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distribution in the karyotypes and evolutionary fixation in 
the genomes, as well as their cytological detection are dis-
cussed.  © 2016 S. Karger AG, Basel 

 In addition to their obligatory location at chromosom-
al termini, the canonical telomeric (TTAGGG) n  repeats 
are also encountered at internal sites of the chromosomes, 
the so-called intrachromosomal or interstitial telomeric 
sequences (ITSs). Up to date, 2 categories of ITSs were 
recognized to exist in vertebrate genomes: (1) short ITSs 
(s-ITSs), that are composed of a few to as many as a few 
hundred base pairs of (TTAGGG) n  repeats and are scat-
tered over all chromosomes, but seem to accumulate in 
some subterminal regions, and (2) large ITSs in hetero-
chromatic chromosome regions (het-ITSs) that can span 
up to several hundred kilobases. Whereas het-ITSs are 
non-obligatory components of the karyotypes, s-ITSs are 
presumably present in all vertebrate genomes. Very de-
tailed studies using FISH [Azzalin et al., 1997], molecular 
cloning [Azzalin et al., 2001], and exploration of the hu-
man genome database [Nergadze et al., 2007] have dis-
closed the number, chromosomal location and molecular 
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 Abstract 

 The mitotic chromosomes of 4 anuran species were exam-
ined by various classical banding techniques and by fluores-
cence in situ hybridization using a (TTAGGG) n  repeat. Large 
intrachromosomal telomeric sequences (ITSs) were demon-
strated in differing numbers and chromosome locations. A 
detailed comparison of the present results with numerous 
published and unpublished data allowed a consistent clas-
sification of the various categories of large ITSs present in the 
genomes of anurans and other vertebrates. The classifica-
tion takes into consideration the total numbers of large ITSs 
in the karyotypes, their chromosomal locations and their 
specific distribution patterns. A new category of large ITSs 
was recognized to exist in anuran species. It consists of large 
clusters of ITSs located in euchromatic chromosome seg-
ments, which is in clear contrast to the large ITSs in hetero-
chromatic chromosome regions known in vertebrates. The 
origin of the different categories of large ITSs in heterochro-
matic and euchromatic chromosome regions, their mode of 
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organization of s-ITSs in the human genome. s-ITSs have 
also been demonstrated in the genomes of other primates 
[Azzalin et al., 2001; Ruiz-Herrera et al., 2002, 2005; Ner-
gadze et al., 2004] and rodents [Faravelli et al., 1998, 2002; 
Camats et al., 2006; Nergadze et al., 2007]. Some of the 
s-ITSs in mammalian chromosomes are subtelomeric re-
peats and are arranged as head-to-tail tandem arrays. 
They contain many degenerate units that supposedly 
have originated by recombination that involved telomer-
ic regions [Azzalin et al., 2001; Nergadze et al., 2007]. 
Eighty-three of such s-ITSs have been detected in the hu-
man genome, 244 in the mouse, 250 in the rat, and 79 in 
the chimpanzee [Nergadze et al., 2007]. Experimental 
molecular data strongly suggest that, during evolution, 
mammalian s-ITSs have been inserted at internal chro-
mosome sites in a 1-step event in the germline. The inser-
tions have been mediated by the repair of DNA double 
strand breaks [for review, see Ruiz-Herrera et al., 2008].

  No attempts were made up to date to demonstrate the 
existence and chromosomal locations of s-ITSs in am-
phibians, although there are no obvious reasons why such 
sequences should be absent in amphibian genomes. The 
mandatory precondition for a systematic search of s-ITSs 
requires hundreds of high-quality metaphases derived 
from single amphibian specimens, and also the produc-
tion of multiple banding patterns along their chromo-
somes that would allow the exact positioning of s-ITS sig-
nals with FISH. However, as well-known by amphibian 
cytogeneticists, the induction of sharp multiple banding 
patterns along amphibian chromosomes is technically 
problematic [for review, see Schmid et al., 2010].

  As in the chromosomes of all other vertebrates exam-
ined with FISH and (TTAGGG) n  repeats, the het-ITSs in 
anuran genomes are always components of the repetitive 
DNA in the classical constitutive heterochromatin. This 
heterochromatin is located in the centromeric, pericen-
tromeric or interstitial regions of the chromosomes. In 
some instances, het-ITSs are components of the hetero-
chromatin associated with nucleolus organizer regions 
(NORs).

  Large ITSs were already detected in 43 anuran species 
belonging to the   families Centrolenidae (genus  Vitreora-
na , 1 species), Dicroglossidae (genus  Quasipaa , 1 spe-
cies), Hylidae (genera  Aplastodiscus , 4 species;  Hyla , 5 
species;  Hypsiboas , 4 species;  Itapotihyla , 1 species;  Phyl-
lodytes , 1 species;  Pseudacris , 2 species;  Scarthyla , 1 spe-
cies;  Sphaenorhynchus , 2 species), Leptodactylidae (genus 
 Leptodactylus , 3 species), Pelodryadidae (genera  Dry-
opsophus , 3 species;  Litoria , 2 species), Phyllomedusidae 
(genera  Agalychnis , 1 species;  Phyllomedusa , 5 species), 

Pipidae (genus  Xenopus , 4 species), and Strabomantidae 
(genus  Pristimantis , 3 species). These species and the cor-
responding studies are compiled in  table 1  (see Discus-
sion).

  In the present study, large ITSs were demonstrated in 
4 further anuran species belonging to the families Hylidae 
and Pelodryadidae, and the need for a consistent classifi-
cation of the various categories of large ITSs present in 
the genomes of anurans and other vertebrates was real-
ized. A classification is proposed which takes into account 
(1) the total number of large ITS clusters in the genomes, 
(2) their specific chromosomal locations and (3) their dis-
tribution patterns in the karyotypes of the individual spe-
cies. A new category of large ITSs has been recognized to 
exist in anuran species. It consists of large clusters of ITSs 
located in euchromatic chromosome segments, which is 
in clear contrast to the large het-ITSs found in verte-
brates. The origin of the different categories of large ITSs 
in heterochromatic and euchromatic chromosome re-
gions, their evolutionary fixation in the genomes, as well 
as their cytogenetic detection are discussed.

  Materials and Methods 

 Animals 
 Adult individuals of the following anuran species were collect-

ed:  Dryopsophus genimaculatus  (Mount Lewis, Queensland; 
16°34 ′ S/145°16 ′ E),  D. australis  (Adelaide River, Northern Terri-
tory; 12°39 ′ S/131°19 ′ E),  Hypsiboas faber  (near Itanhaém, São Pau-
lo State, Brazil; 24°10 ′ S/46°47 ′ W),  H. boans  (at km 99 on the road 
from El Dorado to Santa Elena de Uairén, Bolivar State, Venezu-
ela; 06°04 ′ N/61°24 ′ W). The chromosomes of the frogs were pre-
pared in the Northern Territory Museum (Darwin, Australia), the 
Evolutionary Biology Unit of the South Australian Museum (Ad-
elaide, Australia), the Instituto Butantan, University of São Paulo 
(São Paulo, Brazil), and in the field station ‘Estación Biológica de 
Rancho Grande’ located in the Henri Pittier National Park (Aragua 
State, Venezuela). The fixed material was transferred to 1.8-ml 
plastic tubes (Nunc), stored at 4   °   C and transported to the labora-
tory in Würzburg (Germany) for cytogenetic analyses.

  Chromosome Preparations 
 Mitotic chromosomes were prepared directly from the bone 

marrow after in vivo colchicine treatment. Detailed techniques 
used for cell suspensions, as well as the hypotonic treatment and 
fixation of the cells have been described previously [Schmid et al., 
2010].

  Banding Analyses and FISH 
 C-banding, fluorescence staining with quinacrine mustard, 

DAPI or Hoechst 33258, fluorescence counterstaining with dista-
mycin A/mithramycin and distamycin A/DAPI, and labeling of 
the NORs with AgNO 3  were performed according to the methods 
described by Schmid et al. [2010]. For the detection of the 
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(5 ′ -TTAGGG-3 ′ ) n  telomeric repeats, a fluorescein-conjugated 
peptide nucleic acid (PNA) probe (Telomere PNA FISH kit/FITC; 
Dako Cytomation, Denmark; K5325) was used. Detailed proce-
dures for in situ hybridization and signal detection are provided 
by the manufacturer.

  Microscopic Analyses 
 Microscopic analyses were conducted using Zeiss photomicro-

scopes III, fluorescence microscopes and Axiophot microscopes 
equipped with incident HBO 50W mercury lamp illumination. 
The filter combinations necessary for the analyses of metaphases 
stained with the various fluorochromes or for FISH were described 
by Schmid et al. [2010].

  Results 

 Large ITSs in Restricted Heterochromatic Regions 
(Restricted het-ITSs) 
 The majority of large ITSs found in the genomes of 

anurans and other vertebrates are located in only 1 or 
some few heterochromatic regions present in their 
karyotypes. Here, these are defined as ‘large ITSs in re-

stricted heterochromatic regions (restricted het-ITSs)’. 
They are always distributed in a random manner to a 
subset of the heterochromatic regions present in the 
karyotypes. All remaining heterochromatic regions are 
devoid of microscopically recognizable het-ITSs. As ex-
amples of such restricted het-ITSs, the karyotypes of 2 
frog species belonging to the Australian family Pelodry-
adidae are presented here. In  D. genimaculatus , a single 
restricted het-ITS is found in the centromeric hetero-
chromatin of chromosome 4 ( fig.  1 e). Fluorescence 
stainings with the GC base pair-specific mithramycin 
( fig. 1 c) and the AT base pair-specific quinacrine mus-
tard ( fig. 1 d) indicate that this restricted het-ITS is em-
bedded in GC-rich heterochromatin. In  D. australis , a 
total of 8 restricted het-ITSs are detectable in centro-
meric and interstitial heterochromatic regions of chro-
mosomes 1, 3, 5, and 9–12 ( fig. 2 e). Again, the specific 
fluorescence labelings with mithramycin ( fig.  2 c) and 
quinacrine mustard ( fig.  2 d) reveal that the restricted 
het-ITSs in the long arms of chromosomes 3 and 11 of 
this species are positioned in GC-rich heterochromatin. 

a

b

c

d

e

91 4 5 62 7 83 10 11 12 13

91 4 5 62 7 83 10 11 12 13

91 4 5 62 7 83 10 11 12 13

91 4 5 62 7 83 10 11 12 13

91 4 5 62 7 83 10 11 12 13

  Fig. 1.  Karyotypes of  Dryopsophus genimaculatus  showing C-banding ( a ), silver labeling ( b ), distamycin A/mith-
ramycin counterstaining ( c ), quinacrine mustard fluorescence ( d ), and FISH with the telomeric DNA probe ( e ). 
The single large restricted het-ITS in the centromeric heterochromatin of chromosome 4 is indicated by filled 
arrowheads and the NOR by open arrowheads. 
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The restricted het-ITS in chromosome 11 is located in 
NOR-associated heterochromatin ( fig. 2 b, c, e). The het-
erochromatic regions of the other restricted het-ITSs are 
not specifically labeled by mithramycin or quinacrine 
mustard. It is feasible that in these heterochromatic re-
gions equal amounts of AT and GC pairs are present in 
the repetitive sequences, so that none of the DNA base 
pair-specific fluorochromes produces differential label-
ing [for review, see Schmid et al., 2010].

  The further anuran species in whose genomes restrict-
ed het-ITSs were discovered up to date are listed in  ta-
ble 1 . Apparently, there is no obvious rule how these re-
stricted het-ITSs are distributed in the karyotypes. They 
colocalize randomly with 1 or some few heterochromatic 
regions located in autosomes or sex chromosomes, in su-
pernumerary B chromosomes, in centromeric or intersti-
tial positions, in short and/or long chromosome arms, in 

some cases at NORs. Their numbers range from 2 to 16 
per diploid karyotype.

  In different populations of the same species, dissimi-
larities in the number and chromosomal position of re-
stricted het-ITSs can occur. Hence, in the specimens of 
 Phyllomedusa distincta  examined by Bruschi et al. [2014], 
restricted het-ITSs are located in the heterochromatic 
centromeric regions of chromosomes 8 and 11, whereas 
in the individuals studied by Gruber et al. [2013], these 
are found in the centromeric regions of chromosomes 6, 
7 and 11 ( table  1 ). However, the possibility that these 
frogs actually belong to 2 different cryptic species should 
not be ignored.

  Interestingly, in a single analyzed individual of  Ag-
alychnis callidryas  (family Phyllomedusidae) collected in 
Costa Rica, the restricted het-ITSs in the centromeric re-
gions of chromosomes 1 and 7 as well as in the short arms 

a

b
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d

e

91 4 5 62 7 83 10
11

12 13

91 4 5 62 7 83 10

11

12 13

91 4 5 62 7 83 10
11

12 13

91 4 5 62 7 83 10
11

12 13

91 4 5 62 7 83 10
11

12 13

  Fig. 2.  Karyotypes of  Dryopsophus australis  showing C-banding ( a ), silver labeling ( b ), distamycin A/mithramy-
cin counterstaining ( c ), quinacrine mustard fluorescence ( d ), and FISH with the telomeric DNA probe ( e ). The 
8 large restricted het-ITSs in centromeric and/or interstitial heterochromatic regions of chromosomes 1, 3, 5, and 
9–12 are indicated by filled arrowheads and the NOR by open arrowheads. 
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of chromosome 3 occur in heterozygous (+/–) condition 
( table 1 ). This could indicate that these restricted het-ITSs 
are of more recent evolutionary origin. Whether such 
heterozygous restricted het-ITSs are finally fixed in, or 
eliminated from, a population by non-directional and ac-
cidental fluctuations of the frequencies of the homo-
logues with and without restricted het-ITSs, is deter-
mined by the size of the population, the genetic flow 
 between neighboring populations, and the selective 
 neutrality of the restricted het-ITSs (genetic drift). It 
would be interesting to examine a representative number 
of  A. callidryas  specimens in that Costa Rican population 
with the (TTAGGG) n  repeat in order to determine the 
degree of heterozygosity (+/–) and homozygosity (+/+ 
and –/–) of these restricted het-ITSs. In the same indi-
vidual of  A. callidryas , a possible tandem duplication of a 
restricted het-ITS was apparent in the centromeric het-
erochromatin of chromosome 5 ( table 1 ). The 2 resulting 
restricted het-ITSs are located in a mirror-like position 
on both sides of the centromeric constriction. Such du-
plicated ITSs were not observed in further anuran species.

  In individuals of  Quasipaa boulengeri  (family Dicro-
glossidae), collected in 2 populations in China, a possible 
restricted het-ITS exists in the proximal region of the 
chromosome 3 long arm. This ITS occurs in heterozygous 
(+/–) and homozygous (+/+ and –/–) conditions ( ta-
ble 1 ). The number of specimens analyzed is, however, 
not sufficient to calculate whether the 3 morphs of chro-
mosome 3 are in Hardy-Weinberg equilibrium in these 
populations. Furthermore, C-banding was not performed 
in  Q. boulengeri  [Qing et al., 2012, 2013]. Therefore, it is 
unknown whether this ITS is actually located in constitu-
tive heterochromatin and, in turn, if it represents a genu-
ine het-ITS.

  It becomes apparent that in several related species be-
longing to the same genera nearly all restricted het-ITSs 
are located in homeologous chromosome regions ( ta-
ble 1 ). For example, in  Phyllomedusa bahiana, P. vaillan-
tii, P. distincta, P. tetraploidea,  and  P. rohdei , the major-
ity of restricted het-ITSs have homeologous positions. 
Therefore, it seems likely that these restricted het-ITSs 
were already present in the common ancestor of these 
taxa and remained evolutionarily conserved during 
karyotype phylogeny.

  An unexpected discovery was made by Gruber et al. 
[2013] in  P. tetraploidea . This tetraploid species (4n = 52) 
probably originated from the closely related diploid  P. 
distincta  (2n = 26) or, alternatively, from a common dip-
loid ancestor of both species by autopolyploidy [Pombal 
and Haddad, 1992; Brunes et al., 2010]. The 2 species oc-

cur sympatrically in some populations in southeastern 
Brazil where natural interspecies crosses yield viable trip-
loid hybrids. In the diploid  P. distincta , 6 restricted het-
ITSs were found in the centromeric heterochromatin of 
chromosome pairs 6, 7 and 11. Although in the tetraploid 
 P. tetraploidea  12 restricted het-ITSs were supposed to 
exist in the chromosome quartets 6, 7 and 11, the same 
situation as in the diploid  P. distincta  was encountered. 
In only 2 homologues each of the quartets 6, 7 and 11, the 
restricted het-ITSs were detected, but the other ho-
mologues showed no centromeric hybridization. In the 
triploid  P. distincta ×   P. tetraploidea  hybrid, only 1 ho-
mologue in each of the tercets 6, 7 and 11 contained
the restricted het-ITSs ( table 1 ). Gruber et al. [2013] in-
terpreted this interesting finding as the result of an on-
going diploidization process in the genome of  P. tetra-
ploidea . This was corroborated by their analyses of the 
C-banding patterns which revealed conspicuous differ-
ences within some quartets of  P. tetraploidea  that divide 
each of these quartets into 2 pairs of homologous chro-
mosomes. The diploidization process operating in poly-
ploid genomes causes a divergent development of origi-
nally identical chromosomes and genes. It leads to a strict 
formation of bivalents in meiosis and disomic segrega-
tion rates [Ohno, 1970; Leipoldt, 1983; Gregory and 
Mable, 2005]. Diploidization causes genomes, which are 
polyploid with respect to the amount of genetic material 
and the number of gene copies, to become diploid with 
respect to the level of gene expression and various chro-
mosomal characteristics. Diploidization is believed to 
have been one of the most important processes that sta-
bilized the selective advantages produced by polyploidi-
zation and that contributed to the creation of new gene 
loci [Ohno, 1970]. If  P. tetraploidea  originated by auto-
polyploidy from  P.   distincta  or from a common diploid 
ancestor of both species, its original genome must have 
contained 12 restricted het-ITSs in the chromosome 
quartets 6, 7 and 11. Subsequently 2 restricted het-ITSs in 
each of these 3 quartets were selectively lost during the 
process of diploidization. The mechanism that eliminat-
ed these repetitive (TTAGGG) n  repeats from the centro-
meric regions is unknown, but it is well-known that se-
quence changes in repetitive DNAs can occur and be 
fixed in genomes at an evolutionarily high pace.

  Large ITSs in Dispersed Heterochromatic Regions 
(Dispersed het-ITSs) 
 A more exceptional pattern of het-ITSs, referred here 

to as ‘large ITSs in dispersed heterochromatic regions 
(dispersed het-ITSs)’, is found in the genomes of some 
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anurans and other vertebrates. As an example of this cat-
egory, the karyotype of the neotropical frog  H. faber  (fam-
ily Hylidae) is reported in the present study. In this Bra-
zilian species, the heterochromatic centromeric regions 
of all 12 chromosome pairs are completely labeled after 
FISH with the telomeric DNA probe ( fig. 3 g). These dis-
persed het-ITSs perfectly colocalize with the centromeric 
heterochromatin in all chromosomes, and do not extend 
into the adjacent pericentromeric heterochromatin pres-
ent in chromosomes 3, 6 and 9. As shown by fluorescence 
staining with the GC base pair-specific fluorochrome 
mithramycin and the AT base pair-specific fluorochromes 

quinacrine mustard, DAPI, and Hoechst 33258, all dis-
persed het-ITSs of  H. faber  are located in AT-rich repeti-
tive DNA sequences ( fig. 3 c–f). There are no interstitial 
het-ITSs or NOR-associated het-ITSs in the karyotype of 
this species.

  The other anurans in whose genomes dispersed het-
ITSs could be recorded are compiled in  table 1 . In these 
species, many dispersed het-ITSs colocalize with all or the 
majority of heterochromatic centromeric regions. Thus, 
like in  H. faber , large dispersed het-ITSs are located in the 
constitutive heterochromatin of all centromeric regions 
in the karyotypes of the 3 hylid species  Aplastodiscus al-
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c
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f

g

  Fig. 3.  Karyotypes of  Hypsiboas faber  showing C-banding ( a ), silver labeling ( b ), distamycin A/mithramycin 
counterstaining ( c ), quinacrine mustard fluorescence ( d ), DAPI fluorescence ( e ), Hoechst 33258 fluorescence 
( f ), and FISH with the telomeric DNA probe ( g ). Note the large dispersed het-ITSs in the centromeric hetero-
chromatin of all 12 chromosome pairs. The NOR is indicated by open arrowheads. 
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bofrenatus, A. arildae  and  A. eugenioi . With all probabil-
ity, the dispersed het-ITSs in these closely related  Aplas-
todiscus  taxa can be traced back to a common ancestral 
karyotype. In the Brazilian hylid  Itapotihyla langsdorffii  
and the Costa Rican strabomantid  Pristimantis cruentus , 
18 of 24 and 28 of 34 heterochromatic centromeric re-
gions, respectively, are endowed with dispersed het-ITSs. 
In the single specimen of  I. langsdorffii  examined, the dis-
persed het-ITS in the chromosome 1 centromeric region 
was found in heterozygous (+/–) condition.

  Another distribution pattern of dispersed het-ITSs in 
karyotypes of anurans and other vertebrates is their loca-
tion in multiple interstitial heterochromatic regions 
which are often at equilocal or nearly equilocal sites in 
heterologous chromosomes. This pattern exists in the 
karyotype of the African clawed frog  Xenopus clivii  which 
exhibits 30 dispersed het-ITSs in a total of 12 chromo-
some pairs ( table 1 ). Finally, a mixed distribution pattern 
of dispersed het-ITSs in the heterochromatin of centro-
meric as well as interstitial positions was found in the 
karyotype of the neotropical strabomantid  Pristimantis 
fenestratus . In this species, 7 centromeric and 5 interstitial 
dispersed het-ITSs occur in 10 chromosome pairs ( ta-
ble 1 ).

  In conclusion, unlike restricted het-ITSs, dispersed 
het-ITSs occur in much higher number in the karyotypes 
and are not distributed randomly among the heterochro-
matic regions. Instead, they occupy the complete or near-
ly complete set of heterochromatic centromeric or inter-
stitial regions, or show high rates of presence in both. Ad-
mittedly, an exact differentiation between restricted and 
dispersed het-ITSs turns out to be difficult in some spe-
cies. For example, the 16 restricted het-ITSs in the karyo-
type of  D. australis  (2n = 26; fig. 2e) could be classified as 
dispersed het-ITSs as well if only their absolute number 
is considered. However, the apparent random location in 
the karyotype forces their classification as restricted het-
ITSs.

  Large ITSs in Restricted Euchromatic Regions 
(Restricted eu-ITSs) 
 A new category of ITSs, which is in clear contrast to 

the known classes of ITSs in vertebrate genomes, was rec-
ognized in the present study and defined as ‘large ITSs in 
restricted euchromatic regions (restricted eu-ITSs)’. In 
the short arms of chromosome pairs 2 and 9 of the frog 
 H. boans  collected in southern Venezuela, very large ITSs 
are detectable which are embedded in non-heterochro-
matic (euchromatic) chromosome segments ( fig. 4 a, i). 
This is especially evident in preparations that were first 

hybridized in situ with the telomeric DNA probe and sub-
sequently subjected to C-banding, which allows a direct 
comparison of FISH signals and C-band patterns in the 
same chromosomes ( fig. 5 ). More than half of the euchro-
matin in the short arm of chromosome 2 and the com-
plete euchromatic short arm of chromosome 9 consist of 
ITSs. C-banding reveals that both chromosome segments 
are not heterochromatic ( figs. 4 a,  5 b, d). Furthermore, 
staining with AT and GC base pair-specific fluoro-
chromes as well as distamycin A/DAPI counterstaining 
also failed in demonstrating constitutive heterochroma-
tin in both chromosome segments ( fig. 4 c–g).

  In  H. boans , 1 further very small ITS can be recognized 
in the middle of the long arms of chromosome pair 7 
( fig. 5 a, c), but this one is a genuine restricted het-ITS lo-
cated in the NOR-associated heterochromatin ( fig. 4 a, b). 
Finally, in some preparations, a tiny ITS which may be 
associated with a small interstitial C-band can be recog-
nized close to the genuine telomeric (TTAGGG) n  repeats 
in the long arms of chromosome pair 5 ( fig. 5 a).

  De Mattos et al. [2014] examined the metaphase chro-
mosomes of 7  Hypsiboas  species, from the Amazonas 
State in Brazil using conventional staining, C-banding, 
silver staining, and FISH with telomeric DNA probes. 
Three of these species,  H. boans ,  H. wavrini  and  H. geo-
graphicus  are closely related and included in the  H. semi-
lineatus  species group. The single male  H. boans  they an-
alyzed was collected in São Sebastião do Uatumã. This 
locality is  ∼ 1,200 km (bee-line) apart from the site in 
Venezuela where the male  H. boans  studied here was 
sampled. The karyotypes in both  H. boans  populations 
are very similar concerning gross chromosome morphol-
ogy, but differences exist in the C-banding patterns and 
location of the NORs. In the Brazilian  H. boans  popula-
tion, the conspicuous large restricted eu-ITS in the short 
arm of chromosome 2 and the tiny ITS close to the telo-
meric (TTAGGG) n  repeats in the long arms of chromo-
some pair 5 are also present. However, the large restricted 
eu-ITS in the short arm of chromosome 9 is clearly absent 
( table  1 ). The same situation was encountered in  H. 
wavrini . The similar patterns of ITSs, C-bands and chro-
mosomal localization of NORs in the Brazilian  H. boans  
and  H. wavrini  confirm the close phylogenetic relation-
ship of both species [Faivovich et al., 2005]. Finally, in  H. 
geographicus , 2 restricted het-ITSs are located in the cen-
tromeric heterochromatin of chromosomes 1 and 5, but 
no eu-ITSs are present in this species ( table 1 ).

  Interestingly, de Mattos et al. [2014] did not realize 
that the ITSs present in the genomes of  H. boans  and
 H. wavrini  differ from the the well-known category of 
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  Fig. 4.  Karyotypes of  Hypsiboas boans  showing C-banding ( a ), silver labeling ( b ), distamycin A/mithramycin 
counterstaining ( c ), quinacrine mustard fluorescence ( d ), DAPI fluorescence ( e ), Hoechst 33258 fluorescence 
( f ), inverted Hoechst 33258 fluorescence ( g ), distamycin A/DAPI counterstaining ( h ), and FISH with the telo-
meric DNA probe ( i ). The 2 large restricted eu-ITSs in the short arms of chromosomes 2 and 9 are indicated by 
filled arrowheads and the NOR by open arrowheads. 
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het-ITSs commonly found in other amphibians and ver-
tebrates. This may be attributed to the lower resolution of 
the C-band patterns together with the higher degree of 
chromosome condensation obtained in their study, and 
because they did not perform C-banding followed by 
FISH with the (TTAGGG) n  repeat on the same meta-
phases.

   Table 1  lists the other Anura with restricted eu-ITSs 
detected up to date. Like  H. boans  and  H. wavrini , the 
Brazilian hylid  Sphaenorhynchus lacteus  possesses a very 
prominent restricted eu-ITS located in the same site of 
the chromosome 2 short arm. Unless no further species 
of the phylogenetically distant genera  Hypsiboas  and 
 Sphaenorhynchus  are cytogenetically analyzed with telo-
meric DNA repeats, it cannot be decided if this is a mere 
coincidence or a very ancient and highly conserved clus-
ter of ITSs in some lineages of the family Hylidae. On the 
other hand, the smaller restricted eu-ITSs present in in-
terstitial regions of chromosomes 4 and 8 of the phyloge-
netically closely related  Hyla cinerea, H. femoralis  and  H. 

squirella , and in the chromosomes 4, 7 and 11 of  Pseu-
dacris brimleyi  and  P. nigrita  are homeologous and with 
high probability represent evolutionarily conserved 
markers that can be traced back to the karyotypes of com-
mon ancestors.

  Large ITSs in Dispersed Euchromatic Regions 
(Dispersed eu-ITSs) 
 The only examples of this category of ITSs hitherto 

found in anurans are present in 2 closely related North 
American treefrogs, the diploid  H. chrysoscelis  (2n = 24) 
and the tetraploid  H. versicolor  (4n = 48) as well as in their 
natural hybrid (3n = 36) ( table 1 ). In their karyotypes dis-
persed eu-ITSs are located in, respectively, 26, 52 and 39 
interstitial sites in the short and/or long arms of 9 chro-
mosome pairs. In the diploid  H. chrysoscelis , 1 dispersed 
eu-ITS close to the centromeric region in the chromo-
some 1 long arm occurs in heterozygous (+/–) and homo-
zygous (+/+ and –/–) conditions among the individuals 
of different populations. As in the case of the restricted 
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  Fig. 5.  Two karyotypes of  Hypsiboas boans  showing FISH with the telomeric DNA probe ( a ,  c ) and subsequent 
C-banding ( b ,  d ). The position of the 2 large restricted eu-ITSs in the short arms of chromosomes 2 and 9 is in-
dicated by square brackets. Note that these large restricted eu-ITSs are clearly located in C-band-negative (eu-
chromatic) regions.           
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het-ITS in the karyotype of  Q. boulengeri  (see above), the 
low number of specimens analyzed does not allow to cal-
culate if the 3 karyomorphs of chromosome 1 are in Har-
dy-Weinberg equilibrium in the diploid  H. chrysoscelis 
 population. In the tetraploid  H. versicolor , some speci-
mens displayed this dispersed eu-ITS in 2 of the 4 homo-
logues of chromosome 1, but in individuals of another 
population it was absent. Finally, in the single triploid  H. 
chrysoscelis   × H. versicolor  hybrid examined, this dis-
persed eu-ITS was found in 1 of the 3 homologues. Ac-
cording to the C-banding analyses of Anderson [1986, 
1991], no visible constitutive heterochromatin is detect-
able in those chromosome regions where the 9 dispersed 
ITSs of  H. chrysoscelis  and  H. versicolor  are located. There-
fore, these 9 dispersed ITSs can be classified as genuine 
dispersed eu-ITSs. The close relationship of the tetraploid 
 H. versicolor  and its diploid progenitor,  H. chrysoscelis , 
explains the identical distribution patterns of the 9 dis-
persed ITSs in their karyotypes.

  Discussion 

 In the karyotypes of 55 out of 100 vertebrate species 
examined in the pioneering studies of Meyne et al. [1989, 
1990], at least 1 large ITS was found. Further conspicuous 
ITSs have been discovered in primates [Garagna et al., 
1997; Go et al., 2000; Farré et al., 2009], Carnivora [Wurst-
er-Hill et al., 1988], Cetartiodactyla [Scherthan, 1990; Lee 
et al., 1993; Vermeesch et al., 1996], Perissodactyla [San-
tani et al., 2002], Chiroptera [Finato et al., 2000], Roden-
tia [Bertoni et al., 1996; Fagundes and Yonenaga-Yassu-
da, 1998; Castiglia et al., 2006; Ventura et al., 2006, 2009; 
Swier et al., 2012; Nagamachi et al., 2013], Marsupialia 
[Metcalfe et al., 1998, 2002, 2007; Pagnozzi et al., 2000], 
birds [Nanda and Schmid, 1994; Nanda et al., 2002, 2007], 
reptiles [Schmid et al., 1994, 2014a; Pellegrino et al., 1999, 
2009; Bertolotto et al., 2001; Srikulnath et al., 2009; Ro-
vatsos et al., 2015], amphibians ( table  1 ), and fishes 
[Abuín et al., 1996; Garrido-Ramos et al., 1998; Ocale-
wicz, 2013].

  Concerning the origin of restricted het-ITSs, it is con-
ceivable that they are relics of chromosomal repattern-
ings that occurred during karyotype evolution and which 
have shifted telomeric (TTAGGG) n  repeats into internal 
positions. From a theoretical point of view, those chro-
mosome rearrangements capable of internalizing telo-
meric (TTAGGG) n  repeats are mainly centric (Robertso-
nian) fusions, followed by inversions, tandem transloca-
tions and insertions [for review, see Schmid et al., 2010]. 

Definitely several of the many restricted het-ITSs found 
in vertebrates can be traced back to such chromosomal 
rearrangements which became fixed during karyotype 
evolution.

  However, in the case of the dispersed het-ITSs of the 
frog  H. faber  and certain other vertebrates (see below), it 
is impossible that so many (TTAGGG) n  repeats, as esti-
mated by the size and fluorescence intensity of the hy-
bridization signals in the centromeric regions, have orig-
inated exclusively by centric fusions (compare size 
of telomeric and centromeric hybridization signals in 
 fig. 3 g). In the most favorable event, i.e., in case of a per-
fect telomeric fusion without terminal breaks or dele-
tions, just a doubling of the telomeric hybridization sig-
nals, but not the observed remarkably large centromeric 
hybridization signals would be detected. Moreover, the 
karyotype of  H. faber  conforms to those of the vast major-
ity of species in the family Hylidae, which all have diploid 
chromosome numbers of 2n = 24, fundamental numbers 
of FN = 48, and highly conserved chromosome morphol-
ogies. Therefore, the karyotype of  H. faber  was certainly 
not derived by a series of repeated centric fusions. As al-
ready proposed by Meyne et al. [1990], an alternative and 
more satisfactory explanation is that in the centromeric 
heterochromatin of such chromosomes the (TTAGGG) n  
repeats are merely a major component in the repetitive 
DNA of the heterochromatin itself. The (TTAGGG) n  re-
peat is known to be a main motif of the repetitive satellite 
DNAs of some vertebrates [Southern, 1970; Fry and Sals-
er, 1977; Arnason et al., 1988; Arnason and Widegren, 
1989; Adegoke et al., 1993; Garrido-Ramos et al., 1998; 
Rovatsos et al., 2011]. In other words, a partial or com-
plete sequence identity of the telomeric DNA and the re-
petitive DNA in these heterochromatic regions is purely 
coincidental.

  The same patterns of dispersed het-ITSs as occurring 
in  H. faber  were discovered in 3 exceptional lizards of the 
family Sphaerodactylidae. The karyotypes of  Gonatodes 
falconensis  and  G. taniae  from Venezuela are distin-
guished by the extraordinarily reduced chromosome 
number of 2n = 16, which is the lowest value found in 
reptiles up to date. Both species are characterized by con-
siderable amounts of (TTAGGG) n  sequences in the cen-
tromeric regions of all 8 chromosome pairs [Schmid et al., 
1994, 2014a]. In contrast, the Mediterranean  Euleptes eu-
ropea  has 2n = 42 chromosomes, which is the highest val-
ue so far detected in the family Sphaerodactylidae, as well 
as one of the highest among all lizards. Also in this lizard, 
large amounts of (TTAGGG) n  sequences are located the 
centromeric regions of all telocentric/subtelocentric 21 
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chromosome pairs [Gornung et al., 2013]. Furthermore, 
in the lizards  Aspidoscelis sexlineata  and  A. gularis  of the 
family Teidae, (TTAGGG) n  sequences colocalize with the 
centromeric heterochromatin of most chromosomes 
[Meyne et al., 1990]. The best studied dispersed het-ITSs 
are those of the Chinese hamster  (Cricetulus griseus) . In 
this species dispersed het-ITSs are a major constituent of 
the repetitive satellite DNA [Faravelli et al., 1998, 2002], 
which is located in the centromeric and pericentromeric 
regions of most chromosomes and which comprises 
about 5% of the hamster genome [Day et al., 1998]. These 
dispersed het-ITSs are arranged as extended tandem ar-
rays that are not interrupted by any other sequences and 
do not contain restriction enzyme cleavage sites [Fara-
velli et al., 2002].

  The question arises about the molecular structure and 
origin of eu-ITSs. It is possible that under certain condi-
tions and promoted by whatsoever event(s), s-ITSs in non-
heterochromatic (euchromatic) chromosome regions can 
amplify excessively and extend into adjacent chromosome 
segments. This massive amplification could cause a size 
increase of the affected chromosome arm and change the 
original chromosome morphology. It is further tempting 
to hypothesize that transposable elements which are close-
ly linked to telomeric (TTAGGG) n  repeats spread by trans-
position carrying complete or partial (TTAGGG) n  repeats 
and preferentially integrate into the chromosomal DNA of 
specific euchromatic regions containing appropriate target 
sites. In both cases, large numbers of reiterated sequences 
would accumulate and form a chromosome region with 
highly repetitive DNA which can further degenerate and, 

in turn, form constitutive heterochromatin detectable by 
the classical C-banding technique.

  In several stages of mitosis and meiosis there is an align-
ment of the chromosomes with the centromeres grouped 
together in one part of the cell and their telomeres at the 
opposite side (Rabl-orientation). It has been proposed that 
this arrangement, together with unequal crossover, trans-
position and amplification, leads to an equilocal spreading 
of constitutive heterochromatin throughout the genomes 
[Greilhuber and Loidl, 1983; Schweizer and Loidl, 1987]. 
This explains why in many species constitutive heterochro-
matin is located in the same or nearly the same relative re-
gions in different chromosomes. By the same mechanism, 
both het-ITSs and eu-ITSs can multiply in a concerted 
manner throughout the genomes and reach equilocal sites 
in heterologous chromosomes. The dispersed het-ITSs 
found in centromeric and interstitial regions, as well as the 
dispersed eu-ITSs localized in interstitial regions of anuran 
chromosomes ( table 1 ) could have evolved in this way.

  A formal classification of the different categories of 
(TTAGGG) n  repeats in vertebrate genomes, based on 
their locations in chromosomes and distribution patterns 
is presented in  table 2 . Up to date, the anuran species an-
alyzed by telomeric sequence mapping represent only a 
very small fraction of all recognized species. In order to 
substantiate this ITS classification, it is mandatory that 
much more species, representative of all genera, must be 
studied by FISH with the telomeric (TTAGGG) n  repeat. 
These experiments must be extended to the chromo-
somes of species belonging to the amphibian orders Uro-
dela and Apoda.

Table 2.  A proposed formal classification of the known categories of (TTAGGG)n repeats in vertebrate genomes, their locations in chro-
mosomes and distribution patterns

Category Chromosome location Distribution pattern

Telomeric sequences telomeric regions in all chromosome arms

ITSs non-telomeric regions
s-ITSs scattered over all chromosomes accumulate in some subterminal regions
Large het-ITSs heterochromatin

Restricted het-ITSs restricted to few heterochromatic regions random
Dispersed het-ITSs in many heterochromatic regions non-randoma

Large eu-ITSs euchromatin
Restricted eu-ITSs restricted to few euchromatic regions random
Dispersed eu-ITSs in many euchromatic regions non-randomb

 a Three distribution patterns: (1) in centromeric heterochromatin of all or most chromosomes, (2) in multiple interstitial heterochromatic regions, often 
at equilocal or nearly equilocal sites in heterologous chromosomes, and (3) mixed pattern with multiple sites in heterochromatin of centromeric and inter-
stitial regions.

b In multiple euchromatic regions, often at equilocal or nearly equilocal sites in heterologous chromosomes.
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