

The impact of the CRISPR/Cas system on the

interaction of Neisseria meningitidis with human

host cells

Der Einfluss des CRISPR/Cas-Systems auf die Interaktion von *Neisseria meningitidis* mit menschlichen Wirtszellen

Doctoral thesis for a medical doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität Würzburg, Section Infection and Immunity

submitted by

Hanns Antony Hagmann from Berlin

Würzburg, 2019

Submitted on:office stamp

Members of the Thesis Committee:

Chairperson:

Prof. Dr. med. Oliver Kurzai

Primary Supervisor:

Prof. Dr. rer. nat. Dr. med. Christoph U. Schoen

Supervisor (second):

Prof. Dr. rer. nat. Jörg Vogel

Supervisor (third):

Prof. Dr. rer. nat. Roy Gross

Supervisor (fourth):

Prof. Dr. med. Johannes G. Liese

 Date of Public Defence:

 Date of Receipt of Certificates:

AFFIDAVIT

I hereby confirm that my thesis entitled 'The impact of the CRISPR/Cas system on the interaction of *Neisseria meningitidis* with human host cells' is the result of my own work. I did not receive any help or support from commercial consultants. All sources and/or materials applied are listed and specified in the thesis.

Furthermore, I confirm that this thesis has not yet been submitted as part of another examination process neither in identical nor in similar form.

.....

Place, Date

Signature

EIDESSTATTLICHE ERKLÄRUNG

Hiermit erkläre ich an Eides statt, die Dissertation "The impact of the CRISPR/Cas system on the interaction of *Neisseria meningitidis* with human host cells" eigenständig, das heißt insbesondere selbständig und ohne Hilfe eines kommerziellen Promotionsberaters, angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen Prüfungsverfahren vorgelegen hat.

.....

Ort, Datum

Unterschrift

Table of Content

1	Sun	nmary1
2	Zus	ammenfassung2
3	Intr	oduction4
	3.1	Neisseria meningitidis - an accidental
		pathogen4
	3.2	Pathogenomics of <i>N. meningitidis</i> 5
	3.3	CRISPR/Cas6
	3.4	The genetic basis for the interaction of
		<i>N. meningitidis</i> with human host cells12
	3.5	Aims of the study17
4	Mat	erials
	4.1	Laboratory equipment18
	4.2	Chemicals and consumables23
	4.3	Kits
	4.4	Enzymes
	4.5	Buffers and Solutions29
	4.6	Culture media
	4.6.	1 Liquid media for <i>N. meningitidis</i>
		cultivation39

	4.6.	2 Solid media for <i>N. meningitidis</i>	
		cultivation	43
	4.6.	3 <i>E. coli</i> cultivation	44
	4.6.	4 Cell culture media and solutions	46
	4.7	Antibiotic supplements	52
	4.8	Oligonucleotides	53
	4.9	Plasmids	63
	4.10	Microorganisms	69
	4.11	Cell lines	71
5	Met	hods	72
	5.1	Cultivation of bacteria	72
	5.2	Estimating the bacterial cell number by	
		determining the optical density at 600nm	72
	5.3	Preparation of chemically competent	
		E.coli cells	73
	5.4	Transformation of <i>E. coli</i>	74
	5.5	Transformation of <i>N. meningitidis</i>	75
	5.6	Preparation of meningococcal genomic DNA	76
	5.7	Isolation of plasmid DNA	77

5.8	Preparation of bacterial lysates for
	colony PCR79
5.9	Polymerase chain reaction (PCR)79
5.10	Major PCRs84
5.11	Sequencing PCR products and plasmids 91
5.12	DNA digestion91
5.13	Agarose gel electrophoresis of DNA93
5.14	Purification of DNA fragments94
5.15	Gel Extraction95
5.16	DNA ligation96
5.17	Mutant construction97
5.18	Complementant construction 103
5.19	Generation of DIG-labelled DNA probes 106
5.20	Southern Blot107
5.21	Detection of DIG-labelled DNA by
	chemiluminescence108
5.22	SDS-PAGE
5.23	In vitro growth experiments with
	N.meningitidis110
5.24	Serial dilution110

	5.25	Cell adhesion and invasion assay	111
	5.26	Static biofilm assay for <i>N. meningitides</i> ?	113
	5.27	Computational analyses	114
6	Res	ults	116
	6.1	Verification of 8013 and WUE2594 mutant strains	116
	6.2	Influence of the genetic alterations on the phenotype of 8013 and WUE2594 mutant strains	133
	6.2.	1 Macroscopic aspect of WUE2594 and 8013 mutant strains on COS agar plates	133
	6.2.	2 Bacterial growth of WUE2594 mutant strains in liquid culture	135
	6.2.	3 Bacterial growth of 8013 mutant strains in liquid culture	137
	6.2.	4 <i>N. meningitidis</i> 8013 does not form static biofilm in EMEM ⁺⁺⁺	144
	6.3	The CRISPR/Cas system influences the adhesion to host cells in a strain specific manner.	146

	6.3.	 The adhesion and invasion to host cells is CRISPR/Cas independent in WUE2594
	6.3.	2 The knockout of <i>cas9</i> , tracrRNA and <i>rnc</i> leads to a reduced adhesion rate in 8013
	6.3.	3 The effect of the <i>cas9</i> and <i>rnc</i> knockout on the adhesion to host cells is complementable
	6.4	The CRISPR/Cas loci of <i>Neisseria</i> strains differ in sequence
	6.5	Both strains express a highly similar Cas9 protein
7	Dise	cussion
	7.1	The impact of the CRISPR/Cas system on the adhesion to host cells depends on the genetic background
	7.2	Limitations of the adhesion and invasion assay
	7.3	Potential mode of action of Cas9 on cell adhesion
	7.4	Outlook and Conclusion

Table of Content

8	Ret	ferences	184
9	An	nex	
	9.1	Abbreviations	
	9.2	Lists of Figures and Tables .	
	9.2	.1 Figures	
	9.2	.2 Tables	
	9.3	Curriculum Vitae	
	9.4	Publications and Presentatio	ns 221
	9.5	Acknowledgement	

1 Summary

Neisseria meningitidis, a commensal β-proteobacterium residing exclusively in the human nasopharynx, is a leading cause of sepsis and epidemic meningitis worldwide. While comparative genome analysis was able to define hyperinvasive lineages that are responsible for most of the cases of invasive meningococcal disease (IMD), the genetic basis of their virulence remains unclear. Recent studies demonstrate that the type II-C CRISPR/Cas system of meningococci is associated with carriage and less invasive lineages. CRISPR/Cas, an adaptive defence system against foreign DNA, was shown to be involved in gene regulation in Francisella novicida. This study shows that knockout strains of N. meningitidis lacking the Cas9 protein are impaired in the adhesion to human nasopharyngeal cells in a strain-dependant manner, which constitutes a central step in the pathogenesis of IMD. Consequently, this study indicates that the meningococcal CRISPR/Cas system fulfils functions beyond the defence of foreign DNA and is involved in the regulation of meningococcal virulence.

2 Zusammenfassung

Neisseria meningitidis, ein ß-Proteobakterium, welches als Kommensale ausschließlich den humanen Nasopharynx besiedelt, ist ein weltweit führender Verursacher von Sepsis und epidemischer Meningitis. Auch wenn mittels vergleichender Genomanalysen hyperinvasive Stämme definiert werden konnten, welche für die meisten Fälle von invasiven Meningokokkenerkrankungen verantwortlich sind, bleibt die genetische Grundlage ihrer Virulenz ungeklärt. In vorangegangenen Studien konnte gezeigt werden, dass das Typ II-C CRISPR/Cas-System der Meningokokken assoziiert ist mit Trägerstämmen. CRISPR/Cas ist ein adaptives Verteidigungssystem der Bakterien gegen fremde DNA, das darüber hinaus Aufgaben in der Genregulation von Francisella novicida erfüllt. Diese Arbeit zeigt, dass knockout Stämme von N. meningitidis, denen das Cas9-Protein fehlt, in Abhängigkeit von ihrem genetischen Hintergrund die Fähigkeit verlieren an Zellen des menschlichen Nasopharynx zu adhärieren. Die Adhäsion an den Wirtszellen stellt einen zentralen Schritt in der Pathogenese der invasiven Meningokokkenerkrankungen dar. Die Ergebnisse dieser Arbeit deuten darauf hin, dass das CRISPR/Cas-System in Meningokokken neben seiner Funktion als bakterielles Immunsystem an der Regulation der bakteriellen Virulenz beteiligt sein könnte.

3 Introduction

3.1 *Neisseria meningitidis -* an accidental pathogen

N. meningitidis is an encapsulated, aerobic, gramnegative diplococcus that resides predominantly on mucosal surfaces of the upper respiratory tract in [1]. This genetically highly diverse humans β-proteobacterium is part of the family of Neisseriaceae and shares about 90% nucleotide identity with [1]. *N. lactamica* and N. gonorrhoeae While N. meningitidis can be found in the nasopharynx of up to 10% of the healthy population as a commensal bacterium [2], it sometimes leads to severe infections such as sepsis, purulent meningitis, or Waterhouse-Friderichsen-syndrome, which are lethal in 10% of the cases and occur as sporadic cases and as global epidemics [3, 4].

The only natural habitat of *N. meningitidis* is the human nasopharynx and therefore the colonisation without sequelae is eminently important for the transmission via inhalation of airborne droplets or close contact [5, 6]. Crucial for colonization is the adhesion of the bacteria to the epithelial cell layer in the human nasopharynx [7].

Meningococci can sometimes, probably by accident, cross the mucosal surface of the nasopharynx and enter the bloodstream [8]. In this nutrient rich environment, the bacteria multiply rapidly, evade the immune system of the host, and cause life-threatening sepsis [9]. Once they reach the endothelial cell layer of brain vessels, they may cross the blood-brain barrier and replicate in the human cerebrospinal fluid of the subarachnoidal space, which causes acute bacterial meningitis [1, 7]. The mechanisms that drive these commensal bacteria to cause invasive disease remain enigmatic [10]. Invasive meningococcal disease (IMD) regularly fails to promote the spread of bacteria between patients and frequently kills the host, and this therefore signifies an evolutionary dead end for the invasive bacteria [8].

3.2 Pathogenomics of *N. meningitidis*

In contrast to pathogenic Escherichia coli, a defined set of virulence aenes remains untraceable in N. meningitidis [11]. With regard to the genetic equipment, meningococcal strains isolated from healthy carriers and patients suffering from IMD are almost indistinguishable [12]. Numerous factors have been described that are involved in the bacteria-host interaction and thus might coincidentally contribute to

meningococcal virulence: the polysaccharide capsule [13], various adhesins [14], endotoxins such as lipopolysaccharides [15], and its natural competence for the uptake of DNA that leads to a high genome flexibility [16]. However, many of the so-called meningococcal virulence genes have also been found in commensal strains [17]. Nevertheless, analysis of meningococcal isolates by multilocus sequence typing revealed the presence of hyperinvasive lineages responsible for most IMD cases [18]. The genetic basis of virulence in these strains remains unclear. It has been shown that clustered, regularly interspaced, short palindromic repeats (CRISPR), and CRISPR-associated (cas) genes are more frequently found in non-hyperinvasive strains [19] and thus might constitute an 'anti-virulence' factor in meningococci.

3.3 CRISPR/Cas

The CRISPR/Cas system is a sequence based, adaptive bacterial defence system against viruses and invading DNA [20]. It is characterized by the CRISPR array, a sequence of noncoding DNA that contains palindromic repeats which are almost always identical within a particular array [21]. Those repeats are separated by unique parts of DNA, called spacers, which were found

match frequently to phages other to and extrachromosomal elements [22-26]. The CRISPR/Cas system additionally contains a set of two to six cas genes with functional domains, including endo- and exonuclease domains, helicases, RNA-DNA binding domains. and domains involved in transcription regulation [21, 22, 27, 28]. The CRISPR/Cas system may be found in various prokaryotic organisms and is therefore manifold. Between species, the repeat and the spacer sequences may differ in number, length, and structure [21, 29, 30] as well as the total number of CRISPR/Cas loci in the genome [31] or the number and sequence of the Cas genes [22]. The CRISPR/Cas may be divided into six main systems types distinguished by their Cas genes [32]. One of these, the type II CRSIPR/Cas systems is associated with such F. novicida. pathogenic bacteria as *Campylobacter jejuni*, and *N. meningitidis* [33]. This type of CRISPR/Cas system, which is only found in a bacteria [33], yields cas genes encoding for Cas1, Cas2, and, demarcating from other groups, Cas9 [34]. The group is further divided into three subgroups according to the presence or absence of a fourth protein. Type II-A obtains additionally a gene called *csn2*, type II-B *cas4*, whereas type II-C lacks a fourth *cas* gene [35].

The role of the Type II CRISPR/Cas systems in host protection is well established [36]. CRISPR RNA (crRNA), processed by the endogenous endonuclease RNase III (encoded by *rnc*) [37] and a *trans* activating CRISPR RNA (tracrRNA), build a ribonucleoprotein complex with Cas9 to recognize target DNA by sequence and degrade it by cleavage [38, 39].

is known about the potential However, far less contribution of the CRISPR/Cas system to gene regulation and virulence [40, 41]. A recent study revealed that Cas9 is critical for the interaction of C. jejuni with host cells [42]. Furthermore, it has been demonstrated that Cas9 in combination with tracrRNA and a small CRISPR/Cas-associated RNA (scaRNA) is involved gene regulation in *F. novicida*. in The ribonucleoprotein complex degrades the mRNA of a bacterial lipoprotein (blp) called FTN 1102 and therefore downregulates the respective gene. Furthermore, it has been shown that in F. novicida, the crRNA, Cas1, Cas2, Cas4, and the endogenous RNase III are not involved in this pathway [35]. Nevertheless, the authors of the study analysed virulence traits of *cas9* deletion mutants in *N. meningitidis* strain 92045. Since the mutants were unable to adhere to, invade, and replicate in human adenocarcinoma alveolar basal epithelial cells, a contribution of Cas9 to pathogenicity and virulence of meningococci has been assumed. However, pneumonia is rarely a part of IMD [43] and the CRISPR/Cas systems of *F. novicida* and *N. meningitidis* are similar but not identical, and therefore the results are not necessarily applicable.

Cas4 is present in *F. novicida* but absent in *N. meningitidis*, which is why the meningococcal CRISPR/Cas system is classified as type II-C whereas F. novicida harbours a type II-B CRISPR/Cas system [34, 44]. Nevertheless, the meningococcal CRISPR/Cas system, which has recently been described as the most streamlined CRISPR/Cas system characterized to date, uses a unique *rnc*-independent crRNA maturation pathway with promoters within each CRISPR repeat. Furthermore, it is in possession of two forms of tracrRNA differing in length processed by RNase III [32, 45].

An obvious explanation for the association of CRISPR/Cas to non-hyperinvasive strains is the

9

restriction of lysogenization with the meningococcal disease-associated prophage MDA Φ , which was shown to increase host cell colonization [46]. While there was a highly significant inverse association between the presence of a CRISPR/Cas locus and MDA Φ [19], isolates such as the *N. meningitidis* serogroup C strain 8013 and the serogroup A strain WUE2594 belong to hyperinvasive lineages, which contain a CRISPR/Cas system but lack MDA Φ [47, 48]. Therefore, these strains are particularly suitable to examine the putative regulatory function of the CRISPR/Cas system on genes mediating meningococcal virulence.

	8013	WUE2594
Genome characteristics		
GenBank accession number	FM999788	FR774048
Genome size (Mb)	2.28	2.23
GC content	51.4%	51.8%
Predicted number of coding sequences	1912	1941
Molecular epidemiology		
Lineage	Invasive	Invasive
Source	IMD	IMD
Country	France	Germany
Year of isolation	1989	1991
Clonal complex (CC)	ST-18	ST-5
Serogroup	С	А
Reference	[47]	[48]

Table 3.1 Comparison of the two meningococcal strainsused in this study

3.4 The genetic basis for the interaction of *N. meningitidis* with human host cells

The adhesion of meningococci to host cells is a process actively promoted by the bacteria, and their capacity to adhere depends on their genetic equipment. It is mainly affected by the type IV pilus (tfp), the so-called major adhesins Opa and Opc, minor adhesins such as NhhA, App or NadA and the polysaccharide capsule [14, 49, 50].

In almost all aspects of meningococcal colonization and infection, tfp plays a central role. [51] They are homopolymeric filaments composed of the major subunit pilin (*pilE*) but many more genes are required for tfp biogenesis and/or function [47, 52].

Neisserial tfp is divided into two classes based on the binding of the monoclonal antibody SM1 to pilin [53]. Class I pilin contains the conserved amino acid motif EYYLN recognized by SM1 and is encoded by a *pilE* gene that is located in the genome between the genes *fkbP* and *lpxC* [54, 55]. In close proximity to the PilE gene, the class I locus contains *pilS* (silent) cassettes. These are not expressed but occasionally recombine with *pilE*, hence promoting variety of possible pilin

versions. This process is called antigenic variation and requires a conserved motif called guanine quartets (G4) adjacent to *pilE* [56]. It is furthermore enhanced by a 66 bp long sequence named Sma/Cla element [57]. However, in meningococci expressing class II pili, *pilE* and *pilS* are found in distinct loci. In addition, the *pilS* cassettes are less numerous and the G4 and Sma/Cla elements are absent in the *pilE* locus. There is evidence that class II tfp do not undergo antigenic variation. Strain 8013 is known to harbour a class I tfp whereas WUE2594 possesses a class II pilin [55]. The *pilE* loci of 8013 and WUE2594 are depicted in Figure 3.1.

Figure 3.1 pilE and pilS loci in 8013 and WUE2594

Depicted are the *piIE* and *piIS* loci of *N. meningitidis* 8013 (A) and WUE2594 (B). The scalebar in each panel in bp above the genes denotes the place in the genome according to the published genome sequence. Black vertical lines indicate guanine quartets (G4, 5'-GGGTGGGTTGGGTGGG-3') and black boxes Sma/Cla sequences [55]. Drawn to scale.

In general, pilin is synthesized as prepilin and subsequently cleaved by the prepilin peptidase *pilD* [58]. After processing, the mature pilin is approximately 145-160 aa long with 25 conserved hydrophobic N-terminal residues that are embedded in the core of the pilus and a C-terminal disulphide bond, which is partially exposed at the surface. The posttranslational modifications of pilin include the glycosylation of serine residues, controlled by the pgl gene cluster [59-62]. Several other proteins are necessary for tfp function.

PilG is known to be required for piliation [63]. PilF promotes the elongation [64] whereas PilT is antagonistically involved in retraction of the pilus [65]. PilT is furthermore required for twitching motility [66] and intimate adhesion on host cells [67]. PilQ, another protein involved in pilus retraction, requires PilW to anchor in the outer cell membrane. The genes pilQ and pilW are located in one gene cluster together with pilP, pilM, pilN, and pilO, whose exact role in the tfp biogenesis are not entirely understood [68]. Likewise, the role of PilC is not fully understood even though it is shown that *pilC* null mutants are impaired in pilus expression, and it has been assumed that PilC acts antagonistically to PilT [66, 69]. PilC1 has been demonstrated to be involved in the adhesion to host cells [70, 71]. Several other proteins, such as PilH. Pill, PilJ. PilK, PilV, PilX, and ComP, are also targets of the prepilin peptidase and are, in the case of ComP, PilV, and PilX, also involved in host-cell interaction and adhesion [72, 73].

The outer membrane proteins known as Opa and Opc are another class of major adhesins. Opc interacts with cytoskeletal α -actinin of host cells and is therefore also an effective invasin [74]. *N. meningitidis* possesses four

Introduction

Opa genes (*opaA*, *opaB*, *opaC*, and *opaD*) [47]. Encoding identical or different Opa proteins, they express up to four different Opa variants simultaneously [75]. Opa proteins play a central role in developing IMD, since they are known to mediate bacterial adherence and to modulate human cellular immunity [76, 77].

In addition to those major adhesins, there is a class of so-called minor adhesins including the *Neisseria hia* homolog A (NhhA), the adhesion and penetration protein (App), and the neisserial adhesin A (NadA) [50]. NhhA and App are homologous to the autotransporterproteins Hia/Hsf and Hap of *Haemophilus influenzae* [78-80]. NhhA is predominantly present in invasive strains, whereas App is found in carrier and invasive strains [79, 80]. Nevertheless, both are reported to mediate adhesion to host cells [79, 80]. Also frequently found in hyperinvasive lineages is NadA, an oligomeric coiled-coil adhesin (Oca) that directly interacts with protein receptors on epithelial cells [81].

Thirteen capsular polysaccharides have been described but only six (A, B, C, W135, X, Y) are significantly associated to systemic infections [13]. The polysaccharide capsule is the main virulence determinant in *N. meningitidis* [82]. The capsules differ in the polysaccharides they are composed of. While the serogroup A strain WUE2594 expresses homopolymeric ($\alpha 1 \rightarrow 6$) N-acetylmannosamine 1-phosphate polysaccharide, the serogroup C strain 8013 expresses homopolymers of N-acetylneuraminic acid with ($\alpha 2 \rightarrow 9$)linkages, which are partially O-acetylated [13]. The capsule sterically inhibits the interaction of most adhesins with host cells but it does not prohibit the adhesion mediated by NhhA, App, NadA [50], or the tfp-mediated adhesion. In fact, the tfp appears to be required for adhesion in the presence of a capsule [14].

3.5 Aims of the study

To reveal the impact of the CRISPR/Cas system of *N. meningitidis* on the interaction to host cells, this study examines the adhesion and invasion of *cas9*, *rnc*, tracrRNA, and CRISPR array deletion mutants in the strains 8013 and WUE2594 on Detroit562 human nasopharyngeal cells.

4.1 Laboratory equipment

The following Table 4.1 enlists the laboratory equipment used in this study in alphabetical order. The states of registered business addresses are abbreviated by ISO-3166-1 alpha-2 country codes.

Table 4.1 Laboratory equipment

Device	Туре	Manufacturer
Agarose gel electrophoresis chamber	MINI-BASIC	<i>Cti</i> , Idstein DE
Agarose gel electrophoresis chamber	Electrophoresis chamber 'Maxi'	<i>Von Keutz</i> , Reiskirchen DE
Agarose gel electrophoresis chamber	SubCell® GT	<i>Bio-Rad</i> , Dreireich DE
Analytical balance	ABT 120-5DM	Kern & Sohn, Balingen DE
Analytical balance	P-1200	<i>Mettler-Toledo</i> , Greifensee CH
Bunsen burner	Fireboy (electric)	Tecnomara, Zürich CH
Bio Hazard bag	Ref. 86.1203	Sarstedt, Nümbrecht DE
Centrifuge (4 °C)	Megafuge 1.0 R	<i>Haraeus</i> , Hanau DE

Device	Туре	Manufacturer
Centrifuge for cell culture	Megafuge 1.0 R	<i>Haraeus</i> , Hanau DE
Centrifuge (benchtop, 4 °C)	Mikro Rapid	Hettich, Tuttlingen DE
Centrifuge (benchtop)	Biofuge pico	<i>Haraeus</i> , Hanau DE
Centrifuge (-Mini)	SproutTM	<i>Biozym</i> , Hessisch Oldendorf DE
Centrifuge tube 15 ml	Cellstar® Tubes 15 ml	<i>Greiner bio-one</i> Frickenhausen DE
Centrifuge tube 50 ml	Cellstar® Tubes 50 ml	<i>Greiner bio-one</i> Frickenhausen DE
Chronograph	Ref. 38.2021	<i>TFA Dostmann,</i> Wertheim DE
Cryo tubes	KV12	Hartenstein, Würzburg DE
Cuvettes for photometer	Nr. 67.742	Sarstedt, Nümbrecht DE
Colony counter	ProtoCOL	<i>Meintrup DWS</i> , Lähden DE
Cotton swabs	Ref. 1030128	<i>Heinz Herenz,</i> Hamburg DE
Disposal bag	Ref. 86.1197	Sarstedt, Nümbrecht DE
OD ₆₀₀ photometer	WPA biowave	Biochrom, Berlin DE

Device	Туре	Manufacturer
Heating block	VLM Q1	VLM, Bielefeld DE
Hemocytometer	ZK-03	Hartenstein, Würzburg DE
Imaging system	ChemiDoc MP	<i>Bio-Rad</i> , Dreieich DE
Incubator (37 °C)	Haraeus Kelvitron® t	<i>Haraeus</i> , Hanau DE
Incubator (37 °C/ 5% CO ₂)	Haraeus 6000	<i>Haraeus</i> , Hanau DE
Incubator (37 °C/ 5% CO ₂) for cell culture	MCO-20AIC	SANYO, Oizumi-Machi JP
Incubation hood	CERTOMAT® H	<i>B. Braun</i> , Melsungen DE
Inoculation loop	Ref. 86.1562.010	Sarstedt, Nümbrecht DE
Laboratory film	Parafilm M	Bemis, Neenah US
Magnetic stirrer	IKAMAG® RCT	IKA®, Staufen DE
Membrane pump	Тур 400057	ILMVAC, Ilmenau DE
Microscope	Wilovert®	WILL, Wetzlar DE
Microcentrifuge tubes 0.5 ml	Ref. 72.704	Sarstedt, Nümbrecht DE
Microcentrifuge tubes 1 ml	Ref. 72.706	Sarstedt, Nümbrecht DE
Microcentrifuge	Ref. 72.695.500	Sarstedt, Nümbrecht DE

Device	Туре	Manufacturer		
tubes 2 ml				
Microwave	R-941STW	Sharp, Osaka JP		
Nitrocellulose Transfer Membrane	Ref. 10401196	<i>GE Healthcare,</i> Freiburg DE		
Oven	OV 5	Biometra, Göttingen DE		
PCR thermocycler	T3 Thermocycler	<i>Biometra</i> , Göttingen DE		
pH indicator strips	PH33	Hartenstein, Würzburg DE		
Pipette 10 µl	Research plus, 0.5-10 μl	Eppendorf, Hamburg DE		
Pipette 100 µl	Research plus, 10-100 μl	Eppendorf, Hamburg DE		
Pipette 1000 µl	Research plus, 100-1000 µl	Eppendorf, Hamburg DE		
Pipette controller	Accu-jet®	BRAND, Wertheim DE		
Pipette controller	Accu-jet® pro	BRAND; Wertheim DE		
Pipette tip 10 µl	Ref. 70.1115	Sarstedt, Nümbrecht DE		
Pipette tip 200 µl	Ref. 70.760.002	Sarstedt, Nümbrecht DE		
Pipette tip 1000 µl	Ref. 70.762	Sarstedt, Nümbrecht DE		
Power supply	EV243 Consort Power Supply	Consort, Turnhout BE		

Device	Туре	Manufacturer
Power supply	Standard Power Pack P25	<i>Biometra</i> , Göttingen DE
Protective gloves	Peha-soft nitrile Fino L	<i>Hartmann,</i> Heidenheim DE
Protein gel electrophoresis	Mini-Protean	<i>Bio-Rad</i> , Dreieich DE
Safety cabinet	Safe 2020 1.8	<i>Thermo Scientific,</i> Frankfurt DE
Safety cabinet for cell culture	NUAIRE	<i>Thermo Scientific,</i> Frankfurt DE
Serological pipette 5 ml	Ref. 86.1253.001	Sarstedt, Nümbrecht DE
Serological pipette 5 ml	Ref. 86.1254.001	Sarstedt, Nümbrecht DE
Serological pipette 5 ml	Ref. 86.1685.001	Sarstedt, Nümbrecht DE
Semi-dry blotter	PEGASUS S	PHASE, Lübeck DE
Shaker	CERTOMAT® U	<i>B. Braun</i> , Melsungen DE
Shaker	Phero Shaker	<i>Biotec-Fischer</i> , Reiskirchen DE
Spectrophotometer	PEQLAB, ND-1000	<i>VWR</i> , Erlangen DE
Spectrophotometer	Multiskan EX	<i>Thermo Scientific</i> , Frankfurt DE

Device	Туре	Manufacturer
Surgical face mask	Foliodress mask loop	<i>Hartmann,</i> Heidenheim DE
Thermoshaker	Thermomixer 5436	<i>Eppendorf</i> , Hamburg DE
UV crosslinker	18000	<i>Life Technologies</i> , Darmstadt DE
Vortex mixer	REAX 2000	<i>Heidolph</i> , Schwabach DE
Waterbath for cell culture	WB 10	<i>Memmert</i> , Schwabingen DE
Waterbath	WB 7	<i>Memmert</i> , Schwabingen DE

4.2 Chemicals and consumables

Standard laboratory chemicals were purchased from *AppliChem* (Darmstadt DE), *Merck* (Darmstadt DE), *Carl Roth* (Karlsruhe DE), *Roche* (Mannheim DE) or *Sigma-Aldrich* (Schnelldorf DE). All specific reagents are listed alphabetically in Table 4.2.

Table 4.2 Specific reagents

Reagent	Source
3-propanesulfonic acid (MOPS)	<i>AppliChem</i> , Darmstadt DE
Ammonium persulfate (APS)	Roth, Karlsruhe DE
Anti-Digoxidenin-AP Fab fragments (Anti-DIG-ATP)	<i>Roche</i> , Mannheim DE
Bromphenol blue	<i>Merck</i> , Darmstadt
β-mercaptoethanol (β-ME)	Roth, Karlsruhe DE
Chloroform ultra pure	AppliChem, Darmstadt DE
Crystal violet	<i>BD,</i> Heidelberg DE
ddH ₂ O	<i>B.Braun,</i> Melsungen DE
DIG DNA labelling mix	<i>Roche</i> , Mannheim DE
Dithiothreitol (DTT)	AppliChem, Darmstadt DE
Ethylenediaminetetraacetic acid (EDTA)	AppliChem, Darmstadt DE
Ethanol absolute	AppliChem, Darmstadt DE
Formaldehyde solution, 36.5-38%	<i>Sigma-Aldrich</i> , Schnelldorf DE
Formamide, deionized	AppliChem, Darmstadt DE
GelRed™	<i>Biotium</i> , Fremont US

Reagent	Source
Hexanucleotide mix (10x)	<i>Roche</i> , Mannheim DE
Nonfat dried milk powder	AppliChem, Darmstadt DE
Nuclease-free water	Ambion, Austin US
Polyacrylamide (PAA): Rotiphorese Gel 30	Roth, Karlsruhe DE
Polyacrylamide (PAA): Rotiphorese Gel 40	Roth, Karlsruhe DE
Sodium dodecyl sulfate (SDS) pellets	Roth, Karlsruhe DE
Tetramethylethylendiamine (TEMED)	Roth, Karlsruhe DE
Trishydroxymethylaminomethane (TRIS)	<i>Sigma-Aldrich</i> , Schnelldorf DE
Triton-X 100%	Roth, Karlsruhe DE
Xylene cyanole	<i>Sigma-Aldrich</i> , Schnelldorf DE

Standard consumables were purchased from *Ambion* (Austin US), *Biozym* (Hessisch Oldendorf DE), *Eppendorf* (Wesseling-Berzdorf DE), *Greiner bio-one* (Frickenhausen DE), *Hartenstein* (Würzburg DE) and *Sarstedt* (Nümbrecht DE). All specific consumables are listed alphabetically in Table 4.3.

Table 4.3 Special consumables

Application	Product	Source
Agarose-gels	UltraPure™ agarose	<i>Life Technologies</i> , Darmstadt DE
dNTPs		
PCR amplification	100mM dNTP set (dATP, dCTP, dGTP, dTTP)	<i>Sigma-Aldrich</i> , Schnelldorf DE
Reaction buffers		
for <i>Taq</i> polymerase	ThermoPol reaction buffer	<i>New England Biolabs,</i> Frankfurt DE
for Q5® polymerase	Q5 reaction buffer	<i>New England Biolabs,</i> Frankfurt DE
for restriction enzymes	CutSmart® Buffer, NEBuffer 3.1	<i>New England Biolabs,</i> Frankfurt DE
for T4 DNA Ligase	T4 DNA Ligase Buffer	<i>New England Biolabs,</i> Frankfurt DE
Oligos		
PCR amplification	DNA oligonucleotides	<i>Sigma-Aldrich</i> , Schnelldorf DE
Ladders		
	DNA HyperLadder™ 1kb	<i>Bioline,</i> Luckenwalde DE
Application Product		Source
---------------------------	--	---
	DNA Molecular Weight Marker VII, DIG-labeled	<i>Roche,</i> Mannheim DE
	PageRuler™ Prestained Protein Ladder, 10 to 180 kDa	<i>Life Technologies,</i> Darmstadt DE
Blotting		
Southern blot	Amersham Hybond™-N⁺	<i>GE Healthcare,</i> Freiburg DE
Antibodies		
First antibody	Monoclonal Anti- polyhistidine antibody produced in mouse	<i>Sigma-Aldrich,</i> Schnelldorf DE
Second antibody	Anti-Mouse IgG- Peroxidase antibody produced in rabbit	<i>Sigma-Aldrich,</i> Schnelldorf DE
Varying Applications		
Static biofilm formation	96 Well microtiter plate	<i>Sarstedt,</i> Nümbrecht DE
Cell culturing	TC Flask T75 standard	<i>Sarstedt,</i> Nümbrecht DE
Cell invasion/adhesion	24-well cell culture plates	<i>Sarstedt,</i> Nümbrecht DE

4.3 Kits

All kits are listed in Table 4.4 ordered by purpose.

Table 4.4 Kits

Application	Product	Source
DNA extraction	Invisorb Spin DNA Extraction Kit	<i>STRATEC Biomedical AG,</i> Birkenfeld DE
gDNA isolation	QIAamp DNA Mini Kit	<i>Qiagen,</i> Hilden DE
PCR purification	MSB Spin PCRapace	<i>STRATEC Biomedical AG</i> , Birkenfeld DE
Plasmid isolation	QIAprep Spin Miniprep Kit	<i>Qiagen,</i> Hilden DE

4.4 Enzymes

The following Table 4.5 lists all enzymes used in this study.

Table 4.5 Enzymes

Enzyme	Source
DNase I, RNase-free	<i>Thermo Scientific,</i> Schwerte DE
Klenow enzyme	<i>Roche</i> , Mannheim DE
Lysozyme	Roth, Karlsruhe DE
Restriction endonucleases	<i>New England Biolabs,</i> Frankfurt DE
T4 DNA ligase	<i>New England Biolabs,</i> Frankfurt DE
Taq DNA polymerase	<i>New England Biolabs,</i> Frankfurt DE
Q5® High-Fidelity DNA polymerase	<i>New England Biolabs,</i> Frankfurt DE

4.5 Buffers and Solutions

If not indicated otherwise, utilized reagents were purchased from *Carl Roth* (Karlsruhe DE), *Difco* (Heidelberg DE), *Merck* (Darmstadt DE), or *Sigma-Aldrich* (Steinheim DE).

Unless stated otherwise, all solutions and buffers were sterilized by autoclaving at 121 °C, 1 bar for 20 minutes.

For various microbiological and cell culture methods 1x Phosphate-buffered saline (PBS, Table 4.6) was used. It has final concentrations of 2.6 mM potassium chloride (KCI), 1.4 mM potassium phosphate monobasic (KH₂PO₄), 137.9 mM sodium chloride (NaCI) and 8.0 mM sodium phosphate dibasic (Na₂HPO₄). The following Table 4.6 lists the instructions for preparation.

	Content	Preparation
10x PB	3	
	GIBCO® DPBS	1 pellet
	ddH ₂ O	ad 1000 ml
1x PBS		
	10x PBS	100 ml
	ddH ₂ O	ad 1000 ml

Table 4.6 Phosphate-buffered saline

For long term storage of bacteria, a glycerol based freezing medium was used. The following Table 4.7 lists the instructions for preparation.

Table 4.7 Freezing medium

Content	Preparation
Glycerol, 86%	233 ml
Caso-Bouillon (<i>BD</i> , Heidelberg DE)	15 g
ddH ₂ O	ad 500 ml

For electrophoretic separation of DNA in agarose gels 1x TAE (Table 4.8) was used as running buffer. The 6x DNA loading buffer (Table 4.8) was stored at 4 °C in a 1.5 ml microcentrifuge tube until usage. For DNA staining loaded agarose gels were bathed in GelRed[™] solution (Table 4.8) for 30-45 minutes.

Table 4.8 Buffers and solutions used for electrophoreticseparation of DNA

Content	Preparation
50x TAE (TRIS-acetate EDTA)	
TRIS	242 g
100% acetic acid	57.1 ml
0.5 M EDTA (pH 8.0)	100 ml
ddH2O	ad 1000 ml, adjust pH to 8.3

Content	Preparation
1x TAE	
50x TAE	40 ml
ddH ₂ O	ad 2000 ml
6x DNA loading buffer	
Saccharose	40 g
Glycine	30 ml
Bromphenolblue	100 mg
Xylencyanol	100 mg
ddH ₂ O	ad 100 ml
GelRed™ solution	
ddH2O	150 ml
GelRed™	15 µl

The composition of all buffers and solutions used for Southern blots is given in Table 4.9.

	Content	Preparation
10x B	locking reagent	
	Blocking reagent (<i>Roche</i> , Mannheim DE)	10 g
	1x Maleic acid buffer	ad 100 ml, storage at -10 °C
1x Blocking solution		
	10x blocking reagent	10 ml
	1x Maleic acid buffer	90 ml
Antibody solution		
	Anti-DIG-AP (<i>Roche</i> , Mannheim DE solution) 1:10000 in 1x Blocking
	Storage at 4 °C	
CSPD working solution		

Table 4.9 Buffers and solutions used for Southern blots

CSPD (Roche, Mannheim DE) 1:100 in detection buffer

Storage at 4 °C

Coomassie staining solution

10 % acetic acid

60 mg/l Coomassie Blue R-250

	Content	Preparation
Gel fi	xing solution	
	25% isopropanolol	
	10% acetic acid	
	in ddH ₂ O	
Detec	ction buffer	
	1 M TRIS/HCI, pH 9.6	100 ml (0.1M)
	5M NaCl	20 ml (0.1M)
_	ddH ₂ O	ad 1000 ml
High	SDS hybridisation buffer	
	20x SSC	125 ml
	10x Blocking reagent	100 ml
	SDS	35 g
	10% N-Lauroylsarcosine	0.5 ml
	5x Sodium phosphate buffer, pH 7.0	25 ml

ddH2O	ad 500 ml,
	storage at -20 °C

Content	Preparation	
1x Maleic acid buffer		
Maleic acid	23.2 g	
NaCl	17.53 g	
ddH ₂ O	ad 2000 ml, adjust pH to 7,5	
20x Saline-Sodium-Citrate (SSC)		
NaCl	175.5 g	
Sodium citrate	88.2 g	
ddH ₂ O	ad 1000 ml, adjust pH to 7.0	
Stringent washing buffer I		
20x SSC	100 ml	
10x SDS	10 ml	
ddH ₂ O	ad 1000 ml	
Stringent washing buffer II		
20x SSC	5 ml	
10x SDS	10 ml	
ddH ₂ O	ad 1000 ml	

Content	Preparation
Washing buffer	
1x Maleic acid buffer	1000 ml
Tween 20	3 ml
ddH ₂ O	ad 2000ml

Table 4.10 lists all buffers, gels and solutions used for electrophoretic separation of denatured proteins using SDS polyacrylamide gels (SDS PAGE).

Table 4.10 SDS PAGE

Preparation
200 ml
10 ml
ad 2000 ml
30 g
144 g
ad 1000 ml, adjust pH to 8.3

Content	Preparation
Lower TRIS	
TRIS	90.85 g
10% SDS	20 ml
ddH2O	ad 500 ml, storage at 4 °C
Upper TRIS	
TRIS	30.3 g
10% SDS	20 ml
ddH ₂ O	ad 500 ml, storage at 4 °C
Sample buffer	
B-mercaptoethanol	5 ml
20% SDS	10 ml
Glycerol	25 ml
Bromphenol blue	a spatula tip
0.5 M TRIS/HCI pH 6.8	ad 100 ml, storage at -20 °C

Content	Preparation
Separation gel 12.5%	
Lower TRIS	3 ml
PAA 30	5 ml
10% APS	60 µl
TEMED	20 µl
ddH ₂ O	4 ml, yielding 2 gels
Loading gel	
Upper TRIS	1.25 ml
PAA 30	0.75 ml
10% APS	35 µl
TEMED	20 µl, yielding 2 gels

4.6 Culture media

Unless stated otherwise, culture media were sterilized by autoclaving at 121 °C with 1 bar for 20 minutes or filtrated through 0.2 μ m membrane filters (*Sarstedt*, Nümbrecht DE).

4.6.1 Liquid media for *N. meningitidis* cultivation

In this study proteose peptone medium (PPM) was used as rich medium for *N. meningitidis*. The following Table 4.11 lists its preparation. To obtain PPM⁺ (Table 4.13) the supplements (Table 4.12) were added right before use.

Table 4.11 Composition of PPM

Content	Preparation
Bacto™ proteose peptone (<i>BD,</i> Heidelberg DE)	15 g
NaCl	5 g
Potato starch (Honeywell, Offenbach DE)	0.5 g
KH4PO4	4 g
K ₂ HPO ₄ (dipotassium phosphate)	1 g
ddH ₂ O	ad 1000 ml, adjust to pH 7.8

	Content	Preparation
8.4%	NaHCO ₃	
	NaHCO ₃	21 g
	ddH ₂ O	ad 250 ml
2 M N	lgCl ₂	
	MgCl ₂ x 6 H ₂ O	101.7 g
	ddH ₂ O	ad 250 ml
Poly∖	/iteX (bioMèrieux, Nürtingen DE)	
	Cobalamin	0.1 mg/l
	L-glutamine	100 mg/l
	Adenine	10 mg/l
	Guaninchlorhydrate	0.3 mg/l
	4-Aminobenzoic acid (PABA)	0.13 mg/l
	L-cystine	11 mg/l
	Diphosphopyridinnucleotid, oxidized	2.5 mg/l
	Cocarboxylase	1.04 mg/l
	Iron(III)nitrate	0.2 mg/l
	Thiamine chlorhydrate	0.03 mg/l

Table 4.12 Supplements of PPM⁺ medium

Content	Preparation
Cysteine chlorhydrate	259 mg/l

Table 4.13 Composition of PPM⁺

Content	Preparation
PPM	98 ml
8.4% NaHCO ₃	500 µl
2 M MgCl ₂	500 µl
PolyViteX	1 ml

The gonococcus base liquid (GCBL) medium was used for transformation of *N. meningitidis*. The following Table 4.14 lists its composition. To obtain GCBL⁺ (Table 4.16) the supplements (Table 4.15) were added right before use.

Table 4.14 Col	mposition of	GCBL	medium
----------------	--------------	------	--------

Content	Preparation
Bacto™ proteose peptone (<i>BD,</i> Heidelberg DE)	15 g
K ₂ HPO ₄	4 g
KH ₂ PO ₄	1 g
NaCl	1g
ddH ₂ O	ad 1000 ml

Table 4.15 Supplements of GCBL⁺⁺ medium

Content	Preparation	
Kellogg's supplement I		
Glucose	40 g	
L-glutamine	1 g	
Thiamine pyrophosphate	2 mg	
ddH2O	ad 100 ml, storage at -20 °C	
Kellogg's supplement II		
Iron(III) nitrate	50 mg	
ddH2O	ad 100 ml, storage at -20 °C	

Content	Preparation
Sodium bicarbonate (NaHCO ₃)	
NaHCO ₃	0.42 g
ddH ₂ O	ad 100 ml

Table 4.16 Composition of GCBL⁺⁺ medium

Content	Preparation
GCBL	97.9 ml
Kellogg's I	1 ml
Kellogg's II	100 µl
NaHCO₃	1 ml

4.6.2 Solid media for *N. meningitidis* cultivation

For cultivation of *N. meningitidis* strains on solid media, supplemented gonococcus base (GCB⁺⁺) agar plates or Columbia agar plates with 5% sheep blood (COS plates; *BD*, Heidelberg DE) were used. The following Table 4.17 lists the composition of GCB⁺⁺ agar plates.

Table 4.17	Composition	of GCB ⁺⁺	agar
------------	-------------	----------------------	------

Content	Preparation
Difco™ GC Medium Base (<i>BD</i> , Heidelberg DE)	36.25 g
Agar	1.25 g
ddH ₂ O	ad 1000 ml
Kellogg's I	10 ml, added after autoclavation
Kellogg's II	1 ml, added after autoclavation

4.6.3 E. coli cultivation

For cultivation of *E. coli* in liquid medium *Luria-Bertani* (LB) medium was used. Table 4.18 lists its composition. For cultivation on solid media 1.5% agar was added to the liquid medium before autoclaving. For chemical transformations of *E. coli* Super Optimal broth with Catabolic repression (SOC; Table 4.20) was used. To obtain SOC the supplements were added to Super Optimal Broth (SOB; Table 4.19) right before use.

Table 4.18 Composition of LB medium

Content	Preparation
Peptone	10 g
Yeast extract	5 g
NaCl	10 g
ddH ₂ O	ad 1000 ml

Table 4.19 Composition of Super Optimal Broth (SOB)medium

Content	Concentration
Bacto™ tryptone 2% Bacto™ yeast extract (<i>BD</i> , Heidelberg DE)	0.5%
NaCl	10 mM
KCI	2.5 mM

Content	Preparation
SOB	5 ml
2 M MgCl ₂	25 µl
1 M MgSO ₄	50 µl
1 M glucose	100 µl

Table 4.20 Composition of Super Optimal broth withCatabolic repression (SOC) medium

4.6.4 Cell culture media and solutions

Table 4.21 lists solutions and media used for cell culturing with their intended usage and the source of purchase

Product	Application	Source
MEM Eagle (EMEM)	Cell culture medium	LONZA, Basel CH
Fetal calf serum (FCS)	Medium supplement	<i>Thermo Fisher</i> , Frankfurt DE
Nonessential amino acids (NEAA)	Medium supplement	LONZA, Basel CH
Sodium pyruvate (NaPyr 100 mM)	Medium supplement	LONZA, Basel CH

Product	Application	Source
Trypsin-EDTA (0.05%)	Dissociation of cells	<i>Thermo Fisher</i> , Frankfurt DE
Gentamicin (10 mg/ml)	Antibacterial agent	Biochrom, Berlin DE
Saponin (20%)	Permeabilization of cells	<i>SERVA,</i> Heidelberg DE
RPMI 1640 + Glutamax™ -I	Cell culture medium	<i>Thermo Fisher,</i> Frankfurt DE
Dimethyl sulfoxide (DMSO)	Cell cryopreservation	<i>Roth</i> , Mannheim DE

As standard cell culture medium EMEM⁺⁺⁺ was used. Table 4.22 lists its composition.

Table 4.22 Composition of EMEM***

Content	Preparation
EMEM	500 ml
FCS	50 ml
NEAA	5 ml
NaPyr	5 ml

Given in Table 4.23 are the concentrations of components of EMEM supplemented with 1% NEAA and 1% sodium pyruvate (100 mM) calculated using the manufacturers' published formulation. Due to the addition of 10% FCS the concentrations of amino acids are likely higher in EMEM⁺⁺⁺ (see Table 4.22) but because of its natural origin the exact formulation of FCS underlies fluctuations and cannot be assessed exactly.

Table 4.23 Formulation of EMEM supplemented with 1%NEAA and 1% sodium pyruvate (100mM)

Component	Concentration (g/l)
Inorganic Salts	
CaCl ₂	0.196
MgSO ₄	0.096
KCI	0.392
NaHCO ₃	1.471
NaCl	6.667
NaH ₂ PO ₄ H ₂ O	0.137
Amino acids	
L-Alanine	0.017
L-Arginine HCI	0.124

Component	Concentration (g/l)
L-Asparagine H ₂ O	0.028
L-Aspartic Acid	0.026
L-Cystine 2HCI	0.031
L-Glutamic Acid	0.029
L-Glutamine	0.286
Glycine	0.007
L-Histidine HCI H ₂ O	0.041
L-Isoleucine	0.051
L-Leucine	0.051
L-Lysine HCI	0.071
L-Methionine	0.015
L-Phenylalanine	0.032
L-Proline	0.023
L-Serine	0.021
L-Threonine	0.047
L-Tryptophan	0.01
L-Tyrosine 2Na 2H ₂ O	0.051
L-Valine	0.046

Component	Concentration (g/l)
Vitamins	
Choline Chloride	0.001
Folic Acid	0.001
myo-Inositol	0.002
Nicotinamide	0.001
D-Pantothenic Acid (hemicalcium)	0.001
Pyridoxine HCI	0.001
Riboflavin	0.001
Thiamine HCI	0.001
Other	
D-Glucose	0.98
Phenol Red, Sodium Salt	0.01
Sodium Pyruvate	0.216

For long-term storage, $1x \ 10^6$ cells were resuspended in freezing medium (Table 4.24) and stored in liquid nitrogen at -196 °C.

Table 4.24 Composition of cell freezing medium

Content	Preparation
RPMI 1640 + Glutamax™-I	50 ml
FCS	30 ml
DMSO	20 ml

In some experiments the cell culture medium RPMI⁺ was used. Table 4.25 lists its composition.

Table 4.25 Composition of RPMI⁺

Content	Preparation
RPMI 1640 + Glutamax™-I	500 ml
FCS	50 ml

4.7 Antibiotic supplements

Table 4.26 lists the antibiotics and the concentrations used in this study.

Antibiotic	Fir concer (µg/	nal Itration /ml)	Sto concer (µg/	ock Itration /ml)	Solvent
	E.c.ª	<i>N.m</i> . ^b	E.c.ª	<i>N.m</i> . ^ь	
Ampicillin	100	-	100	-	ddH ₂ O
Kanamycin	30	100	30	100	ddH ₂ O
Erythromycin	250	7	100	7	100% Ethanol
Chloramphenicol	30	7	30	7	70% Ethanol

Table 4.26 Antibiotics

^afor *E. coli*

^bfor *N. meningitidis*

Oligonucleotides 4.8

329

The oligonucleotides used in this study are listed in Table 4.27.

Target site	Sequence (5'-3') ^b	IDª
pBluescript-SK	AATACGAC TCACTATA GGGC	242
pBluescript-SK	ACCATGAT TACGCCAA GC	243
Tn903 Kanamycin resistance cassette	GGTATTGA TAATCCTG ATATGAA	328
Tn903 Kanamycin	GATGGTCG	220

GAAGAGGC

ATAAATT

Table 4.27 Sequences of oligonucleotides

550	gcgcgc <u>GG</u> <u>ATCC</u> _{BamHI} T CCAACAGG TTGGCAAT CCGCAAT	WUE2594/ 8013 downstream <i>rnc</i>
551	gcgcgc <u>GA</u> <u>ATTC</u> EcoRIG GCGGCGCG TGAATATG CCGTCTGA	WUE2594/ 8013 downstream <i>rnc</i>

resistance cassette

IDª	Sequence (5'-3') ^b	Target site
552	gcgcgc <u>GA</u> <u>ATTC</u> _{E∞RI} T ACCGTCTT CCGCAAAA AACAGCC	WUE2594/ 8013 upstream <i>rnc</i>
554	gcgcgc <u>AA</u> <u>GCTT</u> HindIII TTCGCTGC CGATTTCG TTGGTGA	WUE2594/ 8013 upstream <i>rnc</i>
617	ATTCGTTG GAAACCAG CTCGAA	WUE2594/ 8013 <i>rnc</i> locus
618	ATATCTTC GGGATACA TCGGCACG	WUE2594/ 8013 <i>rnc</i> locus
729	gcgcgc <u>GG</u> <u>ATCC</u> _{BamHI} A AATCGCCT GTCTGTAA GGCATG	WUE2594/ 8013 upstream tracrRNA
730	gcgcgc <u>GA</u> <u>ATTC</u> _{EcoRI} G TATATAAA TAAGACAA TAAGATAT ATTATCA	WUE2594 upstream tracrRNA
732	gcgcgc <u>GA</u> <u>ATTC</u> _{E∞RI} T GCCGTCTG AAACCGAT TTTGGGCT T	WUE2594 downstream tracrRNA

IDª	Sequence (5'-3') ^b	Target site
733	gcgcgc <u>AA</u> <u>GCTT</u> HindIII AACTGTCG AAACTCAA ACCGCAA	WUE2594 downstream tracrRNA
739	AATCTTTG CGGCTGAA CGTATG	WUE2594 tracrRNA locus
740	ATCGAACC GGTGCGGC TCATTGA	WUE2594 tracrRNA locus
833	gcgcgc <u>GA</u> <u>ATTC</u> _{E∞RI} G TATATAAA TAAGACAA TCAGATAT	8013 upstream tracrRNA
834	gcgcgc <u>AA</u> <u>GCTT</u> HindIII AAGTCCGCC AAATCGCAC CGACCA	8013 downstream tracrRNA
835	gcgcgc <u>GA</u> <u>ATTC</u> _{E∞RI} T GCCGTCTG AAACCGGT TTTTGGGC T	8013 downstream tracrRNA
903	GCCGTCTG AAGCCGCA AGACAGCG	8013 <i>cas9</i> locus

IDª	Sequence (5'-3') ^b	Target site
904	TATGAAAC AAGCCTAA TGCAGGCA	8013 <i>cas9</i> locus
905	TCGAAACT CAAACCGC AAGACAGC	WUE2594 <i>cas9</i> locus
906	TATGAAAC AAGCCTAA TGCAGGTA	WUE2594 <i>cas9</i> locus
935	CGGGAAGA TGCGTGAT CTGA	Kanamycin probe
936	CCTCTTCC GACCATCA AGCA	Kanamycin probe
970	TTCGCCCA AATCGCAG GAAATGA	WUE2594/ 8013 rnc
971	TGTTTTGA AACAGCAG GCACACG	WUE2594/ 8013 <i>rnc</i>
972	GCAAATGC GGTTGTAG CTCCCTT	WUE2594 CRISPR
973	CCCGACAC ATCCGTCA TCAACG	WUE2594 CRISPR
974	AATCTTCC GCACTTCC AGGGGTT	8013 CRISPR

ID ^a	Sequence (5'-3') ^b	Target site
975	CAAGTGCG AGGCGCGT ATATTGT	8013 CRISPR
976	TGCCGAAG CCTCAACA TTGATGG	WUE2594/ 8013 <i>cas9</i>
977	TTGGCGTT TCTCAATT TCTTTGC	WUE2594/ 8013 <i>cas9</i>
988	CCGAACCG CTGGCGCG TTAA	8013 NMV0959 locus
989	ATTAATGC CGCCTCCG TCGG	8013 porA locus
1031	GAAGCGAA CTCAATCC ATTCA	8013 CRISPR locus
1032	CAATGGAA AGCTAATG TATTA	8013 CRISPR locus
1035	gttt <u>GGAT</u> <u>CC</u> BamHIAGC CACGTTGT GTCTCAAA	Tn903 Kanamycin resistance cassette
1043	gtttt <u>ATG</u> <u>CAT</u> _{NsiI} GG AATACGTT GGGGGAAA AC	8013 mc

ID ^a	Sequence (5'-3') ^b	Target site
1044	gtttt <u>GGA</u> <u>TCC</u> _{BamHI} AA AGGCTCCA AAAGGAGC CTTTTCAT TTCTTTTT CCTCTTCA GC	8013 mc
1045	gtttt <u>ATG</u> <u>CAT_{Nsil}TTC TTATTTCA AATCTGTG ACAC</u>	8013 CRISPR
1046	gtttt <u>GGA</u> <u>TCC</u> _{BamHI} AA AGGCTCCA AAAGGAGC CTTTAATA AGGATTTC CCGTCGAA GT	8013 CRISPR
1047	gtttt <u>ATG</u> <u>CAT</u> _{Nsil} CC GTAAACAA CGTTGCAA ATAA	8013 tracrRNA
1048	gtttt <u>GGA</u> <u>TCC</u> _{BamHI} AA AGGCTCCA AAAGGAGC CTTTTAAA CGATGCCC CTTAAAGC AG	8013 tracrRNA

IDª	Sequence (5'-3') ^b	Target site
1049	CACTTTCC CTGTTTCT ATG	<i>cat</i> Chloramphenicol resistance cassette
1054	GCCGTCTG AACGGGGC GGTGAAGC GGATAG	pCompInd
1055	GCCGTCTG AACGAACC GCTGGCGC GTTAAACA	pCompInd
1110	gttttt <u>CA</u> <u>TATG_{Ndel}AC GCGTCTTA AGGCGGCC</u>	<i>cat</i> Chloramphenicol resistance cassette
1111	gttttt <u>TC</u> <u>TAGAxba</u> lGT CAACCGTG ATATAGAT TGAA	<i>cat</i> Chloramphenicol resistance cassette
1117	gtttt <u>CAT</u> <u>ATG</u> №eiCGC TGAGGTCT GCCTCGTG	Tn903 Kanamycin resistance cassette
1118	gtttt <u>TCT</u> <u>AGA</u> xbalAGC CACGTTGT GTCTCAAA	Tn903 Kanamycin resistance cassette
1122	CGAGCAAT ACAGCGGC AGATTTTC C	8013 NMV1884

Materials

ID ^a	Sequence (5'-3') ^b	Target site
1123	CTAAACCT AAAGTGAA TAGCTCAC TTATCAG	ermC
1227	CGCCAAGA AGAAAACC GCAA	8013 <i>cas9</i> probe
1228	TTTCGCTG CCCAATAC CAGT	8013 <i>cas9</i> probe
1229	ATTGGCGC GAAAAATC GGAC	8013 NMV0031 probe
1230	CCGCACTT TTTCTGAT GGGC	8013 NMV0031 probe
10509	gcgcgc <u>GG</u> <u>ATCC</u> _{BamHI} G TCAGCCGC GACGACTA CGGCGGC	WUE2594/ 8013 upstream cas9
10510	gcgcgc <u>GA</u> <u>ATTC</u> EcoRIT TATTACTC CGTAAACA ACGTTGC	WUE2594/ 8013 upstream cas9
10511	gcgcgc <u>GA</u> <u>ATTC</u> ECORIA TTAATCTA TCCCTGTT TCAGACT	8013 downstream <i>cas9</i>

ID ^a	Sequence (5'-3') ^b	Target site
10512	gcgcgc <u>CT</u> <u>CGAG</u> _{Xhol} TA GTTCAATG CGGCATTG ACGGCA	8013 downstream <i>cas9</i>
10515	gcgcgc <u>GA</u> <u>ATTC</u> _{E∞RI} A TTAATCTA TCCCTGTT TCAGGCG	WUE2594 downstream <i>cas9</i>
10516	gcgcgc <u>CT</u> <u>CGAG</u> xhoITA GTTCAATG CGGCATTG ACGGCG	WUE2594 downstream <i>cas9</i>
11114	gcgcgc <u>GG</u> <u>ATCC</u> _{BamHI} C GGCAACAT TTCAGCAC CTTG	WUE2594 downstream CRISPR
11115	gcgcgc <u>GA</u> <u>ATTC</u> ECORIA CTTCGACG GGAAATCC TTAT	WUE2594/ 8013 downstream CRISPR
11116	gcgcgc <u>GA</u> <u>ATTC</u> EcoRIC AGCCGTTG CGATAAGC GAAC	WUE2594/ 8013 upstream CRISPR
11306	gcgcgc <u>AA</u> <u>GCTT</u> HindIII CTGGTCCA ACTTCAAT AGCGG	WUE2594 upstream CRISPR

Materials

IDª	Sequence (5'-3') ^b	Target site
11443	GGATCC _{BamHI} CGTGATAC ATTTGTAC GAACA	8013 downstream CRISPR
11444	AAGCTT _{HindIII} CAGTTTGA GAGTAAAG CAGGG	8013 upstream CRISPR
11604	TGCCGTCC AGTAACTG ATGTTCTT	WUE2594 downstream CRISPR
11605	GCATCAAA CAACACCT CATCAAAA	WUE2594 upstream CRISPR
12662	tatt <u>GACG</u> <u>TC</u> _{Aattl} TTC TAGCCGTT GTGAGATG ATAAG	8013 cas9
12663	tcgc <u>TTAA</u> <u>TTAA_{PacI}C</u> GGACAGGC GGGCGTTT TTTC	8013 <i>cas9</i>

^aID-number 0-9999 according to the AG SCHOEN oligonucleotide collection, 10000-99999 according to the common IMIB oligonucleotide collection ^bRestriction sites are underlined, small letters indicate nonsensenucleotides
4.9 Plasmids

The plasmids used for cloning are listed in Table 4.28.

Table 4.28 Utilized plasmids

IDª	Plasmid	Description and Usage	Res.⁵	Reference
315	pBluescript- SK	standard cloning vector	Amp ^r	<i>Stratagene,</i> La Jolla US
	pBluescript II - SK (+)	standard cloning vector	Amp ^r	<i>Stratagene,</i> La Jolla US
	pGCC2	standard vector for complementation	Ery ^r	[83]
	pCompInd	standard vector for complementation	Cm ^r	[84]
58	pUC4K	Delivery plasmid harbouring kanamycin resistance cassette	Km ^r	<i>GE Healthcare</i> , Freiburg DE
5101	pBJ104	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 10509/10510 comprising 8013 <i>cas9</i> UP fragment and PCR product 10511/10512 comprising 8013 <i>cas9</i> DOWN fragment into <i>XhoI</i> and <i>BamHI</i> sites of pBS-SK; used for 8013 <i>cas9</i> knockouts	Amp ^r / Km ^r	[45]

IDª	Plasmid	Description and Usage	Res.⁵	Reference
5117	pBJ102	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 550/551 comprising 8013 <i>rnc</i> UP fragment and PCR product 552/554 comprising 8013 <i>rnc</i> DOWN fragment into <i>HindIII</i> and <i>BamHI</i> sites of pBS-SK; used for 8013 <i>rnc</i> knockouts	Amp ^r / Km ^r	[45]
5124	pBJ107	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 834/835 comprising 8013 tracrRNA UP fragment and PCR product 833/729 comprising 8013 tracrRNA DOWN fragment into <i>HindIII</i> and <i>BamHI</i> sites of pBS-SK; used for 8013 tracrRNA knockouts	Amp ^r / Km ^r	[45]
5105	pBJ106	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 11443/11115 comprising 8013	Amp ^r / Km ^r	this study

IDª	Plasmid	Description and Usage	Res.⁵	Reference
		CRISPR array UP fragment and PCR product 11116/11444 comprising CRISPR array DOWN fragment into <i>HindIII</i> and <i>BamHI</i> sites of pBS-SK; used for 8013 CRISPR knockouts		
5238	pAH-1	PCR product 1043/1044 comprising <i>rnc</i> (NMV-1713) of <i>N.</i> <i>meningitidis</i> 8013 cloned between the <i>Nsil</i> and the <i>BamHI</i> sites of pCompInd; used for 8013 <i>rnc</i> complementation	Amp ^r / Cm ^r	this study
5239	pAH-2	PCR product 1047/1048 comprising tracrRNA (genomic region 1916964 to 1916858) of <i>N.</i> <i>meningitidis</i> 8013 cloned between the <i>Nsil</i> and the <i>BamHI</i> sites of pCompInd; used for 8013 tracrRNA complementation	Amp ^r / Cm ^r	this study
	pGCC2	PCR product 12662/12663	Amp ^r /	[45]

```
Materials
```

IDª	Plasmid	Description and Usage	Res.⁵	Reference
	<i>cas9</i> -comp	comprising cas9 (NMV-1993)ofN.meningitidis8013clonedbetweentheAat/IAnd the Pacl sitesofpGCC2;usedfor8013cas9complementation	Ery ^r	
5100	pBJ103	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 10509/10510 comprising WUE2594 <i>cas9</i> UP fragment and PCR product 10515/10516 comprising WUE2594 <i>cas9</i> DOWN fragment into <i>XhoI</i> and <i>BamHI</i> sites of pBS-SK; used for WUE2594 <i>cas9</i> knockouts	Amp ^r / Km ^r	this study
5116	pBJ101	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 550/551 comprising WUE2594 <i>rnc</i> UP fragment and PCR product 552/554 WUE2594 <i>rnc</i> DOWN fragment into <i>HindIII</i> and <i>BamHI</i> sites of	Amp ^r / Km ^r	this study

ID ^a	Plasmid	Description and Usage	Res.⁵	Reference
		pBS-SK; used for WUE2594 rnc knockouts		
5125	pBJ108	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 729/730 comprising WUE2594 tracrRNA UP fragment and PCR product 732/733 comprising WUE2594 tracrRNA DOWN fragment into <i>XhoI</i> and <i>BamHI</i> sites of pBS-SK; used for WUE2594 tracrRNA knockouts	Amp ^r / Km ^r	this study
5104	pBJ105	Kanamycin resistance cassette with <i>EcoRI</i> sites from pUC4K cloned between PCR product 11114/11115 comprising WUE2594 CRISPR UP fragment and PCR product 11116/11306 comprising WUE2594 CRISPR DOWN fragment into <i>HindIII</i> and <i>BamHI</i> sites of pBS-SK; used for WUE2594 CRISPR knockouts	Amp ^r / Km ^r	this study

NЛ	ate	ria	le
1 1 1	au	110	13

IDª	Plasmid	Description and Usage	Res.⁵	Reference
5243	pAH-4	PCR product of 1117/1118 comprising the Tn903 kanamycin resistance determinant of pUC4K cloned between the <i>NdeI</i> and <i>XbaI</i> sites of pCompInd	Amp ^r / Km ^r	this study
5244	pAH-5	PCR product of 1117/1035 comprising the Tn903 kanamycin resistance determinant of pUC4K cloned between the <i>NdeI</i> and <i>BamHI</i> sites of pCompInd	Amp ^r / Km ^r / Cm ^r	this study
5242	pAH-3	PCR product 1110/1111 comprising the cat chloramphenicol resistance determinant cloned between the <i>Ndel</i> and <i>Xbal</i> sites of pCompInd	Amp ^r / Cm ^r	this study

^aID-number according to the strain collection of the Institute for Hygiene and Microbiology (IHM), Würzburg ^bantibiotic resistance cassettes obtained by the strain; Km^r, kanamycin; Amp^r, ampicillin; Ery^r, erythromycin; Cm^r, chloramphenicol

4.10 Microorganisms

The strains used in this study are listed in Table 4.29. Figure 6.1 on page 117 depicts the genealogy of 8013 strains used in this study.

IDª	МО⁵	Strain	relevant characteristics	b.r.º	Source/ Reference
286	E.c.	XL1-Blue MRF'	$\Delta((mcrA)183\Delta(m crCB-hsdSMR-mrr)173 recA1endA1 gyrA96thi-1 hsdR17supE44 relA1 lacF´ proABlaclqZ\DeltaM15 Tn10Tetr$	-	<i>Stratagene</i> , La Jolla US
19	E.c.	DH5α	fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	-	<i>Thermo Fisher,</i> Frankfurt DE
29	N.m.	WUE2594	wild type	-	Accession-No: FR774048.1 [48]
5098	N.m.	WUE2594	∆ <i>cas9</i> ::Km ^r	1	this study
5122	N.m.	WUE2594	∆tracrRNA::Km ^r	1	this study

Table 4.29 Strains used in this study

Materials

IDª	МО⋼	Strain	relevant characteristics	b.r.º	Source/ Reference
5114	N.m.	WUE2594	∆ <i>rnc</i> ::Km ^r	1	this study
5102	N.m.	WUE2594	∆CRISPR::Km ^r	1	this study
31	N.m.	8013	wild type	-	Accession-No: FM999788.1
5099	N.m.	8013	∆ <i>cas9</i> ::Km ^r	3	[45]
	N.m.	8013	∆ <i>cas</i> 9::Km ^r Ery ^r	2	[45]
5123	N.m.	8013	∆tracrRNA::Km ^r	2	[45]
5245	N.m.	8013	∆tracrRNA::Km ^r Cm ^r	2	this study
5115	N.m.	8013	∆ <i>rnc</i> ::Km ^r	2	[45]
5246	N.m.	8013	∆ <i>rnc</i> ::Km ^r Cm ^r	2	this study
5103	N.m.	8013	∆CRISPR::Km ^r	2	this study
5247	N.m.	8013	Cm ^r	1	this study
	N.m.	8013	∆ <i>cas9</i> ::Km ^r C <i>cas9</i> Ery ^r	3	[45]
5240	N.m.	8013	∆tracrRNA::Km ^r C <i>tracrRNA</i> Cm ^r	2	this study
5249	N.m.	8013	∆tracrRNA::Km ^r C <i>cas</i> 9Ery ^r	1	this study
5248	N.m.	8013	∆tracrRNA::Km ^r CtracrRNA Cm ^r	2	this study

IDª	МОь	Strain	relevant characteristics	b.r.º	Source/ Reference
			C <i>cas</i> 9 Ery ^r		
5241	N.m.	8013	∆ <i>rnc</i> ::Km ^r C <i>rnc</i> Cm ^r	2	this study

^aID-number according to the strain collection of the Institute for Hygiene and Microbiology (IHM), Würzburg ^bmicroorganism ^cNumber of <u>b</u>iological <u>r</u>eplicates used for experiments Abbreviations: *N.m.*, *N. meningitidis*; *E.c.*, *E. coli*

4.11 Cell lines

Cell adhesion and invasion assays were performed with a nasopharyngeal epithelial cell line called Detroit562 (ATCC® number CCL-138[™]) [85, 86].

5 Methods

5.1 Cultivation of bacteria

E. coli were cultivated overnight at 37 °C on LB agar plates in an incubator or in LB media (Table 4.18) at 200 rpm in an incubator shaker. To select recombinant clones, the medium was supplemented with the appropriate antibiotic before usage. The antibiotic substances and their suitable concentrations are listed in Table 4.26.

N. meningitidis were cultivated overnight at 37 °C with 5% CO_2 on COS or GCB⁺⁺ agar plates (Table 4.17) in an incubator. The selection of recombinant clones occurred similar to *E. coli* by adding antibiotics (Table 4.26) to the GCB⁺⁺ agar plates. For cultivation in liquid culture, the bacteria were inoculated into PPM⁺ (Table 4.13) and incubated at 37 °C for the requested period shaking at 200 rpm in an incubator shaker.

5.2 Estimating the bacterial cell number by determining the optical density at 600nm

To estimate the number of bacterial cells in a liquid culture the optical density at 600 nm (OD_{600}) was measured. The bacteria from an agar plate ware

inoculated into liquid medium and pre-incubated for 60 at 37 °C in an incubation shaker. The minutes photometer was calibrated with 1 ml of blank medium. Afterwards 1 ml of the bacterial suspension was pipetted into a cuvette and the absorption at 600 nm was measured. An of 1.0 is equivalent to approximately 1x 10⁹ cells/ml of *N. meningitidis* and approximately 2x 10⁸ cells/ml of *E. coli*. Based on this, the number of bacterial cells in the liquid medium was calculated or the suspension was adjusted to the requested OD₆₀₀.

5.3 Preparation of chemically competent *E.coli* cells

The chemically competent *E. coli* cells used in this study are XL-1 Blue MRF' and DH5 α (Table 4.29). The frozen glycerol stocks were streaked on LB agar plates and incubated overnight at 37 °C in an incubator. The next day one single colony was inoculated into 15 ml of LB medium and incubated overnight at 37 °C and 200 rpm in an incubator shaker. After incubation 1 ml of starter culture was transferred into 25 ml LB medium and incubated at 37 °C in a thermoshaker for 1 to 2 h. The cells were chilled on ice when the OD₆₀₀ reached 0.5 to 0.7. After 10 to 20 minutes the tubes were centrifuged at 4 °C for 5 minutes at 4000 rpm, the supernatant was decanted, and the pellet was chilled on ice for 1 minute. Then the cells were resuspended and washed with 10 ml of ice cold 80 mM MgCl₂/ 20 mM CaCl₂. The suspension was centrifuged again at 4 °C for 5 minutes at 4000 rpm, the supernatant was decanted and the pellet was resuspended in 10 ml of ice cold 80 mM MgCl₂/ 20 mM CaCl₂ and chilled on ice for another 30 minutes. The cells suspension was centrifuged at 4 °C for 5 minutes at 4000 rpm and the supernatant was decanted. The remaining pellet was resuspended in 800 µl of 100 mM CaCl₂/ 20% glycerol and 100 µl aliquots were frozen in liquid nitrogen. The aliquots were stored at -80 °C until transformation.

5.4 Transformation of *E. coli*

Chemically competent *E. coli* strains DH5a and XL-1 Blue MRF' were stored in 100 μ I aliquots at -80 °C. For transformation the aliquots were slowly thawed on ice. After the addition of 10 μ I plasmid or ligation product the bacteria were chilled on ice for another 30 minutes. Afterwards the cells were heat shocked at 42 °C for 90 seconds and immediately cooled down on ice for 2 minutes. Afterwards 800 μ I of SOC medium (Table 4.20) were added and the bacteria were incubated at 37 °C for 1 h at 200 rpm in an incubation shaker. Finally, the bacteria were streaked on LB agar plates and incubated overnight at 37 °C. To ease single colony picking 100 μ l, 200 μ l, and 500 μ l of each charge were plated separately. If the selection of transformants was requested, the LB agar plates were supplemented with the appropriate antibiotics (Table 4.26).

5.5 Transformation of *N. meningitidis*

Strains of *N. meningitidis* were stored at -80 °C in freezing medium (Table 4.24). The strain of interest was streaked on COS agar plates the day before transformation and incubated overnight at 37 °C with 5% CO₂. After incubation the bacteria were inoculated in PPM⁺ for 1 h at 37 °C at 200 rpm in an incubation shaker. After pre-culture, the suspensions were adjusted to $OD_{600} = 0.1$ in a final volume of 1 ml PPM⁺. For transformation 600 ng to 1 µg of plasmid DNA (Chapter 5.7) were added to the suspension and incubated for 5 to 6 hours at 37 °C and 200 rpm in an incubation shaker. Subsequently, 100 µl of the culture were streaked directly on GCB⁺⁺ agar plates. The remaining suspension was centrifuged at 5000 rpm for 5 minutes at room temperature. The supernatant was

discarded, the pellet was resuspended in 100 μ l PPM⁺ and the suspension was plated on GCB⁺⁺ agar plates. The plates were incubated overnight at 37 °C with 5% CO₂. For selection of transformants, the GCB⁺⁺ agar plates were supplemented with the appropriate antibiotics (Table 4.26).

5.6 Preparation of meningococcal genomic DNA

Meningococcal genomic DNA was isolated using the QIAamp DNA Mini Kit (Table 4.4) according to the manufacturer's protocol with some modifications. Meningococci were streaked on GCB⁺⁺ agar plates and incubated overnight by 37 °C and 5% CO₂. The next day, colonies were harvested with a cotton swab and resuspended in 1.25 ml PBS (Table 4.6). The bacterial suspension was centrifuged for 5 minutes at 8000 rpm, the supernatant was discarded, and the pellet was resuspended in 180 µl ATL buffer (QIAamp DNA Mini Kit) with 20 µl Proteinase K (20 mg/ml). Subsequently, the suspension was incubated at 56 °C and vortexed every 30 minutes for 3 hours. Afterwards, the tube was briefly centrifuged and 80 µl RNase A (5 mg/ml) were added. After vortexing 10 times, 200 µl AL buffer

(QIAamp DNA Mini Kit) were added. Then the tubes were vortexed another 10 times and incubated for 10 minutes at 70 °C. After the addition of 200 µl ethanol the tubes were vortexed 10 times and briefly centrifuged. The fluid was pipetted onto a QIAamp spin column and centrifuged for 1 minute at 8000 rpm. Next, the column was transferred into a fresh tube, 500 µl AW1 buffer (QIAamp DNA mini kit) were applied and centrifuged for 1 minute at 8000 rpm. The flow-through was discarded and the column was washed with 500 µl AW2 buffer for 3 minutes at 13000 rpm. Once again, the flow-through was discarded. Afterwards, the column was dried via 1 minute centrifugation at 13000 rpm. Then the column was transferred into a fresh 2 ml microcentrifugation tube. To elute the DNA, 100 µl 1x TE buffer (QIAamp DNA mini kit) was applied to the column and incubated at room temperature for 5 minutes. Finally the tube was centrifuged for 1 minute at 8000 rpm. The concentration and purity of the DNA measured was spectrophotometrically.

5.7 Isolation of plasmid DNA

Plasmid DNA was isolated using the QIAprep Spin Miniprep Kit (Table 4.4). The *E. coli* strain carrying the plasmid of interest was streaked on a selective LB agar plate and incubated overnight at 37 °C. After incubation a single colony was picked and inoculated into 5 ml LB medium containing the appropriate antibiotic. This suspension was incubated overnight at 37 °C and 200 rpm in an incubation shaker. The next day, the culture was centrifuged at 8000 rpm for 5 minutes, the supernatant discarded, and the pellet resuspended in 250 µl P1 buffer (QIAprep Spin Miniprep Kit). The suspension was transferred into a 1.5 ml microcentrifuge tube, 250 µl P2 buffer (QIAprep Spin Miniprep Kit) were added and mixed thoroughly by inverting the tube 4 to 6 times. After the addition of 350 µl N3 buffer, the fluids were mixed immediately by inverting 4 to 6 times. Then the tube was centrifuged for 10 minutes at 13000 rpm in a microcentrifuge at room temperature. The supernatant was transferred into aa QIAprep spin column and centrifuged for 30 to 60 seconds at 13000 rpm. After discarding the flow-through, the column was washed by adding 500 µl PB Buffer (QIAprep Spin Miniprep Kit) and centrifuging 30 to 60 seconds at 13000 rpm. The flowthrough was discarded again and the column was washed with 750 µl PE buffer (QIAprep Spin Miniprep Kit). To remove residual ethanol, the spin column was transferred into a fresh tube and centrifuged at full speed

for 3 minutes. Finally, the spin column was transferred into a fresh microcentrifugation tube and 30 to 50 μ l ddH₂O were added. After incubating for 5 minutes at room temperature, the tube was centrifuged for 2 minutes at 13000 rpm. The concentration and purity of the DNA was measured spectrophotometrically.

5.8 Preparation of bacterial lysates for colony PCR

To obtain bacterial lysates, a single colony was inoculated into 20 to 30 µl 1x PBS (Table 4.6). The suspension was incubated for 5 (E. coli) or 15 (*N. meningitidis*) minutes at 100 °C in a heating block and then immediately cooled down on ice for 5 minutes. After centrifuging 1 minute at 13000 rpm. the supernatant was discarded, and the pellet was resuspended in 30 µl 1x PBS. Bacterial lysates were used for quick PCR checks in transformation procedures. One µl per 25 µl PCR formulation was used.

5.9 Polymerase chain reaction (PCR)

Polymerase chain reactions were used to amplify specific DNA fragments. For cloning purposes Q5® High-Fidelity DNA polymerase was used because of its proof-reading activity. To screen colonies in

Methods

transformation procedures to verify genomic or alterations. Tag DNA polymerase was utilized. Generally, 100 ng of template DNA was used. To screen for transformants, 1 µl bacterial lysate or a colony was used as template. PCRs were generally prepared on ice and quickly transferred into a preheated thermocycler. To recognize DNA contamination, each PCR was done with a negative control without DNA template. The expected size of the PCR product was calculated by in silico genome analyses using Artemis (Table 5.10).

PCRs using *Taq* polymerase were performed in modification of the manufacturer's protocol as given in Table 5.1.

Ingredient	25 μl reaction	Final Concentration
10x ThermoPol reaction buffer	2.5 µl	1x
20 mM dNTPs	0.25 µl	200 µM
25 µM forward primer	0.5 µl	0.5 µM
25 µM reverse primer	0.5 µl	0.5 µM
Template DNA	Variable	<1 µg

Table 5.1 PCR protocol for Taq DNA polymerase

Ingredient	25 μl reaction	Final Concentration
Taq DNA polymerase	0.25 µl	0.05 U/µI
ddH2O	ad 25 µl	

The standard PCR program for PCRs using *Taq* polymerase is given in Table 5.2.

Table 5.2ThermocyclingprogramforTaqDNApolymerase

Step	Temperature	Time
1. Initial denaturation	95 °C	30 seconds (5 minutes for lysates)
2. Denaturation	95 °C	30 seconds
3. Annealing	(Ta) 50-65 °C	30 seconds
4. Extension	68 °C	1 minute/kb
5. Step 2 to 4 repeated 25 to 35 times		
6. Final extension	68 °C	5 minutes
7. Hold	4 °C	∞

The melting temperatures (T_m) of each primer were estimated with the following formula.

$$Tm = 2 * (A + T) + 4 * (G + C)$$

Using *Taq* polymerase, the annealing temperature (T_a) was obtained by subtracting 5 °C from the melting temperatures (T_m). The following Table 5.3 shows the standard protocol for PCRs utilizing the Q5® High-Fidelity DNA polymerase.

Table 5.3 PCR protocol for Q5® High-Fidelity DNApolymerase

Ingredient	50 μl reaction	Final Concentration
5x Q5 reaction buffer	10 µl	1x
20 mM dNTPs	0.5 µl	200 µM
25 μ M forward primer	1 µl	0.5 µM
25 µM reverse primer	1 µl	0.5 µM
Template DNA	variable	<1 µg
Q5® High-Fidelity DNA polymerase	0.5 µl	0.02 U/µI
ddH ₂ O	ad 50 µl	

The standard PCR program for PCRs using the Q5® High-Fidelity DNA polymerase is given in Table 5.4.

Table 5.4 Thermocycling program for $Q5^{\ensuremath{\mathbb{R}}}$ High-Fidelity DNA polymerase

Step	Temperature	Time
1. Initial denaturation	98 °C	30 seconds
2. Denaturation	98 °C	10 seconds
3. Annealing	(T _a) 50-72 °C	30 seconds
4. Extension	72 °C	20-30 seconds/kb
5. Step 2 to 4 repeated 25 to 35 times		
6. Final extension	72 °C	2 minutes
7. Hold	4 °C	×

Applying the Q5® High-Fidelity DNA polymerase the annealing temperature (T_a) was calculated using the NEB T_m Calculator (http://tmcalculator.neb.com/#!/).

5.10 Major PCRs

The following Table 5.5 lists major PCRs performed in this study. The primers (see Table 4.27) are listed next to a short description, elongation time, annealing temperature and the used polymerase.

Table 5.5 Major PCRs performed in this study

Primer 1ª	Primer 2ª	Description and Usage	ET ^b (S)	AT۵	PM ^d
1110	1111	8013 <i>cas9</i> complementation	30	55 °C	Q5
1122	1123	8013 <i>cas9</i> complementation verification	120	56 °C	Taq
976	1122	8013 <i>cas9</i> complementation verification	300	56 °C	Taq
977	1123	8013 <i>cas9</i> complementation verification	300	56°C	Taq
10511	10512	8013 <i>cas9</i> knockout	20	50 °C	Q5
903	904	8013 <i>cas9</i> knockout verification	300	60 °C	Taq
328	904	8013 <i>cas9</i> knockout verification	40	55 °C	Taq

Primer 1ª	Primer 2ª	Description and Usage	ET ^b (S)	AT℃	PM ₫
329	903	8013 <i>cas9</i> knockout verification	40	55 °C	Taq
1045	1046	8013 CRISPR complementation	40	59 °C	Q5
974	975	8013 CRISPR knock-in verification/ knockout exclusion	40	64 °C	Taq
11443	11115	8013 CRISPR knockout	10	63 °C	Q5
11444	11116	8013 CRISPR knockout	10	63 °C	Q5
1031	1032	8013 CRISPR knockout verification	210	60 °C	Taq
328	1031	8013 CRISPR knockout verification	40	55 °C	Taq
329	1032	8013 CRISPR knockout verification	40	55 °C	Taq
329	11444	8013 CRISPR knockout verification/ knockout vector check	40	50 °C	Taq
328	11443	8013 CRISPR knockout verification/ knockout vector check	40	50 °C	Taq
1043	1044	8013 <i>rnc</i> complementation	20	53 °C	Q5

Methods

Primer 1ª	Primer 2ª	Description and Usage	ET ^ь (s)	AT℃	PM ^d
971	1049	8013 <i>rnc</i> complementation verification	180	65 °C	Taq
971	988	8013 <i>rnc</i> complementation verification	180	65 °C	Taq
970	989	8013 <i>rnc</i> complementation verification	180	65 °C	Taq
1047	1048	8013 tracrRNA complementation	20	53 °C	Q5
1049	989	8013 tracrRNA complementation verification	180	65 °C	Taq
1048	988	8013 tracrRNA complementation verification	180	65 °C	Taq
1047	989	8013 tracrRNA complementation verification	180	65 °C	Taq
833	729	8013 tracrRNA knockout	20	56 °C	Q5
834	835	8013 tracrRNA knockout	20	56 °C	Q5
903	328	8013 tracrRNA knockout verification	60	50 °C	Taq

Primer 1ª	Primer 2ª	Description and Usage	ET ^b (S)	AT℃	₽M₫
988	989	8013 tracrRNA/ <i>rnc</i> knockout verification	240	60 °C	Taq
903	739	8013 tracrRNA knockout verification	210	60 °C	Taq
976	977	8013/ WUE2594 <i>cas9</i> knock-in verification/ knockout exclusion	40	60 °C	Taq
970	971	8013/ WUE2594 <i>rnc</i> knock-in verification/ knockout exclusion	40	64 °C	Taq
10509	10510	8013/ WUE2594 <i>cas9</i> knockout	20	50 °C	Q5
552	554	8013/ WUE2594 <i>rnc</i> knockout	20	55 °C	Q5
550	551	8013/ WUE2594 <i>rnc</i> knockout	20	55 °C	Q5
617	618	8013/ WUE2594 <i>rnc</i> knockout verification	210	60 °C	Taq
317	329	8013/ WUE2594 <i>rnc</i> knockout verification	60	50 °C	Taq
618	328	8013/ WUE2594 <i>rnc</i> knockout verification	60	50 °C	Taq
739	329	8013/ WUE2594 tracrRNA knockout verification	60	50 °C	Taq

Primer 1ª	Primer 2ª	Description and Usage	ET⁵ (s)	AT۵	PMd
723	733	WUE2594 tracrRNA knockout	20	55 °C	Q5
729	730	WUE2594 tracrRNA knockout	20	55 °C	Q5
740	328	WUE2594 tracrRNA knockout verification	60	50 °C	Taq
739	740	WUE2594 tracrRNA knockout verification	210	60 °C	Taq
10515	10516	WUE2594 <i>cas9</i> knockout	20	50 °C	Q5
905	906	WUE2594 <i>cas9</i> knockout verification	300	60 °C	Taq
328	906	WUE2594 <i>cas9</i> knockout verification	40	50 °C	Taq
329	905	WUE2594 <i>cas9</i> knockout verification	40	50 °C	Taq
11116	11306	WUE2594 CRISPR knockout	20	60 °C	Q5
11114	11115	WUE2594 CRISPR knockout	20	60 °C	Q5
11604	11605	WUE2594 CRISPR knockout verification	210	60 °C	Taq
328	11605	WUE2594 CRISPR knockout verification	40	55 °C	Taq

Primer 1ª	Primer 2ª	Description and Usage	ET ^b (s)	AT℃	PM ₫
329	11604	WUE2594 CRISPR knockout verification/ knockout vector check	40	55 °C	Taq
972	973	WUE2594 CRISPR knock-in verification/ knockout exclusion	40	64 °C	Taq
243	1049	pCompInd integration control	150	50 °C	Taq
1035	1118	pAH-5 construction	60	55 °C	Q5
1117	1118	pAH-4 construction	60	55 °C	Q5
1054	1055	pAH-4/ pAH-5 control	210	58 °C	Taq
12662	12663	pGCC2 <i>cas9</i> -comp	100	52°C	Q5
1227	1228	8013 <i>cas9</i> probe	8	55°C	Q5
1229	1230	8013 NMV0031 probe	8	55°C	Q5
243	242	pBluescript II –SK integration control	180	58°C	Taq

^aID-number 0-9999 according to the AG SCHOEN oligonucleotide collection, 10000-99999 according to the common IMIB oligonucleotide collection

^b elongation time

^c annealing temperature (T_a)

^d utilized polymerase: 'Q5' for Q5® High-Fidelity DNA polymerase,

'Taq' for *Taq* polymerase

Methods

PCR analysis of mutant strains were always performed according to the same principle. Primers located outside of the region used for recombination and outward facing primers located on the resistance gene were combined as depicted in Figure 5.1.

Figure 5.1 Schematic representation of PCRs used for mutant verification

Schematic representation of the replacement (A) and complementation (B) of a fictional gene called *genX* via homologous recombination. The homologous regions upstream (HR_U) and downstream (HR_D) of *genX* are identical in the genome and on the knockout vector. To

verify recombinant strains by PCR primers located outside of the region used for recombination (Out1 and Out2) and outward facing primers located on the resistance gene respectively the gene to be complemented (In1 and In2) were combined. The combination of Out1 and Out2 amplifies the whole region of recombination and this way detects double cross-over mutants. The combinations Out1 x In1 and Out2 x In2 additionally allow to determine the orientation of the resistance cassette.

5.11 Sequencing PCR products and plasmids

Sequencing was done by *GATC* (Köln DE). Therefore, sequencing reactions were prepared with 1 μ l of the respective primer (25 μ M) and 20 – 80 ng of PCR fragments or 200 – 400 ng of plasmid DNA in a 1.5 ml tube with a final volume of 10 μ l in ddH₂O.

5.12 DNA digestion

The digestion of DNA fragments, plasmid DNA or genomic DNA was performed by using restriction endonucleases. Table 5.6 lists the protocol for general restriction digests. The suitable buffer was chosen according to the 'NEBuffer Activity/Performance Chart with Restriction Enzymes' provided by New England Biolabs (https://www.neb.com/tools-andresources/usage-guidelines/nebuffer-performance-chartwith-restriction-enzymes). If two restriction enzymes were used simultaneously, the buffer was chosen with New England Biolabs' 'Double Digest Finder' (https://www.neb.com/tools-and-resources/interactivetools/double-digest-finder).

Ingredient	50 µl reaction
Restriction enzyme	10 U
DNA	1 µg
10x NEB Buffer	5 µl
ddH ₂ O	ad 50 µl
Incubation time	1-2 h
Incubation temperature	37 °C

 Table 5.6 Standard restriction digest protocol

Digested DNA fragments were purified using the MSB Spin PCRapace Kit (Table 4.4). Digested plasmid DNA was separated electrophoretically and the fragments of requested size were extracted from the gel using the Invisorb Spin DNA Extraction Kit.

5.13 Agarose gel electrophoresis of DNA

To visualise PCR products, agarose gel electrophoreses were performed. The PCR products were separated electrophoretically by size in an agarose gel with TAE buffer. This way it was possible to estimate the length of PCR products.

Depending on the size of the expected PCR product, agarose was added to 1x TAE buffer at a concentration of 1% or 2% (w/v). The agarose suspension was heated in a microwave and cooled down while permanently stirred. The hand-warm agarose solution was poured into a gel tray with the well comb in place. As standard molecular weight marker 5 µl 'Hyper Ladder ľ (New England Biolabs, Frankfurt) was used. To each PCR product sample 6x DNA loading buffer (Table 4.8) was added to a 1x concentration and pipetted into a gel pocket. DNA samples were separated for approximately 1 h at 170 V in 1x TAE buffer. The gels were stained in GelRed[™] (*Biotium*, Fremont US) bath for 45 minutes afterwards. To visualize the bands of the DNA fragments via UV light at 302 nm or 312 nm the Chemi Doc MP System was used. Depending on the intended use, the PCR products were either purified or extracted from the gel. For sequencing or cloning purposes, only 3 µl of

each PCR reaction were used for electrophoretic separation. The remaining quantity was purified using the MSB Spin PCRapace Kit (Table 4.4). To separate fragments after digestion, the DNA of requested size was extracted from the gel using the Invisorb Spin DNA Extraction Kit (Table 4.4).

5.14 Purification of DNA fragments

To purify DNA fragments, the MSB Spin PCRapace Kit (Table 4.4) was used following the manufacturers description. First, 50μ I PCR-mixture were very well mixed with 250 μ I Binding Buffer to ease the binding of DNA fragments to the silica membrane of the spin filter. Afterwards the sample was transferred onto the spin filter, incubated for 1 minute at room temperature and centrifuged for 4 minutes at maximum speed to remove contaminants. Impurities and detergents do not bind to the silica membrane and are therefore drawn through the column. Then, the spin filter was transferred into a new 1.5 ml receiver tube and 10 μ I Elution Buffer were added. Subsequently, the sample was incubated for 1 minute at room temperature and centrifuged for 1 minute at 11000 rpm. The gathered samples were stored at 4°C.

5.15 Gel Extraction

To extract electrophoretically separated DNA from a agarose gel, the Invisorb Spin DNA Extraction Kit (Table 4.4) following the manufacturer's protocol. The bands of interest were cut and the gel slices were transferred into a 1.5 ml microcentrifugation tube. To gel slices up to 150 mg 500 µl Gel Solubilizer was added and 1 ml to gel slices up to 300 mg. The kit was not suitable for slices heavier than 300 mg. The tubes were incubated at 50 °C for 10 minutes until the gel was completely solubilized. Afterwards, 250 µl Binding Enhancer were added to 500 µl reaction volume, and 500 µl to 1 ml reaction volume respectively, and mixed thoroughly by pipetting up and down. Then 800 µl of the sample were transferred onto the spin filter and centrifuged at 11000 rpm for 2 minutes. After discarding the filtrate the residual sample volume was loaded and centrifuged the same way. To purify the extracted DNA the spin filter was washed twice by adding 500 µl Washing buffer and centrifuging for 1 minute at 11000 rpm. Subsequently, the residual ethanol was removed by centrifuging for 4 minutes at 13000 rpm. The spin filter was transferred into a new 1.5 ml receiver tube and 15 µl Elution Buffer were added directly onto the centre of the spin filter. After incubating at room temperature for 1 minute, the tubes were centrifuged for 1 minute at 11000 rpm. The purity and concentration of the extracted DNA was measured spectrophotometrically.

5.16 DNA ligation

A ligation of purified digested DNA fragments and the linearized vector was performed by using the T4 DNA ligase. Generally, a molar ratio of 1:3 vector to insert was used in standard ligation reaction. The proportion of insert to the vector was calculated with the following formula.

$$m (insert)[ng] = \frac{n (insert)}{n (vector)} * m (vector) [ng] * \frac{l (insert) [bp]}{l (vector) [bp]}$$

Ligations were generally prepared in microcentrifuge tubes on ice and quickly transferred in a thermocycler precooled to 16 °C. The following Table 5.7 shows the standard ligation protocol using the T4 DNA ligase.

Ingredient	20 µl reaction
10x T4 DNA Ligase buffer	2 µl
Vector DNA	50 ng
Insert DNA	Variable
T4 DNA Ligase	1 µl
ddH ₂ O	ad 20 µl

Table 5.7 Standard ligation protocol using T4 DNAligase

The ligation buffer was thawed and resuspended at room temperature. After incubating overnight at 16 °C the ligation was heat inactivated at 65 °C for 10 minutes and chilled on ice. Afterwards the ligation product was used for chemical transformation or stored at -20 °C.

5.17 Mutant construction

In general deletion mutants were generated replacing the respective gene with a kanamycin resistance cassette. Approximately 600 bp upstream and downstream of the target gene were amplified with oligonucleotides modified to introduce different enzyme restriction sites (Table 4.27). The fragments were digested, purified and cloned into the pBluescript II -SK vector along with the digested kanamycin resistance cassette. The obtained knockout plasmids contained a kanamycin resistance cassette flanked by the upstream and downstream region of the respective gene. The meningococcal strains 8013 and WUE2594 were transformed with the linearized plasmids and thus homologous recombination resulted in a replacement of the target gene. Using linear fragments reduces the amount of transformed cells but increases the chance of double crossover mutants [87]. The correct insertion of the resistance gene was confirmed by PCR, sequencing and Southern blot analysis. In this study, knockout mutants of cas9, rnc, CRISPR and tracrRNA in 8013 as well as WUE2594 were generated. To verify the obtained results the transformation was repeated to obtain multiple biological replicates (see Table 4.29 and Figure 6.1 for detailed information).
Table 5.8 lists the gene loci of the CRISPR/Cas system genes.

Gene	Protein	8013		WUE25	594
		Locus	St.ª	Locus	St.ª
cas1	Cas1	1920388 to 1921302	+	376943 to 376020	-
cas2	Cas2	1921295 to 1921621	+	374160 to 375646	-
cas9	Cas9	1917073 to 1920321	+	377010 to 380258	-
rnc	RNase III	1660804 to 1661523	-	631217 to 632149	+
tracrRNA		1916858 to 1916964	-	380367 to 380473	+
CRISPR		1921685 to 1923370	-	374160 to 375646	+
scaRNA		1923335 to 1923358	+	374172 to 374195	-

Table	5.8	CRISP	R/Cas	system	i gene	loci
				- ,		

^a Strand: + leading strand / - lagging strand

100

Figure 5.2 Mutant construction in 8013 and WUE2594

Depicted are the CRISPR/Cas loci in 8013 (A) and WUE2594 (B) and the rnc loci in 8013 (C) and WUE2594 (D) as well as the linearized knockout plasmids aligned to their point of integration. The scale in bp above the genes denotes the place in the genome according to the published genome sequences. Bold white arrows indicate genes and their reading direction, gene fragments are indicated by white boxes. Promotors were predicted by BPROM (Table 5.10) and are depicted as small angled arrows. Terminators were predicted by FindTerm (Table 5.10) and are depicted as loops. Loci of non-coding RNAs are indicated by white boxes with angled arrows. Black boxes indicate nonneisserial DNA, in particular kanamycin-resistance cassettes. Vertical lines indicate CRISPR Spacer. Arrows below and above indicate the binding sites of primers used for mutant verification, primer numbers are given next to the arrows. Drawn to scale.

5.18 Complementant construction

To complement the knockout mutants, copies of the knocked-out genes were inserted into the chromosomal DNA. The requested gene was amplified from wild type DNA with oligonucleotides modified to introduce enzyme restriction sites. The complementation plasmids were digested, and the amplified gene fragment was integrated into the multiple cloning sites. Subsequently the gene was integrated by homologous recombination.

Copies of cas9 were inserted in a locus between IctP and aspC, copies of tracrRNA and rnc in a locus between porA and NMV0959. Figure 5.3 shows the integration sites. The strains 8013∆*cas9*::Km^r. 8013∆*rnc*::Km^r and 8013∆tracrRNA::Km^r were complemented with their respective knocked-out gene. In addition, 8013 Atracr RNA:: Kmr was complemented with a cas9 copy to examine possible cis-effects of the tracrRNA knockout on cas9 expression. Maybe due to the high amount of repeats in the CRISPR array, it was not possible to generate an complementant for 8013ACRISPR::Kmr. The WUE2594 mutants were not complemented. Figure 6.1 shows relations of the mutants and complementants, as well as the utilized plasmids in detail. The correct insertion was confirmed by PCR and Southern blot analysis.

Figure 5.3 Complementant construction in 8013

Complementant construction using pCompInd (A) and pGCC2 (B). Schematic elements are used as described in Figure 5.1. Restriction sites of unknown sequence and estimated position are marked with p^* . Drawn to scale.

DIG-labelled DNA probes are needed for Southern Blots. The requested DNA fragment was amplified using the Q5® High-Fidelity DNA Polymerase, purified in the prior described manner and eluted in 30 µl ddH₂O. Subsequently, 15 µl of the DNA were denatured in a heating block at 95 °C for 10 minutes and then immediately cooled down ice. Then. on 2 ul 10x hexanucleotide mix (Table 4.2), 2 µl 10x DIG DNA labelling mix (Table 4.2) and 1 µl Klenow enzyme (Table 4.5) were added. The labelling reaction was mixed thoroughly and incubated overnight at 37 °C. The reaction was stopped by adding 2 µl of 0.2 M EDTA. To precipitate the DNA 2.5 µl of 3 M sodium acetate and 75 µl ice cold 96% ethanol were added and cooled at -80 °C for 30 minutes. After centrifuging for 15 minutes at 13000 rpm and 4 °C, the supernatant was discarded and the pellet was washed with 1000 µl ice cold 70% ethanol. The ethanol was removed carefully by centrifuging for 15 minutes at 13000 rpm and 4 °C and discarding the supernatant. The pellet was dried via vacuum centrifugation for 5 minutes at medium heat. Finally, the probe was resuspended in 50 µl 1x TE buffer.

To quantify the DNA via dot blot, 1 μ I of serially diluted DIG-labelled DNA and a DIG-labelled control DNA were pipetted onto a nylon membrane. The DNA was cross linked with an UV cross linker (Table 4.1) for 1 minute. Afterwards, the probes were detected by chemiluminescence with the ChemiDoc MP system and the concentration was estimated by comparison to the control DNA of known concentration.

5.20 Southern Blot

One microgram genomic DNA was digested overnight at 37 °C with a suitable restriction enzyme in a 30 μ l reaction volume. The digested DNA and the DIG-labelled molecular weight marker were loaded into a 0.8% agarose gel and electrophoretically separated at 80 V for 5-6 hours. To depurinate, the gel was incubated in 0.25 M HCl for 20 minutes. Afterwards, it was denatured in 5 M NaOH/ 1.5 M NaCl for 30 minutes and neutralized in 5 M TRIS, pH 7.5/ 1.5 M NaCl for another 30 minutes. The blotting sandwich was built up and the flow of 20x SSC buffer (Table 4.9) transferred the negatively charged DNA from the agarose gel to the positively charged nylon membrane overnight. The next day, the nylon membrane was dried and cross linked in an UV crosslinker for 1 minute. The membrane was pre-

hybridized for 30 minutes in 50 ml high SDS hybridisation buffer (Table 4.9) at 48 °C. In the meantime, 500 ng of the DIG-labelled DNA probe was added to 50 ml of high SDS hybridisation buffer, boiled in a water bath for 10 minutes and immediately cooled down on ice for 10 minutes. The pre-hybridisation buffer (Table 4.9) was discarded and the membrane was incubated at 48 °C overnight in the DIG-labelled probe.

5.21 Detection of DIG-labelled DNA by chemiluminescence

For the detection of hybridized DIG-labelled DNA, the washed twice membrane was in stringent washing buffer I (Table 4.9) at room temperature for 5 minutes, and twice in stringent washing buffer II (Table 4.9) at 68 °C for 15 minutes. The following steps were performed at room temperature on a laboratory shaker. First, the membrane was incubated in 1x washing buffer (Table 4.9) for 5 minutes, then in 1x blocking solution (Table 4.9) for 30 minutes and finally in antibody solution for another 30 minutes. Afterwards the membrane was washed twice for 15 minutes in 1x washing buffer and incubated in detection buffer (Table 4.9) for 5 minutes. Finally, CSDP working solution

(Table 4.9) was pipetted onto the membrane. After 5 minutes the membrane was wrapped into a cling film and incubated at 37 °C for 15 minutes. The membrane was developed with the ChemiDoc MP System according to the manufacturer's instructions.

5.22 SDS-PAGE

For the preparation of SDS-polyacrylamide gels the 12.5% separating gel solution (Table 4.10) was mixed thoroughly and pipetted into the casting frame. To obtain horizontal separating gel, water was filled into the casting frame on top of the SDS-polyacrylamide gel. After 30 minutes the water was discarded and the loading gel (Table 4.10) was pipetted into the frame. A comb was inserted without trapping air under its teeth. After 1 hour, the gel was either used immediately or stored at 4 °C until usage. Before gel electrophoresis, protein samples were incubated at 95 °C for 10 minutes and immediately cooled on ice. The 12.5% SDSpolyacrylamide gels were loaded with $10 - 20 \mu$ l protein sample and 5 µl prestained protein marker (Table 4.3). The proteins were separated at 160 V for approximately 1.5 hours in electrophoresis buffer (Table 4.10). Subsequently, the gel was fixed in fixing solution for 30-60 minutes. Afterwards, it was transferred into Coomassie staining solution (Table 4.10) and incubated until the desired band intensity was reached. To destain the gel it was bathed in 10% acetic acid for 2 hours or more.

5.23 *In vitro* growth experiments with *N.meningitidis*

The strains were grown overnight at 37 °C/ 5% CO₂ on COS agar plates. The next day, the mutants and the corresponding wild type were inoculated into the medium of interest. The cultures were incubated at 37 °C and 200 rpm for 1 hour. Afterwards, the meningococci were adjusted to an OD₆₀₀ of 0.1 and further incubated at 37 °C and 200 rpm. Growth was determined by measuring the OD₆₀₀ every hour.

5.24 Serial dilution

Serial dilutions were used to reduce the number of bacteria to a countable level when plated. One hundred millilitre of 1 ml bacterial suspension were transferred into 900 μ l 1x PBS and mixed thoroughly to reduce the plated number of colony-forming units (CFU) by 10⁻¹. Subsequently, 100 μ l of the 10⁻¹ dilution were transferred into 900 μ l sterile 1x PBS to reduce the plated CFU another time by 10⁻¹. After mixing thoroughly this step

was repeated until an estimated scale of 10^2 to 10^3 was reached. Three stages of the dilution series were plated in triplicates. The mean CFU of each dilution step was determined and multiplied by the cumulative dilution factor.

5.25 Cell adhesion and invasion assay

Cell adhesion and invasion assays were performed on epithelial nasopharyngeal Detroit562 cells (Chapter 4.11). Detroit562 cells double cell number within a day so 1x 10⁵ cells per well were seeded two days in advance into a 24-well plate to obtain 4x 10⁵ for experiment. The wild type strain and the respective mutant strains were streaked out on COS blood agar plates overnight at 37 °C/ 5% CO₂. The next day the bacteria were inoculated into 5 ml preculture medium (Table 5.9) and cultured for 1 hour at 37 °C and 200 rpm in an incubation shaker. In the meantime, the Detroit562 cells were washed twice with 1 ml cell culture medium (Table 5.9) to remove non-adherent cells. After that, 1 ml infection medium (Table 5.9) was added to each well and the viability and confluence was checked with a microscope. After incubating, the number of bacterial cells was estimated by measuring the OD₆₀₀ and the Detroit562 cells were infected with a predetermined multiplicity of bacteria ('multiplicity of infection' see Table 5.9). Subsequently, the 24 well plate was incubated for 4 hours at 37 °C with 5% CO₂. In the meantime, the number of seeded bacteria was determined by adding the same infection volume to 1 ml 1x PBS and plating serial dilutions in triplicates. Four hours post infection, CFU in the supernatant was determined the same way. The supernatant was removed carefully, and the cells were washed with 1 ml infection medium. Four wells per strain were used to determine the 'invasive' or 'gentamicin protected' bacteria and treated with 0.2 mg/ml gentamicin for 1 hour at 37 °C to kill the extracellular bacteria. Another 4 wells per strain were used to assess the 'adherent' or 'cell associated' bacteria and treated with 1% saponin for 15 minutes to break up the Detroit562 cells. The CFU of the 'adherent' bacteria were determined by plating the serial dilution in triplicates. One hour post gentamicin treatment the 'invasive' bacteria were determined the same way. The next day, the CFU was determined via colony counter and the 'adherent' bacteria were compared to the 'seeded' bacteria. Likewise, the 'invasive' bacteria were compared to the 'adherent' bacteria.

Table 5.9	Specifications	of the	adhesion	and	invasion
assay for	8013 and WUE	2594 st	rains		

	WUE2594	8013
Preculture medium	GCBL ⁺⁺ (Table 4.16)	EMEM*** (Table 4.22)
Cell culture medium	EMEM+++	EMEM+++
Infection medium	RPMI⁺ (Table 4.25)	EMEM***
Multiplicity of infection (MOI)	10	20

5.26 Static biofilm assay for *N. meningitides*

The requested strains were grown at 37 °C/ 5% CO₂ on COS agar plates for 8 hours. After incubation the meningococci were resuspended in the medium of interest and adjusted to an OD₆₀₀ of 0.1. One hundred microliter bacterial suspension were seeded per well of a 96-well microtiter plate and incubated at 37 °C, 5% CO₂ overnight. After 16 hours of incubation the supernatant was removed, and the adherent bacteria were stained by adding 100 μ l 0.05% crystal violet for 10 minutes at room temperature. The wells were washed twice with 200 μ l PBS per well. Subsequently, the remaining crystal violet

stain of the biofilm was dissolved with $100 \ \mu l$ 96% ethanol per well and incubated at room temperature for 20 minutes. Finally, the optical density at 595 nm (OD₅₉₅) was measured for each well in a spectrometer.

5.27 Computational analyses

The following Table 5.10 lists the software and computational tools utilized for this study. The Basic Local Alignment Search Tool of the National Center of Biotechnology Information (NCBI BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for similarity searches against nucleotide databases.

Та	ble	5.10	Utilized	software
----	-----	------	----------	----------

Program	Program Application	
Excel 2016	Statistics and spreadsheet analysis	Microsoft
SnapGene 2.8	Plasmid construction	GSL Biotech LLC
Serial Cloner 2.6	DNA sequence analysis	Serial Basic
BioEdit 7.2.5	Sequence alignment and analysis	Ibis Bioscience [88]

Program	Application	Developer/ Source
Blast 2.8.1+	Sequence alignment and comparison	National Center for biotechnology Information (NCBI) [89, 90]
Gimp 2.8.20	Creating graphical figures or illustrations	S. Kimball, P. Mattis (GPLv3+)
Image Lab 5.2	Software for ChemiDoc MP Imaging System	<i>Bio-Rad</i> , Hercules US
Artemis 16.0.0	Genome browsing	<i>Wellcome Trust Sanger Institute</i> [91]
NeMeSys	Neisseria genome browsing	[47]
BPROM	Promotor prediction	Softberry [92]
FindTerm	Terminator prediction	Softberry [92]
ACT 13.0.0	Pairwise comparison of two or more DNA sequences	Wellcome Trust Sanger Institute [93]
PowerPoint 2016	Creating graphical figures or illustrations	Microsoft
Word 2016	Textwork	Microsoft

6 Results

6.1 Verification of 8013 and WUE2594 mutant strains

In order to analyse the influence of the CRISPR/Cas system experimentally, knockout mutants of *cas9*, *rnc*, tracrRNA, and the CRISPR-array were constructed in the genetic background of *N. meningitidis* strain 8013 and WUE2594.

The knockout mutants were generated by replacing the entire coding sequence with a kanamycin resistance cassette (see 5.17). The deletion of the tracrRNA, *rnc* and, CRISPR in 8013 was performed twice and the deletion of *cas9* in 8013 was done three times in order to gain multiple biological replicates (see Figure 6.1). The 8013 *cas9*, *rnc*, and tracrRNA knockout strains were complemented by inserting a copy of the respective wild type gene along with their promotor region into the *porA* locus using the integration plasmid pCompInd or into the *lctP-aspC* locus using pGCC2. In order to analyse potential polar effects of the tracrRNA knockout on the expression of *cas9*, a second copy of *cas9* was integrated in the genome of an 8013 tracrRNA knockout strain (see Chapter 5.18).

Figure 6.1 Genealogy of 8013 mutant strains used in this study

This flowchart depicts the wild type strain and the respective mutants of strain 8013. Boxes in dark grey indicate biological replicates of transformed strains. The bold text provides a short description of the genotype. The names are given below according to the AG SCHOEN strain list. Arrows indicate transformations with the utilized plasmid in boxes with blunt edges.

The correct insertion of the resistance cassette in WUE2594 and 8013 mutant strains was confirmed by southern blot analysis (Figure 6.2, Figure 6.3, and Figure 6.4), RT-PCR (Figure 6.5), and PCR (Figure 6.6 A+B).

Figure 6.2 Southern blot analysis of WUE2594 knockout mutants

Southern blot analysis to verify the genotypes of WUE2594 $\Delta cas9$::Km^r, WUE2594 $\Delta tracrRNA$::Km^r and WUE2594 $\Delta tracrRNA$::Km^r and WUE2594 $\Delta tracrRNA$::Km^r. The genomic DNA of the mutant and the wild type strains were digested simultaneously with *Clal* and *HindIII* and used for Southern blot hybridisation with the kanamycin resistance gene as probe. On the right side is the DNA Molecular Weight Marker VII, DIG-labelled (M), labelled with the band size in bp. The sizes of the expected fragments and the location of *Clal* and *HindIII* restriction sites in the genome are given schematically in Figure 6.3.

Results

120

Figure 6.3 Computationally predicted fragment sizes of WUE2594 mutant strains in Southern blot with Tn903-probe after HindIII/ClaI double digest

Depicted are the CRISPR/Cas loci of WUE2594\[Lasse::Kmr (A), WUE2594\[Lasse:Kmr (B)] WUE2594\DCRISPR::Km^r (C) and the and WUE2594 Δ *rnc*::Km^r *rnc* locus (D). The scale in bp above the genes denotes the place in the genome according to the published genome sequence of the wild type strain. Bold white arrows indicate genes and their reading direction. Loci of non-coding RNAs are indicated by white boxes with angled arrows. Black boxes indicate non-neisserial DNA, in particular, kanamycin-resistance cassettes (Tn903). Vertical lines indicate CRISPR spacers. Restriction sites of Clal and HindIII are given below the genes. The braces mark genome fragments after HindIII/Clal, double digest hybridising with the Tn903-probe in Southern blot, and their computationally estimated size in bp. Drawn to scale.

The WUE2594 *cas9, rnc,* and tracrRNA knockout strains demonstrated fragment sizes as expected (Figure 6.3) in the Southern blot. Strain WUE2594 Δ CRISPR had one fragment of the expected size (5.4 kbp) but also a fragment of approximately 3.8 kbp, which is not computationally predicted. Even if a point mutation would alter the *Cla1* restriction site upstream the kanamycin restriction site and therefore inhibit the digestion, the

Results

next *Clal* restriction site would lead to a fragment significantly smaller than 3.8 kbp (see Figure 6.3).

Figure 6.4 Southern blot analysis of 8013 cas9 mutant strains

Southern blot analysis to verify the genotypes of $8013\Delta cas9$::Km^r and $8013\Delta cas9$::Km^r Ccas9 strains. The genomic DNA of the mutant and the wild type strains were digested and used for Southern blot hybridisation with cas9 as probe.

The Southern blot analysis of 8013 *cas9* mutant strains showed *cas9* detectable in the wild type and the complemented strains but not in the knockout-strains. Additionally, the *cas9* knockout strains and the respective complemented strains in the genetic background of 8013 were verified via RT-PCR (Figure 6.5), which demonstrates that *cas9* is not transcribed in the knockout strains but in the complemented strains and the wild type.

Figure 6.5 Gel electrophoresis of RT-PCR products from 8013 cas9 mutant strains

RT-PCR on *cas9* with primer pair 1227 x 1228. Estimated size of the PCR product: 268 bp. Bacteria were grown in GCBL⁺⁺. RNA samples were isolated in late logarithmic growth phase and transcribed. An unpredicted product of approximately 400 bp is traceable in almost every positive PCR, which may be due to unspecific primer binding. Genomic DNA of 8013 WT was used as a positive control (PC). DNA HyperLadderTM 1kb was used as a marker (M). Abbreviations: NC, negative control.

Since the WUE2594 CRISPR knockout strain did not show the expected fragment size, further PCR analyses were required. The binding sites of the primers used in PCRs for mutant verification are shown in Figure 5.2 and Figure 5.3.

The PCRs performed to verify knockout strains are given in Table 6.1. The PCR conditions in particular are given in Table 5.5. Figure 6.6 shows the stained PCR products after gel electrophoresis.

Results

Figure 6.6 PCR verification of mutant strains

Products of PCRs performed to verify mutants in 8013 (A) and WUE2594 (B). Each lane is labelled with a unique PCR identifier shown in Table 6.1. PCRs were performed as described in Table 5.5 using bacterial lysates as template. Depicted are the stained PCR products after gel electrophoresis. PCR products of unexpected size are marked by asterisks (*), PCRs that repeatedly failed are marked by crosses (+). The stained DNA HyperLadderTM 1kb is depicted next to the products and partially lettered in bp.

PCR identifier	strain	primer	expected product size (bp)
A-1-1	л Г	1031 x 1032	2574
A-1-2	8013 CRISF AH-1	1031 x 328	1069
A-1-3	00 1	1032 x 329	1088
A-5-1	<u>к</u> –	1031 x 1032	2574
A-5-2	8013 ACRISF [AH-5]	1031 x 328	1069
A-5-3		1032 x 329	1088
A-9-1	8013 ΔtracrRNA [AH-9]	903 x 739	2517
A-9-2		903 x 328	958
A-9-3		739 x 329	1082
A-15-1		988 x 989	2541
A-15-2	Δ <i>rnc</i> C <i>rnc</i> \H-15]	988 x 971	1966
A-15-3		989 x 970	1117
A-15-4	8013 [⁄	970 x 971	665
A-15-5		617 x 618	2653

Table 6.1 Explanation of the PCR identifier

PCR identifier	strain	primer	expected product size (bp)
A-18-1	AN .	988 x 989	1868
A-18-2	racrRl rRNA -18]	988 x 1047	1466
A-18-3	13 ∆tı Ctrac [AH	989 x 1048	618
A-18-4	80	903 x 739	2517
A-30-1		617 x 618	2653
A-30-2	8013 Δr [AH-30	617 x 329	1220
A-30-3		618 x 328	1016
A-34-1	∆tracrRNA Ccas9 [AH-34]	903 x 739	2517
A-34-2		903 x 328	958
A-34-3		739 x 329	1082
A-34-4		1122 x 1123	4056
A-34-5	3013 ,	976 x 1122	2514
A-34-6		977 x 1123	2234
A-38-1	rnc	988 x 989	2541
A-38-2	<i>rnc</i> C -38]	988 x 970	1966
A-38-3	013 ∆ [Aŀ	989 x 971	1117
A-38-4	8(970 x 971	665

PCR identifier	strain	primer	expected product size (bp)
A-38-5		617 x 618	2653
A-41-1	AN .	988 x 989	1868
A-41-2	′acrR rRNA -41]	988 x 1047	1466
A-41-3	13 ∆tı Ctrac [AH	989 x 1048	618
A-41-4	80	903 x 739	2517
A-47-1	NA L	903 x 739	2517
A-47-2	8013 racrR AH-4	903 x 328	958
A-47-3	Δtı [739 x 329	1082
A-56-1	- <i>'nc</i> 5/	617 x 618	2653
A-56-2	013 ∆ AH-5(BJ-49	617 x 329	1220
A-56-3	80	618 x 328	1016
A-65-1	8013 ∆tracrRNA [AH-65]	903 x 739	2517
A-WT-1	8013 WT	1031 x 1032	3059
A-WT-2	8013 WT	1031 x 328	-
A-WT-3	8013 WT	1032 x 329	-
A-WT-4	8013 WT	617 x 618	2172

PCR identifier	strain	primer	expected product size (bp)
A-WT-5	8013 WT	988 x 971	-
A-WT-6	8013 WT	989 x970	-
A-WT-7	8013 WT	970 x 971	665
A-WT-8	8013 WT	903 x 739	1423
A-WT-9	8013 WT	1047 x 1048	202
A-WT-10	8013 WT	988 x 1047	-
A-WT-11	8013 WT	989 x 1048	-
A-WT-12	8013 WT	977 x 1123	-
A-WT-13	8013 WT	988 x 989	866
A-WT-14	8013 WT	977 x 1123	-
A-WT-15	8013 WT	1122 x 1123	-
A-WT-16	8013 WT	617 x 329	
B-9-1	as9	905 x 906	2736
B-9-2	34 Δc. -9]	905 x 329	1200
B-9-3	JE256 [BJ	906 x 328	1064
B-9-4	MU	976 x 977	-

PCR identifier	strain	primer	expected product size (bp)
B-11-1	94 VA]	739 x 740	2651
B-11-2	UE25 acrRI BJ-11	740 x 328	1105
B-11-3	∆tr [739 x 329	1082
B-57-1	'nc	617 x 618	2699
B-57-2	94 <i>D</i> / -57]	618 x 328	1015
B-57-3	JE25([BJ-	617 x 329	1220
B-57-4	>	970 x 971	-
B-70-1		11604 x 11605	3160
B-70-2	[2594 ISPR -70]	11605 x 328	1734
B-70-3	WUE ACRI [BJ-	11604 x 329	962
B-70-4		972 x 973	-
B-WT-1	WUE2594 WT	905 x 906	4729
B-WT-2	WUE2594 WT	739 x 740	1570
B-WT-3	WUE2594 WT	617 x 618	2171
B-WT-4	WUE2594 WT	11604 x 11605	3399

PCR identifier	strain	primer	expected product size (bp)
B-WT-5	WUE2594 WT	976 x 977	546
B-WT-5	WUE2594 WT	970 x 971	665
B-WT-6	WUE2594 WT	972 x 973	661

The 8013 and the WUE2594 mutant strains were successfully verified by PCR analysis and showed the computationally predicted product sizes. Only the PCRs using the primer combination 903x328 failed repeatedly, possibly due to bad primer compatibility. The PCR A-34-4 amplifies a product larger than 4000 bp and was not performable using *Taq* polymerase.

Overall, the generated mutant strains were in line with the expectations.

- 6.2 Influence of the genetic alterations on the phenotype of 8013 and WUE2594 mutant strains
- 6.2.1 Macroscopic aspect of WUE2594 and 8013 mutant strains on COS agar plates

On many occasions during the experiments, the strains were cultivated on COS agar plates. It was continuously observable that the colonies of the *N. meningitidis* WUE2594 *rnc* knockout strain were smaller than other WUE2594 strains plated at the same time (Figure 6.7). This effect was not observable in *N. meningitidis* 8013.

Liquid cultures of the strains were adjusted to $OD_{600} = 1.0$, plated on COS plates, and incubated overnight at 37 °C and 5% CO₂. The photographs were taken using the *ProtoCOL* colony counter (Table 4.1). Depicted are equally scaled, representative parts of an entire agar plate.
6.2.2 Bacterial growth of WUE2594 mutant strains in liquid culture

The macroscopic aspect of the WUE2594 *rnc* knockout strain might indicate a growth deficiency of this strain. To exclude the presence of global phenotypic effects influencing further experiments, the *in vitro* growth of the strains in RPMI⁺ (Table 4.25) was examined. The results are depicted in Figure 6.8. Since the adhesion and invasion assays with WUE2594 strains were only performed in RPMI⁺, the growth of WUE2594 strains in EMEM⁺⁺⁺ was not assessed.

Figure 6.8 Growth of WUE2594 strains in RPMI⁺

WUE2594 wild type and mutant strains were grown in RPMI⁺ for 10 h at 37 °C, and the optical density (OD₆₀₀) was determined every hour (A). After 0 h, 5 h, and 9 h of incubation, the suspensions were serially diluted, and three dilution steps were plated twice on COS agar plates. After overnight incubation, the CFU was measured using the ProtoCol colony counter. Depicted are the weighted mean values and the standard deviations of six measurements (B).

Even though hourly measuring of the OD_{600} did not reveal differences in growth between WUE2594 mutant strains, the counted CFU of the *rnc* knockout were reduced compared to the wild type strain after 9 h of growth.

6.2.3 Bacterial growth of 8013 mutant strains in liquid culture

6.2.3.1 8013 mutant strains are able to survive in EMEM⁺⁺⁺

To preserve vital host cells, the cell adhesion and invasion assays had to be performed using EMEM⁺⁺⁺ as culture medium. While EMEM⁺⁺⁺ is a nutrient-rich medium (Table 4.23), the capability of *N. meningitidis* 8013 and the mutant strains to survive and grow in EMEM⁺⁺⁺ had to be assessed.

Figure 6.9 Growth of 8013 strains in EMEM⁺⁺⁺

8013 wild type (WT) with corresponding mutant strains and respective complementant strains were grown in EMEM⁺⁺⁺ for 8 h at 37 °C, and the optical density (OD₆₀₀) was determined every hour. Depicted are the mean values of three individual measurements. While every mutant strain was able to survive in EMEM⁺⁺⁺, two out of three *cas9* knockouts, AH-23 and AH-25 (Figure 6.9 B and C), and both *rnc* knockouts, AH-30 and BJ-49 (Figure 6.9 F and G), demonstrated decreased growth capacity. The growth defect was diminished by *rnc* complementation (Figure 6.9 F) but only partially by *cas9* complementation (Figure 6.9 B and C) in the respective mutant strain.

Since it has been shown that RNase III is a global regulator of gene expression in E. coli [94], it is conceivable that the knockout of *rnc* in a *N. meningitidis* strain leads to a growth deficiency, and this assumption is strengthened since the effect was absent in the complemented strain AH-15. An influence of Cas9 on the bacterial arowth has not been described vet. Furthermore, since the effect was absent in strain AH-12 (Figure 6.9 A) and only partially restored in the complemented strains AH-22 and AH-24 (Figure 6.9 B and C), it is possible that a second genetic event occurred during the knockout of cas9 in AH-23 and AH-25 that influences the growth capacity in EMEM⁺⁺⁺.

6.2.3.2 The knockout of *cas9* does not lead to a general growth deficiency

To examine whether the growth capacity of the *cas9* knockout strains is medium dependent, the growth experiments were also performed in GCBL⁺⁺ (Table 4.16). GCBL⁺⁺ is also a nutrient-rich medium and known to be suitable for meningococcal growth [95].

Under these conditions, all mutant strains demonstrated growth similar to the wild type (Figure 6.10).

Figure 6.10 Growth of 8013 cas9 mutant strains in $GCBL^{++}$

8013 wild type, mutant, and respective complementant strains were grown in GCBL⁺⁺ for 7 h at 37 °C, and the optical density (OD₆₀₀) was determined every hour. Depicted are the mean values of two individual measurements.

6.2.4 *N. meningitidis* 8013 does not form static biofilm in EMEM⁺⁺⁺

It has been shown that N. meningitidis forms biofilms on abiotic and biotic surfaces [96, 97], and biofilm formation might influence the adhesion of meningococci to host cells [15]. To examine whether the knockout of CRISPR/Cas related genes influences biofilm formation under static conditions, biofilm formation was assessed in a polystyrene microtiter plate as described in Chapter 5.26.

To ensure conditions comparable to the cell adhesion and invasion assay (Chapter 5.25), the static biofilm assay was performed in EMEM⁺⁺⁺ cell culture medium (Table 4.22). Neither the wild type nor one of the tested knockouts formed a significant biofilm layer in EMEM⁺⁺⁺ (Figure 6.11).

Figure 6.11 Biofilm formation of 8013 mutant strains

8013 wild type, mutant, and respective complementant strains were cultured in EMEM⁺⁺⁺, and the static biofilm formation was determined after 16 h of incubation. The assay was performed on a 96-well microtiter plate as described in Chapter 5.26. To quantify the biofilm formation, the biofilms were stained using crystal violet and the OD_{595} was measured. The threshold of significant biofilm formation was determined by staining and measuring uninoculated wells and multiplying the measured value by three. Depicted is one out of three similar experiments representing mean values of six technical replicates.

6.3 The CRISPR/Cas system influences the adhesion to host cells in a strain specific manner

The ability of meningococci to adhere to human host cells and to invade the cells is a crucial step in the development of IMD [6, 7].

To examine the influence of the CRISPR/Cas system on the interaction with human host cells, cell adhesion and invasion assays (Chapter 5.25) were performed on a nasopharyngeal cell line called Detroit562. Detroit562 cells are derived from pleural effusion caused by the metastasis of a nasopharyngeal carcinoma in a female Caucasian [85, 86]. They were cultivated in EMEM+++ and infected with the meningococcal strains. After 4 hours of infection, the number of adherent bacteria were determined as described in Chapter 5.25. Subsequently, the cells were treated with gentamicin, a bactericidal aminoglycoside antibiotic that irreversibly binds to the 30S subunit of the bacterial ribosome and inhibits protein synthesis [98]. Gentamicin cannot invade Detroit562 cells and is therefore unable to kill intracellularly and thus invasive meningococci. After 1 h of gentamicin treatment, the Detroit562 cells were lysed using saponin

and the gentamicin-protected invasive bacteria were determined as described in Chapter 5.25.

6.3.1 The adhesion and invasion to host cells is CRISPR/Cas independent in WUE2594

Ten individual adhesion and invasion assays were performed with WUE2594 strains and examined the wild type and two knockout strains simultaneously. The order of the strains in the experimental setup was appointed randomly to prevent bias. As shown in Table 6.2, the knockouts did not differ in their mean adhesion or in their mean invasion rate compared to the wild type.

Four out of six experiments performed with the WUE2594 *cas9* knockout strain (BJ-3) showed an adhesion and invasion rate similar to the wild type. In one experiment, the adhesion and invasion rate were reduced ($\alpha < 0.05$) and in one experiment the adhesion and invasion rate were significantly ($\alpha < 0.01$) increased.

The WUE2594 tracrRNA knockout BJ-11 was tested four times: three times with results similar to the wild type and one time with an increased adhesion rate ($\alpha < 0.05$).

The adhesion rate of the WUE2594 *rnc* knockout strain (BJ-57) was reduced in two out of six experiments, both

Results

times with a moderate significance ($\alpha < 0.05$). In one experiment the invasion rate was reduced while in the other it was increased (both $\alpha < 0.05$). The other four experiments showed results similar to the wild type.

The knockout of the CRISPR array in WUE2594 (BJ-70) led to inconsistent results in the adhesion and invasion assay. The adhesion rate was significantly ($\alpha < 0.01$) decreased twice, and the invasion rate increased. One experiment showed an opposite result, an increased adhesion rate, and a decreased invasion rate, and one experiment produced results similar to the wild type.

Therefore, no consistent effect of the CRISPR/Cas system on host cells interaction was observed in strain WUE2594.

۷	exp.no. ^a	WUE2594 ∆cas9 (BJ-8) rel. adh. rate ^b st dev.° p-value ^d	WUE2594	IA (BJ-11) /.° p-value ^d	WUE2594 ∆ <i>rnc</i> (BJ-t rel. adh. rate^bst . dev. ^c <i>k</i>	57) p-value ^d	WUE2594 ∆ rel. adh. rate ^b	CRISPR (BJ-70) st. dev. ^c <i>p</i> -value ⁶	τ
	1	1,08E+00 4,07E-01 n.s.	8,38E-01 1,10E-	01 n.s.	1,49E+00 3,02E-01	n.s.	5,22E-01	9,32E-02 < 0.01	
	_ _	[2594_9_2014_05_15]	[2594_10_2014_0	15_14]	[2594_9_2014_05_15]		2594_10	_2014_05_14]	
	, 1	1,54E+00 5,17E-01 n.s.	1,61E+00 1,38E-	01 <0.05	7,86E-01 2,35E-02	n.s.	5,50E-01	8,19E-02 < 0.01	
	7-11	[2594_4_2014_05_07]	[2594_8_2014_05	5_13]	[2594_4_2014_05_07]		[2594_8	2014_05_13]	
	с !	3,03E-01 1,27E-01 <0.05	9'02E-01 3'65E-	01 n.s.	2,32E-01 1,70E-02	<0.05	1,41E+00	1,14E-01 <0.05	
	°=⊔	[2594_4_2014_05_07]	[2594_7_2014_05	5_09]	[2594_5_2014_05_07]		[2594_8	2014_05_13]	
	1	8,93E-01 2,92E-02 n.s.	1,14E+00 2,00E-	01 n.s.	1,06E+00 1,05E-01	n.s.	1,08E+00	2,06E-01 n.s.	
		[2594_11_2014_04_29]	[2594_6_2014_05	5_08]	[2594_11_2014_04_29]		[2594_6	2014_05_08]	
		9,06E-01 1,86E-01 n.s.	n.d. n.d.		5,33E-01 5,27E-02	<0.05	n.d.	P.u	1
	0 	[2594_3_2014_04_08]			[2594_3_2014_04_08]				
	1	1,86E+00 1,16E-01 < 0.01	.n.d. n.d.		1,31E+00 1,64E-01	n.s.	n.d.	n.d	
	0=0	[2594_3_2014_04_08]			[2594_1_2014_04_03]				1
0		WUE2594 Acas9 (BJ-8)	WUE2594 AtracrRN	IA (BJ-11)	WUE2594 ∆ <i>mc</i> (BJ-£	57)	WUE2594	CRISPR (BJ-70)	
٥	exp.no. ^a	rel. adh. rate ^b SEM ^e	rel. adh. rate ^b	SEM ^e	rel. adh. rate ^b SEM	n	rel. adh. rate ^b	SEM ^e	
	mean	1,10E+00 2,23E-01	1,12E+00 1,	74E-01	9,03E-01 1,95E-	01	8,91E-01	2,16E-01	
	(n=1-6)								

ber	
num	•
nent	-
experin	
a D	2

^b relative adhesion rate

^c standard deviation

 d ρ -value, comparing the adhesion rate of the mutant strain to the adhesion rate of the wildtype strain $^\circ$ standard error of the mean

٩

		WUE2594 Acas9 (BJ-8)	WUE2594 AtracrRNA (BJ-11)	WUE2594 Amc (BJ-57)	WUE2594 ACRISPR (BJ-70)
•	exp.no. ^e	rel. inv. rate ^f st. dev. ^g <i>p</i> -value ^h	rel. inv. rate ^f st. dev. ^g <i>p</i> -value ^h	rel. inv. rate ^f st. dev. ^g <i>p</i> -value ^h	rel. inv. rate ^f st. dev. ^g <i>p</i> -value ^h
	n=1	8,08E-01 2,54E-01 n.s. [2594_9_2014_05_15]	9,97E-01 2,19E-01 n.s. [2594_10_2014_05_14]	3,36E-01 7,15E-02 n.s. [2594_9_2014_05_15]	1,50E+00 3,40E-01 < 0.01 [2594_10_2014_05_14]
	n=2	1,66E+00 4,37E-01 n.s. [2594_4_2014_05_07]	1,09E+00 2,49E-01 <0.05 [2594_8_2014_05_13]	1,66E+00 7,74E-01 n.s. [2594_4_2014_05_07]	2,08E+00 4,28E-01 < 0.01 [2594_8_2014_05_13]
	n=3	1,93E+00 3,85E-01 <0.05 [2594_4_2014_05_07]	5,39E-01 2,50E-01 n.s. [2594_7_2014_05_09]	1,74E+00 1,17E+00 <0.05 [2594_5_2014_05_07]	4,61E-01 1,14E-01 <0.05 [2594_8_2014_05_13]
	n=4	9,44E-01 1,01E-01 n.s. [2594_11_2014_04_29]	1,27E+00 2,66E-01 n.s. [2594_6_2014_05_08]	7,52E-01 8,13E-02 n.s. [2594_11_2014_04_29]	9,30E-01 2,14E-01 n.s. [2594_6_2014_05_08]
	n=5	9,22E-01 3,28E-01 n.s. [2594_3_2014_04_08]	n.d. n.d	6,69E-01 2,71E-01 <0.05 [2594_3_2014_04_08]	n.d. n.d
	n=6	1,61E+00 1,64E-01 < 0.01 [2594_3_2014_04_08]	n.d. n.d	1,80E+00 9,56E-01 n.s. [2594_1_2014_04_03]	n.d. n.d
0	exp.no. ^e	WUE2594 ∆cas9 (BJ-8) rel. inv. rate ^f SEM	WUE2594 ∆tracrRNA (BJ-11) rel. inv. rate ^f SEM	WUE2594 ∆ <i>mc</i> (BJ-57) rel. inv. rate ^f SEM	WUE2594 ∆CRISPR (BJ-70) rel. inv. rate ^f SEM
	mean (n=1-6)	1,31E+00 1,95E-01	9,75E-01 1,56E-01	1,16E+00 2,63E-01	1,24E+00 3,50E-01
		° experiment number ^f relative invasion rate ^g standard deviation			

 $^{\rm h}$ ρ -value, comparing the invasion rate of the mutant strain to the invasion rate of the wildtype strain $^{\rm l}$ standard error of the mean

Results

150

Table 6.2 Adhesion and invasion rates of WUE2594knockout strains

Listed are the observed adhesion rates relative to the wild type (rel. adh. rate, in bold) (A) and (B) and invasion rates relative to the wild type (rel. inv. rate, in bold) (C) and (D) on Detroit562 cells and the respective standard deviation (st. dev.) of the WUE2594 knockout strains as well as the p-value comparing the mutant adhesion or invasion rate relative to the wild type. The mean adhesion rate of the wild type over the depicted 10 experiments was 0.747 (SEM 1.95*10⁻¹), and the mean invasion rate was $7.55*10^{-4}$ (SEM $1.40*10^{-4}$). The ID-number of each experiment (n) is given in square brackets below the values. The experiments were performed with two knockout strains and the wild type strain simultaneously. The mean relative adhesion rates (B) and invasion rates (D) of the knockout strains and the respective standard error of the mean are given below each column of individual results. Abbreviations: n.d., no data; n.s., not significant ($\alpha > 0.05$)

6.3.2 The knockout of *cas9*, tracrRNA and *rnc* leads to a reduced adhesion rate in 8013

In contrast to WUE2594, 8013 showed almost no invasive behaviour in Detroit562 cells. The COS plates with the gentamicin protected bacteria were grown with less than thirty colonies in the lowest dilution stage. Therefore, only the adhesion rate of 8013 was examined (Table 6.3).

Results

Three biological replicates of the 8013 *cas9* knockout were tested, AH-12, AH-25 and BJ-3 (named AH-23 after transformation of an empty plasmid). AH-12 was tested two times, BJ-3, three times. All five experiments showed a significantly ($\alpha < 0.01$) reduced adhesion rate of the *cas9* knockout strain. Strain AH-23 and AH-25 were examined together with the corresponding complementant strain (see Chapter 6.3.3).

The 8013 tracrRNA knockout strain (AH-9) was used in three experiments and its adhesion rate was significantly ($\alpha < 0.01$) reduced every time compared to the wild type.

The knockout of *rnc* in 8013 leads to a reduced adhesion rate ($\alpha < 0.01$) in the five experiments, performed with two biological replicates, BJ-49 and AH-30.

However, the adhesion rate of the 8013 CRISPR knockouts adhesion rate was increased in four out of five experiments performed with two biological replicates (AH-1 and AH-5). In one experiment, the 8013 CRISPR knockout strain AH-5 showed an increased adhesion rate but with a high standard deviation and thus without statistical significance.

Overall, the mean adhesion rates of the *cas9*, the tracrRNA and the *rnc* knockout in 8013 were decreased and notably they were reduced to a similar level. The mean adhesion rates of the CRISPR knockout strains were increased with large fluctuations between the individual experiments and biological replicates.

strain	experim	tent n=1	experiment n=2	experiment n=3	mean (n=1-3) سوالت الم	
				121: ani: 1312 St. 024. p-431		Т
8013 ∆ <i>cas9</i> (AH-12)	5,36E-01 6	,02E-02 < 0.01	2,51E-01 8,54E-02 < 0.01	- n.d	3,94E-01 1,42E-01	~
	[8013_11_2	2014_9_19]	[8013_10_2014_9_18]			1
8013 ∆ <i>cas9</i> (BJ-3)	5,53E-02 2	,24E-02 < 0.01	2,01E-02 1,35E-03 < 0.01	1,74E-01 4,39E-02 < 0.0	01 8,32E-02 4,66E-02	N
	[8013_3_	2014_6_6]	[8013_2_2014_6_5]	[8013_1_2014_5_30]		
8013 ∆tracrRNA (AH-9)	1,30E-01 2	,10E-02 < 0.01	4,62E-01 9,82E-02 < 0.01	2,71E-01 7,44E-02 < 0.0	01 2,88E-01 9,61E-02	
	[8013_20_2	014_11_27]	[8013_11_2014_9_19]	[8013_10_2014_9_18]		
8013 ∆ <i>mc</i> (BJ-49)	4,83E-02 6	,51E-03 < 0.01	1,79E-01 4,05E-02 < 0.01	n.d. n.d	1,14E-01 6,55E-02	\sim
	[8013_2_3	2014_6_5]	[8013_1_2014_5_30]			1
8013 ∆ <i>mc</i> (AH-30)	2,66E-01 3	,58E-02 < 0.01	3,36E-01 1,43E-02 < 0.01	1,40E-01 2,41E-02 < 0.0	01 2,47E-01 5,74E-02	N
	[8013_19_2	014_11_20]	[8013_12_2014_9_24]	[8013_7_2014_9_12]		1
8013 ACRISPR (AH-1)	1,96E+00 3	,03E-01 < 0.05	1,58E+00 1,23E-01 < 0.05	- n.d. n.d .	1,77E+00 1,89E-01	~
	[8013_4_2	014_6_11]	[8013_20_2014_11_27]			1
8013 ∆CRISPR (AH-5)	3,60E+00 2	,05E-01 < 0.01	2,92E-02 2,79E-03 < 0.01	2,20E+00 7,41E-01 n.s.	1,95E+00 1,04E+00	0
	[8013_7_2	014_9_12]	[8013_12_2014_9_24]	[8013_19_2014_11_20]		
	-					

relative adhesion rate

^b standard deviation

 $^{\circ}$ p -value, comparing the adhesion rate of the mutant strain to the adhesion rate of the wildtype strain $^{\rm d}$ standard error of the mean

Results

154

Table 6.3 Adhesion rates of 8013 knockout strains

Listed are the observed adhesion rates relative to the wild type (rel. adh. rate, in bold) on Detroit562 cells and the respective standard deviation (st. dev.) of the 8013 knockout strains as well as the *p*-value comparing the adhesion rate of the mutant strain to the wild type. The mean adhesion rate of the wild type over the depicted 10 experiments was 1.05 (SEM $3.3*10^{-1}$). The ID-number of each experiment (n) is given in square brackets below the values. The experiments were performed with two knockout strains and the wild type strain simultaneously. The mean relative adhesion rates of the knockout strains and the respective standard error of the mean are given next to each row of individual results. Abbreviations: n.d., no data; n.s., not significant ($\alpha > 0.05$)

6.3.3 The effect of the *cas9* and *rnc* knockout on the adhesion to host cells is complementable

To determine whether the observed effect of the *cas9*, the tracrRNA and the *rnc* knockout on the adhesion to human host cells (Chapter 6.3.2) is complementable, the 8013 mutant strains were examined with the corresponding complementant strains simultaneously (Table 6.4).

etrain		experiment n=1			experiment n=2			experiment	n=3		mean (r	⊫1-3)
	rel. adh. rate	i ^a st dev. ^b p⊸valu	e ^c p-value ^d	rel. adh. rate	ast. dev. ^b p-value	° p-value ^d	rel. adh. rate	a st dev. ^b	<i>p</i> -value ^c	<i>p</i> -value ^d	el. adh. rate	a SEM ^e
8013 ∆cas9 (AH-12)	2,40E-01	1,16E-02 < 0.0	1 < 0.01	3,34E-01	2,70E-02 < 0.01	< 0.01	8,61E-02	4,97E-03	< 0.01	< 0.01	2,20E-01	7,23E-02
8013 ∆cas9 Ccas9 (AH-61)	7,53E-01	5,98E-02 < 0.0	۔ د	1,04E+00	1,25E-01 n.s.		1,24E+00	1,28E-01	n.s.		1,01E+00	1,42E-01
	8]	013_26_2015_2_19]		9	3013_28_2015_2_24]			3013_29_2015	4_8]			
8013 ∆cas9 (AH-23)	9,26E-02	1,20E-02 < 0.0	1 < 0.01	1,21E-01	1,53E-02 < 0.01	< 0.01	4,87E-02	6,99E-03	< 0.01	< 0.01	8,75E-02	2,11E-02
8013 ∆ <i>cas</i> 9 C <i>c</i> as9 (AH-24)	2,48E+00	2,65E-01 < 0.0		1,09E+00	1,32E-01 n.s.		9,64E-01	1,83E-01	n.s.		1,51E+00	4,86E-01
	[80	13_15_2014_10_14		8	013_16_2014_10_15]		[8]	013_23_2014_	11_28]			
8013 ∆cas9 (AH-25)	4,78E-02	4,81E-03 < 0.0	1 < 0.01	9,34E-02	4,22E-02 < 0.01	< 0.01	n.d.	n.d.			7,06E-02	2,28E-02
8013 ∆ <i>cas9</i> C <i>cas9</i> (AH-22)	1,03E+00	5,92E-02 n.s.	•	4,33E-01	6,01E-02 < 0.05		n.d.	n.d.			7,29E-01	2,96E-01
	[80	13_17_2014_10_22		8	013_22_2014_11_26]							
8013	1,94E-01	2,47E-02 < 0.0	1 < 0.01	2,43E-01	7,59E-02 < 0.01	< 0.01	9,59E-02	9,17E-03	< 0.01	< 0.05	1,77E-01	4,31E-02
8013 ∆tracrRNA CtracrRNA (AH-18)	5,07E-01	6,23E-02 < 0.0		6,60E-01	5,92E-02 < 0.05	•	3,28E-01	7,32E-02	< 0.01		4,98E-01	9,60E-02
	9	8013_8_2014_9_16]]	8013_9_2014_9_17]		[8]	013_21_2014_	11_25]			
8013	5,41E-01	6,25E-02 < 0.0	1 n.s.	2,03E-02	1,16E-03 < 0.01	< 0.01	n.d.	n.d.			2,81E-01	2,60E-01
8013 ∆tracrRNA Ccas9 (AH-34)	3,89E-01	3,72E-02 < 0.0		5,16E-02	6,70E-03 < 0.01		n.d.	n.d.	,		2,20E-01	1,68E-01
	8	013_31_2015_4_9]		2	3013_32_2015_4_10]							
8013 ∆tracrRNA (BJ-45)	4,71E-01	4,34E-02 < 0.0	1 n.s.	6,71E-01	4,59E-02 < 0.01	n.s.	n.d.	n.d.			5,71E-01	1,00E-01
8013 ∆tracrRNA Ccas9 (AH-34)	4,62E-01	2,85E-02 < 0.0		5,69E-01	3,29E-02 < 0.01		n.d.	n.d.			5,15E-01	5,35E-02
	8]	013_33_2015_8_10]		9]	3013_34_2015_8_11]							
8013 ∆ <i>mc</i> (BJ-49)	1,96E-01	2,65E-02 < 0.0	1 < 0.01	3,84E-01	3,99E-02 < 0.01	< 0.01	2,93E-01	1,73E-02	< 0.05	< 0.01	2,91E-01	5,41E-02
8013 ∆ <i>mc</i> C <i>rnc</i> (AH-15)	5,30E-01	1,08E-01 < 0.0	د	1,13E+00	1,13E-01 n.s.		8,11E-01	7,58E-02	n.s.		8,25E-01	1,74E-01
		8013_5_2014_9_9]			8013_6_2014_9_10]		80	013_13_2014	9_29]			
8013 ∆ <i>mc</i> (AH-30)	8,24E-01	1,31E-01 n.s.	n.s.	1,53E-01	1,79E-02 < 0.01	< 0.01	3,84E-01	6,87E-02	< 0.01	n.s.	4,54E-01	1,97E-01
8013 ∆ <i>mc</i> C <i>mc</i> (AH-38)	1,18E+00	1,38E-01 n.s.	•	1,15E+00	1,39E-01 n.s.		4,77E-01	9,17E-02	< 0.01		9,38E-01	2,31E-01
	8	013_27_2015_2_23]			8013_30_2015_4_8]		3]	013_35_2015	8_12]			

^a relative adhesion rate

^b standard deviation

^o p-value, comparing the adhesion of the mutant strain to the adhesion rate of the wildtype strain ^d p-value, comparing the adhesion of the mutant strain to the adhesion rate of the respective complementant strain [®] standard error of the mean

Results

Table 6.4 Adhesion rates of 8013 knockout strains andcomplementant strains

Listed are the adhesion rates on Detroit562 cells and the respective standard deviation (st. dev.) of the 8013 knockout strains along with their respective complementant strain as well as the *p*-values comparing the mutant's adhesion rate to the wild type and the complementant strain. The mean adhesion rate of the wild type over the depicted 17 experiments was 0.947 (SEM 1.40*10⁻¹). The experiments were performed with knockout, complementant, and wild type strain simultaneously. The mean relative adhesion rates of the knockout strains and the respective standard error of the mean are given next to each row of individual results. Abbreviations: n.d., no data; n.s., not significant $(\alpha > 0.05)$

The reduced adhesion rate of AH-12 was consistently observable in each experiment, whereas the complemented strain AH-61 showed adhesion rates similar to the wild type. The cas9 knockout strains AH-23 AH-25 and were tested together with their complementant strains AH-24 and AH-22 with comparable results.

The adhesion rate of the 8013 tracrRNA knockout strain BJ-45 was significantly reduced in the experiments, but the effect was only partially complementable, since the complementant strain AH-18 showed adhesion rates significantly higher than BJ-45 but significantly lower than the wild type strain. Because of its proximity in the genome, a polar effect of the tracrRNA knockout on *cas9* was conceivable. However, the complementation of *cas9* into the 8013 tracrRNA knockout strain BJ-45 had no effect on the adhesion rate. In four out of four experiments, the *cas9* complemented tracrRNA knockout strain AH-34 showed a decreased adhesion rate compared to the wild type. In three out of four experiments, the adhesion rate was similar to the knockout, and only once was the adhesion rate of AH-34 significantly higher than its knockout. Thus, the knockout of tracrRNA is not complementable with a second copy of *cas9*.

In every experiment performed with the 8013 *rnc* knockout strain BJ-49, the adhesion rate was decreased compared to the wild type and the adhesion rate of the complemented strain AH-15 was significantly higher. The complemented strain showed adhesion rates on wild type level in two out of three experiments. The *rnc* knockout strain AH-30 was tested together with the complementant strains AH-38 and AH-22, with similar results.

The 8013 CRISPR knockout were not complementable in the way the other knockouts were (Chapter 5.18), which may be due to the frequent repeats. Therefore, the 8013 CRISPR knockouts were not tested further (Table 6.3).

Overall, effects of the knockouts on the adhesion rate demonstrated in Chapter 6.3.2 were confirmed and shown to be complementable for *cas9* and *rnc* and partially complementable for tracrRNA (Figure 6.12, Table 6.4). Notably, the integration of an empty plasmid in BJ-3 and BJ-45 did not alter the effect of the knockout on the adhesion rate.

Results

Figure 6.12 Adhesion of 8013 CRISPR/Cas mutant strains to the human nasopharyngeal epithelial cell line Detroit562

Depicted is the average adhesion rate of each mutant strain relative to the wild-type strain (set to 100%) from three independent experiments as shown in Table 6.4. The error bars indicate the standard error of the mean. For each strain, the adhesion rate was calculated as the number of colony-forming units (CFU) determined after 4 h of infection divided by the seeded CFU. The relative adhesion rate is the adhesion rate of the mutant divided by the adhesion rate of the wild-type strain.

6.4 The CRISPR/Cas loci of *Neisseria* strains differ in sequence

Since the knockout of genes of the CRISPR/Cas system in the two different strains WUE2594 and 8013 lead to different results in the performed experiments, computational analysis of the genes of interest were conducted to assess the genetic similarity of the strains.

Therefore, the nucleotide sequences of the respective genes in 8013 were compared to the *Neisseria* genomes published on NCBI using the NCBI blastn search (Chapter 5.27) and the megablast algorithm. As a result of the query, bitscores were obtained for each alignment. A higher bitscore corresponds to a higher similarity. To simplify the comparison between the examined strains, the bitscores were divided by the bitscore obtained for the 8013 self-hit to obtain a bit score normalized ratio (BSNR). Thus, the correct identity is given with BSNR = 1.0, whereas any result <1.0 refers to a lower grade of similarity. As an indicator for the overall similarity of the genome to 8013, highly conserved housekeeping genes were included in the query. In particular, *adk* which encodes for the adenylate kinase, *pip* encoding the proline iminopeptidase and *serC*, which encodes for the phosphoserine aminotransferase, were used [99].

The nucleotide sequences of *cas1*, *cas2*, *cas9*, the CRISPR array, the tracrRNA, *rnc*, *adk*, *pip*, and *serC* from *N. meningitidis* 8013 were compared to 25 *Neisseria* genomes. Fourteen lacked a CRISPR/Cas system (data not shown). The other eleven were compared as described above and the results are listed in Table 6.5. To estimate the overall variance of a gene, the coefficient of variation (C_v) is given above the table.

The comparison revealed that none of the published strains has a Cas9 gene identical in sequence to 8013. However. the cas9 sequence of the strains N. meningitidis WUE2594, *N. meningitidis* Z2491. N. meningitidis $\alpha 14$, N. meningitidis M01-240355, and N. meningitidis 51062 are very similar to N. meningitidis 8013. It is noteworthy that these strains belong to serogroups. The different strains N. meningitidis DE10444 and *N. meningitidis* α153 harbour a cas9 sequence that is strikingly different to the *cas9* sequence of 8013.

The sequence of the tracrRNA was identical in every strain, whereas the CRISPR array had a great variance

($C_v = 0.96$). Overall, the sequences of *cas1* and *cas2* are as highly conserved as those of *adk* and *pip*, and the sequence of *cas9* has a coefficient of variation as low as *serC*.

BSNR^b $\frac{bitscore (gene 8013 \rightarrow genome requested strain)}{bitscore (gene 8013 \rightarrow genome requested strain)}$ bitscore (gene $8013 \rightarrow$ genome 8013) racrRNA CRISPR Genome sg.a Acc-No^c cas2 cas9 serC cas1 adk 20, ë Cv 0.05 0.02 0.11 0.96 0.00 0.05 0.03 0.06 0.11 N. meningitidis 8013 В 0.93 0.96 0.95 FR774048.1 WUE2594 А 0.92 1.00 0.98 0.25 1.00 0.95 Z2491 А 0.92 1.00 0.98 0.19 1.00 0.95 0.96 0.97 0.97 AL157959.1 053443 С 0.85 0.98 0.92 0.12 1.00 0.85 0.95 0.97 0.96 CP000381.1 α14 0.95 1.00 0.98 0.08 1.00 0.93 0.94 1.00 0.96 AM889136.1 cnl M01-240355 В 0.89 0.97 0.98 0.26 1.00 0.88 0.97 0.95 0.97 CP002422.1 510612 A 0.92 1.00 0.98 0.27 1.00 0.95 0.93 0.96 0.95 CP007524.1

Table 6.5 Similarity of genes in sequenced Neisseriagenomes compared to N. meningitidis 8013

DE10444	n.d.	0.94	0.95	0.72	0.19	1.00	0.92	1.00	0.95	0.95	unpublished
α153	n.d.	0.84	0.98	0.79	0.15	1.00	0.93	0.98	0.95	0.93	unpublished
α275	n.d.	0.92	1.00	0.96	0.26	1.00	0.91	0.97	0.95	0.94	unpublished

^a serogroup of the strain; abbreviations: cnl, capsule null locus; n.d., not determined; n.s., not suitable

^b Bit Score Normalized Ratio

^c Accession-Number

d coefficient of variation

6.5 Both strains express a highly similar Cas9 protein

Further comparison of the amino acid sequence of Cas9 in strain 8013 and strain WUE2594 revealed that the difference in nucleotide sequence leads to nine amino acid mismatches (Figure 6.13). Only one of those mismatches is located inside a functional domain, concerning the Arginine-rich motive (ARM). Those motives are known to mediate the protein-RNA interaction [100]. The C-terminal end of Cas9 is known to determine the recognized protospacer-adjacent motive (PAM) [101]. Since the mismatches between 8013 and WUE2594 accumulate in the N-terminal region of Cas9, the two orthologs will likely target identical PAM.

8013	1(MAAFKPN <mark>S</mark> IN	RuvC-I 20 YILGLDIGIA) 30 SVGWAMVEID	2 40 EEENPIRLID) 50 LGVRVFERAE
WUE2394	MAAP RPN <mark>E</mark> IN 6($\frac{11101D101A}{\text{ARM}}$) 80	9(100 100
8013 WUE2594	VPKTGDSLAM VPKTGDSLAM	ARRLARSVRR ARRLARSVRR	LTRRRAHRLL LTRRRAHRLL	R T RRLLKREG R A RRLLKREG	VLQAA <mark>N</mark> FDEN VLQAA <mark>D</mark> FDEN
8013 WUE2594	11 GLIKSLPNTP GLIKSLPNTP	LO 12 WQLRAAALDR WQLRAAALDR	0 RuvC-II 1: KLTPLEWSAV KLTPLEWSAV	30 14 LLHLIKHRGY LLHLIKHRGY	40 150 LSQRKNEGET LSQRKNEGET
8013 WUE2594	1 (ADKELGALLK ADKELGALLK	50 17 GVA <mark>C</mark> NAHALQ GVADNAHALQ	70 18 TGDFRTPAEL TGDFRTPAEL	30 19 ALNKFEKESG ALNKFEKESG	90 200 HIRNQR <mark>S</mark> DYS HIRNQR G DYS
8013 WUE2594	2 HTFSRKDLQA HTFSRKDLQA	LO 22 ELILLFEKQK ELILLFEKQK	20 23 EFGNPHVSGG EFGNPHVSGG	30 24 LKEGIETLLM LKEGIETLLM	40 250 TQRPALS <mark>G</mark> DA TQRPALS <mark>S</mark> DA
8013 WUE2594	2 (VQKMLGHCTF VQKMLGHCTF	50 27 EPAEPKAAKN EPAEPKAAKN	70 28 TYTAERFIWL TYTAERFIWL	30 29 TKLNNLRILE TKLNNLRILE	90 300 QGSERPLTDT QGSERPLTDT
8013 WUE2594	3 ERATLMDEPY ERATLMDEPY	LO 32 RKSKLTYAQA RKSKLTYAQA	20 3: RKLLGLEDTA RKLLGLEDTA	30 34 FFKGLRYGKD FFKGLRYGKD	40 350 NAEASTLMEM NAEASTLMEM
8013 WUE2594	30 KAYHAISRAL KAYHAISRAL	50 37 EKEGLKDKKS EKEGLKDKKS	70 38 PLNLSPELQD PLNLSPELQD	30 39 EIGTAFSLFK EIGTAFSLFK	0 400 TDEDITGRLK TDEDITGRLK
8013 WUE2594	4 DRIQPEILEA DRIQPEILEA	LO 42 LLKHISFDKF LLKHISFDKF	20 4: VQISLKALRR VQISLKALRR	30 44 IVPLMEQGKR IVPLMEQGKR	450 YDEACAEIYG YDEACAEIYG
8013 WUE2594	4 C DHYGKKNTEE DHYGKKNTEE	50 47 KIYLPPIPAD KIYLPPIPAD	70 48 EIRNPVVLRA EIRNPVVLRA	30 49 LSQARKVING LSQARKVING	90 500 VVRRYGSPAR VVRRYGSPAR
8013 WUE2594	RuvC-III 53 IHIETAREVG IHIETAREVG	LO 52 KSFKDRKEIE KSFKDRKEIE	20 53 KRQEENRKDR KRQEENRKDR	30 54 EKAAAKFREY EKAAAKFREY	40 550 FPNFVGEPKS FPNFVGEPKS
8013 WUE2594	50 KDILKLRLYE KDILKLRLYE	50 57 QQHGKCLYSG QQHGKCLYSG	70 58 KEINLGRLNE KEINLGRLNE	30 HNH 59 KGYVEIDHAL KGYVEIDHAL	00 600 PFSRTWDDSF PFSRTWDDSF
8013 WUE2594	61 NNKVLVLGSE NNKVLVLGSE	LO 62 NQNKGNQTPY NQNKGNQTPY	20 63 EYFNGKDNSR EYFNGKDNSR	30 64 EWQEFKARVE EWQEFKARVE	10 650 TSRFPRSKKQ TSRFPRSKKQ
8013 WUE2594	60 RILLQKFDED RILLQKFDED	50 67 GFKERNLNDT GFKERNLNDT	70 68 RYVNRFLCQF RYVNRFLCQF	30 69 VADRMRLTGK VADRMRLTGK	90 700 GKKRVFASNG GKKRVFASNG
8013 WUE2594	7: QITNLLRGFW QITNLLRGFW	0 RuvC-IV 72 GLRKVRAEND GLRKVRAEND	20 7: RHHALDAVVV RHHALDAVVV	30 74 ACSTVAMQQK ACSTVAMQQK	10 750 ITRFVRYKEM ITRFVRYKEM

780 760 770 790 800 NAFDGKTIDK ETGEVLHQKT HFPQPWEFFA QEVMIRVFGK PDGKPEFEEA 8013 WUE2594 NAFDGKTIDK ETGEVLHQKT HFPQPWEFFA QEVMIRVFGK PDGKPEFEEA 810 820 830 840 850 8013 DTEKLRTLL AEKLSSRPEA VHEYVTPLFV SRAPNRKMSG QGHMETVKSA WUE2594 DTREKLRTLL AEKLSSRPEA VHEYVTPLFV SRAPNRKMSG QGHMETVKSA 860 870 880 890 900 8013 KRLDEGVSVL RVPLTOLKLK DLEKMVNRER EPKLYEALKA RLEAHKDDPA WUE2594 KRLDEGVSVL RVPLTQLKLK DLEKMVNRER EPKLYEALKA RLEAHKDDPA 910 920 930 940 950 8013 KAFAEPFYKY DKAGNRTQQV KAVRVEQVQK TGVWVRNHNG IADNATMVRV WUE2594 KAFAEPFYKY DKAGNRTOOV KAVRVEOVOK TGVWVRNHNG IADNATMVRV 960 970 980 990 1000 8013 DVFEKGDKYY LVPIYSWQVA KGILPDRAVV QGKDEEDWQL IDDSFNFKFS WUE2594 DVFEKGDKYY LVPIYSWQVA KGILPDRAVV QGKDEEDWQL IDDSFNFKFS 1010 1020 1030 1040 1050 LHPNDLVEVI TKKARMFGYF ASCHRGTGNI NIRIHDLDHK IGKNGILEGI 8013 WUE2594 LHPNDLVEVI TKKARMFGYF ASCHRGTGNI NIRIHDLDHK IGKNGILEGI 1060 1070 1080 8013 GVKTALSFOK YOIDELGKEI RPCRLKKRPP VR WUE2594 GVKTALSFOK YOIDELGKEI RPCRLKKRPP VR

Figure 6.13 Sequence alignment of Cas9

Amino acid sequence alignment of strain 8013 and strain WUE2594 Cas9 generated by CUSTALW [88]. Amino acids are annotated in one-letter code [102] and sorted in packages of ten amino acids. Mismatches are highlighted as white text on black background. Grey shaded boxes represent the functional domains of Cas9. Four RuvC endonuclease domains (RuvC-I through RuvC-IV), an HNH endonuclease domain, and an Arginine-Rich Motive (ARM) have been predicted for Cas9 [35]. The HNH nuclease domain cleaves the DNA strand complementary to the CRISPR RNA and the RuvC-like domain cleaves the non-complementary strand [38].

7 Discussion

Studies have demonstrated that genes located at the CRISPR/Cas locus are more frequent in carriage strains of meningococci than in strains from hyperinvasive lineages [19]. Furthermore, Cas9 has been shown to repress the endogenous transcript of a bacterial lipoprotein (blp) in Francisella novicida, thus affecting virulence, and it has been assumed that Cas9 also fulfils similar functions in *N. meningitidis* [35]. Studies regarding the N. meningitidis serogroup W135 strain 92045 investigated the interaction with A549 cells derived from a human lung adenocarcinoma. Since pneumonia is a rare end-organ manifestation of IMD, the relevance of these experiments medical seems questionable [43]. A crucial step in developing IMD is crossing the mucosal surface of the nasopharynx by penetrating the epithelial or endothelial cells [103]. Therefore, this study examined the influence of the CRISPR/Cas system on the adhesion to and invasion of a human nasopharyngeal cell line.

7.1 The impact of the CRISPR/Cas system on the adhesion to host cells depends on the genetic background

The adhesion assays performed using 8013 mutant strains revealed a significant reduction of the adhesion rates for strains carrying individual deletions of cas9, tracrRNA, or rnc (Chapter 6.3.2). The adhesion rates of the cas9 knockout and the rnc knockout strain could be restored to the wild type level by complementing the respective genes in trans by integrating rnc into the porA and cas9 into the *lctP* and aspC locus (see Chapter 5.18 Notably, this confirms the preceding and 6.3.3). experiments using *N. meningitidis* strain 92045, which demonstrate that Cas9 is required for meningococcal adhesion to human adenocarcinoma alveolar basal epithelial cells [35]. Neither the attempts to complement the ΔtracrRNA mutant by integrating a copy of tracrRNA in trans into the porA locus nor, assuming a polar effect of the tracrRNA knockout on cas9 expression, the integration of a second copy of cas9 in trans into the IctP and *aspC* locus restored the adhesion rate to wild type level (Table 6.4). The knockout of the CRISPR array did not lead to consistent effects, but it increased the adhesion rate rather than diminish it, perhaps due to a

hyperactivity of Cas9 in the absence of crRNAs. Neither the wild type 8013 strain nor any mutant showed invasive behaviour on the epithelial cells.

In contrast to the results obtained for 8013, the deletion mutants in WUE2594 did not differ in their interaction with human host cells compared to the wild type, even though the CRISPR/Cas locus of 8013 and WUE2594 are, despite the CRISPR spacers, highly similar. The CRISPR spacers are acquired sequences derived from previously encountered invasive DNA [25]. Therefore, it is unsurprising that the CRISPR spacer of 8013 and WUE2594 differ in sequence and number [45].

The tracrRNA is identical in both strains (Table 6.5) but *cas9* and *rnc* are not. There are nine differences in the amino acid sequence of Cas9 in *N. meningitidis* 8013 and WUE2594, but those are mostly outside of functional domains (Figure 6.13). Only one mismatch concerns a functional domain called ARM, which is known to mediate protein-RNA interaction [35]. While strain 8013 has a polar threonine at position 82, WUE2594 has a nonpolar alanine instead (see Figure 6.13). Noteworthy, in *F. novicida* a single point mutation in the ARM completely abolished the ability of Cas9 to repress

blp [35]. Furthermore, it has been shown recently that the different Cas9 orthologs present in sequenced *N. meningitidis* strains recognize three different PAM depending on their C-terminal sequence [101]. The nucleotide sequence of the RNase III- encoding gene *rnc* is almost identical between 8013 and WUE2594 and thus is as highly conserved as housekeeping genes such as *adk*, *pip*, or *serC* (Table 6.5). Minor differences are unsurprising regarding the immense variations observed between strains, even of the same clonal complex [19]. Therefore, the alterations in the sequence of *rnc* are unlikely to be responsible for the observed differences in cas9 deletion strains.

It is more likely that the distinct results are due to the different genetic background of these strains. The target of the gene-regulating function of Cas9 in *N. meningitidis* is still unknown.

7.2 Limitations of the adhesion and invasion assay

The observed effects of the genetic alterations on the results of the adhesion and invasion assay are not necessarily caused by a diminished capacity to adhere to host cells. A global growth defect would probably also
reduce the measured number of bacteria after 4 h of incubation. To address this method problem, the growth capacity of the mutants was examined. However, the results of the growth experiments did not correlate with the results of the adhesion and invasion assay (Table 7.1). On the contrary, there were strains, for example AH-24, with a reduced growth capacity in EMEM⁺⁺⁺ and a wild-type-like adhesion rate. Apparently, those traits are not necessarily linked. Additionally, there are differences in the growth conditions even though both experiments used EMEM⁺⁺⁺ as culture medium. The growth experiments were performed in liquid culture under rigorous shaking in contrast to the adhesion and invasion assays (see Chapter 5.23). Furthermore, bacterial cells had to share the medium with eukaryotic cells in the adhesion and invasion assay. Thus, the pH and nutrient content of the medium shifted during the experiment. However, comparison of the growth of 8013 strains in EMEM⁺⁺⁺ and GCBL⁺⁺ demonstrates that the growth deficiency is medium specific (Chapter 6.2.3.2). Therefore, the results of the growth experiments are at best partially responsible for the observed differences in the adhesion and invasion assay.

Table 7.1	Observed	phenotypes	of the	8013	mutant
strains cor	npared to th	ne wild type s	train		

9012 mutant atrain	Grow	Adhesion	
	EMEM ^{+++a}	GCBL ^{++b}	rate ^c
∆ <i>cas</i> 9 (AH-12)	=	=	\downarrow
∆ <i>cas</i> 9 C <i>cas</i> 9 (AH-61)	=	=	=
∆ <i>cas</i> 9 (AH-23)	\downarrow	=	\downarrow
∆ <i>cas</i> 9 C <i>cas</i> 9 (AH-24)	\downarrow	=	=
∆ <i>cas</i> 9 (AH-25)	\downarrow	=	\downarrow
∆ <i>cas</i> 9 C <i>cas</i> 9 (AH-22)	\downarrow	=	=
∆tracrRNA (B-45/ AH-65)	=	-	\downarrow
∆tracrRNA CtracrRNA (AH-18)	=	-	= / ↓
∆tracrRNA C <i>cas</i> 9 (AH-34)	-	-	\downarrow
∆tracrRNA (AH-47)	=	-	\downarrow
∆tracrRNA CtracrRNA (AH-41)	=	-	-
∆ <i>rnc</i> (B-49)	\downarrow	-	\downarrow
∆ <i>rnc</i> C <i>rnc</i> (AH-15)	=	-	=
<i>∆rnc</i> (AH-30)	\downarrow	-	\downarrow
∆rnc Crnc (AH-38)	-	-	=

9012 mutant atrain	Grow	Adhesion	
oors mutant stram	EMEM ^{+++a}	GCBL++b	rate ^c
∆CRISPR (AH-1)	\downarrow	-	=
∆CRISPR (AH-5)	-	-	= / ↑

 \downarrow decreased compared to the wild type; \uparrow increased compared to the wild type; = similar to wild type; - no data

^a see Figure 6.9

^b see Figure 6.10

 $^{\rm c}$ see Table 6.3 and Table 6.4

Another possible confounder is the capacity to build biofilms, since biofilm formation enhances antibiotic resistance and increases the stability against mechanical stress [104, 105]. However, no biofilm formation was observed on abiotic surfaces in EMEM⁺⁺⁺ for strain 8013. Thus, the obtained results in the adhesion and invasion assay are unlikely to be affected by biofilm formation.

7.3 Potential mode of action of Cas9 on cell adhesion

Since no experimental evidence indicates that Cas9 interacts directly with human host cells, it has to be assumed that Cas9 somehow modulates the activity of at least one bacterial adhesin and/or the integrity of the bacterial cell envelope. A hypothetical pathway is depicted in Figure 7.1.

Figure 7.1 Hypothetical gene regulation via CRISPR/Cas system in N. meningitidis 8013

Depicted on the bottom are the CRISPR/Cas locus and the rnc locus in N. meningitidis 8013; the loci are drawn to scale. The position according to the published genome sequence is given in bp beneath the genes. Bold arrows indicate genes and their reading direction; loci of non-coding RNAs are indicated by boxes with angled arrows. Promotors were predicted by BPROM and are depicted as small angled arrows. Vertical lines indicate CRISPR spacer. Elements transcribed for putative gene regulation are highlighted in grey. Above the loci, a gene-regulating function of Cas9 is depicted as hypothesized for F. novicida [106]. The tracrRNA, scaRNA, and Cas9 build a complex that recognizes the mRNA of an unknown bacterial lipoprotein by its sequence and degrades it by cleavage. In this way, Cas9 may influence the interaction of N. meningitidis with human epithelial cells such as Detroit562 in vitro. It is shown that RNase III, encoded by *rnc*, interacts with tracrRNA, and thus may also play a role in the gene regulation (not depicted) [45]. Adapted from [107]

The most important adhesins are the tfp, Opa, and Opc, minor adhesins such as NhhA, App or NadA, and the polysaccharide capsule [14, 49, 50]. Each of those adhesins is a potential target of Cas9 and thus a potential link to the observed phenotype. Further experiments based on this study revealed that in strain 8013, the expression of *pilE* and the serogroup C capsule did not differ between the mutant strains, the wild type, and the complemented strains [108]. Thus, the capsule and PilE are unlikely targets of Cas9's generegulating function. Nevertheless, the function or biogenesis of the meningococcal tfp as well as NhhA, App and NadA are reasonable candidates.

Assuming these possible pathways, it has to be explained why the knockouts in 8013 and WUE2594 led to different results in the adhesion and invasion assay, while the comparison of the CRISPR/Cas loci did not reveal major differences (Table 6.5).

As depicted in Figure 3.1, strain 8013 and WUE2594 obtain tfp of different classes [55]. In addition to that and the differing serogroup, the comparison of the adhesion associated genes listed in Table 7.2 reveals major differences in tfp glycosylation and biogenesis as well as notable sequence dissimilarities at the tfp associated proteins PilC1 and PilC2, whereas NhhA, App, and NadA are present and similar in strain 8013 and WUE2594.

adhesin	8013	WUE2594	annotation
Capsule (serogroup)	С	А	
Type IV pilus			
tfp class	I	П	
	BS	SNRª	
pilE	1.0	0.80	major pilin PilE
pgIA	Ψ	complete	pilin glycosyl transferase A
pglB2	complete	truncated	pilin glycosyl transferase B2
pglC	1.0	0.81	pilin glycosyl transferase PglC
pglD	1.0	0.88	pilin glycosylation protein PgID
pglE	Ψ	complete	pilin glycosyl transferase E
pilC1	1.0	0.62	tfp-associated protein PilC1
pilC2	1.0	0.68	tfp-associated protein PilC2
pilD	1.0	0.95	type IV prepilin-like proteins leader peptide processing enzyme PilD (prepilin peptidase)
pilF	1.0	0.99	tfp biogenesis protein PilF

adhesin	8013	WUE2594	annotation
pilG	1.0	0.99	tfp biogenesis protein PilG
pilH	complete	truncated	tfp biogenesis protein PilH
pill	1.0	0.75	tfp biogenesis protein Pill
pilJ	complete	Ψ	tfp biogenesis protein PilJ
pilK	1.0	0.90	tfp biogenesis protein PilK
pilM	1.0	0.99	tfp biogenesis protein PilM
pilN	1.0	1.0	tfp biogenesis protein PilN
pilO	1.0	0.98	tfp biogenesis protein PilO
pilP	1.0	0.98	tfp biogenesis lipoprotein PilP
pilQ	1.0	0.99	tfp secretin PilQ
pilS1	1.0	0.48	pilS1 cassette
pilS2	1.0	0.48	pilS2 cassette
pilS3	1.0	0.55	pilS3 cassette
pilS4	1.0	0.60	pilS4 cassette
pilS5	1.0	0.89	pilS5 cassette

adhesin	8013	WUE2594	annotation
pilT	1.0	0.98	tfp retraction ATPase PilT
pilT2	1.0	0.99	PilT-like protein PilT2
pilU	1.0	0.98	PilT-like protein PilU
pilV	1.0	0.91	minor pilin PilV
pilW	1.0	0.99	tfp biogenesis lipoprotein PilW
pilX	1.0	0.92	minor pilin PilX
pilZ	1.0	0.98	PilZ-like protein
Outer membrane proteins	status		
opc	missing	complete	outer-membrane protein Opc
opaA	Ψ	complete	opacity protein A
opaB	Ψ	complete	opacity protein B
opaC	Ψ	complete	opacity protein C
opaD	Ψ	complete	opacity protein D
Minor adhesins	BSNRª		
nhhA	1.0	0.73	autotransporter adhesin NhhA
app	1.0	0.64	autotransporter App

 adhesin	8013	WUE2594	annotation
nadA	1.0	0.73	autotransporter adhesin NadA

Ψ pseudogene; missing: no similarities in sequence alignment, complete: complete sequence for a potentially functional protein
 ^a Bit Score Normalized Ratio, Bitscore of sequence alignment relative to the Bitscores obtained for strain 8013 self-hit (see Table 6.5)

Since Opc and Opa are absent in 8013, they may be precluded as potential Cas9 targets. In addition to the findings in Table 7.2, the genes encoding the Opa proteins are known to be phase variable [109], and the polymeric tracts of all four genes in 8013 are in OFFstate [108]. Hypothetically, the adhesion and invasion assay performed with strain WUE2594 revealed no differences between the wild type and the knockout strains because the capacity to adhere was likely mediated by those outer-membrane proteins. In 8013, where those major adhesins are absent, the knockouts and the potentially associated alterations in the set of adhesin and/or the envelope integrity could have a greater influence on cell adhesion. Moreover, their absence in N. meningitidis strain 8013 might explain the deficiency of invasive behaviour (Chapter 6.3.2).

Potentially, the adhesion is influenced in the same way as in *F. novicida*, where blp was downregulated by Cas9 [35] and thereby the cell envelope's integrity was enhanced, which affects antibiotic resistance [106]. A similar mechanism has also been described for *C. jejuni*, where Cas9 was shown to affect virulence by controlling the topology and composition of the bacterial cell envelope [42].

Subsequent to this study, the transcriptomes of the 8013 wild type strain and the 8013 cas9 knockout strains were compared by transcriptome sequencing [108]. While the classical adhesins were not differentially expressed, the mRNA of a hypothetical blp encoded by NMV 0031 was found to be strongly upregulated in the mutant strains. Additionally, RNAs bound to Cas9 were identified by Cas9 coimmunoprecipitation followed by deepof the gathered RNA sequencing [108]. Adhesin-encoding RNAs were again not identified but the non-coding RNA NMnc0040 was significantly enriched. Therefore, these data somehow resemble the situation in *F. novicida*, although the meningococcal blp is about 100 AAs shorter and has only 27% similarity to its counterpart in F. novicida [108].

7.4 Outlook and Conclusion

The adhesion and invasion assays revealed that *cas9*, *rnc*, and tracrRNA are required for adhesion to human nasopharyngeal cells in *N. meningitidis* strain 8013 but not WUE2594. Since the crossing of the mucosal barrier is a crucial step in developing IMD, the CRISPR/Cas locus thus contributes to meningococcal virulence in a strain-dependant manner.

This study set the basis for ongoing research by revealing a gene regulation pathway using Cas9 that is novel in *N. meningitidis*. It has to be demonstrated how exactly Cas9 interacts with its targets. This will furthermore deepen the understanding of the function and versatility of the CRISPR/Cas system in meningococci, a system with wide-ranging applicability for research and medicine.

8 References

- Rouphael NG, Stephens DS: Neisseria meningitidis: biology, microbiology, and epidemiology. Methods in molecular biology (Clifton, NJ) 2012, 799:1-20.
- Yazdankhah SP, Caugant DA: Neisseria meningitidis: an overview of the carriage state. Journal of medical microbiology 2004, 53(Pt 9):821-832.
- Stephens DS: Conquering the meningococcus. FEMS microbiology reviews 2007, 31(1):3-14.
- Bosis S, Mayer A, Esposito S: Meningococcal disease in childhood: epidemiology, clinical features and prevention. *Journal of preventive medicine and hygiene* 2015, 56(3):E121-124.
- Lipsitch M, Moxon ER: Virulence and transmissibility of pathogens: what is the relationship? *Trends in microbiology* 1997, 5(1):31-37.
- 6. Stephens DS, Greenwood B, Brandtzaeg P: Epidemic meningitis, meningococcaemia, and

Neisseria meningitidis. *Lancet (London, England)* 2007, **369**(9580):2196-2210.

- Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM: Meningococcal disease. The New England journal of medicine 2001, 344(18):1378-1388.
- Moxon ER, Jansen VA: Phage variation: understanding the behaviour of an accidental pathogen. *Trends in microbiology* 2005, 13(12):563-565.
- Coureuil M, Join-Lambert O, Lecuyer H, Bourdoulous S, Marullo S, Nassif X: Pathogenesis of meningococcemia. Cold Spring Harbor perspectives in medicine 2013, 3(6):2157-1422.
- Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA, Bray JE, Maiden MCJ: Neisseria genomics: current status and future perspectives. *Pathogens and disease* 2017, 75(6):ftx060.
- Pallen MJ, Wren BW: Bacterial pathogenomics.
 Nature 2007, 449(7164):835-842.

- Schoen C, Tettelin H, Parkhill J, Frosch M: Genome flexibility in Neisseria meningitidis. Vaccine 2009, 27 Suppl 2:B103-111.
- Tzeng YL, Thomas J, Stephens DS: Regulation of capsule in Neisseria meningitidis. *Critical* reviews in microbiology 2016, 42(5):759-772.
- Merz AJ, So M: Interactions of pathogenic neisseriae with epithelial cell membranes. Annual review of cell and developmental biology 2000, 16:423-457.
- Kim JJ, Mandrell RE, Griffiss JM: Neisseria lactamica and Neisseria meningitidis share lipooligosaccharide epitopes but lack common capsular and class 1, 2, and 3 protein epitopes. *Infection and immunity* 1989, 57(2):602-608.
- Hamilton HL, Dillard JP: Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. *Molecular microbiology* 2006, 59(2):376-385.
- Marri PR, Paniscus M, Weyand NJ, Rendon MA, Calton CM, Hernandez DR, Higashi DL, Sodergren E, Weinstock GM, Rounsley SD *et al*: Genome sequencing reveals widespread

virulence gene exchange among human Neisseria species. *PloS one* 2010, **5**(7):e11835.

- Caugant DA, Maiden MC: Meningococcal carriage and disease--population biology and evolution. Vaccine 2009, 27 Suppl 2:B64-70.
- 19. Joseph B, Schwarz RF, Linke B, Blom J, Becker A, Claus H, Goesmann A, Frosch M, Muller T, Vogel U *et al*: Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. *PloS one* 2011, 6(4):e18441.
- 20. Marraffini LA: CRISPR-Cas immunity in prokaryotes. *Nature* 2015, **526**(7571):55-61.
- Jansen R, Embden JD, Gaastra W, Schouls LM: Identification of genes that are associated with DNA repeats in prokaryotes. *Molecular microbiology* 2002, 43(6):1565-1575.
- 22. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV: A putative RNA-interferencebased immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. *Biology direct* 2006, 1:7.

- Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. *Journal of molecular evolution* 2005, 60(2):174-182.
- 24. Pourcel C, Salvignol G, Vergnaud G: CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. *Microbiology* (*Reading, England*) 2005, **151**(Pt 3):653-663.
- Bolotin A, Quinquis B, Sorokin A, Ehrlich SD: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. *Microbiology* (*Reading, England*) 2005, 151(Pt 8):2551-2561.
- Lillestol RK, Redder P, Garrett RA, Brugger K: A putative viral defence mechanism in archaeal cells. Archaea (Vancouver, BC) 2006, 2(1):59-72.
- Haft DH, Selengut J, Mongodin EF, Nelson KE: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes

exist in prokaryotic genomes. *PLoS* computational biology 2005, **1**(6):e60.

- 28. Ebihara A, Yao M, Masui R, Tanaka I, Yokoyama S, Kuramitsu S: Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein science : a publication of the Protein Society 2006, 15(6):1494-1499.
- 29. Godde JS, Bickerton A: The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. *Journal of molecular evolution* 2006, **62**(6):718-729.
- 30. Grissa I, Vergnaud G, Pourcel C: **The CRISPRdb** database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. *BMC bioinformatics* 2007, **8**:172.
- Sorek R, Kunin V, Hugenholtz P: CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature reviews Microbiology 2008, 6(3):181-186.

- Koonin EV, Makarova KS, Zhang F: Diversity, classification and evolution of CRISPR-Cas systems. *Current opinion in microbiology* 2017, 37:67-78.
- Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF *et al*: Evolution and classification of the CRISPR-Cas systems. *Nature reviews Microbiology* 2011, 9(6):467-477.
- Sorek R, Lawrence CM, Wiedenheft B: CRISPRmediated adaptive immune systems in bacteria and archaea. Annual review of biochemistry 2013, 82:237-266.
- Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS: A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. *Nature* 2013, 497(7448):254-257.
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. *Science (New York, NY)* 2007, 315(5819):1709-1712.
- Deltcheva E, Chylinski K, Sharma CM, Gonzales
 K, Chao Y, Pirzada ZA, Eckert MR, Vogel J,

Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. *Nature* 2011, **471**(7340):602-607.

- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 2012, 337(6096):816-821.
- 39. Gasiunas G, Barrangou R, Horvath P, Siksnys V: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America 2012, 109(39):E2579-2586.
- Sampson TR, Weiss DS: Alternative roles for CRISPR/Cas systems in bacterial pathogenesis. *PLoS pathogens* 2013, 9(10):e1003621.
- Westra ER, Buckling A, Fineran PC: CRISPR-Cas systems: beyond adaptive immunity. Nature reviews Microbiology 2014, 12(5):317-326.
- 42. Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, Heikema AP,

Timms AR, Jacobs BC, Wagenaar JA *et al*: A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 2013, **32**(2):207-226.

- 43. Vossen M, Mitteregger D, Steininger C: Meningococcal pneumonia. Vaccine 2016, 34(37):4364-4370.
- 44. Mir A, Edraki A, Lee J, Sontheimer EJ: Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS chemical biology 2018, 13(2):357-365.
- Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ: Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. *Molecular cell* 2013, 50(4):488-503.
- Bille E, Meyer J, Jamet A, Euphrasie D, Barnier JP, Brissac T, Larsen A, Pelissier P, Nassif X: A virulence-associated filamentous bacteriophage of Neisseria meningitidis

increases host-cell colonisation. *PLoS* pathogens 2017, **13**(7):e1006495.

- 47. Rusniok C, Vallenet D, Floquet S, Ewles H, Mouze-Soulama C, Brown D, Lajus A, Buchrieser C, Medigue C, Glaser P *et al*: NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. *Genome biology* 2009, 10(10):R110.
- Schoen C, Weber-Lehmann J, Blom J, Joseph B, Goesmann A, Strittmatter A, Frosch M: Wholegenome sequence of the transformable Neisseria meningitidis serogroup A strain WUE2594. *Journal of bacteriology* 2011, 193(8):2064-2065.
- 49. Joseph B, Schneiker-Bekel S, Schramm-Gluck A, Blom J, Claus H, Linke B, Schwarz RF, Becker A, Goesmann A, Frosch M *et al*: Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. Journal of bacteriology 2010, 192(20):5363-5377.
- 50. Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M:

Meningococcal interactions with the host. *Vaccine* 2009, **27 Suppl 2**:B78-89.

- Imhaus AF, Dumenil G: The number of Neisseria meningitidis type IV pili determines host cell interaction. *The EMBO journal* 2014, 33(16):1767-1783.
- 52. Carbonnelle E, Helaine S, Nassif X, Pelicic V: A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. *Molecular microbiology* 2006, **61**(6):1510-1522.
- 53. Virji M, Heckels JE: Antigenic cross-reactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. *Journal of general microbiology* 1983, 129(9):2761-2768.
- 54. Virji M, Heckels JE, Potts WJ, Hart CA, Saunders JR: Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their

encoding sequences in the genomes of Neisseria spp. *Journal of general microbiology* 1989, **135**(12):3239-3251.

- 55. Wormann ME, Horien CL, Bennett JS, Jolley KA, Maiden MC, Tang CM, Aho EL, Exley RM: Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences. *BMC genomics* 2014, 15:253.
- Cahoon LA, Seifert HS: An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science (New York, NY) 2009, 325(5941):764-767.
- 57. Wainwright LA, Frangipane JV, Seifert HS: Analysis of protein binding to the Sma/Cla DNA repeat in pathogenic Neisseriae. Nucleic acids research 1997, 25(7):1362-1368.
- Lory S, Strom MS: Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa--a review. Gene 1997, 192(1):117-121.
- 59. Jennings MP, Virji M, Evans D, Foster V, Srikhanta YN, Steeghs L, van der Ley P, Moxon

ER: Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. *Molecular microbiology* 1998, **29**(4):975-984.

- Power PM, Roddam LF, Rutter K, Fitzpatrick SZ, Srikhanta YN, Jennings MP: Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. *Molecular microbiology* 2003, 49(3):833-847.
- Power PM, Roddam LF, Dieckelmann M, Srikhanta YN, Tan YC, Berrington AW, Jennings MP: Genetic characterization of pilin glycosylation in Neisseria meningitidis. *Microbiology (Reading, England)* 2000, 146 (Pt 4):967-979.
- 62. Warren MJ, Roddam LF, Power PM, Terry TD, Jennings MP: Analysis of the role of pgll in pilin glycosylation of Neisseria meningitidis. *FEMS immunology and medical microbiology* 2004, **41**(1):43-50.
- 63. Tonjum T, Freitag NE, Namork E, Koomey M: Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. *Molecular microbiology* 1995, 16(3):451-464.

- 64. Freitag NE, Seifert HS, Koomey M: Characterization of the pilF-pilD pilusassembly locus of Neisseria gonorrhoeae. *Molecular microbiology* 1995, **16**(3):575-586.
- Merz AJ, So M, Sheetz MP: Pilus retraction powers bacterial twitching motility. *Nature* 2000, 407(6800):98-102.
- 66. Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M: PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. *Molecular microbiology* 1998, 29(1):321-330.
- 67. Pujol C, Eugene E, Marceau M, Nassif X: The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(7):4017-4022.
- Stimson E, Virji M, Makepeace K, Dell A, Morris HR, Payne G, Saunders JR, Jennings MP, Barker S, Panico M *et al*: Meningococcal pilin: a glycoprotein substituted with digalactosyl

2,4-diacetamido-2,4,6-trideoxyhexose.

Molecular microbiology 1995, **17**(6):1201-1214.

- Morand PC, Bille E, Morelle S, Eugene E, Beretti JL, Wolfgang M, Meyer TF, Koomey M, Nassif X: Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins. *The EMBO journal* 2004, 23(9):2009-2017.
- 70. Morand PC, Tattevin P, Eugene E, Beretti JL, Nassif X: The adhesive property of the type IV pilus-associated component PilC1 of pathogenic Neisseria is supported by the conformational structure of the N-terminal part of the molecule. *Molecular microbiology* 2001, 40(4):846-856.
- 71. Nassif X, Beretti JL, Lowy J, Stenberg P, O'Gaora P, Pfeifer J, Normark S, So M: Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 1994, 91(9):3769-3773.
- Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP, Koomey M: Neisseria gonorrhoeae PilV, a type IV pilus-associated

protein essential to human epithelial cell adherence. Proceedings of the National Academy of Sciences of the United States of America 2001, **98**(26):15276-15281.

- 73. Helaine S, Carbonnelle E, Prouvensier L, Beretti JL, Nassif X, Pelicic V: PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. *Molecular microbiology* 2005, 55(1):65-77.
- 74. Sa ECC, Griffiths NJ, Murillo I, Virji M: Neisseria meningitidis Opc invasin binds to the cytoskeletal protein alpha-actinin. *Cellular microbiology* 2009, 11(3):389-405.
- 75. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ *et al*: Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. *Science (New York, NY)* 2000, 287(5459):1809-1815.
- 76. Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER: Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial

cells. *Molecular microbiology* 1993, **10**(3):499-510.

- 77. Gray-Owen SD: Neisserial Opa proteins: impact on colonization, dissemination and immunity. Scandinavian journal of infectious diseases 2003, **35**(9):614-618.
- 78. Peak IR, Srikhanta Y, Dieckelmann M, Moxon ER, Jennings MP: Identification and characterisation of a novel conserved outer membrane protein from Neisseria meningitidis. FEMS immunology and medical microbiology 2000, 28(4):329-334.
- Scarselli M, Serruto D, Montanari P, Capecchi B, Adu-Bobie J, Veggi D, Rappuoli R, Pizza M, Arico B: Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. *Molecular microbiology* 2006, 61(3):631-644.
- Serruto D, Adu-Bobie J, Scarselli M, Veggi D, Pizza M, Rappuoli R, Arico B: Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. *Molecular microbiology* 2003, 48(2):323-334.

- 81. Capecchi B, Adu-Bobie J, Di Marcello F, Ciucchi L, Masignani V, Taddei A, Rappuoli R, Pizza M, Arico B: Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. *Molecular microbiology* 2005, **55**(3):687-698.
- Harrison OB, Claus H, Jiang Y, Bennett JS, Bratcher HB, Jolley KA, Corton C, Care R, Poolman JT, Zollinger WD *et al*: Description and nomenclature of Neisseria meningitidis capsule locus. *Emerging infectious diseases* 2013, 19(4):566-573.
- Tobiason DM, Seifert HS: Genomic content of Neisseria species. *Journal of bacteriology* 2010, 192(8):2160-2168.
- 84. leva R, Alaimo C, Delany I, Spohn G, Rappuoli R, Scarlato V: CrgA is an inducible LysR-type regulator of Neisseria meningitidis, acting both as a repressor and as an activator of gene transcription. *Journal of bacteriology* 2005, 187(10):3421-3430.
- 85. Peterson WD, Jr., Stulberg CS, Simpson WF: A permanent heteroploid human cell line with type B glucose-6-phosphate dehydrogenase.

Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 1971, **136**(4):1187-1191.

- 86. Peterson WD, Jr., Stulberg CS, Swanborg NK, Robinson AR: Glucose-6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-agar gel and cellulose acetate zymograms. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 1968, 128(3):772-776.
- Pelicic V, Morelle S, Lampe D, Nassif X: Mutagenesis of Neisseria meningitidis by in vitro transposition of Himar1 mariner. *Journal* of bacteriology 2000, 182(19):5391-5398.
- Hall TA: BioEdit: a user-friendly biological alignment editor and analysis program for Windows 95/98/NT. Oxford University Press 1999, Nucleic Acids Symposium Series No. 41:95-98.
- Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schaffer AA: Database indexing for production MegaBLAST

searches. *Bioinformatics* (*Oxford, England*) 2008, **24**(16):1757-1764.

- 90. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. Journal of computational biology : a journal of computational molecular cell biology 2000, 7(1-2):203-214.
- 91. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. *Bioinformatics (Oxford, England)* 2000, 16(10):944-945.
- 92. Solovyev V, Salamov A: Automatic Annotation of Microbial Genomes and Metagenomic Sequences. Metagenomics and its Applications in Agriculture, Biomedicine and Enviromental Studies 2011, Nova Science Publishers:61-78.
- Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. *Bioinformatics* (Oxford, England) 2005, 21(16):3422-3423.
- 94. Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X: RNase III: Genetics and function; structure and

mechanism. Annual review of genetics 2013, **47**:405-431.

- 95. Pannekoek Y, Huis In 't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, van der Ende A: Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Furcontrolled small noncoding RNA. FEBS open bio 2017, 7(9):1302-1315.
- 96. Lappann M, Haagensen JA, Claus H, Vogel U, Molin S: Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. *Molecular microbiology* 2006, 62(5):1292-1309.
- Lappann M, Vogel U: Biofilm formation by the human pathogen Neisseria meningitidis. Medical microbiology and immunology 2010, 199(3):173-183.
- Altucci P, Sapio U, Esposito E: Gentamicin: Antibacterial activity in vitro and clinical studies. *Chemotherapy* 1965, 10(5):312-320.
- Viscidi RP, Demma JC: Genetic diversity of Neisseria gonorrhoeae housekeeping genes. Journal of clinical microbiology 2003, 41(1):197-204.

- 100. Bayer TS, Booth LN, Knudsen SM, Ellington AD: Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA (New York, NY) 2005, 11(12):1848-1857.
- 101. Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-Perez JA *et al*: A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing. *Molecular cell* 2018, 73(4):714-726.e714.
- 102. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature and symbolism for amino acids and peptides. Recommendations 1983. The Biochemical journal 1984, 219(2):345-373.
- 103. Stephens DS: Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 2009, 27 Suppl 2:B71-77.
- Neil RB, Apicella MA: Clinical and laboratory evidence for Neisseria meningitidis biofilms. *Future microbiology* 2009, 4(5):555-563.
- 105. Donlan RM, Costerton JW: Biofilms: survival mechanisms of clinically relevant

microorganisms. *Clinical microbiology reviews* 2002, **15**(2):167-193.

- 106. Sampson TR, Napier BA, Schroeder MR, Louwen R, Zhao J, Chin CY, Ratner HK, Llewellyn AC, Jones CL, Laroui H *et al*: A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proceedings of the National Academy of Sciences of the United States of America 2014, 111(30):11163-11168.
- 107. Louwen R, Staals RH, Endtz HP, van Baarlen P, van der Oost J: The role of CRISPR-Cas systems in virulence of pathogenic bacteria. *Microbiology and molecular biology reviews : MMBR* 2014, **78**(1):74-88.
- 108. Heidrich N, Hagmann A, Bauriedl S, Vogel J, Schoen C: The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells. RNA biology 2018:1-7.
- 109. Sadarangani M, Hoe CJ, Makepeace K, van der Ley P, Pollard AJ: Phase variation of Opa proteins of Neisseria meningitidis and the
effects of bacterial transformation. *Journal of biosciences* 2016, **41**(1):13-19.

9	Annex	
9.1	Abbreviat	ions
adk		adenylate kinase
Anti-DIG	-ATP	Anti-Digoxidenin-AP Fab fragments
Арр		adhesion and penetration protein
APS		ammonium persulfate
ARM		arginine-rich motive
blp		bacterial lipoprotein
bp		base pairs
BSA		bovine serum albumin
BSNR		bit score normalized ratio
cas		CRISPR associated
сс		clonal complex
CFU		colony-forming units
cnl		capsule null locus
COS pla	tes	columbia agar plates with 5% sheep blood

Annex

CRISPR	clustered, regularly interspaced short palindromic repeats
crRNA	CRISPR RNA
CSPD	chloro-5-substituted adamantly-1,2- dioxetane phosphate
СТР	carboxy-terminal domain
ddH₂O	double distilled water
DIG	digoxygenine
DNA	desoxyribonucleic acid
dNTPs	desoxynucleotide triphosphates
DTT	dithiothreitol
EDTA	ethylendiamin-tetra-acetic acid
FCS	fetal calf serum
fkbP	peptidyl-prolyl cis-trans isomerase
G4	guanine quartets
GCB	<i>N. gonorrhoea</i> medium base
GCBL	N. gonorrhoea liquid medium

Annex	
	conomia DNA
gDNA	genomic DNA
НСІ	hydrogen chloride
IMD	invasive meningococcal disease
katA	catalase
kb	kilo base pairs
KCI	potassium chloride
kD	kilo Dalton
LB	<i>Luria-Bertani</i> medium
LPS	lipopolysaccharides
	UDP-3-O-[3-hydroxymyristoyl] N-
ΙρχΟ	acetylglucosaminedeacetylase
м	molar (mol/litre)
Mb	mega base pairs
ΜDΑΦ	meningococcal disease associated
	prophage
MLST	multilocus sequence typing
ΜΟΙ	multiplicity of infection

Annex

MOPS	3-(N-morpholino)-propanesulfonic acid
n.d.	no data
n.s.	not significant
NaCl	sodium chloride
NadA	neisserial adhesin A
NaOH	sodium hydroxide
NCBI	National Center of Biotechnology Information
Nf	neisserial filamentous phage
NhhA	<i>Neisseria hia</i> homolog A
Nm	N. meningitidis
NTD	amino-terminal domain
Оса	oligomeric coiled-coil adhesin
OD ₅₉₅	optical density measured at 595 nm
OD ₆₀₀	optical density measured at 600 nm
Ора	Opacity associated proteins
Орс	Opacity proteins

Annex	
ΡΔΔ	polyacrylamide
	polydolyiamide
PABA	4-Aminobenzoic acid
PAM	pattern adjacent motive
PBS	phosphate-buffered saline
PBS-T	PBS-Tween
PCR	polymerase chain reaction
pip	proline iminopeptidase
PorA	porine A
РРМ	proteose peptone medium
DDM+	proteose peptone medium with
PPIN	supplements (Table 4.13)
RNA	ribonucleic acid
rnc	RNase III
rpm	rounds per minute
RT	room temperature
scaRNA	small CRISPR/Cas associated RNA
SDS	sodium-dodecyl-sulfate

SDS-PAGE	SDS-polyacrylamide gel electrophoresis
SEM	standard error of the mean
serC	phosphoserine aminotransferase
SG	serogroup
SOB	super optimal broth
SOC	super optimal broth with glucose
SSC	saline-sodium-citrate buffer
SSPE	saline-sodium-phosphate-EDTA buffer
ST	sequence type
st. dev.	standard deviation
Ta	annealing temperature
TAE	TRIS-acetate-EDTA
TEMED	tetramethylethylenediamine
tfp	type IV pilus
T _m	melting temperature
tracrRNA	trans activating CRISPR RNA

Annex	
TRIS	trishydroxymethylaminomethane
U	units
β-ΜΕ	beta-mercaptoethanol
9.2	Lists of Figures and Tables
9.2.1	Figures
Figure	3.1 pilE and pilS loci in 8013 and WUE259414
Figure a	5.1 Schematic representation of PCRs used
	for mutant verification90
Figure a	5.2 Mutant construction in 8013 and
	WUE2594103
Figure a	5.3 Complementant construction in 8013 105
Figure	6.1 Genealogy of 8013 mutant strains used
	<i>in this study</i> 118
Figure	6.2 Southern blot analysis of WUE2594
	knockout mutants119
Figure	6.3 Computationally predicted fragment sizes
	of WUE2594 mutant strains in Southern
	blot with Tn903-probe after HindIII/ClaI
	double digest121
Figure	6.4 Southern blot analysis of 8013 cas9
	mutant strains122

Figure 6.5	Gel electrophoresis of RT-PCR products	
	from 8013 cas9 mutant strains	123
Figure 6.6	PCR verification of mutant strains	126
Figure 6.7	Macroscopic aspect of the WUE2594	
	and 8013 mutant strains as colonies on	
	COS plates	134
Figure 6.8	Growth of WUE2594 strains in RPMI ⁺	136
Figure 6.9	Growth of 8013 strains in EMEM ⁺⁺⁺	141
Figure 6.10	Growth of 8013 cas9 mutant strains in	
	GCBL ⁺⁺	143
Figure 6.11	Biofilm formation of 8013 mutant strains	145
Figure 6.12	Adhesion of 8013 CRISPR/Cas mutant	
	strains to the human nasopharyngeal	
	epithelial cell line Detroit562	160
Figure 6.13	Sequence alignment of Cas9	166
Figure 7.1	Hypothetical gene regulation via	
	CRISPR/Cas system in N. meningitidis	
	8013	176

9.2.2 Tables

Table 3.1 Comparison of the two meningococcal	
strains used in this study	11
Table 4.1 Laboratory equipment	18
Table 4.2 Specific reagents	24

Table 4.3	Special consumables	26
Table 4.4	Kits	28
Table 4.5	Enzymes	29
Table 4.6	Phosphate-buffered saline	30
Table 4.7	Freezing medium	31
Table 4.8	Buffers and solutions used for	
	electrophoretic separation of DNA	31
Table 4.9	Buffers and solutions used for	
	Southern blots	33
Table 4.10	SDS PAGE	36
Table 4.11	Composition of PPM	39
Table 4.12	Supplements of PPM ⁺ medium	40
Table 4.13	Composition of PPM ⁺	41
Table 4.14	Composition of GCBL medium	42
Table 4.15	Supplements of GCBL ⁺⁺ medium	42
Table 4.16	Composition of GCBL ⁺⁺ medium	43
Table 4.17	Composition of GCB ⁺⁺ agar	44
Table 4.18	Composition of LB medium	45
Table 4.19	Composition of Super Optimal Broth (SOB)	
	medium	45
Table 4.20	Composition of Super Optimal broth with	
	Catabolic repression (SOC) medium	46
Table 4.21	Solutions and media used for cell culture	46
Table 4.22	Composition of EMEM ⁺⁺⁺	47

Table 4.23	Formulation of EMEM supplemented with	
	1% NEAA and 1% sodium pyruvate	
	(100mM)	48
Table 4.24	Composition of cell freezing medium	51
Table 4.25	Composition of RPMI ⁺	51
Table 4.26	Antibiotics	52
Table 4.27	Sequences of oligonucleotides	53
Table 4.28	Utilized plasmids	63
Table 4.29	Strains used in this study	69
Table 5.1	PCR protocol for Taq DNA polymerase	80
Table 5.2	Thermocycling program for Taq DNA	
	polymerase	81
Table 5.3	PCR protocol for Q5® High-Fidelity DNA	
	polymerase	82
Table 5.4	Thermocycling program for	
	Q5® High-Fidelity DNA polymerase	83
Table 5.5	Major PCRs performed in this study	84
Table 5.6	Standard restriction digest protocol	92
Table 5.7	Standard ligation protocol using T4 DNA	
	ligase	97
Table 5.8	CRISPR/Cas system gene loci	99
Table 5.9	Specifications of the adhesion and	
	invasion assay for 8013 and WUE2594	
	strains1	13

Table 5.10	0 Utilized software 114	1
Table 6.1	Explanation of the PCR identifier	7
Table 6.2	Adhesion and invasion rates of	
	WUE2594 knockout strains 151	1
Table 6.3	Adhesion rates of 8013 knockout strains . 155	5
Table 6.4	Adhesion rates of 8013 knockout strains	
	and complementant strains	7
Table 6.5	Similarity of genes in sequenced Neisseria	
	genomes compared to N. meningitidis	
	8013 163	3
Table 7.1	Observed phenotypes of the 8013 mutant	
	strains compared to the wild type strain 172	2
Table 7.2	Comparison of 8013 and WUE2594	
	adhesins	3

9.3 Curriculum Vitae

name:

date of birth:

birthplace:

Education

Community service

Studies

Annex

Dissertation

Career

.....

Place, Date

Signature

9.4 Publications and Presentations

Publications

Heidrich N, <u>Hagmann A</u>, Bauriedl S, Vogel J, Schoen C: *The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells*. RNA biology 2018:1-7.

Presentations

<u>Hagmann A</u>, Schoen C *The impact of the CRISPR/Cas* system on the interaction of Neisseria meningitidis with human host cells. Poster Presentation 'EUREKA! 2017' International Symposium organized by the Graduate School of Life Sciences Würzburg, October 17th-18th, 2017

9.5 Acknowledgement

Ich möchte mich hiermit bei Herrn Prof. Dr. Matthias Frosch für die Möglichkeit bedanken, am Institut für Hygiene und Mikrobiologie promovieren zu können.

Ich danke Herrn Prof. Dr. Dr. Christoph Schoen für die Vergabe dieser Doktorarbeit und die stetige Unterstützung während ihrer Fertigstellung.

Herrn Prof. Dr. Jörg Vogel, Herrn Prof. Dr. Roy Gross und Herrn Prof. Dr. Johannes Liese danke ich für die Betreuung meiner Doktorarbeit und ihr Engagement in meinem Promotionskomitee.

Ein großes Dankeschön geht im Allgemeinen an die gesamte Arbeitsgruppe SCHOEN und im Besonderen an Barbara Conrad. Liebe Babsi, ohne deinen Rat und deine tatkräftige Unterstützung wäre ich oft nicht weitergekommen.

Meinen Schwiegereltern danke ich insbesondere für die Obhut und Versorgung während der langen, arbeitsreichen Wochenenden in der Rhön. Ich habe es sehr genossen. Meinen Eltern danke ich für ihre unendliche Geduld, den sicheren Rückhalt, den sie mir gegeben haben, und den Zuspruch, mit dem sie mich bei der Anfertigung dieser Arbeit begleitet haben.

Von ganzem Herzen danke ich meiner Ehefrau und ehemaligen Mitdoktorandin Dr. Laura Hagmann, die von Anfang an an meiner Seite stand, die mit mir gelacht und auch mit mir gelitten hat und die diese Doktorarbeit zu einem Wendepunkt in meinem Leben gemacht hat.

Danke.

Hanns Antony Hagmann was supported by a grant of the German *Excellence Initiative* to the Graduate School of Life Sciences, University of Würzburg.