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Abstract: Forest biodiversity conservation requires precise, area-wide information on the abundance
and distribution of key habitat structures at multiple spatial scales. We combined airborne
laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree
characteristics and quantifying multi-scale habitat requirements using the example of the three-toed
woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird,
a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling
in dead or dying trees. While previous studies showed a positive relationship between the TTW
presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response
with a negative effect of very high deadwood amounts and tested for effects of substrate quality.
Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four
spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead
trees was the most important predictor, with an increase in the probability of TTW occurrence
up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of
occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh
deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and
the derivation of ecological threshold values for deadwood quality and quantity for more informed
conservation management.

Keywords: deadwood; standing deadwood; dead tree; snags; three-toed woodpecker (Picoides
tridactylus); habitat suitability model (HSM); habitat requirements; airborne laser scanning (ALS);
CIR aerial imagery

1. Introduction

Effective biodiversity conservation in managed forest landscapes requires knowledge about the
distribution of key habitat features at relevant scales [1,2]. This knowledge is essential for assessing
species’ habitat selection, deriving threshold values for key features, and evaluating habitat quality
across large spatial scales. Habitat suitability models (HSMs) [3] and their spatially explicit variant,
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species distribution models (SDMs), have been widely employed in the last decades to predict species
occurrence [4], abundance, or richness [5–7] based on environmental variables [8]. Given their need
for area-wide environmental information across large spatial scales, SDMs have mostly been based on
publicly available topographic, climatic, or land-cover variables, which are often too coarse-grained
and imprecise for reliably assessing habitat characteristics and quality for forest-dwelling species.

Forests, especially those with natural stand characteristics, are habitats with a high vertical and
horizontal structural complexity [9] and are difficult to characterize with simultaneously high precision
and the required generalization. Traditionally, forest structure is described based on plot-based forest
inventories or high-resolution mapping in the field, which are costly [10] and therefore often carried
out at limited spatial extents [11]. Moreover, they do not deliver continuous spatial information.
The rapid development of remote sensing techniques and efficient methods for data processing make
information originating from airborne and satellite surveys increasingly attractive for forest ecology
and biodiversity research, conservation and management [12,13]. These techniques and methods
allow detailed and area-wide structural analyses, alleviating the trade-off between precision and
extent [11,14].

Initially forest structural and compositional parameters used in conservation studies
predominantly originated from passive remote sensing such as aerial and satellite imagery and
were obtained using manual or semi-automatic mapping methods [15,16]. Current trends increasingly
turn towards active remote sensing with airborne laser scanning (ALS, also referred to as airborne
Light Detection and Ranging or LiDAR) and the fusion of data from different sources enabling the
combination of structural and spectral information [10]. With its ability to penetrate through the canopy,
ALS provides information on vegetation heights at and below the forest surface, allowing a precise,
high-resolution description of the vertical and horizontal vegetation structure [17,18]. ALS-based
structural information has been shown to perform well in predicting the habitat selection of various
forest species, especially bats and birds [7,11,17,19–23] using three-dimensional habitat structures.
The fusion of ALS data with satellite or aerial imagery combines accurate measurements of vertical
structure with the advantages of using spectral information (e.g., for identifying tree species [24–29],
distinguishing between living and dead trees [27,30,31] or analyzing forest structural complexity [9,32]).
Such information can be highly relevant for analyzing and predicting the habitat requirements of forest
species linked to specific tree-characteristics and for determining their abundance across large spatial
scales [12].

The three-toed woodpecker (TTW) is a forest bird typical for boreal and mountainous natural
spruce dominated forests with a high amount of standing deadwood. Although globally red-listed
with a status of least concern and stable population size [33], this species is regionally rare and
vulnerable [34] or even threatened with extinction [35–37]. The TTW is frequently selected as a focal
species of forest biodiversity conservation programs, as its occurrence is associated with a high forest
bird diversity [38]. It functions as a key-stone species (sensu Thompson and Angelstam [39]) [40] as
it provides breeding opportunities for a variety of cavity-breeding species [41,42]. Feeding mainly
on larvae of bark and wood-boring insects [43,44], the TTW is highly dependent on dying and dead
conifer (mostly spruce) trees [21] and is therefore considered an umbrella species for the saproxylic
species community [45].

The habitat variables determining TTW home range selection in its boreo-alpine distribution
range [46,47] correspond to the attributes of mature, spruce dominated, hemiboreal, boreal,
or mountain forests. Spruce-dominated natural old-growth forests with a high variability in tree
diameters (diameter at breast height, DBH) as well as a high abundance and diversity of deadwood
provide suitable conditions for a continuous woodpecker presence, as they host stable populations of
spruce bark and longhorn beetles, its staple food [43,44,48,49]. In other habitats, woodpecker breeding
density varies greatly with the abundance of insect prey [43].

Spruce trees infested by bark beetles as well as standing deadwood [49] are key habitat
components for both TTW subspecies: Picoides tridactylus alpinus inhabiting mountainous conifer
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and mixed forests and Picoides tridactylus tridactylus inhabiting hemi- and boreal lowland mixed and
spruce forests. Deadwood diversity, i.e., the presence of various stages of decay, allows woodpeckers
to adjust their diet to varying external conditions and energetic needs [44,49,50]. Kratzer et al. [51]
showed a significantly higher abundance of deadwood in the early stages of decay (comparable to stage
three to four according to Thomas et al. [52], Figure 1) at sites with woodpecker presence compared to
absence sites. Also, Balasso [53] underlined the preference of TTW for fresh snags, especially recently
dead spruce with loose but attached bark, still inhabited by large numbers of bark beetles.
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required habitat requisites, are larger (i.e., between 100 and 400 ha [43,58]). Territory density is lower 
in managed forest landscapes with 0.2–0.7 territories per 100 ha compared to 1–5 territories per 100 
ha in natural old growth and unmanaged forests [55,60,61,66].  

Due mainly to harvesting and sanitation cutting, deadwood, to which TTW occurrence is 
closely linked, is an especially limited resource in managed forest ecosystems [21,54,64,65,73]. 
Deadwood thresholds of European forest-dwelling species range from 10 to 150 m3/ha with values 
of 20–50 m3/ha given for the majority of species as reviewed by Müller and Bütler [73]. This 
corresponds well with the 15–18 m3/ha to 30 m3/ha given for TTW occurrence [40,54,63,64]. Higher 
densities of deadwood are rare in Europe and occur only locally, mainly in protected areas [73,74], 
so that an upper deadwood limit could not be determined yet. However, the existence of a 
deadwood-optimum is likely, as a share of living trees would be necessary to allow for a 
continuous provision of dying and freshly dead trees. 

In this study, we test the usability of remotely sensed single tree data for analyzing habitat 
selection and predicting area-wide occurrence of the TTW, identifying the most important variables 
explaining home range selection at multiple spatial scales, and deriving threshold values for 
conservation management. We test the hypothesis that extremely high amounts of deadwood lead to 
a decrease in the probability of TTW occurrence and assess the influence of deadwood quality on 
habitat selection.  

Figure 1. For the purpose of this study, trees were classified as: living trees (LIVE) and standing
deadwood objects (DEAD), which were further divided into dead trees (DEADTREE) and snags
(SNAG) representing the stages of conifer tree decomposition after Thomas et al. [52]. Note the
shrinking of the horizontal extension of the tree crown during the progress in decay.

In addition, various authors showed the bird’s preference for old-growth stands [43,54–59],
with TTW territories documented mostly in stands older than 60 years [54,60], 80 years [61,62],
or 100 years [40,63], and with a high abundance of veteran trees [48,54,64].

Outside of the boreal zone, TTW occurrence mostly coincides with a high protection status,
as in Białowieża National Park [65–67], in the Polish Carpathians [61,68] or other protected
areas [51,54,66,69,70]. In these areas, the bird’s home range sizes are smallest ranging from 16 ha [71]
to 40–60 ha [49,59,66,72], while home range sizes in managed forests, with lower densities of the
required habitat requisites, are larger (i.e., between 100 and 400 ha [43,58]). Territory density is lower
in managed forest landscapes with 0.2–0.7 territories per 100 ha compared to 1–5 territories per 100 ha
in natural old growth and unmanaged forests [55,60,61,66].

Due mainly to harvesting and sanitation cutting, deadwood, to which TTW occurrence is closely
linked, is an especially limited resource in managed forest ecosystems [21,54,64,65,73]. Deadwood
thresholds of European forest-dwelling species range from 10 to 150 m3/ha with values of 20–50 m3/ha
given for the majority of species as reviewed by Müller and Bütler [73]. This corresponds well with the
15–18 m3/ha to 30 m3/ha given for TTW occurrence [40,54,63,64]. Higher densities of deadwood are
rare in Europe and occur only locally, mainly in protected areas [73,74], so that an upper deadwood
limit could not be determined yet. However, the existence of a deadwood-optimum is likely, as a share
of living trees would be necessary to allow for a continuous provision of dying and freshly dead trees.

In this study, we test the usability of remotely sensed single tree data for analyzing habitat selection
and predicting area-wide occurrence of the TTW, identifying the most important variables explaining
home range selection at multiple spatial scales, and deriving threshold values for conservation
management. We test the hypothesis that extremely high amounts of deadwood lead to a decrease in
the probability of TTW occurrence and assess the influence of deadwood quality on habitat selection.
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2. Materials and Methods

2.1. Study Area

The study was conducted in the Bavarian Forest National Park. Founded in 1970 as the first
German National Park, it initially covered an area of 13,300 ha which was extended to 24,218 ha in
1998. The park is located in southeastern Bavaria (Germany) and borders the Šumava National Park
(69,030 ha), Czech Republic to the East. The park covers a large part of the Bavarian Forest mountain
chain with an elevational gradient ranging from 600 to 1453 m a.s.l. Depending on elevation, the mean
annual temperature (1972–2001) varies from 3.5 to 7.0 ◦C, and the total annual precipitation varies
from 1300 to 1900 mm [75]. The predominant vegetation is mountainous spruce and mixed forest
with a share of Norway spruce (Picea abies) of 67.0%, European beech (Fagus sylvatica): 24.5%, Silver fir
(Abies alba): 2.6%, and other tree species: 5.9% [76].

Following its non-intervention policy, the National Park authority allowed for natural forest
dynamics in the core zone (currently encompassing 68% of the park area), with massive bark beetle
outbreaks after severe storm and windthrow events in 1983 and 1984. This resulted in a dieback of
spruce forests at an unprecedented rate in Central Europe in recent decades [77].

2.2. Remote Sensing Data

Habitat variables were extracted from a full, remote sensing-based tree inventory [78]. Full
waveform ALS data was acquired on the 24th/26th/27th of July 2012 through the Milan Flug GmbH,
using a Riegl LMS-Q 600i laser scanner of 350 KHz. A nominal point density of 30–40 points/m2 was
obtained from data recorded at a 0.32 m footprint. CIR aerial images were acquired in August 2012
using a DMC camera and a ground sampling distance of 20 cm. The images are composed of 3 spectral
bands: near infrared, red, and green.

The preprocessing of the raw ALS data to the georeferenced three-dimensional (3D) point cloud,
including the derivation of the intensity and the pulse width values using a sum of Gaussian functions,
is described in Reitberger et al. [79] and Yao et al. [80]. Single tree detection and delineation was
carried out with a 3D segmenting method solely based on ALS data and the geographical position
and top height (H) were calculated for each segmented tree [81]. This resulted in a dataset containing
12,106,320 trees, consisting of two types of geographical data, point data for tree tops and polygons
for crown delineation. In the next steps, for each tree, the tree type (conifer, broadleaf, or deadwood),
projected crown area (C), crown base height and crown volume, were derived using both types of
remote sensing data. Spectral information from CIR aerial imagery fused with segmented ALS point
cloud data was used for tree species classification based on Reitberger et al. [79] and for the detection of
snags and standing deadwood in line with Polewski et al. [30] and Polewski et al. [82]. The crown base
height and the crown volume originated from a 3D Alpha-Shape-triangulation of the segmented ALS
point cloud. Diameter at breast height (DBH), basal area (BA) and volume (VOL) were also calculated
for live trees in an extra modelling step based on a calibration with an extensive ground reference
database [83].

In addition to the automatically derived, tree-based information, we tested independent data of
yearly visual assessment of deadwood areas based on the CIR aerial imagery [84] dated 2010–2015
(Table A1).

2.3. Species Data and Sampling Design

Presence locations of the TTW originated from the database of the Bavarian Forest National Park,
including data from the biological monitoring, various research projects, and chance observations by
trained park staff (Figure 2). Locations of TTW, either observed directly or through sound identification,
were recorded with a GPS. Data were collected in two time periods (2007–2008 and 2012–2014), however,
to achieve a temporal synchronization with the remote sensing data from 2012, we only used the
observations from the latter sampling period (N = 115).
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To study habitat selection at different relevant scales, we generated circular sample plots around
each presence location, with sizes reflecting the area requirements of the species reported under
different conditions:

• R = 100 m to evaluate the habitat characteristics in close vicinity of the TTW presence locations.
• R = 250 m (19.6 ha) representing the minimum reported home range of an individual TTW under

excellent habitat conditions (ca. 16–19 ha [85]);
• R = 450 m (63.6 ha) depicting the average minimum home range size reported for areas with

presumably good conditions such as protected areas [43,54,66,86];
• R = 600 m (113 ha) corresponding to the average home range size reported by various

authors [49,66,85,87].

The presence locations showed spatial clumping in some regions, indicating multiple observations
originating from the same individual. To avoid pseudoreplication, we thinned the initial set of presence
locations allowing a maximum 18% overlap of the sampling plots at the largest scale (r = 600 m), after
Pechacek [85] who reported average territory overlaps of 17.6% (±3.9). Using R-package “Spatstat”
package [88] to discard all presence locations that fell below the resulting minimum distance of 840 m,
resulted in a final set of 52 presence locations.

In addition, we randomly created a similar number of pseudo-absence locations (in the following
referred to as “absence”) with the same minimum distance to any presence location and to each other.
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Figure 2. Study area (Bavarian Forest National Park) and the locations with TTW presence (black
points) and absence (red points) used for the analysis. Presence locations closer than 840 m to the next
location were discarded to avoid using multiple observations of the same bird (blue points). Grey
buffers represent different home range sizes with radii of 100 (A), 250 (B), 450 (C), and 600 m (D) (inset).

2.4. Predictor Variables

Predictor variables were generated for each of the four sampling plot scales and encompassed
three classes: general forest stand characteristics, specific tree features, as well as topographic
information (Table 1).
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Table 1. Tested predictor variables each calculated for circular sampling plots of r = 100, 200, 450, and 600 m respectively, with their potential ecological relevance for
the model species. (BB = bark beetle, DBH = diameter at breast height, RS = remote sensing).

Category Variable Description Ecological Meaning Unit

Forest stand FCOVER_part Proportion of forest cover per plot based on crown area Stand structure and shelter function 0–1
characteristics STANDH15_partF Proportion of crown cover of trees with H > 15 m to forest cover Stand structure: mature trees 0–1

DEADCIR_part Proportion of deadwood area per plot (2010–2016 aerial imagery) Feeding potential for BB/Option for cavities 0–1
DEADRSI_part Proportion of deadwood area per plot (2012 RS tree inventory) Feeding potential for BB/Option for cavities 0–1

LIVE_Nha Amount of living trees per ha Forest stand density and tree shelter function N/ha
LIVE_VOLha Total volume of live trees per ha Forest stand structure m3/ha
LIVE_BAha Mean basal area of live trees per plot Proxy for stand mass and forest age m2/ha
LIVE_BAvar Variance of live tree basal area per plot Proxy for stand age heterogeneity m2/ha

LIVE_Hmean Mean height of live trees per plot Proxy for stand vertical structure and age m
LIVE_Hvar Variance of live tree height per plot Proxy for vertical structure/age heterogeneity m

CONIF_Npart Proportion of conifer trees (N) in all live trees Forest type and potential food resources 0-1
CONIF_VOLpart Proportion of conifers (Volume) in all live trees Forest type and resources food resources 0-1
DECID_VOLha Volume of deciduous trees per ha Forest type and shelter function m3/ha

Specific tree RESOURCE_Nha Amount of trees with DBH > 30 cm per ha Feeding potential for BB/Option for cavities N/ha
features DEAD_Nha Amount of all standing deadwood per ha Feeding potential for BB/Option for cavities N/ha

DEAD_Hmean Mean height of all standing deadwood per plot Feeding potential for BB/Option for cavities m
DEAD_Cmean Mean crown area of all standing deadwood per plot Feeding potential for BB/Option for cavities m2

SNAG_Nha Amount of snags per ha Old deadwood (rather unsuitable) N/ha
SNAG_Hmean Snags mean height per plot Old deadwood (rather unsuitable) m
SNAG_Cmean Snags mean crown area per plot Old deadwood (rather unsuitable) m2

DEADTREE_Nha Amount of all standing dead trees per ha Deadwood with BB potential N/ha
DEADTREE_Hmean Mean H of all standing dead trees per plot Deadwood with BB potential m
DEADTREE_Cmean Mean crown area of all standing dead trees per plot Deadwood with BB potential m2

Topography ALTITUDE_mean Mean altitude a.s.l. of a sampling plot Proxy for climate m
SLOPE_mean Mean slope of a sampling plot Proxy for terrain Degree

EAST Easting (sine of aspect) of a sampling plot Sun exposure (−1)–1
NORTH Northing (cosine of aspect) of a sampling plot Sun exposure (−1)–1

SOLAR_mean Yearly mean of solar radiation per plot Proxy for climate h
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Based on a literature review, predictor variables describing general forest stand characteristics
were selected according to their hypothesized ecological relevance for the species. Forest cover per
plot was defined as the share of the horizontal plot area covered by all trees’ crowns. The proportion
of forest cover attributed to trees higher than 15 m was assessed as a proxy for mature forest, and
the proportion the sampling plot covered by crowns of standing deadwood, as an indicator for areal
deadwood availability. We also included a similar variable derived from the standard visual mapping
(CIR): the proportion of area with standing deadwood originating from the period 2010–2015. This data
was compared with the available ALS and CIR based data. In addition, the number and proportion of
living trees (i.e., conifers, deciduous trees, and all trees) were calculated for each plot size, as well as
the average height (H), diameter (DBH), and volume (VOL) and the variance thereof.

Specific tree features such as dead, “resource” or “veteran” trees have been observed to be
important for the TTW. We defined resource trees (RESOURCE) as all living trees with a DBH > 30 cm,
based on Pechacek and d’Oleire-Oltmanns [48], Kajtoch and Figarski [64] and Kajtoch et al. [54].
To approximate the different decay stages of deadwood in adherence to Thomas et al. [52] (Figure 1),
and to distinguish between potential foraging trees (stages 2–4) and other dead trees (stages 5–7) as
proposed by Bütler et al. [63], we subdivided the deadwood (category DEAD including all standing
deadwood objects) into snags (SNAG) and dead trees (DEADTREE). The category SNAG encompassed
all deadwood with either a crown area of C < 4 m2 (1st Quartile of the DEAD crown area values)
or deadwood with C ≥ 4 m2 but a height of H < 15 m. DEADTREE objects were characterized as C
≥ 4 m2 and H ≥ 15 m. The threshold of 15 m was chosen because in our study area, living spruce
trees of that height had an approximate DBH of 20 cm (Figure A1), allowing a direct comparison with
DBH-based classifications of deadwood used by other authors (Bütler et al. [63]). Finally, we calculated
the mean crown area of the trees in the respective classes (DEAD, DEADTREE, and SNAG) per plot to
obtain a continuous metric of the crown status as a proxy of the stage of decay.

All structural predictors, except the variable derived from visual interpretation (DEADCIR_part),
were thus calculated based on the single tree data originating from the ALS and CIR remote sensing
dataset, either used directly to describe specific tree features or aggregated to describe forest stand
related characteristics.

In addition, topographic variables were generated using a digital terrain model (DTM) with a
25 × 25 m resolution and included altitude, slope, eastern (sine of aspect), and northern (cosine
of aspect) exposition as well as solar radiation, calculated using the Solar Analyst module in
ArcGIS. We also included latitude and longitude to test for random spatial clustering of the
woodpecker observations.

The preparation and calculation of variables with a horizontal dimension (i.e., referring to the
proportion of the plot area) was carried out in ArcMap 10.4.1. [89]. The processing and calculation of
the remaining variables was carried out in RStudio [90] using R [91] with the packages: “Raster” [92]
and “Rgdal” [93].

2.5. Statistical Analysis

We modelled species occurrence as a function of the environmental variables using General
Additive Models (GAM) facilitated in the R-package “mgcv” [94–96]. GAMs combine General Linear
Models with smoothing splines [97], thereby allowing to fit the response curves “as closely as possible”
to the data, within a permitted level of smoothing.

For each plot size we selected the best explaining variables following a hierarchical procedure.
First, we ran univariate models for each variable, also testing their quadratic term. Predictor variables
which significantly explained woodpecker occurrence (p ≤ 0.05) or showed a trend (p ≤ 0.1) and were
significant in other studies (such as information on amount and volume of conifers and amount of
live trees per plot) were retained. To avoid collinearity among variables in the multivariate models,
we removed from any pair of correlated variables (Spearman’s r ≥ |0.7|) [98] the “weaker” predictor
based on Akaike’s Information Criterion (AIC) [99].
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In a first step, a common initial set of input variables (i.e., all variables retained at any of the four
scales) was used for model calibration on all plot sizes. In addition to the environmental variables
smoothed with a smooth term s(), a tensor smooth for the spatial location te(x, y) was added to account
for effects of random spatial clustering of the TTW data (Figure A2).

To avoid overfitting, as it was observed when running the model with automatic settings, we set
the upper limit of the degrees of freedom associated with a smooth term to k = 3, as Guisan et al. [100]
recommends after Hastie et al. [51] to use lower degrees of freedom (df < 4) for deductive species
distribution and habitat modelling, while avoiding degrees of smoothing higher than 4 or 5 for
predictive purposes. We used automatic variable selection (function “select=TRUE” in mgcv) which
indicates variables that do not contribute to the model and can therefore be dismissed with p = 1.
After the removal of these variables, the models were recalibrated and variables were again removed
until no p = 1 occurred. In a second step, we used chi-square test statistics for assessing the significance
of the smooth terms and removed variables with p < 1 but with chi-square equal 0 as not contributing
to the model. At each step we compared the AIC of the resulting model with the previous step until
no further reduction was achieved This way, we obtained one “best model” for each of the 4 plot sizes.

The models’ fit was evaluated using 5-fold cross validation with 20% of the observations held
back randomly with a condition of an equal proportion of presence and absence observations in folds.
Multiple evaluation metrics, i.e., sensitivity, specificity, correctly classified rate, and Cohen’s Kappa
(all using the threshold 0.5), as well as the area under the receiver operating characteristics (ROC) curve
(AUC) were calculated using the “caret” package in “R” [101] and evaluated according to Hosmer
and Lemeshow [102]. The best model was then used to predict TTW occurrence probability across the
entire National Park.

To analyze the model results, we plotted the single predictor variables against their smooths
(function “gam.check” in the “mgcv” package) and against the target variable using the packages
“mgcv” and “ggplot2” [103].

Finally, we calculated conditional inference trees (CTREEs), as implemented in the R-package
“party” [104], to obtain thresholds for the most important variables for practical management
recommendations. Trees based on maximally selected rank statistics were fitted using the Bonferroni
correction for multiple testing and a minimum sum of weights in a node to be considered for splitting
of 20 (minsplit = 20). All variables selected for the respective “best” GAM at each scale were included
in the multivariate trees. In addition, univariate trees were fitted for variables with a significant split
in the multivariate tree.

3. Results

3.1. Habitat Selection

Univariate models revealed eight environmental variables that significantly contributed to
explaining woodpecker presence at least one of the four scales and were retained for calibrating
multivariate models (Table 2). With the exception of altitude all of the significant variables
described stand and tree-related habitat characteristics. Three additional variables (DEAD_Nha,
DEADTREE_Cmean, and DEADRSI_part) were significant but discarded as correlated with
retained variables.

The final models consisted of 4 to 6 variables, depending on the plot scale (Table 3). The amount
of dead trees was the only variable with a significant contribution at all scales. Altitude and the mean
crown diameter of all standing deadwood were also included in all models, but the former was only
significant at the two smaller scales, while the latter was only significant at the two intermediate scales.
The proportional volume of conifer trees was included at 3 scales and the mean crown diameter of
snags only on sampling plots with a 250 m radius, but neither of them had a significant contribution.
The spatial location was also included in all models, suggesting a spatially clustered distribution of the
woodpecker observations. The two preselected variables representing the living stand (the amount of
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living trees per ha and the amount of conifers per ha), although univariately significant at 3 scales,
did not contribute to any of the multivariate GAMs.

Table 2. Retained predictor variables for modelling the occurrence of the three-toed woodpecker and
their univariate (simple and quadratic) p-value (<0.1) on the four plot sizes. Variables with p < 0.05 are
bold. Mean values and the standard deviation (SD) of these variables at presence, absence and both
study plots are listed in Table A1.

R = 100 m R = 250 m R = 450 m R = 600 m

Variables p < 0.05/0.1 Linear Quadratic Linear Quadratic Linear Quadratic Linear Quadratic

Altitude_mean 0.040 0.042 0.043 0.045
CONIF_Nha 0.063 0.025 0.031

DEAD_Cmean 0.003 0.006 0.028 0.096
DEADTREE_Nha 0.025 0.000 0.034 0.005 0.035 0.066 0.091 0.089

SNAG_Cmean 0.052 0.043 0.063
LIVE_Nha 0.081 0.076 0.07

CONIF_VOLpart 0.051 0.096
DEADCIR_part 0.007 0.064

Table 3. General Additive Models (GAMs) explaining the occurrence of the three-toed woodpecker
(TTW) as a function of remote sensing-based forest inventory variables and altitude at four sampling
scales, i.e., within different radii (R) around TTW sampling locations. Parametric coefficients and
approximate significance of the smooth terms (effective degrees of freedom (edf), p-value) are given for
the variables selected in the best model for each scale. Variable codes and descriptions are listed in
Table 1. Bold figures indicate significant variables (p < 0.05).

R = 100 m R = 250 m R = 450 m R = 600 m

edf p-Value edf p-Value edf p-Value edf p-Value

Intercept estimate 0.134 0.035 0.013 0.006
Standard error 0.249 0.227 0.208 0.205

Z-Value 0.537 0.156 0.064 0.032
Pr(>|z|) 0.591 0.876 0.949 0.975

s(Altitude_mean) 0.817 0.049 0.929 0.020 0.681 0.076 0.605 0.105
s(DEAD_Cmean) 0.167 0.239 0.947 0.018 0.784 0.038 0.627 0.103

s(DEADTREE_Nha) 1.000 0.000 0.906 0.007 0.953 0.021 0.855 0.027
s(SNAG_Cmean) 0.790 0.099

s(CONIF_VOLpart) 0.620 0.114 1.571 0.107 0.176 0.252
te(x,y) 1.795 0.045 1.742 0.154 1.509 0.033 1.640 0.037

The most meaningful variable at all scales was the amount of dead trees (DEADRTREE_Nha).
The response plots (Figure 3 and Table A2) indicate a unimodal response with adverse effects on
woodpecker presence when the amount of dead trees increased beyond a threshold of 40–55 trees
per hectare. However, these results need to be interpreted with caution due to only a few plots with
extremely high numbers of dead tree driving this trend (i.e., two sample plots with DEADTREE_Nha
> 90 on R = 100 m and R = 250 m and three sample plots with DEADTREE_Nha > 70 on R: 250, 450,
and 600 m).

Another deadwood variable, the mean crown area of all standing deadwood (Dead_Cmean),
showed a significant positive effect on TTW occurrence at the two intermediate scales (R = 250 and
R = 450 m), suggesting a preference for deadwood with large crowns, i.e., in the early stages of
decay (Figure 1). This is in line with the species’ opposite response trend to the mean crown area of
snags (SNAG_Cmean) at the intermediate scale (R = 250 m). Finally, the share of conifers in the total
volume of living trees (CONIF_VOLpart) showed a slightly unimodal, but non-significant relationship
with TTW presence, with the highest occurrence probabilities in stands with about 50–80% conifers,
depending on the sampling scale. Altitude was included in all models and significant at the two
smallest scales, with higher probabilities of TTW presence at higher altitudes.



Remote Sens. 2018, 10, 1972 10 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 26 

 

 
Figure 3. Effect plots showing predicted TTW occurrence as a function of the environmental 
predictors included in the best models at different plot scales (Table 3). The blue line indicates the 
estimated smoothing parameter of a given variable, while keeping all other variables set on the 
median. Shadowed areas indicate the 95% confidence intervals conditional on the estimated 
smoothing parameter. Variable codes and descriptions are listed in Table 1. 

3.2. Model Performance  

Model performance decreased with increasing sampling scale. This trend applied to both model 
fit and predictive performance over the 5-fold cross validation replicates and was consistent across 
all evaluation metrics (Table 4). Based on the AUC, our final models showed a good to excellent fit at 
the two small scales (R = 100 m and R = 250 m, AUC > 0.8) and an acceptable fit at the two larger 
scales (R = 450 and 600, 0.7 < AUC < 0.8) [102]. Five-fold cross validation confirmed an acceptable 
predictive performance of the models at the two smallest scales (AUC > 0.7), but less so at the two 

Figure 3. Effect plots showing predicted TTW occurrence as a function of the environmental predictors
included in the best models at different plot scales (Table 3). The blue line indicates the estimated
smoothing parameter of a given variable, while keeping all other variables set on the median. Shadowed
areas indicate the 95% confidence intervals conditional on the estimated smoothing parameter. Variable
codes and descriptions are listed in Table 1.

3.2. Model Performance

Model performance decreased with increasing sampling scale. This trend applied to both model
fit and predictive performance over the 5-fold cross validation replicates and was consistent across all
evaluation metrics (Table 4). Based on the AUC, our final models showed a good to excellent fit at the
two small scales (R = 100 m and R = 250 m, AUC > 0.8) and an acceptable fit at the two larger scales
(R = 450 and 600, 0.7 < AUC < 0.8) [102]. Five-fold cross validation confirmed an acceptable predictive
performance of the models at the two smallest scales (AUC > 0.7), but less so at the two larger scales
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(0.6 < AUC < 0.7). Similar trends were found for the other evaluation metrics R-Square (Adjusted),
Correct Classification Rate (CCR), and Cohen’s Kappa (Table 4. Sensitivity was generally higher than
specificity at all scales indicating better detection and prediction of TTW presence than of absence
locations. Complete results of the cross validation are presented in Appendix A, Table A2.

Table 4. Fit of the final models (Fit) and the averaged results of the 5-fold cross-validation (CV, in
italics) at four spatial scales: Akaike’s Information Criterion (AIC), R-Square adjusted (R-sq. adj.),
and Area Under the ROC-Curve (AUC), Sensitivity, Specificity, Correct Classification Rate (CCR), and
Cohen’s Kappa. Variable codes and descriptions are listed in Table 1.

R = 100 m R = 250 m R = 450 m R = 600 m

Model Fit
CV

Model Fit
CV

Model Fit
CV

Model Fit
CV

Mean SD Mean SD Mean SD Mean SD

R-sq.(adj.) 0.33 0.34 0.04 0.25 0.25 0.06 0.14 0.15 0.04 0.11 0.12 0.03
AUC 0.85 0.77 0.10 0.82 0.71 0.08 0.74 0.63 0.09 0.72 0.61 0.10

Sensitivity 0.85 0.75 0.14 0.83 0.66 0.06 0.75 0.58 0.13 0.71 0.54 0.07
Specificity 0.73 0.67 0.24 0.69 0.65 0.13 0.64 0.52 0.17 0.60 0.58 0.12

CCR 0.79 0.71 0.12 0.76 0.65 0.08 0.69 0.55 0.12 0.65 0.56 0.06
Cohen’s
Kappa 0.58 0.41 0.24 0.52 0.31 0.15 0.39 0.10 0.24 0.31 0.12 0.12

3.3. Model Prediction

The model calibrated at the smallest scale (R = 100 m) was employed to predict TTW occurrence
throughout the National Park. The results are shown for a raster of 100 × 100 m (Figure 4), with the
occurrence probability of each raster cell calculated based on the conditions within R = 100 m around
the grid cell center. When using a presence probability of 0.5 as a threshold for occurrence, 36% of the
park area was classified as potentially suitable TTW habitat.
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Figure 4. Predicted probability of three-toed woodpecker (TTW) occurrence for the Bavarian Forest
National Park using the best GAM model according to Table 3 (calibrated for R = 100 m). The occurrence
probability is shown for a 100 × 100 m raster, with the value of each cell calculated based on the
environmental conditions within R = 100 m around the grid cell center. Black and transparent circles
indicate the TTW presence and absence locations used for model calibration.



Remote Sens. 2018, 10, 1972 12 of 26

3.4. Variable Thresholds

The results of the conditional inference trees (Figure 5) revealed significant thresholds for two
variables, the mean crown area and the amount of standing deadwood per plot. Multivariate trees were
only found at the two smallest scales, with a first split indicating the highest TTW presence probability
(>0.7) when deadwood with large crowns (>11–13 m2) was available, intermediate probabilities (>0.5)
when the abundance of dead trees per hectare was at least 4–5 (R = 100) or 3 (R = 250) respectively, and
a low probability when none of the two variables exceeded these thresholds. These results indicate
substrate selection with a first priority for fresh and then for other deadwood. No split was observed
for variables measured on plots of 450 m radius or larger. Univariate models of the two variables
with significant splits showed a TTW-presence probability of 0.7–0.8 when more than 8 dead trees per
hectare were present in the surrounding of 100 and 250 m, respectively, or when the mean crown size
DEAD_Cmean was larger than 11 m2 (R = 100 m) to 13 m2 (R = 250).
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Figure 5. Multivariate (a) conditional inference trees (CTREEs) constructed from the variables selected
into the best Generalized Additive Models (GAMs) at four sampling scales (R = 100 m, 250 m, 450 m,
600 m, see Table 3), and univariate trees (b) constructed from the variables with a significant split in
(a). Each node of the trees represents one split of the data into significantly different partitions, with
variables ranked according to their importance, until no further split is possible. The significance of
the split (p-values after Bonferroni correction) is indicated in the splitting nodes. The Y-axis shows
the predicted probability of TTW occurrence (1—presence; 0—absence) under the given combination
of variable values. The variable values splitting the datasets are indicated on the tree branches.
DEAD_Cmean: mean crown area of all standing deadwood, DEADTREE_Nha: number of dead trees
per hectare. No significant splits were obtained for variables included at the two larger scales (R = 450
m, 600 m).

4. Discussion

Our analysis shows the usability of area-wide, remote-sensing-based, single tree data for
modelling the habitat selection of an endangered and highly specialized forest species such as
the three-toed woodpecker. Combining remote sensing information from different sources with
a comprehensive set of species observation data enabled finding species-relevant predictor variables
and thresholds for practical forest management and species conservation.
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4.1. Remote Sensing Data

The fusion of multiple sources of remote sensing data, especially ALS and aerial imagery
technologies, has high potential for complementing traditional, field-based forest inventories [10].
Although original ALS point clouds deliver more detailed information on tree height and forest
structure [105] and are widely used as input data for habitat modelling [106], the combination of
ALS data with aerial imagery for deriving single tree-related information proved crucial for our
purpose: While ALS data enabled accurate mapping of single trees and their projected crown areas
with subsequent modelling of tree volume, multispectral data allowed deadwood detection and—in
combination with the structural information—the detection of specific deadwood characteristics, such
as fresh deadwood and snags. This approach offered two additional advantages: First, by summarizing
structural information at the tree-level, our variables refer to a species-relevant ecological scale of
habitat selection. Second, other than abstract point-cloud metrics, our data describe environmental
features that can be directly translated into target values for conservation management.

Our deadwood variables at the tree scale outperformed the deadwood information
(area-percentage of deadwood per plot, DEADCIR_part, Table 3) obtained from the yearly visual
assessment of aerial imagery. Although univariately significant at the smallest plot size, it did not
enter the final model. Only new deadwood areas were mapped each year [84,107], thereby neglecting
forest dynamics such as ingrowth and regeneration in the dieback areas of previous years. Complete
mapping of standing deadwood for a given year may therefore have improved the performance of
this variable.

The corresponding variable based on remote sensing tree inventory data, the area percentage of
deadwood per plot (DEADRSI_part), showed better explanatory power (lower AIC than DEADCIR)
on 100 and 250 m plot sizes, but was correlated with the number of dead trees (DEADTREE_Nha),
our most important predictor. It was therefore discarded. Nevertheless, the relationship of the two
variables with TTW occurrence shows some potential for the planar mapping of standing deadwood
areas when single tree crown delineation is not possible.

We show the usability of remotely sensed single tree data and derived variables using the example
of the TTW, a keystone species of boreal and mountainous spruce dominated forests. However, these
data could also be of high relevance for modelling the habitat of other species or species assemblages
of that forest types [21,38]. Information on deadwood features and their quality (dead trees, snags and
stumps) could be vital for species depending on deadwood in different decay stages either for food,
shelter, or roosting such as saproxylic beetles [108], birds [46], or bats [109,110] and crown delineation,
allowing the determination of canopy cover and forest gaps, could be used in studies deriving habitat
thresholds for species responding to these structures e.g., capercaille [111] or hazel grouse [112].

4.2. Species Data

TTW presence data originated from three survey projects, including non-systematically collected
chance observations of park staff. Despite thinning the original data according to the expected home
range for one pair of birds, the models still indicated a clustering of the observations and a spatial
correlation of the model performance with the locations of the observations. This may reflect a bias
in sampling intensity, e.g., related to the road and walking paths network in the National Park, or be
caused by a species-relevant environmental variable not included in the model. Our final models
showed notably higher sensitivity than specificity, indicating a better classification of presence than
absence data. This may be because of the random generation of pseudo-absence data outside the TTW
presence areas, where false absences could not be ruled out.

We used species observations from three consecutive years starting in year one of the remote
sensing data acquisition. At this time, the area of the National Park offered a large range of conditions,
including optimal TTW habitat of mountainous, spruce dominated forests with a large amount of
standing deadwood in different stages of decay. As both species and environmental data originated
within a limited period of time and a unique environment, our models reflect only a snapshot of
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the species–habitat relationship [3]. The time lag of two years between the acquisition of remote
sensing and species data we consider negligible, as also demonstrated by Vierling et al. [113], since
no significant changes due to disturbance events were recorded in the respective period and the
National Park is not subjected to regular harvesting. Moreover, our models showed a high predictive
performance, with results largely conforming to those of other studies. This makes us confident that
they captured TTW habitat requirements with a high level of generality.

4.3. Modelling Approach

GAMs are increasingly used in ecological modelling, especially when species–habitat relationships
are complex and not easily fitted with the standard parametric functions of the predictors [100]. Using
GAMs for the exploratory analysis of predictor variables is advantageous as GAMs fit the data in the
most exact way possible [97]. However, being data-driven, they are prone to overfitting. We applied
stronger smoothing to address this issue. The most important feature of GAMs for our study was
the possibility of including a multidimensional smoother [100] for the spatial location (x,y) of TTW
observations to account for spatial clumping of the data.

Although useful for identifying key variables and describing the species response, GAMs do not
provide threshold values which are frequently required in ecology and forestry to define conservation
targets [114]. We used conditional inference trees for this purpose as Müller and Bütler [73] found
them particularly useful among a variety of methods [115]. The simplicity of the underlying model
and the visualization of the results facilitate the development of applicable guidelines.

4.4. TTW Habitat Selection

From the initial broad set of environmental predictors (Table 1), only four structural variables
indicating food resources, cavities, and altitude affected the occurrence of the TTW in our study area.
Dead tree abundance was the most important variable. The species had a preference for deadwood
in the early stages of decay when the abundance of insect food is highest [116,117]. Dying and dead
spruce trees provide the major food sources of the TTW due to bark beetles (esp. Ips typographus) and
wood-boring longhorn beetles inhabiting them. Müller and Bütler [73] showed the probability of TTW
presence increasing from 0.1 to 0.9 when more than 0.81 (0.56–1.22, Switzerland) and 0.44 (0.25–0.62,
Sweden) m3/ha basal area of standing deadwood corresponding to approx. seven and four dead
trees with DBH ≥ 21 were present. Our results of 8 or more dead trees per hectare resulting in an 80%
probability of TTW presence are in accordance with these findings.

In contrast with previous findings focusing on the minimum deadwood threshold, we show that
very high amounts of deadwood, especially of late decay stages with little foraging value, negatively
affect TTW occurrence probability. The detection of this tendency was made possible by very few
observations at the extreme end of the gradient (i.e., sites with up to 120 trees per hectare), stemming
from the large-scale area-wide bark beetle infestations. The lack of suitable research areas in Europe
exhibiting the full possible gradient of deadwood abundance may be the reason that this effect has
remained undetected, although Scherzinger [118] observed a recession in TTW occurrence, a few years
after a significant increase following the bark beetle outbreak. This implies that a patchy distribution of
bark-beetle infested trees and tree groups in the forest landscape is favorable compared to large-scale
area-wide dieback, which is more likely in homogeneous, even-aged stands. Such heterogeneous
deadwood distributions may be furthered by natural topographic complexity and increasing forest
structural variability through active management or strict protection [119], as structural heterogeneity
is expected to increase in unmanaged forests [120].

We also found a positive effect of the mean crown area of the dead trees per plot, indicating the
availability of fresh deadwood with still complete tree crowns. This variable was selected into all
models, although only significant at the two intermediate scales. Conditional inference trees indicated
high probabilities (0.7–0.8) of woodpecker occurrence when the mean crown area per plot was larger
than 11 m2 (R = 100 m) or 13–13.5 m2 (R = 250–450 m), respectively, corresponding to an average
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branch length of about 2 m. These findings are in line with Balasso [53], who found that the presence
of TTW was related to abundance of fresh snags, and Scherzinger [84], who reported an initial increase
in TTW occurrence shortly after bark beetle infestations with a subsequent decrease after some years.
Nevertheless, the relationship between remotely sensed crown parameters and bark conditions needs
further research.

In most field-based studies, deadwood is classified into standing dead trees, snags, and logs,
representing different decay stages to account for TTW’s prey diversity. In our study, the input data
was limited to information that can be derived from the air. The first limitation was the omission of
logs, the recognition of which, although theoretically possible by using ALS data from scanning in
leaf-off conditions [121], was impossible with our data. Studies relying on field data often included this
variable in HSMs [40,54], however it was rarely significant [51]. In addition, our remote sensing data
could not provide information about the DBH, basal area (BA) and volume (Vol) of deadwood objects
as often used in other studies [51,53,54,73,122]. This was due to the difficulty of modelling these values
without reliable height measurements of the tree tops that are often broken in standing deadwood.

Similar to the findings of Braunisch et al. [21], our study suggested a positive, but non-significant
correlation of TTW occurrence with the presence of conifers. In the Bavarian Forest National Park,
conifer trees are predominantly Norway spruce, the primary host tree of Ips typographus which is the
staple food of the TTW [123]. Scherzinger [118] concluded that not the pure amount of deadwood,
but a permanent occurrence of dying and freshly dead trees originating from a continuous share of
live spruce stands are crucial for the presence of TTW in the area. Mapping still alive, but degenerating
spruce trees (the so called green attack stage) that were not detectable from our data and that remain
a challenge for the remote sensing research [124–126] could potentially be of high explanatory value
for TTW habitat selection. Further research using hyperspectral data could bring important progress
here [127–129]. Resource trees that were an important variable in other studies [48,54,64] did not
correlate with TTW occurrence in our study, due to a similar, very high resource supply in both
presence and absence plots over the entire study area.

Decreasing model performance from the smallest to the largest sampling scale indicates habitat
conditions, especially the amount and quality of deadwood, in the surrounding approximately
20 ha are most decisive for the TTW’s habitat choice [17]. As species’ area requirements depend
on habitat quality, TTW home range sizes have been shown to vary considerably among regions and
foraging conditions [47,57,62,85]. Bütler et al. [63] reports TTW ranges vary between 44 and 176 ha,
depending on food availability and snag abundance. Kajtoch et al. [66] suggests at least 100 ha with
optimal conditions and 200 ha in suboptimal stands are necessary, conforming to the results of other
studies [43,58,85–87]. Our study area, with its consistently high abundance of patchily distributed
deadwood in different stages of decay therefore seems to represent an optimal habitat for the TTW.

4.5. Management Recommendations

Effective forest and biodiversity management requires habitat thresholds at a scale and resolution
that are ecologically relevant to the species and can be practically implemented [105]. Bütler et al. [63]
recommended a precautious 1.6 m2 (basal area), corresponding to 5% of all standing trees or 14 standing
dead trees with a DBH ≥ 21 cm per ha. We show the best response of TTW to habitat features within
100 to 250 m, i.e., related to a surrounding of up to 20 hectares. Within this area, at least eight dead
trees per hectare should be retained, focusing on fresh deadwood in the early stages of decay, indicated
by an average branch length of at least 2 m. Pechacek and Krištín [44] give similar management
recommendations claiming that “dead trees should not be removed within a 250 m circle from nests”.

To favor the coexistence of alternative prey for TTW and ensure a constant input of fresh
deadwood, retaining and restoring dead coniferous trees in different stages of decay and a substantial
portion of live spruce trees is required. At the landscape scale, Bütler et al. [40] showed an effect of the
spatial arrangement and density of deadwood rich patches, and recommended a network of forest
stands with high deadwood densities embedded in a forest landscape with lower deadwood densities.
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As bark beetle spread was revealed to be strongly distance dependent with the most new infestations
occurring within a 250 m radius of the previous year’s infestation and 95% thereof in 500 m [130],
safeguarding a wide enough inter-patch distance is crucial for preventing of bark beetle outbreak.
Patches of declining and dead trees large enough to host bark beetle populations but disconnected from
each other, would therefore aid forest managers in effectively controlling bark beetle dispersion [131],
while at the same time promoting woodpecker habitat.

Our map showing current TTW habitat suitability allows distinguishing deadwood rich versus
deadwood poor areas, so as to accurately target conservations measures.

5. Conclusions

Our study highlights the value of remote sensing, especially the fusion of ALS data with digital
aerial imagery, for generating a full inventory of live and dead standing trees for large-scale, area-wide
habitat analyses. Combining structural and spectral data enabled not only the identification of
deadwood, but also of deadwood characteristics, which is indispensable for reliably modelling the
habitat requirements of species highly specialized on particular types of standing deadwood. While
our habitat analysis confirms the amount of standing dead trees as a key predictor of TTW occurrence,
and the species’ preference for fresh deadwood characterized by large and intact crowns, our study
is the first showing a negative impact of very high deadwood amounts, with a tipping point at
about 40–55 standing dead trees per ha. Moreover, we highlight the importance of resource diversity
including also snags and live conifers. Based on tree-related remote sensing information, we were able
to draw management recommendations. For example, keeping at least eight dead trees in the early
stages of decay per hectare within 20 ha (corresponding to a small woodpecker’s home range) leads to
an increase in habitat suitability for the TTW.

Our models show a high predictive power, nevertheless, they may be improved by a more precise
separation of fresh and old deadwood or even a further differentiation of decay stages or deadwood
quality obtainable from field studies. Comparing decay stages from field assessments with time series
of remote sensing data, and using hyperspectral imagery to detect tree decline in an early stage (e.g.,
the first stage of a bark beetle infestation), may further advance the set of predictors and aid foresters
to better identify and carry out effective management measures to support biodiversity.
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Appendix A

Table A1. Environmental variables with their mean and standard deviation (SD) at presence, absence
and all study plots. Variable codes and descriptions are listed in Table 1.

R Variable Unit
All Plots Presence Absence

Mean SD Mean SD Mean SD

100
Altitude_mean m a.s.l. 953.84 182.37 990.93 187.98 916.74 170.36

CONIF_Nha N/ha 172.96 91.54 159.96 90.21 185.95 91.89



Remote Sens. 2018, 10, 1972 17 of 26

Table A1. Cont.

R Variable Unit
All Plots Presence Absence

Mean SD Mean SD Mean SD

DEADTREE_Nha N/ha 12.75 19.74 17.55 19.56 7.95 18.91
SNAG_Cmean m2 4.76 4.28 5.19 4.01 4.34 4.53

LIVE_Nha N/ha 299.55 134.15 276.43 137.98 322.66 127.35
CONIF_VOL % 0.65 0.24 0.66 0.22 0.65 0.27

DEADCIR_part % 0.04 0.09 0.05 0.09 0.03 0.09

250

Altitude_mean m a.s.l. 953.53 180.50 989.86 184.95 917.20 170.00
CONIF_Nha N/ha 178.28 78.48 163.82 75.10 192.73 79.84

DEAD_Cmean m2 11.01 4.13 12.16 4.14 9.86 3.82
DEADTREE_Nha N/ha 12.58 18.97 16.94 20.03 8.21 16.93

SNAG_Cmean m2 5.02 3.63 5.48 3.33 4.56 3.89
LIVE_Nha N/ha 311.07 116.69 290.57 119.85 331.57 110.81

CONIF_VOLpart % 0.63 0.22 0.63 0.21 0.63 0.24
DEADCIR_part % 0.04 0.08 0.05 0.08 0.03 0.08

450

Altitude_mean m a.s.l. 952.71 176.60 987.99 179.23 917.44 168.31
CONIF_Nha N/ha 184.81 71.52 168.79 69.50 200.84 70.54

DEAD_Cmean m131 11.52 3.61 12.31 3.76 10.73 3.30
DEADTREE_Nha N/ha 11.77 15.01 15.24 17.31 8.30 11.43

SNAG_Cmean m2 5.56 3.44 5.87 3.12 5.25 3.74
LIVE_Nha N/ha 329.25 108.90 309.69 113.58 348.81 101.35

CONIF_VOLpart % 0.60 0.19 0.59 0.18 0.61 0.21
DEADCIR_part % 0.37 0.65 0.47 0.73 0.28 0.56

600

Altitude_mean m a.s.l. 951.77 173.45 986.13 174.79 917.41 166.72
CONIF_Nha N/ha 187.38 70.91 172.16 67.59 202.60 71.51

DEAD_Cmean m131 11.76 3.47 12.33 3.62 11.19 3.26
DEADTREE_Nha N/ha 11.96 14.24 14.50 15.71 9.43 12.24

SNAG_Cmean m2 5.69 3.18 5.90 2.91 5.49 3.45
LIVE_Nha N/ha 335.78 105.28 319.20 112.90 352.35 95.29

CONIF_VOLpart % 0.58 0.18 0.57 0.16 0.59 0.20
DEADCIR_part % 0.04 0.06 0.04 0.06 0.03 0.06
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Figure A1. Scatter plots showing the relationship between the diameter at breast height (DBH in cm) 
and the height (m) of live conifer trees on various plot sizes. The green horizontal line shows the 
threshold of H = 15 m. The vertical blue line shows the DBH = 20 cm. 

Figure A1. Scatter plots showing the relationship between the diameter at breast height (DBH in cm)
and the height (m) of live conifer trees on various plot sizes. The green horizontal line shows the
threshold of H = 15 m. The vertical blue line shows the DBH = 20 cm.
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Table A2. Performance of the four models including the predictors at 4 spatial scales (i.e., within
different radii R, in meters), measured for each of the 5-fold cross-validation replicates as well as for
their mean (and standard deviation (SD)). The following evaluation metrics are shown: AIC: Akaikes
Information Criterion, R-Sq. (adj.): Adjusted R-Squared, AUC: Area under the ROC curve, Sensitivity,
Specificity, Correct Classification Rate (measured with a threshold of 0.5), and Cohen’s Kappa.

R Model Fit Measures Fold_1 Fold_2 Fold_3 Fold_4 Fold_5 Mean SD

100

AIC 91.00 93.32 91.55 87.59 83.49 89.39 3.49
R-sq.(adj.) 0.31 0.28 0.35 0.37 0.40 0.34 0.04

AUC 0.80 0.89 0.84 0.74 0.59 0.77 0.10
Sensitivity 0.91 0.82 0.50 0.70 0.80 0.75 0.14
Specificity 0.73 0.91 0.90 0.50 0.30 0.67 0.24

Correct Class. Rate 0.82 0.86 0.70 0.60 0.55 0.71 0.12
Cohen’s Kappa 0.64 0.73 0.40 0.20 0.10 0.41 0.24

250

AIC 98.43 97.17 106.73 104.61 91.30 99.65 5.52
R-sq.(adj.) 0.25 0.28 0.18 0.18 0.35 0.25 0.06

AUC 0.65 0.74 0.83 0.71 0.60 0.71 0.08
Sensitivity 0.55 0.64 0.70 0.70 0.70 0.66 0.06
Specificity 0.55 0.82 0.80 0.60 0.50 0.65 0.13

Correct Class. Rate 0.55 0.73 0.75 0.65 0.60 0.65 0.08
Cohen’s Kappa 0.09 0.46 0.50 0.30 0.20 0.31 0.15

450

AIC 104.04 105.93 113.38 109.05 104.26 107.33 3.51
R-sq.(adj.) 0.18 0.16 0.09 0.13 0.19 0.15 0.04

AUC 0.55 0.63 0.76 0.70 0.51 0.63 0.09
Sensitivity 0.36 0.64 0.70 0.70 0.50 0.58 0.13
Specificity 0.55 0.55 0.80 0.40 0.30 0.52 0.17

Correct Class. Rate 0.46 0.59 0.75 0.55 0.40 0.55 0.12
Cohen’s Kappa −0.09 0.18 0.50 0.10 −0.20 0.10 0.24

600

AIC 106.22 109.15 113.70 113.15 108.39 110.12 2.87
R-sq.(adj.) 0.17 0.12 0.09 0.09 0.15 0.12 0.03

AUC 0.50 0.63 0.71 0.71 0.49 0.61 0.10
Sensitivity 0.46 0.64 0.50 0.60 0.50 0.54 0.07
Specificity 0.55 0.46 0.80 0.60 0.50 0.58 0.12

Correct Class. Rate 0.50 0.55 0.65 0.60 0.50 0.56 0.06
Cohen’s Kappa 0.00 0.09 0.30 0.20 0.00 0.12 0.12
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