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Abstract: A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy,
complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a
non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle Cg fullerene (Cgg) were
applied in 1:1 and 2:1 molar ratio, exploiting Cyg both as a drug-carrier and as a photosensitizer.
The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model,
treated with nanocomplexes showed Dox’s nuclear and Cg)’s extranuclear localization. It gave an
opportunity to realize a double hit strategy against cancer cells based on Dox’s antiproliferative activity
and Cgp’s photoinduced pro-oxidant activity. When cells were treated with 2:1 C4p-Dox and irradiated
at 405 nm the high cytotoxicity of photo-irradiated Cgp-Dox enabled a nanomolar concentration of
Dox and Cg to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency
decreased ICg; 16,9 and 7 X 103-fold, if compared with the action of Dox, non-irradiated nanocomplex,
and Cgo’s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from
the combination of Cgp-mediated Dox delivery and Cgp photoexcitation was revealed. Our data
indicate that a combination of chemo- and photodynamic therapies with Cgp-Dox nanoformulation
provides a promising synergetic approach for cancer treatment.

Keywords: photodynamic chemotherapy; synergistic effect; Cgg fullerene; Doxorubicin; nanocomplex;
leukemic cells; apoptosis

1. Introduction

Chemotherapy (CT) as one of the conventional cancer therapies aims to slow down the growth
of cancer cells that evolved in a fast proliferation [1]. The frontline anthracycline chemotherapeutic
drug Doxorubicin (here abbreviated consistently Dox) intercalates into nuclear DNA initiating the
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suppression of topoisomerase activity as well as of DNA transcription, replication, and repair [2—4].
Dox also affects the redox balance inducing reactive oxygen species (ROS) generation through metal
chelation and flavoprotein reductase-associated redox cycling [4,5]. The extended ROS generation
causes serious cardiotoxicity owing to the high content of mitochondria in cardiomyocytes [2,3,6] and
limits the drug’s clinical application.

The multimodal combination of therapies with distinct anticancer mechanisms offers potential
advantages and enhanced efficiency compared to monotherapy approaches [7,8]. Photodynamic
chemotherapy exploits two anticancer agents—a photosensitizing molecule and a chemotherapeutic
drug [9-16]. The former is harmless itself but on illumination with visible light in the presence
of oxygen induces cell death through ROS-mediated compact apoptosis [17,18]. Once combined,
photodynamic therapy (PDT) and CT confront cancer cells with two different “swords”, resulting
in a stronger therapeutic potential in comparison with the corresponding therapies apart or their
theoretical sum. The advantageous synergistic effect is primarily attributed to the heterogeneity of
cancer cell resistance to each of the monotherapies and finally aims to apply lower clinical dosage of
the chemotherapeutics [8].

Photosensitizers and Dox are applied either separately as a co-treatment [19,20] or bound
on the nanocarrier platform [9-16]. The enhanced efficiency of Dox included in nanoplatforms
together with such photosenitizers as chlorin 6 [11,13,14], phthalocyanines [12,15,21], indocyanine
green [22], merocyanine [9], methylene blue [10], and perfluorocarbon [16] was recently reported.
The carbon nanostructure Cq fullerene [23] (here abbreviated consistently Cgp) has attracted attention
as a photosensitizer [1,24-27] due to its unique physicochemical behavior, high quantum yield of
ROS production [28], photostability, low photobleaching [25] as well as predominant mitochondrial
localization [29-32]. Pristine Cg stable colloid solution with a negligible toxicity against normal
cells [33,34] was explored for PDT [26,28,31,35-38]. A pronounced pro-apoptotic effect was detected
in leukemic cells treated with pristine <20 uM Cgy and irradiated with UV-Vis light in the range
of 320-600 nm [26,35-37,39,40]. A continuous intensification of ROS production and inhibition
of glutathione-dependent antioxidant system testified a subsequent intense induction of oxidative
stress [40]. As a result, store-operated CaZ* entry and cytochrome c release from mitochondria [37]
induced Ca?*-dependent apoptosis of leukemic cells [39].

The combination of the Cgy pro-oxidant properties [26,31,36,37] and its drug delivery
capability [24,41,42] makes this nanostructure attractive for cancer photodynamic chemotherapy
(Figure 1). The purpose of this study was to assess the toxic effects of the non-covalent Cgy-Dox
nanocomplex in combination with light irradiation (405 nm emission from high power single chip
LED) on human leukemic CCRF-CEM cells. The nanocomplex was designed in two nanomolar
ratios of Cgp to Dox (1:1 and 2:1) in order to investigate whether Cg’s concentration affected Dox
efficacy. Firstly, the intracellular localization of the nanocomplexes in leukemic cells was estimated with
fluorescence microscopy following immunofluorescence staining. Then, the leukemic cells’ viability
was studied upon treatment with the nanocomplexes and 405 nm LED light irradiation. The anticancer
pro-apoptotic potential of the combinative treatment was assessed by evaluation of intracellular
ROS production, caspase 3/7 activity, ATP level, and phosphatidylserine translocation in the plasma
membrane in leukemic cells.

2. Materials and Methods

2.1. Chemicals

Roswell Park Memorial Institute (RPMI) 1640 liquid medium, phosphate buffered saline (PBS),
fetal bovine serum (FBS), penicillin/streptomycin, and L-glutamin were obtained from Biochrom (Berlin,
Germany). Poly-D-lysine hydrobromide, triton X100, bovine serum albumin (BSA), 4’,6-diamidin
e-2’-phenylindole dihydrochloride (DAPI), glycerol, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT), and Dox were obtained from Sigma-Aldrich Co. (St-Louis, MI, USA).
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Paraformaldehyde, dimethylsulfoxide (DMSO), sodium chloride, acetonitrile, formic acid, and trypan
blue from Carl Roth GmbH + Co. KG (Karlsruhe, Germany) were used.
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Figure 1. Cgp-Dox nanocomplex for photodynamic chemotherapy: Cgg delivers Doxorubicin (Dox)
into leukemic cells and intensifies its accumulation; following internalization, the drug is anticipated
to be released from the nanocomplex; cancer cell is exposed to the double cytotoxic hit from both
photoexcited Cg (photodynamic therapy, PDT) and co-delivered Dox (improved chemotherapy, CT).

2.2. Cgg and Cgp-Dox Nanocomplex

The pristine Cgp aqueous colloid solution was prepared by Cg transfer from toluene to water
using continuous ultrasound sonication as described by Ritter et al. [43]. The obtained aqueous colloid
solution of Cgp was characterized by 0.2 mM Cgy concentration, 99% purity, stability, and homogeneity;
the average size of nanoparticles was 100 nm [43,44].

Dox was dissolved in water at 18.5 mM initial concentration.

Ceo-Dox nanocomplexes were created according to the following protocol. Briefly, Dox solution
was mixed with Cgg colloid solution in 1:1 or 2:1 molar ratio of the components. The mixture was
treated in the ultrasonic disperser for 30 min, stirred for 24 h at room temperature (RT) and centrifuged
at 14,000 g for 15 min with the use of centrifuge filters Amicon Ultra-0.5 3 K (Sigma-Aldrich Co.,
St-Louis, MI, USA) for sample purification. The stability and concentration of the nanocomplexes
were controlled with dynamic light scattering and high-performance liquid chromatography—mass
spectrometry. The stability ({-potential value) and size distribution (hydrodynamic diameter) of
nanocomplexes as described in ref. [45] was systematically checked and shown to be practically
unchanged after 6 months of storage in physiological saline solution. The concentration of Cgy and
Dox in the stock solution of 1:1 nanocomplex was 100 uM. The concentration of Cgy and Dox in the
stock solution of 2:1 nanocomplex was 200 uM (198.9 uM) and 100 pM, correspondingly.

Measuring the value of the translational diffusion coefficient as a function of Cgy concentration
at constant Dox concentration was performed in ref. [46]. The diffusion curve displays very distinct
changes at small Cgy concentrations and reaches a plateau for higher concentrations. It allows the
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conclusion that the binding of Dox molecules mainly occurs with Cgp nanoclusters in aqueous solution.
Indirectly this conclusion is confirmed by the atomic force microscopy data [46]; most likely Cgp-Dox
nanocomplexes stabilized by the Dox-induced attenuation of electrostatic repulsion between Cgy.

Finally, the maximum number of ligand molecules (N) that can be bound with Cg in aqueous
solution may be estimated independently with the help of proposed general up-scaled model [47] as
well as molecular modeling. The following value was obtained for Dox: N = 3 [48,49]. The calculated
equilibrium hetero-complexation constant was equal to K; ~ 60,000 M~! [47].

The content of 1:1 and 2:1 Cgp-Dox nanocomplexes after incubation in RPMI medium for 24 h
was assessed to account for 81.50% =+ 5.03% and 83.83% =+ 5.47%, correspondingly, of the respective
0 h control (Figure 2). For this, Cgp-Dox nanocomplexes were incubated in RPMI up to 24 h under
the identical conditions adopted from cell-based experiments (450 nM, 2 mL, 37 °C). For sample
purification from a released free drug, 500 uL of each sample was filtered with the centrifugal filter
devices Amicon Ultra-0.5 3 K (Sigma-Aldrich Co., St-Louis, MI, USA) according to the manufacturer’s
instructions: 14,000 g, 15 min for filtration; 1000 g, 2 min for recovery (reverse spin upside down in
a new centrifuge tube). The content of the filter device was subjected to optical analysis. Cgp-Dox
nanocomplexes samples (50 pL) were placed into 384-well plate Sarstedt and fluorescence intensities
were measured with a multimode microplate spectrometer Tecan Infinite M200 Pro (Tecan Infinite
M200 Pro, Mannedorf, Switzerland) at the following parameters: Aex = 470 nm, Aem = 595 nm, number
of flashes per well—25, integration time—20 ps. The obtained data were normalized with the RPMI
control and expressed as percentage of the respective control sample, analyzed at 0 h.
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Figure 2. Dox release from Cgp-Dox nanocomplexes during 24 h of incubation in Roswell Park Memorial
Institute (RPMI 1640) medium.

The used concentrations of the Cgp-Dox nanocomplexes for cells treatment were 50, 150, and
450 nM, presented according to Dox concentrations in order to compare the effect of the nanocomplexes
with the effect of the free drug.

2.3. LED Light Source for Photodynamic Therapy

For cell treatment in well plates a LED-based system was developed (Figure 3). The light
source system consists of control and irradiation units. Taking our requirements from our recent
experiments into account [31] we set up the irradiation unit with a high power single chip 405 nm LED
VL400-EMITTER (Roithner Lasertechnik GmbH, Vienna, Austria) on a cylindrical heat sink (Figure 3a).
The cascade of lens was designed to ensure high irradiation power density and even illumination over
the well (Figure 3a). For the development of the optical cascade we applied an aspherical lens for
reducing the divergence angle of the beam (D = 13.0 mm, h = 7.1 mm from Cree Inc., Durham, North
Carolina, USA), which allowed all light to be focused to a second spherical lens with 35° (50% int)
angle (D = 16.4 mm, h = 5.0 mm from Cree Inc., Durham, NC, USA) for increasing the radiation density.
The diameter of the collimated beam was determined by the distance between the two lenses. The light



Nanomaterials 2019, 9, 1540 50f 19

system provides the same power density at any point of irradiation. The maximum diameter of the
beam was 35 mm and the minimum 25 mm with 130 mW power. The light fluence was used at either 5
or 10 J/em? for comparison of cell treatment effect. The mounting carcass was built in SOLTDWorks
from Dassault Systems (Vélizy-Villacoublay, France) (Figure 3b) and 3D-printed at Ultimaker 2+
(Utrecht, The Netherlands) (Figure 3c). The final light system was constructed with a metal turning
and assembled at the Fotonika Plus Co. (Cherkasy, Ukraine) (Figure 3d).

e S EE

Figure 3. LED light system: (a) scheme, that reveals its electrical part, LED, and optical system,
(b) design of the mounting carcass in 3D Software SOLIDWorks (Dassault Systems, Vélizy-Villacoublay,
France), (c) 3D printed plastic 1st model, (d) final metal model; scale bar corresponds to 10 mm.

2.4. Cell Culture

The human cancer T-cell line CCRF-CEM (ACC 240) of leucosis origin was purchased from the
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (Deutsche Sammlung
von Mikroorganismen und Zellkulturen, Braunschweig, Germany).

Cells were maintained in 5 mL RPMI 1640 medium supplemented with 10% FBS, 1%
Penicillin/Streptomycin and 2 mM Glutamine, using 25 cm? flasks at a 37 °C with 5% CO, in a
humidified incubator Binder (Tuttlingen, Germany). The number of the viable cells was counted with
the use of Roche Cedex XS Analyzer (Basel, Switzerland) after staining with 0.1% trypan blue.

2.5. Immunofluorescence Staining of Cg

CCRF-CEM cells (2 x 10°/2 mL) were seeded in 6-well plates (Sarstedt, Niimbrecht, Germany)
on cover slips (Carl Roth, Karlsruhe, Germany), previously coated with poly-D-lysine and incubated
for 24 h. Cells were treated with free Dox, Cgy or Cg-Dox nanocomplexes in a 450 nM Dox
equivalent concentration for a further 24 h. Then the cells were washed with PBS and fixed with 4%
paraformaldehyde for 15 min at room temperature (RT) in the dark. After washing with PBS, the cells
were permeabilized with 0.2% triton X100 for 10 min at RT and washed again with PBS. Blocking was
performed using 10% BSA for 20 min followed by washing in PBS. The primary Cgp-mouse monoclonal
IgG antibody bound to bovine thyreoglobulin (dilution ratio of 1:30 in PBS/1.5% BSA, 1-10F-A8 Santa
Cruz Biotechnology Inc., Santa Cruz, California, USA) was added to the medium and CCRF-CEM cells
were incubated overnight at 4 °C in a humidified chamber. Then CCRF-CEM cells were incubated for
3 h at RT with a fluorescein isothiocyanate- (FITC) labeled polyclonal rabbit-anti-mouse IgG antibody
(dilution ratio of 1:200 in PBS/1.5% BSA, F7506 Sigma-Aldrich Co., St-Louis, MI, USA). Slides were
washed with PBS for 15 min three times. Coverslips were rinsed with dH,O, incubated for 2 h in
the dark with the nucleus staining/antifade solution (0.6 uM DAPI, 90 mM p-phenylenediamine in
glycerol/PBS) and sealed with slides.
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2.6. Fluorescence Microscopy

Images of CCRF-CEM cells stained with DAPI, Dox, and FITC-labeled antibodies against C4, were
viewed with a fluorescence microscope Keyence BZ-9000 BIOREVO (Osaka, Japan). The microscope
was equipped with blue (Aex = 377 nm, Aem = 447 nm), green (Aex = 472 nm, Aem = 520 nm), and
red (Aex =543 nm, Aery = 593 nm) filters. The acquisition Keyence BZ-II Viewer Software (Osaka,
Japan) was used. The merged images were processed with the Keyence BZ-II Analyzer Software
(Osaka, Japan).

2.7. Photodynamic Therapy In Vitro and Cell Viability Assay

CCRF-CEM cells (10%/well) were cultured in 96-well cell culture plates (Sarstedt, Niimbrecht,
Germany) for 24 h. The cell culture medium was replaced by 1% FBS drug-contained medium.
Cells were incubated in the presence of 50, 100, and 450 nM Dox or Cgp-Dox nanocomplexes in Dox
equivalent concentrations. After 24 h incubation cells were washed with PBS and irradiated with the
developed 405 nm high power single chip LED light source (108.3 mW/cm?, 5 or 10 J/cm?). PBS was
replaced with the fresh medium immediately after irradiation. Control cells were incubated without
any treatment or light irradiation. After 24 h incubation, cell viability was determined with MTT
reduction assay [50]. 10 pL of MTT solution (5 mg/mL in PBS) was added to each well and cells were
incubated for 2 h at 37 °C. The culture medium was then replaced with 100 pL of DMSO and in 15 min
diformazan formation was determined by measuring the absorption at 570 nm with a microplate reader
(Tecan Infinite M200 Pro, Mannedorf, Switzerland). Curve fitting and calculation of the half-maximal
inhibitory concentration (ICsp) values were done using the specialized software GraphPad Prism 7
(GraphPad Software Inc., San Diego, CA, USA). Briefly, individual concentration-effect curves were
generated by fitting the logarithm of the tested compound concentration versus the corresponding
normalized percent of cell viability using nonlinear regression.

2.8. Intracellular Reacrive Oxygen Species Generation

To determine ROS production 2,7-dichlorofluorescin diacetate (DCFH-DA, Sigma-Aldrich Co.,
St-Louis, Missouri, USA) was applied. A 5 mM stock solution of DCFH-DA was prepared in DMSO,
stored at —20 °C and diluted with PBS immediately before use. CCRF-CEM cells were seeded into
96-well plates (10* cells/well) and incubated for 24 h. Then the medium was changed to that containing
free 450 and 900 nM Cgp, Dox or Cgp-Dox nanocomplexes in 450 nM Dox-equivalent concentration
for 24 h, irradiated (10 J/cm? 405 nm LED) as indicated above, incubated for 1 and 3 h and washed
once with PBS. Five uM DCFH-DA was added and the fluorescence (Aex = 488 nm, Ay, = 520 nm) was
recorded every 5 min over 50 min with the microplate reader Tecan Infinite M200 Pro (Mé&dnnedorf,
Switzerland). At 60 min of incubation, fluorescence images of cells were obtained with the fluorescence
microscope Keyence BZ-9000 BIOREVO (Osaka, Japan), equipped with green filter (Aex = 472 nm,
Aem = 520 nm).

2.9. Intercellular ATP Content

CCRF-CEM cells were seeded into 96-well plates (10* cells/well) and incubated for 24 h. Cells were
treated with 450 and 900 nM free Cgp, Dox or Cgp-Dox nanocomplexes in 450 nM Dox-equivalent
concentration for 24 h, irradiated with 405 nm, 10 J/cm? and transferred to 50 uL glucose-free RPML
At 3 h after light exposure the cell membrane integrity and cellular ATP level were estimated with
the Promega Mitochindrial ToxGlo™ assay kit (Madison, WI, USA) according to the manufacturer’s
instructions. Briefly, plates were equilibrated to RT for 10 min and to each well the ATP Detection
Reagent (50 pL) was added containing luciferin, ATPase inhibitors and thermostable luciferase.
After shaking at 600 rpm for 1 min the luminescence intensity was measured with the microplate
reader Tecan Infinite M200 Pro (Madnnedorf, Switzerland).
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2.10. Caspase 3/7 Activity

CCRF-CEM cells were seeded into 96-well plates (10* cells/well) and incubated for 24 h. Cells were
treated with 450 and 900 nM free Cgp, Dox or Cgp-Dox nanocomplexes in 450 nM Dox-equivalent
concentration for 24 h and irradiated (405 nm, 10 J/cm?) as described above. Activity of caspases 3/7
was determined at 3 h after light exposure using the Promega Caspase-Glo® 3/7 Activity assay kit
(Madison, WI, USA) according to the manufacturer’s instructions. Briefly, plates were removed from
the incubator and allowed to equilibrate to RT for 30 min. After that, an equal volume of Caspase-Glo
3/7 reagent containing luminogenic peptide substrate was added followed by gentle mixing with a
plate shaker at 300 rpm for 1 min. The plate was then incubated at RT for 2 h. The luminescence
intensity of the products of caspase 3/7 reaction was measured with the microplate reader Tecan Infinite
M200 Pro (Méannedorf, Switzerland).

2.11. Flow Cytometry Analysis

CCREF-CEM cells were seeded onto 6-well plates Sarstedt (Niimbrecht, Germany) at a cell density
of 2 x 10° cells/well in 2 mL of culture medium, incubated for 24 h, than treated with 450 and 900 nM free
Cs0, Dox or Cgp-Dox nanocomplexes in 450 nM Dox-equivalent concentration for 24 h and irradiated
(405 nm, 10 J/cm?) as described above. At 6 h of incubation period cells were harvested. Apoptosis was
detected by Annexin V-FITC/propidium iodide (PI) apoptosis detection kit (eBioscience™, San Diego,
CA, USA) according to the manufacturer’s instructions. Briefly, cells were harvested and washed
with Binding buffer. After addition of Annexin V-FITC cells were incubated for 15 min at RT in dark.
Cells were washed with Binding buffer and at 10 min after PI addition were analyzed (Aex = 488 nm,
Aem (Annexin V-FITC) = 530/40 nm and Aem (PI) = 692/40 nm) with a flow cytometer BD FACSJazz™
(Franklin Lakes, New Jersey, USA). A minimum of 2 x 10* cells per sample were acquired and analyzed
with the BD FACS™ software (Franklin Lakes, NJ, USA).

2.12. Statistics

All experiments were carried out with a minimum of four replicates. Data analysis was performed
using the GraphPad Prism 7 Software (GraphPad Software Inc., San Diego, CA, USA). Paired Student’s
t-test was performed. Differences with p-values <0.01 were considered to be significant.

The combination index (CI), calculated according to the Chou-Talalay method [51] with the
ComboSyn software (ComboSyn, Inc., Paramus, NJ, USA), was used to evaluate pharmacodynamic
interactions between non-irradiated Cgp-Dox nanocomplexes and photoexcitation of Cg in cells treated
with Cgp-Dox nanocomplexes and irradiated with 5 and 10 J/em? LED light. The following equation

was used.
(D), (D),
(D2s);  (Das)y

where (Dj5); is the concentration of Cgy-Dox that inhibited cell viability to 25%; (Djs); is the
concentration of free Cg that inhibited cell viability to 25% after photoexcitation; (D); and (D),
are the concentrations of Dox and Cg in the Cgp-Dox nanocomplexes which inhibited cell viability
to 25% after Cgy photoexcitation. A CI value of <1, =1 and >1 indicates a synergistic, additive and
antagonistic interaction, respectively.

Cl =

)

3. Results

3.1. Localization of Cgy and Dox in Cells Treated with Cgyp-Dox Nanocomplexes

With the use of fluorescence-based techniques we could explain intracellular localization of Cgp and
Dox after CCRF-CEM cells’ treatment with Cgp-Dox nanocomplexes in the 1:1 and 2:1 nanomolar ratio.
Since Dox possesses a strong absorption and fluorescence in the visible spectral region [52,53] the direct
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tracking of this molecule is possible, whereas Cgy monitoring requires additional immunofluorescence
staining [30,31,54].

CCRF-CEM cells were incubated for 24 h with the agents under study and subjected to staining.
The overlap of the Dox red signal with the nuclear marker DAPI blue signal confirmed the drug’s nuclear
localization (Figure 4). We detected substantially enhanced Dox level in cells treated with Cgp-Dox
nanocomplexes as compared with cells treated with the free Dox. Monitoring of the C4 distribution
by the immunofluorescence green signal confirmed the intracellular accumulation of the nanostructure
and pointed to its extranuclear localization. The Cg localization within mitochondria accounts for 72%
of the whole cellular content as was shown before [31,32]. The observed intracellular allocation of Dox
and Cg evidenced the effective intracellular Dox release from Cgp-Dox nanocomplexes.

Blue Green Merged Merged x 5§

control

2:1 Cgp-Dox 900 nM Cgp 1:1 Cgo-Dox 450 nM Cq, 450 nM Dox

Figure 4. Fluorescence microscopy images of CCRF-CEM cells, stained with 4’,6-diamidine-2’-phen
ylindole dihydrochloride (DAPI, Blue), fluorescein isothiocyanate-based immunostaining for Cgg
(Green) and Dox (Red) after treatment with: 450 and 900 nM Cg, 450 nM Dox, 1:1 or 2:1 Cgp-Dox
nanocomplex. The white scale bar corresponds to 20 pum; the yellow scale bar on images in the column
“Merged x5” corresponds to 4 um.

Localization of the nanocomplex components in the different cell compartments strongly supports
the possibility of an anticancer double hit strategy that is suggested to be realized by photoinduced
pro-oxidant activity of Cgg in mitochondria [31] and antiproliferative action of Dox in nuclei [2—4].

3.2. Cell Viability

The viability of cells incubated without any treatment was taken as 100% (control). No effect of
Cgp introduced alone on leukemic cell viability was detected, while the concentration-dependent toxic
effect of free Dox was observed. After the treatment with 50, 150, and 450 nM Dox, cell viability was
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decreased to 81% =+ 5%, 70% = 3%, and 49% = 5%, correspondingly (Figure 4). When cells were treated
in the dark with the C¢p-Dox nanocomplexes at Dox equivalent concentrations, further increase of the
Dox toxicity by 10-20% (Figure 5) and the decrease of its ICs (Table 1) were observed. These data
denote Cgp’s ability to facilitate intracellular Dox accumulation [55] and, therefore, potentiate its
toxic effects.
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Figure 5. Viability of CCRF-CEM cells: cells were treated with either Cgy and Dox alone or Cgy-Dox
nanocomplexes in Dox equivalent concentrations and incubated in the dark or after light irradiation
with 405 nm LED at 5 J/cm? (a) or 10 J/em?2 (b) (* p < 0.01 in comparison with the respective dark control,
** p <0.01 in comparison with the photoexcited 1:1 nanocomplex).

Table 1. ICs( values for the free Dox and Cgp-Dox nanocomplexes.

ICs9, nM Dark 5 J/cm? 10 J/cm?
Dox 390 + 56 382 + 53 336 + 49
1:1 Cgo-Dox 135 + 29 86 + 19 447

2:1 Cgp-Dox 225 + 34 ** 64 +11* 25 £ 4 4%

* p <0.01 in comparison with the respective dark control, ** p < 0.01 in comparison with the 1:1 nanocomplex.
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After combined treatment with Cgp-Dox nanocomplexes and light cells, viability as well as ICs
values were considerably decreased compared with their dark toxic effects. The toxicity was dependent
on the light fluence and Cg concentration in the nanocomplex. Thus, the decrease of cell viability
after the treatment with 1:1 Cgp-Dox nanocomplex and 5 J/cm? light was observed only when the
nanocomplex was used at 450 nM Cg equivalent concentration (Figure 5a). When the light fluence was
increased up to 10 J/cm? the pronounced phototoxic effect became evident at all given concentrations
of 1:1 Cgp-Dox nanocomplex (Figure 5b) and the ICsy values appeared to be three and nine times
lower as compared with the ICsy for non-irradiated 1:1 C49-Dox nanocomplex and for the free Dox,
correspondingly (Table 1).

The viability of cells treated with 2:1 Cgp-Dox nanocomplex and irradiated with 5 J/em? light
was decreased substantially in a concentration dependent manner. The most significant toxic effect
was observed after the treatment with 2:1 Cgp-Dox nanocomplex and irradiation with 10 J/em? light,
when the ICs values was estimated to be nine and sixteen times lower as compared with the ICs for
non-irradiated 2:1 Cg9-Dox nanocomplex and for the free Dox, correspondingly (Table 1). If comparing
with the photodynamic effect from Cgp alone towards CCRF-CEM cells at the same conditions [31],
we can conclude that the ICs5 of photoexcited 2:1 Cgp-Dox was 7 X 103-fold decreased. No signs of
appreciable viability were detected when cells were treated with 2:1 C4p-Dox nanocomplex at 900 nM
Cgo equivalent concentration and irradiated with 10 J/em? light (Figure 5b).

To estimate the pharmacodynamics interactions of Cg)’s dual functionality, as a drug nanocarrier
and as a photosensitizer in cells treated with nanocomplexes, we calculated the value of the combination
index (Table 2). When cells were co-treated with Cgy-Dox nanocomplexes and LED light at 5 J/cm?
fluence the CI values indicated a synergistic effect. While after co-treatment with 1:1 and 2:1 Cgp-Dox
nanocomplexes and LED light at 10 J/cm? fluence, the CI value proved to have a strong and a very
strong synergistic effect of the photoexcited nanocomplex components respectively in the applied
bimodal strategy of cell treatment.

Table 2. Combination index of interaction between phototoxic effects of Cgy (PDT) and non-irradiated
Cgo-Dox nanocomplexes (improved CT) 1.

CI 5 J/cm? 10 J/cm?

1:1 Cgp-Dox 0.546 + 0.037 (synergism) 0.130 + 0.009 (strong synergism)
2:1 Cgp-Dox 0.316 + 0.023 (synergism) 0.097 + 0.002 (very strong synergism)

! This was measured after cells’ co-treatment with Cgp-Dox nanocomplex and LED light. Classification of interaction
was determined according to Chou [51].

Next the intracellular ROS generation, ATP level, and the markers of apoptotic death were assessed
in CCRF-CEM cells after combined treatment with Cgp-Dox nanocomplexes and light.

3.3. Intracellular Reacrive Oxygen Species Generation

The efficient and continuous intracellular ROS production is considered to be a critical step
in realization of a photoexcited Cgy anticancer effect [31,36,40,56,57]. ROS generation in cells was
evaluated with the use of the fluorescence dye DCFH-DA [58,59] at 1 and 3 h of incubation after light
irradiation or in the dark. The minor increase of the fluorescence signal was detected during the
incubation of the control untreated cells (Figure 6). No reliable changes in ROS generation in comparison
with the control were observed when 450 or 900 nM Cg was applied alone. Treatment with the free
450 nM Dox or Cg-Dox nanocomplexes was followed by a slight increase of ROS generation at 1 h that
was attenuated at 3 h (Figure 6a). When cells treated with the free Cgp or Cgp-Dox nanocomplexes were
irradiated with 405 nm light at 10 J/cm? fluence the ROS production was intensified at both 1 and 3 h.
In cells treated with 1:1 or 2:1 Cgp-Dox nanocomplex ROS levels at 3 h after irradiation exceeded the
control level by 3.8 times and 5.0 times, correspondingly (Figure 6c¢).
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Figure 6. Reacrive oxygen species generation in CCRF-CEM cells treated with either Dox or C¢( alone or
with Cgg-Dox nanocomplexes: the dynamics of ROS generation in cells at 1 and 3 h after the treatment
in the dark (a) or irradiation with 10 J/cm? 405 nm LED (c); the fluorescence microscopy images of
cells at 3 h after the treatment in dark (b) or light irradiation (d) and further 60 min incubation with
2,7-dichlorofluorescin diacetate (DCFH-DA); scale bar corresponds to 20 um.

The analysis of the fluorescence microscopy images (Figure 6b,d) confirmed the obtained
quantitative data on intense ROS production in cells irradiated after the treatment with Cgp-Dox
nanocomplexes and supports oxidative stress as a precondition of mitochondrial dysfunction and
intrinsic apoptotic pathway induction [17,60].

3.4. Intracellular ATP Content

Mitochondria play a leading role in apoptosis induction and progression and are an important
subcellular target for many photosensitizing drugs [17,60]. Cytotoxic effects of photosensitizers
are considered to be realized particularly through the mitochondrial oxidative damage [26,31,37].
Therefore, next we assessed whether the treatment of cells with Cgo-Dox nanocomplexes and light
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affected ATP production as the main mitochondrial function. Neither free Cgy and Dox nor light
irradiation alone had any effect on the ATP level in cells (Figure 7a).

(@) ®) gg0- Z
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:
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< ®
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©
5 &)

dark 10 J/icm? dark 10 Jicm?
mm 450 nM Cg, mmm 900 NM Cg, mmm 450 nM Dox mmm 1:1 Cgp-Dox mmm 2:1 Cgo-Dox

Figure 7. ATP level (a) and caspase 3/7 activity (b) in CCRF-CEM cells at 3 h after treatment. Treatment
was done with either free Cgy and Dox or Cgp-Dox nanocomplexes in the dark or after irradiation with
10 J/cm? 405 nm LED (* p <0.01 in comparison with the respective dark control).

In cells treated with 1:1 and 2:1 C4p-Dox nanocomplexes the ATP level was slightly decreased to
84% + 5% and 87% + 3% of the control, respectively. The appreciable drop in intracellular ATP level to
30% + 4% and 28% + 3% was observed after 10 J/cm? light irradiation of cells treated with 1:1 and 2:1
Cgo-Dox nanocomplexes respectively (Figure 7a), indicating inhibition of mitochondria function that
could be attributed to impaired redox balance in cells.

3.5. Apoptosis Induction

Apoptotic program execution requires the coordinated activation of multiple subprograms
including caspases cascade [5,61]. The executive caspase 3/7 activation and phosphatidylserine
translocation into the outer layer of plasma membrane lipid bilayer were evaluated as the markers of
apoptotic cell death. No effect of either free C¢p or Dox as well as of light irradiation alone on caspase
3/7 was observed following 3 h of cells incubation (Figure 7b). Irradiation of cells treated with 450 or
900 nM Cg¢p was followed by 1.6-fold and 1.9-fold increase of caspase 3/7 activity, respectively, while
after irradiation of cells treated with 1:1 or 2:1 Cgp-Dox nanocomplexes 4.7-fold and 5.8-fold increase of
caspase 3/7 activity respectively compared with control was observed (Figure 7b).

Finally, we checked the exposure of phosphatidylserine on the cell surface as an “eat me” signal,
that induces phagocytic recognition and destruction of apoptotic cells [62]. To differentiate apoptotic
cells fluorescence activated cell sorting (FACS) was used. On FACS histograms (Figure 8) the cell
distribution at 6 h after the treatment with either free Cgy or Dox or Cgp-Dox nanocomplexes is presented
according to the green and red fluorescence intensities of Annexin V-FITCI and PI respectively. Viable
(Annexin V-FITC negative, PI negative), early apoptotic (Annexin V-FITC positive, PI negative), late
apoptotic (Annexin V-FITC positive, PI positive), and necrotic (Annexin V-FITC negative, PI positive)
cells in their quantitative populations analyses are presented in Figure 8b. Neither treatment with
Ceo nor 405 nm light irradiation alone had a significant effect on cell distribution profiles (FACS
histograms are not shown). A slight increase in the number of early apoptotic cells was observed
after treatments with free Dox, Cgp-Dox nanocomplexes or photoexcited Cgp. When cells treated with
Cgo-Dox nanocomplexes were exposed to light a distribution-shift towards late apoptosis was observed.
Thus, the content of Annexin V-FITC positive and PI positive cells in population of cells treated with
photoexcited 1:1 and 2:1 Cgp-Dox nanocomplexes reached 93% and 96%, correspondingly (Figure 8).
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Figure 8. Cell death differentiation in CCRF-CEM treated with either free Cgy, Dox or Cgg-Dox
nanocomplexes: (a) flow cytometry histograms of CCRF-CEM cells stained with Annexin V-FITC/
propidium iodide (PI) after treatment either with Cgp-Dox alone or in combination with 405 nm light (in
each panel the lower left quadrant shows the content of viable, upper left quadrant—early apoptotic,
upper right quadrant—late apoptotic, lower right quadrant—necrotic cells populations); (b) Quantitative
analysis of cell population content, differentiated with double Annexin V-FITC/PI staining.

Taken together the data obtained confirmed the pro-apoptotic effect of combined treatment with
Cgo-Dox nanocomplexes and 405 nm LED light irradiation on leukemic cells.
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4. Discussion

The nanoparticulation of anticancer drugs expands the scope of their chemical behavior and
pharmacodynamics, as well as reducing efficient doses and unwanted side effects. Inclusion of the
anticancer drug Dox into nanosized delivery systems prolongs its retention in the organism and favors
its targeted accumulation in cancer cells [63,64].

In previous studies we exploited the ability of Cgp nanostructure’s polyaromatic surface to absorb
aromatic Dox molecules and synthesized non-covalent Cgp-Dox nanocomplexes. The physicochemical
properties of the Cgp-Dox nanocomplexes studied with the different analytical methods confirmed their
stability and biological applicability [45,52,59,65]. Complexation with Cgg increases the intracellular
Dox level and improves Dox efficiency against human leukemic and colon cancer cells [49,55].

In the current study combination of the chemotherapeutic and photodynamic treatment strategies
was explored on the basis of Dox nanocomplexes with Cgy. Nanocomplex of Cgg and Dox at molar
ratios 1:1 and 2:1 and at Dox equivalent concentrations in a range <ICsy (150-450 nM) were tested on
human leukemic CCRF-CEM cells in combination with light irradiation.

With the use of indirect C4p immunostaining we confirmed the intracellular accumulation of the
carbon nanostructure in cells treated with free Cgy or Cgp-Dox nanocomplexes. When cells were treated
with Cgp-Dox nanocomplexes, Cgy was found to be localized in the extranuclear space assumed to be in
mitochondrial membranes as it was shown for Cgg at higher concentrations [31,32], whereas Dox was
accumulated in the cell nucleus and in a higher concentration than after treatment with a free drug.
These data are linked to the Cg ability to promote passive diffusion and/or endocytosis/pinocytosis of
the small molecules in cancer cells [66-68] and to bind P-glycoproteins [69], inhibiting Dox’s pumping
out from the cell. Comparably, graphene-based triple delivery nanosystems non-covalently loaded
with Dox and phthalocyanine ensured higher cellular drug uptake and effective intracellular drug
release [21].

The allocation of Cgy and Dox inside leukemic cells sets a background for the application of the
“two swords” treatment strategy based on CT and PDT combination. Thus, nuclear Dox intercalated
into DNA is supposed to block its transcription, replication, and repair [2—4], whereas photoexcited
extranuclear Cg can produce ROS and induce mitochondrial pathway of apoptosis [26,31,36,37,70].

The Cg absorption spectrum has three intense bands in the ultraviolet region and a long broad
tail up to the red region of the visible light [31,43]. The mutagenic potential of ultraviolet light makes
its application unfavorable, therefore, we used irradiation with a 405 nm high power single chip light
emitting diode at the fluence <10 J/cm?, that was shown previously to be nontoxic and efficient for the
photoexcitation of Cgy accumulated in CCRF-CEM cells [31].

In order to exploit Cg4p photosensitizing activity a high-power a single chip light-emitting
diode-based light source was constructed. The use of high-power single chip LEDs is expected
to promote PDT application, since they have a higher portability and an extremely lower cost,
compromising the efficiency of lasers [71,72]. The possibility to vary the evenly irradiated area is one of
the main advantages of the developed system. It provided the same power density at any irradiation
point, allowing for accurate calculation and selection of the irradiation dose. Consequently, the optical
elements greatly increased the efficiency of using LED irradiation and helped to collimate irradiation
in a narrower beam. To address a challenge of limited penetration depth of blue light in biological
tissue, next steps could be aimed at additional skin optical clearing [73,74] or coupling of the LED light
source with fiber optics for direct and precise light intra-tissue delivery.

It should be noted that we used Cgy in nanomolar concentrations in contrast to micromolar
application in our previous studies [26,31,36,37] and by other authors [38,56,57,68,75,76]. Nanomolar
Cep was shown to have no dark toxicity and a slight pro-oxidant effect with 11.5% decrease of leukemic
cell viability after 405 nm LED light irradiation at 10 J/cm? fluence.

When leukemic cells were treated with a 2:1 C¢p-Dox nanocomplex and irradiated with 10 J/em?
405 nm LED light a 16-fold decrease of ICsy was observed as compared with the ICsg value for the free
Dox (390 nM). Phototoxicity of 1:1 Cgp-Dox nanocomplex occurred to be less pronounced causing a
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9-fold decrease of ICs that can be attributed to the lower content of Cy as a photosensitizer. The value
of the combination index, which was calculated to characterize the pharmacodynamic interactions,
indicated a strong synergy between non-irradiated 2:1 C¢p-complexed Dox and photoexcited Cgp with
10 J/em? light. The high pro-apoptotic efficiency of the Cgp-Dox nanocomplexes and light irradiation
against CCRF-CEM cells were confirmed by significant increase of intracellular ROS, decreased ATP
levels, caspase 3/7 activation, and transition of 90% of cells to the late apoptosis stage.

The data obtained demonstrate effective combination of chemotherapeutic and photodynamic
cancer treatment strategies on the basis of the C4p-Dox nanosystem. To our knowledge we were the first
to apply nanomolar concentrations of photosensitizer and drug in vitro for toxicity optimization in the
frame of photodynamic chemotherapy with carbon nanomaterial. According to the recent literature
data on carbon nanoparticle-mediated photodynamic chemotherapy the synergistic toxic effect of
drug-loaded graphene was achieved with light irradiation of cervix, breast, and skin cancer cells treated
with Dox-polylysine graphene-phthalocyanine [21] or lung cancer cells treated camptothecin—graphene
oxide-hypocrellin A [77], both in the uM Dox concentrations. Moreover, dual functionality of Cgp, as a
drug nanocarrier and as a photosensitizer, enabled an easy and fast preparation of two-component
Cgo-Dox as compared to the mentioned three-component graphene-based nanosystems.

Chemo- and photodynamic anticancer agents have distinct intracellular targets and, therefore,
induce different signaling pathways of cell injury. Earlier studies showed tumor-specific differential
effects of agents under study. Thus, Dox attacked specifically fast proliferating cells [2—4], whereas Cg
mainly targeted the redox state of the cell [24,25,28]. The synergistic effect of PDT and CT combination
is attributed mainly to the further amplification of oxidative stress [8]. Intensive ROS production
promotes apoptosis and assists drug delivery due to ROS-mediated lipid peroxidation of endosome
membranes [8,16,17]. The efflux of the drug can be inhibited as well by ROS-mediated oxidation of the
intracellular domain of the multidrug resistance P-glycoprotein [78-80]. ROS as signal intracellular
messengers shift profiles of signaling pathways in treated cells. Hence, carbon nanoparticle induced
ROS-mediated activation of the mitogen-activated protein kinase, that increased the vulnerability
of lung cancer cells towards paclitaxel [81]. The cooperative enhancement interactions between
mechanisms of chemo- and photodynamic therapies contribute to the obtained synergistic effect
(namely “1 + 1 >27).
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