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Abstract: Large-area remote sensing time-series offer unique features for the extensive investigation of
our environment. Since various error sources in the acquisition chain of datasets exist, only properly
validated results can be of value for research and downstream decision processes. This review
presents an overview of validation approaches concerning temporally dense time-series of land
surface geo-information products that cover the continental to global scale. Categorization according
to utilized validation data revealed that product intercomparisons and comparison to reference
data are the conventional validation methods. The reviewed studies are mainly based on optical
sensors and orientated towards global coverage, with vegetation-related variables as the focus.
Trends indicate an increase in remote sensing-based studies that feature long-term datasets of land
surface variables. The hereby corresponding validation efforts show only minor methodological
diversification in the past two decades. To sustain comprehensive and standardized validation
efforts, the provision of spatiotemporally dense validation data in order to estimate actual differences
between measurement and the true state has to be maintained. The promotion of novel approaches
can, on the other hand, prove beneficial for various downstream applications, although typically only
theoretical uncertainties are provided.
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1. Introduction

Earth’s biosphere is exposed to increasing pressure from environmental changes, many of
which are of anthropogenic cause (e.g., global change [1]). Various associated manifestations can be
observed in the land surface domain of the planet. To effectively address related issues, knowledge on
environmental indicators at a high spatial and temporal resolution is required to perform detailed
analyses in different fields [2-5]. It is crucial that the acquired information is reliable in order to
minimize error propagation in further applications, thus creating the need for substantial validation
efforts. For the quantification and prediction of planet-wide processes, it is furthermore necessary to
conduct highly frequent and accurate investigations at the continental to global scale over extended
periods of time [6]. The challenge of creating datasets that meet these requirements can be approached
efficiently by satellite remote sensing. Large spatial coverage (“wall to wall”) and high revisit times
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of specific spaceborne instruments promote the derivation of time-series data, containing extensive
geospatial information. The scientific demand to engage in global-scale environmental questions has
consequently facilitated the growth of this field [7,8]. This development was possible due to the release
of well characterized and calibrated satellite data and the pressing demand from the user community
to have access to consistent and ready-to-use products [9].

Although only a limited number of earth observation (EO) sensors are suitable for the generation
of long-term and temporally dense time-series, the increased quantity of easily accessible data
sources provides the foundation for numerous satellite-derived geophysical datasets, which can be
allocated to the optical (i.e., multispectral, thermal) and radar (radio detection and ranging) sectors [10].
The progressive use of combinations of sensor-specific data additionally enables enhanced investigation
periods along with advanced research capabilities (e.g., [6,11]).

This review addresses the key issue of the reliability of obtained results. EO time-series
are here regarded as temporally dense observations of land surface parameters in a certain time
period [10], which either consist of directly measured electromagnetic radiation (digital numbers,
reflectance) or derived variables, such as geophysical (e.g., fraction of absorbed photosynthetically
active radiation, FAPAR; land surface temperature, LST), index (e.g., normalized difference vegetation
index, NDVI; leaf area index, LAI), thematic (e.g., forest versus non forest), topographic (e.g., slope,
roughness), or texture (e.g., compactness, fragmentation) variables [12]. Either via binary, categorical,
or continuous values, these variables estimate the prevailing properties of the surface. In addition to
the current state, time-series offer temporal trajectories, revealing the dynamic behavior of a measured
instance. Moreover, long-term remote sensing time-series are able to access knowledge regarding
long-term directional trends, seasonal/systematic movements, and irregular/unsystematic short-term
fluctuations [10]. The main contributors to the respective data repositories are the MODIS (Moderate
Resolution Imaging Spectroradiometer) science team, providing a range of extensive products in the
fields of atmosphere, ocean, land, and calibration disciplines [13] as well as the systematically produced
global land surface time-series datasets of the Copernicus Global Land Service (e.g., Figure 1, [14]).
Besides the direct interpretation of land surface time-series, a wide range of applications rely on
consistent large-area datasets as model input [15-18]. Such applications can offer a more complete
understanding of earth system dynamics [19,20]. However, the main criteria for the utilization of
remote sensing time-series products in process models and their assimilation in more sophisticated
forecast schemes are spatiotemporal continuity and auxiliary uncertainty information [21].

Despite considerable progress and extensive use of recognized EO products in a variety
of applications, significant improvements are still required concerning quality, accuracy,
and spatiotemporal coverage [6]. In addition to shortcomings of single satellite-based retrievals,
the quality of EO time-series is furthermore influenced by spatial patterns and temporal dynamics
determined by sensor properties, observational distortions, and processing algorithms [21-28].
The potential impacts can be critical, as shown by the misinterpretation of a global trend of vegetation
browning as a consequence of sensor degradation that had not yet been addressed in the MODIS C5
geoinformation product collection and was corrected for in the Collection 6 (C6) data archives [29].
If error sources are not properly handled or remain undetected, consequences on downstream
operations can be severe [30]. To anticipate spurious assertions, efforts have been made to introduce
certain standards by which datasets of geophysical variables are generated and validated. The World
Meteorological Organization [31] states different levels of user requirements for observations according
to variables and application. The Land Product Validation Subgroup [32] of the Committee on Earth
Observation Satellites (CEOS) provides a validation hierarchy covering five validation stages classified
depending on the set of locations, covered time periods, spatiotemporal consistency, publication,
and systematic updates. Furthermore, a web-based service for the validation of medium-resolution land
products (On Line Validation Exercise, OLIVE) has also been made available [9]. Distinct monitoring
principles and observation requirements have also been specified by the Global Climate Observing
System [2], as it relies on the operation of satellite systems for climate monitoring.
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This states the importance of validation and error quantification of results obtained by the use
of EO data, as these provide a quantitative assessment of the reliability of results and further outline
critical information to end users. For geospatial data, this information is especially relevant on the
pixel level [33].

From satellite observation time-series
to geoinformation product of
environmental variables

accompanied by datasets
indicating product validity and
uncertainty

Figure 1. Physical earth (top) and global Satellite Pour 'Observation de la Terre Vegetation (SPOTVGT)
fraction of absorbed photosynthetically active radiation (FAPAR) product (center [34,35]) with ancillary
accuracy information (bottom, source [14]).

A suite of techniques for determining the quality of geospatial information has been established for
remote sensing products. However, knowledge about the strengths and weaknesses in terms of assessed
accuracy, quality, and overall agreement of EO-based time-series is often scarce [36]. When considering
continued use of unvalidated or insufficiently validated data, error propagation on downstream
analyses can bear the risk of substantial error amplification [37]. Furthermore, the awareness of
researchers conducting validation efforts concerning the implications and constraints of indicator
values needs to be ensured [38]. As processing methods become more complex, informative validation
metrics are key for providing the right details about the characteristics and overall quality of products,
thus facilitating the interest of a broad user community [39]. It is only with confidence in the generated
information that inferences can be substantiated and eventually reported to scientific, management, or
policy support entities [40].

The goal of this review was to provide an overview of validation methods in Science Citation
Index (SCI)-listed studies since the year 2000, which assess the quality of large-area EO time-series
regarding land surface variables (Figure 2). Time-series were considered that show a continental to
global coverage (at least a 10 million km? region of interest) and feature a minimal temporal resolution
of one month. This thus excluded multi-annual land use/land cover (LULC) datasets, which typically
feature at least an annual temporal resolution or less according to the definition of the Food and
Agriculture Organization (FAO) [41]. However, comprehensive overview papers on the topic of LULC
validation are available for the interested reader [38,40,42—44]. Furthermore, studies showing an
adequate spatiotemporal extent and resolution but concentrate only on a small number of local sites for
validation and/or specific points in time were not regarded in this review due to the lack of coherence
of the product and validation. The considered criteria in this review purposely targeted datasets for
which classical good practice validation methods of spatial products [45] are unfavorable. Next to
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reviewing validation methods, we also targeted quantitative questions regarding the involved data as
well as thematic and spatial foci to present a bigger picture associated with validation.
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Figure 2. Journal histogram according to the paper selection in this review. Full journal names can be
found in Table A1.

The applied search criteria (Appendix A of Table A2) identified 89 papers and subsequently
91 data products for the evaluation. Some studies presented more than one product with associated
validation (i.e., [6,39]) while others covered the same product in different publications (i.e., [34,35]).

2. Theoretical Background

Validation is defined by the Committee on Earth Observation Satellites Working Group on
Calibration and Validation [46] as the process of assessing the quality of data products derived from
system outputs by independent means, and must be distinguished from calibration, which provides
quantitative information on system responses to a known and controlled input. To properly
communicate validation results, coherent terminology is necessary.

Definitions of basic terms associated with validation (accuracy, trueness, bias, error, and precision)
are given by the International Organization for Standardization [47] and are illustrated in Figure 3.
Here, accuracy is defined as the closeness of agreement between a test result and an accepted reference
value. When the accuracy of a set of test results is determined, a combination of random components
(errors) and a common systematic error component (bias) is involved. The term accuracy is often stated
when trueness would be more appropriate, since the general term accuracy refers to both trueness
and precision. Trueness is the closeness of agreement between the average value obtained from a
large series of test results and an accepted reference value. Trueness can be expressed in terms of
bias, referring to the total systematic error. The conception of (random) error, on the other hand,
involves the difference between a single measurement and the true value. Built on random errors is
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the term precision, which depends only on the distribution of random errors and can be expressed as
the standard deviation of test results. As an applied example, Verger et al. [48] evaluated the overall
performance of LAI products by decomposing RMSE (root mean square error) into accuracy and
precision components, where accuracy is presented as the mean value of the differences between
products and ground measurements and precision as the standard deviation of estimates around the
best linear fit.
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Figure 3. Schematic illustration of validation terms shown for four stages of different measurement
mean and variance. Green dots show measurements for every true state (black dots) and its vicinity
(blue circles).

Uncertainty is referred to as the potential deficiency in any phase or activity of the modeling
process that is due to a lack of knowledge [49]. It is reported alongside result values and specifies
the range in which the true value is asserted to be found. Uncertainty addresses both systematic and
random errors (Figure 3). Within the domain of spatial data, the correct use of uncertainty concepts is
furthermore subject to the concreteness of the object definition (e.g., category definition in classification).
For well-defined objects, uncertainty originates in errors and has a probabilistic nature, whereas poorly
defined objects introduce vagueness or ambiguity, which can be approached by fuzzy set theory or
lead to discord or non-specificity, respectively [50].

2.1. Main Error Sources of Remote Sensing Time-Series Products

Measurements of physical quantities are subject to uncertainty. Factors that affect measurements in
the field of remote sensing cannot be held constant, resulting in variability of the repeated measurements.
Contributions to uncertainty in satellite estimations can be based on manifold factors (e.g., retrieval
errors, sampling errors, and inadequate calibration/validation data [51], Figure 4).
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Figure 4. Error sources and corresponding corrections in the generation of earth observation time-series.

Satellite sensors need to convert the electromagnetic signal from earth in voltage and digital
numbers in order to obtain reflectance or radiance values. For a reliable conversion, the constant
calibration of sensors is essential [29,52] to counteract sensor-prone error sources (e.g., sensor
degradation, different sensor sensitivity for specificbandwidths). For this purpose, modern instruments,
such as MODIS, employ onboard calibration systems. Furthermore, deviations due to variable
sun-sensor geometry and geolocation errors have to be attended to. Geolocation uncertainties can
be an issue due to varying projection systems, target shift, or different point spread functions [53].
Additionally, orbital drift has to be taken into account, as, for example, the orbital drift of each National
Oceanic and Atmospheric Administration (NOAA) satellite during their lifetime evokes a cooling effect
in advanced very high resolution radiometer (AVHRR) LST products [54]. The next step is the correction
of signal alternations induced on the path from the target to the sensor. Outgoing radiance consists of
components affected by environmental influences and atmospheric absorption and scattering effects.
To obtain surface reflectance information, atmospheric correction is commonly applied, along with
topographic correction and bidirectional reflectance distribution functions (BRDFs). For passive
microwave observations, man-made radio frequency interference is also able to contaminate signals [55].
Once the corrected data is accessible, successive error sources are introduced in the subsequent
processing. Model uncertainties mainly relate to simplified approximations of natural variability [56]
and data gap handling. Main causes for temporal inconsistency in optical remote sensing data are data
gaps due to cloud cover. Data quality suffers under cloud and cloud shadow contamination by amplified
variance and abnormal error distribution in the data [57]. Depending on the object of investigation, snow
cover and coarse temporal resolution can also cause data inconsistency. To interpolate data gaps, several
reconstruction models (e.g., harmonic analysis, double logistic, asymmetric Gaussian or Whittaker
smoother, Savitzky—Golay filter) have been established [58]. Gap-corrected data, however, have
the potential for implications in downstream applications, as incorporated uncertainty is carried
further to subsequent models [28]. A different approach to gain consistent time-series presents value
compositing (e.g., maximum value), where multiple images are processed for a preset period of
time to create representative, cloud-free datasets with the least atmospheric attenuation and viewing
geometry effects [59]. This can reduce the impact of missing data and unexpected day-to-day variations.
However, the application of filters and compositing comes with the disadvantage of information loss
and lower temporal consistency [48,55]. For regions with a high frequency of gaps (e.g., tropical areas),
even composite products often contain extensive gaps, which has become increasingly problematic
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in areas where no alternative source of geospatial datasets is available [28]. To oppose ambiguous
observations, quality control (QC) is used to provide information on the retrieval quality by flagging
data acquisitions. This procedure adds quality indicators to the original observation without modifying
or removing it [60]. As a result, the anticipation of systematic errors related to the shortcoming of
retrieval algorithms and inaccurate prior knowledge [57] can be improved. Further accuracy-limiting
factors are of a technological nature, concerning the sensor’s spatial (geometric), radiometric, spectral,
and temporal resolution [61], which can be summarized as sampling errors. These errors become
effective if information is assessed at a level of detail that cannot be properly sustained by the capabilities
of the data acquisition mechanism.

Although an emphasis lies on the correction of known errors sources, complete compensation
cannot be achieved. Myneni et al. [62] have shown, for instance, in LAI modeling, that even
properly calibrated surface reflectance information obtained under clear sky conditions is still subject
to independent variations due to measurement geometry, surface characteristics (e.g., snow, soil
characteristics), and canopy cover. Eventually, results have to be accompanied by validation information
to ensure proper interpretation. Furthermore, time-series need to show temporal stability in their
accuracy, since changing data quality over time would justifiably concern users that temporal trends
observed in the data are ambiguous [63].

2.2. General Considerations in Time-Series Validation

Validation presents means to assess implied uncertainties by analytical comparison to reference
data. Uncertainty can be differentiated in physical and theoretical uncertainties [64]. Physical
uncertainties represent the actual departure of product values from reference values, which are
obtained through independent validation studies [32,65]. Theoretical uncertainties emerge from
the inverse procedure as they relate mainly to uncertainties in the input data along with model
simplifications and are usually estimated by individual product science teams to accompany the
product with quality information (e.g., QC information) [21].

Primarily methods can be categorized into direct and indirect validation. Direct validation is
based on the comparison with independent data sources, which are representative of the target or true
value, enabling the absolute quantification of uncertainties (physical uncertainties). For geospatial
data, direct validation is commonly accomplished at the pixel scale through the comparison of a
product with independently acquired data, observing the same ground parameter coherent in time and
location [66]. The required truthfulness of reference data, however, is not always met for the validation
of geophysical measurement systems, as the data considered often include inherent measurement
errors, biasing calibration and validation information [67]. Next to the quality of reference data,
the amount of obtainable reference data is mainly a limiting factor for extensive spatial coverage of
validation efforts [68]. Raw in situ data is typically available as point measurements, leading to biased
assessments when compared to raster data [69]. As a consequence of the larger spatial resolution of
satellite sensors, representative areas of ground observations have to be upscaled to approximate the
target cell size. This principle is frequently applied to higher resolution satellite images to represent an
estimation of the in situ state on a spatial grid and as an intermediate step for comparisons to data
that has an even coarser resolution [65,70,71]. This two-stage process is subject to uncertainty itself,
as the accuracy of ground-based reference maps depends on errors in field measurements but also
on uncertainties of fine resolution satellite data, and sampling and spatial scaling errors [72]. On the
other hand, for small-scale investigations based on higher resolution data, a direct comparison to
interpolated in situ data time-series can be more viable [73]. Indirect validation is less affected by these
constraints, using data with similar characteristics for an intercomparison of products. This procedure
allows the evaluation of gross differences and possible insights into the reasons for variations [8] by
considering the consistency of a given product relative to related data at a comparable spatial scale.
The ease of application promotes indirect validation in the field of remote sensing, especially with
regard to the temporal aspect of time-series, although absolute uncertainty is not achievable. As a
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major issue, temporal stability of validation outcomes is one aspect required by the Committee on Earth
Observation Satellites” Land Product Validation Subgroup [32]. To provide spatially and temporally
consistent reference data, a vast network of calibration and validation sites has been established.
Through the provision of independent measurements of relatable values over time, requirements for
long-term direct validation can be met [74].

3. Characterization and Categorization of Reviewed Studies

Earth observation remote sensing time-series are based on spaceborne satellites with a
corresponding sensor payload. A range of sensors were utilized in the reviewed studies (Appendix A
of Table A1), showing various application domains determined by their technical characteristics
(e.g., wavelength spectrum, revisit time, resolution, operational period). To outline the larger picture
of scientific applications of temporally dense, large-area time-series products, quantitative information
regarding the composition (sensors, variables) and research area is illustrated in the following
subsections. The topic of validation in the scope of this review furthermore requires a generalization
of complex validation strategies to enable a synthesized categorical overview of validation methods.
Respective classification guidelines are explained in Section 3.3.

3.1. Preferred Sensors and Time-Series Variables

According to the operational frequency (or wavelength) bandwidth, sensors are principally
distinguished in optical and radar domains. Operating in different frequency ranges offers various
advantages for the investigation of certain variables [75]. Concerning the application of remote
sensing platforms, the covered extent in combination with revisit times is also decisive. In the
optical/multispectral sector, prominent examples within the reviewed studies are the AVHRR, MODIS,
SPOTVGT, and Medium Resolution Imaging Spectrometer (MERIS). Sensors of the Landsat Data
Continuity Mission (Multispectral Scanner MSS, Thematic Mapper TM, Enhanced Thematic Mapper
Plus ETM+, Operational Land Imager OLI) were mainly used as higher resolution reference data,
as was to a lesser extent Sentinel 2 data [76].

In this review, medium resolution optical sensors specially show high employment. MODIS
data is most frequently used (52 studies). For the pre-MODIS era, AVHRR was the prevalent sensor
for extensive global change studies because its visible red and near infrared channels enabled the
estimation of NDVI from 1981 onwards [59]. Due to the utilization of MODIS, AVHRR, and SPOTVGT
(Figure 5), the optical domain is generally represented to a much higher degree (78.5%) compared
to radar-orientated research (21.5%). As the main focus of studies lies on vegetation, a large part of
the investigations in the scope of this review are facilitated by the features of optical sensors. This is
also reflected by the most frequently utilized variables (Figure 6). A relatively small fraction of the
optical domain is furthermore constituted by the thermal sector, which is represented by AVHRR [77],
MODIS [3,28,54], and AATSR [54] thermal infrared sensors.
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Figure 5. Sensors used for time-series generation in this review. Full sensor names can be found in Table A1.
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Figure 6. Utilization frequency of time-series-derived variables in the reviewed studies.

In the radar domain, one of the primary sensors is the Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E), although its data availability ceased in 2011. The same
degree of utilization is seen for the Meteorological Operational Satellites (MetOp) Advanced
Scatterometer (ASCAT), followed by the Special Sensor Microwave/Imager (SSM/I).
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A variety of time-series-derived multitemporal variables have been employed in the studies
(Figure 6). Mainly geophysical variables (defined by physical units) and index variables (dimensionless)
were utilized. Thematic variables, which typically feature a larger amount of analyst bias [12], are found
in burned area, water surface, and freeze/thaw status investigations. Overall, the majority of studies
facilitated the analysis of vegetation-associated variables (71.8%). To access specific variables or
implement validation with regards to other factors, additional datasets are required [21,78,79]. This led
to a frequent application of auxiliary data (e.g., surface temperature, land cover, precipitation, or digital
elevation models) along with primary time-series.

Investigation periods are dependent on continuous data products, which rely on the operational
life of sensors or the successful transition to other data sources (e.g., Global LAnd Surface Satellite
(GLASS) datasets for surface emissivity and albedo [6]). Concurrent (e.g., data fusion [48]) or successive
use of data sources from several satellite systems has been shown in 42 studies, as the full exploitation of
current EO missions proves beneficial to the fulfillment of user requirements in terms of spatiotemporal
continuity, consistency, and quality. On the other hand, data inconsistency between multiple sources
and/or sensors needs to be handled accordingly. A common approach to overcome this issue is the
use of learning algorithms [34,48]. Also, the transmission to newer sensors has an effect on continuity
(as seen by AVHRR platforms), giving an advantage to uninterrupted lifetime sensors, like MODIS,
whose products are therefore considered superior to other long-term datasets (e.g., NDVI [22,80]).
Especially, the intercomparison of several products for validation [21,26,81-83] relies on the use of
multiple data sources.

The review of investigation periods has shown time spans from single years to several decades
(Figure 7). The longest study period (34 years) is based on a combination of the primarily used sensors
AVHRR and MODIS [84].
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Figure 7. Investigation periods and data sources of the reviewed studies. The coloring highlights the
three most frequently utilized sensors as well as their combinations.

3.2. Thematic Foci and Spatial Distribution of Studies

Remote sensing time-series allow for the quantification of environmental variables and for the
characterization of their temporal behavior on a global scale. Focus points of scientific research in



Remote Sens. 2019, 11, 2616 12 of 34

this area were revealed by a categorization of studies according to research objects and affiliation to
superordinate domains biosphere, cryosphere, hydrosphere, and energy fluxes (Figure 6, Figure 8).
The results show a concentration on earth’s biosphere (65.6%) due to the frequent utilization of
vegetation-related metrics, such as the NDVI, LAI, and FAPAR. The remaining categories constitute
34.4%, with soil moisture as the most frequently investigated topic outside the biosphere domain.
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Figure 8. Frequency of research objects in the reviewed studies and their affiliation to superordinate domains.

The spatial focus of studies is directed towards the global extent (73.6%, Figure 9). Valid coverage
can be achieved by either explicit incorporation of the entire region of interest or by representation
of well-distributed study sites [63,85]. Operating at a global scale comes with the advantage of
enabling investigations of questions that are relevant to the global society by assessing global dynamics
and relationships. As most studies operate on data sources that are generally available globally,
the relatively small number of non-global investigations can be partly explained by the limited
additional effort in expanding to the global extent. Pekel et al. [86], for instance, deliberately stated
that their continental-scale implementation only represents the first step towards a global approach.
In addition to a continental/global region of interest, a focus on local investigations, typically for
locations of the available validation sites, can also be observed in the studies [39,87]. This enables
product evaluations in higher detail, but the results are difficult to extrapolate to a larger extent,
which is where validation data that better represent global characteristics become relevant [71].
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Figure 9. The number of reviewed studies in specific regions of interest.
3.3. Categorization of Validation Approaches and Validation Data

The choice of validation method should be guided by the application of a product, since the
purpose of a validation method is to quantitatively assess the performance of a dataset providing
essential information to the user community [88]. The final determining factor, however, is the
availability of validation data. The data situation (e.g., reliability, comparability, spatiotemporal
coverage) also strongly influences the quality of validation results. The central criterion for the
categorization of validation methods in this review is therefore the use of specific validation data
(Figure 10).

Model data
Interpreted data

3 Records
Intercomparison

Related remote sensing product

Higher resolution remote sensing product
Comparison & accuracy assessment

Correlated data

Temporal evaluation In situ data

QC information
Modified product
Initial data
Simulated data

Internal validation

Figure 10. Categorization of validation methods by the use of validation data.

To commence validation according to acknowledged standards [46], direct independent
measurements are necessary. In this review, this type of validation is addressed as a comparison.
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This validation category includes methods that utilize reference data that feature significantly higher
reliability regarding the true state of a measured variable. According to Congalton and Green [45],
reference data has to be at least one level more accurate than the remotely sensed data and corresponding
methods for product generation. Consequently, this excludes the use of similar data products in this
regard. A comparison is typically accomplished by the use of in situ data, which represents the second
most used data source for validation in the reviewed literature (Figure 11). In rare cases [89-91],
historical or statistical records were also used as independent measurements for validation. A major
disadvantage of ground-based observations is the limited spatial dimension. The evaluation of soil
moisture by Chen et al. [92] has, for instance, shown that correlation coefficient metrics obtained from
a comparison with point-scale ground observations underestimate the correlation between retrievals
and true soil moisture values. For a reasonable comparison of raster data, point in situ data needs
to be extrapolated to the satellite footprint or product grid scale. Further problems emerge in the
requirement of independent ground measurements for a broad range of conditions (e.g., seasonal
period of vegetation or atmospheric conditions [48]). This can limit validation opportunities to confined
locations and/or discrete time periods [93].

Satellite remote sensing data
Direct independent measurement
Related model based product
Product internal data

Various data sources

50

Count
30
i i

40

Interpreted data
In situ data
Records

Model data
Simulated data
Initial data
Modified product
QC information
Correlated data

Related remote sensing product
Higher resolution remote sensing data

Figure 11. Validation data used in the studies grouped by source.

A particular type of data used for validation is higher resolution remote sensing data. This kind of
data can be utilized either to extrapolate in situ data on a spatial grid [94-97], downscale coarser data [95],
or represent more accurate information regarding target values to gain adequate validation data [98,99].
In some cases, higher resolution remote sensing data is used in combination with only small-scale
test sites [59], where pre-knowledge of land surface properties is available (e.g., homogeneity [100]).
A further representation of reference data is manually interpreted data (e.g., photo-interpreted
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pixels [86]). This type of validation data is typically derived with the help of more detailed sources
and can be assumed as the true state, if the manual identification of the regarding variable is reliable.

An established application for spatial data in terms of map accuracy is the implementation of an
accuracy assessment. Since the application of this method only occurred by the use of reference data
to execute cross tabulation, it can be allocated to the comparison category in this review. Because of
the common application and relevance in remote sensing, accuracy assessments are listed here as a
separate category. Based on this approach, several validation measures are obtained (e.g., commission
error, omission error, overall accuracy, dice coefficient, Kappa), which consequently offer a deeper
insight into the type of classification accuracy/error [44,45].

Apart from comparing the quantities of target values, it is furthermore possible to establish
temporal relations between validation data and remote sensing time-series in temporal evaluations
(e.g., transition date comparison [85]). Here, temporal evaluations have to be distinguished from the
evaluation of the temporal stability of time-series, which can be assessed by various validation methods
(e.g., intercomparison [82], generation of artificial data for assessment [101], change of accuracy through
time [63]). Temporal benchmarks for temporal evaluations can be derived from various time-series data
sources by applying further analysis and processing. In the case of in situ-based temporal information,
temporal evaluations face similar issues to conventional comparisons, as additional uncertainties
emerge from equating satellite acquisitions to in situ measurements (e.g., phenological dates [102,103]).
A more straightforward approach for temporal evaluations is realized by the use of related time-series
products [104,105].

Related datasets with similar spatiotemporal characteristics represent relatively uncomplex
implementations for validation on continental to global scales due to the ease of matching coherent
data points for validation. Quantitative product-to-product validation approaches are referred to
as intercomparison in this review. In general, product intercomparisons are unable to deliver direct
validation metrics relative to the ground truth but can provide metrics that indicate relationships
to a chosen reference product with intrinsic uncertainties. Similar products are characteristically
derived from external data sources. Here, this concluded in the sources of related remote sensing
products, model data, and correlated data. A special form of intercomparison is triple collocation
(TC). The administration of TC enables the estimation of error variances of a geophysical measurement
system; however, it only provides relative error metrics [93]. For implementation, a reference dataset
has to be chosen from three collocated data products with assumptions of linearity, signal and
error stationarity, error orthogonality, and independence of errors in the constituent datasets [106].
The resulting error variances are consequently subject to the multiplicative and additive biases of the
reference dataset [92].

Validation has also been accomplished by the use of datasets containing variables correlated to the
primary time-series (correlated data). The use of correlated data has been seen for all methods facilitating
external data sources. Accordingly, this data originates from in situ measurements [54,78,107-110] or
has its source in external models or databases [78,110].

Internal methods are represented in this paper as techniques for validation without the support
of additional external validation data [63,101,111]. Internal validation data is available either from
the product generation process (initial data, QC information) or derivation from input/output data
(simulated data, modified product). Information gained by this approach is based on the intrinsic
validity of the product and has been applied in this review within four validation methods (Figure 12).
The use of artificially produced validation data refers mainly to synthetic assessments but can also
be applied in sensitivity analysis. QC information provides the basis for quality assessments while
specific uncertainty/error estimation features unique validation approaches on an internal data basis.
As this approach is independent of external data for validation, internal validation stands apart from
previously presented validation methods.
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Figure 12. The number of applied validation methods categorized by the validation data source.
4. Review of Validation Methods

Validation methods can represent complex procedures for the assessment of time-series products.
A generalized overview of validation approaches realized in 89 reviewed studies is given in the
following subsections. Particular examples are emphasized over standard implementations in order to
outline the application spectrum of a category. Since various studies accommodated more than one
validation technique, multiple category designations according to context can occur.

4.1. Validation by Intercomparison of Related Products

Intercomparisons of related data products are shown in a variety of studies in this
review [23-26,76,87,90,96,112-119].

Along with similar remote sensing products for this type of validation, products in the form
of model outcomes featuring the same target variable are also considered [120-122]. For instance,
Albergel et al. [123] intercompared a fused radar soil moisture product with two reanalysis datasets.
In addition to the intercomparison of AVHRR and MODIS NDVI time-series, Fensholt and Proud [22]
also intercompared both MODIS sensors on Aqua and Terra satellites for an enhanced view on
the validation results, showing the possibility of intercomparison from a sensor-internal aspect.
Zhang et al. [29] also intercompared different versions of MODIS NDVI and enhanced vegetation
index (EVI) datasets (Collection 5 and 6).

Furthermore, intercomparisons can be achieved by the use of correlated data. For example,
Jones et al. [78] intercompared a vegetation optical depth (VOD) time-series with LAI, NDVI, and EVI
data products. Zhang et al. [29] investigated the correlations of a global EVI dataset to three modeled
key climate factors (radiation, air temperature, and precipitation) by conducting partial and multiple
correlation analyses. A special case of intercomparison is presented by Tarnavsky et al. [100],
who facilitated semi-variogram modeling to investigate the spatial variability of multiscale NDVI
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products for specific validation sites. By semi-variogram modeling, an assessment of the internal
spatial variability of a spatial dataset by determination of characteristic properties, like the sill and the
mean length scale metric, is enabled.

A special realization of product intercomparison is TC. In remote sensing, TC has been applied, in
particular, for soil moisture products [64,112,114] but is also used for other subjects. D’Odorico et al. [21]
obtained RMSE estimates from TC for their FAPAR product, using three spatially and temporally
collocated datasets, assuming that they represent the same physical quantity and contain uncorrelated
errors. Gruber et al. [124] used TC to merge active and passive radar soil moisture retrievals under
consideration of the error characteristics of the individual data. Chen et al. [93] utilized TC to
initially intercompare three radar soil moisture products to further extend this method to a quadruple
collocation, in order to estimate error cross-correlations, facilitated by in situ site observations as a
fourth soil moisture dataset.

More uncommon correlated data sources for intercomparison have been implemented by
Rodell et al. [79], who conferred biomass changes to gravimetric remote sensing data from the
Gravity Recovery And Climate Experiment (GRACE), or Suzuki et al. [125], who used modeled
evapotranspiration data for the validation of NDVI time-series.

4.2. Validation by Comparison to Reference Data

Comparisons to reference data were mainly based on the comparative use of in situ data
representing the same target variable. In this review, various examples outline this kind of validation
approach [6,18,81,126-128].

Others utilized correlated in situ data for comparisons. Examples are found by the use of
air temperature for the validation of freeze/thaw cycles [108,110] or LST [54], as well as datasets
correlated to the water surface extent (in situ river discharges, water level heights, and precipitation
estimates [109]).

Furthermore, higher resolution remote sensing data is eligible for comparisons. Considering the
validation of a burned area product, Chuvieco et al. [98] visually analyzed higher resolution remote
sensing data to gain interpreted data for comparison. Site-specific higher resolution data has been
utilized to compare vegetation indices (fractional vegetation cover (FVC) [129], NDVI [59], LAI [94]),
offering the advantage of more homogenous reference sites. Also, a combination of higher resolution
data and in situ data is used, inter alia for converting in situ information to the spatial grid of higher
resolution data [94-97]. Moreover, Wang and Liang [57] calibrated higher resolution data with the
help of in situ information to produce more accurate grid data.

Records from statistical databases or historical events are another form of reference data that
can be used for comparison. For example, records of crop yield per country were utilized by Zhang
and Zhang [91] for a comparison with satellite-based estimates. Although not implemented as a
validation strategy, Chuvieco et al. [76] compared their results with official fire statistics in addition to
the intercomparison to other burned area products.

4.3. Accuracy Assessment

Accuracy assessments are grouped with comparisons by also utilizing reference data for validation
(Figure 10) but are addressed separately in this review due to the relevance of this approach in the
field of remote sensing. Several studies implemented accuracy assessments by means of cross
tabulation between product and reference maps, allowing the generation of error or confusion
matrices [98]. Some studies utilized learning algorithms as a central element of their product
generation [34,39,48], although only Ramo et al. [90] employed a fraction of the training dataset ground
truth in their accuracy assessment, which is based on higher resolution remote sensing data. In the
case of burned area products [63,76,88,130], higher resolution remote sensing data (multi-temporal
image-pairs) can satisfy the need for ground truth information. For water surfaces, Pekel et al. [86]
used photo-interpreted samples of the input dataset as reference data for the computation of a
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comparison matrix. Klein et al. [131] furthermore considered a division of reference data (Landsat 8
higher resolution data) for their accuracy assessment of water surfaces according to the water sub-pixel
content of the input image, thereby allowing more profound insight regarding the classification
capabilities of their approach. Dietz et al. [132] used several accuracy assessments to reveal the
different performances of particular steps in their cloud interpolation strategy. Padilla et al. [63] further
investigated the trend of outcomes of their accuracy assessments over time, targeting temporal stability.

4.4. Temporal Evaluation

The temporal evaluation of certain points in time-series has been performed on the basis of various
data sources in the reviewed literature [24,99,101,133]. Utilized temporal events originate from ground
observations [39,134], records [89], or other data products [104,107]. Also, specific temporal indices,
such as the growing season index (GSI), were used [78]. Consequently, temporal evaluations can be
based on the principle of comparisons, intercomparisons, or both methods, given the provision of
concurrent validation data [83,85,105]. Sobrino and Julien [99] employed resampled higher resolution
remote sensing data of selected ground control points to validate long-term NDVI time-series in a
temporal fashion. A further time-related example is the use of a time-series product as extreme event
indicators (drought indicator [87], wildfires [135]).

4.5. Internal Validation

For synthetic assessments, validation data can be generated by modifying the original input to
compare, for example, filtering methods [94] or by inserting artificial values (e.g., gaps, noise) into known
input time-series in order to assess the capabilities of a model/algorithm [3,28,58,63,101,132,136,137].
Such methods were typically implemented if the study focused on improving distorted [111] or
discontinuous time-series [94]. For instance, to examine the performance of their temporal stability
analyses, Padilla et al. [63] created hypothetical burned area products.

For internal quality assessments, validation is accomplished by the use of quality information
(QC information [21,108]), which is provided along with certain products (e.g., MODIS surface
reflectance data) as ancillary data; however, this merely accesses theoretical uncertainties. For instance,
Weiss et al. [9] assessed the continuity of a product as the fractions of valid and non-valid data as well
as their distribution in space and time.

Some studies practice rather unique ways to quantify errors or uncertainties, which are designated
as specific uncertainty/error estimation methods in this review. Typically, such estimations come with
their own method and corresponding metrics (e.g., overall reconstruction error, fitting method-related
error, gap-related error [58], predictive standard deviation [39]). For instance, Baret et al. [34] estimated
the uncertainty based on confidence intervals applied to data points in the input training dataset.
Weiss et al. [28] quantified uncertainty regarding fill distance errors related to gaps in the time-series.
A similar principle was applied by Zhou et al. [137], who divided the overall reconstruction error
into gap-related and fitting method-related error. In a later study, noise-related errors were also
assessed [58]. Garcia-Haro et al. [39] estimated the predictive standard deviation, which quantifies
the confidence on an associated estimate by penalizing outlier pixels. Particular cases of internal
validation are the studies of Higuchi et al. [77] and Kumar et al. [138]. The first example used the
AVHRR surface temperature and NDVI time-series to calculate temperature/vegetation regression
slopes and the second presented an evaluation of soil moisture retrieval products using information
theory-based metrics. These metrics rely on time-series analysis of soil moisture retrievals to estimate
the measurement error, level of randomness (entropy), and regularity (complexity) of data.

Another applied internal method to provide information regarding the validity of results is
sensitivity analysis. This method can provide estimates on the influence of parameters inherent to
product generation. For this purpose, Keersmaecker et al. [111] used Monte Carlo simulations to
execute a sensitivity experiment for simulated global NDVI time-series, in order to obtain accuracies as
a function of the time-series characteristics and noise levels. The results could be applied to the original
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time-series and thus give a measure of reliability. Jones et al. [78] assessed the impact of algorithm
assumptions on expected VOD retrieval accuracy based on error sensitivity analysis. For radar-based
soil moisture estimation, Rodriguez-Fernandez et al. [139] investigated the sensitivity of their neural
network to input specifications and soil temperature data to find the best input data configurations as
well as the highest correlation to a reference product. For the estimation of river discharge, Sichangi et
al. [140] also used, together with remote sensing altimetry data, information regarding river widths.
Since the measurement error for the latter input is larger, a sensitivity analysis was conducted to
improve the understanding of the validation results gained by comparison with in situ discharge.
Garcia-Haro et al. [39] performed a sensitivity analysis to investigate uncertainty sources in retrievals
by varying the cardinality of the training dataset, and in another experiment, assessed the uncertainties
caused from different BRDF model parameters by the Monte Carlo method.

4.6. Combination of Methods

The majority of reviewed studies (61) facilitated more than one validation method. Hereby, a variety
of studies showed, in particular, the combination of an intercomparison of products with a comparison
to reference data [9,21,35,48,53,54,57,59,84,97,120-124,129,133,135,139,141-145]. This dual approach
can provide an indication of general remote sensing performance for a particular research area or, on
the other hand, illustrate improvements of novel methods in relation to existing products [35,71,136].

Several examples outline the successful combination of methods. For instance, Liu et al. [143]
validated the GLASS albedo product by comparison with similar MODIS data as well as globally
distributed ground measurements. To further improve validity, intercomparisons can also be spatially
limited to the validation areas where in situ information is available [21,71]. The comprehensive
accuracy assessment of global burned area estimations by Chuvieco et al. [76] was also subject to
intercomparison, since the globally distributed ground truth information is furthermore suitable
for the validation of other global products. A similar approach of intercomparing outcomes of
standardized accuracy assessments was accomplished by Padilla et al. [88]. For the temporal evaluation
of FAPAR time-series, Forkel et al. [104] conducted intercomparisons of products to gain deeper
insights into temporal discrepancies. Another approach to conduct a spatiotemporal intercomparison
is the use of three-dimensional voxel grids, defined both in space and in time, for validation [82].
Garcia-Haro et al. [39] combined a multitude of methods (sensitivity analysis, specific uncertainty/error
estimation, intercomparison, comparison), as they initially included specific uncertainty estimates
taking into account the uncertainty captured by the retrieval method and input error propagation and
subsequently conducted an intercomparison with other satellite-derived products and comparison
based on in situ measurements.

5. Summary of Validation Methods in the Reviewed Literature

The evaluation of the applied validation methods clearly showed two mainstream validation
approaches for large-scale temporally dense earth observation time-series (Figure 12). These methods
primarily relied on related remote sensing data for intercomparison and in situ measurements for
comparison (Figure 11). The implementation of the remaining validation categories (temporal and
internal) in the investigated studies constituted to 24.3% of the studies. Notably, the combination of
several validation methods in single publications was prevalent. A typical implementation was the
large-scale intercomparison of related products with a parallel focus on comparisons to measurements
of specific validation sites.

Furthermore, the application frequency of methods according to research objects was analyzed,
revealing the universal utilization of comparisons and intercomparisons along study subjects (Figure 13).
As the primary field of application, vegetation-focused studies were mainly validated by these
conventional methods but also became subject to internal procedures. Other distinct patterns are
shown for thematic-related phenology studies, which typically incorporated temporal evaluations,
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while soil moisture studies showed an emphasis in the field of TC, and burned area results were mainly
validated by accuracy assessments.
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Figure 13. Frequency of the applied validation methods according to study subjects.

5.1. Expression of Validation Results

A variety of performance metrics are used for the validation of remotely sensed estimates of
variables. Although metrics are often related, they come with advantages and disadvantages as no
single metric or statistic can capture all the attributes of environmental variables [146]. Regularly
used terms throughout the studies are well-established metrics, which can provide a measure of
agreement between the product and reference. The most frequently used metric is the RMSE (Figure 14),
which, in the case in which it is computed between ground measurements and product values, indicates
the accuracy or total error. Following this are measures that originate, to a large part, in linear correlation
as well as statistical hypothesis testing and other basic statistical terms. By the statement of correlation
(e.g., coefficient of determination, Rz), an indication of the spatial and/or temporal relation between
products and reference is provided rather than an absolute expression of agreement. The standard
deviation of the difference between product and reference data pairs can report on the precision of a
product generation process. In the case of linear regression, the slope and offset deliver information on
possible bias. The statistical significance of results is frequently provided along with the results, giving
additional knowledge about the validity in terms of the probability that outcomes occur by chance.
A subset of used terms is especially suited for assessing spatial data (i.e., pixel level, Figure 14) and are
largely known for their application in accuracy assessments [130]. Furthermore, common graphical
methods for the illustration of validation-related issues are frequently shown. Accordingly, plots of
temporal profiles and map comparisons are often used to illustrate temporal and spatial differences of
datasets. The choice of metric is, on the one hand, influenced by the nature of observations as well as
characteristics of the science application and its sensitivity to the retrieved environmental variable [147]
and, on the other hand, by the chosen validation method (e.g., metrics typically used for spatial data).
For instance, when conducting an intercomparison of products, it seems more adequate to assess the
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correlation among products rather than the determination of absolute differences between datasets
containing respective uncertainties.
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Figure 14. Frequency of the concepts/metrics used for the expression of validation results in the
reviewed studies.

5.2. General Trends

The number of studies that implement large-scale remote sensing time-series with associated
validation has increased in the last two decades. This might be partly caused by the commission of the
two MODIS satellites (Terra 1999, Aqua 2002). Concurrently, the diversity of validation methods has
also increased (Figure 15). In the first 10 years of the 21st century, mainly comparisons, intercomparisons,
and temporal evaluations were conducted. After that, internal validation methods were more frequently
applied, along with the upcoming usage of TC and large-scale accuracy assessments. Yet, the majority
of studies in the scope of this review still rely on conventional approaches. This might be facilitated by
the increasing number of available products for intercomparisons. Also, comparison approaches benefit
from the improved effort of the systematic provision of reference data by global validation networks.
For the year 2019, only one recent study could be incorporated in this review [84], which features a
combination of the mainstream validation methods. A general trend towards higher variability in the
application of different categories of validation methods along with a rising number of suitable studies
can mainly be observed after 2011, concerning primarily internal methods.
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Figure 15. Temporal development of the number of relevant publications and application frequency of
validation methods (trend to 2019 is not indicated).

6. Discussion on the Challenges and Implications of Validation

In this review, studies were investigated that cover large-area and temporally dense remote sensing
time-series that feature validation efforts for their outcomes. In terms of the applicability of validation
approaches, the scope of this review represents challenging circumstances regarding the spatiotemporal
availability of adequate validation data. The hereby favored validation approach is the intercomparison
of products (indirect validation). A main strength of this procedure is the similar spatiotemporal
extent that related remote sensing products usually share, making it comparatively easy to evaluate
consistencies/differences coherently in space and time over large areas representative of various global
conditions [35]. On the contrary, it lacks a link to quantitative reference data [68], implying the inability
to investigate absolute errors with respect to the true state. The same principle is observed with
TC. This procedure can be used as a complementary method to estimate theoretical uncertainties.
Further challenges for the application of TC is the incorporation of different kinds of datasets (in situ
measurements, satellite observations, and model fields) as they refer to different scales. By using satellite
remote sensing triplets, the requirement of uncorrelated errors becomes problematic [21]. However,
the inclusion of a fourth independent dataset can help meet this requirement [148]. Implementations as
extended triple collocation [67] are able to yield the correlation coefficient of the measurement system
with respect to the unknown truth, thus not requiring a reference dataset.

To address the requirements of global change communities (e.g., [2]), physical uncertainties
obtained from direct validation are needed in order to obtain total uncertainty [21]. To conduct
validation of remote sensing data according to recognized criteria [46], independent data (e.g., in situ
data) are essential. Validation approaches that follow this guideline can be found in the comparison
and accuracy assessment categories in this review. For the categorization of these validation methods,
the main defining criterion is the use of reference data, which is expected to approximate the true state
of a measured variable with considerably smaller uncertainty than the assessed product. The main data
sources that meet this requirement are ground observations. Yet, in situ data contains measurement
errors as well. In certain cases, uncertainties account for 10% to 30% (evapotranspiration estimates by
eddy covariance flux towers [20]). However, they can be considered insignificant compared to those of
most major remote sensing retrievals (e.g., soil moisture [138]). Furthermore, the implementation of
confusion matrices in accuracy assessments is limited by the preciseness of the class definition [50].

Another common source for reference data is higher resolution remote sensing images, as this
approach is recommended, for instance, by the CEOS CalVal protocol for burned area products [76,149].
Respective data are subject to established errors in the field of remote sensing as well. Nevertheless,
by using adequate means for the derivation of reference information, it can represent independent,
detailed, and accurate validation data [59].
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Alternatively, networks of validation sites could cover the need for extensive reference datasets.
Several studies refer to validation sites as the origin of their validation data, with common examples
like BEnchmark Land Multisite ANalysis and Intercomparison of Products (BELMANIP), VAlidation
of Land European Remote sensing Instruments (VALERI), and FLUXNET sites. Due to several
well-distributed networks, it is already possible to match the spatiotemporal requirements to
validate time-series of certain variables by the use of reference data (e.g., LAI, FAPAR [150,151]).
However, the capabilities of major validation networks for covering the variety of geophysical
variables are limited. This consequently constrains the investigation spectrum to products that target
identical or explicitly correlated variables. The combined use of multiple networks in global studies
(e.g., soil moisture [60]) is further complicated by a lack of standardization and protocolling. A major
aspect regarding the usage of reference data is the spatial and/or temporal scale difference to time-series
products, as it is challenging for field observations to be representative of coarse raster data cells
(e.g., MODIS pixel [94]). Additionally, the location of coarse pixels and ground data may not match
because of geo-location uncertainties [152]. Methods to overcome scaling issues have been shown by
several studies, but eventually, sampling errors are not completely avoidable.

Other studies are focused on the temporal aspect of validation, shifting the emphasis from
quantitative investigations to distinctive temporal behaviors of time-series. This approach is particularly
vulnerable to continuity distortions (persistent cloud cover, high levels of atmospheric aerosols),
weak seasonality of investigated variables, and insufficient temporal sampling of remote sensing
sensors to capture rapid transitions (e.g., phenology studies [85,153]). This kind of assessment merely
reveals validity in terms of timing, as no absolute uncertainty in the form of measured quantities is
targeted. On the other hand, valuable information can be identified when validation using ground
measurements fails to capture potential issues [121].

Although advances in the use of extensive calibration and validation networks for specific
geophysical variables have been made, the central issue of validation remains in the acquisition of
appropriate reference data. There is still a lack of ground measurements representative for sufficiently
long time periods to fully utilize quantitative assessments [6,48]. Also, a need for more in situ
measurements in specific regions makes the evaluation of products challenging (e.g., areas north of
60° [25]). Although more demanding in implementation, only direct validation by the use of reference
data enables the assessment of physical uncertainties and it may be argued that only such methods can
be seen as actual validation in the field of remote sensing. As part of this review, a variety of means to
assess the validity of remote sensing time-series are considered as relevant methods.

An opportunity is given for internal validation methods, for which validation data is inherent
to the product or might be generated by simulations based on available information. Simulations
of time-series provide an additional approach, particularly for testing temporal analysis methods in
a controlled environment [154]. As for intercomparison, internal methods are not able to provide
a total measure of uncertainty but enable an internal estimation of model/algorithm performance.
Nevertheless, a generic virtue of product internal validation data is the complete coverage of the
product extent, both in space and time.

Apart from only using a single validation method, a strong inclination towards facilitating more
than one approach is observed. By combining methods, an improved information content of the
validation results is achievable. However, diverging outcomes have to be expected for the execution
of a number of validation methods. This has been shown by D’Odorico et al. [21], as three diverse
validation methods (comparison, intercomparison, internal validation) resulted in different validation
outcomes. Additional discrepancies in validation results can be implied by means of different sampling
strategies for reference data. Various studies placed an emphasis on the distribution of their validation
efforts to distinct validation locations according to scale, land cover, biome type, or climatic setting
in order to account for expected variability over the globe [54,57,101,115,116]. As pointed out by
Cescatti et al. [81] in the case of the investigation of surface albedo, a weakness of in situ sites can be
inhomogeneity. This further highlights possible discrepancies of validation outcomes according to
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applied approaches and demonstrates that, in practice, a validation approach might not produce the
universally best results but should address product features relevant to the final product user [130].
An overview of general considerations regarding the validation method categories in this review is
given in Table 1.

Table 1. Advantages and disadvantages of validation method categories.

Validation Method Advantages Disadvantages
Comparison Direct validation Need for independent acquisitions
Physical uncertainties Complex spatiotemporal matching
Assessment of quantitative errors of validation data
Accuracy assessment Adapted for spatial data Precise definition of classes
Thematic map comparison with necessary !

corresponding metrics
Well established in remote sensing

Intercomparison Simplified spatiotemporal Indirect validation
approximation of other data products Only relative error metrics
Internal validation Spatiotemporal match of validation data Theoretical uncertainties
Directly accessible validation data Validation outcomes are dependent
Synthetic assessments well suited for on product properties
interpolation methods
Temporal evaluation Straightforward comparison of Vulnerability to continuity
extensive datasets distortions, weak seasonality and

insufficient temporal sampling
Only validity in terms of timing

! Accuracy assessments share the same disadvantages as regular comparisons.

As validation is an essential component of any earth observation product, some studies still do not
facilitate validation efforts. In the reviewing process of this paper, several publications failed to meet
the requirement of a distinct expression of validation efforts and corresponding results. This brings
attention to the controversial issue of the need for validation, especially for products that are generated
by the use of already validated time-series, and error propagation is marginal due to the simple
processing of input.

7. Conclusions and Outlook

This review presented an overview of the validation approaches of studies that utilize large-area,
temporally dense earth observation time-series of land surface variables since the year 2000. Along with
validation strategies, quantitative information on data basis, thematic foci, and spatial distribution were
also investigated. Encountered validation methods were categorized according to the utilized type of
validation data. The resulting classes incorporate a comparison to reference data, including accuracy
assessments, the intercomparison of related data products, product internal validation, and temporal
evaluation of time-series. The scope of this review led to the following key findings:

1.  The main data sources of studies are optical sensors (78.5%), with MODIS, AVHRR, and SPOTVGT
as major contributors.

2. The dominant thematic focus is on vegetation-orientated variables (71.8%), mainly represented
by time-series of NDVI, LAI, and FAPAR.

3.  Anemphasis on a global coverage of studies is prevalent (73.6%).

4. The main sources of validation data are related remote sensing products (33.7%) and in situ data
(28.1%).

5. For the expression of validation outcomes, conventional metrics or correlation-based metrics
(RMSE, R?) are mostly calculated, along with a frequent presentation of graphical illustrations of
temporal profiles, correlation plots, and map comparisons.
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6. The most commonly used validation method is the intercomparison of products (indirect
validation, 38.5%), followed by the comparison to reference data (direct validation, 37.3%).
The majority of studies used more than one validation method (65.9%).

7. A general increase in relevant studies published per year, along with a minor diversification of
the corresponding validation methods, could be observed.

8.  Challenges comprise a lack of adequate reference data, consequently promoting other methods.

9.  The issue of matching product and validation data in a reasonable spatiotemporal fashion is seen
throughout studies that consider external sources for validation.

10. The use of validation methods that are not bound to external validation data is limited (15.4%),
as is validation by time-series-derived points in time in temporal evaluations (8.9%).

11.  Validation by accuracy assessment is unfavored by the majority of studies in the scope of this
review (4.7%), which excludes land use/land cover products.

12.  Although the assessment of physical uncertainty referring to the true state of a measured
variable (direct validation) is demanded by major EO-related organizations, indirect validation is
frequently implemented.

For long-term and large-area investigations, remote sensing offers unique advantages. A major
constraining issue, however, is the need for reliable validation incorporating adequate validation data.
Challenges and potential arise for the integration of remote sensing and ground observations [83],
facilitating the application of traditional validation methods. To resolve the central issue of the
lack of adequate reference data, new sources of validation data (e.g., near-surface remote sensing
camera-bound vegetation indices [153], citizen science data [155,156]) could be considered. So far,
one strategy is going towards the standardization of validation by the introduction of validation
level hierarchies and observation requirements for measurement uncertainty for atmosphere-, land-,
and ocean-related variables [2,32]. The hereby implied guidelines include the consistent use of reference
data for validation. This development is sustained by extensive calibration and validations networks,
providing reliable reference data in high spatiotemporal resolution. With progressive capabilities in
the acquisition of EO data (e.g., Cubesat [157]), such networks could become even more relevant.

On the other hand, increasingly more applications of remote sensing data in sophisticated
modelling efforts require auxiliary uncertainty estimations along with the product in high spatial and
temporal resolution. Conventional validation methods that are based on reference data and even
product intercomparisons are not able to properly fulfill this requirement. Also, differences in absolute
values and inconsistencies in uncertainty representation still render some datasets inadequate for
modelling or data fusion (e.g., FAPAR products [21]). A greater focus might be given to innovative
internal methods, able to provide uncertainty information on the spot. With advances in novel
techniques, this could be achieved in an automated fashion at the product generation stage, similar
to the production of QC information. Some studies in the scope of this review have demonstrated
approaches in line with this concept. However, publications that exhibit novel validation techniques
are more typical for investigations of smaller regions of interest, facilitated in the development stage of
a product (e.g., [158]). Nevertheless, internal methods have the potential to remedy the issue of the
complete coverage of results with uncertainty information in space and time but are not able to provide
uncertainty measures that are referenced to the true state of a geophysical variable. Consequently,
this conception is missing physical uncertainties from a direct validation approach. A compromise
could be achieved by strategies of rigorous validation by reference data in the development phase of a
product and subsequent internal validation when the product is used in downstream applications that
require more concise spatiotemporal quality information. Further research is needed to evaluate the
capabilities and potential of novel methods, along with more extensive validation work in general to
improve the understanding of remote sensing results, clearing the path for continuous high-quality
data products.
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Appendix A
Table A1. Abbreviations of sensors and journals.
Abbreviation Full Description
AATSR Advanced Along Track Scanning Radiometer
AMSR2 Advanced Microwave Scanning Radiometer 2
AMSR-E Advanced Microwave Scanning Radiometer-Earth Observing System
ASCAT Advanced SCATterometer
ATSR IRR Along Track Scanning Radiometers Infra-Red Radiometer
AVHRR Advanced Very High Resolution Radiometer
CERES Clouds and the Earth’s Radiant Energy System
ERS Scatterometer European Remote Sensing Satellite
GOES Imager Geostationary Operational Environmental Satellite
MERIS MEdium Resolution Imaging Spectrometer
MODIS Moderate-resolution Imaging Spectroradiometer
MTSAT Imager Multifunctional Transport Satellites
MVIRI Meteosat Visible and Infrared Imager
PROBA-V Project for On-Board Autonomy Vegetation
SeaWiFS Sea-viewing Wide Field-of-view Sensor
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SMAP Soil Moisture Active Passive
SMMR Scanning Multichannel Microwave Radiometer
SMOS MIRAS Soil Moisture and Ocean Salinity Microwave Imaging Radiometer with Aperture Synthesis
SPOTVGT Satellite Pour 1'Observation de la Terre Vegetation
SSM/1 Special Sensor Microwave/Imager
TANSO Thermal and Near infrared Sensor for Carbon Observation
TM/ETM Thematic Mapper/Enhanced Thematic Mapper
T™I Tropical Rainfall Measuring Mission (TRMM) Microwave Imager
ADV SPACE RES Advances in Space Research
AGR FOREST METEOROL Agricultural and Forest Meteorology
BIOGEOSCIENCES Biogeosciences
EARTH INTERACT Earth Interactions
EARTH SYST SCI DATA Earth System Science Data
ECOL APPL Ecological Applications
GEOSCI MODEL DEV Geoscientific Model Development
GLOB CHANGE BIOL Global Change Biology
HYDROL PROCESS Hydrological Processes
IEEE GEOSCI REMOTE S IEEE Geoscience and Remote Sensing Letters
IEEE ] SEL TOP APPL IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE T GEOSCI REMOTE IEEE Transactions on Geoscience and Remote Sensing
INT J APPL EARTH OBS International Journal of Applied Earth Observation and Geoinformation
INT ] DIGIT EARTH International Journal of Digital Earth
INT ] REMOTE SENS International Journal of Remote Sensing
ISPRS ] PHOTOGRAMM ISPRS Journal of Photogrammetry and Remote Sensing
J APPL REMOTE SENS Journal of Applied Remote Sensing

J GEOPHYS RES-ATMOS
J GEOPHYS RES-BIOGEO

Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Biogeosciences

J HYDROMETEOROL Journal of Hydrometeorology
REMOTE SENS Remote Sensing
REMOTE SENS ENVIRON Remote Sensing of Environment
REMOTE SENS LETT Remote Sensing Letters
SOL ENERGY Solar Energy
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Table A2. Keywords for the literature search in the Web of Science database.

Search Query

TS ! = (global OR 1 "large scale" OR "large-scale" OR continental OR "large area")

AND ! TS = ("time series" OR "time-series")
AND TS = ("remote sensing" OR "earth observation")
AND TS = (validation OR uncertainty OR error OR assessment OR accuracy)

NOT ! TI ! = atmosphere NOT TI = atmospheric NOT TI = ocean NOT TI = land-cover NOT TI = "land cover"

NOT TI = “land use”

1 Descriptions of field tags and search operators can be found on [https://images.webofknowledge.com/images/help/
WOS/hp_advanced_examples.html].
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