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Abstract 

Learning with digital media has become a substantial part of formal and informal educational 

processes and is gaining more and more importance. Technological progress has brought 

overwhelming opportunities for learners, but challenges them at the same time. Learners have 

to regulate their learning process to a much greater extent than in traditional learning 

situations in which teachers support them through external regulation. This means that 

learners must plan their learning process themselves, apply appropriate learning strategies, 

monitor, control and evaluate it. These requirements are taken into account in various models 

of self-regulated learning (SRL). Although the roots of research on SRL go back to the 1980s, 

the measurement and adequate support of SRL in technology-enhanced learning environments 

is still not solved in a satisfactory way. An important obstacle are the data sources used to 

operationalize SRL processes. In order to support SRL in adaptive learning systems and to 

validate theoretical models, instruments are needed which meet the classical quality criteria 

and also fulfil additional requirements. Suitable data channels must be measurable "online", 

i.e., they must be available in real time during learning for analyses or the individual 

adaptation of interventions. Researchers no longer only have an interest in the final results of 

questionnaires or tasks, but also need to examine process data from interactions between 

learners and learning environments in order to advance the development of theories and 

interventions. In addition, data sources should not be obtrusive so that the learning process is 

not interrupted or disturbed. Measurements of physiological data, for example, require 

learners to wear measuring devices. Moreover, measurements should not be reactive. This 

means that other variables such as learning outcomes should not be influenced by the 

measurement. Different data sources that are already used to study and support SRL 

processes, such as protocols on thinking aloud, screen recording, eye tracking, log files, video 

observations or physiological sensors, meet these criteria to varying degrees. One data 
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channel that has received little attention in research on educational psychology, but is non-

obtrusive, non-reactive, objective and available online, is the detailed, timely high-resolution 

data on observable interactions of learners in online learning environments. This data channel 

is introduced in this thesis as "peripheral data". It records both the content of learning 

environments as context, and related actions of learners triggered by mouse and keyboard, as 

well as the reactions of learning environments, such as structural or content changes. 

Although the above criteria for the use of the data are met, it is unclear whether this data can 

be interpreted reliably and validly with regard to relevant variables and behavior. 

Therefore, the aim of this dissertation is to examine this data channel from the perspective of 

SRL and thus further close the existing research gap. One development project and four 

research projects were carried out and documented in this thesis. 

In the development work (chapter 4.1), "peripheral data" is described on a theoretical and 

methodological level and compared with the methods of screen recording, mouse/keyboard 

tracking and log files with regard to their advantages and disadvantages. Disadvantages of 

existing methods are for example the necessary manual coding of screen recording, the 

dependency on installed software for mouse/keyboard tracking, or the low granularity of log 

files. On a technical level, the development of a software framework called "ScreenAlytics" 

and its features for the acquisition and analysis of peripheral data is documented. In summary, 

researchers, not only from the field of educational psychology, can install the software on 

existing websites and record detailed data on interactions between users and web-based 

environments. ScreenAlytics uses this data to create video-like replays and other 

visualizations such as heat maps of mouse activity or navigation graphs. Replays can also be 

labelled with behavioral tags for qualitative analysis. Text input can be extracted with 

metadata for the writing process. An interface (API) allows researchers to export the collected 
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data in real time and record user-defined events. In addition, the system is evaluated and 

application scenarios are discussed.   

The developed software framework forms the methodological basis for the following 

empirical studies, in which the relationships between this data source and SRL-relevant 

variables (learning success, motivation, cognitive load and confusion) are investigated. It also 

provides the data basis for the intervention study that examines the effects of learning 

dashboards and metacognitive prompts on learning outcomes. 

The first empirical study (chapter 4.2) examined the relationship between typing behavior and 

learning outcomes, as well as current motivation. The rationale behind the recording and 

analysis of typing behavior is that the writing flow makes underlying cognitive processes 

observable. The analyses focus on various indices such as the length or frequency of pauses or 

corrections. The study assumes that indices of higher writing speed correlate positively with 

learning outcomes. With regard to motivation, Rheinberg and colleagues (2001) mention task 

processing time and the quality of task processing as potential indicators - this study assumes 

that both are also reflected in indices of the writing process. The study examined N = 43 

students in an online learning environment for the acquisition of declarative and procedural 

knowledge about website programming. In the study, learners should first copy an example 

sentence to generate a baseline of typing behavior. Subsequently, initial motivation was 

collected with the Questionnaire of Current Motivation (QCM, Rheinberg, Vollmeyer & 

Burns, 2001), and spatial ability was measured with the VZ-2 Paper-Folding Test (Ekstrom, 

French, Harman & Dermen, 1976) as possible influencing variables. Moreover, declarative 

and procedural prior knowledge was measured. After the learners had worked on half of the 

learning environment, they were asked to write down their previous knowledge on three 

concepts in their own words in a recall task. They were also asked to solve two interactive 

tasks by writing programming code. After each of these tasks, a short version of the QCM 
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was presented in order to record the current motivation in high temporal proximity to the 

typing behavior. After learning, learners completed the same knowledge test that was taken 

before learning. Contrary to the hypothesis, it was found that indices of lower typing speed 

during the recall task correlate with both higher performance in the recall task and with higher 

values in the learning outcome test. Nevertheless, it could be shown that indices of higher 

typing speed during interactive programming tasks are associated with higher declarative and 

procedural knowledge acquisition. This pattern was also found with regard to current 

motivation. The findings of the context are discussed as representing task-specificity. During 

programming, the writing of a correct sequence of previously learned code chunks is required, 

which is why learners with fast and correct retrieval also show faster typing behavior. In 

contrast, writing continuous text requires the reconstruction and verbalization of knowledge. 

Slow writing or frequent corrections are interpreted rather as an expression of high standards. 

The discussion also addresses methodological problems and pending issues. 

In the second study of this work (chapter 4.3), it was experimentally examined whether there 

is a connection between the mouse movements of learners and their CL and affective states. 

Mouse movement is regarded as a naturally occurring secondary task in the sense of the dual-

task paradigm. The basic idea is that pauses in mouse movement occur when the load of the 

primary learning task is high. In a quasi-experimental study, N = 49 students were examined 

who learned online about website programming. Cognitive load was measured by reaction 

times. Learners had to press a key as quickly as possible when the background color of the 

learning environment changed. In addition, declarative and procedural knowledge as well as 

positive and negative affects were recorded with the PANAS instrument (Krohne, Egloff, 

Kohlmann & Tausch, 1996) prior to and after learning. In the experimental group (N = 28), 

the measurement of CL was only triggered when no mouse and keyboard input was registered 

for 6 seconds. In the control group (N = 21), the measurement was triggered at random 
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intervals between 15 and 35 seconds. As assumed in the hypothesis, higher CL was observed 

in the experimental group with a medium effect (d = .60). In addition, significant correlations 

between mouse movements and affect could be shown for the control group. The results are 

very promising for a real-time measurement of these difficult to measure variables. The 

results, methodological limitations of the study and possible applications for interventions and 

further research are discussed. 

The third study of this work (chapter 4.4) examined whether confusion, subjective and 

objective difficulty of items, as well as metacognitive assessments of one's own knowledge 

can be measured by mouse behavior. For this purpose, the mouse behavior of N = 144 persons 

was recorded when answering multi-item scales. Multi-Item scales were chosen because they 

follow a strict structure of question and answer options, but are still relevant for learning 

environments. Metacognitive Feeling-of-Knowing (FOK) judgements on 18 items of a 

crystalline intelligence test (BEFKI) were asked, followed by 60 items of a Big Five 

Inventory, of which 6 were manipulated with wrong grammar or contradictions to induce 

confusion. Afterwards, the actual answers to the BEFKI questions were acquired. It could be 

shown that 1) manipulated items can be recognized by increased indices of mouse behavior, 

2) the strength of manipulation (contradiction > grammar) can be recognized by mouse 

behavior, 3) higher indices of mouse behavior are associated with higher subjective difficulty 

of items, but the power of this correlation is not sufficient to predict subjective difficulty, 4) 

higher indices of mouse behavior are associated with higher objective difficulty, but correlate 

low, 5) questions with higher FOK judgements have longer response times. In addition, 

detailed analyses were performed on various indices of mouse behavior. The study discusses 

the results taking into account existing evidence in the field of survey research. In addition, 

limitations of the study and possible applications of the results are discussed, including in 

rapid assessment tasks. 
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The fourth and final study of this work (chapter 4.5) examines the effects of learning 

dashboards to support the SRL and the detailed interaction of learners with this intervention. 

Learning dashboards contain visualizations of data about learning processes that have been 

previously collected, processed, and analyzed. The basic idea of the study is that learning 

dashboards support learning by providing information about the learning process and 

additional metacognitive prompts make this information relevant to learning strategies. The 

study implements recommendations from previous reviews. Thus, it was considered 1) to 

substantiate the intervention itself and the used data channels more theoretically on SRL 

frameworks, 2) to not only raise awareness about one's own learning process, but also to 

trigger changes of learning processes, as well as 3) to apply systematic experimental designs 

to investigate the effects of dashboards on learning outcome. The factors prompt and 

dashboard were experimentally varied. N = 138 learners were randomly distributed to a 

control group without intervention, a group with only prompts, a group with dashboards and a 

group with prompts and dashboards. Contents were the basics for programming JavaScript in 

an online learning environment. Learners were first shown short video trainings on how to use 

the interventions, then attitudes to privacy and metacognitive strategy knowledge were 

collected as covariates. A declarative and procedural knowledge test was followed by a 60-

minute learning phase. After 20 and 40 minutes the respective intervention was presented. 

This was followed by the same knowledge test, an evaluation of the dashboard and a self-

report on CL. There were no significant differences between the groups in terms of learning 

outcomes. The main reason given for this was the lack of need for regulation due to an 

excessively high predetermined structure of the learning environment. The detailed use of the 

interventions as well as the resulting CL and the perceived usefulness of different parts of the 

dashboard are discussed in detail. Recommendations for further research are also made. 
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Following the presentation of the five research and development projects, these will be 

considered in their overall context and the use of peripheral data in technology-based learning 

environments will be critically reflected. 

  



Zusammenfassung (German Abstract) 

 VIII 

 

Zusammenfassung (German Abstract) 

Lernen mit digitalen Medien ist ein substantieller Bestandteil formeller und informeller 

Bildungsprozesse geworden und gewinnt noch immer an Bedeutung. Technologischer 

Fortschritt hat überwältigende Möglichkeiten für Lernende geschaffen, stellt aber gleichzeitig 

auch große Anforderungen an sie. Lernende müssen ihren Lernprozess sehr viel stärker selbst 

regulieren als in traditionellen Lernsituationen, in denen Lehrende durch externe Regulation 

unterstützen. Das heißt, Lernende müssen ihren Lernprozess selbst planen, geeignete 

Lernstrategien anwenden, ihn überwachen, steuern und evaluieren. Diesen Anforderungen 

wird in verschiedenen Modellen des selbst-regulierten Lernens (SRL) Rechnung getragen. 

Obwohl die Wurzeln der Forschung zu SRL bis in die 1980er Jahren zurück reichen, ist die 

Messung und adäquate Unterstützung von SRL in technologie-gestützten Lernumgebungen 

noch immer nicht zufriedenstellend gelöst. Eine wichtige Hürde sind dabei die Datenquellen, 

die zur Operationalisierung von SRL-Prozessen herangezogen werden. Um SRL in adaptiven 

Lernsystemen zu unterstützen und theoretische Modelle zu validieren, werden Instrumente 

benötigt, die klassischen Gütekriterien genügen und darüber hinaus weitere Anforderungen 

erfüllen. Geeignete Datenkanäle müssen „online“ messbar sein, das heißt bereits während des 

Lernens in Echtzeit für Analysen oder die individuelle Anpassung von Interventionen zur 

Verfügung stehen. Forschende interessieren sich nicht mehr nur für die Endergebnisse von 

Fragebögen oder Aufgaben, sondern müssen auch Prozessdaten von Interaktionen zwischen 

Lernenden und Lernumgebungen untersuchen, um die Entwicklung von Theorien und 

Interventionen voranzutreiben.  

Zudem sollten Datenquellen nicht intrusiv sein, sodass der Lernprozess nicht unterbrochen 

oder gestört wird. Dies ist zum Beispiel bei Messungen physiologischer Daten der Fall, zu 

deren Erfassung die Lernenden Messgeräte tragen müssen. Außerdem sollten Messungen 

nicht reaktiv sein – andere Variablen (z.B. der Lernerfolg) sollten also nicht von der Messung 
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beeinflusst werden. Unterschiedliche Datenquellen die zur Untersuchung und Unterstützung 

von SRL-Prozessen bereits verwendet werden, wie z.B. Protokolle über lautes Denken, 

Screen-Recording, Eye Tracking, Log-Files, Videobeobachtungen oder physiologische 

Sensoren erfüllen diese Kriterien in jeweils unterschiedlichem Ausmaß. Ein Datenkanal, dem 

in der pädagogische-psychologischen Forschung bislang kaum Beachtung geschenkt wurde, 

der aber nicht-intrusiv, nicht-reaktiv, objektiv und online verfügbar ist, sind detaillierte, 

zeitlich hochauflösende Daten über die beobachtbare Interkation von Lernenden in online 

Lernumgebungen. Dieser Datenkanal wird in dieser Arbeit als „peripheral data“ eingeführt. 

Er zeichnet sowohl den Inhalt von Lernumgebungen als Kontext auf, als auch darauf 

bezogene Aktionen von Lernenden, ausgelöst durch Maus und Tastatur, sowie die Reaktionen 

der Lernumgebungen, wie etwa strukturelle oder inhaltliche Veränderungen. Zwar sind die 

oben genannten Kriterien zur Nutzung der Daten erfüllt, allerdings ist unklar, ob diese Daten 

auch reliabel und valide hinsichtlich relevanten Variablen und Verhaltens interpretiert werden 

können. 

Ziel dieser Dissertation ist es daher, diesen Datenkanal aus Perspektive des SRL zu 

untersuchen und damit die bestehende Forschungslücke weiter zu schließen. Dafür wurden 

eine Entwicklungs- sowie vier Forschungsarbeiten durchgeführt und in dieser Arbeit 

dokumentiert.  

In der Entwicklungsarbeit (Kapitel 4.1) wird „peripheral data“ auf theoretischer und 

methodischer Ebene beschrieben und mit den Methoden des Screen-Recordings, 

Maus/Tastatur-Trackings sowie der Logfiles hinsichtlich der Vor- und Nachteile verglichen. 

Nachteile bestehender Methoden sind etwa die notwendige manuelle Kodierung von Screen-

Recording, die Abhängigkeit von installierter Software bei Maus/Tastatur-Tracking, oder die 

geringe Granularität von Log-Files. Auf technischer Ebene wird außerdem die Entwicklung 

eines Software-Frameworks namens „ScreenAlytics“ und dessen Features zur Erfassung und 
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Analyse von peripheral data dokumentiert. Zusammenfassend können Forschende, nicht nur 

aus dem Bereich der pädagogischen Psychologie, die Software in bestehende Webseiten 

installieren und detaillierte Daten zur Interaktionen zwischen Nutzern und webbasierten 

Umgebungen aufzeichnen. ScreenAlytics verwendet diese Daten, um videoähnliche Replays 

und andere Visualisierungen wie z.B. Heat maps der Mausaktivität oder Navigationsgraphen 

zu erstellen. Replays können zudem mit Labels über Verhalten für qualitative Analysen 

versehen werden. Texteingaben können mit Metadaten zum Schreibprozess extrahiert werden. 

Eine Schnittstelle (API) ermöglicht es Forschenden, die gesammelten Daten in Echtzeit zu 

exportieren und benutzerdefinierte Ereignisse aufzuzeichnen. Zudem wird das System 

evaluiert und es werden Anwendungsszenarien diskutiert.   

Das entwickelte Software-Framework bildet die methodologische Basis für die anschließend 

beschriebenen empirischen Studien, in denen Zusammenhänge zwischen dieser Datenquelle 

und SRL-relevante Variablen (Lernerfolg, Motivation, Kognitive Belastung und Verwirrung) 

untersucht werden. Auch für die Interventionsstudie liefert es die Datengrundlage. In dieser 

Studie werden die Auswirkungen von Learning Dashboards und metakognitiven Prompts auf 

den Lernerfolg untersucht. 

In der ersten empirischen Studie (Kapitel 4.2) wurde der Zusammenhang zwischen 

Tippverhalten und Lernerfolg sowie aktueller Motivation untersucht. Die Argumentation der 

Aufzeichnung und Analyse von Tippverhalten ist, dass der Schreibfluss die dahinterliegenden 

kognitiven Prozessen beobachtbar machen kann. Der Schwerpunkt der Analysen liegt auf 

verschiedenen Indizes wie beispielsweise der Länge oder Häufigkeit der Pause oder 

Korrekturen. In der Studie wird angenommen, dass Indizes höherer Schreibgeschwindigkeit 

deshalb positiv mit Lernerfolg korrelieren. Bezüglich Motivation nennen Rheinberg und 

Kollegen (2001) Aufgabenbearbeitungszeit und die Qualität der Aufgabenbearbeitung als 

potentielle Indikatoren – diese Studie nimmt daher an, dass beide auch in Indizes des 



Zusammenfassung (German Abstract) 

 XI 

 

Schreibprozesses Ausdruck finden. In einer Online-Lernumgebung zum Erwerb von 

deklarativem und prozeduralen Wissen über Website-Programmierung wurden N = 43 

Studierende untersucht. Im Verlauf der Studie sollten Lernenden zunächst einen 

Beispielsatzes abschreiben um eine Baseline des Tippverhaltens erzeugt. Anschließend 

wurden initiale Motivation mit dem Questionnaire of Current Motivation (QCM, Rheinberg, 

Vollmeyer & Burns, 2001) und räumliches Vorstellungsvermögen mit dem VZ-2 Paper-

Folding Test (Ekstrom, French, Harman & Dermen, 1976) als mögliche Einflussvariablen 

erhoben sowie das deklarative und prozedurale Vorwissen erfasst. Nachdem die Lernenden 

die Hälfte der Lernumgebung bearbeitet hatten, sollten sie ihr bisheriges Wissen zu drei 

Konzepten in eigenen Worten in einer Erinnerungsaufgabe aufschreiben. Zudem sollten sie 

zwei interaktive Aufgaben durch Schreiben von Programmiercode lösen. Nach diesen 

Aufgaben wurde jeweils eine Kurzversion des QCM präsentiert, um die aktuelle Motivation 

in hoher zeitlicher Nähe zum Tippverhalten zu erfassen. Nach dem Lernen füllten die 

Lernenden denselben Wissenstests aus, der vor dem Lernen bearbeitet wurde. Entgegen der 

Hypothese zeigte sich, dass Indizes niedrigerer Schreibgeschwindigkeit während der 

Erinnerungsaufgabe sowohl mit höheren Leistungen bei der Erinnerungsaufgabe, als auch mit 

höheren Werten im Lernerfolgstest korrelieren. Gleichwohl konnte gezeigt werden, dass 

Indizes höherer Schreibgeschwindigkeit während den interaktiven Programmieraufgaben mit 

höherem deklarativem und prozeduralen Wissenserwerb einhergeht. Dieses Muster fand sich 

auch bezüglich der aktuellen Motivation. Die Befunde des Zusammenhangs werden als 

Ausdruck von Aufgabenspezifität diskutiert. Beim Programmieren wird das Schreiben einer 

korrekten Abfolge vorher erlernter Code-Teile verlangt, weshalb Lernende mit schnellem und 

korrektem Abruf auch schnelleres Tippverhalten zeigen. Im Gegensatz dazu benötigt das 

Schreiben von Fließtext die Rekonstruktion und Verbalisierung von Wissen. Langsames 

Schreiben oder häufige Korrekturen werden eher als Ausdruck hoher Standards interpretiert. 
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In der Diskussion werden zudem methodologische Probleme besprochen und ausstehende 

Fragestellungen erörtert. 

In der zweiten Studie dieser Arbeit (Kapitel 4.3) wurde experimentell untersucht, ob ein 

Zusammenhang zwischen den Mausbewegungen von Lernenden und deren kognitiver 

Belastung sowie affektiven Zuständen besteht. Dabei wird Mausbewegung als eine natürlich 

auftretende, sekundäre Aufgabe im Sinne des Dual-Task Paradigmas betrachtet. Der 

Grundgedanke ist, dass Pausen in der Mausbewegung entstehen, wenn die Belastung durch 

die primäre Lernaufgabe hoch ist. In einer quasi-experimentellen Studie wurden dafür N = 49 

Studierende untersucht, die online zum Thema Website-Programmierung gelernt haben. 

Kognitive Belastung wurde über die Reaktionszeit gemessen. Lernende mussten bei einem 

Wechsel der Hintergrundfarbe der Lernumgebung so schnell wie möglich eine Taste drücken. 

Zudem wurde deklaratives und prozedurales Wissen sowie positiver und negativer Affekt mit 

dem PANAS-Instrument (Krohne, Egloff, Kohlmann & Tausch, 1996) jeweils vor und nach 

dem Lernen erfasst. In der Experimentalgruppe (N = 28) wurde die Messung der kognitiven 

Belastung nur dann ausgelöst, wenn über 6 Sekunden keine Maus-  und Tastaturbefehle 

registriert wurden. In der Kontrollgruppe (N = 21) wurde die Messung in zufälligen 

Intervallen zwischen 15 und 35 Sekunden ausgelöst. Wie in der Hypothese vermutet, zeigte 

sich höhere kognitive Belastung in der Experimentalgruppe mit einem mittleren Effekt (d = 

.60). Zudem konnten signifikante Korrelationen zwischen Mausbewegungen und Affekt für 

die Kontrollgruppe gezeigt werden. Die Ergebnisse sind äußerst vielversprechend für eine 

Echtzeit-Messung dieser schwer zu erfassenden Variablen. Die Ergebnisse, einige 

methodische Limitationen der Studie sowie mögliche Anwendungen für Interventionen und 

weitere Forschungsarbeiten werden abschließend diskutiert. 

In der dritten Studie dieser Arbeit (Kapitel 4.4) wurde untersucht, ob Verwirrung, subjektive 

und objektive Schwierigkeit von Items, sowie metakognitive Einschätzungen zum eigenen 
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Wissen durch Mausverhalten gemessen werden kann. Dafür wurden das Mausverhalten von N 

= 144 Personen bei der Beantwortung von Multi-Item Skalen aufgezeichnet. Multi-Item 

Skalen wurden gewählt, weil sie eine strikte Struktur aus Frage und zugehörigen 

Antwortoptionen einhalten, aber dennoch relevant für Lernumgebungen sind. Es wurden 

metakognitive Feeling-of-Knowing (FOK) Urteile zu 18 Items eines Tests zur kristallinen 

Intelligenz (BEFKI) abgefragt. Danach wurden 60 Items eines Big-Five-Inventory erfasst, 

von denen 6 mit falscher Grammatik oder Widersprüchen manipuliert waren um Verwirrung 

zu induzieren. Abschließend wurden die eigentlichen Antworten zu den BEFKI-Fragen 

abgefragt. Es konnte gezeigt werden, dass 1) manipulierte Items an erhöhten Indizes des 

Mausverhaltens erkannt werden können, 2) die Stärke der Manipulation (Widerspruch > 

Grammatik) anhand des Mausverhaltens erkannt werden kann, 3) höhere Indizes des 

Mausverhalten zwar mit höherer subjektiver Schwierigkeit von Items einhergehen, die Stärke 

dieses Zusammenhangs aber nicht zur Vorhersage der subjektiven Schwierigkeit ausreicht, 4) 

höhere Indizes des Mausverhaltens mit höherer objektiver Schwierigkeit einhergehen, aber 

niedrig korrelieren, 5) Fragen mit höheren FOK Urteilen längere Antwortzeiten aufweisen. 

Zudem wurden detaillierte Analysen zu verschiedenen Indizes des Mausverhaltens angestellt. 

Die Studie diskutiert die Ergebnisse unter Berücksichtigung bestehender Evidenzen im 

Bereich der Survey-Forschung. Zudem werden Limitationen der Studie und mögliche 

Anwendungen der Ergebnisse, unter anderem in Rapid-Assessment Tasks besprochen. 

Die vierte und letzte Studie dieser Arbeit (Kapitel 4.5) untersucht die Effekte von Learning 

Dashboards zur Unterstützung des SRL sowie die detaillierte Interaktion von Lernenden mit 

dieser Intervention. Learning-Dashboards enthalten Visualisierungen von Daten über 

Lernprozesse, die zuvor gesammelt, verarbeitet und analysiert wurden. Der Grundgedanke der 

Studie ist, dass Learning Dashboards unterstützen, indem Informationen zum Lernprozess 

bereitgestellt werden und zusätzliche metakognitive Prompts dazu führen, dass diese 
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Informationen auch sinnvoll in Lernstrategien genutzt werden. Die Studie implementiert 

Empfehlungen aus bisherigen Reviews. So wurde berücksichtigt, 1) die Intervention selbst 

und die verwendeten Datenkanäle stärker theoretisch auf SRL-Frameworks zu fundieren, 2) 

nicht nur das Bewusstsein über den eigenen Lernprozess zu schärfen, sondern Lernende auch 

zu Veränderungen am Lernprozess zu bewegen, sowie 3) systematisch-experimentelle 

Designs zur Untersuchung der Effekte von Dashboards auf den Lernerfolg anzuwenden. Die 

Faktoren Prompt und Dashboard wurden dafür experimentell variiert. N = 138 Lernenden 

wurden dafür zufällig auf eine Kontrollgruppe ohne Intervention, eine Gruppe mit lediglich 

Prompts, eine Gruppe mit Dashboards sowie eine Gruppe mit Prompts und Dashboards 

verteilt. Inhalte waren die Grundlagen zur Programmierung von JavaScript in einer Online-

Lernumgebung. Lernenden wurden zunächst kurze Videotrainings zur Nutzung der 

Interventionen gezeigt, anschließend wurde Einstellung zu Privatsphäre und metakognitives 

Strategiewissen als Kovariate erhoben. Auf einen deklarativen und prozeduralen Wissenstest 

folgte eine 60-minütige Lernphase. Nach 20 und 40 Minuten wurde die jeweilige Intervention 

präsentiert. Anschließend folgte derselbe Wissenstest sowie eine Evaluation des Dashboards 

und ein Selbstbericht zur kognitiven Belastung. Es zeigten sich keine signifikanten 

Unterschiede zwischen den Gruppen hinsichtlich des Lernerfolgs. Als Grund dafür wird 

hauptsächlich der fehlende Bedarf an Regulation wegen zu hoher vorgegebener Struktur der 

Lernumgebung genannt. Die detaillierte Nutzung der Interventionen sowie die entstehende 

kognitive Belastung und die wahrgenommene Nützlichkeit unterschiedlicher Teile des 

Dashboards werden ausführlich besprochen. Es werden außerdem Empfehlungen für weitere 

Forschung ausgesprochen. 

Im Anschluss der Präsentation der fünf Forschungs- und Entwicklungsarbeiten werden diese 

im Gesamtzusammenhang gesetzt und der Einsatz von peripheral data in technologie-

gestützten Lernumgebung kritisch reflektiert.  
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1 Learning in Technology Enhanced Environments: A Glance at Self-

Regulation 

The rapid development in technology during the last decades led to an intensive use of 

technologies for learning in almost all formal and non-formal educational settings, starting 

with basic offline computer applications in the late 1970s and reaching sophisticated online 

learning environments including simulations, intelligent agents, and virtual or augmented 

reality nowadays (e.g., Harting & Erthal, 2005; Martín-Gutiérrez, Mora, Añorbe-Díaz & 

González-Marrero, 2017). Since almost two decades, the number of US-students taking online 

courses consistently grows and more than 28% of higher education students are enrolled in at 

least one online course (Seaman, Allen & Seaman, 2018). Moreover, formal and non-formal 

massive open online courses (MOOCs) continue to grow in both the number of offered 

courses and the volume of learners enrolling (Shah, 2015). 

These ongoing developments brought overwhelming, unprecedented possibilities, and led to 

an ubiquitous availability of a constantly growing, inconceivable amount of information. 

Thus, digital media has many inherent advantages over non-digital for learners, such as 

location-independent access to study materials, more interactive contents, or multiple sources 

and perspectives to choose from for a topic learners want to study.  

At the same time, besides the euphoric expectations that we have on digital media, some of 

the challenges that learners experience did not change as they are independent of the media 

that is used to present content. For example, understanding the main ideas of a text does not 

differ just by changing the media from printed to digital - although digital native readers have 

a preference to read with digital devices (e.g., Singer & Alexander, 2017). It’s rather a matter 

of what pedagogical role a new medium is able to take than through what medium a content is 

presented. Other challenges even occurred only as a consequence of the possibilities that 
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digital media brought. For example, hypermedia provides non-linear navigation which 

(mostly) is not available in non-digital media and thus, requires students to additionally search 

for hyperlinks and judge whether these are relevant for their learning goals (Bannert & 

Mengelkamp, 2013). 

One crucial point in learning with technology enhanced learning, is the often low (or even 

missing) external guidance compared to traditional educational settings where lecturers, 

teachers and peers provide regulation for the learning process. This means that learners have 

to take care of activities like goal-setting, planning the steps to achieve these learning goals, 

monitoring the progress, and selecting appropriate learning strategies - they have to regulate 

their often dynamic and complex learning processes themselves, an activity that is referred to 

as self-regulated learning (SRL) and that has been focused in educational psychology during 

the last decades (e.g., Winne & Nesbit, 2009; Zimmerman, 2008). In an early definition, self-

regulating students are described as “metacognitively, motivationally, and behaviorally active 

participants in their own learning process” (Zimmerman, 1986, p. 308). Within this definition, 

“metacognitive” refers to the planning, monitoring, organization, and evaluation of one’s own 

learning, “motivational” refers to perceive oneself as competent, self-efficacious, and 

autonomous, and “behavioral” refers to selecting, structuring and creating conditions that are 

best suitable for their learning (Zimmerman, 1986, 2000). 

SRL empowers learners to independently acquire new skills and knowledge, and SRL 

competencies are an important predictor for educational and academic success (Dent & 

Koenka, 2016). Hence, both researchers (Dignath, Buettner & Langfeldt, 2008) and policy 

makers (Pirrie & Thoutenhoofd, 2013) argue that successful SRL is a key competence to 

successfully cope with the dramatically fast changes of a modern, knowledge-based society.  

However, digital media does not only require SRL but, compared to non-interactive 

traditional materials like books or videos, the technological achievements also provide 
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promising new ways to support SRL – both during the actual learning process, and even in the 

long term to improve general SRL skills beyond a single intervention for the current learning 

process. In order to achieve a development of SRL in learners, Zimmerman (2001) 

emphasizes that opportunities have to be provided for learners to practice SRL strategies. A 

prominent example for such interventions are metacognitive prompts (Bannert, 2007, 2009; 

Berthold, Nückles & Renkl, 2007; Nückles, Hübner & Renkl, 2009). Based on the finding 

that learners who actually possess metacognitive strategies often have difficulties with 

applying appropriate metacognitive activities while learning (so-called production deficit, 

e.g., Bannert & Mengelkamp, 2013; Veenman, Van Hout-Wolters & Afflerbach, 2006), 

metacognitive prompts aim at triggering them to achieve better learning outcomes. 

Metacognitive prompts can be presented to the learner in different modalities, from low-level 

cues that just present self-directed questions or instructions to a more sophisticated delivery 

through pedagogical agents or intelligent tutoring systems (Azevedo et al., 2012; Azevedo, 

Johnson, Chauncey & Burkett, 2010). Another example for an intervention, that this work 

will look at, are learning dashboards, that aim at support metacognitive activities by 

informing the learner about their current learning process through presenting visualizations of 

different aggregated indicators (e.g., Schwendimann et al., 2017; Teasley, 2017). 

Although research shows that such interventions are effective instruments to support learning, 

they are mostly designed as a “one-size-fits-all” intervention, meaning the same interventions 

are presented to all learners, regardless of their prerequisites. At the same time, a range of 

studies in the area of instructional design find aptitude-treatment interaction(ATI) effects 

indicating that characteristics of learners such as prior knowledge moderate the effects of 

interventions (e.g., Seufert, 2003). Thus, aiming at higher effects on learning outcomes, 

interventions can be designed that are adaptive and successfully address learners’ diverse 

prerequisites (e.g., Shute & Zapata-Rivera, 2008). To do so, one needs to know and decide 
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what variables are relevant for the instructional milieu that should be supported (e.g., learner 

characteristics like prior knowledge or motivational state), and then acquire valid measures of 

these variables from available data sources (e.g., Vandewaetere, Desmet & Clarebout, 2011), 

which are fed into the adaptive target element in order to support and enhance learning.  

Models of SRL (e.g., Boekaerts, 2007; Winne & Hadwin, 1998; Zimmerman, 2000) provide 

suggestions for variables that are important for the learning process and that therefore should 

be taken into account for adaptions on interventions (e.g., motivation, affect, metacognitive 

knowledge). Regarding an accurate diagnosis (i.e., the acquisition of valid data on variables 

relevant for learning), self-reports and multi-item scales that learners fill prior to learning are 

still a common methodology but face several drawbacks such as being subjective, obtrusive or 

reactive to the measure, disturbing the learning process, not being available during the 

learning process, and not being able to capture the high granularity of adaptions that learners 

make (e.g., Zimmerman, 2008). These disadvantages and solutions to it are currently under 

debate in research on technology-enhanced education. There is a crucial need for more 

objective, non-obtrusive, real-time data sources both for a better understanding and 

verification of theories of learning with a focus on the recurring processes that occur, and for 

adaptive learning systems. Winne and Perry (2000) emphasized the need for “on-the-fly” and 

“online” measures especially for SRL. This need led to an extension of the methodological 

repertoire in the research on educational psychology and technology enhanced learning that 

provide a range of different data streams. Examples are data streams like eye tracking (e.g., 

used in Miller, 2015), psychophysiological measures (e.g., EDA, EKG, EEG, McQuiggan, 

Mott & Lester, 2008), camera-based recognition of facial expressions (Baltrusaitis, Robinson 

& Morency, 2016), concurrent think-aloud (Bannert & Mengelkamp, 2008; Greene, 

Robertson & Costa, 2011), or web log files (Cocea & Weibelzahl, 2006). Recording these 

data channels became relatively straightforward and affordable. However, using appropriate 



Learning in Technology Enhanced Environments: A Glance at Self-Regulation 

 5 

 

data sources is just a requirement of the subsequent challenge to find indices that can 

contribute to measure important features of the learning process - the data still needs to be 

processed, analyzed and interpreted regarding variables that are relevant for learning. Most 

data channels can only act as a proxy for learning behavior and research is needed that 

uncovers relationships between patterns in data channels and variables of interest. For 

example, EDA signals can easily be recorded, but systematic, rigorous controlled studies need 

to show how these signal correspond with variables of interest (e.g., Pijeira-Díaz, Drachsler, 

Järvelä & Kirschner, 2016). This is typically done by 1) identifying externally observable 

behaviors in the data channel (e.g., EDA signal peaks), 2) identifying latent states (e.g., 

regulatory activity after the peak) that are linked to these observable behaviors and 3) 

discovering patterns in the latent states that explain variance in the learning outcome (these 

steps are adapted from Reimann, Markauskaite & Bannert, 2014 who described them for 

sequence mining). Thus, gathering valid interpretations and inferences regarding the learning 

process from collected data is still very challenging.  

A data source that has hardly been discussed in this discourse on examining learning in 

technology-enhanced environments is so-called peripheral data, that is addressed in this work. 

Like traditional log files, peripheral data represents the interaction between learners and 

online environments as a chronological sequence. However, peripheral data has a very high 

granularity. Instead of simple page statistics, detailed events of mouse, touch, and keyboard 

input devices as well as the website contents are recorded with a high frequency that later 

enables us to reconstruct the complete observable interaction as a simulated replay similar to a 

screen recording. Compared to other methods like screen recording or log files, peripheral 

data has some important advantages: Peripheral data opens the black box of classic log files 

that only gives insight into which page was accessed when, but not what actually happened on 

that page. Most importantly, it keeps the acquired data automatically processable as it is not 
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represented as a pixel-based video file. Moreover, peripheral data is available in real time, 

needs no manual coding of events and has no software or hardware dependencies on the 

learner’s computer.  

This work contributes on closing an existing research gap in the described challenges of using 

peripheral data in technology-enhanced learning on multiple levels. First, on a theoretical and 

methodological level, an approach to record and analyze detailed, event-based peripheral data 

is described and a software framework called ScreenAlytics was developed, that enables 

researchers to easily acquire that data in their studies. Secondly, on an empirical level, studies 

of this work investigated the correspondence between peripheral data and variables relevant 

for (self-regulated) learning (i.e., cognitive load, affect, motivation and confusion). Thirdly, 

on an intervention level, peripheral data was used as a real-time input source for learners to 

inform them about their own learning process (i.e., learning dashboard). This dashboard was 

empirically examined regarding its impact on the learning outcome and the detailed usage of 

such an intervention
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2 Theoretical Background 

This chapter introduces general theories and assumptions that are needed to understand the 

research and development of this work. Note that it only reviews theoretical concepts and 

constructs that are relevant to all presented studies, i.e., cognitive load (CL), SRL, and 

metacognition. Constructs that are solely related to one specific study are described in the 

theory chapter of the according study, i.e., affect, motivation and confusion. The chapter starts 

with CL, introduces the basic idea of SRL and important models of it, and continues with 

presenting metacognition as a construct closely related to SRL. After that, the idea and the 

current state of how SRL processes are measured using multimodal data streams is briefly 

introduced. Finally, instructional interventions are addressed that can support learners in 

regulating their learning, i.e., adaptive learning systems, prompts, pedagogical agents, 

learning dashboards, and eye-movement modeling examples. 

2.1 Cognitive Load in Multimedia Learning Environments 

Multimedia learning environments are characterized by the representation of content in 

different formats. Following the basic assumption of multimedia learning, people learn better 

from text and image (multiple representations) than from text alone (Mayer, 2009; Schnotz, 

Seufert & Bannert, 2001). The integration of information from different formats enables 

learners to construct an elaborate mental model about the facts to be learned, which 

constitutes "understanding" and allows transfer (e.g., Mayer, 2009; Schnotz & Bannert, 

2003). A prerequisite to integrate information is the processing and transfer of information 

acquired by our sensory organs from the sensory memory to the conscious working memory. 

From there, information can be stored in the long term memory, from where it can be recalled 

again into the working memory (e.g., Atkinson & Shiffrin, 1971). Hence, working and long 

term memory are central, interacting cognitive structures (Sweller, 2005). Cognitive load 
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theory (CLT), developed by Sweller (1988, 2005), states that learning is therefore always 

connected to CL in the working memory. CLT provides one of the most important 

frameworks for research on learning and instruction. Moreover, and maybe even more 

importantly, it also provides guidelines on the efficient design of learning environments 

(Plass, Moreno & Brünken, 2010; Sweller, Ayres & Kalyuga, 2011). CLT has been confirmed 

in a whole range of empirical studies and reviews (e.g., Sweller, 1994, 2004, 2005; Sweller & 

Chandler, 1994; Sweller, Van Merrienboer & Paas, 1998; van Merriënboer & Sweller, 2005). 

A fundamental claim of the theory is that the working memory is limited by two factors: the 

number of information and the duration that one can keep information in the working memory 

(e.g., Baddeley, 1992; Sweller, 2009). George Miller (1956) already suggested the number 7 

(plus/minus 2) as the “magic number” that can be kept in the working memory by human 

beings and that characterized the memory limit. Later, researchers revised this number to 2 to 

4 elements that can be kept in the working memory simultaneously (Cowan, 2000; Sweller, 

2004). Regarding time, the working memory is able to store information for a maximum of 20 

to 30 seconds (e.g., Kirschner, Sweller & Clark, 2006). These limitations have to be 

considered in the design of learning materials according to CLT. CLT claims that learning is 

reduced if the processing demands of the learning task exceeds this capacity of the working 

memory – learners experience a so-called cognitive overload (Mayer & Moreno, 2003). 

Total experienced CL consists of three additive components (Moreno & Park, 2010; Sweller 

et al., 1998). Intrinsic cognitive load (ICL) refers to the structure and complexity of learning 

materials (Sweller & Chandler, 1994) and is characterized by the level of content 

interactivity. This level of interactivity depends on the amount of interrelated information 

units that have to be kept in the working memory to understand the learning material 

(Brünken, Steinbacher, Plass & Leutner, 2002). If many elements are simultaneously needed 

in the working memory (e.g., when learning how different parts of a motor interact), the ICL 
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is high. If elements can be processed consecutively (e.g., when studying vocabulary), ICL is 

low. Moreover, ICL depends on the prior knowledge of learners related to the learning 

content. The higher the prior knowledge, the lower the intrinsic load induced by the learning 

materials (Sweller, 1994, 2005).  

Extraneous cognitive load (ECL) is related to the way in which materials are presented 

(Sweller & Chandler, 1994). The more cognitive resources a learner needs to extract 

information from the presented materials, the higher the ECL. As ECL does not contribute to 

learning, but is needed only to extract information (Brünken, Plass & Leutner, 2003), it 

should be kept low by proper instructional design (e.g., Bannert, 2002).  

Germane cognitive load (GCL) is the third source and describes the cognitive effort needed 

for constructing and automating schemata in the long-term memory (Sweller, 2005). The 

concept of schemas has been described by Piaget (1928) and Bartlett (1932). Schemata 

organize the storage in the long-term memory and make information available efficiently. 

Hence, a high GCL represents efficient learning. However, this type of load is debated in 

literature as a potential circular reasoning is criticized (GCL is high, learning is better; 

learning is better, GCL is higher, e.g., Kalyuga, 2011), and the differentiated measurement of 

single loads in general, but especially of GCL is not straightforward (Gerjets, Scheiter & 

Cierniak, 2009; Kirschner, 2002; Klepsch, Schmitz & Seufert, 2017; Schnotz & Kürschner, 

2007; van Gog & Paas, 2008). Later literature on CLT also distinguish between productive 

load, including intrinsic and germane load, opposed to unproductive load, which is extraneous 

load (e.g., Paas & Ayres, 2014).  

Moreover, Seufert (2018) most recently explained how CLT and SRL (which is introduced in 

the next chapter 2.2) are conceptually related – a connection that has been neglected for the 

most time during the largely separate development of both theories. She argues that self-

regulation is a highly demanding process, because learners do not only need to handle the 
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actual learning task, but also need to invest cognitive and metacognitive resources in all 

phases of SRL, such as monitoring or goal-setting. By this, SRL causes ICL to the learner. 

However, it is worth noting that according to her model, regulation can also cause 

unproductive load through regulatory activities or off-task demands that disturb the learning 

process. In her model, she argues that the difficulty of a task determines the imposed load and 

hence, the free resources depend on this task difficulty as well as the individual capacity of 

learners. Only if there are enough free resources, regulation is possible at all. However, that 

does not mean that regulation increases linearly with more resources being available. As easy 

tasks might not need regulation while difficult tasks may not allow for regulation because it 

allocates too many resources, an inverse-U shaped relation between task difficulty and 

regulatory activities is described. 

2.2 Self-Regulated Learning Frameworks  

Since almost three decades, SRL has been (and still is) an important field that gained 

immense attention in educational research and widely influenced educational practitioners. 

This is not surprising, as learners’ ability to steer their learning processes is considered as 

highly important, especially in a knowledge society (e.g., Azevedo & Greene, 2010). 

Moreover, constructs and frameworks of SRL integrate (meta-)cognitive, motivational / 

affective, social and behavioral components of theory and research (Boekaerts & Niemivirta, 

2000, p. XXII).  

However, reconciling so many facets of learning also led to a lack of consistency in 

definitions and operationalizations and in consequence, a lack of congruency in theory and 

empirical knowledge. Hence, there seems to be no straightforward or simple definition of 

SRL (Boekaerts & Corno, 2005). Rather, constitutions, processes, aims and challenges in the 

scope of learners’ self-regulatory activity can be described.  
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Self-regulation refers to “self-generated thoughts, feelings and actions that are planned and 

cyclically adapted to the attainment of personal goals” (Zimmerman, 2000, p. 14). Theories of 

self-regulation were developed and used not only in the context of learning, but are of high 

relevance also in other disciplines like clinical or organizational psychology. In the context of 

learning, regulatory activity is important as learning is a complex and dynamic process that 

needs to be planned well, and that includes a range of states that need to be monitored and 

controlled. Regulation during learning does not have a single source but is rather fed by a 

continuum from internal (i.e., learners themselves) to external sources, which can be lecturers, 

teachers, peers or even computer programs. However, even if there is external regulation, 

learners need to self-regulate parts of their learning (Boekaerts & Corno, 2005). Learners that 

successfully regulate their learning are described as “metacognitively, motivationally, and 

behaviorally active participants in their own learning process” (Zimmerman, 1986, p. 308).  

Hadwin, Järvelä and Miller (2017) tried to define fundamental constitutions of regulated 

learning (although not only limited to, these are relevant for self-regulated learning) and argue 

that SRL always 1) is intentional and goal-directed, 2) involves metacognitive planning, 

monitoring and control, 3) involves regulation of behavior, cognition, and/or 

motivation/affect, but is not about the construction of domain knowledge, 4) depends on the 

social surround and/or interplay and 5) requires opportunities (challenges) to apply regulatory 

activity.  

Within the last decades, a range of theoretical frameworks were developed. There exist 

excellent reviews of these models, Puustinen and Pulkkinen (2001) reviewed five models: 

Boekaerts and Niemivirta (2000), Borkowski (1996), Pintrich (2000), Winne and Hadwin 

(1998), and Zimmerman (2000). More recently, Panadero (2017) conducted a partly 

intersecting review of six SRL models: Boekaerts and Corno (2005), Efklides (2011), 
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Hadwin, Järvelä and Miller (2017), Pintrich (2000), Winne and Hadwin (1998), and 

Zimmerman (2000).  

These reviews present the models, evaluate its empirical validation and compare them with 

each other. Thus, this work will not review the models in detail again, but rather concentrates 

on relating the measures and intervention that were used in the empirical studies and the 

software development of this work on existing models. However, as they represent different 

views and help to understand the historical development, three of the models are quickly 

introduced: Zimmerman’s triadic model (Zimmerman, 1989), Zimmerman and Moylan’s 

cyclical phases model (Zimmerman & Moylan, 2009), and Winne and Hadwin’s COPES 

model (Winne & Hadwin, 1998). 

In his Triadic Analysis of SRL (Figure 1), Zimmerman (1989) describes how SRL can be 

implemented in Bandura’s triadic model of social-cognition (Bandura, 1986). The model 

represents the interactions of three SRL determinants, namely the environment, the behavior 

and the person (self-)level. The core idea is that SRL is not solely determined by individual 

processes, but influenced by environmental and behavioral events. Moreover, the 

relationships between determinants are reciprocal, but not necessarily symmetric in strength 

and temporal patterning. As an example, using a self-evaluation strategy such as checking the 

math homework (behavior level) will provide information on accuracy and whether checking 

needs to be continued through enactive feedback (from behavior to person). An example for 

environmental influence can be the arrangement of a quiet study area which involves 

proactive behavior such as eliminating noise or changing light conditions. The continued use 

of this setting depends on the effectiveness indicated reciprocally through the environmental 

feedback loop. It is important that, in order to be labelled as self-regulated, learning strategies 

need to be triggered from key personal processes (such as goal-setting), and not from external 

instruction. Zimmerman (1989) argued that individual’s covert processes (e.g., an elaboration 
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strategy) in the model also reciprocally affect each other and already mentions that 

metacognition plays as an important role within the covert feedback loop. 

 

Figure 1. Triadic analysis of self-regulated functioning, adapted from Zimmerman (1989) 
including the updates of Zimmerman (2013) 

An important difference between the cyclical phase model of Zimmerman and Moylan (2009) 

and the aforementioned triadic analysis model can already be recognized in its name. It 

distinguishes three phases in a recurring manner: forethought, performance and self-

reflection, as shown in Figure 2. The model explains the interrelation of motivational and 

metacognitive processes at the person level, and as a process-oriented model, it also describes 

adjustments of the learning processes through learners using recurrent feedback-loops. In the 

forethought phase, learners analyze the task, set goals, plan ways to achieve them and 

motivational states trigger the learning process and activate learning strategies. During the 

performance phase, learners carry out the actual task, monitoring how they progress, and 

apply a range of self-control strategies to remain cognitively active and motivated in order to 

complete the task. In the self-reflection phase, students evaluate how they have performed in 

the task and make judgements about their success or failure. Self-reactions are generated by 
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these attributions, which can have a positive or negative impact on how learners will tackle 

tasks in later performances. The presented version in Figure 2 is the latest available version of 

the model, although earlier versions were already presented in Zimmerman (2000), not 

including the subprocesses of the phases. 

  

 

Figure 2. Current version of the cyclical phases model, adapted from Zimmerman and 
Moylan (2009). 

As depicted in Figure 3, Winne and Hadwin (1998) propose that learning occurs in four basic, 

recursive phases: (1) task definition: learners get an understanding of the task to be 

performed, (2) goal-setting and planning: learners generate goals and plan how to achieve 

these, (3) enacting on studying tactics and strategies: actions are needed to reach the goals, 

and (4) adaptations to metacognition: once the main processes are completed, learners take 

decisions on long-term changes in their motivation, beliefs and future strategies. 
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In their model, each of the four phases is described regarding the interactions between a 

learner's conditions, operations, products, evaluations and standards, which builds the 

acronym and the name of the model: COPES (as explained in Greene & Azevedo, 2007; 

Winne & Hadwin, 1998). 

Conditions describe available resources and constraints that are inherent to a task or the 

learning environment. The model distinguishes between cognitive conditions including 

internal prerequisites such as beliefs, dispositions, or domain knowledge, and task conditions 

including external factors such as available resources, or instructional cues. Operations 

represent the cognitive processes, tactics and strategies that are used by the learners, including 

searching, monitoring, assembling, rehearsing and translating (referred to as SMART by 

Winne, 2001). Products are resulting information, created through operations, e.g., new 

knowledge. Examples for such products can be the definition of a task in the first phase, or 

the ability to recall a specific information while applying strategies (phase 3). Evaluations 

result from learners monitoring on how the products deviate from set standards, either 

generated internally or provided through external sources such as a teacher or a peer. Hence, a 

low fit between products and standards can result in further applying studying tactics, revise 

the conditions or standards, or both. Standards represent the criteria which learners take as the 

desirable end state of any phase they are currently in. Each aspect of a learning task might 

have different criteria that a learner actively determines. The overall criteria that are set in the 

task definition phase build the standards and thus, the learners goal (Greene & Azevedo, 

2007; Panadero, 2017; Winne & Hadwin, 1998). It is important to note in this model that it is 

a “recursive, weakly sequenced system” (Winne & Hadwin, 1998, p. 281). Within in this 

system, the monitoring of products and standards in one phase can update the products from 

previous phases (Greene & Azevedo, 2007). 
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This work looks at SRL from the theoretical perspective of Winne and Hadwin’s COPES 

model (Winne & Hadwin, 1998) for several reasons: 1) it is an actively used SRL model to 

date (Panadero, 2017), 2) it has a strong emphasis on metacognition (Panadero, 2017; 

Puustinen & Pulkkinen, 2001), 3) it is widely used in technology-enhanced learning settings, 

4) it is reflective of SRL in older students / adults who encounter more cognitively demanding 

tasks. 

 

 

Figure 3. COPES model by Winne and Hadwin (1998). 
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2.3 Metacognition 

Metacognition is a construct defined as thinking about one´s own thoughts and cognition in 

order to regulate one’s own cognition (Flavell, 1979). Metacognition has two central 

components: monitoring and control (e.g., Nelson, 1990). Metacognitive monitoring “refers to 

the subjective assessment of one’s own cognitive processes” (Koriat, Ma’ayan & Nussinson, 

2006, p. 38). Monitoring processes therefore lead to a meta-level mental model of one’s own 

cognition. As an example, learners compare a current state in their learning process with a 

target state (standard) and evaluate the achievement of a goal in order to update the mental 

model (Hadwin et al., 2017). On the other hand, control ”refers to the processes that regulate 

cognitive processes and behavior” (Koriat et al., 2006, p. 38). The discrepancy between 

achieved and desired states gives learners an opportunity for regulation in their learning 

processes. Thus, metacognition is a central construct in SRL (Winne & Hadwin, 1998).  

Metacognitive knowledge can be distinguished from metacognitive skills (e.g., Hartman, 

2001). Metacognitive knowledge describes knowledge that learners have about the interaction 

between tasks, person and characteristics of strategies (Flavell, 1979) while metacognitive 

skills are skills that learners have in order to apply metacognitive activities for controlling and 

monitoring their cognitive activities (Veenman, 2005). 

Schraw (1998) distinguished knowledge of cognition from regulation of cognition. 

Knowledge of cognition is further specified in declarative, procedural and conditional 

knowledge. He argues that declarative metacognitive knowledge is knowledge about 

cognition, including general facts such as capacity limitations of the working memory, but 

also knowledge about the own cognition, such as individual conditions that influence one’s 

learning process. Procedural metacognitive knowledge describes knowledge about actually 

enacting in the learning process, mostly represented as heuristics and strategies (e.g., 

chunking or categorizing information). Conditional knowledge refers to the when and why of 
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using declarative and procedural knowledge. Regulation of cognition refers to “a set of 

activities that help students control their learning” (Schraw, 1998, p. 114).  

Another aspect of metacognition are so called metacognitive judgments and feelings, that 

learners perform during their learning process to monitor their learning (Nelson, 1990). 

Different types of judgments and feelings can represent different aspects of monitoring: 

feelings of knowing (FOK), feelings of difficulty (FOD), judgments of knowing (JOK), 

judgments of learning (JOL), confidence judgments, etc. Efklides (2008) states that these 

results of metacognitive monitoring activate metacognitive skills. Learners feel / judge that 

there might be an issue in their learning process and use metacognitive skills to enact on it.  

The discrepancy between achieved and desired states while monitoring gives learners an 

opportunity for regulation in their learning processes, which is one reason for metacognition 

being a central construct in SRL. Moreover, it has been shown that learners who use more 

metacognitive activities tend to show better learning outcomes (Veenman, 2005, 2011). 

For both theory and empirical research, it is not trivial to unravel the mechanisms and 

characteristics of metacognition and cognition (e.g., Veenman et al., 2006), and there is only 

limited agreement on definition and terms of metacognition (Dinsmore, Alexander & 

Loughlin, 2008) as well as methods for the measurement of it. This led to the application of 

new and lavish multimodal data streams and methods such as think aloud (Bannert & 

Mengelkamp, 2008) and process mining (Sonnenberg & Bannert, 2016) of multimodal data 

streams in order to gain better insight into metacognitive processes during (self-regulated) 

learning, which will be further investigated in the next chapter. In this thesis, metacognitive 

activities are seen as a component of the broader theoretical construct of SRL. As described, 

these activities arise from learners’ metacognitive knowledge and skills. 
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2.4 Data Sources for Analyzing Self-Regulated Learning 

As models of SRL describe processes that depend on and implement different latent 

constructs such as motivation, emotion, cognition and metacognition, and different aspects of 

it, it is not feasible to operationalize SRL as a whole. Rather, single components of SRL need 

to be measured and aligned. A combination of these measures can deliver insight into the 

interdependent phases of SRL. However, these components are also mostly not directly 

measurable but need to be inspected through operational definitions (e.g., Winne, Jamieson-

Noel & Muis, 2002).  

A commonly used and established operationalization for such latent constructs are self-

reports. These are acquired prior, during or after learning either with questionnaires or in open 

formats using different modalities. Self-reports fulfil major methodological requirements for 

an accurate measurement, questionnaire instruments are usually tested and calibrated with 

extensive effort, and open self-reported formats are cross-validated by multiple raters. As 

such, they have provided the largely valid data basis for an enormous part of the findings in 

(educational) psychology.  However, they also suffer from disadvantages, which are 

especially crucial in the dynamic context of SRL. 

Firstly, self-report measure are of course, subjective. Main drawbacks of subjective measures 

are that 1) they suffer from systematic biases related to effects of order, scale, social 

desirability or memory (e.g., Bertrand & Mullainathan, 2001; Podsakoff, MacKenzie, Lee & 

Podsakoff, 2003), 2) correlations with objective measures of the same construct, if available, 

are found to be low for a range of constructs (Bommer, Johnson, Rich, Podsakoff & 

MacKenzie, 1995), and 3) they cause difficulties regarding the aggregation and interpretation 

because of their ordinal scaling (e.g., Sullivan & Artino, 2013).  
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Secondly, self-report measures are obtrusive. As such, they have the potential to disturb or 

interrupt the actual learning process and, hence, be a reactive measure that impacts the results 

for the measurement of learning outcomes or other variables of interest. 

Thirdly, and most importantly, self-reported measures only provide a snapshot of the 

measured variable at a certain point in time. While this is not problematic for static learner 

characteristics, it is a major drawback for dynamically changing variables such as motivation, 

or affective and emotional states. Learners’ self-reports are not capable of capturing the 

granularity of adaptions that they make during the learning process (e.g., Zimmerman, 2008). 

For both advancing theory and supporting learning, researchers and instructional designers 

would need such variables to be recorded “on-line”, thereby reflecting changes in a 

continuous data stream that is available in real-time (e.g., Winne & Perry, 2000).  

These drawbacks result in a demand for objective, unobtrusive, unreactive, continuous, online 

measures that has led to an extension of the methodological repertoire and data streams used 

in the research on educational psychology and technology enhanced learning. Among others, 

such process-related data sources include screen recordings, facial recognition data, eye 

tracking, video observations, log files, and physiological sensors (e.g., EDA, EMG, EEG, 

EKG, fMRI).  

It is important to understand that process measures per se do, by no means, fulfil all 

mentioned demands and that the characteristics are independent from each other. For 

example, concurrent think aloud protocols depict the process, but are still a subjective 

measure (e.g., Sonnenberg & Bannert, 2018), retrospective think aloud protocols are 

continuous, but not available in real-time. Moreover, measures differ regarding their 

obtrusiveness and, as a consequence, in their reactiveness. For example, log files are 

unobtrusive, as learners may not even know that researchers (without privacy awareness) are 

capturing how they navigate through learning environments. As such, log files will not affect 
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other measures. In contrast, EEG or EDA measures require devices to be attached on the 

learners and thus, are very obtrusive and might be reactive to other operationalized variables 

(e.g., emotional states or attention). Another aspect that differs between measures refers to the 

time resolution of process measures. While, for example, facial recognition of emotions might 

have a high frequency, changes in EDA signals that can be interpreted regarding CL have a 

lower time resolution (e.g., Setz et al., 2010), and coded behavior from video observations 

regarding SRL phases are available even less frequently (e.g., Järvelä, Volet & Järvenoja, 

2010). 

In many cases, the inferences that can be drawn from process data are ambiguous. For 

example, log files may indicate that there has been no interaction with the learning 

environment, but the missing interaction can have multiple reasons (e.g., a learner reads 

carefully a text in the learning environment without controlling it, or he/she is no longer 

sitting in front of the computer). In order to draw meaningful conclusions, it is often 

necessary to triangulate different data channels (resulting in so-called multi-channel data), 

that complement or validate each other (e.g., eye-tracking with facial expressions of emotions 

and screen-recordings).  

Moreover, it is crucial to understand that most of these measures can only be used as proxy 

measures of relevant latent psychological variables (e.g., EDA for emotional states, 

Henriques, Paiva & Antunes, 2013) or need to be coded regarding a specific behavior (e.g., 

screen recordings or video observations, e.g., Malmberg et al., 2018). The coding of this 

behavior can either be done by researchers, or, this work can be assigned to the learners 

themselves in a subtle way as suggested in a paradigm used by the gStudy / nStudy software 

(Beaudoin & Winne, 2009; Hadwin, Nesbit, Jamieson-Noel, Code & Winne, 2007; Perry & 

Winne, 2006; Winne & Hadwin, 2013; Winne, Nesbit & Popowich, 2017). This software 

provides a toolkit for learners, each representing phases and levels of SRL. As an example, 
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learners can set their goals using a specific type of note in the nStudy browser or tag 

information with descriptive, evaluative and action tags. This leads to log files that already are 

interpretable regarding SRL. 

For other process data channels such as eye tracking or physiological devices, recording them 

has become rather easy from a technical perspective. However, it is very challenging to 

interpret them regarding learning processes from both theoretical and epistemic perspectives. 

In the context of process analyses on SRL, Reimann, Markauskaite, and Bannert (2014) 

characterize three steps for constructing theoretical explanations from recorded sequential 

event data. Although these data streams do not necessarily need to be sequential (e.g., 

sequences are not crucial when interpreting the mean number of gaze transitions in eye 

tracking data), the approach can be adapted and generalized on other data streams. Figure 4 

illustrates important steps towards interpreting data with the example of how pauses in mouse 

interactions relate to CL – a question that is addressed in this work (see chapter 4.3). 

Step 1: Identify externally observable behaviors 

In a first step, externally observable behaviors have to be identified that can be represented as 

possible quantified indicators for latent psychological constructs. As an example, regarding 

mouse and keyboard data, every record consists of a timestamp and an event triggered by the 

learner (e.g., 15 seconds after beginning an exercise, the learner moved the mouse to position 

X/Y). As the raw data can be complex, potentially meaningful indices that describe behavior 

have to be extracted by aggregating, computing means, sums, and ratios. These generated 

indices (also referred to as features) represent a variety of observable information about 

learner behavior, e.g., number of clicks on a specific element, frequency of pauses, changing 

focus between elements in a learning environment, etc. 
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Figure 4. Steps towards interpreting data channels regarding latent variables. 

Step 2: Identifying latent states linked to behaviors  

In a second step, it needs to be checked whether the identified indices correspond with a latent 

construct. While it is a plausible and common practice to operationalize constructs as 

measures that intuitively appear as closely related indicators, this can still lead to false 

positive inference. As an example, time on task is often used as a measure for motivational 

persistence in literature (Vollmeyer & Rheinberg, 2000). However, time on task as measured 

in online learning environments could also indicate boredom if we are not aware of what 

exactly happens. Thus, triangulation of data channels might be needed, and deep theoretical 

knowledge as well as strong empirical evidence about the construct and the characteristics of 

the data sources are necessary to justify an operationalization.  

Theoretical knowledge can give us hints on 1) which relevant constructs might be connected 

to the identified behaviors and 2) where those latent states might be in a vast array of 

information. As an example, in a study of this work (chapter 4.2) that investigates relations 

between writing and motivation, theories and empirical evidence on motivation serve to find 

possible latent states: it is known that there is a positive relationship between persistence and 

motivation (Vollmeyer & Rheinberg, 2000), and persistence is often operationalized as time 
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being spent on a task (e.g., Nijstad, Stroebe & Lodewijkx, 1999). Thus, higher motivation 

could potentially be linked with behavior related to spending more time on the writing of text, 

such as typing longer texts (i.e., higher number of keystrokes) or more frequently revising a 

text (i.e., the number of corrections made on the text). This behavior can be quantified by the 

typing behavior. Compared to time on task, these detailed process measures represent 

significantly higher granularity.  

Although theoretical assumptions are necessary, they are not sufficient to proof the validity of 

the operationalization. Additionally, concurrent data of established and valid measurements 

for the latent construct need to be linked with the behavioral indices in a reasonable way, 

following the logic of criterion validity (i.e., established test A measures construct B, so new 

indicator C measures B if C corresponds with A). In other domains, this step is often referred 

to as data labelling (Lali et al., 2014). This might be the most critical step towards interpreting 

data sources because invalid data labelling leads to the description of invalid links between 

the extracted behavior and wrong labels. However, one still needs to be aware that the solely 

proof of validity by correlating existing tests may lead to an invalid circular reasoning, if the 

existing measures is not reliable or valid. Besides this deductive method, linking data with 

existing measurements of latent states can very well be a way to inductively get new insights 

and build theories on them. For example, typing speed can be measured during a problem-

solving process and code success rates. After that, both variables can be correlated to reveal a 

possible relationship between typing speed and problem-solving competence in a specific 

domain.  

Step 3: Discover patterns in the latent states relating to differences in learning outcomes 

In a last step, when behavioral indices as potential indicators for latent states were identified, 

it is then be checked whether patterns of those states relate to differences in learning 

outcomes in a third step, as existing theories would predict. For example, does the current 
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motivation measured through typing behavior explain part of the variance of the learning 

performance? 

2.5 Instructional Interventions in Technology Enhanced Learning 

The studies of this work all aim at finally improving learning outcomes in advanced learning 

technologies, either indirectly through investigating data channels that can contribute to future 

adaptive learning systems, or directly through using data channels in an intervention. 

Therefore, the studies discuss the application of the results in the context of different 

instructional interventions, or experimentally explore different interventions itself. This 

chapter first introduces the idea of adaptive learning systems as a general framework for 

interventions, and then focusses on the actual interventions that have been used in the studies 

of this work: prompting, pedagogical agents, learning dashboards, and eye movement 

modeling examples.  

 Adaptive Learning Systems 

The idea of adaptive learning systems is to support and enhance learning by fitting the 

presented environment to needs of learners, that are represented in different learner variables. 

Although in the studies of this work, no such system is investigated, the studies of this work 

aim at the idea of using collected data to inform adaptive intervention, i.e., peripheral data 

that accounts for the full interaction between the learner and the learning environment 

including the context information of environments and interfaces as described in chapter 4.1. 

Hence, it is important to understand the idea of adaptive learning systems and introduce a 

suitable theory for it. In their four-phase model, Shute and Zapata-Rivera (2008) present such 

a model of an adaptive cycle. It describes the process of adaptivity on the basis of the 

interaction of a learner with a digital system, and is depicted in Figure 5. The cycle consists of 

four components, namely: Capture, Analyze, Select and Present. 
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Firstly, the system captures data about the learner during the interaction in a learning 

environment. Examples of data that the system could record include mouse or typing 

behavior, eye movements, and physiological measures. This information forms the basis for 

the learner model that will be developed in the following. During the entire learning process, 

data is collected to update this model. The second step is to analyze the data obtained in order 

to create a first learner model based on the content-specific information of the learning 

environment. A suitable learner model ideally indicates the learner's current knowledge and 

the relevant deficits. This information is then used in a third step to decide for the need and 

the type of an intervention, e.g., a hint, an explanation, a specific behavior of an agent or a 

prompt. The selection of suitable interventions are the core of an adaptive system. Predefined 

decision rules and threshold values determine the suitability of the selection, which in turn 

can be dynamically updated as learning progresses. The final step deals with the presentation 

of the selected adaptive intervention measure. Although the described model initially has a 

linear course, regressions and regressive analyses are inevitable in the further course in order 

to keep up with the learner's developments. While the initial model may be rather coarse and 

unspecific, it ideally becomes more accurate over time. Thus, the learner model is not a static, 

but rather a self-updating, dynamic reflection of the learner. 

 Prompts 

Prompts or prompting measures used in education and instruction are support mechanisms 

that aim to “induce or stimulate cognitive, metacognitive, motivational, volitional, and/or 

cooperative activities during learning” (Bannert, 2009, p. 140). In contrast to instructional 

content, prompts usually do not contain additional information, but support the application of 

already acquired knowledge or skills. Metacognitive prompts are a specific form of prompts 

aiming at activating metacognitive activities that are often needed in SRL (see Bannert, 2007, 

2009 for an introduction). 
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Figure 5. Cycle of an adaptive system as suggested by Shute and Zapata-Rivera, adapted from 
Shute and Zapata-Rivera (2008, p. 4) 

The importance of such metacognitive activities and learning strategies is reflected both in  

theory and empirical investigations on SRL (e.g., Winne, 2001). Successful learners perform 

a range of such metacognitive activities. Even before the “actual learning”, examples for 

metacognitive activities include analyzing the situation, orienting themselves by skimming 

task descriptions, or specifying learning (sub-)goals. While learning, learners need to judge 

the relevance of content for their goals, extract information and elaborate it. At the end of a 

learning activity, an evaluation of the achieved learning product considering their goals 

should take place (Bannert & Mengelkamp, 2013). Research in metacognition revealed that 

although learners have such metacognitive skills and know how to apply strategies, they often 

do not apply these spontaneously, leading to lower learning outcomes (e.g., Azevedo, 2009; 

Bannert, 2007; Bannert, Hildebrand & Mengelkamp, 2009; Zimmerman, 2008). This so-

called “production deficit” (e.g., Bannert & Mengelkamp, 2013; Veenman et al., 2006) is the 

underlying assumption for metacognitive prompts. Thus, metacognitive prompts aim to 
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trigger metacognitive activities by presenting learners with questions or statements asking 

learners at certain times during the learning process to reflect/monitor or control aspects of the 

learning content or their own mental activities. It is assumed that the resulting increased 

application of learners’ repertoire of metacognitive activities will then enhance learning 

outcomes.  

Prompts have a range of different parameters that need to be set, such as which learning 

activity should be prompted (e.g., Wichmann & Leutner, 2009), when should they occur (e.g., 

Thillmann, Künsting, Wirth & Leutner, 2009), which modality should be used to present them 

(e.g., auditory through an pedagogical agent, Azevedo et al., 2012), how specific should they 

be (e.g., Davis, 2003; Glogger, Holzäpfel, Schwonke, Nückles & Renkl, 2009), how should 

they be worded, or should learners be able to customize their own prompts (Bannert, 

Sonnenberg, Mengelkamp & Pieger, 2015; Pieger & Bannert, 2018). When using prompts in 

instructional aids, these parameters should be well chosen and based on empirical evidence. 

Although the effects of prompts are already well understood, there are still open questions 

regarding how learners interact with prompts (Bannert & Mengelkamp, 2013), which this 

work does in the last study (chapter 4.5). Answering these questions can potentially contribute 

to further specifying the optimal parameters for prompts in different conditions. Moreover, 

there are some general design principles for metacognitive aids that should be followed 

(Veenman et al., 2006) such as integrating metacognitive instruction into domain-specific 

instruction instead of teaching it without subject context, explaining why certain strategies are 

useful, and allow for sufficient training time in order to ensure that metacognitive activities 

can later be applied spontaneously. 

 Pedagogical Agents 

Another suggestion to support SRL is the use of so-called virtual pedagogical agents. 

Although the effects of these systems on learning are not investigated in the studies of this 
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work, agents were used in the learning environments. Therefore, it seems necessary to briefly 

explain the theoretical background and the empirical status of the systems. Pedagogical agents 

are mostly presented in human-like form within a virtual learning environment (e.g., Graesser, 

Wiemer-Hastings, Wiemer-Hastings & Kreuz, 1999; Johnson, Shaw & Ganeshan, 1998). The 

presentation varies from simple static images with visual text presentation to complex 

animated two- or even three-dimensional figures with speech input and/or output. The agents 

act as teachers, mentors, coaches, tutors or peers and provide cognitive, motivational and/or 

metacognitive support (e.g., Clarebout, Elen & Johnson, 2002). Although the idea of a virtual 

supporter has existed for decades, e-learning with "Human Computers as Co-Coaches" 

Erpenbeck & Sauter, 2013, p. 5), taking into account intelligent adaptivity through new 

technical possibilities, is also discussed in the current literature as an important form of 

teaching-learning and as a promising perspective (MMB-Trendmonitor, 2014). 

Research in educational psychology has been investigates the effects of pedagogical agents 

since the nineties. Numerous studies focus on the effects of different appearances, forms of 

communication and response types of pedagogical agents, but not on the used instructional 

strategies (Dehn & Van Mulken, 2000). In most cases, perception and acceptance indicators 

were examined as dependent variables. Little is known about the effects on variables directly 

relevant to learning. In particular, a lack of studies confirming increased learning performance 

is described (e.g., Heidig & Clarebout, 2011). The benefit for learners is therefore 

controversial (e.g., Clarebout et al., 2002; Moreno, 2005). This is one of the reasons why 

critics complain that the high effort required to implement pedagogical agents is 

disproportionate to the benefits for the learner or that pedagogical agents even have a 

disruptive effect on the learning process (e.g., Chen et al., 2012; Choi & Clark, 2006; Clark & 

Choi, 2007). 
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Theoretically, the use of pedagogical agents is often justified by the creation of social effects 

in the learner. Based on the findings that interactions with computers can cause human social 

reactions (media-equation, e.g., Nass, Moon, Fogg, Reeves & Dryer, 1995), the persona effect 

was described in the context of pedagogical agents. According to the persona effect, the sole 

presence of a pedagogical agent promotes the learning process (e.g., Lester et al., 1997). 

Although the persona effect could not be replicated, it is still frequently quoted today (e.g., 

Craig, Gholson & Driscoll, 2002). The Social Agency Theory (also "Social-Cue Hypothesis") 

describes the assumption in pedagogical-psychological research that social cues from virtual 

agents lead to a pre-activation (priming) of social response behavior and consequently 

contribute to higher motivation and deeper cognitive processing of learning material (Mayer, 

2005). The empirical results on the social-cue hypothesis are inconsistent. Although higher 

motivation and better transfer performance were empirically confirmed (Atkinson, 2002; 

Moreno, Mayer, Spires & Lester, 2001), it was later shown that these effects were probably 

due to the auditory text presentation of the educational agent in the sense of multimedia 

learning (Moreno, 2003). It was then postulated that only the voice of the educational agent 

was effective, regardless of its representation ("presence principle", Mayer, Dow & Mayer, 

2003). Domagk (2008, p. 50) criticizes this, as she argues that pedagogical agents are defined 

through having a visual representation. 

Regardless of the theoretical foundation, the questions of whether pedagogical agents promote 

motivation and learning and under what conditions they work were holistically investigated 

by Heidig and Clarebout (2011) in a meta-analysis of 75 articles. Of these, however, only 39 

studies dealt with variables relevant to learning at all. Only 15 studies were designed as 

experiments with control groups without the use of an educational agent. The majority of the 

studies (9 out of 15) did not find any differences in learning success, motivation was only 

recorded in four studies at all, of which three showed no differences. Consistently reported 
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were missing differences between animated, static and no agents with respect to recall 

performance (Baylor & Ryu, 2003; Dirkin, Mishra & Altermatt, 2005; Lusk & Atkinson, 

2007). Only for the attractiveness of the agents consistent positive effects on the transfer 

performance could be shown in two studies (Domagk, 2010). 

Most studies on the effectiveness of pedagogical agents compare different types of 

pedagogical agents without a control group (24 of 39 studies in Heidig & Clarebout's meta-

analysis, 2011). Only an advantage of explanatory versus corrective feedback regarding 

transfer performance (Moreno, 2004; Moreno & Mayer, 2005) and an advantage of auditory 

versus visual text explanations (Atkinson, 2002; Craig et al., 2002; Mayer et al., 2003) are 

considered as proven here. After the publication of the meta-analysis, the so-called 

embodiment effect for the transfer performance could also be proven in three experiments. 

Based on the persona effect described above, this means that pedagogical agents with real 

gestures, facial expressions and language achieve better learning outcomes with learners 

(Mayer & DaPra, 2012). 

 Learning Dashboards 

With the actions of learning analytics being described as the “measurement, collection, 

analysis and reporting of data about learners” (Gaševic, Dawson & Siemens, 2015, p. 1), 

learning dashboards emerged as a common intervention meant to enhance learning. Learning 

dashboards contain visual representations of data on learning processes that has been 

collected, processed and analyzed before. They are meant to “aggregate different indicators 

about learner(s), learning process(es) and/or learning context(s) into one or multiple 

visualizations” (Schwendimann et al., 2017, p. 8). Based on this definition, learning 

dashboards can be characterized by a range of questions or parameters: What data is 

represented to whom, when, and how? 
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What data is represented? – Every data stream that is regarded as relevant to the learning 

process can potentially be visualized in dashboards by researchers or instructional designers. 

However, as learning dashboards are mostly implemented in online learning environments, 

they often incorporate click-stream data (e.g., time spent on pages, number of logins into a 

learning management system) or performance data of tasks and quizzes. Data visualized in 

dashboards can be aggregated on a course level (e.g., mean score of the group for a task) or 

on an individual level (e.g., how an individual learner scored in a task). Moreover, it can be a 

comparison between the individual and the course level (e.g., compared to the course, a 

learner scored lower in this task) or between the individual and a standard (e.g., compared to a 

proposed or required standard, a learner scored higher in this task). The time range of the 

collected data can vary between a single learning session and a whole course term.  

How is the data visualized? – Data visualization in dashboard aims at presenting students 

with a simple representation of sometimes complex data that is acquired during their learning. 

Examples are bar charts, pie charts or tables. Besides visuals, recent research is also tried to 

add automated explanatory texts to dashboards visuals (Ramos-Soto, Lama, Vazquez-

Barreiros, Bugarin & Barro, 2015). 

Who is the recipient of the dashboard? – While most learning dashboard are currently 

designed to be viewed by teachers or students (Bodily & Verbert, 2017; Schwendimann et al., 

2017), other audiences can be administrators, study advisers or designers. 

When is the dashboard shown? – Dashboards can be shown at different points in the learning 

process. Often, dashboards are presented as the first page after logging into a learning 

management system. In other systems, students need to explicitly click on the learning 

dashboard in a LMS, are presented with the learning dashboard at fixed time intervals during 

the learning process, or receive their dashboards as report e-mails. 
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For many of the current studies that examine or report about learning dashboards, it is 

criticized that these do not have a strong foundation on theories of educational psychology, as 

it is still a young research subject that emerged from the field of learning analytics (e.g., 

Gaševic et al., 2015). One consequence of this is that the actual pedagogical goal and the 

underlying psychological mechanism of the dashboard is often not clearly defined or not 

described at all. This can be argued for dashboards on a general level, but also for the specific 

type of data and visualizations that are chosen to be presented in the dashboard (i.e., what role 

does a certain presented information play for the mechanism of the dashboard?). When it 

comes to a specific type of visualization in dashboards, research in cognitive psychology on 

how different visualizations can impact the perception of information is often neglected in 

dashboard studies. This is an issue that has been recognized decades ago in other disciplines. 

As an example, in the domain of decision taking, Jarvenpaa (1989) already argued that “the 

designers of decision support systems lack theoretically based principles for designing 

graphical interfaces”, and examined the effects of first computer-based graphical 

representation on information processing strategies. However, the decision of whether to use a 

bar chart to present information instead of a scatter plot should be based on empirical 

research, if available. Empirical research and theory development on the evaluation of 

visualization continues to be conducted in the fields of information visualization (Ware, 2013) 

and visual analytics (e.g., Keim et al., 2008; Nazemi, Burkhardt, Hoppe, Nazemi & 

Kohlhammer, 2015). Thus, this needs to be considered when designing dashboards. Such 

questions are a necessary part of the characterization of the dashboard if we look at it as an 

instructional intervention.  

Another perspective is that researchers claim to “support awareness and reflection” through 

existing dashboards (e.g., 20 out of 26 studies in the review of Jivet, Scheffel, Drachsler & 

Specht, 2017). While this might implicitly mean that the dashboard supports metacognitive 
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planning and monitoring by raising the awareness of the own learning process, authors often 

do not make this explicit and do not further specify what the pedagogical and psychological 

implication of this raised awareness should exactly be.  

It is argued that the final goal of learning dashboards as instructional interventions should be a 

positive effect on the learning outcome. Explicitly defining the functions, goals, and 

mechanisms behind dashboards that lead to such positive effects is a prerequisite to get a 

rigorous picture of the impact that dashboards can have on learning. As an example, a 

learning dashboard of a vocabulary learning application could incorporate different functions 

with different goals and mechanisms: listing the items (function) that a learner should be able 

to recall (goal) is meant to support on a cognitive level (mechanism), or presenting statistics 

on how many items were recalled in the last session (function) should make users aware of 

their task conditions (goal) by supporting on a metacognitive level (mechanism). A slightly 

changed function can have a different goal and mechanism, e.g., showing a comparison 

between learners on how many items were recalled (function) could aim at supporting on a 

motivational level (goal) based on mechanisms described in  theories of social comparison 

processes (e.g., Festinger, 1954). 

Moreover, even considering studies on learning dashboards that are not strictly based on 

theories of educational sciences, there is no large body of empirical research yet. In the recent 

discourse and in meta analytic studies (Bodily & Verbert, 2017; Dawson, Jovanovic, Gašević 

& Pardo, 2017; Jivet et al., 2017; Schwendimann et al., 2017), exactly this lack of research on 

the actual effects that learning dashboards have on the learning outcomes is claimed. In 

Bodily & Verbert (2017), for example, only 2 of 94 papers examine actual effects on learning. 

It is claimed that we need further research on how learners interact with dashboards (e.g., 

Pardo, Poquet, Martinez-Maldonado & Dawson, 2017). It seems that the focus of current 

studies rather is on investigating student perceptions, technical functionality and different data 
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sources – which is of course important to examine but is not sufficient for educational 

interventions. Existing studies that do measure effects on learning do not consistently report a 

positive impact of learning dashboards (e.g., Park & Jo, 2015) and therefore, estimating a 

more general effect size of learning dashboards is not yet feasible.  

 Eye-Movement Modeling Examples 

Another recently developed way to support learning in multimedia learning are so-called Eye-

Movement Modeling Examples (e.g., Gegenfurtner, Lehtinen, Jarodzka & Säljö, 2017; 

Jarodzka, van Gog, Dorr, Scheiter & Gerjets, 2013; Krebs, Schüler & Scheiter, 2018; Mason, 

Pluchino & Tornatora, 2015; van Marlen, van Wermeskerken, Jarodzka & van Gog, 2016). 

EMMEs reflect the eye movements recorded during learning in a technology-enhanced 

learning environment. These recordings are presented to learners as a model of how a 

particular task has been solved by others. EMME has been shown to help improve learning 

through better cognitive processing in multimedia environments (e.g., Scheiter, Schubert & 

Schüler, 2017). This improved cognitive processing is explained on the one hand by the idea 

that EMME activates a learner's prior knowledge of how information can be processed or that 

EMME leads to the acquisition of new processing strategies. Another rationale is that another 

person's eye movements represent a social cue that stimulates deeper cognitive processing 

(Krebs et al., 2018). Although the studies in this paper do not use EMMEs, the intervention 

study in this paper uses heat maps of mouse movements. EMME is relevant as a concept for 

these heat maps, because mouse movements and eye movements correlate (Guo & Agichtein, 

2010; Huang & White, 2012; Huang, White & Dumais, 2011), have the same structure (X/Y 

coordinates over time) and eye tracking data is often presented in heat maps as well (Špakov 

& Miniotas, 2007). 
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3 Research Questions Overview 

As the description of the theoretical background of this work demonstrates, there is still a lack 

of appropriate instruments to depict processes of SRL in technology-supported environments 

and to adequately capture their cognitive, metacognitive, motivational and affective facets and 

make them available in real time for analyses and adaptive interventions. In addition to the 

traditional quality criteria of objectivity, reliability and validity, requirements for such process 

measures include in real-time ("online") recording with high temporal resolution and low 

obtrusiveness and reactivity. Previously used data channels such as protocols on thinking 

aloud, screen recording, eye tracking, log files, video observations or physiological sensors 

meet these criteria to varying degrees. A data channel that has received little attention in 

research in educational psychology, but is non-obtrusive, non-reactive, objective and 

available online, is detailed data on observable interactions of learners in online learning 

environments. This data channel is introduced in this thesis as "peripheral data". It records 

both the content of learning environments as context, and related actions of learners triggered 

by mouse and keyboard, as well as the reactions of learning environments, such as structural 

or content changes. Although the above criteria for the use of the data are met, it is unclear 

whether this data can be interpreted reliably and validly with regard to relevant variables and 

behavior. 

The aim of this dissertation is therefore to examine this data channel from the perspective of 

SRL and thus contribute to closing the existing research gap. For this purpose, three research 

questions are formulated, which are to be answered with one development project and four 

empirical studies. 

In the development part of this thesis (chapter 4.1), the theoretical and methodological 

characteristics of peripheral data are investigated and the development of a software for the 

acquisition of the data is described. Hence, it addresses the following question: 
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1) Is peripheral data a suitable data stream to record and analyze the interactions of 

learners with learning environments?  

On this methodological basis, the first three empirical studies (chapters 4.2, 4.3, and 4.4) will 

investigate how peripheral data address the following question: 

2) (How) is peripheral data linked to cognitive, motivational, affective and metacognitive 

states of learners? 

Finally, the last empirical study will address the impact that the visualization of learning 

dashboard in combination with metacognitive prompts has on the learning outcomes in online 

learning environments. Thus, the following question is investigated:  

3) Can learners benefit from presenting them with visualizations of their acquired 

peripheral data in learning dashboards? 



Developing ScreenAlytics: Methodological Basis for Empirical Studies 

 38 

 

4 Research and Development: Analyzing and Supporting Self-Regulated 

Learning through Peripheral Data 

In this chapter, the empirical studies and the software development of this work are described. 

First, the ScreenAlytics software frame is introduced as a methodological basis for the 

following empirical studies. This includes the comparison of existing methods to record 

observable behavior in online learning environments with a suggested data stream called 

peripheral data. In contrast to the later documented empirical studies, the description of the 

software initially has a methodological focus and contains descriptions of the technical details 

and software features, as well as a performance evaluation. In the discussion of this software, 

potential applications in psychological research are briefly described. After that, three 

empirical studies are described that investigate the relation of this recorded information to 

variables that are relevant for SRL. The last study addresses the question whether learners can 

benefit from presenting them with the recorded data by supporting their metacognitive 

activities. For each of the studies, a brief theoretical background that identifies research gaps 

and deriving questions is given, as well as information on the methodological implementation 

of the study, results and hypothesis testing. Results of the studies and their possible 

implications and limitations are then discussed. 

4.1 Developing ScreenAlytics: Methodological Basis for Empirical Studies 

Today, researchers of many disciplines make use of modern web-technologies to implement 

(experimental) environments for collecting data from human participants. Web technologies 

and available tools that support researchers in collecting data (e.g., de Leeuw, 2015; Reips & 

Neuhaus, 2002) are not only applicable for experiments delivered through the internet but also 

for in-lab browser-based data acquisition (Hilbig, 2015).  
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Moreover, in field research, online data acquisition is getting more attractive and relevant 

from a methodological point of view as it has advantages compared to classical in-lab 

experiments, such as larger samples with a higher heterogeneity that can be recruited more 

quickly (e.g., Birnbaum, 2004; Reips, 2000, 2002; Skitka & Sargis, 2006). Especially in 

psychology, these advantages are crucial with regards to the replication crises and an often 

very selective sample (Henrich, Heine & Norenzayan, 2010). Recent research has 

successfully shown that web-based experiments are able to reproduce the findings of a range 

of classical in-lab experiments in psychology that are often based on reaction times (e.g., 

Hilbig, 2015; Semmelmann & Weigelt, 2016). John and Samuel (2000) could show that 

findings of online self-report questionnaires are consistent with findings from traditional 

offline methods. In such studies, researchers are often not only interested in the final 

outcomes of questionnaires and tasks anymore, but need to conduct analyses on detailed 

interaction between participants and web-based (experimental) environments. This interaction 

is reflected in process data. Examples for the use and necessity of process data can be found 

in many disciplines such as human-computer interaction (Tang, Liu, Muller, Lin & Drews, 

2006), survey methodology (Horwitz, 2013; Horwitz, Kreuter & Conrad, 2017), social 

psychology (Freeman, Pauker, Apfelbaum & Ambady, 2010) and educational psychology 

(Sonnenberg & Bannert, 2016). As an example, in educational psychology and the research 

on technology enhanced learning, studies need to investigate not only the outcomes of 

learning but especially the learning processes in order to gain insight into underlying 

mechanisms, promote the construction and verification of learning theories, and foster 

learning. 

 Comparing Methods of Recording  

Recording interaction processes is currently realized either by screen recordings that generate 

videos of the interaction, by mouse/keyboard tracking software that logs mouse activity and 
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keystrokes, or by using more or less detailed log-files of the web server. These methods have 

inherent disadvantages that are discussed in this chapter and that are solved by introducing the 

recording tool ScreenAlytics, and the underlying approach. 

4.1.1.1 Screen Recordings 

Screen recording is a method that digitally captures the output of computer screens as a pixel-

based video file during the interaction between a user and a computer. When combined with 

audio narrations for educational purposes, the method is sometimes referred to as screencast 

or screen capture (e.g., Lloyd & Robertson, 2012; Razak & Ali, 2016; Veronikas & Maushak, 

2005).  

Regarding research and evaluation, recording the users’ screens as videos is a commonly and 

successfully used way to examine user behavior in computer based environments (Tang et al., 

2006). This is not surprising as recording the sessions can provide us with replays of the 

complete interaction between the participant and the corresponding context such as a web 

environment or a system application. Thus, it can reveal relevant information about user 

behavior. As an example, in our research on technology enhanced learning, researchers can 

observe and analyze how learners use instructional support in web environments, how often 

they correct solutions in exercises, or how much time they spend on viewing materials such as 

texts, videos or illustrations.  

However, what can be acquired from widespread screen recording software like Cam Studio 

(http://camstudio.org) or VLC (http://www.videolan.org/vlc/) are pixel-based video files (e.g., 

mpeg, mov, avi). This output format is crucial as producing pixel-based videos results in data 

that is no further automatically processable or interpretable and therefore requires substantial 

work to be analyzed. As an example, although it can be seen what a user typed in a screen 

recording video, the text cannot be extracted automatically. Every single video needs to be 

watched manually to code the text (or use costly computer vision for text recognition needs to 
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be implemented) in order to conduct further analyses on it. Another example is the analysis of 

the usage times and frequencies of specific elements or dialogs in web-based environments. It 

can be observed in the video but, to analyze, one must count and code it by hand.  

Thus, by recording pixel-based videos, information is lost that actually has already been 

available. To retrieve that information, researchers have to conduct time-consuming manual 

coding. Besides, manual coding is prone to inducing subjectivity bias and errors, and 

therefore, cross-validations of more than one coder are often needed. Many examples in 

educational research report about the vast workload that results from manually coding screen 

recordings. As an example, Zhang & Quintana, 2012 reported “year-long processes of 

repeated viewing and transcribing of the videos,” (p. 187) or Yew & Schmidt, 2012 analyzed 

“around 70 hours of screen recording as each student was online for about 7-8 hours.” (p. 

384). Figure 6 shows the workflow of traditional screen recording including the manual 

coding process and the possibilities for analyzing the resulting filtered event data. 

 

Figure 6. Workflow of Analyzing Traditional Screen Recordings 

Aside from manual coding, other issues of screen recording advise against using it in web 

environments. Dependency on a client-sided installed software makes field-research outside 

the lab very difficult. Depending on the used software, screen recording can also have some 

obtrusiveness (e.g., a blinking red dot in the task bar) that may bias user behavior. Moreover, 

huge file sizes make it difficult to handle and archive resulting data and screen recording can 

be expensive regarding CPU and hard disk overhead, though having a negative impact on the 

computers’ performance (Shea, Liu, Ngai & Cui, 2013). In addition, Tang, Liu, Muller, Lin & 
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Drews (2006) report strong privacy concerns of participants as screen recording is not limited 

to the interactions inside the application of interest (e.g., a web environment) but also captures 

the complete interaction in other programs (e.g., e-mails, private files, the desktop). 

4.1.1.2 Mouse / Keyboard Tracking 

Mouse and keyboard tracking systems record events triggered by the users’ devices together 

with a timestamp. Installed either as a browser plugin or as a service on the operating system 

level, software packages capture mouse activity (i.e., x/y coordinates on the screen) and 

keyboard activity (key down and key up events) to log files or databases. This approach has 

existed for decades (e.g., “Input logger” by Trewin, 1998; “Tracer” by Lahl & Pietrowsky, 

2008) and has been further developed into more sophisticated packages such as 

“Mousetracker” by Freeman & Ambady (2010) or “Mousetrap” by Kieslich & Henninger 

(2017). Thus, different disciplines successfully use mouse and keyboard tracking, for example 

in research on writing (e.g., “InputLog” by Leijten & Van Waes, 2013; Van Waes, Leijten & 

Van Weijen, 2009), usability research (Atterer, Wnuk & Schmidt, 2006) or social psychology 

(Freeman & Ambady, 2009; Freeman et al., 2010).  

As the recorded data can be processed without manual coding, mouse and keyboard tracking 

solves a major issue of screen recordings by making the raw data accessible. However, these 

approaches still face important disadvantages. First, tracking applications still have to be 

installed as additional software on the users’ computer, thus making it very difficult to use in 

field research. Although recording mouse and keyboard activity in web-based environments 

without additionally installed software is described in literature (e.g., Arroyo, Selker & Wei, 

2006; Atterer et al., 2006; Mueller & Lockerd, 2001), the authors do not provide a tool to do 

so. Secondly, mouse and keyboard tracking software usually ignores the context in which the 

activity was recorded. Resulting data only contains raw event data (e.g., x/y coordinates of 
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mouse movements together with a timestamp) without information about the context in which 

users showed the recorded behavior.  

4.1.1.3 Log Files 

Beside screen recordings and mouse/keyboard tracking, log files are commonly used in web-

based research. Traditional log files are reports about requests to websites that are generated 

by and stored on a webserver, and were used for debugging since the very beginning of the 

internet (Suneetha & Krishnamoorthi, 2009; W3C World Wide Web Consortium, 1995). 

Although these (often cryptic) files can be analyzed with software tools like the LogAnalyzer 

(Reips & Stieger, 2004), it still provides only rough information about the interaction from 

which statements in the form “at time T, page P was visited by computer C” or more 

aggregated, “page P was visited N times” can be inferred. As server log files implicate other 

disadvantages (e.g., hurdles to identify unique sessions, see Zorrilla, Menasalvas, Marín, 

Mora & Segovia, 2005 for an introduction), more sophisticated web analytics software 

packages like Matomo (https://matomo.org, formerly known as “Piwik”) have been 

developed. These tools use additional client-sided information, often generated in JavaScript, 

to acquire log data that provides a more detailed insight into user behavior. The granularity 

can vary from recording the number of page views to detailed event information about users’ 

interactions. However, this requires researchers to customize the source code of their web 

environments in order to setup the recording of relevant events that they are interested in. 

Accordingly, usage cases of log data in psychological research range from simples descriptive 

analyses of navigation patterns to complex attempts of predicting users’ latent state variables 

like motivation from it (Cocea & Weibelzahl, 2007a, 2009).  

Despite the limited information that log files can provide, recording it is straightforward: no 

software needs to be installed on the client computers and user-friendly tools like Matomo 

help researchers to acquire and visualize data. The resulting data can be exported and 
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aggregated or directly used for quantitative analyses in statistics software. However, log data 

only provides static snapshots of an interaction at specific pre-configured events. This means 

that a researcher needs to configure each event (e.g., a click on a button of a website) that 

should be tracked – while ignoring what happens between the captured events and its contexts 

again. These drawbacks are crucial especially for explorative and qualitative studies that 

focus on generating theories or discovering meaningful patterns, because researchers need to 

have hypotheses in order to decide which events are tracked before the data acquisition. 

 Peripheral Data Combines Advantages of Other Measures 

Considering the disadvantages of traditional screen recordings, mouse / keyboard tracking and 

traditional log data, an approach that solves these issues is proposed and introduced as 

“peripheral data.”.  Table 1 lists the advantages and disadvantages of the mentioned 

approaches to data acquisition in web-based environments.  

Peripheral data is a processable documentation of the full interaction between a user and a 

web-based environment, including detailed information about a user’s actions and the 

reactions of the environment to these actions. 

Recorded user actions are mouse/touch clicks and movements, keystrokes, window scrolling, 

resizing, and (de-)focusing. The captured data is comparable to what we get from mouse and 

keyboard tracking software, but provides us with additional contextualization of that 

information. For instance, instead of just getting the x/y mouse position of a mouse click, one 

also knows on which element of a website the user clicked. Or, instead of just getting a 

keystroke, it is also known into which input element that key was typed. This 

contextualization is crucial as without it, no inferences regarding the content would be 

possible.  
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Table 1 

Advantages and disadvantages of currently used approaches. 

Approach Advantages Disadvantages 

Screen recording Records all available 

information, including context 

and behavior 

Data is not further processable 

without manual coding; time-

consuming; huge file sizes 

Mouse / keyboard tracking Processable raw data No information about context 

and content, software 

dependencies on client 

computer 

Log-files No software dependencies on 

client computer 

Low granularity, special events 

need to be configured 

 

As every standard web browser allows us to observe these events, it is possible to record them 

via JavaScript event listeners (e.g., Alimadadi, Sequeira, Mesbah & Pattabiraman, 2014) 

without software dependencies on the users’ computer. These event listeners return 

parameters like the x and y position when a user moves the mouse at a sampling rate of 

around 60 hertz or the width and height of the browser when it is resized. Together with a 

timestamp accurate to the nearest millisecond, these events can be sent to a server application 

asynchronously (i.e., without influencing the performance of the recorded environment), 

which stores them in a server-sided database. Hence, data structure is comparable to other 

approaches like traditional log-files or mouse tracking. Figure 7 shows the structure of 

example peripheral data events. 
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Figure 7. Data Structure of Example Events from Peripheral Data 

However, this data only reflects the actions of the users and not the reactions of the web 

environment to it. Hence, in addition to the mentioned input events, the approach also 

observes the initial web contents and changes on it over time, representing the reactions of the 

environment (using the DOM Mutation Observer that is implemented in all modern browser 

frameworks, see Mozilla Development Network, 2015). Again, this content can then be sent 

to a server application and stored on a server-sided database together with a timestamp 

accurate to the nearest millisecond.  

As a result, the peripheral data approach allows both tracking the actions of the users and the 

reactions of the web environment, thereby representing the complete interaction process. This 

allows the later reconstruction of all actions and reactions so that researchers can view video-

like replays of the complete interaction while still having access to the raw and processable 

data for further visualizations (e.g., heat maps) and quantitative investigations (e.g., analyses 

of detailed interaction data such as the typing behavior). The technical details of recording 

and replaying events are explained in the following sections of this chapter. 

Recognizing and recording this data is both unobtrusive and therefor non-reactive. Regarding 

dependencies, no special client-sided hard- or software is required other than a standard web 

browser with JavaScript support (met by 99% of Web users in 2008; Kaczmirek, 2008, p.87) 
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and a connection to the internet. Figure 8 illustrates the workflow of using peripheral data to 

record, visualize, and analyze interactions in web based environments. 

 

Figure 8. Workflow of Using Peripheral Data to Visualize and Analyze Web Processes 

Although several commercial software packages exist that seem to implement the peripheral 

data approach (e.g., https://mouseflow.com or https://hotjar.com), the use of these for research 

purposes is very limited. Reasons for this are that the documentation of the underlying 

approach is not available to researchers and, most importantly, the software packages do not 

allow to access the raw data. This crucially limits the advantages of the tools as videos need 

again to be watched manually in order to extract relevant data such as content typed into text 

forms or interaction with a specific DOM element of interest. For recording mouse activity in 

online environments, the software “SMT” (Leiva & Hernando, 2007; Leiva & Vivó, 2013) is 

known. The major drawback of this software is that is does not account for changes in the 

DOM structure of the website, meaning it does not reflect reactions to the users actions or to 

user-specific content (e.g., when a user is logged in or assigned to an experimental / control 

group in an experiment). Moreover, the software seems to be no longer maintained and 

researchers need to have their own server infrastructure to use the software, hence requiring 

substantial technical skills or support to setup an experiment. Intensive search at the time of 

writing this work did not result in any software that implements the proposed approach. 
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 Features of The ScreenAlytics Software Framework 

ScreenAlytics is a software framework developed in this work that aims at supporting 

researchers with recording, visualizing, and analyzing web-based process data. It currently 

involves the following features: 1) recording and storing user actions and website reactions, 2) 

video-like replays of the web sessions including activity charts, 3) heat maps of mouse 

movement and clicks, 4) visualization of navigation paths, 5) extraction of text input and 

analyses of typing behavior as well as 6) custom event labelling and 7) an API. Features are 

described and reasons are given why they are helpful for researchers. ScreenAlytics is 

delivered to researchers as software-as-a-service. This means that ScreenAlytics runs on a 

remote server provided by the Technical University of Munich so that researchers do not need 

to have special technical skills or support in order to use the software. Prior to using the 

software, an agreement is submitted that all participants must be made aware of the data that 

researchers are collecting through ScreenAlytics and that no one besides the researchers will 

access the collected data. 

4.1.3.1 Recording Interactions 

In order to collect the described peripheral process data, ScreenAlytics can be embedded into 

any web-based environment. Therefore, after registering at the public ScreenAlytics online 

platform, a short JavaScript snippet is provided, which needs to be placed into the source code 

of templates or pages that should be recorded by the researcher. Figure 9 shows an example of 

a provided JavaScript snippet. 

 

Figure 9. JavaScript Snippet Provided by ScreenAlytics 
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When accessing a website that has been configured to be recorded, the ScreenAlytics client-

sided tracking system is loaded from external servers and initializes JavaScript listeners for all 

mouse, keyboard, and window-related events as well as for changes on the Document Object 

Model (DOM, see W3C World Wide Web Consortium, 2005) of the website which reflects 

the content of the website. Those tracked events are then serialized, compressed, encrypted, 

and sent to a server via a secured Websocket or AJAX request every second (see Mozilla 

Development Network, 2016). The backend server application stores the information on a 

server-sided database. Both, the backend application and the database, is provided by the 

ScreenAlytics server, which is based in a data center of the Technical University of Munich. 

Figure 10 describes the process of tracking and storing JavaScript events and lists the tracked 

events. 

 

Figure 10. ScreenAlytics Captures Client-side JavaScript Events and Sends Them to the 
Server-side Database. 

4.1.3.2 Video-like Replays of Recorded Sessions 

ScreenAlytics provides researchers with different viewing applications. Firstly, recorded 

sessions can be replayed just like video based screen recordings. To achieve that, the viewer 

application reconstructs the initial DOM using archived versions of the website assets (e.g., 

images or stylesheets) of the recorded session. Then, it simulates all captured events including 

typed texts, navigation, clicks, scrolling, and resizing of the browser. The website is loaded 
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within an iframe element, and mouse traces are displayed either as a continuous scan path (as 

often used for eye tracking, Harper, 2009) or as a simulated moving mouse cursor in an 

overlay. Researchers have access to a control panel, where projects, sessions, and specific 

pages can be selected. Using a slider, researchers can jump to specific timestamps within a 

recording and change the speed of the replay. The website is displayed in the same size as the 

visitor experienced it, but researchers can zoom in and out, e.g., when watching recordings of 

mobile devices with small display sizes. An event charts in the control panel represents 

frequencies of mouse, keyboard, and navigation events over time. Figure 11 shows the control 

panel and Figure 12 an example visualization of mouse moving in a learning environment. 

 

Figure 11. Researchers can select pages accessed by a user and view the activity of it in the 
control panel 
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Figure 12. Visualization of Mouse Movements from Peripheral Data in a Learning 
Environment About Web Programming 

4.1.3.3 Heat maps 

Heat maps visualize the frequency x/y coordinates on computer screens graphically by using a 

spectral color continuum from usually green (minimum) via yellow (medium) to red 

(maximum). Heat maps are often used as a visualization in eye tracking research and indicate 

fixation counts or fixation duration either for a single person or for an aggregated group (i.e., 

to which extent have areas been focused by a person/group; see Špakov & Miniotas, 2007 for 

an introduction). This concept can be used for mouse behavior in the very same way, as there 

is no difference in data structure. Although it should be noted that the usage of heat maps (for 

eye tracking and mouse tracking data) to infer valid conclusions is a contentious topic (Bojko, 

2009), three different heat map types to visualize mouse movements and clicks as well as for 

scrolling were implemented. 

Regarding mouse movements, research has shown that there is a moderate to strong positive 

correlation between mouse cursor position and gaze position in general (Chen, Anderson & 

Sohn, 2001; Cooke, 2006; Guo & Agichtein, 2010; Huang & White, 2012; Huang et al., 

2011), and that the correlation is higher during active mouse movement (Hauger, Paramythis 

& Weibelzahl, 2011). Moreover, click heat map was implemented as Huang and White (2012) 
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found the smallest gaze-cursor distance when clicking on elements or links (a median of 

74px). The click heat map also allows to see how many clicks have been registered on a 

specific HTML element. 

When the page height is bigger than the browser height, users need to scroll in order to see an 

element which is below the fold. Heat maps were implemented that represent scrolling 

behavior in order to provide researchers with information about what percentage of a user 

group saw content that needs scrolling. Scrolling heat maps also help to check if a specific 

user saw an element (outside the fold) without watching the whole recorded session. These 

inferences are valid as scrolling is necessary to see elements below the fold. 

In ScreenAlytics, researchers can create heat maps filtered by the type of interaction 

(move/click/scroll), specific sessions, and pages. Figure 13 shows a heat map of the 

aggregated mouse movements of an user sample working on a performance task in an online 

learning environment. 

 

Figure 13. Aggregated Mouse Movements shown in a Heat map 

4.1.3.4 Visualization of Navigation Patterns 

Users’ navigation behavior in web based environments has been utilized for research in broad 

range of disciplines, for example in the field of technology enhanced learning (e.g., Bannert et 
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al., 2015; Graf & Liu, 2010; Puntambekar, Sullivan & Hübscher, 2013). Hence, ScreenAlytics 

provides a visualization of navigation patterns including the accessed page, the time spent on 

the page as well as information about the direction of the navigation (back to already visited 

page vs. first visit). Figure 14 shows an example of navigation patterns of three users. The 

tool also enables researchers to easily filter the visualization by pages and sessions and to 

export the navigation data for further analyses. 

 

Figure 14. Visualization of navigation patterns of three web sessions. Colors indicate the 
website, numbers, and radius of the circles indicate the seconds on a page. Backward 
movements are indicated as colored connections. 

4.1.3.5 Text Analyses 

Regarding the analysis of text inputs, ScreenAlytics provides an automated recognition of all 

text input fields that are available on the recorded pages. Researchers can then select sessions, 

pages, and the input fields they want to analyze. ScreenAlytics creates an overview of all 

input activities as well as a simulation of the typing process in real-time. Figure 15 and Figure 

16 illustrate examples of using the text analysis tool for investigating what learners typed in a 

learning environment about website programming. The researcher can see what text has been 

typed into the field and get information about indices of typing behavior (e.g., number of 

deletions, duration of pauses, average typing speed). The typing process can also be replayed 

as a video-like simulation. Preprocessing of data about typing behavior was implemented as 
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1) in research on technology-based learning, this is helpful for investigating how an answer to 

a quiz or task has been developed by the learner and 2) typing behavior is crucial to a range of 

other disciplines such as research on writing where excellent systems are only available for 

offline use (Leijten & Van Waes, 2013), research on authentication (Bergadano, Gunetti & 

Picardi, 2003), or research on the recognition of certain psychological latent variables (e.g., 

Epp, Lippold & Mandryk, 2011; Leong, 2016). 

 

Figure 15. Text analyses are supported by automated recognition of text input fields on 
recorded pages. 

 

Figure 16. Simulation and Statistics of the Typing Process 
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4.1.3.6 Custom Event Labels 

During the video-like replays, researchers can attach custom text labels to a timestamp of a 

session. This can be used for expert coding of theoretically important events, for example, in 

research on technology enhance learning, it can be used to investigate the use of 

metacognitive strategies during learning. Researchers can export the labels for analyses in 

statistical software packages. 

4.1.3.7 API Functions 

An application programming interface (API) has been implemented in order to 1) export data 

to other applications such as tools for data analysis and 2) store and read custom variables. As 

an example, for custom variable tracking, in intervention studies in technology enhanced 

learning, current achievements of learners in different tasks and quizzes can be stored as 

custom variables through the ScreenAlytics API in order to present learners with an overview 

of their learning processes at a later point. Hence, building an additional database and script to 

save this information is not needed. Moreover, researchers can easily export these states for 

further analysis. Figure 17 shows a sample API request from the statistics software R. 

 

Figure 17. Sending an API Request to ScreenAlytics from R. 
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 Technical Evaluation 

It was checked whether the implementation of ScreenAlytics affects the performance of 

websites. As ScreenAlytics requires the implementation of an external JavaScript library, 

slightly longer loading times of websites using it are expected. Hence, the tool 

WebpageTest.org (see Viscomi, Davies & Duran, 2015 for an introduction) was used to 

measure the effect that ScreenAlytics has on the loading of a standard Wordpress 

(https://wordpress.org) based learning environment used in an experiment in educational 

psychology. WebpageTest.org provides several metrics (described in more detail in 

WebPageTest.org, 2018) for testing the loading process. Firstly, “Load Time” was used, 

which is “the time from the start of the initial navigation until the beginning of the window 

load event.”, and where the “window load event” is triggered when the requested page as well 

as all externally resources are loaded. Secondly, the index “StartRender” was compared, 

which is “the time from the start of the initial navigation until the first non-white content is 

painted to the browser display.” (WebPageTest.org, 2018) “Load Time” was expected to be 

affected as external resources are loaded, but “StartRender” value was not expected to be 

increased significantly as ScreenAlytics is requested asynchronously (i.e., not blocking the 

rendering of a website). A total of N = 52 loadings were measured for both conditions (N = 26 

with and N=26 without ScreenAlytics). The configuration of WebPageTest.org was set to 

Connection = DSL (1.5Mbps 50ms RTT), Test Location = Frankfurt, Germany – EC2 and 

Browser = Chrome. As expected, “Load Time” for the condition with ScreenAlytics (M = 

3516, SD = 129 [ms]) was significantly higher than without (M = 2764, SD = 254 [ms], T (52) 

= -.13,670, p < .01). However, “StartRender” was not significantly increased for 

ScreenAlytics (M = 2014, SD = 523 [ms]) compared to the control condition (M = 1959, SD = 

415 [ms], T(52) = -0,432, p = .667). This means that a slightly higher loading time of Mdiff = 

752 ms will only affect users if the website depends on the “window load event”. 
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 Usage Scenarios 

Using peripheral data holds a great potential for exploring and generating data as well as 

validating theories. By visualizing the data as video simulations, relations and patterns can be 

detected more easily than in the complex structures of “raw” data (see Bowker et al., 2013 for 

an extensive discussion on the term). However, once such patterns are assumed, hypotheses 

can immediately be checked by traditional statistical analyses or machine learning algorithms 

on the same dataset with the available objective and non-biased raw data. The proposed 

software can be used for a wide range of both interventions and research. Besides the obvious 

application of usability testing of websites, there are promising usage cases that are further 

described: checking the data quality in online experiments, the video-cued recall method, 

using recorded data to foster learning, and modelling latent psychological variables from 

peripheral data. 

4.1.5.1 Data Quality in Internet Experiments  

Online experiments that are distributed via mailing lists or social networks are able to quickly 

recruit a large sample with a high heterogeneity. However, even advocates of web based 

research methodology claim that “this mode of research has some inherent limitations due to 

lack of control and observation of conditions” (Reips & Birnbaum, 2011, p. 563). It is argued 

that the data recorded by ScreenAlytics can help to reduce these limitations. Although a 

systematic usability study is needed to demonstrate the effectiveness of it, the following 

checklist was already used as a strategy to check the quality of participations in previous 

experiments.  

1. Does the duration of the session deviate extremely from the mean duration? 

2. Are there focus/blur events that indicate that a participant left to another window/tab 

and returned to the experimental environment? 
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3. Does the activity chart of the session indicate salient pauses while taking part in the 

experiment? 

4. Is the device, the screen resolution and browser size that the user accessed the 

experiment with incompatible with the environment? 

If one of the mentioned points were answered with yes, the actual recording was watched to 

decide whether or not that participant needs to be removed from further analyses. 

4.1.5.2 Video-cued Recall 

Another research application could be the use of ScreenAlytics for the video-cued recall 

method (e.g., Miller, 2004). Video-cued recalls aim at reducing the bias of self-reports by 

encouraging participants to view videos of their behavior. Thus, after finishing an experiment, 

participants could be asked to report about behavior that a researcher is interested in while 

watching (parts of) the recordings of his/her session as a cue (e.g., learners are asked to report 

on their usage of self-regulation strategies in their learning processes). This has already been 

suggested for eye tracking data (e.g., van Gog & Scheiter, 2010). Unlike traditional screen 

recordings, intelligent filters could be applied to select specific scenes of interest. For 

example, one could only select and replay scenes in which users navigate to a specific page, 

in which they typewrite, or in which they pause their interactions. 

4.1.5.3 Using Peripheral Data to Foster Learning  

There are several ideas on how learning in technology enhanced environments can be 

supported through the approach that ScreenAlytics uses. Firstly, peripheral data can be used 

to generate simulated scaffolds for learners that represents learning behavior or problem-

solving processes. As mouse movements, clicks, typewriting, etc. can be simulated during the 

learning process, it would be possible to equip pedagogical agents (i.e., virtual characters that 

are designed to support learning processes, e.g., Veletsianos & Russell, 2014) with the ability 
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to actively engage with the learner’s screen. Simulated scaffolds could either come from 

previously recorded behavior of a didactic domain expert or could represent simulated 

worked-out examples. Another approach could be the presentation of complete recorded 

learning sessions of experts to enhance SRL. This follows the rationales of EMMEs which 

was presented in chapter 2.5.4. 

The rapidly growing field of learning dashboards is another potential application (e.g., 

according to the framework proposed in Verbert, Duval, Klerkx, Govaerts & Santos, 2013). 

Learners could be provided with information on how their own interaction with learning 

environments differ from other learning sessions or specifically successful learners and give 

adaptive recommendations (e.g., “You spent only 2 minutes on page XY while successful 

learners normally work about 10 minutes on that page – do you want to review that page?”). 

4.1.5.4 Peripheral Data as Proxy Measures for Latent Psychological Variables 

Besides the discussed possible usage cases, peripheral devices are an unobtrusive and non-

reactive data source that is potentially related to latent psychological variables and can be 

used as a proxy measure for these. Using mouse and keyboard data to model a variety of user 

information is not a new idea. For example, typing behavior and mouse movement (so-called 

keystroke and mouse dynamics) are commonly used in the field of identification and 

authentication (e.g., Bergadano et al., 2003; Jorgensen & Yu, 2011), mouse-tracking is 

popular in usability research (Atterer et al., 2006), and social psychologists successfully made 

use of the mouse behavior in order to assess subjects’ tendency towards stereotyping 

(Freeman & Ambady, 2009; Freeman et al., 2010). Moreover, eye tracking experiments 

discovered a medium correlation (r = .58) between mouse and gaze position (Chen et al., 

2001).  

Although not a new idea, ScreenAlytics makes the collection of the data in online 

environments more convenient and standardized and, as mentioned before, the contextualized 
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data can add parameters to the feature space that are not available in isolated mouse or 

keyboard data. In addition to that, there is still a large research gap in modeling variables in 

the field of technology enhanced learning. Hardly any research has been done that connects 

peripheral data with learning outcomes. Existing psychological theories can give us hints on 

1) which relevant latent states might be hidden in the identified behaviors and 2) where those 

latent states might be in that vast array of information. Besides this deductive method, linking 

data with existing measurements of latent states can also be a way to inductively get new 

insights and build theories on them (e.g., McQuiggan et al., 2008).  

 Conclusions and Next Steps 

Using peripheral data for recording and visualizing sessions in web-based environments has 

many advantages over traditional screen recordings and log data recording. Accessibility and 

processability of the behavioral data is not lost, and statistical analyses can be conducted 

easily without manually coding events. Besides video-simulation, peripheral data allows 

multiple ways of visualizing the data (e.g., heat maps, navigation trees) and bringing it to 

other software for further analyses (through data export or API). No specialized hardware or 

software needs to be installed, and the server-sided storage of the data facilitates the 

acquisition processes without the need to get the video files from client computers. Thus, it 

enables researchers to conduct and implement complex research designs with sophisticated 

methodology outside the lab. Compared to traditional screen recordings, peripheral data only 

needs a fraction of the storage space and is thereby interpretable at runtime. Due to the data 

structure, which is very similar to the structure of eye tracking or physiological data, 

synchronizing it with other data channels or labelling it for machine learning algorithms can 

be done more easily. 

When the ScreenAlytics software has been presented at conferences in the area of educational 

psychology and online research methodology two years ago, feedback to the system and 
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requests to use it were overwhelmingly positive. Researchers suggested possible usage cases 

in their fields and requested features of which some are already implemented while others are 

the development agenda. As one major disadvantage is its limitation to enclosed web 

environments where researchers can place the JavaScript snippet on, a browser plugin that 

allows the recording of any website is the next feature to be built. Moreover, implementation 

of enhanced possibilities to automatically extract interactions with DOM elements is planned 

as this specific task currently requires skills in data mining. 

4.2  Study 1: How Typing Behavior Corresponds with Learning Outcomes and 

Motivation 

Writing tasks are commonly used in technology enhanced learning environments by both 

researchers and instructional designers. Examples range from short open answers in domain-

specific exercises (Yang, Zhang & Yu, 2017), to learning journals and protocols (Cheng, 

2017; Nückles et al., 2009), and complex essays in second language learning (Godwin-Jones, 

2018). Moreover, in the domain of computer science, tasks that require learners to write 

programming code are widely used in online courses (e.g., Király, Nehéz & Hornyák, 2017). 

With the continuous growth of massive open online courses (MOOCs, see Shah, 2015) having 

thousands of learners enrolled in a course, there is a urgent demand for automated analysis of 

learners’ texts in order to provide meaningful cognitive feedback or grade submissions. 

Researchers and instructional designers continue to struggle with such automated feedback or 

adaptive systems on written input of learners, because analyzing this input currently requires 

complex, content-depending, labor-intensive and inflexible algorithms that extract the 

meaning of texts, and interpret it regarding a very specific task. Although there has been huge 

progress in using artificial intelligence and machine learning for text processing in the last 

years, big training data sets are needed to achieve acceptable results that are still very specific 

regarding the task, content and domain. As an example, in conversational agent systems, 
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simple algorithms are often implement as rule-based recognition of specific cueing words 

with randomly chosen answers of a previously defined set, which is why such systems are still 

in the “uncanny valley” of not being accepted by learners as an adequate conversational 

partner (Schönbrodt & Asendorpf, 2011; Shiban et al., 2015). Another branch of research 

focuses on the prediction of demographic or latent psychological variables through text 

mining. As an example, Kucukyilmaz (2006) used text-mining algorithms on chat messages 

to predict the gender of users, reaching prediction accuracies up to 84%. Another example is 

done by Anjewierden, Kollöffel, and Hulshof (2007), who tried to discover regulatory 

activities in collaborative learning environments using chat messages. 

As it is very challenging to gain information for adaptive systems or the measurement of 

latent psychological variables from text content, another idea is the use of meta information 

about text and writing processes as an additional measure to improve prediction accuracy for 

proxy measurements of latent psychological variables. This can still be content-related meta 

data such, e.g., using the grammatical structures of texts to provide feedback on text 

coherence (e.g., Lachner, Burkhart & Nückles, 2017). However, meta data on writing 

processes can also be data on typing behavior, also referred to as keystroke logging or 

keystroke dynamics. Data on typing behavior typically describes events for pressing and 

releasing keys, including information on the type of key (e.g., characters, numbers, special 

keys such as control or delete) and a timestamp (see chapter 4.1.1.2). Typing behavior has 

already been used in other domains, e.g., identification and authentication (Bergadano et al., 

2003). In research related to learning and instruction, first attempts are made to use keystrokes 

to distinguish frustrated from non-frustrated learners (Leong, 2016), detecting stressed 

learners in learning management systems (Lim, Ayesh & Stacey, 2014; Rodrigues, 

Gonçalves, Carneiro, Novais & Fdez-Riverola, 2013), detecting emotional states (see 
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Kolakowska, 2013 for a review) such as anger and excitement (Epp et al., 2011), or 

engagement and boredom (Allen et al., 2016). 

However, when documenting this study, there was no research yet on whether typing 

behavior corresponds with learning outcomes and motivation. Thus, the idea of this study is to 

investigate whether meta-data of writing processes in programming environments can 

contribute to this discourse.  

Typing behavior as a proxy measure for motivation 

As motivation is an important factor in different models of SRL (e.g., Winne & Hadwin, 

1998; Zimmerman & Moylan, 2009), it would be a major achievement to model the current 

motivation of learners through typing behavior. Motivation is broadly defined as an internal 

state that triggers behavior, controls the direction of it, and maintains it (for a detailed 

discussion on terms regarding motivation, see Murphy & Alexander, 2000). Being such a 

central prerequisite for learning, measuring motivation is important not only for further 

research in learning and instruction, but also to support and enhance learning. Especially for 

adaptive learning environments that react to learners’ variables, a reliable and valid measure 

of motivation that is available in real-time is key.  

This study focuses on the cognitive-motivational process model (Vollmeyer & Rheinberg, 

1998) and the effects on SRL (Rheinberg, Vollmeyer & Rollett, 2000). The model describes 

current motivation depending on stable characteristics of the person (e.g., motives or 

interests) as well as on flexible characteristics of the situation (e.g., task difficulty or learning 

environment) that is related to the current or upcoming task). Rheinberg, Vollmeyer and 

Burns (2001) describe the four dimensions anxiety, probability of success, interest, and 

challenge to be specifically relevant for current motivation in learning situations. In their 

model, they describe time on task and quality of performed learning activities as variables 

influenced by the current motivation and as mediators of the learning process.  
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At the moment, motivation is either measured as a direct self-report through questionnaires, 

think-aloud protocols, or physiological responses. Researchers also use indirect measures 

such as observable cognitive (e.g., recall) or behavioral (e.g., performance) responses that 

need additional measures in order to be interpreted regarding motivation (Touré-Tillery & 

Fishbach, 2014). Thus, current measures of motivation are hardly able to provide real-time 

measures without being reactive or disturbing the learning process. Thus, in this study, typing 

behavior is examined as a potential real-time, unobtrusive measure for motivation. 

Previous research rather focused on detecting specific events that are related to motivation 

than on predicting the actual level of motivation that learners experience in terms of the 

introduced model and its operationalization. Cocea and Weibelzahl (2006, 2007b) used log-

file analyses to detect disengagement by applying several data mining techniques. They 

reached accuracy rates of up to 87% in predicting disengagement of learners. However, their 

data labelling of learners being engaged or disengaged was based on subjective expert ratings 

of log-files (e.g., reading a page for less than 30 seconds is disengaged). Thus, their 

algorithms decided on the same criteria as the experts and there has not been any validation 

that those criteria are really related to the level of engagement. One could criticize that they 

did not predict engagement but only recognized iterative patterns in log-files. This stresses the 

importance of valid data labelling as described before. Alike, Vicente and Pain (2002a, 

2002b) let participants view recorded interactions in intelligent tutoring systems and 

instructed them to fill detailed coding form regarding learner’s motivational traits and states. 

Although not rated by the learners themselves, the data labelling was well-grounded on a 

motivational framework. McQuiggan et al. (2008) labelled physiological data (heart rate and 

electrodermal activity) with self-reports of self-efficacy and reached classification rates of up 

to 86.9%. As these previous attempts show that there is information about the described 

events and variables included in the observable learning process, and as keystrokes depict 
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parts of this observable learning process, keystrokes seem to be a potential proxy measure for 

motivation that is worth investigating. 

 Research Question and Hypotheses 

The rationale of recording and analyzing typing behavior is that the fluency and flow of 

writing is a proxy for underlying cognitive processes. This is why the focus of analyses is on 

different indices such as length or frequency of pausing, corrections, etc. (e.g., Leijten & Van 

Waes, 2013). Similar to speech, indices like the length of a pause are interpreted as measures 

of cognitive effort. As an example, studies have shown that the duration of pauses increases 

with the level of text units, i.e., pauses between words are shorter than pauses between 

sentences, whereas pauses between sentences are shorter than pauses between paragraphs 

(Spelman Miller, 2000; Wengelin, 2006). Moreover, corrections may relate to a discrepancy 

between the intention of the writer and his or her produced text so far (Leijten, Van Waes & 

Ransdell, 2010), but also to grammatical errors. Thus, as previous research indicates that 

pausing and revisions indicate hurdles during the writing process, it is argued that indicators 

of higher typing speed (i.e., less pausing, less revisions) might indicate less struggling in 

writing.  

Thus, it is hypothesized that indices of higher typing speed while typewriting continuous text 

in the recall task is associated with higher recall performance, higher declarative, and higher 

procedural knowledge (Hypothesis 1: Fast-Typing-High-Performance-Hypothesis). Likewise, 

it is hypothesized for typing during coding exercises that indices of higher typing speed 

correspond with higher declarative and procedural knowledge (Hypothesis 2: Fast-Coding-

High-Performance-Hypothesis).  

Regarding motivation, explorative analyses of the correspondence with typing behavior are 

conducted, but no explicit hypotheses are formulated. However, as time on task and quality of 

performed learning activities are named as potential indicators for motivation (Rheinberg et 
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al., 2001), it is argued that keystrokes represent more fine-grained indices of time on task, and 

that they might be a proxy measures of the quality of learning activities (i.e., texts) and thus, 

correspond with motivation. 

 Method 

4.2.2.1 Sample and Design 

In a correlation study, 43 undergraduate students (10 males; Mage = 19.66; SD = 1.03) 

majoring in media communication at a German university participated. All were enrolled in 

one of two parallel courses (N1 = 22; N2 = 21) dealing with the conception and development 

of digital learning environments. Participants received no incentives but learning contents 

(website programming) were part of their course curriculum.  

The laboratory was equipped with 22 iMac desktop computers (21,5 inch display with a 

resolution of 1920x1080, tethered apple mouse and keyboard). Firefox was used as the web 

browser, and the learning environment was presented in full screen mode. 

4.2.2.2 Learning Materials 

Students had to learn the basic concepts, terms, syntax and properties of “cascading style 

sheets” (CSS), a common standard to style websites. Learning material was structured linear 

and consisted of 20 content pages including about 2200 words, two tables, two illustrations, 

13 code examples and five interactive coding exercises. In interactive coding exercises, 

learners had to write CSS code to solve a given task (e.g., “Set the width of the image to 200 

pixels”). The results of their code were presented below the text area when clicking on a “Try 

it!” button as well as verbal feedback was provided by an animated pedagogical agent 

concerning syntax and task mistakes or success (e.g., “Check line number 5 of your code. Are 

you sure that you use the right property?”). Navigation back and forth was possible either 



Study 1: How Typing Behavior Corresponds with Learning Outcomes and Motivation 

 67 

 

stepwise or by jumping to a specific page selectable from a dropdown menu. The learning 

environment and a sample source code of CSS is shown in Figure 18. 

4.2.2.1 Instruments 

Typing Behavior and Baseline 

The JavaScript based ScreenAlytics framework (see chapter 4.1) was implemented into the 

learning environment to record events triggered by the keyboard. Event data consisted of a 

timestamp accurate to the nearest millisecond and the pressed keys. Sampling rate for event 

recognition was approximately 60 times per second. 

In order to get a standardized baseline for the typing indices (i.e., typing speed, pauses, 

corrections), the typing behavior of all participants was recorded while they copied the 

German sentence “Franz jagt im komplett verwahrlosten Taxi quer durch Bayern,” which 

contains all letters from A to Z.  For the coding speed baseline, participants were asked to 

copy two lines of CSS codes containing all relevant special characters (i.e., {}#;:.=”’). 

Initial Motivation 

Prior to learning, initial motivation was measured using the “questionnaire to assess current 

motivation in learning situations” (QCM; Rheinberg et al., 2001). QCM asks for the degree to 

which a participant agrees on 18 sentences related to current motivation for an upcoming 

learning situation (e.g., “This exercise is a real challenge to me.”). The questionnaire is a 7-

step Likert scale ranging from 1 (does not apply) to 7 (applies). Internal consistency was 

Cronbach’s a = .853. 
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Figure 18. Upper screenshot shows the learning environment used in both studies. Learners 
typewrite CSS code in a text-area and see the results beneath. Animated pedagogical agent 
gives feedback regarding mistakes or success. Bottom screenshot shows example CSS source 
code defining the design of a table element. 

Spatial Ability 

Spatial ability was assessed as it was found to facilitate learning with multimedia (Münzer, 

Seufert & Brünken, 2009) and to be relevant in the domain of programming (Jones & Burnett, 
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2008). It was assessed by using an online version of the VZ-2 paper folding test (Ekstrom et 

al., 1976), a timed test including 10 problems in which participants have to imagine folding 

(mentally fold) a square sheet of paper two or three times according to a drawn instruction. In 

the final instructional drawing, the imaginary folded paper is shown as hole-punched at a 

specific position. Participants are then required to select the right illustration from five options 

that shows how the paper would appear when unfolded. The test was timed to three minutes.  

Knowledge Tests 

Prior declarative knowledge was assessed with 5 single-choice and 12 multiple-choice items 

(e.g., “Which property changes the font in CSS?”). Internal consistency was Cronbach’s a = 

.889.  

Prior procedural knowledge was assessed by an authentic web design coding task. Students 

were instructed to design a website according to four given design specifications such as “all 

headings should have a font size of 16px.” Codes that were given as answers were rated based 

on a self-developed rating scale by the author and a research assistant. Interrater reliability 

was Kappa = .89, p < .01. In case of disagreement, raters discussed the final rating.  

The same instruments were used to assess post knowledge after learning. Internal consistency 

of the declarative knowledge test was Cronbach’s a = .643. Interrater reliability of procedural 

knowledge test was Kappa = .93, p < .01. Again, raters discussed final rating in case of 

disagreement. 

Recall Task 

A recall task was presented after finishing half of the learning content. It prompted learners to 

describe what they learned about the three methods of including CSS code on a website. They 

were instructed to name and explain them in their own words. For each of the named include-

methods, learners could reach up to three points (naming, explaining the functionality, and 
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naming the syntax). Answers were coded by two raters. Interrater reliability was Kappa = .81, 

p < .01. Raters discussed final rating in case of disagreement. 

Current Motivation  

A short measure of three seven-step Likert-scaled items (e.g., “I am sure I will find the right 

solution.”) was presented just before two of the interactive coding exercises and before the 

recall prompt. This was done to keep changes on motivation between the time of measuring 

motivation and recording the typing behavior in tasks as small as possible. Due to technical 

issues, answers of the motivation measure prior to the recall prompt were not saved in the 

database. Internal consistency was Cronbach’s a = .788 for the first exercise and Cronbach’s 

a = .766 for the second exercise. 

4.2.2.2 Procedure 

Students filled out a consent form to participate in the study. All remaining parts were done in 

an online environment: demographic variables (sex, age, semester), initial motivation (QCM), 

spatial ability (paper folding task), baselines for typing and coding, prior declarative and 

procedural knowledge. Students learned for about 45 minutes. After finishing half of the 

learning content, students were to work on a free recall task. Current motivation was assessed 

before each of two coding (programming) exercises and before the recall task. They finished 

with the post-tests for declarative and procedural knowledge.   

  Results 

4.2.3.1 Statistical Analysis and Computation of Scores 

The Type I error rate was set to .05 for all analyses. One-tailed tests were used as directional 

hypotheses were formulated. Outliers were defined as values greater than the upper quartile 

plus three times the interquartile-range according to conservative statistical definition (Field, 
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2009, p. 135). IBM SPSS Statistics 22, PHP statistics library, and R were used to analyze the 

data.  

Due to technical issues, data of five participants were missing for analyses regarding 

declarative and procedural knowledge, the paper folding task, and initial motivation. Table 2 

shows the means and standard deviations of the central variables.  

Table 2 

Means and standard deviations of important variables. 

Variables 
Pre Post 

M SD M SD 

Declarative knowledge (Max = 46) 11.03 10.92 32.42 5.92 

Procedural knowledge (Max = 15) 1.24 3.84 11.29 3.69 

Spatial ability (Max = 10) 6.54 2.23 - - 

Initial motivation (Max = 7) 4.20 .84 - - 

Current motivation, Exercise 1  
(Max = 7) 

- - 4.30 1.54 

Current motivation, Exercise 2  
(Max = 7) 

- - 3.83 1.60 

Note. N = 38 

Correctly solved items of pre and post declarative and procedural knowledge test were 

summed up to individual scores. Item values of the QCM were summed up to a total initial 

motivation score. Items of the short-scale for current motivation were summed up to total 

scores separately for exercise 1 and 2.  

The following indices / features were extracted for typing behavior: speed as the ratio of 

keystrokes and typing time, frequency of short pauses, long pauses, total number of 

keystrokes and deletings. Pauses were defined as not registering keystrokes for 1 to 6 seconds 

(short pause, ]1;6[) and 6 to 60 seconds (long pause, [6;60]). The threshold of 6 seconds 

represents the rounded value of a median split of all pause durations in typing tasks. Pauses 

were removed if the duration exceeded 60 seconds or if a page change was recognized 
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between two keystrokes. Individual means of all indices were computed separately and 

overall for all interactive exercises as well as for the recall task. Standardized means of typing 

indices for the recall task and for the interactive coding exercises were computed by 

subtracting the assessed baseline values. 

4.2.3.2 Fast-Typing-High-Performance-Hypothesis 

Bivariate Bravais-Pearson correlations were computed between the indices of typing behavior 

that indicate fast typing during the recall task and a) performance in recall task, b) pre/post 

declarative knowledge, and c) pre/post procedural knowledge. Against the assumptions, at 

least one indicator of fast typing significantly negatively correlated with performance in recall 

task, and prior declarative, procedural, and post declarative knowledge. Correlations with post 

procedural knowledge were not significant. Table 3 shows detailed correlations. Note that 

higher numbers of short pauses, long pauses, keystrokes, and deletings indicate slower typing. 

More than one index of typing behavior was significantly correlated with recall performance 

and post declarative knowledge. Thus, multiple linear regressions were computed for those 

variables to identify the variance explained by the typing indices. As strongly correlated 

predictor variables tend to bias multiple regression models, collinear typing indices were 

identified and subsequently rejected. A correlation threshold of Pearson’s r > .7 was adopted 

to remove them. If two variables were collinear, the predictor with a stronger correlation with 

the specific performance was kept.  

Hence, for recall performance, the number of short pauses and the number of keystrokes were 

kept. For post declarative knowledge, both typing speed and the number of short pauses were 

kept. For prior declarative and procedural knowledge only the number of short pauses was 

significantly correlated. 
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Table 3 

Bravais-Pearson correlations between indices of typing behavior during recall task and 

performance variables. 

  
Pre Post 

 
Recall Declarative Procedural Declarative Procedural 

Typing speed 
-.129 

(p = .233) 

-.281 

(p = .063) 

-.264 

(p = .075) 

-.376 * 

(p < .05) 

.168 

(p = .193) 

Number of short 
pauses 

.643 ** 

(p < .001) 

.518 ** 

(p < .001) 

.332* 

(p < .05) 

.360 * 

(p < .05) 

.128 

(p = .242) 

Number of long  
pauses 

.131   
(p  = .214) 

-.093  
(p = .300) 

-.197  
(p = .132) 

-.027  
(p = .441) 

.080  
(p = .332) 

Number of 
keystrokes 

.709 ** 

(p < .001) 

.212 

(p = .115) 

.039 

(p = .413) 

.020 

(p = .456) 

-.075 

(p = .341) 

Number of 
deletings 

.576 ** 

(p < .01) 

.244 

(p = .086) 

.129 

(p = .238) 

.054 

(p = .383) 

.105 

(p = .288) 

Note. * p < .05; ** p < .01; N = 38 

In order to control variability among students, regression models including the following 

predictors were first computed: prior declarative knowledge, prior procedural knowledge, and 

spatial ability. The residuals of each regression were then entered into separate secondary 

regressions, including the previously identified typing indices as predictors. Thereby, the 

unique variance of the particular typing indices could be determined. Table 4 shows the 

summaries of the conducted multiple regression models.  

The analyses of the typing indices of the recall task discovered statistically significant 

relationships for recall and prior declarative knowledge. Regarding recall, the typing indices 

improved prediction of the recall performance by 23.9%. Regarding prior declarative 

knowledge, only spatial ability was used as a predictor and the first model was not significant. 

However, the second model was significant with the number of slow pauses predicting 24.5% 

of the variance. For post declarative knowledge, the non-significance of the second model 

implies that the two typing indices did not add a significant improvement in prediction to the 

first model. 



Study 1: How Typing Behavior Corresponds with Learning Outcomes and Motivation 

 74 

 

Table 4 

Summaries of the multiple regression models for performance on recall, prior and post 

declarative knowledge predicted by typing behavior during the recall task. 

Model / Predictors sig. df1, 
df2 

Recall Prior Declarative Post Declarative 

R2
adj F R2

adj F R2
adj F 

(I) DKpre, PKpre, SA .002 3, 29 0.334 6.35 - - - - 

(II) SP, KS .008 2, 28 0.239 5.71 - - - - 

(I) SA 
.456 
(n.s.) 1, 33 - - -.013 0.57 - - 

(II) SP .002 1, 32 - - .245 11.71 - - 

(I) DKpre, PKpre, SA .004 3, 31 - - - - 0.346 5.470 

(II) SP, TS 
.649 
(n.s) 3, 30 - - - - 0.033 0.469 

Note. * p < .05; ** p < .01; N = 38; PKpre = prior procedural knowledge, DKpre = prior declarative 
knowledge, SA = spatial ability, SP = number of slow pauses, KS = number of keystrokes. First step (I) 
was done to control for individual differences in PKpre, DKpre and SA.  

4.2.3.3 Fast-Coding-High-Performance-Hypothesis 

Bravais-Pearson correlations were computed between the same indices of typing behavior and 

performance and examined the typing behavior during interactive coding exercises. In line 

with the assumptions, each performance measure was correlated with at least one indicator of 

fast typing. Table 5 gives an overview of the detailed correlations. Note that higher numbers 

of short pauses, long pauses, keystrokes and deletings again indicate slower typing.  

After that, multiple regression analyses were computed as described in the previous 

hypothesis. Conducting the collinearity analyses identified the following predictors to keep 

for further analyses: for recall performance, the typing speed, and number of short pauses 

were kept. For prior procedural knowledge, only typing speed was kept. For post declarative 

knowledge and for post procedural knowledge, all variables were kept. Table 6 shows the 

summaries of the conducted multiple regression models.  
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Table 5 

Bravais-Pearson correlations between indices of typing behavior during interactive coding 

examples and performance variables. 

  
Pre Post 

 
Recall Declarative Procedural Declarative Procedural 

Typing speed .444 *  
(p < .05) 

.288*   
(p < .05) 

.316*   
(p < .05) 

.429 **  
(p < .01) 

-.046 
(p = .400) 

Number of short 
pauses 

-.499 **  
(p < .01) 

-.269   

(p = .054) 
-.259 

(p = .061) 
-.469 **  
(p < .01) 

-.392 **  
(p < .05) 

Number of long 
pauses 

-.212  
(p = .094) 

-.179   
(p = .141) 

-.309*  
(p = .029) 

-.361 *  
(p < .05) 

-.417 *  
(p < .01) 

Number of 
keystrokes 

-.212  
(p = .094) 

-.170   
(p = .157) 

-.172 
(p = .155) 

-.269 
(p = .054) 

-.536 **  
(p < .01) 

Number of 
deletings 

-.359 * 
(p < .05) 

-.260   

(p = .057) 

-.166 

(p = .160) 
-.364 *  

(p < .05) 
-.251  

(p = .073) 

Note. * p < .05; ** p < .01; N = 38 

Table 6 

Summaries of the multiple regression models for performance on recall, post declarative and 

procedural knowledge predicted by typing behavior during interactive coding exercises. 

Predictors sig. df1, 
df2 Recall 

Post  

Declarative 
Post 
Procedural 

R2
adj F R2

adj F R2
adj F 

(I) PKpre, DKpre, SA .003 3, 28 0.330 6.09 - - - - 

(II) SP, TS .007 2, 29 0.244 6.00 - - - - 

(I) PKpre, DKpre, SA .004 3, 31 - - 0.283 5.46 - - 

(II) SP, LP, TS 
.189 
(n.s.) 3, 29 - - 0.062 1.70 - - 

(I) PKpre, DKpre, SA 
.095 
(n.s.) 3, 28 - - - - 0.115 2.34 

(II) SP, LP, KS .004 3, 30 - - - - 0.285 5.38 

Note. N = 38; PKpre = prior procedural knowledge, DKpre = prior declarative knowledge, SA = spatial 
ability, SP = number of slow pauses, LP = number of long pauses, KS = number of keystrokes. 

Typing indices of interactive coding exercises significantly improved prediction of recall 

performance by 24.4% and of post procedural knowledge by 28.5%. Typing indices could not 

add significant improvement in predicting post declarative knowledge. 
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4.2.3.4 Typing Behavior and Motivation 

Relations were explored between typing behavior and motivation by conducting two-tailed 

bivariate Bravais-Pearson correlations of the typing indices including 1) the recall prompts, 2) 

all interactive coding exercises, 3) the exercise that followed the first current motivation 

measure and 4) the exercise that followed the second current motivation measure, with a) the 

initial motivation, b) the first measure of current motivation and c) the second measure of 

current motivation. Table 7 shows the correlation coefficients with the motivation variables 

(a-c) in the first and the task of which the indices were computed in the second line (1-4). 

Table 7 

Bravais-Pearson correlations between initial motivation and current motivation and typing 

indices during different tasks. 
 

a) Initial Motivation b) Current Motivation,  
Exercise 1 

c) Current Motivation,  
Exercise 2 

 
1) Recall 2) Exc., 

Overall 
3) Exc. 
1 

4) Exc.  
2   

2) Exc., 
Overall 

3) Exc. 
1 

4) Exc. 
2 

2) Exc., 
Overall 

3) Exc. 
1 

4) Exc. 
2 

TS - - -.225  
p = .186 - - - - .226 

p = .167 - - 

SP .374* -.304  
p = .064 - -.276 

p = .120 - -.356* - - -.279 
p = .085 - 

LP - -.301  
p = .063 - -.244 

p = .165 -.335** -.388* -.249 
p = .142 - -.242 

p = .138 - 

D
E 
L 

- -.237  
p = .146 

-.305  
p = .071 - -.230  

p = .153 -.540** -.309  
p = .067 - -.284 

p = .080 
-.227 

p = .176 

KS .253  
p = .143 -  -  -.354* - - - - 

Note. * p < .05; ** p < .01; N = 38; Motivation variable is listed in the first line, second line lists from 
which task the typing indices were computed.  All correlation coefficients with p < .200 were reported. 
TS = Typing speed, SP = Number of slow pauses, LP = Number of long pauses, DEL = Number of 
deletings, KS =Number of keystrokes. 

Analyses revealed the same pattern for motivation as for performance. At least one typing 

index for recall task correlates significantly positive with initial motivation, r = .374. In 

contrast, only significantly negative correlations were found from r = -.540 to -.354 between 

typing indices during exercises and initial / current motivation measures. Actual typing speed 



Study 1: How Typing Behavior Corresponds with Learning Outcomes and Motivation 

 77 

 

(ratio of keystrokes and typing time), however, did not correlate significantly with any 

motivation measure.  

 Discussion 

4.2.4.1 What Was Done and Found 

As discussed in the introduction of this study, it is mostly regarded as common sense that 

writing processes can tell about cognitive processes. However, the interpretation of writing 

processes regarding different psychological variables is still very difficult. Thus, this study 

examined how differentiated indices of typing behavior correspond with performance and 

motivation in a learning environment about website programming. Two different types of 

writing tasks were used. On the one hand, learners had to produce open text and summarize 

methods of using CSS code on a website. On the other hand, learners had to write program 

code in order to solve given design problems.  

It was expected that indices of higher typing speed correspond with higher performance 

regarding recall and post knowledge. However, the results clearly showed that the opposite 

was true: subjects who showed a slower typing behavior (i.e., lower typing speed, higher 

number of short pauses) performed better on the recall task, the prior declarative and 

procedural knowledge tests, and the post declarative knowledge test. Although the relations 

with post procedural knowledge were not statistically significant, they tended to the same 

direction. Thus, the Fast-Typing-High-Performance hypothesis needs to be rejected and 

revised. 

At the same time, it was expected that subjects who show a higher typing speed while 

working on interactive coding exercises would tend to show higher performances. 

Interestingly, this was found to be true regarding recall performance, prior, and post 

knowledge. According to these results, the hypothesis has been confirmed. 
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4.2.4.2 How to Interpret the Results 

Taking the results of the two hypotheses into account, the findings show that typing behavior 

of continuous text has to be interpreted reverse to typing behavior of typing program code 

when one wants to link it with task performance. This is counterintuitive but comprehensible: 

Coding tasks require the recall of previously learned proceduralized chunks of code following 

a given script comparable to an instruction manual. Learners who are able to do a fast and 

correct recall will have a higher typing activity. Learners who can correctly code syntax will 

make less mistakes and therefore show less activity in deleting and correcting their code. In 

contrast, typing continuous text in the open recall task requires the reconstruction and 

verbalization of declarative knowledge. Although this needs to be investigated again, learners 

who show slower overall typing speed might have a higher conscientiousness. Frequent 

corrections and more pauses seem to indicate a high persistence and the set of a high standard. 

The different requirements of the tasks are comparable with building constructions from Lego 

bricks. An expert Lego builder will be fast when following given building instructions but 

will probably make more corrections and will need more bricks when we ask her to freely 

replicate a model of her house with Legos. 

4.2.4.3 Finding Useful Indices 

Some of the indices seemed to be collinear due to their operationalization (e.g., number of 

keystrokes should be higher when learners make a lot of corrections / deletings). Identifying 

unique typing indices has been very important in order to not overestimate the relations and 

will help examining the right features in future studies. Alike, it was important to examine the 

task performances without the influence of personal characteristics of knowledge and spatial 

ability. The achieved explained variances of up to 28.5% show the high potential of analyzing 

typing behavior.  
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4.2.4.4 Motivation 

Regarding the explorative analyses of the association of typing behavior with motivational 

states, the results seem to follow the pattern of task performance. Learners that show a higher 

typing speed during the recall task tend to experience lower (initial) motivation whereas 

higher typing speed during exercises indicates higher (current) motivation. While this was 

significant for the first exercise that was analyzed, it could not be found clear-cut in the 

second exercise. Unfortunately, due to technical issues, measurement for current motivation 

was not available before the recall task. 

4.2.4.5 Methodological Challenges 

Designing studies about the correspondence of data channels with established measures of 

constructs brings about methodological challenges. One could argue that a correlation study is 

not appropriate to examine and understand a new data stream as one cannot draw causality 

from correlation. However, with this first investigation of the relationship between typing 

behavior and learner variables, the stage is set for further investigations of causality and 

deliver important hints on indices of typing to look at. Moreover, considering the main 

objective to predict variables in order to adapt learning environments, causality is not as 

essential as it would be for a work that is solely dedicated to deepening our understanding of 

underlying theoretical assumptions.  

Additionally, many of the presented studies in the literature review use machine learning 

approaches to classify or predict latent variables. Of course, future studies on possible 

adaptions should investigate the accuracy of machine learning algorithms as well. However, it 

is argued that it is important to find out about correlations as a first step because machine 

learning algorithms draw the curtain over underlying mechanisms that help us to understand 
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relations between indices of observable behavior and latent variables (see Kitchin, 2014 for an 

overview).  

Another challenge is that variables are not stable throughout a learning session. In this study, 

current motivation is a variable that changes during the learning process. Thus, a continuous 

measurement is needed to model it. Even though typing behavior can only be measured when 

learners currently work on writing tasks, it is continuous within these tasks. A fundamental 

question when analyzing continuous data is how long are the segments that we observe for a 

prediction. In this study, different time segments were not tested but it was looked at the 

whole task. This needs to be addressed in further investigations. 

4.2.4.6 Conclusions & Future Directions 

Recording and analyzing peripheral data to predict variables relevant for learning has many 

advantages compared to other objective measures, such as physiological data, eye-tracking 

data, or log-files. It has no special hardware-requirements, is unobtrusive, non-reactive, and 

relatively easy to implement and analyze. However, compared to other measures, it lacks 

valid examinations of possible correspondences to relevant latent psychological variables. 

This study attempted to reduce this discrepancy by systematically labelling data of typing 

behavior with measures of latent state variables which are relevant for learning, namely, 

motivation and task performance.  

The study confirms that there is a relationship between the typing behavior and achieved task 

performances. However, this typing behavior needs to be interpreted task-specifically.  

The results of this study show that it is worth opening the black-box of the more commonly 

used log-files. While log-files only provide us with information about where and when a 

learner navigated or about specific pre-defined events, peripheral data gives us a more 

detailed insight into what happens during the learning process. Given this high resolution and 
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granularity of measures for behavior in online environments, operationalization of latent 

constructs can be more accurate compared to classic log files. 

There is still need for further validation of the presented results regarding different domains 

and contents. As typing behavior was found to be task specific, it is assumed that within 

continuous texts it can be interpreted independent from content, but this needs to be 

investigated with other contents.  

More research is also needed to interpret, generalize, and specify this large set of information 

regarding different latent variables, upcoming and changing peripheral data of mobile 

devices, and of course, applications to enhance learning.  

As recording and analyses of typing behavior can be done at runtime, the prediction of 

performance and motivation could be applied to improve both timing and content of 

instructional support. Detecting motivation could be used to improve the adaption of the 

difficulty of the presented learning content or prompt learners. It is important to note that, 

although some of the examined indices could explain considerable variance of the latent 

variables, the presented data stream cannot be used as the only instrument to measure learner 

variables or adapt interventions. Multimodal data is needed to make appropriate adaptions. 

Combining a set of predictive measures such as peripheral data together with rapid 

assessment tasks (Kalyuga, 2008) is a promising approach that should be followed and 

evaluated in future research. 

4.3 Study 2: How Mouse Behavior Corresponds with Cognitive Load and 

Affect States 

Reliable and valid measurement of experienced CL (see chapter 2.1) is a theoretical and 

methodological issue that has been discussed for decades (e.g., Brünken et al., 2003; Klepsch 

et al., 2017). Moreover, real-time process measures of CL that are reflective of the dynamic 
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nature of self-regulation and CL are still demanded in recent literature (Seufert, 2018). As 

high ECL can hinder learning, finding a suitable real-time measure for it would offer a range 

of possibilities, both for recognizing badly designed environments, but especially for adaptive 

learning environments that could then adapt the difficulty or level of support to the needs of 

learners. In this quasi-experimental study, the relationship between mouse behavior and CL is 

investigated. More precisely, it examines whether pauses in the interaction with the learning 

environment (no mouse and keyboard use) are associated with increased CL. Moreover, 

detailed peripheral data as introduced in chapter 4.1 were recorded to perform explorative 

analyses regarding correlations with affect scales and learning performance. 

 Measurement of Cognitive Load 

Various indicators are used to measure CL. Wierwille & Eggemeier (1993) distinguish 

between three main categories for measuring cognitive load: physiological, subjective and 

task- or performance-based indicators. Other authors (Brünken et al., 2003, 2002) classify the 

available measurement methods by the two dimensions of objectivity (subjective or objective) 

and causal reference (direct, indirect).  

The objectivity dimension describes whether the method records subjective, self-reported 

data, or objective observations of sources such as behavior (e.g., reaction times), 

physiological reactions (e.g., heart rate) or learning outcomes. The dimension of the causal 

reference classifies the methods according to whether the observed phenomenon has a direct 

or indirect relation to CL. For example, there is a direct relationship between CL and the self-

reported difficulty of learning materials, because difficulty is directly related to intrinsic and 

extraneous load. An indirect relation results, for example, between measures of the learning 

outcomes and the CL, because the theory assumes that the learning performance decreases 

due to a high CL (Brünken et al., 2002). Examples of physiological indicators are heart rate 

(Paas & van Merriënboer, 1994), pupil dilation (Beatty, 1982; Van Gerven, Paas, Van 
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Merriënboer & Schmidt, 2004) or EEG (Antonenko, Paas, Grabner & van Gog, 2010). These 

measure CL indirectly, for example, high CL could lead to an increased heart rate. However, 

it is also possible that e.g., the emotional reaction to the learning material is responsible for 

these changes (Brünken et al., 2003). 

Subjective indicators work with a self-report of learners regarding their CL during or after 

learning. For example, an indirect measurement can be the subjectively reported level of 

mental effort that a learner puts into the understanding of learning materials (e.g., Paas, van 

Merriënboer & Adam, 1994). Such self-report techniques are widely used in CL research 

(Paas, Tuovinen, Tabbers & van Gerven, 2003). However, researchers doubt the ability of 

individuals to rate their load with high accuracy (e.g., Schnotz & Kürschner, 2007). More 

recent self-report measures are able to measure differentiated types of CL (Klepsch et al., 

2017), either by informing learners about CLT before letting them report about their CLT or 

by using a naïve rating without such training. A second subjective measurement used by 

Kalyuga, Chandler and Sweller (1998), for example, allows the persons to rate how difficult 

the learning material is. As mentioned, this self-reported difficulty refers directly to the CL. 

Kalyuga et al. (1998) reported a high sensitivity of these scales for differences in the 

preparation of training. Brünken et al. (2003) criticize, however, that these differences can 

also be explained by individual competence levels or different levels of attention. As CL is 

dynamically changing during the learning process, depending on the learning material and the 

cognitive constitution of the learner, self-report measures face the inherent drawback that 

ratings cannot be acquired during the cognitive action of interest (e.g., Schmeck, Opfermann, 

van Gog, Paas & Leutner, 2015).  

The paradigm of dual task provides an objective, direct and online measure. It is based on the 

assumption that the limited cognitive resources can be shared flexible among parallel tasks. 

Simultaneously to a primary task (usually a learning task), an artificial secondary task is 
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presented. The performance of the secondary task is directly associated with CL: if the 

primary task needs a high amount of cognitive capacity, performance of the secondary will 

decrease. Therefore, it is necessary to assess a baseline of the solely execution of the 

secondary task without being loaded by the primary. An often used secondary task consists of 

the learner monitoring an element and reacting to its changing color. Reaction time then 

indicates the amount of CL (Schoor, Bannert & Brünken, 2012). Another example is the 

execution of an internalized task such as food tapping a previously practiced rhythm. 

Precision of the executed rhythm serves as an indicator for CL (Park & Brünken, 2015). In 

working memory research, the dual-task method has long been the first choice (e.g., Baddeley 

& Logie, 1999). Surprisingly, this method has long been neglected in CL research and 

multimedia learning (Brünken et al., 2002; Chandler & Sweller, 1996; Marcus, Cooper, & 

Sweller 1996; Sweller, 1988). It offers a promising tool for the direct measurement of ECL 

(Brünken et al., 2002) and is therefore also used in this study. 

Taking this into account while considering navigation as a discrete task that requires cognitive 

resources in the learning process and operationalizing navigation as different indices of mouse 

behavior, one goal of this study is to reveal a relationship between mouse behavior and CL.  

Mouse behavior and CL 

Measuring CL through mouse behavior is not an entirely new idea. A first approach of 

relating mouse movements and CL was done by Arshad, Wang and Cheng (2013). 

Participants were presented environments that induce high and low CL in a simulated 

computer-based platform to screen applicants for a fictitious human resource department. The 

authors found a higher frequency of pauses in mouse movements for the high CL 

environment. However, there was no additional measurement of the CL aligned to the mouse 

behavior. Thus, the individually experienced CL by the learners could not be controlled.  
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In another study, Grimes and Valacich (2015) examined the relationship between fine-motor 

control, operationalized through indices of mouse behavior, and CL. The authors found 

significant differences of some indices of the mouse behavior (Euclidean distance and slow 

movements) between three tasks with different difficulty. However, the used materials were 

very artificial, asking the participant to verify viewed numbers on an otherwise blank screen. 

In a similar artificial task, Rheem, Verma and Becker (2018) showed that slower movements 

and less trajectory deviations corresponds to a higher CL. It is worth noting that once again 

the study did not validate whether CL was imposed on participants as intended.  

 Affective State 

Regarding affective states, a lot of research has been done trying to assess them by using 

psycho-physiological sensors (e.g., Hudlicka & McNeese, 2002; Rani, Sarkar & Smith, 2003), 

facial features (e.g., Cohn & Kanade, 2006), vocal features (Banse & Scherer, 1996; Batliner, 

Steidl, Hacker & Nöth, 2008; Cowie et al., 2001), and linguistic or conversational features 

(D’Mello et al., 2008; D’Mello, Craig, Witherspoon, McDaniel & Graesser, 2007; Vizer, 

Zhou & Sears, 2009). As D’Mello, Craig, Witherspoon, McDaniel and Graesser (2007) state, 

using obtrusive measures (e.g., physiological sensors) to predict affective states would distract 

the learner and interfere with the primary task. In contrast, mouse behavior is no artificially 

added task and therefore is unobtrusive and non-reactive as a potential measure for affective 

states. Moreover, facial features need special hardware, and vocal, linguistic and 

conversational features need learners to speak loudly or perform writing tasks. Although some 

research exists that links mouse and keyboard data to affective states (Kolakowska, 2013), 

hardly any attempts have been made in educational research. Existing studies try to detect and 

classify binarily whether learners show a specific academic emotion or not (e.g., enjoy / not 

enjoy in Lali, Naghizadeh, Nasrollahi, Moradi & Mirian, 2014; bored / not bored in 

Tsoulouhas, Georgiou & Karakos, 2011), but affective states have not yet been investigated. 
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Thus, learners’ affective state are examined from the perspective of a common two-

dimensional model that subsumes affect and valence in orthogonal factors of positive and 

negative affect (Watson & Tellegen, 1985). The used instrument constructs positive and 

negative affect as distinct interval-scaled measures. Watson, Clark & Tellegen (1988, p. 1083) 

summarize positive affect (PA) as “the extent to which a person feels enthusiastic, active, and 

alert. High PA is a state of high energy, full concentration, and pleasurable engagement, 

whereas low PA is characterized by sadness and lethargy”. In contrast, they describe negative 

affect (NA) as “a general dimension of subjective distress and unpleasurable engagement that 

subsumes a variety of aversive mood states, including anger, contempt, disgust, guilt, fear, 

and nervousness, with low NA being a state of calmness and serenity” (p. 1083). As 

activation is inherent to the level of both dimensions of experienced affect, it is argued that 

the level of activity in using peripheral devices should correspond with affective state. For 

instance, higher mouse speed or more frequent mouse movements should go along with 

higher positive or negative affect. Like Yannakakis, Hallam and Lund (2008) claims for 

psycho-physiological measures, it is argued that by analyzing the mouse behavior one cannot 

distinguish negative (e.g., anger) from positive affect (e.g., pleasurable excitement), but only 

the level of activation.  

 Research Question and Hypotheses 

In this study, navigation is operationalized as different indices of mouse behavior. Moreover, 

navigation is considered to be a discrete task that represents an ECL while learning. Those 

assumptions lead towards the question whether mouse behavior changes depending on 

experienced CL and therefor can be used as an information source of the CL experienced by 

the learner. This study wants to account for the fact that currently available studies did not 

apply aligned validation measures of CL. Hence, this study investigates the correspondence of 

mouse behavior with an established online dual-task reaction-time measure. 
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It is hypothesized that increased CL leads to pauses in the mouse behavior, as there are not 

enough resources available to spend on this task. Respectively, such pauses indicate increased 

CL (Hypothesis 1: No-Interaction-High-Load-Hypothesis).  

In the second research question, it is asked whether it is possible to draw conclusions about 

affective states by mining peripheral data. Therefore, the associations of mouse behaviors 

with affect is explored. It is hypothesized that higher activity in mouse behaviors correspond 

with higher positive and negative affect (Hypothesis 2: Active-Mouse-High-Affect-

Hypothesis). As mouse activity appears in more than one feature, the relationship is checked 

between learners’ affective states and the following indices: mouse speed, covered distance, 

number of short pauses in mouse behavior, number of mouse clicks, number of scrolling 

activities. It is argued that the number of short pauses represents a higher mouse activity 

because it indicates the frequency of initialized movements. Hence, the more movements 

learners start, the higher should be their level of affective states.  

 Method 

4.3.4.1 Sample and Design 

In a quasi-experimental study, N = 49 undergraduate students majoring in media 

communication at a German university participated and learned about website programming. 

All were enrolled in one of three parallel courses (n1 = 21; n2 = 16; n3 = 12) dealing with the 

basics of media production such as image editing or web design. Participants received no 

incentives but learning contents were part of the course curriculum. Students in course 2 and 3 

were assigned to the experimental group, students in course 1 to a control group. Due to the 

quasi-experimental design, more students were assigned to the experimental group (nEG = 28; 

4 male; Mage = 20.11; SD = 1.39) than to the control group (nCG = 21; 3 male; Mage = 20.48; 

SD = 1.63). 
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In order to compare CL during pause-situations (not using mouse and keyboard) with 

interaction-situations (using mouse or keyboard), the timing of dual-task CL assessments was 

manipulated. In the experimental group, CL measurement was triggered after a random time 

interval of 2 to 10 seconds which started counting down only if learners did not interact with 

their mouse and keyboard for more than 6 seconds. In the control group, measurement was 

triggered after random time intervals of 15 to 35 seconds irrespectively of their peripheral 

device usage. Intervals were based on the mean pause times and mean visiting times of a 

previously conducted pilot study in which the learning materials were tested. A between-

subject design was used instead of a within-subject design to reduce testing frequency in 

experimental group and ensure that learners in the control group cannot influence the 

measurement timings. 

The laboratory was equipped with 21 iMac desktop computers (21,5 inch display with a 

resolution of 1920x1080, tethered apple mouse and keyboard). Firefox was used as web 

browser and learning environment was presented in full screen mode. 

4.3.4.2 Learning Materials  

Students had to learn the basic syntax and properties of “cascading style sheets” (CSS), a 

common standard to style websites. Learning material of the first study was used, but minor 

changes were applied to the content (see chapter 4.2.2.2). It was structured linear and 

consisted of 15 content pages including about 1700 words, two tables, one quiz, 12 code 

examples and three interactive exercises. In interactive exercises, learners had to write CSS 

code to solve a given task (e.g., “Set the width of the image to 200 pixels”). The results of 

their code were presented below the text area when clicking on a “Try it!” button as well as 

verbal feedback was provided by an animated pedagogical agent concerning syntax and task 

mistakes or success (e.g., “Check line number 5 of your code. Are you sure that you use the 
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right property?”). Navigation back and forth was possible either stepwise or by jumping to a 

specific page selectable from a dropdown menu.  

4.3.4.3 Measures and Instruments 

Peripheral data 

The ScreenAlytics software framework (see chapter 4.1) was implemented into the learning 

environment to record events triggered by the mouse and keyboard. To reduce server load, the 

events were first recorded into a client-side array. Every five seconds or when leaving a 

website, the data was sent to a database server and cleared on client side. Event data consisted 

of a timestamp accurate to the nearest millisecond, the type of event and specific details such 

as x/y position of the mouse, scroll position or the pressed key. The following event types 

were recorded: mouse move, mouse click, scroll, keystroke down, window resize / website 

zooming. Sampling rate for event recognition was 60 times per second. 

Cognitive load  

Cognitive load was measured by using the dual-task approach (e.g., Schoor, Bannert, & 

Brünken, 2012). During the primary learning task, the subjects were instructed to monitor the 

website’s background color as a spatially contiguous secondary task. Subjects were instructed 

to react to changings of the background color from black to red as fast as possible by pressing 

the ESC key on their keyboards. Reaction times between color changings and keystrokes were 

measured as an indicator for CL. Background color was set back to black when pressing the 

ESC key. To standardize the measures, an individual baseline was assessed prior to learning. 

Knowledge tests  

As learners were expected to be novices in website programming, prior knowledge was 

checked with the five-step Likert-scaled item “How well can you write CSS code?”. For post-

test, declarative knowledge was assessed with 5 single choice items (e.g., “Which property 
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changes the font in CSS?”). The reliability of the scale was Cronbach’s a = .33. Procedural 

knowledge was assessed by an authentic web design task. Subjects were instructed to design a 

website according to four given design specifications such as “all headings should have a font 

size of 16px.”. Answers were rated based on a self-developed rating scale by the first author 

and a research assistant. Interrater reliability was Kappa = .89, p < .01. In case of 

disagreement, raters discussed the final rating.  

Positive and negative affect 

Affective states of the learners were measured prior and after learning with the German 

version of the Positive and Negative Affect Schedule (PANAS, Krohne, Egloff, Kohlmann & 

Tausch, 1996; Watson et al., 1988). PANAS asks for the degree to which participants 

experience 20 different feelings related to positive affect and negative affect, using a slider 

ranging from 1 (not at all) to 100 (very much). It is an established measure of affect and has 

been successfully used in a range of experiments dealing with affects in learning (e.g., Plass, 

Heidig, Hayward, Homer & Um, 2014; Um, Plass, Hayward & Homer, 2012). Separate 

individual scores for positive and negative affect were obtained by computing the mean of 

each scale. Reliabilities for pre/post, positive/negative affect scales were between Cronbach’s 

a =  .88 - .91. 

4.3.4.4 Procedure 

Students filled out a paper consent form to participate in the experiment. All remaining parts 

were done in an online environment. Subjects were instructed to keep their left hand close to 

the ESC key while learning. Demographic variables (sex, age, semester) and prior knowledge 

were assessed followed by five baseline measurements of CL and filling the PANAS scale. 

After that, students learned for about 30 minutes, then attended PANAS again and finished 

with post-tests for declarative and procedural learning performance.  
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 Results 

4.3.5.1 Statistical Analysis and Computation of Scores 

The Type I error rate was set to .05 for all analyses. One-tailed tests were used as directional 

hypotheses were formulated. Outliers were defined as values greater than the upper quartile 

plus 3 times the interquartile-range according to conservative statistical definition (Field, 

2009, p. 135). IBM Statistics 22, PHP statistics library and R were used to analyze the data. 

Table 8 shows the means and standards deviation of the central variables in both conditions. 

Regarding CL, individual baselines were computed including five measures prior to learning. 

Individual mean CL was computed for each page by subtracting the baseline from the mean 

reaction time. Baseline did not differ significantly between experimental group (MEG = 

476.89, SD = 61.72) and control group (MCG = 477.95, SD = 55.36), t(46) = -.063, p = .950. 

On three learning content pages, CL was not measured at least one time for every participant 

because they either did not stay long enough on the page to trigger a measure (control group) 

or did not pause their interaction long enough to trigger a measure (experimental group). 

Mean CL was computed over 12 pages that all included measures of more than 20 subjects 

per group. Three pages included measures of less than 20 subjects per group. Cognitive load 

values of two subjects of the experimental group were removed because of being outliers 

according to the definition above. 

Correctly solved items of post declarative knowledge test were summed up. Self-reported 

prior knowledge varied between 0 and 3 (M=.84; SD=.94). Influence of self-reported prior 

knowledge on dependent variables was checked. Subjects with prior knowledge did neither 

significantly differ in experienced CL, t(45) = .592, p = .557, nor in declarative learning 

outcome or any of the affect measures. Post procedural knowledge did differ between learners 



Study 2: How Mouse Behavior Corresponds with Cognitive Load and Affect States 

 92 

 

without (M = 6.99, SD = 3.90) and with (M = 9.62, SD = 2.50) prior knowledge, t(47) = -2.89, 

p < 0.01 with a high effect size of d = .827.  

Table 8 

Comparison of means for important variables in both conditions. 
 CL measures randomly 

timed 
(control group, N = 21)  

CL measures only during 
interaction pauses 

(experimental group, N = 28) 

   

M SD M SD t p d 

Pre        

Negative Affect (Max = 100) 17.52 16.50 18.37 18.34 -0.167 .868 0.048 

Positive Affect (Max = 100) 44.13 14.25 40.19 12.57 1.025 .311 -0.296 

Prior knowledge self-report 
(Max = 4) 

1.05 0.92 0.68 0.95 1.368 .178 -0.395 

During        

Cognitive Load [ms] 324.18 116.23 426.73 203.84 -2.050 .046 0.596 

Mouse speed .24 .08 .26 .08 -1.027 .310 0.250 

Mouse short pauses, mean [s] 2428.70 153.62 2417.84 217.93 0.195 .839 -0.056 

Mouse short pauses, 
frequency 

120 47.74 103.86 35.39 1.361 .180 -0.393 

Mouse long pauses, mean [s] 15492.30 4254.24 16899.73 3693.80 -1.237 .222 0.357 

Mouse long pauses, frequency 36 11.69 39.64 10.02 -1.173 .247 0.338 

Post        

Negative Affect (Max = 100) 13.63 17.25 16.87 20.22 -0.591 .557 0.170 

Positive Affect (Max = 100) 45.03 20.46 40.79 12.09 0.908 .369 -0.266 

Declarative knowledge  
(Max = 5) 

4.10 1.02 4.00 .94 0.350 .728 -0.149 

Procedural knowledge 
(Max = 16) 

8.82 2.75 8.03 3.99 0.775 .442 -0.225 

 

The following features were extracted for mouse interaction: speed as covered distance per 

moving time, covered distance as pixels, frequency and duration of short and long pauses. 

Pauses were defined as not registering mouse movement, clicking and scrolling for 1 to 6 

seconds (short pause, ]1;6[) and 6 to 60 seconds (long pause, [6;60]). As there are hardly any 

experiences with classifying pauses reported in literature, the threshold value of 6 seconds 
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represents the median of pause duration over all content pages. Individual means of features 

were computed for each page and overall. 

4.3.5.2 No-Interaction-High-Load-Hypothesis 

The normal distribution of CL was verified using the Kolmogorov-Smirnov test. A t-test for 

independent samples was computed to compare mean CL between control group (MCG = 

324ms; SD = 116ms) and experimental group (MEG = 426ms; SD = 203ms). This difference 

was significant, t (45) = -2.05, p < .05 with a medium-sized effect, d = .60, confirming the 

No-Interaction-High-Load hypothesis. Between-group differences were not significant for 

mouse behavior indices as well as all affect and knowledge scores. Level of experienced CL 

correlated significantly negative with post declarative knowledge (r = -.258, p < .05). 

Correlation with post procedural knowledge was not significant (r = -.167, p = .13).  

4.3.5.3 Active-Mouse-High-Affect-Hypothesis 

To check the second hypothesis, bivariate correlations were computed between pre / post 

positive / negative affect and the described mouse features. Separate means of the mouse 

features were computed for the first two and for the last two learning content pages. Those 

pages represent mouse behavior that is timed closely to the pre and post affect measures. 

Correlations with pre-affect measures were conducted with the features of the first two pages, 

correlations with the post affect measures were related to the two last pages. This decreases 

the influence of the potential bias that affective states are dynamic and change during 

complex learning (D’Mello & Graesser, 2012). Separate correlations for experimental and 

control group were conducted. Although statistical power was decreasing by this, possible 

between-group differences could be controlled. 

Detailed correlations are reported in Table 9. The analyses revealed that, in the control group, 

the covered distance and the number of clicks were significantly positive correlated with 
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positive affect. Mouse speed, covered distance and number of short pauses were correlated 

significantly positive with negative affect. In the experimental group, number of scrollings 

was significantly positive correlated with negative affect. However, no correlation with 

positive affect could be identified. Hence, second hypothesis was partially confirmed. 

Table 9 

Bravais-Pearson correlations between mouse indices / typing speed and pre / post affective 

states and post knowledge for experimental and control group. 

  Pre Post 

 
Neg. 

Affect 
Pos.  

Affect 
Neg. 

Affect 
Pos.  

Affect 
Decl. 

Knowl. 
Proc. 

Knowl. 

EG CG EG CG EG CG EG CG EG CG EG CG 

Mouse 
speed - - 

-.074 

p = .354 

.361 

p = .054 

.057 

p = .388 

.581** 
- - - - - - 

Covered  
distance - - 

-.073 

p = .356 

.508** .194 

p = .162 

.664** 
- - 

-.293 

p = .065 

-.024 

p = .460 
- - 

Number 
of  
clicks 

.114 

p = .282 

-.345 

p = .063 

.086 

p = .331 

.410* .393* -.043 

p = .426 - 
 

- 
 

-.508** .085 

p = .361 

- 
 

- 

Number 
of 
scrollings 

 .376*  .039 

p=.433 - - - - - - - - - - 

Note. * p < .05; ** p < .01; EG = experimental group; CG = control group; NEG = 28; NCG = 21; 
Correlation coefficients of both groups are reported if there was at least one coefficient with p < .100. 
 

 Discussion 

According to the first research question, it was expected that pauses in the interaction with the 

learning environment indicate increased CL. As assumed, students in the experimental group - 

of whom CL was measured only when they did not interact with the learning environment - 

showed significantly higher CL with a medium effect size compared to the control group, 

where CL was measured irrespectively of interaction. The chosen research design could have 

led to an underestimation of the effect as CL was measured during both interaction and pauses 
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in the control group. Hence, CL values during pauses were also included in the control-group 

mean value. Internal consistency of post declarative knowledge was low, so interpretations on 

declarative knowledge are limited and potential relations might not have been revealed. 

Moreover, measuring CL by the dual-task method could have been reactive to itself, learning 

outcomes and affective states. 

Although overall CL is related slightly negative with post knowledge in the data, it cannot be 

determined by the presented method, whether the increased CL during pauses is productive 

(germane or intrinsic) or extraneous. What can be argued from both theory and data is that 

learners might have experienced not only an increased CL, but a cognitive overload while 

pausing the interaction with the learning environment. Learning the contents might have taken 

so many resources that no more were available for controlling the mouse movements. The 

collected data supports this perspective as it indicates that higher CL correlates slightly 

negative with post declarative knowledge. 

These findings are in line with previous empirical investigations of Arshad, Wang, and Cheng 

(2013), but are different in the aspect that this study used an additionally aligned validation 

measure of CL, operationalized as reaction times of a secondary reaction-time task. The 

absence of this validation measure has been a methodological limitation in all previous 

studies that were found during the documentation of this study (Arshad et al., 2013; Grimes & 

Valacich, 2015; Rheem et al., 2018).  

Connecting these findings to the underlying idea of this work to subsequently use peripheral 

data as a source in adaptive learning environments, a first suggestion is to time instructional 

support according to the learners’ mouse behavior. Long pauses in the interaction with the 

learning environment (in this experiment, pauses above 6s which represented the median of 

pause duration over all content pages) seem to indicate increased cognitive load, so the 

learner might need instructional support such as presenting cognitive scaffolds or prompts. 
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Although counterintuitive, this support should not be provided during the pauses because it is 

unknown whether a learner experience productive or irrelevant load in a specific pause. 

Presenting support while experiencing ICL could then negatively affect the learning. Instead, 

an option could be to provide support on pure navigation events, e.g., when a learner changes 

to the next page. This is in line with empirical evidence on feedback that suggests not to 

present feedback during the learners’ work on solutions (e.g., Narciss & Huth, 2004). 

Moreover, adaptive learning environments could also adapt the level of difficulty of the 

learning environment. As an example, in the used learning environment, high or low CL, 

indicated through mouse behavior, could trigger a different, more appropriate choice of 

programming tasks, being less or more difficult according to the experienced CL.    

Besides using mouse behaviors as a source for adaption in learning environments, it could be 

applied as an unobtrusive and non-reactive measure for CL in research. It would be a huge 

advantage to reveal mouse behavior as a valid, unobtrusive, non-reactive instrument without 

any special hardware requirements. However, this study only states that CL is higher while 

learners do not interact with the environment. It did not examine the capability to predict the 

exact level of CL through indices of mouse behavior. Hence, the promising results raise a 

bunch of new questions that need to be addressed in future studies: what exact indices could 

predict the level of CL (e.g., length of pauses, frequency of pauses, mouse speed)? How can 

we distinguish increased load from disengagement? How can we get adequate cut-off values 

for pauses? Do we need baselines for mouse movements and what could they look like? 

Regarding the second research question, peripheral data was expected to correspond with the 

level of affective states. Relations were examined of mouse behaviors with affective states of 

learners and expected higher mouse activity to be linked with higher affective states. Findings 

revealed both significant correlations of mouse indices with positive affect (for mouse speed, 

covered distance and number of clicks) and with negative affect (for number of short pauses 



Study 3: Recognizing Confusion and Item Difficulty Through Mouse Behavior 

 97 

 

and scrollings). However, no significant correlations between mouse indices and positive 

affect were found in the experimental group. One reason could be a generally lower positive 

affect in the experimental group with a medium-sized effect, d = .27, that made it more 

difficult the reveal a relation. As the picture is inconsistent to some extent, further research 

needs to confirm the links between affective states without experimental variation. 

Additionally, separated operationalizations for the activity and valence dimensions of 

affective states would help to clearly identify the correct relations between mouse activity and 

learner’s affective states. 

4.4 Study 3: Recognizing Confusion and Item Difficulty Through Mouse 

Behavior 

Research on the detection and measurement of confusion currently lacks a method that is 

applicable in online learning environments outside the lab. This study investigates the 

possibility to detect confusion through mouse behavior while answering multi-item scales. 

This task was chosen as it is relevant for learning in advanced learning environments, but 

always occurs in a similar structure of questions and answer options. Additionally, 

correspondences between indices of mouse behavior and the subjective and objective 

difficulty of items are explored. Finally, the mouse interaction with feeling-of-knowing 

ratings are investigated as a potentially unobtrusive measure of metacognitive judgements. 

What is Confusion and Why Should We Measure It? 

According to Pekrun (2016), epistemic emotions are a subset of academic emotions (Pekrun, 

2006) that occur as a result of cognitive information processing during a learning process. 

Confusion can be seen as one specific epistemic emotion (e.g., D’Mello & Graesser, 2012) 

that is central to complex learning activities (e.g., Pekrun & Stephens, 2016). Although there 

is a debate on the different theoretical categorization as an academic, epistemic, or knowledge 
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emotion versus an affective state, the general consensus is that confusion is important for 

learning. According to D’Mello and Graesser (2014), confusion occurs when learners come 

across incongruences like “impasses, anomalies, contradictions, disruptions of goals, extreme 

novelty that cannot be comprehended, and interruptions of organized sequences of actions” 

(D’Mello & Graesser, 2014, p. 290). In general, it is hypothesized to be triggered by an 

appraisal of incoming information which does not match existing knowledge (e.g., Silvia, 

2010). As such, if confusion cannot be resolved, it can result in frustration and boredom, 

leading to a negative impact on the learning outcome (D’Mello & Graesser, 2012). Such 

negative experiences can contribute to learners giving up on a learning session (e.g., Baker, 

D’Mello, Rodrigo & Graesser, 2010). However, it can also be beneficial for learning if the 

material causes a cognitive disequilibrium of the learner (in a Piagetian sense) and, most 

importantly, the learner is able to resolve this disequilibrium through deeper cognitive 

engagement (D’Mello, Lehman, Pekrun & Graesser, 2014). Thus, confusion can also be an 

intended instructional element in the sense of a desirable difficulty, if used carefully (e.g., 

Bjork & Bjork, 2011). It is crucial to understand that, at the moment in which confusion 

occurs, it is not possible to characterize it as constructive or nonconstructive. Depending on 

how the learner handles the confusion, it can lead to positive or negative effects on learning. 

This thought led to the concept of a zone of optimal confusion. Within that zone, learners’ 

confusion is high enough to foster deeper cognitive engagement but low enough to be 

resolved by the learner. Graesser (2011) argues that the design of learning materials should 

aim at reaching this zone in order to facilitate learning processes. 

Given the importance of confusion during learning, it is crucial to find valid measures for it in 

order to 1) identify unintendedly confusing content in learning environments that can then be 

revised by the authors, 2) control for confusion in experimental settings that examine 

confusion as an instructional intervention in the context of desirable difficulties, and 3) use 
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confusion as a source for adaptive, technology enhanced learning environments, e.g., in order 

to support learners in the correct moment with a scaffold they can benefit from. Valid 

measures that are available in real-time are especially important for the latter mentioned 

application in adaptive learning environments at distance, as instructors are not physically 

available to monitor learning processes and regulate learners if necessary. Timely adapted 

interventions could help learners to resolve confusion before leading to negative 

consequences. 

How is Confusion Currently Measured? 

A range of studies exists that seek to measure or detect confusion in technology enhanced 

learning processes through different data sources. In order to present an overview of the 

current state of the art, studies listed in a recent review (Arguel, Lockyer, Lipp, Lodge & 

Kennedy, 2017) were taken that explicitly address confusion as a dependent variable. This list 

is complemented with studies that use a method or data channel that has not been mentioned 

in the review. Table 10 lists the mentioned sources and studies that examined it. Data sources 

for measuring confusion can be broadly categorized into self-reports, behavioral responses 

and physiological responses. Self-reports often ask learners to rate whether they are confused 

or not (yes/no), or to rate their level of confusion using Likert-scales (e.g., from 1 to 6). Less 

common are self-reports that ask learners to verbally express their confusion (among other 

emotions) during learning, or after learning using video-cued recalls (Sullins & Graesser, 

2014). These result in so-called emote-aloud protocols (e.g., Craig, D’Mello, Witherspoon & 

Graesser, 2008) that are currently analyzed by manually coding emotional states. Although 

not done yet, coding could potentially be facilitated by methods of natural language 

processing and thereby solving the problem of data not being available in real-time for 

adaptions. Another self-report approach that has been investigated in order to label interaction 

data with confusion states is the provision of a “I am confused” button in the interface that 
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learners can press whenever they experience confusion (Conati, Hoque, Toker & Steichen, 

2013).  

Different data sources of behavioral responses have been examined regarding their suitability 

to uncover variance of confusion while learning. Facial expressions have a long tradition in 

emotion recognition using the facial action coding system (FACS, Ekman & Rosenberg, 

2005) to break down the facial expression in smaller action units. Initially developed to detect 

basic emotions (happiness, sadness, surprise, disgust, anger, and fear), it was extended to 

some academic emotions. For confusion, the action units 4 (lowered brow) and 7 (tightened 

lids) were identified to be relevant (Craig et al., 2008). These action units can be detected by 

recording a video of the learners’ face and observe the occurrences either manually (e.g., 

Sullins & Graesser, 2014) or through automated image processing (e.g., with CERT, the 

computer expression recognition toolbox by Littlewort et al., 2011 as done in Postma-

Nilsenová, Postma & Tates, 2015). Facial expressions can also be captured through facial 

electromyography (EMG) that records muscle activity. Using this method, right and left 

corrugator supercilii, and right depressor anguli oris were identified to be relevant for 

confusion (e.g., Durso, Geldbach & Corballis, 2012).  

Besides facial expressions, body movements and posture have also been discussed to measure 

confusion. For example, gross body movement was recorded through chair sensors and the 

recorded movements were related to human judges of facial expression and self-reported 

confusion using machine learning classifiers (D’Mello & Graesser, 2007). However, the 

reported accuracy (kappa = .11) is considered to be poor (kappa > .20 is considered as fair, 

kappa > .41 as moderate, Landis & Koch, 1977). 

If learners interact verbally with the learning environment based on written text or voice input 

(e.g., in conversational intelligent tutoring agents), the verbal interaction is another source that 

potentially provides information about confusion. This can be done by analyzing explicit 
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statements of the learner that are interpreted to express confusion (e.g., “I’m confused!” or 

“Why didn’t it work?”). Nonlinguistic features (e.g., “huh?”) were also examined but were 

only related to surprise and not to confusion (Baker et al., 2010). Moreover, feature sets 

consisting of meta information about the dialog (e.g., number of positive feedback given by 

the tutoring system) were analyzed and found to be predictive of confusion measured through 

human judges of facial expression with kappa = .26 (D’Mello et al., 2007).  

Data coming from eye tracking was also investigated regarding its possible contribution to the 

measurement of confusion. As confusion is an expression of a cognitive disequilibrium that is 

reflected in changes on how learners explore presented information (Graesser, Lu, Olde, 

Cooper-Pye & Whitten, 2005), these changes can be a potential proxy for confusion. 

Moreover, some positive correlations were found between eye movement patterns (e.g., 

number and duration of fixations) and subjective measures of confusion (De Lucia, Preddy, 

Derby, Tharanathan & Putrevu, 2014). However, both eye tracking approaches seem to be 

highly dependent on the given context and are therefore not easily transferable to other 

learning environments and materials. 

In technology enhanced learning environments, data about the interaction between the learner 

and the learning environment can always be automatically collected. This can be any 

description of interactions from simple access log data in a web-based environment, 

peripheral data with higher granularity (as described in chapter 4.1), to complex traces in 

virtual reality environments. Sequences and patterns of events in this data can then be 

interpreted as behaviors or states in the learning process (e.g., task completion or 

achievements) which researchers need to empirically link to an existing measure of confusion 

that is regarded as valid (e.g., a self-report). The rationale behind this is that once a pattern 

that relates to confusion has been identified, the self-report is no longer needed (e.g., Pardos, 

Baker, Pedro, Gowda & Gowda, 2014).  
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Besides behavioral responses that can tell about confusion, physiological responses have been 

investigated. The rationale behind these measures is that interrupting a sequence of action can 

lead to physiological reactions like changes in heart rate or pupil size (Macdowell & Mandler, 

1989). Electrodermal activity (EDA), also known as galvanic skin response (GSR) measures 

changes of the electric conductivity of the skin through electrodes, usually placed at the 

fingers or at the palms of the hand. EDA was found to be suitable for detecting high arousal 

but is not suitable for discriminating the valence of emotions (e.g., van Dooren, de Vries & 

Janssen, 2012). However, some links between specific events in learning and patterns of the 

EDA signal were identified. In one study, facing a very difficult problem-solving task that can 

be interpreted as confusion was found to be reliably linked to a drop in skin conductance 

(Pecchinenda & Smith, 1996). In a more recent study, a support vector machine (SVM) model 

including blood volume pressure, heart rate and skin conductance was found to discriminate 

the correct (self-reported) emotion out of four reported emotions (boredom, confusion, 

hopefulness, and engagement) with a rate higher than chance (68,1%, Shen, Wang & Shen, 

2009).  

Although not applicable in actual learning situations, brain imaging (e.g., fMRI) was also 

discussed as a method to measure confusion. Increased activity of the posterior medial frontal 

cortex was found when learners experienced unexpected feedback that should result in 

confusion (Hester, Barre, Murphy, Silk & Mattingley, 2008). As a less invasive and cheaper 

method with better mobility, electroencephalogram (EEG) was used to detect whether 

students are confused while watching videos in a MOOC. Performance of the classifier to 

detect students self-reported confusion was just above chance, but as efficient as human 

observers that were asked to detect confusion by monitoring the body language of students 

(Wang et al., 2013).  
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Table 10 

Papers that examined data sources and methods used to measure and detect confusion. 

Data / Method Paper 

Self-report 
 

 Binary Choice Lehmann et al., 2012 
 Likert-Scales D'Mello & Graesser, 2014 

 Emote-Aloud While Learning Baker et al., 2010 
 Emote-Aloud Retrospective D'Mello & Graesser, 2014 
 Explicit reports in learning 
 environment 

Feidakis et al., 2014 

Behavioral Responses 
 

 Facial expressions based on video Postma-Nilsenová, Postma, & Tates, 2015 
 Facial expressions based on EMG Durso et al., 2012 

 Overall body movements Caballe et al., 2014 
 Body posture based on chair sensors D'Mello & Graesser, 2012 

 Conversational cues  D'Mello, Craig, Witherspoon, McDaniel & 
Graesser, 2008 

 Eyetracking, changes in visual 
 exploration 

Graesser, Lu, Olde, Cooper-Pye & Whitten, 
2005 

 Eyetracking, frequency and number  
 of fixations 

DeLucia, Preddy, Derby, Tharanathan, & 
Putrevu, 2014 

 Log-file triangulation in LMS Pardos, Baker, San Pedro, Gowda, & Gowda, 
2013 

Physiological Responses  
 EDA Pecchinenda & Smith, 1996; Shen, Wang & 

Shen, 2009 
 fMRI Hester, Barre, Murphy, Silk, & Mattingley, 

2008 
 EEG Wang et al., 2013 

 Pupillometry Umemuro & Yamashita, 2003 

As a last physiological response, the measurement of pupil dilation (pupillometry) is 

discussed, which most of today’s eye trackers are capable of. Although one study could detect 

75% of the confusion-induced trials in a problem-solving task (Umemuro & Yamashita, 

2003), the method seems to be too sensitive, as other emotions (e.g., Bradley, Miccoli, Escrig 
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& Lang, 2008) and CL (e.g., Palinko, Kun, Shyrokov & Heeman, 2010) were found to be 

related to pupil dilation and thus, the method has low discriminatory power. 

Drawbacks of Current Confusion Detection and Measurements 

The wide range of used data streams and analytic approaches already shows that recognizing 

confusion is not straightforward. Evaluating and comparing the mentioned data sources and 

methods is difficult. It is hardly possible to compare performance of predictions or the amount 

of variance that has been explained by a certain data channel as the mentioned papers all use 

different labels for confusion, e.g., self-reports or a combined measure of self-reports and 

human-coded facial expressions. Not only does the measurement of confusion differ, but also 

how confusion is operationalized for the induction in experimental settings, and in what 

context it occurs when investigated in field settings. Hence, instead of comparing explained 

variance and model performance, the advantages and drawbacks of each can be described that 

build a trade-off for using them for different purposes. For example, fMRI can obviously not 

be used in the field but can contribute to fundamental theory building, while patterns in user 

interaction might not be generalizable to a theoretical framework level but are applicable in an 

actual learning environment in the field.  

Probably the most important drawback for the purpose of supporting students in adaptive 

technology enhanced learning environment is that most of the mentioned data sources are 

only available inside a lab, as considerably expensive hardware is needed to acquire the data. 

However, even if the hardware was available, some data channels suffer from low sensitivity 

or specificity. Moreover, attaching instruments to learners is obtrusive and students may have 

privacy concerns. Therefore, measures might disturb the learning process and can be reactive 

to the variable of interest, as well as the learning outcomes. Regarding self-reports of 

emotions, measures typically suffer from interference with the learning task, as well as social 

biases (e.g., willingness or honesty to report confusion) and cognitive biases (e.g., not being 
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aware about certain emotions). Another issue is that most measures focus on the detection of 

whether learners are confused or not (or the probability of being confused), and are not 

capable of reporting about the level of confusion - although the theoretical construct of 

confusion is a continuum rather than a binary state. Measuring frequency, duration and 

intensity of confusion would be important to predict whether the confusion will have a 

positive or negative impact on learning and decide for subsequent interventions (Arguel et al., 

2017). Aiming at higher power, sensitivity, specificity, and time resolution, multimodal and 

multichannel approaches with models that take the data of several sources into account are 

discussed and examined as a solution for some of the mentioned issues (D’Mello & Kory, 

2015; Hussain, AlZoubi, Calvo & D’Mello, 2011).  

Detecting Confusion Based on Mouse Behavior 

The issue of measurements being only available inside the laboratory can be addressed by 

using data on the observable interaction between the learner and the learning environment 

which is recordable without any additional hardware or special software (e.g., mouse and 

typing behavior). Hence, it is a potential unobtrusive and non-reactive data source that is 

available in the field, and in real-time. However, such data can only act as a proxy for any 

psychological latent variable. Thus, empirical studies need to investigate the relations 

between this data and latent variables (see chapter 4.1). Existing studies examined the relation 

between mouse behavior and boredom (Tsoulouhas et al., 2011), anxiety (Yamauchi, Seo, 

Choe, Bowman & Xiao, 2013), perceived need for help (Attig, Then & Krems, 2018), and 

valence and arousal (Maehr, 2005; Salmeron-Majadas, Santos & Boticario, 2014; Sottilare & 

Proctor, 2012; Zimmermann, Gomez, Danuser & Schär, 2006) with mixed results. Regarding 

confusion, there is no sufficient evidence yet on whether / how mouse behavior relates to it. 

Pentel (2015) aligned features of mouse movement data (e.g., directions, direction changes, 

changes in speed) to confusion states identified in think aloud protocols during a number 
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game. Different classifiers for a player being confused or not reached accuracy rates of up to 

94%. Although this seems very promising, there are some limitations regarding these results: 

1) the artificial paradigm and context of this game inherently leads to a very specific pattern 

of mouse movements, and results are therefore not generalizable to navigation in web 

environments, 2) coding of confusion in the think aloud data was very broad (e.g., “I saw it 

before, but now it is not there anymore.” was coded as confusion), and 3) confusion and 

frustration were both treated as confusion. In another study, mouse features (left click rate, 

double click rate, tome to first left click, time to first double click), gaze and pupil features, 

and head position features were used in a random forest classifier and being confused was 

reported by users through clicking on a “I am confused” button (Lallé, Conati & Carenini, 

2016). However, none of the included mouse features were in the top 10 features leading to a 

sensitivity of 61% and a specificity of 92%.  

As shown in the mentioned studies, the operationalization, induction and manipulation of 

confusion for experimental research is not straightforward. In another recent study in the area 

of survey methodology, mouse behavior while filling a multi-item single-choice survey has 

been examined as a possible method to detect “whether a respondent is having trouble 

answering a question and what is causing their confusion” (Horwitz, Kieslich & Kreuter, 

2017, p. 9). Although the “trouble” that respondents have during a survey was framed as 

confusion, the authors compared the mouse behavior for answer options using a 

straightforward wording against using complex wording. It is argued that added “repetitive, 

bureaucratic, technical information” (Horwitz, Kieslich et al., 2017, p. 12) in the complex 

version leads to confusion. However, complex answer options do not (necessarily) induce 

confusion in the theoretical understanding of an unresolved cognitive disequilibrium that was 

mentioned earlier. Instead, varying the complexity of the wording of answer options rather 

manipulates the experienced CL. A more complex wording of an answer option makes it 
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more difficult to extract the relevant information, leading to an increased ECL. Although the 

operationalization is problematic as it does not cover confusion, and no effect sizes were 

reported (and could not be calculated due to missing test characteristics), the outcomes of this 

study are interesting: more and longer hovers were found for complex worded answer options 

then for the straightforward options. 

In another study conducted by the same first author (Horwitz, Kreuter et al., 2017), the 

relation between mouse movement patterns while answering, and the reported item difficulty 

was examined. Participants were asked to answer a single-choice question based on a 

randomly assigned description of a scenario, which was manipulated to be formulated either 

complicated or straightforward. After answering, participants should self-report the difficulty 

(5-step Likert-scale) of the item. The study examined the relation between the reported 

difficulty and the mouse patterns while answering. Specific mouse movement patterns that 

were identified as frequently occurring in previous research were investigated. These are 

horizontal tracking, vertical tracking, hovering, using the mouse as a marker, and regressing 

between two areas of interest. Horizontal and vertical tracking refers to the mouse following 

the gaze position in the according direction. “Hovering” was defined as holding the mouse 

cursor over the question for more than 2 seconds, “marker” as holding the mouse cursor over 

an answer option for more than 2 seconds, and “regressive” described a move back and forth 

between two of the elements “question”, “answer option”, “white space”, and a “next 

question” button. Significant relations were found between three of the patterns (hover, 

marker and regressive) and the reported difficulty. Adding the three mouse movements 

patterns to a model led to a slightly higher predictive power (AOC = 2,119.74; ROC 

=  0.7911) compared a model that only includes response times for an item (AOC = 

2,142.75; ROC = 0.7798). One advantage of the used approach that the authors did not 

mention is that response times are usually not available for items, if more than one item is 
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presented on a page. Even if one item per page is presented, mouse behavior provides more 

valid information than simple logfiles on navigation (see chapter 4.1.1.3). The aim of the 

authors was to identify respondents that face difficulties while answering and therefore, 

“delivering help to confused respondents in real time and as a diagnostic tool to identify 

confusing questions” (Horwitz, Kreuter et al., 2017, p. 1). Again, experiencing difficulty 

while answering an item was equated to being confused. Another drawback that limits the use 

of the approach in the field is the use of manual coders that had to watch screen recordings to 

identify the mentioned mouse patterns. This was necessary as the used methods to record 

mouse movements did only cover pixel coordinates, but did not include to what element the 

positions refer. Thus, the recognized patterns of mouse movements could not be detected 

automatically in real-time. Moreover, only mouse movements were considered, but the 

selection of answers (represented as clicks) was ignored. Therefore, it is not possible to 

include some important indices such as the time to first answer selection. These drawbacks 

are addressed in this study by using the peripheral data approach (see chapter 4.1).  

 Research Questions and Hypotheses 

Research Question 1: Detecting and Measuring Confusion 

Research on the detection and measurement of confusion currently lacks a method that is 

applicable in online learning environments outside the lab. Promising attempts to use mouse 

movements either used ecologically invalid artificial environments (Pentel, 2015), failed at 

correctly operationalizing confusion based on existing theory, or neglected mouse behavior 

besides movements (Horwitz, Kieslich et al., 2017; Horwitz, Kreuter et al., 2017).  

In the study of this work, the detection of confusion through mouse behavior during the 

interaction in tasks that are relevant for learning in advanced learning environments is 

investigated. Used in described studies (Horwitz, Kieslich et al., 2017; Horwitz, Kreuter et al., 

2017), filling single-choice items provides a suitable task for this study for several reasons: 1) 
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the structure, including a question and answer options, limits possible mouse behavior 

options, 2) answering single-choice items is an ecologically valid, relevant, and common task 

in online learning environments, e.g., used in rapid assessment tasks (e.g., Kalyuga, 2008; 

Renkl, Skuballa, Schwonke, Harr & Leber, 2015) or prompts (e.g., Bannert, 2007), and 3) the 

structure allows for a theory-based manipulation that induces confusion. If evidence is found 

for mouse behavior being a valid proxy for confusion within the simplified, limited structure 

of multi-item scales, this can lead to a direct application, but also, the approach can be 

examined in a less limited, less structured environment in order to generalize the results.  

The first research question addressed in this study is therefore: Do indices of mouse behavior 

during the answering of single-choice items in questionnaires correspond to confusion? 

The hypotheses for this research question are derived from the latter mentioned advantage of 

the structure of single-choice question that allow for a theory-based manipulation. D´Mello 

and Graesser (2014) describe that interruptions of organized sequences of actions induce 

confusion. In single-choice questions, the same sequence of actions is required for each item: 

Reading the question, deciding for one of the five presented answer options, and clicking on 

it. Hence, it is argued that confusion can be induced by interrupting this sequence of actions. 

Such an interruption that leads to confusion can be achieved through enriching items with an 

answer option that contains contradictory information (Arguel, Lockyer, Kennedy, Lodge & 

Pachman, 2018). This claim is further supported by Mandler’s interruption (discrepancy) 

theory (Mandler, 1990). He argues that attention of individuals shifts towards discrepant 

information when detecting them during the assimilation of new information. This shift of 

attention should be reflected in how learners interact with the discrepant information (i.e., 

manipulated answer option by including confusion through contradictory information). 

Hence, it is hypothesized that this interaction, operationalized by different indices of the 

mouse behavior that is shown while answering single-choice questions (e.g., time spent on an 
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answer option), will be higher for items with manipulated, confusing content (i.e., 

contradictory statements) compared to non-manipulated, non-confusing content (Hypothesis 

1a: Mouse-detects-confusion-Hypothesis).  

Discrepant information that triggers an interruption of a sequence of actions may not always 

lead to the same level of confusion or to confusion at all. The resulting cognitive or emotional 

state and its level of intensity might depend on the type of information that interrupts the 

sequence. In order to check whether the type of discrepancy is reflected in the mouse 

behavior, items were manipulated to be grammatically wrong. It is argued that grammar 

errors still interrupt a sequence and lead to confusion, but the intensity should be lower 

(which was checked in a pre-test of the items). Accordingly, it is hypothesized that indices of 

mouse behavior (e.g., time on item) for items with a grammatically wrong answer option are 

significantly lower than items including contradictions but are still higher than items without 

any manipulation (Hypothesis 1b: Mouse-measures-confusion-levels-Hypothesis). 

Research Question 2: Relations Between Mouse Behavior and Item Difficulty 

Moreover, this study seeks to confirm and extend the results of Horwitz and colleagues 

(Horwitz, Kreuter et al., 2017), that mouse behavior is related to the subjective difficulty-

ratings of knowledge items. Although the aim of the mentioned study was to identify 

respondents with trouble in online surveys, their research question is highly relevant for the 

area of learning in online environments. Rating the difficulty of an item requires 

metacognitive activity and represents a metacognitive task. A learner needs to reflect about 

his own knowledge on the question and evaluate how this relates to the population or a 

specific sample. Hence, if it is possible to replace the self-report of the perceived difficulty of 

an item through indices of mouse behavior while answering the item, the metacognitive 

activity becomes measurable at least to some degree. Although this is only one aspect of 

metacognition in a special context with limited generalizability, finding a measure for it is 
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very valuable, taking into account the fundamental issues that researches have continuously 

been reporting for decades regarding the measurement of metacognition (e.g., Veenman et al., 

2006). In online learning environments, being able to assess the difficulty that learners have 

with answering a single-choice question would add considerable insight, compared to only 

knowing whether the given answer was right or wrong. As an example, a derived instructional 

possibility could be an adaptive restudy that not only considers wrong questions but also 

questions that were right but still perceived as difficult, according to the interaction with it. 

In addition to this, this study is also interested in the relation of mouse behavior to the 

objective difficulty of items. As learners tend to make wrong judgments towards an 

overestimation of their performance and abilities (e.g., Dunlosky & Lipko, 2007), validating 

these judgements with their interaction could contribute to higher accuracy. 

Summing this up, the second research question of this study is: Is the perceived and the 

objective difficulty related to mouse behavior while answering single-choice items of general 

knowledge? From this question, four hypotheses are derived 

Firstly, it is hypothesized that indices of mouse behavior positively correlate with the level of 

reported subjective difficulty (Hypothesis 2a: Higher-Mouse-Higher-Subjective-Difficulty). 

Moreover, it is hypothesized that these mouse indices can predict the subjective difficulty in a 

regression model (Hypothesis 2b: Mouse-indicates-subjective-difficulty-Hypothesis).  

Regarding objective difficulty, it is hypothesized that indices of mouse behavior also 

positively correlate with it (Hypothesis 2c: Higher-Mouse-Higher-Objective-Difficulty-

Hypothesis), and that indices of mouse behavior predict the correctness of an answer in a 

binary logistic regression model (Hypothesis 2d: Mouse-indicates-objective-difficulty-

Hypothesis). 
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Research Question 3: Correspondence of Mouse Behavior with Feeling-of-Knowing 

Judgements 

In addition to the perceived and objective difficulty of an item, this study addresses the 

feeling-of-knowing (FOK) for the items as a metacognitive judgement. Such judgments 

describe the predictions made by an individual to be able to recall a given, specific 

information from their existing knowledge (“I know the answer of this question” versus “I do 

not know the answer of this question”). As such, FOK judgements do not refer to an actual 

answer to a question. It is argued that FOK judgements can be helpful in adaptive learning 

environments to check whether learners already understand an entity of the curriculum. 

Glucksberg and McCloskey (1981) found that don’t-know responses can be made quickly and 

accurately when no relevant information is known. In contrast, a don’t-know response is slow 

if some relevant knowledge is available, because the person needs time to evaluate if he/she 

has enough knowledge or is sure enough to state that he/she knows the answer. As the 

selected questions in the BEFKI are general knowledge questions, it is argued that the 

participants should have some prior knowledge of these questions. However, very difficult 

items were added of which participants probably do not have prior knowledge. Thus, the third 

research question in this study is: Are response times of FOK judgements related to the 

subjective difficulty of single-choice items of general knowledge? For this question, it is 

hypothesized that response times for FOK judgments are positively related to the subjective 

difficulty rating (Hypothesis 3a: Slower-FOK-Higher-Difficulty). Moreover, it is hypothesized 

that for questions of very high subjective difficulty, the relation is inverted (Hypothesis 3b: 

Faster-FOK-for-Extreme-Difficulty). 
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 Method 

4.4.2.1 Sample and Design 

A correlational online field study was conducted with N = 144 university students (46% male, 

age M = 23.26, SD = 2.45). For participant recruiting, advertisement was posted in three 

Facebook groups of different German universities. The advertisement involved the following 

information: participation takes approximately 20 to 30 minutes, the task is to “answer 

questionnaires about your personality and your general knowledge”, requirements to 

participate are a calm environment, a laptop or desktop computer (no tablets or mobile 

phones), and 5 Euro will be payed or donated to a charitable as a compensation for a complete 

participation. It was checked for every participants whether they 1) spent a minimum of 15 

minutes on the study, did not show non-meaningful answer behavior (e.g., always selecting 

the answer option of the same position), and completed all parts of the study. After removing 

participants that did not fulfil these requirements, 114 participants remained in the data 

analysis. 

4.4.2.2 Research Paradigm 

Although the final goal of this area of research is the detection of confusion during learning, 

independent of the structure and context of the learning environment, this study uses multi-

item scales instead of a traditional learning environment. The reason for this choice were 

already mentioned in detail above: the structure limits the scope of possible mouse behavior, 

while still being a relevant task in online learning environments, and the structure allows for a 

theory-based manipulation that induces confusion. Limiting the structure of possible mouse 

behavior is an important part of the research paradigm in this study. Mouse behavior on 

websites directly depends on its design. For example, when content sections of a text are 

presented in different tabs, learners have to click to the corresponding tab in order to read it. 
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In comparison, splitting all content sections of the text by including sub headings, learners do 

not have to click. This leads to two fundamentally different patterns of mouse behavior that 

are represented in the recorded data and therefore, allows equally different inferences about 

learner’s behavior and experience. In this example, opening a tab and spending enough time 

at it could be operationalized as reading the paragraph. Using this rationale, researchers can 

control the granularity and meaningfulness of recorded mouse behavior regarding a variable 

of interest by well-aimed decisions on how the information is presented. Therefore, how 

information in a learning environment is presented becomes an important decision during the 

planning of the research design of studies. A similar rationale has been introduced years ago 

as a “poor man’s eye tracker” to get coarse information on what learners were reading 

(Ullrich & Melis, 2002). Manipulating the design to examine a specific question limits the 

generalizability of the results to the required interactions. However, this drawback comes with 

an important advantage: using the method allows to empirically discover and proof 

fundamental theoretical relations in a clearly defined and controlled scope.  

The research paradigm of this study uses single-choice items. Single-choice items already 

limit the possible mouse interactions by their very nature. A minimum interaction is required 

to answer it: scroll to the question, move the mouse cursor over the answer option, click on 

the answer option. It is argued that everything beside this required interaction can potentially 

tell about latent variables. Relations between the interaction and that latent variable can then 

be uncovered in two ways. First, items can be manipulated to change a latent variable. If the 

interaction with that item significantly differs compared to the mean interaction with non-

manipulated items, then there is a relation that can be further investigated. For example, in 

this study, items were manipulated to induce confusion through contradictions (e.g., “I’m a 

tidy person, [not] cleaning up often”). Secondly, relations between the interaction and meta-

information of items can be checked. This meta-information can either be inherently available 
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(e.g., the objective difficulty of an item defined by how many subjects were able to solve it), 

or needs to be acquired (e.g., ratings of subjective difficulty or FOK). It is important to 

understand, that the actually measured variables using the questionnaires (in this study, Big 

Five personality traits or crystalline intelligence) are not relevant to the questions of this 

study, but that the process data on how it was answered is. The questionnaires were selected 

because they are readily available, frequently used, and validation studies with measures of 

quality criteria such as reliability or selectivity are available.  

4.4.2.3 Indices of Mouse Behavior 

Combining the described research paradigm with the peripheral data approach allows the 

automated extraction of indices of mouse behavior. The developed software framework 

ScreenAlytics (see chapter 4.1), was used to record fine-grained data on the mouse behavior. 

It allows us to easily extract important indices of the mouse behavior from the interaction 

data. As in eye tracking methodology, different elements of the web-based questionnaires 

define areas of interest (AOI) as shown in Figure 19. From these AOI, indices of mouse 

behavior can be derived.  

 

Figure 19. Elements on the website represent different areas of interest from which indices of 
mouse behavior can be extracted. 

Used indices that can be drawn from the interaction with single-choice items are listed in 

Table 11. Transitions between elements can be counted automatically with information on the  
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mouse movement paths. Compared to the indices used by Horwitz and colleagues (2017), 

their “hovering” refers to T-Q, “marker” to T-A and “regressive” refers to F-TWA, F-TAA 

and F-TAQ. 

Table 11 

Indices of mouse behavior regarding the interaction with single-choice items. 

Unit Code 

Time …  
 … on item question and answer T-QA 

 … on item question text T-QT 
 … on item answers T-A 

 … till first selection T-FS 
Frequency of …  

 … answer selections per item. F-A 
 … transitions between white space and answers. F-TWA 

 … transitions between different answer options. F-TAA 
 … transitions between answer and question. F-TAQ 

Note. When referred to this table, codes are used e.g., T-QA for “Time on item question and answer”. 

4.4.2.4 Confusion Induction and Manipulation Check 

Confusion was induced by manipulating items of the well-established German translation of 

the Big Five Inventory-2 questionnaire (see chapter 4.4.2.5 for a description of the 

questionnaire). The questionnaire consists of 60 5-step Likert-scaled items, divided into 6 

pages with 10 items each. Within a page of 10 items, one item was manipulated to be either 1) 

contradictory or 2) grammatically wrong. It’s position was randomly chosen. 

In many studies, confusion (and its successful induction) is measured by self-reports during 

the learning process and thus, may be reactive to the variable of interest. In this study, items 

were pre-tested on whether and to what extent they induce confusion. By this, the induction of 

confusion is proofed but this manipulation check is not done during the assessment to prevent 

reactiveness. Eight participants were asked to rate the items on a 4-step Likert-scale from not 
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confusing (0) to very confusing (3). Wilcoxon signed rank tests were conducted for each 

manipulated item to check whether the according confusion rating is significantly higher than 

those of non-manipulated items. Results are reported in Table 12.  

Table 12 

Description and check of the manipulated items for inducing confusion. 

Type of 
manipulation 

Original Version 
(item position in 
questionnaire) 

Manipulated 
Version 

Pre-test confusion rating 
(N=8) 

M (SD),  
p  

z*,  
Cohen’s d 

Contradiction I stay relaxed even 
in stressful 
situations. (4) 

I stay calm even in 
relaxed situations. 

2.63 (1.06),  
p < .05 

-2.380, 
3.115 

Grammar error I'm systematic, 
keeping my things 
in order. (18) 

I systematic am, 
keeping my things 
in order.  

2.63 (0.52),  
p < .05 

-2.521,  
3.932 

Contradiction I am confident, 
satisfied with 
myself. (24) 

I'm confident, 
dissatisfied with 
myself. 

2.88 (0.35),  
p < .05 

-2.521, 
3.932  

Grammar error I'm efficient, I do 
things fast. (38) 

I'm efficient, does 
things fast. 

2.37 (1.06),  
p < .05 

-2.380, 
3.115  

Contradiction I'm more of a mess. 
I rarely clean up. 
(48) 

I am rather neat. I 
seldom clean up. 

2.63 (0.74),  
p < .05 

-2.383,  
3.128 

Grammar error Sometimes I act 
irresponsible, 
reckless. (58) 

Sometimes act 
irresponsible, 
reckless. 

1.25 (1.06),  
p = .313 

-1.120, 
.862  

Note. Items were translated from German and contradictions and grammar error might therefore not 
represent the same quality in English. * This value represents a z-transformation of Wilcoxon’s W-
value. 

Although grammar manipulation of the last item was not significant, it has a high effect size 

(according to Cohen, 1988) and was still kept due to the low statistical power that the pre-test 

had. Pre-testing the items also showed that grammatically wrong items tend to induce less 

confusion (M = 2.54, SD = .47), than contradictory items (M = 2.70, SD = .37) with a medium 

effect size (d = .723), although not significant in a Wilcoxon test, again due to the low power 

of the pre-test (N = 8, z = -.962, p = .336). This difference means that different levels of 
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confusion can be induced by the used manipulations which is a requirement to identify them 

through mouse behavior (Mouse-detects-confusion-Hypothesis). 

In addition to this check, participants were asked to provide suggestions on how to improve 

the design of the study after completion, but before the debriefing. The question did not 

involve any cue to focus on a specific part of the study. These open answers were analyzed 

for mentioning anything related to the manipulated items. Answers of 118 participants that 

answered the open question were analyzed. Of these 118 participants, 15 participants only 

mentioned grammar errors, 52 only mentioned contradictions, and 22 mentioned both. 

Seventeen participants answered that there is nothing to improve. Hence, 75% of the answers 

mentioned contradictions whereas only 31% mentioned grammar errors. This further supports 

the assumption that grammar levels induced less confusion than contradictory items. 

4.4.2.5 Measures and Instruments 

Adapted BEFKI GC-K  

BEFKI GC-K is a short, 12-item knowledge scale to measure crystalline intelligence 

(gc) using declarative knowledge items from the sciences, the humanities, and civics (e.g., 

“What symptoms are typical for epilepsy?” or “What does amber consist of?”). It is based on 

the item pool of the “Berliner Test zur Erfassung Fluider und Kristalliner Intelligenz” 

(BEFKI, berlin test to assess fluid and crystalline intelligence) project, which has been 

validated on a representative Sample of 1134 German adults (Schipolowski et al., 2013, 

2014). To the existing 12 questions, a total of six items were added to cover very low and 

very high difficulty, as listed in Table 13. Reported reliability of the validation study is 

Cronbach’s Alpha = .70 to .82. In this study, the items reached a reliability of Cronbach’s 

Alpha = .57 including the extreme items and Cronbach’s Alpha = .54 when only taking the 

original items into account.  
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Table 13 

Items with High and Low Difficulty Added to BEFKI 

 
This scale was used in two variants: first, only questions without answer options were 

presented together with a binary FOK judgement (“I know the answer” and “I don’t know the 

answer” options). Moreover, an additional 5-step Likert scaled judgement of the perceived 

subjective difficulty was presented for each item (“I think the above question is very easy / 

rather easy / medium / rather difficult / very difficult”). Figure 20 shows the design of the 

measurement of the subjective difficulty rating and the feeling-of-knowing judgement. 

Secondly, at a later point in the data acquisition, the questions were presented again as single-

choice items with 4 answer options, one being the correct answer to measure the objective 

difficulty of the item over all participants. Figure 21 shows the design of an example question 

with 4-answer options.  

Objective difficulty for the items was calculated as the ratio between participants that got the 

item right and the total number of participants and is shown in Table 14, ordered by their 

difficulty. As expected, the added items intended to have “high” difficulty, was answered 

correctly by the smallest proportions (23, 35 and 46,2%). Regarding the added items that were 

intended to have “low” difficulty, only two of the items actually had the expected low 

difficulty (94,9%). The item “Which actor later became US president?” had a rather high 

difficulty of 76,1%.  

# Difficulty Item 

1 Low How many federal states has Germany? 
2 Low What is the name of a famous comic elephant with big ears? 

3 Low Which actor later became US president? 
4 High Who invented the microphone in 1878? 

5 High When did the broadcast of color television in Germany begin?- 
6 High In which town was Marilyn Monroe born? 
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Table 14 

Items of the general knowledge scale ordered by difficulty. 

Position in 
questionnaire 

Question Participants that answered 
correctly (of N=114 in total) 

Frequency Percentage 

18 In which town was Marilyn Monroe born? 27 23 

16 Who invented the microphone in 1878? 41 35 
17 When did the broadcast of color television in 

Germany begin? 
54 46.2 

15 What happened after the "Battle of Leipzig"? 64 54.7 

14 Family and inheritance law is subject of 
what? 

73 62.3 

11 What is the characteristic of a diode? 76 65 
12 What's the "Nibelungenlied"? 78 66.6 

13 What are royalties? 80 68.4 
1 Which actor later became US president? 89 76.1 

10 What is nihilism? 89 76.1 
7 A well-known painting by Dalí shows 

"melting Clocks". Which style can be 
assigned to this painting? 

91 77.7 

5 What was the task of the Inquisition courts of 
the Middle Ages? 

93 79.5 

8 What's mitosis for? 95 81.2 
9 What's a petition? 104 88.9 

6 What is amber made of? 108 92.4 
4 Which symptoms are typical for epilepsy? 110 94 
2 How many federal states does Germany 

have? 
111 94.9 

3 What is the name of a comic elephant with 
large ears? 

111 94.9 
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Figure 20. Measurement of binary feeling-of-knowledge judgement (question “What 
characterizes a diode?” with answer options “I know that” vs. “I don’t know that”), and 
perceived subjective difficulty in a 5-step Likert-scale.  

 

Figure 21. Measurement of objective difficulty by checking for the actual knowledge with a 
4-option single choice item. 

Big Five Inventory 2 (BFI-2) for Confusion Induction 

BFI-2 (Danner et al., 2016) is a German version of the 60-item Big Five Inventory 2 that 

measures the big five personality traits extraversion, openness to experience, 

conscientiousness, agreeableness and neuroticism. Reported reliability of the sub-scales in the 
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German validation study is Cronbach’s Alpha = .70 to .80. In the study of this work, the items 

were divided into 6 pages, each presenting 10 items. The order of the items was kept as in the 

original version. On every page, one of the 10 presented items were manipulated to induce 

confusion by either making them contradictory (e.g., “I am tidy, not cleaning up often) or 

including grammar errors (e.g., wrong verb position or wrong cases). The detailed 

manipulation is described in chapter 4.4.2.4. 

4.4.2.6 Procedure 

The procedure of this study is listed in Table 15. On the initial webpage, participants were 

briefed about 1) the requirements to receive the compensation payment, 2) interaction data 

being collected during the study, time that the study will approximately take (20 to 30 

minutes), technical requirements (using a desktop device, no reloading or leaving of the 

website, no use of browser navigation buttons, maximized browser window), experimental 

requirements (e.g., no parallel interaction with Facebook or Google) and anonymization of the 

acquired data. On the same page, participants were asked for demographics (age, sex, 

occupation) and their confirmation of the following statements: 1) I have 30 minutes time 

now to participate in this study without breaks, 2) I work on a desktop computer or a laptop 

and my browser is maximized, 3) I did not yet participate in this study, 4) I agree that my 

anonymized answers are stored for data analysis, 5) I am over 18 years old and I have a bank 

account for the transfer of my compensation payment of 5 Euro. After that, all FOK and 

subjective difficulty ratings for the 18 items of the adapted BEFKI scale were presented on 

one page. Participants then filled the 60 items of the manipulated BFI2 scale divided on 6 

page, 10 items each. Then, participants were asked to give the actual answer to the single-

choice items of the adapted BEFKI scale, which was rated before regarding FOK and 

difficulty. An open answer text form was then presented and participants were asked to fill in 

suggestions to improve the study design. This was used to check whether participants 
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recognized the manipulation of the BEFKI items. On the last two pages, bank information for 

the payment of the compensation was acquired and participants were debriefed about the 

study and the correct answers for the BEFKI items. 
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Table 15 

Procedure and Instruments with Manipulations of Study 3 

Page Description Variable(s) Instrument Manipulation Hypothesis 
1 Briefing, consent and demographics age, sex, occupation, consent - - - 

2 Prior judgements/rating of general 
knowledge questions FOK, difficulty ratings FOK and difficulty rating of 

adapted BEFKI - 2a, b / 3 

3 Confusion induction and measurement BIG5, mouse behavior BFI-2, Item 1-10 Item 4: 
Contradiction  1a, b 

4 Confusion induction and measurement BIG5, mouse behavior BFI-2, Item 11-20 Item 18: Grammar 
error 1a, b 

5 Confusion induction and measurement BIG5, mouse behavior BFI-2, Item 21-30 Item 24: 
Contradiction  1a, b 

6 Confusion induction and measurement BIG5, mouse behavior BFI-2, Item 31-40 Item 38: Grammar 
error 1a, b 

7 Confusion induction and measurement BIG5, mouse behavior BFI-2, Item 41-50 Item 48: 
Contradiction  1a, b 

8 Confusion induction and measurement BIG5, mouse behavior BFI-2, Item 51-60 Item 58: Grammar  1a, b 

9 Answers to general knowledge questions Objective difficulty, mouse 
behavior Adapted BEFKI - 2a, b / 3 

10 Check feedback if BFI-2 manipulations 
were recognized manipulation check Open answer, suggestions 

and feedback - - 

11 Compensation money bank information - - - 

12 Debrief and answers to BEFKI - - - - 
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 Results 

If not mentioned, type I error rate was set to .05 for analyses. IBM Statistics 25, PHP, Python, 

Microsoft Excel and R were used to extract, filter, aggregate, and analyze the data set.  

Of all time-related mouse behavior indices, values over 45s were regarded as not related to 

answering the questions and thus, were removed. All mouse behavior indices of all items 

were checked for collinearity, which was defined as a correlation of Pearson’s r > .7. 

However, the highest correlation between two indices was r = .57. 

Preliminary Assumption 

Testing the indices of mouse behavior for statistical significant differences between 

manipulated and non-manipulated items is problematic for several reasons: 1) Corresponding 

tests (e.g., repeated measures t-test or analysis of variance) become significant even for small 

differences because of the high number of cases and the high variance, 2) Tests have to be 

calculated individually for each index, which is on the one hand very time-consuming and on 

the other hand leads to a possible underestimation of the effect, 3) Increased mean values of 

the indices can be high due to deviating interactions of some participant that remain on an 

item for a very long time because of other reasons (e.g., distraction). At the same time the 

removal of outliers according to a fixed criterion (e.g., mean value +/- 2*standard deviation) 

or the comparison of the medians is not reasonable, as for manipulated items, more values at 

the right of the median are expected. Therefore, it is reasonable to additionally determine 

which indices of mouse behavior were higher than the median of non-manipulated items for 

each subject and each item. For this purpose, binary variables were computed for all indices 

of all items, indicating whether the value is above the median of the corresponding index for 

non-manipulated items (0 = below the median, 1 = above the median). These binary variables 

are then summed up into a conglomerate for each item (called K below). 
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KItem-N  =  +1 | if (  T-QAN  > MedianT-QA ) 

 +1 | if (  T-QTN  > MedianT-QT ) 
 +1 | if (  T-AN  > MedianT-A ) 

 +1 | if (  T-FSN  > MedianT-FS ) 

This results in a single conglomerate per item that contains all indices of mouse behavior. It 

also solves the problem of high standard deviation by single, extreme values.  

4.4.3.1 Hypothesis 1a: Mouse-detects-confusion-Hypothesis 

In order to check whether manipulated items that induced confusion have higher indices of 

mouse behavior and hence, can be recognized by the mouse behavior of the participants, the 

listed mouse indices of manipulated items were compared to those of non-manipulated items. 

Sixty BEFKI items were presented on 6 pages, 10 on each page. As one of 10 items on each 

page was manipulated, it was checked whether mouse behavior indices were higher for this 

item compared to the 9 non-manipulated items. Table 16 shows which indices were higher for 

manipulated items than for all non-manipulated items on the same page. Regarding the time-

related indices, except for T-QT on the first manipulated item 4 and for T-QA, T-QT, and T-

A on the grammar-manipulated item 58, all indices were higher for the manipulated items 

then for all other, non-manipulated items on the page (i.e., manipulated items had the highest 

values for time-related indices). Frequency-related indices were only rarely higher for 

manipulated items compared to non-manipulated items. As an example, Figure 22 shows the 

mean T-FS for all items on page 4 but the first, which is missing as time to first select needs a 

previous item to be computed. Figure 23 shows the T-QA index for all manipulated items 

compared to the according non-manipulated items on the page. 
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Table 16 

Indication of higher indices for manipulated compared to non-manipulated items. 

Item Manipulation T-QA T-QT T-A T-FS F-A 
F-

TWA 
F-

TAA 
F-

TAQ 
4 Contradiction X  X X     

18 Grammar X X X X  X   
24 Contradiction X X X X    X 
38 Grammar X X X X     
48 Contradiction X X X X  X   
58 Grammar    X     

Note. X = Higher value of the manipulated item than for every other item on the same page, being 
significantly higher compared to the overall mean of all non-manipulated items. T-QA = Time on 
question answer, T-QT = time on question text, T-A = time on answers, T-FS = time till first select, F-
A = Answer selections per item, F-TWA = transitions between white space and answer, F-TAA = 
transitions between answer options, F-TAQ = transitions between answers and question 

 

  
Figure 22. Time till first selection for 9 items of page 4. Item 3 was manipulated to induce 
confusion with a grammar error. 
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Figure 23. Mean T-QA of non-manipulated items vs. manipulated item on all six pages with 
10 items each.  

Although these results already tend to confirm the hypothesis, it lacks tests for statistical 

significance. As mentioned in 4.4.3, testing the mean value differences for statistical 

significance is problematic, and the computed conglomerate of mouse behavior indices K was 

used for significance test. Regarding the hypothesis check, it is expected that K is 

significantly higher for manipulated items than for non-manipulated items. The mean K-value 

over all items that were presented on one page was calculated and compared to the K of the 

individual items using paired t-tests. Cohen’s d was calculated as effect sizes with a 

correction for paired t-tests as suggested by Morris (2008). Figure 24 shows six graphs 

including all items expect the first of every page as for the calculation of the conglomerate, a 

previous item was needed. All manipulated items could be identified by 1) being bigger than 

the overall mean K-value and 2) being significant, indicated with a star. Thus, the hypothesis 

can be confirmed. 
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Figure 24. Comparison of manipulated and non-manipulated items regarding a 
conglomerate K of their received mouse behavior, grouped as 10 items were presented on 6 
different pages. First items are missing as calculation of K requires a previous item. * = 
significant difference between K and overall mean K (p < .001); d = Corrected Cohen’s d 
for paired tests. N = 115. 
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4.4.3.2 Hypothesis 1b: Mouse-measures-confusion-Levels-Hypothesis 

It was argued that grammar errors induce less confusion than contradictions. Hence, it was 

checked whether items with grammar manipulation have significantly lower indices of mouse 

behavior than items with contradiction manipulations, but higher indices than non-

manipulated items. The same conglomerate K of all time-related indices of mouse behavior as 

in the Mouse-detects-confusion-Hypothesis was used to compare the items. Mean K-values 

were built for manipulated items with contradictions, manipulated items with grammar errors 

and non-manipulated items. These values were compared by using paired t-tests. The result is 

shown in Figure 25. Contradictory items (M = 3.50; SD = 0.80) show significantly higher K-

values than items with grammar errors (M = 2.95; SD = 0.89), t (114) = 5.704, p < .001 with 

an effect size of Cohen’s d = .568. Moreover, items with grammar errors show significantly 

higher K-values than non-manipulated items (M = 2.30; SD = 0.16), t (114) = 8.186, p < .001 

with an effect size of Cohen’s d = .904. Thus, the hypothesis can be confirmed. 

 
Figure 25. Comparison of manipulated items with contradictions, grammar errors and no 
manipulation regarding a conglomerate K of their received mouse behavior.  
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4.4.3.3 Hypothesis 2a: Higher-Mouse-Higher-Subjective-Difficulty 

Mouse indices for each item were correlated with the 5-step Likert-scaled difficulty rating of 

the according item. It is important to understand that the mouse behavior during the actual 

answering of the item was assessed, not the mouse behavior during the rating of the item. For 

each mouse index, the number of significant correlations with the difficulty rating of an item 

was counted and a mean value was calculated as shown in Table 17. The number of positive 

correlations (17) is higher than the number of negative correlations (5), indicating that higher 

values of subjective difficulty relate to higher indices of mouse behavior (e.g., the higher the 

total time on the item, the higher its subjective difficulty). Moreover, correlations were 

computed for aggregated indices over all items, ignoring the item level listed in Table 18. 

Correlations are significant, with low correlations ranging between r = .061 and .120. 

Table 17 

Correlations between indices of mouse behavior on items and subjective difficulty rating. 

 T-QA T-QT T-A T-FS F-A F-TWA F-TAA F-TAQ 
Number of items with sign. 
positive correlation 5 0 2 1 0 0 5 2 
 Mean r .194 - .270 .204 - - .181 .196 
Number of items with sign. 
negative correlation 1 1 0 1 0 1 0 1 
 Mean r -.173 -.169 - -.174 - -.167 - -.167 

 

Table 18 

Correlations between aggregated indices over all items and subjective difficulty rating. 

Index 
T-QA T-TQ T-A T-FS F-A 

F-TAA /  
F-TQA 

r .120** .061** .098** .073** .076** .114** 
n 2000 2003 1997 1731 2034 2034 

Note. n for index T-FS is lower as the computation of the time to first selection needs a previous item 
and hence, could not be computed for the first item on a page. ** = significant on the 0.01-level. 
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In addition to this, indices of mouse behavior were aggregated over all BEFKI items and 

compared between the answer options of the subjective difficulty rating. For an easier 

comparison, all indices were mapped on values between 1 (minimum) and 10 (maximum). As 

shown in Figure 26, higher values of the indices T-A and a combination of F-TAA/F-TQA 

(transitions related to an answer option) correspond to higher subjective difficulty ratings. 

When ignoring the “very difficult” rating, this is true for all indices but F-A. Conducted 

ANOVAs revealed significant difference between the rating levels for all indices, as shown in 

Table 19. Considering the significant correlations between items’ subjectivity ratings and 

indices of mouse behavior, and the significant correlations for all indices when ignoring the 

item level, this Higher-Mouse-Higher-Subjective-Difficulty hypothesis can be accepted. 

4.4.3.1 Hypothesis 2b: Mouse-indicates-subjective-difficulty-Hypothesis  

To check whether the mouse behavior indicates subjective difficulty of general knowledge 

items in the BEFKI questionnaire, multiple regression models were computed for items with 

at least two significant indices entering the significantly correlated indices of mouse behavior 

as predictors and subjective difficulty as the dependent variable. As Table 20 shows, more 

than one index was significantly related to the subjective difficulty of the items 5, 11 and 12 

with an explained variance between 2.5% and 9.6%.  

Due to the low explained variance by the indices in the multiple regression model, an 

indication of subjective difficulty by indices of mouse behavior does not seems to be reliable. 

Therefore, the hypothesis is rejected. 
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Figure 26. Indices of mouse behavior, aggregated over all BEFKI items and compared 
between answer options of subjective difficulty rating. For standardized comparison, values 
were mapped on a scale from 1 (minimum) to 10 (maximum). 

Table 19 

Results for ANOVAs checking the levels of subjective difficulty rating for significant 

differences on indices of mouse behavior. 

Index T-QA T-QT T-A T-FS F-A F-TAA/F-TQA 
F 10.954 2.398 7.440 3.561 3.581 7.149 
df 4, 1995 4, 1998 4, 2029 4, 1728 4, 2029 4, 2029 
p < .001 < .05 < .001 < .01 < .01 < .001 
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Table 20 

Regression models for subjective difficulty of items with indices of mouse behavior as 

predictors. 

Subjective 
Difficulty  

of Item 
Model / Predictors sig. df1, df2 R2adj F 

5 T-A, T-FS .047 2, 106 .038 3.144 

11 T-QA, F-TAA .092 2, 108 .025 2.434 
12 T-QA, T-A, F-TAA .003 3,107 .096 4.884 

 

4.4.3.2 Hypothesis 2c: Higher-Mouse-Higher-Objective-Difficulty-Hypothesis  

As a preliminary assumption for this hypothesis, objective difficulty and subjective ratings of 

difficulty should differ. In order to proof this difference, the correlation between objective and 

subjective difficulty was first calculated. As shown in Table 21, all correlations are negative, 

indicating that items with objectively higher difficulty (=less often correct) were also rated as 

subjectively more difficult. However, the correlation coefficients range between -.003 and -

.464 with a mean correlation of -.232 which is regarded as small. Therefore, subjective 

difficulty ratings are significantly different to objective difficulty and, do not seem to be very 

accurate. Indices of mouse behavior for each BEFKI item during the answering of it, were 

correlated with the according correctness of the answer. Note that a higher value in the used 

correctness measure means that the item was less difficult. As for Higher-Mouse-Higher-

Subjective-Difficulty (2a), the number of items that have significant positive and negative 

correlations with indices of mouse behavior was counted and the mean correlation was 

computed as shown in Table 22. The number of positive correlations (4) is lower than the 

number of negative correlations (28), indicating that higher objective difficulty (=less correct 

answers) of items relate to higher indices of mouse behavior (e.g., the higher the total time on 

the item, the higher its objective difficulty). Moreover, correlations were computed for 
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aggregated indices over all items, ignoring the item level listed in Table 22. Correlations are 

significant and negative for 4 of 6 indices, but low, ranging between r = -.062 and -.111, as 

shown in Table 23. Thus, the hypothesis that indices of mouse behavior correlate negatively 

with objective difficulty is accepted. 

Table 21 

Correlation of subjective and objective difficulty for BEFKI items ordered by subjective 

difficulty. 

Item Correctness SD Subjective Difficulty SD Correlation p 
1 0.97 0.161 0.35 0.778 -0.351 ** 
2 0.97 0.161 1.13 1.299 -0.111 0.121 
8 0.91 0.283 1.16 1.272 -0.256 ** 
3 0.96 0.185 2.15 1.403 -0.177 0.110 
5 0.95 0.224 2.53 1.570 -0.273 ** 
0 0.78 0.419 2.65 1.430 -0.294 ** 
7 0.83 0.374 2.70 1.546 -0.057 0.274 

11 0.68 0.467 2.95 1.320 -0.321 ** 
13 0.64 0.482 3.10 1.376 -0.175 * 
9 0.78 0.416 3.12 1.548 -0.464 ** 
4 0.82 0.389 3.19 1.375 -0.248 ** 
6 0.80 0.403 3.22 1.287 -0.290 ** 

12 0.70 0.460 3.26 1.534 -0.395 ** 
10 0.67 0.473 3.55 1.217 -0.281 ** 
14 0.56 0.498 3.63 1.166 -0.349 ** 
16 0.47 0.502 3.66 0.988 -0.003 0.487 
17 0.24 0.427 3.82 1.054 -0.024 0.400 
15 0.36 0.482 4.25 0.892 -0.107 0.130 
1 0.97 0.161 0.35 0.778 -0.351 ** 

Mean 0.73 0.378 2.80 1.281 -0.232  
Note. ** = significant at the 0.01 level, * = significant at the 0.05 level 
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Table 22 

Correlations between indices of mouse behavior on items and objective difficulty. 

 T-QA T-QT T-A T-FS F-A F-TWA F-TAA F-TAQ 
Number of items with sign. 
positive correlation 0 0 1 2 0 1 0 0 

 Mean r - - .169 .327 - .196 - - 
Number of items with sign. 
negative correlation 5 3 4 4 2 2 4 4 

 Mean r -.208 -.211 -.261 -.230 -.314 -.263 -.248 -.180 
 

Table 23 

Correlations between aggregated indices over all items an objective difficulty. 

 T-QA T-QT T-A T-FS F-A 
F-TAA /  

F-TQA 
r -.069** .004 -.062** .007 -.092** -.111** 
p < .01 .072 < .01 p = .796 < .001 < .001 
n 2014 2013 2052 1750 2010 2034 

 

4.4.3.3 Hypothesis 2d: Mouse-Indicates-Objective-Difficulty-Hypothesis 

To check whether the mouse behavior indicates objective difficulty of general knowledge 

items in the BEFKI questionnaire, binary logistic regression models were computed for items 

with at least two significant indices, entering the significantly correlated indices of mouse 

behavior as predictors and binary correctness (0 being incorrect, 1 being correct) as the 

dependent variable. As shown in Table 24, only the models for item 14 and 15 included 

indices that were significant in the model according to a Wald chi-square test. For item 14, F-

TWA, the frequency of transitions between whitespace and answer options was significant, 

improving the percentage of correct predictions from 55.9% without the variable to 64% after 

including the variable. For item 15, the time till first selection of the answer was significant, 

but the beta value was zero, so the index did not impact the regression term.  
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Considering the low number of significant correlations between items’ objective difficulty 

and indices of mouse behavior, as well as the low performance of mouse indices in the 

calculated binary logistic regressions, the hypothesis is rejected.  

Table 24 

Significance of variables for binary logistic regression models with mouse behavior indices as 

predictors and correctness of the answer as dependent variable. 

Item T-QA T-Q F-TQA T-A T-FS F-TWA F-A F-A 
0 - p = .066 p = .828 - - - - - 
1 p =.930 - - p = .088 - - - - 
2 p = .823 p = .161 - - p = .319 p = .728 - - 
3 p = .489 - p = .448 - p = .989 p = .401 p = .514 p = .374 
4 - - p = .188 p = .420 p = .322 p = .262 p = .505 - 
5 - - - p = .054 p = .899 - - p = .999 

14 p = .795 - - - - 
p < .01,  
beta = -.184  - 

15 - - - p = .985 
p < .01, 
beta = 0 - - - 

 

4.4.3.4 Hypothesis 3a / 3b: Slower-FOK-Higher-Difficulty / Faster-FOK-for-

Extreme-Difficulty 

To check these two hypotheses, correlations between the both indices of mouse behavior T-A 

and T-FS regarding the FOK rating, and the subjective difficulty ratings were computed. The 

indices were chosen because T-FS represents what is commonly known as the response time 

for an item (time to first select), and T-A seems to be important as it represents the isolated 

time on the answer options. As shown in Table 25, all items with a mean FOK greater than 

.23 either have a positive correlation between subjective difficulty and T-FS, T-A, or both. 

Mean positive correlations between response times of FOK-ratings and the subjective 

difficulty were r = .237 (rmin = .159, rmax = .305) for T-FS, and r = .342 (rmin = .245, rmax = 

.458) for T-A. Figure 27 shows T-A and T-FS for every item’s FOK ordered by subjective 

difficulty, as well as the actual subjective difficulty, and FOK. Slower-FOK-Higher-
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Difficulty-Hypothesis (3a) can be accepted as there is a positive correlation between at least 

one of the two indices for every item with a FOK of at least .23. Faster-FOK-for-Extreme-

Difficulty-Hypothesis (3b) can partly be accepted, as one correlation is negative, but for other 

items with extreme difficulty, no correlation was found (i.e., items 14 - 17).  

Table 25 

Correlation between subjective difficulty rating and the mouse indices T-FS and T-A for 

feeling-of-knowledge ratings 

Item T-FS T-A Subj. Difficulty FOK rT-FS rT-A Correctness 
15 3603 963 4.25 0.06   0.36 
17 3269 853 3.82 0.08   0.24 
16 5469 1149 3.66 0.12 -0.164 -0.224 0.47 
14 5721 1129 3.63 0.23   0.56 
12 5406 1147 3.26 0.46  0.458 0.70 
13 3500 652 3.10 0.48 0.300 0.379 0.64 
10 7774 933 3.55 0.49 0.212 0.228 0.67 
6 7006 1216 3.22 0.53 0.159  0.80 
0 3452 663 2.65 0.54  0.250 0.78 
4 6727 924 3.19 0.54 0.277 0.368 0.82 

11 3729 521 2.95 0.67 0.278 0.343 0.68 
9 5139 462 3.12 0.68 0.280 0.380 0.78 
5 0 0 2.53 0.75 0.163 0.483 0.95 
7 3954 469 2.70 0.75  0.300 0.83 
2 5906 647 1.13 0.88 0.229 0.324 0.97 
3 3149 251 2.15 0.90 0.230 0.245 0.96 
8 5898 437 1.16 0.93 0.180 0.348 0.91 
1 4098 290 0.35 0.96 0.305  0.97 

MEAN 4929 747 2.80 0.56 0.237a 0.342a 0.72 
Note. a = mean of all positive correlations. 
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Figure 27. For each BEFKI item: T-A and T-FS during ratings of FOK, FOK-rating, and 
subjective difficulty. Items are ordered by subjective difficulty. 

 Discussion 

Detecting and Measuring Confusion Through Mouse Behavior 

In the first question of this study, the lack of an applicable and unobtrusive method to detect 

and measure confusion was addressed. Questionnaires were chosen as ecologically valid 

materials that are often used in learning environments. For the first Mouse-detects-confusion-

Hypothesis (1a), it was successfully shown that manipulated items, which induce confusion 
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through contradictory or grammatically wrong questions, lead to higher indices of mouse 

behavior than non-manipulated items. In a first step, time-related indices of mouse 

movements were identified to reliably be higher for items with induced confusion. It is only 

for the item with the lowest qualitative induction of confusion via grammar errors that non-

manipulated items exceed the values. This item was also not rated as much confusing as the 

other items in the pre-test. The findings are substantial, as five of six manipulated items could 

be identified by just looking at the highest values of the mentioned indices. In contrast, 

frequency-related indices such as the number of transitions between the questions and an 

answer option were not found to tell about the manipulation. On the one hand, this seems to 

be surprising, as Horwitz and colleagues (Horwitz, Kreuter et al., 2017) identified the number 

of transitions as significant in predictive models. On the other hand, the studies are hardly 

comparable in this aspect as the authors looked at correspondence to the subjective difficulty 

rather than confusion. Moreover, they did not use a differentiated index for transitions, but 

more coarse measures including F-TWA, F-TAA, and F-TAQ. Thus, they might also have 

had higher statistical power. 

In order to visualize the extend of the differences that were found, the effect sizes for 

differences between T-QA of all manipulated an non-manipulated items were computed. The 

index was chosen as it corresponded to 5 of 6 items and does only include mouse movements 

(no clicks). The adapted Cohen’s d, that was used to account for different standard deviations 

as an effect size, range between medium (d = .568) and very high (d = 3.671). Which index of 

mouse behavior to choose is not trivial, and this study contributed to identify which are 

suitable to be used for this application. In order to reach more explanatory power, a 

conglomerate was also used to show that manipulated items can be detected by the respective 

mouse behavior. The conglomerate combines all time-related indices, and as indices were not 

collinear, no index was left out. Using this conglomerate, it was shown that all manipulated 
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items were significantly higher than the overall-mean of all items on a page with 10 items. 

However, the K-value of item 39 on page 4 was non-significant, but still slightly higher than 

for the item of the manipulated item 38. A possible explanation for this might, at the same 

time, be an interesting phenomenon, that can be observed for manipulated items of other 

pages as well (see Figure 24). K-values for items that are positioned after a manipulated item 

seem to also have increased indices of mouse behavior, as observable for item 4, item 18, 

item 24, and item 48. It is argued that the manipulated, confusing item interrupted the 

interaction so strongly, that it takes some time for participants to fade out. Increased attention 

of participants to discover other contradictions or grammar errors in the following items could 

be the reason for these higher values. Hence, it is possible that the confusion induced with 

item 38 led to the higher values of item 39. Although a reverberation effect must still be 

confirmed, a possible intervention could be derived from it. If an instructional designer wants 

more attention on a crucial item, a confusing item could be placed just before the item of 

interest – where an item does not necessarily need to be a survey item but might also be 

another task. This is similar to the idea of perceptual and conceptual disfluency, which was 

found to increase metacognitive activity such as judgements of learning (Schwarz, 2010). 

In the second part of the first hypothesis (1b: Mouse-measures-confusion-levels-Hypothesis), 

different manipulations that were meant to induce different levels of confusion were 

compared. It could be shown that items with contradictions triggered significantly higher 

indices of mouse behavior compared to items with grammar errors, with a medium effect size 

of d = .568. Moreover, grammar items still accounted for significantly higher indices than 

non-manipulated items, with a large effect size of d = .904. Although this result seems to be 

intuitive, it is very meaningful for the unobtrusive measurement of confusion. It is a 

theoretical and methodological challenge to not only detect confusion, but also measure 

different levels of confusion (e.g., Arguel et al., 2017). Notably, the different levels could be 
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identified from the conglomerate that represents the number of participants who showed 

higher indices of interaction, but also for the isolated indices that represent continuous, 

individual variables. 

Relations Between Mouse Behavior and Item Difficulty 

The second research question of this study asked whether mouse behavior corresponds with 

the self-rated, subjective and objective difficulty of general knowledge items. Higher-Mouse-

Higher-Subjective-Difficulty (2a) stated that indices of mouse behavior correlate positively 

with subjective difficulty ratings. On an item level, more indices were related positively with 

subjective difficulty than negatively. When ignoring the item level, all indices correlated low 

but significantly positive with subjective difficulty. This is in line with previous research. 

Horwitz and colleagues (2017) computed the average number of mouse movements 

separately for every step of the Likert-scaled subjective difficulty rating. They found 

“a significant increase in the number of movements, as participants reported more difficulty 

answering”. (Horwitz, Kreuter et al., 2017, p. 10). These results could be replicated in this 

study with minor modifications. Instead of the number of mouse movements, detailed indices 

of mouse behavior were used. All used indices are significantly different between the levels 

of reported subjective difficulty. A relationship between increasing difficulty and the level of 

mouse behavior indices can be clearly seen, but the relationships are not always reliable: for 

three of the five indices (T-QA, T-QT and T-FS), the indices for the highest reported 

difficulty ("very difficult") are smaller than for the previous one. For index F-A (number of 

answer selections), "rather difficult" is below "medium". The "number of mouse movements" 

used by Horwitz and colleagues (2017) is closest to the transition indices used in this study. 

The relationship between the combined transitions (F-TAA and F-TQA) and the reported 

difficulty is very similar to the results of the mentioned study.  
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Although the results of Higher-Mouse-Higher-Subjective-Difficulty-Hypothesis (2a) indicate, 

that higher indices of mouse behavior are related to higher subjective difficulty, the idea of 

using mouse behavior as a substitute for subjective difficulty ratings (Mouse-indicates-

subjective-difficulty-Hypothesis, 2b) could not be reliably applied according to the results of 

the multiple regression models that were computed for different items that have significant 

correlations with indices of mouse behavior. In this study, the explained variance was not 

high enough to replace subjective difficulty ratings with index of the mouse behavior. 

Although it is very promising, that the number of mouse movement transitions between a 

question /answer and another answer is increasing with the rated difficulty, this needs to be 

shown on a single item level in order to be used in educational settings or the quality 

assessment of questionnaires. It is also notable that the frequency indices do provide 

information regarding the subjective difficulty, but, as mentioned in the discussion of the 

previous hypothesis, not regarding the confusion level. 

As another part of the second research question, the relation between mouse behavior and 

objective difficulty, operationalized as an answer being correct or not, was investigated. As a 

preliminary assumption, it was first shown that the difficulty ratings correlate with the actual 

correctness, but that correlations were not very high - a result that is in line with research on 

metacomprehension on the judgement accuracy of learners (e.g., Dunlosky & Lipko, 2007). 

Correlations between mouse indices and objective difficulty do exist both on an item-level 

and on an overall level (Higher-Mouse-Higher-Objective-Difficulty-Hypothesis, 2c). 

Although statistical significance was reached due to the high power of the correlation on an 

overall item level, these correlations are very low. Looking at the binary regression model, 

indices of mouse behavior do not seem to be a proxy measure for objective difficulty in this 

study, which was contrary to the expected Mouse-indicates-objective-difficulty-Hypothesis, 
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2d. Unfortunately, there is no other study yet that investigates this relation and that these 

results can be compared with. 

Relations Between Mouse Behavior on FOK and Subjective Difficulty 

In the last research question, it was investigated whether the response time for metacognitive 

FOK-judgements, operationalized by indices of mouse behavior, are related to the subjective 

difficulty of general knowledge items. In this research question, the interaction with the FOK 

ratings was investigated, not the interaction with the actual BEFKI questions. As 

hypothesized, participants showed higher response times at their FOK ratings when rating a 

question that they perceive as more difficult.  

The operationalization of response time with indices of mouse behavior is crucial in this 

study. Traditional response times are only a coarse estimate based on presenting one item at a 

time on a page and taking the time that a participant spends on this page. More sophisticated 

approaches look at the time between two answers when multi items are presented on one 

page, called T-FS (time to first selection of a question) in this study. In addition to this, this 

study looked at the index T-A, which is the time that participants spend on the answer options 

with their mouse pointers. Correlations with subjective difficulty are higher for T-A than for 

T-FS, indicating that T-A is a better indicator for subjective difficulty (Slower-FOK-Higher-

Difficulty-Hypothesis, 3a). This is also apparent from Figure 27, as it indicates how T-A 

declines with items getting less difficult. 

The second hypothesis of this question (Faster-FOK-for-Extreme-Difficulty-Hypothesis, 3b) 

predicted an opposite picture for very difficult items. Among the four most difficult items, 

however, a negative correlation between the mouse behavior during the FOK ratings and the 

subjective difficulty of the item was found only for one item. The other items did not show a 

negative correlation, but no positive correlation either. The absence of a correlation therefore 
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at least does not contradict the theoretical assumption of Glucksberg and McCloskey (1981) 

that don't-know ratings are made faster if no relevant knowledge is available.  

The results of research question 3 are very promising, because the interaction with a very 

simple binary question, whether a person knows the answer to a question, corresponds to how 

difficult the person perceives this question. Although this might be an intuitive relationship, it 

has not yet been empirically investigated and is, by no means, self-evident. 

4.4.4.1 General Limitations 

There are some general limitations to the results of this study. An issue in many studies that 

try to replace subjective self-reports with objective, unobtrusive measures is its circular 

argumentation: the aligned measure of confusion (in this study, mouse behavior) can only be 

valid if the self-report on confusion is valid. Moreover, the rating during the study could be 

reactive to the actual behavior with the given item. These issues are inherent to the research 

paradigm. Hence, this study tried not to validate the confusion with self-reports during the 

task. Instead, items that were designed to induce confusion were pre-tested to validate the 

induction and the level of induced confusion. The methodology to rate the items could have 

suffered from low ecological validity. Rating questions regarding the level of confusion they 

induce is not a common task. Thus, the task might rather operationalize whether the 

manipulations in the items could be identified. On the other hand, the pre-test successfully 

identified different levels of confusion for grammar errors and contradictions using the full 

range of the Likert-scale. Hence, there was no ceiling-effect for manipulated items in general. 

The same issue occurred in the research questions that deal with the general knowledge 

questions. The findings can only be valid if the rating of the subjective difficulty and the FOK 

was valid. Moreover, the previous rating of subjective difficulty and FOK can already be 

reactive to the actual answer and the mouse interaction with an question and it’s answer 
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options. This issue was tried to be addressed by presenting different questionnaires between 

the item rating and the actual answering of the items. 

Another, methodological drawback lies in the computation of the conglomerate K. This index 

represents the number of cases right of the median of all indices and thus, is accompanied by 

a loss of information: it only considers whether the values of the individual participants are 

higher than the median, but not to what extent they deviate. 

4.4.4.2 Application 

An application of the findings would be the use of data on mouse behavior regarding the 

answering of rapid assessment tasks (e.g., Renkl et al., 2015). Considering not only the 

correctness of the answer, but also the mentioned indices of mouse behavior could contribute 

to more accurate learner models in adaptive learning environments.  

The results could also have a completely different framing, not looking at how to recognize 

the state of confusion of a learner, but recognize content that induce confusion. This content 

can potentially be learning materials, but also the very same material that was used in this 

study: questionnaires. The use of indices of mouse behavior could act as a new measure for 

the validation of items for pre-testing questionnaires and scales. As shown, such measures can 

identify items that induce confusion.  

4.4.4.3 Conclusion 

Multi-item scales provide an inherently suitable environment to find the effects that were 

looked for, as manipulated (confusing) and non-manipulated (non-confusing) items differ in 

their content, but their structure remains the same. Although this was an important first step to 

proof that it is possible to recognize confusion by mouse behavior, a transfer of these results 

into other environments that are more usual in learning contexts and thus, not as structured as 

multi-scale items is needed. Regarding the research on recognizing difficulty in multi-item 
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scales, this study could contribute by confirming and extending the findings that mouse 

behavior can indeed contribute to measures of subjective and objective difficulty. 

Moreover, the results of this study also contribute to the general discourse on confusion as an 

academic emotion, claiming that the pausing behavior is a response to the confusion that was 

induced. Less granular measures that have been used (e.g., time on page or item response 

time) in learner models cannot tell what the source of an changed value is. Using measures 

with higher granularity on element-basis instead of page-basis allows for a more detailed 

analysis of what causes higher / lower values. 

4.5 Intervention Study: Can Metacognitive Prompts Boost the Effects of a 

Learning Dashboard? 

In chapter 2.5.3 of this work, learning dashboards were introduced as a recent instructional 

intervention that supports SRL processes. Moreover, the current drawbacks were listed. The 

goal of this study is to incorporate recommendations of the recent reviews that have been 

introduced and that address theoretical and empirical issues of dashboards. Specifically, the 

following issues will be addressed in this study: 

1. General mechanisms of how dashboards impact learning are often not stated or not 

based on theories of educational psychology, and  

2. data channels and its visualization presented in dashboards do not account for 

theories of educational and cognitive psychology (Gaševic et al., 2015). 

3. Simply raising awareness does not seem to be enough to facilitate learning, and 

studies that report positive effects on learning through learning dashboards are 

very rare (Jivet et al., 2017). 
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4. There is a general lack of systematic experimental research on the effect of 

dashboards on learning performance and on the use of dashboards by learners 

(Bodily & Verbert, 2017; Jivet et al., 2017; Schwendimann et al., 2017) 

Regarding 1): We examine the use of a learning dashboard and the effects on learning 

performance from the theoretical perspective of SRL. From the range of existing frameworks, 

the COPES model was chosen that describes five facets (condition, operation, product, 

evaluation and standard; Winne & Hadwin, 1998) of four stages (task definition, goal setting 

and planning, enacting study tactics and strategies, and metacognitively adapting studying) 

that build a “recursive, weakly sequenced system” (Winne & Hadwin, 1998, p. 281) for 

learning processes. A simple reason for using the COPES model in the few dashboard studies 

that use a theoretical framework, it is the most prominent. Using COPES makes this study 

more comparable to existing and future studies. Another, even more important reason is, that 

COPES allows us to explicitly spot the underlying mechanism of the intervention as follows. 

According to COPES, knowledge or skill acquisition happens through “enacting study tactics 

or strategies” during the third stage. However, it is argued that rather than directly triggering 

tactics / strategies on a cognitive level, dashboards take effect on a metacognitive level which 

can subsequently lead to changes in applying learning strategies. Learning dashboards 

(should) provide learners with objective information about their learning process that act as 

sources for external evaluations on task conditions (e.g., time or resources) and cognitive 

conditions (e.g., domain knowledge), that allow for better cognitive evaluations (e.g., “Am I 

on target with this task?”). As described in the COPES model (see chapter 2.2), if learners act 

on (valid) evaluations, they can adapt their standards, change their cognitive conditions, and 

triggers new operations (“If the student acts on evaluations, this is control by which elements 

in the collage of cognitive conditions may be altered; standards may be adjusted, added, or 

abandoned; and, operations of new kinds may be carried out.”, Winne & Hadwin, 1998, p. 
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281). This process is depicted in the blue parts of Figure 28. As stated, learners need to act on 

these updated evaluations in order to positively change learning and learning outcome. This 

brings us to the second claim.  

Regarding 2), the dashboard in this study uses fine-grained interaction data that is presented 

to learners using different visualizations for different purposes. Simple column charts 

(vertical) and bar charts (horizontal) have been used whenever possible, as previous research 

(Simkin & Hastie, 1987) has shown that they lead to the highest accuracy in data 

interpretation compared to other visualizations such as pie or line charts (when not used to 

compare proportions of the whole, where pie charts performed best). This was the case for the 

visualization of current task status and navigation. However, heat maps of mouse positions 

were used to provide learners with detailed information on what content the interacted with or 

not. The rationale behind presenting heat maps of mouse movements is that it should help 

learners with updating their cognitive evaluations on a detailed, element level. It is argued that 

heat maps indicate such information as there are medium correlations between mouse 

movements and gaze behavior (e.g., Guo & Agichtein, 2010; Huang & White, 2012). 

Moreover, there is also a line of research called eye movement modeling examples (EMME, 

see chapter 2.5.4) that uses previously recorded eye movements to foster learners cognitive 

processing of text and images (e.g., Mason et al., 2015). Although EMMEs use eye tracking 

information of others processing the information in an efficient way, the fact that it fosters 

processing is an indicator that learners should be able to gather information from such 

visualizations. The argumentation is that not only expert models could help improving, but 

also the comparison to learners’ own interactions.  

However, as heat maps are rather used when it comes to the visualization of focused areas in 

eye tracking for analytics instead of interventions (see Špakov & Miniotas, 2007 for an 

introduction), there is still a lack of research on the information processing from heat map 
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visualizations. Hence, this study may also shed light on how able learners are to handle heat 

maps as a visualization and source for inferences on their learning. The theoretical reasons 

why the specific data sources were used with regards to the COPES model are explained in 

the methods section where the intervention is described in more detail.  

Regarding 3) Simply raising awareness through learning dashboards does not seem to be 

enough to foster learning. Prerequisites for “raising awareness” in the sense of updating 

cognitive conditions and evaluations of learners as mentioned in the COPES model are that 1) 

correct information about the learning process is available to learners, and 2) they correctly 

process this information. Although some studies focused on these prerequisites, there is no 

clear evidence regarding what data sources are best suitable to achieve that (Jivet et al., 2017). 

Even if this was fulfilled, learners might not act on resulting evaluations. It is argued that 

metacognitive prompting could help learners to incorporate the dashboard information in their 

further learning process. The so-called “production deficit” describes the reason why such 

prompts could work: although learners are often skilled and have previously acquired learning 

strategies, they do not use them spontaneously (see chapter 2.5.1). This concept can be 

transferred to the intervention of this study, as the strategies remain the same, but are used 

with different parameters (task conditions, cognitive evaluations) that have been updated with 

the help of information from the learning dashboard. Orange parts of Figure 28 indicate how 

metacognitive prompting affects learning in the COPES model. 

Regarding 4) A general lack of systematic experimental research is counteracted by applying 

a rigorous 2x2 factorial design including a control group. Moreover, the interaction with 

dashboards are examined on different conceptual levels:  

- Firstly, based on the software framework ScreenAlytics (see chapter 4.1), fine-grained 

interaction is recorded through peripheral data to shed light on how learners are using 

the intervention. 
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- Secondly, CL is assessed that is induced by the dashboard. 

- Thirdly, learners are asked about the subjective usefulness of the different parts of the 

learning dashboard regarding the support of their learning process. 

 

Figure 28. Adapted from Winne and Hadwin (1998). Blue parts (right) indicate how 
dashboard affects cognitive and external evaluations. Orange parts (left) indicate how 
metacognitive prompts affects the products during the learning process. 

 Research Question and Hypotheses 

The aim of this study is to experimentally examine the effects of the two interventions 

“learning dashboard” and “metacognitive prompt”, and a combination of both on the learning 

outcome in contrast to a control group. The following hypotheses are therefore stated: 

1. Prompts-And-Dashboard-Hypothesis: Learners who receive learning dashboards 

paired with prompts will have higher learning outcomes compared to learners who 

receive prompts only, learning dashboards only or no intervention. 

Adaption of 
standards, new 
operations or 

altering cognitive 
conditionsMetacognitive 

prompting solves the 
production deficit to 
actually incorporate the 
dashboard information

Dashboard can act as 
external evaluations 
affecting (perceived) 
task conditions or 
awareness of it

Dashboard can affect 
cognitive evaluations: am I 

on task or off task?
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2. Prompts-Or-Dashboard-Hypothesis: Learners who receive learning dashboards or 

prompts will have higher learning outcomes compared to learners who receive no 

intervention. 

Non-linear navigation behavior is, according to Astleitner (1997), an indicator of systematic 

learning behavior, since students consciously and purposefully decide which nodes should be 

selected. Moreover, it has recently also been empirically shown that prompting leads to more 

non-linear navigation (Pieger & Bannert, 2018) and is connected to better learning outcomes 

(Bannert et al., 2015). Thus, it is argued that non-linear navigation behavior in this study, can 

be a meaningful representation of better evaluations induced through the interventions, 

especially through the dashboard. Therefore, the following hypothesis is formulated. 

3. More-Non-Linear-Navigation-Hypothesis: Learners that receive an intervention show 

more non-linear navigation behavior than learners who do not receive an intervention. 

Furthermore, as there is a lack of knowledge about how learners use these interventions (e.g., 

Bannert & Mengelkamp, 2013 for prompting), the interaction between the learners and these 

interventions is examined including detailed data of the usage of different parts of prompts 

and dashboards, the induced CL through the learning dashboard, and the perceived usefulness 

of the interventions by the learners. This leads to the following explorative questions: 

1) How do learners interact with prompts and the learning dashboard? 

a. How long and frequently do learners interact with the interventions? 

b. What CL is induced by the learning dashboard? 

2) How do learners perceive the learning dashboard? 

a. Do learners perceive the dashboard as useful for their learning? 

b. Which parts of do learners perceive as useful, and which not? 
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 Method 

4.5.2.1 Sample and Design 

This study was conducted as an online field experiment with a 2 (prompt vs. no-prompt) x 2 

(dashboard vs. no-dashboard) factorial pre-post between-subject design. For participant 

recruiting, an advertisement was posted in seven Facebook groups of different German 

universities that were addressed to first semester students. The advertisement involved the 

following information: participation takes approximately 60 to 75 minutes, the task is to “test 

a learning environment about programming, work on short quizzes and fill questionnaires”, 

requirements to participate are a calm environment, a laptop or desktop computer (no tablets 

or mobile phones), no to very low prior knowledge about programming, 10 Euro will be 

payed as a compensation for a complete participation. Participants were randomly assigned to 

one of the four groups. Out of 209 participants, 138 completed the study and fulfilled the 

following requirements to get included into the further analysis: 1) self-reported no or low 

prior knowledge, 2) a checkbox with the label “I want to seriously take part and finish in this 

study” was checked, 3) all questionnaires and quizzes were completed, 4) a desktop computer 

or laptop was used, 5) a meaningful interaction with the environment was visible on all 

accessed pages in the screen recordings in order to prevent clicking-through. Page interactions 

were rated as meaningful if there was mouse movement and scrolling for at least 30 seconds.  

Participants were between 18 and 34 years old (M = 21.34, SD = 2.80), 44 were male and 94 

were female. Random assignment of the participants to groups resulted in the following 

distribution: 37 in the control group, 37 in the prompt-only group, 31 in the dashboard group 

and 33 in the prompt+dashboard group.  
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4.5.2.2 Learning Materials 

Students had to learn the basic concepts and terms (e.g., loops, functions, variables), and the 

syntax (e.g., where to place brackets and semicolons) of JavaScript, a common programming 

language used mainly in web applications. The material consisted of 16 content pages 

including about 3000 words, three tables, two illustrations, ten code examples and five 

interactive coding exercises. Students could run code examples by clicking on a “Try” to see 

the results of it, as shown in Figure 29.  

 

Figure 29. Students first studied the code given in area 1, then clicked on the button 2 and 
received the result of the code in window 3. 

In interactive coding exercises, learners had to write their own JavaScript code to solve a 

given task (e.g., “Assign the following values to the given variables.”). A pedagogical agent, 

introduced as “Anna”, gave feedback and automatically recognized mistakes in the code. 

Students saw the result of their codes after clicking on a “Try” button. Figure 30 shows an 

example of a coding exercise. Although the learning material was structured linear, navigation 

back and forth was possible through a menu on the left. Learners were provided with a 

function to take notes and the remaining time was shown on the left (see Figure 31). 
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Figure 30. In coding exercises, students wrote their own code in a text box (1) to solve a 
given task. After clicking on the "Try" button (2), the pedagogical agent (3) gave feedback on 
mistakes. Green rows in the table above (4) indicated correct solutions. 
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Figure 31. In the learning environment, learners could navigate through a menu on the left 
and could use a window to take notes. The remaining learning time was presented on the top 
left. 

4.5.2.1 Interventions: Dashboard and Prompt 

The intervention of this study consists of two parts that were presented to the different 

experimental groups combined and separately: metacognitive prompts and the learning 

dashboard. All groups received the intervention two times, after finishing approximately one-

third and two-third of the learning materials. Both groups, prompt and prompt+dashboard, got 

the same metacognitive prompts, but learners in the prompt+dashboard group got additional 

instructions to review the presented visuals in the dashboard (see Table 26 for the texts). 
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Prompts were displayed in a popup window on a blank page for the prompt group, or on the 

dashboard page for the prompt+dashboard group. Learners needed to click “OK” to close the 

window (see Figure 32) and the prompt group was redirected to the learning environment 

after closing the window. 

Table 26 

Texts of Metacognitive Prompts for the Prompt and Prompt+Dashboard Groups 

Group Metacognitive Prompt Contents 

Prompt Before you continue with learning, please take some time to think about the 
following questions:  

1) Which content and pages do I already understand well and which not? 
2) Which pages should I study again? 
3) What can I do to clarify the things that I don’t understand yet? 
4) What should I change in the way I’m currently learning? 

Prompt+Dashboard Before you continue with learning, please take some time to study the visuals 
regarding your learning process. While you do so, ask yourself the following 
questions:  

1) Which content and pages do I already understand well and which not? 
2) Which pages should I study again? 
3) What can I do to clarify the things that I don’t understand yet? 
4) What should I change in the way I’m currently learning? 

You can review these questions by clicking on the associated tab. Click “back 
to the learning environment” to continue with learning.   

 

 

Figure 32. Metacognitive Prompts Were Shown in a Popup-Window on the Dashboard Page. 
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As shown in Figure 33, the dashboard contained four different tabs that learners could switch 

between: “Information” contained the learning time and the current status of exercises 

(number of solution attempts, number or percentage of correctly solved steps, number of 

viewed example codes) in separate bar charts. Learner’s own values were shown in blue bars, 

while a “suggested value” for each metric was shown in an underlying grey bar as references 

of what should be reached. For exercises and tasks, these were set to the maximum possible 

score, for the number of solution attempts, the number of sub-problems was counted of the 

according exercise and for number of viewed example codes, the number of available 

example codes was taken, so that each should be viewed at least once. Within the COPES 

model, this information should provide resources to update the standards through of learners. 

In the “Navigation” tab, a visualization of the path that the learner took through the  

 

 

Figure 33. Available Tabs in the Dashboard: Information (top left), Navigation (top right), 
Heat maps (bottom left) and Questions (bottom right). 
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learning environment and the view times of each page was presented. Moreover, a list 

indicated pages that were viewed less than one minute and pages that were viewed more than 

once. Referring to COPES, this aims at updating learners’ task conditions, specifically the 

remaining and spent time. The tab “Heat maps” contained a visualization of the mouse 

movements on a page (as described in chapter 4.1.3.3). The viewed page that the heat map 

should be shown for was selectable via a dropdown menu. In contrast to the time, this was 

implemented to provide more detailed information on what content resources have already 

been used and which not. The argumentation for the use of mouse movements to infer which 

elements have been used or looked at is based on correlations between eye gazing and mouse 

movements, and between eye movements and attention (de Koning, Tabbers, Rikers & Paas, 

2010; Huang & White, 2012). Moreover, in a mouse-controlled learning environment, mouse 

movement does inherently tell what content has been used. As an example, if a button to run a 

simulation in a learning environment has not been clicked with the mouse, it has definitely not 

been used by the learner, which would be visible in such a heat map. 

The “Questions” tab was only available for the prompt+dashboard group and listed the 

questions initially shown in the metacognitive prompt to enable learners to review the 

questions. Above the tabs, a button saying “back to the learning environment” was placed. 

4.5.2.2 Procedure 

The procedure of this study is depicted in Figure 34. On the initial page of the experiment, 

participants were instructed about requirements to participate (device, time, calm 

environment, no to low prior knowledge), payment procedure of the incentives, a short 

description of the learning materials, data that is being collected in the study and that is 

connected to their pseudonym. Bank account information was deleted immediately after 

checking the requirements and transferring the incentive money in order to ensure data 

privacy of the participants.  
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After the initial page, participants were randomly assigned to a group and presented with a 

video training on how to use the learning environment. Participants in the prompt, dashboard 

and prompt+dashboard groups were presented with additional instructions on how to use 

these interventions. The videos included a pedagogical agent that presented the following 

content: 1) Introduction of the pedagogical agent “Anna”, 2) description of the learning 

contents, 3) instructions on how to use the menu and notes function, 4) instruction that no 

other materials than this website should be used, 5) instruction on how to view the remaining 

time and the percentage of completed content. Additionally, according to the assigned 

experimental group, participants received an introduction to the effects and use of 

metacognitive prompting and/or learning dashboards as this was found to be necessary in 

order to ensure the effectiveness of such interventions (e.g., Bannert et al., 2015). The control 

group received an introduction to ergonomics (workplace design, e.g., how to adjust the 

computer monitor and chairs) as used in Bannert, Sonnenberg, Mengelkamp & Pieger (2015) 

in order to maintain an equal workload. This alternative training was not related to the 

learning contents and activities. 

 
Figure 34. Procedure of Study 4 
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After the instructional videos, demographic variables (pseudonym, age, sex, occupation, prior 

experience with programming, willingness to seriously complete the study), a self-constructed 

questionnaire on the need for privacy, an adapted version of the LIST questionnaire to assess 

existing self-regulation strategies, and a self-constructed test on declarative and procedural 

knowledge to assess prior knowledge were presented. Participants than had a maximum of 60 

minutes to learn the presented contents but could also finish earlier. This was done in order to 

keep a high ecological validity. It was not possible for learners to skip an unviewed page. 

However, once a page has been visited, learners could move back and forth. After 10 and 

after 18 pages, the prompt and/or dashboard intervention was presented according to the 

assigned group. The positions were selected as they represented approximately one-third and 

two-third of the overall learning material. There was no intervention for the control group, but 

the time that learners spent on the intervention was not taken from the maximum learning 

time of 60 minutes. Learners were warned on the last content page that after moving beyond, 

they will not be able to get back to the learning contents to prevent unintentionally quitting 

the learning process. 

After finishing the study of the learning contents, the knowledge test was presented again as a 

post measure for learning outcomes. A self-constructed evaluation questionnaire of the 

learning environment and the pedagogical agent followed for the control group and the 

prompt-only group. The dashboard and prompt+dashboard groups were presented with an 

evaluation of the dashboard and a self-report measure of CL induced by the dashboard 

instead. After completing all questionnaires, the participants were asked to provide their bank 

account information in order to receive their incentive of 10 Euro.  

4.5.2.3 Measures and Instruments 

For each of the used scales, the number of valid data rows, number of items, minimum value, 

maximum value, mean value, standard deviation, and Cronbach’s Alpha is listed in Table 29. 
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Peripheral Data 

We used ScreenAlytics (see chapter 4.1) to collect data about the interaction between the 

learners and the learning environment (such as navigation data, web content, mouse behavior 

and performance in different tasks, e.g., percentage of solved problems in a coding task) for 

different reasons. First, the data was the foundation of the intervention, displaying the 

collected data in order to inform learners about their processes. Second, the acquired data 

delivers important information on how learners used the intervention (e.g., how long does a 

learner actually use a prompt) which relates to the explorative research question 2a) and b). 

Third, as the data collection was in the field, recorded data was used to identify learners who 

showed usage patterns that did not comply with the requirements for a valid participation 

(such as clicking through the experiment without reading, as described in chapter 4.1.5.1). 

Need for Data Privacy Protection 

Data privacy protection (DPP) became an intensively discussed topic in public policy, but 

also in the field of learning analytics (Drachsler & Greller, 2016). Moreover, other studies 

report DPP concerns when recording the screens of users (e.g., Tang et al., 2006). Hence, it 

seems to be of high relevance for the learners in this study and the individual attitude towards 

data collection could have an effect on the use of the dashboard intervention. If there is an 

aversion to data collection, students might have a negative attitude towards using the learning 

dashboard – and the other way around. As there was no existing questionnaire that measures 

the need for DPP at the time of planning this study, a 10-item scale was developed to assess it. 

Among others, a possible definition that fits the dashboard application in this study is privacy 

as “the right of a person to determine which personal information about himself/herself may 

be communicated to others” (e.g., Walters, 2001, p. 151). Based on this definition, a 5-step 

(“strongly disagree” to “strongly agree”) Likert scale was developed that asks for the attitude 

towards DPP and actions that users take in order to achieve protection. Based on the collected 
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data, an explorative factorial analysis was conducted with Varimax rotation method to find 

the components that items are loading on. Eigenvalue threshold of the components was set to 

1. Item 1 was recoded so that higher values meant a higher need for DPP in all items.  

Table 27 shows the correlations between the items and the extracted factors sorted by from 

highest to lowest. 

Table 27 

Eigenvalues and item-factor correlations for the factors extracted by an explorative factorial 

analysis with Varimax rotation for the self-report scale of need for data privacy protection. 

Item Factor 1  

(EV = 2.46) 

Factor 2 

(EV = 1.34) 

Factor 3 

(EV = 1.03) 

2 - Data protection in general is an 
important topic to me. 

0.724 0.129 -0.067 

4 - When using an app, I always check the 
privacy settings 

0.696 0.102 0.163 

7 - I try to protect myself from data abuse 
(e.g., by using encrypted messengers, 
firewalls, deleting my cookies, using a 
proxy server) 

0.683 -0.111 0.438 

1 - As long as a service is comfortable to 
use, I don’t really care about privacy. 

0.074 -0.304 -0.585 

6 - It worries me that I leave traces in the 
internet. 

0.154 0.665 -0.129 

5 - I think that I do not have enough 
technical knowledge to take care of my 
data privacy protection. 

-0.136 0.600 0.213 

8 - It worries me that my personal digital 
data could be read by others. 

0.037 0.593 0.275 

10 - I try to avoid using my real name in 
the internet. 

0.382 0.588 0.069 

9 - I’m trying to avoid using devices that 
collect data about me (e.g., fitness trackers) 

0.165 -0.024 0.661 

3 - I don’t install an app if it asks for too 
much personal data. 

0.137 0.110 0.558 

Note. For each item, the highest Eigenvalue is marked. Numbers in brackets after the item copy 
indicate the position of the item in the presented questionnaire.  
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Item 1 was removed as it did not load on an extracted factor. Items 9 and 3 were removed as 

they loaded on a factor that had a very low Eigenvalue of just above 1 (1.03) and did not load 

high on another factor. As factorial analysis is a method to reduce data, only items were kept 

that explain more variance then the original variable, meaning their Eigenvalue is above 1 

(Kaiser-Guttmann criterion, see Guttman, 1954).  

The extracted factors seem to represent different knowledge and competencies of handling 

DPP. While the actions described in the items of factor 1 describe a general interest in DPP 

and require a technical understanding (e.g., Item 4, using firewalls or proxy-servers for 

protection or item 7, checking the privacy settings in an app), the items of factor 2 describe 

the anxiety of persons and low-level actions (e.g., Item 10, not using my real name in the 

internet) that could be caused by a low technical understanding (i.e., item 5, not having 

enough technical knowledge to protect myself). Cronbach’s Alpha was calculated for internal 

consistency for factor 1 (! = .60) and factor 2 (! =.53) and for all seven items (! = .60). A 

mean of all remaining items was computed as a score for the need for DPP. 

Metacognitive Strategies Adapted from LIST 

Three subscales of the “Inventar zur Erfassung von Lernstrategien im Studium” (LIST, 

Schiefele & Wild, 1994) were used, each having 4 items, to assess metacognitive strategies: 

metacognitive planning (e.g., “Prior to learning, I think about how to learn most effectively”), 

monitoring (e.g., “I ask myself questions about the topic to ensure I understood everything 

correctly.”), and regulation (e.g., “I adapt my learning techniques if I have to read a difficult 

text”). As described in the LIST validation study (Schiefele & Wild, 1994), the mean value 

was used of the mentioned items as an indicator for metacognitive strategies of the 

participants in this study. Internal consistency, computed as Cronbach’s Alpha, was lower in 

this study (Cronbach’s ! = .46) than in the validation study of the scale (Cronbach’s ! = .64). 

Declarative and Procedural Knowledge 
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Based on the learning materials, tests were developed to assess the declarative and procedural 

knowledge. The same tests were used before and after learning. Participants were given an “I 

don’t know” option for every question in order to reduce guessing. Declarative knowledge 

test included 16 questions including 7 multiple choice questions (e.g., What are the 

advantages of dynamic websites?) each having 4 answer options, and 9 declarative open-

ended questions (e.g., Which command is used to define a variable?). Each correctly 

answered option / question of the declarative questions was rated as one point, leading to a 

maximum total score of 37. Internal consistency of the declarative knowledge scale was 

calculated as an indicator for reliability for the pre (Cronbach’s ! = .92) and post test data 

(Cronbach’s ! = .81). Mean test difficulty for declarative knowledge, computed as the ratio of 

achieved score and maximum score, was .58. 

Procedural knowledge test included 4 near transfer questions (e.g., “Write down a JavaScript 

function that calculates the mean of two given numbers”). For the item construction of near 

transfer, the description as being “similar to those presented in the booklet and require 

applying” given by Mayer (1975, p. 531) was followed. A scheme was developed to rate the 

open-ended questions. As the domain of programming is well-structured and answers were 

either right or wrong, it was not necessary to have multiple raters. For the transfer questions, 

each sub-goal was rated as one point (e.g., one point for correct syntax of the programming 

code and one point for the correct use of a formula) and a maximum total score of 16 could be 

achieved. Internal consistency of the scale was calculated as an indicator for reliability for the 

pre (Cronbach’s ! = .78) and post test data (Cronbach’s ! = .63). Mean test difficulty for 

procedural knowledge, computed as the ratio of achieved score and maximum score, was .37. 

Evaluation of the Dashboard 

After learning, participants in the dashboard and prompt+dashboard groups were presented 

with a self-report questionnaire to evaluate how useful the dashboard was for their learning 
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process. The questionnaire contained eight 5-step Likert-scaled (“strongly disagree” to 

“strongly agree”) items (e.g., “I adapted my learning behavior due to the information 

presented in the learning dashboard”). Three items were recoded as they were phrased 

negatively (e.g., “The dashboard distracted me from learning”). Internal consistency of the 

scale was calculated as an indicator for reliability (Cronbach’s ! = .68). Moreover, an open-

ended question has been added that asked which parts of the dashboard were helpful or not 

helpful, reasons for its usefulness, and changes the learners would like to apply. Given 

answers were clustered manually by their content for an explorative analysis. 

Evaluation of the Learning Environment 

We presented a questionnaire for the acceptance and technical usability of the learning 

environment to the control group and the prompt-only group as an alternative task for the 

evaluation of the dashboard, which was filled by the dashboard groups. The questionnaire 

included nine 5-step Likert-scaled (“strongly disagree” to “strongly agree”) items (e.g., 

“Using the learning environment was easy”). Four items were recoded as they were phrased 

negatively (e.g., “I would need technical support to use this learning environment”). Internal 

consistency of the scale was calculated as an indicator for reliability (Cronbach’s ! = .88). As 

for the dashboard evaluation, an open-ended question was included that asked for things the 

learners would like to change in environment –given answers were clustered for an 

explorative analysis. 

Self-report on Cognitive Load Induced by Dashboard 

Cognitive load that learners experienced while using the learning dashboard (dashboard and 

prompt+dashboard group) was measured with a self-report scale adapted from a preliminary 

version of the naïve rating questionnaire proposed by Klepsch, Schmitz & Seufert (2017). The 

scale was designed to measure intrinsic, extraneous, and germane load independently. In the 

adaption of the scale, ICL was measured with two items, ECL with three items and GCL with 



Intervention Study: Can Metacognitive Prompts Boost the Effects of a Learning Dashboard? 

 168 

 

two items on a 5-step Likert scale (“strongly disagree” to “strongly agree”). The used items 

are shown in Table 28. In this study, the internal consistency for all items was Cronbach’s ! = 

.57. Klepsch and colleagues (2017) reported an ! value of .86 for their scale, but the lower 

value could be due to adaptions and an earlier version of the scale that was used. Internal 

consistency for the subscale ECL was Cronbach’s ! = .55 using items ECL-2 and ECL-3, and 

Cronbach’s ! = .46 for GCL using all GCL items. For ICL, only item ICL-1 was used as the 

two subscale items were correlated negatively. Beside the three subscales, one item was 

added that directly asked for fun with the dashboard as acceptance of the dashboard was of 

interest. 

Table 28 

Items used to measure germane, intrinsic and extraneous cognitive load. 

Type / Number German English Translation 

GCL-1 Beim Durchsehen der Informationen 
war ich mental angestrengt. 

I was mentally strained looking 
through the information. 

GCL-2 Es ging mir beim Durchsehen der 
Informationen darum, alles richtig zu 
verstehen. 

When I looked through the 
information, I wanted to 
understand everything correctly. 

ICL-1 Ich musste viele Informationen 
gleichzeitig im Kopf behalten. 

I had to keep a lot of information 
in my mind at the same time. 

ICL-2 Die Informationen zu nutzen war eine 
sehr komplexe Aufgabe. 

Using the information was a 
very complex task. 

ECL-1 Ich habe mich angestrengt, nicht nur 
einzelne Informationen anzusehen, 
sondern auch den 
Gesamtzusammenhang zu verstehen. 

I made an effort to not only to 
process individual pieces of 
information, but understand the 
overall context. 

ECL-2 Die Darstellung der Informationen ist 
ungünstig, um mein Lernen 
nachzuvollziehen. 

The presentation of the 
information is unsuitable to 
comprehend my learning 
process. 

ECL-3 Es war schwer, die zentralen 
Informationen miteinander in 
Verbindung zu bringen. 

It was difficult to connect central 
information with each other. 

Fun Das Durchsehen der Informationen hat 
mir Spaß gemacht. 

Looking through the information 
was fun. 

 



Intervention Study: Can Metacognitive Prompts Boost the Effects of a Learning Dashboard? 

 169 

 

Evaluation of the Pedagogical Agent 

As an alternative to the measurement of CL that participants filled who used the dashboard, 

participants of the control and prompt-only group were to evaluate the usefulness for the 

learning process (e.g., “Anna helped me to elaborate the contents”) and the acceptance (e.g., 

“I liked Anna as my learning assistant.”) of the pedagogical agent with a self-constructed 

questionnaire including six 5-step Likert-scaled (“strongly disagree” to “strongly agree”) 

items. Internal consistency of the scale was calculated as an indicator for reliability 

(Cronbach’s ! = .56).  

Table 29 

Descriptives statistics and Cronbach’s Alpha for the used instruments. 

Instrument N Items Min Max M SD Cronbach’s 
Alpha 

Need for privacy 138 7 1.43 4.43 3.10 .63 .60  
Metacognitive Strategies 138 12 2.33 4.58 3.67 .36 .46 

Evaluation of Dashboard 65 8 1.63 4.25 3.07 .59 .68 
Evaluation of Learning 
Environment 

73 9 1.44 5.00 4.03 .67 .88 

Self-Report on Cognitive 
Load (Mean) 

65 7 1.71 4.71 3.27 .59 .57 

 Germane  2 1 5 3.37 .95 .46 

 Intrinsic  1 1 5 3.06 1.07 - 
 Extrinsic  3 1.67 4.67 3.25 .73 .40 

 Fun-Item  1 1 5 3.26 1.04 - 
Evaluation of Pedagogical 
Agent 

73 6 2.17 4.83 3.51 .55 .56 

Prior Knowledge        

 Declarative 138 16 0 32 5.19 6.19 .92 
 Procedural 138 4 0 13 .96 2.26 .78 

Post Knowledge        
 Declarative 138 16 3 36 20.91 5.99 .81 

 Procedural 138 4 0 16 5.84 4.13 .63 
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 Results 

4.5.3.1 Preliminary Analysis 

The Type I error rate was set to .05 for all analyses. IBM Statistics 25, PHP, Python, 

Microsoft Excel and R were used to extract, filter, aggregate and analyze the data set.  

Need for data privacy protection and metacognitive strategies will later be used as covariates 

in hypothesis checks regarding group effects on the declarative and procedural learning 

outcomes. Thus, these covariates should be independent from a potential group effect. This 

was checked by computing a one-way MANOVA with group condition as between-subjects 

factor, and need for privacy, and metacognitive strategies were included as dependent 

variables. As the equality of covariances is a requirement for the MANOVA, Box’s M-test 

was used which revealed significant violations with Box’s M = 29.13, p < .05. As Tabachnick 

& Fidell (2013, p. 294) suggest for this case, Pillai’s Trace was used as an indicator of 

significance for the MANOVA, which they described to be robust against this violation. It 

revealed no significant differences between the four groups regarding the need for privacy 

and metacognitive strategies, V = .02, F (3,133) = 0.35, p = .908. Both learner characteristics 

variables, need for privacy and metacognitive strategies, are distributed normally according to 

a non-significant result of the Kolmogorov-Smirnov test and visual inspections of the 

histograms.  

Prior to inferential tests, descriptive statistics and distribution of declarative and procedural 

knowledge were checked before and after learning. Declarative and procedural knowledge 

gain were tested for normality by visual inspection and Shapiro-Wilks tests. The tests did 

provide evidence for normality only for the declarative knowledge gain, but not for 

procedural knowledge gain. Hence, non-parametric tests will be used for testing group 

differences in procedural knowledge gain. 
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Item values of the dashboard evaluation and the CL scale that were presented to the 

dashboard and prompt+dashboard groups were summed up and descriptive statistics were 

computed. For the control and the prompt group, item values for the evaluation of the 

pedagogical agent and the learning environment were summed up and descriptive statistics 

were computed.  

4.5.3.2 Hypothesis Testing 

In order to test the two hypotheses Prompts-And-Dashboard and Prompts-Or-Dashboard, 

ANCOVAs were first conducted to determine statistically significant differences between all 

groups regarding declarative learning outcome controlling for the covariates metacognitive 

strategies and need for privacy. Levene’s test of the assumption of homogeneity of variance 

was evaluated for declarative learning outcome and non-significant results indicated there 

were no violations of assumptions for ANCOVA. The covariate metacognitive strategies was 

not significant in the model. Need for privacy was significantly related to the declarative 

learning outcome, but with a small effect in the model, F(1,132) = 5.461, p < .05, partial eta2 

= .040. The ANCOVA showed no significant differences on declarative learning outcome 

between the groups, F(3,132) = .423, p = .737, partial eta2 = .010.  

A non-parametric implementation of ANCOVA (Young & Bowman, 1995; implemented in 

the R package sm by Bowman & Azzalini, 2014) was used to check for significant differences 

between all groups regarding the procedural learning outcome. It revealed no significant 

differences between the groups, F (3,132) = .262, p = .853, partial eta2 = .006, and no 

significant effects of the covariates metacognitive strategies and privacy. Figure 35 shows 

declarative and procedural knowledge before and after learning for each of the four groups. 

Table 30 shows means and standard deviations for learner characteristics by group.  
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Figure 35. Prior, post and gain of procedural and declarative knowledge for different 
intervention groups. 

Table 30 

Declarative and Procedural Knowledge Prior and After Learning by Groups 

 

Control  
(N=37) 

 

Prompt  
(N=37) 

 

Dashboard  
(N=31) 

Prompt + Dashboard  
(N=33) 

 
M SD M SD M SD M SD 

Pre         

Declarative 4.76 7.11 5.95 5.46 4.97 5.21 5.06 6.88 

Procedural 0.68 1.45 1.16 2.13 0.90 2.40 1.12 2.96 

Post         

Declarative 20.78 5.61 22.19 5.18 20.39 7.55 20.61 6.04 

Procedural 5.70 4.45 6.35 4.08 5.55 4.13 5.70 3.99 

Gain         

Declarative 16.03 6.80 16.24 6.84 14.90 6.08 15.55 5.96 

Procedural 5.03 3.85 5.19 4.03 4.65 3.64 4.58 3.25 

Note. Maximum score for declarative knowledge was 37 points, and 16 points for procedural knowledge. 
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Table 31 

Descriptives of learner characteristics by group. 

 

Control  
(N=37) 

Prompt 
(N=37) 

Dashboard 
(N=31) 

Prompt+Dashboard  
(N=33) 

 M SD M SD M SD M SD 

Metacognitive 
Strategies 3.64 0.46 3.68 0.39 3.69 0.32 3.68 0.23 

Need for privacy 3.18 0.49 3.12 0.64 3 0.74 3.10 0.66 

 

Aptitude-treatment effects (ATI) regarding the prior knowledge of learners were checked. To 

do this, a median split was done for declarative and procedural prior knowledge. Values at the 

median were assigned to the group left of the median. In further analyses, persons with values 

lower than the median for both variables were treated as having low prior knowledge, 

whereas persons with at least one variable above the median were not. The frequencies of the 

resulting groups are shown in Table 32. Mean values for declarative and procedural 

knowledge gain are shown separately for learners with prior knowledge lower or equal the 

median, and for those with prior knowledge higher than the median in Figure 36. For the sub-

samples with low prior knowledge as well as the remaining learners, differences between the 

interventions with regards to declarative and procedural learning gains were calculated. There 

was a significant difference between the intervention groups regarding declarative knowledge 

gains for learners with low prior knowledge, F(3, 61) = 3.314, p < .05, eta2 = .13, but not for 

learners with prior knowledge higher than the median, F(3,65) = .237, p = .863, eta2 = .011. 

For learners with little prior knowledge, the contrast regarding declarative knowledge 

between dashboard and control group is significant and positive (-3.995, p < .05), whereas for 

learners with higher prior knowledge the same contrast is not significant, but the descriptively 

highest (+1.802, p = .431). No other contrast to the control group was significant.  

Taking these results into account, the intervention Prompt-and-Dashboard did not improve 

learning outcomes compared to the other interventions or the control group. Moreover, 
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equipping learners with either a prompt or a dashboard did not improve the learning outcomes 

compared to no intervention. Hence, both hypothesis, Prompts-And-Dashboard and Prompts-

Or-Dashboard are rejected. 

Table 32 

Resulting groups of a median split on declarative and procedural knowledge. 

  Number of participants 
 Median < = Median > Median 
Declarative 5 76 62 
Procedural 0 99 39 
Declarative or Procedural  108 30 
Declarative and Procedural 67 71 

 

 

Figure 36. Declarative and procedural knowledge gain for learners with prior knowledge 
lower or equal the median and for learners with prior knowledge higher than the median. 

To check the More-Non-Linear-Navigation-Hypothesis, the number of non-linear navigation 

steps was computed for each learner. Non-linear navigations are deviations from moving to 
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the next page of the given structure of the learning environment, including both back and 

forward page selections. An ANCOVA was computed to compare the number of non-linear 

navigation steps between the groups. Non-significant results of Levene’s test of the 

assumption of homogeneity of variance indicated no violation. The covariates metacognitive 

strategies and need for privacy were not significant in the model. Groups did not significantly 

differ regarding the steps of non-linear navigations, F(3,132) = .324, p = .808, partial eta2 = 

.007. Hence, the hypothesis is rejected. As shown in Figure 37 groups differ overall on a 

descriptive level in the order Control < Prompt < Prompt+Dashboard < Dashboard. Moreover, 

correlations were computed between the number of non-linear navigation events and 

declarative and procedural knowledge gains. A small significant correlation was found for 

declarative knowledge gains (r = .190, p < .05), but not for procedural knowledge gains (r = 

.082, p = .322). The number of non-linear navigations steps was also checked for ATI effects. 

Although not significant, for learners with low prior knowledge, groups differ in the order 

Control < Prompt < Dashboard < Prompt+Dashboard as expected in the hypothesis, F(3,61) = 

.776, p = .831, partial eta2 =.036. In contrast, for learners with more prior knowledge, the 

order is inverse, Control > Prompt > Dashboard > Prompt+Dashboard, but also not 

significant, F(3,65)= .293, p = .512, partial eta2 = .013. 
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Figure 37. Number of non-linear navigation steps in the learning environment by group, for 
learners with prior knowledge lower or equal the median, above and overall. 

4.5.3.3 Exploratory Analysis 

1) How do learners interact with prompts and the learning dashboard? 

a. How long and frequently do learners interact with the interventions? 

In order to better understand how the prompts were used by the learners, prompt view times 

were computed as the time difference (in milliseconds) between accessing the dashboard page 

and closing the prompt window (which occurred automatically after accessing the page). This 

was done for the prompt group and the prompt+dashboard group. In the prompt group, usage 

times of 3 prompts occurrences were removed from the analyses as viewing times over 45 

seconds without any mouse movements were interpreted as pausing. In the prompt group, due 

to technical issues, one learner did not receive the first prompt. Four learners did not get the 

second prompt as they did not reach the page after which the prompt would have been 

triggered. In the prompt+dashboard group, one learner experienced a usage time of over 45 
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seconds without showing any interactions and was removed. A total of five learners did not 

get the second prompt as they did not reach the page after where the prompt would have been 

triggered. In Table 33, the view times in milliseconds are listed for both prompt occurrences 

by experimental groups. These are visualized in Figure 38. Differences were significant 

according to computed paired t-tests, for the group prompt with a medium effect size, t(29) = 

4.260, p < .001, d = .716 and for the group prompt+dashboard with a high effect size, t(26) = 

9.729, d = 2.148.  

Table 33 

View Times of the Prompts by Experimental Groups (in milliseconds) 

Group Prompt Occurrence N Min Max M SD 

Prompt First 34 1000 26000 11941 5764 

 
Second 30 550 16657 3098 3002 

Prompt + Dashboard First 32 3318 32151 15861 7795 

 
Second 27 907 8240 3601 1873 

Overall First 66 1000 32151 13842 7052 

 
Second 57 550 16657 3336 2522 

Figure 38. Comparison of first and second occurrence of prompts by groups and overall. 
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Moreover, Table 34 lists the computed view times of the different tabs in the dashboard that 

are described above. As the dashboard group did not have prompts, the “questions” tab, where 

learners could read the prompted questions again, is only listed for the prompt+dashboard 

group. This is visualized in Figure 39. 

Table 34 

View Times of Different Tabs in the Dashboard by Experimental Groups 

Group Occurrence Tab N Min Max M SD 

Dashboard First Information (initial) 31 8514 50487 27569 11314 

  
Navigation 35 297 43080 15184 11276 

  
Heat maps 30 713 104550 23954 23311 

  
Information (revisited) 15 913 24276 7654 7432 

Dashboard Second Information (initial) 26 254 94665 22254 18922 

  
Navigation 17 553 50122 10470 11080 

  
Heat maps 13 105 30522 11335 8561 

  
Information (revisited) 6 712 10077 4686 3992 

Prompt+Dashboard First Information (initial) 32 7635 57404 23188 12402 

  
Navigation 40 200 57493 16192 12572 

  
Heat maps 39 675 164667 26398 34617 

  
Questions 39 484 37880 7290 7346 

  
Information (revisited) 21 115 225188 18286 49276 

Prompt+Dashboard Second Information (initial) 28 4216 42993 17635 9279 

  
Navigation 23 924 32973 7996 7866 

  
Heat maps 24 795 294175 18643 59046 

  
Questions 17 142 5108 2224 1474 

  
Information (revisited) 5 760 10195 3547 3846 

Note. “Information (initial)” and “Information (revisited)” contain the same content but “Information” was the 
first visible tab when closing the prompt, so “Information (revisited)” means that learners actively clicked at this 
tab again, so these were mentioned separately. 
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Figure 39. Time spent on different parts of the dashboard for groups dashboard and 
prompt+dashboard separately for first and second occurrence of the dashboard. 

b. What CL is Induced by the Learning Dashboard? 

In order to see the level of CL induced by the dashboard, descriptive were computed 

separately for GCL, ECL and ICL as shown in Table 35. Moreover, all types of CL were 

compared between the groups dashboard and prompt+dashboard in order to see whether the 

prompt has an effect on the experienced CL. As shown in Figure 40, learners that received a 

dashboard without prompts reported lower GCL, ECL, and ICL with small to medium effect 

sizes, but these differences were not significant. 
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Table 35 

Descriptive Statistics on the Reported Cognitive Load Associated with the Dashboard. 

Group (N) Load Min Max M SD 

Dashboard  

(N = 31) 

Germane 1 5 3.18 1.05 

Extrinsic 1.67 4.67 3.15 .86 

Intrinsic 2 5 3.19 .74 

Prompt+Dashboard 

(N = 33) 

Germane 2 5 3.56 .85 

Extrinsic 2 4.33 3.34 .59 

Intrinsic 2 4.50 3.23 .69 

   
 
   

 

Figure 40. Experienced germane, extraneous, and intrinsic cognitive load separately for 
dashboard and prompt+dashboard groups. 

2) How Do Learners Perceive the Learning Dashboard? 

a. Do Learners Perceive the Dashboard as Useful for their Learning? 

In order to get insight into how learners perceived the dashboard, descriptives of the 

dashboard evaluation questionnaire were analyzed on item level and overall, as shown in 

Figure 41 and Table 36. Mean values for the evaluation of the dashboard did not differ 

between the groups dashboard and prompt+dashboard. Evaluation of the pedagogical agent 

and the learning environment presented in Table 36 were not of direct interest for the research 
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questions of this study, but were used as a fill-in for the measures that were presented to the 

dashboard and prompt+dashboard group. 

 

Figure 41. Items of the evaluation of the dashboard for dashboard and prompt+dashboard 
groups, ordered by the degree of agreement. Labels of negative items are marked with a (red) 
background and not yet recoded, positive items have no background.  

Table 36 

Descriptive Statistics on the Evaluation of the Dashboard, the Pedagogical Agent and the 

Learning Environment. 

Questionnaire Group N Min Max M SD 

Evaluation Dashboard Dashboard 32 1.75 4.25 3.07 0.58 

Prompt+Dashboard 33 1.63 4.00 3.07 0.60 

Evaluation Pedagogical Agent Control 37 2.17 4.83 3.56 0.56 

 Prompt 37 2.50 4.50 3.45 0.54 

Evaluation Learning Environment Control 37 1.44 4.78 3.98 0.69 

 Prompt 37 2.67 5.00 4.08 0.67 

 

b. Which Parts Do Learners Perceive as Useful, and Which Not? 

Open answers given in the dashboard evaluation questionnaire were analyzed in order to get 

more detailed information of what parts of the dashboard were perceived as useful / not 

useful. To do this, given answers were first categorized through content analysis. A new 

category was created when statements that did not fit into an existing category were 
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mentioned at least twice. This led to the following five categories: usefulness of information 

on task progress, usefulness of graphics on navigation, usefulness of heat maps, overall 

usefulness of the dashboard, usefulness of a comparison with others. These analyses are 

summed up in Table 37 and visualized in Figure 42. Although there was no actual social 

comparison built into the dashboard, suggested values for task were perceived as a social 

comparison by at least 8 learners who mentioned that specifically in their open answers and a 

category “Comparison with others / with suggested values” was added. Mentioned usefulness 

in the statements was then rated (1=useful, 0=interesting but not useful, -1=not useful) and 

counted. A mean index of usefulness was computed as the sum of number of mentions 

multiplied by the rated usefulness. Heat maps were the most often mentioned part in the 

dashboard with the lowest usefulness index, and the highest rating to be “interesting”. 

Navigation graphics were mentioned second most often and most positive according to the 

usefulness index, followed by information on the task progress and the comparison with 

others which was actually a comparison to suggested values that learners should reach in 

tasks. 

Table 37 

Qualitative Analysis of Mentioned Usefulness of Different Dashboard Contents.  

Category Useful (1) Interesting but 
not useful (0) 

Not useful 
(-1) 

Number of 
mentions 

Usefulness 
Index 

Information on task 
progress 

13 3 3 19 10 

Navigation graphics 19 6 7 32 12 

Heat maps 4 7 28 39 -24 

Dashboard overall 4 0 4 8 0 

Comparison with 
others / with suggested 
values 

10 2 2 14 8 

Note. “Useful” was coded as 1, “interesting but not useful” as 0 and “not useful” as -1. 
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Figure 42. Mentioned usefulness of different dashboard parts in open answers. 

 Discussion 

This study examined the impact of three different interventions, namely prompting, learning 

dashboards and a combination of both on learning outcomes in an online learning 

environment on programming. The hypotheses that all three interventions increase the 

declarative and procedural learning success compared to a control group without intervention 

(Prompts-Or-Dashboard-Hypothesis) and that a combination of dashboard and prompt has the 

highest positive effect (Prompts-And-Dashboard-Hypothesis) could not be confirmed. The 

central concern of this discussion is therefore to uncover possible reasons for these missing 

effects. 

Requirements for Regulation Through Learners 

It must first be considered how the interventions should work from the theoretical perspective 

of SRL in the COPES model (Winne & Hadwin, 1998). Dashboards should assist learners in 

monitoring their learning process through external information about it. Prompts should solve 

the production deficit and strengthen the response to changed information. A prerequisite for 
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the effect is therefore the necessity of regulation. If no regulation is necessary, no 

opportunities are given to apply regulatory activity and hence, the intervention cannot show 

its effects (e.g., Hadwin et al., 2017). It is suspected that the learning environment has not 

made enough demands on the regulation of learners. The contents of the learning environment 

may already have offered a too high level of structure, so that the regulation by the learner 

himself was not necessary or a lack of regulation was at least not harmful for the learning 

outcomes. Part of this structure was the linear dependency of the content that arises from the 

characteristics of the domain of programming. With purely declarative knowledge, such as 

historical facts, there is little dependency between different knowledge entities - the entities 

can be learned independently. For the acquisition of programming skills, however, the 

acquisition of declarative and procedural knowledge is necessary, whose entities each have a 

high dependency on each other. This is comparable to the concept of element interactivity, 

which is responsible for high intrinsic loads in the Cognitive Load Theory (Chandler & 

Sweller, 1996). Since this dependency was considered in the instructional design of the 

learning environment, it makes sense for the learner to follow the given order of pages. 

Typical challenging activities of the SRL, such as planning the next learning step and 

searching for relevant content, could have been greatly facilitated by this structure.  

Non-linear Navigation 

The results of the More-Non-Linear-Navigation-Hypothesis are also relevant for this 

argumentation. In this hypothesis, learners with intervention were expected to show more 

non-linear navigation steps, as this indicates systematic learning behavior (Astleitner, 1997) 

and has already been empirically confirmed for other established interventions (e.g., Bannert 

et al., 2015; Pieger & Bannert, 2018). Although descriptive and non-significant, more non-

linear navigation steps were found for the intervention groups. However, there was no 

correlation between the number of non-linear navigation steps and the learning outcome in 
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terms of declarative or procedural knowledge. The hypothesis was therefore rejected as well. 

Looking at these group differences separately for low and high prior knowledge, it can be 

seen that the number of non-linear navigation steps for learners with low prior knowledge is 

conform to the hypothesis (Control < Prompt < Dashboard < Prompt+Dashboard). For 

learners with higher prior knowledge, the order is the exact opposite. This could indicate an 

ATI effect of the intervention (Snow, 1989), which is reflected in the navigation behavior but 

not in the learning outcomes. For learners with high prior knowledge, prompt and dashboard 

may not play an important role, whereas poor learners may benefit from more support from 

prompt, dashboard, or a combination of both. The fact that the intervention had an effect on 

navigation behavior but not on learning outcomes may have several reasons. Initially, the 

differences in the number of non-linear navigation steps were not significant and were 

accordingly small. On the other hand, it may be that learners were able to make correct 

metacognitive assessments of their learning due to the interventions, but that the respective 

contents could still not be learned correctly during re-learning. The explanatory power of non-

linear navigation is limited to the fact that learners want to look up the corresponding content 

again on the basis of a metacognitive evaluation of their lack of understanding. On the other 

hand, no statement can be made about the quality of the renewed reception of the content. 

This could also be used to interpret the lack of correlation between the number of non-linear 

steps and learning outcomes. In addition, this suggests that non-linear navigation was not 

decisive for high learning outcome due to the linear structure of the learning environment. A 

comparison of the percentage of non-linear navigation steps also confirms that the content has 

a high degree of linearity. In this study, this proportion was an average of 4 out of 16 pages, 

i.e., 25%, whereas in a structurally comparable study using prompting, it was between 51% 

and 61% (Pieger & Bannert, 2018, p. 170).  

Regulation through a pedagogical agent 
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Another factor that could have limited the need for regulation is the use of an pedagogical 

agent that gave feedback on the tasks performed. Although it was cognitive feedback on the 

programming tasks and the dashboard intervention aimed at metacognitive support, the agent 

may have contributed to facilitating monitoring of the current learning status. Learners were 

already given feedback on their responses during task completion, so that cognitive 

evaluations of the achievement of learning objectives may not have been necessary. One 

indication of this is that feedback from the agent of learners in the control group and the 

prompt group is moderately more positive than feedback from the dashboard of the 

corresponding groups. Similarly, other studies find it difficult to disentangle and isolate the 

effects of cognitive and metacognitive support (Azevedo et al., 2016). 

How did learners use prompting? 

An important part of this study were the explorative questions. With the data collected on the 

interaction with the interventions, unresolved questions in this area of research could be 

answered. As demanded in research on prompting (Bannert & Mengelkamp, 2013), this study 

investigated how learners used prompts. Firstly, it seems very clear that prompts are only 

considered by the learner when they first appear. How long a prompt was open differed 

dramatically between the first and second presentation of the prompt. The first prompt was on 

average three (group prompt) to five (group prompt+dashboard) times longer open than the 

second. Far less clear is the interpretation of these different times. Based on this data, no 

statement can be made about the effect of the second prompt. The learner may need more 

time to read the prompt when it first occurs. At the next occurrence, the prompt could still 

have the same effect on the learner. The content of the prompt may no longer be actively 

processed. Instead, the prompt content is already symbolically represented. It therefore only 

serves as a trigger for a strategy that has already been acquired. A far less optimistic 
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interpretation, which is just as admissible on the basis of the data, is that the learners simply 

clicked away the second prompt without benefiting from it in any way. 

How Did Learners Use the Dashboard? 

The analyses of the process data for interactions are also very relevant for the dashboards. So 

far, there have been hardly any studies on how dashboards are used. Although the differences 

are not as extreme as with prompts, there is also a considerable difference between the first 

and second presentations for dashboards. The second presentation of the dashboard takes far 

less time than the first.  

The dashboard included information on the current status of the tasks, an overview of the 

navigation behavior, heat maps of the mouse behavior on the pages of the learning 

environment, and the possibility to re-read the prompt texts for the prompt+dashboard group. 

The proportional allocation of the time to the different areas of the dashboard is almost the 

same for both presentations of the dashboards. There is only a small increase for the 

information on the current status of the tasks and an according reduction for the heat maps. 

However, the long time that learners spent studying the heat maps during the first presentation 

is noticeable. This can be interpreted as an indication that learners are not yet familiar with 

this type of visualization or information and that it therefore has a high salience. On the other 

hand, the high perception of heat maps as “useless” will be discussed later in the evaluation. 

Cognitive Load of Learning Dashboard 

Regarding the CL it was found that learners reported higher values for additionally presenting 

the prompt in the dashboard, but these values were not significantly higher than those of 

learners without prompt. The largest difference occurs for germane load with medium effect 

size, the smallest effect size occurs for extraneous load. Since the items’ wording was 

explicitly focused on the load through the dashboard, it is reasonable to assume that the 
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additional presentation of a prompt improves the cognitive processing of the information in 

the dashboard. There is no evidence for a cognitive overload of learners through the 

dashboard in the available data. This could also have been a reason for the missing effect of 

the intervention. 

Perceived Usefulness of the Dashboard 

In addition to the CL, the perceived usefulness of the information in the dashboard was 

investigated. A questionnaire was used for the overall dashboard, a specific evaluation of 

individual components of the dashboard could be reported by the learners in an open question. 

In the questionnaire there was no mean difference between the prompt group and the 

prompt+dashboard group. Thus, contrary to CL, the prompts had no influence on the 

dashboard evaluation. An analysis of the individual items shows that learners found the 

information in the dashboard interesting, but did not think that it had changed their learning. 

On the item level, it is also interesting that the group presented with a prompt in addition to 

the dashboard rated the dashboard information as slightly less annoying. Perceiving the 

information in the dashboard as annoying may have led to low acceptance of the intervention 

and is a possible reason for the reduced time at the second presentation of the dashboard.  

The open question of the evaluation of the dashboard allows an estimate of which parts the 

learners found useful. Heat maps were considered to be the least useful. It is unclear, 

however, whether learners were too challenged with interpreting the visualization, since heat 

maps are less common than, for example, bar or pie charts, where learners are reported to 

already experience comprehension problems (e.g., Park & Jo, 2015). The evaluation of the 

heat maps as interesting speaks for this assumption, the reported values of the CL rather 

against it. This raises the general question of the meaningfulness of the data channels 

presented. Although, it was described from a theoretical perspective how the visualizations 
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should act, the effect of each individual data channel visualizations has not yet been 

empirically clarified and needs further investigation (e.g., Bojko, 2009 for heat maps). 

Conclusion and Future Research 

The aim of this study was to examine the effects of prompting, dashboards and a combination 

of both from an SRL perspective, with particular attention given to how interventions are 

used. No advantages of the intervention compared to the control group could be found. In 

summary, the following potential reasons for the missing effects of the interventions on 

learning success could be identified: 1) low demand for regulation due to linear structure of 

the contents, and due to 2) support from the pedagogical agent, 3) lack of understanding of the 

heat map visualizations in the dashboard, 4) low rating of usefulness and resulting possible 

low acceptance for the intervention, 5) decreased time of usage of both interventions in the 

second presentation. It should also be added that the difficulty of the procedural knowledge 

test was high. It is possible that effects of the interventions could have been observed more 

differentiated if the test for procedural knowledge had been easier. The explorative questions 

in this study could shed light on unanswered questions as to how learners perceive dashboards 

and, most importantly, how they interact objectively with dashboards and prompts. Important 

findings were that 1) learners spend considerably more time with the first use of an 

intervention than with subsequent interventions, 2) high usage time is not necessarily 

associated with high acceptance, 3) prompts presumably increase the CL used when using 

dashboards, 4) information on navigation and on the current status of one's own performance 

in tasks show the highest acceptance values.  

Even if the hypotheses could not be confirmed, the data supports at least the structure of the 

underlying theoretical considerations, namely that dashboards provide external information 

and prompting leads to a changed reception of this information. For these reasons, however, it 
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could not be shown that the application of the information to regulation can also be changed 

in the further learning process. 

When investigating such interventions, is it possible that the effects depend on the individual 

prerequisites of learners. Hence, possible ATI effects of the interventions were also 

considered. Research stresses such effects, taking into account individual differences for a 

systematically evaluation of treatments (e.g., Snow, 1989). For example, Pieger and Bannert 

(2018) investigated ATI effects for prompting, and found that learners with less verbal 

intelligence and reading competence seem to benefit more from metacognitive prompts in 

online learning environments than students with higher according abilities. Hence, as the 

intervention in this study also involves prompting, checks for ATI effects were done by 

comparing the effects of the interventions between learners with very low prior knowledge 

and those with higher prior knowledge. Although in this study, such effects could only be 

found regarding the More-Non-Linear-Navigation-Hypothesis, it seems to be an important 

direction to conduct further research for interventions as complex and dynamic as dashboards.  

Further research on dashboards is essential. An important, still largely open question in the 

context of learning dashboards is which visualization in dashboards makes sense for which 

pedagogical goal. At the moment, findings are not even consistent for an indispensable 

prerequisite skill of learning dashboards: whether learners are able to correctly interpret 

commonly used graphs in dashboard visualizations. As examples, Park & Jo (2015) report 

about learners having problems with graph interpretation while most of the students in the 

study done by Corrin & Barba (2014) could correctly use the information.  

Theoretical work in pedagogical psychology, cognitive sciences and information visualization 

must be brought together in a meaningful way. On this basis, well-controlled studies on 

individual visualizations must be carried out in order to provide theoretical- and evidence-

based recommendations for the real-world of dashboards. Moreover, researchers and 
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practitioners should be aware of the literature on how well learners perform at interpreting the 

presented graphs (for a review, see Glazer, 2011) when designing dashboards. 

It is also important in this context that the design of dashboard does not ignore fundamental 

previous results from research on feedback. The wide range of literature on the effects of 

feedback is also relevant for dashboards, which need to be reconsidered when designing 

appropriate interventions. The question of alternative ways of presenting data currently 

visualized in dashboards should also be explored. Data-based wording of individual texts and 

recommendations that reflect the learning process or stimulate changes in the learning process 

through intelligent suggestions are possible. This makes sense because researchers and 

instructional designers are forced to derive relevant suggestions and empirically validated 

interpretations from the data and not to leave it entirely to the learners to draw their own 

conclusions. In conclusion, it must be stated that, while there are some promising directions, 

further empirical evidence is indispensable for the justified use of learning dashboards in 

productive learning environments. 
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5 General Discussion 

In this work, “peripheral data” was introduced as a data channel that provides detailed, 

machine-readable information about the interaction between users and websites, or, in the 

context of technology-enhanced learning and this work, between the learner and the learning 

environment. This data channel and its’ possibilities have barely been considered by 

researchers and practitioners in the field of educational psychology in order to contribute to 

solve the problem and the demand of finding accurate measures that help to understand and 

promote the mechanisms of SRL. Hence, the aim of this work was to get a better 

understanding of how peripheral data can be recorded, but also and more importantly, how it 

relates to variables that are relevant to SRL, and whether it can be used to promote learning 

by giving learners insight into it. This goal led to three research questions that have been 

addressed in one development work and four empirical studies. The first question was 

addressed by the development work, which addressed the theoretical and methodological 

characteristics of peripheral data and the description of a software and its features: 

1) Is peripheral data a suitable data stream to record and analyze the interactions of 

learners with learning environments?  

On this methodological basis, the first three empirical studies (i.e., study 1 in chapter 4.2, 

study 2 in 4.3, and study 3 in 4.4) addressed the following question by investigating the 

relation between typing behavior and learning outcomes as well as motivation (study 1), the 

relation between mouse behavior and CL as well as affective states (study 2), and the 

possibility to recognize and measure confusion, item difficulty and metacognitive judgements 

in multi-item scales through mouse behavior (study 3): 

2) (How) is peripheral data linked to cognitive, motivational, affective and metacognitive 

states of learners? 
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Finally, the last empirical study addressed the impact of the visualization of peripheral data in 

learning dashboard in combination with metacognitive prompts on the learning outcomes in 

online learning environments, and thereby addressed the following question:  

3) Can learners benefit from presenting them with visualizations of their acquired 

peripheral data in learning dashboards? 

This chapter summarizes and discusses the findings regarding these three questions. First, 

major findings are summarized and discussed. Secondly, overall methodological 

considerations and limitations are considered. Finally, conclusions of the work are drawn 

and possible future directions in this area of research are described. 

5.1 Major findings 

RQ1: Is peripheral data a suitable data stream to record and analyze the interactions of 

learners with learning environments?  

Regarding the first research question of this study, whether peripheral data is suitable to 

record and analyze the interaction of learners with learning environments, ScreenAlytics has 

been developed as a software-framework that implemented the theoretical idea of covering 

both context and events triggered by the learner through their input devices. The software has 

been successfully used in every study of this work and features have been added and 

improved from study to study.  

Nevertheless, technological innovations must always reflect critically on whether the 

enormous effort required for development can be justified in relation to the resulting gain in 

insight. Does peripheral data really offer the added value that was described theoretically in 

chapter 4.1.1 compared to screen recordings, simple log files and mouse and keyboard 

tracking? To answer this question, one should consider how the use of peripheral data has 

affected the studies in this paper. In the first study, typing behavior was recorded. Unlike 
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classical keystroke logging (e.g., Sullivan & Lindgren, 2006), peripheral data always records 

the context to which the behavior is related. In this way, the data for capturing the baseline of 

typing behavior could be easily separated from the data related to the open recall task and the 

programming tasks. The data from classic keystroke loggers, on the other hand, would have 

had to be triangulated with the help of screen recordings, so that an alignment would have 

been possible. In the second study, a measurement of CL in the experimental group was only 

triggered if the system did not register mouse movements. The implementation of the study 

would not have been possible without the implementation of peripheral data in this form - 

since mouse tracking software is usually separated from the learning environment (e.g., Van 

Waes et al., 2009), dependencies between mouse interaction and reactions in learning 

environments are very difficult to implement. Peripheral data provides a direct interface to the 

learning environment, so events can be triggered that depend on the user's interaction and 

records it simultaneously. Such events are not only useful for experimental designs, but can 

also be used for interventions in the future. For example, prompts could be triggered 

depending on certain patterns such as pauses in behavior. A similar approach has already been 

investigated in the area of online assessment. Prompts were triggered when a learner left the 

test environment for possible cheating behavior, but it was necessary to program a tool for 

this purpose (Diedenhofen & Musch, 2016). In the third study it becomes once again very 

clear what advantage the recording of the context of mouse movements has over classical 

methods. Again, it would have been necessary to manually triangulate the mouse data with 

screen recording data in order to determine the time the respondents spent on an element of 

the questionnaire (e.g., a certain answer option or the question range of an item) - this coding 

would have required several hours per respondent, which would also have been error-prone 

and inaccurate. Finally, in the last study, peripheral data was visualized in a learning 

dashboard. It would not have been possible to design this with classical methods either. The 
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main advantage here is that the captured data is made available to the learning system in real-

time for visualizations. Although the interventions of the study did not improve the learning 

outcome, the presentation of peripheral data in dashboards offers many further application 

possibilities, which should be systematically empirically tested in further studies.  

With regard to the first research question of this thesis, it can be confirmed that peripheral 

data is well suited for representing the interaction between learners and the learning 

environment and that the developed software ScreenAlytics is able to record these data and 

make it available for analyses and interventions. 

RQ2: (How) is peripheral data linked to cognitive, motivational, affective and 

metacognitive states of learners? 

It has already been explained why the recording of peripheral data has additional value 

compared to established traditional methods. Answering the second question about the 

relationships between peripheral data and relevant variables of the SRL seems to be even 

more important. On the one hand, because the first question would lose relevance if the 

recorded data allow insight into behavior, but this behavior does not allow statements about 

relevant variables. On the other hand, because the third question, whether learners themselves 

can benefit from the data, would not make sense either. If the recorded data do not contain 

information on relevant variables for the regulation of learning, it is very unlikely, from a 

theoretical perspective, that learners can benefit from them for their regulatory activities. 

The first study examined the relationship between typing behavior and declarative and 

procedural learning outcome in acquiring programming skills, i.e., a cognitive aspect of SRL. 

An adequate measurement of the current learning progress through the behavior of the learner 

alone, or even a prediction of the later learning outcome, would be extremely helpful for 

adaptive learning environments (Shute & Zapata-Rivera, 2008). The achieved additional 

variance explanation of the current learning progress in open recall tasks of up to 23.9% 
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through the number of pauses and keystrokes is very promising. Furthermore, 28.5% of the 

variance of procedural learning outcome could be explained by the same indices when writing 

programming code. Although keystrokes cannot explain the entire variance, the reached R2 

values are considerable and it was not to be expected from a theoretical perspective that the 

meta information on keystrokes alone could predict the entire learning outcomes. In 

combination with analyses of the meaning of text, however, this data source can make serious 

contributions in adaptive learning environments. In addition, an important result of this study 

is that typing behavior must be interpreted specific to the task, since for the writing of 

programming code, inverse correlations to the learning progress were shown than for the 

writing of free text. Unfortunately, there were no comparable studies at the time of 

documentation to compare the achieved variance explanation. 

On the other hand, the first study explored a possible relationship between typing behavior 

and motivation. Positive correlations between the number of pauses when writing text in the 

recall task and the initial motivation measurement as well as negative correlations between 

different indices of the writing of programming code and the current motivation for this task 

were found. However, the correlations found are small.  

In the second study, CL was used to examine cognitive aspects of peripheral data again. Here, 

the quasi-experimental design of the study seems significant. Not only correlations were 

found, but it was proven that there is a causal relationship of medium effect size between 

pauses in the interaction with the learning environment and the CL during this interaction. 

However, the reasons for this are still unclear and must be clarified in further studies. What 

exactly happened during the breaks could not be clarified in the study. Although the 

peripheral data could be used to establish the connection, further triangulations, for example 

with retrospective or concurrent protocols on thinking aloud, have to be carried out in order to 

learn more about what happens during the pauses. It is particularly important to find out what 
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type of CL learners have experienced. The question of whether this was productive or 

unproductive could only be answered to a limited extent with the available data. Compared to 

previous studies, the relevance of the learning content in the field is particularly noteworthy. 

Previous research could reveal similar connections only in very controlled laboratory studies 

with artificial contents (Arshad et al., 2013; Grimes & Valacich, 2015). Moreover, none of the 

previous studies (Rheem et al., 2018) has tested the actual CL with an existing measurement 

paradigm such as dual-task. Although theories on CL have been relevant for quite some time, 

the results of this study appear to be particularly relevant with regard to the recently 

summarized relationships between SRL and CL (Seufert, 2018), since the model introduced 

there describes which role the specific CL plays in which phases of SRL. 

In addition, the second study also explored the relationship between peripheral data and 

affective states. It was argued that the intensity, but not the direction of affective states 

(positive vs. negative) is related to higher indices of mouse movement. For some indices of 

mouse behavior, correlations with positive and negative affect were demonstrated. It was also 

confirmed that the correlations do not differ in their direction between positive and negative 

affect, i.e., as expected, only the intensity but not the direction of affect can be 

operationalized. However, the results can only be generalized to a limited extent. First, the 

temporal proximity between the measurement of the affect and the mouse movements was not 

sufficient. This would be necessary because affective states change quite dynamically as 

learning progresses (D'Mello & Graesser, 2012). In addition, it is neither empirically nor 

theoretically clear which indices are relevant for determining the intensity of affect.  

In the third study, the focus was on the detection and measurement of confusion as a central 

epistemic emotion (Pekrun, 2016) by peripheral data. It was especially important to find a 

suitable setting in which possible correlations can be uncovered and which is still relevant for 

learning in technology-enhanced environments. Therefore, the interaction with different 
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multi-item scales was investigated. It could be shown that all manipulated items that induced 

confusion could be recognized only by the deviating interaction, operationalized by different 

indices of mouse behavior. Furthermore, it could also be shown that the mouse behavior of 

the participants differs between two levels of confusion. Thus, mouse behavior as an indicator 

of confusion becomes even more important. Cognitive aspects were also investigated in this 

study. It was found that higher indices of mouse behavior are associated with higher 

difficulty. This can be interpreted as longer cognitive engagement with the items. However, 

the mouse data alone could not predict the absolute objective difficulty of the item. The 

previously not yet discussed level of metacognition was also investigated in the third study. 

At this metacognitive level, connections between peripheral data and subjective difficulty 

assessments of items were investigated. For most of the indices of mouse behavior examined 

during item response, it was found that these were associated with higher subjective 

difficulty.  

In addition, the mouse data regarding "Feeling-of-Knowing" as dichotomous judgments of 

whether one knows the answer to a question (yes/no) were examined. Here, a reverse U-

shaped relationship between the response time with regard to FOK ratings and the perceived 

subjective difficulty was assumed. This means that the response times to FOK ratings 

operationalized by indices of mouse behavior are low if the subjective difficulty is either very 

high ("This question is very difficult, I have no prior knowledge and therefore know that I do 

not know the answer") or very low ("This question is very easy, I have enough prior 

knowledge to judge that I know this answer for sure"). If, on the other hand, learners are not 

quite sure whether they know the answer because there is relevant prior knowledge, the 

answer times are higher. This rational was established almost forty years ago (Glucksberg & 

McCloskey, 1981), but not yet validated by reaction time experiments in online studies. For 

items that participants rated as more difficult, the data did indeed show longer response times 
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for FOK judgements. For the items assessed as extremely difficult or easy, however, there 

were no significant correlations between the response times of the FOK judgements and the 

extreme subjective assessments. This means that, on the basis of this data, the inverse U-

shaped correlation described above can only partly be proven. 

RQ3: Can learners benefit from presenting them with visualizations of their acquired 

peripheral data in learning dashboards? 

In order to answer the third research question, whether visualizations of learners’ peripheral 

data in learning dashboards can improve their learning outcomes, an intervention study was 

conducted. As dashboards as interventions for learning in technology-enhanced learning 

environments came up only recently, there are still several research gaps that have been 

identified in recent reviews (Bodily & Verbert, 2017; Gaševic et al., 2015; Jivet et al., 2017; 

Schwendimann et al., 2017). This study accounted for some of them. It tried to build on a 

clear theoretical foundation both for the overall mechanisms of a learning dashboard using the 

COPES-model of SRL (Winne & Hadwin, 1998), as well as for the different kind of 

information and visualizations in the dashboard. Moreover, instead of just presenting the 

information to raise awareness (as criticized by Jivet et al., 2017), it implemented prompts 

that were meant to enhance the usage of the information in learning strategies. Maybe the 

most relevant claim in previous literature on learning dashboards is the lack of systematic 

experimental research designs on the effects on learning outcomes that incorporate control 

groups. Thus, the study tested the effects by implementing an experimental field study and 

systematically varied the factors prompting and learning dashboards among three intervention 

and a control group. However, the interventions did not show the hypothesized effects, i.e., 

neither learning dashboards, nor prompt, nor a combination of both could significantly 

improve learning compared to the control group. Therefore it was important to look for the 

potential reasons of the missing effects, such as insufficient opportunities for regulation 
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caused by a linear content dependency and too much support through a pedagogical agent. A 

key contribution of the work was the analysis of the process data. How learners interact with 

the dashboards has not yet been examined satisfactorily and is demanded in reviews (e.g., 

Bodily & Verbert, 2017) to create directions for further research. Important findings here 

were that 1) learners used the intervention intensively, especially during the first occurrence, 

2) the interventions did not lead to cognitive overload, and 3) prompts potentially increased 

the cognitive processing (operationalized as self-reports on CL) of studying the information in 

dashboards.  

The last point is particularly noteworthy. The hypotheses argued that prompts can help to 

resolve learners' production deficits and thus encourage learners to actually apply strategies. It 

was assumed that the strategies refer to the actual learning content and not to the information 

in the dashboard. But if the prompts have affected the processing of the dashboard content, 

then further questions arise: 1) Have learners not processed the dashboard content sufficiently 

without prompts? 2) Should prompts be formulated differently or positioned elsewhere to 

encourage the application of strategies to the actual learning content? 

In addition, it is also relevant for future studies which information of the dashboard was used 

by learners in what way. It was found that although heat maps on mouse behavior were used 

for a long time, they were not considered as helpful by learners. The presentation of mouse 

movements is also interesting with regard to EMME research (chapter 2.5.5). Although this is 

not particularly in the sense of a learning dashboard anymore, it is very interesting, whether 

heat maps are helpful, if not the own mouse behavior, but the behavior of particularly good 

learners in the sense of a Mouse-Movement-Modeling-Example (MMME) is displayed. 

Similar to EMMEs, cognitive processing could be improved either by the social character of a 

virtual expert that moves his or her mouse (Krebs et al., 2018) or by adopting a new strategy 

in learning sessions (Mason et al., 2015). It would also be very interesting to see whether the 
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presentation of a video of one's own learning session with mouse positions instead of heat 

maps would be helpful. The major difference between the two visualizations is that the 

information is aggregated in heat maps, because the time sequence of mouse positions is 

ignored. This aggregation of the information was meant to be useful, since parts that were 

visited frequently with the mouse pointer become visible, but also parts that were not visited 

at all. 

As a further part of the dashboard, information about the current learning status, for example 

the number of tasks solved, was perceived as helpful and also used for a comparatively long 

time. It should be noted here that although the number of correct solutions can be recorded 

using the ScreenAlytics software framework, these are not purely peripheral data, but rather 

results from algorithms for evaluating the tasks. Finally, the information on the navigation 

process was also actively used and well rated.  

5.2 Methodological Considerations 

Samples and Online Acquisition of Participants 

Selection bias in samples can seriously compromise the internal validity of empirical studies 

(Larzelere, Kuhn & Johnson, 2004). As the first two studies of this work were conducted with 

university students in media communication, gender was not equally distributed. Moreover, 

the samples in this work were biased regarding their age as participants were acquired mostly 

among university students in their earlier semesters. Although there is no general gender or 

age effect known for the used measures and interventions, this limits the generalizability of 

the results to other populations of learners. 

In general, researchers are very skeptical and have healthy reservations towards to use of 

online experiments. Even advocates of online research claim that “this mode of research has 

some inherent limitations due to lack of control and observation of conditions” (Reips & 
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Birnbaum, 2011, p. 563). Although researchers face some important challenges, I argue that 

online research provides a huge opportunity for psychology. It is only through the use of 

online research that both empirical field and controlled “internet-lab” studies can be 

conducted with large, heterogeneous, easily and rapidly accessible samples while still being 

economically feasible. This is absolutely necessary to restore the reputation of experimental-

psychological research after its’ replication crisis. Promising work is currently done to build 

evidence of the possibility to conduct “online-lab” studies that meet at least the same quality 

standards as traditional lab studies (e.g., de Leeuw, 2015; Hilbig, 2015; Semmelmann & 

Weigelt, 2017). However, researchers must find methods to better control the quality of 

online samples. The development of ScreenAlytics in this work contributed to this by 

enabling researcher to conduct detailed quality checks on the basis of interaction data as 

described in chapter 4.1.5.1. 

Learning Materials 

Materials that learners were asked to study in study 1, 2 and 4 were about website 

programming. The domain of programming was chosen as it requires both declarative 

knowledge on syntax, rules, concepts, and procedural knowledge in order to actually write 

working code. Moreover, the domain is rather well structured, making it possible to 

automatically provide feedback on code as done in the studies, but also allowing for accurate 

measurement of the learning outcomes. Recorded code writing also allows to reconstruct 

steps towards a solution, thus giving insight into cognitive processes during development. 

However, this domain also has specific demands to cognitive operations of learners (Jones & 

Burnett, 2008; Mayer, 1981; White & Sivitanides, 2009) and thus, generalization to other 

domains are not easily possible.  

In addition to the content of the learning materials, the structure of the learning environment 

needs to be considered. In the domain of programming, understanding a knowledge entity 
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usually depends on already knowing other entities. This domain structure means that in a 

learning environment all content is relevant and a knowledge entity is built on the one 

previously learned. This may have led to lower regulation requirements in the studies. More 

independent knowledge entities require learners to apply more metacognitive and regulatory 

activities, such as judging the relevance of a content element or planning the next step in the 

learning process. Although this was probably not problematic for studies in which the relation 

between peripheral data and SRL variables was investigated, it may have limited the results of 

the intervention study because less opportunities for learners were provided to actually 

regulate (Hadwin et al., 2017). 

The Issue of Circular Reasoning 

When trying to develop a new proxy measures for an established measure of a latent 

psychological construct, it is indispensable that the established measure itself is reliable and 

valid. As described in chapter 2.4 (and inspired by Reimann et al., 2014), the studies 1, 2 and 

3 of this work identified observable behaviors in peripheral data (i.e., indices of mouse and 

keyboard behavior in relation to its context), and tried to link these to latent variables. These 

latent variables were measured using established and self-created instruments. The rationale 

behind this is, that peripheral data can then measure the latent variable in an unobtrusive way 

and without using the established measures. However, a major question is to which degree the 

instruments that peripheral data has been aligned to, are reliable and valid. Thus, the 

instruments of the studies are briefly discussed regarding their quality. 

In the first study, the instrument to assess declarative and procedural knowledge prior to and 

after learning were self-created and not tested on a large sample before. However, the 

Cronbach’s alpha value for the declarative knowledge test for internal consistency was 

medium (post-test) to high (pre-test). Regarding the procedural knowledge test, an authentic 

web design task was chosen that was rated manually. The coding was done by two raters that 
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achieved a high interrater reliability. Regarding motivation, the initial measure was assessed 

using an established measure (QCM by Rheinberg et al., 2001) that showed high internal 

consistency in the data of this study. This test was adapted to a short three-item measure to 

assess the current motivation in close time proximity to the typing behavior and also reached 

acceptable values for internal consistency.  

In the second study, it was important to close the research gap of aligning mouse movements 

to an objective measure of CL, as other studies only used subjective self-reports. The use of 

the dual-task paradigm with a secondary reaction-time task has been intensively described as 

reliable and valid in literature (e.g., Brünken, Plass & Leutner, 2004; Brünken et al., 2003; 

Schoor et al., 2012). However, as discussed, a major drawback of this approach is that it does 

not tell whether the measured load is productive or not. Thus, it seems to be very difficult, 

also from a theoretical perspective, to align mouse behavior to a specific kind of CL. 

Regarding the affect measure, high values for internal consistency could be reported, but the 

affect could not be measured in close time proximity.  

In the third study, a major concern was how to induce confusion and, even more importantly, 

how to control for the successful induction. On the one hand, there is evidence that 

contradictions and (grammar) errors lead to confusion (D’Mello & Graesser, 2014). On the 

other hand, the pre-test of the manipulation did 1) not have a large enough sample, and 2) the 

question whether an item is confusing was a very artificial task. Otherwise, the adapted 

BEFKI test to assess crystalline intelligence and the BFI-2 has been tested on large samples. 

To sum up, in psychology, self-reports are often the only available measure and there is no 

straightforward way to proof the quality of it. Researchers simply need to trust what learners 

tell them. An argument for using new data channels to measure SRL variables that is often 

mentioned in the discourse is that self-reports are criticized for being unreliable and 

subjective. Hence, another question is whether researchers are able find other ways to avoid 
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using the approach of this study trying to find proxy measures for self-reports. An alternative 

to this approach would be a sound theoretically and empirically grounded reason to trust a 

specific pattern in data-channels more than a labelled proxy measure of self-reported data. 

5.3 Conclusion and Outlook 

The measurement of SRL processes in their various phases at cognitive, metacognitive, 

motivational and affective levels in learning with technology-enhanced environments is 

currently a major challenge in educational psychology. This measurement is necessary to 

better understand SRL on the one hand and to better support learners on the other hand. Thus, 

researchers claim a demand of objective, reliable, and valid process measures of SRL that are, 

moreover, available in real-time, unobtrusive and non-reactive to other measures (Azevedo, 

2015; Azevedo & Greene, 2010; Sonnenberg & Bannert, 2018; Winne & Perry, 2000).  

This thesis tried to further close this research gap by introducing and investigating peripheral 

data as source to measure and support SRL. It contributed to the discourse from three 

perspectives. First, by developing and evaluating a software framework that allows 

researchers and practitioners to capture and pre-process the interactions between learners and 

learning environment. Secondly, it contributed with the investigation of the relationship 

between peripheral data and learning outcomes, CL, motivation, and affective states in 

authentic learning environments as well as confusion, experienced subjective difficulty and 

objective difficulty and metacognitive judgements in surveys. Finally, it contributed to the 

emerging area of learning dashboards by investigating the effects and the usage of them with 

a systematic experimental study that has been demanded by several recent reviews.  

However, more research is still needed on all three levels. First, further features need to be 

implemented in ScreenAlytics, especially a browser plugin that allows researchers in the lab 

to record websites they do not administrate. This is important to examine SRL processes 

outside the boundaries of a closed learning environment. Secondly, although important 
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insights could be acquired, the relations between peripheral data and all described latent 

variables need to be understood better. The results of the studies can give directions for 

further studies, especially regarding which indices of peripheral data are best suited for further 

investigations of a specific latent variable. Machine learning algorithms that are used more 

and more in the field of learning analytics are very promising to confirm and extend the 

results of the studies of this work. Finally, peripheral data sets the stage for many innovative 

interventions. A few very interesting and promising examples area sophisticated learning 

dashboards, pedagogical agents with the ability to replay parts of a learning session to 

actively provide learners with feedback on their screen, or using recorded learning sessions as 

a model in the sense of EMMEs to foster the acquisition of new learning strategies.
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Appendix D7 – Design of Adapted BEFKI Judgements in Study 3 

All items shown in “Appendix D8 – Items of the Adapted BEFKI Judgements in Study 3” were 

presented in the same structure and design as this example item. 
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Appendix D8 – Items of the Adapted BEFKI Judgements in Study 3 

German (original) English (translated) 

Welcher Schauspieler schaffte es in den 
USA zur Präsidentschaft? 

Which actor made it to the presidency in the 
USA? 

Aus wie vielen Bundesländern besteht 
Deutschland? 

How many federal states does Germany 
consist of? 

Wie heißt der „Zeichentrick-Elefant“ mit 
den großen Ohren? 

What is the name of the "cartoon elephant" 
with the big ears? 

Welche Symptomatik ist typisch für 
Epilepsie 

Which symptoms are typical for epilepsy? 

Was war die Aufgabe der 
Inquisitionsgerichte des Mittelalters? 

What was the task of the Inquisition courts 
of the Middle Ages? 

Woraus besteht Bernstein? What is amber made of? 
Auf einem bekannten Gemälde von Dalí 
werden „zerfließende Uhren“ dargestellt. 
Welcher Stilrichtung ist dieses Gemälde 
zuzuordnen? 

A well-known painting by Dalí depicts 
"melting clocks". What is the style of this 
painting? 

Wozu dient Mitose? What is Mitose for? 

Was ist eine Petition? What is a petition? 
Was versteht man unter „Nihilismus“? What is "nihilism"? 
Welche Eigenschaft kennzeichnet eine 
Diode? 

What is the characteristic of a diode? 

Was ist das „Nibelungenlied“? What is the "Nibelungenlied"? 
Was sind Tantiemen? What are royalties? 
Familien- und Erbrecht sind Gegenstand 
welches Gesetzbuches? 

Family law and inheritance law are the 
subject of which code? 

Was passierte nach der „Völkerschlacht bei 
Leipzig“? 

What happened after the "Battle of 
Leipzig"? 

Wer erfand 1878 das Mikrofon? Who invented the microphone in 1878? 
Wann begann die Ausstrahlung des 
Farbfernsehens in der BRD? 

When did the broadcast of colour television 
in Germany begin? 

In welcher Stadt wurde Marilyn Monroe 
geboren? 

In which city was Marilyn Monroe born? 
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Appendix D10 – Design of the Adapted BFI-2 with Confusion Induction in Study 3 

All items shown in “Appendix D11 – Items of the Adapted BFI-2 with Confusion Induction in 

Study 3” were presented in the same structure and design as this example item. 10 items were 

presented on one page. 
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Appendix D11 – Items of the Adapted BFI-2 with Confusion Induction in Study 3 

 
Page German (original) English (translated) Manipulation 

Page 1 Ich gehe aus mir heraus, bin 
gesellig. 

I get out of myself, I'm sociable.  

 Ich bin einfühlsam, warmherzig. I am sensitive, warm-hearted.  

 Ich bin eher unordentlich. I am rather messy.  

 Ich bleibe auch in entspannten 
Situationen gelassen. 

I stay calm even in relaxed 
situations. 

Contradiction 

 Ich bin nicht sonderlich 
kunstinteressiert. 

I am not particularly interested in 
art. 

 

 Ich bin durchsetzungsfähig, 
energisch. 

I am assertive, energetic.  

 Ich begegne anderen mit Respekt. I treat others with respect.  

 
Ich bin bequem, neige zu Faulheit. 

I am comfortable, inclined to 
laziness. 

 

 Ich bleibe auch bei Rückschlägen 
zuversichtlich. 

I remain confident even in the event 
of setbacks. 

 

 Ich bin vielseitig interessiert. I am interested in many things.  

Page 2 Ich schäume selten vor Begeisterung 
über. 

I seldom get too excited.  

 Ich neige dazu, andere zu kritisieren. I tend to criticize others.  

 Ich bin stetig, beständig. I am stable, steady.  

 Ich kann launisch sein, habe 
schwankende Stimmungen. 

I can be moody, have fluctuating 
moods. 

 

 Ich bin erfinderisch, mir fallen 
raffinierte Lösungen ein. 

I am inventive, I come up with 
sophisticated solutions. 

 

 Ich bin eher ruhig. I am rather calm.  

 Ich habe mit anderen wenig 
Mitgefühl. 

I have little sympathy with others.  

 Ich systematisch bin, halte mein 
Sachen in Ordnung. 

I systematic am, keeping my things 
in order. 

Grammar 

 Ich reagiere leicht angespannt. I react slightly tense.  

 Ich kann mich für Kunst, Musik und 
Literatur begeistern. 

I can get enthusiastic about art, 
music and literature. 

 

Page 3 Ich neige dazu, die Führung zu 
übernehmen. 

I tend to take the lead.  

 Ich habe oft Streit mit anderen. I often quarrel with others.  

 Ich neige dazu, Aufgaben vor mir 
herzuschieben. 

I tend to postpone tasks.  
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 Ich bin selbstsicher, mit mir 
unzufrieden. 

I am confident, dissatisfied with 
myself. 

Contradiction 

 Ich meide philosophische 
Diskussionen. 

I avoid philosophical discussions.  

 Ich bin weniger aktiv und 
unternehmungslustig als andere. 

I am less active and adventurous 
than others. 

 

 Ich bin nachsichtig, vergebe anderen 
leicht. 

I am indulgent, forgiving others 
easily. 

 

 Ich bin manchmal ziemlich 
nachlässig. 

I am sometimes quite careless.  

 Ich bin ausgeglichen, nicht leicht 
aus der Ruhe zu bringen. 

I am balanced, not easily upset.  

 Ich bin nicht besonders einfallsreich. I am not very imaginative.  

Page 4 Ich bin eher schüchtern. I am rather shy.  

 Ich bin hilfsbereit und selbstlos. I am helpful and selfless.  

 Ich mag es sauber und aufgeräumt. I like it clean and tidy.  

 Ich mache mir oft Sorgen. I am often worried.  

 Ich weiß Kunst und Schönheit zu 
schätzen. 

I appreciate art and beauty.  

 Mir fällt es schwer, andere zu 
beeinflussen. 

I find it hard to influence others.  

 Ich bin manchmal unhöflich und 
schroff. 

I am sometimes rude and harsh.  

 Ich bin effizient, erledigt Dingen 
schnellen. 

I am efficient, does things fast. Grammar 

 Ich fühle mich oft bedrückt, 
freudlos. 

I often feel depressed, joyless.  

 Es macht mir Spaß, gründlich über 
komplexe Dinge nachzudenken und 
sie zu verstehen. 

I enjoy thinking thoroughly about 
complex things and understanding 
them. 

 

Page 5 Ich bin voller Energie und 
Tatendrang. 

I am full of energy and drive.  

 Ich bin anderen gegenüber 
misstrauisch. 

I am suspicious of others.  

 Ich bin verlässlich, auf mich kann 
man zählen. 

I am reliable, you can count on me.  

 Ich habe meine Gefühle unter 
Kontrolle, werde selten wütend. 

I have my emotions under control, 
rarely get angry. 

 

 Ich bin nicht sonderlich fantasievoll. I am not very imaginative.  

 Ich bin gesprächig. I am talkative.  

 Andere sind mir eher gleichgültig, 
egal. 

I don't care about anybody else.  
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 Ich bin eher der ordentliche Typ, 
mache selten sauber. 

I am rather the neat. I seldom clean 
up. 

Contradiction 

 Ich werde selten nervös und 
unsicher. 

I rarely get nervous and insecure.  

 Ich finde Gedichte und 
Theaterstücke langweilig. 

I find poems and plays boring.  

Page 6 In einer Gruppe überlasse ich lieber 
anderen die Entscheidung. 

In a group I prefer to leave the 
decision to others. 

 

 Ich bin höflich und zuvorkommend. I am polite and courteous.  

 Ich bleibe an einer Aufgabe dran, 
bis sie erledigt ist. 

I stay on a task until it's done.  

 Ich bin oft deprimiert, 
niedergeschlagen. 

I am often depressed, down.  

 Mich interessieren abstrakte 
Überlegungen wenig. 

I am not interested in abstract 
considerations. 

 

 Ich bin begeisterungsfähig und kann 
andere leicht mitreißen. 

I am enthusiastic and can easily 
carry others along with me. 

 

 Ich schenke anderen leicht 
Vertrauen, glaube an das Gute im 
Menschen. 

I easily trust others, believe in the 
good in people. 

 

 Manchmal verhalte mich 
verantwortunglos, leichtsinnig. 

Sometimes act irresponsibly, 
reckless. 

Grammar 

 Ich reagiere schnell gereizt oder 
genervt. 

I react quickly irritated or annoyed.  

 Ich bin originell, entwickle neue 
Ideen. 

I am inventive, I develop new ideas.  
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