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Abstract

We assess the performance of two different types of basis sets for
nonadiabatic quantum dynamics at conical intersections. The basis
sets of both types are generated using Ehrenfest trajectories of nuclear
coherent states. These trajectories can either serve as a moving (time-
dependent) basis or be employed to sample a fixed (time-independent)
basis. We demonstrate on the example of two-state two-dimensional
and three-state five-dimensional models that both basis set types can
yield highly accurate results for population transfer at intersections,
as compared with reference quantum dynamics. The details of wave
packet evolutions are discussed for the case of the two-dimensional
model. The fixed basis is found to be superior to the moving one
in reproducing nonlocal spreading and maintaining correct shape of
the wave packet upon time evolution. Moreover, for the models con-
sidered, the fixed basis set outperforms the moving one in terms of
computational efficiency.
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1 Introduction
Intersections and near-intersections of potential energy surfaces (PESs)
can occur in polyatomic molecules1,2 and lead to ultrafast nonradia-
tive decay of electronically excited states.3–6 Often the nonradiative
electronic transitions may be accompanied with remarkable nuclear
dynamics,7–12 the isomerization of molecular photoswitches being a
typical example.13–16

A prototypical situation of intersections between PESs in poly-
atomic molecules is the so-called conical intersection (CoIn) of two
PESs.17 The intersection is called “conical” since the difference of the
two intersecting PESs in the vicinity of the intersection is a cone in
the space spanned by energy and two directions forming a so-called
branching space, the space where the degeneracy is lifted. (This is
true if the nuclear gradients of the diabatic energy difference and of
the coupling are non-zero at the nuclear configuration corresponding
to the intersection.17) Many studies were devoted to investigation of
CoIns and their role in photochemistry.18–20

A somewhat more exotic situation is the simultaneous intersection
of three PESs.21–24 In general, the branching space for such three-state
intersections is five-dimensional, and not two-dimensional as for CoIns
(of two states).21,22 We note here that the term “conical intersection”
is often used for the three-state intersections as well, apparently due
to historical reasons, though the shape of the energy difference in the
space spanned by energy and five branching space vectors is not a cone.
In what follows we will keep using simply the term “intersection” for
the three-state case.

The description of dynamics at conical intersections and in cases of
near-degeneracies requires multistate electronic treatment, since sev-
eral electronic states are involved in the (near-)intersection and nona-
diabatic processes are expected to occur.25 In general, the two ma-
jor classes of methods for modeling nonadiabatic molecular dynamics
are quantum26 and mixed quantum-classical approaches,27 both hav-
ing certain advantages and disadvantages. We also note that purely
classical description of electron and nuclear dynamics may also yield
reasonable results (at least for an one-electron system).28

The quantum propagation on a grid, the straightforward approach
to quantum dynamics, being numerically exact is subjected to a so-
called “exponential curse”, i.e. the number of grid points needed to
cover a volume of interest rises as Nd, with the number of grid points
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per dimension N and the number of dimensions d. Therefore, the
propagation on a grid becomes unfeasible for systems with many de-
grees of freedom (DoFs). The mixed quantum-classical methods, such
as the widely used surface hopping approach,29,30 are much more ef-
ficient, but on the downside lack quantum effects of nuclear motion.
The multiconfiguration time-dependent Hartree (MCTDH)31,32 and its
multi-layer (ML) extension (ML-MCTDH)33,34 allow one to account
for many degrees of freedom and treat nuclei quantum-mechanically,
but still the grids over which the single-particle functions are expanded
are necessary.

Methods which use trajectories in the phase space correspond-
ing to nuclear DoFs have emerged for the description of multidimen-
sional multistate quantum dynamics, allowing one to account for nu-
clear quantum effects, occurring in particular during nonadiabatic pro-
cesses. Among these methods are the Frozen Gaussian method by
Heller,35 Gaussian-based multiconfiguration time-dependent Hartree
(G-MCTDH)36,37 and its all-Gaussian variant, also known as the vari-
ational multi-configurational Gaussian (vMCG) with its direct dynam-
ics (DD) extension (DD-vMCG),38 full multiple spawning (FMS)39,40

and its ab-inito (AI) variant (AIMS),41 Multiconfigurational Ehrenfest
(MCE) including different formulations (versions 1 and 2) MCEv142/MCEv243

as well as AI-MCE44 and its implementation with time-dependent dia-
batic basis (TDDB) MCE-TDDB,45 surface hopping Gaussians (SHG),46

surface hopping coupled coherent states (SH-CCS),47 AI multiple cloning
(AIMC)48 and its TDDB implementation (AIMC-TDDB),49 pseu-
dospectral Gaussian dynamics,50 the Ehrenfest method with fully quan-
tum nuclear motion (Qu-Eh),51 and dynamics with multiple Davydov
ansatz.52 All of them have in common the use of time-dependent basis
sets for description of time-dependent nuclear wave function. We also
note that the trajectory-based methods may be used not only for nona-
diabatic problems but also for description of tunneling (e.g., the CCS
method53) and system–bath dynamics (e.g., the local coherent-state
approximation (LCSA) method54).

Recently, Saller and Habershon proposed to utilize trajectories in
nuclear phase space to sample from them a fixed, time-independent ba-
sis set, arguing that the trajectories span a part of the volume which
is relevant for quantum dynamics, and therefore provide the suitable
fixed basis functions.55 This approach represents a “middle road” be-
tween dynamics on a grid from one side and dynamics with a moving
basis from the other.

3



Here, we compare the performance of two types of basis sets (mov-
ing vs. fixed) for the description of nonadiabatic dynamics at the
two-state and three-state model intersections. To describe dynam-
ics we use a method which employs Ehrenfest trajectories of nuclear
coherent states. This method is very similar to the multiconfigura-
tional Ehrenfest method of Shalashilin (specifically to MCEv2,43,56

i.e. MCE with independent from each other trajectories), when the
time-dependent basis set is used. However, the technical details of
derivation and implementation differ from those of the MCE.

We demonstrate by comparing with reference benchmark calcula-
tions (dynamics on a grid for the two-state two-dimensional model and
MCTDH for the three-state five-dimensional model) that both types
of basis sets yield highly accurate results, specifically for the descrip-
tion of population transfer. The detailed analysis of the wave packet
evolutions for the two-dimensional model reveals that the fixed basis
set outperforms the time-dependent one in describing spreading of the
wave packet with time, thus taking better account of nonlocality, and
in maintaining the correct shape of the nuclear wave function during
propagation. Moreover, for the studied model problems, the fixed ba-
sis set is found to be computationally more efficient than the moving
one.

2 Theory and computation

2.1 Working equations
The time evolution of a quantum pure molecular state |Ψ〉 is described
by the time-dependent Schrödinger equation:

i~ ˙|Ψ〉 = Ĥ |Ψ〉 (1)

where Ĥ is a molecular Hamiltonian, represented as

Ĥ =
∑

A,B

ĤAB |A〉〈B| (2)

Here, A and B label the electronic diabatic orthonormal states and
ĤAB are nuclear operators.

The total molecular state is expanded in a basis of direct products
of nuclear coherent states (CSs)

∣∣∣z(A)
n (t)

〉
, which can be made time-
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dependent, and electronic states |A〉:

|Ψ(t)〉 =
∑

A,n

a(A)
n (t)

∣∣∣z(A)
n (t)

〉
|A〉 (3)

In general, an arbitrary number of electronic states as well as coherent
states can be used in this expansion. Further, we set

z(A)
n = zn ∀ A (4)

i.e., the coherent states are mirrored on all electronic states. This
setup is called a single-set formulation, in contrast to the multi-set
formulation for which different electronic states bear different sets of
coherent states

{
z

(A)
n

}
.57 The single set formulation is a natural choice

when Ehrenfest trajectories are employed, since all electronic states
are involved in propagation of a single trajectory, and this formulation
was reported to provide a better description of nonadiabatic dynam-
ics.55 The multidimensional coherent state |zn〉 is a direct product of
one-dimensional coherent states corresponding to single nuclear DoFs∣∣∣z(f)
n

〉
:58

|zn〉 =

number of
nucl. DoFs∏

f

∣∣∣z(f)
n

〉
(5)

The position representation of the latter (for the nuclear DoF Qf ) is
the Gaussian function:59

z(f)
n (Qf ) =

〈
Qf

∣∣∣z(f)
n

〉
=

(
γ

(f)
n

π

) 1
4

exp

(
−γ

(f)
n

2

(
Qf − q(f)

n

)2
+

i

~
p(f)
n

(
Qf − q(f)

n

)
+

ip
(f)
n q

(f)
n

2~

)

(6)
with parameters q(f)

n and p(f)
n being the position and momentum of a

Gaussian center, and γ
(f)
n being the width parameter. The z(f)

n (Qf )
can be made time-dependent through these parameters. Specifically,
we adopt here the frozen Gaussian approach, in which the γ(f)

n is fixed
(we also set γ(f)

n = γ(f) ∀ n for simplicity), but q(f)
n and p

(f)
n are

time-dependent. One can combine these parameters into the complex-
valued z(f)

n :59

z(f)
n =

√
γ

(f)
n

2
q(f)
n +

i

~

√
1

2γ
(f)
n

p(f)
n (7)
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The time-dependence of the q(f)
n and p

(f)
n parameters (and hence

z
(f)
n ) leads to the trajectories of the coherent states in the phase space
corresponding to the nuclear DoFs {Qf}. Among various recipes for
equations of motion for q(f)

n and p
(f)
n (or z(f)

n ) we choose the Ehren-
fest trajectories, which correspond to the variational principle for the
wave function including only a single multidimensional coherent state,∑

A ã
(A)
n (t) |zn(t)〉 |A〉:43,60

żn = − i

~
∂HEhr

n

∂z∗n
(8)

where

HEhr
n =

∑
A,B

ã
(A)∗
n ã

(B)
n 〈zn|ĤAB|zn〉

∑
A

ã
(A)∗
n ã

(A)
n

(9)

The ã(A)
n (t) coefficients obey:

i~
(

˙̃a(A)
n + ã(A)

n 〈zn|żn〉
)

=
∑

B

ã(B)
n 〈zn|ĤAB|zn〉 ,

A = 1, . . . , number of el. states.
(10)

Further, substituting (3) and (2) into the Schrödinger equation (1)
and projecting onto 〈zk(t)| 〈A| we obtain:

i~
∑

n

(
ȧ(A)
n 〈zk|zn〉+ a(A)

n 〈zk|żn〉
)

=
∑

B,n

a(B)
n 〈zk|ĤAB|zn〉 ,

A = 1, . . . , number of el. states; k = 1, . . . , number of CSs
(11)

The coherent states are not orthogonal to each other and thus
overlaps 〈zk|zn〉 are retained in the equations. These overlaps can be
computed as

〈zk|zn〉 =

number of
nucl. DoFs∏

f

〈
z

(f)
k

∣∣∣z(f)
n

〉
(12)

where59,61

〈
z

(f)
k

∣∣∣z(f)
n

〉
= exp

(
z

(f)∗
k z(f)

n −
z

(f)∗
k z

(f)
k

2
− z

(f)∗
n z

(f)
n

2

)
(13)
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For k = n the overlap is equal to 1. We note that (13) does not hold
if one calculates the overlap of coherent state wave functions with
different γ(f) parameters.

The solution of (11), i.e., the time-dependent coefficients a(A)
n (t)

are the last ingredients, complementing the diabatic electronic states
and nuclear coherent states, to obtain the molecular wave function.
Having these coefficients, one can compute, e.g., the population of the
electronic state |A〉 as:

P (A) = 〈Ψ|A〉 〈A|Ψ〉 =
∑

n,k

a(A)∗
n a

(A)
k 〈zn|zk〉 (14)

In order to solve (11) we introduce the new coefficients:

c
(A)
k =

∑

n

a(A)
n 〈zk|zn〉 (15)

Using these new coefficients we can rewrite (11) as follows:

ċ
(A)
k = − i

~
∑

B,n

a(B)
n 〈zk|ĤAB|zn〉+

∑

n

a(A)
n 〈żk|zn〉 (16)

In (16) (as well as (11)) we encounter overlaps with the time-
derivative of the coherent states 〈żk|zn〉. These overlaps can be com-
puted as

〈żk|zn〉 = 〈zk|zn〉
∑

f

(
ż

(f)∗
k z(f)

n − Re
(
ż

(f)
k z

(f)∗
k

))
(17)

One can obtain this relation (and the overlap formula (13)) starting
from the expansion of the coherent state

∣∣∣z(f)
k

〉
in terms of the number

states |n〉.61
For more stable numerical integration of coefficients (see (16)) one

can rewrite

a(A)
n = b(A)

n exp

(
i

~
S(A)
n

)
(18a)

c
(A)
k = d

(A)
k exp

(
i

~
S

(A)
k

)
(18b)

Where S(A)
n is the action obeying:43

Ṡ(A)
n =

i~
2

(żnz
∗
n − ż∗nzn)− 〈zn|ĤAA|zn〉 (19)
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Using the coefficients b(A)
n , d(A)

k , and action S(A)
n , (16) becomes:

ḋ
(A)
k =



−

i

~


∑

n

b(A)
n exp

(
i

~
S(A)
n

)
〈zk|zn〉 Ṡ(A)

k +
∑

B,n

b(B)
n exp

(
i

~
S(B)
n

)
〈zk|ĤAB|zn〉




+
∑

n

b(A)
n exp

(
i

~
S(A)
n

)
〈żk|zn〉

}
exp

(
− i

~
S

(A)
k

)

(20)

The matrix elements 〈zk|ĤAB|zn〉 can be computed analytically
for a model Hamiltonian. We used Mathematica62 to obtain analytic
expressions for the matrix elements.

When a time-independent basis is used (see next subsection), i.e.,
żn = 0, then (16) becomes:

ċ
(A)
k = − i

~
∑

B,n

a(B)
n 〈zk|ĤAB|zn〉 (21)

We note here that the left and the right side of differential equa-
tions (20) and (21) contain different coefficients and therefore we use a
modified Runge–Kutta fourth order method to numerically integrate
(20) and (21) (see Appendix).

2.2 Sampling initial conditions and basis sets
We sample initial conditions using the Wigner function63 which cor-
responds to the initial nuclear wave packet ψ(Q) situated on a single
electronic state, defined as follows:64

Wψ(Q,P) =
1

(2π~)d

∫
exp

(
i
Q′P
~

)
ψ

(
Q− 1

2
Q′
)
ψ∗
(
Q +

1

2
Q′
)

dQ′

(22)
Here, d is the number of nuclear DoFs.

Once sampled, {Q,P} values are combined into {zn(t = 0)}, see
(7). Due to the fact that coherent states are not orthogonal to each
other, problems due to near singular overlap matrix can arise in prop-
agation if a rather large number of the coherent states is sampled. It
is thus desired to choose from the sample the set of coherent states
which are “not very linear dependent”. To solve this issue we apply
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the rank-revealing QR decomposition to the overlap matrix and se-
lect only those states which are associated with the diagonal values
of the R matrix which are larger (in absolute value) than some pre-
defined threshold. To spread initial conditions one can also apply
broader distributions, e.g. for a Gaussian wave packet ψ, W 1/3

ψ (Q,P),

W
1/5
ψ (Q,P), W 1/7

ψ (Q,P), etc. can be chosen. This strategy is simi-
lar to decreasing the so-called compression parameter in the approach
of Shalashilin and Child.65 To prepare a fixed basis, however, a more
compact distribution (e.g., W 5

ψ(Q,P)) for sampling initial conditions
for trajectories may perform better than the Wigner function itself.

The time-dependent basis is obtained by propagating the selected
coherent states with the help of (8), i.e. {zn(t)} is the basis for the
time t. We note here that this procedure represents the most straight-
forward way to generate a moving basis set. More sophisticated tech-
niques have been proposed in literature to improve the moving basis,
including coherent state trains and basis function cloning.56 The ef-
fect of these techniques is not addressed in the present work and is the
subject for further investigations.

The time-independent basis is generated by sampling the precom-
puted trajectories {zn(t)}, as suggested by Saller and Habershon.55

Here, we simply select Gaussians every mth time step. The obtained
set of CSs is subject to the QR decomposition to avoid problems re-
lated to the singularity of the overlap matrix. Such a basis is natively
nonlocal and can account for complex spread of the wave packet during
propagation in time, as will be shown in the present work. In highly
multidimensional systems, with much more than five nuclear DoFs, the
generation of the fixed basis in the described manner is most probably
prohibitive because of presumably very large number of coherent states
needed to obtain converged results. Therefore, the approaches utiliz-
ing adaptive time-independent basis sets66–69 represent a promising
alternative for further exploration.

The initial a(A)
n (0) coefficients for the wave function expansion (see

(3)) are obtained as a solution of the matrix equation arising through
the 〈zk(0)| 〈A| projection:

∑

n

〈zk(0)|zn(0)〉 a(A)
n (0) =

〈
zk(0)

∣∣∣ψ(A)(0)
〉

(23)

for the initial wave function |Ψ(0)〉 =
∣∣ψ(A)(0)

〉
|A〉.

9



2.3 Reference calculations
To assess the results obtained with the help of the Ehrenfest trajecto-
ries of coherent states, we have performed the quantum dynamics cal-
culations on a grid using the second order differences (SODs) method,
for the two-dimensional model. For the five-dimensional model the
MCTDH calculations of ref. 70 have been used as a reference.

In the SODs method, one propagates the wave packet as:

ψ(A)(Q, t+ ∆t) = ψ(A)(Q, t−∆t)− 2
i

~
∑

B

ĤABψ
(B)(Q, t)∆t (24)

The action of nuclear kinetic energy operator on the wave packet
was computed in momentum space. The fast Fourier transform was
used to change the representation (from position to momentum, and
back). The grid chosen spanned the area of −3 ≤ Q1 ≤ 10 and
−5 ≤ Q2 ≤ 5 with 256 points in each direction. The time step used
was 0.001 fs.

3 Models

3.1 Two-state two-dimensional model
The model for a two-state intersection with two nuclear DoFs Q1, Q2

has been adopted from the work of Ferretti et. al.71 The Hamiltonian
takes on the form

Ĥ = ĤA |A〉〈A|+ ĤB |B〉〈B|+ V̂ |A〉〈B|+ V̂ |B〉〈A| (25)

with the nuclear operators being

ĤA =− ~2

2m1

∂2

∂Q2
1

− ~2

2m2

∂2

∂Q2
2

+
1

2
kx(Q1 −X1)2 +

1

2
kyQ

2
2 (26a)

ĤB =− ~2

2m1

∂2

∂Q2
1

− ~2

2m2

∂2

∂Q2
2

+
1

2
kx(Q1 −X2)2 +

1

2
kyQ

2
2 + ∆

(26b)

V̂ = ΓQ2 exp
(
−α(Q1 −X3)2 − βQ2

2

)
(26c)

The coupling strength is controlled via the Γ parameter. Γ = 0.01
corresponds to the weak coupling, whereas Γ = 0.08 is the strong
coupling. The other parameters are X1 = 4.0, X2 = 3.0, X3 =
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3.0, kx = 0.02, ky = 0.1, ∆ = 0.01, α = 3.0, β = 1.5, m1 =
20000, m2 = 6667. The conical intersection is located at (Q1, Q2) =
(3.0, 0.0).

The initial wave packet is a Gaussian, placed on State A and cen-
tered at (Q1, Q2) = (X0, 0):

ψ(A)(Q1, Q2, t = 0) =
1√

π∆X∆Y
exp

(
−1

2

(Q1 −X0)2

(∆X)2
− 1

2

Q2
2

(∆Y )2

)

(27a)

ψ(B)(Q1, Q2, t = 0) = 0 (27b)

Here, ∆X = 0.150 and ∆Y = 0.197.
Calculating the Wigner function of ψ(A) yields multivariate normal

distribution with the following mean and covariance matrix:

mean = (X0 0 0 0) (28a)

cov =




(∆X)2

2
0 0 0

0
(∆Y )2

2
0 0

0 0
~2

2(∆X)2
0

0 0 0
~2

2(∆Y )2




(28b)

To select more states, which do not overlap too much, we used 3×cov,
5×cov or 7×cov as the covariance matrix. These choices correspond to
theW 1/3

ψ (Q,P), W 1/5
ψ (Q,P), andW 1/7

ψ (Q,P) functions, respectively.

3.2 Three-state five-dimensional model
The model for a three-state intersection with five nuclear DoFs has
been adopted from the work of Krause and Matsika.70 The Hamilto-
nian takes on the form

Ĥ = ĤA |A〉〈A|+ ĤB |B〉〈B|+ ĤC |C〉〈C|
+ V̂AB |A〉〈B|+ V̂AB |B〉〈A|+ V̂AC |A〉〈C|+ V̂AC |C〉〈A|+ V̂BC |B〉〈C|+ V̂BC |C〉〈B|

(29)
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with the nuclear operators being

ĤA =− ωe
2

∂2

∂Q2
1

− ωe
2

∂2

∂Q2
2

− ωt
2

∂2

∂Q2
3

− ωt
2

∂2

∂Q2
4

− ωt
2

∂2

∂Q2
5

+
ωe
2
Q2

1 +
ωe
2
Q2

2 +
ωt
2
Q2

3 +
ωt
2
Q2

4 +
ωt
2
Q2

5

+ Fe
1

2
Q1 − Fe

√
3

2
Q2

(30a)

ĤB =− ωe
2

∂2

∂Q2
1

− ωe
2

∂2

∂Q2
2

− ωt
2

∂2

∂Q2
3

− ωt
2

∂2

∂Q2
4

− ωt
2

∂2

∂Q2
5

+
ωe
2
Q2

1 +
ωe
2
Q2

2 +
ωt
2
Q2

3 +
ωt
2
Q2

4 +
ωt
2
Q2

5

+ Fe
1

2
Q1 + Fe

√
3

2
Q2

(30b)

ĤC =− ωe
2

∂2

∂Q2
1

− ωe
2

∂2

∂Q2
2

− ωt
2

∂2

∂Q2
3

− ωt
2

∂2

∂Q2
4

− ωt
2

∂2

∂Q2
5

+
ωe
2
Q2

1 +
ωe
2
Q2

2 +
ωt
2
Q2

3 +
ωt
2
Q2

4 +
ωt
2
Q2

5

− FeQ1

(30c)

V̂AB =− FtQ4 (30d)

V̂AC =− FtQ3 (30e)

V̂BC =− FtQ5 (30f)

The parameters used are ωe = ωt = 0.0036749324, Fe = 0.0036749324,
Ft = 2Fe. The intersection of three PESs is located at (Q1, Q2, Q3, Q4, Q5) =
(0, 0, 0, 0, 0).

The initial wave packet is a Gaussian, placed on State C and cen-
tered at (Q1, Q2, Q3, Q4, Q5) = (0, 0, 0, 0, 0) (i.e. directly at the inter-
section):

ψ(A)(Q1, Q2, Q3, Q4, Q5, t = 0) = 0 (31a)

ψ(B)(Q1, Q2, Q3, Q4, Q5, t = 0) = 0 (31b)

ψ(C)(Q1, Q2, Q3, Q4, Q5, t = 0) =
5∏

f=1

{(
1

π

) 1
4

exp

(
−1

2
Q2
f

)}
(31c)

The Wigner function of ψ(C) is the multivariate normal distribution

12



with the following mean and covariance matrix:

mean = (0 0 0 0 0 0 0 0 0 0) (32a)

cov =




1

2
0 0 0 0 0 0 0 0 0

0
1

2
0 0 0 0 0 0 0 0

0 0
1

2
0 0 0 0 0 0 0

0 0 0
1

2
0 0 0 0 0 0

0 0 0 0
1

2
0 0 0 0 0

0 0 0 0 0
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(32b)

We have also used 1
5×cov as a covariance matrix in the case of a

fixed basis, since with it we were able to obtain better agreement than
with cov.

4 Results and Discussion

4.1 Two-state two-dimensional model
For the two-state two-dimensional intersection model, we study two
cases: (i) the initial wave packet is centered at (Q1, Q2) = (2.0, 0.0)
and placed on state A, and (ii) the initial wave packet is centered at
(Q1, Q2) = (5.2, 0.0) and placed again on state A. These two cases were
considered previously in literature, mainly to asses the performance of
various methods for nonadiabatic dynamics.47,50,71–73 The cross sec-
tions of the diabatic potentials along with the initial conditions and
the energy of the conical intersection are shown in Fig. 1.
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Figure 1: Diabatic potentials for states A and B as a function of Q1 at fixed
Q2 = 0. Red dots indicate two considered initial positions of the wave packet,
placed on state A. Red thin line marks the energy of the conical intersection
(CoIn).

For both cases the wave packet momentum is initially zero. When
starting at (Q1, Q2) = (2.0, 0.0), from the left of the conical intersec-
tion, the excess energy, Uinitial − UCoIn, is ∼7 times larger than when
starting at (Q1, Q2) = (5.2, 0.0), from the right of the conical intersec-
tion. Namely, for case (i) the excess energy is 0.03, and for case (ii) the
excess energy is about 0.0044. It should be noted that the second case
is particularly difficult for conventional surface hopping approach, as
discussed by Yang et al .72 In this subsection, we will discuss how the
CSs approaches utilizing moving and fixed basis sets perform for the
different initial conditions described above. For each initial condition
we will consider scenarios of weak (Γ = 0.01) and strong (Γ = 0.08)
couplings (see eq. (26c)). In all cases considered below for the two-state
intersection we set γ(1) = 44.44 and γ(2) = 25.7, what corresponds to
the width of the initial wave packet.

4.1.1 Initial position (Q1, Q2) = (2.0, 0.0)

For weak coupling (Γ = 0.01), the diabatic state populations for the
model conical intersection of two states obtained with the moving and
fixed basis sets are shown in Fig. 2 (top panels).
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Figure 2: Diabatic populations for weak coupling (Γ = 0.01) obtained with
the moving and fixed CS basis sets, compared to propagation on a grid, for
the initial wave packet centered at (Q1, Q2) = (2.0, 0.0) and located on state
A. The differences between coherent state and grid populations, PCS−Pgrid,
are also shown.

As can be seen (particularly from the difference graphs, PCS−Pgrid,
in the bottom panels of Fig. 2), the excellent agreement between the
CS method and propagation on a grid is achieved. We note that the
large number of Ehrenfest trajectories, namely 645, is used in the case
of the moving basis. These 645 initial coherent states were chosen by
means of QR decomposition of the overlap matrix of 15,000 coherent
states sampled from theW 1/3

ψ (Q,P) distribution, retaining only states
corresponding to the diagonal values of the R matrix, whose moduli are
larger than 10−10. For a fixed basis set, the number of basis functions
is even larger, 1171. However, they are fixed and are sampled from
100 trajectories. The initial conditions for these 100 trajectories were
merely sampled from the Wigner distribution, i.e. W (Q,P). Then,
the Gaussians were sampled from these trajectories with a period of
100 au (2.419 fs). The whole set of chosen fixed functions was then
subject to the QR decomposition to generate the final fixed basis set,
using the threshold of 10−10. For all cases considered in this work, we
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used the time step of 1 au to propagate the moving basis and the time
step of 10 au to propagate parent trajectories for the fixed basis. The
time step for propagation of coefficients was 2 au for the both basis
sets.

Here and in what follows, the numbers of basis functions used for
propagation were chosen after many tests and correspond to the best
results (in terms of reproducing reference time-dependent populations)
out of the pool of many trials. We note that the seemingly obvious
strategy of simply enlarging the number of basis functions will fail due
to singularities of the overlap matrix. Moreover, the QR decomposition
done in the beginning does not guarantee the “smooth” propagation
afterwards. Here, to overcome the possible issues, one can apply the
strategies used for generation of adaptive basis sets67, but this will
not be addressed in the present work. Quantitatively, the difference in
populations between the CS methods and the propagation on the grid
is ∼10−4 for the weak coupling, with the used bases.

For strong coupling (Γ = 0.08), the populations are also in very
good agreement with those obtained by the reference calculations (prop-
agation on a grid), see Fig. 3.
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Figure 3: Diabatic populations for strong coupling (Γ = 0.08) obtained with
the moving and fixed CS basis sets, compared to propagation on a grid, for
the initial wave packet centered at (Q1, Q2) = (2.0, 0.0) and located on state
A. The differences between coherent state and grid populations, PCS−Pgrid,
are also shown.

Quantitatively, the difference in populations between the CS meth-
ods and the propagation on the grid for the strong coupling is ∼10−3

with the used moving basis and ∼10−4 with the fixed one. The number
of basis CS functions used for the strong coupling case is 1075 (mov-
ing basis) and 1716 (fixed basis), i.e. higher than the corresponding
numbers for the example of weak coupling described above. Again, we
notice that 1716 fixed basis functions were selected from 100 Ehrenfest
trajectories, by applying the same procedure as for the weak coupling
(with the threshold of 10−10). The initial conditions for 1075 moving
basis coherent states, in turn, were selected by using the QR decompo-
sition of the overlap matrix of 20,000 CSs sampled from W

1/5
ψ (Q,P),

with subsequent filtering with the 10−10 threshold.
The wave packet evolution is also very well captured by both CS

approaches, i.e. with (i) moving and (ii) fixed basis sets, for both
coupling cases (see Figs. S1 and S2 for details). However, there are
certain differences which become obvious upon detailed comparison of
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the results obtained with different methods.
For weak coupling, we compare the wave packets at the end of prop-

agation, at 120 fs (Fig. 4). To better unveil the main features of the
wave packet we exclude from analysis all values which are smaller than
a certain threshold. Practically, we set white color in the colormap for
all such values. It is seen that the wave packet associated with state
B looks slightly different when comparing the moving basis with the
fixed one. Namely, the parts located around the CoIn (the latter is
centered at (Q1, Q2) = (3.0, 0.0)) differ in shape of boundaries. Over-
all, however, the main features of the nuclear wave function at 120 fs
are well reproduced with the both, moving and fixed, basis sets. The
|ψ(A)(Q, t)|2 components calculated with both CS approaches resemble
the grid reference equally well.

For strong coupling, more complex patterns emerge upon wave
packet evolution. The overall agreement with the reference calcula-
tions is very good (see Fig. S2 for details). Not surprisingly, however,
some deviations from the reference are observed. First, for times of
70–90 fs the wave packet associated with state B exhibits the “tail”
located near Q1 ≈ 3, as follows from the reference calculations. This
“tail” clearly arises when the fixed basis set is used within the CS
method, but, contrarily, this feature is absent in the case of the mov-
ing basis. The detailed comparison for time of 70 fs is presented in
Fig. 5, where the absence of the “tail” is clearly identifiable in the upper
right panel (state B, moving basis). Thus, the fixed basis captures bet-
ter the nonlocality emerging during the wave packet evolution, for the
given studied case. Moreover, for still larger times, &100 fs, the wave
packet obtained with the fixed basis is closer to the grid propagation
reference, than the corresponding wave packet built from the moving
CS functions (see Fig. 6 for times of 110 and 120 fs). Importantly, both
CS approaches lead to symmetry breaking, with respect to the plane
Q2 = 0, whereas the symmetry is preserved in the reference propa-
gation. One could use symmetric initial conditions to overcome this
issue, though such a sampling would be specific to the given problem
rather than generally applicable.
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Figure 4: Diabatic wave packet (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) at 120 fs for
the case of weak coupling (Γ = 0.01) and the initial position (Q1, Q2) =
(2.0, 0.0). Colorbars span the range from zero to the maximum for a given
state at a current time. These maxima are shown as tick labels of color-
bars (rounded to a 1st decimal place). Values |ψ(A)(Q, t)|2 < 5×10−2 and
|ψ(B)(Q, t)|2 < 5×10−3 are represented in white to highlight the differences
in obtained results.
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Figure 5: Diabatic wave packet (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) at 70 fs for
the case of strong coupling (Γ = 0.08) and the initial position (Q1, Q2) =
(2.0, 0.0). Colorbars span the range from zero to the maximum for a given
state at a current time. These maxima are shown as tick labels of color-
bars (rounded to a 1st decimal place). Values |ψ(A)(Q, t)|2 < 5×10−2 and
|ψ(B)(Q, t)|2 < 5×10−3 are represented in white to highlight the differences
in obtained results.
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Figure 6: Diabatic wave packet (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) at 110 fs
(top) and 120 fs (bottom) for the case of strong coupling (Γ = 0.08) and
the initial position (Q1, Q2) = (2.0, 0.0). Colorbars span the range from zero
to the maximum for a given state at a current time. These maxima are
shown as tick labels of colorbars (rounded to a 1st decimal place). Values
|ψ(A)(Q, t)|2 < 5×10−2 and |ψ(B)(Q, t)|2 < 5×10−3 are represented in white
to highlight the differences in obtained results.
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4.1.2 Initial position (Q1, Q2) = (5.2, 0.0)
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Figure 7: Diabatic populations for weak coupling (Γ = 0.01) obtained with
the moving and fixed CS basis sets, compared to propagation on a grid, for
the initial wave packet centered at (Q1, Q2) = (5.2, 0.0) and located on state
A. The differences between coherent state and grid populations, PCS−Pgrid,
are also shown.

In this subsection we demonstrate how the CS methods perform when
the wave packet is initially placed at (Q1, Q2) = (5.2, 0.0), again on
state A. This case is difficult for surface hopping methods, since the
initial energy is only a little bit higher than the energy of the conical
intersection (see Fig. 1).

The diabatic populations in the case of weak coupling (Γ = 0.01)
are presented in Fig. 7. Again, excellent agreement between the CS
method and the reference calculations is observed. We note that the
accuracy of the populations obtained with the CS method and pre-
sented in Fig. 7 is better than the accuracy of the results reported
for this case so far,50,72 specifically for the larger times region. In our
simulations, 567 and 874 CSs were used for the moving and fixed basis
strategies, respectively. The 567 CSs in the case of time-dependent
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basis were chosen using the QR decomposition of the overlap matrix
of the 15,000 CSs sampled from W

1/3
ψ (Q,P). The used threshold for

retaining the states was 5×10−9. For the fixed basis, again 100 tra-
jectories with initial conditions sampled form W (Q,P) were used to
sample time-independent functions every 100 au. The sampled set was
subject to the QR decomposition and the threshold of 10−10. The pop-
ulation differences between the CS method and reference propagation
on a grid are on the order of 10−3 with the moving basis, and 10−4

with the fixed basis.
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Figure 8: Diabatic populations for strong coupling (Γ = 0.08) obtained with
the moving and fixed CS basis sets, compared to propagation on a grid, for
the initial wave packet centered at (Q1, Q2) = (5.2, 0.0) and located on state
A. The differences between coherent state and grid populations, PCS−Pgrid,
are also shown.

The case of the strong coupling (Γ = 0.08) is also well described by
the CS method (Fig. 8). Here, though, the fixed basis performs dis-
tinctly better than the moving one. 1150 (fixed basis) vs. 1054 (moving
basis) functions were used. The 1054 CSs for the moving basis are the
outcome of the QR decomposition of 20, 000×20, 000 overlap matrix of
20,000 CSs sampled from theW 1/7

ψ (Q,P) distribution, after excluding
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the states corresponding to the threshold of 5×10−6. Here, we used the
broad W 1/7

ψ (Q,P) distribution, since the attempts with narrower dis-
tributions were less successful, either resulting in less accurate results
or in the “explosion” of propagation due to arising linear dependencies.
The 1150 fixed basis functions were generated in the same way as de-
scribed in the previous paragraph for the weak coupling case (using
the threshold of 10−10). Quantitatively, the population differences are
on the order of 10−2 with the moving basis set and 10−4 with the fixed
one.

The wave packet evolutions are overall well reproduced for both
coupling strengths and both types of basis set, with the exception of
the long time dynamics with the moving basis for the strong coupling
(see Figs. S3 and S4 for details).

For weak coupling, the detailed comparison of the wave packets
at the end of the simulation (t = 200 fs) reveals that the fixed basis
performs better than the moving basis in reproducing the reference
wave packet appearance (Fig. 9).

For strong coupling, as already mentioned, the fixed basis performs
much better than the moving basis used. So, the wave packet associ-
ated with state B is virtually destroyed at 180 fs, when the moving
basis is used (Fig. 10, top panel). On the contrary, the fixed basis
set performs remarkably well. At 200 fs the dominant feature (corre-
sponding to the maximal values) of |ψ(B)(Q, t)|2 is somewhat restored,
in the case of the moving basis set, apparently due to the population
transfer from state A (Fig. 10, bottom panel). We note that the main
features of the wave packet associated with state A are well captured
also with the moving basis. This state is almost exclusively populated
in the long time dynamics. Thus, the described deviations in the wave
packet associated with state B do not lead to dramatic changes in the
populations (see Fig. 8, left panel). Interestingly, for this case we were
able to better reproduce the reference dynamics (in comparison to the
results obtained with the given moving basis) with a fixed basis of a
smaller size than the size of the given moving basis (namely 880 fixed
CSs, not shown). Of course, the comparison of basis sets simply by
means of comparison of the numbers of basis functions is oversimpli-
fied, since it is possible to have a situation when initial moving basis
functions are spread out very much in the nuclear phase space, thus
leading to many unnecessary traveling functions in the course of prop-
agation.
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Figure 9: Diabatic wave packet (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) at 200 fs for
the case of weak coupling (Γ = 0.01) and the initial position (Q1, Q2) =
(5.2, 0.0). Colorbars span the range from zero to the maximum for a given
state at a current time. These maxima are shown as tick labels of color-
bars (rounded to a 1st decimal place). Values |ψ(A)(Q, t)|2 < 5×10−2 and
|ψ(B)(Q, t)|2 < 5×10−3 are represented in white to highlight the differences
in obtained results.
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Figure 10: Diabatic wave packet (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) at 180 fs
and 200 fs for the case of strong coupling (Γ = 0.08) and the initial position
(Q1, Q2) = (5.2, 0.0). Colorbars span the range from zero to the maximum
for a given state at a current time. These maxima are shown as tick labels
of colorbars (rounded to a 1st decimal place). Values |ψ(A)(Q, t)|2 < 5×10−2

and |ψ(B)(Q, t)|2 < 5×10−3 are represented in white to highlight the differ-
ences in obtained results.
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4.2 Three-state five-dimensional model
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Figure 11: Diabatic potentials for states A, B, and C as a function of Q1 at
fixed Q2,3,4,5 = 0 (upper panel) and as a function of Q2 at fixed Q1,3,4,5 = 0
(lower panel). The red dot indicates the initial position of the wave packet,
placed on state C. The red thin line marks the energy of the intersection
(In).

Finally, we consider the three-state five-dimensional model. The model
was introduced by Krause and Matsika to study dynamics at three-
state intersections.70 To do so, they used the MCTDH method. The
population transfer between three states was discussed in the frame-
work of the adiabatic picture.

Since in our work we concentrate on the performance of the CS
method, which uses the diabatic propagation of the wave function
(similarly to most quantum-dynamical methods), we prefer to compare
diabatic populations. The direct diabatic-to-adiabatic transformation
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is very costly, considering dependence on five dimensions. At the same
time we want to avoid errors coming from approximate transforma-
tion procedures. Thus, we consider the case for which the diabatic
MCTDH populations are available.74 The parameters corresponding
to this particular case are described in 3.2.
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Figure 12: Diabatic populations obtained with the moving and fixed CS basis
sets, compared to MCTDH results, for the initial wave packet centered at
(Q1, Q2, Q3, Q4, Q5) = (0, 0, 0, 0, 0) and located on state C. The differences
between coherent state and MCTDH populations, PCS − PMCTDH, are also
shown.

The cross sections of diabatic potentials together with the initial
position of the wave packet and the energy of the three-state inter-
section are shown in Fig. 11. In this case the initial wave packet is
placed directly at the intersection (Q1, Q2, Q3, Q4, Q5) = (0, 0, 0, 0, 0),
and assigned to state C. We used γ = 1 for all nuclear DoFs, what
again corresponds to the width of the initial wave packet.

The diabatic populations computed with the CS method using both
moving and fixed basis sets are presented in Fig. 12. The reference
MCTDH populations are also shown in Fig. 12. A very good agreement
between the CS and MCTDH populations is achieved. Quantitatively,
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the population differences PCS−PMCTDH are on the order of 10−2 for
both basis types.

In the present example, 3000 CSs were used in the case of the
moving basis and 5040 CSs in the case of the fixed basis. The initial
CSs were sampled from the corresponding Wigner function, i.e. from
W (Q,P), for the moving-basis propagation and from a more compact
distribution,W 5(Q,P), for the fixed basis set. The latter was found to
yield better agreement with the MCTDH reference results in the case
of the fixed-basis approach. Here we have not used the QR decompo-
sition, since the smooth propagation yielding reasonable results was
achieved without this procedure. This is due to the larger dimension-
ality of the nuclear phase space. For the fixed basis, 240 trajectories
were propagated for 2060 au (∼50 fs) and the Gaussians were sampled
with a period of 100 au (∼2.419 fs), thus resulting in 5040 fixed basis
CSs.

4.3 Note on computational cost
The moving basis approach requires to recompute the matrix elements
of Hamiltonian, overlap and overlap with derivative matrices with the
time step used for trajectory propagation (see (20) and appendix B),
since the basis is updated with this time step and, hence, all the men-
tioned matrices change. Moreover, the time needed to perform the
rank-revealing QR decomposition (to select initial coherent state basis
functions) for the large matrices, e.g. 20,000×20,000, is substantial.

For the fixed basis, on the contrary, the Hamiltonian and overlap
matrices should be computed only once, in the beginning (if memory
permits to store them throughout the simulation), and, obviously, the
overlap with the derivative matrix does not enter the equations (see
(21) and appendix A). The drawback, however, is the expectedly large
number of coherent states used. This leads to larger matrices, and
thus slower solution of matrix equations of the type Ma = c.

In our calculations, the propagation with the fixed basis set was
found to be up to a factor of ∼10 faster than the propagation with the
moving basis set.
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5 Conclusions
We have compared the performance of moving and fixed basis sets
used with the MCE-type quantum dynamics method for the cases of
two- and three-state (conical) intersections of potential energy surfaces.
The moving basis sets are usually employed in the Gaussian wave
packet approaches to the modeling of quantum dynamics, while the
fixed basis sets, sampled from the trajectories, represent a rather new,
promising alternative.

We have demonstrated that the both basis set types allow one
to achieve a highly accurate description of the population transfer in
the regions of two- and three-state (conical) intersections, as being
judged by direct comparison with the reference quantum dynamics
results, dynamics on a grid for the two-state two-dimensional model
and MCTDH dynamics for the three-state five-dimensional case.

Through detailed investigation of the wave packet time evolutions
for the two-state two-dimensional model, we conclude that for this
model the fixed basis sets outperform the moving ones in the descrip-
tion of true nonlocal spreading of the wave packet and better reproduce
the long time dynamics, yielding the wave packets almost identical to
the references. Moreover, for the models investigated in the present
work, the computational time spent to obtain high accuracy results for
population transfer dynamics is much smaller when the fixed basis set
is used.

An assessment of the two flavors of basis sets for highly multidimen-
sional systems with a help of more sophisticated techniques for control
of the size and quality of the basis set (e.g., basis function cloning and
generation of adaptive grids) is of interest for future research.

Supporting information
See supporting information for the detailed comparison of wave packets
obtained with different approaches.
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Appendix. Integration of expansion co-
efficients

A Fixed basis set
First, we consider the case of the time-independent basis. In order to
propagate expansion coefficients of (21), one should solve the equation
of the form (given below for the case of three electronic states, as an
example):

ċ(A)(t) = FA

(
a(A)(t),a(B)(t),a(C)(t)

)
(A.1)

where coefficients c are related to coefficients a via the overlap matrix
M (see (15)):

c(A)(t) = Ma(A)(t) (A.2)

The exact form of the FA function is given in (21). Equation (A.1)
differs from the standard problem treated with the Runge–Kutta in-
tegration scheme in that different coefficients enter the left-hand side
and the right-hand side of the equation.

To integrate (A.1) we use the following procedure. The coefficients
c(A) at time t0 +∆t are found as in the classical Runge–Kutta method:

c(A)(t0 + ∆t) = c(A)(t0) +
∆t

6

(
k

(A)
1 + 2k

(A)
2 + 2k

(A)
3 + k

(A)
4

)
(A.3)

Here,
k

(A)
1 = FA

(
a(A)(t0),a(B)(t0),a(C)(t0)

)
(A.4)

The k
(A)
2 term, in turn, should be computed using coefficients a1 cor-

responding to

c(A)(t0) +
∆t

2
k

(A)
1 (A.5)

These a1 coefficients can be obtained solving matrix equation

Ma
(A)
1 = c(A)(t0) +

∆t

2
k

(A)
1 (A.6)
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Then
k

(A)
2 = FA

(
a

(A)
1 ,a

(B)
1 ,a

(C)
1

)
(A.7)

Analogously,
k

(A)
3 = FA

(
a

(A)
2 ,a

(B)
2 ,a

(C)
2

)
(A.8)

where a2 is a solution to the matrix equation:

Ma
(A)
2 = c(A)(t0) +

∆t

2
k

(A)
2 (A.9)

And
k

(A)
4 = FA

(
a

(A)
3 ,a

(B)
3 ,a

(C)
3

)
(A.10)

with a3 being a solution to

Ma
(A)
3 = c(A)(t0) + ∆tk

(A)
3 (A.11)

Finally, the new a coefficients, i.e. at time t0 + ∆t, are obtained as a
solution to

Ma(A)(t0 + ∆t) = c(A)(t0 + ∆t) (A.12)

B Moving basis set
For the case of the moving basis set, see eq. (20), we modify the pre-
sented algorithm as follows. Now we should solve

ḋ(A)(t) = GA

(
b(A)(t),b(B)(t),b(C)(t)

)
(B.1)

The relation between d and b coefficients is (see eqs. (18) and (15))

d(A)(t)� exp

(
i

~
S(A)(t)

)
= M(t)

[
b(A)(t)� exp

(
i

~
S(A)(t)

)]
(B.2)

Here � denotes the element-wise multiplication of two vectors. The
exact form of GA is given in (20). Again, the new d coefficients, at
time t0 + ∆t are found as

d(A)(t0 + ∆t) = d(A)(t0) +
∆t

6

(
k

(A)
1 + 2k

(A)
2 + 2k

(A)
3 + k

(A)
4

)
(B.3)

First,
k

(A)
1 = GA

(
b(A)(t0),b(B)(t0),b(C)(t0)

)
(B.4)
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Then, in order to find k
(A)
2 , we should calculate the b1 coefficients

corresponding to

d(A)(t0) +
∆t

2
k

(A)
1 (B.5)

To obtain these b1 coefficients we solve the following matrix equation:

M

(
t0 +

∆t

2

)[
b

(A)
1 � exp

(
i

~
S(A)

(
t0 +
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2

))]
=

(
d(A)(t0) +

∆t

2
k

(A)
1

)
�exp

(
i

~
S(A)

(
t0 +

∆t

2

))

(B.6)
Here, we see that the overlap matrix as well as the action should be
known at time t0 + ∆t

2 , to solve this matrix equation. Thus, the time
step for propagation of trajectories should be ∆t

2 , i.e. two times smaller
than the time step for propagation of coefficients. Then,

k
(A)
2 = GA

(
b

(A)
1 ,b

(B)
1 ,b

(C)
1

)
(B.7)

Next,
k

(A)
3 = GA

(
b

(A)
2 ,b

(B)
2 ,b

(C)
2

)
(B.8)

where b2 is a solution to the matrix equation
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(B.9)
And

k
(A)
4 = GA

(
b
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3 ,b

(B)
3 ,b

(C)
3

)
(B.10)

with b3 being a solution to

M (t0 + ∆t)

[
b

(A)
3 � exp

(
i

~
S(A) (t0 + ∆t)

)]
=
(
d(A)(t0) + ∆tk

(A)
3

)
�exp

(
i

~
S(A) (t0 + ∆t)

)

(B.11)
Finally, the new b coefficients, i.e. at time t0 + ∆t, are obtained as a
solution to

M (t0 + ∆t)

[
b(A)(t0 + ∆t)� exp

(
i

~
S(A) (t0 + ∆t)

)]
= d(A)(t0+∆t)�exp

(
i

~
S(A) (t0 + ∆t)

)

(B.12)
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Figure S1: Diabatic wave packet evolution (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) for the case of weak
coupling (Γ = 0.01) and the initial position (Q1, Q2) = (2.0, 0.0). Left two columns show the
dynamics with 645 moving coherent states, middle two columns show the dynamics with the basis
of 1171 fixed coherent states (sampled from 100 Ehrenfest trajectories), right two columns show
reference dynamics on a grid. Colorbars span the range from zero to the maximum for a given state
at a current time. These maxima are shown as tick labels of colorbars (rounded to a 1st decimal
place). The Q1 and Q2 ranges are the same for all plots and are shown in the left uppermost panel.
Time stamps are shown in the last column.
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Figure S2: Diabatic wave packet evolution (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) for the case of strong
coupling (Γ = 0.08) and the initial position (Q1, Q2) = (2.0, 0.0). Left two columns show the
dynamics with 1075 moving coherent states, middle two columns show the dynamics with the basis
of 1716 fixed coherent states (sampled from 100 Ehrenfest trajectories), right two columns show
reference dynamics on a grid. Colorbars span the range from zero to the maximum for a given state
at a current time. These maxima are shown as tick labels of colorbars (rounded to a 1st decimal
place). The Q1 and Q2 ranges are the same for all plots and are shown in the left uppermost panel.
Time stamps are shown in the last column.
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Figure S3: Diabatic wave packet evolution (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) for the case of weak
coupling (Γ = 0.01) and the initial position (Q1, Q2) = (5.2, 0.0). Left two columns show the
dynamics with 567 moving coherent states, middle two columns show the dynamics with the basis of
874 fixed coherent states (sampled from 100 Ehrenfest trajectories), right two columns show reference
dynamics on a grid. Colorbars span the range from zero to the maximum for a given state at a current
time. These maxima are shown as tick labels of colorbars (rounded to a 1st decimal place). The Q1

and Q2 ranges are the same for all plots and are shown in the left uppermost panel. Time stamps
are shown in the last column.
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Figure S4: Diabatic wave packet evolution (|ψ(A)(Q, t)|2 and |ψ(B)(Q, t)|2) for the case of strong
coupling (Γ = 0.08) and the initial position (Q1, Q2) = (5.2, 0.0). Left two columns show the
dynamics with 1054 moving coherent states, middle two columns show the dynamics with the basis
of 1150 fixed coherent states (sampled from 100 Ehrenfest trajectories), right two columns show
reference dynamics on a grid. Colorbars span the range from zero to the maximum for a given state
at a current time. These maxima are shown as tick labels of colorbars (rounded to a 1st decimal
place). The Q1 and Q2 ranges are the same for all plots and are shown in the left uppermost panel.
Time stamps are shown in the last column.
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