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Abstract: Air temperatures in the Arctic have increased substantially over the last decades, which
has extensively altered the properties of the land surface. Capturing the state and dynamics of Land
Surface Temperatures (LSTs) at high spatial detail is of high interest as LST is dependent on a variety
of surficial properties and characterizes the land–atmosphere exchange of energy. Accordingly, this
study analyses the influence of different physical surface properties on the long-term mean of the
summer LST in the Arctic Mackenzie Delta Region (MDR) using Landsat 30 m-resolution imagery
between 1985 and 2018 by taking advantage of the cloud computing capabilities of the Google
Earth Engine. Multispectral indices, including the Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI) and Tasseled Cap greenness (TCG), brightness (TCB),
and wetness (TCW) as well as topographic features derived from the TanDEM-X digital elevation
model are used in correlation and multiple linear regression analyses to reveal their influence on
the LST. Furthermore, surface alteration trends of the LST, NDVI, and NDWI are revealed using the
Theil-Sen (T-S) regression method. The results indicate that the mean summer LST appears to be
mostly influenced by the topographic exposition as well as the prevalent moisture regime where
higher evapotranspiration rates increase the latent heat flux and cause a cooling of the surface, as the
variance is best explained by the TCW and northness of the terrain. However, fairly diverse model
outcomes for different regions of the MDR (R2 from 0.31 to 0.74 and RMSE from 0.51 ◦C to 1.73 ◦C)
highlight the heterogeneity of the landscape in terms of influential factors and suggests accounting for
a broad spectrum of different factors when modeling mean LSTs. The T-S analysis revealed large-scale
wetting and greening trends with a mean decadal increase of the NDVI/NDWI of approximately
+0.03 between 1985 and 2018, which was mostly accompanied by a cooling of the land surface given
the inverse relationship between mean LSTs and vegetation and moisture conditions. Disturbance
through wildfires intensifies the surface alterations locally and lead to significantly cooler LSTs in the
long-term compared to the undisturbed surroundings.

Keywords: LST; thermal remote sensing; Landsat time series; arctic greening; Google Earth Engine

1. Introduction

Arctic landscapes have experienced rapidly increasing air temperatures of 0.6 ◦C per decade
over the last 30 years, which is in an order of magnitude twice as high as the global average [1]. In
particular, Arctic river deltas are considered to be majorly affected by rising temperatures, as they
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are located at the interface of the marine and terrestrial ecosystems [2]. These regions are extensively
underlain by permafrost and therefore are sensitive to alterations in the thermal regime. As a result,
large-scale environmental changes have occurred, including active-layer thickening, the formation of
thaw slumps, progressive coastal erosion, and thermokarst development leading to surface subsidence,
often followed by lake drainage [3–6]. Furthermore, the permafrost environments of the high latitudes
store large amounts of soil organic carbon, which have the potential to further accelerate global
warming after being released into the atmosphere as methane and carbon dioxide [7]. Yet the rising
temperatures not only affect the state of the permafrost but also contribute to hydrological alterations,
as well as vast land cover and vegetation changes [8]. Accordingly, a trend towards an overall greening
of the Arctic has been observed where shrubs and woods are expanding northwards at the expense of
tundra vegetation. This, in turn, leads to a decrease in surface albedo and, therefore, to increased uptake
of energy by the land surface [9–12]. The environmental change of the Arctic occurs on multiple scales
and in remote regions, hence remote sensing provides a unique opportunity to detect and to monitor
these landscape dynamics in a continuous manner. Satellite-derived Land Surface Temperature (LST)
characterizes the land–atmosphere exchange of energy and depends on a variety of surficial properties,
such as vegetation type, soil, and plant moisture, or surface roughness [13]. LST may change with the
alteration of the surficial properties, allowing environmental change to be characterized by means of
time series remote sensing.

Previous studies have focused on the use of temporally dense but spatially coarse resolution
remote sensing data (e.g., MODIS and AVHRR). AVHRR has been used to detect LST warming trends
of approximately +0.72 ◦C per decade for the pan-Arctic regions between 1981 and 2005 [14,15].
MODIS derived LST has proven to be in accordance with in situ observed air temperatures and has
been successfully applied to detect temperature trends, anomalies, and surficial changes [13,16–18].
Furthermore, by analyzing the relationship between the Normalized Difference Vegetation Index
(NDVI) and LSTs on a pan-Arctic scale, the influence of the land surface thermal properties on
arctic vegetation types and abundance has been revealed [19]. Nevertheless, Arctic landscapes are
heterogeneous, and, therefore, a variety of processes cannot be detected using coarse resolution remote
sensing data [2,16]. Additionally, the water-body fraction in the instantaneous field of view of the
sensor can significantly lower the accuracy of the derived LST and represents an integrated signal of
land and water surfaces [16]. The United States Geological Survey (USGS) Landsat Global Archive is
able to compensate for these issues as it comprises several decades of optical data at relatively high
spatial resolution.

Accordingly, this study presents the analyses of Landsat-derived LSTs and multispectral indices
using the cloud computing capabilities of the Google Earth Engine (GEE). The time series analysis
(1985 to 2018) was carried out for the Arctic Mackenzie Delta Region (MDR) in Canada. The MDR has
been subject to major environmental changes with strongly increasing air and ground temperatures,
and previous studies have revealed a large-scale greening of the landscape mostly expressed in shrub
proliferation [20–24]. Exemplarily, the mean annual ground temperatures in the region have increased
by 1–3 ◦C since the mid-1960s, although the magnitude of the trend is dependent on site-specific
conditions [23,25]. Previous studies have analyzed land cover changes and trends in the MDR [5,26]
and Lena delta [2] by means of time series regression analysis based on Landsat multispectral indices.
Nevertheless, we lack knowledge of the long-term conditions of the surface thermal regime in the
MDR at high spatial detail and how it is influenced by the physical surface properties, including
vegetation cover, moisture regime, and topography. In periglacial environments, heat fluxes between
the atmosphere and the ground are influenced by the presence of frozen sediments, and, in summer, a
significant amount of the available energy is bounded to the melting of the active layer [27]. The ability
to capture the development of summer LST detailed in space and time has, therefore, high relevance,
as the temporal development of the LST may serve as a proxy on the recent active layer/permafrost
development in the MDR.
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Therefore, in this study, Landsat-based LSTs are retrieved by implementing a Single-Channel
algorithm in the GEE. Long-term means of the LST, Tasseled Cap (TC) components, NDVI, and
Normalized Difference Water Index (NDWI), as well as morphometric terrain features derived from
the TanDEM-X digital elevation model (DEM), were calculated to represent different physical surface
properties, including vegetation state, moisture regime, and relief situation. Firstly, the aim of the
study was to investigate the influence of the surficial properties on the long-term mean of the surface
thermal regime. Accordingly, correlation and multiple linear regression analyses were applied to
establish a statistical relationship between the mean LST and surface features. Secondly, general
temporal dynamics, as well as selected local land surface alterations including wildfire disturbance,
were analyzed using the Theil-Sen regression slopes of LST, NDVI, and NDWI, which indicate the
direction and magnitude of change over time between 1985 and 2018.

2. Materials and Methods

2.1. Study Area

The study area is situated in the continuous permafrost environment of the Mackenzie Delta
Region in northern Canada between 67◦ to 70◦ N and 132◦ to 138◦ W (Figure 1a). The Mackenzie Delta
is the second largest Arctic river delta covering an area of roughly 13,000 km2 [25]. The river flows
northwards and, while bound by the Richardson Mountains in the west and the Caribou Hills in the
east, diverges into several meandering channels that empty into the Beaufort Sea [25,28]. The region is
situated at the transition of the boreal forest and the subarctic tundra biome, gradually divided by
the tree line [25]. Accordingly, the landscape is diverse in terms of vegetation abundance and species,
permafrost distribution, and the presence of surface water. The region has been subject to major
environmental changes mainly linked to increasing ground and air temperatures [20–23]. In this study,
four subregions (Figure 1a) were selected for the analysis that exemplarily highlight the ensemble of
different landforms and land cover types along a north–south stretched gradient from the coast to the
mountains. All regions were visited during fieldwork campaigns in the years 2012, 2013, and 2018.

The western part of the study area is located at the border of Yukon and the Northwest Territories,
where the Richardson Mountains rise up to more than 1700 m above sea level, and terrain ruggedness
is higher than in the rest of the landscape (Subregion 4). There, land cover is dominated by low tundra
plant formations and extensive patches of dwarf shrubs while tall shrubs are rather seldom but can
be found in wind-sheltered positions, whereas exposed hilltops, top slopes, and shoulders are only
sparsely vegetated and often only covered by lichens [25,29]. In the center of the study area lies the
delta itself, characterized by flat terrain and numerous lakes and channels (Subregion 3) [25]. The
delta can be grouped into three major ecological zones [29]; spruce forest communities that established
on sites less influenced by annual flooding dominate the southernmost part. The second zone is the
transition between the two biomes, characterized by the increasing domination of willows and alder.
Lastly, shrubs and herbs (willows and sedges) populate the tundra landscapes in the north. At the
estuary, extensive wetland complexes, sand bars and islands have formed [25,29]. Adjacent to the
delta in the southeast, a mosaic of open spruce forests and peat plateaus in the uplands dominate the
landscape [25,30]. They are accompanied by tall shrubs that further north towards the uplands of the
Caribou Hills change into dwarf shrubs consisting of willows, alder, and birches decreasing in size with
increasing latitude (Subregion 2) [30]. Well-drained areas are populated by grasses and shrubs, whilst
sedges dominate at moister locations [25]. In the northeastern part of the study area are the lowlands
of the Tuktoyaktuk Peninsula as well as Richards Island, an outlier separated from the mainland by
the East Channel (Subregion 1). These regions are characterized by rather subtle topography, rolling
hills, and numerous depressions with thermokarst lakes, which continuously undergo environmental
change expressed in thaw slump formation, lake drainage, or lake expansion [6,21,31,32].
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2018. 
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Figure 1. Mackenzie Delta Region: (a) Landsat-8 RGB true-color image composite of the study area and
(b) overview. Subregions are highlighted by red polygons in (a), and photographs) of the subregions
are numbered from 1–4 (bottom). Subfigure (c) displays the TanDEM-X digital elevation model (©DLR
2016) superimposed by the water-mask (black). Photography by T. Ullmann 2012, 2013, 2018.

The climate of the Mackenzie Delta Region is characterized by its pronounced seasonality and
climatic gradients, which are determined by latitude, elevation, and coastal proximity—in particular,
the presence of sea ice [25]. The mean annual air temperatures are –8.2 ◦C at Inuvik and –10.1 ◦C
at Tuktoyaktuk for the period from 1981 to 2010. However, strong positive air temperature trends
have been observed throughout the entire area, which is in accordance with the generally larger trend
magnitude for high latitude regions and the Western Arctic of North America in particular [25,28,33].
Generally, warming trends seem to be strongest in autumn and winter and lowest during spring



Remote Sens. 2019, 11, 2329 5 of 26

and summer, which is in accordance with pan-Arctic observations [25,33]. As a consequence, the
mean annual ground temperatures in the region have increased by 1–3 ◦C since the mid-1960s [23,25].
The warming is believed to have caused widespread greening of the Arctic tundra landscapes
expressed in large-scale shrub proliferation [24,26]. This is accompanied by an albedo reduction of
the surface, amplifying further warming of the near-surface ground [24]. Additionally, the frequency
of wildfires and the area affected by wildfires have increased, which has also been attributed to the
observed temperature rise [34–36]. The potential consequences include permafrost degradation causing
thermokarst development and active-layer thickening as well as vegetation alteration expressed by a
distinct expansion of shrubs [22,24,37]. Whilst the overall temperature trend has caused widespread
greening, wildfires can accelerate shrub expansion rather locally by more than double compared to
unburned areas [24].

2.2. Data

The data used and the processing applied in this study are based on the cloud computing
capabilities of the Google Earth Engine (GEE), which provides the opportunity for large-scale geospatial
analysis [38]. GEE offers access to a variety of freely available archives of remote sensing data, among
them the U.S. Geological Survey (USGS) Landsat Global Archive. Imagery is provided as raw digital
numbers (DN) representing scaled radiance, calibrated Top–of–Atmosphere (TOA) reflectance, as well
as surface reflectance (SR) data. All available Landsat-5, Landsat-7, and Landsat-8 images of all three
processing types acquired from July to August between 1985 and 2018 with a maximum land cloud
cover of 60% were included in this study, resulting in a total of 1699 scenes (Figure 2b). The months of
July and August represent the peak growing season and have also been used in previous studies of
Arctic landscapes, which allows for better comparability [2,9,26]. The high latitude of the study area
results in a strong overlap of the WRS-2 paths, which increases the acquisition frequency and thus
resulted in an overall dense time series at the pixel level (Figure 2a).
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Figure 2. Landsat observations: (a) pixel-based number of cloud-free summer (July/August)
observations between 1985 and 2018; (b) number of scenes per month. Subplots from Figure 1
are highlighted by the black polygons.

The Landsat data is complemented by topographic parameters derived from the high-resolution
digital elevation model (DEM) of the TanDEM-X mission provided by the German Aerospace Center
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(DLR) (see Acknowledgments) [39–42]. The DEM covered most of the region of interest (Figure 1c) and
had a pixel spacing of about 12 m, after reprojecting to UTM Zone 8N using the WGS1984 ellipsoid.
The land surface parameters slope and aspect were processed using the DEM, and the aspect was
then transformed using a sine-function to avoid circular data and retrieve the STAGE parameter—the
northness of the terrain exposition. Additionally, the potential solar insolation in kWh/m2 was
estimated in SAGA GIS (http://www.saga-gis.org/ ) according to the approach of [43,44]. Further, the
DEM was used in hydrographic modeling; in the pre-processing, a highly detailed governmental
vector dataset on the hydrography (open.canada.ca), including information on ocean, lakes, ponds,
rivers, and channels, was applied. Using the pre-processed DEM, the catchment size of each pixel was
processed using a Multi-Flow-Direction approach (MFD) [45]. Finally, the Topographic Wetness Index
(TWI) was calculated [45]. This index displays the logarithmic ratio between the size of the catchment
and the local slope: higher index values characterize flat regions with rather large catchments, whereas
low index values indicate steep locations with rather small catchments.

2.3. Methods

Figure 3 illustrates the processing chain that was applied in this study, which includes processing
the Landsat data and retrieving the LST as well as the multispectral indices, in order to calculate
the statistical temporal metrics. The GEE implementation for the retrieval of the temporal statistical
metrics, including the main feature of Landsat LST derivation, is available on GitHub (https://github.
com/leonsnill/lst_landsat).
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2.3.1. Pre-Processing and Retrieval of Multispectral Indices

The Landsat imagery was masked for clouds, cloud shadows, and snow or ice using the Quality
Assessment Band of the SR product generated from the CFMASK algorithm. The SR product was also
used to obtain the NDVI (Equation (1)) and NDWI (Equation (2)) for each image [46,47]:

NDVI =
ρNIR − ρRED

ρNIR + ρRED
, (1)

NDWI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
, (2)

where ρx is the reflectance in the corresponding part of the electromagnetic spectrum. The NDWI
based on [47] and used here focuses on the water content in vegetation rather than water bodies as
the same-titled index by [48]. NDVI and NDWI were chosen as they are sensitive to chlorophyll
content, vegetation water content, as well as subpixel water-fraction and subpixel vegetation-fraction,
respectively [49]. However, these indices tend to saturate in high-density canopies and reduce available
variance by disregarding parts of the spectral feature space. Contrary, the TC components preserve
variance in the data while allowing for reducing the overall dimensionality of the data and have been
used to detect environmental changes in the Arctic [2,26,50]. Accordingly, the TOA product was used
to derive the Landsat-specific Tasseled Cap transformations greenness (TCG), brightness (TCB), and
wetness (TCW) (Equation (3)):

TCx = ρB ∗CB + ρG ∗CG + ρR ∗CR + ρNIR ∗CNIR + ρSWIR1 ∗CSWIR1 + ρSWIR2 ∗CSWIR2, (3)

where the sensor and band-specific coefficients Cx that were used in this study are summarized in [2],
and ρx are the reflectance values in the corresponding parts of the electromagnetic spectrum.

2.3.2. Retrieval of Land Surface Temperature

For Landsat thermal infrared data with a certain channel width, one can obtain an effective
at-satellite temperature BTsen (Equation (4)) based on an approximation of Planck’s law as follows [51]:

BTsen =
K2

ln
( K1

Lsen
+ 1

) , (4)

where K1 and K2 are band-specific thermal conversion constants provided with the metadata and Lsen

refers to the spectral radiance in W/(m2
·sr·µm), which can be obtained by applying the band-specific

rescaling factors Gain and Offset also provided with the metadata file to the pixel values (DN)
(Equation (5)):

Lsen = Gain ∗DN + O f f set (5)

The SR collection directly provides the calibrated brightness temperature (BT) needed for the
retrieval of the LST, as described in the following section. This also includes at-sensor radiance (L)
of the corresponding thermal band, which was calculated by applying the radiance rescaling factors
provided in the metadata file to the DNs of the raw L1TP collection [52].

In this study, a Single-Channel (SC) algorithm was used to retrieve LSTs that requires knowledge
of the surface emissivity and the state of the atmosphere. This method was chosen as it is comparably
simple to implement if the parameters are known, and because it has proven to be accurate and
applicable for sensors with only one thermal band, such as in the case of Landsat TM and ETM+ [53,54].
Landsat-8 offers two bands in the thermal infrared region allowing for the use of a Split-Window (SW)
algorithm. These are widely used and have proven to be more accurate than SC methods, but TIRS has
been subject to contamination by stray light, especially in band 11 [55]. Therefore, it is advised not to
implement an SW algorithm as it may lead to higher uncertainties in the retrieval of LST [56]. For that
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reason and for the sake of comparability with TM and ETM+, the generalized SC algorithm developed
by [54] was used to derive LST for all three sensors. Accordingly, on the basis of Planck’s law and a
radiative transfer model, the LST (Equation (6)) can be retrieved as follows [54,57]:

LST = γ
[1
ε
(ψ1Lsen + ψ2) + ψ3

]
+ δ, (6)

where Lsen is the spectral radiance at the sensor in W/m2
·sr·µm (Equation (5)), ε is the surface emissivity,

ψ are so-called atmospheric functions (AFs), and γ (Equation (7)), as well as δ (Equation (8)), are
parameters based on Planck’s law:

γ =
BTsen

2

bγLsen
, (7)

δ = BTsen −
BTsen

2

bγ
, (8)

where BTsen is the brightness temperature from (Equation (4)), and bγ is a sensor-specific constant
taking a value of 1256 K, 1277 K, or 1324 K in the case of TM, ETM+, or TIRS, respectively [57,58]. The
AFs describe the state of the atmosphere with regards to transmissivity, upwelling, and downwelling
radiation and are approximated versus the atmospheric water vapor (WV) content using a second-degree
polynomial fit (see [22] for details):

ψ1

ψ2

ψ3

 =


c11 c12 c13

c21 c22 c23

c31 c32 c33




wv2

wv
1

 . (9)

The coefficients cij are retrieved by simulation using different atmospheric soundings databases,
resulting in different coefficients for each sensor. The coefficients used in this study can be found
in Appendix A (Table A1) and are best suited for high latitude environments with usually low WV
content [57].

The atmospheric WV content was retrieved within the GEE based on reanalysis data from the
National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric
Research (NCAR) [59]. The NCEP/NCAR Reanalysis Project provides the total column water vapor at
a global scale with a spatial resolution of 2.5 arc degrees and with a 6-hourly analysis field (00:00, 06:00,
12:00, 18:00 UTC). Accordingly, the WV content estimation closest to the observation time of each scene
was selected rather than taking the mean of the two closest estimations, as the vast majority of Landsat
scenes were close to the actual 18:00 UTC analysis field. Reanalysis data is considered to be accurate
for the atmospheric correction of the thermal infrared data, and NCEP/NCAR WV data, specifically,
has proven to yield accurate results when retrieving LST from Landsat data [60,61].

The land surface emissivity was derived for each time step using the Simplified NDVI Threshold
Method (SNDVITHM) described by [62]. Applying this method, emissivity is obtained from the NDVI,
as both parameters show a linear relationship, and the emissivity for soil and vegetation is almost
consistent within the 10 µm to 12 µm range of the electromagnetic spectrum [60,62,63]. Therefore, when
the study area mainly consists of bare ground and vegetation cover, this method has proven to be an
accurate estimator [63]. For this method to be implemented, one must choose certain threshold values
representing the emissivity and index values of full vegetation cover (εv and NDVIv), as well as bare
soil (εs and NDVIs). The pixel emissivity values may then be derived accordingly [62] (Equation (10)):

ε =


εs

εs + (εv − εs)PV

εv

NDVI < NDVIs

NDVIs ≤ NDVI ≤ NDVIv

NDVI > NDVIv

(10)
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with PV being the fraction of vegetation cover [64] (Equation (11)):

PV =
( NDVI −NDVIs

NDVIv −NDVIs

)2
. (11)

NDVIs and NDVIv were chosen to be 0.2 and 0.6, respectively. The emissivity values εs and εv

were set to 0.97 and 0.985, respectively. The latter were selected based on calculations from previous
studies and emissivity curves in the thermal infrared region [60,63,65–67]. Furthermore, to account for
waterbodies, NDVI values below zero were assigned an emissivity value of 0.99. Finally, LST was
calculated for each scene using (Equation (6)).

2.3.3. Statistical Analysis

The final processing included mosaicking the multi-temporal layer stacks and correcting them for
outliers, which were found to be mainly introduced by insufficient cloud and cloud shadow detection
of the CFMask algorithm in certain scenes. The correction was achieved by only including pixels above
a temperature threshold of 8 ◦C. Mosaicking scenes of the same date, hence the Landsat WRS-2 path,
became necessary as the overlap between adjacent WRS-2 rows introduced errors when calculating the
standard deviation, as well as the T-S slope parameter. This could not be attributed to a particular
issue, yet we believe it is related to the increased number of observations in the overlapping part of
the scenes. After that, the statistical temporal metrics for all parameters (LST, NDVI, NDWI, and TC),
namely the mean, the standard deviation, and the slope coefficient of the Theil-Sen regression, were
calculated. A tabular summary of all investigated parameters is provided in Appendix B (Table A2).

In order to quantify the relationship between the surface thermal regime and certain surface
properties (e.g., vegetation cover, surface moisture, topography), correlation and regression analyses
were conducted using the long term means of the multispectral indices and topographic features
as explanatory variables of the mean LST. This was done for the entire study area, as well as the
chosen subregions depicted in Figure 1. The statistical analysis was carried out in Python using
the statsmodels module. In a first step, Pearson’s linear correlation coefficient (R) was used to detect
statistical relationships between variables, which was followed by the interpretation of the causality of
these relationships. Secondly, Pearson’s R served as a proxy in the initial selection of variables used
in the multiple linear regression models to only include correlated variables to the mean LST (here
R > 0.3). As the correlation matrices revealed correlations among independent variables, the Variance
Inflation Factor (VIF) was calculated for each variable in each set of selected variables of each region
(i.e., study area and four subregions) to account for multicollinearity. In this study, the widely used
threshold of VIF < 5 was used to select the variables. The selected variables for each model region
were then used to build the regression models to assess the relative importance of each factor on the
mean LST and to assess if multi-variable models increase the predictive ability.

Secondly, the slope coefficient of the T-S regression was used to detect the direction and magnitude
of change over time to reveal general trends and dynamics of the land surface. Accordingly, the
pixel-based slopes of LST, NDVI, and NDWI were analyzed in their overall spatial expression as well
as their spectral-temporal behavior for selected plots in the subregions. The overall pixel-based slopes
were calculated within the GEE using the sensSlope-Reducer function whilst the selected single plots
were calculated in Python using the theilslopes function of the scipy module. The T-S regression has
proven to be a robust estimator of trend direction and magnitude, being insensitive to up to 30% of
outliers, and has already been successfully applied to detect spatio-temporal landscape dynamics in an
Arctic environment [2,5,26,50,68,69]. It is calculated as the median of all slopes between every pair of
given values [70].
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3. Results

3.1. Mean Summer Land Surface Temperature, NDVI, and NDWI

Figure 4 shows the processing results of the spectral-temporal metrics mean and standard deviation
of the summer LST, NDVI, and NDWI for the entire study area. Waterbodies were masked using the
highly detailed governmental GIS-database on the hydrography of Canada. For the entire study area,
most of the observations (>98%) of mean summer LSTs range between 15 ◦C and 28 ◦C However,
distinct spatial patterns arise, and the distribution was bimodal with a smaller peak at approximately
18 ◦C and a second larger peak at approx. 22.5 ◦C. The first peak corresponds to the cooler Mackenzie
Delta, which exhibits the lowest LSTs with values mostly less than 20 ◦C. The outer delta (towards
the western estuary and the Shallow Bay), the north of Richards Island, as well as the northern
coastal area of the Tuktoyaktuk Peninsula show moderate mean summer LSTs with the majority of
values ranging between 20 ◦C and 22 ◦C. The uplands of the Caribou Hills, of the Anderson Plain,
the Peel Plateau, the Richardson Mountains, as well as the slopes bounding the Mackenzie Delta in
the west, are characterized by mean summer LST values above 22 ◦C. However, incised valleys and
north-facing slopes of the Richards and the Richardson Mountains show LST values frequently below
20 ◦C. Noticeably, for the Anderson Plain and the Caribou Hills, clear and distinct patches of lower
and higher LSTs are observed. These locations correspond to the extent of former wildfires; hence,
the disturbances due to fire events are expressed in the mean LST. Most of these regions are further
characterized by a higher standard deviation of the LST (Figure 4d). The distribution of the standard
deviation of the summer LST showed unimodal symmetric frequency distribution, and deviations are
of 4.5 ◦C magnitude on average. The majority of the deviations (98%) range between 3 ◦C and 6.5 ◦C.

Figure 4b displays the processing results of the mean NDVI, clearly highlighting regions of sparse
and dense vegetation cover. Exemplarily, the uplands of the Richardson Mountains and the outer
Mackenzie Delta are characterized by lower NDVI values, whereas the highest NDVIs are observed for
regions in sheltered positions, e.g., valleys and mid-slopes, but also for regions that were formerly
affected by wildfires. The standard deviations of the summer NDVIs (Figure 4e) are rather small, and
most of the observations (98%) display variations less than 0.1. Most invariant are regions that seem
not to be covered by vegetation. The distribution of the mean NDVI showed that all values are positive
and 98% of all observations are in the range between +0.2 and +0.8. The frequency distribution is
centered at a value of approximately +0.65. Overall, deviations are small, and 98% of the standard
deviations are less than 0.012 and range between 0.005 and 0.008.

The results of the processing of the NDWI are displayed in Figure 4c. Negative values of the
mean summer NDWI are observed over the outer Mackenzie Delta and the Richardson Mountains.
NDWI values closely around zero are found for the Anderson Plain, northern Richards Island, and
the northern coastal areas of the Tuktoyaktuk Peninsula. In contrast, positive NDWI values are most
frequent and are observed for most areas of the Mackenzie Delta, the inland of the Tuktoyaktuk
Peninsula, and especially for some of the regions formerly affected by wildfires. The majority of the
values (98%) range between +0.5 and −0.5. The variations of the NDWI in time are small and 98% of
all observations are characterized by standard deviations less than 0.006 (Figure 4e). The strongest
variations in time are found for the Anderson Plain and the outer Mackenzie Delta. The histograms of
the NDWI features show that 98% of the region displays index values between −0.4 and +0.4. The
frequency distribution is strongly left-skewed, and the majority of the values are greater than zero.
The distribution is centered at an NDWI index value of +0.18. As mentioned above, variations over
time are of low magnitude, and 98% of all observations are in the range from 0.0025 to 0.012. Overall,
the patterns of mean LST, NDVI, and NDWI match well where drier and less densely vegetated areas
generally exhibit higher LSTs and vice versa.
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Figure 4. Pixel based means (a–c) and standard deviations (d–f) of summer (i.e., July, August)
Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized
Difference Water Index (NDWI) for the period from 1985 to 2018. The red rectangular boxes highlight
the subregions, and the white polygons indicate the extent of former wildfires.

The LST at the site “East Channel” clearly shows differences in the mean summer LST between
the incised channel and the uplands of Richards Island and the Tuktoyaktuk Peninsula. LST values
of the lower elevated terrain with closer proximity to the channel are, on average, approximately
1–2 ◦C cooler than the LST values of the uplands. The top slopes of the cliffs show higher LST and
reduced NDVI and NDWI values. Field visits proved that these locations were more exposed and
exhibited lower vegetation coverage than the adjacent sheltered leeward sites. The results of the
study area “Inuvik” indicate the influence of two former fires on the mean summer LST, NDVI, and
NDWI. The largest fire event occurred in 1968, west of Lake Noel [71,72]. The former extent of the
fire is clearly visible in the data, and the mean summer LST is 1–2 ◦C colder than the undisturbed
surroundings. Similarly, the fire event of 1968 is clearly visible in the mean of NDVI and NDWI, as the
area is characterized by higher index values indicating a densely vegetated and moister environment.
Similarly, the relation of the features LST, NDVI, and NDWI is deduced from the study area “Delta”.
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The highest LST values are found in the west of the area, off the main channel. Here, the higher values
in LST are associated with moderately high NDVI and NDWI values, yet those are the lowest within
this subplot. In contrast, the site “Richardson Mountains” showed a clear relation between the LST
and terrain exposition (STAGE) as northward facing slopes are significantly colder than southward
facing slopes with differences of up to 8 ◦C.

3.2. Correlation and Regression between LST and Environmental Factors

The relationship between the features was quantified in linear correlation and multiple regression
analyses. Figure 5 displays a subset of the correlation matrices for each region showing Pearson’s R.
The predicted-observed density plots of all regression models are shown in Figure 6. As described in
Section 2.3.3, the features have been selected based on the correlation results and filtered by the VIF to
account for multicollinearity as well as an individual assessment based on the model fit and complexity
(number of independent variables) by taking into account the Bayesian information criterion (BIC) in
the model selection process. Detailed information on the output results of the models are provided in
Appendix C (Tables A3–A7).

For the entire study area, the highest correlation is observed between the mean summer LST
and the mean TCW (−0.48), as well as the northness of the terrain (STAGE) (−0.42). Furthermore,
only the means of the NDWI and TCB also showed a weak to moderate correlation with the mean
LST with coefficients of −0.32 and 0.32, respectively. The model using the mean TCW and STAGE as
predictors explains 31% of the response variables variance with an RMSE of 1.73 ◦C (Figure 6a). In a
test, all variables were used in the VIF selection process regardless of their correlation to the mean
LST, and the resulting model consisted of eight explanatory variables (mean of NDVI, TCB, TCW, as
well as DEM, TWI, FlowAcc, STAGE, and WaterDist), which only increased the explained variance by
4%. Additionally, by comparing the relative variable importance based on the z-score standardized
coefficients, the mean TCW and STAGE can clearly be regarded as most influential on the mean LST
and provide a comparably similar model fit using fewer parameters.
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summary of all investigated parameters and their abbreviations is provided in Appendix B (Table A2).
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Figure 6. Predicted-observed density plots of the multiple linear regressions for the entire study area
(a) and the four subregions (b–e). Detailed information on each model is provided in Appendix C
(Tables A3–A7).

For the subregion “East Channel”, the highest correlations of the mean LST are observed with the
mean TCW (−0.79) and TCB (0.72), as well as the DEM (0.51). Further, the mean NDWI (−0.46), the
TWI (−0.41), the mean TCG (0.37), and the WaterDist (0.33) correlate with the target variable. Initially,
the VIF analysis revealed the highest score for the mean TCW; however, given the higher correlation
with the LST, the NDWI having the second largest score was removed instead. The correlation between
TCW and NDWI (0.72) also indicated large parts of the variance of the NDWI being captured by the
TCW. The final model shown in Figure 6b shows a great fit with an R2 of 0.73 and an RMSE of 0.81 ◦C.
By comparing the standardized coefficient estimates (Tables A3–A7), the mean TCW, the TWI, and
WaterDist features revealed to be of the highest relative influence.

For the site “Inuvik”, terrain features are far less influential than the means of the multispectral
indices that correlate best with the mean LST. Again, the mean TCW shows the strongest correlation
with an R of −0.75, followed by the mean NDWI (−0.73). This is also the only subregion in which the
mean NDVI exhibited a stronger correlation (−0.54) to the LST. Furthermore, the TCG and TCB were
included in the selection process as they showed coefficients greater than 0.3. The VIF analysis yielded
the model depicted in Figure 6c that is constituted of three parameters representing three different
surface characteristics, namely the moisture/water (TCW), vegetation (NDVI), and soil properties
(TCB). The model explains 63% of the variance with an RMSE of 0.83 ◦C. Again, the mean TCW shows
the greatest influence on the target variable, followed by the mean NDVI.

The mean LST of the ”Delta” subregion is exclusively correlated with moisture/water features,
namely the mean NDWI (−0.84), TCW (−0.69), and the TWI (0.42). The VIF did not indicate collinearity
problems, and the model depicted in Figure 6d, therefore, consists of all three features. Almost three
quarters of the variance (74%) of the mean LST can be explained with an RMSE of 0.51 ◦C, yet again,
one parameter alone contributes to the largest part in explained variance, i.e., the mean NDWI.

In contrast to the previous areas, the mean LST in the “Richardson Mountains” subregion is
strongly correlated with the topographic features STAGE (−0.66) and Insolation (0.61) and to a lesser
extent with the means of TCB (0.54) and TCW (−0.40). Due to strong collinearity, the VIF suggested to
exclude the Insolation parameter, and the model shown in Figure 6e is largely driven by the northness
of the terrain (STAGE) and the mean TCB, whilst the TCW only shows little relative influence on the
mean LST. The model explains approximately 48% of the target variables variance, and the RMSE of
1.61 ◦C reveals large deviations between the predicted the observed mean LST.
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3.3. Temporal Dynamics of LST, NDVI, and NDWI

Between 1985 and 2018, the MDR is characterized by surface dynamics that vary across space in
their direction and magnitude, as can be derived from the T-S trends of the LST, NDVI, and NDWI
(Figure 7). A large-scale wetting and greening trend can be observed according to the NDVI and NDWI,
respectively. Generally, this trend increases with latitude and is strongest in the coastal lowlands of
Richards Island and the Tuktoyaktuk Peninsula, exhibiting large slope coefficients of 0.07 per decade
and above. An additional gradient following altitude can be observed with decreasing trends of the
NDVI and NDWI as elevation increases in the Richardson Mountains. For the entire study area, a
mean decadal increase of 0.031 ± 0.020 (one standard deviation) and 0.027 ± 0.022 is observed for the
NDVI and NDWI, respectively. Locally, patches that range from a few hundred meters up to dozens of
kilometers either indicate strong greening and wetting or browning and drying, which mostly reflects
areas affected by former wildfires (Figure 7, fire extents are highlighted in white). The alluvial plain in
the central study area shows strong local variation in the direction of the slope coefficient, yet of mostly
smaller magnitude compared to the surrounding lowlands. The large-scale exception is the browning
and drying of the outer delta that is unique to the entire study area. In general, the T-S trends of the
NDVI and NDWI revealed a moderate to strong correlation of 0.57, hence wetting and greening or
browning and drying may often be accompanied by each other and vice versa.

T-S trend patterns of the LST show similarities to the T-S trends of NDVI and NDWI. Positive
trends of the indices are mostly associated with a cooling of the land surface, whilst strong browning
and drying, as present in the estuaries of the outer delta, is associated with an increase in surface
temperatures. Accordingly, the correlations between the T-S trends of the LST with the NDVI (−0.23)
and the NDWI (−0.49) are weak to moderately strong. Overall, LSTs exhibit a mean decadal decrease of
−0.345 ± 0.527 ◦C in the MDR. Accordingly, the T-S trends are spatially diverse, strongly regionalized,
and not unidirectional. The northern section of the study area, and especially the coastal highlands,
exhibit strong cooling trends of approximately −0.5 ◦C to more than −1.5 ◦C per decade. In the
lowlands, where numerous thermokarst lakes dominate the landscape, these cooling trends are less
pronounced and, locally, even shift to positive trend slopes. The latter is especially pronounced in the
northernmost coastal areas. The outer delta is again an exception, as positive T-S trends of the LST are
associated with negative trends of the T-S trends of NDVI/NDWI. The alluvial plain is characterized by
heterogeneous patches of positive and negative slope coefficients, while the latter are more frequent
and of greater magnitude. The southwestern regions of the study area (towards the Richardson
Mountains and the Peel Plateau) are dominated by positive T-S trends of 0.5 ◦C per decade on average,
yet local extremes exceed 2 ◦C per decade. In contrast, the southeastern regions of the study area
(towards the Anderson Plain) are characterized by mostly decreasing temperatures, in particular, areas
associated with wildfires exhibit a strong cooling trend, whereas strong positive T-S trends of the LST
are rather small-scale.
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Figure 8. Local temporal dynamics for the “East Channel” subregion: true color RGB Landsat image
(a), Theil-Sen slopes of the LST (b), NDVI (c), and NDWI (d), as well as Theil-Sen regression lines of
selected locations (e–g). Each plot location represents the spatial average of 90 × 90 m. The trend lines
are complemented by the lower and upper limit of the 95% confidence interval of the slope coefficient.
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Figure 9. Local temporal dynamics for the “Inuvik” subregion: true color RGB Landsat image
(a) Theil-Sen slopes of the LST (b) NDVI (c) and NDWI (d) as well as Theil-Sen regression lines of
selected locations (e–g). Each plot location represents the spatial average of 90 × 90 m. The trend lines
are complemented by the lower and upper limit of the 95% confidence interval of the slope coefficient.
The dashed line in (g) indicates the 2012 wildfire disturbance.

3.4. Local Temporal Dynamics of LST, NDVI, and NDWI

In addition to the analysis of large-scale surficial dynamics in the MDR, small-scale changes were
investigated for two subregions with a size of 30 × 30 km. The first was the coastal “East Channel”
region (Figure 8) that is characterized by fluvial processes, subtle topography with rolling hills, and
depressions containing numerous thermokarst lakes. The region exhibits T-S slope coefficients in
both directions (i.e., cooling and warming), whereas most of the land surface shows a cooling trend,
which is particularly pronounced in the lake-rich lowlands in the southeastern part. Moderate to
strong warming trends, on the other hand, are almost exclusively found in the fluvial environment
of the East Channel and the low-lying regions of southern Richards Island. The NDVI and NDWI
slope coefficients reveal an extensive wetting and greening of the land surface, with only a few
exceptions in the surrounding of thermokarst lakes on Richards Island, as well as the fluvial islands
of the East Channel. The lowlands associated with the strong LST cooling trend are, accordingly,
those characterized by the most extensive and pronounced wetting and greening: at plot location e
(Figure 8e), the NDVI and NDWI increased by more than 0.065 per decade between 1985 and 2018,
with only little variance of the index values over time. The significant increase of the indices is also
illustrated by the narrow upper and lower limit of the 95% confidence interval of the slope coefficient.
The LST trend line indicates an associated strong cooling of the land surface; however, given the larger
variance over time, the confidence interval of the slope coefficient is significantly larger.

The second location (Figure 8f) is situated on a fluvial island of the East Channel and represents an
area of highly active hydrological dynamics, including flooding and the erosion and accumulation of
sandbars. The temporal trajectories of NDVI and NDWI demonstrate these dynamics given their cyclic
shape over the observation period with three peaks around the years 1988, 1999, and 2013. Although
linear trends do not capture this cyclic behavior, they might indicate long-term developments towards
a drier or wetter environment. Generally, the slopes of NDVI and NDWI indicate the development
towards a greener and relatively drier environment, whilst the LST seem to be increasing. Plot g is
located at a formerly drained lake characterized by an increase in vegetation cover and surface moisture.
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The trajectories of the indices are clearly increasing in a linear fashion with some variance and abrupt
changes between individual years. The T-S slope indicates that LSTs have decreased substantially
analogously to plot location e.

The second subregion, “Inuvik” is depicted in Figure 9, which illustrates the temporal dynamics
analogously to Figure 8. This region has been subject to wildfires with two extents (1968 and 2012)
being highlighted in Figure 9a. The undisturbed sites in the north are predominantly characterized
by a steady wetting and greening of the landscape (plot e). The T-S trend of the LST indicates a
subtle cooling of the land surface, accompanied by an increase in vegetation cover and moisture. It is
important to note that Landsat-7 SLC-off patterns are visible in the subregion and create an overall
heterogeneous and patchy LST image. The region of the 1968 wildfire depicted in plot location f was
subject to an extensive cooling of the land surface, accompanied by a strong increase of the NDVI and
NDWI of up to 0.3 between 1985 and 2018. The area affected by the most recent fire in 2012, in contrast,
exhibits browning, drying, and warming trends. The disturbance is clearly visible in the temporal
trajectories of the parameters as a sharp decline of the multispectral indices can be observed (Figure 9g,
dashed line). Overall, the borders of the wildfire events are present in all three slope images.

4. Discussion

4.1. Processing of LST Using Dense Landsat Time Series

This study utilized a single channel algorithm for the processing of the LST from Landsat datasets
in the GEE that relied on the framework of [54,58,66] and included products on the column water
vapor from the NCEP/NCAR Reanalysis Project. Like other studies that have dealt with Landsat data
for long investigation periods and large study areas, no absolute referencing of the LST products was
feasible, as no ground-truth data existed. However, the LST retrieval approach from Landsat data is
well established and can be considered sufficiently accurate [58,61]. The presented results, therefore,
represent an authentic and plausible remote estimation of the LST for the MDR, following the recent
state of practice that also includes automatic cloud masking and outlier removal.

Nevertheless, it should be noted that LST exhibits strong diurnal variations and is highly sensitive
to short-term synoptic variations of air temperature and insolation. The variance of the LST is, thus,
inherently higher than, for instance, information on vegetation cover at peak growing season, especially
in Arctic environments. For the LST, this results in rapidly changing insolation rates and heating of the
land surface. Furthermore, the presence of near-surface permafrost introduces additional uncertainties
as the ground properties (like active layer thickness, air and ice content) are usually unknown and
highly heterogeneous in space and time. Consequently, these factors influence the heat fluxes and
the resulting LST. Furthermore, investigating Landsat-based LST development and associated heat
fluxes over all seasons is not feasible and restricted to the summer. There is, therefore, a very short
time window within which to capture Landsat acquisitions that are suited for the analyses of the LST,
even though WRS-path overlaps increase the per-pixel data density (Figure 2).

However, calculating long-term means of the LST compensates for these issues and creates spatially
extensive information on the mean summer LST. This is reasoned by the fact that the surface thermal
regime is, on average, determined by the physical surface characteristics and not by atmospheric
conditions [13]. Accordingly, this allows for characterizing the surface thermal regime of the Arctic
MDR by revealing patterns of cold- and hotspots and influencing factors that may serve as a proxy for
permafrost distribution and development. Furthermore, the high spatial detail at the pixel level of LSTs
derived from Landsat (resampled 30m) considerably improves the analysis in heterogenous permafrost
environments, whilst using MODIS LST data (approximately 1000 m) may limit the assessment of local
conditions [13].
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4.2. Relation of LST to Other Environmental Variables in the Mackenzie Delta Region

The correlation and regression analysis allows for establishing a statistical relationship-basis
between the mean LST and the surface properties expressed by the TC components, the NDVI,
and NDWI, as well as the topographic features derived from the TanDEM-X DEM. Former studies
have identified the NDVI and NDWI to be sensitive to the content of chlorophyll (NDVI), the
moisture regime, and the vegetation water content, respectively (NDWI) [47,49,73]. Although causality
cannot be derived directly from the pure correlation between two parameters, the analysis revealed
convincing dependencies between the thermal regime, the vegetation cover, moisture regime, and
topographic situation.

From a model perspective, the plant and soil moisture regimes of the landscape represented by the
mean TCW generally explain the largest proportions of the variance in the mean LST. Increasing moisture
leads to decreasing surface temperatures, which can be attributed to increased evapotranspiration
rates and associated latent heat fluxes [13,27]. The delta itself with its numerous channels and the vast
wetland complexes of the entire study area provide great moisture supply and are therefore highly
prominent in the data with corresponding importance in the regression models. These findings are in
accordance with [13] who found wetlands to exhibit the coolest temperatures among different land
cover types in an Arctic environment.

However, the models of the different subregions were substantially better in their model fit and
predictive ability compared to the entire study area. The diverse environmental setting of the MDR
with mountainous regions in the west and south, the delta, and lowlands, as well as the extensive
flat northern and eastern coastal areas, resulted in overall low correlation coefficients of the features.
Accordingly, no single variable could explain the spatial patterns of the mean LST directly for the entire
area on a high level of determination. Overall, the second most important variable was the northness of
the terrain (STAGE), which can be explained by the vast stretching Richardson Mountains and rolling
hills where southern facing slopes receive significantly more radiation. Furthermore, these areas are
inherently well-drained, giving rise to generally drier surface conditions with increased sensible heat
fluxes. On the contrary, northern facing slopes—although possibly equally well-drained—exhibit
much colder LSTs, as can be seen in the long-term thermal mean (Figure 4a). As these areas constitute
the majority of extreme cold- and hotspots in the MDR, the resulting feature space is well suited
for predicting mean LSTs in the regression models, which is particularly true for the homogenous
subregion “Richardson Mountains”.

On the contrary, for the subregions “East Channel”, “Inuvik”, and “Delta”, it was found that
morphometric features offered only a little information on the spatial variability of the mean LST. This is
probably because the relief is rather subtle and differences in the exposition are less pronounced. Here,
the influence of the different vegetation cover and associated moisture regimes was more important in
explaining spatial LST variations. In comparison to the moisture indices, the vegetation indices NDVI
and TCG generally correlated less with the mean LST. This may be attributed to two factors: firstly,
LSTs are largely controlled by evapotranspiration rates and they are better captured by moisture indices
like the TCW. Secondly, although transpiration is controlled by the vegetation, different vegetation
types (deciduous vs. coniferous) and the leaf area index are of greater importance [27]. However,
this may not be captured by the indices, as the NDVI, for instance, tends to saturate in high-density
canopies. Accordingly, information on the vegetation type and land cover would serve as a valuable
explanatory variable when trying to understand the spatial expression of the mean LST [13].

Overall, large portions of the target variable’s variance remain unexplained. The regression
results, therefore, suggest that the mean LST needs to be explained by multiple variables that capture a
variety of surface and ideally, sub-surface characteristics. The reason for this might be the influence
of different soil properties, including the thermal conductivity of the soil, soil moisture, active layer
thickness, proximity to the permafrost table, and permafrost temperature [27]. These factors have
a direct influence on the LST, but may also indirectly influence the LST, since vegetation cover and
moisture regimes are dependent on sub-surface conditions. Furthermore, in permafrost environments,
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heat fluxes between the atmosphere and the ground are heavily influenced by the presence of frozen
sediments: as illustrated by [27], in spring and summer, a significant amount of the available energy is
bounded to the melting of the active layer and the permafrost, respectively, while taking a degradation
into account.

The study focused solely on the land surface by not including (permanent) water bodies in the
analysis, which is an important consideration as the large contrast in LSTs between water bodies
and land surfaces can result in a pronounced distinction in the feature space: for instance, the mean
NDVI may correlate highly with the mean LST when including water bodies due to the distinct
clusters of water and non-water in the feature space, which may strongly limit the interpretability and
understanding of the relationship between the variables and ultimately the potential to model LSTs.

4.3. Temporal Changes

The extensive greening of the land surface, as indicated by the T-S slope of the NDVI, is in
accordance with previous studies in the MDR and on the pan-Arctic scale, which found that most
tundra landscapes have been subject to rapid and vast greening [74]. Nitze & Grosse [2] observed
the strongest vegetation trends in the Arctic Lena delta in coastal proximity, and Fraser et al. [26]
found that the coastal areas of the Tuktoyaktuk Peninsula were most extensively affected by greening
processes in the MDR between 1985 and 2011. This study reveals that these trends have continued to
persist in the MDR for the additional timeframe observed and despite the aforementioned limitations
of the LST trend product, have been accompanied by a cooling of the land surface, indicating the
associated changes of the thermal regime with the alteration of the vegetation. Nitze & Grosse [2]
attributed the strong increase in vegetation indices in coastal proximity to the rapid decline in sea ice
cover over recent decades. In fact, the beginning of sea ice melt in the Beaufort Sea has exhibited a
large negative trend of more than 10 days per decade, which is amongst the most rapid declines in
the entire Arctic [75]. As sea ice concentration is a major controlling factor of the thermal regime, air
temperatures have increased accordingly, causing an overall greening of the landscapes [26,71,74].

Local surficial changes over time can be well studied using time series of multispectral indices
and LST. Generally, the local T-S trends in the East Channel and Inuvik subregions reveal the overall
picture observed in the MDR, which is mostly characterized by greening and wetting processes. On
the contrary, surface dynamics, including fluvial activity and wildfires, either reverse or enhance these
trends, and this is also where the largest slope coefficients are present in the time series. Initially, fire
events lead to a strong albedo reduction as the surface is charred and the soil organic layer degraded,
which manifests in drier and warmer surface conditions with increased sensible heat flux [27]. A
deeper heat flux into the ground causes near-surface ground temperatures to rise and active-layer
thickness to increase [24,37]. This is followed by secondary succession, where higher soil moisture
contents, due to the thaw and increased availability of nutrient matter, lead to an intense regrowth, and
strong greening and wetting trends can be observed. Whilst the overall temperature trend has caused
widespread greening, wildfires can accelerate shrub expansion rather locally by more than double
compared to unburned areas [24]. Accordingly, the 1968 wildfire area that was formerly dominated
by coniferous vegetation, mosses, and lichens became subject to fast and intensive shrubification by
deciduous species and an expansion of grasses [75,76]. This systematic was observed in the data of the
Landsat time series features comparing the 2012 and the 1968 fire events, which occurred in what were
originally almost identical environmental settings. The 1968 wildfire area is characterized by lower
mean LSTs than the undisturbed surroundings, while mean NDVI and NDWI values were usually
higher and have increased strongly between 1985 and 2018. Landsat summer mean LST indicated that
the 1968 region was on average 1 ◦C to 2 ◦C cooler than the undisturbed surroundings, which may be
attributed to the higher soil moisture and correspondingly increased evaporative cooling, as well as to
changes in vegetation species increasing evapotranspiration. This underpins the fact that moisture
indices in the “Inuvik” subregion were highly correlated with the mean LST and further reinforces the
necessity to include information on the land cover or vegetation types in the regression models. In
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contrast to the 1968 wildfire region, the area of the 2012 wildfire event exhibited elevated temperatures
and sharp declines in the index values, which fits the description of Eugster et al. [27] and indicates
an initially reduced albedo due to the increased soil signal. Increased wildfire disturbance, therefore,
accelerates the process of greening and moisture supply leading to cooler LSTs.

The linkage between NDVI, NDWI, and LST is also expressed in the temporal domain of
undisturbed sites (i.e. not affected by wildfires). The examples on the subsets “East Channel” and
“Inuvik” highlighted the inverse relation of the variables where surface cooling was observed along
with wetting and greening. These results indicated, as well, that the trend analysis of NDWI and NDVI
can be performed on a higher level of confidence as temporal variations were of lower magnitude than
the temporal variations of the LST. This may be because, from a processing perspective, the number of
observations per pixel seemed to create patterns in the LST T-S trend product within the GEE. The
scene boundaries are also visible in the data, and because of the aforementioned sensitivity of the
LST to short-term synoptic variations, it seems that the approach is, therefore, not entirely robust to
these issues. It is further important to mention that the generated T-S slope products, and by far most
notably the LST trend image, exhibit a clear pattern of stripes that can be attributed to Landsat-7′s
SLC-off error (see Figures 8 and 9). For the LST image, slope coefficients may vary greatly even in
adjacent homogenous areas, whereas the T-S trends of the NDVI and NDWI exhibit a far more stable
picture. Due to this problem, the inherent variance of the LST and the comparably few observations,
LST trends cannot solely rely on the trend results, and it seems highly advisable to investigate long
and preferably dense time series to compensate for the apparently random information.

Nevertheless, as the correlation and regression results have revealed that an increase in mean
greenness and especially moistness is associated with cooler LSTs, it can be inferred that the large-scale
greening and wetting trends observed in the MDR will likely alter the surface thermal regime as
indicated by the T-S slopes of the LST time series. The general Arctic warming trends, which are
strongest during autumn/winter and lower in spring/summer [25,33], may, therefore, be expressed by
cooler summer LSTs, as vegetation cover and moisture supply increases in the MDR.

5. Conclusions

This study investigated Landsat derived summer LST and multispectral indices between 1985 and
2018 and presents an overview of the mean summer LST, NDVI, and NDWI for the Arctic Mackenzie
Delta Region, Northern Canada. The approach comprised the implementation of a Single-Channel
algorithm within the GEE, which allows for a spatially flexible retrieval of LSTs over large areas and
the calculation of long-term means to characterize the surface thermal regime at high spatial detail.
The python script is available on GitHub (https://github.com/leonsnill/lst_landsat) and may serve as a
valuable tool to derive statistical temporal metrics.

The correlation and regression analyses revealed that the predominant factors influencing the
mean LST are the moisture conditions of the landscape that, in turn, are governed by the prevalent
vegetation state and the topographic situation. The influence of vegetation and moisture properties
on the LST is higher in terrain with subtle topography where differences in insolation are negligible,
and the mean summer LST is best correlated with the mean TCW and the NDWI. Most of the study
area’s land surface has been subject to a large-scale wetting and greening between 1985 and 2018.
The positive trends of NDVI and NDWI are usually accompanied by negative trends of the summer
LST. This inverse relationship is the result of intense shrubification and enhanced moisture supply
that cools the surface via higher evapotranspiration rates with increased latent heat fluxes. Wildfire
disturbance locally accelerates this process in the long-term as demonstrated for the 1968 wildfire
area, which could be attributed to the intensive shrubification by deciduous species and the expansion
of grasses that lead to significantly cooler LSTs than the undisturbed surroundings. The findings,
therefore, depict the temporal dynamics and long-term results of the alteration of the surface, and it can
be inferred that the large-scale greening and wetting trends observed in the MDR are cooling the mean
summer LSTs. A multi-sensor approach could close the temporal gap between LST observations at
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high spatial detail, yet with a relatively low temporal resolution, and allow for absolute quantification
of the alteration processes.
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Appendix A

Table A1. Coefficients in matrix notation used to calculate the AFs in combination with water vapor
contents. Coefficients are taken from [57,58].

Sensor Coefficients

Landsat-5 TM

 0.07518 −0.00492 1.03189
−0.59600 −1.22554 0.08104
−0.02767 1.43740 −0.25844


Landsat-7 ETM+

 0.06518 0.00683 1.02717
−0.53003 −1.25866 0.10490
−0.01965 1.36947 −0.24310


Landsat-8 OLI-TIRS

 0.04019 0.02916 1.01523
−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514


Appendix B

Table A2. Overview of the Landsat features derived in GEE and topography-related environmental
factors derived from the TanDEM-X Digital Elevation Model.

Feature Description Year/Period Source

LST_mean Mean of Land Surface Temperature 1985−2018 Landsat
LST_stdDev Standard Deviation of Land Surface Temperature 1985−2018 Landsat
LST_ts Theil-Sen trend of Summer Land Surface Temperature 1985−2018 Landsat
TCg_mean Mean of Tasseled Cap Greenness 1985−2018 Landsat
TCg_stdDev Standard Deviation of Tasseled Cap Greenness 1985−2018 Landsat
TCg_ts Theil-Sen trend of Tasseled Cap Greenness 1985−2018 Landsat
TCb_mean Mean of Tasseled Cap Brightness 1985−2018 Landsat
TCb_stdDev Standard Deviation of Tasseled Cap Brightness 1985−2018 Landsat
TCb_ts Theil-Sen trend of Tasseled Cap Brightness 1985−2018 Landsat
TCw_mean Mean of Tasseled Cap Wetness 1985−2018 Landsat
TCw_stdDev Standard Deviation of Tasseled Cap Wetness 1985−2018 Landsat
TCw_ts Theil-Sen trend of Tasseled Cap Wetness 1985−2018 Landsat
NDVI_mean Mean of NDVI 1985−2018 Landsat
NDVI_stdDev Standard Deviation of NDVI 1985−2018 Landsat
NDVI_ts Theil-Sen trend of NDVI 1985−2018 Landsat
NDWI_mean Mean of NDWI 1985−2018 Landsat
NDWI_stdDev Standard Deviation of NDWI 1985−2018 Landsat
NDWI_ts Theil-Sen trend of NDWI 1985−2018 Landsat
DEM Terrain Elevation 2011−2012 TanDEM-X
TWI Topographic Wetness Index 2011−2012 TanDEM-X
FlowAcc Flow Accumulation of Multi-Flow-Direction Approach 2011−2012 TanDEM-X
Insolation Potential Annual Solar Insolation 2011−2012 TanDEM-X
STAGE Terrain Exposition // Northness // Transformed Aspect 2011−2012 TanDEM-X
WaterDist Euclidean Distance to Waterbody – Vector Data
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Appendix C

The tables in Appendix C summarize the multiple linear regression outputs as obtained from the
statsmodels module in python. Statistics shown are the estimated coefficients (coef ) and additionally
obtained standardized coefficients (z-score coef ), the standard errors (std err) of the coef’s, the t-statistic
value (t) and associated p-value (P>|t|), the 95% confidence interval’s lower and upper values ([0.025
and 0.975], respectively), the Variance Inflation Factor (VIF) of each parameter, the explained variance
(R2), the root-mean-square error (RMSE) and the Bayesian information criterion (BIC).

Table A3. Multiple linear regression output as obtained for the entire study area.

Study Area–Mackenzie Delta Region (Figure 6a) R2: 0.307 RMSE: 1.730 BIC: 2.351e+08

coef z-score coef std err t P>|t| [0.025 0.975] VIF
Intercept 19.6059 −2.234e−10 0.001 3.23e+04 0.000 19.605 19.607 –
TCW_mean −23.4571 −0.3914 0.007 −3351.713 0.000 −23.471 −23.443 1.175
STAGE −41.6145 −0.2687 0.004 −2301.084 0.000 −9.071 −9.056 1.175

Table A4. Multiple linear regression output as obtained for the subregion “East Channel”.

Subregion 1–East Channel (Figure 6b) R2: 0.726 RMSE: 0.814 BIC: 1.464e+06

coef z-score coef std err t P>|t| [0.025 0.975] VIF
Intercept 17.5934 −7.582e−08 0.008 2251.605 0.000 17.578 17.609 –

TCG_mean 3.7484 0.0641 0.045 83.662 0.000 3.661 3.836 1.294
TCW_mean −41.8219 −0.650 0.048 −869.013 0.000 −41.916 −41.728 1.233

DEM 0.0086 0.0784 0.000 78.754 0.000 0.008 0.009 2.179
TWI −0.1850 −0.2242 0.001 −229.099 0.000 −0.187 −0.183 2.107

WaterDist 0.0019 0.1787 7.77e−06 243.961 0.000 0.002 0.002 1.180

Table A5. Multiple linear regression output as obtained for the subregion “Inuvik”.

Subregion 2–Inuvik (Figure 6c) R2: 0.629 RMSE: 0.834 BIC: 2.069e+06

coef z-score coef std err t P>|t| [0.025 0.975] VIF
Intercept 21.5127 −2.584e−15 0.013 1693.969 0.000 21.488 21.538 –

TCW_mean −52.6900 −0.6855 0.080 −660.302 0.000 −52.84 −52.534 2.426
NDVI_mean −4.5934 −0.2387 0.017 −277.957 0.000 −4.626 −4.561 1.659
TCB_mean −2.6552 −0.0571 0.044 −60.300 0.000 −2.741 −2.569 2.020

Table A6. Multiple linear regression output as obtained for the subregion “Delta”.

Subregion 3–Delta (Figure 6d) R2: 0.743 RMSE: 0.511 BIC: 7.426e+05

coef z-score coef std err t P>|t| [0.025 0.975] VIF
Intercept 20.4862 6.883e−08 0.007 3084.968 0.000 20.473 20.499 –

NDWI_mean −10.3214 −0.6846 0.015 −690.675 0.000 −10.351 −10.292 1.894
TCW_mean −9.1922 −0.1687 0.058 −159.725 0.000 −9.305 −9.079 2.151

TWI 0.0868 0.1208 0.001 148.972 0.000 0.086 0.088 1.268

Table A7. Multiple linear regression output as obtained for the subregion “Richardson Mountains”.

Subregion 4–Richardson Mountains (Figure 6e) R2: 0.479 RMSE: 1.614 BIC: 3.785e+06

coef z-score coef std err t P>|t| [0.025 0.975] VIF
Intercept 18.5392 −5.431e−09 0.015 1220.151 0.000 18.509 18.569 –
STAGE −11.9624 −0.5022 0.024 −506.374 0.000 −12.009 −11.916 1.882

TCB_mean 10.5705 0.2394 0.039 273.189 0.000 10.495 10.646 1.469
TCW_mean −2.6404 −0.0447 0.051 −51.685 0.000 −2.741 −2.540 1.429
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