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We present a theoretical study on exciton—exciton annihilation (EEA) in a molecular dimer. This
process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently

proposed by Dostdl et. al. (Nat. Commun.

9, 2466 (2018)).

Using an electronic three-level

system for each monomer, we analyze the different paths which contribute to the 2D spectrum.
The spectrum is determined by two entangled relaxation processes, namely the EEA and the direct
relaxation of higher lying excited states. It is shown that the change of the spectrum as a function
of a pulse delay can be linked directly to the presence of the EEA process.

I. INTRODUCTION

Exciton—exciton annihilation (EEA) is a prominent re-
laxation process which occurs in organic semi-conductors,
light-harvesting systems and molecular aggregates, and it
has been discussed vividly in the literature [1-7]. The mi-
croscopic picture behind the EEA process is illustrated,
within a basis of localized states, for a dimeric system
consisting of two equal monomers M, in the left-hand
and middle-hand panels of Fig. 1. Each monomer pos-
sesses three electronic states, namely its ground (|g)),
first (Je)), and second excited state (|f)). The absorp-
tion of two photons leads to the population of delocalized
dimer eigenstates. For short enough excitation pulses
which are spectrally broad, a coherent superposition of
eigenstates is excited. The resulting wave packets cor-
respond to states with more or less local character as
discussed in more detail in Sec. IT A.

An initially prepared localized state will transform, in
the course of time, into other states with local charac-
ters. Suppose now that the prepared wave packet cor-
responds to the localized state |ee) (with configuration
M*M*) where both monomers are excited. Thus, elec-
tronic excitation energy is present on both sites, i.e., the
photo-excitation produces two localized excitons [8-10].
As time passes, the wave packet moves, and the localized
state |fg) (and also |gf), not shown in Fig. 1) with con-
figuration M**M is populated. The state corresponds to
a configuration where one monomer is excited to its sec-
ond excited state |f), whereas the other one is de-excited
to its ground state. Upon the usually fast relaxation
(with rate kps), one ends up in the configuration |eg)
(M*M) with one monomer in its first excited state and
the other one in its ground state. Concerning the energy
balance, one finds that one quantum of excitation energy
is missing so that an exciton is annihilated.

It is an idealization to assume that the initial wave packet
has only the character of the |ee) state. Rather, there are

also components corresponding to the localized state | fg)
(and also |gf)). These states undergo relaxation. We re-
fer to this process as direct relaxation (keeping in mind
that this involves a photoinduced creation of the |fg)
and |gf) states as a first step), and it is illustrated in
the right-hand and middle-hand panels of Fig. 1. Below
we address the question if it is possible to disentangle
the EEA and the direct relaxation spectroscopically in a
dimer.
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FIG. 1: Relaxation dynamics after light-induced excitations
(vertical arrows) in the dimer system. Left and middle pan-
els: Illustration of the EEA process in a localized picture.
The picture reflects the structure of the Hamiltonian (Eq.
(2)-(5)) where localized states are coupled. Two singly ex-
cited monomers (M*M*) interact such (via the coupling K)
that one is promoted to its second excited state, whereas the
other one is de-excited to the ground state (M**M). Note that
within a wave-packet picture, the initial state |ee) results from
the excitation of a coherent superposition of eigenstates which
evolves in time into the localized state |fg). In a second step,
relaxation takes place where the respective rate is kas. Right
and middle panels: Direct double excitation on one site is
followed by relaxation. Both pathways end up in the same
final configuration (M*M), where one quantum of excitation
energy is missing.

Experiments aiming at the characterization of EEA
were performed, e.g., on aggregates of perylene bisimide



in the liquid phase [11-13] or conjugated polymers
[4, 5, 14]. In a theoretical study, Briiggemann and Pul-
lerits have simulated a fifth-order signal in the Fenna-—
Matthews—Olson complex numerically that carries infor-
mation on EEA [15]. Recently it was shown that it is pos-
sible to detect exciton—exciton interactions and to extract
diffusion time constants from coherent two-dimensional
(2D) spectra [16]. The EEA is connected to an appear-
ance of spectral peaks during a pulse delay time (pop-
ulation time) and it becomes more effective if the laser
fields interacting with a sample are of high intensity. This
is due to the fact that, with increasing field strength,
the number of prepared excitons becomes larger, and the
probability that two excitons meet is enlarged. This field-
strength dependency is mapped by different rise times of
specific spectral peaks.

In this paper we explicitely calculate 2D spectra and
analyze how the temporal evolution of 2D peaks is con-
nected to the annihilation process. In treating a dimer,
the dynamics of interest starts when the exciton pair
is already formed. It is then clear that the time scale
associated with an exciton diffusion process is missing.
Whereas Briiggemann and Pullerits determined 2D spec-
tra for two selected times [15], our calculations span the
entire temporal range where decay processes take place
after laser excitation.

In a conventional noncollinear photon-echo 2D experi-
ment, one records a third-order signal which is triggered
by three laser pulses with wave vectors En, where the sig-
nal in direction Es is detected under the phase-matching
condition ES = —El + Eg + Eg. The 2D spectrum then
appears in an energy range, both for the excitation and
the detection step, that is centered around the photon
energy of the pulses being in resonance with the transi-
tion from the ground to the first excited state. These 2D
techniques have been developed first in nuclear magnetic
resonance spectroscopy [17, 18] and later on in the in-
frared [17-25] and optical regime [26-33]. Using coherent
optical 2D spectroscopy, various scientific questions were
addressed such as the characterization of intermolecular
couplings and conformational states in dimers [34], en-
ergy transfer in [35] and excitonic structure of photosyn-
thetic systems [36], the role of electronic and vibrational
coherences [37, 38], the reaction dynamics in molecu-
lar switches [39], ultrafast photo-induced charge transfer
[40], or the dynamics in nanostructures [41, 42]. Here,
however, we wish to evaluate not just the single-exciton
dynamics following excitation, but to reveal higher-order
exciton—exciton interactions (EEI), i.e., following the ini-
tial preparation of two excitations within the same sys-
tem. In general, such higher-order effects overlap with
the regular photon-echo-type 2D spectra and lead to dis-
torted lineshapes as well as modified kinetic evolution.
Thus it is difficult (if possible at all) to isolate a sig-
nal which reflects the two-exciton interactions. On the
other hand the appropriate fifth-order signal [16] arises if
exciton—exciton interaction is present. Thus we here ad-
dress which features of the EEI 2D signal contain which

type of information.

To understand the basic idea of the mapping of an EEA
process via 2D spectroscopy we treat a molecular dimer
employing only electronic states, thereby neglecting in-
ternal nuclear degrees of freedom. Electronic level mod-
els have been used successfully to describe many proper-
ties of molecular aggregates [10, 43, 44]. This applies as
well to exciton—exciton annihilation processes [10, 45-49].
What is not described in detail is the internal conversion
and relaxation which proceed via vibrational states [50].
Also, the appearance of the 2D spectra will change when
including the vibrational motion [51, 52]. In particular,
the spectral peaks discussed in Sec. III are no longer
resolved.

The analysis of dimers has proved to be crucial if
properties of larger aggregates are to be understood
[43, 44, 53]. A first thorough theoretical study of dimers
which included intra-monomer vibrational degrees of
freedom was performed by Fulton and Gouterman as
early as 1964 [54]. Recently, the so-called dimer ap-
proach was introduced which combines high-level quan-
tum chemical calculations on dimeric systems with the
quantum dynamical treatments of nuclear degrees of free-
dom [55]. In order to deal with multiple excitations cor-
rectly, we have to incorporate at least three electronic
levels for each monomer and also the effect of an environ-
ment on the system [10, 45-47]. The underlying model
is described in Sec. II. There, we also present the time-
propagation scheme and details on the calculation of the
2D spectra. Numerical results are given in Sec. III, and
a summary is presented in Sec. V.

II. THEORY AND MODEL

A. Dimer Hamiltonian

We regard a homodimer with only electronic degrees
of freedom. For each monomer M, three states are taken
into account, namely, the electronic ground |g), a first |e),
and a second excited state |f). The respective energies
are €4, €c, and e€y. The dimer Hamiltonian reads:

H = Hy+ H, + Hy + Hs, (1)
with
Hy = Ey(199)(99]). 2)
I = Eey(Jeg)leg] +19e)gel)
+ J(Jeg)(gel + hic.), (3)
Hy = Eeo(jee)(eel ) + By (190 F9l + laf) (o)
+ K(|fg)(eel + gf) (ee] + hic.), (4)

ity = Eef(1fe)fel + lef)(ef)
+ L(|fe)<ef|+h.c.), (5)



where h.c. is the hermitian conjugate. The Hamiltonian
is represented in the basis of localized electronic monomer
states. These localized states differ in the number of ex-
citation quanta in the monomers, see Fig. 1. When the
first monomer is in its electronic state |n) and the second
in its state |m), the localized dimer state is denoted as
|[nm). The ground state of energy Eq, = 2¢4 is |gg). Sin-
gle excitation leads to the states |eg) and |ge) of equal
energy F., = €, + €. which are coupled through the ma-
trix element J. The latter results from the electronic
interaction of the two locally excited configurations, and
expressions for the matrix elements are readily available
[10]. Double excitation of a single monomer yields the
states |fg) and |gf) (energy Eqy = €4 + €y), and simul-
taneous excitation of both monomers results in the state
lee) with energy E.. = 2¢.. The latter three configura-
tions interact, where the respective matrix element is K
which can be calculated from the Coulomb interaction
if the electronic wave functions are available [10]. We
neglect the coupling between |fg) and |gf) which would
mediate the transfer of two excitation quanta. Finally,
the presence of three excitation quanta leads to states
|fe) and |ef) with energies E.; which are also coupled
to each other via the interaction of the excited-state con-
figurations (matrix element L). The Hamiltonian con-
tains contributions from excited states with up to three
excitation quanta. Thus, the state |f f) is neglected.

We now switch to the basis of eigenstates of the
dimer which are obtained by diagonalization of the dimer
Hamiltonian H (Eq. (1)), see Fig. 2 (left). Besides the
ground state |G) = |gg) (of energy G = Eg,) one finds
the one-exciton states which are (£) linear combinations
of the |eg) and |ge) local states:

1

1
122) = 5 (Iea) ~19e)). 12} = = (Iea) +1ge)). (0
and the eigenenergies are
Ei=FE;—J, Ey=FE4+J. (7)

The three states |D,,) of the second excited-state ma-
nifold with energies D,, are linear combinations of the
|fg),|ee) and |gf) states (n =1 —3):

|Dy) = cn1lfg) + cnolee) + cuslgf)- (8)

The coefficients are functions of the monomer eigenen-
ergies and the coupling K, and they are not given ex-
plicitely here. The respective eigenenergies are:

Dy = %(Eee—kng—\/(Eee— o) +8K2), (9)

Dy = Egy, (10)

1
Dy = 5 (Eee+ Eys + \J(Bee = Eyp)? + 8K2). (1)

Finally, the third excited states are (+) combinations of

lef) and |fe):
1

7 = = (len) = 1£0)), 1B} = —=(lef) + 17)) (12)

with energies
W=FEj;—-L F=FEj;+L. (13)

The level structure of the dimer is illustrated in the left-
hand part of Fig. 2 and involves eight states of different
energies.
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FIG. 2: Level scheme of the dimer model. The left-hand side
shows the order of the eigenenergies of the dimer Hamiltonian.
The right-hand side illustrates the excitation scheme. The
laser excitation (indicated by the dipole operator ﬁ) couples
the ground (|G)) state with the manifold of first excited states
(|E), energies E1, E2), the latter with the manifold of second
excited states (|D), energies D1, D2, D3), and also the second
excited states with the two third excited states (|F), energies
F1,Fy). The |F) and |D) states decay non-radiatively with
the state-to-state rates knm.

Let us comment on the relation between the localized
states and the eigenstates in the connection with a fem-
tosecond pulse experiment as described in this paper.
Because the pulses are energetically broad, linear com-
binations of the eigenstates are prepared by the field—
matter interaction. These wave packets are of more or
less localized character. Regard, as a simple example, an
excitation of a wave packet |¢(t)) consisting of the |Fy)
and |E5) states:

[9(t)) = a1 e H Bt |E1) + az 67%E2t|E2>a (14)

with coefficients a; and as. Switching to the local basis
we have:

(o) = (5 e #B S kB e

a1 —ipie 92 _iE,t
e RV e n2 e). (15

The local character of the component |eg) being present
in the wave packet is characterized by calculating the
population of this state by projection:

Pey(t) = [leglp(t)]? = W

+ |CL1H(12|COS [(EQ —Eﬂt/h-ﬁ-ﬁ], (16)



where 3 is the relative phase between the coefficients a
and ag. Thus, the population in the local configuration
leg) oscillates as a function of time where the oscilla-
tion period is given by the energy spacing of the two
states being present in the wave packet. In this exam-
ple, the population in the second component |ge) is just
Pye(t) = |a1]?+|az|?—P.4(t), so there is a transfer of pop-
ulation between the two local configurations. Depending
on the relative magnitude of the coeflicients, the popu-
lation dynamics shows more or less temporal variations
superimposed on a background.

A similar consideration concerning the population of
localized components can be applied to the linear combi-
nation of the states |D,,). This brings us to the following
interpretation of Fig. 1: A femtosecond excitation in-
volving the absorption of two photons, prepares an initial
wave packet consisting of the coherent superposition of
the three states |D,,). At some time, the localized state
lee) (M*M*) is populated. As time passes, the local char-
acter of the wave packet changes and the population of
the component |fg) (M**M) increases; afterwards anni-
hilation can occur.

We restrict our calculations to configurations where all
transition dipole moments of the monomers are aligned
parallel to each other and are orthogonal to the vector
between the centers of mass of the two monomers [43, 44].
The couplings are then taken as positive (being consis-
tent with the Forster coupling [10]). According to the
positive value of the coupling J, this corresponds to an
H-aggregate. We note that, for dimers and degenerate
levels Ftq = Ee. , the annihilation rate is similar for H-
and J-aggregates [56].

The parameters entering into the dimer Hamiltonian
are summarized in Tab. I. These are the monomer ener-
gies and the couplings J, K and L. Also given is a value
for the relaxation rate kps; for the |e) « |f) monomer
transition. The chosen value yields a lifetime of 67 fs
for the second excited state. In the context of exciton—
exciton annihilation, similar values have been reported,
see, e.g., Refs. [46, 48, 49]. The finite lifetime introduces
a line broadening which is in the order of 10 meV. We
note that the simultaneously occurring processes of inter-
nal conversion and relaxation are determined by transi-
tions which involve the energetically close lying vibra-
tional states in the second and first electronically ex-
cited states. Within our electronic level model an energy
of about 1 eV is transferred to the surrounding. The
bath does not absorb this energy in one quantum, rather
the energy transfer takes place successively in dissipating
smaller quanta of vibrational energies. Relaxation from
the first excited monomer states to their ground states
(kar) is not included because it typically occurs on time
scales longer than those we consider in the present study
of short-time dynamics.

The energy of the | fg) state is roughly twice the energy
of the |eg) state. This is motivated by the fact that we are
interested in spectra which exhibit intensity in the region
of twice the excitation energy of the first electronic tran-

sition. It is a condition for exciton—exciton annihilation
that a single-exciton (doubly excited) state is available
that has about twice the energy of a one-exciton (singly
excited) state because only then the initial step of the
EEA process happens under energy conservation. Usu-
ally, due to a high density of states in larger molecules, a
resonant transition is possible at this energy. Note, that
this is also possible in atomic systems [57].

The coupling constants J, K and L are chosen such
that the 2D spectra exhibit several well resolved peaks.
The value of J determines the splitting of the one-exciton
states Fq and Fy but the eigenstates and thus the rates
knm for transitions into these states do not depend on
J (see Sec. IIB). Thus, the strength of this coupling
has no influence on the dynamics of the annihilation pro-
cess. The same holds for the coupling L and transitions
involving the eigenstates |F), |F2). The strength of the
coupling K, however, is important because it directly de-
termines the efficiency of the EEA process.

€g €e €y
energy [eV] 0.0 1.0 2.2
J K L
coupling [eV] 0.2 0.1 0.05
kv ket
rate [fs™'] 0.015 0.0

TABLE I: Parameters employed in the numerical calculations.
The monomer energies are denoted as €g4,€c,€r, and J, K, L
are coupling constants. The relaxation rate from the second
to the first excited monomer state is kj;. Relaxation from
the first excited monomer state to the ground state is not
included so that the respective rate ks is equal to zero.

B. Propagation

For the time propagation of the dimer system cou-
pled to an environment we solve a stochastic Schrodinger
equation [58, 59]. From the ensemble of stochastic wave
functions obtained within this approach, the reduced
density matrix of a system can be constructed. It is
then possible to calculate the expectation value of any
system operator. The adaption of the quantum-jump
approach to calculate 2D spectra is described in detail
in Ref. [60], and here we briefly summarize the working
equations needed. A simplified version of the propagation
scheme is applied which neglects dephasing processes.

As detailed below, we allow relaxation from the second
excited states |D,) to the singly excited states |E,,) and
also from the third excited states |F,) to the second ex-
cited states |D,,), see Fig. 2 (right). The model does not
incorporate intraband relaxation. Concerning the anni-
hilation dynamics such dissipative processes taking place
between the |F) states do not have a pronounced effect
because when an |E) state is reached, no further anni-



hilation takes place. On the other hand, intraband re-
laxation within the |D) manifold might be of importance
because it eliminates possibly existing coherences on the
time scale of this process. If the lowest eigenstate | D)
is reached, annihilation is blocked because it is no longer
possible to exchange population between the |ee), |fg)
and |gf) local configurations.

The stochastic propagation scheme described below is
applied to the manifolds of excited states. The ground
state |G) which cannot be reached by relaxation processes
develops in time as a stationary state, i.e., with the phase
factor exp(—+Gt). Denoting the eigenstates as |n) and
the respective energies as F,, leads to the expansion of
the excited-state wave packet as

=3 ealt) ), (17)

with expansion coefficients ¢, (t) and where n =
{E1, Ey, D1, Do, D3, Fy, F5}. We note that, because the
calculation of the 2D spectra is performed within per-
turbation theory, the norm of |¢(¢)) is not equal to one.
In order to apply the stochastic propagation scheme it is
necessary to normalize it. This is done at each time step
and the original norm is restored after the propagation
step.

For the short-time propagator, which advances the
state for a time step dt, two possible realizations ex-
ist. A jump from an initial state |n) to a final state |m)
takes place with the probability p;(t), where j indicates
“jump”, leading to:

cn(t)

e (2)]

The jumps take place between the eigenstates and are not
to be confused with any kind of hopping process between
the different monomer units. In our calculation, only
downward jumps are included. The second possibility is a
coherent propagation where the respective probability is
pc(t), where ¢ indicates “coherent”, and the state vector
is advanced as:

(¢ + i) =

|mn). (18)

ot + db)) R BT /2 ) (19)

= T 0
with
c(t) =1—dty Tulea(t)]* + O(dt?), (20)

and T, are escape rates (defined below). The coherent
propagation step is norm conserving to first order in dt.

The numbers p;(t) and p.(t) are fixed as follows. The
jump rate between the states |n) and |m) is denoted as
knm and the state-to-state jump probability is:

Prm (1) = knm |cn(t)|? dt. (21)
This yields the total jump probability:

= Z Z pnm(t)? (22)

n m#n

and the probability for the coherent propagation is:

pe(t) = 1= p;(t) = c(b). (23)

Furthermore, the escape rates are defined as:

=Y kum. (24)

m#n

As mentioned in the introduction, the EEA involves a
radiationless transition between the monomer states | f)
and |e). We take the corresponding rate kjs as a param-
eter. Relaxation processes between the first excited-state
manifold and the ground state are neglected because, ac-
cording to Kasha’s rule [61], they usually proceed on a
much longer time scale than regarded here. Note also
that we treat only transitions between the different mani-
folds of excited electronic states. This assumes that in-
traband relaxation takes place on a much longer time
scale.

To calculate the transition rates ky,;,, the mixing of
the states |fg),|gf),|fe) and |ef) into the initial (|n))
and final state (|m)) has to be taken into account and we
define

b = (017912 [(eglm) 2 + nlg NI | (gelm)
+ Il g + I{nlef) 2] [teelm) ) kar. (25)

For the propagation, we calculate the probabilities pym, (t)
and p.(t) at each time ¢ and arrange these numbers
in the unit interval [0,1]. Within a Monte-Carlo sam-
pling, a random number drawn from a uniformly dis-
tributed pool, determines the next step in the propa-
gation scheme. The time step has to be chosen small
enough to ensure that the jump probabilities are much
smaller than one. In our numerical calculation we used
dt = 0.3 fs and a number of N, = 1500 runs to yield
convergent results. The described stochastic propagation
applies to the excited-state wave packet. The ground
state is treated differently because there, only the co-
herent time evolution takes place. The quantum-jump
scheme enables us to evolve a wave packet for one time
step. To start the propagation, initial conditions have to
be specified. They are connected to the laser excitation
process and will be discussed in Sec. 11 C.

Repeating the calculation N, times yields the reduced
density operator for the dimer:

N,
(1) = 3 D (D)) (26)
" =1

where [¢;(t)) now denotes the total state of the system,
and ! labels the single runs. It can be shown [59] that
the matrix elements of 5(t) (Eq. (26)) fulfill the Redfield
equations within the secular approximation [62]. The

expectation values for any system operator O then is:

LS

Nr =1

()|Ofu (1)) (27)



Thus, the outlined stochastic approach can be used to
calculate 2D signals [60, 63] as is usually done using the
density-matrix description [64-66].

C. 2D Signals

The monomer transition dipole moments between the
ground and first excited states of monomer m are de-
noted as jieg,m, those between the second and third state
as f[ife,m- The dimer transition-dipole operator in the
localized basis is:

it = (leg)fieg1 (991 + |9€)ficq.2(99]
lee)eg.1 (ge] + lecieg2(eg]
Hef)fieg109S] + |fe)ieq2(fol
+‘fg>/jfe,l<eg| + |gf>ﬁfe,2<ge‘
HfeViigealeel + lef)igesleel) +hc. (28)

The total electric field is the sum of three pulses:

Et)=Y" (EZ(JFEl,t) + El(—z%'l,t)) , (29)

=1

with the components

—

Ey(+k,t) = % gt —Ty) eFin(t=T0 k7 (30)
Here, the polarization vectors € are taken as equal for
all pulses. The center frequencies are w; and the pulse
envelopes g;(t — T;) are centered at times 7;. In the nu-
merical examples we employ the impulsive limit for the
pulses, i.e., we use g;(t — T;) = A;6(t — 1), with the field
strengths A;. If not stated differently, the molecule—field
coupling takes a value of |pegmAil = |fifemAil = 0.5
eV. Because we use perturbation theory and calculate
normalized quantities, the actual value for this coupling
is not of importance. Calculations with finite pulses of
5 fs (full width at half maximum) yield results which do
not differ essentially from the ones presented in Sec. III.
Within the dipole approximation, the dependence of the
field on the coordinate vector 7 is neglected. We include
the respective phase factor in Eq. (30) to identify the
radiative transitions contributing to the phase-matched
signal, see below. Using the rotating-wave approximation
[67], which is employed in the numerical calculations, the
fields Ej(+k;,t) and Ey(—k;,t) belong to the processes of
absorption and stimulated emission, respectively.

Given the dipole operator and the fields, the time-
dependent interaction term is

Wlt) = —ji'- E(¢). (31)

Because we work in the basis of eigenstates the transition-
dipole operator fi! is transformed into the same basis
yielding the operator i which couples the eigenstates,

where, initially, we start in the ground state |G). The
perturbation induces a polarization in the system which
reads:

P(t) = ((®)liilv (1)), (32)

where the state vector |1(t)) describes the time evolu-
tion of the system. We are interested in the fifth-order
contribution to the polarization projected on the detec-
tion vector €; which is taken to be parallel to the laser
polarization €

5

PO®) =3 (v W)fa Ape ). 63)

n=0

The states |1/ (t)) which enter into the latter expression
are determined in n-th order perturbation theory. An
additional restriction to the number of contributions is
the phase-matching condition ks = —2k1 +2ks + k3 which
we impose. In what follows, only paths with the time
order T} < T < T3 are considered. The coherence time
is defined as 7 = T3 — 17 and the population time as
T = T3 — T5. An additional time variable used further
below is the detection time ¢’ which has its origin at the
center of the third pulse.

Within the stochastic approach, a single run leads to
the state vector

16 Z ™ (1)), (34)

and the polarization is calculated by an average over N,
runs as:

T

N,
P(‘))(t T,7) Z

5
> (e e ¢ Tn), @9

n=0

where the dependence of the polarization on the three
time variables is explicitely noted. Details of the nu-
merical propagation scheme for the perturbative states
|1/J(")( t)) are given in Ref. [60].

From the polarization, we obtain the 2D spectrum via
2D Fourier transformation as [68]:

S(Ew, T, E,) /dt /dT
t/t

#E-TpON# T 7)), (36)

with the energy axes E. for the excitation and E for
the detection step. Here, the polarization ]53(5) t',T,71)
contains only the contributions which satisfy the phase-
matching condition. The spectra are averaged over
molecular orientations relative to the field vector in dis-
cretizing the orientational angle. In the present case,
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FIG. 3: Double-sided Feynman diagrams illustrating the fifth-
order processes leading to the 2D spectra under the phase-
matching condition l;s = —2E1 + 2/52 + Eg. They belong to
the matrix elements [-VII as specified in the text. The time
ordering is from bottom to top. Absorption and emission
from the pulses kn are indicated by arrows pointing towards
and away from the box, respectively. Transitions take place
between the dimer states |G), |E),|D) and |F). Diagram V is
the only one which involves the third excited states |F'). Note
that the paths VI and VII become only possible if relaxation
from | D) is taken into account (indicated by the dashed lines).

where we assume an all-parallel transition dipole geome-
try this yields an overall factor. For different geometries,
however, one has to perform the average explicitly be-

cause different contributions to the signal are weighted
differently [52].

The paths contributing to the signal are conventionally
illustrated using double-sided Feynman diagrams [64, 66].
In the present case, one finds seven diagrams [15, 16]
which are collected in Fig. 3. There, transitions are in-
dicated between the dimer states |G),|E),|D) and |F).
The respective matrix elements which enter into the po-
larization can be identified as (where we skip the time
arguments and the index, labeling the different stochas-
tic runs):

I:

II :

III :

V:

VI:

— =

€d "

(v6
{
< )
v <¢§§’>(—21¥1 +ks) & 20D (2ks) ),
{
{
VI : <

$) (2, + Fs) ).

Here, the ket state |1y (nn” (nEQ + n'ks)) is created by
absorption of n photons from pulse 2 (Eg) and n/ photons
from pulse 3 (k3). The bra state ( g?+n+n’)(_2]-€*1 +nky+
n'ks)| results from two-photon excitation from the first
pulse (k1) and n/n’-photon stimulated emission initiated
by pulse 2/3, respectively. The subscript X takes the
values |G), |E),|D) and |F). Of course, at later times,
the states with X = D, F' can further relax into the |E)
states. If no relaxation from the |D) states does take
place, the paths I-V are the only ones possible. However,
the two additional paths (VI, VII) occur if the relaxation
becomes effective.

IIT. RESULTS

To get an insight into the relaxation dynamics of the
dimer system we first regard the energy expectation val-
ues:

(2(0) Fr + o un(e))
(wa(®)|ia(t))

with Hamiltonians defined in Eq. (3) and (4), where the
ground state and the third excited states do not enter.
Starting from the ground state |G), the energy is calcu-
lated for times t after the interaction with the first two
pulses both acting impulsively at time ¢ = 0. The popu-
lated states which contribute to E.¢(t) can be identified
from Fig. 3 in setting the interactions with the third

o (37)

Etot Z



pulse (123) equal to zero. In Fig. 4 we compare calcula-
tions with zero and non-zero values of the coupling K,
leaving all other parameters the same. For K equal to
zero, the eigenstates of the Hamiltonian Hy (Eq. (4))
are the local states |ee),|fg) and |gf). Then, because
we do not include relaxation between these states, the
local state |ee) cannot evolve into the |fg) or |gf) state
so that the annihilation channel is closed. Our approach
here is that of a reference system which deviates as little
as possible from the one to be understood. Formally this
means that we divide the Hamiltonian in that for the ref-
erence system (say H,) and the rest (Hp). In our case H,

is that part of Hy (Eq. (4)) which contains the coupling
K. The properties of the reference system are similar
to the total one. The difference is the level splitting in
the |D) manifold which is zero, and the respective eigen-
functions. The consequence of this degeneracy is that
the annihilation does not take place. This allows us to
get some insight about a system which is excited simi-
lar to the total one but decays exclusively via the direct
relaxation pathway (see Fig. 1).

For the K = 0 case, we find an exponential decay of
the energy Eiu(t). The decay can be assigned to the re-
laxation of the populated |fg) and |gf) components to
leg) and |ge), respectively. Because there is no relaxation
channel for the |ee) component, which is an eigenstate,
the energy expectation value converges to a value mainly
determined by the population in this state. Changing
the coupling to a value of K = 0.1 eV activates the EEA
process. Due to the finite value of K the initial energy
is slightly larger than in the K = 0 case. One reason
for this is that the energies of the |D) states are different
from the K = 0 case (see Egs. (9)—(11)). Furthermore,
the eigenfunctions and also their amplitudes after exci-
tation differ. This results in a shift of the expectation
value which, in the present case, is larger. The decay
no longer proceeds mono exponentially. The first step
of EEA now prompts the indirect relaxation of the |ee)
components. This leads to an overall lower energy ex-
pectation value asymptotically. The long-time limit of
the energy is somewhere close to the eigenenergies of the
|E1) and |E2) states which, within the chosen model, are
not allowed to decay further.

We next turn to the 2D spectroscopy. In Fig. 5 spectra
are displayed in the range around (E;, Ey) = (2wh, wh),
where w is the laser center frequency. The 2D spectra
are calculated using a time interval from zero to 823 fs in
both time variables (¢', 7). The population time is set to
T = 0. The upper panel contains a spectrum obtained
for the isolated dimer, where the coupling to the bath
is switched off (kp = 0). To avoid noise introduced by
Fourier transforming a non-periodic function, the time
data is multiplied with Gaussian window functions. In
this way an artificial peak broadening is introduced which
is the same for each peak. The spectrum is normalized
such that its most intense peak assumes a value of one. In
general, peak positions coincide with differences between
eigenenergies of the eigenstates excited by the ultrashort

E(D) [eV]

| | |
0 200 400 600 800
t[fs]

FIG. 4: Energy expectation values of the excited-state mani-
fold for zero and finite coupling K, as indicated. The excited-
state wave packet at time t = 0 is prepared by impulsive
excitation with the first and second pulse.

pulses. Along the E. axis three peak positions are ex-
pected. However for the chosen parallel dipole geometry,
the | D) state is dark and peaks are present only at en-
ergies £, = D1 — G and E, = D3 — G. On the Ey axis
more peak positions occur, as is indicated in the figure.

Including relaxation leads to pronounced spectral
changes as can be inferred from the spectrum shown in
the lower panel of Fig. 5. The spectrum is normalized to
the one shown in the upper panel of the figure, i.e., we
use the same normalization constant as for kp; = 0. It is
seen that the system—bath coupling results in an inten-
sity loss of the spectrum. Because the eigenstates |F,)
and |D,,) are de-populated due to relaxation, all peaks
decay relative to the relaxation-free situation but, in gen-
eral, with different rates. The peaks involving the energy
difference of two decaying states in the Fy direction lose
more intensity. These peaks are no longer seen in the 2D
spectrum.

The analytical expressions for the time-dependent po-
larization in the relaxation-free case show that it contains
terms which oscillate with phase factors e=!(Ps—D1)T/h
This means that the spectra exhibit coherences as a func-
tion of the population time. Such oscillations were found
in 2D spectra detected within the third-order photon-
echo arrangement [38, 69-73]. To document this depen-
dence, we calculate spectra using the temporal interval
of [0,115] fs for the coherence and detection time, and we
vary the population time from zero to 350 fs. For each
time 7', the 2D spectrum is integrated in the intervals
[1.8,2.4] eV and [0.6,1.4] eV along E, and Ey, respec-
tively. The resulting energy-averaged quantity then is:

2.4 eV
F(T) = / dE,

1.8 eV

1.4eV
dEy S(Ey,T,E;).  (38)
0.6 eV
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FIG. 5: Real part of 2D spectra for the isolated model (upper
panel) and including system-bath interactions (lower panel).
The spectra are normalized to the largest peak obtained in
the isolated dimer.

In Fig. 6, upper panel, we show this curve for the case of
zero coupling K. Again, we use the K = 0 as a reference
system where EEA does not take place. The displayed
curve is obtained by subtracting the background signal,
which stems from contributions which do not depend on
the population time T'. The signal oscillates with a period
of approximately Tp = 2nh/(Ds — D1) = 20.4 fs. This is
just what is expected from the energy separation D3 — D1
= 0.2 eV obtained for K = 0. In the present case, where
the EEA process is blocked, the oscillations occur around
a value of zero (i.e., the background signal).

If the coupling is switched on, the annihilation pathway
is activated, and the curve changes substantially. This is
documented in the lower panel of Fig. 6. The oscillations
no longer take place around the background but are su-
perimposed on a decaying signal. For the chosen value
of K = 0.1 eV, the oscillation period is 11.9 fs. Its de-
pendence on the coupling constant K can be calculated
from the energy difference between D3 — D7 using Egs.
(9),(11). For example, if E,. = E,; it scales with v/8K.

A comparison of the two cases depicted in Fig. 6 sug-
gests that, for a dimeric system, the fifth-order signal can
indeed be used to characterize the presence of EEA.
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FIG. 6: Integrated signal (7T') as a function of the population
time T'. The T-independent background signal obtained for
long times is subtracted. Upper panel: If no coupling K is
active only the direct excitation pathway influences the decay
of the signal. The signal oscillates roughly around a value
of zero (indicated by the horizontal line). Lower panel: For
non-zero coupling K, where EEA is present, the oscillations
are superimposed on a decaying signal.

IV. SUMMARY

We studied a model dimer system where the focus was
on the characterization of exciton—exciton annihilation
via fifth-order two-dimensional optical spectroscopy. In
the model, relaxation of laser-excited states proceeds via
two pathways. First, two-photon absorption leads to the
population of a manifold of second excited states which
directly relax. The second path includes exciton—exciton
annihilation, where an additional population of the de-
caying states is prompted by exciton—exciton interaction.
A complete disentanglement of the two pathways is not
possible because the second step of EEA is identical to
the one present in the direct excitation pathway.

We calculated 2D spectra in the spectral range where
signatures of the EEA appear. In particular, energy-
integrated spectra were determined as a function of the
population time. The time interval spans the entire time
scale where relaxation takes place. In a comparison of
signals with and without EEA, we found that the decay
curves exhibit pronounced differences. Without EEA an
oscillating signal can be constructed where the oscilla-
tions are damped and occur on top of a background sig-
nal. Including EEA results in damped oscillations which
are superimposed on a decaying signal. We thus conclude
that, in principle, annihilation processes can be traced via



2D spectroscopy for the smallest molecular aggregate.
In going from the dimer to larger aggregates one
faces a different situation. In the dimer, the interacting
excitons are prepared on neighboring sites so that
EEA starts immediately after laser preparation of the
excitonic states. In a more extended system, excitons
may be prepared on sites which are far apart. Then,
the exciton—exciton interaction will only be effective
if the excitons diffuse towards each other and finally
meet. Thus, in larger systems the phenomena related
to the existence of exciton-exciton interactions will
appear time delayed [16]. This delay is not present in
the dimer case where laser excitation prepares excitons
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on the two monomers residing right next to each other.
Investigations on larger aggregates are under way.
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