ̃𝛼′

(5.1.17a)

1
𝛽 ∑

𝑖𝜔𝑛

1
(−𝑖𝜔𝑛 + 𝜉q+k ̃𝛼)(−𝑖𝜔𝑛 + 𝜉k ̃𝛼′) =

tanh (𝛽𝜉q+k ̃𝛼/2) − tanh (𝛽𝜉k ̃𝛼′/2)

2 (𝜉k ̃𝛼′ − 𝜉q+k ̃𝛼)
=

𝑓 (𝛽𝜉k ̃𝛼′) − 𝑓 (𝛽𝜉q+k ̃𝛼)
𝜉k ̃𝛼′ − 𝜉q+k ̃𝛼

,

(5.1.17b)

for the particle-particle and particle-hole loops, respectively. In a renormalization
group sense, the effective interaction in the Cooper channel is the only relevant interac-
tion and the only generic instability of the Fermi liquid in the weak-coupling limit. Anal-
ogously to the discussions in (Section 3.4.1) and (Section 3.4.2), we have to distinguish
the case of degenerate Fermi surfaces characterized by pseudospin degree of freedom
from the case of a Fermi surface labeled by helicity, which simplifies the structure of
pairing states in the weak-coupling limit. The Cooper vertex in terms of pseudospin
indices is given by (cf. (Equation 3.4.12))

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ≔ 𝑈𝑏𝜎̃1𝑏𝜎̃2𝑏′𝜎̃′

1𝑏′𝜎̃′
2

k,−k,k′,−k′ , (5.1.18)

and its second order perturbative correction (Equation 5.1.14) reduces to

(𝛿𝑈(2)
𝑝𝑝 )

𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2

kk′ = ∑
𝑚𝜏̃𝜏̃′

∫
dq
Ω

⎛⎜
⎝

1
2𝑈𝑏𝜎̃1𝑏𝜎̃2𝑚𝜏̃𝑚𝜏̃′

k,−k,−q,q 𝑈𝑚𝜏̃𝑚𝜏̃′𝑏′𝜎̃′
1𝑏′𝜎̃′

2
−q,q,k′,−k′

𝑓 (−𝛽𝜉−q𝑚𝜏̃) − 𝑓 (𝛽𝜉q𝑚𝜏̃′)
𝜉−q𝑚𝜏̃ + 𝜉q𝑚𝜏̃′

⎞⎟
⎠

(5.1.19a)

(𝛿𝑈(2)
𝑑𝑝ℎ)

𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2

kk′
= − ∑

𝑚𝜏̃𝑚′𝜏̃′
∫
dq
Ω

⎛⎜
⎝

𝑈𝑏𝜎̃1𝑚𝜏̃𝑏′𝜎̃′
2𝑚′𝜏̃′

k,q,−k′,k+k′+q𝑈𝑏𝜎̃2𝑚′𝜏̃′𝑏′𝜎̃′
1𝑚𝜏̃

−k,k+k′+q,k′,q
𝑓 (𝛽𝜉k+k′+q𝑚′𝜏̃′) − 𝑓 (𝛽𝜉q𝑚𝜏̃)

𝜉k+k′+q𝑚′𝜏̃′ − 𝜉q𝑚𝜏̃
⎞⎟
⎠

(5.1.19b)

(𝛿𝑈(2)
𝑐𝑝ℎ)

𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2

kk′
= ∑

𝑚𝜏̃𝑚′𝜏̃′
∫
dq
Ω

⎛⎜
⎝

𝑈𝑏𝜎̃1𝑚′𝜏̃′𝑏′𝜎̃′
1𝑚𝜏̃

k,−k+k′+q,k′,q𝑈𝑏𝜎̃2𝑚𝜏̃𝑏′𝜎̃′
2𝑚′𝜏̃′

−k,q,−k′,−k+k′+q
𝑓 (𝛽𝜉−k+k′+q𝑚′𝜏̃′) − 𝑓 (𝛽𝜉q𝑚𝜏̃)

𝜉−k+k′+q𝑚′𝜏̃′ − 𝜉q𝑚𝜏̃
⎞⎟
⎠

,

(5.1.19c)

with 𝑚, 𝑚′ and ̃𝜏, ̃𝜏′ being the “inner” band indices and pseudospin states, respec-
tively, associated to the propagators. While the pseudospin indices ̃𝜏, ̃𝜏′ attached to the

1 The tangens hyperbolicus tanh(𝑥) is related to the Fermi-Dirac function 𝑓 (𝑥) by

tanh(
𝑥
2) =

𝑒
𝑥
2 − 𝑒− 𝑥

2

𝑒
𝑥
2 + 𝑒− 𝑥

2
=

𝑒
𝑥
2 + 𝑒− 𝑥

2 − 2𝑒− 𝑥
2

𝑒
𝑥
2 + 𝑒− 𝑥

2
= 1 −

2
1 + 𝑒𝑥 = 1 − 2𝑓 (𝑥) , (5.1.16)

which satisfies 𝑓 (−𝑥) = 1 − 𝑓 (𝑥).
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5. Perturbative renormalization group

band energies 𝜉k of the propagator sum may be omitted because of pseudospin degen-
eracy, the pseudospin indices attached to the vertex functions play an important role
in describing the correct pseudospin structure of the resulting pairing states. Note the
formal similarity to the multiband extension in [Cho+13, III.B.]. Let’s proceed to the
case of helicity based vertex functions and non-degenerate Fermi surfaces. The Cooper
channel in terms of helicities is determined by (cf. (Section 3.4.2))

𝑈𝑏𝜆𝑏′𝜆′

kk′ ≔ 𝑈𝑏𝜆𝑏𝜆𝑏′𝜆′𝑏′𝜆′

k,−k,k′,−k′ , (5.1.20)

where, in contrast to the pseudospin case, the structure in the spin degree of freedom
is restricted by the requirement of equal-energy pairing. In this case, (Equation 5.1.14)
reduces to the three contributions

(𝛿𝑈(2)
𝑝𝑝 )

𝑏𝜆𝑏′𝜆′

kk′ = ∑
𝑚𝜅

∫
dq
Ω

⎛⎜
⎝

1
2𝑈𝑏𝜆𝑏𝜆𝑚𝜅𝑚𝜅

k,−k,−q,q 𝑈𝑚𝜅𝑚𝜅𝑏′𝜆′𝑏′𝜆′

−q,q,k′,−k′

𝑓 (−𝛽𝜉−q𝑚𝜅) − 𝑓 (𝛽𝜉q𝑚𝜅)
𝜉−q𝑚𝜅 + 𝜉q𝑚𝜅

⎞⎟
⎠
(5.1.21a)

(𝛿𝑈(2)
𝑑𝑝ℎ)

𝑏𝜆𝑏′𝜆′

kk′
= − ∑

𝑚𝜅𝑚′𝜅′
∫
dq
Ω

⎛⎜
⎝

𝑈𝑏𝜆𝑚𝜅𝑏′𝜆′𝑚′𝜅′

k,q,−k′,k+k′+q𝑈𝑏𝜆𝑚′𝜅′𝑏′𝜆′𝑚𝜅
−k,k+k′+q,k′,q

𝑓 (𝛽𝜉k+k′+q𝑚′𝜅′) − 𝑓 (𝛽𝜉q𝑚𝜅)
𝜉k+k′+q𝑚′𝜅′ − 𝜉q𝑚𝜅

⎞⎟
⎠

(5.1.21b)

(𝛿𝑈(2)
𝑐𝑝ℎ)

𝑏𝜆𝑏′𝜆′

kk′
= ∑

𝑚𝜅𝑚′𝜅′
∫
dq
Ω

⎛⎜
⎝

𝑈𝑏𝜆𝑚′𝜅′𝑏′𝜆′𝑚𝜅
k,−k+k′+q,k′,q𝑈𝑏𝜆𝑚𝜅𝑏′𝜆′𝑚′𝜅′

−k,q,k′,−k+k′+q
𝑓 (𝛽𝜉−k+k′+q𝑚′𝜅′) − 𝑓 (𝛽𝜉q𝑚𝜅)

𝜉−k+k′+q𝑚′𝜅′ − 𝜉q𝑚𝜅
⎞⎟
⎠

,

(5.1.21c)

for the particle-particle, direct particle-hole and crossed particle-hole diagrams. In
contrast to the particle-hole channels with momentum transfers k′ − k and k − k′, the
particle-particle channel features zero momentum transfer. Here, the indices 𝑚, 𝑚′ and
𝜅, 𝜅′ denote the inner bands and helicities. So far, we used the most general fermionic
pair interaction allowed with respect to the restrictions given in (Section 3.3.2). In the
next section, we will limit our considerations to the case of SU(2)-invariant interactions
and see how (Equation 5.1.14) and be simplified. Furthermore, we only treated the
second order of the perturbative expansion, while ignoring the first order completely.
In the next section, we will also discuss what the influence of the first order on the
superconducting order is and under what circumstances it can be neglected.

5.2. Effective vertex for (non-local) Coulomb interaction

According to (Section 3.3) a spinful SU(2)-invariant two-particle vertex in orbital-spin
space can be written by
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5.2. Effective vertex for (non-local) Coulomb interaction

𝑈𝜇𝜈𝜅𝜆 = 𝑉𝜇𝜈𝜅𝜆𝛿𝜎𝜇𝜎𝜅
𝛿𝜎𝜈𝜎𝜆

− 𝑉𝜇𝜈𝜆𝜅𝛿𝜎𝜇𝜎𝜆
𝛿𝜎𝜈𝜎𝜅

. (5.2.1)

where 𝑉𝜇𝜈𝜅𝜆 = 𝑉𝜈𝜇𝜆𝜅 and the multiindices attached to 𝑉 are implied to lack spin
dependency in contrast to the ones of 𝑈. The spin symmetry results in a free propaga-
tor (Equation 5.1.4), which is diagonal in spin space, i.e. 𝐺0(𝑖𝜔,k)𝜇𝜈 ∝ 𝛿𝜇𝜈. Inserting
(Equation 5.2.1) into the expansion (Equation 5.1.10), we find two sets of terms/dia-
grams corresponding to the two spin sectors given by the spin combinations in (Equa-
tion 5.2.1). Both sets of equations, each including five terms (one particle-particle and
four particle-hole contributions) are equivalent to each other and to the general expan-
sion (Equation 5.1.7). They represent the second order perturbative expansion of a
SU(2)-invariant bare interaction. Let’s assume a SU(2)-invariant (non-local) Coulomb
repulsion in a single-orbital model. The corresponding interacting part of the Hamilto-
nian is

ℋ𝐼 = 𝑈0 ∑
𝑖

𝑛𝑖↑𝑛𝑖↓ +
𝑈1
2 ∑

⟨𝑖≠𝑗⟩
∑
𝜎,𝜎′

𝑛𝑖𝜎𝑛𝑗𝜎′ , (5.2.2)

with the occupation number operator 𝑛𝑖𝜎 = 𝑐†
𝑖𝜎𝑐𝑖𝜎. The parameters 𝑈0 and 𝑈1 deter-

mine the strength of on-site and nearest neighbor repulsion, respectively. Hence, the
antisymmetrized bare pair interaction is fully characterized by its momentum and spin
dependency. For instance, on the two dimensional square lattice with lattice constant 𝑎
it is given by

𝑈𝜎1𝜎2𝜎′
1𝜎′

2
k1k2k′

1k′
2

=𝑈0 (𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2
− 𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
)

+𝑈1 [(cos((k2 − k′
2)𝑥𝑎) + cos((k2 − k′

2)𝑦𝑎)) 𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2

− (cos((k1 − k′
2)𝑥𝑎) + cos((k1 − k′

2)𝑦𝑎)) 𝛿𝜎1𝜎′
2
𝛿𝜎2𝜎′

1
] , (5.2.3)

and satisfies all the requirements developed in (Section 3.3.1), wheremomentum con-
servation k1 + k2 = k′

1 + k′
2 is implied. The effective vertex in pseudospin basis com-

prised of (Equation 5.1.19a), (Equation 5.1.19b) and (Equation 5.1.19c) can be further
simplified to account for the SU(2)-invariant Coulomb interaction (Equation 5.2.3) in
a single-band model. Setting 𝑈1 = 0 and only taking the on-site repulsion 𝑈0 into ac-
count, we find that only the particle-particle and direct particle-hole terms contribute,
while the crossed particle-hole diagramvanishes due to the given spin structure. Hence-
forth, we find (cf. [RKS10, Section II.])

(𝛿𝑈(2)
𝑝𝑝 )

↑↓↑↓

kk′ = 𝑈2
0 ∫

dq
Ω

𝑓 (−𝛽𝜉−q) − 𝑓 (𝛽𝜉q)
𝜉−q + 𝜉q

(𝛿𝑈(2)
𝑑𝑝ℎ)

↑↓↑↓

kk′
= −𝑈2

0 ∫
dq
Ω

𝑓 (𝛽𝜉k+k′+q) − 𝑓 (𝛽𝜉q)
𝜉k+k′+q − 𝜉q

.

(5.2.4)
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5. Perturbative renormalization group

where the resulting momentum structure of the effective vertex exclusively arises
from the progatator terms. Due to the presence of SU(2)-invariance, we only consid-
ered a single spin sector, which can be used to generate all others. The sum over spins
contributed a factor of two to the particle-particle term. Obviously, the particle-particle
contribution is a constant with respect to k and k′ and further evaluation of the term
reproduces the logarithmic divergence for temperature 𝑇 → 0, we introduced at the be-
ginning of the chapter by means of particle-particle ladders. In particular, by assuming
inversion symmetry of the single-particle spectrum, 𝜉−q = 𝜉q, the particle-particle term
can be written as

∫
dq
Ω

𝑓 (−𝛽𝜉−q) − 𝑓 (𝛽𝜉q)
𝜉−q + 𝜉q

= ∫
dq
Ω

tanh (𝛽𝜉q/2)
2𝜉q

≈ ∫
𝑊

1/𝛽
d𝜉

𝜌(𝜉)
𝜉 ≈ 𝜌(0) log (𝛽𝑊) ,

(5.2.5)

where we introduced the density of states 𝜌(𝜉) and the upper band edge 𝑊 of the dis-
persion 𝜉, which was assumed to be particle-hole symmetric. The integrand in (Equa-
tion 5.2.5) tanh (𝛽𝜉q/2) /(2𝜉q) is symmetric about the energy axis and features a peak at
zero energy that scales according to 𝛽/4 and eventually diverges for zero temperature,
resulting in the logarithmic divergence. Although the general case of (Equation 5.1.19a)
involves an integral featuring the k-dependent eigenvectors (Equation 5.1.15), that can
only be integrated numerically, the logarithmic divergence at zero temperature is, how-
ever, not spoiled by these factors. Summarizing the result of the perturbative expansion
of the two-particle vertex up to second order in the antiparallel spin channel for bare
on-site Coulomb repulsion, we have

(𝛿𝑈)↑↓↑↓
kk′ ≈ 𝑈0 + 𝑈2

0 (𝜌(0) log (𝛽𝑊) + 𝜒(k + k′)) . (5.2.6)

where we abbreviated the susceptibility

𝜒(k) ≔ − ∫
dq
Ω

𝑓 (𝛽𝜉k+q) − 𝑓 (𝛽𝜉q)
𝜉k+q − 𝜉q

k→0= − ∫
dq
Ω lim

𝛽→0

d𝑓 (𝛽𝜉)
d𝜉⏟⏟⏟⏟⏟⏟⏟

=−𝛿(𝜉)

= 𝜌(0) . (5.2.7)

The susceptibility is a positive definite quantity, since in the zero temperature limit
𝛽 → ∞ and for zero momentum transfer q → 0 it reduces to the non-interacting density
of states 𝜌(0) at the Fermi level. The parallel spin channel doesn’t have the bare 𝑈0 but
contributions from both particle-hole terms, which give (neglecting the particle-particle
part)

(𝛿𝑈)↑↑↑↑
kk′ ≈ 𝑈2

0 (𝜒(k + k′) − 𝜒(k′ − k)) . (5.2.8)
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The result (Equation 5.2.6) can be used to find the singlet and triplet part of the ef-
fective Cooper channel by either symmetrization (antisymmetrization) in momentum
space or antisymmetrization (symmetrization) in spin space. Hence, we find 𝛿𝑈𝑆𝐺𝑇 =
𝑈 + 𝑈2

0 (𝜒(k + k′) + 𝜒(k′ − k)) and 𝛿𝑈𝑇𝑃𝑇 = 𝑈2
0 (𝜒(k + k′) − 𝜒(k′ − k)), where the

triplet part corresponds to the parallel spin channel (cf. (Section 5.4)). Within the range
of weak-interaction strength 𝑈0, where the perturbative expansion is valid, the (short
range) first order contribution will be much larger than the second order, which may be
comprised of attractive channels. Only in the strong coupling limit 𝑈0 ≥ 1, where the
perturbative expansion becomes invalid, the second order contribution will overcome
the bare repulsion (see [AK11]). However, assuming a strongly-screened bare inter-
action, the second order term may well contribute to an overall attractive long-range
channel. Furthermore, since the on-site interaction is constant in k-space, the non-local
second order contributionmaywell generate a pairing state with finite angular momen-
tum since the constant interaction of the first order is projected out in any channel with
finite angular momentum, even if the second order attraction is much weaker. More
technically, a Cooper vertex 𝛿𝑈(2)

kk′ comprised of both repulsive first-order and (weaker)
attractive second order parts, may still feature bound states by choosing an angular mo-
mentum channel, which is part of the kernel (null space) of the vertex part associated
to the repulsive channel(s). Hence, if the first order bare interaction contributes a non s-
wave like repulsion, one has to take it into account and perform a careful analysis of the
balance between both first and second order. To get rid of the restriction of a local bare
interaction, we take the second term in (Equation 5.2.3) associated to a finite nearest
neighbor interaction 𝑈1 > 0 into account. On the one hand, the nearest neighbor inter-
action produces a non-local first order contribution, which suppresses the pairing states
corresponding to basis functions and associated angular momentum channels, the bare
interaction is comprised of. As a result, the inclusion of the long-range interaction may
promote former subleading channels of the Cooper vertex to represent the leading insta-
bility (cf. [Rag+12]). On the other hand, the k-dependent bare interaction allows, even
in the presence of SU(2)-symmetry for more contributing terms in the perturbative ex-
pansion. In particular, 𝑈1 > 0 generates a finite contribution in the direct particle-hole
channel (Equation 5.1.19b). As a matter of fact, perturbation theory alone cannot re-
produce the superconducting state and associated properties. In order to deal with the
logarithmic divergence (Equation 5.2.5), an energy cutoff is introduced and only de-
grees of freedom above this cutoff are taken into account in the perturbative expansion.
In the next section, wewill work out how to deal with the residual degrees of freedom in
the vicinity of the Fermi surface by integrating them out by means of a renormalization
group treatment. Finally, we note the special case of a logarithmic divergence that arises
in the particle-hole channel channels as well. In case of a single-particle spectrum that
features 𝜉k+k′+q = −𝜉q in (Equation 5.2.4), the crossed particle-hole term will resemble
the integral and the log-divergence of the particle-particle term [BBD03]. This repre-
sents the basis for concept of the parquet renormalization group [MC13]. In particular,
this case occurs in the iron pnictides where the momentum transfer connects particle
and hole pockets with opposite energies [CEE08; Chu12].
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5.3. Logarithmic renormalization

The residual low-energy degrees of freedom below the cutoff Λ0 are treated bymeans of
a (logarithmic) renormalization group flow in the spirit of [Pol92; Sha94a]. The starting
point of this procedure is the effective two-particle vertex generated in the first step by
means of the perturbation expansion in (Section 5.1). First of all, we have to properly
define the cutoff Λ0. The cutoff is supposed to avoid the infrared singularity caused by
the particle-particle ladders (Equation 5.2.5), while at the same time being small enough
so that only a narrow range of residual energies about the Fermi surface remains, in
order to be able to safely linearize the single-particle dispersion in the vicinity of the
Fermi level. The lower bound for the cutoff is determined by the log-divergence by
assuming that the particle-particle ladder grows to be of order one at the point where
the two-particle vertex is significantly affected, i.e. 𝑈2

0 𝜌(0) log ((Λ𝑙
0)−1𝑊) ≈ 1. The

upper bound has to ensure that the remaining degrees of freedom lie within an energy
shell much smaller than the bandwidth 𝑊 of the single-particle spectrum, i.e. Λ𝑢

0 ≈
𝑈2

0/𝑊. Summarizing the above, we find for the valid range of the cutoff the condition
(cf. [RKS10, Sec. IV.])

Λ𝑙
0 = 𝑊𝑒

− 1
𝑈2

0 𝜌(0) ≪ Λ0 ≪
𝑈2

0
𝑊 = Λ𝑢

0 . (5.3.1)

In contrast to Λ𝑙
0 and Λ𝑢

0 , which are related to physical energy scales, the actual cutoff
Λ0 is not and represents a purely mathematical tool. Hence, the starting point of the
renormalization group flow can be summarized by an effective action (unrelated to the
generating functional of the effective action) in terms of Grassmann fields ̄𝜓, 𝜓 associ-
ated to energy scale Λ0, which includes the effective two-particle vertex in the Cooper
channel and the corresponding quadratic term of the theory:

𝑆 [ ̄𝜓, 𝜓] = ∫
(𝐾,𝛼)

(𝑖𝜔𝑛 − 𝑣𝐹
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,

(5.3.2)

where 𝐾 = (𝑖𝜔𝑛,k) is the combined Matsubara and momentum index. The effec-
tive two-particle vertex ΓΛ0 associated to Λ0 is given by (Equation 5.1.14). The single-
particle spectrum 𝜉k𝛼 = 𝜀k𝛼 − 𝜇 ≈ 𝑣𝐹

k𝛼𝑘 is linearized in the vicinity of the Fermi surface
with Fermi velocity 𝑣𝐹

k,𝛼 and the parameter 𝑘, which is measured relative to the Fermi
momentum. The fields are separated by the cutoff Λ into “fast” and “slow” modes and
likewise the non-interacting part of the action by setting [KBS10]

𝑆 [ ̄𝜓, 𝜓] = 𝑆0 [ ̄𝜓>, 𝜓>] + 𝑆0 [ ̄𝜓<, 𝜓<] + 𝑆𝐼 [ ̄𝜓, 𝜓] , (5.3.3)
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5.3. Logarithmic renormalization

while the interacting part mixes both fast and slow modes. The corresponding func-
tional integral can now be written as [Sha94a]

𝒵 = ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆[ ̄𝜓,𝜓] = ∫ 𝒟 [ ̄𝜓<, 𝜓<] ∫ 𝒟 [ ̄𝜓>, 𝜓>] 𝑒−𝑆0[ ̄𝜓<,𝜓<]−𝑆0[ ̄𝜓<,𝜓<]−𝑆𝐼[ ̄𝜓<,𝜓<] .
(5.3.4)

The functional integral over the fast modes is easily evaluated to obtain

𝒵 = ∫ 𝒟 [ ̄𝜓<, 𝜓<] 𝑒−𝑆0[ ̄𝜓<,𝜓<] ∫ 𝒟 [ ̄𝜓>, 𝜓>] 𝑒−𝑆0[ ̄𝜓<,𝜓<]−𝑆𝐼[ ̄𝜓<,𝜓<]

= ∫ 𝒟 [ ̄𝜓<, 𝜓<] 𝑒−𝑆0[ ̄𝜓<,𝜓<]𝒵0> ⟨𝑒−𝑆𝐼[ ̄𝜓<,𝜓<]⟩
0>

≔ ∫ 𝒟 [ ̄𝜓<, 𝜓<] 𝑒−𝑆𝑒𝑓 𝑓[ ̄𝜓<,𝜓<] ,
(5.3.5)

where 𝒵0> is the non-interacting partition function of fast modes and we defined the
effective action 𝑆𝑒𝑓 𝑓 [ ̄𝜓<, 𝜓<] associated to the slow modes. Note, that even for an e.g.
k-independent bare interaction, the integration of fast modes may in general produces
an effective action of slow modes that is momentum dependent and involves all orders.
The change of the effective action due to the integration of fast modes may be calcu-
lated perturbatively and generates for the two-particle vertex in second order the same
diagrams that were already encountered in the context of “conventional” perturbation
theory (Section 5.1). However, in contrast, to the previous case, the integration is re-
stricted by the cutoff and confined to modes in a small shell around the Fermi level. It
can be shown that only the particle-particle (BCS) diagram (cf. (Equation 5.1.10)) con-
tributes to the renormalization flow [Sha94a]. Using the linearized spectrum, the flow
equation in the particle-particle channel can be expressed by [RKS10]

d (𝛿𝑈(2)
𝑝𝑝 )

kk′

d𝑙 = − (𝜌(0) ̄𝑣𝐹)2 ∫
Λ0

Λ

d𝑞
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q

(𝛿𝑈(2)
𝑝𝑝 )

qk′

√𝑣𝐹
q𝑣𝐹

k′

, (5.3.6)

with the flow parameter 𝑙 ≔ log Λ0
Λ . For a numerically more convenient calculation

and notation we define the normalized matrix

𝑔kk′ ≔ 𝜌(0)√
̄𝑣𝐹

𝑣𝐹
k

(𝛿𝑈(2)
𝑝𝑝 )

kk′ √
̄𝑣𝐹

𝑣𝐹
k′

, (5.3.7)

with 𝑣𝐹
k = ∣∇k𝜉k∣ being the Fermi velocity of a particular Fermi sheet at the respective k-

point and ̄𝑣𝐹 being averaged Fermi velocity of the specific Fermi sheet. Since the Cooper
vertex (𝛿𝑈(2)

𝑝𝑝 )
kk′ is a symmetric and Hermitian matrix we can easily write it in terms of

its normalized eigenbasis. Each eigenvector corresponds to an angularmomentum state
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5. Perturbative renormalization group

and a basis function associated to some irreducible representation of the underlying
lattice. Using the eigenbasis of the Cooper channel, we see that every eigenvalue 𝜁𝑛
renormalizes independently by

d𝜁𝑛
d𝑙 = −𝜁2

𝑛 𝜁𝑛(𝑙) =
𝜁0

𝑛

1 + 𝜁0
𝑛 𝑙

. (5.3.8)

with 𝜁0
𝑛 being the 𝑛-th unrenormalized eigenvalue. The eigenvalue, which first grows

to be of order one, determines the symmetry of theCooper instability. The flow equation
of eigenvalues shows that a positive initial coupling 𝜁0

𝑛 flows down to zero (irrelevant)
and an initial negative 𝜁0

𝑛 is relevant with respect to the renormalization flow .

5.4. Random phase approximation and spin fluctuations

While the perturbative renormalization took all diagrams up to second order in the weak-
coupling limit into account, one might as well consider particular kinds of diagrams
up to infinite order and thereby overcome the restriction of weak-coupling. One way
of doing this is usually called the random phase approximation (RPA) [BS66]. Here, we
consider it briefly due to its formal similarity to the perturbative renormalization and
its use as a benchmark. Let’s go back to the perturbative expansion of the two-particle
vertex in (Equation 5.1.6), which produces (in case of an SU(2)-invariant bare interac-
tion) five diagrams in second order as shown in (Figure 5.2). Later, we found that for
the on-site Coulomb interaction only the first and second diagrams contribute to the
effective two-particle vertex with antiparallel spins (cf. (Equation 5.2.4)). Instead of
stopping in second order of the expansion, we now include the diagrams of these two
types up to infinite order. The first few diagrams in these series are sketched in (Fig-
ure 5.4). For both the singlet and triplet part of the two-particle vertex these diagrams
may be summed up by means of a geometric series analogously to the particle-particle
ladders in (Figure 5.1). The opposite (antiparallel) spin Cooper channel of the effective
two-particle vertex can be expressed by (cf. [BK08])

(𝑈𝑅𝑃𝐴)↑↓↑↓
kk′ = 𝑈0 +

𝑈2
0𝜒(k + k′)

1 − 𝑈0𝜒(k + k′) +
𝑈3

0𝜒2(k − k′)
1 − 𝑈2

0𝜒2(k − k′)
, (5.4.1)

with the on-siteCoulomb interaction𝑈0 (cf. (Equation 5.2.3)) and the non-interacting
susceptibility (Equation 5.2.7). The equal (parallel) spin part has only the “bubble”
terms, which result in

(𝑈𝑅𝑃𝐴)↑↑↑↑
kk′ = −

𝑈2
0𝜒(k − k′)

1 − 𝑈2
0𝜒2(k − k′)

. (5.4.2)
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5.4. Random phase approximation and spin fluctuations

These results may be more conveniently expressed by defining the RPA charge-/spin-
susceptibilities 𝜒𝑐 = 𝜒/(1 + 𝜒) and 𝜒𝑠 = 𝜒/(1 − 𝜒), respectively. With these, the effective
two-particle vertex in antiparallel and parallel spin channels is given by (cf. [HKM11])

(𝑈𝑅𝑃𝐴)↑↓↑↓
kk′ = 𝑈0 + 𝑈2

0 (𝜒𝑠(k + k′) +
1
2𝜒𝑠(k − k′) −

1
2𝜒𝑐(k − k′)) , (5.4.3)

and

(𝑈𝑅𝑃𝐴)↑↑↑↑
kk′ = −𝑈2

0 (𝜒𝑠(k − k′) +
1
2𝜒𝑐(k − k′)) . (5.4.4)

The singlet and triplet parts of the effective two-particle interaction are then deter-

mined via (𝑈𝑅𝑃𝐴
𝑆𝐺𝑇 )kk′ =

2(𝑈𝑅𝑃𝐴)↑↓↑↓
kk′ −(𝑈𝑅𝑃𝐴)↑↑↑↑

kk′

2 and (𝑈𝑅𝑃𝐴
𝑇𝑃𝑇 )kk′ =

(𝑈𝑅𝑃𝐴)↑↑↑↑
kk′

2 . The pair-
ing strength is evaluated by integration of the eigenmodes of singlet and triplet ver-
tices along the Fermi surface. Multi-orbital extensions of the RPA-approximation for
the treatment of superconductivity require the formulation of the RPA vertices in terms
of orbital matrices and the inclusion of additional diagrams. This has been extensively
worked out for the iron-pnictides in two [Gra+09; Mai+11a; Mai+11b; Alt+16] and
even three spatial dimensions [Gra+10; Wan+13b; Kre+13]. The inclusion of spin-orbit
coupling has been achieved only recently [Kor17; Nis+17; Zha+17].

Summary and preview

This chapter introduced the perturbative renormalization group for multi-orbital sys-
tems including any kind of spin-orbit interaction. This kind of perturbative renormal-
ization group is comprised of two steps. The first involves the perturbative expansion
of the (spinful) two-particle vertex up to second order in the bare (repulsive) interac-
tion, which generates a momentum dependent effective interaction. During the second
step this effective interaction generated during the first step is employed as the input to
a logarithmic renormalization group flow and only takes the modes within a small en-
ergy window in the vicinity of the Fermi level into account. Since the perturbative step
requires the limitation to infinitesimal interaction strength, we consider the compari-
son to the random phase approximation as a method that remedies this shortcoming
by infinite resummation of particular types of diagrams. While the random phase ap-
proximation appears to be numerically well-controlled, it suffers, in contrast to the per-
turbative renormalization group, from its limited applicability due to the selection of
types of diagrams. The next chapter is devoted to the functional renormalization group
as a method, which incorporates the advantages of the perturbative renormalization by
cosidering all diagrams and it is at the same time extending the analysis to weak but
finite interaction strength.
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5. Perturbative renormalization group

↓ ↓

↑ ↑

𝑈𝑅𝑃𝐴
↑↓↑↓ = + + + …

+ + + …

(a)

↑ ↑

↑ ↑

𝑈𝑅𝑃𝐴
↑↑↑↑ = + + …

(b)

Figure 5.4.: The random phase approximation in a single-orbital model includes “bubble” and
“ladder” type diagrams up to infinite order. Apart from the first order represented
by the bare interaction, the singlet part features both “bubble” and “ladder” type
diagrams. The “bubble” diagrams only appear in every even order. In contrast, in
the triplet part only the “bubble” diagrams contribute and they only do in every even
order.
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6. Functional renormalization group

The functional renormalization group is one of the (modern) implementations of Wil-
son’s renormalization group idea [Wil71c; Wil71d] among theMigdal-Kadanoff real space
RG [Mig76; Kad76], the momentum space RG [WK74], the numerical RG [Wil75] and the
density-matrix renormalization group (DMRG) [Whi92; Sch05a]. The common feature of
all these versions of the renormalization group is the concept of iterative integration of
all degrees of freedom that appear in the partition function describing the system under
consideration. A single iteration is comprised of the decimation step (mode elimination)
and the rescaling of momenta and fields . A key step towards the development of the
functional renormalization group was the realization that the decimation step may be
carried out in an infinitesimal way, thereby enabling the description of the effective ac-
tion’s change in terms of a functional differential equation [WH73]. In this chapter, we
introduce and derive the flow equation of the effective action based on the correspond-
ing generating functional supplemented by a cutoff dependent free propagator. The
straightforward integration of this flow equation turns out to be unfeasible. Henceforth,
by an expansion of the effective action in term of fields, particular n-particle correlation
functions and their associated flow equations are derived. We are interested in the first
two orders of the expansionwhich provide the flow equations of the self-energy and the
irreducible two-particle vertex. The spinful flow equation of the two-particle vertex is
parameterized in a way that allows for a convenient and numerically stable implemen-
tation.

6.1. Cutoff schemes and temperature flow

The functional renormalization group is based on the idea of calculating the partition
function and generating functionals, respectively in an iterative way. To this end, a cutoff
function is introduced which separates “fast” (high-energy) from “slow” (low-energy)
modes and is characterized by the cutoff-scale Λ, defining the boundary between both.
The cutoff function ΘΛ is supposed to suppress all modes below Λ and keep all modes
above unmodified. In the limit Λ → ∞ the theory (and therefore the generating func-
tional) is expected to be trivial and therefore exactly solvable. By reducing the cutoff Λ,
the original theory and corresponding solution is (in principle) eventually obtained in
the limit Λ → 0. Starting from the limit Λ → ∞, the change of the generating functional
- when reducing the cutoff by an infinitesimal amount dΛ - can be described by a (non-
linear) functional differential equation. While these functional flow equations can be
derived for any generating functional, we focus on the generating functional of the effec-
tive action which turns out to provide the most convenient initial condition for Λ → ∞.
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6. Functional renormalization group

First of all, we have to introduce the cutoff dependency into the effective action, which
is done bymodifying the free propagator 𝐺0(𝐾) to incorporate the scale dependency on
Λ. In a more formal way, the modified free propagator 𝐺Λ

0 (𝐾) is required to satisfy (cf.
[KBS10, Chap. 7.1])

𝐺Λ
0 (𝐾) =

⎧{{
⎨{{⎩

0 Λ → ∞
𝐺Λ

0 (𝐾) Λ finite
𝐺0(𝐾) Λ → 0

(6.1.1)

The cutoff function itself can be implemented in a variety of ways. On the one hand,
one distinguishes between a multiplicative cutoff function 𝐶Λ and an additive cutoff func-
tion (regulator) 𝑅Λ which are introduced into the free propagator and the inverse free
propagator, respectively (cf.[KBS10, Chap. 7.1]):

𝐺Λ
0 ≔ 𝐺0𝐶Λ (𝐺Λ

0 )−1 ≔ (𝐺0)−1 − 𝑅Λ . (6.1.2)

On the other hand, cutoff functions can be realized in i.a. energy, temperature and
frequency space. Although the most obvious way to separate fast from slow modes in
energy space is by means of theHeaviside step function as the cutoff function, this should
generally be avoided since the sharp cutoff leads to technical complications in the flow
equations which involve the scale derivative of the cutoff function, resulting in a Dirac
delta function. A smooth cutoff function Θ𝜖

Λ is characterized not only by the scale Λ but
also by the width 𝜖 of the step. For example, a multiplicative smooth cutoff function in
energy space 𝜉 and its derivative with respect to Λ are given by [Hon+01; GHM08]

Θ𝜖
Λ(𝜉) = 1 −

1
𝑒(∣𝜉∣−Λ)/(𝜖Λ) + 1

d
dΛΘ𝜖

Λ(𝜉) = (Θ𝜖
Λ(𝜉) − 1) Θ𝜖

Λ(𝜉)
∣𝜉∣

𝜖Λ2 , (6.1.3)

resulting in the associated modified Gaussian propagator 𝐺Λ
0 (𝐾) = Θ𝜖

Λ(𝜉)𝐺0(𝐾),
where the implicit dependency of the single-particle energy 𝜉k on momentum k is im-
plied. The smooth cutoff in energy space and its derivative with respect to the cutoff
scale are illustrated in (Figure 6.1). Later, we may also require the derivative of the
inverse of the cutoff function with respect to the cutoff parameter, which is given by

d
dΛ (Θ𝜖

Λ(𝜉))−1 = −
1

(Θ𝜖
Λ(𝜉))2 𝜕ΛΘ𝜖

Λ(𝜉) =
1 − Θ𝜖

Λ(𝜉)
Θ𝜖

Λ(𝜉)
∣𝜉∣

𝜖Λ2 , (6.1.4)

For the applications in (Part II) we will mainly make use of a temperature cutoff,
which, however, does not comply to any of the above scheme categories of a cutoff or reg-
ulator cutoff. An energy/momentum cutoff like (Equation 6.1.3) artificially suppresses
ferromagnetism since it excludes small momentum transfers until shortly before the
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Figure 6.1.: (Figure 6.1a) The smooth cutoff function in energy space features a broadened step
function of width 𝜖. The derivative of the cutoff function with respect to the cut-
off scale, which appears in the flow equations, scales reciprocal to the stepwidth
Λ. (Figure 6.1b) The dependence of the cutoff function on energy and cutoff scale
shows that the sign of its derivative with respect to the cutoff scale must be neg-
ative. (Figure 6.1c) The Fermi surface of the single-band Hubbard model 𝜉k =
−2𝑡(cos(𝑘𝑥)+cos(𝑘𝑦))−4𝑡′ cos(𝑘𝑥) cos(𝑘𝑦)−𝜇with 𝑡 = 1.0, 𝑡′ = −0.25 and 𝜇 = −1.1)
is shown in solid red, while the upper and lower limits of the region of k-space en-
closed by the cutoff Λ, which has to be integrated out, are shown in dashed green
and blue.

very end of the renormalization flow, which may even be not reached due to the di-
vergence of another channel. In order to circumvent these issues, one may introduce
the temperature 𝑇 or the thermodynamic 𝛽, respectively, as the scale parameter [HS01].
Unfortunately, introducing the temperature as flow parameter, results in a renormaliza-
tion group scheme, which does not allow for a separation of slow and fast modes but
still for some intuitive interpretation of the flow parameter (see (Figure 6.2)). Before
we can introduce the temperature flow parameter, we have to identify all temperature
dependencies in the action (Equation 4.2.1). Apparently, only the interaction term in-
corporates a temperature-dependence in its prefactor 1

𝛽 (Equation 4.2.3). Defining the
new Grassmann fields

𝜓𝛼 → 𝜙𝛼 = 𝛽1/4𝜓𝛼 and ̄𝜓𝛼 → ̄𝜙𝛼 = 𝛽1/4 ̄𝜓𝛼 , (6.1.5)

by a (temperature-dependent) rescaling of the fields, we can shift the temperature
dependency from the interacting part to the non-interacting part. Note, that this trans-
formationmay look different depending on the original definition of fields inMatsubara
representation (Equation 4.1.8a) and (Equation 4.1.8b). Hence, we obtain the action in
terms of the rescaled fields
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6. Functional renormalization group

𝑆 [ ̄𝜙, 𝜙] = 𝛽1/2 ∫
𝛼,𝛼′

̄𝜙𝛼′ (−𝑖𝜔𝛿𝛼𝛼′ + ℎ𝛼′𝛼) 𝜙𝛼 + ∫𝛼1,𝛼2
𝛼′

1,𝛼′
2

𝑉𝛼1𝛼2𝛼′
1𝛼′

2
̄𝜙𝛼′

1
̄𝜙𝛼′

2
𝜙𝛼2

𝜙𝛼1
, (6.1.6)

with the (inverse) scale dependent Gaussian propagator

(𝐺Λ
0 )−1

𝛼𝛼′ = 𝛽1/2 (−𝑖𝜔𝛿𝛼𝛼′ + ℎ𝛼′𝛼) (𝐺Λ
0 )𝛼𝛼′ = 𝛽−1/2 (−𝑖𝜔𝛿𝛼𝛼′ + ℎ𝛼′𝛼)−1 . (6.1.7)

Using 𝛽 as a flow parameter only partially satisfies the requirement (Equation 6.1.1)
of the scale-dependent free propagator since lim𝛽→∞ (𝐺Λ=𝛽

0 ) = 0 but lim𝛽→0 (𝐺Λ=𝛽
0 ) ≠

𝐺0. Fortunately, for the definition of the proper initial condition of the effective action
only the limit 𝛽 → ∞ is important, as we will see at the end of (Section 6.2.2). Finally,
we mention the frequency cutoff or Ω-scheme that is realized by a multiplicative cutoff
function of the form [HS09]

𝐶Λ(𝜔𝑛) =
𝜔2

𝑛
𝜔2

𝑛 + Λ2 , (6.1.8)

satisfying limΛ→∞ 𝐶Λ(𝜔𝑛) = 0 and limΛ→0 𝐶Λ(𝜔𝑛) = 1. However, for the derivation
of the flow equation the concrete implementation of the cutoff function does not matter
yet and it is sufficient to assume that the Gaussian propagator features a parameter Λ,
which incorporates a scale dependency resulting in proper boundary condition.

6.2. Fermionic functional flow equations

By means of the modified Gaussian propagator in (Equation 6.1.1) we introduce a cut-
off/scale dependency into the (non-interacting) action

𝑆 [ ̄𝜙, 𝜙] → 𝑆Λ [ ̄𝜙, 𝜙] = 𝑆Λ
0 [ ̄𝜓, 𝜓] + 𝑆𝐼 [ ̄𝜓, 𝜓] = ( ̄𝜓, (𝐺Λ

0 )−1𝜓) + 𝑆𝐼 [ ̄𝜓, 𝜓] , (6.2.1)

the (non-interacting) partition function 𝒵(0) → 𝒵Λ
(0) and thereby into any generating

functional like i.a. the generating functional of (dis)connected Green functions or the
effective interaction. However, because of its useful and physical initial condition we
focus on the generating functional of the one-particle irreducible vertex functions, the
effective action Γ (cf. (Chapter 4)). Unfortunately, before we start to derive the flow
equation of the effective action, we have to find the flow equation of the generating
functional of connected Green functions, since the flow equation of the effective action
turns out to depend on it.
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Figure 6.2.: The Fermi-Dirac function (Figure 6.2a) itself can be used as a regulator, where the
temperature derivative determines themodes that are integrated out during a renor-
malization group step specified by some temperature (Figure 6.2b). Reducing the
temperature, only modes inside an increasingly narrow shell around the Fermi sur-
face contribute to the renormalization flow. If the band energies occurring in the
loop integral are degenerate, the loop integrand is most conveniently expressed as
the two-fold derivative of the Fermi-Dirac function with respect to temperature and
energy.

6.2.1. Flow equation of the generating functional of (dis)connected Green
functions

Imposing the scale dependency on the generating functional of disconnected Green
functions (Equation 4.2.5), we find

𝒢Λ [ ̄𝜂, 𝜂] =
1

𝒵Λ ∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂) , (6.2.2)

with the scale dependency Λ entering through the interacting partition function 𝒵Λ

and the action 𝑆Λ. The total derivative of 𝒢Λ with respect to the cutoff Λ is

d
dΛ𝒢Λ [ ̄𝜂, 𝜂] = −

1
(𝒵Λ)2

⎛⎜
⎝
d𝒵Λ

dΛ
⎞⎟
⎠

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂)

+
1

𝒵Λ ∫ 𝒟 [ ̄𝜓, 𝜓] ⎛⎜
⎝

̄𝜓,
d(𝐺Λ

0 )−1

dΛ 𝜓⎞⎟
⎠

𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂)

= −
1

(𝒵Λ)2
⎛⎜
⎝
d𝒵Λ

dΛ
⎞⎟
⎠

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂)

+
1

𝒵Λ ∫ 𝒟 [ ̄𝜓, 𝜓] ⎛⎜
⎝

𝛿
𝛿𝜂,

d(𝐺Λ
0 )−1

dΛ (−
𝛿
𝛿 ̄𝜂)⎞⎟

⎠
𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂) ,

(6.2.3)
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where in the second equality we substituted the fields ̄𝜓, 𝜓 by functional derivatives
with respect to the source fields ̄𝜂, 𝜂. The expression is simplified by recollecting the
terms making up the generating functional of disconnected Green functions, itself. In
the next step, we decompose the fermionic bilinear into its integral form and evaluate
the functional derivatives with respect to the source fields. As a result we obtain

d
dΛ𝒢Λ [ ̄𝜂, 𝜂] = −

1
𝒵Λ

⎛⎜
⎝
d𝒵Λ

dΛ
⎞⎟
⎠

𝒢Λ [ ̄𝜂, 𝜂] − ⎛⎜
⎝

𝛿
𝛿𝜂,

d(𝐺Λ
0 )−1

dΛ
𝛿
𝛿 ̄𝜂

⎞⎟
⎠

𝒢Λ [ ̄𝜂, 𝜂]

= − (
d
dΛ ln𝒵Λ) 𝒢Λ [ ̄𝜂, 𝜂] − ∫

𝛼
∫

𝛽
⎛⎜⎜
⎝

𝛿
𝛿𝜂𝛼

⎛⎜
⎝

d(𝐺Λ
0 )−1

dΛ
⎞⎟
⎠𝛼,𝛽

𝛿
𝛿 ̄𝜂𝛽

⎞⎟⎟
⎠

𝒢Λ [ ̄𝜂, 𝜂]

= − (
d
dΛ ln𝒵Λ) 𝒢Λ [ ̄𝜂, 𝜂] − ∫

𝛼
∫

𝛽
⎛⎜
⎝

d(𝐺Λ
0 )−1

dΛ
⎞⎟
⎠𝛼,𝛽

⎛⎜
⎝

𝛿2𝒢Λ [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠𝛼,𝛽

= − (
d
dΛ ln𝒵Λ) 𝒢Λ [ ̄𝜂, 𝜂] − ∫

𝛼

⎛⎜⎜⎜
⎝

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

𝛿2𝒢Λ [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠

𝑇
⎞⎟⎟⎟
⎠𝛼,𝛼

= − (
d
dΛ ln𝒵Λ) 𝒢Λ [ ̄𝜂, 𝜂] − Tr ⎡

⎢
⎣

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

𝛿2𝒢Λ [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠

𝑇
⎤
⎥
⎦

. (6.2.4)

Here, we introduced the notation of the trace Tr referring to the integration over di-
agonal elements in superfield space 𝛼. Henceforth, the flow equation of the generating
functional of disconnected Green functions can be summarized by (cf. [KBS10, Chap.
7.2] [Met+12b])

d
dΛ𝒢Λ [ ̄𝜂, 𝜂] = − (

d
dΛ ln𝒵Λ) 𝒢Λ [ ̄𝜂, 𝜂] − Tr ⎡

⎢
⎣

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

𝛿2𝒢Λ [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠

𝑇
⎤
⎥
⎦

. (6.2.5)

Let’s proceed to the flow equation of the generating functional of connected Green
functions 𝒢Λ

𝑐 defined in (Equation 4.2.7), which becomes

𝒢Λ
𝑐 [ ̄𝜂, 𝜂] = ln ⎡⎢

⎣
𝒵Λ

𝒵Λ
0

𝒢Λ [ ̄𝜂, 𝜂]⎤⎥
⎦

, (6.2.6)

when imposing all cutoff dependencies. The total derivative of 𝒢Λ
𝑐 with respect to Λ

results in
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d
dΛ𝒢Λ

𝑐 [ ̄𝜂, 𝜂] =
𝒵Λ

0
𝒵Λ𝒢Λ [ ̄𝜂, 𝜂]

d
dΛ

⎛⎜
⎝

𝒵Λ

𝒵Λ
0

𝒢Λ [ ̄𝜂, 𝜂]⎞⎟
⎠

=
𝒵Λ

0
𝒵Λ𝒢Λ [ ̄𝜂, 𝜂]

d
dΛ

⎛⎜
⎝

1
𝒵Λ

0
∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂)⎞⎟

⎠

=
𝒵Λ

0
𝒵Λ𝒢Λ [ ̄𝜂, 𝜂]

⎛⎜
⎝

−
1

(𝒵Λ
0 )2

⎛⎜
⎝

d𝒵Λ
0

dΛ
⎞⎟
⎠

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂)

+
1

𝒵Λ
0

∫ 𝒟 [ ̄𝜓, 𝜓] ⎛⎜
⎝

̄𝜓,
d(𝐺Λ

0 )−1

dΛ 𝜓⎞⎟
⎠

𝑒−𝑆Λ[ ̄𝜓,𝜓]−(𝜂̄,𝜓)−( ̄𝜓,𝜂)⎞⎟
⎠

. (6.2.7)

Again, we employ the functional derivatives with respect to the source fields ̄𝜂, 𝜂 to
substitute the fields ̄𝜓, 𝜓, pull the derivatives out of the integration and reassemble the
generating functional 𝒢Λ. Hence, we obtain

d
dΛ𝒢Λ

𝑐 [ ̄𝜂, 𝜂] =
1

𝒵Λ𝒢Λ [ ̄𝜂, 𝜂]
⎛⎜
⎝

− (
d
dΛ ln𝒵Λ

0 ) − ⎛⎜
⎝

𝛿
𝛿𝜂,

d(𝐺Λ
0 )−1

dΛ
𝛿
𝛿 ̄𝜂

⎞⎟
⎠

⎞⎟
⎠

𝒵Λ𝒢Λ [ ̄𝜂, 𝜂] ,

(6.2.8)

where we used 𝛿
𝛿𝜂 ( ̄𝜓, 𝜂) = − ̄𝜓 to get the correct sign of the second term. The term

𝒵Λ𝒢Λ [ ̄𝜂, 𝜂] involving the interacting partition function and the generating functional of
disconnectedGreen functions can be expressed by the non-interacting partition function
𝒵Λ

0 and the generating functional of connected Green functions 𝒢Λ
𝑐 . Inverting (Equa-

tion 6.2.6) provides𝒵Λ𝒢Λ [ ̄𝜂, 𝜂] = 𝒵Λ
0 𝑒𝒢Λ

𝑐 [𝜂̄,𝜂]. Inserting this relation into (Equation 6.2.8),
we find

d
dΛ𝒢Λ

𝑐 [ ̄𝜂, 𝜂] = − (
d
dΛ ln𝒵Λ

0 ) − 𝑒−𝒢Λ
𝑐 [𝜂̄,𝜂] ⎛⎜

⎝
𝛿
𝛿𝜂,

d(𝐺Λ
0 )−1

dΛ
𝛿
𝛿 ̄𝜂

⎞⎟
⎠

𝑒𝒢Λ
𝑐 [𝜂̄,𝜂] , (6.2.9)

where the non-interacting partition function is canceled since it is independent of the
source fields ̄𝜂, 𝜂. Performing the functional derivatives with respect to these fields
produces two terms that are given by

𝑒−𝒢Λ
𝑐 [𝜂̄,𝜂] ⎛⎜

⎝
𝛿
𝛿𝜂,

d(𝐺Λ
0 )−1

dΛ
𝛿
𝛿 ̄𝜂

⎞⎟
⎠

𝑒𝒢Λ
𝑐 [𝜂̄,𝜂] = 𝑒−𝒢Λ

𝑐 [𝜂̄,𝜂] ⎛⎜
⎝

𝛿
𝛿𝜂,

d(𝐺Λ
0 )−1

dΛ
𝛿𝒢Λ

𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂

⎞⎟
⎠

𝑒𝒢Λ
𝑐 [𝜂̄,𝜂]

= ⎛⎜
⎝

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂 ,

d(𝐺Λ
0 )−1

dΛ
𝛿𝒢Λ

𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂

⎞⎟
⎠

+ ∫
𝛼

∫
𝛽

⎛⎜
⎝

d(𝐺Λ
0 )−1

dΛ
⎞⎟
⎠𝛼,𝛽

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]

𝛿𝜂𝛼𝛿 ̄𝜂𝛽
, (6.2.10)

where the integral arises from the decomposition of the fermionic bilinear and the
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matrix property of the inverse Gaussian propagator. The second derivative of the gen-
erating functional 𝒢Λ

𝑐 with respect to the source fields can be written as the superfield
matrix of second functional derivatives. By using the transposed of the superfield ma-
trix, the second integral becomes implicit and the second term may be expressed as the
trace over superfield space. Hence, we obtain (cf. [KBS10, Chap. 7.2]

d
dΛ𝒢Λ

𝑐 [ ̄𝜂, 𝜂] = − (
d
dΛ ln𝒵Λ

0 ) − ⎛⎜
⎝

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂 ,

d(𝐺Λ
0 )−1

dΛ
𝛿𝒢Λ

𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂

⎞⎟
⎠

− Tr ⎡
⎢
⎣

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠

𝑇
⎤
⎥
⎦

.

(6.2.11)

It can be shown that the derivative of the non-interacting partition function with re-
spect to the cutoff can be expressed by the Gaussian propagators only, i.e. 1

d
dΛ ln𝒵Λ

0 = Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ 𝐺Λ
0

⎤⎥
⎦

, (6.2.13)

which inserted into (Equation 6.2.11) yields the flow equation of the generating func-
tional of connected Green functions, which is given by

d
dΛ𝒢Λ

𝑐 [ ̄𝜂, 𝜂] = −Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ 𝐺Λ
0

⎤⎥
⎦

− ⎛⎜
⎝

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂 ,

d(𝐺Λ
0 )−1

dΛ
𝛿𝒢Λ

𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂

⎞⎟
⎠

− Tr ⎡
⎢
⎣

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠

𝑇
⎤
⎥
⎦

. (6.2.14)

On the one hand, this flow equation is disadvantageous since it produces connected
Green functions in contrast to irreducible vertex functions and on the other hand fea-
tures an unphysical boundary condition forΛ → ∞, which results in an ill-defined initial
value problem. However, the flow equation (Equation 6.2.14) turns out to be essential
for the derivation of the effective action’s flow equation.

1 The scale derivative of the non-interacting partition function d
dΛ ln𝒵Λ

0 = 1
𝒵Λ

0

d
dΛ 𝒵Λ

0 is calculated by in-
troducing source terms into the functional integral of 𝒵Λ

0 to be able to employ the “source trick”, once
more, i.e

1
𝒵Λ

0

d
dΛ𝒵Λ

0 =
1

𝒵Λ
0

∫ 𝒟 [ ̄𝜓, 𝜓] ( ̄𝜓,
d(𝐺Λ

0 )−1

dΛ 𝜓) 𝑒−(𝜓̄,(𝐺Λ
0 )−1𝜓)−(𝜂̄,𝜓)−(𝜓̄,𝜂)∣

𝜂=𝜂̄=0

= − (
𝛿

𝛿𝜂 ,
d(𝐺Λ

0 )−1

dΛ
𝛿

𝛿𝜂̄)
1

𝒵Λ
0

∫ 𝒟 [ ̄𝜓, 𝜓] 𝑒−(𝜓̄,(𝐺Λ
0 )−1𝜓)−(𝜂̄,𝜓)−(𝜓̄,𝜂)∣

𝜂=𝜂̄=0
(6.2.12)

Using the shift 𝜓 → 𝜓+𝐺0,Λ𝜂 and ̄𝜓 → ̄𝜓+𝐺𝑇
0,Λ𝜂̄ in the integrating fields, they are decoupled from the

source fields and the integration produces 𝒵Λ
0 𝑒−(𝜂̄,𝐺Λ

0 𝜂) canceling the non-interacting partition function.
Performing the two-fold functional derivative with respect to the source fields and setting them to zero
afterwards, yields the desired result.
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6.2.2. Flow equation of the effective action

The effective action with scale dependency acquired by including the modified free
propagator is given by (see (Equation 4.2.8))

ΓΛ [ ̄𝜙, 𝜙] = −𝒢Λ
𝑐 [ ̄𝜂, 𝜂] − ( ̄𝜙, 𝜂Λ) − ( ̄𝜂Λ, 𝜙) + ( ̄𝜙, (𝐺Λ

0 )−1𝜙) . (6.2.15)

The fields ̄𝜂, 𝜂 are the source fields that were introduced by the definition of the gen-
erating functional of disconnected Green functions (Equation 4.2.5). Here, we have to
discriminate between these cutoff independent source fields ̄𝜂, 𝜂 and the fields ̄𝜂Λ, 𝜂Λ
with cutoff dependency arising from the inversion of the definition of “average” fields
𝜙 = −

𝛿𝒢Λ
𝑐 [𝜂̄,𝜂]
𝛿𝜂̄ and ̄𝜙 =

𝛿𝒢Λ
𝑐 [𝜂̄,𝜂]
𝛿𝜂 given in (Equation 4.2.9). Note, that the fields ̄𝜙, 𝜙 in

terms ofwhich the effective action is defined are taken to be cutoff independent. In order
to find the flow equation of the effective action, we simply compute the total derivative
of ΓΛ with respect to Λ, i.e.

d
dΛΓΛ [ ̄𝜙, 𝜙] = −

d𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
dΛ − ( ̄𝜙,

d𝜂Λ
dΛ ) − (

d ̄𝜂Λ
dΛ , 𝜙) + ⎛⎜

⎝
̄𝜙,
d(𝐺Λ

0 )−1

dΛ 𝜙⎞⎟
⎠

= − ⎛⎜
⎝

d ̄𝜂Λ
dΛ ,

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂Λ

⎞⎟
⎠

− ⎛⎜
⎝

d𝜂Λ
dΛ ,

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂Λ

⎞⎟
⎠

−
d𝒢Λ

𝑐 [ ̄𝜂, 𝜂]
dΛ ∣

𝜂=𝜂̄=const

− ( ̄𝜙,
d𝜂Λ
dΛ ) − (

d ̄𝜂Λ
dΛ , 𝜙) + ⎛⎜

⎝
̄𝜙,
d(𝐺Λ

0 )−1

dΛ 𝜙⎞⎟
⎠

(6.2.16)

The second line contains the terms that originate from the derivative of the gener-
ating functional 𝒢Λ

𝑐 with respect to the cutoff. On the one hand, 𝒢Λ
𝑐 is scale depen-

dent through the fields ̄𝜂Λ, 𝜂Λ and on the other hand may feature an explicit scale de-
pendency. To correctly write down the derivative of 𝒢Λ

𝑐 with respect to the implicit
scale dependency through the fields, one has to resolve the ambiguity of the chain rule
for Grassmann numbers 2. The derivative (Equation 6.2.16) may be simplified by in-
serting the definition of the average fields (Equation 4.2.9). This causes the first and
fifth and second and fourth terms to cancel, where we have to take into account that
(𝜙, 𝜓) = − (𝜙, 𝜓) for two Grassmann fields 𝜙, 𝜓. Hence, we are left with the derivative

2 The chain rule for Grassmann numbers and functionals of Grassmann fields requires the inner deriva-
tives to be placed prior to the outer derivatives [Med06]. The order of inner and outer derivative of
a Grassmann function(al) can be fixed by looking at a simple functional like e.g. 𝐹(𝜂̄(Λ), 𝜂(Λ)) =
𝑓 (Λ)𝜂̄(Λ)𝜂(Λ)with 𝑓 (Λ) ∈ ℂ andGrassmannfields 𝜂̄(Λ), 𝜂(Λ). The total derivative of𝐹(𝜂̄(Λ), 𝜂(Λ))
with respect to Λ produces three terms as given by the product rule, which are

d𝐹
dΛ =

d𝑓 (Λ)
dΛ 𝜂̄(Λ)𝜂(Λ) + 𝑓 (Λ)

d𝜂̄
dΛ𝜂(Λ) + 𝑓 (Λ)𝜂̄(Λ)

d𝜂
dΛ =

d𝜂̄
dΛ

𝛿𝐹
𝛿𝜂̄ −

𝛿𝐹
𝛿𝜂

d𝜂
dΛ +

𝛿𝐹
𝛿Λ∣

𝜂̄Λ,𝜂Λ=const.
,

which shows that the inner derivativesmust be placed in front as a consequence of the anticommutation
of derivative operators with respect to Grassmann fields and Grassmann fields itself.
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of the generating functional of connected Green functions and the term involving the
inverse free propagator (𝐺Λ

0 )−1. To further evaluate the expression we need the flow
equation of the generating functional of connected Green functions, given by (Equa-
tion 6.2.14). Plugging it into (Equation 6.2.16), yields

d
dΛΓΛ [ ̄𝜙, 𝜙] = ⎛⎜

⎝
̄𝜙,
d(𝐺Λ

0 )−1

dΛ 𝜙⎞⎟
⎠

+ Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ 𝐺Λ
0

⎤⎥
⎦

+ ⎛⎜
⎝

𝛿𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂 ,

d(𝐺Λ
0 )−1

dΛ
𝛿𝒢Λ

𝑐 [ ̄𝜂, 𝜂]
𝛿 ̄𝜂

⎞⎟
⎠

+ Tr ⎡
⎢
⎣

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

𝛿2𝒢Λ
𝑐 [ ̄𝜂, 𝜂]
𝛿𝜂𝛿 ̄𝜂

⎞⎟
⎠

𝑇
⎤
⎥
⎦

.

(6.2.17)

Whne inserting the definition of the fields ̄𝜙, 𝜙 (Equation 4.2.9), the first and third
terms cancel. Similar to (Equation 6.2.14), we prefer a flow equation, which features a
right hand side that depends on the generating functional itself. Hence, we have to ex-
press the second derivative of the generating functional of connected Green functions in
terms of the effective action. This can be achieved bymeans of the “reciprocity relation”
(Equation 4.2.13), which states that the second functional derivative of the generating
functional of connected Green functions equals the inverse of the matrix of the effective
action’s second functional derivative. Henceforth, the derivative and therefore the flow
equation of the effective action yields

d
dΛΓΛ [ ̄𝜙, 𝜙] = Tr ⎡⎢

⎣

d(𝐺Λ
0 )−1

dΛ 𝐺Λ
0

⎤⎥
⎦

− Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ (𝛾𝛾𝛾(2))−1
11

⎤⎥
⎦

. (6.2.18)

To be able to formulate a well-defined initial value problem, we have to find the initial
condition of the effective action, i.e. the limit of the effective action for infinite cutoff
scale. It can be shown (bymeans of the generating functional of the effective interaction)
that (cf. [Met+12b])

lim
Λ→∞

ΓΛ [ ̄𝜙, 𝜙] = 𝑆𝐼 [ ̄𝜙, 𝜙] (6.2.19)

the effective action reduces to the bare interaction for Λ → ∞. Amore intuitive way to
understand this result is given by the fact that in a perturbative expansion of the effective
action and its vertex functions in the limit of infinity cutoff scale, limΛ→∞ 𝛾(2𝑛)

Λ , the only
term that does not vanish must be the bare two-particle vertex, since all non-interacting
degrees of freedom are turned off by the modified Gaussian propagator [Hed+04].
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6.3. Hierarchy of flow equations

The previous section introduced and derived the flow equations of the generating func-
tional of (dis)connected Green functions and the effective action, which also provides a
well-defined initial value problem due to its physically meaningful behavior in the limit
of an infinite cutoff scale Λ → ∞. Unfortunately, the flow equation (Equation 6.2.18)
represents a complicated functional integro-differential equation, which poses a both
analytically and numerically unfeasible problem. Hence, we have to rely on approx-
imative solutions of the flow equation. Here, we employ an expansion in the fields to
approximate the flow equation. The expansion of the effective action (Equation 4.2.8)
in terms of its fields 𝜙, ̄𝜙 is given by [Med06]

ΓΛ [ ̄𝜙, 𝜙] =
∞
∑
𝑘=0

(−1)𝑘

(𝑘!)2 ∫𝛼1,…,𝛼𝑘;
𝛼′

1,…,𝛼′
𝑘

𝛾(2𝑘)
Λ (𝛼′

1, … , 𝛼′
𝑘, 𝛼1, … , 𝛼𝑘) ̄𝜙𝛼′

1
… ̄𝜙𝛼′

𝑘
𝜙𝛼𝑘

… 𝜙𝛼1

= 𝛾(0)
Λ − ∫

𝛼1,𝛼′
1

𝛾(2)
Λ (𝛼′

1, 𝛼1) ̄𝜙𝛼′
1
𝜙𝛼1

+
1
4 ∫𝛼1,𝛼2,

𝛼′
1,𝛼′

2

𝛾(4)
Λ (𝛼′

1, 𝛼′
2, 𝛼1, 𝛼2) ̄𝜙𝛼′

1
̄𝜙𝛼′

2
𝜙𝛼2

𝜙𝛼1
+ … ,

(6.3.1)

where the coefficients are represented by the irreducible k-particle vertex functions
defined in (Equation 4.2.10). While the left hand side of the flow equation (Equa-
tion 6.2.18) can be expanded straightforwardly, the right hand side requires some fur-
ther treatment, because the effective action is hidden in the diagonal element of the
inversion of the matrix of second functional derivatives 𝛾𝛾𝛾(2), which is given by (Equa-
tion 4.2.13) (including its scale dependency)

𝛾𝛾𝛾(2) = ⎛⎜⎜⎜
⎝

𝛿2ΓΛ

𝛿𝜙̄𝛿𝜙 + (𝐺Λ)−1 + ΣΛ 𝛿2Γ
𝛿𝜙𝛿𝜙

𝛿2Γ
𝛿𝜙̄𝛿𝜙̄

𝛿2ΓΛ

𝛿𝜙𝛿𝜙̄ − ((𝐺Λ)−1 + ΣΛ)𝑇
⎞⎟⎟⎟
⎠

, (6.3.2)

where we used theDyson equation (𝐺Λ)−1 = (𝐺Λ
0 )−1 − ΣΛ to express the scale depen-

dent free propagator in terms of the full propagator and the self-energy [FW71]. The
matrix of second functional derivatives is recast and separated into a field independent
and field dependent part by
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𝛾𝛾𝛾(2) = ⎛⎜
⎝

𝐺Λ)−1 0
0 − (𝐺Λ)−1)𝑇⎞⎟

⎠
+ ⎛⎜⎜⎜

⎝

ℳ𝜙̄,𝜙
𝛿2ΓΛ

𝛿𝜙𝛿𝜙
𝛿2ΓΛ

𝛿𝜙̄𝛿𝜙̄ −ℳ𝑇
𝜙̄,𝜙

⎞⎟⎟⎟
⎠

= ⎛⎜
⎝

(𝐺Λ)−1 0
0 − ((𝐺Λ)−1)𝑇⎞⎟

⎠
⋅ ( 𝟙 − (−𝐺Λ 0

0 (𝐺Λ)𝑇) ⎛⎜⎜⎜
⎝

ℳ𝜙̄,𝜙
𝛿2ΓΛ

𝛿𝜙𝛿𝜙
𝛿2ΓΛ

𝛿𝜙̄𝛿𝜙̄ −ℳ𝑇
𝜙̄,𝜙

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≔𝜌⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≔𝛾̃𝛾𝛾(2)

) ,

(6.3.3)

where we defined the new matrix

ℳ𝜙̄,𝜙 =
𝛿2ΓΛ

𝛿 ̄𝜙𝛿𝜙
+ ΣΛ( ̄𝜙, 𝜙) =

𝛿2ΓΛ

𝛿 ̄𝜙𝛿𝜙
− 𝛾(2)( ̄𝜙, 𝜙) , (6.3.4)

and used the fact that the self-energy equals the negative of the two-leg irreducible
vertex function 𝛾(2) (cf. (Equation 4.2.13)). Apparently, by using the form and defini-
tions in (Equation 6.3.3), the inverse of the matrix of second derivatives is given by

(𝛾𝛾𝛾(2))−1 = ( ̃𝛾𝛾𝛾(2))
−1

⋅ (𝐺Λ 0
0 −(𝐺Λ)𝑇) , (6.3.5)

since the inverse of a product 𝐴 = 𝐵⋅𝐶 of twomatrices is 𝐴−1 = (𝐵 ⋅ 𝐶)−1 = 𝐶−1 ⋅𝐵−1.
In contrast to the inverse of 𝛾𝛾𝛾(2), the inverse of ̃𝛾𝛾𝛾(2) = 1 − 𝜌 can be calculated by means
of an expansion as a geometric series, i.e. [Ste98]

(𝟙 − 𝜌)−1 =
∞
∑
𝑘=0

𝜌𝑘 = 𝟙 + 𝜌 + 𝜌2 + 𝒪 (𝜌3) , (6.3.6)

where

𝜌 = ⎛⎜⎜⎜
⎝

−𝐺Λℳ𝜙̄,𝜙 −𝐺Λ 𝛿2ΓΛ

𝛿𝜙𝛿𝜙

(𝐺Λ)𝑇 𝛿2ΓΛ

𝛿𝜙̄𝛿𝜙̄ −(𝐺Λ)𝑇ℳ𝑇
𝜙̄,𝜙

⎞⎟⎟⎟
⎠

. (6.3.7)

Up to second order in 𝜌 the upper diagonal element of the inverse of the matrix of
second functional derivatives is therefore given by
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(𝛾𝛾𝛾(2))−1
11 = ⎛⎜

⎝
1 − 𝐺Λℳ𝜙̄,𝜙 + 𝐺Λℳ𝜙̄,𝜙𝐺Λℳ𝜙̄,𝜙 − 𝐺Λ 𝛿2ΓΛ

𝛿𝜙𝛿𝜙(𝐺Λ)𝑇 𝛿2ΓΛ

𝛿 ̄𝜙𝛿 ̄𝜙
+ 𝒪 (𝜌3)⎞⎟

⎠
𝐺Λ ,

(6.3.8)

Since we are ultimately interested in the terms that arise on the left hand and right
hand side of the flow equation in a particular order of the expansion in terms of the
fields, we have to gain some insight into the expansion of ℳ𝜙̄,𝜙 and 𝛿2ΓΛ

𝛿𝜙𝛿𝜙 , 𝛿2ΓΛ

𝛿𝜙̄𝛿𝜙̄ , which
are the only terms on the right hand side incorporating any field dependency. Up to
third order, all three of them contain only terms, which are quadratic or quartic in the
fields. In particular, the first two orders of ℳ𝜙̄,𝜙 are (cf. (Equation 6.3.4))

ℳ𝜙̄𝛽′
1
,𝜙𝛽1

=
𝛿2ΓΛ

𝛿 ̄𝜙𝛽′
1
𝛿𝜙𝛽1

− 𝛾(2)( ̄𝜙𝛽′
1
, 𝜙𝛽1

) = − ∫
𝛼1,𝛼′

1
𝛾(4)

Λ (𝛼′
1, 𝛽′

1, 𝛼1, 𝛽1) ̄𝜙𝛼′
1
𝜙𝛼1

+
1
4 ∫𝛼1,𝛼2,

𝛼′
1,𝛼′

2

𝛾(6)
Λ (𝛼′

1, 𝛼′
2, 𝛽′

1, 𝛼1, 𝛼2, 𝛽1) ̄𝜙𝛼′
1

̄𝜙𝛼′
2
𝜙𝛼2

𝜙𝛼1
+ … , (6.3.9)

since the two-particle irreducible vertex is canceled. The factorial in the denominator
of the prefactor in (Equation 6.3.1) is partly canceled by the multiplicities of terms gen-
erated by the two-fold functional derivative. More precisely, two functional derivatives
produce (𝑘

1)
2
terms at order 𝑘, which, however, turn out to be equivalent, when anticom-

muting and renaming the appropriate fields. The two fold derivatives of the effective
action originating from the off-diagonal terms in 𝜌 yield (up to second order)

𝛿2ΓΛ [ ̄𝜙, 𝜙]
𝛿 ̄𝜙𝛽′

1
𝛿 ̄𝜙𝛽′

2

= −
1
2 ∫

𝛼1,𝛼2
𝛾(4)

Λ (𝛽′
1, 𝛽′

2, 𝛼1, 𝛼2) 𝜙𝛼2
𝜙𝛼1

+
1
6 ∫𝛼1,𝛼2,

𝛼3,𝛼′
1

𝛾(6)
Λ (𝛼′

1, 𝛽′
1, 𝛽′

2, 𝛼1, 𝛼2, 𝛼3) ̄𝜙𝛼′
1
𝜙𝛼3

𝜙𝛼2
𝜙𝛼1

+ … , (6.3.10)

and

𝛿2ΓΛ [ ̄𝜙, 𝜙]
𝛿𝜙𝛽1

𝛿𝜙𝛽2

= +
1
2 ∫

𝛼′
1,𝛼′

2
𝛾(4)

Λ (𝛼′
1, 𝛼′

2, 𝛽1, 𝛽2) ̄𝜙𝛼′
1

̄𝜙𝛼′
2

−
1
6 ∫𝛼1,𝛼′

1,
𝛼′

2,𝛼′
3

𝛾(6)
Λ (𝛼′

1, 𝛼′
2, 𝛼′

3, 𝛼1, 𝛽1, 𝛽2) ̄𝜙𝛼′
1

̄𝜙𝛼′
2

̄𝜙𝛼′
3
𝜙𝛼1

+ … , (6.3.11)

since the two-fold functional derivative of the effective action with respect to fields
of the same “kind” will remove the one-particle vertex. We have now prepared all pre-
requisites needed to determine the flow equations associated to the first few order of
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the expansion in the fields of the flow equation of the effective action (Equation 6.2.18).
Starting with the zeroth order vertex 𝛾(0)

Λ representing the interaction correction to the
free energy, we find the flow equation (cf. [Kop01])

d
dΛ𝛾(0)

Λ = Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ 𝐺Λ
0

⎤⎥
⎦

− Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ 𝐺Λ⎤⎥
⎦

= Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ (𝐺Λ
0 − 𝐺Λ)⎤⎥

⎦
,

(6.3.12)

which produces a renormalization flow, which is characterized by the difference be-
tween the free Gaussian 𝐺Λ

0 and the full propagator 𝐺Λ. Note, that the flow equation
may be formally integrated since the vertex function 𝛾(0)

Λ does not appear on the right
hand side. Besides, this is the only flow equation of the entire hierarchy of flow equa-
tions that contains the first term of the right hand side of (Equation 6.2.18), since only
the second term features field dependent contributions.

6.3.1. Self-energy

The flow equations of all higher order vertex functions are obtained by comparing the
coefficients associated to the terms with the corresponding number of fields on the left
and right hand side of (Equation 6.2.18). The flow equation of the single-particle vertex
𝛾(2)

Λ (𝛼′
1, 𝛼1) - the negative of the self-energy - is hidden in the terms being quadratic

in the fields. Referring to (Equation 6.3.8) and (Equation 6.3.9), we find that only the
two-particle vertex 𝛾(4)

Λ contributes to the right hand side. More precisely, we obtain

−
d
dΛ𝛾(2)

Λ (𝛼′
1, 𝛼1) ̄𝜙𝛼′

1
𝜙𝛼1

+ … = −Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ (−𝐺Λℳ𝜙̄,𝜙𝐺Λ)⎤⎥
⎦

, (6.3.13)

where + … indicates that higher order terms may be present on the right hand side.
In (Section 6.2.1) we introduced Tr as the short-hand notation for the integration over
diagonal terms. Recovering the integration of the trace (and one more “inner” integra-
tion), employing its cyclic invariance in order to shift the second full propagator in front
and neglecting the fields, we find the flow equation of the single-particle vertex to be

d
dΛ𝛾(2)

Λ (𝛼′
1, 𝛼1) = ∫

𝛽′
1,𝛽1

⎛⎜
⎝

𝐺Λd(𝐺Λ
0 )−1

dΛ 𝐺Λ⎞⎟
⎠𝛽′

1,𝛽1

𝛾(4)
Λ (𝛼′

1, 𝛽′
1, 𝛼1, 𝛽1)

= ∫
𝛽′

1,𝛽1
𝑆Λ (𝛽′

1, 𝛽1) 𝛾(4)
Λ (𝛼′

1, 𝛽′
1, 𝛼1, 𝛽1) , (6.3.14)

where we defined the single-scale propagator 𝑆Λ by [SH01]
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𝑆Λ ≔ 𝐺Λd(𝐺Λ
0 )−1

dΛ 𝐺Λ . (6.3.15)

The diagrammatic representation of (Equation 6.3.14) shown in (Figure 6.3a) bears
close pictorial similarity to the Hartree term in first order perturbation theory but is
mathematically very different due to the occurrence of the single-scale propagator. In
the presence of SU(2) symmetry the propagator terms must be diagonal in spin space,
𝑆Λ ∝ 𝜎0, and the two-particle vertex is given by (cf. (Equation 3.3.19))

𝛾(4)
Λ (𝛼′

1, 𝜎 ′
1, 𝛼′

2, 𝜎 ′
2, 𝛼1, 𝜎1, 𝛼2, 𝜎2) = 𝑔Λ

𝛼1𝛼2𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2
− 𝑔Λ

𝛼2𝛼1𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
,

(6.3.16)

where the multiindices on the right hand side are redefined to lack the spin degree
of freedom. Inserting this relation and the diagonal single-scale propagator into (Equa-
tion 6.3.14) leads to the spinless SU(2)-invariant flowequation (cf. [UH12, Sec.II],[Met+12b,
Eq.(109)])

d
dΛ𝑠Λ

𝛼′
1,𝛼1

= ∫
𝛽′

1,𝛽1
𝑆Λ (𝛽′

1, 𝛽1) [2 𝑔Λ
𝛼1𝛽2𝛼′

1𝛽′
2

− 𝑔Λ
𝛽2𝛼1𝛼′

1𝛽′
2
] , (6.3.17)

where we defined the spinless single-particle vertex by 𝑠Λ
𝛼′

1,𝛼1
𝛿𝜎1,𝜎′

1
≔ 𝛾(2)

Λ (𝛼′
1, 𝛼1).

The diagrammatic illustration of (Equation 6.3.17) is given in (Figure 6.3b). Remem-
ber, that the single-particle vertex actually equals the negative of the self-energy ΣΛ (cf.
(Equation 4.2.13)).

6.3.2. Irreducible two-particle vertex

The quantity, which directly governs the properties of possible particle-particle and
particle-hole instabilities is the effective irreducible two-particle vertex. The low-energy
effective two-particle vertex is calculated via its flow equation, that is derived by taking
the second, third and fourth orders of the expansion (Equation 6.3.8) into account and
inserting them into (Equation 6.2.18). We find the following expression that contributes
to terms quartic in the fields:

d
dΛ

1
4 ∫𝛼1,𝛼2,

𝛼′
1,𝛼′

2

𝛾(4)
Λ (𝛼′

1, 𝛼′
2, 𝛼1, 𝛼2) ̄𝜙𝛼′

1
̄𝜙𝛼′

2
𝜙𝛼2

𝜙𝛼1
+ …

= −Tr ⎡⎢
⎣

d(𝐺Λ
0 )−1

dΛ
⎛⎜
⎝

−𝐺Λℳ𝜙̄,𝜙 + 𝐺Λℳ𝜙̄,𝜙𝐺Λℳ𝜙̄,𝜙 − 𝐺Λ 𝛿2ΓΛ

𝛿𝜙𝛿𝜙(𝐺Λ)𝑇 𝛿2ΓΛ

𝛿 ̄𝜙𝛿 ̄𝜙
⎞⎟
⎠

𝐺Λ⎤⎥
⎦

.

(6.3.18)
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𝛾(2)
Λ

𝛼1 𝛼′
1d

dΛ
= 𝛾(4)

Λ

𝛼1 𝛼′
1

𝑆Λ

(a)

𝑠Λ
𝛼1 𝛼′

1d
dΛ

= 𝑔Λ2
𝛼1 𝛼′

1

𝑆Λ

𝑔Λ−
𝛼1

𝛼′
1

𝑆Λ

(b)

Figure 6.3.: The flow equation of the irreducible spinful single-particle vertex 𝛾(2)
Λ - the negative

of the self-energy ΣΛ - has only one contribution from the irreducible two-particle
vertex. The SU(2)-invariant version of the flow equation features two terms with
opposite sign and different weighting factors.

The first term incorporates the three-particle vertex 𝛾(6)
Λ in (Equation 6.3.9) contribut-

ing a term quartic in the fields, while the second term on the left hand side of (Equa-
tion 6.3.18) features the product of two two-particle vertices with “mixed” fields. Sim-
ilar, the third term hosts the product of two two-particle vertices with “anomalous”
field terms originating from (Equation 6.3.10) and (Equation 6.3.11). By employing the
cyclic invariance of the trace in (Equation 6.3.18) we find that each term features one
full propagator 𝐺Λ and one single-scale propagator 𝑆Λ. Comparing and collecting the
coefficients of all terms quartic in the fields on the left and right hand side of (Equa-
tion 6.3.18), results in

d
dΛ𝛾(4)

Λ (𝛼′
1, 𝛼′

2, 𝛼1, 𝛼2) = ∫
𝛽′

1,𝛽1
𝑆Λ (𝛽′

1, 𝛽1) 𝛾(6)
Λ (𝛼′

1, 𝛼′
2, 𝛽′

1, 𝛼1, 𝛼2, 𝛽1)

− 4 ∫𝛽1,𝛽2,
𝛽′

1,𝛽′
2

𝑆Λ (𝛽′
1, 𝛽2) 𝐺Λ (𝛽′

2, 𝛽1) 𝛾(4)
Λ (𝛼′

1, 𝛽′
1, 𝛼1, 𝛽1) 𝛾(4)

Λ (𝛼′
2, 𝛽′

2, 𝛼2, 𝛽2)

+ ∫𝛽1,𝛽2,
𝛽′

1,𝛽′
2

𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) 𝛾(4)
Λ (𝛼′

1, 𝛼′
2, 𝛽1, 𝛽2) 𝛾(4)

Λ (𝛽′
1, 𝛽′

2, 𝛼1, 𝛼2) . (6.3.19)
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In the last term, we used that 𝐺Λ (𝛽′
2, 𝛽2)𝑇 = 𝐺Λ (𝛽2, 𝛽′

2) = −𝐺Λ (𝛽′
2, 𝛽2). Note, that

we require the two-particle vertex on the left hand side of the flow equation to satisfy
all constraints and symmetries discussed in (Section 3.3), which is, in particular, anti-
symmetry and self-adjointness. Hence, the problem with (Equation 6.3.18) is that, in
contrast to the left hand side with 𝛾(4)

Λ (𝛼′
1, 𝛼′

2, 𝛼1, 𝛼2), the right hand side is obviously
not antisymmetric with respect to exchange of primed or unprimed indices because of
the second term. However, by splitting up the second term into two parts, exchanging
appropriate pairs of indices and adjusting the sign in the second one, the antisymmetry
can be restored [KB01; Sal99]. The terms including two two-particle vertices each, re-
quire an additional propagator term with exchanged “inner” indices. Henceforth, the
flow equation becomes (cf. [KBS10, Chap.10.2.2] and [Sch+16; Sch+17])

d
dΛ𝛾(4)

Λ (𝛼′
1, 𝛼′

2, 𝛼1, 𝛼2) = ∫
𝛽′

1,𝛽1
𝑆Λ (𝛽′

1, 𝛽1) 𝛾(6)
Λ (𝛼′

1, 𝛼′
2, 𝛽′

1, 𝛼1, 𝛼2, 𝛽1)

+ ∫𝛽1,𝛽2,
𝛽′

1,𝛽′
2

[𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) + 𝛽1↔𝛽2
𝛽′

1↔𝛽′
2
] × [

1
2𝛾(4)

Λ (𝛼′
1, 𝛼′

2, 𝛽1, 𝛽2) 𝛾(4)
Λ (𝛽′

1, 𝛽′
2, 𝛼1, 𝛼2)

− 𝛾(4)
Λ (𝛼′

1, 𝛽′
1, 𝛼1, 𝛽2) 𝛾(4)

Λ (𝛼′
2, 𝛽′

2, 𝛼2, 𝛽1) + 𝛾(4)
Λ (𝛼′

1, 𝛽′
1, 𝛼2, 𝛽2) 𝛾(4)

Λ (𝛼′
2, 𝛽′

2, 𝛼1, 𝛽1) ] .
(6.3.20)

This flow equation shows, that there are - apart from the three-particle particle term
- three contributions of the irreducible two-particle vertex to the renormalization flow
of the two-particle vertex. The first term corresponds to the particle-particle channel
(BCS) and the second and third terms represent the direct and crossed particle-hole
channels (ZS and ZS’) [Met+12a; HM00a]. The diagrammatics of the flow equation
(Equation 6.3.20) are illustrated in (Figure 6.4).

Starting from the self-energy and the irreducible two-particle vertex, the derivation
of flow equations can be continued up to any irreducible 2𝑛-particle vertex to obtain
an infinite hierarchy of flow equations, since exactly like the flow equations of the self-
energy, which features input from the two-particle vertex, and the two-particle vertex,
which is influenced by the three-particle vertex, any 2𝑛-particle vertex is associated to a
flow equation that includes the contribution of an 2(𝑛 + 1)-particle vertex. Because the
calculation of the entire hierarchy of flow equations is obviously not feasible, we have
to truncate the interdependencies at some order by setting the vertex function 𝛾(𝑛+2)

Λ in
the flow equation of 𝛾(𝑛)

Λ to 𝛾(𝑛+2)
Λ→∞ . Since this truncation is usually done on the level of

the two-particle vertex, this amounts to the negligence of the contribution of the three-
particle vertex in the flow equation of the two-particle vertex. This approximation may
be justified by the fact that effective irreducible vertex functions of the order 𝑛 ≥ 6 can
be classified as irrelevant due to power counting arguments [Met+12a]. However, the
truncation will result in the violation of Ward identities [Kat04]. In order to provide a
self-contained presentation of the flow equations and full correspondence with pertur-
bative renormalization (Chapter 5), we also show how the spinless flow equation for
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𝛾(4)
Λ

𝛼1

𝛼2

𝛼′
1

𝛼′
2

d
dΛ

= 𝛾(6)
Λ

𝛼1

𝛼2

𝛼′
1

𝛼′
2

𝑆Λ

𝛾(4)
Λ+1

2 𝛾(4)
Λ

𝛼1

𝛼2

𝛼′
1

𝛼′
2

𝑆Λ

𝐺Λ

𝛾(4)
Λ

−

𝛾(4)
Λ

𝛼1

𝛼2

𝛼′
1

𝛼′
2

𝑆Λ 𝐺Λ

𝛾(4)
Λ

+

𝛾(4)
Λ

𝛼1

𝛼2

𝛼′
2

𝛼′
1

𝑆Λ 𝐺Λ

Figure 6.4.: The flow equation of the irreducible spinful two-particle vertex 𝛾(4)
Λ has - apart from

a term involving the three-particle vertex - one particle-particle contribution (BCS)
and two particle-hole terms (ZS and ZS’) including the irreducible two-particle ver-
tex. Note, that the diagrams including the two-particle vertices are topologically
equivalent to (Figure 5.3b).

SU(2)-symmetric models arises from (Equation 6.3.20). Here, we neglected the three-
particle vertex contribution in the first place. Analogously to (Equation 6.3.16) we use
the structure (Equation 3.3.19) of the fully SU(2)-invariant two-particle vertex:

𝛾(4)
Λ (𝛼′

1, 𝜎 ′
1, 𝛼′

2, 𝜎 ′
2, 𝛼1, 𝜎1, 𝛼2, 𝜎2) = 𝑔Λ

𝛼1𝛼2𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2
− 𝑔Λ

𝛼2𝛼1𝛼′
1𝛼′

2
𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
,

(6.3.21)

with {𝜎1, 𝜎2, 𝜎 ′
1, 𝜎 ′

2} being the spin indices and {𝛼1, 𝛼2, 𝛼′
1, 𝛼′

2} being the multiindices
representing all remaining quantum numbers. Like before the new coupling function
𝑔Λ is symmetric with respect to exchange of both primed and unprimed indices at once
and therefore satisfies 𝑔Λ

𝛼1𝛼2𝛼′
1𝛼′

2
= 𝑔Λ

𝛼2𝛼1𝛼′
2𝛼′

1
(cf. (Equation 3.3.21)). Inserting the two-

particle vertex (Equation 6.3.21) into (Equation 6.3.20) produces two terms on the left
hand side and twelve terms on the right hand side of the flow equation. The terms on
the right hand feature products of four Kronecker deltas each and may be simplified by
performing the spin summation of the loop integrals. Note that the propagator terms are
proportional to the identity in spin space. For instance, in the particle-particle and direct
particle-hole terms, we encounter the following identities (the inner spin summations
are denoted by 𝜏1, 𝜏2)
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∑
𝜏1,𝜏2

⎧{{{
⎨{{{⎩

𝛿𝜎1𝜏1
𝛿𝜎2𝜏2

𝛿𝜎′
1𝜏1

𝛿𝜎′
2𝜏2

= 𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2

−𝛿𝜎1𝜏1
𝛿𝜎2𝜏2

𝛿𝜎′
1𝜏2

𝛿𝜎′
2𝜏1

= −𝛿𝜎1𝜎′
2
𝛿𝜎2𝜎′

1

−𝛿𝜎1𝜏2
𝛿𝜎2𝜏1

𝛿𝜎′
1𝜏1

𝛿𝜎′
2𝜏2

= −𝛿𝜎1𝜎′
2
𝛿𝜎2𝜎′

1

𝛿𝜎1𝜏2
𝛿𝜎2𝜏1

𝛿𝜎′
1𝜏2

𝛿𝜎′
2𝜏1

= 𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2

∑
𝜏1,𝜏2

⎧{{{
⎨{{{⎩

𝛿𝜎1𝜎′
1
𝛿𝜏1𝜏2

𝛿𝜎2𝜎′
2
𝛿𝜏1𝜏2

= 2𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2

−𝛿𝜎1𝜎′
1
𝛿𝜏1𝜏2

𝛿𝜎2𝜏1
𝛿𝜎′

2𝜏2
= −𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2

−𝛿𝜎1𝜏1
𝛿𝜎′

1𝜏2
𝛿𝜎2𝜎′

2
𝛿𝜏1𝜏2

= −𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2

𝛿𝜎1𝜏1
𝛿𝜎′

1𝜏2
𝛿𝜎2𝜏1

𝛿𝜎′
2𝜏2

= 𝛿𝜎1𝜎2
𝛿𝜎′

1𝜎′
2

The ensemble of these Kronecker deltas separates the spinful flow equation into two
sectors corresponding to the ones defined by the left hand side of the flow equation
(Equation 6.3.21), which are completely decoupled. Henceforth, we compare coeffi-
cients in terms of the two kinds of Kronecker identities and find two equivalent sets
of spinless flow equations, each of which is made up of two particle-particle and four
particle-hole terms. Collecting the terms corresponding to e.g. the 𝛿𝜎1𝜎′

1
𝛿𝜎2𝜎′

2
spin sec-

tor, we find the spinless SU(2)-invariant flow equation of the irreducible two-particle
vertex to be (cf. [KBS10, Chap.10.2.3], [PHT13], [Met+12b, Eq.(110)-(112)])

d
dΛ𝑔Λ

𝛼1𝛼2𝛼′
1𝛼′

2
= ∫𝛽1,𝛽2,

𝛽′
1,𝛽′

2

[𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) + 𝛽1↔𝛽2
𝛽′

1↔𝛽′
2
][𝑔Λ

𝛼1𝛼2𝛽′
1𝛽′

2
𝑔Λ

𝛽1𝛽2𝛼′
1𝛼′

2

− 2𝑔Λ
𝛼1𝛽2𝛼′

1𝛽′
1
𝑔Λ

𝛼2𝛽1𝛼′
2𝛽′

2
+ 𝑔Λ

𝛼1𝛽2𝛼′
1𝛽′

1
𝑔Λ

𝛽1𝛼2𝛼′
2𝛽′

2
+ 𝑔Λ

𝛽2𝛼1𝛼′
1𝛽′

1
𝑔Λ

𝛼2𝛽1𝛼′
2𝛽′

2
+ 𝑔Λ

𝛽2𝛼2𝛼′
1𝛽′

1
𝑔Λ

𝛽1𝛼1𝛼′
2𝛽′

2
] ,

(6.3.22)

where all multiindices {𝛼1, 𝛼2, 𝛼′
1, 𝛼′

2} are taken to lack the spin degree of freedom.
The diagrammatic representation of this flow equation corresponds to the diagrams
in (Figure 5.2). Finally, we want to shortly comment on the numerical evaluation of
loop integrals. To this end, we first note that (exactly like in (Section 5.1)) the vertex
functions are taken to be frequency independent by projecting all external fields to zero
Matsubara frequency 𝑖𝜔 = 0. Employing frequency and momentum conservation for
all two-particle vertex functions, this results in individual restrictions for the propa-
gator terms 𝑆Λ (𝛽′

1, 𝛽1) 𝐺Λ (𝛽′
2, 𝛽2) associated to the particle-particle and particle-hole

contributions of the flow equation. Note, that these considerations are independent of
using the spinful (Equation 6.3.20) or spinless (Equation 6.3.22) flow equation. In the
following, we resort to the combined frequency-momentum notation 𝐾 = (𝑖𝜔,k). On
the one hand, the particle-particle term in the flow equation 𝑔Λ

𝛼1𝛼2𝛽′
1𝛽′

2
𝑔Λ

𝛽1𝛽2𝛼′
1𝛼′

2
gives

𝐾𝛼1
+ 𝐾𝛼2

= 𝐾𝛽′
1

+ 𝐾𝛽′
2
with ⇒ 𝐾𝛽′

2
= 𝐾𝛼1

+ 𝐾𝛼2
− 𝐾𝛽′

1
. On the other hand, for the

particle-hole term(s) 𝑔Λ
𝛼1𝛽2𝛼′

1𝛽′
1
𝑔Λ

𝛼2𝛽1𝛼′
2𝛽′

2
we find 𝐾𝛼1

+ 𝐾𝛽2
= 𝐾𝛼′

1
+ 𝐾𝛽′

1
with ⇒ 𝐾𝛽2

=
𝐾𝛼′

1
− 𝐾𝛼1

+ 𝐾𝛽′
1
. Henceforth, the propagators in band basis can be written as (using the

propagator (Equation 4.2.4), the single-scale propagator (Equation 6.3.15), the regula-
tor cutoff function and its derivative (Equation 6.1.4))
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𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) 𝛿𝛽′
1𝛽1

𝛿𝛽′
2𝛽2

=
d
dΛ𝐶Λ(𝜉𝛽1k)
−𝑖𝜔𝑛 + 𝜉𝛽1k

𝐶Λ(𝜉𝛽2k𝛼1
+k𝛼2−k𝛽1

)
𝑖𝜔𝑛 + 𝜉𝛽2k𝛼1

+k𝛼2−k𝛽1

, (6.3.23)

for the particle-particle term and

𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) 𝛿𝛽′
1𝛽1

𝛿𝛽′
2𝛽2

=
d
dΛ𝐶Λ(𝜉𝛽1k)
−𝑖𝜔𝑛 + 𝜉𝛽1k

𝐶Λ(𝜉𝛽2k𝛼′
1
−k𝛼1

+k𝛽′
1
)

−𝑖𝜔𝑛 + 𝜉𝛽2k𝛼′
1
−k𝛼1

+k𝛽′
1

, (6.3.24)

for the (direct) particle-hole term with momentum transfer, where the self-energy
contribution to the full propagator 𝐺Λ was neglected. When assuming the vertex func-
tions to be frequency independent, the Matsubara summation can be performed ana-
lytically with the result given in (Equation 5.1.17a) for the particle-particle and (Equa-
tion 5.1.17b) for the particle-hole terms. Using an energy/momentum cutoff like (Equa-
tion 6.1.3), the particle-particle and particle-hole loops in the flow equations are ob-
tained in terms of

1
𝛽 ∑

𝑖𝜔𝑛

[𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) + 𝛽1↔𝛽2
𝛽′

1↔𝛽′
2
]𝛿𝛽′

1𝛽1
𝛿𝛽′

2𝛽2

=

⎧{{{
⎨{{{⎩

d
dΛ (𝐶Λ(𝜉𝛽1k)𝐶Λ(𝜉𝛽2q−k𝛽1

))
𝑓 (−𝛽𝜉𝛽1k

)−𝑓 (𝛽𝜉𝛽2q−k𝛽1
)

𝜉𝛽1k
+𝜉𝛽2q−k𝛽1

particle-particle

d
dΛ (𝐶Λ(𝜉𝛽1k)𝐶Λ(𝜉𝛽2q+k𝛽1

))
𝑓 (+𝛽𝜉𝛽1k

)−𝑓 (𝛽𝜉𝛽2q+k𝛽1
)

𝜉𝛽1k
−𝜉𝛽2q−k𝛽1

particle-hole
,

(6.3.25)

where the momentum transfer q is given by q = k𝛼1
+k𝛼2

for the particle-particle, by
q = k𝛼′

1
− k𝛼1

for the direct particle-hole and by q = k𝛼′
1

− k𝛼2
for the crossed particle-

hole terms. In case of a temperature flow the free propagator in band basis is given by
(𝐺Λ

0 )k𝛼 = 𝛽−1/2 (−𝑖𝜔 + 𝜉k𝛼)−1 (Equation 6.1.7). The scale derivative of the inverse free
propagator is

d(𝐺Λ
0 )−1

dΛ =
d
dΛ [𝛽1/2 (−𝑖𝜔𝑛 + 𝜉k𝛼)]

𝜔𝑛= (2𝑛+1)𝜋
𝛽

↓= =
1
2𝛽−1/2 (𝑖𝜔𝑛 + 𝜉k𝛼) , (6.3.26)

where the derivative is performed with respect to Λ = 𝛽. Hence, the full propagator
(by means of 𝐺Λ = (𝐺Λ

0 − ΣΛ)−1) and the single-scale propagator are
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𝐺Λ(𝐾, 𝛼) =
𝛽−1/2

−𝑖𝜔 + 𝜉k𝛼
𝑆Λ(𝐾, 𝛼) = 𝐺Λd(𝐺Λ

0 )−1

dΛ 𝐺Λ =
𝛽−3/2

2
𝑖𝜔𝑛 + 𝜉k𝛼

(−𝑖𝜔𝑛 + 𝜉k𝛼)2 ,

(6.3.27)

where the self-energy contribution ΣΛ was neglected. Therefore, the loop terms in
the temperature flow scheme are

1
𝛽 ∑

𝑖𝜔𝑛

[𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) + 𝛽1↔𝛽2
𝛽′

1↔𝛽′
2
]𝛿𝛽′

1𝛽1
𝛿𝛽′

2𝛽2

=
1
𝛽 ∑

𝑖𝜔𝑛

[
𝛽−2

2
𝑖𝜔𝑛 + 𝜉k𝛽1

(−𝑖𝜔𝑛 + 𝜉k𝛽1
)2(±𝑖𝜔𝑛 + 𝜉q∓k𝛽2

)
+

−𝑖𝜔𝑛 + 𝜉k𝛽2

(−𝑖𝜔𝑛 + 𝜉k𝛽1
)(±𝑖𝜔𝑛 + 𝜉q∓k𝛽2

)2 ]

=
1
𝛽 ∑

𝑖𝜔𝑛

1
𝛽2

−𝜔2
𝑛 + 𝜉k𝛽1

𝜉q∓k𝛽2

(−𝑖𝜔𝑛 + 𝜉k𝛽1
)2(±𝑖𝜔𝑛 + 𝜉q∓k𝛽2

)2 , (6.3.28)

where the ± applies for the particle-particle and particle-hole case, respectively. The
expression in the last line can be conveniently simplified by means of a derivative with
respect to the flow parameter by 3

1
𝛽 ∑

𝑖𝜔𝑛

1
𝛽2

−𝜔2
𝑛 + 𝜉k𝛽1

𝜉q∓k𝛽2

(−𝑖𝜔𝑛 + 𝜉k𝛽1
)2(±𝑖𝜔𝑛 + 𝜉q∓k𝛽2

)2 =
1
𝛽 ∑

𝑖𝜔𝑛

d
d𝛽

⎡⎢
⎣

1
𝛽

1
(−𝑖𝜔𝑛 + 𝜉k𝛽1

)
1

(±𝑖𝜔𝑛 + 𝜉q∓k𝛽2
)
⎤⎥
⎦

.

(6.3.30)

After exchanging the summation and the derivative, the Matsubara sum can be per-
formed with the well-known result (cf. (Equation 5.1.17a) and (Equation 5.1.17b))

1
𝛽 ∑

𝑖𝜔𝑛

[𝑆Λ (𝛽′
1, 𝛽1) 𝐺Λ (𝛽′

2, 𝛽2) + 𝛽1↔𝛽2
𝛽′

1↔𝛽′
2
]𝛿𝛽′

1𝛽1
𝛿𝛽′

2𝛽2
=

d
d𝛽

𝑓 (∓𝛽𝜉k𝛽1
) − 𝑓 (𝛽𝜉q∓k𝛽2

)
𝜉k𝛽1

± 𝜉q∓k𝛽2

.

(6.3.31)

This final form of the loops in the framework of the temperature flow scheme provides
the most transparent analogy to the perturbative renormalization group. More pre-
cisely, the loops of functional renormalization in the temperature flow scheme (Equa-
tion 6.3.31) and the loops of perturbative renormalization ((Equation 5.1.17a) and (Equa-

3 The derivative of the propagator product with respect to the flow parameter 𝛽 is

d
d𝛽 [

1
𝛽

1
(−𝑖𝜔𝑛 + 𝜉)

1
(±𝑖𝜔𝑛 + 𝜉 ′)] =

1
𝛽2

𝜔2
𝑛 − 𝜉𝜉 ′

(−𝑖𝜔𝑛 + 𝜉)2(±𝑖𝜔𝑛 + 𝜉 ′)2 , (6.3.29)

where we used d
dΛ 𝑖𝜔𝑛 = −𝑖𝜔𝑛/𝛽.
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tion 5.1.17b)) only differ in the preceding temperature derivative.

6.4. Parameterization of the flow equation

The flow equations presented in the preceding section can be formulated in a numeri-
cally more efficient way by taking the constraints and symmetries given in (Section 3.3)
into account. Here, we limit our considerations to the irreducible two-particle vertex.
Apart from that, there are numerous more symmetries and resulting interdependen-
cies in the two-particle vertex due to time-reversal and point group operation, which
can, however, only be exploited numerically.

6.4.1. Parametrization of the two-particle vertex

The antisymmetry and self-adjointness of the irreducible two-particle vertex have been
shown to reduce the number of independent spin-sectors from sixteen to six (cf. (Equa-
tion 3.3.6)). These considerations enable us to rewrite the spinful flow equation (Equa-
tion 6.3.20) in terms of these six spinless tensors, named {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}. This parametriza-
tion of the flow equation effectively suppresses the spin degree of freedom by implicitly
performing the spin summation in the first place. Since we work in band basis, both full
and single-scale propagators are assumed to be diagonal. Hence, the spin summation
of the loop integral is limited to four terms only for each of the diagrams. By inserting
the parametrization (Equation 3.3.6) into the spinful flow-equation (Equation 6.3.20),
we find six coupled flow equations, i.e. one for each of the independent spin sectors
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}. Here, we only give the expressions for the flow equation of tensors 𝐴
and 𝐵. The flow equation of 𝐴 depends on 𝐴, 𝐵, 𝐶, 𝐷 only, and is given by

d
dΛ𝐴𝛼1𝛼2𝛼′

1𝛼′
2

= ∫
𝛽1,𝛽2

[𝑆Λ
𝛽1

𝐺Λ
𝛽2

+ 𝑆Λ
𝛽2

𝐺Λ
𝛽1

]

× [
1
2(𝐴𝛼1𝛼2𝛽1𝛽2

𝐴𝛽1𝛽2𝛼′
1𝛼′

2
+ 𝐵𝛼1𝛼2𝛽1𝛽2

𝐵𝛼′
1𝛼′

2𝛽1𝛽2
− 𝐵𝛼1𝛼2𝛽2𝛽1

𝐵𝛼′
1𝛼′

2𝛽1𝛽2

+ 𝐶𝛼1𝛼2𝛽1𝛽2
𝐶𝛼′

1𝛼′
2𝛽1𝛽2

) − (𝐴𝛼1𝛽2𝛼′
1𝛽1

𝐴𝛼2𝛽1𝛼′
2𝛽2

+ 𝐵𝛼′
1𝛽1𝛼1𝛽2

𝐵𝛼2𝛽1𝛼′
2𝛽2

+ 𝐵𝛼1𝛽2𝛼′
1𝛽1

𝐵𝛼′
2𝛽2𝛼2𝛽1

+ 𝐷𝛼1𝛽2𝛼′
1𝛽1

𝐷𝛼2𝛽1𝛼′
2𝛽2

) + (𝐴𝛼1𝛽1𝛼′
2𝛽2

𝐴𝛼2𝛽2𝛼′
1𝛽1

+ 𝐵𝛼1𝛽1𝛼′
2𝛽2

𝐵𝛼′
1𝛽1𝛼2𝛽2

+ 𝐵𝛼′
2𝛽2𝛼1𝛽1

𝐵𝛼2𝛽2𝛼′
1𝛽1

+ 𝐷𝛼1𝛽1𝛼′
2𝛽2

𝐷𝛼2𝛽2𝛼′
1𝛽1

)] . (6.4.1)

In contrast, the flowequation of𝐵depends on the five tensors𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and appears
to be
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d
dΛ𝐵𝛼1𝛼2𝛼′

1𝛼′
2

= ∫
𝛽1,𝛽2

[𝑆Λ
𝛽1

𝐺Λ
𝛽2

+ 𝑆Λ
𝛽2

𝐺Λ
𝛽1

]

× [
1
2(𝐴𝛼1𝛼2𝛽1𝛽2

𝐵𝛽1𝛽2𝛼′
1𝛼′

2
+ 𝐵𝛼1𝛼2𝛽1𝛽2

𝐷𝛽1𝛽2𝛼′
1𝛼′

2
− 𝐵𝛼1𝛼2𝛽2𝛽1

𝐷𝛽1𝛽2𝛼′
2𝛼′

1

+ 𝐶𝛼1𝛼2𝛽1𝛽2
𝐸𝛼′

1𝛼′
2𝛽1𝛽2

) − ( − 𝐴𝛼1𝛽2𝛼′
1𝛽1

𝐵𝛼2𝛽1𝛽2𝛼′
2

+ 𝐵𝛼′
1𝛽1𝛼1𝛽2

𝐶𝛼2𝛽1𝛼′
2𝛽2

− 𝐵𝛼1𝛽2𝛼′
1𝛽1

𝐷𝛼2𝛽1𝛽2𝛼′
2

+ 𝐷𝛼1𝛽2𝛼′
1𝛽1

𝐸𝛼2𝛽1𝛼′
2𝛽2

) + ( − 𝐵𝛼1𝛽1𝛽2𝛼′
2
𝐴𝛼2𝛽2𝛼′

1𝛽1

+ 𝐶𝛼1𝛽1𝛼′
2𝛽2

𝐵𝛼′
1𝛽1𝛼2𝛽2

+ 𝐷𝛼1𝛽1𝛽2𝛼′
2
𝐵𝛼2𝛽2𝛽1𝛼′

1
+ 𝐸𝛼1𝛽1𝛼′

2𝛽2
𝐷𝛼2𝛽2𝛼′

1𝛽1
)] . (6.4.2)

Both flow equations don’t involve any explicit spin degree of freedom anymore, since
the six tensors represent the full spin structure of the two-particle interaction and the
spin summation of the spinful flow equation was already taken care of. The remaining
four flow equations for {𝐶, 𝐷, 𝐸, 𝐹} can be derived analogously.

Summary and preview

This chapter introduced the functional renormalization group based on the generating
functional of the effective action. After introducing the cutoff dependency into the free
propagator and deriving the flow equation of the effective action, we used the expansion
of the effective action in terms of fields to obtain an infinite hierarchy of coupled flow
equations. In particular, we are interested in the flow equations at first and second or-
der, i.e. the (spinful) flow equations of the self-energy and the irreducible two-particle
vertex. We discussed the mathematical details necessary for the numerical implemen-
tation of these flow equations. Based on the considerations of the symmetries of the
two-particle vertex in (Section 3.3)we gave a parametrization of the flow equation of the
two-particle vertex that allows for a numerically efficient calculation of all spin-sectors,
while avoiding the inclusion of any redundant couplings.
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7. Methodological benchmarking by means
of toy models

In the first part of this thesis we introduced the methodological novelties and concepts
for perturbative ((Chapter 5)) and functional renormalization group ((Chapter 6)) ap-
proaches to fermionic systemswith broken SU(2) spin symmetry, for instancewith size-
able spin-orbit interaction. Furthermore, the developedmethods are well-suited to deal
with additional broken symmetries. In particular, these computational tools enable us
to perform renormalization group calculations in absence of spacial inversion symme-
try or time-reversal symmetry. In (Chapter 3) we discussed and derived the possible
results and allowed quantum states, which may occur in these system, from a symme-
try point of view. The second part of this thesis will employ these methods to physically
interesting systems that are subject to current research interest. The first of these being
the oxide-heterostructure represented by LaAlO3/SrTiO3 , which features broken spa-
cial inversion symmetry andRashba interaction. The second one is the intriguingmatter
of strontium ruthenate, whichwill be introduced by a three-orbital Hamiltonian includ-
ing centrosymmetric spin-orbit coupling. However, before we dive into these (realistic)
models, we proceed by making sure that in the limit of vanishing spin-orbit interaction
and zero magnetic field the developed computational tools reproduce the phases and
quantum states of well-known toy models, which serve as a reference for the reliability
of the proposed methods.

7.1. Hubbard model on the two-dimensional square lattice

TheHubbardmodel has been around for alreadymore than fifty years [Hub63] and repre-
sents one of the simplestmodels for interacting correlated electrons. Nevertheless, it has
been shown to exhibit metal-insulator transitions, (high-temperature) superconductiv-
ity and (antiferro-)magnetism [LeB+15]. The (extended) repulsive Hubbard model on
the square lattice is defined by

ℋ0 = −𝑡𝑖𝑗 ∑
𝑖,𝑗𝜎

(𝑐†
𝑖𝜎𝑐𝑗𝜎 + h.c.) − 𝜇 ∑

𝑖𝜎
𝑐†
𝑖𝜎𝑐𝑗𝜎 + 𝑈 ∑

𝑖
𝑛𝑖↑𝑛𝑖↓ + 𝑉 ∑

⟨𝑖𝑗⟩𝜎𝜎′
𝑛𝑖𝜎𝑛𝑗𝜎′ . (7.1.1)

with on-site Coulomb repulsion 𝑈 > 0, nearest neighbour interaction 𝑉 > 0 and the
number operator 𝑛𝑖𝜎 = 𝑐†

𝑖𝜎𝑐𝑖𝜎. The non-interacting band structure and Fermi surface of
the Hamiltonian (Equation 7.1.1) on the square lattice are shown in (Figure 7.1a) for
two sets of parameters given by nearest neighbor 𝑡 = 1.0 eV and next nearest neighbour
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Figure 7.1.: The band structure and Fermi surface of the single-orbital Hubbard model given by
(Equation 7.1.1) for the two sets of parameters 𝑡′ = 0𝑡, −0.25𝑡 and the chemical poten-
tial 𝜇 = 0𝑡, −1.0𝑡. The bare susceptibility 𝜒(q) is strongly enhanced for fluctuations
with momentum transfer q = (𝜋, 𝜋)𝑇.

hopping 𝑡′ = 0𝑡, −0.25𝑡 and the chemical potential 𝜇 = 0𝑡, −1.0𝑡. For the first parameter
set 𝑡′ = 0 and 𝜇 = 0, the Fermi surface is perfectly nested with respect to the momen-
tum transfer q = (𝜋, 𝜋)𝑇 and the band structure shows particle-hole symmetry. The
finite next nearest neighbour hopping 𝑡′ = −0.25𝑡 and the shift in the chemical potential
destroys the perfect nesting by slightly warping the Fermi surface. In (Figure 7.1b) we
plotted the bare susceptibility 𝜒(q) defined in (Equation 5.2.7). For both sets of parame-
ters, the susceptibility is strongly enhanced at theM point corresponding to q = (𝜋, 𝜋)𝑇

fluctuations, which is a consequence of the (almost) perfect nesting of the Fermi surface
and the van-Hove singularity in the density of states at zero energy 𝜉(k) = 0.

7.1.1. Antiferromagnetic fluctuations and d-wave superconductivity

Judging from (Figure 7.1b) and the bare susceptibility, we can expect antiferromagnetic
fluctuations with ordering vector q = (𝜋, 𝜋)𝑇 to be strong in the single-band Hubbard
model near half-filling. Indeed, the half-filled Hubbard model has been shown to order
antiferromagnetically already on the mean-field level [KU75]. To go beyond the mean-
field approximation, we employ the perturbative renormalization group approach in
(Chapter 5). However, the perturbative method ceases to be exact when approaching
half-filling due to the strong particle-hole fluctuations. Hence it is only valid away from
the perfectly nested casewith the van-Hove singularity at the Fermi level. Consequently,
we use the perturbative method to calculate the phase diagram with respect to electron
filling 𝑛 and nearest neighbor interaction 𝑉 for sizeable chemical potential 𝜇 > 0 of
the extended Hubbard model (Equation 7.1.1) to avoid half-filling. The phase diagram
(Figure 7.2a) is dominated by singlet d-wave pairing states with symmetry represen-
tations B1g and B2g. While the symmetry protected nodes of B2g are located along the
main axis’, i.e. 𝑘𝑥 = 0 and 𝑘𝑦, the B1g representation features nodes along the diagonals
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Figure 7.2.: (Figure 7.2a) shows the phase diagram of the single-band Hubbard model (Equa-
tion 7.1.1) with respect to the electron filling 𝑛 and nearest neighbor interaction 𝑉. It
is qualitatively similar to the phase diagram of [Hlu99] and the transition between
B2g and B2g along the axis of 𝑛 agrees quantitativelywith [Rag+12]. In (Figure 7.2b),
the functional renormalization group flow for 𝜇 = −𝑡 and 𝑡′ = −0.25𝑡 exhibits the
singlet pairing instability with B1g symmetry and the associated order parameters
𝑓 qk3 and 𝑓k0 (plotted along the Fermi surface given by discrete Fermi points k𝑖

𝐹) of
the spin-density wave with ordering vector q = (𝜋, 𝜋) and the singlet pairing (cf.
notation in (Section 3.5) and (Section 3.4)).

with 𝑘𝑥 = ±𝑘𝑦. By shifting its anti-nodal regime towards the van-Hove singularity at
𝑋, the B1g pairing state gains condensation energy. To approach the half-filled case, we
make use of the functional renormalization group in (Chapter 6). The functional renor-
malization group flow of the eigenvalues of various kinds of particle-hole and pairing
channels and associated order parameters is given in (Figure 7.2b). By analyzing the
harmonic content of the gap functions in (Figure 7.2b) for 𝜇 = −𝑡 and 𝑡′ = −0.25𝑡, we
find that the B1g state is mostly comprised of short range first nearest neighbor pairing
and has a small contribution from longer range third nearest neighbor pairing described
by the order parameter:

𝑑0
k = Δ1 (cos(𝑘𝑥) − cos(𝑘𝑦)) + Δ1 (cos(2𝑘𝑥) − cos(2𝑘𝑦)) , (7.1.2)

where Δ1, Δ3 specify the overall and relative gap magnitudes with ∣Δ1∣ ≈ 2∣Δ3∣. The
required lattice harmonics are given in appendix H. The interplay and competition be-
tween antiferromagnetism and d-wave superconductivity in the Hubbard model near
half-filling have been investigated extensively and appear to be an established result
[ZS98; HM00b].
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7.2. Chiral superconductivity on the honeycomb lattice

Since the first experimental realization of graphene about a decade ago [Nov+05], the
community has been showing immense interest in this hexagonal honeycomb struc-
ture made of carbon atoms. Besides having extraordinary mechanical properties, the
graphene sheets feature an exotic dispersion relation of the electrons at the K-points
of the Brillouin zone reminiscent of relativistic massless Dirac particles [GM07; Gei09].
An illustration of the honeycomb lattice structure with sublattices 𝐴, 𝐵 and basis vectors

a1 = 𝑎
2 (3, √3)

𝑇
and a2 = 𝑎

2 (3, −√3)
𝑇
is provided in (Figure 7.3a). In order to derive a

simple tight-bindingmodel for a perfectly plane graphene sheet, we assume rotationally
invariant 𝑝𝑧 orbitals that make up the electronic states at the Fermi surface. Taking only
first nearest neighbor hoppings into account, we find the non-interacting tight-binding
Hamiltonian:

ℋ0 = ∑
k,𝜎

(𝑐†
k𝐴𝜎, 𝑐†

k𝐵𝜎)𝑇 (𝑡2ℎ2(k) − 𝜇 𝑡1ℎ1(k)
𝑡1 ̄ℎ1(k) 𝑡2ℎ2(k) − 𝜇) (𝑐k𝐴𝜎

𝑐k𝐵𝜎
) , (7.2.1)

where 𝑐†
k𝐴(𝐵)𝜎, 𝑐k𝐴(𝐵)𝜎 creates (annihilates) an electron on sublattice 𝐴 (𝐵) and 𝜇 is

the chemical potential. The momentum dependency is given by

ℎ1(k) = 𝑒−𝑖𝑘𝑥 + 2𝑒𝑖𝑘𝑥/2 cos(𝑘𝑦√3/2) and (7.2.2)

ℎ2(k) = cos(√3𝑘𝑦) + cos((3𝑘𝑥 + √3𝑘𝑦)/2) + cos((3𝑘𝑥 − √3𝑘𝑦)/2) , (7.2.3)

where the lattice constantwas set to unity 𝑎 = 1. For second nearest neighbor hopping
being zero 𝑡2 = 0 the single-particle spectrum and the eigenstates of (Equation 7.2.1)
can be calculated analytically. The eigenvalues are given by

𝜉±(k) = ±√∣ℎ1(k)∣2 = ±√1 + 4 cos(𝑘𝑦√3/2) cos (𝑘𝑥 3/2) + 4 cos2 (𝑘𝑦√3/2) ,
(7.2.4)

and they are plotted along the high symmetry points of the Brillouin zone in (Fig-
ure 7.3b). The eigenstates show that the “orbital weight” of a Bloch state is equally
distributed among both sublattices, i.e.

u±(k) = ⎛⎜⎜
⎝

ℎ1(k)
𝜉±(k)𝛼

𝛼
⎞⎟⎟
⎠

=
1

√2
(±𝑒𝑖𝜙(k)/2

𝑒−𝑖𝜙(k)/2 ) , 𝛼 ∈ ℂ , (7.2.5)

with 𝛼 being the normalization constant, which may carry any phase. In the second
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Figure 7.3.: (Figure 7.3a) illustrates the structure of the honeycomb lattice with basis vectors
a1 = 𝑎

2 (3, √3)𝑇 and a2 = 𝑎
2 (3, −√3)𝑇 and sublattices 𝐴 and 𝐵. The band structure

(Figure 7.3b) is characterized by the Dirac cone at the Fermi surface. In its vicinity
the dispersion can be approximated by 𝜉k ≈ 𝑣⟂

𝐹 𝑘⟂ + 𝑣∥
𝐹𝑘∥ with the Fermi velocities 𝑣⟂

𝐹
and 𝑣∥

𝐹 perpendicular and parallel to the Fermi surface. The density of states is zero
at the Dirac point and increases linearly in its vicinity.

equality we defined the phase 𝜙(k) by ℎ1(k) = 𝜉±(k)𝑒𝑖𝜙(k)/2 and chose 𝛼 = 1
√2

𝑒−𝑖𝜙(k)/2.
Although both sublattices contribute the same “weight” to any Bloch state, the eigen-
state components feature a relative phase between both sublattice parts. Note, that this
relative phase is the origin of the non-zero Berry phase in graphene [Zha+05; XCN10a;
PM11].

7.2.1. Singlet pairing in the E2g representation

The structure of the eigenstates (Equation 7.2.5) has profound consequences on themo-
mentum dependency of the bare interaction in band basis. To obtain the band repre-
sentation (Equation 5.1.15) of a on-site interaction 𝑈0, we employ the transformations
(Equation 3.3.33a) and (Equation 3.3.33b). However, taking higher order hoppings in
(Equation 7.2.1) into account, will result in a Hamiltonianwhose eigenstates can in gen-
eral not be represented analytically. This poses a numerical challengewith respect to the
phases of Bloch states. To render the resulting order parameters associated to instabili-
ties of the renormalization group flow gauge-invariant, we either have to fix a particu-
lar gauge (cf. (Figure 3.2) and discussion in (Section 3.2)), which results in eigenstates,
which coincide with the analytically given states for hopping parameters 𝑡𝑛 = 0, ∀𝑛 > 1
(cf. appendix E), or we have to rely on pairing between time-reversal and inversion sym-
metry partner states as explained in (Section 3.4). The interacting Hamiltonian with on-
site repulsion 𝑈0 and nearest neighbor interaction 𝑈1 between electrons on sublattices
𝐴 and 𝐵 is:
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ℋ𝐼 = 𝑈0 ∑
𝑖

𝑛𝑖↑𝑛𝑖↓ + 𝑈1 ∑
⟨𝑖𝑗⟩

∑
𝜎𝜎′

𝑛𝑖𝜎𝑛𝑗𝜎′ , (7.2.6)

with 𝑛𝑖𝜎 = 𝑐†
𝑖𝜎𝑐𝑖𝜎. Note, that while the on-site interaction 𝑈0 requires antiparallel

spins, the longer-range interaction 𝑈1 may have finite contributions in both antiparal-
lel and parallel interaction matrix elements, which becomes important for the proper
setup of the spinful antisymmetric two-particle vertex (cf. appendix G). However, in
this subsection we limit our considerations to the spinless interaction. Henceforth, the
bare (spinless) two-particle vertex in band basis for an on-site interaction 𝑈0 is deter-
mined by (using the notation given in (Equation 3.3.19))

𝑉k1𝑏1k2𝑏2k′
1𝑏′

1k′
2𝑏′

2
= ∑

𝛼𝑖

̄𝑢𝑏1𝛼1
k1

̄𝑢𝑏2𝛼2
k2

𝑉k1𝛼1k2𝛼2k′
1𝛼′

1k′
2𝛼′

2
𝑢𝑏′

2𝛼′
2

k′
2

𝑢𝑏′
1𝛼′

1
k′

1

= 𝑈0 ∑
𝛼

̄𝑢𝑏1𝛼
k1

̄𝑢𝑏2𝛼
k2

𝑢𝑏′
2𝛼

k′
2

𝑢𝑏′
1𝛼

k′
1

, (7.2.7)

where we substituted the notation ± in (Equation 7.2.5) with appropriate band in-
dices 𝑏 = ± and used the summation over all four pairs of 𝐴, 𝐵 sublattice indices with
𝛼𝑖 ∈ {𝐴𝑖, 𝐵𝑖}∀𝑖 ∈ {1, 2, 3, 4}. The simplification of the transformation in the second line
is due to the on-site interaction having the same sublattice index associated to any of the
four fermionic fields. Inserting the eigenstates (Equation 7.2.5) into (Equation 7.2.7), we
find that the remaining two terms contributing to the vertex in band space are complex
conjugated to each other. As a result, the momentum dependency of the two-particle
interaction in band space is described by cos ((−𝜙(k1 − 𝜙(k2) + 𝜙(k′

1) + 𝜙(k′
2)/2) and

sin (…) for the upper and lower band, respectively. Consequently, the two-particle ver-
tex in band space for on-site interaction and only nearest neighbor hopping must al-
ways be real for “properly gauged” eigenstates. As a second indicator for a proper band
basis, we note that the Cooper channel of the vertex turns out to be momentum in-
dependent on the mean-field level since the phase 𝜙(k) satisfies 𝜙(−k) = −𝜙(k) due
to ℎ1(−k) = ̄ℎ1(k). The renormalization group flow for the bare interaction (Equa-
tion 7.2.7) and corresponding Fermi surface topology for the setup𝜇 = −1.2𝑡1 and 𝑡2 = 0
are shown in (Figure 7.4). While the perfect nesting condition of the Fermi surface and
the van-Hove singularity at the Fermi level will give rise to a spin-density wave with
ordering vector q = (𝜋, 𝜋/√3)𝑇, a shift in the electron filling that destroys the perfect
nesting of the Fermi surface will promote the singlet pairing in the two-dimensional E2
representation of the hexagonal point group to be the leading instability. The harmonic
analysis of the associated gap function given in the right part of (Figure 7.4) reveals
that it is mostly comprised of first and third nearest neighbor pairing. Since the two
eigenvectors associated to basis functions are degenerate, any superposition of both can
be realized. Mean-field theory shows that a complex superposition with relative 𝑒±𝑖𝜋/2

will maximize the condensation energy. The “chiral” 𝑑+𝑖𝑑 singlet pairing state has been
proposed in several works, that made use of various renormalization group schemes
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7.2. Chiral superconductivity on the honeycomb lattice
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Figure 7.4.: The Fermi surface for 𝜇 = −𝑡1 and 𝑡2 = 0 is perfectly nested and promotes a spin-
density wave instability with momentum transfer q = (𝜋, 𝜋/√3)𝑇. However, de-
forming the Fermi surface to get rid of the nesting condition by shifting the electron
filling (𝜇 = −1.2𝑡1) will enhance the singlet pairing channel and eventually result
in an instability with the symmetry of the E2g representation of the hexagonal point
group.

[NLC12; NC12; Kie+12].

Summary and preview

In this chapterwe established the connection between our spinful renormalization group
framework of perturbative and functional kindwith previouswork in the field bymeans
of toymodels. We firstly took the single-bandHubbardmodel to reproducewell-known
results at and away from half-filling. We found that the perturbative renormalization
group scheme cannot be employed directly at half-filling due to the perfect nesting con-
dition, the van-Hove singularity at the Fermi level and the resulting strong particle-hole
fluctuations. However, since the functional renormalization group scheme takes both
particle-particle and particle-hole channels into account, we are able to fill this gap. This
shows that the perturbative and functional renormalization group schemes represent a
symbiotic set of methods. Furthermore, we employed the functional renormalization
group scheme to competing instabilities of the Hubbard model on the honeycomb lat-
tice and found the chiral superconducting instabilities widely known as 𝑑 + 𝑖𝑑 state. In
the next chapter, we will make use of further capabilities of our renormalization group
schemes by taking finite noncentrosymmetric spin-orbit coupling terms into account.
As a physical interesting example, we show how topological superconductingmay arise
in the oxide heterostructure of LaAlO3/SrTiO3 .
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8. Topological superconductivity in oxide
heterostructures

As a first step into the realm of spin-orbit physics we consider the oxide-heterostructure
of LaAlO3/SrTiO3 . The research in LaAlO3/SrTiO3 is part of an exciting new field of
condensed matter research in complex oxide interfaces [MS10b]. It is based on the
discovery that a well-defined interface made up of (otherwise insulating) oxides can
give rise to an electron gas with astonishing properties like i.a. high mobility [OH04].
The diversity of this new field of research is driven by the complex interplay between
spin, lattice, charge and orbital degrees of freedom [Zub+11] and results in unusual be-
havior of electronic, (ferro-)magnetic, magnetoelectric and superconducting properties
[Li+11]. Here, we are interested in the superconductivity in the LaAlO3/SrTiO3 oxide
heterostructure featuring a critical temperature of 𝑇𝐶 ≈ 200mK [Rey+07]. Obviously,
the most striking difference of the two-dimensional electron gas at the heterostructure
interface to any bulk system is the broken inversion symmetry, which allows for an ad-
mixture of singlet and triplet pairing states (cf. (Section 3.4.2)). Concerning the nature
of the pairing state, there have been proposals for a mixed singlet-triplet state with 𝑑𝑥𝑦
and (𝑝𝑥 ± 𝑖𝑝𝑦)-wave symmetry (given in pseudospin basis) [Yad+09] based on Eliash-
berg theory and a 𝑠++ versus 𝑠+− state (given in helical basis) with same or alternating
sign on the spin-split Fermi surfaces [SS15].

8.1. Electronic properties

The two-dimensional electron gas at the heterointerface of LaAlO3/SrTiO3 is constituted
by the SrTiO3 layer and its usually empty 3𝑑𝑥𝑦, 3𝑑𝑥𝑧 and 3𝑑𝑦𝑧 orbitals (𝑡2𝑔) states of Ti4+

that are occupied by the charge carriers from the LaAlO3 film [OH04; San+11]. We
describe the single-particle properties in the orbital 𝑜, 𝑜′ (and spin 𝜎, 𝜎 ′) degrees of
freedom by the Hamiltonian

ℋ0 = ∑
k

∑
𝑜𝑜′𝜎𝜎′

𝑎†
k𝑜′𝜎′ (ℎk𝑜𝑜′)𝜎𝜎′ 𝑎k𝑜𝜎 , (8.1.1)

where 𝑎†
k𝑜𝜎 and 𝑎k𝑜𝜎 create and annihilate an electron in orbital 𝑜 with crystal mo-

mentum k and spin projection quantum number 𝜎. Magnetotransport and magneto-
conductance measurements suggest that the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals play an important role
in contributing to and hosting superconductivity in the interface. Therefore, we focus
on the description of an effective non-interacting Hamiltonian in these orbitals, which
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8. Topological superconductivity in oxide heterostructures

is comprised of a spinless orbital term and a term that features both centro- and non-
centrosymmetric spin-orbit coupling:

ℎk = ℎ0
k + ℎSOC

k . (8.1.2)

The matrix elements of the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbital degrees of freedom in ℎk𝑜𝑜′ must be
consistent with C4v symmetry and time-reversal symmetry. Up to second order in mo-
mentum, they are given by

ℎ0
k = (𝜉𝐴1(k) + 𝜉 ′

𝐴1(k) − 𝜇 𝜉𝐵2(k)
𝜉𝐵2(k) 𝜉𝐴1(k) + 𝜉 ′

𝐴1(k) − 𝜇) ⊗ 𝜎0 , (8.1.3)

with the Pauli matrix 𝜎0 representing identity in spin space. The dispersion relations
are defined by

𝜉𝐴1(k) = 𝑡1 (cos(𝑘𝑥) + cos(𝑘𝑦)) (8.1.4)

𝜉 ′
𝐴1(k) = 𝑡2 (sin2(𝑘𝑥) + sin2(𝑘𝑦)) (8.1.5)

𝜉𝐵2(k) = 𝑡3 sin(𝑘𝑥) sin(𝑘𝑦) , (8.1.6)

andwhere the subscripts describe the irreducible representations, the dispersions are
associated to. The phenomenological parameters that were chosen to closely match the
experimental data and ab-initio calculation of [Kin+14][ZTH13] are given by (in eV)
𝑡1 = 0.31, 𝑡2 = 0.0032, 𝑡3 = 0.1432, 𝜇 = 0.0004. The spin-orbit part is composed of
an atomic (centrosymmetric) term 𝜏𝑦 ⊗ 𝜎𝑧 and a Rashba-Dresselhaus term (up to first
order) due to the broken inversion symmetry: (cf. (Section 3.1))

ℎSOC
k = 𝛼𝐶𝜏𝑦 ⊗ 𝜎𝑧+𝛼𝑅 sin(𝑘𝑥)𝜏0 ⊗ 𝜎𝑦 − 𝛼𝑅 sin(𝑘𝑦)𝜏0 ⊗ 𝜎𝑥

− 𝛼𝑅 sin(𝑘𝑥)𝜏𝑥 ⊗ 𝜎𝑥 + 𝛼𝑅 sin(𝑘𝑦)𝜏𝑥 ⊗ 𝜎𝑦

− 𝛼𝑅 sin(𝑘𝑥)𝜏𝑧 ⊗ 𝜎𝑦 − 𝛼𝑅 sin(𝑘𝑦)𝜏𝑧 ⊗ 𝜎𝑥 . (8.1.7)

While𝜎𝑥,𝑦,𝑧 denotes the Paulimatrices in spin space, 𝜏𝑥,𝑦,𝑧 represent the Paulimatrices
in 𝑑𝑥𝑧, 𝑑𝑦𝑧 orbital space. The parameters specifying the strength of spin-orbit interactions
are (in eV) 𝛼𝐶 = 0.0108 and 𝛼𝑅 = 0.0016. The resulting two-dimensional band structure
and related properties are shown in (Section 8.1). The upper band does not produce any
Fermi sheet, while the Fermi surface of the lower band has a small cloverleaf-like shape
centered around the Γ-point. As the starting point for the renormalization group pro-
cedure, we assume an interacting Hamiltonian, which includes intra- and interorbital
density-density interaction:
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Figure 8.1.: The two-dimensional band structure that results from equation ((Equation 8.1.2))
features only one band which intersects with the Fermi level. Although there is only
one Fermi sheet the two orbital character of the band structure is revealed in the
non-trivial orbital and spin character of the states along the Fermi surface. The color
code indicates the orbital and spin content of a particular band. The density of states
shows a very prominent peak slightly above the Fermi level. The resulting Fermi
surface has a cloverleaf like shape and covers only a tiny part of the Brillouin zone.
Note, that only a fraction of the Brillouin zone is shown.

ℋ𝐼 = ∑
𝑖

∑
𝑜

𝑈1 𝑛𝑖𝑜↑𝑛𝑖𝑜↓ +
1
2 ∑

𝑖
∑
𝑜≠𝑜′

∑
𝜎,𝜎′

𝑈2 𝑛𝑖𝑜𝜎𝑛𝑖𝑜′𝜎′ , (8.1.8)

where the indices 𝑜 and 𝑜′ again denote the orbitals 𝑑𝑥𝑧 and 𝑑𝑦𝑧. The parameters 𝑈1
and 𝑈2 specify the interaction strength of the intra- and interorbital terms among these
two orbitals. Since the spin-orbit coupling term ℎ𝑆𝑂𝐶

k introduces spin off-diagonal terms
into the non-interacting Hamiltonian, the new basis that diagonalizes (Equation 8.1.2)
does not only superpose different orbitals but also different spin degrees of freedom.
The new quasiparticle basis is characterized by band index 𝑏 and helicity 𝜆 = ± [BS12].
The corresponding operators 𝑏†

k𝑏𝜆 (𝑏k𝑏𝜆) which create (annihilate) a quasiparticle with
crystal momentum k in band 𝑏 with helicity 𝜆 are defined by the eigenstates 𝑢k𝑏𝜆 of
(Equation 8.1.1), and are given by the unitary transformation

𝑏k𝑏𝜆 = 𝑢k𝑏𝜆,𝑜𝜎𝑎k𝑜𝜎 𝑏†
k𝑏𝜆 = 𝑎†

k𝑜𝜎𝑢k𝑜𝜎,𝑏𝜆 , (8.1.9)

where the sum over repeated indices is implicit. Hence, they fulfill the eigenvalues
equation ℎk𝑢k𝑏𝜆 = 𝜉k𝑏𝜆𝑢k𝑏𝜆 with 𝜉k𝑏𝜆 being the eigenvalues or band energies.
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8. Topological superconductivity in oxide heterostructures

Table 8.1.: The character table of the two dimensional point groupC4v contains four one- and one
two-dimensional irreducible representations. In the absence of inversion symmetry
and the pairing of time-reversal partners, the representation E is forbidden since all
pairing states in the helical basis must have even parity.

𝐸 2𝐶4𝑧 𝐶2𝑧 2𝜎 2𝜎𝑑

𝐴1 +1 +1 +1 +1 +1
𝐴2 +1 +1 +1 -1 -1
𝐵1 +1 -1 +1 +1 -1
𝐵2 +1 -1 +1 -1 +1

8.2. Nodal versus nodeless gap and singlet-triplet mixing

To generate the renormalization group flow, we employed the spinful flow equation
(Equation 6.3.20) (with the contribution from the three-particle vertex being discarded)
and evaluated the eigenmodes of the Cooper channel (Equation 3.4.29). The initial con-
dition of the flow equation is required to be the bare interaction and is provided by the
two-particle interaction (Equation 8.1.8) in helical basis. The (functional) renormal-
ization group flow of the Cooper channel’s eigenvalues 𝜉𝑛 for 𝑈1 =1.0 eV and 𝑈2 = 0
is shown in (Figure 8.2a). The eigenstate of the leading (most negative) eigenvalue
may be characterized by the irreducible A1 representation (s-wave) of the correspond-
ing point group C4v. The subleading instabilities can be associated to B1, B2 and A2
representations. The absence of any eigenstate that transforms according to the irre-
ducible E representation is not a coincidence but required by time-reversal symmetry
and fermionic anticommutation rules (as discussed in (Section 3.4.2)). The remaining
symmetry-allowed irreducible representations of the point group and their characters
are listed in (Table 8.1). (Figure 8.2b) plots the momentum dependency of the pair-
ing states along the Fermi pockets associated to the helicities 𝜆 = ±, where 𝜆 = +
labels the outer pocket and 𝜆 = − the inner one. The plot shows the two leading in-
stability eigenvectors with A1 and B1 symmetry. The peculiar feature of the pairing
eigenstates is their sign change between the spin-split Fermi pockets. According to the
analysis in (Section 3.4.2) the corresponding pairing state in pseudospin representation
has mainly of triplet character. This sign change not only implies the main triplet char-
acter of the pairing state but also topologically non-trivial properties [Smi+17a]. In two
dimensions, this property is described by the topological index for time-reversal invariant
non-centrosymmetric superconductors defined by [SF09; Sam15; QHZ10]

𝑁2𝐷 = ∏
𝑠

[sgnΔ𝑠]
𝑚𝑠 , (8.2.1)

where the product is over all (well-separated) Fermi sheets with index 𝑠 and 𝑚𝑠 is
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Figure 8.2.: The flow of the Cooper channel’s eigenvalues in (Figure 8.2a) show that the eigen-
mode with A1 representation is the leading instability for 𝑈1 =1.0 eV and 𝑈2 = 0. In
(Figure 8.2b), we show the momentum dependency along the two spin-split Fermi
sheets of the eigenstates corresponding to the two largest eigenvalues, i.e. A1, B1. The
left and right half of the plot correspond to the outer + and inner − Fermi pockets
as labeled in (Section 8.1). Apparently, both A1 and B1 pairing states are of simi-
lar shape on both pockets but feature opposite signs on two spin-split Fermi sheets.
According to the analysis in (Section 3.4.2) the corresponding pairing state in pseu-
dospin representation is mainly of triplet character. The plot in (Figure 8.2c) shows
the change of the eigenvalues relative to the eigenvalue associated to A1 as a function
of interorbital interaction strength. Hence, when decreasing the interorbital interac-
tion, the strength of the B2 representation increases until there’s a transition from
“extended” s-wave to “extendend” d-wave in the weak-coupling limit.

the number of time-reversal invariant points enclosed by the respective Fermi pocket.
However, even the nodal pairing instability corresponding to B1 and B2 turn out to be
associated to topological invariants [SR11; SBT12] describing different types of edge
states. We observe a strong “extended” s-wave instability for an interorbital interaction
of the order of the bandwidth 𝑊. When reducing the interaction strength, the d-waves
states associated to B1 and B2 become more important relative to the s-wave (cf. (Fig-
ure 8.2c)). Finally, in the (weak-couling) limit 𝑈1 << 𝑊, the d-wave state B1 with nodes
located along the main axis’ is the leading pairing instability.

Summary and preview

In this chapter we entered the realm of spin-orbit physics by investigating the pairing in-
stabilities in the LaAlO3/SrTiO3 oxide heterostructure by means of a simple two-orbital
𝑑𝑥𝑧, 𝑑𝑦𝑧 model. The renormalization group flow has to be performed in the helical spin
band basis. The associated pairing functions turn out to be all even parity, i.e. described
by the one-dimensional representations of the point group C4v. For interorbital inter-
actions of the order of the bandwidth, the leading instability appears to be a fully gap

177



8. Topological superconductivity in oxide heterostructures

“s-wave” given by theA1 representation. However, by reducing the interaction strength,
we find a transition from the fully gap A1 state to a nodal B2 pairing state. The pecu-
liar feature of both of these pairing states is their sign change between the both Fermi
pockets labeled by helicity 𝜆 = ±. This sign change implies a non-trivial topological
invariant for both the nodal as well as the nodeless pairing state. In the next and last
chapter, we investigate the properties of the superconducting gap function in Sr2RuO4 .
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9. The curious case of Strontium Ruthenate

The physics of strontium ruthenate (Sr2RuO4 ) has been puzzling condensed-matter
experimentalists as well as theorists for more than twenty years [Mae+94]. The very
core of the confusion generated by contradicting experimental results on Sr2RuO4 over
the past two decades is the debate over the nature and symmetry of its superconduct-
ing order parameter [Mac+17]. Early proposals suggested an odd parity chiral spin triplet
state [RS95], which was later supported by experimental results of muon spin rotation
(𝜇SR) [Luk+98] and polar Kerr effect [Xia+06]measurementswith evidence for a time-
reversal symmetry breaking pairing state. However, this chiral “𝑝 + 𝑖𝑝” state results in
the existence of edge currents, which, unfortunately, have never been observed so far
despite extensive efforts [Kir+07; Cur+14]. Possible order parameters may be derived
from the tetragonal symmetry of crystal of strontium ruthenate (see (Figure 9.1a)) and
the associated point group D4h. However, the superconducting state in Sr2RuO4 de-
velops out of a normal state with properties, which are consistent with Fermi liquid
parameters [Ber+03]. Moreover, resistivity measurements in the normal state show a
highly anisotropic behaviorwith an interlayer to in-plane resistivity ratio 𝜌𝑐/𝜌𝑎𝑏 ≈ 850 at
2.0K [Mae+94] and the Fermi surface of Sr2RuO4 is quasi two-dimensional and shows
only a weak dispersion along the c-axis [Mae+97]. Both the enlarged spatial separa-
tion between layers (cf. caption of (Figure 9.1)) and the strong anisotropy in electronic
and transport properties have been taken as indicators to rule out pairing states that
require finite interlayer coupling [Sig+99]. In particular, these pairing states are as-
sociated to the even two-dimensional irreducible representation Eg (see (Table H.6)).
Nevertheless, some theoretical works (i.a. [ZM05]) make use of exactly this irreducible
representation - called chiral spin singlet - since it is equallywell consistentwith the phase
shifts observed in Josephson junction experiments [Nel+04]. More recently, temperature-
dependent heat capacity measurements suggest the existence of vertical line nodes in
the order parameter [Has+17].

When discussing possible superconducting order parameters in Sr2RuO4 we have to
distinguish two scenarios: The limit of zero spin-orbit interactionwhere spatial and spin
degrees of freedom are decoupled and the limit of strong spin-orbit coupling, which in-
tertwines orbital and spin degrees of freedoms (cf. (Section 2.4.4)). For instance, the
possible order parameters in the odd Eu representation of D4h are six fold degenerate for
zero spin-orbit interaction and split into four one-dimensional and one two-dimensional
representations in the presence of strong spin-orbit coupling (Equation 2.4.42). The role
and importance of spin-orbit coupling in Sr2RuO4 has been emphasized both from a the-
oretical [NS00] and from an experimental [Vee+14] point of view.
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Figure 9.1.: The crystal of strontium ruthenate forms a layered perovskite structure, exactly
like La2CuO4, which is the parent compound of the high-T𝑐 superconductors (Fig-
ure 9.1a). The ions are represented in the colors green (Sr), red (Ru) and blue (O).
The RuO2 layers are separated by two layers of SrO that are shifted by half a lattice
constant relative to each other along the horizontal plane. Thus, the Ru-atoms are
enclosed in octahedra of O atoms. The crystal is characterized by two lattice con-
stants: The in plane constants are 𝑎 = 𝑏 = 3.87Å and the lattice constant along the
c-direction is 𝑐 = 12.74Å [WL93] at 300K. The influence of the octahedral crystal
field splits the 4d-states of Ru4+ into the low-lying 𝑡2𝑔 and the unoccupied 𝑒𝑔 states
(see (Figure 9.1b)).

Previous numerical studies of the superconducting instabilities in Sr2RuO4 in the
weak-coupling limit without [RKK10a] and with [SRS14; Sca] spin-orbit coupling have
provided important insights concerning the question, if the order parameter is mainly
located on the quasi one-dimensional or two-dimensional Fermi sheets. While renor-
malization group calculations for finite interactions suggest the quasi two-dimensional𝛾
band to host the superconducting state [Wan+13a], weak-coupling calculations [RKK10a]
suggest the pairing to arise from the quasi one-dimensional 𝛼 and 𝛽 bands.

9.1. Ab-initio and single-particle properties

A generic three-orbital model of the low-energy electronic structure of Sr2RuO4 that
involves the 𝑡2𝑔-orbitals of the Ru4+ ions, namely the 𝑑𝑥𝑧, 𝑑𝑦𝑧 and 𝑑𝑥𝑦 orbitals, is given
by
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ℋ0 = ∑
𝑖

∑
𝑜 𝑜′

∑
𝜎 𝜎′

ℎ𝑜𝑜′
𝜎𝜎′ 𝑎†

𝑖𝑜𝜎𝑎𝑖𝑜′𝜎′ , ℎ𝑜𝑜′
𝜎𝜎′ ∈ C6×6 . (9.1.1)

The indices refer to the lattice site (𝑖), the orbital (𝑜,𝑜′) and the spin (𝜎,𝜎 ′) degree
of freedom. Hence, the operators 𝑎†

𝑖𝑜𝜎 (𝑎𝑖𝑜𝜎) create (annihilate) an electron on site 𝑖
in orbital 𝑜 with spin 𝜎, respectively. The spin was included to incorporate spin-orbit
coupling at a later stage. The orbital index is ordered according to (𝑑𝑥𝑧, 𝑑𝑦𝑧, 𝑑𝑥𝑦) ∧=
(1, 2, 3). For the time being we assume matrix elements that are diagonal in spin space
and take only orbital-dependent hoppings into account. Thematrix elements of the non-
interacting Hamiltonian in orbital space are obtained by considering the symmetries of
the lattice and the 𝑡2𝑔 orbitals (see appendix A). The most generic matrix elements and
their momentum dependencies are [PK12]

ℎ𝑜𝑜′
𝜎𝜎′ =

⎛⎜⎜⎜
⎝

𝜉𝑥𝑧(k) 𝜂(k) 0
𝜂(k) 𝜉𝑦𝑧(k) 0

0 0 𝜉𝑥𝑦(k)

⎞⎟⎟⎟
⎠

⊗ 12×2 , (9.1.2)

with their dispersions defined by (k = (𝑘𝑥, 𝑘𝑦))

𝜉𝑥𝑧(k) = −2 (𝑡1 cos(𝑘𝑥) + 𝑡2 cos(𝑘𝑦))

𝜉𝑦𝑧(k) = −2 (𝑡2 cos(𝑘𝑥) + 𝑡1 cos(𝑘𝑦))

𝜉𝑥𝑦(k) = −2 𝑡3 (cos(𝑘𝑥) + cos(𝑘𝑦))

− 4 𝑡4 cos(𝑘𝑥) cos(𝑘𝑦) − 2 𝑡5 (cos(2𝑘𝑥) + cos(2𝑘𝑦))

𝜂(k) = −4 𝑡6 sin(𝑘𝑥) sin(𝑘𝑦) . (9.1.3)

Estimates for the corresponding overlap integrals resulting in the hopping parame-
ters 𝑡𝑖 are given in (Table 9.1), which were derived from i.a. LDA calculations, dHvA
measurements and ARPES data. Since spin-orbit coupling is suggested to be an es-
sential ingredient to the unconventional properties of Sr2RuO4 , we include the on-
site term ℋ𝑆𝑂𝐶 = 𝜆 ∑𝑖 L𝑖 ⋅ S𝑖 into the single-particle Hamiltonian. The matrix ele-
ments of ℋ𝑆𝑂𝐶 term may be evaluated in terms of the combined orbital/spin basis, e.g.
⟨𝑎†

𝑥𝑧,𝜎∣𝜆 L ⋅ S|𝑎†
𝑦𝑧,𝜎⟩ and provide (cf. appendix B and [NS00])

ℋ𝑆𝑂𝐶 =
𝑖𝜆
2 ∑

k
∑

𝑙,𝑚,𝑛
𝜖𝑙𝑚𝑛 ∑

𝜎,𝜎′
𝜎𝑛

𝜎𝜎′𝑎†
k𝑙𝜎𝑎k𝑚𝜎′ = ∑

k

𝑖𝜆
2 a†

k
⎛⎜⎜⎜
⎝

0 −𝜎𝑧 𝜎𝑥
𝜎𝑧 0 −𝜎𝑦

−𝜎𝑥 𝜎𝑦 0

⎞⎟⎟⎟
⎠
ak ,

(9.1.4)

with the orbital indices 𝑙, 𝑚. In the first equalityweused the orbital ordering (1, 2, 3) =
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9. The curious case of Strontium Ruthenate

Table 9.1.: The hopping parameters of the single particle Hamiltonian (Equation 9.1.2) were de-
rived from the fit of the model (Equation 9.1.3) to ARPES data [Zab+12]. However,
this data only provides the renormalized quasiparticle band structure and experi-
ments determining the shape and topology of the Fermi sheets (dHvA) only suggest
the relative strengths of the hopping parameters but not the bare bandwidth. There-
fore, we rely on LDA calculations and multiband quasiparticle calculations based on
perturbation theory anddynamicalmean-fieldmethods to fix the absolute bandwidth
of about 3.5 eV [MS97; LL00; Mra+11]. All parameter are given in units of eV.

[eV] 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝜇 𝜆

0.6042 0.0667 0.3375 0.1625 0.0208 0.0583 −0.5083 0.1333

(𝑦𝑧, 𝑥𝑧, 𝑥𝑦), where 𝜖𝑙𝑚𝑛 is the total antisymmetric Levi-Civita symbol. In contrast, in the
second equality we introduced the basis

a†
k = (𝑎†

𝑥𝑧↑, 𝑎†
𝑥𝑧↓, 𝑎†

𝑦𝑧↑, 𝑎†
𝑦𝑧↓, 𝑎†

𝑥𝑦↑, 𝑎†
𝑥𝑦↓ ) . (9.1.5)

Based on these prerequisites we are able to write down the entire single particle term
of the three orbital model including atomic spin-orbit coupling, which is given by ℋ =
ℋ0 +ℋ𝑆𝑂𝐶. Any higher order non-local centrosymmetric spin-orbit termsmay be incor-
porated into the Hamiltonian by considering the combined symmetry groups of orbital,
momentum and spin spaces as discussed in (Section 3.1). The electronic properties that
arise from this Hamiltonian are shown in (Figure 9.2). In (Figure 9.2a) we illustrate the
shift of the Fermi surface sheet due to increasing spin-orbit interaction strength. Appar-
ently, spin-orbit coupling has the largest influence on the 𝛼 Fermi pocket at the M-point.
The band structure in (Figure 9.2b) features spin-orbit interaction and shows the orbital
weight of the associated eigenstates for the three bands. On the one hand, the 𝛼 and 𝛽-
bands are comprised of mixed 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbital content depending on themomentum.
On the other hand, the 𝛾 is exclusively made up of 𝑑𝑥𝑦 orbital states. This result changes
when turning on spin-orbit interaction by introducing mixed 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbital weight
into the 𝛾 band as well.

9.2. Quasi one- versus two-dimensional superconductivity

In order to find the bare two-particle interaction representing the starting point of any
renormalization group calculation, we turn to the interacting part of the Hamiltonian
of the three-orbital model. To this end, we consider only on-site (momentum inde-
pendent) interaction. The multi-orbital character of the Hamiltonian is taken into ac-
count by considering intra-orbital, inter-orbital interaction, Hund’s rule coupling and
pair hopping processes. Although we use a SU(2)-spin symmetry breaking single-
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Figure 9.2.: The influence of spin-orbit coupling on the Fermi surface is illustrated in (Fig-
ure 9.2a). Apparently, the electron pocket at M associated to the 𝛼-band experiences
the largest shift. The non-interacting band structure with zero spin-orbit coupling
shows three bands ((Figure 9.2b)). The color code indicates the orbital content of the
bands. While 𝛼 and𝛽 bands havemixed 𝑑𝑥𝑧, 𝑑𝑦𝑧-orbitalweight, the 𝛾 band ismade up
of 𝑑𝑥𝑦-orbital states only. In contrast, spin-orbit interaction introduces mixed orbital
content of opposite spin states into the states of the 𝛾 Fermi surface. (Figure 9.2c)
exhibits the properly defined - taking the adiabatic pseudospin and “smooth gauge”
into account - eigenstates along the Fermi sheets.

particle Hamiltonian (Equation 9.1.4), we assume the interacting part of the Hamil-
tonian to be spin rotation invariant. The implications and subtleties of spinful interact-
ing multi-orbital Hamiltonians regarding the numerical implementation are discussed
in appendix G. These arise from the requirement of total antisymmetric with respect to
particle exchange for fermionic interactions. Themulti-d-orbitalHamiltonian is adapted
from a Kanamori Hamiltonian and can be written as (cf. [GMM12])

ℋ𝐼 = ∑
𝑖

⎡⎢
⎣
𝑈intra ∑

𝑙
𝑛𝑙↑𝑛𝑙↓ + 𝑈inter ∑

𝑙≠𝑚
𝑛𝑙↑𝑛𝑚↓ + (𝑈inter − 𝐽) ∑

𝑙≠𝑚
∑
𝜎

𝑛𝑙𝜎𝑛𝑚𝜎

−𝐽Hund ∑
𝑙≠𝑚

𝑎†
𝑙↑𝑎

†
𝑚↓𝑎𝑚↑𝑎𝑙↓ + 𝐽Pair ∑

𝑙≠𝑚
𝑎†

𝑙↑𝑎
†
𝑙↓𝑎𝑚↑𝑎𝑚↓

⎤⎥
⎦

. (9.2.1)

A set of reasonable interaction parameters for (Equation 9.2.1) can be obtained by
means of constrained RPA calculations. The literature provides several sets of these pa-
rameters that tend to slightly differ. Some of them are given in (Table 9.2). The exact
output of these calculations actually gives orbital-dependent values for the interaction.
However, what we are interested in are the fixed points of the renormalization group
flow and therefore these details are usually negligible. Before we can start to calculate
the renormalization group flow, we have to find the representation of the interacting
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9. The curious case of Strontium Ruthenate

Table 9.2.: The interaction parameters of multi-orbital Hamiltonians can be obtained by con-
strained RPA calculations [MA08]. The parameters were adapted from [Mra+11;
VJB12] for the case of 𝑈(1)𝐶 ⊗ 𝑆𝑈(2)𝑆 ⊗ 𝑆𝑂(3)𝑂 symmetry and 𝐽 = 𝐽𝐻 = 𝐽𝑃 re-
sulting in 𝑈inter = 𝑈intra − 2𝐽 [Sug12]. Besides, we list some a set of parameters that
were used in the literature for the interacting Hamiltonian of Sr2RuO4 .

[eV] 𝑈intra 𝑈inter 𝐽Hund 𝐽Pair Ref.

2.3 1.5 0.4 0.4 [Mra+11]

2.56 1.94 0.26 0.26 [VJB12]

3.2 1.3 0.3 0.3 [Wan+13a]

Hamiltonian in band-pseudospin basis. To this end, the definition of the eigenstates of
the non-interacting part of the Hamiltonian is crucial regarding the proper pseudospin
and definition and “gauge”. Alternatively, one can rely on the pairing of time-reversal
and inversion symmetry partners (as discussed in (Section 3.4)), which, however, is ob-
viously not applicable for the investigation of particle-hole instabilities in the context of
the functional renormalization group.

The phase diagram of the three orbital Hamiltonian of Sr2RuO4 with respect to in-
terorbital interaction and Hund’s rule coupling is given in (Figure 9.3). The phase di-
agram comprises a large section with odd parity triplet pairing (TPT) with eigenstates
that transform according to the Eu representation of the point group. The opposite side
of the phase diagram is dominated by different particle-particle and particle-hole insta-
bilities, which comprise even parity singlet pairing and ferromagnetic tendencies. The
fact that Hund’s rule promotes ferromagnetic instabilities can already be understood
on a mean-field level by considering the energetically favored states with parallel spin
orientation due to Hund’s coupling. Regarding the pairing instabilities, we see that the
singlet pairing (SGT) transforms like a B1g representation is located on the 𝛾 band. In
contrast, the large portion of triplet pairing in the phase diagram is dominated by gap
functions, which are located on the quasi one-dimensional 𝛼 and 𝛽 bands. Performing
an harmonic analysis of the triplet state, we find that the pair wave function is domi-
nated by longer range second nearest neighbor pairing. Taking the degeneracy of the
two-dimensional irreducible representation Eu into account, we can describe the triplet
state in terms of the d-vector

dk𝑏 = (sin(𝑘𝑥) cos(𝑘𝑦) + 𝑒𝑖𝜑 sin(𝑘𝑦) cos(𝑘𝑥)) ̂𝑧 , (9.2.2)

where we projected on the 𝑘𝑧 = 0. By considering a renormalized mean-field theory
for this triplet state, we find that the phase 𝑒𝑖𝜑 = 𝑖 will maximize the condensation
energy associated to the Bogoliubov-de Gennes quasiparticle spectrum.
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Figure 9.3.: The phase diagram of three-orbital Hamiltonian zero spin-orbit coupling with re-
spect to interorbital interaction 𝑈inter and Hund’s rule coupling 𝐽Hund exhibits are
large portion of odd parity triplet pairing (TPT). The abbreviations represent ferro-
magnetic (FM), antiferromagnetic (SDW), singlet pairing (SGT) and triplet pairing
(TPT) instabilities. The pair hopping parameter is fixed by 𝐽Pair = 𝐽Hund while the
intraorbital interaction 𝑈intra is given by 3.2 eV at all data points. The sets of inter-
action parameter given in the literature are mainly located in the triplet pairing sec-
tion of the phase diagram. The shown triplet pairing function (right) is located at
𝑈inter = 1.8, 𝐽Hund = 0.2 in the phase diagram and the singlet pairing function (left)
corresponds to the flow at 𝑈inter = 0.2, 𝐽Hund = 0.4.

Summary

This chapter dealt with the problem of the superconducting order parameter in Sr2RuO4
and discussed the role of spin-orbit coupling for the intricate pairing state in this ma-
terial. We introduced a generic three-orbital model in terms of 𝑑𝑥𝑧,𝑑𝑦𝑧,𝑑𝑥𝑦-states for the
low lying 𝑡2𝑔 multiplet of the Ru4+ ions. The single-particle Hamiltonian and the re-
sulting electronic properties were adjusted to the results of ab-initio electronic structure
calculations and the experimentally determined Fermi surface topology. We made use
of a set of interaction parameters for a multi-orbital Kanamori-Hamiltonian, that are
adapted from the literature and based on the constrained RPA method to find screened
interaction values. This Kanamori Hamiltonian was used as the starting point for a the
functional renormalization group (see (Chapter 6)) flow based on three-orbital model
of Sr2RuO4 . We found a rich phase diagram with respect to interorbital interactions
and Hund’s rule coupling made up of singlet and triplet pairing as well as ferromag-
netic states. However, the interaction parameters found in the literature all coincidewith
points in the phase diagram where the competing orders are dominated by odd parity
triplet pairing located on the quasi one-dimensional 𝛼 and 𝛽 Fermi sheets. To overcome
the strict and unnatural separation of order parameters being hosted by either the 𝛾 or
𝛼 and 𝛽 bands, the influence of spin-orbit coupling must be taken into account.
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10. Summary and outlook

The development of numerical approaches to unconventional and topological super-
conductivity in strongly correlated systems of itinerant fermions with substantial spin-
orbit interaction has been the major objective of this thesis. These methods are based on
a combination of functional and perturbative renormalization group approaches.

In (Chapter 2), we motivated the concept of Cooper pairing and reviewed the basics
of BCS-theory. In contrast to traditional BCS-theory, which is based on a phonon-driven
attractive effective interaction, the Kohn-Luttinger effect has a purely electronic nature
and is able to establish pairing in higher angular momentum channels 𝐿 > 0. Conse-
quently, we worked out a generalized BCS-theory for any spin and angular momentum
channel that is characterized by the interplay between spin and spatial symmetries. As
a convenient description of this theory, we introduced the d-vector formalism.

The (Chapter 3) served as the starting point to mean-field theories beyond SU(2)-
symmetric effective two-particle interactions. The first section provided an exhaustive
derivation and classification of various types of spin-orbit interaction in both centro- and
non-centrosymmetric systems. This derivation is mainly based on the concept of the in-
variant expansion. As a result, we found spin-orbit Hamiltonians for multi-d-orbital
models on the tetragonal lattice and square lattice. Among these Hamiltonians we ob-
tained atomic and non-local L ⋅ S couplings as well as Rashba and Dresselhaus terms
in multi-orbital models. To be able to deal with these Hamiltonians numerically, we
discussed the proper choice of a pseudospin basis and the implications of the “gauge-
freedom” of Bloch states. The third section analyzed the key symmetries of the spinful
two-particle vertex in orbital and band basis. There are four types of important contin-
uous and discrete transformations that were taken into account: SU(2)-rotations, time-
reversal, spatial inversion and point-group operations. The presence or absence of the
associated symmetries has important implications on the structure of the two-particle
vertex. In orbital space weworked out the relationship between the spinful and spinless
vertices. In band space, we further distinguished between the pseudospin basis and the
helical basis depending on the presence or absence of spatial inversion symmetry. The
two-particle vertex in band space was the central object of the instability analysis of the
effective action in terms of mean-field theories since we limited the treatment to equal
energy pairing. In the fourth section and in the context of generalized Cooper pair-
ing with broken spin symmetry, the equivalence of pairing between time-reversal and
inversion symmetry partners states and Bloch states with “smooth” gauge was empha-
sized. The mean-field theories for Cooper pairing in a pseudospin and a helical basis
showed that, while pairing in a pseudospin basis is still characterized by means of sin-
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glet and triplet states, Cooper pairs in a helical basis can exhibit singlet triplet mixing.
Analogously to the particle-particle instabilities, the corresponding particle-hole con-
densates were shown to feature mixing of charge- and spin density-wave states already
in the presence of spin-orbit coupling and inversion symmetry. The absence of inver-
sion symmetry further allows for the superposition of states associated to irreducible
representations with even and odd symmetries.

The (Chapter 4) served as a reminder and setup of the fermionic functional integral
formalism for the quantum-many body partition function in terms of Grassmann fields.
The notation and formalism of the partition function were established to introduce the
generating functionals that were required in the following chapters. The connection to
the perturbative expansion of the partition function and correlation functions was given
and evaluated by means of Wick’s theorem.

The perturbative renormalization group in (Chapter 5) uses the perturbative expan-
sion of the irreducible two-particle vertex to generate an effective two-particle interac-
tion, which is fed into a logarithmic renormalization group scheme in order to investi-
gate the dominant instabilities. We state the relevant diagrammatic contributions to the
perturbative two-particle vertex both for spinful and spinless interactions. We briefly
draw the connection to the random phase approximation.

Finally, the functional renormalization group method was introduced in (Chapter 6)
based on the modified Gaussian propagator with cutoff or scale dependency. The mod-
ified single-particle propagator is inserted into the generating functionals to yield scale
dependent functionals. By calculating the total derivative of the generating functionals
with respect to the cutoff, we obtained a set of flow equations. The flow equations for
the self-energy and the irreducible two-particle vertex were explicitly derived by means
of an expansion in the fields and the truncation of all three particle contributions. In the
framework of the temperature flow renormalization group scheme, the close connection
to the perturbative renormalization was worked out, which can be easily exploited in
the numerical context in order to obtain an efficient implementation.

To establish the methodological novelties and check the numerical stability of our im-
plementation, two types of well-known toy models with established results were con-
sidered in (Chapter 7).

The application to oxide-heterostructures in the form of LaAlO3/SrTiO3 in (Chap-
ter 8) revealed the possibility of topological superconductivity in the form of an “ex-
tended” s-wave state, which amounts to a fully gapped order parameter with opposite
signs on the two spin split Fermi sheets originating from the strong Rashba coupling in
the presence of inversion symmetry breaking. This state corresponds to an order param-
eter with dominant triplet contribution. In the weak-coupling limit, we find a similar
but “extended” nodal d-wave state.
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In (Chapter 9), the intriguing matter of strontium ruthenate Sr2RuO4 was discussed.
Based on the well-established three-orbital model of the 𝑡2𝑔 states, we found triplet pair-
ing on the quasi-one-dimensional bands and singlet d-wave pairing on the 𝛾-sheet de-
pending on the set of multi-orbital interaction. However, taking the results of available
c-RPA calculations into account, the interaction setup appears to be close to the one,
which produces the triplet pairing on the quasi-one-dimensional bands.

Although this thesis already put a main focus on the methodological development,
there are a variety of open issues, which should be considered in future work. First
of all, in order to reliably access the discussed exotic particle-hole condensates, a con-
tinuous and point-group symmetry conserving momentum discretization of the vertex
functions is essential. Furthermore, the frequency dependency of vertex functions and
the renormalization of the self-energy should be included in order to enable a systematic
comparisonwith other quantummany-body approaches like RPA. The applications dis-
cussed in this thesis can, of course, only cover a certain portion of the full potential of the
functional and perturbative renormalization group schemes for multi-orbital systems
with spin-orbit interaction. Among other interesting candidate systems, wemention the
heavier nuclei cousins of graphene, called Xenes, with substantial (in-plane) Rashba in-
teraction (on a substrate) and the five orbital pnictidemodels, for which the influence of
atomic spin-orbit coupling has been discussed lately. Therefore, the presented method-
ological development promises to provide many useful insights into spin-orbit physics
of correlated electrons and awaits future applications.
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A. Construction of SU(2)-symmetric
d-orbital Hamiltonians

Most of the strongly correlated systems that are studied i.a. in the context of high-
temperature superconductors and transition metal-oxides have states at the Fermi level
that posses 3d or 4d-orbital character [Eme93] [Vol12] (cf. (Chapter 8) and (Chap-
ter 9)). The general (analytical) construction of these bandsmay be done by considering
the symmetries of the underlying lattice and the orbitals themselves. The 𝑑-orbitals are
the eigenstates of the 𝑙 = 2 angular momentum operator ̂L. The Lie algebra associated
to the angular momentum is given by [Lie88; Pau65]

[𝐿̂𝑖, 𝐿̂𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐿̂𝑘 , (A.0.1)

with the generators 𝐿̂𝑖 𝑖 ∈ {1, 2, 3} and the structure constant 𝜖𝑖𝑗𝑘. First of all, we have
to determine the representation of the generators for the 𝑙 = 2 case, where we have
𝐿̂𝑖 ∈ ℂ(2𝑙+1)×(2𝑙+1), i.e. 𝐿̂𝑖 ∈ ℂ5×5. Their matrix elements are most conveniently found
by exploiting the action of 𝐿̂𝑧 and 𝐿̂± ≔ 𝐿̂𝑥 ± 𝑖𝐿̂𝑦 on the eigenstates ∣𝑙, 𝑚⟩ of the ̂L2 and
𝐿̂𝑧 operators, i.e. [Bal98, Chap. 7]

𝐿𝑧 ∣𝑙, 𝑚⟩ = 𝑚 ∣𝑙, 𝑚⟩ and 𝐿± ∣𝑙, 𝑚⟩ = √𝑙(𝑙 + 1) − 𝑚(𝑚 ± 1) ∣𝑙, 𝑚 ± 1⟩ . (A.0.2)

Henceforth, for 𝑙 = 2 and the basis l† ≔ (𝑎†
−2, 𝑎†

−1, 𝑎†
0, 𝑎†

+1, 𝑎†
+2)𝑇 we find the matrices

𝐿̂𝑧 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2
−1

0
+1

+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and 𝐿̂± =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 (2)
2 0 (√6)

√6 0 (√6)
√6 0 (2)

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A.0.3)

while the other two generators are consequently given by 𝐿̂𝑥 = 𝐿̂++𝐿̂−
2 and 𝐿̂𝑦 = 𝐿̂+−𝐿̂−

2𝑖 .
Note, that 𝐿̂2 = 𝐿̂2

𝑥 + 𝐿̂2
𝑦 + 𝐿̂2

𝑧 ∝ 𝟙 is the Casimir operator of the corresponding space,
which has to commute with any operator of that space. Since we don’t want to work in
the ∣𝑙, 𝑚⟩ basis but in the most commonly used basis of real orbitals, we employ linear
combinations of the ∣𝑙, 𝑚⟩ states that amount to the unitary transformation
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𝑈𝑑 =
1

√2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 −1 0
0 −𝑖 0 −𝑖 0
𝑖 0 0 0 −𝑖
1 0 0 0 1
0 0 −√2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A.0.4)

with 𝑈†
𝑑𝑈𝑑 = 𝟙 that results in the orbital basis

d† ≔ (𝑎†
𝑑𝑥𝑧

, 𝑎†
𝑑𝑦𝑧

, 𝑎†
𝑑𝑥𝑦

, 𝑎†
𝑑𝑥2−𝑦2

, 𝑎†
𝑑𝑧2

)
𝑇

. (A.0.5)

with d = 𝑈𝑑l. The generators transform according to 𝐿̂𝑖 → 𝐿̂′
𝑖 = 𝑈𝑑𝐿̂𝑖𝑈†

𝑑. In the
new basis (and the old one) we can express any SO(3) transformation of the orbitals
by means of the exponential parametrization and the generators by 𝑒−𝑖L̂𝑛̂𝜑 [Geo99]. In
particular, a rotation about the z-axis is given by

𝑒−𝑖𝐿′
𝑧𝜑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) − sin(𝜑) 0 0 0
sin(𝜑) cos(𝜑) 0 0 0

0 0 cos(2𝜑) − sin(2𝜑) 0
0 0 sin(2𝜑) cos(2𝜑) 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A.0.6)

We see that in the new basis the orbitals form invariant subspaces with respect to
rotations about the z-axis. On the one hand, the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals transform into each
other and on the other hand the 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals stay among themselves while
the 𝑑𝑧2 doesn’t hook up with anyone.

A.1. Four-fold symmetry groups D4h and C4v

A lot of the strongly correlated 3d/4d orbital systems are found in compounds com-
prised of i.a. transition metals that form a perovskite structure. Hence, we will assume
a four-fold symmetry (with inversion) corresponding to the point group D4ℎ that is
comprised of sixteen elements given in appendix H. The representation of the four-fold
rotation about the 𝑧-axis and the reflections in the (𝑥, 𝑧), (𝑦, 𝑧), (𝑥 = 𝑦, 𝑧), (𝑥 = −𝑦, 𝑧)
and (𝑥, 𝑦) planes is
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𝑒−𝑖𝐿′
𝑧𝜑𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑𝑖) − sin(𝜑𝑖) 0 0 0
sin(𝜑𝑖) cos(𝜑𝑖) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝜑𝑖 ∈ {0,
𝜋
2 , 𝜋,

3𝜋
2 }

𝑒−𝑖𝐿′
𝑦,𝑥𝜋 = diag(±1, ∓1, −1, 1, 1)

𝑒
−𝑖

𝐿′𝑥∓𝐿′𝑦
√2

𝜋
= ( 0 ±1

±1 0 ) ⊕ diag(1, −1, 1)

𝑒−𝑖𝐿′
𝑧𝜋 = diag(−1, −1, 1, 1, 1) . (A.1.1)

Note that a reflection is comprised of an inversion followed by a rotation by 𝜋 about
the normal vector of the plane of reflection [Mer98, Chap. 17, p. 440]. However, since
angular momentum is a pseudovector (axial vector), the representation of the inver-
sion is the identity operation. The matrix representations for the remaining elements
of D4h may be inferred from (Equation A.1.1) and the multiplication (Table H.2). (Ta-
ble A.1) provides the explicit transformation behavior of all orbitals under D4h. We
already noted the invariant subspaces of orbitals with respect to the rotations. This is
true as well for all reflections and (improper) rotations of D4h ⊂ SO(3). The transforma-
tion behavior of the d-orbitals under D4ℎ is summarized in (Table A.1). Checking out
all the representations, we finally see that the matrices of orbital transformation ℒD4h

𝑙=2
are comprised of four irreducible representations:

ℒD4h
𝑙=2 = Eg ⊕ B2g ⊕ B1g ⊕ A1g . (A.1.2)

Note, that we may only have even representations due to the angular momentum be-
ing 𝑙 = 2 in d-orbitals. In general, we have the parity (−1)𝑙 for orbital angular momen-
tum [Bal98, Chap. 13, p. 372]. In order to derive a non-interacting, phenomenological
Hamiltonian in orbital space, we make use of the invariant expansion (theory of invari-
ants) [BP74]. The 5 × 5 Hamiltonian ℋ(k) in orbital basis (Equation A.0.5) is required
to satisfy [Win03, Chap. 2.5]:

ℒ(𝑔)ℋ(k)ℒ†(𝑔) != ℋ(𝒫 (𝑔−1)k) , (A.1.3)

with ℒ(𝑔) and 𝒫 being the representations of 𝑔 in orbital and three dimensional mo-
mentum space, respectively. Due to (Equation A.1.2) that reflects the fact that certain
orbital subspaces don’t mix, we can write

ℒΓ𝑖
(𝑔)ℋΓ𝑖,Γ𝑗

(k)ℒ†
Γ𝑗

(𝑔) != ℋΓ𝑖,Γ𝑗
(𝒫 (𝑔−1)k) , (A.1.4)
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where the Hamiltonian block ℋΓ𝑖,Γ𝑗
∈ ℂdim(Γ𝑖)×dim(Γ𝑗) is characterized by the irre-

ducible representations Γ𝑖 and Γ𝑗. Every block of the Hamiltonian may be expanded
in terms of matrices 𝑋 ∈ ℂdim(Γ𝑖)×dim(Γ𝑗) and basis functions (of k) that transform ac-
cording to the irreducible representations of D4h that are contained in the product rep-
resentation Γ𝑖 ⊗ Γ𝑗 [TRR79]. Here, we also require the basis functions 𝑓 (k) to satisfy
𝑓 (k+G) = 𝑓 (k) whereG is a reciprocal lattice vector. The illustration of the beforemen-
tioned is

ℋ(k) = d†

⎡
⎢
⎢
⎢
⎢
⎣

ℋEg⊗Eg
ℋEg⊗B2g

ℋEg⊗B1g
ℋEg⊗A1g

ℋB2g⊗Eg
ℋB2g⊗B2g

ℋB2g⊗B1g
ℋB2g⊗A1g

ℋB1g⊗Eg
ℋB1g⊗B2g

ℋB1g⊗B1g
ℋB1g⊗A1g

ℋA1g⊗Eg
ℋA1g⊗B2g

ℋA1g⊗B1g
ℋA1g⊗A1g

⎤
⎥
⎥
⎥
⎥
⎦

d . (A.1.5)

The product representations can be disassembled according to [Gos]

⊗ Eg B2g B1g A1g

Eg A1g ⊕ A2g ⊕ B1g ⊕ B2g Eg Eg Eg
B2g Eg A1g A2g B2g
B1g Eg A2g A1g B1g
A1g Eg B2g B1g A1g

into irreducible representations of D4h. Since all but the Eg representation are one-
dimensional we only really have to care about the 2 × 2 block in the upper left of the
Hamiltonian (Equation A.1.5). Therefore, we make the ansatz

ℋEg⊗Eg
= 𝑓Γ0

(k)𝜎0 + 𝑓Γ𝑥
(k)𝜎𝑥 + 𝑓Γ𝑦

(k)𝜎𝑦 + 𝑓Γ𝑧
(k)𝜎𝑧 , (A.1.6)

in terms of the Pauli matrices 𝜎0,𝑥,𝑦,𝑧 ∈ ℂ2×2 and the basis functions 𝑓Γ0,𝑥,𝑦,𝑧
associated

to a specific Pauli matrix but an unknown representation Γ0,𝑥,𝑦,𝑧. The transformation of
the matrix elements associated to the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals given in (Equation A.1.1) for
all operations of C4v is conveniently expressed in terms of Pauli matrices by

(𝑑𝑥𝑧, 𝑑𝑦𝑧) E/i C2/𝜎ℎ C+
4 /S

−
4 C−

4 /S
+
4 𝜎𝑥/C

′
𝑦 𝜎𝑦/C

′
𝑦 𝜎𝑎/C

′
𝑏 𝜎𝑏/C

′
𝑎

𝜎0 −𝜎0 𝑖𝜎𝑦 −𝑖𝜎𝑦 𝜎𝑧 −𝜎𝑧 𝜎𝑥 −𝜎𝑥

making it easy to show that 𝜎0 transforms like A1g, 𝜎𝑥 transforms like B2g, 𝜎𝑦 trans-
forms like A2g and 𝜎𝑧 transforms like B1g. We note, that the effect of the remaining eight
operations of D4h can also be obtained by considering that this block is governed by the
Eg representation. Henceforth, we have the assignments Γ0 = A1g, Γ𝑥 = B2g, Γ𝑦 = A2g
and Γ𝑧 = B1g for the basis functions 𝑓Γ0,𝑥,𝑦,𝑧

(k). In the block comprised of the Eg and a
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one-dimensional representation we don’t have to care about any matrix 𝑋 but only have
to make sure that we use two linear independent basis functions for the two compo-
nents of the block. In the blocks of single matrix elements we simply have to insert the
associated basis function up to the desired order. An exemplary d-orbital Hamiltonian
with phenomenological parameters and up to second nearest neighbor basis functions
is given by (cf. [Gra+09; Gra+10, Appendix])

ℋ(k) = d†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜁𝑥𝑧
A1g

(k) + 𝜁𝑥𝑧
B1g

(k) 𝜁𝑦𝑧
B2g

(k) − 𝑖𝜁𝑦𝑧
A2g

(k) 𝜁𝑥𝑦
Eg

(k) 𝜁𝑥2−𝑦2

Eg
(k) 𝜁 𝑧2

Eg
(k)

𝜁𝑦𝑧
B2g

(k) + 𝑖𝜁𝑦𝑧
A2g

(k) 𝜁𝑦𝑧
A1g

(k) − 𝜁𝑥𝑧
B1g

(k) ̃𝜁𝑥𝑦
Eg

(k) ̃𝜁𝑥2−𝑦2

Eg
(k) ̃𝜁 𝑧2

Eg
(k)

𝜁𝑥𝑦
Eg

(k) ̃𝜁𝑥𝑦
Eg

(k) 𝜁𝑥𝑦
A1g

(k) 𝜁𝑥2−𝑦2

A2g
(k) 𝜁 𝑧2

B2g
(k)

𝜁𝑥2−𝑦2

Eg
(k) ̃𝜁𝑥2−𝑦2

Eg
(k) 𝜁𝑥2−𝑦2

A2g
(k) 𝜁𝑥2−𝑦2

A1g
(k) 𝜁 𝑧2

B1g
(k)

𝜁 𝑧2
Eg

(k) ̃𝜁 𝑧2
Eg

(k) 𝜁 𝑧2
B2g

(k) 𝜁 𝑧2
B1g

(k) 𝜁 𝑧2
A1g

(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

d ,

(A.1.7)

with the matrix elements of the Eg ⊗ Eg block

𝜁𝑥𝑧/𝑦𝑧
A1g

(k) = (𝑡𝑥𝑧/𝑦𝑧,1
A1g

cos(𝑘𝑥) + 𝑡𝑦𝑧/𝑥𝑧,1
A1g

cos(𝑘𝑦) + 𝑡𝑥𝑧,2
A1g

cos(𝑘𝑥) cos(𝑘𝑦)) cos(𝑘𝑧)

𝜁𝑥𝑧,1
B1g

(k) = 𝑡𝑥𝑧,1
B1g

(cos(𝑘𝑥) − cos(𝑘𝑦)) cos(𝑘𝑧)

𝜁𝑦𝑧
B2g

(k) = 𝑡𝑦𝑧,2
B2g

sin(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)

𝜁𝑦𝑧
A2g

(k) = 0 , (A.1.8)

the six matrix elements of the Eg ⊗ B2g B1g, A1g blocks (with 𝛼 = 𝑥𝑦, 𝑥2 − 𝑦2 and 𝑧2)

𝜁𝛼
Eg

(k) = (𝑡𝛼,1
Eg

sin(𝑘𝑥) + 𝑡𝛼,2
Eg

sin(𝑘𝑥) cos(𝑘𝑦)) sin(𝑘𝑧)

̃𝜁𝛼
Eg

(k) = (𝑡𝛼,1
Eg

sin(𝑘𝑦) + 𝑡𝛼,2
Eg

sin(𝑘𝑦) cos(𝑘𝑥)) sin(𝑘𝑧) , (A.1.9)

and the nine matrix elements of the one-dimensional representation blocks
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𝜁𝑥𝑦
A1g

= (𝑡𝑥𝑦,1
A1g

(cos(𝑘𝑥) + cos(𝑘𝑦)) + 𝑡𝑥𝑦,2
A1g

cos(𝑘𝑥) cos(𝑘𝑦)) cos(𝑘𝑧)

𝜁𝑥2−𝑦2

A2g
= 0 𝜁 𝑧2

B2g
= 𝑡𝑧2,2

B2g
sin(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧)

𝜁𝑥2−𝑦2

A1g
= (𝑡𝑥2−𝑦2,1

A1g
(cos(𝑘𝑥) + cos(𝑘𝑦)) + 𝑡𝑥2−𝑦2,2

A1g
cos(𝑘𝑥) cos(𝑘𝑦)) cos(𝑘𝑧)

𝜁 𝑧2
B1g

= 𝑡𝑧2,1
B1g

(cos(𝑘𝑥) − cos(𝑘𝑦)) cos(𝑘𝑧)

𝜁 𝑧2
A1g

= (𝑡𝑧2,1
A1g

(cos(𝑘𝑥) + cos(𝑘𝑦)) + 𝑡𝑧2,2
A1g

cos(𝑘𝑥) cos(𝑘𝑦)) cos(𝑘𝑧) . (A.1.10)

where we used the basis functions of the D4h and C4v group in (Table H.7), respec-
tively. Note, that Hermiticitywas implied to reduce the number ofmatrix elements from
twenty-five to fifteen. Furthermore, in the first nearest neighbor terms of A1g on the di-
agonal associated to the 𝑥𝑧 and 𝑦𝑧 orbitals, we introduced different hopping parameters
𝑡 for the 𝑘𝑥 and 𝑘𝑦 contributions since these are symmetric w.r.t. 𝑘𝑥 ↔ 𝑘𝑦. A non-zero
A2g contribution is obtained only starting up from the fourth nearest neighbor terms.
Furthermore, the Hamiltonian is obliged to obey time-reversal symmetry . For the present
spinless case the time-reversal operation on theHamiltonian is simply given by complex
conjugation Θ̂ = 𝒦 and inversion of momentum k → −k. Therefore, the condition for
time-reversal symmetry is

Θℋ(k)Θ−1 = ℋ(−k) = (ℋ(−k))𝑇 != ℋ(k) , (A.1.11)

where we exploited the Hermiticity of ℋ(k). This restricts the diagonal elements of
the Hamiltonian to be even in momentum, i.e. ℋ𝑖𝑖(−k) = ℋ𝑖𝑖(k), which is indeed the
case in (Equation A.1.7) since all diagonal matrix elements are associated to the even
representations A1g and B1g. The off-diagonal elements ℋ𝑖𝑗(k) with 𝑖 ≠ 𝑗 are subject to
the condition ℋ𝑖𝑗(−k) = ℋ𝑗𝑖(k) that forbids e.g. a non-zero A2g contribution in the Eg ⊗
Eg block of (Equation A.1.7). Generically speaking, the off-diagonal elements must be
either real and even in momentum or purely imaginary and odd in momentum. Finally,
we want to know what the consequences of the breakdown of the inversion symme-
try, i.e. D4h → C4v for the Hamiltonian (Equation A.1.7) are. First of all, if we imply
inversion symmetry corresponding to the full D4h group but want to consider a two-
dimensional Hamiltonian ℋ = ℋ(𝑘𝑥, 𝑘𝑦) we have to get rid of 𝑘𝑧 which results in basis
functions of Eg that are odd instead of even in k. Therefore, we have to set all matrix
elements in (Equation A.1.9) to zero. To see this, consider the inversion 𝑖 operation that
leaves the orbitals invariant but introduces k → −k = (−𝑘𝑥, −𝑘𝑦, −𝑘𝑧) into the basis
functions resulting in a sign change for the Eg functions, if we don’t explicitly include
sin(𝑘𝑧), which is obviously a contradiction of (Equation A.1.3). If we explicitly break
inversion symmetry 𝑧 → −𝑧, we can actually have non-zero (Equation A.1.9) but omit
the 𝑧-component, of course. In this case, we have to prepend an imaginary ±𝑖 to the
𝜁𝛼
Eg

(k) and ̃𝜁𝛼
Eg

(k) elements to ensure time-reversal symmetry.
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Table A.1.: The five d-orbitals, the Pauli matrices and their transformation behavior under all
operations of the D4ℎ group are used to construct Hamiltonians that comply with
the required symmetry. We divided the table into two parts where the first half cor-
responds to the operations of the subgroup C4𝑣 and the second half introduces the
group elements that exploit the three-dimensionality. The 𝑑𝑧2 orbital is invariantw.r.t.
the entire group, i.e. it transforms according to the A1g representation. The orbitals
𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 behave like the B2g and B1g representations, respectively. Since the or-
bitals 𝑑𝑥𝑧 and 𝑑𝑦𝑧 do mix and have even parity (due to angular momentum 𝐿 = 2)
they must obviously transform according to Eg . The transformation of the Pauli ma-
trices is to be understood as 𝜎𝑖 → 𝒮(𝑔)†𝜎𝑖𝒮(𝑔) 𝑔 ∈ D4ℎ where 𝒮(𝑔) = 𝑒−𝑖𝑛̂⋅𝝈𝜑/2. Like
expected, the inversion is the only operation that leaves the Pauli matrices invariant
since spin is a pseudovector. The irreducible representation for 𝜎𝑧 is A2g and 𝜎𝑥 and
𝜎𝑦 behave like Eg .

D4ℎ 𝑑𝑥𝑦 𝑑𝑥𝑧 𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑥 𝜎𝑦 𝜎𝑧

E 𝑑𝑥𝑦 𝑑𝑥𝑧 𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑥 𝜎𝑦 𝜎𝑧
C2 𝑑𝑥𝑦 −𝑑𝑥𝑧 −𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑥 −𝜎𝑦 𝜎𝑧
C+

4 −𝑑𝑥𝑦 −𝑑𝑦𝑧 𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑦 𝜎𝑥 𝜎𝑧
C−

4 −𝑑𝑥𝑦 𝑑𝑦𝑧 −𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑦 −𝜎𝑥 𝜎𝑧
𝜎𝑥 −𝑑𝑥𝑦 𝑑𝑥𝑧 −𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑥 𝜎𝑦 −𝜎𝑧
𝜎𝑦 −𝑑𝑥𝑦 −𝑑𝑥𝑧 𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑥 −𝜎𝑦 −𝜎𝑧
𝜎𝑎 𝑑𝑥𝑦 𝑑𝑦𝑧 𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑦 −𝜎𝑥 −𝜎𝑧
𝜎𝑏 𝑑𝑥𝑦 −𝑑𝑦𝑧 −𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑦 𝜎𝑥 −𝜎𝑧

𝜎ℎ 𝑑𝑥𝑦 −𝑑𝑥𝑧 −𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑥 −𝜎𝑦 𝜎𝑧
i 𝑑𝑥𝑦 𝑑𝑥𝑧 𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑥 𝜎𝑦 𝜎𝑧
S+

4 −𝑑𝑥𝑦 𝑑𝑦𝑧 −𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑦 −𝜎𝑥 𝜎𝑧
S−

4 −𝑑𝑥𝑦 −𝑑𝑦𝑧 𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑦 𝜎𝑥 𝜎𝑧
C′

𝑥 −𝑑𝑥𝑦 −𝑑𝑥𝑧 𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑥 −𝜎𝑦 −𝜎𝑧
C′

𝑦 −𝑑𝑥𝑦 𝑑𝑥𝑧 −𝑑𝑦𝑧 𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑥 𝜎𝑦 −𝜎𝑧
C′

𝑎 𝑑𝑥𝑦 −𝑑𝑦𝑧 −𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 𝜎𝑦 𝜎𝑥 −𝜎𝑧
C′

𝑏 𝑑𝑥𝑦 𝑑𝑦𝑧 𝑑𝑥𝑧 −𝑑𝑥2−𝑦2 𝑑𝑧2 −𝜎𝑦 −𝜎𝑥 −𝜎𝑧

199





B. L ⋅ S-coupling in p- and d-orbitals

The orbital basis that is used for the evaluation of the spin-orbit interaction operator
must be the same as the one for the corresponding SU(2) -invariant tight-bindingmodel.
Thematrix elements of theL⋅S-operator are evaluated by considering the representation
of this operator in terms of raising and lowering operators

𝐿̂+ = 𝐿̂𝑥 + 𝑖𝐿̂𝑦 𝐿̂+ = 𝐿̂𝑥 − 𝑖𝐿̂𝑦 . (B.0.1)

of the orbital angular momentum, i.e.

L ⋅ S =
1
2 (

𝐿+ + 𝐿−
2 𝜎𝑥 +

𝐿+ − 𝐿−
2𝑖 𝜎𝑦 + 𝐿𝑧𝜎𝑧) . (B.0.2)

The actions of the ladder operators and the 𝐿𝑧-operator on the eigenstates of the 𝐿̂𝑧
operator are (ℏ = 1)

𝐿± ∣𝑙, 𝑚⟩ = √𝑙(𝑙 + 1) − 𝑚(𝑚 ± 1) ∣𝑙, 𝑚 ± 1⟩ and 𝐿𝑧 ∣𝑙, 𝑚⟩ = 𝑚 ∣𝑙, 𝑚⟩ . (B.0.3)

This representation can be used to find the matrix elements of ̂L ⋅ Ŝ by writing the
different p- and d-orbitals in terms of the 𝐿̂𝑧-eigenstates. These are plugged into ex-
pressions like e.g. ⟨𝑝𝑥, 𝜎∣L ⋅ S ∣𝑝𝑥, 𝜎⟩, ⟨𝑝𝑥, 𝜎∣L ⋅ S ∣𝑝𝑦, 𝜎⟩ for the p-orbitals. Since we are
satisfied with a matrix representation in terms of Pauli matrices, we only have to em-
ploy the orbital angular momentum operator and leave the spins alone. In a numerical
context (which seems almost obligatory for angular momentum 𝑙 ≥ 2) we may proceed
as follows: first determine the operator 𝐿± and 𝐿𝑧 that are ∈ ℂ(2𝑙+1)×(2𝑙+1) in the ∣𝑙, 𝑚⟩
basis whose matrix elements are given above, set up the unitary transformation matrix
𝑈𝑙,𝑚 that takes the ∣𝑙, 𝑚⟩ states and constructs superpositions of these to get the new ba-
sis, e.g. the 𝑝𝑥, 𝑝𝑦, etc. states (cf. (Equation B.1.3)), the new 𝐿′

𝑥,𝑦,𝑧 are then obtained
from the “intrinsic” operators by 𝐿′

𝑥,𝑦,𝑧 = 𝑈𝑙,𝑚𝐿𝑥,𝑦,𝑧𝑈†
𝑙,𝑚, which results in the operator

L̂ ⋅ Ŝ ∝ ∑𝑖=𝑥,𝑦,𝑧 𝐿′
𝑖 ⊗ 𝜎𝑖. Besides, the new basis in terms of linear combinations of ∣𝑙, 𝑚⟩

states is invariant w.r.t. time-reversal. This is due to the fact that ∣𝑙, 𝑚⟩ transforms accord-
ing to Θ̂ ∣𝑙, 𝑚⟩ = (−1)𝑚 ∣𝑙, −𝑚⟩ [SN11, Chap. 4.4, p.276][Sha12, Chap. 12.5, p.337] under
time-reversal and we used linear combinations that combine +𝑚 and −𝑚 making these
states invariantw.r.t. time-reversal (also cf. appendixD ). Note, that the L′ = (𝐿′

𝑥, 𝐿′
𝑦, 𝐿′

𝑧)
as generators of the group imply the orbitals’s transformation behavior by means of the
operator 𝑒−𝑖𝑛̂L𝜑.
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B. L ⋅ S-coupling in p- and d-orbitals

B.1. Angular momentum 𝐿 = 1: p-orbitals

We choose the three p-orbitals states to be real in terms of the spherical harmonics
𝑌𝑚=−1

𝑙=1 ∝ sin 𝜃𝑒−𝑖𝜙, 𝑌𝑚=0
𝑙=1 ∝ cos 𝜃 and 𝑌𝑚=1

𝑙=1 ∝ sin 𝜃𝑒+𝑖𝜙 (cf.[AW05; CS51]) and in-
clude the spin degree of freedom (𝑌𝑚=1

𝑙=1 is denoted by ∣𝑙, 𝑚⟩) (cf. [Chr+15, Appendix
B])

∣𝑝𝑥⟩ ⊗ |𝜎⟩ = ∣𝑝𝑥, 𝜎⟩ =
|1, −1, 𝜎⟩ − |1, 1, 𝜎⟩

√2
(B.1.1)

∣𝑝𝑦⟩ ⊗ |𝜎⟩ = ∣𝑝𝑦, 𝜎⟩ =
|1, −1, 𝜎⟩ + |1, 1, 𝜎⟩

√2𝑖
(B.1.2)

∣𝑝𝑧⟩ ⊗ |𝜎⟩ = ∣𝑝𝑧, 𝜎⟩ = |1, 0, 𝜎⟩ , (B.1.3)

corresponding to the unitary transformation and bases

𝑈𝑝 =
1

√2

⎛⎜⎜⎜
⎝

1 0 −1
−𝑖 0 −𝑖
0 1 0

⎞⎟⎟⎟
⎠

p† ≔ (𝑎†
𝑝𝑥

, 𝑎†
𝑝𝑦

, 𝑎†
𝑝𝑧

)
𝑇

, (B.1.4)

where we assume that the states are orthonormal. We note that this definition of or-
bitals implies their transformation behavior for rotations about the 𝑧-axis by its generator
𝐿𝑧, which is

𝑒−𝑖𝐿𝑧𝜑 =
⎛⎜⎜⎜
⎝

cos(𝜑) − sin(𝜑) 0
sin(𝜑) cos(𝜑) 0

0 0 1

⎞⎟⎟⎟
⎠

. (B.1.5)

Therefore, the 𝑝𝑥, 𝑝𝑦-orbitals transform into each other while th 𝑝𝑧 is invariant. Look-
ing at the representation of the p-orbitals and L̂ ⋅ Ŝ (Equation B.0.2) we see that we can
only get non-zero matrix elements in between different orbital states since both 𝐿̂𝑥 and
𝐿̂𝑦 change the magnetic quantum number by one and the ∣𝑝𝑥⟩, ∣𝑝𝑦⟩ contain magnetic
quantum numbers that differ by two while the eigenvalue of ∣𝑝𝑧⟩ is zero. For example,
we have

⟨𝑝𝑥, 𝜎∣L ⋅ S ∣𝑝𝑦, 𝜎⟩ =
⟨1, 1, 𝜎| + ⟨1, −1, 𝜎|

√2
⎛⎜
⎝

… +
𝐿𝑧𝜎𝑧

2
|1, 1, 𝜎⟩ − |1, −1, 𝜎⟩

√2𝑖
⎞⎟
⎠

=
1
4𝑖 (⟨1, 1, 𝜎| + ⟨1, −1, 𝜎|) 𝜎𝑧 (|1, 1, 𝜎⟩ + |1, −1, 𝜎⟩) =

𝜎𝑧
2𝑖 . (B.1.6)

Employing the basis c†
𝑜,𝜎 = (𝑐†

𝑝𝑥,↑, 𝑐†
𝑝𝑥,↓, 𝑐†

𝑝𝑦,↑, 𝑐†
𝑝𝑦,↓, 𝑐†

𝑝𝑧,↑, 𝑐†
𝑝𝑧,↓), we can summarize the

results by
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B.2. Angular momentum 𝐿 = 2: d-orbitals

̂L ⋅ Ŝ =
1
2c

†
𝑜,𝜎

⎛⎜⎜⎜
⎝

0 −𝑖𝜎𝑧 𝑖𝜎𝑦
𝑖𝜎𝑧 0 −𝑖𝜎𝑥

−𝑖𝜎𝑦 𝑖𝜎𝑥 0

⎞⎟⎟⎟
⎠
c𝑜,𝜎 . (B.1.7)

B.2. Angular momentum 𝐿 = 2: d-orbitals

The sameprocedure can be applied for spin-orbit coupling in the fived-orbitals 𝑑𝑥𝑧, 𝑑𝑦𝑧, 𝑑𝑥𝑦, 𝑑𝑥2−𝑦2, 𝑑𝑧2.
Choosing a real orbital basis, we have (that complies to (Equation A.0.4))

∣𝑑𝑥𝑧, 𝜎⟩ =
|2, −1, 𝜎⟩ − |2, 1, 𝜎⟩

√2
(B.2.1)

∣𝑑𝑦𝑧, 𝜎⟩ =
|2, −1, 𝜎⟩ + |2, 1, 𝜎⟩

√2𝑖
(B.2.2)

∣𝑑𝑥𝑦, 𝜎⟩ = −
|2, −2, 𝜎⟩ − |2, 2, 𝜎⟩

√2𝑖
(B.2.3)

∣𝑑𝑥2−𝑦2, 𝜎⟩ =
|2, −2, 𝜎⟩ + |2, 2, 𝜎⟩

√2
(B.2.4)

∣𝑑𝑧2, 𝜎⟩ = − |2, 0, 𝜎⟩ , (B.2.5)

In the following, we employ the basis

c†
𝑜,𝜎 = (𝑐†

𝑑𝑥𝑧
, 𝑐†

𝑑𝑦𝑧
, 𝑐†

𝑑𝑥𝑦
, 𝑐†

𝑑𝑥2−𝑦2
, 𝑐†

𝑑𝑧2
)

𝑇
⊗ (𝑐†

↑ , 𝑐†
↓)𝑇 , (B.2.6)

and find the matrix elements of the L̂ ⋅ ̂S- operator to be (cf. [Kon11, p. 25] [KGF10])

̂L ⋅ Ŝ =
1
2c

†
𝑜,𝜎

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −𝑖𝜎𝑧 −𝑖𝜎𝑥 −𝑖𝜎𝑦 −√3𝑖𝜎𝑦

𝑖𝜎𝑧 0 𝑖𝜎𝑦 −𝑖𝜎𝑥 √3𝑖𝜎𝑥
𝑖𝜎𝑥 −𝑖𝜎𝑦 0 −2𝑖𝜎𝑧 0
𝑖𝜎𝑦 𝑖𝜎𝑥 2𝑖𝜎𝑧 0 0

√3𝑖𝜎𝑦 −√3𝑖𝜎𝑥 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

c𝑜,𝜎 . (B.2.7)

Note that a non-interacting Hamiltonian ℋ0
k including any ̂L ⋅ ̂S terms does neither

break time-reversal Θ̂ nor inversion symmetry ̂𝐼 since both L̂ and Ŝ are odd under time
reversal and both even under inversion. If we combine both of these symmetries, we
see that the energy spectrum is doubly degenerate. More technically, we have
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B. L ⋅ S-coupling in p- and d-orbitals

[ℋ0
k , Θ̂] = 0 [ℋ0

k , ̂𝐼] = 0 . (B.2.8)

Consider the eigenvalue equation ℋ0
k ∣k, 𝑏, 𝜎⟩ = 𝜀k,𝑏,𝜎 ∣k, 𝑏, 𝜎⟩ and the fact that time-

reversal and inversion operation commute, i.e. [Θ̂, ̂𝐼] = 0. The combined action of inver-
sion and time-reversal on some eigenstate is Θ̂ ̂𝐼 ∣k, 𝜎⟩ = Θ̂ ∣−k, 𝜎⟩ = ∣+k, 𝜎̄⟩ where 𝜎̄ de-
notes the spin state opposite to 𝜎. On the one hand, we have Θ̂ ̂𝐼ℋ0

k ∣k, 𝜎⟩ = ℋ0
kΘ̂ ̂𝐼 ∣k, 𝜎⟩ =

ℋ0
k ∣+k, 𝜎̄⟩ = 𝜀k,𝑏,𝜎̄ ∣+k, 𝑏, 𝜎̄⟩ and on the other hand Θ̂ ̂𝐼ℋ0

k ∣k, 𝜎⟩ = Θ̂ ̂𝐼𝜀k,𝑏,𝜎 ∣k, 𝜎⟩ =
𝜀k,𝑏,𝜎 ∣+k, 𝑏, 𝜎̄⟩. Therefore, the eigenvalues must fulfill 𝜀k,𝑏,𝜎̄ = 𝜀k,𝑏,𝜎.
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C. Non-local spin-orbit interaction

Here, we focus on the derivation of possible spin-orbit Hamiltonians for the five d-
orbitals 𝑑𝑥𝑧, 𝑑𝑦𝑧, 𝑑𝑥𝑦, 𝑑𝑥2−𝑦2 and 𝑑𝑧2 on the tetragonal lattice corresponding to the point
group D4h. It is straightforward to determine the transformation behavior of the dif-
ferent orbitals. In particular, 𝑑𝑥𝑧 and 𝑑𝑦𝑧 transform according to the irreducible repre-
sentation Eg, 𝑑𝑥𝑦 like B2g, 𝑑𝑥2−𝑦2 like B1g and 𝑑𝑧2 like behaves like A1g. For details see
appendix A. The second ingredient is the transformation behavior of the Pauli matri-
ces that is determined by 𝜎𝑖 → 𝒮(𝑔)†𝜎𝑖𝒮(𝑔). To summarize, the Pauli matrices 𝜎𝑥 and
𝜎𝑦 transform like Eg and 𝜎𝑧 transforms like the A2g irreducible representation of D4h.
This becomes apparent in (Table A.1). Note, that orbitals as well as Pauli matrices must
transform according to even representations since they are both pseudovectors and are
therefore invariant under spatial inversion. To construct the d-orbital spin-orbit inter-
action Hamiltonian, we employ the basis

a†
k,𝑜,𝜎 = (𝑎†

k,𝑑𝑥𝑧
, 𝑎†

k,𝑑𝑦𝑧
, 𝑎†

k,𝑑𝑥𝑦
, 𝑎†

k,𝑑𝑥2−𝑦2
, 𝑎†

k,𝑑𝑧2
)

𝑇
⊗ (𝑎†

↑, 𝑎†
↓)𝑇 . (C.0.1)

In terms of this basis, the representation blocks that characterize the orbital’s trans-
formation behavior are given by

ℋ0 = a†
k

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

Eg ⊗ Eg Eg ⊗ B2g Eg ⊗ B1g Eg ⊗ A1g
B2g ⊗ Eg B2g ⊗ B2g B2g ⊗ B1g B2g ⊗ A1g
B1g ⊗ Eg B1g ⊗ B2g B1g ⊗ B1g B1g ⊗ A1g
A1g ⊗ Eg A1g ⊗ B2g A1g ⊗ B1g A1g ⊗ A1g

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

ak . (C.0.2)

These product representations split up into the direct sums [Gos]:

⊗ Eg B2g B1g A1g

Eg A1g ⊕ A2g ⊕ B1g ⊕ B2g Eg Eg Eg
B2g Eg A1g A2g B2g
B1g Eg A2g A1g B1g
A1g Eg B2g B1g A1g

The lower right 3 × 3 block consists of one-dimensional representations, only. Firstly,
we will focus on the upper left block involving the product of two Eg representations.
The Pauli matrices are used to expand the matrix of the 2 × 2 orbital structure in this
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C. Non-local spin-orbit interaction

block. In this context, we will label these Pauli matrices in 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbital-space by
𝜏0, 𝜏𝑥, 𝜏𝑦 and 𝜏𝑧. Considering the transformation of the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals (cf. (Ta-
ble A.1)), we can determine that 𝜏𝑥 transforms like B2g, 𝜏𝑦 transforms like A2g, 𝜏𝑧 trans-
forms like B1g and 𝜏0 obviously transforms like A1g. The point group operations may
be implemented by {E,C2,C

+
4 ,C

−
4 ,𝜎𝑥,𝜎𝑦,𝜎𝑎,𝜎𝑏} = {𝜏0, −𝜏0, 𝑖𝜏𝑦, −𝑖𝜏𝑦, 𝜏𝑧, −𝜏𝑧, 𝜏𝑥, −𝜏𝑥}.

We note, that one may actually avoid the double group treatment in this context by
dealing with the transformation properties of the Pauli matrices exclusively, instead of
considering the transformation behavior of the actual states and spinors. This way, the
additional minus signs related to the additional group elements given by 𝐸̄ describing
the more sophisticated transformation properties of the double group simply cancels.

C.1. Centrosymmetric spin-orbit coupling in d-orbitals

For the upper 2×2 block representing the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals of the five-d-orbital Hamil-
tonian we found (Equation 3.1.40)

ℋ𝑥𝑧,𝑦𝑧
𝑆𝑂𝐶 = (cos (𝑘𝑥) + cos (𝑘𝑦)) 𝜏𝑦 ⊗ 𝜎𝑧 . (C.1.1)

We proceed with the orbital sectors that involve the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 times the 𝑑𝑥𝑦, 𝑑𝑥2−𝑦2

and 𝑑𝑧2 orbitals. They’re all governed by the Eg representation. To get a one-dimensional
representation in k-space, spin spacemust be described by Eg, i.e. 𝜎𝑥, 𝜎𝑦, since Eg⊗Eg =
A1g ⊕A2g ⊕B1g ⊕B2g. In the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 times 𝑑𝑥𝑦 matrix elements (𝜎𝑥, 𝜎𝑦) behave like
B1, (𝜎𝑦, 𝜎𝑥) like A2, (𝜎𝑥, −𝜎𝑦) like A1 and (𝜎𝑦, −𝜎𝑥) transforms according to B2. In
the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 times 𝑑𝑥2−𝑦2 matrix elements (𝜎𝑥, 𝜎𝑦) behave like B2, (𝜎𝑦, 𝜎𝑥) like A1,
(𝜎𝑥, −𝜎𝑦) like A2 and (𝜎𝑦, −𝜎𝑥) transforms according to B1. At last, in the 𝑑𝑥𝑧 and 𝑑𝑦𝑧
times 𝑑𝑧2 matrix elements (𝜎𝑥, 𝜎𝑦) behave like A2, (𝜎𝑦, 𝜎𝑥) like B1, (𝜎𝑥, −𝜎𝑦) like B2
and (𝜎𝑦, −𝜎𝑥) transform like A1. If we only consider up to second order basis functions
in momentum space, we can omit the A2 contribution. The corresponding part of the
orbital matrix is hence given by

M𝛼𝛼′(k) =
⎛⎜⎜⎜
⎝

𝑖𝑓 A1(k) ̂𝑥 + 𝑖𝑓 B1(k) ̂𝑥 + 𝑖𝑓 B2(k) ̂𝑦 −𝑖𝑓 A1(k) ̂𝑦 + 𝑖𝑓 B1(k) ̂𝑦 − 𝑖𝑓 B2(k) ̂𝑥
𝑖𝑓 A1(k) ̂𝑦 + 𝑖𝑓 B1(k) ̂𝑦 + 𝑖𝑓 B2(k) ̂𝑥 𝑖𝑓 A1(k) ̂𝑥 − 𝑖𝑓 B1(k) ̂𝑥 + 𝑖𝑓 B2(k) ̂𝑦
𝑖𝑓 A1(k) ̂𝑦 + 𝑖𝑓 B1(k) ̂𝑦 + 𝑖𝑓 B2(k) ̂𝑥 −𝑖𝑓 A1(k) ̂𝑥 + 𝑖𝑓 B1(k) ̂𝑥 − 𝑖𝑓 B2(k) ̂𝑦

⎞⎟⎟⎟
⎠

,

(C.1.2)

where we used 𝑓 A1(k) = cos (𝑘𝑥)+cos (𝑘𝑦), 𝑓 B1(k) = cos (𝑘𝑥)−cos (𝑘𝑦) and 𝑓 B2(k) =
sin (𝑘𝑥) sin (𝑘𝑦). Lastly, we deal with the purely one-dimensional orbital sectors in the
lower right part of the Hamiltonian and orbital matrix, respectively. As a consequence
of the one-dimensional representation in the orbitals and the requirement of the even
one-dimensional representations in k-space, our only option for spin space is 𝜎𝑧 asso-
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C.1. Centrosymmetric spin-orbit coupling in d-orbitals

ciated to A2. The 𝑑𝑥𝑦 × 𝑑𝑥2−𝑦2 matrix element is determined by A2 ⊗ A2 = A1, i.e. an
A1 representation basis function in k-space. The 𝑑𝑥𝑦 × 𝑑𝑧2 matrix element is provided
by B2 ⊗ A2 = B1. The 𝑑𝑦𝑧 × 𝑑𝑧2 matrix element determines the momentum space repre-
sentation basis function to be B1 ⊗ A2 = B2. To summarize, this results in the d-orbital
spin-orbit matrix being given in the basis (Equation C.0.1):

M𝛼𝛼′(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −𝑖 (2 − 𝑘2
𝑥 − 𝑘2

𝑦) ̂𝑧 2𝑖 (1 − 𝑘2
𝑥) ̂𝑥 + 𝑖𝑘𝑥𝑘𝑦 ̂𝑦 2𝑖 (1 − 𝑘2

𝑥) ̂𝑦 + 𝑖𝑘𝑥𝑘𝑦 ̂𝑥 2𝑖 (1 − 𝑘2
𝑥) ̂𝑦 + 𝑖𝑘𝑥𝑘𝑦 ̂𝑥

0 −2𝑖 (1 − 𝑘2
𝑦) ̂𝑦 − 𝑖𝑘𝑥𝑘𝑦 ̂𝑥 2𝑖 (1 − 𝑘2

𝑦) ̂𝑥 + 𝑖𝑘𝑥𝑘𝑦 ̂𝑦 2𝑖 (1 − 𝑘2
𝑦) ̂𝑥 − 𝑖𝑘𝑥𝑘𝑦 ̂𝑦

0 𝑖 (2 − 𝑘2
𝑥 − 𝑘2

𝑦) ̂𝑧 −𝑖 (𝑘2
𝑥 − 𝑘2

𝑦) ̂𝑧
0 𝑖𝑘𝑥𝑘𝑦 ̂𝑧

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(C.1.3)

where we abbreviated cos (𝑘𝑥) + cos (𝑘𝑦) ≈ 2 − 𝑘2
𝑥 − 𝑘2

𝑦, sin (𝑘𝑥) sin (𝑘𝑦) ≈ 𝑘𝑥𝑘𝑦 and
cos (𝑘𝑥) − cos (𝑘𝑦) ≈ −𝑘2

𝑥 + 𝑘2
𝑦. The matrix elements of the left lower triangle are given

by the requirement of antisymmetry M𝛼𝛼′(k) = −M𝛼′𝛼(k).
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D. Time-reversal operation for
single-particle terms

Consider the single particle Hamiltonian

ℋ0 = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

ℎ𝜎𝜎′
𝛼𝛼′ (k) 𝑐†

k𝛼′𝜎′𝑐k𝛼𝜎 = ∑
k

∑
𝛼,𝛼′

(𝑐†
k𝛼′↑, 𝑐

†
k𝛼′↓)

𝑇
(ℎ↑↑

𝛼𝛼′(k) ℎ↑↓
𝛼𝛼′(k)

ℎ↓↑
𝛼𝛼′(k) ℎ↓↓

𝛼𝛼′(k)) (𝑐k𝛼↑
𝑐k𝛼↓

) ,

(D.0.1)

with momentum k, orbital indices 𝛼, 𝛼′ and spins 𝜎, 𝜎 ′. The (antiunitary) time-
reversal operator for spin-1

2 particles is given by Θ̂ = −𝑖𝜎𝑦
̂𝒦 with the inverse Θ̂−1 =

+𝑖𝜎𝑦
̂𝒦 where 𝜎𝑦 and 𝒦 are the second Pauli matrix and the operator of complex conju-

gation, respectively [Wig12; SN11] [Sch05b, Chap. 11.4, p.228]. Assumingwework in a
(real) orbital basis that is time-reversal invariant, we don’t have to care about the orbital
transformation, since the complex conjugation of matrix elements is already taken care
of by Θ̂ (cf. appendix B). To find the time-reversal of (Equation D.0.1), it is convenient
to use the transformation of creation and annihilation operatorsw.r.t. time-reversal, that
is 1

𝑐(†)
k𝛼′𝜎′

TR⟶ Θ̂𝑐(†)
k𝛼′𝜎′Θ̂−1 = ∑

𝜏
𝑐(†)
−k𝛼′𝜏Θ̂𝜏𝜎′ . (D.0.2)

Note, that the momentum is not affected by the operator itself and must be inverted
“by hand”. To see, that the time-reversed operator may be written as a sum over matrix
elements of a single operator, we may best take a simple spin state 2 With these prereq-
uisites the time-reversal of (Equation D.0.1) is

Θ̂ℋ0Θ̂−1 = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

Θ̂ℎ𝜎𝜎′
𝛼𝛼′ (k) 𝑐†

k𝛼′𝜎′𝑐k𝛼𝜎Θ̂−1 = ∑
k

∑
𝛼,𝛼′

∑
𝜎,𝜎′

ℎ𝜎𝜎′
𝛼𝛼′ (k) Θ̂𝑐†

k𝛼′𝜎′𝑐k𝛼𝜎Θ̂−1 ,

(D.0.3)

1 Consider the state ∣𝜓⟩ = 𝑐(†) ∣𝜙⟩ which is generated by the action of 𝑐(†) on some state ∣𝜙⟩. Using the
time-reversal operator Θ̂ and its inverse Θ̂−1, we have ∣𝜓⟩ = 𝑐(†)Θ̂−1Θ̂ ∣𝜙⟩. The action of time-reversal
on ∣𝜓⟩ is Θ̂ ∣𝜓⟩ = Θ̂𝑐(†)Θ̂−1Θ̂ ∣𝜙⟩. Therefore, the operators must transform like 𝑐(†) → Θ̂𝑐(†)Θ̂−1.

2 Let ∣𝜙⟩ = 𝜒 |↑⟩ be a “pure” spin-up-state, that can also be expressed by ∣𝜙⟩ = 𝜒𝑐†
↑ |0⟩. The effect of

time-reversal is Θ̂ ∣𝜙⟩ = −𝜒 |↓⟩ = −𝜒𝑐†
↓ |0⟩. However, we can also transform the operator 𝑐†

↑ → Θ̂𝑐†
↑Θ̂−1

which results in Θ̂ ∣𝜙⟩ = 𝜒Θ̂𝑐†
↑Θ̂−1 |0⟩. Therefore, we must have Θ̂𝑐†

↑Θ̂−1 = ∑𝜎 𝑐†
𝜎Θ̂𝜎,↑.
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D. Time-reversal operation for single-particle terms

where we let the complex conjugation part ̂𝒦 of the operator from the left act on the
matrix element of the Hamiltonian. The transformation of the operators can be evalu-
ated by inserting an identity in terms of time-reversal operators Θ̂−1Θ̂ = 𝜎0 in between.
Now,we can employ the property (EquationD.0.2) to find the transformedHamiltonian

Θ̂ℋ0Θ̂−1 = ∑
k

∑
𝛼,𝛼′

∑
𝜏,𝜏′

ℎ𝜏𝜏′
𝛼𝛼′ (k) 𝑐†

−k𝛼′𝜏′𝑐−k𝛼𝜏 with ℎ𝜏𝜏′
𝛼𝛼′ (k) = ∑

𝜎,𝜎′
ℎ𝜎𝜎′

𝛼𝛼′ (k) Θ̂𝜏𝜎Θ̂−1
𝜎′𝜏′ .

(D.0.4)

Keeping the original basis with operators at k and transforming the matrix elements
only (compare coefficients in terms of operators), we obtain

ℎ𝜎𝜎′
𝛼𝛼′ (k) TR⟶ ⎛⎜

⎝
ℎ↓↓

𝛼𝛼′(−k) −ℎ↓↑
𝛼𝛼′(−k)

−ℎ↑↓
𝛼𝛼′(−k) ℎ↑↑

𝛼𝛼′(−k)
⎞⎟
⎠

. (D.0.5)

Instead of the Hamiltonian, we often consider the non-interacting action 𝑆0 (like e.g.
in (Section 3.3), (Chapter 4) and (Chapter 6)) in terms of the Grassmann fields ̄𝜓 and
𝜓:

𝑆0 [ ̄𝜓, 𝜓] = ∑
k,𝑖𝜔𝑛

∑
𝛼,𝛼′

∑
𝜎,𝜎′

̄𝜓𝑛k𝛼′𝜎′ (𝑖𝜔 − ℎ𝜎𝜎′
𝛼𝛼′ (k)) 𝜓𝑛k𝛼𝜎 . (D.0.6)

In contrast to the creation/annihilation operators, the Grassmann fields are actually
conjugated under time-reversal and transform according to (cf. [KBS10, chap. 6.3.2])

𝜓k𝛼𝜎
TR⟶ Θ̂𝜓−k𝛼𝜎 = ∑

𝜏
(−𝑖𝜎𝑦)

𝜎𝜏
̄𝜓−k𝛼𝜏

̄𝜓k𝛼𝜎
TR⟶ Θ̂−1 ̄𝜓−k𝛼𝜎 = ∑

𝜏
(+𝑖𝜎𝑦)

𝜎𝜏
𝜓−k𝛼𝜏 = ∑

𝜏
𝜓−k𝛼𝜏 (−𝑖𝜎𝑦)

𝜏𝜎
, (D.0.7)

where the conjugation of Grassmann fields, however, must not be taken as complex
conjugation. Inserting the transformed fields into the non-interacting action (Equa-
tion D.0.6), yields

𝑆0 [ ̄𝜓, 𝜓] TR⟶ ∑
k,𝛼,𝛼′

∑
𝜎,𝜎′

𝜏,𝜏′

𝜓−k𝛼′𝜏′ (−𝑖𝜎𝑦)
𝜏′𝜎′ (𝑖𝜔 − ℎ𝜎𝜎′

𝛼𝛼′ (k)) (−𝑖𝜎𝑦)
𝜎𝜏

̄𝜓−k𝛼𝜏

= ∑
k,𝛼,𝛼′

∑
𝜏,𝜏′

⎡⎢
⎣

∑
𝜎,𝜎′

(−𝑖𝜎𝑦)
𝜏′𝜎′ (𝑖𝜔 − ℎ𝜎𝜎′

𝛼𝛼′ (k)) (−𝑖𝜎𝑦)
𝜎𝜏

⎤⎥
⎦

(− ̄𝜓−k𝛼𝜏𝜓−k𝛼′𝜏′) ,

(D.0.8)

where the anticommutation of Grassmann fields produces an additional minus sign.
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The inner bracket evaluates to (neglecting theMatsubara frequency that does not trans-
form, anyway)

∑
𝜎,𝜎′

(−𝑖𝜎𝑦)
𝜏′𝜎′ ℎ𝜎𝜎′

𝛼𝛼′ (k) (−𝑖𝜎𝑦)
𝜎𝜏

= (−ℎ↓↓
𝛼𝛼′(k) ℎ↓↑

𝛼𝛼′(k)
ℎ↑↓

𝛼𝛼′(k) −ℎ↑↑
𝛼𝛼′(k))

𝜏𝜏′
, (D.0.9)

To obtain the final transformation behavior, we have to compare the basis in (Equa-
tionD.0.8)with the untransformed basis ̄𝜓k𝛼′𝜎′𝜓k𝛼𝜎 in (EquationD.0.6). To summarize,
the orbital and spin indices are exchanged, the momentum is inverted to −k and we get
a minus sign from the Grassmann fields. Therefore, the transformation of the matrix
elements is given by

ℎ𝜎,𝜎′

𝛼,𝛼′ (k) TR⟶ ( ℎ↓↓
𝛼′𝛼(−k) −ℎ↑↓

𝛼′𝛼(−k)
−ℎ↓↑

𝛼′𝛼(−k) ℎ↑↑
𝛼′𝛼(−k) )

𝜎𝜎′
= ⎛⎜

⎝
ℎ↓↓

𝛼𝛼′(−k) −ℎ↓↑
𝛼𝛼′(k)

−ℎ↑↓
𝛼𝛼′(−k) ℎ↑↑

𝛼𝛼′(−k)
⎞⎟
⎠𝜎𝜎′

, (D.0.10)

where we made use of the Hermiticity of the Hamiltonian. We may also directly
transform the matrix elements by

ℎ𝜎𝜎′
𝛼𝛼′ (k) TR⟶ Θ̂ℎ𝜎𝜎′

𝛼𝛼′ (k)Θ̂−1 = (−𝑖𝜎𝑦𝒦) ℎ𝜎𝜎′
𝛼𝛼′ (−k) (+𝑖𝜎𝑦𝒦)

= ⎛⎜
⎝

ℎ↓↓
𝛼𝛼′(−k) −ℎ↓↑

𝛼𝛼′(−k)
−ℎ↑↓

𝛼𝛼′(−k) ℎ↑↑
𝛼𝛼′(−k)

⎞⎟
⎠𝜎𝜎′

. (D.0.11)

Apparently, the result (Equation D.0.10) of the passive transformation is fully consis-
tent with the one (Equation D.0.11) of the active transformation. Hence, the Grassmann
fields enable us to perform the time-reversal operation as a passive as well as an active
transformation. In contrast, by using creation/annihilation operators we’re unable to
disentangle the transformation of basis and matrix elements for time-reversal (which
is in general true for any antiunitary (antilinear) transformation). In particular, in a
numerical context, this is an essential result since we usually (have to) keep the basis
while transforming the matrix elements. In particular, for higher-order vertex functions
the passive (basis-) transformation turns out to be of extraordinary convenience. Fur-
thermore, the time-reversal operation by means of transformation of fields is equally
well applicable to off-diagonal or anomalous terms like the superconducting gap (cf.
(Section 2.4.4)).
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E. Local basis transformation and
BCS-Theory

In (Section 3.2) it was shown how the Bloch states can be uniquely and unambiguously
defined by requiring the components and phases of eigenstates of the single-particle
Hamiltonian to be continuous and differentiable along any path through the Brillouin
zone. In fact, this definition is only unique up to global phase. Here, we will discuss and
comment on different choices of Bloch states and their restrictions regarding the inves-
tigation of the BCS ground state and its symmetry. The relevance of the phase of Bloch
states was noted a long time ago in the context ofWannier functions [Koh59; Koh73] and
this degree of freedom in the definition of Bloch states has been exploited ever since
to obtain maximally localized Wannier functions [MV97; Mar+12]. The eigenstates of a
single-particle Hamiltonian ℋ0 in the presence of the potential 𝑉(r) exhibiting the peri-
odicity 𝑉(r + R) (R being a real space lattice vector) of the lattice are given by [Blo29]

ℋ0𝜓k𝑏𝜎 = 𝜉k𝑏𝜎𝜓k𝑏𝜎 where 𝜓k𝑏𝜎 = 𝜓k𝑏𝜎(r) = 𝑒𝑖kr 𝑢k𝑏(r) 𝜒𝜎 , (E.0.1)

with crystal momentum k, band index 𝑏, cell periodic function 𝑢k𝑏(r) = 𝑢k𝑏(r + R)
and spinor 𝜒𝜎. By means of the Bloch states (Equation E.0.1), we are able to construct
Wannier functions given by [Wan37; HS75]

𝜙R𝑏𝜎(r) =
1

Ω𝐵𝑍
∫
BZ

dk 𝑒−𝑖kR 𝜓k𝑏𝜎(r) and 𝜓k𝑏𝜎(r) = ∑
R𝑜

𝑢k𝑏𝑜𝑒𝑖kR 𝜙R𝑜𝜎(r) . (E.0.2)

that relate to the Bloch states by (inverse) Fourier transformation. Both Bloch and
Wannier functions provide an equally valid description of the system. The Bloch func-
tions exhibit a “gauge freedom” that amounts to the transformation

𝜓k𝑏𝜎(r) → 𝑒𝑖𝜑𝑏𝜎(k)𝜓k𝑏𝜎(r) or 𝑢k𝑏(r)𝜒𝜎 → ̃𝑢k𝑏(r) = 𝑒𝑖𝜑𝑏𝜎(k)𝑢k𝑏(r) , (E.0.3)

with 𝜑𝑏𝜎(k) ∈ ℝ being a real function periodic in reciprocal space. Note that this
gauge freedom - although introduced in the Bloch states - equally affects the Wannier
functions and their properties by (Equation E.0.2) but does not change the physical
description and properties of the system. In particular, as long as we require the phase
𝜑𝑏𝜎(k) to be “smooth”, which is to say ∇k ̃𝑢k𝑏(r) is well-defined throughout the Brillouin
zone, the Wannier functions are “well-localized” [Blo62][Mar+12, II A 1.]. Another
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important aspect that arises in the context of the phases of Bloch states is the concept of
the Berry phase [Ber84]. Although the Berry phase has a gauge-invariant formulation,
a proper and “smooth” treatment of the Bloch phases is capable of revealing the Berry
phase aswell andmay therefore serve as a double check for a suitable definition of Bloch
states [Zak89; XCN10b]. So far, we only discussed the properties of Bloch functions and
related quantities themselves without actually making use of the Bloch states as a basis
for a transparent representation and convenient calculation of correlation functions in
the context of i.a. RPA and FRG methods. Henceforth, it is of particular importance
to distinguish between the dependency of Bloch and Wannier functions on their gauge
and the corresponding basis transformation. In order to choose a suitable gauge to work
with, we present two different basic recipes to fix the gauge freedom of the eigenstates
of the single-particle Hamiltonian:

1. require the eigenstates to transform trivially under all point group operations

2. require all components of the eigenstates (including their phases) to evolve con-
tinuously through k-space

Looking at the first concept, let’s first define what trivially is supposed to mean. Con-
sider an eigenstate uk at k, which is mapped to the corresponding eigenstate ũk′ at
k′ = 𝒫(𝑔)k for an operation 𝑔 ∈ 𝒢, with 𝒢 being the point group and 𝒫 the repre-
sentation of operation 𝑔 in k-space. If the mapping can be written as ̃uk′ = 𝒟(𝑔)uk′

without employing any additional phase, where 𝒟(𝑔) is the representation of 𝑔 in the
space of the single-particle Hamiltonian, the eigenstates are said to transform trivially.
In contrast, if the eigenstates lack the trivial transformation behavior, they satisfy ũk′ =
𝑒𝑖𝜙k𝒟(𝑔)uk′, in general (which is sometimes called the “natural” and “non-natural” ba-
sis, see [MHW13]). Trying to implement a natural basis (trivial point group transfor-
mation behavior) in conjunction with a momentum independent representation 𝒟(𝑔),
inevitably leads to contradictions in the definition of basis states at specialk-points along
lines (in two spatial dimension) and planes (in three spatial dimensions). This is due
to 𝒟(𝑔) ≠ 𝟙 ∀𝑔 ∈ {𝒢\E} for k with k = 𝒫(𝑔)k.

Momentum dependent representation In (Section 3.1.2), (Section 3.3.1) and (Sec-
tion 3.3.2), we consequently stuck to a (unique) single-particle basis in orbital-spin
space, which gives rise to point group representation matrices 𝒟(𝑔), that are momen-
tum independent. This is motivated by finding representation matrices, which directly
reflect the physical transformation behavior of the orbitals and the spin degree of free-
dom. However, we also could have introduced (local) representation matrices 𝒟k(𝑔)
parameterized by momentum k by requiring the single-particle Hamiltonian ℋ0k in
band basis - which is equivalent to the diagonal matrix containing the band dispersions
- to transform trivially, assuming a suitable band labeling, i.e. (cf. (Equation 3.3.33a))

𝑈kℋ0k𝑈†
k = diag(𝜉k1 ̃↑, … , 𝜉k𝑛 ̃↓) = 𝑈𝒫(𝑔)kℋ0𝒫(𝑔)k𝑈†

𝒫(𝑔)k , (E.0.4)
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where the dimension of the Hamiltonian - given by the number of orbitals and sub-
lattices - is 𝑛. The momentum dependent representation can be read off from (Equa-
tion E.0.4) by solving for ℋ0𝒫(𝑔)k in terms of ℋ0k, which gives

ℋ0𝒫(𝑔)k = 𝑈†
𝒫(𝑔)k𝑈kℋ0k𝑈†

k𝑈𝒫(𝑔)k ≡ 𝒟k(𝑔)ℋ0k𝒟k(𝑔)† , (E.0.5)

and defines the k-dependent representation 𝒟k(𝑔) = 𝑈†
𝒫(𝑔)k𝑈k in orbital-spin space

(cf. [MHW13, Sec. 5.2]). Assuming a trivial transformation behavior in band basis in
(Equation 3.3.37), i.e. ℬk(𝑔) = 𝑈𝒫(𝑔−1)k𝒟(𝑔)𝑈†

k = 𝟙 and solving for the representation
matrix in orbital-spin space, leads to the equivalent result 𝒟(𝑔) = 𝒟k(𝑔) = 𝑈†

𝒫(𝑔−1)k𝑈k.
Using these k-dependent representations will eliminate the inconsistencies in the defi-
nition of a natural basis, since 𝒟k(𝑔) = 𝑈†

𝒫(𝑔)k𝑈k = 𝟙 for all k with 𝒫(𝑔)k = k, at the
price of introducing a basis with obscure transformation behavior that does not reflect
the physical properties of orbital and spin degree of freedom.

Minimal two-orbital model for the pnictides To make our consideration regarding
the phase of eigenstates more transparent, we employ a two-orbital model that is used
in the context of the pnictides. It is defined in terms of 𝑑𝑥𝑧 and 𝑑𝑦𝑧-orbital states and is
given by [Rag+08] (cf. (Equation A.1.7))

ℋ0 = ∑
k𝜎

c†
k𝜎 [𝜁A1g

(k)𝜏0 + 𝜁B2g
(k)𝜏𝑥 + 𝜁B1g

(k)𝜏𝑧] ck𝜎 , c†
k𝜎 = (

𝑐†
k 𝑥𝑧 𝜎

𝑐†
k 𝑦𝑧 𝜎

)
𝑇

, (E.0.6)

where 𝜏0, 𝜏𝑥 and 𝜏𝑧 are the Pauli matrices in 𝑑𝑥𝑧 and 𝑑𝑦𝑧-orbital space. The matrix
elements and their dispersions are defined by

𝜁A1g
(k) ± 𝜁B1g

(k) = −2𝑡1,2 cos(𝑘𝑥) − 2𝑡2,1 cos(𝑘𝑦) − 4𝑡3 cos(𝑘𝑥) cos(𝑘𝑦) − 𝜇

𝜁B2g
(k) = −4𝑡4 sin(𝑘𝑥) sin(𝑘𝑦) , (E.0.7)

with the tight-binding parameters 𝑡1 = −1, 𝑡2 = 1.3𝑡1, 𝑡3 = 𝑡4 = −0.85𝑡1 and 𝜇 =
1.45𝑡1. The resulting band structure, density of states and Fermi surface pockets are
shown in (Figure E.1). The eigenmodes 𝜉k± and 𝑢k± of the single-particle Hamiltonian
(Equation E.0.6) can be calculated analytically and are given by 1

1 The unitary transformation from orbital to band space is given by

𝑈k =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

−√ 1
2 +

𝜁B1g
(k)

2∣𝜻k∣
√ 1

2 −
𝜁B1g

(k)

2∣𝜻k∣

√ 1
2 −

𝜁B1g
(k)

2∣𝜻k∣
√ 1

2 +
𝜁B1g

(k)

2∣𝜻k∣

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

and obeys 𝑈†
k𝑈k = 𝜏0 , (E.0.8)

which is not affected by any k-dependent phase 𝑒−𝑖𝜙k multiplied to the first/second row (or both).

215



E. Local basis transformation and BCS-Theory

Γ X M Γ
−10

−5

0

momentum k

ba
nd

en
er
gy

0 0.2 0.4 0.6
density of states

−𝜋 0 𝜋
−𝜋

0

𝜋

𝑘𝑥

𝑘 𝑦

𝑑𝑥𝑧
𝑑𝑦𝑧

Figure E.1.: The single-particle spectrum of the two-orbital model of LaFeOAs features two
bands, which give rise to two hole pockets at Γ and M and two electron pockets X
and X′. The color and shape code indicates the dominant orbital weight - 𝑑𝑥𝑧 versus
𝑑𝑦𝑧 - of the Fermi surface states.

𝜉k± = 𝜁A1g
(k) ± ∣𝜻k∣ 𝑢k± =

⎛⎜⎜⎜
⎝

∓√1
2 ±

𝜁B1g
(k)

2∣𝜻k∣ , √
1
2 ∓

𝜁B1g
(k)

2∣𝜻k∣
⎞⎟⎟⎟
⎠

𝑇

with ∣𝜻k∣ ≔ √𝜁2
B1g

(k) + 𝜁2
B2g

(k) , (E.0.9)

Due to the analytic expression (Equation E.0.9) in terms of the matrix elements of the
Hamiltonian that transform according to irreducible representations of D4h, the trans-
formation behavior of the eigenstates is obvious. Under a rotation about the z-axis by
𝜋
2 the absolute values of the components of 𝑢k± are exchanged. This is illustrated by
(Figure E.1), where we can see that the dominant orbital weight is exchanged under
this rotation on all pockets. Furthermore, the transition from dominant 𝑑𝑥𝑧 to 𝑑𝑦𝑧-orbital
weight and vice versa coincides with the line nodes of the B1g representation basis func-
tions along the diagonals with 𝑘𝑥 = 𝑘𝑦. The normalized eigenstates still have a degree
of freedom being the overall sign or any k-dependent phase 𝑒−𝑖𝜙k±, i.e. the transforma-
tion 𝑢k± → 𝑒−𝑖𝜙k±𝑢k± obviously does not affect the considerations above and the prop-
erty of 𝑢k± being a normalized eigenvector of the Hamiltonian. By employing some
k-dependent phase to the eigenvectors, one can generate an infinite number of differ-
ent sets of eigenvectors. However, we are interested in the two particular choices for
𝜙k± that will either let the eigenstates transform trivially under any point group oper-
ation of the underlying lattice or make the absolute values and phases of all eigenvec-
tor components change continuously along a closed path through k-space (except for
single-particle Hamiltonians with topologically non-trivial properties). Both of these
two sets of eigenstates are shown in the two right panels of (Figure E.2), while the left
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Figure E.2.: The phases of eigenstates of the Hamiltonian usually vary in a random and arbi-
trary way along the Fermi surface (left panel). Here, a single arrow represents one
real eigenstate uk± and its 𝑑𝑥𝑧 and 𝑑𝑦𝑧 components along the 𝑘𝑥 and 𝑘𝑦 coordinates
at the respective Fermi momentum. To find a more suitable “gauge” for the cal-
culation of correlation functions, one can either employ point group symmetries to
make the eigenvectors transform trivially (“natural basis” in center) or let them be-
have “smoothly” (right panel) along a closed path through the Brillouin zone. Note
that, the “smooth” eigenstates on the right are the only set of eigenstates with ∇k𝑢k𝑏
being well-defined for all k ∈ 𝐵𝑍. The insets plot the 𝑢𝑥𝑧

k and 𝑢𝑦𝑧
k components of the

eigenstates along the particular Fermi pockets.

one illustrates the usually random phases of eigenvectors as generated by numerics.
The eigenstates in the center represent the basis states that transform trivially un-

der all point group operations (where we assumed the “physical” k-independent point
group representations), i.e. uk′ = 𝒟(𝑔)uk with k′ = 𝒫(𝑔)k for an operation 𝑔 ∈ 𝒢,
with 𝒢 being the point group and 𝒫 the representation of the operation 𝑔 in k-space (cf.
(Section 3.3.1)). For instance, the rotation by 𝜋

2 about the z-axis, denoted by 𝑔 = C+
4 will

transform the orbitals according to 𝑑𝑥𝑧
C+

4⟶ −𝑑𝑦𝑧 and 𝑑𝑦𝑧
C+

4⟶ 𝑑𝑥𝑧. Therefore, we have the
representation

𝒟(𝑔 = C+
4 ) = (0 −1

1 0 ) , (E.0.10)

in the space of the Hamiltonian. Furthermore, the reflection in the 𝑦-𝑧-plane is rep-
resented by 𝒟(𝜎𝑦) = diag(−1, 1). Applying the rotation by 𝜋

2 twice and the reflection
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E. Local basis transformation and BCS-Theory

once, an eigenstate 𝑢k=(𝑘𝑥,𝑘𝑦)± = (𝑢𝑥𝑧, 𝑢𝑦𝑧)k± transforms to (−𝑢𝑥𝑧, −𝑢𝑦𝑧)(−𝑘𝑥,−𝑘𝑦)± and
(−𝑢𝑥𝑧, 𝑢𝑦𝑧)(−𝑘𝑥,𝑘𝑦)±, respectively. However, for a momentum in the limit of 𝑘𝑦 → 0 both
operations map to k′ = (−𝑘𝑥, 0), which results in a contradicting definition of the eigen-
state at k′. By considering all other operations and the multiplication table of the point
group, we can see that the requirement of trivially transforming eigenstates necessar-
ily leads to inconsistencies (more specifically discontinuities) along all high-symmetry
lines, which are indicated by the dashed green lines in (Figure E.2). Even worse, tak-
ing into account the actual three dimensional point group reflecting the symmetry of
the Hamiltonian, which is D4h and considering the reflection in the 𝑥-𝑦-plane that maps
both orbitals 𝑥𝑧 and 𝑦𝑧 to its negative, the inconsistent definition of all states in the 𝑥-𝑦-
plane becomes apparent.

Extended 𝑠± versus 𝑠-wave in the iron pnictides To appreciate the consequences of a
“wrong” basis choice, we make use of the widely accepted 𝑠±-wave, which is believed
to be the pairing symmetry in the pnictides [Maz10]. Its lowest order harmonic in k-
space corresponds to the second order harmonic of A1g and is 𝑓 𝑠±(k) = cos(𝑘𝑥) cos(𝑘𝑦).
Hence, for a Fermi surface like (Figure E.2) it corresponds to nodeless gaps on all pock-
ets, since the nodes of 𝑓 𝑠± do not intersect with any Fermi sheet, but with opposite signs
for pockets around Γ and M versus pockets around X and X′. According to the analysis
of order parameters in (Section 3.4.1) the relevant interaction responsible for the forma-
tion of 𝑠± pairing is given by (cf. eg. [Tho+11a; Tho+11b])

𝑉k𝐹k′
𝐹

𝑐†
k𝐹↑𝑐

†
−k𝐹↓𝑐−k′

𝐹↑𝑐k′
𝐹↓ = 𝑓 𝑠±

k𝐹
(𝑓 𝑠±

k′
𝐹
)

†
𝑐†
k𝐹↑𝑐

†
−k𝐹↓𝑐−k′

𝐹↑𝑐k′
𝐹↓ . (E.0.11)

Note, that compared to the formalism introduced in (Chapter 3) the two band indices
of the basis stateswere omitted in favor of amore transparent notation, by simply having
twice the number of momentum states for the single band index. Furthermore, all basis
states are restricted to the Fermi surface denoted by the subscript 𝐹. Let’s assume the
basis operators in (Equation E.0.11) are the basis states corresponding to the “smooth”
basis of the right panel in (Figure E.2). We setup the basis transformation

𝑐†
k𝐹

→ 𝑒𝑖𝜙k𝑐†
k𝐹

≔ ̃𝑐†
k𝐹

𝑐k𝐹
→ 𝑒−𝑖𝜙k𝑐k𝐹

≔ ̃𝑐k𝐹
with 𝜙k =

1 − sgn (cos(𝑘𝑥) cos(𝑘𝑦))
2 𝜋 ,

(E.0.12)

which brings the “smooth” basis 𝑐†
k𝐹

to the new basis ̃𝑐†
k𝐹

. Inserting the new operators
(Equation E.0.12) in (Equation E.0.11) will yield the order parameter to be of s-wave
symmetry. While, it is, of course, invalid to change the basis at will, the example shows
that an arbitrary choice of basis will eventually result in a wrong pairing symmetry.
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Free energy of theBCS-Hamiltonian Consider aHamiltonian in basis 𝑐†
k𝑏𝜎̃ with single-

particle dispersion 𝜉k𝑏𝜎̃ and effective interaction 𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ , i.e.

ℋ = ∑
k𝑏𝜎̃

𝜉k𝑏𝜎̃𝑐†
k𝑏𝜎̃𝑐k𝑏𝜎̃ + ∑

kk′
∑
𝑏𝑏′

∑
𝜎̃1𝜎̃2
𝜎̃′

1𝜎̃′
2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑐†

k𝑏𝜎̃1
𝑐†
−k𝑏𝜎̃2

𝑐−k′𝑏′𝜎̃′
2
𝑐k′𝑏′𝜎̃′

1
.

(E.0.13)

Employing amean-field theorywith 𝑓k𝑏𝜎̃𝜎̃′ = ⟨𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′⟩ according to (Equation 2.4.6)
will result in the BCS-Hamiltonian

ℋ𝐵𝐶𝑆 = ∑
k,𝑏,𝜎̃

𝜉k𝑏𝜎̃ 𝑐†
k𝑏𝜎̃𝑐k𝑏𝜎̃ +

1
2 ∑

k,𝑏
∑
𝜎̃,𝜎̃′

(Δk𝑏𝜎̃′𝜎̃ 𝑐−k𝑏𝜎̃𝑐k𝑏𝜎̃′ + Δk𝑏𝜎̃𝜎̃′ 𝑐†
k𝑏𝜎̃𝑐†

−k𝑏𝜎̃′) + 𝒦 ,

(E.0.14)

with the definition

Δk𝑏𝜎̃1𝜎̃2
= 2 ∑

k′,𝑏′
∑

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1

, (E.0.15)

and the complex number

𝒦 = − ∑
k,𝑏

𝜎̃1,𝜎̃2

∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑓k𝑏𝜎̃2𝜎̃1

𝑓k′𝑏′𝜎̃′
2𝜎̃′

1
. (E.0.16)

Consider the basis transformation

𝑐†
k𝑏𝜎̃ → 𝑒𝑖𝜙k𝑏𝜎̃𝑐†

k𝑏𝜎̃ = ̃𝑐†
k𝑏𝜎̃ and 𝑐k𝑏𝜎̃ → 𝑒−𝑖𝜙k𝑏𝜎̃𝑐k𝑏𝜎̃ = ̃𝑐k𝑏𝜎̃ . (E.0.17)

The transformation of (Equation E.0.13) to the new basis is most conveniently done
by inserting appropriate terms like 1 = 𝑒−𝑖𝜙k𝑏𝜎̃𝑒𝑖𝜙k𝑏𝜎̃ into the Hamiltonian. While the
total Hamiltonian must of course be invariant under this basis transformation, the k-
dependence of the interaction generally changes, according to

𝑈̃𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ = 𝑒−𝑖𝜙k𝑏𝜎̃1

−𝑖𝜙−k𝑏𝜎̃2𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ 𝑒

+𝑖𝜙k′𝑏′𝜎̃′
1
+𝑖𝜙−k′𝑏′𝜎̃′

2 , (E.0.18)

with 𝑈̃𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′
1,𝑏′,𝜎̃′

2
k,−k,k′,−k′ being the interaction in the basis ̃𝑐†

k𝑏𝜎̃. Taking the transfor-
mation of the remaining entities into account, one finds that the gap equation (Equa-
tion E.0.15) is form-invariant under the basis transformation, while the gap itself trans-
forms like
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Δk𝑏𝜎̃1𝜎̃2
→ 𝑒−𝑖𝜙k𝑏𝜎̃1

−𝑖𝜙−k𝑏𝜎̃2Δk𝑏𝜎̃1𝜎̃2
= Δ̃k𝑏𝜎̃1𝜎̃2

. (E.0.19)

Note, that this statement is not related to the lowering of the free energy by a complex
superposition (introduction of a relative phase 𝑒𝑖𝜋) of two degenerate gap functions to
form a topologically non-trivial state [Che+10]. Let’s have a look at the free energy of
the BCS-Hamiltonian, which is given by

ℱ = ⟨ℋ𝐵𝐶𝑆⟩ =
Tr (ℋ𝐵𝐶𝑆𝑒−𝛽ℋ𝐵𝐶𝑆)

Tr (𝑒−𝛽ℋ𝐵𝐶𝑆)
= −

𝜕
𝜕𝛽 ln𝒵 with 𝒵 = Tr (𝑒−𝛽ℋ𝐵𝐶𝑆) . (E.0.20)

Evaluating the trace with respect to the eigenbasis (Equation 2.4.21) and the quasi-
particle energies 𝐸k𝑏 (Equation 2.4.19), we find

ℱ = −𝛽−1 ∑
k𝑏

ln (1 + 𝑒−𝛽𝐸k𝑏) + ∑
k𝑏

𝐸k𝑏 + 𝒦 . (E.0.21)

While the quasiparticle energies 𝐸k𝑏 must be gauge-invariant, i.e. invariant w.r.t. to
the basis transformations, we have a closer look at the constant 𝒦, which transforms
under (Equation E.0.17) to

𝒦 → − ∑
k,𝑏

𝜎̃1,𝜎̃2

∑
k′,𝑏′

𝜎̃′
1,𝜎̃′

2

𝑒−𝑖𝜙k𝑏𝜎̃1
−𝑖𝜙−k𝑏𝜎̃2𝑈𝑏,𝜎̃1,𝑏,𝜎̃2,𝑏′,𝜎̃′

1,𝑏′,𝜎̃′
2

k,−k,k′,−k′ 𝑒
+𝑖𝜙k′𝑏′𝜎̃′

1
+𝑖𝜙−k′𝑏′𝜎̃′

2

× 𝑓k𝑏𝜎̃2𝜎̃1
𝑒𝑖𝜙k𝑏𝜎̃2+𝑖𝜙−k𝑏𝜎̃1 𝑓k′𝑏′𝜎̃′

2𝜎̃′
1
𝑒
−𝑖𝜙−k′𝑏′𝜎̃′

2
+𝑖𝜙k′𝑏′𝜎̃′

1 = 𝒦 , (E.0.22)

and therefore appears to be “gauge-invariant” as well. Hence, all superconducting
states and their associated BCS-Hamiltonians that arise from the basis transformation
have the same free energy and cannot be distinguished.
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F. Parametrization of Cooper channel
interaction

According to (Equation 3.4.26), one can decompose the Cooper channel of a spinful
two-particle interaction by

𝑈𝑏𝑏′𝜎̃1𝜎̃2𝜎̃′
1𝜎̃′

2
kk′ ̄𝜙k′𝑏′𝜎̃′

1
̄𝜙−k′𝑏′𝜎̃′

2
𝜙−k𝑏𝜎̃2

𝜙k𝑏𝜎̃1
= 𝑈𝑏𝑏′𝜇𝜈

kk′ 𝑃𝜇
k′𝑏′𝑃𝜈

k𝑏 , (F.0.1)

with 𝜇, 𝜈 ∈ {0, 1, 2, 3} and the bilinear

𝑃𝜇
k𝑏 = (𝑖𝜎𝜇𝜎𝑦)

𝜎̃𝜎̃′ 𝜙−k𝑏𝜎̃𝜙k𝑏𝜎̃′ =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜙−k𝑏 ̃↑𝜙k𝑏 ̃↓ − 𝜙−k𝑏 ̃↓𝜙k𝑏 ̃↑
−𝜙−k𝑏 ̃↑𝜙k𝑏 ̃↑ + 𝜙−k𝑏 ̃↓𝜙k𝑏 ̃↓
𝑖𝜙−k𝑏 ̃↑𝜙k𝑏 ̃↑ + 𝑖𝜙−k𝑏 ̃↓𝜙k𝑏 ̃↓
𝜙−k𝑏 ̃↑𝜙k𝑏 ̃↓ + 𝜙−k𝑏 ̃↓𝜙k𝑏 ̃↑

⎞⎟⎟⎟⎟⎟⎟
⎠𝜇

. (F.0.2)

This expansion is justified by the four Pauli matrices representing a complete basis of
complex 2 × 2 space. We have 4 × 4 × 4 = 64 terms on the right hand of (Equation F.0.1),
while on the left hand side only 24 = 16 different terms in pseudospin space occur.
Hence, every vertex element on the left is related to four element on the right hand
side. However, the linear system of equations is neither under- nor overdetermined
but exactly balanced since there are sixteen degrees of freedom on either side. Note

that the Hermiticity of the two-particle vertex ensures that (𝑈𝑏𝑏′𝜇𝜈
kk′ )

†
= 𝑈𝑏′𝑏𝜈𝜇

k′k . For
instance, the definition of the bilinear (Equation F.0.2) suggests that the vertex element
𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↑

kk′ is connected to the elements 𝑈𝑏𝑏′𝜇𝜈
kk′ with 𝜇, 𝜈 ∈ {1, 2} only. In particular, by

looking for all coefficients on the right hand side that are associated to the basis term
̄𝜙k′𝑏′ ̃↑ ̄𝜙−k′𝑏′ ̃↑𝜙−k𝑏 ̃↑𝜙k𝑏 ̃↑, we find the relation

𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↑
kk′ = (𝑈𝑏𝑏′11

kk′ − 𝑖𝑈𝑏𝑏′12
kk′ + 𝑖𝑈𝑏𝑏′21

kk′ + 𝑈𝑏𝑏′22
kk′ ) . (F.0.3)

Analogous expressions for the elements 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↓
kk′ , 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↑

kk′ and 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↓ ̃↓
kk′ depending on

𝑈𝑏𝑏′𝜇𝜈
kk′ with 𝜇, 𝜈 ∈ {1, 2}, exclusively, can be worked out straightforwardly. By inverting

this linear system of four equations, we find expressions for 𝑈𝑏𝑏′𝜇𝜈
kk′ with 𝜇, 𝜈 ∈ {1, 2} in

terms of the original vertex elements on the left hand side, e.g. we get
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F. Parametrization of Cooper channel interaction

𝑈𝑏𝑏′11
kk′ =

𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↑
kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↓

kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↑
kk′ + 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↓ ̃↓

kk′

4 . (F.0.4)

The elements 𝑈𝑏𝑏′12
kk′ , 𝑈𝑏𝑏′21

kk′ and 𝑈𝑏𝑏′22
kk′ depend on the same vertex elements but in-

volve different combinations of signs. The linear systems of equations for the remaining
elements split up into three sets: 𝑈𝑏𝑏′00

kk′ , 𝑈𝑏𝑏′03
kk′ , 𝑈𝑏𝑏′30

kk′ and 𝑈𝑏𝑏′33
kk′ are determined by the

four vertex elements 𝑈𝑏𝑏′𝜎̃ ̄𝜎̃𝜎̃ ̄𝜎̃
kk′ and 𝑈𝑏𝑏′𝜎̃ ̄𝜎̃ ̄𝜎̃𝜎̃

kk′ ( ̄𝜎̃ is the opposite pseudospin state w.r.t. to
𝜎̃) that involve an equal number of both ( ̃↑, ̃↓)-pseudospin states, 𝑈𝑏𝑏′01

kk′ , 𝑈𝑏𝑏′02
kk′ , 𝑈𝑏𝑏′31

kk′

and 𝑈𝑏𝑏′32
kk′ are determined by the four vertex elements 𝑈𝑏𝑏′𝜎̃ ̄𝜎̃𝜎̃𝜎̃

kk′ and 𝑈𝑏𝑏′ ̄𝜎̃𝜎̃𝜎̃𝜎̃
kk′ that in-

volve three equal pseudospin states, two of which are the primed indices and finally
𝑈𝑏𝑏′10

kk′ , 𝑈𝑏𝑏′20
kk′ , 𝑈𝑏𝑏′13

kk′ and 𝑈𝑏𝑏′23
kk′ are determined by the four vertex elements 𝑈𝑏𝑏′𝜎̃𝜎̃𝜎̃ ̄𝜎̃

kk′

and 𝑈𝑏𝑏′𝜎̃𝜎̃ ̄𝜎̃𝜎̃
kk′ that involve three equal pseudospin states, two of which are the unprimed

indices. In particular, we have e.g.

𝑈𝑏𝑏′03
kk′ =

𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↑ ̃↓
kk′ + 𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↓ ̃↑

kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↓ ̃↑
kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↑ ̃↓

kk′

4

𝑈𝑏𝑏′20
kk′ =

𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↓
kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↑

kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↓ ̃↑
kk′ + 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↓

kk′

4𝑖 . (F.0.5)

Referring back to (Equation 3.3.48) that shows that spatial inversion symmetry re-
quires the Cooper pair vertex to be invariant under exchange of both primed and un-
primed pseudospin indices, we can check what happens with the newly parameterized
vertex elements under spatial inversion. While we find that

𝑈𝑏𝑏′11
kk′ → 𝑈𝑏𝑏′11

−k−k′ =
𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↑ ̃↑

kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↑ ̃↓ ̃↓
kk′ − 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↑ ̃↑

kk′ + 𝑈𝑏𝑏′ ̃↓ ̃↓ ̃↓ ̃↓
kk′

4 = 𝑈𝑏𝑏′11
kk′ , (F.0.6)

is invariant under inversion anyway the terms that involve 𝜇 = 0 and 𝜈 > 0, like

𝑈𝑏𝑏′03
kk′ → 𝑈𝑏𝑏′03

−k−k′ =
𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↓ ̃↑

kk′ + 𝑈𝑏𝑏′ ̃↓ ̃↑ ̃↑ ̃↓
kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↑ ̃↓

kk′ − 𝑈𝑏𝑏′ ̃↑ ̃↓ ̃↓ ̃↑
kk′

4 = −𝑈𝑏𝑏′03
kk′ = 0 , (F.0.7)

must actually vanish in presence of spatial inversion symmetry. Henceforth, in pres-
ence of spatial inversion symmetry the vertex 𝑈𝑏𝑏′𝜇𝜈

kk′ must have the block diagonal struc-
ture

222



𝑈𝑏𝑏′𝜇𝜈
kk′ =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴

⎞⎟⎟⎟⎟⎟⎟
⎠𝜇𝜈

,

i.e. there is no mixing between singlet and triplet sectors, which becomes apparent
from (Equation F.0.1) as well, by considering that its right hand side can be invariant
under inversion only if both bilinears are either even or odd with respect to k → −k.
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G. Multi-orbital interactions

In multi-orbital systems with fermionic Coulomb repulsion, the interacting matrix ele-
ments can be modeled by a SU(2)-symmetric Kanamori Hamiltonian with five indepen-
dent, local parameters (see [Kan63; GMM12])

ℋ𝐼 = ∑
𝑖

[𝑈 ∑
𝑎

𝑛𝑎↑𝑛𝑎↓ + 𝑈′ ∑
𝑎≠𝑏

𝑛𝑎↑𝑛𝑏↓ + (𝑈′ − 𝐽) ∑
𝑎<𝑏

∑
𝜎

𝑛𝑎𝜎𝑛𝑏𝜎

− 𝐽′ ∑
𝑎≠𝑏

𝑐†
𝑎↑𝑐†

𝑏↓𝑐𝑏↑𝑐𝑎↓ + 𝐽′′ ∑
𝑎≠𝑏

𝑐†
𝑎↑𝑐†

𝑎↓𝑐𝑏↓𝑐𝑏↑]

≔ ∑
𝑖

∑
𝑎,𝑏,
𝑎′,𝑏′

∑
𝜎1,𝜎2,
𝜎′

1,𝜎′
2

𝑈𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′
1𝑏′𝜎′

2
𝑐†
𝑎′𝜎′

1
𝑐†
𝑏′𝜎′

2
𝑐𝑏𝜎2

𝑐𝑎𝜎1
. (G.0.1)

with lattice site index 𝑖, orbital indices 𝑎, 𝑏 and spin indices 𝜎, 𝜎 ′. The electron number
operator is defined by 𝑛𝑖𝑎𝜎 = 𝑐†

𝑖𝑎𝜎𝑐𝑖𝑎𝜎. Note, that if Hund’s rule coupling is defined by
𝐽 S𝑎 ⋅ S𝑏 with S𝑎 = ∑𝜎,𝜎′ 𝝈𝜎𝜎′𝑐†

𝑎𝜎𝑐𝑏𝜎′ being the spin operator, there’s an “overlap” of
matrix elements of interorbital interaction and Hund’s rule coupling for parallel spins.
In a numerical context, which makes use of the full spin-dependency of ℋ𝐼, we have
to make sure that the interaction tensor 𝑈𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′

1𝑏′𝜎′
2
is antisymmetric under particle

exchange as indicated by the fermionic operators 𝑐†
𝑖𝑎𝜎, 𝑐𝑖𝑎𝜎. Due to the combination of

orbital and spin degrees of freedom this requirement bears some intricacies. The inter-
action tensor for a intraorbital interaction 𝑈intra, which is a density-density interaction of
electrons in the same orbital, is simply given by (cf. (Equation 3.3.19))

𝑈𝑈intra
𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′

1𝑏′𝜎′
2

= 𝑈intra (𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2
− 𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
) 𝛿𝑎𝑎′𝛿𝑏𝑏′𝛿𝑎𝑏 . (G.0.2)

In the language of (Equation 3.3.19), the spinless interaction 𝑉 is simply 𝑉𝑈intra
𝑎𝑏𝑎′𝑏′ =

𝑈intra. However, for the interorbital interaction𝑈inter, the orbital structure has to be adapted.
Choosing (any) two orbitals 𝑎, 𝑏 the structure of the interaction tensor is

𝑈𝑈inter
𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′

1𝑏′𝜎′
2

= 𝑈inter (−𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2
𝛿𝑎𝑎′𝛿𝑏𝑏′ + 𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
𝛿𝑎𝑏′𝛿𝑏𝑎′) (1 − 𝛿𝑎𝑏) , (G.0.3)

which amounts to the spinless interaction tensors 𝑉𝑈inter
𝑎𝑏𝑎′𝑏′ = −𝑈inter𝛿𝑎𝑎′𝛿𝑏𝑏′(1−𝛿𝑎𝑏) and

𝑉𝑈inter
𝑎𝑏𝑎′𝑏′ = −𝑈inter𝛿𝑎𝑏′𝛿𝑏𝑎′(1 − 𝛿𝑎𝑏). Both of them satisfy 𝑉𝑈inter

𝑎𝑏𝑎′𝑏′ = 𝑉𝑈inter
𝑏𝑎𝑏′𝑎′, as required. Al-

thoughwewon’tmention them explicitly, the same requirements apply to the remaining
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G. Multi-orbital interactions

types of interaction. To go beyond density-density interactions, we considerHund’s rule
coupling corresponding to the (partly) third and fourth terms in the Kanamori Hamil-
tonian (Equation G.0.1). The associated tensor takes the form

𝑈𝐽Hund
𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′

1𝑏′𝜎′
2

= 𝐽Hund (−𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2
𝛿𝑎𝑏′𝛿𝑏𝑎′ + 𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
𝛿𝑎𝑎′𝛿𝑏𝑏′) (1 − 𝛿𝑎𝑏) , (G.0.4)

where we have to assume 𝐽 = 𝐽′ in order to get a SU(2)-symmetric form of the inter-
action. Finally, the pair hopping interaction tensor is given by

𝑈𝐽Pair
𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′

1𝑏′𝜎′
2

= 𝐽Pair (−𝛿𝜎1𝜎′
1
𝛿𝜎2𝜎′

2
+ 𝛿𝜎1𝜎′

2
𝛿𝜎2𝜎′

1
) 𝛿𝑎𝑏𝛿𝑎′𝑏′(1 − 𝛿𝑎𝑎′) . (G.0.5)

To summarize, the total interaction tensor 𝑈𝑎𝜎1,𝑏𝜎2,𝑎′𝜎′
1𝑏′𝜎′

2
for a two orbital system

contains eight finite intraorbital matrix elements, sixteen interorbital and Hund’s rule
coupling matrix elements and eight pair hopping interaction matrix elements.
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H. Point groups in two and three
dimensions

As a reference for the definitions and notations of the point groups and their elements
used in the main text, we recapitulate the basics of point groups C4v and D4h in two and
three dimensions. To this end, we list the

• definition of point group elements

• multiplication table

• character table

• basis functions for irreducible representations

for each point group.

𝑥

𝑦

E

C2

C+
4

C−
4

𝜎𝑥

𝜎𝑦

𝜎𝑎

𝜎𝑏

(a)

𝑥

𝑦

⊙ ̂𝑧

E
C2

C+
4

C−
4

𝜎𝑥

𝜎𝑦

𝜎𝑎

𝜎𝑏

𝑧 → −𝑧

𝑥

𝑦

⊗− ̂𝑧

𝜎ℎ

i

S+
4

S−
4

C′
𝑥

C′
𝑦

C′
𝑎

C′
𝑏

(b)

Figure H.1.: (Figure H.1a): The point group C4v is made up of eight elements including four
rotations and four reflections. (Figure H.1b): The point group D4ℎ is comprised of
sixteen operations, eight of which are elements of the subgroup C4𝑣. The additional
eight elements are obtained bymultiplication of all C4𝑣 elements with the reflection
in the horizontal plane perpendicular to the z-axis. These additional elements are
the reflection in the horizontal plane 𝜎ℎ, the inversion i, the rotoreflections S+

4 and
S−

4 and the rotations about four different axis’ in the 𝑥-𝑦-plane C′
𝑥, C

′
𝑦, C

′
𝑎 and C′

𝑏.
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H. Point groups in two and three dimensions

Table H.1.: The multiplication table of C4v shows the products 𝑔1, 𝑔2 ∈ 𝐶4𝑣, 𝑔1𝑔2 = 𝑔3 ∈ 𝐶4𝑣
of all point group elements. Apparently, the group is non-Abelian. Therefore, we
defined the elements 𝑔1 to be the ones in the column on the left.

𝐸 𝐶+
4𝑧 𝐶−

4𝑧 𝐶2𝑧 𝜎𝑥 𝜎𝑦 𝜎𝑑𝑎 𝜎𝑑𝑏

𝐸 𝐸 𝐶+
4𝑧 𝐶−

4𝑧 𝐶2𝑧 𝜎𝑥 𝜎𝑦 𝜎𝑑𝑎 𝜎𝑑𝑏
𝐶+

4𝑧 𝐶+
4𝑧 𝐶2𝑧 𝐸 𝐶−

4𝑧 𝜎𝑑𝑎 𝜎𝑑𝑏 𝜎𝑦 𝜎𝑥
𝐶−

4𝑧 𝐶−
4𝑧 𝐸 𝐶2𝑧 𝐶+

4𝑧 𝜎𝑑𝑏 𝜎𝑑𝑎 𝜎𝑥 𝜎𝑦
𝐶2𝑧 𝐶2𝑧 𝐶−

4𝑧 𝐶+
4𝑧 𝐸 𝜎𝑦 𝜎𝑥 𝜎𝑑𝑏 𝜎𝑑𝑎

𝜎𝑥 𝜎𝑥 𝜎𝑑𝑏 𝜎𝑑𝑎 𝜎𝑦 𝐸 𝐶2𝑧 𝐶−
4𝑧 𝐶+

4𝑧
𝜎𝑦 𝜎𝑦 𝜎𝑑𝑎 𝜎𝑑𝑏 𝜎𝑥 𝐶2𝑧 𝐸 𝐶+

4𝑧 𝐶−
4𝑧

𝜎𝑑𝑎 𝜎𝑑𝑎 𝜎𝑥 𝜎𝑦 𝜎𝑑𝑏 𝐶+
4𝑧 𝐶−

4𝑧 𝐸 𝐶2𝑧
𝜎𝑑𝑏 𝜎𝑑𝑏 𝜎𝑦 𝜎𝑥 𝜎𝑑𝑎 𝐶−

4𝑧 𝐶+
4𝑧 𝐶2𝑧 𝐸

Table H.2.: The multiplication table of the point group D4ℎ shows that the group is constructed
by the direct product of the group C4𝑣 and the reflection in the horizontal plane, i.e.
D4ℎ = C4𝑣 ⊗ 𝜎ℎ.

D4ℎ E C2 C+
4 C−

4 𝜎𝑥 𝜎𝑦 𝜎𝑎 𝜎𝑏 𝜎ℎ i S+
4 S−

4 C′
𝑥 C′

𝑦 C′
𝑎 C′

𝑏

E E C2 C+
4 C−

4 𝜎𝑥 𝜎𝑦 𝜎𝑎 𝜎𝑏 𝜎ℎ i S+
4 S−

4 C′
𝑥 C′

𝑦 C′
𝑎 C′

𝑏
C2 C2 E C−

4 C+
4 𝜎𝑦 𝜎𝑥 𝜎𝑏 𝜎𝑎 i 𝜎ℎ S−

4 S+
4 C′

𝑦 C′
𝑥 C′

𝑏 C′
𝑎

C+
4 C+

4 C−
4 C2 E 𝜎𝑎 𝜎𝑏 𝜎𝑦 𝜎𝑥 S+

4 S−
4 i 𝜎ℎ C′

𝑏 C′
𝑎 C′

𝑦 C′
𝑥

C−
4 C−

4 C+
4 E C2 𝜎𝑏 𝜎𝑎 𝜎𝑥 𝜎𝑦 S−

4 S+
4 𝜎ℎ i C′

𝑎 C′
𝑏 C′

𝑥 C′
𝑦

𝜎𝑥 𝜎𝑥 𝜎𝑦 𝜎𝑏 𝜎𝑎 E C2 C−
4 C+

4 C′
𝑥 C′

𝑦 C′
𝑏 C′

𝑎 𝜎ℎ i S−
4 S+

4
𝜎𝑦 𝜎𝑦 𝜎𝑥 𝜎𝑎 𝜎𝑏 C2 E C+

4 C−
4 C′

𝑦 C′
𝑥 C′

𝑎 C′
𝑏 i 𝜎ℎ S+

4 S−
4

𝜎𝑎 𝜎𝑎 𝜎𝑏 𝜎𝑥 𝜎𝑦 C+
4 C−

4 E C2 C′
𝑎 C′

𝑏 C′
𝑥 C′

𝑦 S+
4 S−

4 𝜎ℎ i
𝜎𝑏 𝜎𝑏 𝜎𝑎 𝜎𝑦 𝜎𝑥 C−

4 C+
4 C2 E C′

𝑏 C′
𝑎 C′

𝑦 C′
𝑥 S−

4 S+
4 i 𝜎ℎ

𝜎ℎ 𝜎ℎ i S+
4 S−

4 C′
𝑥 C′

𝑦 C′
𝑎 C′

𝑏 E C2 C+
4 C−

4 𝜎𝑥 𝜎𝑦 𝜎𝑎 𝜎𝑏
i i 𝜎ℎ S−

4 S+
4 C′

𝑦 C′
𝑥 C′

𝑏 C′
𝑎 C2 E C−

4 C+
4 𝜎𝑦 𝜎𝑥 𝜎𝑏 𝜎𝑎

S+
4 S+

4 S−
4 i 𝜎ℎ C′

𝑎 C′
𝑏 C′

𝑦 C′
𝑥 C+

4 C−
4 C2 E 𝜎𝑏 𝜎𝑎 𝜎𝑦 𝜎𝑥

S−
4 S−

4 S+
4 𝜎ℎ i C′

𝑏 C′
𝑎 C′

𝑥 C′
𝑦 C−

4 C+
4 E C2 𝜎𝑎 𝜎𝑏 𝜎𝑥 𝜎𝑦

C′
𝑥 C′

𝑥 C′
𝑦 C′

𝑏 C′
𝑎 𝜎ℎ i S−

4 S+
4 𝜎𝑥 𝜎𝑦 𝜎𝑏 𝜎𝑎 E C2 C−

4 C+
4

C′
𝑦 C′

𝑦 C′
𝑥 C′

𝑎 C′
𝑏 i 𝜎ℎ S+

4 S−
4 𝜎𝑦 𝜎𝑥 𝜎𝑎 𝜎𝑏 C2 E C+

4 C−
4

C′
𝑎 C′

𝑎 C′
𝑏 C′

𝑥 C′
𝑦 S+

4 S−
4 𝜎ℎ i 𝜎𝑎 𝜎𝑏 𝜎𝑥 𝜎𝑦 C+

4 C−
4 E i

C′
𝑏 C′

𝑏 C′
𝑎 C′

𝑦 C′
𝑥 S−

4 S+
4 i 𝜎ℎ 𝜎𝑏 𝜎𝑎 𝜎𝑦 𝜎𝑥 C−

4 C+
4 C2 E
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Table H.3.: By constructing all adjoint group elements, by evaluating 𝑔1, 𝑔2 ∈ 𝐶4𝑣, 𝑔1 → 𝑔†
2𝑔1𝑔2

for all elements of 𝐶4𝑣, we find that there are five classes of the point group.

𝐸 𝐶+
4𝑧 𝐶−

4𝑧 𝐶2𝑧 𝜎𝑥 𝜎𝑦 𝜎𝑑𝑎 𝜎𝑑𝑏

𝐸 𝐸 𝐸 𝐸 𝐸 𝐸 𝐸 𝐸 𝐸
𝐶+

4𝑧 𝐶+
4𝑧 𝐶+

4𝑧 𝐶+
4𝑧 𝐶+

4𝑧 𝐶−
4𝑧 𝐶−

4𝑧 𝐶−
4𝑧 𝐶−

4𝑧
𝐶−

4𝑧 𝐶−
4𝑧 𝐶−

4𝑧 𝐶−
4𝑧 𝐶−

4𝑧 𝐶+
4𝑧 𝐶+

4𝑧 𝐶+
4𝑧 𝐶+

4𝑧
𝐶2𝑧 𝐶2𝑧 𝐶2𝑧 𝐶2𝑧 𝐶2𝑧 𝐶2𝑧 𝐶2𝑧 𝐶2𝑧 𝐶2𝑧
𝜎𝑥 𝜎𝑥 𝜎𝑥 𝜎𝑦 𝜎𝑦 𝜎𝑥 𝜎𝑥 𝜎𝑦 𝜎𝑦
𝜎𝑦 𝜎𝑦 𝜎𝑦 𝜎𝑥 𝜎𝑥 𝜎𝑦 𝜎𝑦 𝜎𝑥 𝜎𝑥
𝜎𝑑𝑎 𝜎𝑑𝑎 𝜎𝑑𝑎 𝜎𝑑𝑏 𝜎𝑑𝑏 𝜎𝑑𝑏 𝜎𝑑𝑏 𝜎𝑑𝑎 𝜎𝑑𝑎
𝜎𝑑𝑏 𝜎𝑑𝑏 𝜎𝑑𝑏 𝜎𝑑𝑎 𝜎𝑑𝑎 𝜎𝑑𝑎 𝜎𝑑𝑎 𝜎𝑑𝑏 𝜎𝑑𝑏

Table H.4.: The character table of 𝐶4𝑣 lists the five irreducible representations. There are four one-
dimensional representations, namely 𝐴1, 𝐴2, 𝐵1, 𝐵2 and one two-dimensional repre-
sentation given by 𝐸.

𝐸 2𝐶4𝑧 𝐶2𝑧 2𝜎 2𝜎𝑑

𝐴1 +1 +1 +1 +1 +1
𝐴2 +1 +1 +1 -1 -1
𝐵1 +1 -1 +1 +1 -1
𝐵2 +1 -1 +1 -1 +1
𝐸 +2 +0 -2 0 0

Table H.5.: The basis functions of the square lattice for all irreducible representations of C4v are
constructed by considering all 𝑛-th nearest neighbor on the lattice and by employing
all operations and associated characters (cf. (Figure 3.4b)).

1st 2nd 3rd 4th

𝐴1 cos(𝑥) + cos(𝑦) cos(𝑥) cos(𝑦) cos(2𝑥) + cos(2𝑦) cos(2𝑥) cos(𝑦) + cos(𝑥) cos(2𝑦)
𝐴2 0 0 0 sin(𝑥) sin(2𝑦) − sin(2𝑥) sin(𝑦)
𝐵1 cos(𝑥) − cos(𝑦) 0 cos(2𝑥) − cos(2𝑦) cos(2𝑥) cos(𝑦) − cos(𝑥) cos(2𝑦)
𝐵2 0 sin(𝑥) sin(𝑦) 0 sin(𝑥) sin(2𝑦) + sin(2𝑥) sin(𝑦)
𝐸 sin(𝑥), sin(𝑦) sin(𝑥) cos(𝑦),sin(𝑦) cos(𝑥) sin(2𝑥),sin(2𝑦) sin(2𝑥 + 𝑦),sin(−𝑥 + 2𝑦)
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H. Point groups in two and three dimensions

Table H.6.: The elements of D4ℎ are grouped into ten classes. Hence, the character table of the
point group D4ℎ contains ten irreducible representations, which are distinguished
by their even or odd parity.

D4ℎ {E } {C2 } {C+
4 ,C

−
4 } {𝜎𝑥,𝜎𝑦 } {𝜎𝑎,𝜎𝑏 } {𝜎ℎ } {i } {S+

4 ,S
−
4 } {C′

𝑥,C
′
𝑦 } {C′

𝑎,C
′
𝑏 }

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
A2g +1 +1 +1 -1 -1 +1 +1 +1 -1 -1
B1g +1 +1 -1 +1 -1 +1 +1 -1 +1 -1
B2g +1 +1 -1 -1 +1 +1 +1 -1 -1 +1
Eg +2 -2 0 0 0 -2 +2 0 0 0

A1u +1 +1 +1 -1 -1 -1 -1 -1 +1 +1
A2u +1 +1 +1 +1 +1 -1 -1 -1 -1 -1
B1u +1 +1 -1 -1 +1 -1 -1 +1 +1 -1
B2u +1 +1 -1 +1 -1 -1 -1 +1 -1 +1
Eu +2 -2 0 0 0 +2 -2 0 0 0

Table H.7.: The 𝑛-th nearest neighbors basis functions, which transform according to any irre-
ducible representation of the point group, are constructed by means of the character
table,. Note, that these lattice harmonics may be constructed for up to an arbitrary
number of nearest neighbors. However, particular lattice harmonics may vanish for
a particular order 𝑛, e.g. there’s no finite A2g lattice harmonics for up to third nearest
neighbors, while the B2g function is zero for first nearest neighbors.

D4ℎ 1st NN 2nd NN

A1g (cos(𝑥) + cos(𝑦)) cos(𝑧) cos(𝑥) cos(𝑦) cos(𝑧)
A2g 0 0
B1g (cos(𝑥) − cos(𝑦)) cos(𝑧) 0
B2g 0 sin(𝑥) sin(𝑦) cos(𝑧)
Eg sin(𝑥) sin(𝑧), sin(𝑦) sin(𝑧) sin(𝑥) cos(𝑦) sin(𝑧),sin(𝑦) cos(𝑥) sin(𝑧)

A1u 0 0
A2u (cos(𝑥) + cos(𝑦)) sin(𝑧) cos(𝑥) cos(𝑦) sin(𝑧)
B1u 0 sin(𝑥) sin(𝑦) sin(𝑧)
B2u (cos(𝑥) − cos(𝑦)) sin(𝑧) 0
Eu sin(𝑥) cos(𝑧), sin(𝑦) cos(𝑧) sin(𝑥) cos(𝑦) cos(𝑧),sin(𝑦) cos(𝑥) cos(𝑧)
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