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Abstract

Natural Killer cells (NK) are lymphocytes with the potential to recognize and lyse cells which

escaped T-cell mediated lysis due to their aberrant HLA expression profiles. Killer cell immu-

noglobulin-like receptors (KIR) influence NK-cell activity by mediation of activating or inhibi-

tory signals upon interaction with HLA-C (C1, C2) ligands. Therefore, absence of ligands for

donor inhibitory KIRs following hematopoietic stem cell transplantation (HSCT) may have an

influence on its outcome. Previous studies showed that C1 negative patients have a decreased

HSCT outcome. Our study, based on a cohort of 200 C1-negative patients, confirmed these

findings for the endpoints: overall survival (OS: HR = 1.41, CI = 1.14–1.74, p = 0.0012), dis-

ease free survival (DFS: HR = 1.27, CI = 1.05–1.53, p = 0.015), treatment related mortality

(TRM: HR = 1.41, CI = 1.01–1.96, p = 0.04), and relapse incidence (RI: HR = 1.33, CI = 1.01–

1.75, p = 0.04) all being inferior when compared to C1-positive patients (n = 1246). Subsequent

analysis showed that these findings applied for patients with myeloid malignancies but not

for patients with lymphoproliferative diseases (OS: myeloid: HR = 1.51, CI = 1.15–1.99,

p = 0.003; lymphoblastic: HR = 1.26, CI = 0.91–1.75, p = 0.16; DFS: myeloid: HR = 1.31,

CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21; RI: myeloid:

HR = 1.31, CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21).

Interestingly, within the C1-negative patient group, transplantation with KIR2DS2 resulted

in better OS (9/10 matched: HR = 0.24, CI = 0.08–0.67, p = 0.007) as well as DFS (9/10

matched: HR = 0,26, CI = 0.11–0.60, p = 0.002), and transplantation with KIR2DS1 positive

donors was associated with a decreased RI (HR = 0.30, CI = 0.13–0.69, p = 0.005). TRM

was increased when the donor was positive for KIR2DS1 (HR = 2.61, CI = 1.26–5.41,
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p = 0.001). Our findings suggest that inclusion of KIR2DS1/2/5 and KIR3DS1-genotyping in

the unrelated donor search algorithm of C1-ligand negative patients with myeloid malignan-

cies may prove to be of clinical relevance.

Introduction

Haematopoietic stem cell transplantation (HSCT) has been established as a potentially curative

treatment for a variety of haematologic diseases. However, malignancy relapse after HSCT

remains the most frequent cause of treatment failure[1]. Therefore, introduction of a T-cell

mediated graft-versus-leukemia (GvL) effect is of great importance for a successful treatment

[2]. Unfortunately, there are downsides to this T-cell alloreactivity as it is associated with graft-

versus-host disease (GvHD)[3;4] which is a major complication following HSCT. Furthermore,

transformed cells may escape T-cell mediated lysis by down regulation of the Human Leukocyte

Antigen (HLA) expression on their cell surface[5–7]. On the other hand, Natural Killer cells

(NK) are lymphocytes that have the potential to recognize and lyse cells with aberrant HLA-

expression profiles, thereby mediating a GvL-effect of their own. It has been suggested that this

competence qualifies NK cells to conduct an anti-leukemic immune response without causing a

detrimental GvHD[8;9]. The functions of NK cells are controlled by interactions between NK

cell receptors and ligand molecules on the respective target cells. NK cell targeting of leukemic

cells is facilitated, among others, by the communication between killer cell immunoglobulin-

like receptors (KIR) on the surface of NK cells and HLA-A, -B, an -C molecules on the surface

of leukemic cells[10–12]. The KIR gene locus is characterized by high complexity, as it shows a

high genetic variation in regard of receptor functions (activation or inhibition of target cell kill-

ing), gene content, copy number variation, and sequence polymorphism[13]. KIR expression

profiles are further classified into two distinct haplotypes, A and B, based on the presence or

absence of certain KIR genes[14;15]. The A-haplotype is defined by the presence of the two

inhibitory KIRs KIR2DL1 and KIR2DL3, and KIR2DS4 as sole activating KIR. The B-haplotype

is characterized by the presence of a variety of different combinations of KIR genes, however,

the presence of at least one of the KIRs KIR2DL5, KIR2DS1/2/3/5, or KIR3DS1 is mandatory.

Possibly, the most important KIR-ligand interaction is that between HLA-C antigens and

their corresponding KIRs, in which both, inhibitory and activating, receptors are involved

[16]. However, HLA-C/KIR interactions appear to be even more complex, given that HLA-C

antigens are divided into two ligand groups based on specific amino acid residues [17]: Anti-

gens in the C1 group bear an asparagine residue on position 80 and interact with inhibitory

KIR2DL2 and KIR2DL3 as well as activating KIR2DS2, whereas C2 group ligands carry a

lysine residue at position 80 and interact with inhibitory KIR2DL1 and activating KIR2DS1

([18;19]. Activating signals and missing inhibition, both, lead to lysis of target cells[20;21].

Lack of interaction between a KIR and its respective HLA-C ligand in conjunction with acti-

vating signals may induce lysis of the target cell, a mechanism which is known as “missing self-

recognition”[22]. In fact, absence of one or more ligands for donor inhibitory KIRs in patients

with acute myeloid leukemia (AML) was shown to have a positive effect on HSCT outcome in

haploidentical transplantations[20;23]. Whereas this model is still controversially discussed in

the context of matched HSCT[24–26], it has been shown that in matched unrelated transplan-

tation the presence or absence of C1 and/or C2 ligands significantly affects outcome: patients

who expressed at least one C1 ligand showed superior overall survival and lower TRM rates

than patients who were homozygous for the C2 ligand[27].
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In this multicentre study, we evaluated the C-ligand impact on unrelated HSCT outcome in a

large cohort of 1446 KIR & 5-loci-high resolution HLA-typed HSCT transplant pairs and thereby

confirmed the C1-ligand negative patient cohort to be at higher risk than C1-positive patients.

However, the incidence of patient C2 homozygosity is relatively low (in our cohort 14%). Trans-

plantation with KIR B-haplotype positive donors has already been shown to increase HSCT suc-

cess [28–31]. KIR haplotype analyses that were performed in our lab confirm the beneficial effect

of donor KIR B-haplotype on transplantation outcome (Abstract published in Biology of blood

and marrow transplantation in 2015[32]). NK cells and their activating KIR molecules have also

been shown to play a beneficial role in the immune response against various infectious agents

[33–35] as well as in the killing of T-cell blasts[36] and the prevention of leukaemia relapse[37].

KIR-Haplotype organisation, however, unvailed highly various phenotypes, especially among

individuals with KIR B-Haplotypes. In order to analyse the relative contribution of individual

B-Haplotype defining KIRs on HSCT outcome, sub-analyses on the level of single KIR genes are

required. In this study, we aimed to examine if C1-ligand negative patients, who were found to

be at risk post transplantation, could benefit from transplantations carried out from donors with

various activating KIRs.

Patients and Methods

Study cohort

The study population included a total of 1446 patients transplanted for malignant disorders

with T-cell repleted grafts from unrelated donors between 2000 and 2009. Benign diseases of

the hematopoietic system as well as inborn genetic diseases were excluded. Patients with AML

(acute myeloid leukemia), ALL (acute lymphoblastic leukemia), AL (unclassified acute leuke-

mia), CML (chronic myeloid leukemia), CLL (chronic lymphoblastic leukemia), MDS (myelo-

dysplastic syndrome), and MM (multiple myeloma) were eligible. Disease stages were adopted

from a previous report published by the European Society for Blood and Marrow Transplanta-

tion (EBMT) study group[38]: Early disease stage included AML, AL, and ALL transplanted

in first complete remission, CML in first chronic phase, and NHL, MM, and MDS trans-

planted either untreated or in first complete remission. Intermediate disease stage was defined

as AML, ALL, or NHL in second complete remission or first relapse, AL transplanted in sec-

ond complete remission, lymphoma and MM in second complete remission, partial remission

or stable disease, CML at all other stages than first chronic phase or blast crisis, and MDS in

second complete remission or in partial remission. Advanced stage was asigned to AML, AL,

ALL, and MDS in all other disease phases, CML in blast crisis, and lymphoma and MM in all

other disease stages than early or intermediate.

Graft source was either peripheral blood stem cells or bone marrow. Only first allogeneic

transplantations were included in the analysis. Transplant pairs were either 10/10 matched or

single HLA-A, -B, or -C mismatched. All patients received myeloablative or reduced intensity

conditioning. Myeloablative conditioning regimen was defined according to the EBMT rec-

ommendations as treatment with total body irradiation equal or above 10 Gy and/or cyclo-

phosphamide equal or greater than 120 mg/m2, and/or busulfan equal or greater than 16 mg/

kg[39;40]. Treatment with less intense regimen was classified as reduced intensity condition-

ing. All patients received T-cell replete grafts. Written recipient and donor consents for HLA

typing and for the analysis of clinical data were obtained. Clinical data was provided by the

German Registry for Stem Cell Transplantation (DRST) in pseudonymised form. This data

was collected by the transplant centers at day 100 post transplantation and yearly thereafter,

according to the EBMT guidelines. The study was approved by the ethical review board of the

University of Ulm (project number 263/09). Overall survival (OS) was defined as time to death

Activating KIRs and Unrelated HSCT Outcome
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from any cause and was censored at the time of last follow-up. Disease-free survival (DFS) was

defined as time to relapse of primary malignancy, or death from any cause, and was also cen-

sored at the time of last follow-up. Relapse incidence (RI) was defined as occurrence of relapse

of hematologic malignancy at any given time point. Treatment-related mortality (TRM) was

defined as mortality in complete disease remission.

HLA-Typing in patients and donors

Donor-recipient pairs from unrelated donor searches completed before May 2005 were low

resolution typed for HLA-A and -B, and high resolution typed for HLA-DRB1 and -DQB1.

Stored DNA material of these individuals was retrospectively high resolution typed for HLA-

A, -B, and -C. For unrelated donor searches which were initiated after 05/2005 5-loci high res-

olution HLA-typing was carried out upfront.

High resolution HLA-typing was performed by sequence based typing (SBT) using a CE-

certified in-house Kit for HLA-class I (H-Seq-ABC, DRK-BSD Baden- Württemberg–Hessen

gGmbH, Frankfurt am Main, Germany) and by in-house SBT (H-Seq-DR, DRK-BSD Baden-

Württemberg–Hessen gGmbH, Frankfurt am Main, Germany and H-Seq-DQB, DRK-BSD

Baden- Württemberg–Hessen gGmbH, Frankfurt am Main, Germany) or Luminex1 (Life

Technologies, Carlsbad, CA, USA) PCR-sequence specific oligonucleotide probe (PCR-SSO)

method for HLA-class II. Exons 2 and 3 were sequenced for HLA-class I typing, and exon 2

was analysed for HLA-class II testing. Additional typing for relevant non-expressed alleles was

performed according to the National Marrow Donor Program confirmatory typing require-

ments[41].

KIR-Typing in patients and donors

KIR-typing was performed using the commercially available “KIR Genotyping SSP Kit” from

Thermo Fisher Scientific (Waltham, MA, USA). The Kit uses sequence specific primer PCR to

assign presence or absence, respectively, of a given KIR gene. The method allows the identifica-

tion of the following KIR-genes: KIR2DL1/2/3/4/5A/5B, KIR2DS1/2/3/4/5, KIR3DL1/2/3,

KIR3DS1, KIR2DP1, and KIR3DP1.

Table 1. General patient characteristics.

n % n % n %

Age Disease stage Patient and donor sex combination

18–40 359 24.8% Early 556 38.5% Donor female, patient male 162 11.2%

41–60 1071 74.1% Intermediate 518 35.8% Others 1284 88.8%

61–76 16 1.1% Advanced 372 25.7%

HLA-compatibility Graft source Conditioning

10/10 1022 70.7% Bone Marrow 91 6.3% Myeloablative 870 39.8%

9/10 424 29.3% Peripheral Blood stem cells 1355 93.7% Reduced intensity 576 60.2%

Year of transplantation Diagnosis myeloid Diagnosis lymphoblastic

2000–2005 377 26.1% AML 447 30.9% ALL 189 13.1%

2006–2009 1069 73.9% CML 65 4.5% CLL 82 5.7%

MDS 271 18.7% MM 131 9.1%

NHL 176 12.2%

Diagnosis other

AL 85 5.9%

doi:10.1371/journal.pone.0169512.t001

Activating KIRs and Unrelated HSCT Outcome

PLOS ONE | DOI:10.1371/journal.pone.0169512 January 20, 2017 4 / 39



Assessment of missing KIR ligand status

KIR ligand status of patients was obtained from high resolution HLA-typing. HLA-C mole-

cules were grouped according to the presence of epitopes recognized by KIRs: HLA-C antigens

with an asparagine residue at amino acid sequence position 80 possess the C1 epitope, which

acts as ligand for the inhibitory KIR2DL2 and KIR2DL3 as well as for the activating KIR2DS2.

Accordingly, HLA-C antigens with a lysine residue at this position possess the C2 epitope,

which acts as ligand for the inhibitory KIR2DL1 as well as for the activating KIR2DS1.

The absence of C1 or C2 in patients who were transplanted with a KIR2DL2/3 or KIR2DL1

positive donor, respectively, was considered as “missing ligand”. Control patient groups car-

ried at least one ligand for any donor KIR2DL1 or KIR2DL2/3, respectively.

Statistical analysis

All statistical analyses were performed using the open source program for statistical computing

“R”, version 3.0.2. Cumulative estimates of overall survival (OS) and disease free survival (DFS)

were obtained using Kaplan-Meier analysis. Extended Cox regression models allowing for time-

dependent covariates were used to conduct multivariate analyses of OS and DFS. Univariate

analyses of relapse incidence (RI) and treatment related mortality (TRM) were performed using

competing risk analysis. Competing risk regression models for stratified data were used for mul-

tivariate analysis of RI and TRM. The categorical variable diagnosis showed different baselines

of hazard for the respective patient sub-groups. Hence, for both multivariate models stratifica-

tion for diagnosis was accomplished rather than integrating diagnosis as a covariate[42;43].

Centre effects were adjusted using a gamma frailty term (fitted with the R-package “survival”)

[44;45]. A stepwise backward exclusion procedure was used for model selection, where all vari-

ables have been included in the first model and then successively reduced (at each step the least

significant) until the loss of information became significant (analysis of missing ligand model

p�0.05; KIR analyses p�0.01)[43]. In order to address the problem of multiple testing and

Table 2. Distribution of activating KIR2DS1/2/3/5 and KIR3DS1 among donors in combination with patient C1-ligand status in the study cohort.

Myeloid malignancy Lymphoid malignancy

Donor Patient C1-positive Patient C1-negative Patient C1-positive Patient C1-negative

n = 666 (85.1%) n = 117 (14.9%) n = 501 (86.7%) n = 77 (13.3%)

KIR2DS1 positive 258 (38.7%) 45 (38.5%) 200 (39.9%) 28 (36.4%)

KIR2DS1 negative 408 (61.3%) 72 (61.5%) 301 (60.1%) 49 (63.6%)

KIR2DS2 positive 314 (47.1%) 63 (53.8%) 246 (49.1%) 35 (45.4%)

KIR2DS2 negative 352 (52.9%) 54 (45.2%) 255 (50.9%) 42 (54.5%)

KIR2DS3 positive 161 (24.2%) 41 (35.0%) 130 (25.9%) 19 (24.7%)

KIR2DS3 negative 505 (75.8%) 76 (65.0%) 371 (74.1%) 58 (75.3%)

KIR2DS5 positive 202 (30.3%) 34 (29.1%) 152 (30.3%) 21 (27.3%)

KIR2DS5 negative 464 (69.7%) 83 (70.9%) 349 (69.7%) 56 (72.7%)

KIR3DS1 positive 229 (34.4%) 45 (38.5%) 186 (37.1%) 30 (39.0%)

KIR3DS1 negative 437 (65.6%) 72 (61.5%) 315 (62.9%) 47 (61.0%)

doi:10.1371/journal.pone.0169512.t002

Table 3. Distribution of KIR2DL1, KIR2DL2 and KIR2DL3 as well as C1/C2 genotype in the study cohort.

KIR2DL1 KIR2DL2 KIR2DL3 KIR2DL2/3 Both ligands present Missing C2 ligand Missing C1 ligand

Patients 1393 762 1302 618 663 583 200

(96.3%) (52.7%) (90.0%) (42.7%) (45.9%) (40.3%) (13.8%)

Donors 1388 720 1307 581 673 578 195

(96.0%) (49.8%) (90.4%) (40.2%) (46.5%) (40.0%) (13.5%)

doi:10.1371/journal.pone.0169512.t003
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potentially associated type 1 errors we set the significance level for our KIR analyses to 0.01.

Covariates were assessed according to previously published recommendations of the EBMT

study group[42;43;46], including patient age, disease stage, graft manipulation, conditioning regi-

men, graft source, donor source (national vs. international), year of transplantation, time between

diagnosis and transplantation, and donor-recipient gender combination. For the clinical

Fig 1. Univariate OS analysis in C1-negative patients (missing C1 ligand) vs. C1-positive patients who were transplanted with KIR2DL2 or

KIR2DL3 positive donors. Dashed orange line: C1-negative patients (n = 200). Solid black line: C1-positive patients (n = 1239). p = 0.0014.

doi:10.1371/journal.pone.0169512.g001

Activating KIRs and Unrelated HSCT Outcome
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covariates analysed, the data was complete. All models were checked for interactions and propor-

tional hazards assumption. No significant interactions between covariates were found and viola-

tions of proportional hazards assumption were adjusted by using time dependent covariates.

Fig 2. Univariate DFS analysis in C1-negative patients (missing C1 ligand) vs. C1-positive patients who were transplanted with KIR2DL2 or

KIR2DL3 positive donors. Dashed orange line: C1-negative patients (n = 200). Solid black line: C1-positive patients (n = 1239). p = 0.006.

doi:10.1371/journal.pone.0169512.g002
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Results

Patient characteristics

General patient characteristics are shown in Table 1. The cohort included 1446 transplant

pairs. Median patient age was 52 years. Most patients were in early (38.5%) and intermediate

(35.8%) disease state. Stem cell source was peripheral blood stem cells in 93.7% cases. Almost

two thirds (60.2%) of the patients received myeloablative conditioning. An unfavourable

donor-patient sex mismatch (female donor for a male patient) was found in 11.2% of trans-

plant pairs. Most patients received a graft from a 10/10 matched HLA compatible donor

(70.7%), whereas 29.3% were transplanted with a 9/10 matched donor. Median post-transplan-

tation follow-up time was 40 months and maximum follow-up time was 9.5 years.

Table 2 lists the distribution of activating KIR2DS1/2/3/5 and KIR3DS1 among donors sub-

ject to subgroups of patients with myeloid or lymphoid malignancies. Between 54 and 60% of

donors were positive for KIR2DS1. KIR2DS2 was even more prevalent with up to 75% being

carriers. KIR2DS3 and KIR2DS5 were found in 40–50% of donors and KIR3DS1 was present

in more than 50% of donors.

C1-negative patients show significantly inferior HSCT outcome

Distribution of KIR2DL1/2/3 and HLA-C-ligands among patients and donors is shown in

Table 3. All individuals in the cohort were either positive for KIR2DL2 or KIR2DL3, or both

(approximately 40%). The corresponding C1 ligand for these KIRs was carried in 86% of the

individuals. Of these, 40% were C1 homozygous. KIR2DL1 was detected in 96% of patients

and donors. The C2 ligand was detected in 60% of the patients. Homozygosity for this ligand

was relatively rare with a prevalence of 13.8%.

Patients who did not possess the C1 ligand (i.e. C2 homozygous) showed significantly infe-

rior OS and DFS after 1, 3 and 5 years post transplantation (Fig 1 and Fig 2) when compared

to the C1 positive (C1 homozygous or C1C2 heterozygous) control group (OS: 60.7% vs.

49.7%; 47.0% vs. 36.0%; 41.6% vs. 29.2%, p = 0.0014. DFS: 51.1% vs. 40.0%; 37.6% vs. 27.1%;

30.3% vs. 26.6%, p = 0.006; Table 4). C2 Homozygosity also was associated with increased RI

and TRM rates as shown in Fig 3 and Fig 4. Multivariate analysis confirmed these results, since

OS (HR = 1.41, CI = 1.14–1.74, p = 0.0012), DFS (HR = 1.27, CI = 1.05–1.53, p = 0.015), RI

(HR = 1.33, CI = 1.01–1.75, p = 0.04) and TRM (HR = 1.41, CI = 1.01–1.96, p = 0.04) all were

negatively affected when the patients did not possess the C1 ligand (Table 4).

A significant impact of the missing ligand model described in previous studies was solely

found for myeloid malignancies. The four endpoints were therefore re-analysed in subgroups

of patients with myeloid and lymphoblastic diseases, respectively.

The protective effect of C1 could be observed only in the myeloid group (Table 5), where

absence of C1 was associated with reduced OS (myeloid: HR = 1.51, CI = 1.15–1.99, p = 0.003;

lymphoblastic: HR = 1.26, CI = 0.91–1.75, p = 0.16), reduced DFS (myeloid: HR = 1.31, CI =

Table 4. Multivariate analysis of OS, DFS, RI, and TRM in C1-negative patients vs. patients with at

least one C1 ligand.

Endpoint Cases HR 95% CI p

OS 200 1.41 1.14–1.74 0.0012

DFS 200 1.27 1.05–1.53 0.015

RI 200 1.33 1.01–1.75 0.04

TRM 200 1.41 1.01–1.96 0.04

doi:10.1371/journal.pone.0169512.t004

Activating KIRs and Unrelated HSCT Outcome
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1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21), and increased RI (mye-

loid: HR = 1.31, CI = 1.01–1.70, p = 0.04; lymphoblastic: HR = 1.21, CI = 0.90–1.61, p = 0.21).

There were no differences observed for TRM between the myeloid and lymphoblastic sub-

groups (myeloid: HR = 1.34, CI = 0.85–2.11, p = 0.20; lymphoblastic: HR = 1.27, CI = 0.75–

2.16, p = 0.38).

Fig 3. Univariate RI analysis in C1-negative patients (missing C1 ligand) vs. C1-positive patients who were transplanted with KIR2DL2 or

KIR2DL3 positive donors. Dashed orange line: C1-negative patients (n = 200). Solid black line: C1-positive patients (n = 1239). p = 0.04.

doi:10.1371/journal.pone.0169512.g003
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C1-negative patients with myeloid malignancies were thus identified as being at risk and

therefore this patient group is referred as such in subsequent analyses.

Fig 4. Univariate TRM analysis in C1-negative patients (missing C1 ligand) vs. C1-positive patients who were transplanted with KIR2DL2

or KIR2DL3 positive donors. Dashed orange line: C1-negative patients (n = 200). Solid black line: C1-positive patients (n = 1239). p = 0.06.

doi:10.1371/journal.pone.0169512.g004
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Missing C2-ligand has no effect on HSCT outcome

Missing C2-ligand does not affect HSCT outcome as shown by Kaplan-Meier analysis (Figs 5–8)

and multivariate analysis (OS: HR = 0.91, CI = 0.77–1.03, p = 0.22; DFS: HR = 0.94, CI = 0.81–

1.09, p = 0.41; RI: HR = 0.97, CI = 0.79–1.19, p = 0.74; TRM: HR = 0.90, CI = 0.69–1.16, p = 0.42).

Transplantation with KIR2DS2 positive donors significantly increases

OS and DFS in the C1-negative risk group

Since C1-deficiency was shown to negatively affect HSCT outcome in patients with myeloid,

but not lymphoblastic, malignancies, following analyses were conducted in the myeloid patient

group, only.

As KIR2DS4 is present in almost all individuals and is expressed on both, A- and B-Haplo-

types, this KIR gene was not taken into consideration for any analyses in our study. Addition-

ally, OS and DFS analyses were conducted in subgroups of 10/10 and 9/10 matched transplants.

OS and DFS were significantly improved when the donor was positive for KIR2DS2 and the

transplant pair was mismatched at a single HLA-class I gene: The OS rates were twice as high as

in the 9/10 matched patient group with a KIR2DS2 negative donor (10/10: 49.5% vs. 44.7%;

38.5% vs. 34.1%; 28.9% vs. 25.6%; 9/10: 57.3% vs. 23.5%; 40.9% vs. 17.6%; Fig 9 and Fig 10). Simi-

larly, donor KIR2DS2 positivity resulted in higher DFS rates in the 9/10 matched patient group

(10/10: 40.6% vs. 37.9%; 29.5% vs. 28.4%; 9/10: 51.6% vs. 21.1%; 24.6% vs. 15.8%; Fig 11 and Fig

12). Multivariate analysis confirmed these results (OS: 10/10: HR = 1.02, CI = 0.51–2.07, p =

0.95; 9/10: HR = 0.24, CI = 0.08–0.67, p = 0.007; DFS: 10/10: HR = 1.23, CI = 0.72–2.07, p = 0.44;

9/10: HR = 0.26, CI = 0.11–0.60, p = 0.002; Table 6 and 6B). Reduced intensity conditioning regi-

men was a significant predictor within our analysis (S1 Table) and it would have been interesting

to investigate whether the influence of KIR2DS2 could be observed in both, reduced intensity

and myeloablative conditioning, respectively. As individual disease stages (early, intermediate,

and advanced) are important predictors for HSCT outcome as well, it would have also been

interesting to investigate the effect of donor KIR2DS2 positivity in according to disease stage.

Unfortunately the number of cases in our study did not allow these analyses.

Presence of other activating KIR KIR2DS1/3/5 or KIR3DS1 in the donor did not have any

effect on OS or DFS (Tables 6 and 7).

Transplantation with KIR2DS1 positive donors is associated with a

significantly decreased RI in the C1-negative risk patient group

For RI and TRM analyses, case numbers were too small to conduct sub-analysis in 10/10 and

9/10 matched transplant pairs. Therefore the subsequent analyses of the impact of KIR2DS1/2/

Table 5. Multivariate analysis of OS, DFS, RI, and TRM in C1-negative patients with myeloid or lym-

phoid diseases vs. control group patients with at least one C1 ligand.

Endpoint Cases HR 95% CI p

OS myeloid 117 1.51 1.15–1.99 0.003

OS lymphoid 83 1.26 0.91–1.75 0.16

DFS myeloid 117 1.31 1.01–1.70 0.04

DFS lymphoid 83 1.21 0.90–1.61 0.21

RI myeloid 117 1.31 1.01–1.70 0.04

RI lymphoid 83 1.21 0.90–1.61 0.21

TRM myeloid 117 1.34 0.85–2.11 0.20

TRM lymphoid 83 1.27 0.75–2.16 0.38

doi:10.1371/journal.pone.0169512.t005
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3/5 or KIR3DS1 positive grafts on RI and TRM within the risk patient group were conducted

disregarding HLA matching degree (univariate analysis) or with stratification for HLA match-

ing (multivariate analysis).

Transplantation with KIR2DS1 positive donors significantly reduced RI in C1-negative

patients (HR = 0.30, CI = 0.13–0.69, p = 0.005) (Fig 13, Table 8). Transplantation with a

Fig 5. Univariate OS analysis in C2-negative (missing C2 ligand) vs. C2-positive patients who were transplanted with KIR2DL1-positive

donors. Dashed orange line: C2-negative patients (n = 823). Solid black line: C2-positive patients (n = 558). p = 0.08.

doi:10.1371/journal.pone.0169512.g005
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KIR2DS2-positive (HR = 1.87, CI = 0.86–4.08, p = 0.12), KIR2DS3-positive (HR = 1.60,

CI = 0.83–3.10, p = 0.16), KIR2DS5-positive (HR = 0.37, CI = 0.15–0.92, p = 0.03), or KIR3D-

S1-positive (HR = 0.51, CI = 0.24–1.10, p = 0.09) donor had no significant effect on RI (Figs

14–16, Table 8).

Fig 6. Univariate DFS analysis in C2-negative (missing C2 ligand) vs. C2-positive patients who were transplanted with KIR2DL1-positive

donors. Dashed orange line: C2-negative patients (n = 823). Solid black line: C2-positive patients (n = 558). p = 0.11.

doi:10.1371/journal.pone.0169512.g006
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Transplantation with KIR2DS1 positive donors is associated with a

significantly increased TRM in the C1-negative risk patient group

The results of the multivariate TRM analyses are summarised in Table 9. In the presence of a

single HLA class I mismatch, TRM was increased in C1 negative patients who were trans-

planted with a KIR2DS1 (HR = 2.61, CI = 1.26–5.41, p = 0.001; Fig 17) positive donor.

Fig 7. Univariate RI analysis in C2-negative (missing C2 ligand) vs. C2-positive patients who were transplanted with KIR2DL1-positive

donors. Dashed orange line: C2-negative patients (n = 823). Solid black line: C2-positive patients (n = 558). p = 0.47.

doi:10.1371/journal.pone.0169512.g007
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Transplantation with a KIR2DS5 positive donor had no effect on TRM (HR = 0.81, CI = 0.36–

1.86, p = 0.63, Fig 18) and a potential positive effect of a KIR2DS2 positive graft (HR = 0.31,

CI = 0.11–0.86, p = 0.03, Fig 19) as well as the effects observed on TRM by selecting a KIR2DS5

(HR = 3.33, CI = 1.20–9.29, p = 0.02), or KIR3DS1 (HR = 2.18, CI = 0.99–4.78, p = 0.05, Fig 20)

positive donor, respectively, did not reach the level of statistical significance (0.01).

Fig 8. Univariate TRM analysis in C2-negative (missing C2 ligand) vs. C2-positive patients who were transplanted with KIR2DL1-positive

donors. Dashed orange line: C2-negative patients (n = 823). Solid black line: C2-positive patients (n = 558). p = 0.30.

doi:10.1371/journal.pone.0169512.g008
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The KIR Better/Best model in C1-negative patients

The KIR locus is divided into a centromeric and a telomeric region, each bearing variable KIR

gene content motifs designated as cen-A, cen-B, tel-A, and tel-B. The B-motifs contain one or

Fig 9. Univariate OS analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS2 positive donors vs.

KIR2DS2 negative donors. Solid black line: donor KIR2DS2-negative. Dashed orange line: donor KIR2DS2-positive. 10/10 matched transplant pairs,

donor KIR2DS2-negative (n = 32) vs. donor KIR2DS2-positive (n = 45), p = 0.86.

doi:10.1371/journal.pone.0169512.g009
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more of the seven KIR B-haplotype specific genes. It has been shown by Cooley et al, that

C1-positive, but not C1-negative patients benefit from transplantation with donors who carry

two or more B-motifs. We used the B-content calculator that can be found at http://www.ebi.

ac.uk/ipd/kir/donor_b_content.html to assign the donors of our cohort accordingly to one of

Fig 10. Univariate OS analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS2 positive donors vs.

KIR2DS2 negative donors. Solid black line: donor KIR2DS2-negative. Dashed orange line: donor KIR2DS2-positive. 9/10 matched transplant pairs,

donor KIR2DS2-negative (n = 22) vs. donor KIR2DS2-positive (n = 18), p = 0.04.

doi:10.1371/journal.pone.0169512.g010
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three groups based on KIR B-content—neutral (n = 142), better (n = 40) or best (n = 18)—and

analysed the impact of this classification on the transplantation outcome of the C1-negative

patients. As case numbers in the “best” group were low, we decided to combine the “better”

and the “best” donors into the “better/best” group. Multivariate analyses showed that in 9/10

Fig 11. DFS analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS2 positive donors vs. KIR2DS2

negative donors. Solid black line: donor KIR2DS2-negative. Dashed orange line: donor KIR2DS2-positive. 10/10 matched transplant pairs, donor

KIR2DS2-negative (n = 32) vs. donor KIR2DS2-positive (n = 45), p = 0.88.

doi:10.1371/journal.pone.0169512.g011
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matched transplantations, “better/best” donors may improve DFS (HR = 0.39, CI = 0.15–0.99,

p = 0.048), but had no significant effect on OS (HR = 0.69, CI = 0.22–2.21, p = 0.52), RI

(HR = 0.48, CI = 0.07–3.29, p = 0.46), or TRM (HR = 0.76, CI = 0.23–2.49, p = 0.65). In 10/10

matched transplant pairs, however, the “better/best” KIR donor status had no effect on

Fig 12. DFS analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS2 positive donors vs. KIR2DS2

negative donors. Solid black line: donor KIR2DS2-negative. Dashed orange line: donor KIR2DS2-positive. 9/10 matched transplant pairs, donor

KIR2DS2-negative (n = 22) vs. donor KIR2DS2-positive (n = 18), p = 0.05.

doi:10.1371/journal.pone.0169512.g012
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Table 6. Multivariate analysis of OS in C1-negative patients transplanted with a KIR2DS1/2/3/5 or

KIR3DS1 positive donor vs. C1-negative patients transplanted with a KIR2DS1/2/3/5 or KIR3DS1 nega-

tive donor.

Cases HR 95% CI p

Donor KIR2DS1 negative 10/10 47 1 - -

Donor KIR2DS1 positive 10/10 30 0.75 0.37–1.52 0.42

Donor KIR2DS1 negative 9/10 25 1 - -

Donor KIR2DS1 positive 09/10 15 1.88 0.74–4.76 0.18

Donor KIR2DS2 negative 10/10 32 1 - -

Donor KIR2DS2 positive 10/10 45 1.04 0.51–2.12 0.91

Donor KIR2DS2 negative 9/10 22 1 - -

Donor KIR2DS2 positive 9/10 18 0.24 0.08–0.67 0.007

Donor KIR2DS3 negative 10/10 49 1 - -

Donor KIR2DS3 positive 10/10 28 1.38 0.68–2.79 0.37

Donor KIR2DS3 negative 9/10 27 1 - -

Donor KIR2DS3 positive 9/10 13 0.85 0.31–2.37 0.76

Donor KIR2DS5 negative 10/10 56 1 - -

Donor KIR2DS5 positive 10/10 21 0.55 0.25–1.24 0.15

Donor KIR2DS5 negative 9/10 27 1 - -

Donor KIR2DS5 positive 9/10 13 2.19 0.78–6.12 0.13

Donor KIR3DS1 negative 10/10 46 1 - -

Donor KIR3DS1 positive 10/10 31 0.96 0.47–1.97 0.92

Donor KIR3DS1 negative 9/10 26 1 - -

Donor KIR3DS1 positive 9/10 14 1.74 0.66–4.56 0.26

doi:10.1371/journal.pone.0169512.t006

Table 7. Multivariate analysis of DFS in C1-negative patients transplanted with a KIR2DS1/2/3/5 or

KIR3DS1 positive donor vs. C1-negative patients transplanted with a KIR2DS1/2/3/5 or KIR3DS1 nega-

tive donor.

Cases HR 95% CI p

Donor KIR2DS1 negative 10/10 47 1 - -

Donor KIR2DS1 positive 10/10 30 0.65 0.38–1.11 0.11

Donor KIR2DS1 negative 9/10 25 1 - -

Donor KIR2DS1 positive 09/10 15 1.31 0.66–2.59 0.44

Donor KIR2DS2 negative 10/10 32 1 - -

Donor KIR2DS2 positive 10/10 45 1.23 0.72–2.07 0.44

Donor KIR2DS2 negative 9/10 22 1 - -

Donor KIR2DS2 positive 9/10 18 0.26 0.11–0.60 0.002

Donor KIR2DS3 negative 10/10 49 1 - -

Donor KIR2DS3 positive 10/10 28 1.27 0.75–2.13 0.37

Donor KIR2DS3 negative 9/10 27 1 - -

Donor KIR2DS3 positive 9/10 13 0.67 0.33–1.37 0.27

Donor KIR2DS5 negative 10/10 56 1 - -

Donor KIR2DS5 positive 10/10 21 1.14 0.64–2.02 0.66

Donor KIR2DS5 negative 9/10 27 1 - -

Donor KIR2DS5 positive 9/10 13 1.36 0.65–2.88 0.41

Donor KIR3DS1 negative 10/10 46 1 - -

Donor KIR3DS1 positive 10/10 31 0.84 0.49–1.45 0.54

Donor KIR3DS1 negative 9/10 26 1 - -

Donor KIR3DS1 positive 9/10 14 1.24 0.62–2.51 0.54

doi:10.1371/journal.pone.0169512.t007
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transplantation outcome (OS: HR = 0.98, CI = 0.46–2.10, p = 0.95; DFS: HR = 1.13, CI = 0.63–

2.02, p = 0.69; RI: HR = 1.60, CI = 0.72–3.55, p = 0.25; TRM: HR = 0.80, CI = 0.17–3.80,

p = 0.78).

Fig 13. Univariate RI analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS1 positive vs.

KIR2DS1 negative donors. Solid black line: donor KIR2DS1 negative. Dashed orange line: donor KIR2DS1 positive. Donor KIR2DS1-negative

(n = 72) vs. donor KIR2DS1-positive (n = 45), p = 0.008.

doi:10.1371/journal.pone.0169512.g013
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Proposed algorithm for the selection for donors for C1-negative patients

If our findings prove to be correct, and can be confirmed by others, then a possible selection

algorithm of donors for C1-negative patients with myeloid malignancies could be as displayed

in Fig 21.

Discussion

The missing ligand model is based on the premise that underrepresentation of inhibiting signals

will increase donor NK-alloreactivity against remaining malignant cells in the patient. As already

described in the results section, all patients and donors within our cohort where positive for at

least one inhibitory KIR that binds to HLA-C ligands. These results are consistent with the KIR-

frequencies in Caucasoid and German populations provided by allelefrequencies.net[47]. We

subsequently investigated if there was any effect of the missing ligand model on unrelated HSCT

outcome. Deficiency for the C1-ligand had significantly negative effects on all analysed survival

endpoints (OS, DFS, RI, and TRM). In contrast, C2-negative patient status did not affect any

of these survival endpoints. Our findings are supported by studies done by Fischer et al.[48]

(patients with CML), Giebel et al.[49] (various malignancies), and Hsu et al.[50] (AML and

MDS) who also showed a negative impact of patient C1-ligand absence in HSCT outcome. Sub-

sequent analyses confirmed that these findings applied for patients with myeloid malignancies

but not for lymphoproliferative diseases. The C1-negative patient group with myeloid malignan-

cies was therefore identified as being at higher risk than C1-positive patients and those with lym-

phatic diseases. Our findings can be explained by an impaired donor derived NK-cell activity in

C1-ligand negative patients. During immune reconstitution the first KIRs to be expressed are

KIR2DL2 and KIR2DL3, which recognize C1-ligands[48]. The early onset of donor NK-cells in

these patients is consequently non-reactive against C1-ligand negative recipient cells. Further-

more, C1-restricted NK-cells form bigger populations, react faster to interferon γ secretion, and

degranulate CD107a more potently than C2-restricted NK cells[51;52]. Additionally, the devel-

opment of NK-cell activity is dependent on a process called NK-cell licensing which is mediated

by interaction with an inhibitory receptor and its ligand[27;53]. Missing inhibition fails NK-cell

licensing and therefore the NK-cells remain hypo-responsive. Interestingly, non-licensed NK-

cells react extremely hyper-responsive against malignant cells in the early post-transplantation

phase[53]. The late occurrence of KIR2DL1 cell surface expression therefore may impair NK-cell

activity in two ways: by the failure to take advantage of the hyper-responsive early phase, and by

the prolonged hypo-responsiveness thereafter. A further difference between C1-KIR2DL2/3 and

Table 8. Multivariate analysis of RI in C1-negative patients transplanted with a KIR2DS1/2/3/5 or

KIR3DS1 positive donor vs. C1-negative patients transplanted with a KIR2DS1/2/3/5/or KIR3DS1 nega-

tive donor.

Cases HR 95% CI p

Donor KIR2DS1 negative 72 1 - -

Donor KIR2DS1 positive 45 0.30 0.13–0.69 0.005

Donor KIR2DS2 negative 54 1 - -

Donor KIR2DS2 positive 63 1.87 0.86–4.08 0.12

Donor KIR2DS3 negative 76 1 - -

Donor KIR2DS3 positive 41 1.60 0.83–3.10 0.16

Donor KIR2DS5 negative 83 1 - -

Donor KIR2DS5 positive 34 0.37 0.15–0.92 0.03

Donor KIR3DS1 negative 72 1 - -

Donor KIR3DS1 positive 45 0.51 0.24–1.40 0.09

doi:10.1371/journal.pone.0169512.t008
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C2-KIR2DL1 interactions lies within the binding affinity of the receptors to their ligands. Herein,

C1-KIR2DL 2/3 interactions are considerably weaker than those between C2 and KIR2DL1

[18;51;54;55]. A weak binding affinity may promote overwriting of inhibitory by activating signals

and therefore make the NK-cell more potent in killing of malignant cells[18]. The dependence of

the observed effect from disease group, however, may be explained by sophisticated defence

Fig 14. Univariate RI analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS2 positive vs.

KIR2DS2 negative donors. Solid black line: donor KIR2DS2 negative. Dashed orange line: donor KIR2DS2 positive. Donor KIR2DS2-negative

(n = 54) vs. donor KIR2DS2-positive (n = 63), p = 0.33.

doi:10.1371/journal.pone.0169512.g014
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mechanisms of lymphatic blasts against NK-cell activity. CLL-samples have been shown to pro-

duce high amounts of tolerogenic HLA-G1 which promotes the acquisition of inhibitory NK cell

receptors[56]. Furthermore, CLL and ALL patients show a selective down-regulation of non-Bw4

HLA-molecules (HLA-A and -B molecules with the Bw4 motif are ligands for inhibitory KIR)

[6]–a mechanism which impairs both, NK and T-cell activity. The already impaired immune

Fig 15. Univariate RI analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS5 positive vs.

KIR2DS5 negative donors. Solid black line: donor KIR2DS5 negative. Dashed orange line: donor 5 positive. Donor KIR2DS5-negative (n = 83) vs.

donor KIR2D5-positive (n = 34), p = 0.05.

doi:10.1371/journal.pone.0169512.g015
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response against malignant cells therefore seems not to be further influenced by the additional

impairment caused by the absence of the C1-ligand.

Transplantation with B-haplotype positive donors has been shown to have beneficial effects

on HSCT[28;29]. Since gene content in B-haplotypes is highly variable and the main difference

to A-haplotypes is the presence of other activating KIRs than KIR2DS4, we focused our analysis

Fig 16. Univariate RI analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR3DS1 positive vs.

KIR3DS1 negative donors. Solid black line: donor KIR3DS1 negative. Dashed orange line: donor KIR3DS1 positive. Donor KIR3DS1-negative

(n = 72) vs. donor KIR3DS1-positive (n = 45), p = 0.06.

doi:10.1371/journal.pone.0169512.g016
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on the effects of the remaining activating KIRs on transplantation outcome in the identified risk

group. Overall survival and disease free survival were greatly improved upon transplantation

with a KIR2DS2-positive donor in the single HLA-class I mismatched setting. Furthermore,

again in the presence of a single HLA-class I mismatch, RI was significantly reduced in risk

group patients who had received a graft from a KIR2DS1 -positive donor when compared to

risk group patients who were transplanted with KIR2DS1-negative donor cells. However, trans-

plantation with a donor who carried KIR2DS1, resulted in a higher TRM, respectively. These

results are surprising, if one considers that activated NK cells have been shown to mediate graft-

versus-leukemia effects (i.e. lower relapse rates) in conjunction with a suppression of graft-ver-

sus-host disease (a major cause for higher TRM)[8;9]. Therefore, we expected lower relapse

rates without an increase in TRM rates. Given that all patients in our study cohort received T-

cell repleted grafts, a T-cell mediated effect may explain these controversial findings. Indeed, it

has been shown that activated NK cells are able to directly communicate with CD4 positive T-

cells via OX40—OX40 ligand interactions[57] and T-cells which have been activated by OX40

ligand binding have been detected in peripheral inflammatory sites of GvHD[58].

To our knowledge, we are the first to describe a beneficial effect of KIR2DS2 positive

donors in HSCT, whereas a beneficial effect of transplantation with KIR2DS1-positive donors

has been already described by several study groups[36;37;59]. However, in these studies the

impact of HLA-matching grade in this context had not been taken into account. Taking

advantage of a large multicentre study cohort of 1446 transplant pairs we were able to identify

the 9/10 HLA-class I mismatched transplants as the decisive patient subgroup. We assume

that, since activating signalling by KIR2DS1-C2 interaction is dominated by inhibiting

KIR2DL1-C2[18;36], the effect of KIR2DS1-expressing donor NK-cells may be neutralized in

10/10 matched transplantations. In 9/10 matched transplant pairs, however, this domination

could be shifted towards NK-cell activation by the stimulation of additional activating NK-

receptors besides KIR, which enables KIR2DS1 (and maybe KIR2DS5) positive NK-cells to

unfold their anti-leukemic reactivity.

There is some evidence for the potential of KIR2DS2-expressing NK-cells to control inflam-

matory processes[19], which would explain the positive influence of these cells on overall sur-

vival and disease free survival, but not on relapse incidence. Admittedly, the positive impact of

KIR2DS2 in a patient group, which is negative for this receptors ligand seems to be hard to

explain. However, the interaction potential of this receptor to ligands of the C1-group is yet

not fully proven. Binding between KIR2DS2 and the C1-molecule HLA-C�16:01 but not with

Table 9. Multivariate analysis of TRM in C1-negative patients transplanted with a KIR2DS1/2/3/5 or

KIR3DS1 positive donor vs. C1-negative patients transplanted with a KIR2DS1/2/3/5/or KIR3DS1 nega-

tive donor.

Cases HR 95% CI p

Donor KIR2DS1 negative 72 1 - -

Donor KIR2DS1 positive 45 2.61 1.26–5.41 0.001

Donor KIR2DS2 negative 54 1 - -

Donor KIR2DS2 positive 63 0.31 0.11–0.86 0.03

Donor KIR2DS3 negative 76 1 - -

Donor KIR2DS3 positive 41 0.81 0.36–1.86 0.63

Donor KIR2DS5 negative 83 1 - -

Donor KIR2DS5 positive 34 3.33 1.20–9.29 0.02

Donor KIR3DS1 negative 72 1 - -

Donor KIR3DS1 positive 45 2.18 0.99–4.78 0.05

doi:10.1371/journal.pone.0169512.t009
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further C1-ligands has been shown to be significant[19]. Additionally, there is evidence of pep-

tide-dependant binding capacities between KIR2DS2 and genes of the HLA-A�11 group[60].

There may be additional ligands for this receptor which enable its activation, even in C1-nega-

tive patients.

Fig 17. Univariate TRM analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS1 positive vs.

KIR2DS1 negative donors. Solid black line: donor KIR2DS1 negative. Dashed orange line: donor KIR2DS1 positive. Donor KIR2DS1-negative

(n = 72) vs. donor KIR2DS1-positive (n = 45), p = 0.06.

doi:10.1371/journal.pone.0169512.g017
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Cooley et al. investigated the effect on donor KIR B-haplotype status on transplantation

outcome in unrelated matched HSCT in AML patients with respect to the centromeric and

telomeric A- and B-haplotype motifs on the KIR locus[30]. According to their B-motif con-

tent, donors were grouped into “better/best” and “neutral”, wherein the patients profited from

transplantation with “better/best” donors. However, they could only show a significant effect

Fig 18. Univariate TRM analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS5 positive vs.

KIR2DS5 negative donors. Solid black line: donor KIR2DS5 negative. Dashed orange line: donor KIR2DS5 positive. Donor KIR2DS5-negative

(n = 83) vs. donor KIR2D5-positive (n = 34), p = 0.45.

doi:10.1371/journal.pone.0169512.g018
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of this model in C1-positive, but not C1-negative donors. We identified KIR2DS2 as the KIR

with the most important effect on HSCT outcome in C1-negative patients with myeloid malig-

nancies, yet the KIR B-motif model implies that KIR2DS2 may or may not be present in the

“better/best” group, so we hypothesized that this model would blur the effects which we have

found by analysing the activating KIRs separately. Indeed, the “better/best” donors showed no

Fig 19. Univariate TRM analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR2DS2 positive vs.

KIR2DS2 negative donors. Solid black line: donor KIR2DS2 negative. Dashed orange line: donor KIR2DS2 positive. Donor KIR2DS2-negative

(n = 54) vs. donor KIR2DS2-positive (n = 63), p = 0.001.

doi:10.1371/journal.pone.0169512.g019
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beneficial effect on transplantation outcome in the C1-negative patients. Hence, the KIR B-

motif model indeed showed a diminishing impact on C1-negative patients and therefore for

this patient group complete KIR locus typing seems to bear no advantage. Instead, our results

recommend donor typing for KIR2DS2 only (and possibly also for KIR2DS1).

Fig 20. Univariate TRM analysis in C1-negative patients with myeloid malignancies who were transplanted with KIR3DS1 positive vs.

KIR3DS1 negative donors. Solid black line: donor KIR3DS1 negative. Dashed orange line: donor KIR3DS1 positive. Donor KIR3DS1-negative

(n = 72) vs. donor KIR3DS1-positive (n = 45), p = 0.35.

doi:10.1371/journal.pone.0169512.g020
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In summary, our study shows, that activating signals derived from KIR2DS1 and possibly

KIR2DS5 can overcome the impaired NK-cell response in the C1-negative risk patient group,

but also provoke the risk for TRM. These findings provide new insights for the selection of a

suitable donor for the C1 negative risk patient group: for patients who are at high risk for

relapse a KIR2DS1 donor positive may be an adequate choice, whereas a graft which is nega-

tive for this KIR may be an option when a high probability for treatment related complications

is anticipated. The most important finding of our study, however, is the association of donor

KIR2DS2 positivity with a better overall outcome after HSCT in the C1-negative risk patient

group.

C1-negative patients with myeloid malignancies may therefore benefit from the inclusion

of KIR2DS1- and more importantly KIR2DS2-genotyping in the search algorithm. Our find-

ings certainly need to be confirmed by further studies in an independent cohort and also possi-

bly by a prospective study, prior to conduct changes in the search algorithm.

Limitations

Our approach was to identify beneficial donor KIRs in the relatively small group of C1-nega-

tive patients (14% of all patients in our cohort). In this context, small subgroups were inevita-

ble. However, while our study was limited by small sample sizes it nonetheless demonstrated

statistically significant findings with a robust effect size.
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