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Abstract: The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to
differ considerably from that in healthy volunteers. For highly protein bound (3-lactams, profound
pharmacokinetic differences were observed between comparatively morbid patients with CF and
healthy volunteers. These differences could be explained by body weight and body composition
for 3-lactams with low protein binding. This study aimed to develop a novel population modeling
approach to describe the pharmacokinetic differences between both subject groups by estimating
protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 + 5.4kg) and six healthy
volunteers (LBM: 53.1 + 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and
amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution
were 3% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling
by LBM to account for body size and composition, the remaining pharmacokinetic differences were
explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50%
in male and estimated as 54.5% in female healthy volunteers as well as 56.3% in male and 74.4%
in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics
in special patient populations with altered protein binding.

Keywords: cystic fibrosis patients; healthy volunteers; cefotiam; beta-lactam antibiotics; population
pharmacokinetics; protein binding; allometric scaling; body size; body composition; S-SADAPT
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1. Introduction

The pharmacokinetics (PK) of patients with cystic fibrosis (CF) has been reported to considerably
differ from that in healthy volunteers since the 1970s [1-4]. This was especially true for early studies
in patients with CF for 3-lactams with high protein binding (such as dicloxacillin and cloxacillin) [5,6].
These early studies compared mostly adolescent and presumably rather morbid patients with CF
to adult healthy volunteers and found up to 2.07-fold higher unbound fractions for some f3-lactams
in plasma of patients with CF (e.g., 11.6 + 7.7% in patients with CF versus 5.6 + 1.9% in healthy
volunteers for dicloxacillin).

Recent PK studies [7-11] assessed B-lactams with anti-pseudomonal activity; these compounds
had low or intermediate protein binding with unbound fractions of 49% or higher. These studies
employed population PK modeling to account for the differences in body size and body composition
via allometric scaling based on lean body mass (LBM). This approach explained most of the differences
in clearance and volume of distribution between both subject groups [3]. However, for aztreonam,
the most highly bound (-lactam in these newer studies [9], the unbound fraction in serum was
approximately 19% higher in patients with CF compared to that in healthy volunteers. When calculated
based on total serum concentrations, the aztreonam clearance was 31% higher in patients with CF
compared to that in healthy volunteers who were matched in terms of body size and body composition.
After accounting for the difference in protein binding, unbound clearance was only 10% higher
in patients with CF [9]. This was in good agreement with the PK differences for other 3-lactams with
low protein binding [7,8,10,11] and with generally similar (or only slightly higher) renal function
in patients with CF compared to that in healthy volunteers [1,12-14].

Cefotiam is a 3-lactam with intermediate protein binding ranging from 40% to 62% in different
studies [15-18]. Cefotiam has never been studied in patients with CF and only one small study
assessed its population PK in patients with intra-abdominal infections [19]. Population modeling
allows one to simultaneously estimate the population mean PK parameters and their between
subject variability (BSV). This approach can further describe differences in body size and body
composition via allometric scaling [20] based on total body weight (WT) or LBM, for example.
Moreover, this methodology is the foundation of Monte Carlo simulations which predict the probability
of attaining a pharmacokinetic/pharmacodynamic (PK/PD) target which correlates with efficacy in mice
and patients. Specifically for 3-lactam antibiotics, the duration during which the non-protein bound
plasma concentration exceeds the minimal inhibitory concentration (fT-pc) was found to best predict
bacterial killing at 24 h in both mouse infection models and clinical outcomes in patients [21-24].

This study aimed to develop a novel population modeling approach for characterizing the PK
differences between patients with CF and healthy volunteers by estimating protein binding in both
subject groups. Secondly, we sought to predict the probability of target attainment (PTA) for cefotiam
inboth subject groups. We accounted for the differences in body size and body composition via allometric
scaling by LBM. When clearances and volumes of distribution were calculated based on total drug
concentrations, these PK parameter estimates were 11% to 38% larger in patients with CF compared
to those in healthy volunteers. After allometric scaling of PK parameters by LBM, the remaining
differences in clearance and volume of distribution could be explained by a higher modelled unbound
fraction for cefotiam in the plasma of patients with CF compared to that of healthy volunteers.
This novel approach holds promise to characterize PK differences for drugs with moderate or high
protein binding which may be affected by pathophysiological alterations in special patient populations.

2. Materials and Methods

2.1. Subjects

A total of 14 Caucasian subjects (eight patients with CF and six healthy volunteers) participated
in the study after they had given their written informed consent. For one patient with CF aged
17 years, written informed consent was obtained from the legal representative. The general clinical
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procedures in the present study were the same as those described previously [7,8,11]. The study
protocol had been approved by the ethics committee of the University Hospital Essen under the title
“Pharmakokinetik von Antibiotika bei Mukoviszidose-Patienten und gesunden Probanden” (approved
on 29 August, 1984) and the study was performed in concordance with the revised version of the
Declaration of Helsinki.

2.2. Study Design and Drug Administration

This study was a single dose, single-center, open, parallel group trial. All subjects received 1027.5 mg
cefotiam as 3 min intravenous infusion viaa BRAUN-Perfusor® (Braun, Melsungen, Germany). The performance
of these instruments was assured on a daily basis by weighing defined volumes delivered by the perfusors.

2.3. Blood Sampling

All blood samples were drawn from a forearm vein via an intravenous catheter contralateral
to the one used for dosing. Blood samples were drawn immediately before the start of the infusion,
at the end of the infusion (3 min), as well as at 5, 10, 15, 20, 30, 45, 60, 90 min, and 2, 3, 4, 5, 6, 8, 12
and 24 h post the end of infusion. The samples were cooled in an ice-water bath for 10-15 min before
centrifugation. After centrifugation, all of the plasma samples were immediately frozen and stored at
—70 °C until analysis.

2.4. Urine Collections

Urine was collected to determine the fraction of drug eliminated into urine and to estimate renal
clearance. Sampling intervals were pre-dose as well as from the start of infusion (O h) to 1, 1to 2, 2 to
3,3to4,4t05,5t06,6t08, 8to 12, and 12 to 24 h post start of the infusion. After dosing, subjects
were asked to drink 200 mL of mineral water or apple juice to support diuresis. Urine samples were
collected into individually weighed urine sampling containers and stored at +4 °C during the sampling
interval. Thereafter, the amount and pH of the urine were measured and aliquots were immediately
frozen and stored at —70 °C until analysis.

2.5. Drug Analysis

Cefotiam concentrations in plasma were determined by reversed phase high performance liquid
chromatography (HPLC) using a validated assay [25]. In brief, 200 pL. of NaH,PO, buffer at pH 6.2
was added to 200 pL of each plasma sample. Acetonitrile (400 uL) was used to deproteinize each
sample. After centrifugation, 2000 uL of dichloromethane were added for extraction of acetonitrile.
From the remaining aqueous phase, 20 to 40 uL were injected into the HPLC system. Urine was
centrifuged and diluted 1:10 with 50 mM of sodium phosphate buffer at pH 7.0. A volume of 10 uL of
this diluted solution was injected into the HPLC system. The recovery from plasma was 99.7 + 1.6%
at a concentration of 100 mg/L, 99.6 + 3.3% at 25 mg/L and 94.9 + 5.9% at 1 mg/L. For comparison,
the corresponding recoveries from water were 97.2 + 3.0%, 94.1 + 2.6% and 95.3 + 1.9%, respectively.

A Novapack C18 (5 pm) column was used with a water/acetonitrile mixture at pH 4.7. Cefotiam
was detected at 254 nm. A volume of 30-40 mL blood was drawn from one additional subject at three
time points with a high, intermediate and low concentration. This subject did not participate in the
main part of the PK study. Those blood samples were used as incurred samples (i.e., biological quality
controls) that were included in all analytical runs.

2.6. Population Pharmacokinetic Analysis

2.6.1. Population Model

We tested one, two and three compartment disposition models and compared models based on
the objective function (-1x log-likelihood in S-ADAPT), individual curve fit plots, their predictive
performance assessed via visual predictive checks and normalized prediction-distribution errors, as well
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as other standard diagnostic plots [11,26-28]. Visual predictive checks assessed whether the median
and the prediction intervals mirrored the central tendency and the variability of the observations.

2.6.2. Modeling Approach

After identifying the most suitable model structure, we evaluated various models to account for
body size and body composition. We employed two strategies to describe the remaining differences
between patients with CF and healthy volunteers as well as potential differences between males and
females. The first approach used disease specific scale factors (FCYF) for clearance and volume of
distribution to describe differences between both subject groups as we described previously [7,8,10,11].
As an alternative, we employed a novel strategy to estimate different unbound fractions for cefotiam
in plasma for male and female patients with CF and healthy volunteers. The latter approach does
not require the FCYF and may be suitable for drugs with intermediate or high protein binding.
We considered models where the entire renal clearance (i.e., glomerular filtration and tubular secretion)
was affected by the estimated plasma protein binding and alternative models where only glomerular
filtration but not tubular secretion was affected by protein binding. We used literature data on
albumin concentrations in patients with CF and healthy volunteers to support the estimated differences
in protein binding [29] (as described in the Supplement).

2.6.3. Body Size and Composition

We compared five different models for body size and body composition: (1) No size model,
(2) linear scaling by WT, (3) allometric scaling by WT [30-32], (4) linear scaling by LBM [33,34] and (5)
allometric scaling by LBM. We compared the ability of each body size model to describe the differences
in the mean PK parameters between both subject groups and to reduce the unexplained BSV. For linear
scaling, all exponents were fixed to 1.0. The allometric body size models used a fixed exponent of
1.0 (i.e., linear scaling) for volume of distribution and a fixed exponent of 0.75 (i.e., slightly less than
linear scaling) for clearances. The Fg;,v; and Fgi,e cr,i represent the fractional changes in volume
of distribution and clearance for the ith subject (with LBM;) standardized to an LBMgrp of 53 kg
(equivalent to a standard weight of 70 kg).

LBM;

Fsizev,i = m 1)

. ( LBM; \*7° 2
SizeCLi = |79
T LBMSTD

2.6.4. Between-Subject Variability Model

The BSV for clearances and volumes of distribution was described by log-normal distributions.
The npsy was a normally distributed random variable with mean zero and standard deviation BSV.
The individual PK parameters were calculated as:

CLr; = CLr - Fsizecri - FCYFcr, - eXP(ﬂBSVCLr,i) @)

The CLy; is the individual renal clearance estimate and npsycr,; is the random deviate of CLr
for the ith subject. The population mean renal clearance (CLr) applies to healthy volunteers with
a standard body size (e.g., an LBMgrp of 53 kg). The disease factor for patients with CF (e.g., FCYFcp,)
characterizes the ratio of the mean renal clearance for patients with CF divided by that in healthy
volunteers. An FCYF¢p, of 1.0 means that patients with CF and healthy volunteers of the same body
size have identical group estimates for renal clearance. We used disease specific scale factors for renal
and nonrenal clearance as well as for volume of distribution at steady-state (FCYFysg).
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2.6.5. Observation Model

The residual unidentified variability was described by a combined additive plus proportional
residual error model for plasma concentrations. The fractions of dose excreted into urine as unchanged
cefotiam were fit using an additive residual error model. Simultaneous fitting of plasma concentrations
and the fractions excreted into urine allowed us to estimate both renal and nonrenal clearance.

After scaling by body size and composition, we accounted for potential differences in protein binding
to explore additional PK differences between both subject groups. We fixed the unbound fraction of
cefotiam in plasma of healthy male volunteers to 50% based on literature data [15-18] and estimated the
unbound fraction in female healthy volunteers as well as male and female patients with CF. The observed
plasma concentration of total cefotiam was calculated as the modelled unbound cefotiam concentration
divided by the unbound fraction. This approach not only allowed us to estimate potential differences
in the unbound fraction between both subject groups and sexes; it also allowed us to explain PK differences
between the four groups which could not be described by scaling for body size and composition. When we
estimated different unbound fractions for male and female patients with CF and healthy volunteers,
all disease specific scale factors FCYF were removed from the model and the resulting unbound renal
clearance (CLry) was calculated as:

CLry; = CLry - FsizecL,i - eXP(ﬂBSVCLr,u,i) (4)

All abbreviations for unbound renal clearance carry the same meaning as those described above
for renal clearance based on total drug concentrations.

2.6.6. Estimation and Computation

The importance sampling algorithm (pmethod = 4) in S-ADAPT (version 1.57) [35] was
used for all population modelling which was facilitated by the SADAPT-TRAN package [36,37].
Phoenix/WinNonlin Professional (version 8.1.0, Certara L.P.,, Princeton, NJ, USA) was used for
non-compartmental analysis and statistics.

2.6.7. Monte Carlo Simulations

Based on the final population PK model, we performed Monte Carlo simulations to predict
the time-course of unbound cefotiam concentrations in the plasma of patients with CF and healthy
volunteers. We simulated 4000 virtual subjects for each dosage regimen at a daily dose of 3000 mg
cefotiam. Simulations included 3 min infusions of 1000 mg every 8 h, prolonged (3 h) infusions of
1000 mg every 8 h and a continuous infusion of 3000 mg/day (with a 500 mg loading dose at 0 h to
rapidly attain a steady-state). The geometric mean LBM used for Monte Carlo simulations was 40 kg
for male and female patients with CF, as well as 61 kg for healthy male and 45 kg for healthy female
volunteers. The same geometric mean LBM in male and female patients with CF was used during
simulations to assess whether the probability of target attainment was affected by sex when using
a fixed (i.e., not LBM-adjusted) cefotiam dose. The covariate distribution model used a log-normal
distribution with a 15% coefficient of variation for LBM in each subject group.

The time of the unbound cefotiam concentration in plasma above the minimal inhibitory
concentration (fTspc) was shown to be the most predictive PK/PD index for cephalosporins [22,23].
The fT.pic was calculated by numerical integration at steady-state using the Berkeley Madonna
software (version 8.3.18) [11,38]. The fractions of patients achieving the PK/PD targets for bacteriostasis
(40% fT-mic) and near-maximal bacterial killing (65% fTsmic) at 24 h in mouse infection models were
calculated to estimate the probabilities of target attainment as described previously [21,23]. The PK/PD
breakpoint was defined and reported as the highest minimal inhibitory concentrations (MIC) with
a probability of target attainment of at least 90%. For these Monte Carlo simulations, the unbound
fraction for cefotiam in plasma was fixed to 50% for male healthy volunteers [15-18] and the estimated
unbound fractions in the three other subject groups were used during simulations.
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3. Results

Patients with CF were smaller and leaner than the healthy volunteers in this study (Table 1).
While female and male patients with CF had comparable LBM, male healthy volunteers had a 41%
larger LBM compared to female healthy volunteers. The average plasma concentration profiles over
time were similar between both subject groups, except for higher peak concentrations in patients with
CF (Figure S1).

Non-compartmental analysis showed that total, renal and non-renal clearance as well as volume of
distribution at steady-state were comparable between patients with CF and healthy volunteers (Table 2).
Terminal half-life was 14% shorter in patients with CF. For the latter, total clearance was 38% larger
in females compared to males and the same trend was observed for renal and non-renal clearance
(Table 2); this was despite male and female patients with CF having similar LBM (Table 1). Of note,
these non-compartmental PK parameters (Table 2) did not account for differences in body size and
body composition.

Table 1. Demographic data of patients with cystic fibrosis (CF) and healthy volunteers (data are median [range]).

Demographic Variable Patients with CF Healthy Volunteers
Number of subjects (males/females) 8 (4/4) 6 (3/3)
Age (yr) 19 [17-24] 235 [21-26]
Height (cm) 167 [157-173] 169 [164-190]

Total body weight (WT) (kg)
WT in females
WT in males
Lean body mass (LBM) a (kg)
LBM in females
LBM in males
Body mass index (kg m™2)

45.5 [33.0-59.0
48.0 [33.0-59.0
449 [44.6-53.5

] 68.5 [58.0-80.0]
|
|
40.3 [28.8-46.2]
]
]
|

58.0 [58.0-62.0]
80.0 [75.0-80.0]
50.6 [44.6-65.4]
44.6 [44.6-45.4]
62.8 [55.8-65.4]
22.5[20.3-27.9]

2: Calculated based on the formula by Cheymol and James [33,34].

38.8 [28.8-45.7
404 [39.6-46.2
17.0 [13.4-19.9

Table 2. Unscaled pharmacokinetic (PK) parameters from non-compartmental analysis (data are median
[range]). These PK parameters were calculated based on total cefotiam concentrations in plasma.

Pharmacokinetic Parameter

Patients with CF

Healthy Volunteers

Total clearance (L/h) 17.1 [8.97-27.8] 17.7 [16.2-24.0]
in females 22.1[15.0-27.8] 2 16.2 [16.2-18.5] @
in males 15.9 [8.97-21.1] 2 19.1[16.9-24.0]
Renal clearance (L/h) 12.0 [4.27-19.5] 11.6 [10.6-17.0]
in females 15.5[10.7-19.5] 2 11.8[10.6-12.5] @
in males 11.7 [4.27-12.6] 2 11.3[10.9-17.0] 2

Non-renal clearance (L/h)

5.08 [3.19-8.47]

5.97 [4.41-7.76]

in females

6.52 [4.22-8.26] 2

5.65 [4.41-6.01] 2

in males

4.96 [3.19-8.47]

7.04 [5.93-7.76] 2

Volume of distribution at steady-state (L)

12.4 [8.80-18.1]

12.8 [10.5-16.7]

in females

13.3[8.80-18.1]

10.7 [10.5-13.3] @

in males

12.3[10.6-13.6] @

16.7 [12.4-16.7] 2

Peak concentration (mg/L)

124 [74.1-293]

111 [81.7-130]

Terminal half-life (h)

0.931 [0.881-1.91]

1.08 [0.753-1.66]

Mean residence time (h)

0.699 [0.527-1.22]

0.707 [0.646-0.874]

70.3% [A7.6-77.8%]  66.3% [59.4-72.7%]

2: Female and male patients with CF had a similar median LBM (4% larger in males). However, LBM was 41%
larger in male compared to female healthy volunteers.

Fraction of dose excreted unchanged into urine (%)

The fraction excreted as unchanged cefotiam into urine was similar between both subject groups.
Six of eight patients with CF excreted more than 70% of the cefotiam dose into urine, whereas one
patient with CF only excreted 47.6%. The population PK analysis was performed with and without
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the urine data for this patient and removing the urine data of this patient had minimal impact on the
reported final population mean PK parameter estimates.

Population Pharmacokinetic Modeling

Structural Model

Visual predictive checks and other diagnostic plots suggested that both the two- and three-compartment
models adequately described the data. However, the three-compartment model (Figure 1) described the
terminal phase better, yielded a significantly better objective function (p < 0.001, likelihood ratio test) and
was chosen as the final structural model.

Infusion E
v
cLd @ cuLd
Shallow shallow Central deep Deep
peripheral compart- peripheral
comp. (X2) ment (X1) comp. (X3)
& .
o~ CLr — First-order process
-=---» Zero-order process
A
Observed
Unchanged @ compartment
drug in
urine 5.

Figure 1. Three-compartment model structure for cefotiam in plasma and urine.

Body Size Models

In our first approach to account for the differences between patients with CF and healthy volunteers,
we introduced the FCYF for clearances and volume of distribution. Without scaling by body size,
patients with CF and healthy volunteers had FCYFcy,, FCYFcy e and FCYFygs (Table 3) close to 1.0
in agreement with the non-compartmental results (Table 2). Linear and allometric scaling by WT as
well as linear scaling by LBM yielded approximately 19% to 52% larger clearances and volumes of
distribution in patients with CF compared to estimates in healthy volunteers (Table 3). For allometric
scaling by LBM, the scale factors were 1.21 for renal and 1.11 for nonrenal clearance, as well as 1.38 for
volume of distribution at steady-state. The complete set of population PK parameter estimates for the
model with FCYF and allometric scaling by LBM is shown in Table S1.

Table 3. Disease factors representing the group estimate in patients with CF divided by the group
estimate in healthy volunteers for the respective clearance or volume of distribution parameters.

Body Size Model # FCYFcr, FCYFCLnr FCYFyss
(1) No body size model ~ 0.99 (22.7%)  0.90 (11.4%)  1.03 (53.1%)
(2) WT linear scaling 143 (12.4%) 131 (22.7%) 152 (12.4%)
(3) WT allometric 131 (104%) 119 (7.7%)  1.52 (14.0%)
(4) LBM linear scaling ~ 1.29 (124%) 119 (22.9%)  1.38 (14.8%)
(5) LBM allometric 121 (7.5%) 1.11(147%)  1.38 (6.9%)

2: This table compares the results for the different body size models for subjects of standard body size (i.e., a WTsrp
of 70 kg or LBMgtp of 53 kg). An ideal body size model should explain the differences in body size and body
composition and thus yield disease specific scale factors close to 1.0.

Estimating Unbound Fractions

As a second strategy to explain the differences between patients with CF and healthy volunteers, we
estimated different unbound fractions (fu) of cefotiam in plasma. These models did not include any disease
specific scale factors (i.e., all FCYF were removed). Allometric scaling by LBM was used to account for body
size and body composition and different unbound fractions for males and females were estimated in each
subject group (Table 4; unbound fraction in male healthy volunteers was fixed to 50%).
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The final model estimated higher unbound fractions in female compared to male patients with
CF (females: 0.744 versus males: 0.563) and in female compared to male healthy volunteers (females:
0.545 versus males: 0.50 [fixed]; Table 4). This model yielded excellent individual curve fits (Figure 2)
and good predictive performance (Figure 3) in both subject groups. Standard diagnostic plots further
supported the performance of this model (Figure S2).

In an alternative analysis, we estimated a model that distinguished between glomerular filtration
(fixed to 7.2 L/h for a subject with normal body size) and renal tubular secretion clearance. For this
alternative model, glomerular filtration was affected by protein binding, whereas tubular secretion
was not. The estimated differences in protein binding were well comparable between this alternative
model (Table S2) and the final model (Table 4). Both models had adequate predictive performance.
While these models are not nested, the —2x log-likelihood was better by 7.1 for the final (Table 4)
compared to the alternative model (Table S2).

Table 4. Population pharmacokinetic parameter estimates for unbound cefotiam in patients with CF
and healthy volunteers. All parameter estimates (except the additive residual errors) refer to unbound
cefotiam. The model used allometric scaling with a standard LBMgtp of 53 kg.

Pharmacokinetic Parameter Symbol Unit POPul;lSt]ia?,Z)Mean :SSSE“{/;
Unbound renal clearance CLry L/h 23.8 (6.9%) 0.237 (52.7%)
Unbound nonrenal clearance CLnr, L/h 11.0 (7.0%) 0.237 (50.2%)
Unbound total clearance CLtoty L/h 34.8b
Unbound volume of distribution of central compartment Vi L 15.6 (6.5%) 0.189 (74.0%)
Unbound volume of distribution of shallow peripheral compartment V2, L 6.91 (14.1%) 0.256 (88.2%)
Unbound volume of distribution of deep peripheral compartment V3, L 4.56 (16.4%) 0.451 (131%)
Unbound volume of distribution at steady-state Vssy L 27.1°¢
Unbound distribution clearance for shallow peripheral compartment  CLdghallow,u L/h 13.8 (15.0%) 0.416 (183%)
Unbound distribution clearance for deep peripheral compartment CLdgeep,u L/h 1.84 (26.1%) 0.309 (83.8%)
Unbound fraction in plasma for females with CF fucgr 0.744 (4.5%) 4
Unbound fraction in plasma for males with CF fucpm 0.563 (13.5%) 4
Unbound fraction in plasma for female healthy volunteers fupyp 0.545 (13.6%) 4
Unbound fraction in plasma for male healthy volunteers fupvm 0.50 (fixed)
SD of additive residual error for plasma concentrations SDin mg/L 0.0186 (53.7%)
Proportional residual error for plasma concentrations SDsl 0.166 (7.8%)
SD of additive residual error for fraction of dose in urine UDin % 0.384 (76.1%)

2: Between subject variability reported as apparent coefficient of variation of a normal distribution on natural
logarithmic scale. The relative standard errors (SE%) refer to the estimated variances. b: Calculated based on the
estimated renal and nonrenal clearances. ¢: Calculated as the sum of the three estimated volumes of distribution.
d: Unbound fraction was fixed to 0.5 in male healthy volunteers based on literature data. The population means of
the remaining three unbound fractions were estimated separately for males and females with a small fixed between
subject variability (5% coefficient of variation).
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Patients with CF Healthy volunteers
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Figure 2. Observed plasma concentrations and individual curve fits (lines) for cefotiam in patients
with CF (left) and healthy volunteers (right). The legends show the subject numbers.
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Figure 3. Visual predictive check for cefotiam concentrations in patients with CF (left) and healthy volunteers
(right). The plots show the observations (markers), the 50th percentile (i.e., median) of the model predictions
(black line) along with the 80% prediction interval [10th to 90th percentile] and the interquartile range
[25th to 75th percentile]. Ideally, the median of the observations and of the predictions should superimpose
and 10% of the observations should fall outside the 80% prediction interval on either side.

The simulated probabilities of target attainment were near-identical in female and male patients
with CF (Figure 4) since both sexes were simulated with the same geometric mean LBM. Female healthy
volunteers had marginally higher probabilities of target attainment than male healthy volunteers
since females were smaller and the dose (3000 mg cefotiam per day) was not LBM-adjusted (Figure 4).
Cefotiam short-term (3 min) infusions of 1000 mg every 8 h achieved robust (> 90%) probabilities of
target attainment for the bacteriostasis target (40% fTsyc) up to an MIC of 0.25 mg/L for all four
subject groups (Table 5). Both 3 h prolonged infusions of 1000 mg every 8 h and the continuous
infusion of 3000 mg/day achieved robust probabilities of target attainment up to an MIC of 2 mg/L.
For the near-maximal bacterial killing target of 65% fT.pic, continuous infusion was predicted to
cover isolates with an MIC of up to 2 mg/L. However, prolonged infusions only covered MICs of
0.25 mg/L and short-term infusions up to 0.0625 mg/L (Table 5).
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Figure 4. Probability of target attainment plot over a range of minimal inhibitory concentrations (MICs)
for the bacteriostasis targets (40% fT-pc) in female and male patients with CF and healthy volunteers.
A probability of target attainment of 90% was defined as the pharmacokinetic/pharmacodynamic
(PK/PD) breakpoint.

Table 5. PK/PD breakpoints (i.e., the highest MICs [in mg/L] with a probability of target attainment of at
least 90%) for three cefotiam dosage regimens in patients with CF and healthy volunteers. All simulated
regimens used a daily dose of 3000 mg cefotiam (not adjusted by body weight).

Bacteriostasis Target (40% fTsmic)

Dosage Regimen

Patients with CF Healthy Volunteers
Female Male Female Male
Continuous infusion of 3000 mg/day (with a 500 mg
R 2 2 2 2
loading dose at 0 h)
Prolonged (3 h) infusions of 1000 mg every 8 h 2 2 2 2
Short-term (3 min) infusions of 1000 mg every 8 h 0.25 0.25 0.25 0.25
Near-Maximal Killing Target (65% fT>mic)
Continuous infusion of 3000 mg/day (with a 500 mg
. 2 2 2 2
loading dose at 0 h)
Prolonged (3 h) infusions of 1000 mg every 8 h 0.25 0.25 0.25 0.25
Short-term (3 min) infusions of 1000 mg every 8 h 0.0625 0.0625 0.0625 0.0625

4. Discussion

While (3-lactams are relatively hydrophilic molecules [39,40] with a protein binding of 40% or
less in human plasma for many compounds, several 3-lactams, especially those with Gram-positive
activity, display a higher protein binding [3,5,6,16,41-43]. These more highly bound (3-lactams include
dicloxacillin, cloxacillin, methicillin, ticarcillin and aztreonam of which PK has been compared between
patients with CF and healthy volunteers [5,6,9,44—46]. In these six studies, the ratio of the clearance
in patients with CF divided by the clearance in healthy volunteers was 1.68 + 0.67 (average + SD) when
calculated based on total plasma concentrations; after accounting for the higher unbound fractions
in patients with CF relative to those in healthy volunteers, this ratio became 1.32 + 0.42 for unbound
clearances. Asreviewed recently [3], some of these remaining PK differences could have been caused by
adolescent and presumably rather morbid patients with CF being compared to adult healthy volunteers
in these early PK studies. Hypoalbuminemia has been observed in patients with CF [2,4] and may
lead to a lower plasma protein binding. Moreover, hypoalbuminemia is an independent risk factor for
death in patients with CF and other conditions after lung transplantation [47].

Cefotiam is a cephalosporin with a protein binding of 40% to 62% in human plasma [15-18].
We are not aware of studies on the PK or protein binding of cefotiam in patients with CE. While we did
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not quantify protein binding in this study, our models considered that cefotiam may have a larger
unbound fraction in plasma of patients with CF compared to that in healthy volunteers based on
results on other 3-lactams [5,6,9,44-46,48]. Our non-compartmental PK parameter estimates (Table 2)
were based on total cefotiam concentrations and were in good agreement with previous reports for
cefotiam in healthy volunteers [49-52]. After accounting for the differences in body size and body
composition via allometric scaling by LBM via population PK modeling, patients with CF still had 11%
to 38% larger clearances and volumes of distribution compared to those in healthy volunteers (Table 3).

Supported by the larger unbound fractions for relatively highly protein bound (3-lactams in patients
with CF compared to the unbound fractions in healthy volunteers [3], we developed a novel population
PK model. After accounting for body size and composition, this model explained the remaining PK
differences by estimating the unbound fraction of cefotiam in plasma. We estimated higher unbound
fractions in patients with CF compared to those in healthy volunteers and higher unbound fractions
in females compared to those in males (Table 4). The latter result was supported by female patients
with CF having a similar LBM (Table 1), yet consistently larger renal, non-renal and total clearances of
cefotiam compared to those in male patients with CF (Table 2). Estimating different unbound fractions
avoided the use of disease specific scale factors (Table 3) and simplified the model (i.e., required fewer
parameters to be estimated). Scale factors were required for a model that used the same unbound
fraction in all subject groups (Table S1). Thereby, estimating protein binding differences sought to
explain the remaining PK alterations between patients with CF and healthy volunteers after accounting
for the differences in body size and composition.

We considered an alternative model where renal clearance was split into a glomerular filtration
and tubular secretion clearance similar to prior analyses [53-56]. Cefotiam is a low renal extraction
ratio drug since its unbound renal clearance of 23.8 L/h is equivalent to approximately 32% of
renal blood flow (74 L/h) [57]. In this alternative model, protein binding was modeled to affect
only glomerular filtration. This model yielded well comparable parameter estimates (Table S2) and
diagnostic plots compared to those of the final model (Table 4); however, the alternative model was
more complex and prior studies showed that plasma protein binding affects renal transport of organic
anions [58]. Likewise, protein binding also affects the active transport and secretion of cefonicid,
a cephalosporin comparable to cefotiam, in isolated perfused rat kidneys [59]. This suggested that
the entire renal clearance was affected by protein binding as implemented in the final model (Table 4).
We chose not to include a potential covariate effect for glomerular filtration rate on renal clearance to
keep the model slightly simpler.

Limitations of our study include that we could not determine the unbound fraction of cefotiam
in our subjects since plasma samples were no longer available at the time of this modeling.
Additional limitations include the small sample size of this study and that we did not have
data on albumin concentrations in our subjects; thus, the effect of albumin on protein binding
was not included in the model. However, our results were in good agreement with the reported
protein binding and PK differences between patients with CF and healthy volunteers for aztreonam [9]
and for other moderately or highly protein bound p-lactams [5,6,9,44—46]. Significantly lower serum
albumin and prealbumin concentrations have been reported for patients with CF compared to control
subjects [60]. Moreover, significantly lower albumin concentrations were found in female (n = 187)
compared to male (n = 306) patients with CF who had severe liver disease, pancreatic insufficiency
and portal hypertension [61]. The latter patients with CF were more morbid than those in our
study. However, both of these studies [60,61] support our modeling results with higher unbound
fractions for cefotiam in female and male patients with CF compared to those in healthy volunteers
(see also Supplementary Materials).

Cefotiam is used for the treatment of intra-abdominal infections [19] and for antibiotic prophylaxis
of intra-abdominal, urological, biliary and other surgeries [62-68] in some countries. For our
Monte Carlo situations, we considered the bacteriostasis target of 40% fT-nc. We simulated male and
female patients with CF with the same body size (i.e., mean LBM of 40 kg) and found near-identical
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probabilities of target attainment in both sexes for a non-size-adjusted dose of 3000 mg per day
(Figure 4). This was expected since the unbound clearances and unbound volumes of distribution were
the same in all subject groups when subjects had the same body size (Table 4). This was in agreement
with a previous study on aztreonam which reported a similar unbound clearance for patients with CF
and healthy volunteers [9]. While the higher unbound fractions in female patients with CF, for example,
affected the total cefotiam concentrations in plasma, the difference in protein binding had no impact
on the unbound concentrations. Therefore, the PK/PD breakpoints were identical in female and male
patients with CF. For a fixed dose of 3000 mg cefotiam per day, female healthy volunteers achieved
slightly higher probabilities of target attainment since they were smaller than male healthy volunteers
(Figure 4). Our PK/PD breakpoints in patients with CF and healthy volunteers were in agreement
with those from one previous study on cefotiam in patients with intra-abdominal infections [19].
Overall, these results provide guidance to clinicians about the benefit of prolonged compared to
short-term infusions of cefotiam.

5. Conclusions

This study was the first to compare the population PK of cefotiam in patients with CF to that
in healthy volunteers. We accounted for the differences in body size and body composition between
both subject groups via allometric scaling by LBM. After accounting for body size and composition,
renal clearance was 21% larger, non-renal clearance was 11% larger and volume of distribution was
38% larger in patients with CF compared to those in healthy volunteers when calculating these PK
parameters based on total drug concentrations. Within the perspective of literature data on the PK
of B-lactams with moderate or high protein binding in patients with CF, these PK differences were
expected for cefotiam which has an unbound fraction in plasma of approximately 50% in healthy
volunteers. Our final population PK model explained the PK differences by estimating higher unbound
fractions of 74.4% in female and 56.3% in male patients with CF compared to 54.5% in female and
50% in male healthy volunteers. For female and male patients with CF who had the same body size,
a fixed dose of 3000 mg cefotiam per day yielded identical probabilities of target attainment and
PK/PD breakpoints in both sexes. Prolonged and continuous infusions achieved 8-fold higher PK/PD
breakpoints than short-term infusions every 8 h for the bacteriostasis target. Overall, the proposed
novel population modeling approach holds promise to describe potential PK differences in special
patient populations with altered protein binding.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/6/286/s1,
Figure S1. Plasma concentrations of cefotiam after a single 3 min intravenous infusion of 1027.5 mg in patients
with CF and healthy volunteers. Figure S2. Observed and individual (left) or population (right) fitted total plasma
concentrations of cefotiam on linear (top) and logarithmic (bottom) scale. Table S1. Population pharmacokinetic
parameter estimates for unbound cefotiam in patients with cystic fibrosis and healthy volunteers for the model
that included disease specific scaling factors. All parameter estimates (except the additive residual errors) refer to
unbound cefotiam; for this model, the unbound fraction was fixed to 0.5 in all subject groups based on literature
data. This model used allometric scaling by LBM with an LBMgrp of 53 kg. Table S2. Population pharmacokinetic
parameter estimates for unbound cefotiam in patients with CF and healthy volunteers for the alternative model
which distinguished between glomerular filtration and renal tubular secretion clearance; the latter was not affected
by protein binding. All parameter estimates (except the additive residual errors) refer to unbound cefotiam.
The model used allometric scaling with a standard LBMgrp of 53 kg.
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