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Abstract

A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organ-

isms to prevail in changing environmental conditions. Based on this reasoning, many guid-

ing principles that govern the evolution of metabolic networks and their regulation have

been uncovered. To this end, methods from dynamic optimization are ideally suited since

they allow to uncover optimality principles behind the regulation of metabolic networks. We

used dynamic optimization to investigate the influence of toxic intermediates in connection

with the efficiency of enzymes on the regulation of a linear metabolic pathway. Our results

predict that transcriptional regulation favors the control of highly efficient enzymes with less

toxic upstream intermediates to reduce accumulation of toxic downstream intermediates.

We show that the derived optimality principles hold by the analysis of the interplay between

intermediate toxicity and pathway regulation in the metabolic pathways of over 5000

sequenced prokaryotes. Moreover, using the lipopolysaccharide biosynthesis in Escherichia

coli as an example, we show how knowledge about the relation of regulation, kinetic effi-

ciency and intermediate toxicity can be used to identify drug targets, which control endoge-

nous toxic metabolites and prevent microbial growth. Beyond prokaryotes, we discuss the

potential of our findings for the development of antifungal drugs.

Author summary

Understanding the guiding principles behind the evolution of metabolic networks and

their regulation is of fundamental importance in a broad range of disciplines reaching

from the identification of novel targets to treat infections to the utilization of microbial

organisms in biotechnological production processes. In our study, we used an approach

that allowed us to identify optimal regulatory strategies for the control of metabolic path-

ways in a scenario in which the intermediates of a metabolic pathway differ in their
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toxicity for the host organism. The results of our approach, whose validity we demonstrate

through the large-scale analysis of pathway regulation in several thousand prokaryotic

metabolic networks, show that toxic intermediates are often associated to strongly regu-

lated enzymes. Additionally, transcriptional regulation preferably targets highly efficient

enzymes thereby minimizing the effort in terms of protein production that is required to

adjust the flux through a metabolic pathway. Moreover, in an example case, we show how

knowledge about key targets of regulation can be used to identify novel antimicrobials

that inhibit cellular growth through self-poisoning of the pathogen.

Introduction

The consideration of organisms from the point of view of evolutionary adaptation is at the

core of a large number of biological considerations [1–5]. The utilization of optimality princi-

ples that reflect forces of adaptation is a frequently used tool in Systems Biology to identify

states in models of biological systems that are more likely and thereby drastically reduces the

feasible solution space. Prominent examples of such methods are constraint-based modeling

approaches which frequently use the notion of an optimal distribution of (metabolic) resources

to maximize growth rate [6] to identify the biologically most plausible fluxes within a meta-

bolic network.

While most optimization approaches employed in Systems Biology are considering opti-

mality in a balanced (growth) state, the optimality in the dynamics of adaptation has recently

received increasing attention [7–10]. While optimal growth in a particular condition is of high

evolutionary advantage in constant environments, evolutionary theory posits that especially in

changing environmental conditions those organisms that minimize the variance in fitness dur-

ing environmental changes prevail [11, 12]. Minimization of variance in fitness in turn can be

achieved through regulatory programs that allow organisms to quickly respond to environ-

mental challenges [10, 13].

In previous works, we have identified a plethora of mechanisms and regulatory strategies

by which organisms can reduce response times to adapt metabolic fluxes [10, 14, 15] or mini-

mize the time required to produce protein complexes [16]. Concerning regulatory networks

controlling metabolic pathways, we have previously established that with increasing protein

costs, the complexity of such programs increases [10, 14]. Thus, pathways that require only

small protein investment are frequently only controlled at a few key positions while all

enzymes of a pathways are only regulated in a coordinated fashion, if pathway costs are high.

The former mode of transcriptional control is referred to as sparse transcriptional regulation

while the latter is called pervasive transcriptional regulation. For pathways with very high pro-

tein costs this even leads to the optimality of precisely timed activation programs targeting

individual enzymes in a pathway [14].

An important problem that we did not consider in our previous works are differences in

the toxicity of intermediates of metabolic pathways. Especially, after a change in environmen-

tal conditions, the adjustment of fluxes in a pathway can lead to a temporary build-up of inter-

mediates [17, 18]. While we considered a generic upper bound on all metabolites previously,

there are large differences in the side-effects that intermediates can exert. Especially for highly

toxic intermediates, an accumulation needs to be avoided and a rapid conversion into down-

stream, probably less toxic intermediates, is required. For example the toxic intermediate

homoserine, which is a precursor of the amino acids threonine, methionine and isoleucine, is

tightly controlled by a complex interplay of transcriptional regulation and feedback inhibition

Optimality principles in prokaryotic metabolism prevent accumulation of toxic intermediates

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005371 February 17, 2017 2 / 19

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.



mechanisms [18, 19]. In the other direction, the identification of specific regulatory programs

that are utilized to avoid the accumulation of toxic intermediates is a promising avenue to dis-

cover novel endogenous antibiotics that allow to more efficiently kill pathogens through self-

poisoning.

In this work, we use dynamic optimization to study how the toxicity of intermediates influ-

ences regulatory programs that control metabolic pathways. For such pathways, our optimiza-

tion approach predicts a more focused regulation of enzymes that occur upstream of toxic

intermediates. Moreover, there is a strong tendency of transcriptional regulation to target

enzymes that are efficient in terms of catalytic activity as well as substrate affinity and possess

less toxic upstream intermediates. Especially a focus on transcriptional regulation of efficient

enzymes is surprising since it is often assumed that rate-limiting steps, which are catalyzed by

inefficient enzymes, are key points of pathway control [20, 21]. We validate our prediction

through a detailed examination of the interplay between enzyme efficiency as well as transcrip-

tional control in Escherichia coli and a study of the relationship between regulatory effort as

well as intermediate toxicity in the metabolic networks of more than 5000 prokaryotes. More-

over, we illustrate the usefulness of our approach through a detailed investigation of the influ-

ence of intermediate toxicity on the production of endogenous toxic metabolites in

lipopolysaccharide metabolism.

Materials and methods

Modeling approach

To model the toxicity of intermediates, we extended the optimization problem formulated by

Wessely et al. [10] with the explicit consideration of toxicity of individual intermediates through

concentration thresholds for each metabolite βi (Fig 1A). The underlying ordinary differential

equation system (ODE) describes a linear pathway converting a substrate S via five enzymatic

reactions into a product P (see S1 Text). The selection of a five step linear pathway was made

since it provides a good trade off between long and short linear pathways and is also the mean

length of the defined linear pathways based on the listed pathways in MetaCyc [24]. Neverthe-

less, we obtain comparable results also for shorter and longer pathway lengths (see S2 Text).

While the substrate of the pathway is assumed to be constant in concentration, the product

undergoes a drain e.g. by growth or other environmental changes vg(t), which vary over time:

vgðtÞ ¼

g1; t < 10

g2; 10 � t < 20

g3; 20 � t � 30

8
>>><

>>>:

ð1Þ

The dilution is balanced by the regulation of the concentration of enzymes that catalyze the

conversion of metabolites modeled as irreversible Michaelis-Menten kinetics with the parame-

ters kcat and Km. As discussed previously [10], considering an outflow of the product through

growth is conceptually identical to a change of product demand, but can be formulated more

conveniently in the optimization approach. Results were found to be robust against variations

in the preset changes of dilution rate vg(t) (see S2 Text). Therefore the same changes in dilution

rate vg(t) like in Wessely et al. [10] were used for all optimization runs.

The toxicity of intermediates is simulated as constraints on the concentration of the metab-

olites:

0 � xiðtÞ � bi ð2Þ
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A biological interpretation of the toxicity threshold used in the optimization is, for instance,

the half inhibitory concentration (IC50) of a metabolite, that is, the concentration at which

half of a bacterial population is inhibited in its growth.

In the objective function we minimize two factors: the regulatory effort and protein costs.

The regulatory effort is modeled as the deviation from initial enzyme concentrations and pro-

tein costs by the initial concentration of enzymes. Both objectives are weighted with the factor

σ. Hence, the following objective function:

FðeÞ ¼ min
e1ðtÞ;:::;e5ðtÞ

X5

j¼1

ZTmax

0

ðs � ejð0Þ
|ffl{zffl}

abundance

þ ðejðtÞ � ejð0ÞÞ
2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
regulation

Þdt

0

B
@

1

C
A ð3Þ

is used to determine the optimal regulatory program. The factor σ models the costs for the

whole pathway and not of single enzymes. In previous studies [14, 16] we discovered that vary-

ing synthesis costs within the pathway can influence the regulatory strategy, but is neglected

here to focus on the impact of toxic intermediates.

The model consists of several parameters with arbitrary units (Table 1). The time-depen-

dent concentrations of the five enzymes are used as control variables during the optimization.

The simulation time span is set to 30 arbitrary time units and has no influence on optimization

results (see also [15]). Parameters connected to toxicity (β) and kinetics (kcat,Km) are tested for

their influence on optimal regulatory programs for two values of σ corresponding to high and

low enzyme costs, respectively. To test the influence of toxicity and kinetic parameters, we

Fig 1. (A) Model of a linear pathway used for optimization. The substrate S is converted to a product P via five

reactions catalyzed by enzymes with the concentration ej(t) with kinetic parameters kcat and Km and four

intermediates Xi with concentration thresholds β that indicate their toxicity. The product P is diluted by vg

(dilution rate). (B) Objective function of the optimization problem. The objective function minimizes the

regulatory effort of e(t) (green areas) and the initial concentration of enzymes e(0).

doi:10.1371/journal.pcbi.1005371.g001
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performed 1000 runs in which their values were chosen randomly from the intervals indicated

in Table 1.

Dynamic optimization and analysis of simulation results

The above described optimization problem has time dependent and continuous decision (e(t))
and state variables (metabolite concentrations), and hence has to be solved using dynamic

optimization. Similar to previous works [10, 14, 16], we used a quasi-sequential approach with

the extensions of [22] to handle approximation errors and moving finite elements. Since this

method is gradient-based, the optimization was repeated one hundred times for each random

parameter set using random initializations to avoid local optima. For each random parameter

set, we only considered the solution with the best objective function value.

To investigate the influence of kinetic and toxicity parameters on optimal regulatory pro-

grams, 1000 randomly distributed parameter samples were obtained as Sobol-sequences [23],

which are values quasi-randomly distributed in the parameter space. In contrast to randomly

chosen parameters sets, values obtained from a Sobol-sequence are maximizing the distance to

each other in the parameter space. This leads to an optimal coverage of the parameter space

and therefore less parameter tests are needed.

We are specifically interested in the relationship between regulatory effort, measured as

deviation of enzyme time-courses from initial enzyme concentrations, and toxicity as well as

kinetic parameters. To investigate this relationship, we partitioned the randomized parame-

ters sets depending on the amount of regulatory effort at the individual pathway positions.

Subsequently, we compared the distribution of toxicity parameters β and enzyme efficiency

keff ¼
kcat
Km

for cases with the 10% highest and lowest regulatory effort at individual pathway

positions. To make regulatory effort comparable across the parameter samples, for each

enzyme the fraction of regulation is normalized by dividing the regulatory effort with the

sum of regulatory effort of all enzymes. Thus, the total normalized regulatory effort sums to

one.

Validation of optimization results in prokaryotes

As depicted in Fig 2, we validated regulatory programs predicted by the optimization approach

using genomic data of pathways and the corresponding enzymes as well as compound toxicity

from more than 5000 prokaryotic organisms represented in the BioCyc database (version 19.0)

[24].

Pathway structures containing reactions and compounds were extracted from the MetaCyc

database [24] and linear pathways were obtained as described previously [10, 15]. Since kinetic

Table 1. Parameter and variable overview.

Factor Value Description

ej [0,1] enzyme concentration (control variable)

σ 1

3
or 1

30
weight of enzyme cost

Tmax 30 timespan of optimization

kcat,j [0,2]* turnover number

Km,j [0,2]* inverse substrate affinity

βi [0,4]* threshold of intermediate concentrations

A star * indicates that the parameters are sampled from the indicated range.

doi:10.1371/journal.pcbi.1005371.t001
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parameters are only available on a large-scale for a few model organisms, we validated the cor-

responding hypotheses only for Escherichia coli based on experimentally measured kinetic

parameters from the Brenda database [25]. Only kinetic parameters without the term ‘mutant’

in the description of the experimental setup were considered.

As an estimate of regulatory effort targeted at individual enzymes, we used the promoter

length and the number of predicted post-translational modification (PTM) sites as reference.

We used predicted PTM-sites as estimator for post-translational regulation since they offer a

view on non-transcriptional regulation. Predicted as well as experimentally validated

PTM-Sites were obtained from dbPTM [26]. In a previous work we showed that promoter

length, defined as intergenic distance between adjacent genes, is a good estimator of the num-

ber of transcription factors targeting a gene and hence of the complexity of the transcriptional

regulatory network controlling this gene [15]. We showed this through a strong correlation

between the number of transcription factors targeting a gene with its promoter length and a

significant correlation between codon adaptation indices, a genomic measure of protein abun-

dance [27], as well as promoter length (more abundant proteins tend to be controlled by more

complex regulatory networks).

Since experimentally determined toxicity of compounds is only available for a small num-

ber of metabolites and organisms, the prediction tool EcoliTox was used [28]. This tool is

based on a quantitative structure activity relationship (QSAR) model built on measured IC50

values, which is the concentration of a compound where 50% of the bacterial growth is inhib-

ited. The QSAR-model was obtained through training of an classifier on a library of 166 mole-

cules whose toxicity was experimentally determined in E. coli. Predicted logarithmized IC50

values for all compounds listed in the MetaCyc database were kindly provided by Dr. Pablo

Carbonell.

We focused our analysis on sparsely regulated metabolic pathways, since, in contrast to per-

vasively regulated metabolic pathways, only the most important enzymes are under transcrip-

tional control in such pathways and influence of intermediate toxicity is stronger. In

accordance to our previous work [15], sparsely regulated pathways were defined at those with

an average promoter length below 60% of the promoter length of non-metabolic genes of the

same organism. Enzyme positions were normalized to a range of [0,1] by

relative position ¼
position � 1

pathway length � 1
ð4Þ

Fig 2. Overview of data and its processing for validation of optimization results. Rectangles depict the

used databases and colors indicate, similar to the other figures, the considered pathway characteristics. A

scheme of a 8-step linear pathway visualizes the binning into 5 intervals for the validation process.

doi:10.1371/journal.pcbi.1005371.g002
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to make pathways comparable for different lengths. In order to apply the same approach of

analysis as for the optimization results, enzymes were categorized into five intervals of their

relative position, representing the five enzymes in the model (see Fig 2) and the average length

of the used linear pathways (5.079). The intervals [0, 0.1] and [0.9, 1] contain mainly the first

and the last enzyme and the three intervals in between were divided equally and correspond to

the three intermediate enzymes. The binning of pathways into intervals was also made for dif-

ferent pathway lengths (three and seven steps), but was found either to short to resolve the lin-

ear pathway characteristics (for short pathways) or not to differ in results if more intervals

were used (see S2 Text).

Promoter lengths, number of PTM-sites and log IC50-values were Z-transformed to make

data comparable across different pathways and organisms:

ZðxÞ ¼
x � avg
sd

ð5Þ

where Z(x) is the transformed, avg the mean and sd the standard deviation of the correspond-

ing values x across the entire pathway.

To match the analysis of the optimization results, we defined strongly or weakly regulated

intervals of linear pathways as those where the mean regulatory effort of the interval was

among the 10% highest (strong regulation) or lowest (weak regulation) across all pathways.

Results show similar tendencies and significance for higher thresholds (25%).

Subsequently, the underlying pathway characteristics, like intermediate toxicity, of strongly

and weakly regulated pathways were compared for each interval (see S2 Fig) or intervals are

condensed regarding the position of strongly or weakly regulated enzymes to directly validate

the hypotheses. For the latter, intervals are combined before and after the strongly regulated

enzyme, if positions of strongly regulated enzymes are not the reference regulatory strategy

involving the first and the last enzyme.

Results

Optimization of a linear metabolic pathway model considering toxic

intermediates

In a first step, we analyzed the influence of the inclusion of toxicity constraints on general

properties of pathway regulation. To this end, we determined the relative distribution of reg-

ulatory effort for each pathway position across the 1000 randomly sampled parameter com-

binations for the model including toxicity constraints. In accordance to our previous results

[10], the regulatory effort was mainly targeted at the initial and the terminal enzyme for low

protein costs (s ¼ 1
30

, Fig 3A), corresponding to a sparse transcriptional regulation. For high

enzyme costs (s ¼ 1
3
, Fig 3C) we observe a rather uniform distribution of regulatory effort

across the entire pathway, corresponding to a pervasive transcriptional regulation. Interest-

ingly, the variation is stronger under the scenario of low enzyme costs (± 26.0%) suggesting

that the influence of parameters on the regulatory strategy is greater compared to high

enzyme costs (± 8.9%) and the position of strongly regulated enzymes changes depending on

the pathway characteristics.

To better understand the influence of parameters on the targets of regulation, we sepa-

rated all parameter samples into cases with weak and strong regulation for the individual

pathway positions (upper and lower 10% percentile) and compared the distribution of the

corresponding parameter samples between those cases (see Material and Methods). Based on

this separation, we compared toxicity (Fig 3B and 3D) and kinetic parameters across all

Optimality principles in prokaryotic metabolism prevent accumulation of toxic intermediates
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enzymes for cases with strong or weak regulation at individual pathway positions (see S1 Fig

for detailed plot).

For kinetic efficiency a clear tendency is visible that strongly regulated enzymes tend to be

also highly efficient confirmed by a significant correlation (Spearman correlation r = 0.57,

P< 1 � 10−308) of keff and fraction of regulatory effort. The correlation calculation includes all

optimization results and shows that our observations are valid not only for the extreme cases

(strong or weak), which are chosen to depict our results. Moreover, we observe a strong influ-

ence of intermediate toxicity on pathway regulation. The relation of toxicity thresholds, where

low values correspond to high toxicity, and regulatory effort reveals that strongly regulated

enzymes are followed by intermediates with low toxicity thresholds (Spearman correlation

r = −0.21, P< 3 � 10−13 and Fig 3B and 3D). We see that the highly regulated enzyme can be

further upstream of the toxic intermediate (see Fig 4C). In contrast to this, direct upstream

intermediates have preferably high toxicity thresholds meaning a lower toxicity (Spearman

correlation r = 0.49, P< 6 � 10−74 and Fig 3B and 3D). This observation can be explained by a

regulatory program that shifts regulation to enzymes with less toxic upstream intermediates

that can accumulate during regulation as we see in the time course of metabolite concentra-

tions (compare Fig 4A and 4B).

Both observations are less pronounced in the scenario with high enzyme costs since the

ensuing pervasive regulation leads to a coordinated regulation of all enzymes and thus a

reduced accumulation of intermediates. This is most obvious by smaller median differences of

Fig 3. Relationship between regulatory effort and intermediate toxicity for low (A,B) and high enzyme

costs (C,D). (A,C) The fraction of regulation is displayed in blue for each enzyme. (B,D) The intermediate

toxicity is depicted in yellow (white) for the case of a strongly (weakly) regulated enzyme and the toxicity

threshold of intermediates before and after (lower values indicate higher toxicity). All plots show the

distribution of values as a combination of violin- and box-plots indicating median and 25–75% percentile.

doi:10.1371/journal.pcbi.1005371.g003
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the medians of parameter distributions between strongly and weakly regulated pathway mod-

els compared to the scenario of low enzyme costs (Fig 3B and 3D and S1 Fig).

To illustrate the influence of toxicity constraints on pathway regulation, we compared the

optimal sparse regulation of a pathway without toxicity constraints and uniform enzyme effi-

ciency (Fig 4A) to cases with a tight constraint on the concentration of the last intermediate

(Fig 4B) and a highly efficient third enzyme (Fig 4C).

The dynamics for the reference parameter set involves regulation at the first and last posi-

tion to optimally balance product drain. This leads to an accumulation of the last intermediate

X4, which is used as a buffer for the product (Fig 4A). The dynamics change completely if this

intermediate is toxic (Fig 4B). In this case, the optimal regulatory target is the fourth enzyme

and intermediate X3 accumulates, since the accumulation of intermediate X4 is avoided due its

toxicity. Analogously, if the third enzyme is much more efficient, we see a shift in the regula-

tory effort toward this enzyme independently of the toxicity of intermediates (Fig 4C).

In order to verify the generality of our results, we applied the same analysis to models of

shorter and longer linear pathways, pathways with product inhibition, reversible reactions and

Fig 4. Comparison of optimal regulatory programs. (A) Optimal time-course of enzyme (in red) and intermediate (in blue) concentrations for σ = 1/30,

uniform kinetics and no toxicity. (B) Optimal solution for the same parameters apart the low toxicity threshold β4 = 0.1 of intermediate X4. (C) Again the

same parameters as in (A) apart the highly efficient third enzyme keff,3 = 10. Threshold are depicted as black lines and the arbitrary time horizon ranging

from 0 to 30 is discarded for lucidity.

doi:10.1371/journal.pcbi.1005371.g004

Optimality principles in prokaryotic metabolism prevent accumulation of toxic intermediates
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changes in rates of dilution of the product of the pathway. We could confirm our observations

also after these modifications to our basic model (see S2 Text).

Intermediate toxicity shapes the regulation of prokaryotic metabolic

pathways

We validated the predictions of the optimization in an analysis of regulation in the metabolic

networks of more than 5000 prokaryotes listed in the BioCyc database. Apart from the collec-

tion of metabolic pathways, this database contains predictions on the operonic structure of the

listed organisms which allows us to reliably infer promoter lengths and hence regulatory effort

targeted at individual genes in each organism. In the metabolic networks, linear pathways

were identified and combined with data of predicted regulatory effort (promoter length, PTM-

sites), intermediate toxicity and kinetic parameters (for Escherichia coli). Further, to make

pathways comparable and to match our model, we defined five pathway intervals to which

enzymes at different pathway positions were assigned (see Methods).

In a first step, we investigated the distribution of intermediate toxicity across the pathway

positions collected in the MetaCyc database (see Fig 5). We observed that substrates and prod-

ucts of pathways have slightly higher IC50 values than intermediates of pathways (first and last

interval compared to intervals in between, Mann–Whitney–Wilcoxon test, P = 0.019), that is

they are less toxic. From an evolutionary point of view, this observation makes intuitively

sense since substrates and products of pathways are usually present in higher concentration

than intermediates that are only transiently formed [29]. This suggests that the structure of

metabolism has been shaped by avoiding toxic intermediates as substrates or products of path-

ways. On the other hand, substrates and products of pathways might also be less toxic because

cells had to adapt to their higher concentration in contrast to intermediates that are present in

Fig 5. Distribution of intermediate toxicity for each pathway interval of all compounds listed in metacyc (lower

values indicate higher toxicity).

doi:10.1371/journal.pcbi.1005371.g005

Optimality principles in prokaryotic metabolism prevent accumulation of toxic intermediates
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smaller quantities. Other optimization approaches suggested that the limited solvent capacity

leads to low concentrations of intermediates to avoid high osmotic pressure in the cell [30].

Similar to the analysis of the optimization results, we separated data sets into cases of strong

and weak regulation at individual pathway positions. To this end, we defined for each pathway

interval the 10% of enzymes with highest regulatory effort as strongly regulated and the 10% of

enzymes with smallest regulatory effort as weakly regulated (see Methods). Since the optimal-

ity principle of avoiding toxic intermediates was more pronounced in the case of low enzyme

costs in the simulations, we focused the validation on sparsely regulated metabolic pathways.

The strongly regulated enzymes represent targets of regulation and the toxicity is compared of

upstream intermediates, direct and further downstream intermediates with weakly regulated

pathways at this position. The resulting data set compromises 1,012,285 reactions with

enzymes as data points from 214,550 defined linear metabolic pathways across 5292 organisms

(see S1 Table).

In accordance with the optimization results, we observed a significantly lower toxicity

of intermediates before the strongly regulated enzymes (Mann–Whitney–Wilcoxon test,

P< 1 � 10−16, see Fig 6). A closer inspection of the corresponding intermediates revealed

that the direct upstream intermediates of the strongly regulated enzymes have a lower toxic-

ity (see S2 Fig). This confirms that intermediates prior to strongly regulated enzymes are

used as a buffer for varying demands of product concentrations and therefore have on aver-

age lower toxicity.

Further, our optimization results are moreover supported by the observation that the

downstream intermediates of strongly regulated enzymes are significantly more toxic (Mann–

Whitney–Wilcoxon test, P = 1.9 � 10−12, see Fig 6). The use of logarithmized IC50 and the sub-

sequent Z-transformation leads to differences of toxicity in the magnitude of 10−1. In this case

a difference of 10−1 corresponds to 10% of the variance of the toxicity across the pathway,

where IC50 values can easily vary from 10−4 g l−1 for toxic metabolites to 102 g l−1 for non-toxic

metabolites. The positional analysis of intermediate toxicity moreover revealed that highly

toxic intermediates are not always directly produced by the strongly regulated enzyme, but can

also occur further downstream (see S2 Fig). As we have seen in our optimization results this

can be explained by the influence of enzyme efficiency and the preference of highly efficient

enzymes as main regulatory targets.

Efficient enzymes are main targets of transcriptional regulation in

Escherichia coli

In the optimization results, we observed a strong influence of kinetic efficiency of enzymes in

combination with intermediate toxicity on the optimal regulatory strategy. Since a large-scale

data set for all prokaryotes is not available for kinetic parameters and prediction, we verified

our hypotheses in Escherichia coli.
We retrieved all experimental determined values of kcat and KM for Escherichia coli from the

Brenda database [25] and obtained 266 enzymes with kcat and KM values as data points. We

reduced the number of intervals dividing the pathway positions (first, middle, last) and

mapped the properties.

Interestingly, the distribution of keff shows that the initial enzymes of pathways

(11.6 mM−1 s−1 average efficiency) tend to be much less efficient than the terminal enzymes

(94.1 mM−1 s−1 average efficiency) in a linear pathway (Mann–Whitney–Wilcoxon test,

P = 5.1 � 10−3, see Fig 7A). This can be explained by the need for a more precise regulation at

the terminal step of pathways to fine-tune the synthesis of the product of the pathway

according to cellular needs as we reported previously [10, 15]. The distribution of
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intermediate toxicity is inverse with a lower log IC50 for late intermediates and a higher log

IC50 for early intermediates suggesting a relation between intermediate toxicity and kinetic

efficiency. This is confirmed by the significant correlation between kinetic efficiency and

toxicity (Spearman correlation r = −0.14, P = 0.022, see Fig 7C) and is linked to the

Fig 6. Comparisons of intermediate toxicity distributions before (left), at (middle) and after strongly

regulated enzymes for (A) transcriptional regulation and (B) post-translational regulation. Yellow color

indicates toxicity distributions for strongly regulated enzymes, and white color the corresponding toxicity

distributions for direct downstream intermediates of weakly regulated enzymes (lower values indicate higher

toxicity).

doi:10.1371/journal.pcbi.1005371.g006
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correlation of kinetic efficiency and promoter length (Spearman correlation r = −0.16,

P = 0.009, see Fig 7B). Both relationships between intermediate toxicity, kinetic efficiency

and regulation are in line with our optimization results and show that there is a evolutionary

selection for efficient enzymes as strongly regulated enzymes optimally controlling toxic

intermediate accumulation. Further, the results show a link to the hypothesis of retro-evolu-

tion of pathways [31], which assumes that pathways are extended by the invention of

enzymes which are able to synthesize the product from more distant intermediates and

therefore final and evolutionary older enzymes have a higher efficiency. Additionally, the

same is true for the toxicity of intermediates, because we see that late intermediates are

more toxic than the early intermediates (see Fig 5), which can be seen as evolutionary newer

sources for the required product to circumvent toxic intermediates.

Using intermediates as endogenous antimicrobials: Acetate as a by-

product of lipid IVA biosynthesis in Escherichia coli

Our results about the interplay of intermediate toxicity, kinetic efficiency and regulation of lin-

ear metabolic pathways in prokaryotes have demonstrated the importance of fine tuned regu-

latory programs for controlling metabolic pathways to avoid the production of toxic

intermediates. In the other direction, this suggests that we could use information about

strongly regulated enzymes to infer metabolites whose production and consumption is under

tight control and hence they might potentially be harmful to the cell. Examples for antimicro-

bials that follow this principle are antibiotics targeting late steps in the teichoic acid biosynthe-

sis in gram-positive bacteria [32]. In this case, late intermediates are accumulated increasing

the osmotic stress and enhancing the antimicrobial effect [33].

An interesting example is provided by lipid IVA biosynthesis which produces not only lipo-

polysaccharides precursors as components of the cell wall of E. coli but also the toxic byproduct

acetate (see Fig 8). Despite the ability of Escherichia coli to utilize acetate as a carbon source,

higher concentrations of acetate (> 8 mM) are reported to inhibit growth by various mecha-

nisms (see green box in Fig 8A) [34].

Fig 7. Relation of kinetic efficiency and pathway position (A), regulation (B) and product toxicity (C, lower

values indicate higher toxicity) in Escherichia coli.

doi:10.1371/journal.pcbi.1005371.g007
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In agreement with our predictions, the acetate producing enzyme LpxC (UDP-3-O-acyl-N-

acetylglucosamine deacetylase) has a very high catalytic efficiency (642.86 mM−1 s−1) and the

highest promoter length (101 bp) within the pathway (see Fig 8B). This data confirms the

description in the literature that this step is the key step of lipid IVA biosynthesis and is tightly

controlled by the ATP-dependent metalloprotease FtsH [35]. The gene lpxC is located in an

operon together with several genes controlling cell division. However, ftsH is transcribed sepa-

rately providing a precise regulation and prevents accumulation or depletion of the key

enzyme which has been described as lethal in previous studies [35, 36]. However, previous

research focused on the discovery of inhibitors to block lipid IVA biosynthesis and subse-

quently weakening the membrane of prokaryotes. Thus, our results suggest that either inhibit-

ing acetate consuming enzymes or overproducing LpxC represent routes to use acetate as an

Fig 8. (A) Excerpt of metabolic context of acetate and lipid IVA biosynthesis. The green box highlights mechanisms of acetate toxicity. (B) lipid IVA

biosynthetic pathway including key characteristics (lower log IC50 values indicate higher toxicity).

doi:10.1371/journal.pcbi.1005371.g008
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endogenous antimicrobial. However, overproducing LpxC might have side-effects due to its

role in cell wall biosynthesis.

Key mechanisms of acetate toxicity in E. coli are summarized in Fig 8A. Acetate is a side-

product during mixed acid fermentation where glucose is converted to lactate, acetate, succi-

nate and formate as well as ethanol in anaerobic conditions [37]. Moreover, acetate is a major

byproduct during growth on excess glucose, referred to as overflow metabolism [38], and is

produced not only via degradation of acetyl-CoA but also directly by pyruvate oxidation at low

growth rates [39]. The mechanism behind acetate toxicity is based on several factors. First of

all, acetate lowers the pH in the cell [34], which impacts many cellular processes like protein

folding or ion transport [40]. Additionally, acetate inhibits the production of methionine via

homocysteine which then accumulates and is also reported as a toxic intermediate [34]. To

reduce the concentration of acetate the cell can export acetate [41], which leads to acetate accu-

mulation in the environment, or convert it to acetyl-CoA, which can be oxidized in the tricar-

boxylic acid cycle [42]. Acetate is converted into acetyl-CoA either via acetate kinase and

phosphotransacetylase at high concentrations of acetate, or through the acetyl-CoA synthetase

during late exponential phase [43]. Therefore both pathways and its enzymes are potential tar-

gets for inhibition to induce an accumulation of acetate.

Discussion

In the present study, we used dynamic optimization to elucidate the influence of toxic interme-

diates on the regulation of linear metabolic pathways. Previous studies showed that toxic inter-

mediates have a high impact on the yield of pathways [44] and accumulation is prevented by

feedback mechanisms [34, 45] as well as operonic organization [46].

Our optimization results disclose that sparsely regulated pathways with strongly regulated

enzymes at the first and last position use late intermediates to buffer the varying demand of

product concentrations. However, if these intermediates are highly toxic they cannot be used

as buffer and regulation needs to target enzymes further upstream. The optimization showed

that especially kinetic efficient enzymes are the targets of regulation and hence, the position of

the strongly regulated enzyme is strongly influenced by the interplay of intermediate toxicity

and kinetic characteristics of a pathway. Together with other factors, like pathway topology or

enzyme costs [10, 15], dynamic optimization allowed us to disentangle the influence of many

features on pathway control thereby expanding the classical view of pathway regulation like

key enzymes and rate limiting steps.

We confirmed the predicted optimality principles by an analysis of pathway regulation on

the transcriptional and post-translational level independently across all prokaryotes listed in

the BioCyc database by relating enzyme regulation with intermediate toxicity estimations. Fur-

ther, we showed for E. coli that kinetic properties of enzymes correlate with regulatory effort

and intermediate toxicity. Our observation have been proven to be robust to changes of our

optimization model and validation process by varying pathway characteristics like length, inhi-

bition kinetics and product dilution dynamics.

The findings provide further insight in the complex strategies behind pathway regulation.

In recent years, it became more and more apparent that regulation of pathways cannot be

described only by metabolic control analysis, feedback mechanisms and other non-dynamical

approaches. Our disclosure of toxic intermediates as additional characteristic determining the

positions of regulation extends the understanding of pathway regulation and reveals new

opportunities for optimizing pathway yield or find targets for antimicrobial interventions.

As shown for the case of lipid IVA of E. coli, toxic intermediates and their producing

enzymes are targets for antimicrobial interventions. The deliberate deregulation of a pathway
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can possibly lead to an accumulation of toxic intermediates like acetate, which act as a endoge-

nous antibiotic and kills the cell. Through an analysis of regulatory effort, intermediate toxicity

as well as catalytic efficiency, targets can be identified on a large scale supporting the discovery

of new antibiotic drugs. This approach could provide more and organism specific targets than

the focus of most antibiotics to interfere with the cell wall and its synthesis or the synthesis of

DNA and protein [47].

Despite the more complex regulation in eukaryotes and different cellular preconditions like

the decoupling of transcription and translation, we think that the same optimality principles

are valid. This has been shown, for instance, in an metabolic engineering approach in yeast

where the avoidance of the accumulation of toxic intermediates allowed for an increased pro-

duction of a desired product through improved cell viability [44].

Especially, our approach and these investigations can be applied to eukaryotic pathogens

like the fungal species Candida albicans or Aspergillus fumigatus. For instance, the ergosterol

pathway in fungi is attacked by Amphotericin B, specifically ERG3, synthesized by a gene

encoding sterol Delta(5,6)-desaturase, so creating an important intermediate of ergosterol

pathway [48]. Also azols hit this target leading to the disruption of the pathway and interme-

diate accumulation, subsequently stopping growth of Candida albicans [48]. However, the

opposite strategy, as explored here, to push ERG3 and other enzyme action such that more

toxic intermediates are accumulating has not been investigated for drug development. For

instance, ERG11 of Candida albicans is a potential target leading to accumulation of interme-

diates, which was also observed under anaerobic conditions where ERG3 is non-functional

[48]. As all these enzymes are not present in humans, we consider this as an interesting alter-

native to explore, not only for Candida but also for Aspergillus fumigatus. Both fungal patho-

gens are the main causes of life-threatening invasive mycoses [49] and drug development is

difficult due to the closer relationship between human and fungi compared to prokaryotes.

Supporting information

S1 Text. ODE system. Detailed description and mathematical formulation of ODE system

and optimization problem.

(PDF)

S2 Text. Robustness of optimality principles. Analysis of pathway models considering prod-

uct inhibition, reversible reactions, different pathway lengths and random dilution rates.

(PDF)

S1 Fig. Positional relation of regulation, kinetic efficiency and intermediate toxicity from

optimization. Influence of parameters (yellow: toxicity, red: kinetic efficiency) on the regula-

tory strategy and the position of strongly regulated enzymes (blue) for low enzyme costs (A)

and high enzyme costs (B). For each strongly regulated enzyme position (row) arrows indicate

the difference of medians of toxicity (β) and kinetic efficiency (keff) between strong and weak

regulation at each position. Arrow sizes are scaled to the maximal median difference depicted

on the right column.

(PDF)

S2 Fig. Positional relation of regulation and intermediate toxicity in prokaryotes. Relation

of regulation (A) promoter length and (B) PTM-sites with toxicity of intermediates. Arrows

pointing upwards showing higher toxicity thresholds (lower toxicity) and arrows pointing

downwards vice versa.

(PDF)

Optimality principles in prokaryotic metabolism prevent accumulation of toxic intermediates

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005371 February 17, 2017 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005371.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005371.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005371.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005371.s004


S1 Table. Regulation and toxicity of linear pathways across prokaryotic species. Tables of

promoter length and PTM-sites, as well as IC50 of downstream intermediates for each defined

reaction of linear metabolic pathway.

(7Z)

Acknowledgments

We thank Dr. Pablo Carbonell for providing us with the data of EcoliTox and supporting

discussions.

Author Contributions

Conceptualization: JE CK.

Formal analysis: JE CK.

Methodology: JE MB CK.

Supervision: CK TD.

Validation: JE CK.

Visualization: JE.

Writing – original draft: JE CK.

Writing – review & editing: JE MB TD CK.

References
1. Parker GA, Smith JM, et al. Optimality theory in evolutionary biology. Nature. 1990; 348(6296):27–33.

doi: 10.1038/348027a0

2. Heinrich R, Schuster S, Holzhütter HG. Mathematical analysis of enzymic reaction systems using opti-

mization principles. In: EJB Reviews 1991. Springer; 1992. p. 167–187.

3. Goldsmith TH. Optimization, constraint, and history in the evolution of eyes. Quarterly Review of Biol-

ogy. 1990;p. 281–322. doi: 10.1086/416840 PMID: 2146698

4. Alexander R, et al. Optimization and gaits in the locomotion of vertebrates. Physiological Reviews.

1989; 69(4):1199–1227. PMID: 2678167

5. Lenhart S, Workman JT. Optimal control applied to biological models. CRC Press; 2007.

6. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nature Biotechnology. 2010; 28(3):245–

248. doi: 10.1038/nbt.1614 PMID: 20212490

7. Adiwijaya BS, Barton PI, Tidor B. Biological network design strategies: discovery through dynamic opti-

mization. Molecular BioSystems. 2006; 2(12):650–659. doi: 10.1039/b610090b PMID: 17216046

8. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, et al. Just-in-time transcription

program in metabolic pathways. Nature Genetics. 2004; 36(5):486–491. doi: 10.1038/ng1348 PMID:

15107854

9. Banga JR. Optimization in computational systems biology. BMC Systems Biology. 2008; 2(1):47. doi:

10.1186/1752-0509-2-47 PMID: 18507829

10. Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C. Optimal regulatory strategies for metabolic

pathways in Escherichia coli depending on protein costs. Molecular Systems Biology. 2011; 7(1):515.

doi: 10.1038/msb.2011.46 PMID: 21772263

11. Fischer E, Sauer U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of

Bacillus subtilis metabolism. Nature Genetics. 2005; 37(6):636–640. doi: 10.1038/ng1555 PMID:

15880104

12. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U. Multidimensional optimality of microbial

metabolism. Science. 2012; 336(6081):601–604. doi: 10.1126/science.1216882 PMID: 22556256

Optimality principles in prokaryotic metabolism prevent accumulation of toxic intermediates

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005371 February 17, 2017 17 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005371.s005
http://dx.doi.org/10.1038/348027a0
http://dx.doi.org/10.1086/416840
http://www.ncbi.nlm.nih.gov/pubmed/2146698
http://www.ncbi.nlm.nih.gov/pubmed/2678167
http://dx.doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
http://dx.doi.org/10.1039/b610090b
http://www.ncbi.nlm.nih.gov/pubmed/17216046
http://dx.doi.org/10.1038/ng1348
http://www.ncbi.nlm.nih.gov/pubmed/15107854
http://dx.doi.org/10.1186/1752-0509-2-47
http://www.ncbi.nlm.nih.gov/pubmed/18507829
http://dx.doi.org/10.1038/msb.2011.46
http://www.ncbi.nlm.nih.gov/pubmed/21772263
http://dx.doi.org/10.1038/ng1555
http://www.ncbi.nlm.nih.gov/pubmed/15880104
http://dx.doi.org/10.1126/science.1216882
http://www.ncbi.nlm.nih.gov/pubmed/22556256


13. Geisel N, Vilar JM, Rubi JM, Thattai M. Optimal resting-growth strategies of microbial populations in

fluctuating environments. PLOS ONE. 2011; 6(4):e18622. doi: 10.1371/journal.pone.0018622 PMID:

21525975

14. Bartl M, Kötzing M, Schuster S, Li P, Kaleta C. Dynamic optimization identifies optimal programmes for

pathway regulation in prokaryotes. Nature Communications. 2013; 4. doi: 10.1038/ncomms3243 PMID:

23979724

15. de Hijas-Liste GM, Balsa-Canto E, Ewald J, Bartl M, Li P, Banga JR, et al. Optimal programs of pathway

control: dissecting the influence of pathway topology and feedback inhibition on pathway regulation.

BMC Bioinformatics. 2015; 16(1):163. doi: 10.1186/s12859-015-0587-z PMID: 25982966

16. Ewald J, Kötzing M, Bartl M, Kaleta C. Footprints of Optimal Protein Assembly Strategies in the Opero-

nic Structure of Prokaryotes. Metabolites. 2015; 5(2):252–269. doi: 10.3390/metabo5020252 PMID:

25927816

17. Loret MO, Pedersen L, François J. Revised procedures for yeast metabolites extraction: application to

a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine sal-

vage pathway. Yeast. 2007; 24(1):47–60. doi: 10.1002/yea.1435 PMID: 17192850
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