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Abstract

The digital transformation of business and society presents enormous poten-
tials for companies across all sectors. Fueled by massive advances in data
generation, computing power, and connectivity, modern organizations have
access to gigantic amounts of data. Companies seek to establish data-driven
decision cultures to leverage competitive advantages in terms of efficiency
and effectiveness. While most companies focus on descriptive tools such as
reporting, dashboards, and advanced visualization, only a small fraction
already leverages advanced analytics (i.e., predictive and prescriptive analyt-
ics) to foster data-driven decision-making today. Therefore, this thesis set
out to investigate potential opportunities to leverage prescriptive analytics
in four different independent parts.

As predictive models are an essential prerequisite for prescriptive analyt-
ics, the first two parts of this work focus on predictive analytics. Building on
state-of-the-art machine learning techniques, we showcase the development
of a predictive model in the context of capacity planning and staffing at
an IT consulting company. Subsequently, we focus on predictive analytics
applications in the manufacturing sector. More specifically, we present a
data science toolbox providing guidelines and best practices for modeling,
feature engineering, and model interpretation to manufacturing decision-
makers. We showcase the application of this toolbox on a large data-set
from a German manufacturing company.

Merely using the improved forecasts provided by powerful predictive
models enables decision-makers to generate additional business value in
some situations. However, many complex tasks require elaborate opera-
tional planning procedures. Here, transforming additional information into
valuable actions requires new planning algorithms. Therefore, the latter
two parts of this thesis focus on prescriptive analytics. To this end, we
analyze how prescriptive analytics can be utilized to determine policies for
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Abstract

an optimal searcher path problem based on predictive models. While rapid
advances in artificial intelligence research boost the predictive power of
machine learning models, a model uncertainty remains in most settings. The
last part of this work proposes a prescriptive approach that accounts for the
fact that predictions are imperfect and that the arising uncertainty needs
to be considered. More specifically, it presents a data-driven approach to
sales-force scheduling. Based on a large data set, a model to predictive the
benefit of additional sales effort is trained. Subsequently, the predictions,
as well as the prediction quality, are embedded into the underlying team
orienteering problem to determine optimized schedules.
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Kurzzusammenfassung

Die digitale Transformation der Gesellschaft birgt enorme Potenziale für
Unternehmen aus allen Sektoren. Diese verfügen aufgrund neuer Daten-
quellen, wachsender Rechenleistung und verbesserter Konnektivität über
rasant steigende Datenmengen. Um im digitalen Wandel zu bestehen und
Wettbewerbsvorteile in Bezug auf Effizienz und Effektivität heben zu können
müssen Unternehmen die verfügbaren Daten nutzen und datengetriebene
Entscheidungsprozesse etablieren. Dennoch verwendet die Mehrheit der
Firmen lediglich Tools aus dem Bereich „descriptive analytics“ und nur ein
kleiner Teil der Unternehmen macht bereits heute von den Möglichkeiten
der „predictive analytics“ und „prescriptive analytics“ Gebrauch. Ziel dieser
Dissertation, die aus vier inhaltlich abgeschlossenen Teilen besteht, ist es,
Einsatzmöglichkeiten von „prescriptive analytics“ zu identifizieren.

Da prädiktive Modelle eine wesentliche Voraussetzung für „prescriptive
analytics“ sind, thematisieren die ersten beiden Teile dieser Arbeit Ver-
fahren aus dem Bereich „predictive analytics.“ Ausgehend von Verfahren
des maschinellen Lernens wird zunächst die Entwicklung eines prädiktiven
Modells am Beispiel der Kapazitäts- und Personalplanung bei einem IT-
Beratungsunternehmen veranschaulicht. Im Anschluss wird eine Toolbox
für Data Science Anwendungen entwickelt. Diese stellt Entscheidungsträ-
gern Richtlinien und bewährte Verfahren für die Modellierung, das Feature
Engineering und die Modellinterpretation zur Verfügung. Der Einsatz der
Toolbox wird am Beispiel von Daten eines großen deutschen Industrieunter-
nehmens veranschaulicht.

Verbesserten Prognosen, die von leistungsfähigen Vorhersagemodellen
bereitgestellt werden, erlauben es Entscheidungsträgern in einigen Situatio-
nen bessere Entscheidungen zu treffen und auf diese Weise einen Mehrwert
zu generieren. In vielen komplexen Entscheidungssituationen ist die Ab-
leitungen von besseren Politiken aus zur Verfügung stehenden Prognosen
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Kurzzusammenfassung

jedoch oft nicht trivial und erfordert die Entwicklung neuer Planungsalgo-
rithmen. Aus diesem Grund fokussieren sich die letzten beiden Teile dieser
Arbeit auf Verfahren aus dem Bereich „prescriptive analytics“. Hierzu wird
zunächst analysiert, wie die Vorhersagen prädiktiver Modelle in präskriptive
Politiken zur Lösung eines „Optimal Searcher Path Problem“ übersetzt
werden können. Trotz beeindruckender Fortschritte in der Forschung im
Bereich künstlicher Intelligenz sind die Vorhersagen prädiktiver Modelle
auch heute noch mit einer gewissen Unsicherheit behaftet. Der letzte Teil
dieser Arbeit schlägt einen präskriptiven Ansatz vor, der diese Unsicherheit
berücksichtigt. Insbesondere wird ein datengetriebenes Verfahren für die
Einsatzplanung im Außendienst entwickelt. Dieser Ansatz integriert Vorher-
sagen bezüglich der Erfolgswahrscheinlichkeiten und die Modellqualität des
entsprechenden Vorhersagemodells in ein „Team Orienteering Problem.“
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1 Introduction

The digital transformation of business and society presents enormous po-
tentials for companies across all sectors. Fueled by massive advances in
data generation, computing power, and connectivity, modern organizations
have access to gigantic amounts of data. According to a recent study by
Dhawan, Hei, and Laczkowski (2018), this development is just starting
to gain traction. As pointed out by the authors, the industrial sector is
expected to see more disruption within the next five years than in the past
20 years combined. Following the European Commission, leveraging the
available data sources holds the key to unlocking future growth in Europe.
However, EU businesses are currently not taking full advantages of these
possibilities.1

Consequently, there is a rising demand for new analytics tools to foster
data-driven decision-making and increase both efficiency and effectiveness of
business processes (Chen, Chiang, and Storey 2012). This growing need has
led to the emergence of a plethora of new trends and buzzwords, such as big
data analytics (Russom 2011), advanced analytics (Barton and Court 2012),
business analytics (Kohavi, Rothleder, and Simoudis 2002), or data science
(Provost and Fawcett 2013). All of these terms are used to summarize the
efforts to drive decisions based on the extensive use of data. In this thesis,
these terms are used interchangeably as there is still no clear distinction
between them.

In the era of big data, advanced analytics has emerged as an essential
area of study for both practitioners and researchers from various fields
(Davenport 2006). As pointed out by Mortenson, Doherty, and Robinson
(2015), analytics is a cross-disciplinary field at the intersection of technol-
ogy, decision-making, and quantitative methods. As such, analytics offers
tremendous research opportunities for traditional cross-disciplinary fields
1https://ec.europa.eu/growth/industry/policy/digital-transformation_en

1
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1 Introduction

operating at these intersections, such as information systems, operations
research, and artificial intelligence (Figure 1.1).

Computer 
Science

Math & 
Statistics

Decision 
Making

Analytics

Artificial 
Intelligence

Information 
Systems

Operations 
Research

Figure 1.1: Advanced analytics as a cross-disciplinary field. This figure is
inspired by Mortenson, Doherty, and Robinson 2015.

1.1 Operations Management & the Analytics
Stack

Depending on the scope of the analysis, advanced analytics can be further
refined into three categories (Lustig et al. 2010; Evans and Lindner 2012;
Holsapple, Lee-Post, and Pakath 2014). So far, most business analytics
applications used in practice aim at using data to understand the past
and current business performance. To this end, data is summarized into
meaningful charts and reports informing decision-makers. The term de-
scriptive analytics summarizes these techniques. Going further, predictive
analytics analyzes and extracts patterns from historical data. The uncovered
relationships are extrapolated in time to make predictions on future busi-
ness developments. Prescriptive analytics goes even further and provides
guidance by evaluating possible scenarios and identifying optimal decision
policies.

The interconnection between operations management problems and the
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Figure 1.2: Analytics stack

analytics stack is visualized in Figure 1.2. In deterministic planning prob-
lems, descriptive analytics applications can provide real-time information
based on big data and allow planners to make appropriate adjustments to
the parameters of the planning models (Souza 2014).

However, operation managers face uncertainty in many real-world prob-
lems. Traditional planning models require either a point forecast or a known
(or at least estimated) probability distribution of the unknown variables to
solve these stochastic problems. Hence, statistical forecasting has tradition-
ally played an important role in the operations management community
(Stevenson, Hojati, and Cao 2007). Naturally, these applications can benefit
from highly predictive machine learning techniques. Predictive analytics has
proven useful in stochastic planning problems such as customer selection
for direct marketing (Moro, Cortez, and Rita 2014) and customer churn
prediction (Coussement, Lessmann, and Verstraeten 2017).

However, the way to derive optimal policies from forecasts is not straight
forward for many applications. Here, prescriptive analytics has the poten-
tial to build on operations management techniques such as mathematical
optimization and decision rules to determine optimized policies. Prescrip-
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tive analytics has been successfully applied in settings such as repair crew
routing (Tulabandhula and Rudin 2014) and inventory management (Huang
and Van Mieghem 2014). Overall, leveraging business analytics allows
companies to reduce operational costs while maintaining or even increasing
service levels simultaneously.

1.2 Research Questions
According to a recent study by Dresner Advisory Services (2017), the adop-
tion of big data analytics reaches 53% across 4,000 interviewed companies
and is expected to proliferate. However, currently, most companies focus on
descriptive analytics, such as reporting, dashboards, and advanced visualiza-
tion. In contrast, the adoption of predictive analytics is much slower, with
only 23% of companies using it, a figure essentially unchanged from the prior
year. This finding indicates that there is still a lack of research regarding
new applications for predictive analytics. As indicated by a variety of calls
for papers and special issues in leading journals (Giesecke et al. 2018; Hull
et al. 2018; Sanders and Ganeshan 2015), the lack of research regarding
prescriptive analytics is even bigger. This finding motivates the guiding
research question of this thesis:

Guiding Research Question How can information systems combine state-
of-the-art machine learning techniques and operations management
modeling to provide prescriptive analytics models that are robust to
prediction errors?

While trying to shed light on this overreaching research question, I
structure the thesis along with the latter two steps of the analytics stack.
As predictive models are a key component of any prescriptive modeling
activity, the first two parts of this work try to explore and evaluate potential
new applications for predictive analytics based on two different case studies.
Thus, the first subordinate research question I aim to answer is:

RQ1 What are appropriate machine learning setups (performance metrics
and models) for different prediction tasks and how do these setups
perform compared to traditional approaches?

4
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Building on the findings of the predictive analytics case studies, I develop
a data science toolbox for prediction tasks in the manufacturing sector to
bridge the gap between machine learning research and specific practical
needs. To this end, I aggregate the previous findings and highlight key data
preparation and analysis steps combining methods from machine learning
and business information systems to guide the development of predictive
analytics solutions. Consequently, the second subordinate research question
of this thesis is:

RQ2 What are guidelines and best practices for modeling, feature engi-
neering and model interpretation in the context of industrial analytics
applications?

Based on these guidelines, predictive models in the context of industrial
analytics can be designed. Providing additional information to decision-
makers, these models themselves have business value for many companies.
However, mere forecast information cannot be translated into valuable action
in many manufacturing settings. To this end, new policies leveraging the
information provided by the machine learning models have to be determined
by means of prescriptive analytics. Therefore, the third subordinate research
question is:

RQ3 How can prescriptive analytics operationalize predictive models to
provide sensor-based decision support for manual processes?

In contrast to predictive forecasting models, the resulting prescriptive
planning model can suggest optimized policies to a decision-maker based on
raw sensor data. However, even sophisticated machine learning algorithms
do not provide perfect forecasts in real-world applications. Accounting for
the shortcomings of the underlying predictive models can improve the quality
and robustness of prescriptive planning models. By explicitly integrating
the quality of the forecasting model into the planning model, I answer the
fourth subordinate research question:

RQ4 How can prescriptive planning models take the uncertainty of the
underlying forecasting models into account?

5
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1.3 Structure
While trying to explore the overreaching research question, this thesis is
composed of four independent parts that have been published as research
articles2. The first and the second article identify novel use-cases for
predictive analytics and aim to answer the first subordinate research question
(RQ1). Additionally, the second article aggregates the findings of the case
studies and provides guidelines and best practices for predictive analytics in
industrial applications in the form of a toolbox (RQ2). In the third article,
we embed a predictive forecasting model in a mathematical optimization
problem to evaluate a prescriptive analytics system in a manufacturing
environment (RQ3). The last article aims at answering RQ4. To this
end, we describe and evaluate a prescriptive planning model taking the
underlying uncertainty of the forecasting model into account. Figure 1.3
relates the chapters of this thesis to the research questions.

1. Introduction

2. Predictive Analytics for Applications Management Services

3. Data Science Toolbox for Industrial Analytics Applications

4. Sensor-Based Decision-Support for Manual Processes

5. Data-driven Sales Force Scheduling

6. Conclusion and Future Research Opportunities
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Figure 1.3: Chapters and structure of the thesis

More specifically, the first article “Predictive Analytics for Application
Management Services” (Chapter 2) analyzes the potential of predictive
analytics in the context of capacity planning and staffing at an IT service
desk. In this chapter, we collaborate with an IT service management firm to
develop and evaluate an IT service demand forecasting model using machine
learning techniques.
2See Appendix A for an exhaustive list of publications.
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The second article “Towards a Data Science Toolbox for Industrial
Analytics Applications” (Chapter 3) sheds light on predictive analytics
applications in production environments. Specifically, we put forward
guidelines and best practices for modeling, feature engineering, and model
interpretation in this domain. Subsequently, we illustrate the usage of this
toolbox utilizing a real-world manufacturing defect prediction case study.

The problem of deriving decision support for individual workers from
predictive models is addressed in the third article “Big Data on the shop-
floor: Sensor-Based Decision-Support for Manual Processes” (Chapter 4).
To explore the potential of such prescriptive solutions, we illustrate the main
steps and major challenges in developing and instantiating a prescriptive
decision support system in a high-tech composite manufacturing setting.
By leveraging techniques from statistical learning, we are able to identify
the location of leaks at a high degree of confidence. Subsequently, we derive
and evaluate optimized search policies by embedding the leak forecast into
the underlying searcher path problem. However, the derived policy does
not take the quality of the underlying forecasting model into account.

This problem is approached in the fourth article “Data-driven Sales-
Force Scheduling” (Chapter 5). In this article, we present a novel data-driven
approach to sales-force scheduling. On the example of a data set provided
by DAW, a leading German manufacturer of paint and coating solutions,
we introduce a machine learning model predicting the benefit of additional
sales activity. Subsequently, we determine optimized sales force schedules
based on the expected value of the sales effort. Hereby, we explicitly account
for the uncertainty of the prediction model and benchmark the performance
of the novel prescriptive policy against two baseline policies.

Finally, the thesis is summarized, future research opportunities are
outlined, and the work is concluded.

7



2 Predictive Analytics for
Application Management
Services

With digitization efforts across all industries, IT consulting firms have
enjoyed ever-increasing demand for their services. To cope with this demand
surge, long-term hiring decisions, as well as short-term capacity planning
and staffing, are of crucial importance for business viability. Predictive
analytics methods offer enormous potentials to support planning and staffing
of IT service desks to ensure both high capacity utilization and service levels.
However, the current state-of-the-art for these planning activities still relies
on traditional statistical forecasting methods. We collaborated with an IT
service management firm to develop and evaluate an IT service demand
forecasting using machine learning techniques. This approach allows us
to improve planning accuracy by more than 30% compared to standard
approaches.3

2.1 Introduction
Greater business data availability and IT ubiquity have created a grow-
ing need for useful theories and tools for information extraction (Fayyad,
Piatetsky-Shapiro, and Smyth 1996). With constantly increasing computing
power, new possibilities to gain insights from data have arisen (Gualtieri,
Powers, and Brown 2015). Consequently, the buzzword “Big Data” has
attained high attention in almost all areas of business. Companies have
started to see the opportunities for turning data into a commodity of high
3This paper is published in the proceedings of the 26th European Conference on Infor-
mation Systems (Stein, Flath, and Boehm 2018).
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2 Predictive Analytics for Application Management Services

value for strategic and operative decision making and for providing compet-
itive advantage (Waller and Fawcett 2013). Following Aggarwal (2015), the
process of data mining is further gaining importance.

One important application of data mining is predictive analytics, the
forecasting of future events by using past data. Modern, effective, and
convenient tools have accelerated the popularity and use of predictive
analytics throughout various business (Gualtieri, Powers, and Brown 2015).
Time series forecasting constitutes a part of predictive analytics in which
predictions are made for temporal data. Here, all recorded data is connected
to a precise date and time, and the forecasts are predominantly made by
using internal structures of the data such as seasonality and trend (Aggarwal
2015). While for time series forecasting tasks in business, statistical methods
have been applied for many decades, machine learning (ML) models took
root as a contestant for such tasks only in the last decade. Nowadays, ML
methods play a significant role in the analysis of large amounts of data,
as they can learn with low or even without supervision and improve with
the amount of data they are fed (Alpaydin 2010). However, for forecasting
temporal data, the approach of training an ML model is different from
applying it to time-independent data (Bontempi, Taieb, and Le Borgne
2012). In principle, all ML models are able to perform time series prediction
tasks. However, depending on the number of selected lags, the number of
features can get very large, which is why models with faster training times
are deemed beneficial.

In this work, we analyze how predictive analytics can be applied in order
to forecast the future demand for the application management and support
division of an SAP consulting company. Given digitization initiatives across
all major industries, this firm has seen significant growth over the recent
years. In turn, long-term hiring decisions, as well as short-term capacity
planning and staffing, need to be able to keep up with this demand surge. On
the operational level, detailed forecasting is essential for employee capacity
and workload planning. On the strategic level, the business unit recognizes
an opportunity for better gross profit estimation as well as budget planning.
These tasks are of crucial importance for business viability and signify the
importance of business intelligence applications (Popovič, Turk, and Jaklič
2010).
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Along these lines, we set up a data science study addressing two guiding
research questions:

RQ1.1 What is an appropriate machine learning setup (performance metric
and model) to predict IT service management support demand?

RQ1.2 How does the machine learning setup perform on different aggrega-
tion levels and forecasting horizons compared to traditional forecasting
models?

2.2 Related Work and Preliminaries
In the past decades, the importance of IT service management is constantly
growing. Consequently, this field is gaining an increased amount of interest
in the information system community (Iden and Eikebrokk 2013; Imgrund et
al. 2017). Reviewing the relevant literature, a set of often discussed research
questions can be identified. A variety of empirical studies focuses on the
implementation strategies for IT service management and the success factors
of these strategies (Cater-Steel, Tan, and Toleman 2006; Cater-Steel and
McBride 2007; Cater-Steel 2009; Hochstein, Tamm, and Brenner 2005; Iden
and Langeland 2010; Marrone and Kolbe 2011; McBride 2009). Possible
outcomes and benefits of these implementations are analyzed by Disterer
(2012), Hochstein, Tamm, and Brenner (2005), and Marrone and Kolbe
(2011). In contrast, only a few studies related to IT incident management
can be found in Business Intelligence literature. Here, most research focuses
on the labeling of service requests. Maksai, Bogojeska, and Wiesmann
(2014) and Diao, Jamjoom, and Loewenstern (2009) develop classifiers to
reduce the manual labeling effort. Goby et al. (2016) use a combination
of topic modeling and predictive analytics to identify relevant topics and
assign them to help desk tickets automatically.

However, there is a lack of research regarding the application of business
intelligence in order to forecast the number and workload of incoming service
requests. Hence, we widen our search horizon to other related research
streams by following a three-step approach: (1) exploring literature on
related business topics; (2) analyzing literature on time series forecasting
with machine learning and hybrid methods; (3) finding papers utilizing
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gradient boosting and in particular extreme gradient boosting (XGBoost).
Analyzing the literature in detail, we can assign the relevant research papers
to different application areas (Table 2.1).

Table 2.1: Literature grouped by area of application
Area of Application Count Examples

Business 8 call center arrivals, tourism demand,
accounting data

Energy 8 electricity demand, status of water
pumps, wind ramp events

Financial 7 stock & commodity prices, exchange
rates

Science 7 breast cancer gene expression,
sunspots, several competitions

Environment 2 metropolitan air pollution, waste gen-
eration

Engineering 2 compressor failures, fuel consump-
tion

We find that business is one of the predominant sectors, with a total of
eight relevant papers. Here, call center arrival forecasting through statistical
forecasting methods is analyzed four times (Aldor-Noiman, Feigin, and
Mandelbaum 2009; Shen and Huang 2008; Taylor 2008). Foster (1977) show
that time series forecasting is not a new topic by forecasting the quarterly
seasonal accounting data of several firms using ARIMA. Cankurt (2016)
predict future tourist demand employing a random forest model. They show
that ensembling methods outperform single models.

Energy is another popular sector, in particular, electricity demand
forecasting. For this task gradient boosting is applied (Taieb and Hyndman
2014; Kim et al. 2015; Nassif 2016; Mayrink and Hippert 2016) as well as a
statistical approach (Taylor 2010). Also in the energy sector, but for event
classification and not for time-series forecasting, another two approaches
which utilize gradient boosting are found (Arymurthy and Darmatasia 2016;
Gupta et al. 2016).

Looking at financial time series forecasting, Krollner, Vanstone, and
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Finnie (2010) conduct a study on machine learning methods applied in
this area. They find that artificial neural networks are the predominant
technique, particularly for the prediction of stock market movements. The
oldest relevant paper on financial time series forecasting found in the
literature search was published in 1992. Here, an ANN is exploited for the
prediction of a multivariate time series of monthly flour prices (Chakraborty
et al. 1992). Huang, Nakamori, and Wang (2005) apply support vector
machines for stock market prediction. Tay and Cao (2001) and Pai and Lin
(2005) compare the performance of support vector machines and artificial
neural networks in terms of stock price and index predictions. The only
work applying a boosting method in the financial sector is the prediction of
gold price volatility (Pierdzioch, Risse, and Rohloff 2016).

2.3 Research Approach and Case Study
Overview

Consulting firms collect large amounts of data, including customer-related as
well as problem-related information. Our industry partner, an IT consulting
firm specialized in the areas of retail and logistics, aims to precisely forecast
future demand for its support unit. The firm seeks to generate business value
from the available data and the forecasts by improving the staff assignment
decisions in the short-term and the business development estimations in the
long term.

We want to address this prediction task as a data science study fol-
lowing the guidelines for applying big data analytics (Müller et al. 2016).
Correspondingly, we structure our analysis along with the proposed three
phases:

Data collection For the extraction of the required data, we harness sev-
eral internal databases. The resulting raw data set contains all employee
bookings from September 2003 to December 2016, resulting in 358,184
entries and 23 variables. Each entry relates to a working hour booking of an
employee on a specific project. For each booking, the date, time, and dura-
tion along with a name and abbreviation are given. Further, the employee
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and the project plus the associated customer are specified. Additionally, the
data consist of ticket information, distinguishing between support cases and
priorities along with annotations, customer information, and time-based
corrections.

Data analysis We develop a predictive model to forecast future demand
for support requests. Starting with four statistical time series models, we
increase the performance through a hybrid model. To this end, we engineer
new time-based and non-time-based features from the data set at hand.
To leverage these features, we combine the statistical forecasts with an
advanced XGBoost model (Chen and Guestrin 2016).

Result interpretation The system is evaluated in Section 2.6. On the one
hand, the machine learning approach significantly improves the short-term
forecast allowing the company a more efficient employee scheduling. On the
other hand, the long-term forecast can be improved, allowing the company
a more precise estimate of the business development.

2.4 Data Collection
In this section, we describe in detail the data collection process as well as
the resulting data set. The resulting data set contains date-derived as well
as non-date-derived variables describing the booking duration of support
requests over the last 13 years. We harness several internal databases for
the extraction of required data.

2.4.1 Data Extraction and Cleaning

In the problem at hand, support requests can be distinguished into either
tickets or task. A customer initiates tickets while internal employees trigger
tasks. Based on the urgency of a request, each ticket or task is assigned
one out of five status codes.4 Additionally, we can query information on the
billing mode of a request. Here, a distinction between the three types can be

4Statuses by urgency (in descending order): Incident, Service Request, Problem, Request
for Change, Change
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made. For billable requests, the working hours are charged on the invoice of
a specific customer while they are only listed and not charged for reportable
bookings. Internal requests are invoiced internally and can either originate
from customers with included hours or bookings for employee education
and training. Additional customer information can be used to augment the
data set. Each of the 33 customers in the data set is categorized into one
of twelve businesses.5 Each of the businesses is assigned to one of three
sectors, namely manufacturing, services and retail. We include a dummy
business and sector for internal in-house bookings. The resulting raw data
set consists of 358,184 entries and 23 variables describing all employee
bookings from September 2003 to December 2016.

The analysis of data revealed 114,093 missing values in the target
variable booking.duration. These observations can not be imputed and
have to be removed as they resulted from inconsistent database structures.
Subsequently, we identify several non-relevant variables and remove them
based on one of the following reasons: (1) redundancy, (2) inconsistency,
and (3) sparsity.

2.4.2 Exploratory Data Analysis

In order to understand the underlying structure of the problem, we conduct
an exploratory data analysis of the remaining data set (Tukey 1977). To
understand the following analysis, it is important to note that the data for
2003 and 2016 is incomplete since the recordings started in September 2003
and ended in November 2016.

In Figure 2.1, we observe a constant increase in the number of bookings
as well as in the total duration of bookings (i.e., workload). In recent years,
tickets account for roughly 50% of the bookings but only about 30% of
the workload. Hence, we conclude that support cases triggered by internal
employees require significantly more processing time than the tickets invoked
by external customers. Zooming into the business and sector gives further
inside into the data. Most of the workload can be assigned to the four
businesses engineering, food, IT, and OEM. While the former two are in the
5Business to Business (B2B), Business to Consumer (B2C), Automotive, Chemical,
Construction, Defence, Engineering, Food, Pharmaceutical, IT, Logistics and Original
Equipment Manufacturer (OEM)
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Figure 2.1: Number of bookings vs. total booking duration

sector manufacturing and the latter two in the sector services. Especially
in the last two years, we observe an increase in the manufacturing sector
and a decrease in the service sector. We also observe heterogeneity in the
processing behaviors of customers. The number of ticket hours is relatively
low for OEMs and nonexistent for construction clients. Opposed to that,
the logistics and IT sector have a much higher amount of working hours
book on tickets.

In addition to the analysis of the differences between tasks and tickets,
we also analyze the observable differences in the billing modes. Here, the
manufacturing sector has the highest total booking duration. It is formed of
43% billable, 10% reportable, and 47% internal bookings. Services constitute
the second-largest sector. Here, internal bookings account for 73% of the
total workload. Remaining modes are billable at 25% and reportable at 2%.
The dummy sector for in-house bookings constitutes the third largest sector.
By definition, it only reports internal bookings as the support requests can
not be assigned to a client. The least amount of workload is booked in
the retail sector. Here, the majority of requests (61%) is booked internally,
followed by 30% reportable and only 9% billable bookings. Additionally, we
also observe a heterogeneity regarding the billing modes inside the sectors
on a business level. The distribution across the sectors and billing modes is
summarized in Table 2.2.
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Table 2.2: Billing modes across sectors

Sector Billable Reportable Internal Total

Retail 9% 30% 61% 0.8%

In-house 0% 0% 100% 10.3%

Manufacturing 43% 10% 47% 56.2%

Services 25% 2% 73% 32.7%

Going further into detail, we observe a long tail distribution of working
hours on the customer level. While the three biggest customers are respon-
sible for over 50% of the workload, there is a multitude of customers with
very sparse support requests.

Analyzing employee development, we find that the booking hours, as
well as the number of support requests, are increasing over proportional to
the number of workers. Hence, an increase in productivity due to process
improvement can be concluded. Additionally, idle times can be reduced due
to better planning. Therefore, employees can handle not only more requests
but also a higher workload. These findings are visualized in Figure 2.2.

Figure 2.2: Development of employee number and average booking count
and booking duration per employee

Extracting the recurring seasonal patterns from the time series, we
find that the seasonal fluctuation is approximately 500 hours per month.
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Comparing this to the booking duration of 7000 at the end of 2016, the
seasonality component only captures about 7% of the variance.

In order to train predictive models, it is imperative to aggregate the
data on a specific level (Geurts 2002). Since our objective is to support
the decision making on different management levels, forecasts for periods
ranging from one day to one year have to be determined. Hence, we define
three levels of aggregation: daily, weekly, and monthly. We aggregate the
target variable booking.duration for each level by summing up the single
observations.

2.5 Model Setup
Prior to any modeling activities, a suitable evaluation metric has to be
chosen. This metric has to account for the specific properties of the problem
at hand. Following Davis et al. (2007), the metric selection is fundamental
for the success—or failure—of every data science project. Regarding time
series forecasting a variety of different metrics with different strengths and
weaknesses is available. According to a classification broad forward by
Hyndman and Koehler (2006), each measure is either a “scale-dependent
measure,” a “percentage error measure” or a “relative error measure.”

In the forecasting task at hand, the scale of the workload varies over
time. Hence, we chose to select a “scale-dependent measure.” While
the mean absolute percentage error (MAPE) is the most utilized quality
measure, it comes with several weaknesses. According to Tofallis (2015), the
MAPE tends to prefer models underestimating the realized values. Hence,
Armstrong (1978) suggest a symmetric version of MAPE called sMAPE.
Since the original sMAPE has a range of r´8,8s, Hyndman and Koehler
(2006) suggest using absolute values in the denominator, which is the version
used in this paper. The metric is specified as

sMAPE “
200
n

n
ÿ

i“1

|yi ´ ŷi|

|yi| ` |ŷi|

with yi being the actual value, ŷi the prediction and n the number of
fitted points. Since for yi, ŷi “ 0 the function is undefined, the sMAPE
is suggested to be only used for predicting values which are significantly
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higher than zero (Hyndman and Koehler 2006). The range of sMAPE is
r0, 200s. While this metric does not allow for an easy interpretation, it is
well suited to compare the performance of different predictive models.

2.5.1 Modeling Approach

Having established a suitable evaluation metric, a set of appropriate forecast-
ing models has to be selected. To this end, we first select a set of statistical
forecasting methods that later serve as a benchmark for the proposed ma-
chine learning approach. Following Bontempi, Taieb, and Le Borgne (2012),
the literature on time series analysis and forecasting is mostly based on
these methods. Following Hyndman and Athanasopoulos (2014), two simple
approaches can be identified for statistical time series forecasting. The
average or mean method is a simple approach mostly used as a benchmark
for comparing it to more sophisticated models. It is also referred to as
the historical average as the prediction of future outcomes is equal to the
average of the historical outcomes. As another simple benchmark approach,
the naïve method sets all forecasts to the last observed value.

Furthermore, the seasonal naïve approach can be utilized for highly
seasonal data. Here, the forecasts are set to the values of the last value
observed in the same season, which for instance could be the last observed
value for the same month in the previous year. The autoregressive integrated
moving average (ARIMA) is a more sophisticated approach of statistical
time series forecasting. It is often applied in the relevant literature (Ho, Xie,
and Goh 2002; Zhang 2003; Khashei and Bijari 2011). However, ARIMA
models can only be applied to stationary time-series without missing data
Khashei and Bijari (2011). Being able only to capture linear patterns, the
application of these models in real-world problems does not always reveal
good forecasting results Zhang (2003).

To overcome this shortcoming, we suggest applying advanced machine
learning (ML) models. Such techniques are often referred to as black-
box or data-driven models. They represent non-parametric and non-linear
models that learn stochastic dependencies between historical and future
data. While most ML methods can theoretically be applied for time series
prediction tasks, only a small set of algorithms has gained popularity
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in this field. Friedman, Hastie, and Tibshirani (2001) and Hastie (2004)
compare the performance of the five most popular methods (Artificial Neural
Networks, Support Vector Machines, Multivariate Adaptive Regression
Splines, k-Nearest Neighbours and Gradient Tree Boosting) regarding a
set of characteristics (natural handling of data of “mixed” type, handling
of missing values, robustness to outliers in input space, insensitivity to
monotone transformations of inputs, computational scalability (large N),
ability to deal with irrelevant inputs, interpretability, predictive power). For
each of the characteristics, the performance of the models is rated. While
each of the methods shows strengths and weaknesses in their performance,
the gradient tree boosting approach exhibits the best performance overall.
Additionally, the implementation XGBoost introduced by Chen and He
(2015) is known for fast training times and high accuracy in predicting
real-world problems Hu et al. (2017) and Taieb and Hyndman (2014).
For example, on the data science competition platform Kaggle, out of
all winning teams of the overall 29 challenges in 2015, in total 17 used
XGBoost. Another advantage of this model other than the fast training
times is the included automatic variable selection (Taieb and Hyndman
2014). In particular, we decided to utilize XGBoost for the prediction task
at hand for the following key reasons:

• Efficient training process

• High quality of predictions

• Robustness to overfitting

2.5.2 Traditional Forecasting as Benchmark

In order to define a competitive benchmark for the machine learning model,
the four different statistical forecasting methods discussed in Section 2.5.1
are applied to the data set at hand. To this end, we use a rolling horizon
evaluation with several forecasting horizons for all models on all three
aggregation levels. The model quality is assessed for a one-day, three-day
and seven-day ahead forecast for the daily data, a one-week, two-week and
four-week forecast for the weekly data and a one-month, six-month and
twelve-month forecast for the monthly data.
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Table 2.3 summarizes the sMAPE metric for the different models and
aggregation levels. Looking at the overall results, we see the out-performance
of the naïve and the ARIMA methods over the other forecasts. This finding
even holds for all aggregation levels and forecasting horizons. While a big
improvement in forecast accuracy is generated by moving from daily to
weekly aggregation, we see mixed results if the aggregation periods get
longer. In general, we conduct that using a statistical forecasting method
allows us to improve on the simple average method by up to 35% in terms
of the sMAPE.
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2.5.3 Machine Learning and Feature Engineering

So far, our analysis only relied on past realizations of the target variable. To
further increase the quality of the forecast, we now utilize a machine learning
approach by building an XGBoost model. This model can generate valuable
information based on multiple input variables. The process of developing
these features is summarized under the term feature engineering. Following
Domingos (2012), this process is critical to ensure the success of any data
mining project. Going beyond basic raw features requires a significant
portion of business and process understanding as well as creativity and luck.
In a time-series setting, the features can either be time-based or non-time
based. At first, we create the following set of time-based variables which
serve as the basis for the different aggregation levels:

Table 2.4: Time based variables

Feature Description

day, month, year,
weeknumber

Features derived from the date variable.

weekday Weekday of each date as an ordered factor.

isWeekend Due to the observations of differing work-
loads, the distinction between weekends and
weekdays is a promising feature (Mayrink
and Hippert 2016).

holiday We find a strong correlation between the
booking duration and official German hol-
idays. Additionally, bridge days appear to
have an impact on the booking duration.

seasonal, trend Seasonality and trend component of the
daily time series.

For the weekly and monthly scales, the variables above have to be
further aggregated:
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Table 2.5: Weekly and monthly aggregation

Feature Description

holidays.in.week, holi-
days.in.mth

Total number of holidays in a week or
month.

bridgedays.in.week,
bridgedays.in.mth

Total number of bridge days in a week or
month.

weekdays.in.mth,
weekenddays.in.mth

Number of weekends and weekdays in a
month (only for the monthly aggregation).

seasonal, trend Seasonality and trend component of the
weekly or monthly time series.

In addition to the time-based variables, we create an additional set
of explanatory features to increase the predictive power of the model.
Hence, the features summarized in Table 2.6 are calculated for the relevant
aggregation periods.

Table 2.6: Additional variables

Feature Description

isTicket.true,
isTicket.false

Count of bookings that are a ticket or a
task.

total.bookings Total number of bookings for each day.

customer.bookings Total number of bookings booked on cus-
tomers. By implication, bookings on inter-
nal projects and tasks are excluded.

customer.durations Total time booked across customers (w/o
internal bookings).

billing.mode.* Booking duration for each billing mode (*).

sector.* Booking duration for each sector (*).

business.* Booking duration for each business (*).
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Since for the predictions of time series data solely date-derived fea-
tures are known in advance, the forecasting can only be based on the
behaviour of past data (Bontempi, Taieb, and Le Borgne 2012). Hence, all
variables that are not derived from the date, including the target variable
booking.duration., need to be shifted in time for the model to find stochastic
dependencies between past and future data. Said shifting is predominantly
referred to as lagging. In order to find the optimal lags, the autocorrelation
for each aggregation level is analyzed.

Figure 2.3: Autocorrelation of booking duration variable for each aggregation
level

As visualized in Figure 2.3, the daily model shows a high autocorrelation
every seven days, which endorses the weekly seasonal pattern. When looking
at a higher lag horizon in the daily lags, the plot shows a mostly linear
decline while keeping the overall seven-day pattern. Looking at the weekly
booking time data, every 52 weeks or respectively one year, a slight increase
in the autocorrelation can be observed. The graph shows an overall linear
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decline down to the 235-week lag. Opposed to the prior aggregation levels,
in the monthly booking hour data, no repeating peaking pattern can be
observed. The graph shows an overall linear decline down to the 55-month
lag. For all aggregation levels, the autocorrelation values start to get
negative at about a 4.5-year horizon.

Based on this analysis, we choose the lags summarized in Table 2.7 for
further modeling.

Table 2.7: Specified lags for each model

model lags

daily 7, 14, 21, 28, 91, 182, 365, 730, 1,095, 1,460 days

weekly 8, 16, 52, 104, 156, 208 weeks

monthly 12, 24, 36, 48 months

The use of high lags for all models contradicts the correlation analysis.
However, since only the autocorrelation of the target variable and not
the individual feature correlations are analyzed, and XGBoost includes an
automatic feature selection, we decide to use several higher lags.

Following Krollner, Vanstone, and Finnie (2010), the combination of
several forecasting methods in order to achieve higher prediction quality is
a promising approach. Hence, we decide to add the forecasts of ARIMA
–the best performing statistical model– as an additional feature to the ML
approach.

2.5.4 Model Refinement

Based on the features created above, we train nine separate ML models
to tackle the prediction problem at hand. To leverage the full potential
of the suggested approach, a single model is trained for each aggregation
level (daily, weekly, monthly) and forecasting horizon. Additionally, the
models are updated for each subsequent evaluation step following the rolling
horizon approach. While this procedure provides us with well-tuned models,
it is computationally expensive due to the size of the data set at hand.
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Figure 2.4: Comparison of sMAPE metrics throughout the models

The performance of the models can be further improved by selecting a
good set of model parameters. In order to find a good set of parameters,
we perform a hyper-parameter grid search. To this end, over 400 possible
parameter combinations are tested for each aggregation step. Due to
computational limitations and in order to avoid overfitting, we decide to
apply the same set of parameters for each forecasting horizon. Hence, the
final hyper-parameter grid search has to be performed three times, resulting
in a total of 1,200 trained models. Table 2.8 summarizes and describes the
tunable parameters, the tested ranges, and the selected values.

The quality of the nine ML models is evaluated using the same rolling
horizon as in the statistical forecasting approach. The results are summa-
rized in Figure 2.4. As expected, a decreasing accuracy can be observed
with increasing forecast horizons. Additionally, the forecasting quality is
better on higher aggregation levels. In terms of the sMAPE, the weekly
and monthly models perform roughly twice as good compared to the daily
aggregation level. This finding also holds in terms of forecast reliability,
as the variance of the sMAPE is significantly reduced for the two higher
aggregations.

Table 2.9 compares the performance of the best statistical forecasting
model ARIMA and the suggested ML approach. On the daily aggregation
level, the biggest performance increased can be reported. Here, the average
sMAPE is reduced by roughly 46%. With a reduction of roughly 27%, we
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also observe substantial improvements on the weekly level. On the other
hand, ARIMA and XGBoost perform at about the same quality on monthly
aggregated data. Here, a significant increase in forecasting accuracy can only
be observed for long forecasting horizons. The overall average performance
in terms of the sMAPE shows a 34% better performance for the ML model.

2.6 Result Discussion and Interpretation
We developed and evaluated a system for support request forecasting in
an IT consulting setting. We first determined several traditional statistical
forecasts on several aggregation levels that serve as benchmarks for the
later evaluation. Subsequently, we derived a meaningful feature set for a
sophisticated ML forecast and performed hyper-parameter optimization.

In the age of big data, researchers, as well as practitioners, can no
longer rely exclusively on standard statistical methods (e.g., ARIMA) to
generate business insights from large data sets. Instead, the use of machine
learning becomes inevitable as these approaches are better suited to handle
thousands of variables or work with unstructured data. Breiman (2001b)
and Shmueli et al. (2010) show that these approaches are of paramount
importance in studies aiming at prediction instead of description. The
main advantage of state-of-the-art ML algorithms is that they make less
rigid statistical assumptions and can work with data sets of very high
dimensionality. Additionally, these methods cannot only capture non-
linear relationships but also pick up higher-order interaction effects between
variables. On the downside, these black-box algorithms (e.g., gradient
boosting machines) typically generate incomprehensible models and rules.
However, the interpretability of the rules used by the algorithms is important
if subsequent actions based on the predictions are to be taken by human
decision-makers (Martens and Provost 2014; Diakopoulos 2014).

Answering the need for comprehensible prediction models as identified
by Breuker et al. (2016), we analyze the importance of the features through
the information gain. Figure 2.5 visualizes 20 most important features for
all aggregation levels.
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Figure 2.5: Feature importance for each aggregation level

Looking at the feature importance of the daily model, the importance
of the seven-day-lagged booking duration (Buchungen.Dauer) provides the
most information gain. In the weekly model, more features are needed
to leverage the full potential of the suggested approach. While the four-
week-lagged trend is the most important feature, a total of nine trend
features with different lags can be found in the top 20 features. The
information gain in the monthly model shows a distribution similar to the
daily aggregation with one feature holding the most importance. Here, the
variable isTicket.True with a 36-month lag has the highest importance,
followed by the year variable.

For a better understanding of the model performance, the average
employee-per-day error for the XGBoost model is calculated. For this,
we assume an employee with an eight-hour workday on five weekdays (40
h/week). Calculating the mean absolute error per day, we find that the
daily models average at an error of „ 2.9 employees per day. The weekly
models result in an average of „ 3.4 employees per day and the monthly
models at an average of „ 2.6 employees per day. Considering the total of
137 employees in the business unit, the forecast should enable a high-quality
planning process.
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2.7 Conclusion and Outlook
Using a large data set from an IT consulting company, we showcased
the development, refinement, and evaluation of a machine learning-based
forecasting system for incoming support tasks. Here, the objective is to
improve short term as well as long term planning processes to improve
capacity utilization and service levels.

After the extraction of raw booking data from several databases, we
perform an extensive exploratory data analysis to identify patterns informing
the subsequent modeling phase. During this analysis, we clean the data set
and remove redundant and sparse variables. Subsequently, an appropriate
metric as well as appropriate statistical forecasting methods and a machine
learning approach are chosen. Leveraging a powerful feature set, we show the
out-performance of the suggested machine learning approach in comparison
to traditional forecasting methods. On average, the machine learning model
is able to increase the forecast accuracy by 34% depending on the forecast
horizon and the aggregation level. Especially for short-term operational
planning, the machine learning approach is far superior.

In future work, we intend to extend our case study in the following
directions. First, the accuracy, as well as the robustness of the predictions,
could be further improved by leveraging additional internal and external
data sources (e.g., financial data or press releases) and creating more ex-
planatory features. Second, manual model adjustments could be allowed
in order to incorporate human knowledge into the model. To this end, the
feature set could be enhanced by adding a variable with expert estima-
tions. Third, the performance of the XGBoost model can be compared
to other machine learning algorithms such as geometric semantic genetic
programming (Castelli et al. 2016).

29



2 Predictive Analytics for Application Management Services

P
ar

am
et

er
D

es
cr

ip
ti

on
T

es
t

R
an

ge
D

ai
ly

W
ee

kl
y

M
on

th
ly

le
ar
ni
ng

_
ra
te

Sh
rin

ks
th
e

fe
at
ur
e

we
ig
ht
s

0.
.1

0.
5

0.
01

0.
00
5

ga
m
m
a

M
in
im

um
lo
ss

re
du

c-
tio

n
fo
r

pa
rt
iti
on

in
g

tr
ee

le
af

no
de

1.
.1

0
5

8
4

m
ax

_
de
pt
h

M
ax

im
um

de
pt
h
of

a
tr
ee

2.
.5

5
4

4

m
in
_
ch
ild

_
we

ig
ht

M
in
im

um
nu

m
be

r
of

in
st
an

ce
s
in

ea
ch

no
de

1.
.1

0
7

6
5

su
bs
am

pl
e

R
at
io

of
da

ta
to

us
ef

or
tr
ai
ni
ng

0.
.1

0.
6

0.
6

0.
6

co
lsa

m
pl
e_

by
tr
ee

R
at
io

of
co
lu
m
ns

to
us
e
fo
r
tr
ai
ni
ng

0.
.1

0.
6

0.
6

0.
6

Ta
bl
e
2.
8:

H
yp

er
-p
ar
am

et
er

op
tim

iz
at
io
n

30
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Table 2.9: sMAPE comparison of XGBoost and ARIMA

Aggregation Forecast Horizon ARIMA XGBoost

1 day 77.48 42.53

daily 3 days 81.51 42.33

7 days 79.78 43.30

mean 79.59 42.72

1 week 24.97 14.42

weekly 2 weeks 27.17 20.99

4 weeks 29.54 23.94

mean 27.23 19.78

1 month 17.03 18.80

monthly 6 months 25.05 25.32

12 months 44.46 25.95

mean 48.14 22.98

total mean 45.22 29.48
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3 Data Science Toolbox for
Industrial Analytics
Applications

Manufacturing companies today have access to a vast number of data sources
providing gigantic amounts of process and status data. Consequently, the
need for analytical information systems is ever-growing to guide corporate
decision-making. However, decision-makers in production environments
are still very much focused on static, explanatory modeling provided by
business intelligence suites instead of embracing the opportunities offered by
predictive analytics. We develop a data science toolbox for manufacturing
prediction tasks to bridge the gap between machine learning research and
concrete practical needs. We provide guidelines and best practices for
modeling, feature engineering, and interpretation. To this end, we leverage
tools from business information systems as well as machine learning. We
illustrate the usage of this toolbox by means of a real-world manufacturing
defect prediction case study. Thereby, we seek to enhance the understanding
of predictive modeling. In particular, we want to emphasize that simply
dumping data into “smart” algorithms is not the silver bullet. Instead,
constant refinement and consolidation are required to improve the predictive
power of a business analytics solution. 6

3.1 Introduction
In the last decade, the manufacturing sector has seen a tremendous dig-
ital transformation. Wireless connectivity, as well as cost decreases for

6This paper is published in Computers in Industry (Flath and Stein 2018).
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sensors and data storage, have paved the way towards a next-generation
industrial infrastructure. In particular, there has been a considerable con-
vergence of industrial IT systems and shop-floor automation (see Figure
3.1). Going forward, ubiquitous IT on the shop-floor will be instantiated by
self-monitoring production equipment and networked production systems
(Reddy 2016). Unsurprisingly, manufacturing companies today have access
to a vast number of data sources providing gigantic amounts of process and
status data. Manyika et al. (2011) estimate that the manufacturing sector
generated more than two exabytes of data in 2010. This data ranges from
production status and utilization data to continuous tool and machinery
condition monitoring. Yet, creating ever-growing data dumps will not con-
tribute to business value generation. However, if appropriately managed
data can be a highly valuable resource that is becoming more and more
critical to worldwide business operations. This finding has led to widespread
agreement that data is the new oil in future IT-augmented systems (Rotella
2012).

1970s- 1980s 1990s - 2000s Today Future

Information
Technology

Industrial
Automation

Mainframe
ERP Internet, ERP 

modules, 
CRM, etc.

Direct digital 
control

Logical 
controller,
Robotics

Fieldbus protocol, 
TCP/IP Integrated 

architecture Industrial 
Internet of 
Things

Figure 3.1: Convergence of industrial IT systems and shopfloor automation
(adapted from (IoT Analytics 2016))

In turn, companies are hard-pressed to establish novel analytics tools and
use cases to benefit from their data treasures. Leveraging this data utilizing
new analytics tools offers opportunities to foster data-driven decision-making
and increase both efficiency and effectiveness of existing business processes.
Such approaches have been discussed in both academic and practitioner
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literature (Sharma, Mithas, and Kankanhalli 2014; Chen, Chiang, and
Storey 2012). Revisiting the new oil analogy, an analytics solution resembles
an oil refinery which turns a basic resource into a valuable products (IoT
Analytics 2016, p.11).7

While a plethora of IT consultants has been courting companies to buy
into the “Big Data Revolution”, companies are often disappointed by the
outcomes and overwhelmed by the amount and variety of data (LaValle
et al. 2011; McAfee et al. 2012). For now, the promise of industrial analytics
mostly remains a mixture of promises, visions, and pilot projects instead
of large-scale implementations. To become an indispensable part of the
manufacturing engineer’s toolbox, it still has a long way to go. The recent
influx of machine learning research has brought forward a host of capable
algorithms and tools but has not equipped operators and decision-makers
with the necessary work-flows and tools. Consequently, there is an urgent
need for tool-kits and templates which assist manufacturing decision-makers
in navigating through a world of new opportunities.

This paper seeks to address this gap by compiling and explicating a
data science toolbox for prediction tasks in manufacturing systems. We
highlight key data preparation and analysis steps. In particular, we combine
methods from machine learning and business information systems to guide
the development of predictive analytics solutions. We subsequently apply
the toolbox to a case study from a major manufacturing company. Thereby,
we illustrate how a predictive analytics solution can be set up, refined, and
evaluated. Prediction tasks in other manufacturing settings will face very
similar challenges. Therefore, we are confident that these research questions
and our results can be generalized and applied beyond the specific case at
hand.

3.2 Related Work and Preliminaries
Data ubiquity due to the integration of networked machines as well as
the rise of machine learning algorithms leads to a transformational change

7In a recent IoT Analytics study 15% of respondents consider industrial data analytics
as a crucial success factor today. Additionally, 69% think it will be crucial in 5 year’s
time.
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throughout all major industries. Recent research conducted by General
Electric, Accenture (2015) estimates that the Industrial Internet offers a
$15 trillion opportunity due to reduced costs, productivity gains, and new
products. They show that the need to leverage the potential of the available
data sets is of high urgency in the manufacturing sector. However, modern
manufacturing environments are characterized by large amounts of sensors
leading to data sets that are complex in terms of volume and variety. In
the upcoming section, we show the different techniques that are available
to tackle these problems.

3.2.1 Data Science in Manufacturing

With the rise of data ubiquity, the desire to generate insights and business
value from this data is ever-growing. Hence, the idea of “business analytics”
describing “data science” in a business context (Chen, Chiang, and Storey
2012) has experienced rapid growth over the last years.

Shmueli and Koppius (2011) carve out the difference between explana-
tory statistical modeling and predictive modeling. They emphasize that
explanatory power derived from traditional models does not imply predictive
power. Consequently, predictive analytics is needed not only to create mod-
els for practical applications but also for theory building and theory testing.
Manufacturing companies need to embrace business analytics in order to
remain competitive in the global marketplace (Lee et al. 2013). Historically,
manufacturing firms have relied on observable process outcomes through
shop-floor initiatives like standardized work or continuous improvement.
By incorporating advanced analytics, they can also address unobservable
problems like machine degradation or hidden defects.

Recent research regarding machine learning applications for manufactur-
ing mainly focuses on technical solutions that are used to identify relevant
information from large data sets with many variables. To predict the level
of machine degradation, Mosallam, Medjaher, and Zerhouni (2016) apply
unsupervised learning to select essential variables from a set of monitoring
data. The authors report good results in a turbofan engine as well as a
battery health setting. Sipos et al. (2014) design an information system
using multiple linear classifiers to predict failures of medical equipment
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based on log data. Bleakie and Djurdjanovic (2013) propose a method that
is capable of predicting system condition by comparing the similarity of
recent sensor readings with known degradation patterns. They successfully
apply this method in a semiconductor manufacturing setting.

To this end, the existing research mainly provides solutions for specific
problems in case study settings. Hence, the goal of this paper is to provide
a toolbox for the implementation of data-driven approaches in various
manufacturing settings.

3.2.2 Machine Learning

The algorithms behind predictive manufacturing applications can be as-
signed to the field of data mining. Unlike “normal” algorithms it is the
data that tells these data-driven algorithms what the good answer is. In a
manufacturing setting, a traditional approach would try to define a set of
variables (e.g., weight and form) that identifies defective parts. In contrast,
a machine learning algorithm does not need such coded rules but would learn
them by examples. These learning techniques can be either unsupervised
or supervised. In unsupervised machine learning, the observations have
no “labels.” Hence, an algorithm is used to identify hidden patterns in the
input variables.

In contrast, supervised learning is the task of inferring a function
from labeled training data. In supervised learning, each example is a pair
consisting of an input object (in most cases a vector) and an output value.
Problems with a continuous output space are summarized under the term
regression problems while classification describes problems with a discrete
output space.

Unsupervised Learning

Unsupervised learning summarizes machine learning algorithms that find
hidden structures in unlabeled data (Hastie, Tibshirani, and Friedman 2013).
While there are many possible applications in different fields (e.g., association
rule mining for recommender systems, generative adversarial networks
for image generation (Goodfellow et al. 2014)) we focus mainly on the
algorithms used for dimensionality reduction as they are of particular interest
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in manufacturing settings with increasing amounts of high dimensional
monitoring data.

Principle components analysis (PCA) is a popular and well-studied
method to transform high-dimensional data sets into low-dimensional data
sets. PCA converts a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables. To this end, it
finds the n principal axes in the original m-dimensional space where the
variance between the points is the highest. By selecting the axes that
explain most of the variance, the number of variables is reduced from m to
n. Thereby, the bulk of information is preserved as the new variables are
combinations of the old variables (Hotelling 1933). However, PCA reaches
its limitations if the relationships between the variables are non-linear.
This shortcoming is tackled by the recently developed method t-distributed
stochastic neighbor embedding (t-SNE). This technique takes a set of points
in a high-dimensional space and embeds them in a lower-dimensional space
by solving a problem known as the crowding problem (Maaten and Hinton
2008). Due to its flexibility, t-SNE is often able to find structures in data
sets where other dimensionality-reduction algorithms fail. However, this
advantage comes at the costs of a decreased interpretability as well as
the need for a complex hyper-parameter tuning (Wattenberg, Viégas, and
Johnson 2016). The selection of the best dimensional reduction algorithms
is typically a trial and error process as both algorithms have different
advantages and limitations.

After applying one of the above methods, clustering algorithms can be
used to group and identify data-inherent structures. These algorithms set
the clusters in a fashion to maximize the intra-cluster distance and minimize
the inter-cluster distance. Depending on the clustering process a further
distinction between hierarchical algorithms (e.g., Ward’s method or single-
linkage (Ward Jr 1963; Murtagh and Contreras 2012)) and partitioning
algorithms (e.g., k-means or k-medoids (MacQueen et al. 1967; Kaufman
and Rousseeuw 2009)) can be made.
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Supervised Learning

Supervised learning is the machine learning task of inferring a function
from labeled training data (Mohri, Rostamizadeh, and Talwalkar 2012).
Learning tasks with quantitative labels (such as machine degradation) are
summarized under the term regression problems while tasks with categorical
labels (such as defective product/non-defective product) are summarized
as classification problems (Hastie, Tibshirani, and Friedman 2013). Both
problems can be approached using various white-box models and black-box
models. White-box models offer greater transparency concerning the rules
used to generate predictions while black-box models can often increase the
prediction quality at the cost of reduced interpretability.

White-box models The oldest and probably best studied white-box meth-
ods are linear regressions for regression problems and logistic regression
for classification problems (Galton 1886; Hastie, Tibshirani, and Friedman
2013). They rest on the assumption of a linear relationship between a set
of input variables and a single output variable. The linearity assumption is
simultaneously the major strength and weakness of this method. On the
one hand, it renders the model very simple to understand and efficient to
learn. On the other hand, it constrains the predictive power of the model,
as many statistical relations are non-linear. To overcome this shortcoming,
decision tree model can be considered. They map multiple input variables
with an output variable through a tree structure. Thereby, they are able to
take account for potential non-linear relationships in the data. While this
model class has, in general, a higher predictive power than linear regression,
it is also prone to fail to generalize from the training data (Quinlan 1986).
Hence, Gaussian process models can be applied. This model class assumes
that the output variable follows a Gaussian process fully defined by a mean
and a covariance function. The covariance function expresses the expected
covariance between the output variable and the input variables. Thus, linear
and non-linear relationships in the data can be learned. These models are
better suited for complex data compared to linear and logistic regression
models. Additionally, the prediction of these models does provide not only
a point estimate but also uncertainty information (Rasmussen 2006).
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Black-box models More complex and less interpretable models are sum-
marized under the term black-box models. Here, we first consider support
vector machines viewing each observation as a vector of all input variables.
During the model training, the hyperplane that best separates the different
output variables depending on the input vectors is determined. In order
to incorporate non-linear relationships, the dimensionality of the input
vector is augmented using the kernel-trick if no hyperplane separating all
different output variables exists. A major benefit of support vector machines
is the good generalization ability and therefore the low susceptibility to
over-fitting even for small training data sets (Smola and Schölkopf 2004).
Another popular class of black-box models are artificial neural networks.
These models consist of several layers of artificial neurons. Each neuron is
connected with many other neurons and processes incoming information
and propagates the results to other neurons. Neural networks are powerful,
very adaptable, and used for many different applications in various fields
(Hastie, Tibshirani, and Friedman 2013). A model class recently enjoying
increasing popularity are gradient boosting machines. They ensemble many
weak learners to a strong predictive model in a sequential fashion. Gradient
boosting increases the weight of the samples misclassified by the first model
and decreases the weight of the samples that are classified correctly to train
another decision tree. This step is repeated n times, where n is the number
of boosting iterations. In this way, the algorithm always trains models using
data samples that are difficult to learn in the previous round, which results
in an ensemble of models that are good at learning different parts of the
training data (Friedman 2002). Due to the highly efficient learning as well
as the good generalization, these models are predestined for settings with
a large number of features and observations frequently arising in modern
manufacturing environments.

Evaluation Metrics

Prior to any modeling activities, a suitable evaluation metric for the task
at hand has to be chosen. Understanding the importance of the evaluation
metric is fundamental for the success—or failure—of every data science
project (Davis et al. 2007). Typically, the prediction errors are minimized
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for regression problems. To this end, the mean absolute deviation (MAD)
or the mean squared error (MSE) could be applied.

In contrast to the straight-forward metrics mentioned above, the se-
lection of an appropriate evaluation criterion is more complicated in clas-
sification settings. In general, the performance measures used for these
problems are derived from the confusion matrix accounting for the number
of wrong—false positives (FP) or false negatives (FN)—and correct—true
positives (TP) and true negatives (TN)—classifications. However, the met-
ric selection has to account for the specific properties of the given scenario,
e.g., skewed classes and misclassification cost distributions (Flach 2003).
This is of particular importance for manufacturing scenarios as they are
typically characterized by high class imbalanced due to low failure rates.

Standard evaluation metrics for classification problems like accuracy fail
in these settings (i.e., a simple model predicting “non-defective” for all parts
achieves high accuracy even though it has no predictive power). Following
Powers (2011), the Matthews correlation coefficient (MCC) is considered to
be robust against class imbalances. It measures the correlation coefficient
between the observed and predicted binary classification and returns values
between -1 and +1. A value of +1 indicates a perfect prediction, while
a value of 0 is a random prediction and a value of -1 indicates a total
disagreement between prediction and observation. Thereby, the MCC takes
into account the true and false positives and negatives. For a given model
with fixed predictive power, the MCC can be optimized by minimizing the
product of false positives and false negatives. An MCC-optimized model
will either have a low false-positive and high false-negative rate or vice versa.
The respective cost for the errors determines the optimal trade-off. In
settings with high costs for non-detected defects (e.g., product recalls) the
number of false negatives will be minimized, in settings with high costs for
wrong alerts (e.g., complex quality control) the number of false positives will
be minimized. The ability to adapt to the cost structure of the underlying
problem is an additional benefit of the MCC metric in the manufacturing
context.
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Feature Engineering

Feature engineering describes the process of aggregating information in the
data or adding even new information by using domain knowledge. This is
an important creative step before useful patterns can be discovered (Dhar
2013). Domingos (2012) highlights that this phase is critical to ensure the
success of any data mining project. Similarly, Halevy, Norvig, and Pereira
(2009) emphasize that good features enable a simple model to outperform
a more complex model significantly. Hence, feature engineering should be
performed thoroughly even though it can be a long-winded time-consuming
task. Features can be derived from the underlying process structure as well
as the data structure through automatic feature extraction via variable
ranking procedures, manual feature construction by domain experts and
mixtures of the two. Going beyond basic raw features requires a significant
portion of business and process understanding as well as creativity.

3.2.3 Business Process Mining

Today, modern manufacturing systems store large amounts of sensor readings
and events in some structured form. Following Van Der Aalst et al. (2011),
process mining is another way to restore the inherent process knowledge in
these data sets. These algorithms are used to identify patterns as well as
outliers in the data and restore the different process flows. Aalst et al. (2007)
successfully apply this technique in an industrial application. Schwegmann,
Matzner, and Janiesch (2013) design a predictive analytics tool combining
business intelligence and real-time process monitoring for a maintenance
application scenario. By following an event-driven approach, this tool
can reduce the lag between event observation and the decision-maker’s
response. Breuker et al. (2016) integrate process-mining and predictive
modeling techniques to streamline operational business processes. Process-
mining reveals business process models from historical transaction data.
Subsequently, predictive analytics approaches facilitate the prediction of
the future behavior of currently running process instances. They illustrate
how this approach can be used to monitor the likelihood of negative events
or detect fraudulent behavior in real-time.
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3.3 Data Science Toolbox
As shown above, the process of successfully implementing a predictive
information system in a manufacturing system is a complex task. Mayor
challenges such as the acquisition of relevant data, data pre-processing,
algorithms selection, and result interpretation are identified by Wuest
et al. (2016). Therefore, we propose a five-step approach based on the
guidelines for applying big data analytics put forward by Müller et al. (2016).

1. The analysis process starts with the data collection phase. Here,
structured data from various legacy systems such as enterprise resource
planning and production planning systems as well as unstructured
data from various sources such as sensors is collected and aggregated
(Chen, Chiang, and Storey 2012).

2. Subsequently, exploratory data analysis (EDA) is performed on the
raw data. Here, the properties of the data set should be identified.
Thereby, low-information features should be identified and treated
accordingly using unsupervised learning methods. Additionally, the
structures of the underlying processes can be retrieved using business
process mining.

3. After data exploration, an appropriate evaluation metric for the
problem at hand has to be selected. This metric should account for
the data-properties identified during the EDA such as class imbalances.

4. Now, a suitable learning algorithm has to be chosen. This selection
depends on the task at hand (e.g., regression vs. classification) as well
as the number of observations and the dimensionality of the data.

5. Next, new features have to be derived from the results of the EDA
process. These features have to be evaluated iteratively by training
new models. Subsequently, a hyper-parameter optimization of the
supervised learning algorithm has to be performed to increase the
predictive power of the model further. Finally, the results of the
analysis have to be interpreted and verified. This phase is of special
importance if black-box models are applied.

Our data science toolbox is visualized in Figure 3.2.
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Figure 3.2: Data science toolbox

3.4 Case Study
Bosch, one of the world’s leading manufacturing companies, hosted a data
science competition on Kaggle, the leading crowd-sourcing platforms for
predictive modeling (Kaggle.com 2016). This competition features a very
large data set with anonymized measurements of production jobs moving
through different manufacturing lines and stations. In addition to the mea-
surements, the result of an ex-post quality control process is provided. To
generate business value from the available data, participants were challenged
to predict the defectiveness of individual production jobs.8 We want to
address this prediction task as a data science study applying our proposed
toolbox.

3.4.1 Exploratory Analysis

At first, we perform an exploratory data analysis to identify the properties
of the data set at hand. To this end, we describe the data set, iden-
tify correlations and low-information features, and the underlying process
structure.

8The competition has spurred ample contributions by competition participants as well
as academic publications (Pavlyshenko 2016; Maurya 2016; Mangal and Kumar 2016;
Stein and Flath 2017).
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Data Set Properties

The data set was collected in a manufacturing environment. It comprises
a total of roughly 2.4 million manufacturing jobs. Each job has a unique
id and 4,264 anonymized features. These features can be split into 968
numeric, 2,140 categorical and 1,156 time variables that are measured along
52 stations on four different manufacturing lines. Due to data anonymization,
no information on the meaning of the numeric and categorical variables is
available, and only the manufacturing line and the station of the feature
recording can be retrieved from the variable name. The time variables
indicate when each measurement was taken. To ensure the generalizability
of the predictive algorithms, the data set is split equally into a training and
a test data set. Jobs in the training set are labeled with response “ 1 for
products failing quality control and 0 otherwise. In the validation set, no
information on product quality is provided as the response variable is to be
predicted. Process quality is very high: Failures only occur in 0.58% of the
cases while 99.42% of the observed jobs pass quality control.

Duplicate Detection

Identifying duplicates is the first step to reduce the number of features.
However, column-wise comparisons are computationally expensive and not
feasible due to the size of the data set. Hence, we use digest hashing for
data de-duplication. To this end, a 32-bit hash is calculated for each column.
Subsequently, duplicate features can be identified and removed by a fast
pairwise comparison of the hashes. We find that the timestamp variables
are recorded for some of the features on a station at the same time. Hence,
1,030 of the timestamps are redundant and can be removed.

Feature Properties

A first analysis shows that there are hardly any linear correlations between
the response variable and the numerical variable present in the data set.
Additionally, the features with the highest correlation coefficients are missing
for many observations. These findings are illustrated in Figure 3.3.

The low correlation besides the high number of variables suggests
that many features have a low-information value. To substantiate this
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Figure 3.3: Ordered linear correlation coefficients between response variable
and numerical variables (Node size indicates the number of observations
with this feature)

assumption, we perform a PCA as well as a t-SNE. The results visualized
in Figure 3.4 show, that t-SNE is able to perform a much better split on
the high dimensional data at hand. Additionally, it becomes evident that
many variables are holding similar information. Keeping this finding in
mind, we will be able to perform feature reduction steps in later steps of
the modeling process.
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Figure 3.4: Dimension reduction approaches for identifying feature similarity

45



3 Data Science Toolbox

Process Structures

To obtain a deeper understanding of the underlying processes, we apply
process mining to identify relevant patterns. Following Van Der Aalst
et al. (2011), this approach can help reveal a process model without any a-
priori information. This is especially valuable for the anonymized data set at
hand. To proceed, we filter the individual job data for non-empty features to
identify the stations that each job passes through. Subsequently, the stations
are ordered by ascending time to create a network representation of the
jobs. Figure 3.5 shows the production network from different perspectives.

All paths Main paths Main failure paths

start

S0

S5

S6

S8

S4

S7

S9

S10

S11

S2

S29S39

S30

S24

S3

S33

S34

S36

S35

S37

S32

S40

S41

S43S44

S27

S45

S47

S48

S50 S49

S26
S28

S12

S1S13

S15 S14

S16S17

S19 S18

S20

S21
S23

S22

S31

S25

S38

S51

01

start

S0

S5

S6

S8

S4

S7

S9

S10

S11

S2

S29S39

S30

S24

S3

S33

S34

S36

S35

S37

S32

S40

S41

S43S44

S27

S45

S47

S48

S50 S49

S26

S12

S1S13

S15 S14

S16S17

S19 S18

S20

S21
S23

S22

S31

S25

S38

S51

0

start

S2

S29

S30

S3

S33

S34

S36

S35

S0

S4

S6

S37

S8

S11

S7

S9

S5

S10

S39

S40

S41

S44

S45

S47

S48

S50

S32

S27

S26

S12

S1S13

S14

S17

S19

S20

S18

S23

S22

S15

S16

S21

S43

S49

S24S25

S38

S51

1

Figure 3.5: Shopfloor process visualization and illustration of predictive
process patterns (node colors indicate the line, node size indicates usage
frequency of the given station)

First, the complete graph with all occurring edges is visualized. Most
parts follow a sequential path through two of the four production lines
before they are classified as defective or non-defective. Next, the paths
that only occur sporadically are removed by filtering for edges with a
frequency exceeding the first quartile. Given the base failure-rate of 0.58%,
the remaining main paths through the manufacturing network all lead to a
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non-defect classification. Some of the stations perform parallel operations
(e.g., S14ÑS18) while others have to be visited in sequential order (e.g.,
S12ÑS13). The last graph visualizes the main process paths resulting in
defective products.

3.4.2 Modeling and Feature Reduction

Given the insights concerning feature similarity, we first seek to reduce the
data set by identifying and removing non-informative variables. To identify
non-informative variables, we train separate boosting models using either
the numerical or the categorical features. To reduce the computational
load and speed up the process, the training is performed on samples of
200,000 rows. Subsequently, the importance of the features is determined by
calculating the Kullback-Leibler divergence, also referred to as information
gain in the machine learning context (Friedman, Hastie, and Tibshirani
2001). The sum of the information gains for all features always equals
one. Therefore, this metric evaluates relative variable predictiveness as
opposed to offering an absolute value. Figure 3.6 summarizes the cumulative
information gains for the numeric and the categorical data. It becomes
obvious that a relatively small set of features carries the bulk of the relevant
information while the biggest part can be considered noise. In the case of
the numeric variables, most information is captured by a subset of only 150
of the 968 features with about 80% captured by the first 50 features. Even
more dramatically, out of the 2,140 categorical variables, all information
gain is captured by only 27 variables with about 80% being condensed in
only one variable. We remove all variables without information gain and
reduce the number of variables to 150 numerical and 27 categorical features.

The reduced data size allows us to run a lightweight R implementation
with extreme gradient boosting (XGB) developed by Chen and Guestrin
(2016). XGB is a state-of-the-art gradient boosting implementation, offering
superior speed by exploiting the sparsity of feature matrices. This more
efficient implementation allows training of models with thousands of boost-
ing iterations within less than a day facilitating efficient hyper-parameter
optimization. Furthermore, XGB facilitates direct integration of custom
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Figure 3.6: Relative information gain of numerical and categorical features

evaluation metrics instead of standard metrics. Consequently, we directly
modeled the MCC score as the base for the machine learning algorithm.
In combination with the removal of duplicated features, the new model
realized an MCC score of 0.24 corresponding to a 9% increase in predictive
power.

3.4.3 Feature Engineering

So far, our analysis only relied on features provided in the raw data set. To
further increase the quality of the model, new features have to be developed.
Going forward, we first retrieve the process structure from the anonymized
data set. This information is used to refine the predictive model iteratively.
To this end, we aggregate the existing raw variables to more powerful
features by modeling system failure rates and approximating individual
production lots.

Failure Rate Features

We can leverage the manufacturing process flows to develop stronger features
for the machine learning approach. In particular, we are interested in
combining multiple individually weak features into strong combined features.

While individual categorical features are fairly non-predictive (Figure
3.3), we can condense their joint information content by means of aggregating
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approaches akin to Hauser et al. (2015). To this end, we determine failure-
rates for any given realization of the different categorical variables (including
the frequent absence of a variable signified by an “NA” coding). We find that
defect-rates are significantly increased for some (possibly seldom) categorical
variable values. For example, jobs featuring the value “2” for feature “F3854”
have a failure-rate of 16.13% compared to the base rate of 0.58%. Using path-
wise aggregation along with the process flow, we can derive meta-features
from the individual defect-rates FRi. We apply three different aggregation
schemes, namely the maximum failure-rate maxi FRi, the mean failure rate
1
|i|

ř

i FRi as well as the compound rate Πip1 ´ FRiq. This aggregation
approach is illustrated in the top panel of Figure 3.7. The table in the
top-right illustrates that the meta-features exhibit a much higher correlation
with the target label than the original set of unprocessed categorical features.
This suggests that the meta-features succeed in distilling the information
content from the raw feature realizations.

Line Station Feature Value Fail-rate Count
L3 S32 F3854 2 16.13% 4,136
L3 S32 F3851 1 5.04% 21,582
L3 S32 F3854 16 4.53% 3,509
L1 S24 F1525 2 0.97% 6,630
L1 S24 F1510 2 0.96% 8,654
L1 S24 F1530 2 0.96% 8,629
L1 S24 F1675 1 0.92% 66,500
L1 S24 F1584 1 0.91% 66,583
L1 S24 F1537 1 0.90% 132,570
L1 S24 F1559 1 0.90% 130,187

... with 290 more rows

Id Max Rate Ø Rate ∏ Rate Label
202944 66.7% 14.3% 72.8% 1
199312 66.7% 17.0% 72.6% 1
216510 66.7% 17.0% 72.6% 0
1064543 55.0% 5.5% 68.4% 0
733059 55.0% 5.3% 67.1% 0
2315710 55.0% 5.3% 67.1% 1
2315711 55.0% 5.3% 67.1% 0
2365878 55.0% 5.3% 67.1% 1
2365879 55.0% 5.3% 67.1% 1
31338 55.0% 5.3% 67.0% 1

... with 1,183,155 more rows

Categorical Features

Time Station Fail-rate Count
99 S37 4.28% 1,122
99 S34 4.19% 1,145
89 S24 4.16% 1,105
99 S3 4.11% 1,143
99 S33 4.11% 1,143
99 S30 4.03% 1,118
99 S2 4.01% 1,123
99 S29 4.01% 1,123
138 S24 2.85% 5,821
274 S1 2.68% 1,044

... with 4,821 more rows

Id startTime duration Max Rate Ø Rate ∏ Rate Label
989216 1345.81 153.41 60.0% 9.9% 70.6% 0
989214 1345.81 30.89 60.0% 10.7 69.6% 1
1176559 1345.21 30.78 60.0% 8.1 64.9% 0
1884171 1345.72 29.48 60.0% 8.7 63.8% 1
1884172 1345.72 29.48 60.0% 8.7 63.8% 1
1080478 825.27 4.83 50.0% 5.4 63.6% 1
1435556 826.21 3.88 50.0% 5.4 63.4% 0
560016 662.68 53.95 41.38 6.0% 54.7% 0
813291 662.57 54.27 41.38 6.0% 54.6% 1
813293 662.57 54.27 41.38 6.0% 54.6% 1

... with 1,183,155 more rows

Time x Station Features

Figure 3.7: Failure rate feature generation through aggregation of categorical
and temporal features

We apply an analog procedure to capture temporal and station-level
failure behavior (lower panel of Figure 3.7). Item fail rates vary depending
on the time they went through a given station. This may be due to machine
wear, operator fatigue, material problems, or other external influences. Di-
rect encoding of station-time stamp pairs would again yield an enormous
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number of weak features. By determining station-level fail rates with subse-
quent path-wise aggregation, we can again create condensed and predictive
meta-features. These features are complementary to the categorical fail
rates and combined with the base model boost predictive power to an MCC
value of 0.28.

Manufacturing Batch Features

Sequence dependencies are commonplace in manufacturing settings due to
the grouping of production jobs into batches or production lots. Conse-
quently, failure information on individual items from a lot may be relevant
for failure detection for other lot members.

To approximate batches in the data set, we follow two avenues: First, we
use the timestamps to approximate individual production lots in the data.
To this end, the data set is ordered by the start time and the time difference
between two subsequent parts is calculated. Small differences suggest that
two parts are part of the same lot, while bigger differences indicate different
lots. A more focused approach relies on the assumption of the data set
Id column not being random but actually revealing information on the
underlying process. By filtering the data to only feature pairs of subsequent
Ids (approximately half of the data), we can analyze this hypothesis. Table
3.1 presents the results of this sequence-level analysis.

Table 3.1: Failure rates dependent on previous observation
Current Probability of Count

label subsequent “1”

“0” 0.55% « base-rate 6,479

“1” 5.79% " base-rate 398

(a) Jobs sorted by start time

Current Probability of Count

label subsequent “1”

“0” 0.52% « base-rate 3,055

“1” 10.08% Ï base-rate 345

(b) Subsequent Ids sorted by Id

Both approaches reveal significantly increased fail-rates of the subse-
quent job if the current job is labeled defective—a 10-fold increase in the
coarse start time approach and a 20-fold increase with the Id-approach.
Incorporating this additional information in the form of lagged feature vari-
ables dramatically improves the model’s predictive performance: A minimal
model with raw variables and the sequence features yields an MCC score
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of 0.36, the combination of sequence features and previously developed
features achieves an MCC of 0.44.

We also tried to incorporate more distant pairings besides direct se-
quences. However, these additional sequence feature did not improve model
performance but rather deteriorated predictive power.

Data Anomaly Features

Going beyond the more natural information sources offered by process and
measurement data, a more untypical source of predictive features are data
anomalies. In the data set a hand, an initial screening had highlighted the
presence of duplicate entries exhibiting identical numerical feature values
despite having different Ids. Such row duplicates can arise in manufacturing
systems in the context of communication crashes. SCADA systems will
usually repeat the last seen value, so the measurements associated with a
given sequence of part numbers correspond to the last correctly received,
until the communication is recovered. If such communication failures are
triggered by external events (such as power outages), they may also affect
the quality of currently manufactured parts. To explore this hypothesis, we
created row-wise hashes across all numerical features to efficiently detect
duplicate rows in the large data set (Elmagarmid, Ipeirotis, and Verykios
2007).9 This thorough search for duplicates confirmed the initial observation
of anomalous rows. In total there were 90,000 duplicate rows present in the
data. Even more surprising, 3,293 of all 6,879 defective jobs originated from
the duplicate data. In turn, the non-duplicate data subset has a corrected
fail-rate of 0.33% while the duplicate subset has an eleven times higher
fail-rate of 3.63% (see Table 3.3). The inclusion of the duplicate feature
enhanced the predictive performance of our model to reach an MCC score
of 0.47.

3.4.4 Result Discussion and Interpretation

In the previous sections, we developed a failure-detection system for a
manufacturing process. We removed non-essential features and extracted
information on the manufacturing process through process mining. This
9The hash creation for the full data set took about 40 minutes.
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Table 3.3: Fail-rate of duplicated vs. non-duplicated data rows
Duplicate row Fail-rate Count Number of Failures

FALSE 0.33% 1,092,975 3,586

TRUE 3.63% 90,772 3,293

enabled us to determine failure rates on a station and time level and to
identify manufacturing batches. Meta-features derived from these failure
rates and the batches further increase the predictive power of our model
significantly. In the last step, data anomalies occurring in manufacturing
systems are identified. Utilizing this feature boosts the system’s MCC to
0.47. Recognizing the incremental nature of the individual improvement
steps, it becomes evident that successful predictive modeling is not a one-
shot endeavor but rather necessitates diligent and persistent development.

Answering the problem of machine learning opacity raised by Burrell
(2016), we recombine the trees determined by our gradient boosting machine
to one aggregated tree. To this end, we make use of the fact that all 7,000
binary trees of the final model have the same depth and therefore, the same
number of nodes. Consequently, each node has 7,000 representations. We
can determine the importance of a feature by counting how often it appears
on a particular node. Figure 3.8 visualizes the aggregated tree with the three
most frequent features at each node. As in standard decision trees, variables
occurring earlier in the tree are more important than variables appearing
at the end. To this end, the value of the engineered features becomes
evident. The defect-rates on a machine level as well as the production lot
approximation emerge as highly predictive while the raw features show up
deeper in the tree.

Furthermore, it becomes evident that black-box machine learning models
and process mining approaches can work in unison. For instance, the boosted
trees identify station 33 as a possible weak point with the feature recorded on
this station (“L3-S33-F3857”). Looking at the shop-floor process structure
(Figure 3.5) confirms this station’s central role in the manufacturing process.
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Figure 3.8: Retreiving system insights from black box models

3.5 Conclusion and Outlook
We develop and explicate a data science toolbox for manufacturing decision-
makers. We showcased the application of this toolbox using a large data
set from a major manufacturing company. In particular, we illustrate the
development, refinement, and evaluation of a predictive analytics system.
Although we showcased the implementation with a data set from a specific
manufacturing process, we are confident that the approach is generic and
straight-forward to transfer and implement for other use cases as the data
was anonymized and no additional information about the underlying process
was available.

In the age of big data, researchers, as well as practitioners, can no longer
rely exclusively on standard statistical methods (e.g., linear regression) to
generate business insights from large data sets. Instead, the use of machine
learning becomes inevitable as these approaches are better suited to handle
thousands of variables or work with unstructured data. Breiman (2001b)
and Shmueli et al. (2010) show that these approaches are of particular
importance in studies aiming at prediction instead of description. The
main advantage of state-of-the-art machine learning algorithms is that
they make less statistical assumptions and can work with data sets of very
high dimensionality. Additionally, these methods cannot only capture non-
linear relationships but also pick up higher-order interaction effects between
variables. On the downside, these black-box algorithms (e.g., gradient
boosting machines) typically generate incomprehensible models and rules.
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Yet, the interpretability of the rules used by the algorithms is important
if subsequent actions based on the predictions are to be taken by human
decision-makers (Martens and Provost 2014; Diakopoulos 2014).

Our findings regarding the application of big data analytics are twofold.
It becomes evident that simply plunging a vast amount of data into “smart”
algorithms is not the silver bullet a lot of researchers and practitioners
expect it to be. Instead, we show that constant improvement, feature
engineering, and consolidation will complementarily improve the predictive
power of a business analytics system. In order to further increase the
predictive power, higher-level modeling approaches could be applied. A
first step would be the training of two distinct models for the duplicates
and non-duplicates identified during the anomaly detection. Going further,
a set of different black-box models should be trained and combined to
generate predictions from stacked predictors. Such an ensemble would come
at the cost of interpretability and necessitate new methods to answer the
need for comprehensibility. The increasing complexity in the data and the
successful combination of process mining and machine learning emphasize
the need for analytic skills as well as business understanding and showcases
the comparative advantage of industrial analytics as a cross-disciplinary
application of machine learning (Wuest et al. 2016).
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4 Sensor-Based
Decision-Support for Manual
Processes

Analytics applications are becoming indispensable in today’s business land-
scape. Greater data availability from self-monitoring production equipment
allows firms to empower individual workers on the shop-floor with powerful
decision-support solutions. To explore the potential of such solutions, we
replicate an important manual leak detection process from high-tech com-
posite manufacturing and augment the system with highly sensitive sensors.
Based on this setup, we illustrate the main steps and major challenges
in developing and instantiating a predictive decision support system. By
establishing a scalable and generic feature generation approach as well as
leveraging techniques from statistical learning, we are able to improve the
forecasts of the leak position by almost 90%. Recognizing that mere forecast
information cannot be evaluated with respect to business value, we subse-
quently embed the problem in an analysis of the underlying searcher path
problem. We compare predictive and prescriptive search policies against
simple benchmark rules. The data-supported policies dramatically reduce
the median as well as the variability of the search time. Based on these
findings we posit that prescriptive analytics can and should play a greater
role in assisting manual labor in manufacturing environments.10

10This paper is published in the Journal of Business Economics (Stein, Meller, and Flath
2018).
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4.1 Introduction
Despite a shift in jobs and capital towards the service industry, the manu-
facturing sector still serves as a critical backbone of many leading economies
around the globe. Recently, this sector has seen a tremendous digital
transformation: Due to the introduction of “smart”, i.e., self-monitoring
production equipment paired with significant cost decreases for sensors
and data storage, modern manufacturing companies have access to a con-
siderable pool of process data. For the year 2010, Manyika et al. (2011)
estimated that the manufacturing sector generated two exabytes of data
(e.g., production status, equipment utilization, machinery condition). The
combination of data abundance on the one hand and new analysis tools
on the other provides opportunities to foster data-driven decision making
helping to increase both efficiency and effectiveness of existing processes.

The widespread use of analytics applications in managerial decision
making is limited by data availability. For this reason, data-driven decision
support has initially been exclusively used for problems on the organiza-
tional level. This is because these problems primarily rely on aggregated
data, which is easily accessed through standard enterprise resource plan-
ning systems. With increasing availability of data tailored to the needs of
specific departments within the company, advanced analytics solutions were
introduced on the departmental level. Yet, individual workplace decision
support is still limited due to the lack of fine-grained data, especially in
manufacturing. We put forward a taxonomy of data-driven analytics based
on the functional level where the tools are applied. This categorization com-
plements the recent descriptive-predictive-prescriptive framework suggested
by Lustig et al. (2010).

Recognizing a lack of contributions on individual decision support in
manufacturing industries, we then explore this novel application area for
advanced analytics through a case study. Specifically, we illustrate the
development and evaluation of a sensor-based decision support tool for a
manual leak search process in the aerospace industry. We split this task into
two distinct research tasks which address the following research questions:

RQ3.1 How much can the accuracy of leak localization be improved by
using high-resolution sensor data and predictive analytics?
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RQ3.2 To what extent can better location predictions be translated into
an economic benefit as measured by the labor cost of searching?

To address the questions, we first develop a predictive framework for
localizing the leak position based on sensor data. Subsequently, we comple-
ment this positional information with prescriptive decision support informing
the actual search policy. Using these two components, we can quantify the
value of leveraging sensor data in manual shop-floor processes.

4.2 Data-Driven Decision Support
With greater data availability, the desire to extract insights and business
value is ever-growing. As a consequence, we note a steady increase in
data-driven decision support systems that also affect the way managerial
decisions are prepared nowadays. Serving as an objective grounding for
informed actions, such systems can be employed in a wide range of different
planning situations. Analytics is an umbrella term for activities that guide
decision-making processes by means of analyzing business and process data
and in turn deriving functional insights.

4.2.1 A Granularity-Oriented Taxonomy for Advanced
Analytics

A widely adopted classification of analytics is the distinction between
descriptive, predictive, and prescriptive approaches based upon the reach
and methodological scope of the particular application (Lustig et al. 2010).

This “classic” split promotes a view on applications from a foremost
methodological point of view, i.e., according to this taxonomy, an analytics
solution would be categorized depending on whether the final decision
maker receives a descriptive analysis, a prediction of future observations or
a prescribed action as an outcome to solve his planning problem.

While acknowledging the simplicity and intuitiveness of this well-
established taxonomy, we posit that particularly for business practitioners
as well as researchers from the management science domain, a taxonomy
with a stronger scope on the actual planning problem to solve would provide
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valuable insights. We argue that the requirements and conditions to provide
decision support for particular planning problems on different functional
levels differ considerably. As an example, despite being both classified as
prescriptive analytics, it is undoubted that considerable differences exist
between an analytics application for a warehouse location problem and an
assisted order picking system. While the former involves a planning horizon
of several years in advance and is hence confronted with high uncertainty
in terms of future demand patterns, the latter is a stationary optimization
problem with all relevant information available to provide a determinis-
tic, optimal solution. For this reason, we bring forward a new taxonomy
that complements the classic view with a more decision problem-oriented,
functional scope. A closer look at the recent literature suggests three differ-
ent planning levels on which companies employ such data-driven decision
support systems.

On the most aggregate level, firms use data analytics to support decisions
on the organizational or inter-organizational level. These strategic decisions
are taken a very long time in advance, and hence, relevant data is considered
only on a very aggregate level. Decision support systems for this setting have
been developed over decades within the operations management community.
Example applications in an industrial context can be found as solutions to
classic problems such as supplier selection or network planning.

In recent years, companies tremendously grew their capabilities in
collecting and storing their internal transaction-level and process data.
With the availability of such detailed and near-real-time data, analytics
can also be employed for a different set of problems. Most of the recently
developed solutions provide decision support on a departmental level helping
mid-level management to optimize the operational planning for one or more
teams. Representative tasks include production scheduling, maintenance
management, or warehouse operations with a tactical planning horizon.
Going forward, increasing amounts of sensor and real-time transaction data
will enable decision support to not only guide planning tasks but to optimize
the operational work of individual employees, e.g., optimize the execution
of single manual tasks in production environments. Figure 4.1 provides an
overview of this classification scheme.
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• Supply Chain Opti-
mization (Chae and
Olson 2013)

• Demand Forecast-
ing (Aburto and
Weber 2007; Wu
and Akbarov 2011)

• Supplier Selection
(Tseng et al. 2006;
Guosheng and Guo-
hong 2008; Wu
2009)

• Capacity Manage-
ment (Karabuk and
Wu 2003; Ho and
Fang 2013; Eicke-
meyer et al. 2014)

Organizational Level
• Predictive Mainte-

nance (Angalaku-
dati et al. 2014)

• Inventory Manage-
ment (Huang and
Van Mieghem 2014)

• Warehouse Op-
erations (Chen
et al. 2005; Jane
and Laih 2005)

• Production Man-
agement (Song
et al. 2005; Stein
and Flath 2017)

Departmental Level
• Marketing Automa-

tion (Reutterer et
al. 2016)

• Lead Generation
(Moro, Cortez, and
Rita 2014)

• Assisted Order
Picking (Schwerdt-
feger et al. 2011;
Reif and Günthner
2009)

Individual Level

Data Granularity

Figure 4.1: Taxonomy of data-driven decision support

4.2.2 Analytics for Organizational-Level Decision
Problems

Supporting managerial decision making through mathematical modeling has
been the goal of operations research for a long time. To illustrate this, we
look at analytics solutions for organizational decision making in forecasting,
supplier selection, and capacity management.

In the context of supply chain management, accurate forecasting of
demand plays a major role in the efficient management of operations. As
the knowledge about end consumer demand is distorted due to asymmetric
information, manufacturers typically face substantial variations in demand
and hence have to plan their production based on highly inaccurate demand
forecasts. To improve forecasting performance facing such distorted infor-
mation, Carbonneau, Laframboise, and Vahidov (2008) compare different
advanced analytics approaches with traditional forecasting methods. They
find that these new machine learning models excel in terms of performance.
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To better capture time-series information in comparison to a pure machine
learning-based approach, Aburto and Weber (2007) propose a hybrid system
which combines Auto-regressive Integrated Moving Average models with
neural networks to forecast demand. In the context of manufacturing/war-
ranty providers, Wu and Akbarov (2011) use a system based on support
vector regression to better forecast warranty claims.

Several authors (Aviv 2007; Cui et al. 2015) argue that by combining
information from different players along the supply chain, overall perfor-
mance can be improved. To integrate data from these complementing
sources, Chae and Olson (2013) propose a framework for a business analyt-
ics solution. They identify three central capabilities of such a tool, namely
data management, analytical processing, and supply chain performance
management.

Different application areas are purchasing and sourcing. Tseng et
al. (2006) develop a machine learning approach to guide this process. They
test their model in a supplier selection setting and derive a set of decision
rules and a preferred supplier prediction model. They argue that supply
chain experts would be able to apply those decision rules and hence improve
the supplier selection process. Guosheng and Guohong (2008) employ a
similar approach based on support vector machines to evaluate and select
suppliers based on a predicted score and compare their performance to a
different selection method. Wu (2009) proposes a hybrid model consisting
of data envelopment analysis, decision trees, and neural networks to assess
supplier performance.

Another important planning problem affecting the organization is the
determination of optimal capacity levels. Karabuk and Wu (2003) introduce
an approach for capacity planning in the semiconductor industry. They
consider uncertainty about both demand and capacity, as well as strategic
capacity decisions and operational capacity adjustment options through
a recourse variable. Their model includes demand forecasting as well as
proactive market development strategies to maximize revenue. Ho and
Fang (2013) focus on the capacity allocation problem for a manufacturing
system that produces multiple products. They provide a mathematical
model solving this problem based on marginal profit, inventory holding and
shortage cost, loss of excess production, and market demands. Eickemeyer
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et al. (2014) show that data-driven models can support organization-wide
capacity management decisions. Their approach builds upon a data fusion
strategy with the help of Bayesian networks to integrate available informa-
tion into the model as soon as available. They evaluate their solution with
empirical data.

4.2.3 Analytics for Departmental-Level Decision
Problems

According to the literature review of Choudhary, Harding, and Tiwari
(2008), analytics applications can contribute to various enterprise functions
such as design, logistics, production, and marketing.

Amongst these, a particularly prominent area is maintenance man-
agement. The idea of monitoring machines to assess and predict their
degradation until a failure occurs has been present for decades (e.g., Lé-
tourneau, Famili, and Matwin 1999; Grall, Bérenguer, and Dieulle 2002;
Dieulle et al. 2003). However, only with the widely available sensory infor-
mation generated by modern production equipment, predictive maintenance
systems that can link this real-time condition monitoring information with
degradation information are being established. This development provides
planners with an improved forecast of maintenance demand and allows
optimized scheduling of maintenance crews. Raheja et al. (2006) propose a
predictive maintenance system architecture for such a prescriptive solution
in maintenance management. In a gas pipeline maintenance context, An-
galakudati et al. (2014) develop a prescriptive maintenance management
solution to schedule maintenance activities and allocate maintenance re-
sources to these events for a large gas utility. Stein and Flath (2017) apply
advanced analytics to predict manufacturing failures in a production system.

The efficient use of available capacity is another carry-over from the
organizational level. Chen et al. (2005) analyze the incoming order process
to derive decision rules for efficient order batching. Concerning inventory
management, the analysis of available data related to the actual demand
provides an enormous potential for cost reductions. Jane and Laih (2005)
show how cluster algorithms can be used to balance the workload among
pickers in a pick-by-light system in order to reduce the time needed for
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fulfilling each requested order. Huang and Van Mieghem (2014) analyze
click-stream data for a company featuring its products online but selling
them offline. By matching the collected online data with offline purchases
and integrating the information into a dynamic decision support model for
their inventory management, they achieve cost reductions between 3 and
5% in specific scenarios. Another contribution to the data-driven inventory
management literature is due to Beutel and Minner (2012): They propose a
regression-based decision support system that directly links auxiliary data
to the final inventory decision whilst balancing overage and underage costs
for excess respective missing units.

In production management, analytics can be employed to find decision
rules to schedule production on a single machine based on raw production
data (Li and Olafsson 2005). Song et al. (2005) apply machine learning to
assess the feasibility of resource usage plans in re-manufacturing settings.
They show that their approach is viable in large-scale problems and enables
firms to determine good plans even in very complex settings. Another
sector facing complex resource conflicts is the semiconductor industry. To
achieve high manufacturing performance against changing environments,
appropriate dispatching rules have to be selected. Wang, Chen, and Lin
(2005) show that a stack of machine learning models can be used to encounter
this task. They apply a decision tree model to select the most suitable rule,
while a neural network predicts the expected performance of the selected
rule.

4.2.4 Analytics for Individual-Level Decision Problems

Marketing was one of the first functions to embrace analytics on the indi-
vidual level. The notion of “marketing automation” summarizes decision
support systems in this domain. These systems include tools assisting or
automating processes on the level of an individual employee (Heimbach,
Kostyra, and Hinz 2015). A prominent example are recommendation engines
automating customer support processes. Reutterer et al. (2016) identify
measures to analyze multi-category purchase histories and provide customer
relationship agents with recommendations for targeted marketing actions
in the grocery sector. Moro, Cortez, and Rita (2014) introduce analytics
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to predict the success of marketing calls for the banking industry based on
features about the targeted customer as well as details about the proposed
offer. They compare the performance of different machine learning models
for the prediction and point out the importance of such a decision support
tool for client selection. Logistics is another department with the potential
to leverage decision support systems on an individual level. While pick-by-
light systems enable more efficient warehouse operations on an individual
level, additional efficiency gains can be enabled by pick-by-vision systems
(Schwerdtfeger et al. 2011). Reif and Günthner (2009) show that providing
workers decision support via head-mounted displays significantly reduces
the required time for the picking process. However, we can note that while
prescriptive analytics are commonly applied for larger planning problems
on a group or departmental level, only a few approaches can be found
that provide decision support on a workplace level guiding employees for a
specific task. Furthermore, these decision support systems currently focus
mostly on non-manufacturing supporting functions. Our work contributes
to the literature by establishing and evaluating an integrated prescriptive
analytics framework for manual processes in manufacturing environments.

4.3 Case Study Overview and Research
Approach

We design an analytics-aided production system on the example of the
vacuum resin infusion process (Williams, Summerscales, and Grove 1996).
This process is of particular importance in practice as it is used in a variety
of high-value manufacturing industries (e.g., automotive, aerospace, marine,
infrastructure). During infusion the part molds are placed in vacuum
bags, subsequently evacuated and infused into the workpiece. The final
part is removed after the resin is fully cured. During the process, any
leakages lead to sub-par product quality, which is why their detection
is of the highest priority. Yet, leakage scanning is performed manually
with ultrasonic microphones or thermal cameras. As the time required
for the manual search is convex-increasing in the dimensions of the search
area, the production of large components (e.g., aircraft wings) becomes
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extremely expensive. To assist manufacturing processes in general and
improve the leakage scan process in particular, we design and evaluate an
analytics-aided production system. To this end, the original approach is
augmented by generic, multi-use vibration sensors collecting data during the
production process. Subsequently, we apply machine learning algorithms
to train predictive models based on the sensor data. The output of these
models is used to derive an individual prediction for a given search task.
Subsequently, an optimized searcher path in the spirit of Trummel and
Weisinger (1986) is determined using a set of heuristics. This way, data is
leveraged to achieve better decision making. We illustrate and evaluate our
conceptual approach through a laboratory experiment replicating the leak
prediction process and a simulation study accounting for varying search
strategies and parameterization. To tackle the problem at hand, we apply
a design-oriented research approach and position our artifact design along
with the guidelines put forward by Hevner et al. (2004).

• Problem Relevance: In order to remain competitive, manufactur-
ing companies are hard-pressed to improve the efficiency of manual
processes. The suggested analytics-aided production system is one
possible way to improve decision making on this level based on novel
data sources.

• Research Rigor: We base our artifact on different existing models
and research articles. Following Grabocka, Wistuba, and Schmidt-
Thieme (2015) we apply polynomial curve fitting for the feature
generation. The forecasting module deploys several well studied white-
box and black-box machine learning models, while the prescriptive
module showcases several policies based on the optimized searcher
path (Trummel and Weisinger 1986).

• Design as a Search Process: To design an analytics-aided produc-
tion system, we follow the “Cross Industry Standard Process for Data
Mining” (Chapman et al. 2000). We first present our experimental
setup and the resulting raw data. Second, we elaborate on the data
preparation phase. This phase includes the cleaning of the data set, as
well as the development of new predictive features. Third, we model
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the location problem at hand and apply various machine learning
techniques to the one with the highest predictive power. Subsequently,
we move forward from predictive to prescriptive analytics. To this
end, we show how the available information can be operationalized in
optimized search policies.

• Design as an Artifact: We design an IT artifact with two modules.
The forecasting and the policy module are described in detail and
implemented using R.

• Design Evaluation: We assess the artifact in a simulation study
using real-world leakage and sensor data and different parameter
scenarios.

• Research Contribution: The main contribution of this research
is the transformation of raw sensor data into solid decision support
utilizing big data analytics as well as operations management tech-
niques. This research informs technical as well as managerial audiences.
While the formal models may primarily appeal to audiences with a
more technical focus, the economic results address managers and
policymakers.

The over-arching structure of our study is shown in Figure 4.2.

4.4 Experimental Design and Data
Understanding

We present the development and evaluation of a prototype for data-driven
decision support on the individual workplace level. Our application is
motivated by the vacuum resin infusion process as described above and
uses sensor data to improve the detection of minor leaks within the utilized
vacuum bags.

4.4.1 Experimental Design and Setup

Following Basili (1996), the quality and efficacy of a system have to be
rigorously demonstrated by means of an appropriately selected evaluation
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Figure 4.2: Research approach

method. Our case study relies on an experimental replication of the real-
world vacuum resin infusion process to collect data and evaluate our data-
driven leakage detection approach. To this end, we apply eight multi-
use structure-borne noise sensors between a rectangular part mold of size
120cm ¨ 60cm and the vacuum bag to measure vibrations on the bag. The
experimental setting is illustrated in Figure 4.3.

Mold

Vacuum Bag

Sensors

Vacuum Pump

Figure 4.3: Experimental setup

Subsequently, the bag is punctured and the evacuation process is started.
During the evacuation, the vibrations on different positions of the bag are
measured by the sensors and the readings are recorded with a very fine
granularity of 4,000 readings per second. In total, we repeat the evacuation
process for 166 holes at different locations to collect the final data set. The
absence of a leak is trivially detected by noticing that the bag pressure
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remains constant. Therefore, we did not have to consider scenarios without
leaks.

4.4.2 Data Understanding

This phase involves describing and exploring the data set at hand. We rely
on a lightweight SQLite (Hipp and Kennedy 2016) database to store the raw
data collected from the experiment. Given the number of different sensors
and their extremely high temporal resolution, the complete data table spans
12 variables with roughly 10 million rows. Each observed leak has a unique
id leakid. The sensor readings of sensor n at time t are stored in the variable
sn. Additionally, to facilitate supervised learning, the coordinates of the
leak are stored as label variables. Table 4.1 summarizes the variables and
the according data types.

Table 4.1: Data properties

Variable Data Type Description

leakid int Unique observation id for each leak

sn num Reading of Sensor n. One variable for
each sensor

x num x-Axis leak coordinate

y num y-Axis leak coordinate

t time Time (nano seconds) of the sensor reads
in variables sn

In order to get a better picture of the data set at hand, examples of the
raw data and the corresponding process steps are shown in Figure 4.4. The
y-axis shows the readings of the sensors. A value of 0 indicates no vibrations
while the value -5 is the maximum vibration level that can be recorded by
the sensor. Values outside of these boundaries can be considered noise as
the sensors in use can not detect them. We see from the figure above that
there are no vibrations when the recording of the sensor data is started.
Vibrations peak as soon as the evacuation process begins and come back to
halt during the process. The time needed for each sensor to react to the
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evacuation depends on the location of the observed leak.

Figure 4.4: Exemplary sensor readings

4.4.3 Data Preparation

In this phase, the final data for the development of the machine learning
models is compiled. The expected quality of the subsequent modeling efforts
is constrained by the quality of the data preparation (Zhang, Zhang, and
Yang 2003). Extracting the relevant information from the sensor reads is a
non-trivial task due to the data volume and the inherent noise. Because of
its complexity, on the one hand, and its inherent importance on the other,
data preparation regularly requires the greatest efforts within a data mining
project (Yan, Zhang, and Zhang 2003). Against this backdrop, we follow a
two-stage approach.

We initially focus on data pre-processing tasks to handle technical
issues such as missing or noisy data (Yu, Wang, and Lai 2006). The
reasons for these issues lie in the experiment execution. Due to the highly
accurate sensors, even minor disturbances of the experiment setup can
result in significant noise in the readings. During the experiment, we
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experienced problems with a change of the room temperature due to bright
sunshine, which corrupted the data. By visualizing the data, we identified
the corresponding 33 invalid observations and removed them from the data
set. As we want to observe the evacuation process, the sensor readings
recorded before the vacuum pump is started need to be removed. To this
end, we filter and remove all data which is recorded before all sensors reach
their minimum level. Subsequently, the time variable t is normalized to
ensure comparability across experiment runs.

The second stage of the data preparation phase is the data transfor-
mation or feature engineering stage. Following Domingos (2012), this is
another decisive success factor of any machine learning project. In the
problem at hand, each sensor reading can be viewed as a potential feature.
However, given the massive number of readings (compared with the number
of trials), we need to condense the available information into a compact
feature set. This aggregation step has to identify the characteristic sensor
profiles for every sensor and each leak. These profiles describe the curves in
terms of a limited set of variables. Note that the idea is not to replicate the
curve in the spirit of curve-fitting but rather to summarize it with a limited
but not too limited number of features. Consequently, fitting logarithmic or
square root functions is of limited help as there are too few free parameters.
Instead, we follow Grabocka, Wistuba, and Schmidt-Thieme (2015) who
demonstrate that polynomial curve fitting is a balanced and at the same
time computationally efficient approach to extract information from time
series with high dimensionality. The time series of the sensor readings sn is
defined as the sum of the products of the coefficients β and the predictor
values t (see Equation 4.1). As time series are described, the time of the
sensor readings t is used as predictor value. Depending on the degree d of
the polynomial, d` 1 coefficients β P Rd`1 are required.

ŝn “
d
ÿ

j“0
βjt

j (4.1)

Besides computational efficiency, the proposed method offers additional
benefits. On the one hand, this approach is generic and not limited to the in-
troduced use-case. Hence, a successful implementation can be transferred to
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other applications with limited effort. On the other hand, polynomial curve
fitting offers the possibility to adapt the number of features dynamically.
Where a higher degree will achieve a better fit of the characteristic sensor
profiles to the real data (Figure 4.5), this entails the risk of over-fitting the
machine learning algorithms to the training data. To mitigate this risk while
still tapping into all available information, the degree of the polynomial
needs to be chosen in accordance with the number of observations. Due to
the limited size of our study, we do not explore this design choice and fix
the degree at four.
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Figure 4.5: Different levels of polynomial curve fitting

The proposed method condenses the information resulting in a significant
reduction of the data set. Initially, the raw data features a total number
of |T | ¨ |N | data points per observed leak. In contrast, the characteristic
sensor profiles describe each sensor curve using the d` 1 coefficients of the
polynomial. Hence, the size of the data is reduced to pd ` 1q ¨ |N | data
points per leak. In our example with eight sensors over roughly 65,000
timestamps, this implies a reduction of over 99%.

In the following sections, we leverage this prepared train data set to
develop a collection of predictive models that help to forecast the leak
position. To this end, we apply various white-box and black-box machine
learning algorithms and evaluate their performance. Subsequently, several
policies are developed to determine optimized paths yielding prescriptive
decision support for the search task.
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4.5 Predictive Modeling: Locating the Leak
During the modeling phase, a predictive model is built for the problem at
hand. Our goal is to determine the leak locations. To this end, we apply
appropriate prediction techniques. Our data set is a case of labeled training
data (leak positions are known across the training set). Hence, we can apply
supervised learning techniques to forecast the leak locations.11 As positions
can be characterized by their spatial coordinates, we can further refine
the localization problem as two regression tasks geared towards forecasting
continuous response variables. The first model predicts the first coordinate
of a leak from the features, i.e., the set of the characteristic sensor profiles.
Naturally, the same features can be used to predict the second coordinate.
However, in order to incorporate additional information in the model and
increase the predictive power, one should additionally embed the prediction
for the first coordinate (e.g., x̂) as an additional input variable to incorporate
dependencies between the coordinates. Our experimental setup features
more sensors along the x-axis and we therefore first predict the x and then
the y coordinate. We approach this nested regression task by first fitting
white-box models which offer greater transparency with respect to the rules
used to generate predictions. Subsequently, we apply black-box models,
which can often help to further increase the prediction quality at the cost
of reduced interpretability.

4.5.1 White-Box Models

The first white-box method we use is a multiple linear regression. This
method established by Galton (1886) more than 200 years ago is probably the
best studied form of statistical learning (Friedman, Hastie, and Tibshirani
2001). It rests on the assumption of a linear relationship between a set of
input variables and a single output variable. The linearity assumption is
11The problem seems to be suited for application spatial regression techniques. However,
this approach requires the availability of independent variables over the whole search
space. In our experimental setup, we only record sensor readings at the edges of the
mold. Furthermore, Tobler’s law of spatial auto-correlation (Tobler 1970) is violated in
the experimental data: In each run, there is a single leak and thus a leak at a given
point has no direct effect on the probability of a leak occurring in neighboring positions.
Hence, classic spatial regression approaches such as Kriging or geographically weighted
regression cannot be applied for the problem at hand.
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simultaneously the major strength and weakness of this method. On the
one hand, it renders the model very simple to understand and efficient to
learn as well as robust to outliers. On the other hand, it constrains the
predictive power of the model, as many statistical relations are nonlinear.
To overcome this shortcoming, we consider a decision tree model. Decision
trees predicting continuous variables are also referred to as regression trees.
They map multiple input variables with an output variable through a tree
structure. Thereby, they are able to take account of potential non-linear
relationships in the data. Basic decision tree algorithms tend to select
variables with many possible splits or missing values, leading to reduced
predictive power of the model. To mitigate this selection bias, we apply
conditional inference trees which use significance tests in order to select
variables (Hothorn, Hornik, and Zeileis 2006). Figure 4.6 visualizes one
of these trees predicting the leak’s x-coordinate. For each leaf, we report
the point estimate as well as a boxplot visualization of the underlying
distribution of realizations. While this model class has, in general, a higher
predictive power than linear regression, it is also prone to fail to generalize
from the training data (Quinlan 1986). Finally, we apply a Gaussian process
model as the third white-box method. This model class assumes that the
output variable follows a Gaussian process fully defined by a mean and
a covariance function. The covariance function expresses the expected
covariance between the output variable and the input variables. Hence,
linear and non-linear relationships in the data can be learned. These models
are better suited for complex data compared to linear regression models.
Additionally, the prediction of these models does not only provide a point
estimate but also yields a quantification of uncertainty (Rasmussen 2006).

4.5.2 Black-Box Models

We first consider support vector machines. Here, each observation is viewed
as a vector of all input variables. During the model training, the hyper-plane
that best separates the different output variables depending on the input
vectors is determined. In order to incorporate non-linear relationships, the
dimensionality of the input vector is augmented using the kernel-trick if no
hyperplane separating all different output variables exists. A major benefit
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Figure 4.6: Regression tree for x-Axis

of support vector machines is the good generalization ability and therefore
the low susceptibility to over-fitting even for small training data sets (Smola
and Schölkopf 2004).

Additionally, we implement a Bayesian regularized neural network. Just
as standard artificial neural networks, these models consist of several layers
of artificial neurons. Each neuron is connected with many other neurons and
processes incoming information and propagates the results to other neurons.
Regular neural networks are powerful and very adaptable but tend to be
prone to over-fitting. Bayesian regularized neural networks partly mitigate
this risk by restricting the magnitude of the weights for each neuron (Foresee
and Hagan 1997). The last black-box model we use is a generalized boosted
regression and belongs to the class of gradient boosting machines. This
model class combines many weak learners to a strong predictive model in a
sequential fashion. This way, it is able to alleviate some of the shortcomings
of the weak models while increasing the predictive power. On the downside,
gradient boosting is prone to over-fitting (Friedman 2002).
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Except for the linear regression and the Gaussian process, a set of
hyper-parameters has to be defined in advance to train the models described
above. These parameters contain, but are not limited to, the depth of
the regression tree, the polynomial degree of the kernel for the support
vector machine, the number of layers and neurons of the artificial neural
network and the number of boosting iterations for the gradient boosting
machine. Choosing a suitable parameter set is essential as the quality of
the models strongly depends on them. Traditionally, performing hyper-
parameter optimization was a time-consuming task as only a few trials
where possible due to computational limitations (Bergstra et al. 2011). With
increasing available computational power, more model training iterations
can be performed. We follow Bergstra and Bengio (2012) and use random
search hyper-parameter optimization, which was shown to be a very efficient
method.

4.5.3 Training and Evaluation

We split the data set into 75% training and 25% test data. Model training
is performed using 10-fold leave group out cross-validation. Here, a group
of observations is randomly selected from the training set and the model
performance is evaluated using the left out observations. This process is
repeated ten times to avoid over-fitting to the data and hence to increase
the generalizability of the predictor. Conversely, the test set is never seen in
the training phase and only used for the final evaluation shown in Table 4.2.
The model quality is evaluated by means of the median absolute prediction
error in comparison to the benchmark, which is calculated as the mean
of the x- and y-coordinates of the training data. This method allows us
to incorporate all information on non-centered data and strengthen the
benchmark performance for a fairer comparison.

The evaluation shows that all models are able to outperform the naïve
benchmark greatly. For the x-axis, the gradient boosting machine achieves
the best results. While the complex black-box models perform best on the
x-axis, the lightweight Gaussian process provides the best prediction on the
y-axis. We surmise that this is due to the nesting of x-predictions within
the y-forecast. Finally, we combine these two models and use a nested
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Table 4.2: Relative error compared to benchmark

Model x y

Linear Regression 0.549 0.416

Regression Tree 0.191 1.291

Gaussian Process 0.259 0.109

Support Vector Machine 0.348 0.377

Neural Network 0.350 0.462

Gradient Boosting 0.106 0.261

two-staged machine learning model to predict the coordinates of the leaks.
This approach has a mean error of 13.62 cm and a median error of 6.39 cm,
implying an error reduction of 56% for the mean and 74% for the median
compared to the benchmark. The results are visualized in Figures 4.7a and
4.7b. Here, the black circles show the actual location of the leaks while the
connected grey circles symbolize the predicted locations.
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Figure 4.7: Results
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4.6 Prescriptive Modeling: Optimizing the
Search Process

Our above analysis yields a predictive model for forecasting the leak location
from the vibration sensor readings. This establishes a data-driven predictive
decision support tool for the manual search process. However, our ultimate
goal is to offer prescriptive decision support. To this end, the predictive
model needs to be operationalized by means of a search policy. In the
following, we develop a set of prescriptive search policies and compare them
to simpler benchmark strategies.

4.6.1 Search Duration Problem and Simulation

To evaluate the efficacy of decision support for a search process, we need
to determine the time until leak detection. This corresponds to the second
statement of the optimal searcher path problem put forward by Trummel
and Weisinger (1986).12 Denoting the probability that search path ψ finds
the leak by time k as Pkpψq, they established that the minimization of the
expected search time

min
ψPΨ

8
ÿ

k

k pPk pψq ´ Pk´1 pψqq

over the set of possible search paths Ψ is NP-hard. Consequently, we
do not pursue an optimal solution to the problem but rely on heuristic
approximations.13

In order to simulate a physical search process, we discretize the rect-
angular mold by splitting the surface into a grid of 72 square fields with a
width of 10 cm each. Based on this search area, we compare search policies
by calculating the total time until leak detection t. As shown in Equation
4.2, this time can be separated into the time for actually searching the grids
and the time to move between the grids. The time spent searching the
grids is calculated as the search time ts times the number of searched grids
12The alternative formulation of maximizing the likelihood of detection is not applicable
in our manufacturing scenario.

13Another difference to this canonical formulation is the absence of step-level probabilities
due to our point forecasts.
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n. The total time spent moving is the sum of the travel time tt times the
euclidean distances di,j between the grids searched on each policy’s route R
until the leak is detected.

t “ ts ¨ n`
n
ÿ

i“2
tt ¨ dRi´1,Ri

(4.2)

We repeat this procedure for all leaks in our data set and their corre-
sponding position forecasts.

4.6.2 Search Policies

For our comparison, we consider a set of six policies for the searcher path
determination. These policies can be differentiated depending on the way
they translate the forecast into search paths.

The first two policies correspond to the current industry practice and
serve as benchmark strategies. They do not account for any forecast
information on the leak location and collapse to simple sweeps across the
grid. To this end, both policies start the search in a random corner. From
here on, the first strategy performs a simple sweep across the grid (Figure
4.8a). This sweep minimizes the walkway, which is one component of the
expected search time. Still, this policy will often result in prolonged search
times when the starting point is on the wrong side of the grid. In contrast,
the second benchmark strategy performs a diagonal search across the grid.
This strategy will faster search the grids close to the starting point, while
the resulting search path will be longer (Figure 4.8b).

The next step is to integrate the leak position forecast from the predictive
model into the search policies. In these informed search policies, the naïve
sweeps are started in the corner closest to the predicted leak position. This
approach retains the short walkways as well as the simple path structures
of the benchmark approaches while incorporating information on the leak
position. The informed sweep and the informed diagonal sweep are visualized
in Figures 4.8c and 4.8d.

Finally, we develop two strategies to approximate the optimal searcher
path, starting from the forecasted leak position. The first policy (Figure
4.8e solves a TSP problem originating at the leak position to determine the
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shortest route visiting all remaining fields of the grid. While this policy will
result in a walkway minimizing path, it will typically visit fields close to
the predicted location relatively late. To overcome this issue, the second
prescriptive policy (Figure 4.8f) moves in circles around the forecasted leak
location. Thereby, fields close to this position will be visited first. However,
this faster coverage of close positions comes at the cost of longer paths
through the whole grid.

Start Forecast

(a) Shortest path sweep

Start Forecast

(b) Diagonal sweep

Start Forecast

(c) Informed sweep

Start Forecast

(d) Informed diagonal sweep

Start Forecast

(e) TSP search

Start Forecast

(f) Circle search

Figure 4.8: Illustration of search policies
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4.6.3 Evaluation

Considering the total time (searching plus walking) until leak detection
measure, we compare the efficiency of the search process based on the
different decision support instances in different settings. In particular,
we want to account for the fact that depending on the scenario at hand
searching or moving may be relatively more time-consuming. To this end,
we report normalized total search times using an increasing ratio of search
to travel times. The performance of the different policies is visualized in
Figure 4.9.

The two benchmark strategies perform worst in all evaluated
parametrizations. In settings with relatively low search times, the shortest
path property of the simple sweep allows this strategy to outperform the
diagonal sweep. On average, the diagonal sweep has 33% (ss “ 0) and 29%
(ss “ 1) longer search times. However, the diagonal sweep can leverage its
faster coverage property in the high search time settings and outperforms
the simple sweep by 7% (ss “ 5) and 15% (ss “ 10).

The informed search policies are able to leverage the additional in-
formation and outperform the benchmarks in all settings. Unlike in the
uninformed case, the informed diagonal sweep shows mostly better per-
formance than the informed simple sweep except for the ss “ 0 setting.
In all other settings, the faster coverage of the relevant search area can
be leveraged better than the shorter path length leading to search time
reductions of 51% vs. 45% (ss “ 1), 57% vs. 51% (ss “ 5) and 60% vs.
52% (ss “ 10).

Analyzing the prescriptive search policies, the importance of the coverage
property becomes even more evident. While both policies outperform all
other policies in each setting, the circle sweep remains the best strategy
across all search times. On average, it leads to search time reductions of
82% vs. 54% (ss “ 0), 83% vs. 56% (ss “ 1), 85% vs. 59% (ss “ 5) and
86% vs. 61% (ss “ 10) compared to the simple sweep benchmark.

Aggregating the above results (Table 4.3), we conclude that the optimal
selection of the search policy depends on the grade of available information.
Without available data, the simple benchmark strategy should be preferred
in settings with relatively high travel and low search times (e.g., leaks are
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Figure 4.9: Search policy comparison

relatively easy to detect). The performance gains of the informed policies
emphasize the potential value of incorporating predictive information in shop-
floor processes. If sensor data is available and search times are not negligible,
the diagonal policy should be selected. While the prescriptive search policies
require additional support tools to guide the searcher, our results indicate
that these tools might be worth the effort in many settings. Especially the
circle sweep leads not only to significant search time reductions but also
to reduced process variability. Hence, the proposed prescriptive decision
support tool is able to decrease throughput times while increasing process
stability in the shop-floor setting at hand. This finding is of particular
importance for highly synchronized production lines whose performance
can significantly deteriorate in the presence of process time variability (Tan
et al. 1998).

Our results illustrate the value of incorporating sensor information in
decision support. They also show that the predictive benefits of an improved
point forecast can be sustained even when considering the actual underlying
business process. Furthermore, we see promising evidence that there is
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Table 4.3: Aggregated model performance

Policy Mean Change

(vs. Simple Sweep)

Circle Search -84%

TSP Search -57%

Informed Diagonal Sweep -53%

Informed Sweep -50%

Diagonal Sweep +10%

an actual need for combining predictive analytics on the one hand and
operations management techniques on the other hand in order to develop
prescriptive decision support systems which can fully leverage the potential
of big data.

4.7 Conclusion
Our research addresses the interface between predictive analytics and deci-
sion support systems. Having reviewed the literature on business applica-
tions of data-driven decision support, we highlighted the relative absence
of decision support on the individual level in the manufacturing sector.
To explore the potentials of such systems in this field, we augmented a
labor-intensive manual process from high-tech manufacturing with highly
sensitive sensors. Based on this setup, we illustrate the main steps and
major challenges in developing and instantiating a data-driven prescriptive
decision support system. By establishing a scalable and generic feature
generation approach and using it in combination with techniques from
statistical learning, we are able to achieve a very accurate localization of
the leak. Recognizing that mere forecast information cannot be evaluated
with respect to business value, we subsequently embed the problem in an
operations management analysis of the underlying searcher path problem.
We benchmark predictive and prescriptive search strategies against a naïve
sweep strategy and find that sensor-based decision support dramatically
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reduces search times as well as the variability of the process.

4.7.1 Research Contribution

Based on the above findings, we posit that analytics information systems can
and should play a greater role in assisting manual labor in manufacturing
shop-floors. In particular, we make the following contributions to practice
and theory: For practitioners, we highlight typical steps in developing a
data-driven decision support artifact. In particular, we want to underline the
generality of our approach: Although we showcased this analytics solution
by means of the vacuum resin infusion process, there are many other settings
which rely on extensive manual search activity. With the availability of
appropriate training data, the feature generation and learning framework,
as well as the prescriptive analytics component for determining search
paths, should be straight-forward to transfer and implement. Concerning
contributions to theory, we conceptualized a complementary categorization
of analytical decision support applications along with the organizational
scope. Thereby, we highlighted a current lack of manufacturing applications,
which is a theoretical motivation for our case study. Furthermore, we put
forward a simple feature generation approach for continuous (sensor) data
based on the results from polynomial fitting. Finally, by combining the
classic optimal searcher path problem from operations research with methods
from statistical learning, we help to bridge the gap between optimization
and data analytics. This is crucial for the establishment of prescriptive
analytics solutions.

Faced with progressing digitization across many domains and functions
the importance of analysis tools and application solutions extracting business
value from these new data sources will continue to increase.

4.7.2 Limitations and Opportunities for Future Research

Clearly, an experimental analysis is subject to certain limitations. Due to
the relative complexity and costliness of the recording process, the number
of observations of our test data is somewhat limited. To ensure greater
reliability of the results, an application in a real process setting would require
additional trials before implementation. Yet, our experiment highlights the
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fact that big data does not always originate from high process volume but
can also be a consequence of high-resolution recording. Another limitation
concerning generalizability arises from the reduced size of the experimental
setup. Therefore, the tested sensor setup may not be directly applicable
to larger search areas. However, for very large components already small
improvements to leak position forecasts would translate into considerable
absolute search time improvements. Similarly, we only considered test
settings with a single leak which may not be applicable for large components.
To account for multiple leaks, the analytics process would have to adopt
a two-step pattern where first the number of leaks is estimated and then
their relative positions. This offers a promising avenue for future research.
Another research opportunity would be to replace point estimate by a spatial
probability distribution assigning leak probability to individual grid fields.
Such a setup would necessitate a hierarchical search path determination
balancing detours against higher detection probabilities.

Finally, we evaluated the decision support tool only by means of a
simulation analysis. However, the actual implementation could be a major
roadblock for bringing advanced decision support into practice as for example
operators may not properly execute the proposed search routine leading in
turn to deteriorated performance. In particular, this may imply a relative
advantage of simpler policies (e.g., informed diagonal sweep) over more
complicated ones. Therefore, future research needs to explore the intricacies
of designing helpful interfaces (e.g., vision or speech) for embedding decision
support in manual operations.
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5 Data-Driven Sales Force
Scheduling

Across various industries, companies need to decide how to best employ
their capacity-constrained sales force. This means having to decide which
prospective projects to primarily target in order to maximize expected
future profits. Typically, these projects not only differ in terms of their
profitability, but also have distinct characteristics, e.g., the specific type of
product or service, the location, or past interactions with the prospective
customer. It is reasonable to assume that these characteristics are predictive
of the companies’ chances of winning a particular project. In turn, these
characteristics may also help quantify to what extent exerting additional
sales effort influences the probability of winning a tender for a project
(“the uplift”). This way, one can determine the marginal benefit of a sales
representative visit to a potential customer. Building on top a large data
set of successful and unsuccessful projects, we combine machine learning
techniques for uplift prediction with routing and scheduling models to
establish a novel data-driven approach to sales-force scheduling. In particular,
this approach accounts for the fact that uplift predictions are imperfect and
that the arising uncertainty needs to be considered when scheduling a sales
force.14

14This working paper is currently under preparation for publication (Stein et al. 2019).
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5.1 Introduction
In many industries (e.g., pharmaceuticals, construction, industrial services)
companies spend significant shares of their marketing budget on sales force
activities. To plan and schedule the activities of its sales force, companies
would like to identify and prioritize those projects where additional sales
efforts lead to the highest additional expected revenues. In recent years
companies have reduced the size of their sales teams and, at the same
time, have invested into digital technologies to improve the efficiency of the
remaining sales agents (Zhang, Ohlmann, and Thomas 2014), in particular
improved customer targeting (Albers, Raman, and Lee 2015). The typical
result is a “priority list” of the customers who can be converted with the
greatest likelihood. However, such information is insufficient to schedule
sales activities if the required sales effort is not constant across all prospective
projects. A case in point are traveling times in the case of physical sales
meetings. Travel efforts will depend on the geographic location of clients as
well as other scheduled clients. In turn, sales force scheduling becomes a
multiple salesmen routing problem with a revenue maximization objective
and uncertain input parameters. Yet, the required optimization framework
combining prediction and prescription for sales-force management has so
far not been considered in the literature.

In this paper we seek to address this research gap and propose a
data-driven approach for tackling the integrated targeting and sales force
scheduling. Our work is motivated by a research project with DAW, a lead-
ing German manufacturer of paint and coating solutions. In its direct sales
channel DAW interacts with various customers, e.g., painters, processors
or planners, to win tenders for supplying paint, mortar and other related
products to construction projects. The projects not only differ in terms
of their potential revenue, but also have distinct characteristics, e.g., the
specific type of product or service, the project’s location, or past interac-
tions with the involved partners. It is reasonable to assume that these
characteristics are, at least in part, predictive of the companies’ chances of
winning a particular project—even without exerting any additional sales
effort. However, it is difficult to assess the probability of winning a project
depending on its specific characteristics and, more so, to predict, how a
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certain sales activity will increase this probability (the “uplift”)—which
may again be influenced by project-related characteristics.

The scheduling task is not only difficult because the company does not
have accurate information about the uplift, but also, because the capacity
required to visit different customers varies across projects. This is mainly
because the sites of the potential customers are geographically dispersed—
depending on the location of the customer and the home base of a sales
rep, a customer visit can require more or less of the sales reps’ time. Hence,
when scheduling its sales force, the company has to consider that visiting a
“promising" customer far away from the home base may limit the number of
other visits of customers that may seem less promising, but are closer to
the home base.

Throughout the last years, our partner has collected extensive data on
past project tenders (both successful and non-successful). Based on this
data, we develop an end-to-end solution which uses state-of-the-art machine
learning techniques for predicting uplifts and solves a routing problem to
determine the optimal sales force schedule.

A crucial input for solving this problem is the predicted uplift for a
project associated with an additional customer visit. To estimate the uplifts,
we propose a two-step approach: We first train a predictive classification
model to evaluate the probability of winning a specific project. This predic-
tive model is then leveraged as a building block for our uplift approximation
procedure. Under realistic circumstances we cannot assume our uplift pre-
dictions to be perfectly accurate. Consequently, the sales force scheduling
model has to take the residual uncertainty of our uplift predictions into
account. To this end we propose a novel weighting scheme motivated by
decision analysis considerations. Thereby this approach is able to explicitly
control for the level of confidence which is attributed to the predictive model.
We provide an extensive numerical analysis of this proposed scheme. Figure
5.1 summarizes our approach.
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Sales Force Scheduling 
Model (Sec. 3)
• Modeled as team 

orienteering problem

Prescriptive Model (Sec. 6)
• Consider uplift predictions 

and historical accuracy
• Calculate profit-maximizing 

sales force schedule

Predictive Model (Sec. 4)
• Predict probability of 

winning projects
• Determine accuracy of 

predictions

Uplift Model (Sec. 5)
• Translate predictions into 

incremental values of an 
additional visit

Figure 5.1: Overview of the proposed data-driven approach

As a distinctive feature, our solution accounts for the uncertainty in
the uplift predictions. Thereby we acknowledge the inherent probabilistic
nature of the uplift predictions which may cause the sales force scheduling
model to falsely prioritize customers with a too optimistic uplift prediction
over customers with a correct or too conservative prediction. Using real-
world data, we demonstrate the usefulness of this approach which should be
applicable for many other companies facing sales force scheduling problems.
From a more general perspective, our approach establishes a crucial link
between marketing/sales analytics and traditional operations management
problems.

5.2 Literature Review
Our work is related to two distinct literature streams. On the one hand, we
are concerned with a traditional OM problem, the determination of optimal
routes for a group of salesmen, which is similar in structure to a vehicle
routing problem with profits. On the other hand, we draw from research on
machine learning applications in marketing. More specifically, our setting
necessitates uplift modeling techniques to predict the benefit of performing
an action compared to not performing this action (e.g., visiting a potential
customer).

We approach the sales force scheduling problem with a specific version
of the vehicle routing problem with profits (cf. Feillet, Dejax, and Gendreau
2005). In particular we are considering the team orienteering problem
(TOP) (Gunawan, Lau, and Vansteenwegen 2016). In these problems each
stop is associated with a specific profit and capacities are constrained
such that the team cannot “visit” all potential locations. In our specific
setting, a TOP has to be solved for each day in order to generate a schedule
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for a capacity-constrained sales force in the construction industry where
additional profits are associated with a visit to a potential customer. Most
of the work on TOPs assumes that all relevant parameters (including the
profits) are known to the decision maker (e.g., El-Hajj, Dang, and Moukrim
2016; Archetti, Carrabs, and Cerulli 2018). As we will describe below,
the profits in our model are not certain, but rely critically on uncertain
estimates of "uplifts"—that is the increases in the probabilities of winning
projects associated with additional customer visits —that are obtained
by means of predictive machine learning models. Most contributions that
have considered parameter uncertainty in TOPs focused on uncertainty in
service and travel times (e.g., Campbell, Gendreau, and Thomas 2011; Evers
et al. 2014; Papapanagiotou, Montemanni, and Gambardella 2014; Zhang,
Ohlmann, and Thomas 2014), which is less of an issue in our particular
context. However, only few researchers have considered uncertainty with
respect to the profits at each stop which is a crucial issue in our analysis.
Ke et al. (2013) argue that parameter uncertainty unavoidably exists but
oftentimes, reliable intervals of the actual parameter values can be provided.
They adapt the TOP to consider these interval estimates for all model
parameters, i.e., profits, service times, and travel times, and solve the
resulting problem via a robust optimization approach. Ilhan, Iravani, and
Daskin (2008) formulate and solve an orienteering problem that intends
to maximize the probability of collecting more than a pre-specified target
profit level assuming that the collected profits at each individual location
follow a normal distribution. In contrast to these approaches, we estimate
success probabilities for collecting individual profits and propose a novel
way of dealing with the residual model uncertainty. In turn, we put forward
a data-driven, non-parametric approach.

Tulabandhula and Rudin (2014) propose a data-driven approach to
a related problem where the probability of service events in the power
sector has to be estimated in order to optimally route repair crews. They
employ logistic regression to predict the probabilities and by means of
a regularization term derive cost-optimal maintenance policies based on
these predictions. The key difference of our setting to the one examined
by Tulabandhula and Rudin is the possibility of stops not being successful:
Whereas a repair crew in their case will reliably repair an asset, a salesperson
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in our setting can only improve the probability of winning a project. Hence,
we focus on estimating the change of probability as a consequence of such a
stop.

Estimating the effect of sales efforts from historical data is a task the
marketing literature has been concerned with for some time and which
is frequently referred to as uplift or incremental value modeling. There
are numerous approaches for uplift modeling (e.g., Hansotia and Rukstales
2002; Rzepakowski and Jaroszewicz 2012; Guelman, Guillén, and Pérez-
Marín 2015; Zhao, Fang, and Simchi-Levi 2017; Wager and Athey 2018)
which all have in common that they require data from two distinct groups,
the treatment group and the control group. For the treatment group a
certain sales activity has been performed, while this action has not been
taken for the control group. Unfortunately, when dealing with a numerical
action variable such as the number of customer visits, this logic is no
longer applicable because we cannot distinguish between instances with
“action performed” and “no action performed”. Manchanda and Chintagunta
(2004) overcome this problem and derive uplift estimates for numerical
action variables by means of a hierarchical Bayesian count data model.
However, this approach is not applicable if the uplifts depend on complex
interrelations between multiple variables. Therefore, our work builds upon
the methods presented in Foster, Taylor, and Ruberg (2011) and van de
Geer, Wang, and Bhulai (2018) who both deal with the issue of not having
learning data from distinct treatment and control groups. In a clinical
setting, Foster, Taylor, and Ruberg (2011) identify subgroups of patients for
which a specific treatment is particularly successful by predicting individual
treatment effects. To this end, they consider the treatment indicator as
a binary feature variable and learn a random forest model to predict an
individual success probability. To derive estimates for the treatment effect
of a single patient they then calculate the success probabilities for both
expressions of the treatment indicator (1 and 0) and subtract the results.
Recently, this approach was extended to also account for numerical action
variables (e.g., the number of outbound calls) instead of binary treatment
indicators. van de Geer, Wang, and Bhulai (2018) consider the case of a
debt collector who can influence the probability of a debtor settling her
debt through direct interactions between collector and debtor. Similarly
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to Foster they learn a prediction model that considers the number of past
collector-debtor interactions to estimate recollection probabilities of single
debtors. To predict the uplift of an additional interaction – say an additional
call – they recalculate these recollection probabilities with the number of
past collector-debtor interactions increased by one and subtract the base
probability from this estimate. Very recently, a similar approach was applied
in a setting where the value of online advertisements should be predicted by
attributing the conversion credit of customer purchases to advertisements
in different marketing channels (Wang 2019).

In contrast to the aforementioned literature, in our setting it is not
obvious how to translate the predicted uplift values into actionable insights,
i.e., how to derive optimal tours for the salespeople. Therefore, we combine
the uplift estimates with a complex scheduling problem. In turn, our main
contribution is based on the combination of these two literature streams.
Since we cannot assume perfect predictions from a data-driven model, we
provide a new approach to control for the reliability of these uplift values.

5.3 Problem Description
Consider a company bidding for various projects k P K with different
profitabilities χk. Each project k is associated with a customer c P C. Large
construction companies are typically engaged in many projects so that a
customer can be associated with multiple projects. We denote the set of
projects of a particular customer c by Kc. Let pk denote the company’s
probability of winning a project k. To increase the chances of winning a
project, the company can exert sales effort in the form of a visit to the
potential customer. We denote the uplift (e.g., the change in probability of
winning project k) after an additional visit by ∆pk.

The company’s sales force consists of sales reps positioned in a common
home base. Each sales rep has a capacity (e.g., working hours per day),
which is denoted by ηmax. We denote the duration of a visit at customer c by
τ visitc . Furthermore, the travel time between a pair of locations (customers
or home base) i and j is given by τ travelij .

The company’s goal is to determine a sales force schedule π that maxi-
mizes the expected additional profits, denoted by vpπq, associated with this
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schedule. To obtain a schedule π, the company first determines a set of
tours T based on the uplifts ∆pk, the profits χk and the available sales force
capacity. Each tour t P T defines the order in which a sales rep visits a set
of customers on a particular day. We denote by xijt the binary variable
that indicates if the travel segment from location i to location j is a part
of the tour t and by yckt the binary variable that indicates if customer c is
visited on tour t to pitch project k. The decision variables xijt and yckt fully
specify the tours t P T and the subset of customers to be visited. We assume
that each sales rep can perform exactly one tour with capacity ηmax, so the
overall sales force capacity for the next day is |T |ηmax. In a second step,
a sales rep is assigned to each tour t P T . In our analysis, we assume that
sales reps are homogeneous in their preferences and that the uplifts ∆pk
are independent of the sales rep who visits the customer. Therefore, any
sales rep can be assigned to any tour t P T , and a schedule π corresponds
to a set of tours T . To determine the optimal schedule π˚, the company
solves the following optimization problem:

max vpπq “
ÿ

cPC

ÿ

tPT

ÿ

kPKc

∆pkχkyckt (5.1)

subject to the following set of constraints:

ÿ

jPC

x0jt “ 1 @t P T (5.2)
ÿ

iPC

xi0t “ 1 @t P T (5.3)
ÿ

jPC,j‰c

xijt ě yckt @i P C & @k P Kc & t P T (5.4)
ÿ

jPC,j‰c

xjit ě yckt @i P C & @k P Kc & t P T (5.5)
ÿ

sPT

yckt ď 1 @c P C & @k P Kc (5.6)

ÿ

jPC

x0jtτ
travel
0j `

ÿ

iPC

xi0tτ
travel
i0 `

ÿ

cPC,jPC

xcjtτ
travel
cj `

ÿ

cPC,kPKc

ycktτ
visit
c ď ηmax @t P T (5.7)
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Constraints (5.2) and (5.3) ensure that each tour s starts and ends
at the home base 0. Constraints (5.4), (5.5) and (5.6) ensure that each
customer location has one in-going and one out-going connection if a sales
representative pitches at least one project related to the customer on a
given tour t and no connections otherwise. The maximum tour lengths are
ensured by constraint (5.7). Additional sub-tour elimination constraints
are required but omitted for sake of brevity. Given the necessary input
parameters, optimal schedules π˚ for realistic problem sizes can be calculated
in reasonable time using commercial MIP solvers.15

Table 5.1: Input parameters and decision variables

T Set of tours.

C Set of customer locations.

K Set of projects.

Kc Set of projects associated with customer c.

ηmax Maximum tour length (time).

τ visitc Duration of a visit at customer c.

τ travelij Travel time between a pair of locations i and j.

∆pk Uplift generated by visiting customer c to discuss project k.

χk Profit of winning craft k.

yckt P t0, 1u Indicates if customer c is visited on tour t regarding project
k.

xijt P t0, 1u Indicates if travel segment between locations i and j is
scheduled on tour t.

While the above formulation reflects a somewhat simple instance of the
problem, our model can be extended to take more complex settings into
account. First, the sales force scheduling is currently performed on a day-to-
day basis—that is, a sales force schedule is determined each day for the next
day. Our approach does, however, extend naturally to a planning horizon
of multiple periods (days). Second, we currently assume that sales reps are
15Using Gurobi, (Gurobi Optimization 2016) realistic problem instances (e.g. 50 projects
and 5 tours) can be solved to optimality in less than 30 minutes on a 12 CPU system.
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homogeneous in terms of their preferences and capabilities. However, in
real-world applications, the uplifts might depend on the person performing
the visit. We could extend our model to account for heterogeneous uplifts if
historical data on the sales rep level were available. Third, we assume that
customers can be visited at any time during a day. In practice, however,
there may be restrictions to when a customer can be visited. To account for
such restrictions, we can formulate and solve a team orienteering problem
with time windows (Vansteenwegen, Souffriau, and Oudheusden 2011).

5.4 Predictive Modeling
To determine an optimal schedule for the sales representatives the planner
requires the uplift values ∆pk per project. These uplift values cannot be
observed – and consequently, we cannot train a machine learning model to
predict such values. However, we can train a predictive model from historical
data in order to estimate the probabilities of winning a particular project.
This predictive model then serves as a building block for the subsequent uplift
approximation procedure. In the following, we first describe the available
data and our feature engineering approach. Subsequently, we show which
machine learning approaches we apply and compare their performances in
order to choose the best approach for the subsequent uplift approximation
in Section 5.5.

5.4.1 Data Set

DAW, our partner company, can revert to a database containing information
about development projects in Germany from January 2015 through May
2017. Figure 5.2 provides an overview of the underlying relational data
structure.

Building Table Clearly, for a large development project, multiple sub-
projects such as interior and exterior painting can be performed. For this
reason, one table contains general information on the development project
such as its type or its location.
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Figure 5.2: Overview of the existing data structure.

Project Table This central table of the database contains information
about specific work packages of large development projects. Since these work
packages lie at the center of our subsequent analyses we simply refer to them
as “projects” in the following. Each data record comprises a description
and categorization of the type of project (e.g., painting works, plastering
works, repairs), timing information such as construction start and end dates
as well as the characteristics of the project assignment (e.g., public tender,
direct assignment). Moreover, the final decision of whether a project was
won or lost is stored.

Partners Table Large projects typically involve several distinct partners
who might also collaborate on a number of different projects. The stored
information about these companies involves location information as well as
the industry and the specific function in which the partner is involved at a
particular project.

Company Visits Table A fourth table stores interactions between the
company and its partners in the past. Each data entry represents an
appointment at a specific date. For some but not all of these appointments,
more specific information about the discussed project is included.

Services Table Finally, our partner company, DAW, offers several ser-
vices to potential partner companies such as providing color samples or a
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personalized color consultation. These services are typically project-specific
and can hence be rather attributed to a particular project instead of a
partner company. Information about the performed services contain the
type of service, the date when it was performed as well as the value of the
performed services.

Data Cleaning and Processing On this raw data set, the following basic
data cleaning routines were performed. For a large part of the 46, 913
included projects, no final decision was stored. For some of them, we were
able to impute the decision by assuming that projects being not assigned
within 365 days were lost. Then, the rest of the projects without assignment
decision was discarded. Going forward, we then removed duplicate entries.
As visualized in Figure 5.3, the outcome of 2, 929 of the 8, 444 remaining
projects is decided within less than one week after the record is being
created in the system. Additionally, only 73 of these 2, 929 instantaneously
decided projects are lost. This finding indicates that a significant number
of projects is decided–and oftentimes won–at the first contact. We exclude
those entries from our data set, as such projects are never candidates for
possible visits and would therefore add an unnecessary bias to our model.
The final data set for the subsequent analyses then contains 5, 515 projects
out of which DAW had won a supply contract in 3, 828 of the instances.
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Figure 5.3: Time in the system before a decision is made.

In order to determine the project-specific uplift values ∆pk from the
data, we first need estimates for the probability p̂pξkq of winning project
k where k is specified by some feature vector ξk. Clearly, this probability
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depends on many factors, some of which we can influence (e.g., the number
of sales representatives’ visits) and some of which we cannot (e.g., the type
of project, involved partners or the type of project assignment). Figure 5.4
visualizes an exemplary timeline of such a decision process. Additional
services are typically requested by the partners and hence are exogeneous
whereas the company decides how much face-to-face sales effort to put into
a lead, i.e., how often a sales representative would visit the partner company
in person.

w./o. color consultation

𝑡𝑡2

Sales rep 
visit 1

𝑡𝑡3

Color samples

𝑡𝑡4𝑡𝑡1

Start of 
construction

𝑡𝑡7𝑡𝑡5 𝑡𝑡6

Decision to sign 
contract

Lead is 
identified

𝑡𝑡0

Sales rep 
visit 2

Sales rep 
visit 3

Service register 
is created

Figure 5.4: Illustration of a projects’s timeline.

We use supervised machine learning to obtain a model that yields
predictions p̂pξkq given a feature vector ξk. Supervised machine learning
means that we train such a model on a large set of historical data consisting
of pairs of a feature vector and the information whether the project was won
or lost in order to discover a relational structure between these information
in the data. In the following subsection, we illustrate how we obtain the
features given the raw data and subsequently train and evaluate different
machine learning approaches.

5.4.2 Feature Engineering

Relating back to the data structure described in 5.4.1, it becomes obvious
that some of the data attributes can be directly used as features (e.g., the
static building and project-specific information). However, information
encoded in other entities (e.g., partners, services or visits) have to be
exploited by means of suitable data transformations. We considered the
following direct features:

• building type – e.g., apartment, office, church, hotel, ...

• project type – e.g., reconstruction, renovation, ...
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• work package – e.g., interior / exterior painting works, heat insula-
tion, ...

• lead source – e.g., planner, building owner, general contractor, ...

• selection process – e.g., direct, public tender, regional tender,...

These basic features capture static, isolated properties of a project.
To also include dynamic relationships as well as inter-dependencies we
performed extensive feature engineering activities described below.

Features from Entity-Relation Summaries In order to generate further
meaningful features, we applied simple data transformations following the
general approach presented in Kanter and Veeramachaneni (2015). First, we
calculated the number of involved partner companies via a count operation
on the partner table. Second, for each partner company, the number of
collaborations on past projects was determined. Then, we calculated the
average of this number over all partner companies involved in a particular
project. Figure 5.5 visualizes the process of determining this feature.

company_ID project_ID
1 1

2 1

1 3

company_ID COUNT(project_ID)
1 2

2 1

... ...

project_ID AVG(COUNT(partner.project_ID))
1 1.5

2 …

… …

project_ID company_ID COUNT(partner.project_ID)
1 1 2

1 2 1

… … …

COUNT RFEAT

AVG

Figure 5.5: Exemplary calculation of the average number of historical
projects with involved partner companies for a particular project.

Furthermore, we aggregated the value of additional services per project
and considered it as collaboration-specific feature. Finally, we added binary
features describing whether a service register was created and whether
additional services were performed.

Recency of project-related customer visits A particularly interesting
set of features is the number of visits at the involved partner companies
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within the last t weeks before the project decision is made. To determine
this number we first have to assign a particular visit to a project. For
project-specific visits, the data.visits table reports a unique project identifier
which, however, is not mandatory. In the case such a project identifier is
stored, the visit can be entirely attributed to this project (weight w “ 1).
On the other hand, for visits without a unique project identifier we implicitly
assume that all collaborations with partner i were discussed and we weight
the visit for each single project with w “ 1{|Ki|. Figure 5.6 visualizes this
procedure.

data.partners

data.visits

data.visPartners

project_ID company_ID contact weight

1 1 2015-04-16 1

2 2 2015-01-05 0.5

3 2 2015-01-05 0.5

… … … …

project_ID company_ID contact

1 1 2015-04-16

NA 2 2015-01-05

… … …

project_ID company_ID

1 1

2 2

3 2

… …

Figure 5.6: Feature engineering to calculate the weighted number of visits

Besides the raw number of visits, we posit that the timing of these visits
is informative with respect to the success probability. In order to capture
this temporal effect, we aggregate the number of past visits over distinct
lookback horizons spanning from one week to two years. These aggregates
are then included as individual features. Naturally, these features will give
rise to a certain degree of multicollinearity. While this is problematic in
explanatory modeling where one wants to interpret coefficient values, we
are only interested in high predictive power. In particular, machine learning
algorithms are considered as robust with respect to multicollinearity (Mayr
et al. 2014).

5.4.3 Models and Training

We train and evaluate several prediction models to estimate the success
probability of winning a project. In particular, we use both white-box
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methods, i.e., methods where the model structure and its fitted parame-
ters are interpretable by a human decision-maker, and black-box models
which typically achieve better predictive accuracy at the cost of limited
interpretability.

As a baseline white-box classifier, we rely on logistic regression (Cox
1958). Common problems in applied logistic regression arise from the above-
mentioned multicollinearity of covariates and from separation, i.e., when
a linear combination of features is highly predictive of the outcome. For
this reason, we use a Bayesian version of logistic regression (cf. Gelman
et al. 2008). While being highly interpretable, logistic regression typically
performs inferior to more elaborate black-box models in many practice-
relevant scenarios due to its implicit assumption of a constant, linear
relationship between covariates and the outcome. For this reason, we
compare its results with those of three black-box models. The first of
these models is a support vector machine which is based on the theory
developed in Vapnik (1996). Grounded in statistical learning theory, support
vector machines fit hyperplanes into the feature space in order to optimally
separate the output classes of interest. A major benefit of support vector
machines is their high robustness towards overfitting (Smola and Schölkopf
2004). Additionally, we implement an artificial neural network (ANN) model.
ANNs use non-linear functions applied to linear combinations of features
in order to make predictions. They are a powerful and flexible learning
method and applicable in many fields (Hastie, Tibshirani, and Friedman
2013). Finally, we train a random forest classification model (Breiman
2001a) that is based on an ensemble version of decision trees and has proven
to perform well over a wide range of applications (Caruana, Karampatziakis,
and Yessenalina 2008).

We use an 80% subsample of the data to train the models. The remaining
20% of the data are split into a test sample to evaluate the respective
classification performance (15%) and an evaluation sample („ 5%) where we
perform the evaluation of our prescriptive scheduling model in Section 5.7.
Within the training data, we apply 10-fold cross-validation to tune the
models (Hastie, Tibshirani, and Friedman 2013).
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5.4.4 Model Evaluation and Selection

In order to compare the performance of the four examined models, we
report the receiver operating characteristic (ROC), the according area
under the curve (AUC), the F1 score and the phi coefficient (φ). The
(ROC) is a graphical illustration of the predictive performance of a binary
prediction model. To capture the information from ROC curves in a single
numeric metric, one typically calculates the area under the curve (AUC) for
comparisons between classifiers. The F1 score is a measure for the accuracy
of a test that considers both - precision and recall, where precision is the
ratio of true positives from all positive predictions and recall is the ratio of
true positive predictions from all positive samples.

Besides the AUC and F1 statistic, the phi coefficient φ, also known as
the Matthews correlation coefficient, is often regarded as one of the best
single number measures of classification performance (Powers 2011). This
is in particular because of its robustness towards class imbalances. For
binary classification problems the φ coefficient coincides with the Pearson
correlation coefficient measuring the correlation between true and predicted
outcome of binary classification yielding values between -1 and +1. When
used as a metric for machine learning model evaluation only positive φ
values are of interest: A value of +1 indicates a perfect prediction while a
value of 0 is a random prediction.

Figure 5.7 visualizes the ROC curves of the four examined models. We
see that the Random Forest classifier performs considerably better than its
competitors over a large range of the considered spectrum while the neural
network works best in a specific area of the considered configurations.

The numerical performance metrics (Table 5.2) confirm this assessment.
The Random Forest approach achieves AUC, F1 and φ scores that are
higher than those of the other approaches, which is why we choose this
model as a base for our subsequent uplift approximation procedure.

5.5 Uplift Approximation
A crucial input to optimize the scheduling problem presented in Section 5.3
are the specific values of a visit at a particular customer’s location. Figure 5.8
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Figure 5.7: Comparison of the models’ receiving-operating characteristics

AUC F1 φ

Support Vector Machine 0.72 0.82 0.30

Logistic Regression 0.77 0.82 0.34

Neural Network 0.78 0.82 0.37

Random Forest 0.80 0.83 0.42

Table 5.2: Comparison of classifier performance

visualizes exemplary trajectories of the estimated probability p̂ as given
by the Random Forest model from Section 5.4. Evidently, the information
about the success probability by itself does not allow the planner to optimize
the schedule of her sales agents: Without knowing the actual “uplift” of
an additional visit (compare, for example, the value, i.e., the uplift of the
first visit to the one of the second and third visits in figure 5.8a) one cannot
trade-off driving further distances for a large increase in a single project’s
success probability versus increasing the probabilities of multiple projects
in the surroundings by a smaller margin.
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Figure 5.8: Exemplary trajectories of success likelihood

Hence, instead of the estimated probability p̂, we are interested in the
uplift ∆pk for each potential visit. Determining such uplift values is a
particularly challenging task as the actual uplift cannot be observed. In the
following, we describe our approach to approximate such uplifts given the
prediction model from Section 5.4.

Modeling uplift values typically requires data from two distinct groups,
the treatment group and the control group. However, in our setting, the
action variable, i.e., the number of customer visits, is numerical and for this
reason we cannot divide our data into disjoint subsets. Instead, we generate
a “synthetic” treatment data set by adding fictitious customer visits and
employ the predictive model to recalculate success probabilities. Then, we
can determine the uplift as the difference between the probabilities of the
synthetic data set and the original data set. This logic draws from the
literature, particularly from Foster, Taylor, and Ruberg (2011) and van de
Geer, Wang, and Bhulai (2018). Our feature vector ξ can be refined by
interpreting it as the union of a vector of endogenous “action features” a,
i.e., the number of customer visits, and the vector of exogenous features z.
Hence, our vector of predictions becomes p̂pξq “ p̂pa, zq. Note that we use
the same prediction models as introduced in the previous section. Given
the feature data set as well as the trained prediction models described in
Subsection 5.4.4, we first generate the synthetic “treatment” data set in
which we increment ak by one. We then calculate p̂pak ` 1, zkq where all
other features zk are retained unchanged. Finally, we calculate the uplift as
∆pk “ p̂pak ` 1, zkq ´ p̂pak, zkq.

Figure 5.9 visualizes the distribution of the calculated uplift values
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depending on the number of prior visits ak. Not surprisingly, we observe
that on average visits have a positive effect on the chance of winning a
project (Ě∆p̂). Additionally, we see that the median value of the first visit is
significantly higher compared to additional visits. Partly, this effect can be
explained by the fact that the prior probabilities p̂pak, zkq are increasing with
the number of visits resulting in a lower overall uplift potential. However,
the uplift of a visit can not be completely explained by the number of prior
visits. This finding shows, that the other features z capture a relevant part
of the information and provide valuable information to identify persuadable
customers.
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Figure 5.9: Uplift values ∆p depending on the number of prior visits a.

To better understand the robustness of our approach, we examine the
impact on distributional properties of synthetically changing the original
data set. In particular, we compare the distribution of predicted probabilities
for the original data with the distribution for the synthetically modified
number of visits. Figure 5.10 shows that the empirical CDFs of the predicted
probabilities behave very similarly for the original and the synthetic data set.
Therefore, the synthetic treatment approach does not systematically distort
the distributional properties of success likelihood in a local neighborhood.
In turn, we surmise that this approach is capable of generating reliable
uplift predictions.
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Figure 5.10: Comparison of the distribution of predicted probabilities. Indi-
vidual panels correspond to number of prior visits a.

In many settings this uplift information by itself already provides im-
portant insights and can be used, for example, to prioritize projects where
additional effort seems beneficial (cf. van de Geer, Wang, and Bhulai 2018).
In particular, this applies for the case of sales activities in finance or in-
surance where sales actions involve outbound calls to potential customers.
However, in our setting, the effort, i.e., the total time required to visit
a particular customer is largely affected by the travel time of the sales
representative and, hence, strongly depends on the location of the customer
as well as the locations of other customers. Therefore, we use a sales force
scheduling model that accounts for the trade-off between higher uplifts and
the time required for visiting a customer.

5.6 Prescriptive Sales-Force Scheduling With
Forecast Uncertainty

In our prescriptive sales force scheduling approach we leverage the uplift
predictions ∆p̂k and at the same time account for the quality of these
predictions—that is, the fact that these predictions are uncertain and may
entail a larger or smaller margin of error. If we assume that we have a
perfect prediction model that yields accurate uplift values we can simply
solve the optimization problem stated in Section 5.3 using the predictions
∆p̂k as inputs. Without information about the uplift, the optimal strategy
would be to maximize the sum of the potential profits, which is equivalent to
solving the optimization problem stated in Section 5.3 with a constant uplift
∆p̂k ” α across all projects. The objective function of the optimization
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problem then simplifies to

max vpπq “
ÿ

cPC

ÿ

tPT

ÿ

kPKc

αχkyckt (5.8)

In reality, we will face situations that lie between these two corner cases:
Even with sophisticated predictive machine learning models and extensive
data, a margin of error will remain and ignoring this uncertainty may lead
us to schedule detours to visit customers with overestimated uplifts while,
at the same time, not scheduling visits to customers with (too) low uplift
predictions.

Clearly, the worse the prediction quality, the less we should rely on the
uplift predictions and the more we should prioritize according to the prof-
itability of the projects. The Hodges-Lehmann criterion (Hodges, Lehmann,
et al. 1952) from decision theory offers a simple way of formalizing the trade-
off between the two corner cases. It suggests that with unreliable probability
assessments a decision-maker has to compromise between a conservative
worst-case policy and the optimistic expected value maximizing alternative.
In our setting the worst-case corresponds to discarding the information from
the uplift prediction model while the expected value maximization puts
full confidence in the uplift predictions. These two objectives are linearly
weighted by a parameter λ which has to be specified by the decision-maker
(e.g., based on experience). Based on this logic, the objective function can
be stated as

max vpπλq “ p1´ λq
ÿ

cPC

ÿ

tPT

ÿ

kPKc

Ě∆p̂χkyckt ` λ
ÿ

cPC

ÿ

tPT

ÿ

kPKc

∆p̂kχkyckt, (5.9)

where
Ě∆p̂ “ 1

|K|

ÿ

kPK

∆p̂k. (5.10)

For λ “ 0 we obtain the conservative worst-case policy and for λ “ 1
the policy that maximizes the expected value by putting full confidence
in the uplift predictions. To normalize the scale we set α to the average
predicted uplift of all projects in the test data Ě∆p̂ (Equation 5.10).

Naturally, the decision maker faces the problem of setting λ. We argue
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that a natural candidate for this parameter is the model quality φ. This
can be rationalized by drawing an analogy with a simple linear regression
model: We interpret the uplift predictions ∆p̂ as independent variables
and the unknown true uplifts ∆p as dependent variables. The regression
parameters α and β can be estimated as

α̂ “ Ě∆p´ β̂Ě∆p̂ and β̂ “ ρ∆p̂∆p
s∆p

s∆p̂
. (5.11)

Typically, rich machine learning models—such as gradient boosting—
exhibit very limited bias (Friedman, Hastie, Tibshirani, et al. 2000), so
Ě∆p « Ě∆p̂. For the estimate of β, we can leverage the fact that φ, our
measure of the prediction model’s quality, corresponds to the Pearson
correlation coefficient ρ between predictions and true values. Furthermore,
we do not need to scale the coefficient of correlation by the ratio of standard
deviations, because there are no differences in the underlying real units.
Therefore, the estimates in Equation (5.11) can be written as

α̂ “ p1´ β̂qĚ∆p̂ and β̂ “ φ. (5.12)

Based on these estimates the objective function of the sales force schedul-
ing model can be expressed as

max vpπλq “
ÿ

cPC

ÿ

tPT

ÿ

kPKc

χk
“

p1´ φqĚ∆p̂` φ∆p̂k
‰

yckt. (5.13)

The logic underlying the quality-corrected predictions can be interpreted
as follows: A visit at a location i to pitch project k is assumed to increase
the probability of winning the project by the average predicted uplift of all
projects in the test data Ě∆p̂ (Equation 5.10). We then correct this baseline
towards the predictions depending on the predictive model’s quality φ.

5.7 Numerical Evaluation
This section presents the result of extensive numerical analyses that were
carried out to evaluate the performance of our prescriptive scheduling
approach relative to relevant benchmark policies, to assess the robustness
of our approach, and to develop further structural and managerial insights.
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For these analyses we utilize DAW’s data as described in Section 5.4.
Section 5.7.1 first describes our evaluation process. In Section 5.7.2 we
then assess the value of our prescriptive policy relative to a predictive
policy (that ignores the prediction model’s quality and assumes perfect
uplift information) and a zero-information policy (that does not account
for uplift information) for a base case scenario. In the subsequent sections,
we evaluate how the value of our prescriptive policy is affected by the
heterogeneity of the projects’ profits (Section 5.7.3), the sales force capacity
(Section 5.7.4), and the quality of the prediction model (Section 5.7.5).

5.7.1 Evaluation process

In our numerical study we determine and evaluate the sales force schedules
for individual sales forces s located at S “ 10 different home bases in
Germany. Each sales force consists of |Ts| sales reps and serves an exclusive
sales territory. Figure 5.11 illustrates our evaluation process.
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Figure 5.11: Evaluation process

In a first step we generate the input data for our analysis. The data for
our evaluation includes the features (described in Section 5.4) of a holdout
sample of 500 projects from DAW’s project data base that were neither
used for training nor for testing of the predictive models. Prior to training
and testing the predictive models, we assigned each project in the holdout
sample to an evaluation set of a sales territory. Therefore, we assign the 50
projects closest to each home base s to the set Keval

s , such that |Keval
s | “ 50.
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We used Google Maps API16 to retrieve the geocoordinates of the home
bases 0s and all customer locations of the 500 projects. Thereafter, we used
the HERE API17 to obtain the driving durations τ travelij between any two
locations i, j in sales territories s “ 1, ..., 10.

In the second step, we estimated the uplifts ∆p̂s for the projects of each
sales territory s based on their features. For this, we used the procedure
described in Section 5.5 based on the random forest model that led to the
highest predictive performance on the test data (see Section 5.4).

In the third step we used the estimated uplifts ∆p̂s (s “ 1, ...10)
obtained in the previous step, as well as the model quality φ and the travel
times τ travelij to solve the scheduling problem (see Section 5.6) for each sales
territory s and λ P t0, φ, 1u. λ “ φ corresponds to our prescriptive policy as
described in the previous section. λ “ 1 implies a “predictive policy” that
implicitly assumes perfect uplift predictions and maximizes the expected
additional profits. In contrast, for λ “ 0 uplift information is neglected;
this “zero-information policy” determines schedules that maximize the sum
of the projects’ profits. The outcome of this step are the optimal schedules
π˚sλ (λ P t0, φ, 1u) for each sales territory s.

In the final step we evaluate the performance of the three policies.
Because we do not know the true uplifts for the 500 projects, we cannot
directly compare the performance of the three policies. To overcome this
problem and to ensure an objective performance comparison, we proceed
as follows: We use simulation to generate N “ 500 vectors of (“true”)
uplift realizations ∆psim

sn for each sales territory s. We apply the Cholesky
decomposition of the covariance matrix (e.g., Gentle (2009)) to ensure that
the correlation between the estimated uplifts ∆p̂s and the simulated true
uplifts ∆psim

sn is equal to φ. We then determine vsnpπ˚sλq for n “ 1, .., 500,
which is the additional expected profit achieved when the optimal schedule
π˚sλ of policy λ, determined based on the uplift predictions ∆p̂s, is executed,
but the true uplifts are ∆psim

sn . Based on vsnpπ˚sλq we define, as performance
measure, the average relative optimality gap (arg) of policy λ:

argλ “
1
S

1
N

ÿ

s

ÿ

n

ˆ

1´ vsnpπ
˚
sλq

v̂sn

˙

, (5.14)

16https://cloud.google.com/maps-platform/?hl=de
17https://developer.here.com
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where v̂sn “
ř

kPKeval
s

χk maxp0,∆psimsnkq represents an upper bound on the
expected additional profits in sales territory s for realization n of the true
uplifts ∆psim

sn if the company has perfect uplift predictions and sufficient
capacity to visit all customers.

5.7.2 Value of the prescriptive policy – Base case

In our first analysis we evaluate the performance of the predictive, the
prescriptive and the zero information policy for a base case scenario. We
assume that each sales territory has a sales force of size |T | “ 5 and we use
the results of our best predictive model achieving a quality φ of 0.42 (see
Section 5.4). Unfortunately, our partner DAW was not able to provide us
with information on the profitability χk of the individual projects. For the
purpose of this first analysis, we assume that projects are homogeneous in
terms of their profits, i.e. χk “ 1 for all k P KEval

s . In the next section we
study, how profit heterogeneity impacts the policies’ performance.

Figure 5.12 (a) displays the argλ for each policy λ and its distribu-
tion across the simulation runs. We clearly see that the predictive and
prescriptive policies lead to substantially lower values of the arg than the
zero-information benchmark (λ “ 0). Also, the prescriptive policy that
accounts for the model quality (λ “ φ) leads to a slightly higher performance
than the predictive policy (λ “ 1). In this base case, the major part of
the performance increase can be attributed to the availability of a strong
predictive model (“value of prediction”). In contrast, only a comparatively
small additional increase is achieved by the prescriptive model—we term
this increase “value of prescription”.

Figure 5.12 (b) displays the relative coverage of the policies, i.e. the
relative share of customers visited by each policy. Not surprisingly, the zero-
information benchmark leads to the highest coverage because it maximizes
the number of visits when all projects have the same profitability. The pre-
dictive policy, which relies only on the uplift predictions, leads to the lowest
number of visits and hence the lowest coverage. Because the prescriptive
policy (λ “ φ) trades off the number of visits and the projects’ uplifts based
on the quality of the predictive model (φ “ 0.42)—that is, how reliable
the estimate of the uplifts are—it leads to a coverage that lies between the
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zero-information policy and the predictive policy. In comparison to the
zero-information policy, the prescriptive policy sacrifices some visits and
“invests” more travel time into projects with higher uplift predictions, but it
does so in a more conservative manner than the predictive policy to account
for the fact that the uplift predictions are uncertain. Since all projects have
the same profitability, these results are rather intuitive. We do, however,
observe that the results are plausible, and that the different policies lead
to different sales force schedules that result in performance differences in
terms of the arg. In the next section, we explore, how these results change
when projects exhibit varying profitabilities.
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Figure 5.12: Homogeneous profits (|T | “ 5, φ “ 0.42)

5.7.3 Effect of the profit heterogeneity

This section studies the effect of heterogeneous project profitabilities on the
relative performance of the three policies. For each project k P KEval

s in
each sales territory s we draw a profit χk from a (symmetric) triangular
distribution with mode c “ 1, support ra, bs, and width w “ b´ a. w “ 0
corresponds to the case of homogeneous profits discussed in the previous
section. We vary the support of the distribution to obtain two levels of
heterogeneity w “ 0.5 and w “ 1. We draw 20 profit realizations for each
heterogeneity level and sales region to ensure the robustness of our analysis.
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Figure 5.13 displays the policies’ arg for different levels of heterogeneity.
We observe that the predictive and prescriptive policies consistently outper-
form the zero-information benchmark (λ “ 0q and that their arg decreases
in the profit heterogeneity. Clearly, they are better able to prioritize projects
with high profits and high uplifts.

The performance of the zero-information policy also increases at het-
erogeneity levels of w “ 0.5 and w “ 1, because this policy now prioritizes
projects with higher profits. It does not, however, consider the uplift pre-
dictions and may therefore schedule visits for projects that have a high
profitability, but low uplift. As a consequence, its arg is higher than those
of the predictive and prescriptive policies. The advantage of the prescriptive
policy increases as profit heterogeneity increases—this policy is less prone
to schedule visits to high profit projects with too high (and incorrect) uplift
predictions. In the initial setting (w “ 0), the ability of the predictive and
the prescriptive policies to leverage uplift forecasts accounts for a large part
of the outperformance. However, with increasing profit heterogeneity the
value of prescription increases and it becomes more important to account
for the quality of the predictive model.
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heterogeneity (|T | “ 5, φ “ 0.42)
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5.7.4 Effect of the sales force capacity

This section addresses the impact of the sales force capacity on the perfor-
mance of the three policies. The size of the sales force corresponds to the
possible coverage and serves as a measure for the scarcity of visits. We vary
the size of the sales force in each region between 1 and 7 and report the
performance of the three policies at a model quality of φ “ 0.42 and for
different levels of profit heterogeneity. Figure 5.14 displays each policy’s arg
depending on the size of the sales force and the level of profit heterogeneity.

Compared to the zero-information policy, the predictive and prescriptive
policies are able to leverage the sales force capacity more efficiently when
capacity is scarce. Because the zero-information policy deploys sales repre-
sentatives in an uninformed way, the performance improvement associated
with an additional sales rep is almost constant. In contrast, the predictive
and prescriptive policies exhibit decreasing marginal values of additional
sales representatives. As capacity increases, more and more customers
with lower expected additional profits are visited, which explains why their
performances converge with that of the benchmark at high levels of sales
force capacity.
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Figure 5.14: Average relative gap to optimality for varying levels of profit
heterogeneity and sales force capacity (φ “ 0.42)

The prescriptive policy and the predictive policy lead to (almost) iden-
tical performances at low capacity levels. At medium levels of capacity
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the prescriptive policy leads to a higher performance than the predictive
policy, and this difference increases as more capacity becomes available.
These performance differences can be explained by the set of customers
each policy chooses to visit. Figure 5.15 displays the Jaccard coefficient of
similarity for all combinations of policies at different levels of capacity and
for varying profit heterogeneity. Simply speaking, the Jaccard coefficient
captures the number of identical customers both policies choose to visit
relative to the total number of visits of both policies. At very low levels
of capacity the predictive and the prescriptive policy schedule visits to a
very similar set of customers—that is, customers with high predicted uplifts
and high profit margins (for w “ 0.5 and w “ 1). In contrast, the zero-
information policy chooses a different set of customers because it ignores
the uplifts and focuses only on the trade-off between profit margins and
travel times. The predictive and the prescriptive policies’ choices diverge as
more capacity becomes available: While the predictive policy continues to
prioritize customers with with (a slightly) higher predicted uplifts or profits,
the prescriptive policy hedges against prediction errors by balancing the
expected additional profits with the sales effort, which is reflected by the
time required to visit a customer. At medium and high levels of capacity,
the prescriptive policy becomes more similar to the zero-information policy
than the predictive policy and this effect is more pronounced when the
projects’ profit heterogeneity is large. This behavior of the prescriptive
policy explains why "the value of prescription" as displayed in Figure 5.14
increases both in the sales force capacity and the profit heterogeneity.

Therefore, we conclude that the prescriptive policy should always be
preferred over the predictive policy and that its benefits are particularly
pronounced when profit heterogeneity is high and the sales force capacity is
not severely constrained.

5.7.5 Effect of the model quality

Depending on the availability of data, its predictiveness, and the choice and
configuration of a predictive model, companies will face varying qualities of
predictions, which we capture with parameter φ. This section explores how
the quality of the predictive model that is used for estimating the uplifts,
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Figure 5.15: Similarity between the policies for varying levels of profit
heterogeneity and sales force capacity (φ “ 0.42)

impacts the performance of the predictive and the prescriptive policies.
Most importantly, we intend to understand, if a poor model quality renders
our prescriptive policy ineffective in practice. To this end we simulate
“true” uplifts for values of φ P t0, 0.05, . . . , 0.6u and evaluate the different
policies as described in Section 5.7.1. Figure 5.16 plots the policies’ arg for
homogeneous customers, i.e. for w “ 0, a sales force capacity of |T | “ 5
and varying model qualities φ.

By definition, the prescriptive policy has a lower performance bound at
φ “ 0 where its arg corresponds to that of the zero-information policy; its
performance increases (almost linearly) in the model quality and consistently
outperforms the predictive policy, which may, at very low quality levels,
lead to a lower performance than the zero-information policy. The robust
behavior of the prescriptive policy is particularly attractive, as it enables
a company to leverage predictive models, even though they may exhibit
a relatively low predictive quality. To illustrate this fact we highlight in
Figure 5.16 the performance that would have been achieved with the various
predictive models of Section 5.4 (see vertical dashed lines in Figure 5.16). We
observe, for instance, that the prescriptive policy would lead to significant
performance gains over the zero-information policy even if we used models
based on support vector machines or logistic regressions—which lead to the
lowest quality φ—to obtain uplift predictions.
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The results of this analysis reinforce our previous findings and conjec-
tures: Our prescriptive scheduling approach consistently outperforms the
predictive and the zero-information policy. Its performance benefit increases
in profit heterogeneity, it is particularly pronounced when capacity is not
severely constrained and it dominates its contenders independent of the
prediction model’s quality.

5.8 Conclusion
Our research addresses a problem which is very common in many companies
across different industries. Considering a large area with potential customers,
we propose a novel data-driven approach to optimize the scheduling of sales
representatives. To this end, we formalize the sales force scheduling problem
at hand in the sense of a team orienteering problem. The uplifts associated
with additional customer visits for each project are a crucial but often
unknown input for this model. To estimate the uplifts, we propose a
two-step approach. First, we train classification models to predict the
probabilities of winning a project based on a rich feature set including
the number of visits at a potential customer. Based on this prediction
model, we estimate the success probability of a given project. Subsequently,
we artificially increase the number of visits to estimate the uplift as the
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difference between the success probabilities prior and posterior the additional
visit.

Building on the uplift predictions, we propose two different policies
to solve the scheduling problem at hand. Solving the team orienteering
problem based on the predicted uplifts posts a predictive policy to the
sales force scheduling problem. Going further, we present a prescriptive
policy that explicitly controls for the remaining uncertainty of our uplift
predictions based on the performance of the predictive models.

We evaluate our approach using a real-world data set from a large
European manufacturer of building paint and coating solutions. Performing
an extensive numerical evaluation, we compare both policies to a bench-
mark approach that cannot leverage uplift predictions. We show that the
predictive policy outperforms the benchmark in the problem setting at hand.
However, its performance can be worse if the models predicting the uplift
have a low performance. In contrast, the prescriptive policy shows to be the
best policy in all evaluated settings. Its out-performance over the predictive
policy is driven by customers heterogeneity, high sales force capacity, and
low prediction quality.
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6 Conclusion and Future
Research Opportunities

Companies seek to establish data-driven decision cultures to leverage compet-
itive advantages in terms of efficiency and effectiveness. However, the trans-
formation towards data-rich environments will require significant changes in
decision making processes across all industries. This dissertation set out to
address these changes and to investigate potential opportunities to leverage
prescriptive analytics in different planning problems. Ultimately, the goal
of this work was to answer the guiding research question:

How can information systems combine state-of-the-art machine
learning techniques and operations management modeling to
provide prescriptive analytics models that are robust to prediction
errors?

To answer this question and to structure the thesis, four subordinate
research questions (RQ1 - RQ4) have been defined in Chapter 1. This
chapter summarizes and concludes the thesis and provides an outlook on
future research opportunities. It is structured alongside the analytics stack
and the subordinate research questions.

6.1 Summary
The first two articles (Chapters 2 and 3) focus on predictive models that
serve as a mandatory backbone for powerful prescriptive models. To this
end, we answer RQ1 by identifying appropriate machine learning setups for
two different prediction tasks. Additionally, Chapter 3 answeres RQ2 by
putting forward a data science toolbox for industrial analytics applications.
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The third and fourth article focus on prescriptive analytics. First, Chapters
4 answers RQ3 by introducing a data-driven solution to the searcher path
problem. Subsequently, Chapters 5 answers RQ4 by proposing a novel
prescriptive approach to data-driven sales force scheduling that explicitly
accounts for the underlying model uncertainty.

6.1.1 Predictive Analytics

Predictive models are an essential prerequisite for prescriptive analytics.
Hence, Chapters 2 and 3 of this thesis aim at answering two research
questions focusing on predictive analytics. The first goal is to identify
appropriate machine learning setups for different predictions tasks (RQ1).
The second objective is to derive and evaluate guidelines and best practices
for the development of predictive analytics models (RQ2).

Building on state-of-the-art machine learning techniques, Chapter 2
showcases the development of a predictive model in the context of capacity
planning and staffing at an IT consulting company. The presented approach
improves the planning accuracy by more than 30% compared to traditional
forecasting approaches and enables the company to ensure both high capacity
utilization and service levels.

Chapter 3 focuses on predictive analytics applications in the manufac-
turing sector. More specifically, it presents a data science toolbox providing
guidelines and best practices for modeling, feature engineering, and model
interpretation to manufacturing decision-makers. Showcasing the applica-
tion of this toolbox on a large data set from a manufacturing company
yields twofold results. On the one hand, it becomes evident that plunging
vast amounts of data into powerful new algorithms is not the silver bullet
often promised by software companies. Rather, constant improvement,
feature engineering, and consolidation are needed to complementary create
value-generating predictive analytics applications.

6.1.2 Prescriptive Analytics

Simply using the improved forecasts provided by powerful predictive models
enables decision-makers to generate additional business value in some situa-
tions. However, many complex tasks require elaborate operational planning
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procedures. Here, transforming additional information into valuable actions
requires new planning algorithms. Therefore, Chapters 4 and 5 set out to
answer two research questions focusing on prescriptive analytics. The first
goal is to analyze how prescriptive analytics can be leveraged to provide
decision support for manual processes in manufacturing settings (RQ3).
Subsequently, it is analyzed how prescriptive models can account for the
uncertainty of the underlying predictive models (RQ4).

The development of a prescriptive decision support system supporting
individual workers is illustrated in Chapter 4. In particular, a leak detection
process in a high-tech composite manufacturing environment is analyzed.
Combining highly sensitive sensors with a scalable and generic feature
extraction approach allows us to predict leak locations via statistical learning.
Using advanced machine learning techniques improves the forecasts by
almost 90% compared to a linear regression. Embedding the forecasts into
the underlying searcher path problem enables us to develop predictive as
well as prescriptive search policies. Comparing these policies against simple
benchmarks shows that the prescriptive policy can dramatically reduce the
search time as well as its variability. Consequently, it leads to faster and
more stable processes.

While rapid advances in artificial intelligence research boost the predic-
tive power of machine learning models, there remains a model uncertainty
in most settings. Chapter 5 proposes a prescriptive approach that accounts
for the fact that predictions are imperfect and that the arising uncertainty
needs to be considered. More specifically, it presents a data-driven approach
to sales-force scheduling. Based on a large data set, a model to predictive
the benefit of additional sales effort—the “uplift”—is trained. Subsequently,
the uplift predictions are embedded into the underlying team orienteering
problem to determine optimized schedules. To this end, we proposed a pre-
dictive policy (that puts complete trust in the uplift estimations) as well as
prescriptive policy (that accounts for the model quality) and compare them
with a zero-information policy (that does not account for uplift forecasts).
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6.2 Future Research Opportunities
As mentioned in Chapter 1, advanced analytics is an active and promising
field of research offering a variety of future research opportunities across
multiple fields. While the last years showed a tremendous development
regarding new methods and applications, the potential for future research
continues to be large.

6.2.1 Predictive Analytics

Even though an increasing number of companies starts leveraging predictive
analytics for business applications, it is still an active area of research.
Driven by advances in the machine learning community, a variety of new
opportunities for predictive analytics arises.

Unstructured Data Continuously improving machine learning algorithms
are pushing the limits of computer vision (LeCun, Bengio, and Hinton
2015; Szegedy et al. 2016), speech processing (Maas et al. 2015; Saon
and Picheny 2017) and natural language understanding (Hirschberg and
Manning 2015). While the applications of predictive analytics presented
in this thesis rely mainly on structured and semi-structured data, tapping
into the improvements mentioned above enables future work to leverage
large pools of unstructured data. Thereby, existing predictive analytics
applications can be improved, and new—even more powerful—potentials
can be unlocked (Wang et al. 2018).

Interpretable Machine Learning Most machine learning models are cur-
rently evaluated and selected based on their predictive power (e.g., accuracy).
While a model’s predictive power is a necessary condition for predictive
analytics applications, it is often not a sufficient one. As soon as safety-
relevant decisions are made by machine learning techniques (Varshney and
Alemzadeh 2017), not only a prediction but also an explanation for the
model’s decision is required. In the European Union, people significantly
affected by automated decisions even have a right to an explanation (Good-
man and Flaxman 2017). Against this backdrop, the research on machine
learning interpretability and explanatory artificial intelligence is rapidly
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growing (Doshi-Velez and Kim 2017). Future work in the field of predic-
tive analytics has to analyze, evaluate, and quantify the trade-off between
predictive power and interpretability.

6.2.2 Prescriptive Analytics

Following Wedel and Kannan (2016), establishing data-driven decision
cultures already provides companies with competitive advantages and has
a significant impact on financial performance. To this end, prescriptive
analytics are a key component for companies that want to leverage the full
potential of the arising data ubiquity. Therefore, prescriptive analytics is
an active and promising field of research offering a variety of future research
opportunities.

Joint Estimation & Optimization Currently, most existing prescriptive
analytics applications use predictive modeling to estimate parameters and
to subsequently solve mathematical planning models to determine optimal
policies. However, the idea of jointly solving the prediction as well as the
planning problem has gained increasing attention in recent years (Bertsimas
and Kallus 2014). Despite some promising first results (Bertsimas, Kallus,
and Hussain 2016; Ban and Rudin 2018; Notz and Pibernik 2019; Meller,
Taigel, and Pibernik 2018; Taigel and Meller 2018), this development is
still in its infancy. Future research is required to quantify the advantages of
this integrated approach in comparison to traditional sequential planning
approaches.

Explainable Artificial Intelligence Explanatory artificial intelligence is a
promising research stream not only for predictive analytics but also in the
field of prescriptive analytics. On the one hand, interpretable prediction
models provide human-readable decision rules that can be used to transform
predictions into actions (Stefani and Zschech 2018). On the other hand,
Bertsimas and Stellato (2018) propose to use machine learning models as
“Voice of Optimization.” To this end, interpretable models are used to solve
continuous and mixed-integer optimization problems. Thereby, the logic
behind the optimal solution can be extracted from the interpretable model.
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Even though this new approach yields promising first results regarding
interpretability (Bertsimas and Stellato 2018), as well as solution speed
(Bertsimas and Stellato 2019), more research, is required to evaluate its
performance on larger problem sets.

Deep Reinforcement Learning All approaches presented above rely on
models of the underlying problem to find optimal policies for specific cases.
However, these models are limited in more complex settings with large
state spaces and a high degree of uncertainty. Deep reinforcement learning
is a promising branch of machine learning research to solve problems in
such settings. By interacting with the environment and learning from
historical actions, this group of algorithms can identify prescriptive policies
based on experience. Deep reinforcement learning has proven its ability
to play a variety of games such as Atari games (Mnih et al. 2013; Mnih
et al. 2015), Go (Silver et al. 2016), Starcraft (Vinyals et al. 2017), and
Poker (Brown and Sandholm 2017, 2018, 2019), at a super-human level
in recent years. Additionally, deep reinforcement learning has recently
shown promising first results for operations management tasks such as
vehicle routing (Nazari et al. 2018) and inventory replenishment (Gijsbrechts
et al. 2018; Oroojlooyjadid, Snyder, and Takác 2016). However, those
techniques require huge amounts of training data to learn optimal policies.
While this requirement is easy to meet in controlled game settings, which
can be simulated, it becomes a major challenge for real-world applications.
Future research has to identify new ways to efficiently leverage the available
data for the training of prescriptive reinforcement learning models. A
promising avenue is to generate large synthetic data sets replicating the
properties of the limited available data to train the agents. To this end, we
plan to leverage recent advantages to unsupervised learning of complicated
distributions. In particular, we plan to leverage generative adversarial
networks (Goodfellow et al. 2014) and variational autoencoders (Kingma
and Welling 2013). Both methods have shown promising first results in the
generation of image (Mirza and Osindero 2014; Chen et al. 2016; Arjovsky,
Chintala, and Bottou 2017; Hou et al. 2017), speech (Hsu, Zhang, and
Glass 2017; Hsu et al. 2017), text (Semeniuta, Severyn, and Barth 2017;
Yu et al. 2017), and tabular data (Park et al. 2018; Xu et al. 2019; Xu and
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Veeramachaneni 2018).

6.3 Practical Implications
The continuing spread of sensor technology, connectivity, and declining costs
of data storage lead the transformation towards data-rich environments. The
works within this thesis provide four examples of how advanced analytics
can improve operational planning and foster data-driven decision-making.
The results of Chapters 2 and 5 show that firms from different sectors can
leverage existing data via advanced analytics to improve their processes
using existing data. In addition to existing data, an increasing number
of sensors are embedded into various devices and machines in light of the
IoT paradigm (Chen, Mao, and Liu 2014). Companies can use the newly
available sensor data by means of predictive (Chapter 3) and prescriptive
(Chapter 4) analytics. Apart from data availability, however, companies
have to rethink existing processes and establish data-driven decision cultures
to improve processes and gain a competitive advantage.
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B Numerical Evaluation

In Chapter 5, we estimate success probabilities of winning a project to
calculate the uplift predictions and determine optimized visiting policies.
To this end, we leverage several binary probabilistic classification models to
estimate the true success probabilities and the expected uplifts. However,
the true success probabilities prior to the final decision cannot be observed
to evaluate the models. To overcome this issue, we use the φ coefficient to
evaluate the performance of the models based on the binary realizations
while accounting for the observed class imbalances.

Even though the φ coefficient measures the correlation between two
binary variables, we use it as a proxy for the Pearson correlation ρ between
the predicted uplifts ∆p̂ and the true (but unknown) uplifts ∆p to find a
suitable value for the weighting parameter λ.

In this appendix, we analyze the relationship between the φ coefficient
and the Pearson correlation ρ through a brief numeric study. To this end,
we use a controlled environment in which success probabilities for the binary
outcomes are known at all times.

In particular, we simulate rolls of n fair dice. Each die has s sides
with values ranging from 1 to s. Let xi describe the outcome of die i and
ym “

řm´1
i“1 xi the sum of all rolls prior to die m. To create a binary target

variable z, a game is considered “won” (z “ 1) if the sum of the dice rolls is
greater or equal than a given target t and “lost” (z “ 0) otherwise:

z “

$

&

%

1 if yn`1 ě t

0 otherwise
(B.1)

Before each roll m, the success probability p is defined as

p “ 1´ P pyn`1 ´ ym ě tq . (B.2)
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B Numerical Evaluation

Following Uspensky (1937), the probability of rolling a sum of q points
with n s sided dice is

P

˜

n
ÿ

i“1
xi “ q

¸

“
1
sn

t q´n
s u
ÿ

k“0
p´1qk

ˆ

n

k

˙ˆ

q ´ sk ´ 1
n´ 1

˙

. (B.3)

Hence, the best possible prediction for the success probability prior to
roll m is

p̂m “ 1´
pn´m`1qs

ÿ

q“t´ym

P

˜

n
ÿ

i“1
xi “ q

¸

. (B.4)

The best possible prediction for the binary target variable z prior to
roll m is

ẑm “

$

&

%

1 if p̂m ě 0.5

0 otherwise
. (B.5)

We compare ρ and φ by simulating r rounds of the game described
above. To this end, we want to account for different model qualities as
well as for the fact that we cannot observe the true underlying success
probabilities in the setting described in Chapter 5. We account for the
model quality by defining predictors of different qualities based on the
number of “known” realizations prior to roll i (p̂i and ẑi). Additionally, we
account for the unknown true success probabilities by defining “true” values
for p̂j and ẑj for all combinations of j ě i.

Figure B.1 compares ρpp̂i, p̂jq and φpẑi, ẑjq for varying model qualities
(i P 1, . . . , 11) and “true” values (j P 1, . . . , 11). Here, the facets show
different quality levels of the estimations for the “true” values while the
dots visualize the quality of the different prediction models. Additionally,
we report the r2 of a linear regression between φ and ρ without an intercept.
We see that the φ coefficient measuring the correlation between the binary
predictions and the binary outcome is a very good proxy for the correlation
ρ between the predicted and the true success probabilities in the evaluated
setting.
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B Numerical Evaluation
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Figure B.1: Comparison of φ coefficient and ρ for different model quality
levels.

While, this comparison between the φ coefficient and ρ yields promising
first results for a linear relationship between the dependent and independent
variables. Future work should analyze the relationship for more complex
settings.
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