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1.1  Impurity analyses in parenteral amino acid formulations 
 

The guarantee of quality, safety and efficacy of pharmaceutical ingredients and finished 

pharmaceutical products is an utmost important issue in the pharmaceutical industries and 

regulatory authorities worldwide. Pharmacopoeias, administrative forces and guidelines 

provide standards and quality criteria for active pharmaceutical ingredients (API´s) and 

pharmaceutical formulations. Divergences from the accepted standard can set consumer´s 

health at risk severely. Monographs in pharmacopoeias define the substances and provide 

validated methods for identification, purity and content assessment. Especially the 

identification and the assessment of impurities in drugs and new drug products are a 

constantly discussed issue, due to its special importance, complexity and the advances in 

analytical performance. 

The growing global demand for medication and the increased application of drug therapy 

goes along with an increased drug production and simultaneous development of quality 

control methods. Thereby, impurities and degradants in API´s and in pharmaceutical 

products were reported, which led to public, political and economic affairs in history and 

recently. The thalidomide-related embryopathy in the 1960ies [1, 2], the onset of epidemic-

like Eosinophilia-Myalgia syndrome (EMS) after tryptophan (Trp) supplementation in the 

late 1980ies [3-7] , the heparin incident in 2007/08 [8, 9] and the recent discovery of 

potential cancerogenic impurities in valsartan and ranitidine drugs in 2018 [10-12] are 

exemplary cases for the implication of drug impurities. These incidents affected the safety 

of drug therapy detrimentally. Regulatory authorities like the Food and Drug administration 

(FDA) in the U.S., the European Medicine´s Agency (EMA) and national pharmacopoeia 

committees have been forced to introduce strict guidelines for the adoption, the compliance 

and the assessment of quality management. The “International Council for Harmonization 

of the Technical Requirements for Registration of Pharmaceuticals for Human Use“ 

established the so-called ICH guidelines, setting sophisticated standards for stability and 

impurity testing, and the validation of assessment methods, as well as thresholds for 

impurities in drug substances and products. The criteria are applied in pharmaceutical 

industry and research worldwide. 

According to the ICH guidelines, impurities are defined as any components in the drug 

product or drug substance that is not defined as an excipient of the drug product or the drug 

substance itself [13]. In general, the ICH guidelines categorize impurities in organic, 
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inorganic and process-based impurities according to different origins [14]. Potential 

sources can be the synthesis route or the purification procedure, technological processing 

into the finished formulation, degradation during storage or chemical interactions of 

ingredients. Consequently, it is not possible to remove or impede the occurrence of 

impurities in the drug or drug product completely. The ICH guidelines provide general 

directions - depending on the maximal daily drug dose - for reporting, identification and 

qualification thresholds for each impurity [13, 15, 16]. The impurity assessment methods 

in the compendial drug monographs provide validated methods for the quantification 

impurities limiting the total amount of impurities in many cases additionally. The 

recommendations for the targeted development and validation of analytical impurity 

assessment methods are described in the ICH guideline Q2 (R1) [17]. 

Analytical performance and requirements advance steadily together with the introduction 

of more sophisticated methods. Thus, impurities can be assessed nowadays, which were 

unknown or have not been detected before [18-20]. Hence, the regulatory requirements in 

quality management of finished pharmaceutical products, especially long-time established 

products may need to be revised on impurity and safety aspects based on a current analytical 

approach.  

In this context, pharmaceutical formulations consisting of a combination of APIs are rather 

complex. The formation of a variety of degradants during manufacturing processes or 

interactions between substances are thinkable. Parenteral amino acid (AA) formulations are 

exemplary pharmaceutical products consisting of several APIs, which are subject to strict 

requirements with regard to quality, safety and sterility due to intravenous administration. 

In parenteral AA formulations, every AA is an individual API and must comply to purity 

and stability regulations on its own. Finally, complex formulation must meet the quality 

demands during manufacturing, processing, storing and administration. Formulation 1 and 

2 (kindly provided by Fresenius Kabi AG, Bad Homburg, Germany) are parenteral AAs 

solutions, combining the challenges of a multi-component system with the named quality 

demands of parenteral formulations like sterility, compatibility and stability during 

manufacturing, administration and storage.  

The standard parenteral AA formulations consists of the 9 essential AAs (EAA: His, Iso, 

Leu, Lys, Met, Phe, Thr, Trp, Val), several non-essential AA (NEAA: Ala, Arg, Gly, Pro, 

Tyr, Ser) and some AA considered as conditionally essential such as Glu, Cys and Taurine 
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with a standard dosage of 1.0-1.5 g per kg bodyweight per day. The composition of the 

formulation depends on the individual need of the patient, thus there are different ready-to-

use formulations available. An alternative to premixed formulations is the preparation of 

individual formulations in the dispensary. Typical clinical conditions requiring parenteral 

nutrition are e.g. malnutrition, severe surgery, burns or traumas, gastrointestinal 

dysfunction and the supplementation in neonatology/paediatrics. The parenteral AA 

administration is a well-established form of nutrition, which can be even applied in 

ambulant supplementation of uncomplicated cases of malnutrition or digestive 

malfunctions. The evidence-based benefits of parenteral nutrition are the fast nutrient 

supply, the controllable administration, allowing individual adjustment and the 

complementation with nutrients such as carbohydrates, lipids, vitamins and/or further 

therapeutics. However, some proteinogenic AAs have been discarded from parenteral AA 

formulations due to stability issues; e.g. Cys (prone to oxidation to cystine and 

incompatibility with drugs, product yellowing) and Glu (Glu degradation). Anyway, 

occasional yellow discoloration was still reported in specialized information - without an 

explanation so far. The discolouration issue is a current issue in quality management 

leading to ongoing revaluation of stability testing and AA and impurity assessment 

methods, respectively. 

AA analysis is very important in chemical and medical analyses, but it is demanding and 

thus constantly developing since the discovery of AAs. The high polarity, low molecular 

weight and the lack of a chromophore of most AAs impede the majority of conventional 

HPLC analysis methods. The demand for fast, easy and robust AA analyses continues to 

grow consistently with the increased application of AAs and peptides in therapy and the 

discovery of their ability to indicate metabolic malfunctions in body fluids. Advances in 

AA analysis in the last decades led to revision and harmonization of general methods in 

leading pharmacopoeias and literature.  

Research done on the general stability of AAs and possible analyses methods is 

summarized in the following review and supplemented by a brief evaluation of AA 

compatibility with additives and typically used primary packaging. 
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1.2 Stability and the assessment of amino acids in parenteral nutrition 

solutions 

 

Nina Unger, Ulrike Holzgrabe 

 

Reprinted with the permission from 

Journal for Pharmaceutical and Biomedical Analysis 147 (2018) 125-139 

Abstract 

Sterile amino acid solutions are applied in medical care as part of Total Parenteral Nutrition 

systems. Typical formulations consist of variable admixtures of essential and non-essential 

AA together with carbohydrates, electrolytes, vitamins, trace element solutions and lipid 

emulsions. The complexity of these formulations gives rise to stability and compatibility 

reflections. This review focuses on amino acid stability in pure amino acid solution and 

name methods of assessment. Incompatibilities of AAs with the other ingredients are matter 

of concern in clinical practice and evaluated for relevance. 

 

Keywords 

Amino acid, parenteral nutrition, stability, compatibility, quality assessment 

Abbreviations: AA, amino acid; AiO, all-in-one; MCB multi-chamber bags; MLB, 

multilayered bags 
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1 Introduction 

Parenteral nutrition is commonly used for sufficient nutrient supplementation in patient 

groups such as cancer patients, critically ill and elderly persons or preterm infants [1-4]. 

They are composed of amino acids (AAs), carbohydrates, lipids, vitamins, electrolytes and 

trace elements in variable proportions to meet the required clinical demands [5-7]. 

AAs are one of the most important building blocks of body tissues, enzymes and hormones, 

thus indispensable for vital body functions. When it comes to metabolic dysfunction, 

insufficient resorption, increased nutritional demands after severe surgical trauma, and 

medical care of preterm and neonates, there is beneficial prove for targeted supplementation 

or even complete substitution of AAs via the parenteral route of administration. Hence, 

there is an instant need for AA formulations that are quickly available, ready-to-use, and 

safe [8]. AAs can be administered separately or together with the afore-mentioned 

supplements as total parenteral nutrition (TPN) admixtures. It is possible to compound a 

mixture suitable for any clinical complication [9-11]. 

Quality has to be assured from the pharmaceutical point of view. Purity of each ingredient, 

stability, compatibility, and degradation considerations have priority, because safety of 

either AA as parenteral solutions and TPN admixtures must be guaranteed [12-14]. The 

quality of each ingredient can be assessed by corresponding monographs of the European 

Pharmacopoeia (Ph. Eur.) [15] or United States Pharmacopeia (USP) [16]. Recently, the 

AA monographs in Ph. Eur. were revised. In order to guarantee purity, the AA analysis was 

introduced in addition to special impurity assessment in the monographs of individual AAs. 

However, this review shall give an overview over the stability profiles of the AAs used in 

parenteral nutrition solutions, as well as the possible interactions between additives, 

electrolytes, trace elements, excipients and packaging materials. Possible restrictions due 

to physical or chemical reactions are summarized and evaluated due to clinical relevance. 

Eventually this review will summarize the current recommendation on compounding 

procedures, since the process of compounding TPN admixtures does affect the quality and 

safety of the final product substantially. 
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Taken together this review will focus on relevant considerations about stability and 

degradation of AAs and the analytical state-of-the-art methods. The final conclusion will 

summarize the practical use of AAs in parenteral nutrition and corresponding solutions. 

 

2 AAs in parenteral formulations 

In the beginning of the 20th century first medical investigations were made about 

metabolism of AAs after intravenous administration. One of the first report in this field was 

published in 1913 by Henriques and Andersen, who infused a beef hydrolysate into a goat 

[17]. Rose determined the essential AAs and their overall importance for human health [18] 

and in 1937, Robert Elman published first successful studies about an intravenous infusion 

of AAs as a fibrinogen hydrolysate [19, 20]. In 1944, Wretlind invented the first 

enzymatically hydrolyzed and dialyzed intravenous formulation of AAs called Aminosol® 

[21]. These formulations already seemed to be promising although they were not complete 

from present day´s perspective, since intake did not match the sufficient physiological need. 

Each type of hydrolyzed protein has an unchangeable AA profile resulting in an abundance 

or lack of certain AAs measured against human requirements. It took some years until the 

first crystalline pure L-AA formulation was introduced in 1964 in Germany by Bansi [22]. 

The aim of AA supplementation is to achieve a positive nitrogen balance and to provide 

the body with all essential AAs for metabolic functions and tissue building. It took some 

time and a lot of research to find the optimal composition of AAs. Some AAs do provide 

sufficient nitrogen and some seem to be ineffective. Subsequently the task was to figure 

out whether there are stability problems or metabolic ones. 

 

2.1 AA composition from clinical point of view 

Today there are several guidelines on parenteral AA supplementation providing a clinical 

background about the necessity of AAs [23]. Organizations such as ESPEN (European 

Society for Parenteral and Enteral Nutrition) and the American counterpart A.S.P.E.N. 

(American Society for Parenteral and Enteral Nutrition), as well as the well-recognized 

JSPEN (Japanese Society of Parenteral and Enteral Nutrition) and BAPEN (British 

association for Parenteral and Enteral Nutrition), update recommendations of the 
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supplementation continuously and provide clinical and pharmaceutical evidence. 

Statements and guidelines are given for the treatment of e.g. metabolic disorders, the 

critically ill, preterms and neonates and for postoperative patients in severe trauma, which 

all have specific requirements with regard to dosage and composition of AAs. 

All commercially available AA formulations provide nine essential AAs i.e. histidine (His), 

isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), 

threonine (Thr), tryptophan (Trp), and valine (Val) in varying amounts between 38-57% of 

the total AA content and nonessential AAs are included in an amount of 43-62%, 

respectively. Explicit formulation of single AA content may vary in order to meet the 

individual demands of the patient. E.g. in case of hepatic encephalopathy, one may require 

a mixture with more branched chained AAs and reduced aromatic AAs [24]. The German 

Association for Nutritional Medicine recommends an AA dosage of 0.8 g/kg bodyweight/ 

day for adults with normal metabolism [25].  

 

2.2 Commercially available formulations 

Tab. 1 gives an overview of representative AA formulations. Bearing in mind, that 

requirements of the individual may vary, these formulations have different concentrations 

of single AAs, but they do not differ in the total AA content of 10%. To some extend these 

variations are based on specific patient groups´ demands, or they are set ad libitum by 

manufacturer. However, some are related to concrete stability issues. Especially the 

formulation of nonessential AA composition allows greater variability, without impact on 

quality but also with the possibility of adjustment to special requirements. In case of hepatic 

encephalopathy, treatment with increased branched chain AAs (Ile, Leu, Val) 

supplementation proved to be beneficial [26], patients under severe stress conditions 

receive additional high dose Gln formulations [27], and Arg and Cys are essential in 

pediatric care [28-30], additionally non-proteinogenic AAs like ornithine (Orn) or taurine 

may be part of pediatric formulations since they are considered to be conditionally essential 

in preterm infants [24]. 

.
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Amino Acid Aminoven® Primene®  FreAmine® Aminoplasmal® Aminosyn® 

essential (g/L) 
Ile  5.00 6.70 6.90 5.00 7.20 
Leu 7.4 10.00 9.10 8.90 9.40 
Lys 6.60 11.00 7.30 4.07 7.20 
Met 4.30 2.40 5.30 4.40 4.00 
Phe 5.10 4.20 5.60 4.70 4.40 
Thr 4.40 3.70 4.00 4.20 5.20 
Trp 2.00 2.00 1.50 1.60 1.60 
Val 6.20 7.60 6.60 6.20 8.00 
non-essential      
Arg 12.00 8.40 9.50 11.50 9.80 
His 3.00 3.80 2.80 3.00 3.00 
Ala 14.00 8.00 7.10 10.50 12.80 
Gly 11.00 4.00 14.0 12.00 12.80 
Pro 11.20 3.00 11.20 - 8.60 
Ser 6.50 4.00 5.90 2.30 4.20 
Tyr 0.40 0.45 - 0.40 0.44 
Cys - 1.89 <0.16   
Taurine 1.00 0.60 - - - 
Glu - 10.00 - 7.20 - 
Asp - 6.00 - 5.60 - 
Orn - 2.49 - - - 

Table 1: Overview of commercially available AA formulations. All formulations contain 10% (g/L) AAs.
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2.3 Stability of AAs in aqueous solution 

Prescribing information of each formulation state pH value in the range of 5.5-6.5 adjusted with 

either acetic or citric or maleic acid, theoretical osmolality in the range of 850-1000 mOsm/l, 

and the optical appearance of the solution has to be clear, of no colour or slightly yellow. 

The solutions are usually supplied in plastic bags or glass bottles, either for further 

compounding with other solutions or to be administered intravenously with an infusion set. The 

factors influencing AA stability are other AAs and ingredients in the formulation, light 

irradiation and temperature fluctuations while storage (and administration), residual oxygen in 

the container and the shelf life or respectively storage time until usage [31-35]. If aseptic 

production cannot be guaranteed, heat sterilization may be necessary, this high pressure, high 

thermal impact should also be considered. 

One of the first studies designed to obtain data on the stability of such AA solution was 

performed in 1974 by a hospital pharmacist [36]. A formulation of 15 AAs in sterile water was 

compared to the same formulation dissolved in 25% dextrose solution after storage for a period 

of twelve weeks. The start AA concentration was 4.25% (g/L). The solutions were stored at 4 

°C, 25 °C, and 37 °C, respectively. Changes in pH and colour formations were observed like 

strong darkening in the dextrose sample and slight yellowing of the control solution. Individual 

AA degradation was analyzed by means of the Amino Acid Analyzer. After 12 weeks of storage 

at 4 °C none of the AA concentrations fell below 90% of initial concentration in sterile water 

(control) solution, but at room and higher temperatures a slight degradation tendency is 

anticipated. AAs in dextrose solution showed even higher degradation rates, which will be 

discussed in the following chapter. Generally, the pH value of the solutions decreased slightly 

over storage period, again enhanced with higher temperatures. AA degradation in sterile water 

was moderate during 12 weeks of storage. Unfortunately, the most interesting AAs with regard 

to instabilities, Trp, Arg, and Cys, were excluded because of an unsuitable detection method. 

In 1974, Lien and Nawar [37] studied the thermal decomposition of the branched chain AAs, 

Val, Leu and Ile, under very harsh conditions. Solid samples of single AAs were heated at 180-

270 °C for 1 h, volatile decomposition products were isolated and analyzed by GC-MS. Val, 

Leu, and Ile showed similar modes of decomposition: principal products were ammonia, carbon 

dioxide, carbon monoxide, and the inherent olefins, propane, isobutene and butane, 

respectively. Remaining compounds were identified as hydrocarbons, ketones, aldehydes, 

imines, and primary and secondary amines characteristic to parent substance. With increasing 

temperature, the colour changed from slightly yellow to orange and even black, also original 
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crystalline appearance altered (not described in detail). Besides decarboxylation and 

deamination, the authors suggested mechanisms including α-cleavages of aldehyde 

components, β-cleavages of amine components and partly McLafferty rearrangements; partly 

free radicals were involved. 

The proposed initial decomposition mechanisms may be applied to all AAs theoretically, either 

solid or in solution, since the type of AA side chain was not claimed to be responsible for any 

particular reaction (Fig. 1). Sohn and Ho investigated ammonia generation of AA solutions 

during thermal degradation [38]. With every AA used, ammonia is the primary thermal 

degradation product pointing to deamination and/or deamidation. 19 AAs were tested in single 

solutions and generated ammonia was quantified by a gas sensing ammonia electrode. Nonpolar 

AAs such as Ala, Val, Leu, Ile, and Met released less than 5% ammonia; polar ones such as Thr 

and Ser released 5-6%. Most significant amounts were detected for Arg, Asn, Asp, Gln, and 

Cys. AAs containing more than one nitrogen atom, i.e. Arg, His, Trp and Lys, showed higher 

amounts of ammonia consistently. Cys releases ammonia from its α-amino group; furthermore, 

because the reactive thiol group is released even at low temperatures, molecular reactivity rises 

and promotes the nucleophilic attack on the α-carbon, thus initiating further release of ammonia. 

 

 

Figure 1: AA decomposition 
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Light irradiation is another factor influencing the stability, non-ionization radiation like UV or 

visible light has only poor degradative potential [39]. However, interaction of non-ionizing 

radiation in the presence of substances with chromophores may generate oxidizing species, such 

as hydrogen peroxide, being a precursor of hydroxyl peroxide – one of the most potential 

oxidizing species. In this context the impact of hydrogen peroxide and hydroxyl radicals on 

AAs has to be discussed [40, 41]. Arg shows significant photo-degradation in presence of 

hydrogen peroxide, as studied by Ansari et al. [42]. Ammonia and urea are the major products 

formed as a result of synergistic action of UV light and hydrogen peroxide, depending on 

radiation duration. Further decomposition of Arg gave Asp, Ser, nor-valine and Orn (Fig. 2). 

An explanation may be the reaction of hydroxyl radical with Arg causing a radical dissociation 

of carbon-carbon single bonds, followed by recombination and group rearrangements. 

Photoexcitation of the α-amino group followed by deamination, and as well as cleavage of the 

guanidinium group lead to ammonia liberation. In association with reported decreased AA 

concentration after periods of light irradiation (though the focus of these studies was not to 

elucidate degradation products) [43, 44], an investigation of a model pediatric parenteral AA 

solution proved hydrogen peroxide generation after 90 min light irradiation in the 425-475 nm 

waveband, as used in pediatric phototherapy [45]. According to study results of Boreen et al. 

in 2008, most susceptible to photo-oxidation are Trp, Met, Tyr, His, Cys, and Phe in aqueous 

solution [46]. Formation of singlet oxygen (1O2) is related to the reaction mechanisms of photo-

induced oxidizing species. Trp is oxidized to one and twofold hydroxylated Trp, as well as 

oxygenated species and kynurenine and/or formylkynurenine (Fig. 2). In the context of protein-

bound Trp degradation the named decomposition products and metabolic glycosides are known 

to be of a slight yellow colour. They were identified as responsible substances for the yellowing 

of organic tissues, such as wool and lentils [47, 48]. (Nonetheless, instruction leaflets of 

available formulations tolerate slightly yellow appearance of the solutions). Tyr is oxidized to 

its dimer dityrosine or 3-,4-dihydroxy (DOPA) derivatives, His and 1O2 form Asp and urea or 

it is oxidized to 2-oxo-His. Met is oxidized in the presence of 1O2 to Met sulfoxide (Fig. 2). Phe 

is oxidized to ortho- or meta-Tyr (Fig. 2) [49]. Because of the very low solubility of Tyr and 

the fact, that the human body convert Tyr from Phe, parenteral nutrition solutions include Tyr 

only in very small concetrations, if at all. Usually AA formulations do not contain Gln because 

of concerns about its instability and toxicity of degradation compounds. Tested in typical 

formulations, Gln degradation rates amount to 0.8 %/d at room temperature or 0.1-0.15 % d at 

-4 °C. In the degradation process, the free pair of electrons of nitrogen in the α-amino group 

reacts with the δ C-atom to pyroglutamic acid and ammonia (Fig. 2). Rising ammonia 
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concentration was consistent with decreasing residual Gln concentration. Toxic effects of these 

compounds are unlikely, since small concentrations of pyroglutamic acid are also intermediates 

in mammalian γ-glutamyl cycle and the human body handles up to 14 g of ammonia per day 

[50]. The same mechanism is possible for Glu, but releasing equimolar water instead of 

ammonia, however to the best of our knowledge, no studies are available on this as stability 

concern in parenteral solutions. Coherently with these reactions, no interactions with other AAs 

were described. 

Cys is usually excluded from these formulations, because it is not essential and will be 

converted enzymatically from Met in the human body. The reactive thiol group is susceptible 

to oxidation to the disulfide Cystin, sulfinic, sulfenic and/or sulfonic acids, which cannot be 

reduced by metabolic cellular systems (Fig. 2) [49]. 

 

 Degradation products 

Arg 
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Figure 2: AA degradation after heat treatment and light irradiation in aqueous solution 
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Based on the facts, that concentration of AAs in parenteral solution cannot be considered as 

critically, free AAs are not highly reactive by nature, and they exhibit chemically buffering 

character, it can be said, that such formulations can be regarded as stable. Studies performed on 

stability usually apply very harsh and extreme conditions, which do not reflect the practical use, 

but it can help to elucidate possible instability problems. Taking together; safety and quality of 

parenteral AA solution in a closed system, made under strict controlled conditions and stored 

according to the instructions, are guaranteed over shelf life period. However, sterilization 

processes can challenge the stability of an AA solution (see below). The following table 

(Tab. 2) summarizes the stability facts of all AAs in use. 

Amino acid  Stability Notes Ref. 
essential    
His Decline in presence of HCl in 

<24 h, depending on acid 
concentration; 
Long term stability >90% over 
6 months at 4 °C; 
Decomposition to Asp 

- [2] 
[31] 
[46] 

Ile Stable under normalized 
conditions 

Thermal degradation above 180 
°C 

[37] 

Leu Stable under normalized 
conditions 

Thermal degradation above 180 
°C 

[37] 

Lys Long term stability >90%; over 
6 months at 4 °C 

Stable ingredient; 
no information about degradation 
products 

[33] 

Met Decomposition at 25 °C in 30 d; 
Long term stability: loss >20% 
over 6 months at 4 °C; 
Photolysis to methionine 
sulfoxide  

Sulfoxides are not problematic; 
Enzymatic reconversion to Met 
possible (human methionine 
sulfoxide reductase) 

[34] 
[33] 
[46] 
[49] 

Phe Actually stable; possible 
hydroxylation to tyrosine 

Deamidation possible; yielding 
benzene, toluene, p-ethylbenzene 
 

[51] 

Thr Long term stability test: loss 
>25% over 6 months at 4 °C 

No information available [33] 

Trp Light and oxygen induced 
degradation; 
Incompatibility with sodium 
bisulphite (formerly used as 
antioxidant in PN); 
Long term stability: loss up to 
13% over 6 months at 4 °C; 
Degradation to kynurenine, 
formylkynurenine, 

Temperature and light-induced 
decomposition as synergistic 
factors; 
Most unstable amino acid; 
Degradation maybe prevented by 
use of ultraviolet light protective 
bags, nitrogen purging, oxygen 
scavengers 

[33] 
[34] 
[35] 
[49] 
[52] 
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hydroxylated, di-hydroxylated 
forms 

Val Stable under normalized 
conditions 

Thermal degradation above 180 
°C 

[37] 

non-essential    

Ala Long term stability: loss >20% 
over 6 months at 4 °C 

No information available [33] 

Arg Decomposition at 25 °C in 30 d; 
Long term stability: loss >20% 
over 6 months at 4 °C; 
Degrades to norvaline, Ser, Orn, 
ammonia, and urea  
 
 

Synergistic effects of H2O2 and 
UV irradiation; 
Decomposition inhibited by 
hydroxyl radical scavengers – e.g. 
vitamin A/E given as additives  

[34] 
[33] 
[42] 

Asn Dominant 
deamination/deamidation 

Thermal decomposition [38] 

Asp Deamination <5% Thermal decomposition [38] 
Cys Fast oxidation to cystine 

in presence of oxygen; 
Reacts to glucocysteine in 
presence of glucose; 
Precipitates with copper at high 
concentrations; 
Thermal deamidation, and 
release of thiol group. 

Not used; 
if, only in low concentrations, 
because not essential in adults 
If added as Cys-HCl, it decreases 
pH, and is not biologically 
available 

[38, 
49, 
53-
57]  
 
 

Gln Dominant 
deamination/deamidation; 
Especially unstable in amino 
acid mixtures; 
Pure solution with glucose is 
apparently more stable; 
Upon short heating immediate 
degradation to pyroglutamic 
acid (5-oxoproline) 
and ammonia  
 

Normally not included, but 
metabolically very important in 
special patient groups; may be 
given as biologically available 
and more stable dipeptide or as N-
acetyl-glutamine 

[38, 
50] 

Glu Thermally stable; 
Deamidation <1.3% 

Theoretically formation of 
pyroglutamic acid possible, not 
described in parenteral 
formulations 

[38] 

Gly Long term stability: loss >20% 
over 6 months at 4°C 

No information available [33] 

Pro Decline in presence of HCl in 
<24 h depending on HCl 
concentration; 
Long term stability: loss >20% 
over 6 months at 4 °C 

No information available [31] 
[33] 
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Tyr Precipitates at pH <3; 
Low solubility product 
Long term stability (>90%) over 
6 months at 4 °C; 
Oxidation to dityrosine 

Not used, if only in very low 
concentration due to low 
solubility product; 
Caution with acidic additives such 
as HCl; 
Photo-degradation to dityrosine 

[31] 
[2] 
[33] 
[58] 
[46] 

Ser Stable No information available  
Table 2: AA stability overview 

 

2.4 Analytical methods assessing AA stability 

All of these AA formulations may undergo various handling such as sterilization procedures 

like autoclaving processes, temperature fluctuations like freezing, thawing or refrigeration, 

exposition to sunlight or other forms of radiation (e.g. light therapy irradiation), transport and 

storage periods during their application in clinical practice. As discussed in the previous 

chapter, particular AAs are more eligible to (long time) storage and are robust to environmental 

changes, such as temperature fluctuations or radiation exposure, than other AAs degradation 

means possible loss of functional groups, molecular rearrangements, heat induced destruction 

and photo-oxidation, resulting in either reduced AA concentration, or even in critically toxic 

by-products. There is not much information about harmfulness or toxicity of degradation 

products, though animal studies suggest that oxidation products of e.g. Trp may be associated 

with hepatic dysfunction and complication during parenteral alimentation [59]. 

Many studies have been carried out to conduct stability prediction of the components 

throughout either rather conceivable or extreme conditions. One possible approach of stability 

assessment can be the measurement of the single AA concentration after defined storage periods 

or after exposure to named conditions, and comparison to the initial concentration. Another way 

might be the screening for toxic or problematic degradation products, thus creating a direct 

stability indicator. A less distinguishing option is to measure the whole ammonia concentration, 

since this is a decomposition product shared by all AAs. This may indicate the remaining AA 

concentration but gives no information about the final composition or individual degradation 

ratios. A great advantage of AA analysis in parenteral formulations is the simplicity of sample 

preparation. Absence of complex matrix, insoluble excipients or other intervening substances 

facilitates direct sample handling. Methods used in analysis of more complex formulations such 

as body fluids or protein hydrolysates usually need preparational steps such as extraction ahead 
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of analysis, which are dispensable in aqueous AA solutions and thus most of these methods 

become directly applicable in general. 

The Ph. Eur. distinguishes between methods of protein hydrolysis and “methodologies of amino 

acid analysis”, 8 methods are described [15]. The AA analyzer is a widespread way of analysis 

and meanwhile obtainable fully automated. Technically speaking, AAs are separated on a cation 

exchange resin using lithium or sodium based buffers as mobile phase, followed by post-column 

ninhydrin derivatization and UV detection of the purple coloured derivatization products [60-

62]. Though not actually intended for this purpose, this method is also used for assessment of 

related (ninhydrin-positive) substances [63]. Ninhydrin positive substances are ammonia, AAs, 

imino acids, primary amines, yielding purple coloured products and secondary amines, yielding 

yellow coloured products, detectable at 570 nm and 440 nm, respectively. In the context of 

stability assessment, the advantages are good automation capacity and applicability for AA 

quantification. However, it is limited, since it does not acquire any substances, which do not 

react with ninhydrin, and some AAs react in multiple ways. If temperature, time, and pH are 

not maintained constant the accuracy of detection is low [64, 65]. Additionally, it is expensive 

and time consuming. Further methods prescribed in the Ph. Eur., as listed below (Tab. 3), 

include pre-column or post-column derivatization of AAs, yielding detectable derivatives by 

either UV/vis or fluorescence. Of noted, the USP applies analogous methodologies for the 

analysis of AAs. 

Separation of polar compounds like (non-derivatized) AAs in classical RP-HPLC is inherently 

difficult, due to weak retention on the reversed phase [66]. More polar resins allow interaction 

and retention of such compounds; therefore, ion exchange chromatography was successfully 

introduced. Elution patterns of AAs on different resin types have been studied since the 1950ies 

[67]. Other chromatographic methods to separate polar compounds are the application of porous 

graphitic columns (PGC) and the HILIC technology. In the case of PGC retention it is assumed 

to be caused by complex electronic and π-π interactions, but it is not yet fully clarified [68, 69]. 

PGC are robust towards very low or high pH values and aggressive solvents. However, in order 

to enhance interaction often volatile ion-pair reagents are used, primarily perfluorinated 

carboxylic acids with n-alkyl chains. This increases the retention (of ion-pair reagents and 

analytes) so much, that complete desorption from the stationary phase can become time-

consuming and eventually problematic [69, 70]. For HILIC the stationary phase is modified 

with amides, hydroxyl, cyano or amino groups to be polar outwards and thus exhibiting a basis 

for interaction with polar compounds [71]. Elution is usually carried out by acetonitrile/water 
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gradients; with increasing aqueous content, analytes desorb from the stationary phase. The use 

of volatile solvents and buffers allow effective coupling to mass detectors, for both PGC and 

HILIC columns, which is of great benefit for direct amino acid analysis [66, 72]. 

If using RP columns intentionally, the methods of choice are either a form of derivatization or 

use of ion-pair reagents. Pre-column derivatization, with OPA or ACC reagents, does not only 

facilitates UV/vis detection (for the most AAs), but also enhances interaction of the derivative 

with the nonpolar stationary phase [73, 74]. Optimized eluents and the use of gradients improve 

separation and reduce retention time of AAs and modified analogues as well. Depending on the 

stationary phase and derivatization technique, adjustment of pH, buffer concentration, and ratio 

of aqueous and organic phase influences the outward charge of molecules and thus the 

capability of interaction with the stationary phase. More or less of organic solvents leads to 

desorption or further adsorption to the resin, respectively [75]. 

The lack of chromophore, except Phe, Trp, and Tyr, makes derivatization for UV/vis detection 

indispensable. Though detection of impurities and underivatized AAs at wavelengths below 

220 nm is reported [76, 77], the right choice of solvents is very important, e.g. due to UV cut-

offs. Consequently, either a derivatization step or change of detector is required, alternatively 

electrochemical methods of detection, charged aerosol detectors (CAD), refractive index 

detectors and mass spectrometers are appropriate [78-82]. Here the advantages of mass 

spectrometric devices become apparent. Poor separation is compensable by targeted screening 

of explicit masses and, in the case of fragmentation studies, structural information can be 

retrieved on top. Restrictive conditions to mass spectrometric analysis are ionization ability of 

the analytes and strict use of volatile solvents and salts. 

Tab. 3 and 4 sum up HPLC methods as applied in the Ph. Eur. and in applied science, 

respectively, the latter outlines rather recent methods as published in the field of research 

without derivatization but using either alternative separation or detection devices.  

In the context of alternative separation methods besides chromatography, capillary 

electrophoresis has to be discussed. Both Ph. Eur. and USP itemize capillary electrophoresis in 

detail, however explicit application methods for AA analysis are not given. Anyway, in research 

capillary electrophoresis is applied successfully for AA assessment in biological matrices, in 

pharmaceutics e.g. parenteral solutions and in food chemistry [83-90].  
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Separation Eluent Detection Analysis Ref. 

IEC Lithium- or 
sodium 
based 

buffer, 
isocratic 

ninhydrin post-column 
derivatization; 

UV/vis: 570 nm 

(amino acid derivatives) 

440 nm 

(imino acid derivatives) 

 

AAs, imino acids, 

related ninhydrin-positive-
substances 

 

 

[15, 
60, 
63] 

IEC 
(SCX) 

Borate 
buffer 
systems 
isocratic 

OPA 
post-column 
derivatization; 
fluorometric: 
excitiation at 348 nm 
emission at 450 nm 
 

Primary amines and 
derivatives, 
excluding Pro and other 
secondary amines 

[15, 
91, 
92] 

RP18- HPLC 
 

Sodium 
phosphate 
buffer 
ACN, 
isocratic  
 

PITC 
pre-column 
derivatization; 
UV/vis: 254 nm 

AAs [15, 
93] 

RP18- HPLC 
 

Borate 
buffer 
ACN 
isocratic 

ACC pre-column 
derivatization 
fluorometric: 
excitation at 250 nm 
emission at 395 nm 
 

AAs 
2 folD. higher detection 
limit for Cys 

[15, 
94, 
95] 

RP18- HPLC 
 
 

Sodium 
phosphate 
buffer 
ACN 
Gradient  

OPA pre-column 
derivatization; 
fluorometric: 
excitation at 348 nm 
emission at 450 nm 

Primary amines and 
derivatives, 
excluding Pro and other 
secondary amines 

[15, 
96] 

RP18- HPLC 
 

Sodium 
phosphate 
buffer 
ACN 
gradient  
 

DABS-Cl pre-column 
derivatization; 
UV/vis: 436 nm 

AAs [15, 
97, 
98] 
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RP18- HPLC 
 

Sodium 
acetate 
buffer 
ACN 
MeOH 
acetic acid 
gradient  
 

FMOC-Cl pre-column 
derivatization; 
fluorometric:  
excitation at 260 nm 
emission at 313 nm 

AAs, 
His derivatives prone to 
fast decomposition 

[15, 
96, 
99, 
100] 

RP18- HPLC 
 

Borate 
buffer 
ACN 
gradient  

NBD.F pre column 
derivatization; 
fluorometric: excitation 
at 480 nm emission at 
530 nm 

AAs [15, 
101, 
102] 

Table 3: Analytical methods assessing AAs 

 

Method Separation 
technique 

Mobile Phase Detection Detected 
compounds 

Ref. 

IP-RP-HPLC-UV RP 18 

 

0.1 % (v/v)TFA, 
in water and in 
ACN,  
sodium heptane, 
sodium sulfate, 
buffer  

pH 2.3 

UV/vis: 
210 nm 

AAs, 

Not Cys but 
cystine, and 

cysteine-
complexes 
with trace 
elements: Zn, 
Se 

 

[76] 

HILIC–ESI-MS TSKgel 
Amide 80 
column 

0.5 mM/ 2.5 mM 
NH4OAc buffer 
in 
90 %/60 % 
aqueous ACN  
gradient 
pH 5.5 
 

Triple 
quadrupole 
MS,  
ESI-source 
Q1 scan 
Neutral loss 
scan 

AAs, 
hydroxylated 
Pro 
derivatives,  
Cys excluded 
for oxidation/ 
dimerization 

[66] 

IP-HPLC-
MS/MS 

octadecyl 
silica 
column 
 

perfluorinated 
carboxylic acid 
solution*  
ACN  
gradient 

triple 
quadrupole 
MS, APPI 
source MRM 
 

AAs, 
biogene 
amines 

[103] 
[104, 
105] 
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IP-LC-ELSD Porous 
graphitic 
column, 
Hypercarb® 

perfluorinated 
carboxylic acids 
solution* 
ACN  
gradient 
 

ELSD AAs [106] 

IP-RP-HPLC-
ELSD 

RP-18 Pentadecafluoro-
octanoic acid 
solution  
ACN  
gradient 

ELSD 
 

most polar 
AAs: Asn, 
Asp, Ser, 
Gly, Gln, 
Cys, Glu, 
Thr, Ala, Pro 

[78, 
105] 

Table 4: AA analysis without derivatization. 

(*trifluoroacetic, heptafluorobutyric, nonafluoropentanoic, tridecafluoroheptanoic, 
pentadecafluorooctanoic acid test, range of 0.5 mM – 20 mM tested), Abbreviations: ODS, 
octadecylsilane; IP, Ion-pair; IEC, Ion exchange chromatography; SCX, strong acidic ion exchange 
chromatography; ACC, 6-amino-chinolyl-N-hydroxysuccininimidylcarbamate; DABS-Cl, 4-N,N-
dimethylaminoazobenzene-4'-sulfonyl chloride; FMOC-Cl, 9-fluorenylmethyl chloroformate; NBD.F, 
4-fluoro-7-nitro-2,1,3-benzoxadiazole; TFA, trifluoroacetic acid; HILIC Hydrophilic- interaction 
chromatography; MS, mass spectroscopy; ESI-MS, electrospray ionization – mass spectroscopy; 
MS/MS, tandem mass spectroscopy; APPI, atmospheric pressure photoionization; MRM, multiple 
reaction monitoring, ELSD, evaporative light scattering detector) 

 

3 Total Parenteral Nutrition 

In clinical practice single AA formulations are more often used as a compound of so called 

Total Parenteral Nutrition (TPN) admixtures. In 1972, Solassol was the first one to apply the 

new form of parenteral nutrition [107]. The idea was to compound a formulation that provides 

the patient with AAs, carbohydrates, lipids, and micronutrients such as vitamins, trace elements 

and electrolytes, which is safe, effective and low in complication risks [108]. In historical 

context parenteral AA solution administration was a form of supplementation for all patients, 

where the enteral route for alimentation failed. Later it was found, that the combination of 

intravenous available carbohydrates and AAs had a sparing effect on the nitrogen balance 

resulting in better survival of the patients. The problems here were overfeeding and high blood 

sugar levels leading to weight gain and insulin resistance. With invention of a parenteral fat 

emulsion, it became possible to supply the required caloric intake in a form of a mixture of 

glucose and fat. So the idea of a balanced TPN was born. Many clinical trials confirmed the 

advantages of this administration route and continuous improvement in this field is still going 

on [109]. Compounding and administration of “All-in-One” (AiO) admixtures also reduce the 
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risk of error and contamination. There are different nutrition systems available nowadays which 

are ready to use directly or after flexible and convenient adjustment to clinical demands [13] . 

Basically, there are two concepts of AiO mixtures. For one, an individual formulation of AAs, 

glucose, fat, additives, and medication is manufactured on order from the hospital pharmacy in 

a plastic bag container, then refrigerated at 4 °C until use within a couple of hours. These 

systems are compounded at volumes only up to daily required doses, in order to minimize the 

time of possible destabilizing interaction processes in the mixture or exposure to stressing 

conditions, e.g. exposure at room temperature is less favorable than storage in refrigeration 

[110]. Possible reactions are creaming and coalescence of a fat emulsion, sugars and AAs may 

react to yellow or brown substances, occurrence of precipitates of electrolytes or a non-

preferred change in pH value. Though the reaction rate begins slowly, it takes up momentum 

with each alteration. 

Secondly, a more economic and practical way is the multiple chamber bag (MCB) concept 

(Figure 3). MCBs are plastic bags divided into three compartments that are separated by a 

breakable seal, preventing reactions between the components. Each chamber contains either 

lipid, carbohydrate or an AA formula. Without disrupting sterility, just by break open the inner 

peelable seals, it is possible to mix the components to obtain a ready-to-use AiO nutrition 

mixture. It is also possible to add individual amounts of additives like vitamins, electrolytes or 

trace elements solution via a special port. If not required, the lipid chamber may remain 

unopened, so it is possible to compound only carbohydrate and AA formulation. However, this 

type of nutrition is less personalized, but the product provides much longer shelf life (compare 

1 d to 6-18 months, given by manufacturer). Still once mixed, the formulation should be used 

within 24 h, due to the same physicochemical instability issues as reported for the first type of 

mixture [111]. 
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Figure 3: Scheme of a 3-in-1 multi chamber bag system (MCB) 

The compounding order is crucial for the quality of the final product, thus preparation 

information and the guidelines of the associations mentioned before provide a step-by-step 

prescription of compounding steps in order to ensure a safe product according to Good Clinical 

Practice (GCP) [112]. First, AAs and glucose solutions have to be mixed; second, the addition 

of the lipid component is allowed; gently shaken into a homogenous emulsion avoiding creation 

of air bubbles. Additives shall be given in the AA compartment prior to any other steps [113]. 

The creamy opaque consistency of the complete admixture aggravates any visual observation, 

apart from colour change or vesication. 

Tab. 5 displays the content of commonly used products; the greatest variability lies in glucose 

content, whereas lipids and AAs have rather little medical scopes depending on each patient 

group, metabolic benefits, and pre-existing illnesses. 
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Content 
 

Aminomix® Kabiven® Clinimix® 
5% G-E 

Numeta® 
G16% E 

NuTriFlex® 
Lipid Peri 

NuTriFlex® 
Lipid plus 

AAs [g/L] 50,00 33,10 50,00 26,00 32,00 38,00 
Glucose 

[g/L] 
200,00 98,00 350 155,00 64,00 120,00 

Lipids [g/L] - 39 - 31 40,00 40,00 
Electrolytes 
[mOsm/L] 

1779 1060 1625 1230 840 1350 

Vitamins - - - - - - 
pH* 5,5-6,0 5,6 6 5,5 n. s. 5-6 

Additives glacial 
acid 

glacial acid, 
NaOH 

glacial acid, 
NaOH 

malic acid, 
NaOH,  

egg lecithin, 
glycerine, 
Na-Oleate 

citric acid,  
NaOH, 

egg lecithin, 
glycerine, 
Na-Oleate 

citric acid,  
egg lecithin, 
glycerine, 
Na-Oleate 

Table 5: Overview of some commercially available MCB formulations, exemplary 2-in-1 and 
3-in-1 products. (* final pH in admixture) 

 

3.1 Compatibility and stability of TPN admixtures 

Finally, at the point of administration both types of AiO admixtures share the same problems 

affecting stability, which restricts the application period. Though ideally looking like a 

homogenous system, the components are of very different nature, destabilizing the system back 

into an inhomogeneous. The instability can be classified, into thermodynamical and chemical 

processes (Tab. 6) [111]. 

Chemical instability Physical instability 
• hydrolysis • thermal decompostion 
• complexation 
• degradation 
• oxidation/reduction 
• photolysis 
• radical chain reactions 
• racemization 

• photo-induced modification 
• adsorption  
• interaction with primary packaging 
• creaming/caking 

• polymerisation  
• condensation  

affected by affected by 
• pH 
• temperature 
• component concentration 

• light exposure  
• bag material 
• production process 

Table 6: Classification of instabilities. 
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The following subchapters summarize compatibility issues between the substance groups with 

respect to AAs. The reported considerations refer to studies made on stability. So the applied 

study design may not always render real practical and clinical conditions. The actual probability 

must be evaluated individually for every system and conditions applied.  

 

3.1.1 AAs and carbohydrates 

The most common used source of carbohydrates is glucose, which has reducing properties; thus 

it can easily react with free AAs in solution. The reaction is referred to as Maillards reaction or 

non-enzymatic browning. First incompatibility considerations in parenteral solution based on 

reduced bioavailability of AAs and toxic reaction products were described by Fry and Stegnik 

in 1982 [114]. Especially during long time medication with parenteral admixtures insufficient 

nutrient levels are a matter of concern. 

The initial step in Maillards reaction includes formation of 1-amino-1-deoxyketose (Fig. 4, 1), 

with intermediate formation of the unstable Schiff´s base, leading to Amadori compounds, 

theoretically all AAs can react. This step is reversible, though following rearrangements are 

not, formation of not bioavailable decomposition products of AAs and potentially toxic by-

products is the consequence (post-amadori compounds). Two degradation pathways (Fig. 4, 

A/B) are possible, leading to different products, characteristic for rather early or late stage of 

reaction pathway (Fig. 4, 2/3). The challenging task is to analyse parent sugars, Amadori 

compounds and parent AAs, simultaneously. Davidek et al. established a method of 

simultaneous quantitative analysis of Maillard reaction precursors and products by means of 

high performance anion exchange chromatography. Anion exchange columns can retain AAs, 

Amadori compounds and sugars, consecutive elution was carried out by a gradient of water, 

sodium hydroxide and sodium acetate. Compounds were detected by coupling a diode array 

detector (DAD) with an electrochemical detector in amperometric mode [115]. 

Another study on AA loss in presence of reducing sugars tested 9 essential AAs and taurine in 

glucose solution to determine relative stability with regard to pH value, temperature and sugar 

concentration [116]. Enzymatic browning products were monitored by absorbance 

measurements using a photometer (λ =420 nm), in linear range up to 1.0 absorption units. 

Residual AA content was measured by means of RP-18 HPLC separation, after pre-column 

derivatization of AAs with OPA, coupled to fluorescence detector. To obtain AA losses, the 

content of treated samples was compared to the content of untreated samples. The most notably 
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losses of AAs were observed with Lys, Trp, and His. However, the authors concede that these 

losses may involve different reactions besides Maillard browning. Increasing pH value, 

temperature and sugar content leads to increased losses over time. Hence solution mixtures 

should be stored under controlled conditions. Similar results were obtained by Labuza and 

Massaro in 1990 by investigation of AA losses in model TPN. Separation of AAs was carried 

out by RP-HPLC with pre-column PITC derivatization and fluorescence detection. Cys was 

included and analyzed as oxidized cystic acid prior to derivatization. In this study a kinetic 

model for predicting the concentration of AA loss was suggested, since the observed systems 

exhibited a linear zero order behavior, equations can determine the kinetics theoretically, 

indicating a rapid loss initially followed by a steady state phase. AA losses were quantified up 

to a range of 20-45 %, recommending substitutional addition of 20-40 % extra to premixed 

formulation [117]. 
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Figure 4: Maillard´s Reaction 
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3.1.2 AAs and lipids 

It proved to be beneficial to meet the patient’s requirements of essential fatty acids in form of 

lipid formulations consisting of a blend of vegetable oils emulsified in water [118-121]. 

Formulations contain variable amounts of long-chain and middle-chain triglycerides 

(LCT/MCT), mono-unsaturated and poly-unsaturated fatty acids (MUFA/PUFA) and an 

emulsifying agent, usually lecithin (an ionic egg phospholipid), as shown in Table 5. In the long 

process of emulsification each oil droplet is coated with a monolayer of phospholipids, 

orientating the negatively charged hydrophilic heads towards the water phase. Repulsive forces 

of the negative surface charge (zeta potential) of the droplets preserve stable oil-in-water (O/W) 

emulsion [113]. This “new” chemical ingredient in the system creates a whole range of further 

stability concerns [122]. 

The lipid emulsion is most stable when manufactured at pH of 8 and with surface potential of -

35 mV [121]. Acidity of AAs and glucose formulations (Tab. 5) decreases pH and can 

potentially destabilize the emulsion. The consequences are a higher tendency to creaming, 

coalescence and cracking of emulsion. Special AA formulations, rich in branched chain AAs 

in neonatal and pediatric use, are more acidic, placing the admixture even more at risk. It has 

been shown, that especially for preterm infants, higher concentrations of branched chain AAs 

are beneficial for the development of the respiratory system [123-126].  

On the other hand, AAs may also have a protective effect by facilitating buffering capacity, 

especially basic AAs enhance the electrostatic barrier, hence reducing the coalescence bias 

[113, 127]. Nevertheless, acidic AAs such as Glu and Asp may destabilize the formulation. 

Anyway, the effect of single AAs may be neglectable in the complete mixture because of 

repulsive effects of lipid globules and low concentration in the final formulation [10]. The 

optimum stability is claimed to be at a ratio of at least 1.5 of basic to acidic AA concentration 

[128]. 

Another critical matter is the lipid peroxidation of polyunsaturated fatty acids by radical 

autoxidation [129]. The formed lipid peroxides readily react with AAs giving degradation and 

oxidation products, which needs be monitored. In principle lipid peroxide values can be 

measured spectrophotometrically at 560 nm by ferrous oxidation-xylenol orange (FOX) assay 

[130] or by an iodometric assay as done by Steger and Muhlenbach in an intravenous lipid 

formulation [131]. Light dependent formation of lipid peroxides and hydrogen peroxide was 

described by Silvers et al. in lipid parenteral nutrition solutions admixed with a multivitamin 
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formulation; values were measured by FOX assay and oxygen release on catalase addition with 

an oxygen analyzer [132]. These investigations focused merely on the extent of peroxide 

formation, because concerns about peroxides are reasonable from the pharmaceutical and 

medical point of view; yet interactions between other ingredients apart from antioxidants such 

as vitamins were not subject of this study. One of the first HPLC methods to assess lipid 

peroxides was published by Yamamoto et al. in 1987 [133]. In presence of hydrogen peroxide, 

radical chain reactions and free radicals are likely to occur, whose by-products may further 

react with AAs causing dimerization, polymerization, and oxidation. Possible reactions are 

mentioned in reviews on lipid oxidation referring to old in vitro studies including His, Arg, Ser, 

Glu, Met, Tyr, Phe, and Thr [134-136]. However, to the best of our knowledge, no recent studies 

were reported about rather modern analytical methods to assess these types of reaction products 

in TPN. Since lipid emulsions and AAs are separated until administration, and the period of 

delivery is limited, these reactions are not that relevant in practical stability consideration 

anymore. 

 

3.1.3 AAs and vitamins, electrolytes and trace elements 

Patients depending on parenteral nutrition do not only need sufficient amount of all 

macronutrients, but all essential micronutrients, too, especially when total parenteral 

alimentation is prescribed for long time of administration [137]. As described before, the 

modern MCB systems have an extra port for additives. Thus, solutions of vital electrolytes 

(sodium, potassium, magnesium, chloride, phosphate) trace elements (ions of chromium, 

copper, iodine, iron, manganese, selenium, zinc, molybdenum), water soluble (vitamin 

B1/thiamine; B2/riboflavin; B6/pyridoxine; B12/cobalamin; pantothenic acid; niacin; biotin; folic 

acid) and lipid soluble vitamins (vitamins A, E, D,K) can be compounded into the formulation 

easy, fast, and safe [138]. Only few stability issues are described related to AA interaction, the 

most relevant ones are summarized below. 

Among vitamins ascorbic acid is the least stable substance in TPN. It is readily oxidized 

reversibly to dehydroascorbic acid (DHAA) (Fig. 5), but still prevailing physiological 

antiscorbutic activity. DHAA degradation is irreversible being the actual loss of ascorbic acid. 

Cys, which has reducing capacity, can promote such a reaction, because of this character, Cys 

is usually excluded from AA formulations or at least applied only in very low concentrations. 

Rather the whole environment of formulation, e.g. presence of reducing sugars, oxygen content, 
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and bag materials, lead to degradation of ascorbic acid. The degradation can be monitored by 

an isocratic ion-pair reversed phase liquid chromatography coupled with a UV detector [139]. 

 

 

Figure 5: Degradation of ascorbic acid 

Bhatia et al. studied the effect of multivitamins and light irradiation on parenteral AA solution 

[43, 44]. Garcia and Silva studied the photo-oxidation of AAs in the presence of the 

photosensitizer riboflavin in parenteral solutions [140]. Both obtained similar results; in fully-

fledged AA formulations, His, Met, and Trp were significantly photo-oxidized by ambient light 

in the presence of riboflavin, a component of common multivitamin formulation. The aim was 

to deduce photo-oxidation reaction mechanisms, it was found that His and Met reacted 

differently than Trp. This fact was suggested by oxygen consumption measurements under 

various experiment conditions. The structural decomposition of His and Met remained 

unexplained. With reference to earlier studies [141, 142], Trp degrades to kynurenine, 

formylkynurenine and supposedly to hydroxylated or oxygenated products with higher 

molecular weight than Trp (Fig. 2) [141-143]. However, to complicate the issue, ascorbic acid 

was shown to have a protective effect; hence degradation of Trp (and other components) begins 

after depletion of ascorbic acid only [140]. This happens because of its anti-oxidative nature, 

nevertheless structural changes remained unexplained. Simultaneously other vitamins with 

anti-oxidative character, such as vitamin E were suggested to have a similar effect but were not 

tested.  

Stability assessment of vitamins in parenteral formulations is another subject; it has to be 

assured, whether degradation products, oxidized or reduced forms of vitamins affect the 

stability of the residual components. HPLC methods are proposed to assess water soluble and 

lipid soluble vitamins and related substances. Lipid phase is separated by solid phase extraction 
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prior to analysis [144-146]. Sforzini tested vitamin A and E stability up to 24h during 

administration period, and declared decreasing vitamin content 24 h after compounding, 

confirming the recommended restriction of administration period [91]. Once again, these 

studies focused on degradation and assessment of the vitamin and did not investigate interaction 

with AAs. 

Copper, iron and zinc are trace elements of relatively high physiological concentrations in 

organism; chromium, manganese and selenium are available at lower levels. Composition and 

admixture of trace elements are precisely defined, but interactions with AAs cannot be ruled 

out. Generally, AAs exert a positive effect on bioavailability by building chelates with the 

metals [147], zinc complexes particularly with His, Cys, Gln, and taurine. Iron and copper also 

form chelates with diverse AAs, however resulting in enhanced bioavailability and not in 

decreasing stability [148]. Results of a more recent study indicate the formation of copper and 

Cys complexes [149], found in blackened inline-filter membranes of the administration tube 

sets. Mainly sulfur containing AAs are affected by trace element interaction. In this study, 

measurements of individual elements were carried out by scanning electron microscopy and 

energy dispersive spectrometer analysis, providing qualitative and semi-quantitative 

(elemental) analysis. AA profiles were obtained by means of RP-HPLC coupled to tandem mass 

spectroscopy. Significant lower Cys levels were found after 24 h storage period of a model 

admixture [149]. Actually, Cys is not prevalent in TPN for adults, since it can be synthesized 

physiologically from Met, but for preterm infants Cys is essential, because neonates lack the 

required enzymes for metabolic transformation [150]. 

Electrolytes are used in AA solutions to adjust osmolality; the concentration is kept to a 

minimum. One significant problem might be the precipitation of calcium phosphate, depending 

on buffering capacity (titratable acidity) of AA formulation, which is largely determined by 

Arg, His, and Lys concentration and the final volume of mixture [151]. Complexation between 

calcium and Lys, but also Glu and Asp, Arg and His is reported pH dependent but not monitored 

[152]. 

 

3.2 Impact of primary packaging 

In the broadest sense of system compatibility, one has to mention primary packaging as further 

component. All ingredients are in direct contact to the primary packaging material during the 
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whole shelf life, storage and administration. The influence of the materials shall be roughly 

considered for integrity. 

First plastic bags replaced glass bottles for parenteral formulations in 1960 for economical and 

practical reasons. Polyethylene and polyvinyl chloride (PVC) were used as common material. 

In contrast to glass, these materials had increased gas and humidity permeation with 

polyethylene and adsorption effects with PVC. Nevertheless, higher particle load in inline-

filters, adsorption capacities for lipophilic components and leachables in form of plasticizers 

(di-(2-ethylhexyl)-phthalate, (DEHP)) were a great drawback [111]. Especially the loss of fat-

soluble vitamin (retinol) was associated with diffusion into the semipermeable membrane of 

the container [112]. DEHP is considered to be potential cancerogenic and disruptive to emulsion 

stability due to decomposition into phthalic acid, a strong acid. Thus, methods for rapid HPLC 

assessments were established [153, 154]. 

Replacement of PVC led to standard plastic container material ethyl vinyl acetate (EVA). EVA 

bags do not contain plasticizers, but gas permeation of oxygen into the admixture is not 

hindered. This allows steady gas diffusion encouraging oxidative reactions and decreased 

stability of sensitive chemicals. For that reason, MCB are protected by an air tight cover wrap 

provided with an additional oxygen scavenger. In EVA (and in PVC) bags oxidation of AAs is 

more likely to occur. Most affected AAs are, Trp, Cys, His and Met, despite the fact, that losses 

are rather nutritionally unimportant, degradation products are mostly unknown and toxic effects 

on long term feeding cannot be precluded [155]. 

Further development of primary packaging was the implementation of multilayered plastic bags 

(MLB). Polyamides or ethylvinyl alcohol - ethylvinyl acetate combinations are materials for 

coating film on inner and outer side of the container to prevent oxygen permeation. 

Polypropylene is a low adsorption plastic preventing water adsorption during heat sterilization 

[111]. 

In 2004, Balet et al. confirmed demonstratively the protective effects of MLB in contrast to 

EVA bags on oxidation of parenteral nutrition [156]. Lipid peroxides, hydroperoxides and 

vitamin content were evaluated by methods similar to the ones described in prior chapters of 

this review. 

Finally, in the context of primary packaging the impact of light irradiation has to be evaluated. 

The primary packaging has to provide adequate protection to its content. Light sheath of 

parenteral solution is necessary to protect photo-sensitive AAs, vitamins and poly-unsaturated 
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fatty acids [157]. Artificial light is rather unproblematic, but daylight can cause degradation, 

because of absorption of UV light; generally speaking, the most sensitive ingredients are retinol 

and to a far less extend riboflavin, reactions may be of photolytic or photo-oxidative nature 

[158]. However, absorption of UV-light does not lead necessarily to decomposition; it can also 

be shielded off to some extent as it is the case with ascorbic acid [159]. Accurate care in terms 

of light protection is a rational and practical recommendation.  

 

4 Conclusion 

The practical application of AA solutions in parenteral nutrition over decades gives evidence 

to be beneficial and comfortable. Both pure solutions and TPN meet the requirements of 

international pharmacopoeias of efficacy, safety and quality. Many studies elucidated and 

confirmed stability in the prescribed period of administration. Studies beyond the scope of 

application showed relative stability for even longer periods. Theoretically many diverse 

incompatibility incidents are thinkable, but whereas variety increases, clinical significance does 

not. Establishment of explicit guidelines and instructions to medical staff contributes to high 

qualitative and safe use. Whensoever stability is affected in explicit consideration the named 

methods can provide an analytical basis to deduce specific analysis. 

In the context of recent developments in modified HPLC, HILIC technique seems to be 

particularly suitable for analysis of AAs. It offers the possibility to separate small polar 

molecules, e.g. AA-related substances and degradation products (and also sugars) without 

derivatization or use of ion pairing reagents. Separation and analysis of charged substances 

allows coupling to mass spectrometric detector types. Application of mass spectrometers makes 

derivatization dispensable with increased detection sensitivity. Unknown compounds can be 

discovered, and fragmentation studies can support structural elucidation. Most HILIC methods 

are not time-consuming, offer easy sample handling with typical solvents e.g. acetonitrile and 

water, volatile additives, low buffer and salts concentration. It is in no way inferior to RP-

HPLC, which is still the common and classical chromatographical approach. HILIC-MS is used 

in food chemistry and clinical analysis due to its large application area and named practical 

advantages [160]. 

Since the possible degradation products are so various, detection of unknown or unexpected 

peaks during analysis is challenging. Surmounting these difficulties allows accomplishment of 
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targeted screening procedures for thinkable problematic decomposition products and 

declaration of instability indicating substances. 
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1.3 Tryptophan in pharmacy and medicine  

1.3.1 Chemistry and biochemistry of tryptophan 

2-Amino-3-(1H-indol-3-yl)propanoic acid is the chemical name of the α-AA Trp (Fig. 6). It is 

an α-Alanine with an indol-3-yl substituent. The stereochemistry of the α-position determines 

the AA as either D- or L-Trp. Only L-AA are able to pass into the human organism by active 

transport mechanisms, and thus becoming substrates of metabolism and protein biosynthesis. 

L-Trp is one of the 20 obligatory genetically encoded (proteinogenic) AAs. It is one of nine 

essential AAs and must be provided by diet obligatorily [21-23]. Bacteria and fungi use the 

shikimate-pathway for the synthesis of aromatic AAs such as Trp, Phe and Tyr [24]. To some 

extent, plants are also able to synthetize Trp. It plays an important role as metabolic precursor 

for plant development and regulation [25]. 

 

 

Figure 6: Chemical structure, formula and molecular weight of L-Trp 

 

AAs are small, charged and very polar molecules (Fig. 7). The side chain of each AA determines 

its individual chemical and physicochemical property and classifies each AA as either acidic, 

basic, neutral, polar/non-polar, aliphatic or aromatic. The indole moiety attributes Trp as 

aromatic, large, neutral AA (LNAA) with rather hydrophobic behaviour. The aromatic system 

has a delocalized π-system enabling interactions with electrons and positively charged groups. 

It is prone to chemical reactions, such as oxidation or ring cleavage, as well as non-covalent 

interactions with polar and non-polar chemicals. The chromophore indole is UV-active and 

fluorescent - adding to the unique properties of Trp.  
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Figure 7: Overview of the 20 proteinogenic AAs. Classified according to side chain 
properties: neutral, polar; neutral, non-polar; basic; acidic 

 

Trp is an indispensable AA for the human organism [26-28]. Only the L-form is bioavailable 

and can pass the blood brain-barrier [29, 30]. Among the 20 proteinogenic AAs, Trp has the 

lowest plasma concentration and lowest tissue storage [31]. Trp is needed for protein synthesis 

and it is the rate limiting key factor for the synthesis of neurotransmitters such as serotonin [26, 
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28], tryptamine [32, 33], and melatonin [21, 34]. Other important metabolic pathways of Trp 

include the kynurenine/quinolinic acid synthesis [23, 34-38] and the formation of biogenic 

(indole-)amines [33]. Serotonin is a neurotransmitter strongly related to mood and behaviour 

processes. Melatonin is the hormone of circadian rhythm and influences the immune system 

and gastrointestinal function [21, 39, 40]. Tryptamine is the decarboxylated Trp, which is a 

neuromodulator with excitatory and inhibitory functions [32]. The enzymatic formation of 

kynurenines and quinolinic acid is another function of Trp, which is initiated by the enzymatic 

cleavage of the indole ring [21]. This pathway is strongly stimulated by inflammatory molecules 

and it is up-regulated when the immune system is activated [38]. The biological significance 

relates to the modulatory role of kynurenines in immune response and the neuroactivity of 

kynurenic acid, 3-hydroxykynurenine and quinolinic acid. Quinolinic acid is the precursor for 

the synthesis of the electron transfer coenzymes nicotinamide adenine dinucleotide (NAD) and 

NAD phosphate (NADP) [41, 42]. Fig. 8 gives an overview over the two most important 

metabolic conversion routes of Trp: the kynurenine and serotonin/melatonin pathway.  
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Figure 8: The enzymatic formation of kynurenines, serotonin and melatonin. Abbreviations: 
NFK: N-Formyl(L-)kynurenine, L-Kyn: L-Kynurenine, 3-OH-L-Kyn: 3-hydroxy(L-)kynurenine 
[34, 43, 44]. 
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1.3.2 Therapeutic use of tryptophan 

The metabolic relevance of Trp initiated many studies and clinical trials carried out in the last 

35 years. Trp depletion or high dose supplementation was tested and found to be imperative for 

the modification of serotonin and melatonin plasma levels [23]. The supplementation with Trp 

showed adjuvant function especially in the treatment of light depressive episodes [45-47]. Trp 

proved to be an alternative medication for the treatment of (chronic) insomnia, short-term sleep 

disorders or jet-lag symptoms without the adverse effects of typical hypnotic medication such 

as hang-over effects or impaired cognitive performance [23, 48, 49]. Thus, Trp supplementation 

became a popular over-the-counter (OTC) drug for self-medication of insomnia and depressive 

episodes in the beginning of the 1980s. Daily intake varied between 250 – 450 mg and 

accumulated easily up to 1000 mg Trp per day together with the Trp uptake from food [23, 37].  

Beside the specific indications, Trp is a fixed component in enteral and parenteral AA 

formulations [50-54]. The proportion of AAs vary according to the daily demands, the medical 

indication or the patient group, i.e. new-borns, infants, adults, elderly people, critically ill 

patients or trauma patients. However, the World Health Organisation (WHO) recommends a 

daily intake of 4-5 and 8.5 mg * kg body weight per day for adults and infants, respectively 

[55].  

 

1.3.3 The EMS incident 

In November 1989 the FDA issued a warning of Trp intake when contemporary studies 

suggested a significant association between OTC Trp supplements and the onset of the 

previously unknown Eosinophilia-Myalgia syndrome (EMS). More than 1500 EMS cases and 

at least 27 deaths were reported until mid-1990´ies [56]. The prevalence of EMS stopped with 

complete recall of Trp food supplements with a daily dose of more than 100 mg. EMS is 

characterized by severe muscle pain and profound elevated eosinophilic count without any 

evidence for substantial inflammation processes [57]. Intensive research on possible causes 

proposed two hypotheses: either individual cases of alternated Trp metabolism or EMS-

triggering contaminants in Trp bulks [58, 59]. Years of Trp medication without reports of EMS 

disqualified the first hypothesis. Eventually, all EMS cases could be traced down to 

contaminated lots of Trp produced between October 1988 and June 1989 from one single 

manufacturer Showa Denko K.K., (Tokyo, Japan) [57]. Concerned lots were produced with 

modified microbial biosynthesis leading to unknown and unassessed impurities. Several 
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impurities have been identified in the decade after the incident. The most prominent 

contaminants were 3-phenylaminoalanine (3-PAA) and 1,1´ Ethylidene(bis)-Trp (EBT), which 

were associated with the outbreak of EMS. However, until now there is no medical evidence 

proving the triggering effect of the suspected substances, because the pathophysiological 

implications of EMS are still unclear. On the other hand, other studies suggest a toxic 

condensation product of Trp and bacterial fatty acids as the most significant EMS-triggering 

impurity [7, 60-63]. 

 

1.3.4 Industrial tryptophan production 

Industrial bulk substance is produced by microbial fermentation processes. The most relevant 

industrial bacterial strains are Escherichia coli or Corynebacterium glutamicum. The 

biosynthesis of L-Trp is rather long and complicated [64], thus genetic engineering efforts are 

carried out constantly to lower production cost, increase Trp yield and decrease bacterial 

mechanisms of down-regulation and the accumulation of by-products, respectively [65-68]. 

Presumably, alterations of the bacterial Trp fermentation process used by Showa Denko led to 

elevated levels of by-products and contaminated the batches, which were related to the outbreak 

of the disease later on. Frequent intake of contaminated Trp supplements led to an accumulation 

of impurities, which caused onset of EMS [69]. Consequently, the revision of the compendial 

analysis methods for Trp degradation products and related substances was initiated. However, 

the contaminant EBT (a Trp-dimer) was defined as a marker for EMS-related lots. Therefore, 

the impurity assessment method in the Trp monograph (Ph. Eur. 9th edition) prescribes the 

assessment of EBT. Other related impurities are limited to a total amount of 100 ppm and are 

not assessed individually. 

 

 



 
 
 
 
 

2 Aims and objectives 
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The pharmaceutical products Formulation 1and Formulation 2 (8.1. Supporting information, 

Tab. A 1) are parenteral nutrition solutions and thus must guarantee stability and quality criteria. 

Parenteral formulations are demanding pharmaceutical products in with regard to purity, mutual 

compatibility of ingredients, stability across manufacturing and sterilization processes, and 

long-term stability. In general, parenteral nutrition (PN) solutions are ready-to-use and can be 

administered directly, for example in medical conditions [51, 70, 71]. Therefore, the solutions 

must be in an impeccable condition unexceptionally. But, in some cases yellow discolouration, 

precipitates and turbidity were observed during manufacturing, processing, or shelf-life [72-

77].  

The yellow discolouration of biological tissues, such as the age-related yellowing of wool or 

the eye lenses, are associated with degeneration of AAs, peptides and proteins and have been 

studied in research before [77-81]. However, the reviewed literature suggests the AAs Trp, Tyr 

and Cys as the most prevalent precursors to coloured degradation products. The ingredients of 

Formulation 1 and Formulation 2 (Tab. A 1) contain Trp in concentrations of 2 g/L and 1.4 g/L, 

respectively. Tyr is poorly soluble in water and therefore it is included only in very small 

amounts and Cys is only included in Formulation 2, respectively. Consequently, Trp becomes 

the main target for a stability study in steam-sterilized aqueous solutions with emphasis on the 

identification and the assessment of degradation products responsible for the yellowing.  

The aim was to identify and quantify Trp degradation products causing the yellow discoloration. 

The degradation products were identified and quantified in pure Trp solutions, as well as in the 

exemplary finished products. Therefore, a stability-indicating method was developed, 

optimized and validated in accordance to the ICH guidelines ICH Q2 (R1).  

The Trp degradation products were identified and characterized. A selective stability-indicating 

method was developed, optimized and validated, and used for the analyses of finished 

pharmaceutical products. The assessment of Trp degradation products in the exemplary 

products is complemented by the comparison the influence of two different types of primary 

packaging, both commonly used for parenteral solutions. 

The demonstration of an instability and discolouration issue after steam sterilization of pure 

Trp solutions was documented by sample footage and assessed by UV/Vis spectroscopy. The 

identification and characterization of degradation substances in highly stressed samples was 

done by preparative LC, HPLC-UV and HPLC-UV/MS/MS, respectively. The identification of 

degradation substances was supported by the compilation of a substance library with theoretical 

and known degradation products. The proposed degradation products were confirmed by their 
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synthesis and used as reference substance for method optimization and validation. Method 

development and optimization included the testing and comparison of different separation 

techniques such as ion pair (IP)-RP-HPLC and RP-HPLC with a modified column material. 

The validated RP-HPLC-UV method indicates Trp degradation substances selectively next to 

Trp and other AAs in stressed parenteral nutrition solutions. Furthermore, common primary 

packaging material, i.e. glass bottles and plastic bags for injectables were tested and evaluated 

for their impact on Trp degradation.   
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3 Results and discussion 
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3.1 Preliminary tryptophan stability tests 

The stability of Trp is an important issue in research. For example, in medicinal chemistry, the 

deterioration of Trp and Trp side chains at the active site would affect the functionality of 

enzymes, hormones, antibodies, peptides and APIs. Consequently, metabolic pathways and 

therapeutic actions may be ineffective. Hence, possible reactions and degradation must be 

known and prevented, if possible. However, most of the influencing factors tested include the 

presence of enzymes or potent reaction partners. Additionally, influencing factors such as 

(strong) peroxides, metals, strong acids and bases were tested. Thus, the transfer to parenteral 

AA solution is only limited, because parenteral formulations are enzyme-free, comply to narrow 

ranges of pH values and receive “gentle” and as least as possible processing during 

manufacturing and storage. For this reason, it was essential to clarify, if the stability of aqueous 

Trp solutions (pure Trp and in presence of other AA) may be affected negatively by processing, 

such as steam-sterilization as used in the manufacturing procedure. Additionally, technical 

deficits during the manufacturing procedures, such as fluctuations of oxygen content, can affect 

Trp stability.  

Therefore, preliminary Trp stability tests were conducted focusing on the stability of pure Trp 

solutions after heat stress by autoclave. The aim of the preliminary test was to demonstrate if 

steam-sterilization is sufficient to induce Trp degradation. Furthermore, few related substances 

are commercially available and were tested for their presence in the stressed Trp solutions. 

Finally, preparative LC was applied for the characterization of emerging peaks in the stressed 

Trp solutions. 

 

3.1.1 Induced Trp degradation 

The initial Trp stability screenings were conducted by repeated stressing of aqueous Trp 

solutions (50 mL, 2 g/L Trp) by steam-sterilization in an autoclave (7.4 Sample stressing). The 

solutions were kept in brown glass vials and were subjected to 6 consecutive autoclaving cycles 

of 15 min at 121 °C, 2.1 bar. Aliquots were taken in between the cycles and subjected to HPLC-

UV/MS analysis (7.5 HPLC methods, Method A), which is a modification of the compendial 

Trp impurity assessment method (9th edition Ph. Eur.) [82]. Modifications were necessary in 

order to facilitate linearly coupled MS detection. Fig. 9 (a-f) is an overlay of the HPLC-UV 

chromatograms with the corresponding ion peaks (m/z) after each autoclave cycle. 
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The numerous peaks in the chromatograms demonstrate the increase of degradation products 

with each autoclave cycle applied. Nearly every UV peak could be assigned according to a 

certain m/z ion and showed the presence of several isomers with m/z 221 and 237, respectively.  

Despite a visible UV-peak, it is not always possible to trace a definite mass signal due to high 

background noise, or improper detection settings, like it was in the case of peak 10. Especially 

the increasing organic amount of the mobile phase, which is necessary for the elution of Trp, 

promoted elevated and disruptive background signals. 

 

 

Figure 9: Overlay of UV chromatograms (254 nm) of stressed 2 g/L Trp solution after 
consecutive autoclaving cycle a)-f) (15 min, 121 °C, 2.1 bar). Peak No. 9 is Trp. 
 

This stressing set up was repeated with a triple AA solution, containing Trp, Tyr and Phe (7.3 

Sample preparation, Trp-Tyr-Phe-solution), which are common ingredients in parenteral AA 

solutions. The aim was to investigate, if there are any interactions taking place between Trp, 

Trp degradation products and Tyr or Phe, which may be induced by the autoclaving process. 

Amongst all the other AAs, Phe and Tyr where chosen first due to their side chains; the benzol 

and phenol group, respectively. In comparison to the other AAs, they are more reactive, and 

they provide chromophores for UV-detectability and adequate retention on a reversed phase. 

The HPLC-UV/MS analyses showed an identical pattern of Trp degradation products beside 

Peak 1 2 3 4 5 6 7 8 9 10 11 12 13 

m/z 237 237 209 - 221 237 - - 205 - 177 147 175 

Rt 
[min] 

11.2 14.5 17.3 19.8 20.2 20.8 22.5 28.6 30.9 33.3 35.8 40.5 41.1 
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the peaks of Trp, Tyr and Phe. No UV and no MS peaks could be observed, which would 

indicate the degradation of Tyr and Phe or any interactions between them and Trp degradation 

products. In order to monitor the Trp degradation in a “complete” parenteral AA solution, a 

solution was prepared identical to Formulation 1 (7.3 Sample preparation, AA test solution,). 

The AA test solution was subjected to 5 consecutive autoclave cycles of 15 min (121 °C, 

2.1 bar). The HPLC-UV/MS analyses demonstrated the same pattern of Trp degradation 

products as observed in pure Trp solutions and in the triple AA solution. This showed that the 

presence of other AAs does not influence the formation nor the elution of Trp degradation 

products. Therefore, further experiments focused on the identification and characterisation of 

Trp degradation products only in pure Trp solutions. 

 

3.1.2 Commercially available references and related substances 

The compendial Trp impurity assessment method specifies related substances A-L. The method 

provides the quantification of the potentially toxic by-product 1,1´-EBT (impurity A) and the 

limitation of other impurities B-L limited in sum to a total of 100 ppm, referenced with N-Ac-

Trp (internal standard IS) by peak area. However, for the impurities B-L there is no indication 

of individual Rt or any other information about their differentiation. Among the impurities B-

L, four substances were commercially available and are demonstrated in Fig. 10. The substances 

are Kynurenine (Kyn), N-Acetyl-Trp (N-Ac-Trp, IS), 5-Hydroxy-Trp (5-OH-Trp) and 4-

Hydroxy-Quinoline (4-OH-Qn) [82-85].  

Method A was applied for HPLC-UV/MS analyses of reference mix-1 and the UV 

chromatograms (λ 220, 254, 280, 340 nm) are shown in Fig. 11. Comparison of the retention 

time and the m/z ions in the reference mix-1 with stressed Trp solutions confirmed the presence 

of the substance Kyn only (compare: Fig. 11, Kyn, Rt 17.3 min and Fig. 9, Peak 3). N-Ac-Trp, 

5-OH-Trp and 4-OH-Qn were not found in the highly stressed Trp solutions and were therefore 

excluded from further consideration. According to chemical considerations and research (8.3 

Substance library), hydroxylation in position 5 of the indole ring is rather unlikely under applied 

conditions, because this position is not activated and would require e.g. harsh oxidative 

conditions or enzymatic reactions. The same holds true for the acetylation of the amino group, 

which requires an e.g. enzymatic transformation [85-87]. Chemically seen, 4-OH-Qn is rather 

a downstream decomposition product of earlier occurring Trp degradation products (Fig. 8 and 

8.1 Supporting information, Fig. A 1). Assumingly, the formation may involve the cleavage of 
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the aliphatic chain and the pyrrole moiety followed by a recyclization into the quinoline and 

hydroxylation in position 4. 

 

 

NH2O

NH2 O

OH

 
 

N

OH

 

Kyn 4-OH-Qn 
C10H12N2O3 C9H7NO 
208.2 g/mol 145.2 g/mol 

 
 

 

NH

H
N

O
OH

O  

NH2

H
N

O OH

HO

 

N-Ac-Trp 5-OH-Trp 
C13H14N2O3 C11H12N2O3 
246.3 g/mol 220.2 g/mol 

Figure 10: Commercially available reference substances used in the compendial Trp impurity 
assessment method. 
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Substance Rt [min] m/z 

Kyn 17.3 209 
5-OH-Trp 19.6 221 
N-Ac-Trp 31.3 247 
4-OH-Qn 38.9 146 

Figure 11: HPLC analysis of reference mix-1 (Method A), λ = 220, 254, 280, 340 nm. 
  

Kyn 
5-OH-Trp 

N-Ac-Trp 
4-OH-Qn 
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3.1.3 Preparative LC 

In order to isolate and identify the degradation products in a highly stressed Trp solution, 

preparative LC was used for the separation and extraction. Subsequently, the extracted fractions 

were analysed by LC-MS/MS. 

Therefore 100 mL of the Trp prep solution (7.3 Sample preparation) were concentrated by water 

evaporation and submitted to preparative LC. For the separation of Trp degradation products 

an analytical test method (7.5 HPLC methods, Method Prep 1) was developed and subsequently 

upscaled for the preparative LC purpose (7.5 HPLC methods, Method Prep 2). 

Fig. 12 shows an UV chromatogram (λ 254 nm) of the Trp prep solution, analyses with Method 

Prep 2. The peaks A-F were assigned according to the fractions collected. 

 

 

Figure 12: UV chromatogram (λ 254 nm) of Trp prep. solution, analysed by Method Prep. 2. 
Peaks A-F were collected (fractions A-F) 

 

Baseline separation with at least 1-2 min time distance is the minimal requirement for efficient 

fractionation. The desirable time distance between the eluting peak could not be achieved, 

mainly because the substances are too similar in size, polarity and thus retention behaviour. 

Furthermore, because the presence of diastereomers is suspected, separation thereof is rather 

challenging by means of preparative LC. The upscaling of the analytical test HPLC method into 

a preparative method usually results in a loss of selectivity and therefore is not reliable for the 



 Results and discussion  

64 
 

separation of such substances. However, six peaks (A-F) were collected as fractions 

accordingly. The fractions were condensed and submitted to LC-MS/MS analyses (method A 

1). In order to check, if there any substances without a chromophore, additional fractions, 

eluting 2 min prior to and after Trp, were also collected. The additional fractions were 

concentrated by water evaporation and subjected to LC-UV/MS analyses by Method A 1. 

However, no MS signals were detected. The following chapter discusses the results of the LC-

MS/MS analyses of each fraction. 

The separation performance and fractionation of the preparative LC was successful only in parts 

due to close elution of the peaks, which goes along with a high probability of contamination. 

Furthermore, the initial experiments indicated the presence of several isomers and presumably 

diastereomers making the separation by preparative LC more challenging. Finally, the working 

up of the fractions; i.e. water evaporation/condensation, is additional heat stress, which may 

lead to further decomposition or conversion of the extracted substances.  

 

3.1.4 LC-MS/MS analysis of fractions A - F 

The fractions collected A-F and the Trp prep solution were analysed by LC-UV/MS/MS 

Method A 1. 

Figures 13 a) and b) show the TIC (total ion chromatogram) and UV chromatogram (λ 254 nm) 

of the Trp prep solution, respectively. Figures 13 c-h) show the TICs of single fractions A-F. 

The signals in the TICs mirror the purity of each fraction. 
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Figure 13: Analysis of Trp prep solution and fractions A – F (Method A1), a) TIC Trp prep 
solution, b) UV chromatogram (λ 254 nm) Trp prep solution, c) TIC fraction F, d) TIC 
fraction E, e) TIC fraction D, f) TIC fraction C, g) TIC fraction B, h) TIC fraction A. 

 

In Fig. 13 c-g) the TICs of the Fractions B – F show one predominant MS peak. The MS and 

MS/MS spectra of the main peak of each fraction B-F are shown in Fig. 14-18, respectively. In 

each fraction, the most abundant MS signal, the parent ion, was fragmented (MS2) into the 

daughter ions accordingly. The MS2 spectra show the MS signals of the daughter ions and a 

blue rhombus, which represents the actual parent ion. 

Fraction A (Fig. 13 h)) was lacking any significant UV or MS peak. The elevated baseline in 

10-12 min could not be assigned to any MS signal and is most probably due to the elevated 

organic content of the gradient elution. Although, as shown in Fig. 12, fraction A was the first 

eluting peak in the analysed sample, LC-MS analysis indicated no substances. Presumably, the 

amount of the compound in fraction A was too low or it is instable and thus was lost during 

fraction work-up, storage or sample preparation. 

Fraction B contains the parent ion with m/z 221.2 and two daughter ions with m/z 203.9 and 

175.0, respectively (Fig. 14). Oxidation or hydroxylation of Trp (m/z 205) results in a mass 

increment of +16 u, being a possible explanation for the parent ion m/z 221.2. 5-OH-Trp would 

be a possible structure, but it was excluded as described in 3.1.2. Hydroxylation of the indole 

moiety in another position, giving e.g. 2-OH-Trp or 3-OH-Trp are rather likely. Oxidation of 

Trp may be followed by an intramolecular rearrangement into a three-ring system is thinkable 

and has been described in literature [88]. The presumed structure, a pyrrolo-indole-2-carboxylic 

acid (PIC) is shown in Fig. 14. The fragmentation indicates a facile loss of the carboxy group 
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(-46 u) and water (-18 u), respectively. The daughter ions speak for the three-ring-structure and 

do not fit to the fragments reported for OH-Trp isomers [88]. The formation of PIC was reported 

yet only in the presence of enzymes, strong peroxides or photosensitisers [89-92]. According 

to the information retrieved from the substance library, the formation of PIC could be explained 

by presence of a photosensitizing substance like e.g. Kyn [93-96]. The preliminary tests (3.1.2.) 

already proved the presence of the substance Kyn in autoclaved Trp solutions. 

 

 

N
H

N

- CHOOH

HO

N
H

NH

COOH
- H2O

N
H

NH

COOHHO 8,8a-dihydropyrrolo
[2,3-b]indol-3a(3H)-ol

Molecular Weight: 174,20

1,2,3,8-tetrahydropyrrolo-
[2,3-b]indole-2-carboxylic acid

Molecular Weight: 202,21

3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo-
[2,3-b]indole-2-carboxylic acid

Molecular Weight: 220,23

 
Figure 14: Fraction B, MS (left) and MS2 spectra (right) and proposed structures of parent 
and daughter ions, respectively. 

 

The main ion with m/z 237.0 was found in fraction C and was fragmented as shown in Fig. 15. 

According to the molecular weight, the substance is equivalent to a Trp oxidation product, 

which took up two oxygen molecules (+32 u). The diastereomers DiOia, (R,R/R,S 2-amino-3-

(3-hydroxy-2-oxoindolin-3-yl)propanoic acid and NFK (N-formylkynurenine) are highly 

relevant substances as Trp degradation markers. Both are listed as related substances in the Trp 

monograph and have been described in literature (8.3 Substance library, Tab. A2). Fig.15 
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proposes possible molecular structures for the observed daughter ions. The most abundant 

daughter ion with m/z 146.4, may be 1-H-indole-3-carbaldehyde, with the intact indole moiety. 

Side signals of fragment ions with m/z 218.9 (~219) and m/z 191.0 derive most probable from 

the loss of water (-18 u) and the loss of carboxylic acid (-46 u), respectively. These findings are 

consistent with fragmentation studies of Trp oxidation products [97, 98].  

 

 

 

 
Figure 15: Fraction C, MS (left) and MS2 spectra (right) and proposed structures of parent 
and daughter ions, respectively. 
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MS spectra of fraction D (Fig. 16) is similar to fraction C, both having the parent ion m/z 237.0. 

However, different retention times of the main peaks, shown in Fig. 13 e) and 13 f), indicate 

that they are two different substances. It is possible, that fraction C contains the DiOia 

diastereomers and fraction D NFK, respectively. Fragmentation resulted in one common 

daughter ion with m/z 146.0. It is possible, that the applied fragmentation settings are rather 

harsh for an instable substance such as NFK. The settings applied may lead to molecule 

cleavage and intramolecular rearrangement into a more stable common downstream 

degradation substance, the 1-H-indole-3-carbaldehyde. In general, NFK is a well-known Trp 

oxidation product of Fenton´s reaction, γ-irradiation or enzymatic treatment [97, 99, 100]. 

Again, NFK is an eligible precursor to Kyn, whose presence has already been shown in 3.1.2. 

According to cited literature, the stability of NFK is limited in acidic aqueous solutions.  
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Figure 16: Fraction D, MS (left) and MS2 spectra (right) and proposed structures of parent 
and daughter ion, respectively. 

 

As shown in Fig. 31 d) and 13 e) the TICs of fraction D and E are nearly identical. It is 

thinkable, that preparative LC was not successful in efficient separation and thus the fractions 

are contaminated by each other. In both fractions, the ion with m/z 237.0 was the most abundant 

one the fragmentation results showed an identical MS2 spectrum (Fig. 16). However, MS 
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analyses demonstrated the presence of one further ion with m/z 221.2, eluting directly after the 

m/z 237.0 ion. Obviously, the difference of retention time differentiates this compound with 

m/z 221.2 from the isomeric ion found in fraction B. In fraction E, the abundance of this ion 

was too low for fragmentation, hence there is only the MS spectrum, shown in Fig. 17. The 

molecular weight corresponds to a further single oxygen oxidation product and according to the 

substance library (8.3. Substance library, Tab. A2) this may be the diastereomer Oia (R,R/R,S 

2-amino-3-(2-oxoindolin-3-yl)propanoic acid) [101-103]. 

 

N
H

NH2

OH
O

O

2-amino-3-(2-oxoindolin-3-yl)
propanoic acid

Molecular Weight: 220,23
 

Figure 17: Fraction E, mass spectra and proposed structure. 

 
The parent ion with m/z 209.0 detected in fraction F can be assigned to the substance Kyn. MS 

and MS/MS spectra of the ion and the fragmentation structure are shown in Fig 18. The small 

side signals in the MS spectra indicate impurities of the fraction, which may be due to partial 

decomposition of Kyn during fraction handling. The side signals, i.e. ions with m/z 168.4 and 

138.4 are in accordance to literature about Kyn fragmentation [104-106]. The MS2 spectra 

shows the predominant mass transfer due to the loss of ammonia (-17 u) resulting in the 

fragment ion with m/z 192. 
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Figure 18: Fraction F, MS (left) and MS2 spectra (right) and proposed structures of parent 
and daughter ion, respectively. 

Summary 

Preparative LC provided the fractions which were subsequently submitted to LC-MS/MS 

analyses. However, the efforts of extraction by preparative LC were only successful in parts 

due to a lack of purity and fraction contamination. Additionally, the fraction treatment and 

sample preparation may have induced the decomposition of the separated compounds, which 

led to ambiguous results. Nonetheless, some information about possible Trp degradation 

products could be retrieved from these experiments and the most probable products are 

summarized in Fig. 19. Referring to the information provided by literature research and the 

substance library about Trp degradation products, the following statements about Trp 

degradation can be pointed out. Trp degradation products are closely related and mutual 

conversion is likely to happen. Consequently, the degradation substances extracted may have 

transformed from “early” to “downstream” degradation products during sample treatment. 

Especially heating and day light irradiation during water evaporation may have induced 

oxidation and rearrangement of the substances. Thus, fraction contamination or the alteration 

of the compounds made substance identification more difficult. Nonetheless, the close 

relationship between the (proposed) degradation substances was reported in literature so far. 
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The substances NFK and the DiOia diastereoisomers derive probably from a common precursor 

due to Trp oxidation [98]. Consequently, the substance NFK is likely to decompose to Kyn by a simple 

deformylation in an acidic environment [107]. Both, Kyn and NFK comprise photo-sensitizing 

properties. Hence, if these substances are present even at trace levels and exposed to UV-light, they may 

induce further oxidation of Trp and Trp degradation substances [83, 84, 108, 109]. Two isomers with 

the molecular mass of 220 g/mol (m/z ~ 221) were found and differentiated by retention times and 

fragmentation pattern. The earlier eluting substance, assigned as PIC, has a fragmentation pattern 

consistent with literature [62] and is different from a hydroxylated Trp-derivative. Thus, the later eluting 

isomer, which was found in fraction E, is probably R,R/R,S Oia. This is supported by the presence of 

another closely related diastereoisomer, R,R/R,S DiOia. However, it remains unclear, which of the 

substance occurs first and if there is any conversion between DiOia and Oia. The proposed substances 

were compared to the list of related substances in the compendial Trp impurity assessment method. 

Although the proposed substances are listed partly among the specified related substances, there is no 

information provided for the characterization or differentiation of these. Furthermore, there is no 

information available about Trp degradation products in aqueous solutions after steam sterilization 

treatment so far. Thus, the fractionation and MS2 experiments provide a rough idea about the 

characteristics (and chemical relationships) of actual Trp degradation products as well as upcoming 

identification and assessment challenges, respectively. 
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Figure 19: Overview of proposed Trp degradation substances found in the fractions B-F. 
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3.2 Investigation of tryptophan-related yellowing in parenteral amino acid 

solution: development of a stability-indicating method and assessment of 

degradation products in pharmaceutical formulations 
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Abstract 

Parenteral amino acid solutions containing tryptophan tend to develop a yellow colouration 

upon storage. Hence, the aim of the present study was to find out whether tryptophan 

degradation products are the reason for the yellowing. The degree of discolouration and 

tryptophan degradation was examined by visual examination and UV/Vis measurements with 

respect to oxygen presence, pH value, and duration of steam sterilization. LC-UV analyses of 

autoclaved tryptophan solutions indicated eight degradation products, namely R,R/R,S 2-amino-

3-(oxoindolin-3-yl)propanoic acid, R,R/R,S 2-amino-3-hydroxy-2-oxoindolin-3-yl)propanoic 

acids, cis/trans 3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid, 

N´-formylkynurenine, and kynurenine. The proposed degradation products were confirmed by 

spiking of synthesized degradation products and LC-UV/MS analyses. The LC-UV analysis 

method was optimized and validated according to the ICH guideline Q2 (R1). Tryptophan 

stability in commercially available parenteral amino acid formulations was evaluated over a 

storing period of 12 months in two common types of primary packaging after autoclave 

procedure. 

 
 
Abbreviations: AA, amino acids; DiOia, (R,R/R,S) 2-amino-3-(3-hydroxy-2-oxoindolin-3-
yl)propanoic acid (diastereomers); Kyn, kynurenine; NFK, N´-formylkynurenine; NP, 
nitrogen purged; Oia (R,R/R,S) 2-amino-3-(2-oxoindolin-3-yl)propanoic acid (diastereomers); 
OC, oxygen-containing; Ph. Eur., European Pharmacopoeia, PIC, (cis/trans) 3a-hydroxy-
1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (diastereomers) 
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1 Introduction 

Amino acids (AA) formulations for parenteral nutrition (PN) are a convenient, reliable, and 

important way of nutrient administration in paediatrics or for patients suffering from severe 

clinical conditions. Typical solutions consist of up to 15 to 20 AA, electrolytes, and excipients, 

depending on the affected patient group and their respective clinical symptoms. In parenteral 

AA formulations, each AA is considered as an active pharmaceutical ingredient (API) which 

must comply with strict quality requirements. In general, parenteral formulations are 

challenging pharmaceutical preparations underlying a gapless and permanent quality control. 

The demands for purity, stability, and sterility have to be controlled throughout all 

manufacturing processes, storage, and application. We summarized general instability 

implications of AA in different systems of parenteral formulations and coherent AA assessment 

methods in a recently published review [1].  

The inactivation of AAs after prolonged autoclaving in the presence of sugars was studies 

already in 1949 by Evans and Butt and found significant decrease for some AAs, most probable 

due Maillard´s reaction [1, 2] However, occasional yellowing of parenteral pure AA 

formulations occurring during manufacturing, storage, and the application period, has been 

reported in prescribing information, clinical nutrition guidelines, and several research papers 

[1, 3]. According to the literature, peptide-bound Tryptophan (Trp) and Trp metabolites are 

involved in various discolouration processes of biological tissues, like e.g. the yellowing of the 

eye lenses and wool [4]. Because of the relatively reactive side chain moieties of cysteine (Cys; 

thiol), tyrosine (Tyr; phenol), and Trp (indole), these AAs are most likely prone to oxidation 

resulting in a detrimental peptide and protein alteration [5, 6]. In the case of the essential AA 

Trp it is known that the indole moiety is prone to oxidation, ring opening, and electrophilic 

substitution [7-9]. The aliphatic chain may react in an intra- or intermolecular manner with the 

amine in the pyrrole ring, reduction, cleavage, loss of ammonia or condensation reactions 

resulting in Trp dimers [10, 11]. To our knowledge, degradation of Trp and Trp-containing 

peptides has only been reported under harsh, non-physiological or not (pharmaceutical) 

product-related stressing conditions such as the presence of strong peroxides, enzymes, 

photosensitizers (e.g. dyes), with Fenton´s reagents, near UV- or γ-irradiation, or strong thermal 

treatment [7, 12-16]. According to cited literature, the most probable degradation products of 

Trp represent several oxidation products being mono- and di-hydroxylated Trp derivatives with 

modifications of the indole backbone [7, 17, 18]. It is well-known that mammalian Trp 

metabolism involves the formation of so-called kynurenines by enzymatic opening of the 

pyrrole ring, oxidation of the aliphatic chain, and a partial formation of the aromatic amine 
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group [19-21]. Thus, kynurenines have an o-aminoacetophenone backbone and considerably 

differ from hydroxylated Trp derivatives with an intact indole backbone. Three predominant 

types of Trp degradation are shown in Fig. 20. Condensation and dimerization of Trp molecules 

into e.g. 1,1´ Ethylidene(bis)-Trp, as well as the Pictet-Spengler reaction, a carbonyl 

condensation of the aliphatic chain and the pyrrole site, are described as possible sources for 

Trp impurities [22]. Compiling a substance library of the most probable Trp degradation 

products according to reviewed literature was beneficial for LC-UV/MS assisted substance 

identification (8.3. Substance library). 

This study demonstrates that steam sterilization by means of an autoclave, as a commonly 

applied method for liquid sterilization, is already sufficient to induce Trp degradation with the 

presence of oxygen at trace level. Stressed samples were used for identifying putative Trp 

degradation products starting with an adjusted compendial HPLC-UV method from the 

European Pharmacopoeia (Ph. Eur.) [23]. Adjustments allowed the separation of degradants, a 

run time reduction and MS detection. The HPLC-UV method was optimized with regard to the 

identification of the degradation products and subsequently validated according to the ICH 

guideline Q2 (R1). Eight degradation substances could be identified and characterized. To our 

knowledge, the formation of all of these substances under applied conditions has not been 

described before but can be considered relevant in terms of quality control of solutions 

containing Trp. The extent of degradation and apparent discolouration was studied considering 

pH value, oxygen presence, and autoclaving duration. The aim of the current study is the 

application of the stability indicating HPLC-UV method for the assessment of Trp degradation 

in two commercially available parenteral AA formulations. The results suggest that the 

discolouration of Trp-containing solutions due to Trp decomposition can be impeded to a great 

extent by strict oxygen deprivation as well as light protection by the utilization of (brown) glass 

bottles for manufacturing and storage. 
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Figure 20: Three types of Trp degradation reactions with most probable degradation 
substances. Oxidation of indole: 2a,b:R,R/R,S 2-amino-3-(3-hydroxy-2-oxoindolin-3-
yl)propanoic acid (DiOia) diastereomers, 4a,b: R,R/R,S 2-amino-3-(2-oxoindolin-3-
yl)propanoic acid (Oia) diastereomers, 1a,b: cis/trans 3a-hydroxy-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole-2-carboxylic acid (PIC), n.d.: not detected; hydroxylated PIC. 
O-aminoacetophenones: 3: kynurenine (Kyn), 5: N´-formylkynurenine (NFK) 
 

 

2 Experimental 

2.1 Chemicals and material 

All aqueous solutions were prepared with water from a Merck Millipore® water purification 

system (Merck, Darmstadt, Germany). Acetic acid, sodium hydroxide (40 wt.-%), dimethyl 

sulfoxide, hydrochloric acid (36 wt.-%), triethylamine, acetic anhydride, diethyl ether, 

deuterium hydroxide (99.9 % D-atom, contains 0.01 wt-% 3-(trimethylsilyl)propionic acid 

(TSP)), ethanol, trifluoro-acetic acid, ammonium formate, and formic acid were purchased from 

Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). HPLC-MS grade acetonitrile (ACN) 

and methanol (MeOH), L-Trp and DL-Kynurenine (DL-Kyn), were purchased from VWR 

international (Darmstadt, Germany). L-Kyn (4), L-Tyr, and L-Phe were purchased from TCI 

chemicals (Eschborn, Germany). Nitrogen gas was provided by Linde AG (Linde, Gases 

Division Germany, Pullach, Germany). All chemicals used for HPLC analysis were of 

analytical grade, all chemicals used for mass analysis were of LC-MS grade. Prior to use, all 
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solutions were filtered through 0.25µm polypropylene or 0.45µm cellulose acetate particle 

filters purchased from VWR international (Darmstadt, Germany). Formulation 1 and 

formulation 2, and PVC-free plastic containers for injectables were kindly provided by 

Fresenius Kabi AG (Bad Homburg, Germany). 

 

2.2 Apparatus 

Autoclaving was performed using a programable autoclave from Systec (Systec GmbH, Linden, 

Germany), autoclave duration was chosen as needed, temperature was set at 121 °C, 2.1 bar. 

The pH was measured with a calibrated Metrohm pH electode (Metrohm International, Herisau, 

Switzerland). UV/Vis absorption spectroscopy experiments were performed on a Shimadzu 

UVmini-1240 UV/Vis instrument (Shimadzu Deutschland GmbH, Duisburg, Germany). LC 

was performed on an Agilent 1100/1200 chromatography system equipped with online vacuum 

degasser, binary pump, thermostatted auto sampler, column thermostat compartment, and a 

varialbe wavelength UV/Vis detector (Agilent Technologies, Waldbronn, Germany). MS 

analyses were performed on an LC-MSD Trap G2445D ESI ion trap (Agilent Technologies, 

Waldbronn, Germany). NMR experiments were carried out on a Bruker Avance®; 1H 

400.132 MHz 13C 100.613 MHz (Bruker, Karlsruhe, Germany). The spectra were processed by 

using the Bruker TopSpin v3.0 software program. The samples were measured in deuterium 

hydroxide (99.9 % D-atom) referenced with TSP internal standard.  

 

2.3 Chromatographic conditions 

Preliminary HPLC-UV/MS 

A preliminary separation and identification method was performed on a LiChrospher® 

LiChroCART® RPe-18 column 250 x 4.6 mm i.d. with 5µm particles (Merck KGaA, Darmstadt, 

Germany) with a methanol gradient using the following solvent and gradient settings: mobile 

phase A 0.1 % TFA/MeOH (95:5), mobile phase B 100 % MeOH, gradient 0-5 min: 0 % B, 5-

40 min: 0-35 % B, 40-45 min: 35 %B, flow rate 1 mL/min, and UV detection at λ = 254, 280, 

340 and 430 nm,. The MS detector was linearly coupled with settings applied as described 

below. 
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HPLC-UV 

Separation was performed on a LiChrospher® LiChroCART® RPe-18 column, 125 x 4 mm i.d. 

with 5 µm particles (Merck KGaA, Darmstadt, Germany) using gradient conditions. Mobile 

phase A consisted of 0.25% formic acid in a mixture of MeOH and 30 mM ammonium formate 

buffer (5:95, v/v) adjusted to pH = 3 with formic acid. Mobile phase B consisted of 0.25% 

formic acid in a MeOH/60 mM ammonium formate buffer (50:50, v/v). The flow rate was set 

at 1.0 mL/min, autosampler temperature at 8 ± 2 °, column temperature at 15 °C, and UV 

detection was carried out at λ = 254 and 340 nm, respectively. Injection volume was 10 µL and 

the needle was washed with isopropanol/water (50:50, v/v). The gradient was as follows: 0-

10 min: 0 % B, 10-15 min: 0-30 % B, 15-20 min: 30 % B, 20-22 min: 30-90 % B, 22-28 min: 

90 % B, 28-30 min: 90-0 % B and re-equilibration time of 5 min. 

 

HPLC-UV/MS analyses 

The linearly coupled MS detector was used with MS settings as follows: electrospray ionisation 

(ESI), monitoring in positive mode, nebulizer 50 psi, ultrapure nitrogen dry gas 9 L/min, probe 

temperature 350 °C, mass range m/z 15-450, capillary -3500 V. 

 

Visual inspection and UV/Vis spectroscopy 

The stressed samples were subjected to visual inspection and spectrophotometry every week 

for a total period of eight weeks and finally once again after 16 weeks. The sampling was non-

destructive to the closed lid system. Visual inspection included checking for particles and 

observing any colour change and comparison of yellowing levels with control samples. UV/Vis 

analysis was performed at λ 280, 340, and 430 nm with samples were diluted to 1:20 and 

measured in triplicate. 

 

2.4 Synthesis of reference substances 

Synthesis of 2-amino-3-(3-hydroxy-2-oxoindolin-3-yl)propanoic acid diastereomers 2a,b  

The diastereomers 2a,b were synthesized according to reference [22]. 1.55 g of 4a,b were 

dissolved in 5 mL water and the pH was adjusted to 10-12 using triethylamine. The solution 

was supplied with oxygen and stirred at RT for 5 h. The reaction progress was monitored by 

LC-UV/MS. Purification was carried out by Flash Chromatography (PuriFlash, Interchim, Los 

Angeles, US), using an endcapped RP column, RS 40 C18, 43 g (Macherey Nagel, Düren, 
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Germany). Elution conditions: linear water/MeOH gradient, from 0 % B to 3 % B in 5 min, 

hold for 5 min. 2a,b were collected, dried, and recrystallized from ethanol, yielding 350 mg 

(0.2%). 2 mg was dissolved in 1.5 mL purified water and subjected to LC-UV/MS analysis 

indicating 2 peaks (51:49), λ = 254 min (Rt: 3.3/4.2 min), m/z 237, purity > 99%. 1H (400 MHz, 

D2O); NMR data are in accordance with reference [22]. 

 

Synthesis of 2-amino-3-(2-oxoindolin-3-yl)propanoic acid diastereomers 4a,b  

The diastereomers 4a,b (Fig. 20) were synthesized according to directions in references [17, 

22, 24]. 5.0 g of Trp were suspended in 25 mL of acetic acid. A mixture of 4.5 mL of dimethyl 

sulfoxide and 12.5 mL of 36 wt% hydrochloric acid was added. The mixture was stirred for 2 h 

at RT. After pH adjustment to 5-6 with 0.5 M sodium hydroxide, a bright precipitate was 

formed. The precipitate was collected, washed with diethyl ether and dried, yielding 1.75 g of 

4a,b (0.35%). 2 mg was dissolved in 1.5 mL purified water and subjected to LC-UV/MS 

analysis. 2 peaks (57:43) were detected λ = 254 min (Rt: 8.9/10.6 min), m/z 221, purity 

>98%.1H NMR data (400 MHz, D2O) are in accordance with [22].  

 

Synthesis of N´-formylkynurenine 5 

Synthesis of 5 was conducted as described in references [22, 25]. 100 mg of L-Kyn (4) was 

dissolved in 220 µl formic acid, and a mixture of 96 µL formic acid and 48 µL acetic anhydride 

was added. The solution was stirred at 25 °C for 2 h. 500 µL of diethyl ether was added, and 

the cream-coloured solid precipitate was subsequently isolated after centrifugation and washing 

with diethyl ether. 2 mg was dissolved in 1.5 mL purified water and subjected to LC-UV/MS 

analyses indicating compound 5 ( λ 254 and 340 nm, Rt: 9.9 min, m/z 237) and starting material 

(λ 254 and 340 nm, Rt: 6.13 min, m/z 209); the purity of 5 was determined as 79%. 1H NMR 

data (400 MHz, D2O) are in accordance to reference [22]. 

 

2.5 Sample preparation 

Stressed Trp solutions 

The Trp stock solution was prepared by dissolving 10.0 g of L-Trp in 5.0 L water (2 mg/mL), 

followed by 10 min degassing in the ultrasonic bath. The solution was divided into four aliquots 

for pH adjustment which were individually adjusted to pH 5.0, 5.5, 6.0, and 6.5 with 0.01 M 

acetic acid or 0.01 M sodium hydroxide, respectively. Each aliquot was distributed into 12 x 
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50 mL autoclavable glass vials for injectables. Analogously prepared samples were purged with 

N2 for 10 min prior to vial sealing additionally. All samples were made in triplicate and 

subjected to autoclave for 30, 60, and 90 min (121 °C, 2.1 bar) or no heat treatment (control 

group). This procedure was repeated for a second set of pure 2 mg/mL Trp solutions with 

reduced autoclaving times of 10, 20, and 30 min without nitrogen purging (degassing only). 

The solutions were stored collectively at a dry and dark place at RT and retrieved for sampling 

as needed. 

 

Preparation of parenteral AA formulations 

50 mL aliquots of formulation 1 (AAs: Ile, Leu, Lys, Met, Phe, Thr, Trp, Val, Arg, His, Ala, 

Gly, Pro, Ser, Tyr, Taurine) and Formulation 2(AAs: Ile, Leu, Lys, Met, Phe, Thr, Trp, Val, 

Arg, His, Ala, Gly, Pro, Ser, Tyr, Asp, Glu, Cys; 8.1. Tab. A2) were distributed either into glass 

vials or autoclavable non-PVC plastic bags for injectables in duplicate. Formulation 1 and 

formulation 2 are electrolyte free, pH is 5.5-6.5 and 5.4-5.8, respectively, adjusted with glacial 

acid (according to prescribing information). Autoclaving times were set to 10, 20, and 30 min. 

Additional control samples remained not autoclaved. All samples were exposed to daylight 

while cooling down to RT prior to analyses. After sampling, the solutions were stored at a dry 

and dark place at RT and taken for analyses as needed. 

 

HPLC sample preparation 

The reference stock solutions were prepared by dissolving 10.0 mg of each of 2a,b, 3, 4a,b and 

5 in 10.0 mL purified water (1 mg/mL). The stressed reference solution was an aqueous 2 g/L 

Trp solution, pH 5.5, autoclaved for 30 min (121 °C, 2.1 bar, glass bottle). For the spiked 

stressed reference solution, 5.0 mL of the stressed reference solution were spiked with 100 µL 

of each reference stock solution and diluted to 10.0 mL with mobile phase A (conc.: Trp 

1 g/mL, spiking conc. 2a,b, 3, 4a,b, 5 each: + 10 µg/mL). The standard model solution (used 

for validation procedures) was prepared by weighing of 20 mg L-Trp, adding 250 µL of 2a,b-, 

65 µL of 3-, 330 µL of 4a,b- and 100 µL of 5- reference stock solutions and diluting the 

resulting solutions to 10.0 mL with purified water. All solutions were stored at 4 °C in the 

refrigerator and were used within 7 days.  

For LC, 2 mL aliquots of sampling material were extracted from the sealed containers using a 

syringe and filtrated through 0.25 µm cellulose syringe filters. 500 µl of the filtrate was diluted 

to 500 µL with mobile phase A. 1 mL of the spiked stressed reference solution was filtrated 
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used for LC directly (no further dilution). The samples were kept at approx. 4±2°C in brown 

glass vials until use. LC samples of stressed formulation1 and 2 were prepared accordingly. 

 

 

HPLC calibration sample preparation 

Calibration curves were made by weighing separately 10.0 mg of the substances 2a,b, 3, 4a,b 

and 5, and dilution to 10.0 mL (calibration stock solutions 1, 1 mg/mL). 1.0 mL of each 

calibration stock solution 1 was diluted to 10.0 mL to obtain each calibration stock solution 2 

(0.1 mg/mL). The calibration stock solutions 2 were diluted with mobile phase A to obtain the 

following ranges of calibration curves: from 0.025 to 2.5% for 2a,b (0.5, 1.0, 2.5, 7.5, 10.0, 

25.0, 50.0 µg/mL), from 0.025 to 0.5% for 4a,b (0.5, 1.0, 2.5, 7.5, 10.0 µg/mL), from 0.025 to 

0.5% for 3 (0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0 µg/mL), from 0.0375 to 0.375% for 5 (0.75, 1.0, 

2.5, 5.0, 7.5 µg/mL). Every level was injected in triplicate. 

 

2.6 General procedure 

In the first sample set the aqueous nitrogen-purged (NP) and oxygen-containing (OC) solutions 

of L-Trp were exposed to controlled heating cycles in a laboratory autoclave at a 121 °C, 2.1 bar 

for 30, 60, and 90 min, respectively. NP samples represent the best possible oxygen deprivation. 

In a second sample set, nitrogen purging was omitted, focusing on Trp degradation in the 

presence of oxygen with reduced autoclave durations of 10, 20, 30 min. Autoclaving was 

chosen as heat source, because it is routinely used for the sterilization of intravenous 

formulations in industry and in hospital pharmacies. Immediate (1-4 days after autoclave) and 

long-time effects (1 and 3 years) of heat stress were examined at solutions of pH values of 5.0, 

5.5, 6.0, and 6.5. The samples were subjected to UV/Vis analysis and visual inspection, for the 

development of an LC-UV method and for identifying Trp degradation products.  

 

3 Results and discussion 

3.1 Colour inspection and UV/Vis analyses 

Stressed OC and NP samples were withdrawn for weekly colour inspection and UV/Vis 

analysis for a period of 8 weeks, and once again after eight additional weeks. The discolouration 

was evaluated by direct comparison with control samples and augmented with pictured 

documentation. 

Nina Unger
R1.19 moving the calibration sample preparation to experimental section.



 Results and discussion  

82 
 

Directly after autoclaving, all OC samples showed a yellow discoloration in different degrees 

depending on the autoclave duration which intensified throughout the observation period. In 

contrast, all NP samples remained as uncoloured as the unstressed NP/OC control samples. 

Stressed NP also the unstressed OC solutions slowly developed a yellowish colour over time, 

whereas the unstressed NP control solutions remained uncoloured until the end of the inspection 

period. Effects of different pH values upon the degree of colouration could not be observed. All 

samples remained without precipitates throughout the whole observation period. Turbidity was 

observed in all 60 and 90 min stressed OC samples towards the end of the inspection period 

and brown particles were found only in OC samples within one year after the inspection period. 

All stressed NP samples were significantly brighter than the OC samples. Hence, oxygen may 

be a main factor for the yellowing of Trp-containing solutions along with elevated temperatures 

having a rather accelerating impact. 

In order to monitor the coloration process, the following wavelengths were chosen: λ = 280 

(Amax of Trp), 340, and 430 nm (no UV activity of Trp). The wavelengths were chosen 

according to internal discussions and preliminary test results with the objective to monitor non-

indole derivatives and/or coloured substances. The influence of storage time period and the 

immediate impact of the autoclaving duration on the UV absorption of NP and OC samples are 

displayed in Fig. 21 a and b, respectively. Within the inspection period, no influence can be 

seen in both groups at λ = 280 nm which is due to the fact that structural changes upon 

degradation do not take place at the corresponding chromophore, hence resulting in derivatives 

with an intact indole (indole Amax: 216, 273, 288 nm in H2O/EtOH (9:1) [26]). In contrast, at 

λ = 340 nm the absorbances of OC samples are increasing, indicating that new compounds 

might have been formed with a chromophore being different from indole. The NP solutions 

were found to possess a constant absorbance after an initial small increase at λ = 340 nm. The 

changes of the UV-spectra of the OC solutions upon autoclave duration and storage are mirrored 

in the λ = 340 nm absorbance increments. The reason for the increasing absorbance at λ= 

340 nm may be due to the cleavage of the indole ring at the pyrrole site and would be consistent 

with UV characteristics of derivatives with an o-aminoacetophenone moiety [27]. Likely 

structures are 3 or 5, which are known products of mammalian Trp metabolism including 

pyrrole cleavage and oxidation [19, 20, 28]. Both substances exhibit relatively strong 

absorbances at λ > 320 nm [29, 30]. The changes are similar at λ = 430 nm with regards to 

autoclave duration and storage time. In contrast to NP solutions, the absorbance increments are 

consistently and unequivocally greater in the OC solutions. 
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Comparison of NP and OC samples indicate that heating is sufficient to induce measurable 

alterations during storage. 

a) 

 

b) 

 

Figure 21: a) UV absorbances of stressed NP and OR Trp solutions (30 min, 121 °C, 2.1 bar, 
pH 5.5, glass bottles) after week 1-8 and 16. b) Mean UV absorbances of stressed NP and OR 
Trp solutions (30, 60, 90 min, 121 °C, 2.1 bar pH 5.5, glass bottles) with regard to autoclave 
duration, measured 4 weeks after autoclaving. 
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3.2 Method development and validation 

3.2.1 Chromatographic development 

Method development was based on the HPLC method reported in the Ph. Eur 9.0 for related 

substances [23], which makes use of a RP-18 column and gradient elution with an 

ACN/phosphate buffer, and a run time of 65 min. The original impurity assessment is focusing 

on the limitation of 1,1-Ethylidene(bis)Trp1. Here it was aimed to find a faster method, which 

is also applicable to mass detection. Thus, we exchanged the acetonitrile with methanol and 

replaced the phosphate buffer with TFA. Applying a gradient resulted in a baseline separation 

of at least 5 components eluting prior to Trp in the stressed reference solution (Trp: Rt 30.8 min) 

and a shorter runtime, with the exception of a double peak at Rt 20.3 and 20.8 min, respectively. 

Detector sensitivity was tested at λ = 220, 254, 280, and 340 nm and found to be best at λ = 254 

nm. 

Two other peaks, separated from each other and from Trp, are UV-active at λ = 340 nm 

additionally. In order to monitor if any impurities are eluting after Trp, run times with increased 

amounts of organic solvent (45-60 min, 35-55% B) were tested. Since no further peaks were 

observed, the maximal run time was set to 35 min. 

 

3.2.2 Method optimization 

Method optimization focused reduction of the analysis time while improving separation of 

components. This included the testing of different columns parameters (length, particle size, 

diameter), eluent composition, different methanol content, acidic modifiers (TFA, acetic acid, 

formic acid), introduction of volatile buffers (10, 15, 20, 30 mM ammonium formate), gradient 

modification, flow rates, and column temperature. Application of a shorter column (125 x 

4.6 mm, 5µm) was successful for reducing run times significantly (Trp Rt < 20 min). Adverse 

effects on retention and separation performance were mitigated by utilization of a flat gradient 

and reduced MeOH portion in mobile phase B (MeOH/60 mM ammonium formate buffer, 

50:50, v/v). Mobile phase A was changed to 30 mM ammonium formate buffer with 2.5% 

formic acid adjusted to pH 3 resulting in good separation, symmetrical peak shapes, 

repeatability, and good MS sensitivity. Retention was improved at a lower temperature of 

15 °C. Finally, optimization efforts were successful in separating 8 substance peaks in the 

following elution order: 1a, 2a, 1b, 2b, 3, 4a, 5, 4b in less than 12 min followed by the elution 

 
* other related impurities are limited to 100 ppm in total. 
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of Trp at Rt = 16 min (Fig. 22). Peaks 3 and 5 were the only substances which are UV active at 

λ = 254 and 340 nm. Baseline separation could not be achieved between the peak pair 1b and 

2b (Rt 3.9, 4.2 min, peak-to-valley ratio: 0.7). The triplet of peaks 4a, 5, and 4b could be 

separated successfully, but still with a rather close elution of 5 and 4b. In both cases, for 

quantification purposes the analysis of peak heights was preferred instead of using the peak 

area. Peak height was also found beneficial for the assessment of degradation products in the 

presence of other AA in formulation 1 and formulation 2. The method is directly compatible to 

MS devices (settings 2.3.). However, MS detection is not required for the assessment of the 

identified Trp degradation products, thus the LC-UV method was validated. 

 

3.2.3 Method validation 

The LC-UV method was validated regarding specificity, linearity, range, LOD/LOQ, accuracy, 

precision, repeatability, and robustness in accordance to the ICH guideline Q2 (R1) [31]. 

Ruggedness was tested by running the method on another HPLC system.  

Specificity of the method was proven by comparison of spiked stressed reference solution and 

the standard model solution. The resolution was at least 1.75 for baseline separated peaks and 

0.5 and 1.1 for the peak-pairs 1b-2b and 4b-5, respectively. 

Linearity and range were determined by evaluation of the slope, coefficient of determination, 

(R2) and residual sum of squares (RSS) obtained from constructed calibration curves. The 

ranges of calibration curve were chosen considering the varying amounts of the degradation 

products 2-5, depending on the age of samples. Correction factors (F) were obtained by the 

slopes of the calibration curves with regard to the calibration curve of the only commercially 

available reference 3 (DL-Kyn). Linearity of the detector response was evaluated by plotting 

concentration levels against concentration obtained with calibration curves. R2 was higher than 

0.999 and the slope was 1.000 ± 0.008. LOD and LOQ were calculated from the calibration 

curves according to the Ph. Eur. LOD and LOQ were determined as signal to noise (S/N) ratio 

of 3 and 10, respectively. Noise ranges were determined by injection of mobile phase A in 

triplicate. Substance concentration (see calibration levels) was plotted against S/N ratio, R2 

were higher than 0.995. Correction factors, linearity and LOD/LOQ data are summarized in 

Tab. 7.  
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 Linearity LOD/LOQ F 
λ = 254 nm R2 slope RSS µg/mL  

2a 0.999 0.952 6.79 * 10-6 0.27 0.86 0.4931 
2b 0.998 0.956 1.62 * 10-13 0.35 1.10 0.3588 
4a 0.9995 0.998 5.03 * 10-6 0.38 1.21 0.2191 
4b 0.9995 0.998 5.07 * 10-7 0.61 1.90 0.1414 
3 0.9992 1.006 5.54 * 10-8 0.11 0.48 - 
5 0.9996 1.003 1.6 * 10-9 0.19 0.42 0.6088 

λ = 340 nm      F 
3 0.9993 0.9443 5.63 * 10-8 0.18 0.67 - 
5 0.9995 0.9984 1.7 * 10-7 0.51 1.89 0.321 

Table 7: Linearity: LOD/LOQ and correction factors (F), for Trp degradation substances 2-5, 
determined at λ 254 nm and additionally at λ 340 nm for 3 and 5. 

 

Accuracy was assessed by sextuple injection of the standard model solution (n = 6, intra-day) 

and was repeated on day 2 (n = 12, inter-day). Recovery rates were between ± 3-8 %, 

RSD = 0.11-0.5 (Tab. 8) 

 

 
 
λ = 254 nm    conc. (µg/mL) 

Intra-day Inter-day  
 

recovery 
measured 

conc.(µg/mL)  
RSD 
n=6 

measured 
conc.(µg/mL) 

RSD 
n=12 

2a,b 25.0 25.9 0.11 25.4 0.85 100 % ± 4 % 
3 6.5 6.99 0.22 6.5 8.6 100 % ± 8 % 
4a,b 33.3 33.9 0.14 33.4 2.9 100 % ± 3 % 
5 10.0 9.89 0.12 9.87 6.6 100 % ± 4 % 
λ = 340 nm  
3 6.5 6.15 0.30 6.35 0.61 100 % ± 5 % 
5 10.0 9.8 0.50 9.45 0.97 100 % ± 6 % 

Table 8: Intra- and inter-day accuracy determination at λ 254 nm, with n=6, n=12 injections 
of standard model solution, respectively. Weighed-in and measured concentration, RSD and 
recovery of each substance. 3 and 5 are assessed additionally at λ 340 nm. 

 

Precision and repeatability were determined by peak height evaluation for sextuple injections 

and six-fold sample preparations of the standard model solution on two consecutive days. The 

RSD intra-day was between 0.1 and 0.22 for injections (n = 6) and between 0.27 and 1.09 for 

sample preparation (n= 6), respectively. The RSD inter-day was between 1.02 and 8.64 for 
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injections (n = 12) and between 0.54 and 1.89 for sample preparation (n= 12), respectively. The 

data including SD, RSD, and confidence interval (CI, p=0.05) is summarized in Tab. 9.  

 

 6-fold injection 6-fold sample preparation 

 intra-day Inter-day Intra-day Inter-day 

 SD RSD CI SD RSD CI Sd RSD CI SD RSD CI 

2a 0.012 0.13 0.010 0.066 0.67 0.04 0.057 0.59 0.05 0.054 0.56 0.03 

2b 0.008 0.11 0.006 0.075 1.02 0.04 0.035 0.49 0.03 0.041 0.56 0.02 

3 0.012 0.22 0.010 0.433 8.64 0.25 0.013 0.27 0.01 0.089 1.89 0.05 

4a 0.007 0.12 0.006 0.145 2.94 0.08 0.032 0.63 0.03 0.027 0.54 0.02 

4b 0.004 0.13 0.003 0.099 3.06 0.06 0.024 0.73 0.02 0.02 0.59 0.01 

5 0.004 0.12 0.004 0.269 6.58 0.15 0.046 1.09 0.04 0.062 1.47 0.03 

Table 9: Precision and repeatability evaluation of peak heights for sextuple injection and 6-
fold sample preparation of standard model solution. Intra-day; n = 6, inter-day; n = 12, SD, 
RSD and 95 % confidence interval (CI), p=0.05, λ 254 nm, determined on two consecutive 
days. 

Robustness was examined by the following variation of operation parameters: temperature 

± 2 °C, flow rate ± 0.1 mL/min, eluent A methanol content ± 20 % (rel. v/v), and buffer 

concentration ± 10 % (rel. v/v). The spiked stressed reference solution was injected under either 

condition in triplicate and evaluated on peak symmetry and resolution. Methanol content and 

column temperature were found to be critical for the separation of 1b and 2b. The percentage 

of 6 % (v/v) methanol in eluent A and 17 °C has a negative effect on the resolution (< 0,8). 

Since diastereomer 2a is separated from 1a and 1b, and the ratio between 2a and 2b is known, 

this does not affect quantification. However, the separation of closely eluting 4a, 5 and 4b and 

all remaining peaks is not affected. Therefore, the method is considered robust against the tested 

influences.  

Ruggedness was tested by performing analyses of spiked stressed reference solution on two 

different Agilent HPLC systems on two consecutive days. Analyses performance of both HPLC 

systems were compared with regard to retention time, peak symmetry and resolution, and 

demonstrated reproducible results. 
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3.3 Substance identification 

3.3.1 Degradation substances in stressed Trp solutions 

The LC-UV/MS analysis of stressed Trp solutions (OC, 90 min, 121 °C, 2.1 bar, pH 5.5) 

revealed the masses of eight Trp degradation substances. The chromatograms of stressed 

reference solution, standard model solution and spiked stressed reference solution are shown 

in Fig. 22. MS analyses assigned the following ions to peak: 1a,b m/z 221, 2a,b m/z 237 , 3 

m/z 209, 4a,b m/z 221, 5 m/z 237, Trp m/z 205. 

The mass spectra of each pair 1a,b and 4a,b exhibit both m/z 221 being the Trp mass (204 u) 

plus an increment of 16 u. This indicates an oxidation in different positions. Since 1a,b and 

4a,b elute rather close to each other, they might be pairs of diastereomers. The early elution of 

1a,b (Rt:2.8, 3.9 min) in contrast to 4a,b (Rt:8.9, 10.6 min) may indicate differences in polarity. 

Two highly relevant Trp oxidation products have been reported before: oxidation of the pyrrole 

ring in position 2 leads to the formation of the 2-OH-Trp diastereomers (R,R and R,S 2-amino-

3-(2-oxoindolin-3-yl)propanoic acid (4a,b, Oia, Fig. 20) and has been reported e.g. as a 

preferred product of Trp treatment with H2O2 [32] or trichloromethyl-peroxide [33].  

Additionally, the formation of Oia diastereomers 4a,b in a ratio of approximately 1:1 has been 

pointed out in RP-HPLC analyses [22]. High abundances of the m/z 221 ions for 4a,b 

(Fig. 23a)) indicate the formation of rather stable ions. Sample spiking with synthesised 4a,b 

confirmed the peaks to be Oia diastereomers. 

 

Figure 22: LC/UV chromatogram overlay of a) standard model solution, b) spiked stressed 
reference (dashed line), and c) stressed reference: peak, substance name (Rt): 1a,b; PIC 
diastereomers (2.8/ 3.9min), 2a,b; DiOia diastereomers (3.3/ 3.9 min), 3; Kyn (6.1 min), 4a,b; 
Oia diastereomers (8.9/ 10.6 min), 5; NKF (9.9 min), Trp (15.9 min). 
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The second Trp oxidation product reported with m/z 221 is the diastereomer cis/trans 3a-

hydroxy-1,2,3,3a-8,8a-hexahydropyrrolo[2,3b]indole-2-carboxylic acid (1a,b, PIC, Fig. 20) 

[34], which is an three-ring system due to incorporation of the amine group into a second 

pyrrolidine ring. The increment of +16 u to Trp is due to the addition of a single oxygen as a 

hydroxy group. 1a,b can be assigned to PIC because of the facile loss of -18 u and -46 u, which 

was has not been observed for 4a,b, representing the loss of the water and the carboxylic acid 

group (m/z 203 and 175, Fig. 23 b)), respectively, being in accordance with literature [11]. The 

synthesis of PIC was made according to literature [35]. In-process LC-UV/MS analyses of the 

reaction mixture indicated low yields of the target substances 1a,b, and purification was only 

partially successful. Using the mixture of 1a,b revealed the clear assignment of the degradation 

products at RT: 1a,b: 2.8/3.9 min, respectively (Fig. 22). Nevertheless, the mixture could not 

be used for validation purposes.  

 

 

Figure 23: MS spectra of a) 4a,b ions with m/z 221.2 and 221.1, respectively. b) 1a,b ions with 
m/z 221.1, additional ions with m/z 175.3 and 203.2 indicate the loss of -COOH and -H2O, 
respectively. c) 2a,b ions with m/z 237.1 and 237.0, respectively. d,e) 5 nd 3 ions ith m/z 237.1 
and 209.2, respectively. The additional ion next to m/z 209.2 (m/z 192) indicate the loss of -
NH3, possibly caused by ionisation process. 

Differentiation of the three ions with m/z 237, namely 2a,b and 5 (Fig. 23 c, d) was supported 

by comparison of the UV-response. Only 5 was UV-active at λ = 254 and 340 nm, indicating a 

structural difference of 5 in comparison to derivatives with an intact indole backbone, as 

explained in section 3.2. The UV absorbance of 5 is in accordance with an o-

Nina Unger
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aminoacetophenone chromophore [27]. However, according to cited literature, three ions with 

m/z 237 must be expected, depending on applied Trp stressing methods [7, 12, 15, 17, 36, 37]. 

One of them is N-formylkynurenine (2-amino-4-(2-formamidophenyl)-4-oxobutanoic acid; 5, 

NFK, Fig. 20)) being an intermediate in Trp metabolism and a Trp oxidation product with 

Fenton´s reagent or photooxidation. [7, 37]. NFK has an o-aminoacetophenone backbone and 

thus corresponds to the chromophore characteristics of the peak of 5 [29, 30]. UV/Vis data of 

NFK are consistent with observed UV absorbances of 5 and can be assigned as NFK. Thus, the 

formation of 5 involves cleavage of the indole ring accompanied by the insertion of two oxygen 

atoms according to the mass increment of +32 u (Fig. 23 d)). The two other detected ions with 

m/z 237 are a different kind of double Trp oxidation products, and were described as R,R and 

R,S 2-amino-3-(3-hydroxy-2-oxoindolin-3yl)propanoic acid diastereomers (DiOia; 2a,b, 

Fig. 20). The formation of DiOia diastereomers was reported with e.g. UV-irradiation of 

oxygen saturated, alkaline aqueous Trp solutions in the presence of photosensitizers [15, 17]. 

Due to elution proximity of 2a and b, the peaks relate to the DiOia diastereomers (Fig. 23 c)) 

[16] and were confirmed by spiking of stressed Trp solutions with the synthesised reference 

substances as shown in Fig. 22.  

The proposed Trp degradation mechanism for the formation of NFK and DiOia comprises a 

shared precursor. The insertion of two oxygen atoms in positions 2 and 3 results in a 2-,3-Trp 

dioxetane intermediate (Fig. 24). The dioxetane is not stable and readily rearranges either into 

R,R and R,S DiOia or it undergoes pyrrole ring cleavage between C2 and C3, followed by the 

oxidation of C3 atom and formylation of the aromatic amine, resulting in 5/NFK [15, 16, 38]. 

Peak 3 is also UV-active at λ = 254 and 340 nm, pointing to an o-aminoacetophenone structure 

similar to the degradation product 5. The m/z 209 ion of 3 (Fig. 23 e)) indicates a loss of the 

formyl group in 5. Thus, 3 can be assigned to Kyn and was proven by reference substance. The 

m/z 192 ion represents the loss of -NH3 (-17 u), which is an expected reaction during ionization 

process [39]. Kyn- and NFK reference solutions were brightly yellow, and their colour 

intensified during storage. Hence, the discolouration of a Trp (-containing) solution can be 

assigned to Kyn and NFK formation. According to literature, NFK and Kyn are photosensitizers 

and may induce photodegradation of molecules including Trp and Trp oxidation products and 

themselves [40]. Thus, the photosensitizing properties may result in a reaction of unknown 

compounds of yellow colour and contributing to the progressing discolouration and degradation 

of aqueous Trp solutions.  

 

Nina Unger
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Figure 24: Proposed degradation pathway of Trp. Insertion of molecular oxygen leads to the 
2,3-dioxetane intermediate which readily rearranges into 2a,b and/or 5, which is a product of 
pyrrole ring cleavage. Deformylation of 5 results in the formation of 3 (Kyn). 

 

3.3.2 Assessment of Trp degradation products in formulation 1  

and formulation 2 

The LC-UV method was used for the analysis of the parenteral AA formulations 1 and 2. 

Therefore, 50 mL aliquots of each product were transferred into glass bottles or freeflex® plastic 

containers for injectables which are multi-layered bags with functional films for stability and 

flexibility consisting of different blends of polyethylene and polypropylene. Glass bottles and 

plastic containers were subjected to steam sterilization by autoclave (10, 20, and 30 min,121 °C, 

2.1 bar). Fig. 25 shows the chromatograms of a) unautoclaved formulation 1 spiked with 

reference solutions 2a,b, 3, 4a,b, 5 (100µg/mL), b) unautoclaved formulation 1, and 30 min 

autoclaved formulations 1 and 2, c) and d), respectively, sampled from glass bottles. Not 

autoclaved formulation 1 shows exactly three peaks being the UV-active AA Tyr, Phe, and Trp. 

The chromatograms of stressed formulations 1 and 2 samples only show seven out of eight 

identified degradation products (1a,b, 2a,b, 4a,b, 5) because the Phe peak overlaps with 

compound 3 (Fig. 25 c, d). In order to assess 3, the detector was set at λ = 340 nm, because Phe 

does not absorb above λ > 280 nm. At λ = 340 nm, the recovery of 3 was determined as 100 ± 

0.4 % in spiked formulation 1 solutions. Baseline separation could not be achieved for Tyr and 

2a (Fig. 25 a, c, d). However, the presented method provides symmetrical peak shapes at λ = 

254 and 340 nm, and the evaluation of the peak calibration demonstrated, that peak heights are 

eligible and therefore chosen for the analyses of all degradation substances, respectively. The 

presented method facilitates a direct assessment of Trp degradation products in finished 

parenteral AA formulations. The results indicate that autoclaving of finished formulation 1 and 

Nina Unger
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formulation 2 in the presence of oxygen leads to Trp degradation as observed in pure Trp 

solutions. The evaluation of degradants with regard to product, stressing duration, and primary 

packaging after one year of storage is described in chapter 3.6.3. 

 

3.4 Quantification of Trp degradation products 

3.4.1 Degradation products in stressed reference solutions  

The amount of each degradation product (2a,b, 3, 4a,b, and 5) developing in the stressed 

reference solution were followed-up in freshly prepared samples, and four days, one and three 

years after autoclaving and are summarized in Tab. 10. The given percentages of impurities 

refer to a content of 2 mg/mL Trp solutions. 

Therefore, the reference solution was autoclaved for 30 min at 121 °C, 2.1 bar in glass bottles 

and subsequently stored at RT and exposed to daylight. Analysis of the autoclaved samples 

was performed after cooling to RT and indicate the 8 degradation products 1a,b-5. Thereof, 

only 4a,b exceed the LOQ.  

 

 

Figure 25: Chromatograms of a) spiked, not-autoclaved formulation 1 (spiked with reference 
solutions 2a,b, 3, 4a,b, 5 (100µg/mL), b) not-autoclaved formulation 1, c) stressed formulation 
2, d) stressed formulation 1 (30 min, 121 °C, 2.1 bar, in parenteral plastic bags). 



 Results and discussion  

93 
 

 conc. (µg/mL) 

Substance direct SD 4 days SD 1 year SD 3 years SD 

2a,b <LOQ - 21.7 0.01 37.9 0.001 37.2 0.003 

3 <LOQ - 8.0 0.06 12.5 0.002 11.1 0.001 
4a,b 2.8 0.021 3.2 0.07 4.3 0.001 3.6 0.001 

5 <LOQ - 7.3 0.04 16.1 0.001 4.6 0.001 

Σ  2.8 40.2 70.8 56.5 

% of Trp 0.14 2.0 3.5 2.8 

Table 10: Total amounts of degradation products in stressed reference solution, measured on 
the day of autoclaving and after 4 days, 1 and 3 years of storage, respectively. Samples were 
measured in triplicate (n=3).  

Quantification of degradation products was done by comparison of peak heights using external 

calibration curves. The total amount of the diastereomers 4a,b was determined as 2.77 µg/mL 

and equals 0.14 %. LC analyses demonstrated a time-dependent increase of all degradation 

products above the LOQ in 4 days, which continued during the first year of storage. The 

increase of total amounts of degradation products was determined at 2.0 % after four days and 

3.5 % after one year, respectively. However, the major part of degradation products consists of 

substances 2a,b, 3 and 5, namely 92 % and 94 % after four days and one year, respectively. The 

significant increase of these three substances hints to the degradation mechanism as proposed 

in Fig. 24, being the preferred Trp degradation pathway with regard to long time storage. After 

three years of storage, the total amounts of degradants decreased to 2.8 %, mainly due to the 

loss of 5 (-71.4 %). According to the literature, the total loss of the degradation products can be 

chemically explained with facile deformylation of 5 into 3 in an acidic environment. 

Subsequently 3 is prone to photo-induced deamination and decarboxylation resulting the loss 

of 3  by the formation of 4-hydroxyquinoline, kynurenine yellow and kynurenic acid, explaining 

the loss of degradation substances in total [41]. 

 

3.4.2 Evaluation of the influence of pH, heating duration, and presence of oxygen 

on Trp degradation 

The impact of pH value (5.0, 5.5, 6.0, 6.5) on Trp degradation was examined in OC and NP 

samples. Non-adjusted aqueous Trp solutions exhibit a pH of 5.3-5.5. Slightly elevated amounts 

of degradation products were found randomly either in solution of pH 5.5 and/or 6.5, but total 

Nina Unger
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amounts of degradation products were roughly identical. Thus, the impact of the pH value is 

neglectable because of the narrow pH range of parenteral AA formulations. 

In the OC solutions, the degradation products 2a,b-5 were formed after autoclaving. Applying 

HPLC-UV analysis, most of the degradation products were below the LOQ. By means of LC-

UV/MS analysis (Fig. 26 a-c), the relationship between autoclave duration and degradation can 

clearly be seen from the extracted ion chromatogram and it is obvious that a longer autoclave 

time results in a higher amount of degradation products which is not surprising. The assessment 

of degradants after one year of storage demonstrates converging amounts of degradation 

substances, regardless of initially applied autoclave duration, as summarized in Tab. 11, the 

total sum of degradants eventually equals 3.5-3.6% and applies to autoclave durations of 10, 

20, and 30 mins. Hence, heating duration may accelerate Trp degradation in the short term, but 

it is not the most influencing factor for Trp degradation in long-time storage periods in the 

presence of oxygen. 

 

Figure 26: Overlay of EICs of a) m/z 221 (4a,b), b) m/z 237 (2a,b) and c) m/z 209 (3). The 
increasing ion intensities correlate with stressing duration (no stress, 10, 20, 30 min) of the 
reference solutions. 

The degradation products in NP samples were evaluated and compared to OC samples. 

Therefore, samples were analysed which were autoclaved for 30, 60, and 90 min and which 

have already been stored for three years and compared to unautoclaved control samples. The 
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results are summarized in Tab. 12. After three years of storage, not autoclaved NP samples 

showed no degradation products. In general, Trp degradation is strongly reduced in NP samples 

being 0.75-1.7 % vs 2.3-4.4 % in OC samples, mainly because of significantly lower amounts 

of 2a,b, 3, and 5. Despite this, the amounts of 4a,b are still similar being 2.2-3.3 % in OC and 

2.8-3.6 % in NP samples, respectively. Thus, nitrogen purging as a method of nearly complete 

oxygen expulsion impairs Trp degradation.  

 

 conc. (µg/mL)  
Substance 10 min  SD 20 min  SD 30 min  SD Ø % 
2a,b 38.9 0.001 37.6 0.001 37.5 0.001 1.9 
3 12.7 0.004 12.3 0.004 12.6 0.003 0.6 
4a,b 3.4 0.002 4.9 0.001 4.5 0.002 0.2 
5 15.6 0.003 14.7 0.002 17.9 0.002 0.8 
Σ 70.6  69.5  72.5  3.5 
Σ % 3.5 ±0.31 3.5 ± 0.27 3.6 ± 0.34  

Table 11: Degradation products in stressed reference solutions autoclaved (121 °C, 2.1 bar, 
10, 20, 30 min) analysed 1 year after autoclaving, stored at RT, exposed to day light. The sum 
(Σ) gives the total amount of degradation products with regard to Trp concentration (Σ %). 
The mean degradation rate is 3.5% in a 2 mg/mL Trp solution. During the storage of 1 year, 
the degradation amounts are similar regardless of applied autoclave duration. 

OC  conc. (µg/mL)  
Substance 0 min SD 30 min SD 60 min SD 90 min SD 
2a,b 28.2 0.0013 45.9 0.0041 46.6 0.0062 61.3 0.0033 
3 15.6 0.0002 14.4 0.0008 13.9 0.0007 18.1 0.0013 
4a,b 1.0 0.0002 2.2 0.0002 2.5 0.0002 3.3 0.0001 
5 0.5 0.0012 3.6 0.0012 3.5 0.0013 5.1 0.0001 
Σ 45.3  66.1  66.5  87.8  
Σ % 2.3 ± 0.12 3.3 ± 0.25 3.3 ± 0.18 4.4 ± 0.21 

NP  conc. (µg/mL)  

2a,b - 10.1 0.0029 10.7 0.0032 23.9 0.0019 
3 - 1.7 0.0005 1.8 0.0004 4.3 0.0004 
4a,b - 2.8 0.0004 2.4 0.0005 3.6 0.0007 
5 - 0.4 0.0001 0.4 0.0002 2.1 0.0004 
Σ - 15.0  15.3  33.9  
Σ % - 0.75 ± 0.43 0.77 ± 0.41 1.7 ± 0.22 

Table 12: Total and percentual amount of Trp degradation products in not stressed and 
autoclaved OC and NP samples (2 g/L Trp, 121 °C, 2.1 bar, 30, 60, 90 min). Samples were 
measured in triplicate (n =3). 
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Though, it has to be mentioned that 100% oxygen exclusion could not be realised since minimal 

ventilation during sampling was unavoidable. However, the amounts of 2a,b are prevailing 

among the degradation products in all samples, regardless of the their treatment. The data 

suggests that Trp degradation follows two concurrent degradation pathways. The first pathway 

is Trp oxidation to 4a,b, which does not depend on autoclave duration, high or low levels of 

oxygen or storage time, but may be accelerated by heat impact anyway. The second pathway 

(Fig. 24) results in 2a,b, 3, and 5, depends strongly on higher levels of oxygen and less on 

autoclave duration. 2a,b is the most abundant of all degradation substances, but reference 

solutions using 2a,b were not coloured. The high abundance may be explained by the photo-

sensitizing properties of 3 and 5, which favours the double oxidation of Trp and the formation 

of 2a,b in aqueous solutions [40]. Hence, UV-light may further induce Trp degradation already 

in the presence of small quantities of 3 and 5 [42]. Taken together, UV irradiation in day light 

affects the oxidation of Trp and should be considered during manufacturing, storage, and 

administration of aqueous AA solutions containing Trp. 

 

 

3.4.3 Evaluation of Trp degradation products in formulation 1 and 2 stored in 

glass bottles and plastic bags 

Formulation 1 and 2 samples, stored for one year after autoclave (10, 20, 30 min, 121 °C, 

2.1 bar) either in glass bottles or plastic bags for injectables, developed a yellow discolouration 

proportional to autoclave duration and similar to pure Trp solutions. No difference in colour 

was observed with regard to the type of container used, but the yellowing was more intense in 

formulation 2 than in formulation 1. HPLC analysis showed increased Trp degradation to 

substances 2a,b-5 within one year storage after autoclave. No new peaks were detected neither 

at λ = 254 nor at λ = 340 nm. The degree of degradation in glass bottles was found to be only 

slightly higher in formulation 2 than in formulation 1 (2.8-6.4 % and 2.5-4.0 %, respectively) 

which is in line with the findings of 3.5% for pure Trp solutions.  

Furthermore, storage in plastic bags led to elevated amounts of degradation, i.e. 5.2-5.3% and 

7.1-7.7 % in formulation 1 and 2 respectively, as summarized in Tab. 13. Due to the similar 

degradation rates of pure Trp solutions, formulation 1 and 2, it can be said that the total amount 

of Trp degradation is not per se affected by the presence of other AAs. Taken together, both 

glass bottles and plastic bags were stored under the same conditions at RT exposed to day light. 
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Trp degradation was found to be significantly increased when autoclaved and stored in plastic 

bags. The average percentual degradation was 1.6 times higher in plastic bags than in glass 

bottles which equally applies to formulation 1 and 2. The reason for increased degradation in 

plastic containers might be a time-depended alteration of oxygen permeability of the plastic 

material over time, especially when exposed to UV-light. 

The more intense yellowing of formulation 2 can be explained by the small but consistently 

higher Trp degradation rate in comparison to formulation 1. However, the reasons for this 

observation are not clear and there is no evidence that kynurenines (3 and/or 5) support a 

photosensitized cysteine oxidation (included in formulation 2 only) which has been supposed 

in the literature [41, 43].  

 

 

Typical plastic bags for parenteral formulations are multilayers of different polyolefin blends 

(i.e. polypropylene/polyethylene), each with different properties and functions [44]. 

Advantages of plastic bags over glass bottles are lower production costs, safety and flexibility. 

Additionally, the utilization of plastic containers requires impact resistance, heat/steam 

sterilizability, high transparency, compatibility with pharmaceutical ingredients and safety with 

regard to leachables or extractables and must be free from additives and plasticizers like PVC 

 10 min S.D. 20 min S.D. 30 min S.D. 
Formulation 1 
bottle 

      

Σ 2a,b-5; (µg/mL) 50.1 0.11 67.3 0.08 80.2 0.01 
Degradation rate 2.5 %  ± 0.21 3.4 % ± 0.12 4.01 % ± 0.01 
Formulation 1 
bag 

 
     

Σ 2a,b-5; (µg/mL) 103.2 0.08 105.9 0.37 105.1 0.25 
Degradation rate 5.2 % ± 0.08 5.3 % ± 0.35 5.3 % ± 0.23 
Formulation 2 
bottle 

      

Σ 2a,b-5); (µg/mL) 39.5 0.21 54.1 0.08 89.5 0.13 
Degradation rate 2.8 % ± 0.52 3.9 % ± 0.14 6.4 % ± 0.16 
Formulation 2 
bag 

      

Σ 2a,b-5; (µg/mL) 99.7 0.16 100.6 0.33 107.9 0.16 
Degradation rate 7.1 % ± 0.16 7.2 % ± 0.32 7.7 % ± 0.15 

Table 13: Total and percentual amount of Trp degradants in formulation 1 and 2 stressed in 
glass bottles and in polyolefin bags, assessed after 1 year (121 °C, 2.1 bar, 10, 20, 30 min,  
n =2) 
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[45]. The multilayer principle includes at least two inner layers consisting of a polymer blend 

with high flexibility and lower melting points (<121 °C), whereas the polymer blends used in 

the outer layers have stabilizing and supporting functions with higher melting points (>121 °C). 

Inner and outer layers must be arranged alternately. The layering combines required container 

demands and preserve high product quality. Material testing includes steam autoclavation at 

121 °C for 35 min and demonstrated a general loss of tensile impact, toughness only of the 

inner layer alterations due to an increase of polymer crystallinity [44]. However, the outer layers 

are heat resistant and satisfy requirements towards the product, in general [44]. In this context, 

it may be possible that alterations of the multi-layer system due to heat sterilization increase 

over storage time and facilitate oxygen permeability to a certain degree. To our knowledge, the 

impact of UV light irradiation has not been evaluated in the long term. Eventually, clinical 

guidelines restrict the administration of injectables to a maximum of 24 h due to hygienic 

reasons [46, 47]. Thus, administration of steam sterilized solutions in plastic containers may be 

considered safe within short time periods if used with a light protection sheath. Despite the 

economic advantages of plastic containers, general processing and bulk preparation of 

parenteral AA formulations in plastic bags cannot be recommended at this point. 

 

4 Conclusion 

The essential AA Trp is an important compound in parenteral AA solutions, but it is prone to 

degradation, which is reflected by yellow discolouration. Thus, Trp degradation in aqueous 

solutions after autoclaving with regard to the presence of oxygen, heating duration, and storage 

time was studied. The results are applicable to parenteral AA formulations containing Trp 

which were steam sterilized and stored in two common types of primary packaging for 

parenteral drug formulations. It could be shown that the discolouration of stressed solutions is 

related to the decomposition of Trp and is rather caused by an increased oxygen level than by 

autoclaving duration in the given pH range, all over an observation period of three years. The 

method developed provides validated results about the extent of Trp degradation under specific 

conditions and is appropriate for quality testing of parenteral AA solutions. Characterization of 

degradation products suggest two competing Trp degradation pathways favoured by the 

presence of oxygen and/or light irradiation. Especially the formation of the two photosensitizing 

substances Kyn and NFK (3 and 5), is strongly associated with the yellowing process which 

might further induce Trp degradation under light exposure. Hence, unconditional UV-light 

protection during manufacturing, processing, and storage may be as important as strict oxygen 

deprivation for Trp stability in product quality control. Instructions for administration of 

Nina Unger
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parenteral AA formulations shall be complemented likewise. Eventually, the findings do not 

indicate any influence of other AA on Trp degradation per se. However, different degrees of 

discolouration are noticeable with varying AA composition in formulation 1 and formulation 2 

and thus may be subject of further investigation. 
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3.3 Application and comparison of different RP-HPLC separation techniques 
and column materials 

For the separation of Trp degradation products, three different RP-HPLC methods were 

developed and compared with regard to their suitability and performance.  

First, a stability indicating HPLC method was developed and validated using a traditional 

endcapped C18-column (Method A 1, [110]). A second separation technique makes use of ion 

pairing (IP) reagents on a reversed phase with the same column parameters. Two IP-RP-HPLC 

methods were developed using the IP reagents perfluorinated butanoic and pentanoic acid, 

respectively. IP-RP-HPLC promises improved retention and separation of small, charged and 

polar compounds such as AAs and related substances and was therefore chosen for the 

development of the HPLC methods. 

The third method was developed on a pentafluorophenyl (PFP) phase. The PFP phase is a 

modified reversed phase. The C-18 alkyl-chains are replaced by perfluorinated phenyl groups. 

The PFP phase offers an alternative mode for the retention and separation of polar and charged 

molecules in comparison to IP-RP-HPLC. 

All three developed methods exclude derivatization steps, use UV/Vis detection and 

deliberately facilitate MS detection. The aim of the method development is the comparison and 

the evaluation of different (orthogonal) RP separation techniques upon practicality, suitability 

and performance pointing out the challenges, advantages and disadvantages. Furthermore, the 

application of orthogonal methods is important in order to demonstrate, if there are any other 

degradation products, which would stay undetected using only one analysis method. Obtaining 

similar results, in turn, confirms the conclusions done so far. The results will be described and 

evaluated in the following section. 

 

3.3.1 IP-RP-HPLC 

IP-HPLC is advantageous technique for the analyses of small, organic, polar and charged 

molecules such as AAs. Successful applications of IP-RP-HPLC for the assessment of AAs 

have been described since the pioneer work developed by Eksborg and Schill in 1973 [111-

113]. Other IP-HPLC methods for the assessment of AAs are covered in the introduction [77]. 

Typical IP reagents are salts or charged compounds (depending on pH of the mobile phase) 

with a variable n-alkyl-chain, thus they combine lipophilic and hydrophilic properties. The 

actual mechanisms working in IP-RP-HPLC are still unknown, but a dual interaction between 
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IP and the stationary phase (adsorption model) and between IP reagents and the analyte 

(partition model) is presumed. IP reagents exert ionic interactions with the polar and/or 

oppositely charged analytes and lipophilic interactions between the alkyl-chains and the 

stationary phase. Here, the AAs or Trp degradation products form ion pairs with the IP reagents. 

These IPs are kind of neutral on the surface and the lipophilic rest enhances interactions with 

the stationary phase resulting in better retention and selectivity [114]. Furthermore, the n-alkyl-

chains of free IP reagents interact with the C-18 alkyl-chains of the stationary phase, so that the 

charged moiety is free for ionic interaction with free analytes, resulting in a kind of ion 

exchange mechanisms, adding to the retention performance. A variety of additives and buffers 

can be used in water-rich mobile phases, considering the specifications of used instruments and 

analytes [115]. 

The ion-pairing reagents must be volatile, in case of online-coupled mass detection or other 

evaporative detectors such as the evaporative light scattering detector (ELSD), or the corona 

charged aerosol detector (CAD). Perfluorinated carboxylic acids are strong acids, they are 

volatile and have been described in several studies as suitable IP reagents for the assessment of 

AAs on different column materials and named detectors [116-119].  

Heptafluorobutyric acid (HFBA) and nonafluoropentanoic acid (NFPA) (Fig. 26) were chosen 

as IP reagents for the development of the HPLC-UV/MS Method B and C (7.5. HPLC methods), 

respectively. 

 

  

HFBA NFPA 

Figure 26: IP reagents used for the development of an IP-RP-HPLC-UV/MS method for the 
separation of Trp degradation products. 

 

Fig. 27 and 28 show comparative overlays of a) the UV chromatogram (λ 280 nm), b) the TIC 

and c-f) the BPCs (base peak chromatograms) of Method B and Method C, respectively. The 

analysed sample was a stressed 2 mg/mL Trp solution, pH 6.5, 30 min, 121 °C, 2.1 bar, diluted 

1:10 with mobile phase A. 
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The developed methods give similar chromatograms. However, differences regarding peak 

shapes, separation quality, as well as the practicality are discussed in the following section. 

 

 

Figure 27: Method B: a) UV chromatogram, b) TIC and c-f) BPC (base peak chromatogram) 
of c) m/z 203.2; dehydrated cis PIC, d) m/z 209.2; Kyn, e) m/z 221.2; trans/cis PIC and Oia 
a,b, f) m/z 237.08; DiOia a,b and NFK. Sample: stressed Trp solution (2 mg/mL, pH 6.5, 
30 min, 121 °C, 2.1 bar) 

 

Trp elutes at 11.2 min and Trp degradation products elute between 5.8-9.1 min with following 

order: trans PIC, DiOia a, cis PIC, DiOia b, NFK, Oia a,b and Kyn (Fig. 27). The peak in 

Fig.27 b) at 4.1 min is an unknown peak and most probable due to contamination of the sample 

and was not found in other samples or sequences. 

The ion with m/z 203.2 at Rt 7.4 min is no individual Trp degradation product, but it emerges 

due to facile water loss (-18 u) during ionization process of the cis diastereomer of PIC 

(trans/cis PIC Rt 5.8/7.4 min, m/z 221.2) and has been discussed in chapter 3.2. (3.3.1. 

Substance identification) and in ref. [62]. Therefore, an individual screening for the m/z 203.2 

ion was not included in Method C anymore (Fig. 28). The emergence of MS signals 
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simultaneously with Trp at Rt 11.2-12.5 min (Fig. 27 c, d, f)) may be due to decomposition 

reactions during the ionisation process and/or co-elution of remaining compounds due to the 

rising organic content of the gradient and were neglected hereinafter. The comparison of the 

elution times of the degradation products demonstrates the close structural relationship of the 

diastereomers trans/cis PIC and DiOia a,b, eluting between 5.8-7.4 min and of NFK, Oia a,b 

and Kyn between 8.0-10.0 min, respectively. In the latter group the UV signals are hardly to 

differentiate at λ 280 nm. Though the absorption maxima of Trp is at wavelength λ 280 nm, it 

is inferior for the assessment of Trp degradation products. The wavelength λ 254 nm would 

have been the better choice with regard to Trp degradation products but was not tested at the 

time of analyses. 

However, in terms of detection, the shortcomings of UV detection and the separation 

performance can be mitigated in parts by MS detection. Here it is limited to MS signals of rather 

low intensity. <10.000, which may be related to both, the low abundance of the Trp degradation 

products and quenching effects because of ion pairing, being a known disadvantage of IP 

reagents for MS detector sensitivity [116, 120]. 

Method C was developed using NFPA in order to investigate the effects on the selectivity and 

separation of an analogue IP reagent with a longer n-alkyl chain. Due to stronger adhesion of 

NFPA itself and NFPA ion pairs, increased retention and run times, and even peak tailing would 

have to be expected. The composition of the mobile phases had to be adjusted with regard to 

increased organic content, adjustment of the pH and buffer molarity. Acetonitrile was added to 

methanol for its greater elution capacity, 30mM ammonium formiate buffer was introduced, 

and the gradient was adjusted by increasing the organic content. The adjustments were 

successful in terms of comparable analyses time and results. 

As shown in Fig. 28, Trp elutes at 13 min with Method C and the Trp degradation products 

elute between 5.5-11.8 min, which are similar retention times compared to Method B. 
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Figure 28: Method C: a) UV chromatogram, b) TIC and c-e) EIC (extracted ion chromatogram) 
of c) m/z 221.2; trans/cis PIC, d) m/z 237.08; DiOia a,b and NFK, e) m/z 209.2; Kyn, in a 
stressed Trp solution (2 mg/mL, pH 6.5, 30 min, 121 °C, 2.1 bar) analysed with Method C. 
Abbrev.: s.p.: system peak. 

 

The comparison of elution shows that the degradation substance elutes more closely, and the 

elution order switched for cis PIC and DiOia b only. Other differences were observed with 

regard to overall feasibility and method performance. The baseline noise with UV/Vis and MS 

detection was significantly higher with NFPA as with HFBA. Furthermore, three system peaks 

emerged at Rt 14.6, 21.1 and 23.9 min, which could not be assigned to any other substance. The 

re-equilibration time needed to be increased for Method C and regular flush runs with high 

organic contents were necessary to clean the LC system. The ion suppression in MS detection 

increased during the cumulation of analyses runs and more frequent cleaning and signal 

calibration of the MS source was required despite of the volatile character of the used IP 

reagents. 
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3.3.2 RP-HPLC with PFP-stationary phase 

Pentafluorophenyl (PFP) columns belong to the group of RP-stationary phases with modified 

properties due to covalently bonded perfluorinated phenylpropyl groups (Fig. 29). PFP-

columns are a promising alternative to traditional C-18 or C-8 phases because the modification 

allows the combination of several polar and non-polar interaction mechanisms. The proposed 

mechanisms are claimed to provide an orthogonal selectivity with normal and reversed phase 

characteristics, which are especially suitable for the analyses of polar pharmaceuticals and 

biological samples [121, 122]. Hydrophobic bonding, electrostatic, hydrophobic, aromatic π-π 

charge-transfer, as well as steric/planar mechanisms are discussed [123]. PFP-phases provide 

larger capacity for the separation of aromatic, polycyclic and heterocyclic compounds [122], 

thus being eligible for the separation of the identified Trp degradation products DiOia, Oia and 

PIC diastereomers, Kyn and NFK, respectively. The low surface energy of fluorinated phases 

reduces interaction between hydrophobic compounds; and this contributes, together with the 

proposed retention mechanisms, to sharper peak shapes and enhanced selectivity. 

 

 

Figure 29: Scheme of a PFP stationary phase. The pentafluorophenyl ligand is bonded 
covalently via a propyl-spacer to the silica/polymer column. 

 

The PFP column can interact as a reversed phase or as a normal phase, depending on the mobile 

phase composition used, i.e. high water or high organic content, respectively. This phenomenon 

is the so-called the “u-shape” retention of perfluorinated phases [124]. Using PFP-phases as a 

normal phase is comparable to HILIC techniques, which are applied for the assessment of small 

organic and polar compounds [77, 123]. However, several LC and/or LC-MS methods using 

perfluorinated stationary phases have been published recently for the assessment of amines, 

phenolic compounds, vitamins and small acids [125-128].  
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A Kinetex™ Core-Shell silica PFP-column with 100 Å, 2.6µm particle size and 150 x 4.6 mm 

i.d. (Phenomenex® Inc., Aschaffenburg, Germany) was used for the development of Method D 

1. The elution was performed using gradient elution with water and methanol and 0.15 % formic 

acid as acidifying agent. The spiked stressed reference solution (7.3 Sample preparation) was 

analysed with Method D 1 and the UV chromatograms at λ 254 and 340 nm, as well as the EICs 

of Trp degradation products are shown in Figure 30.  

 

 

Figure 30: a) λ 254 nm UV chromatogram, b) λ 340 nm UV chromatogram, c-e) EICs 
(extracted ion chromatogram) of c) m/z 221; trans/cis PIC and Oia a,b, d) m/z 237; DiOia a,b 
and NFK, e) m/z 209; Kyn, in the spiked stressed Trp solution (2.3.1. sample preparation) 
analysed with Method D 1. 

 

The wavelengths λ 254 and 340 nm were chosen, due to overall best sensitivity at λ 254 nm for 

all Trp degradation substances and additionally at λ 340 nm for Kyn and NFK. The degradation 

products cis/trans PIC, Oia a,b, DiOia a,b, Kyn and NFK are separated from each other and 

from Trp with one exception. Oia b and NFK coelute at Rt 24.3 min. In comparison to IP-RP-

HPLC, the elution order of Kyn and NFK changed. With IP-RP-HPLC analyses NFK was 

eluting prior to Oia a and b, which were followed by Kyn. Probably, the polarity and 

electronegativity of the formylgroup of NFK is responsible for stronger retention due to 

hydrogen bonding and dipol-dipol interactions with the PFP groups. However, the predominant 
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retention mechanism for all degradation products is most likely the π-π interaction between the 

PFP groups and the heterocyclic groups, aromatic indole and/or o-aminoacetophenone groups, 

respectively. Furthermore, the UV chromatograms in Fig. 30 a) and b) show a striking baseline 

drift at 21-22 min, which may be explained as a delayed consequence of pressure fluctuations 

due to the increased methanol content (mobile phase B) in gradient elution. Baseline 

fluctuations were no longer observed after method optimization. Eventually, other possible 

reasons for the baseline drift can be contaminated eluents or contaminants on the stationary 

phase, which eluted gradually. 

The method was optimized with regard to column temperature, introduction of buffers and pH 

adjustments aiming at the separation of coeluting NFK and Oia b. The optimized method 

Method D 2 was tested for the analysis of Trp degradation products in the finished 

pharmaceutical products and is shown in Fig. 31. Fig. 31 a) shows the UV chromatogram at λ 

254 nm of the Formulation 1 as it was obtained from Fresenius Kabi AG (Bad Homburg, 

Germany), b) additionally stressed Formulation 1 (glass bottle, 30 min, 121 °C, 2.1 bar) and c) 

spiked stressed reference solution. However, only little improvement could be achieved with 

regard to the separation of Oia b (4b) and NFK (5). Optimization efforts included a temperature 

change to 7 °C, the introduction of 30 mM ammonium formate buffer and pH adjustment with 

formic acid to an apparent pH of 3. Methanol content was kept the same as in Method D 1 at 

5 % in mobile phase A. Formic acid content was increased from 0.15 to 0.25 % in mobile phase 

A and B, respectively.  
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Figure 31: Overlay of the UV chromatograms at λ 254 nm analysed with Method D 2: a) 
Formulation 1, b) additionally stressed Formulation 1 (glass bottle, 30 min, 121 °C, 2.1 bar), 
c) spiked stressed reference solution (glass bottle, 30 min, 121 °C, 2.1 bar). 

 

Fig. 31 b) shows that the AA Tyr elutes between trans PIC (1b) and DiOia b (2b) and impedes 

correct peak area assessment of 2b. However, this is neglectable, because the formation of the 

diastereomers DiOia a and b was repeatedly observed with a peak ratio of 52:48. Thus, the 

assessment of only one diastereomer is sufficient. 

The Phe peak shows noticeable peak tailing in comparison to Tyr, although the structural 

difference is only an additional hydroxyl group at the phenol moiety in Tyr. This peak tailing 

may be explained by the high concentration of Phe - being 5.1 g/L in comparison to Tyr 0.4 g/L 

and Trp 2.0 g/L in Formulation 1. Furthermore, the gradient is not steep enough and the organic 

content is too low for a sharp peak elution. Changing to a steeper gradient is not an option, 

because a small increase in organic content will lead to an accelerated and simultaneous elution 

of the substances Kyn, Oia diastereomers and NFK. 

Lower column temperatures (RT, 20, 15, 10, 7 °C) pronounces rigidity of the stationary phase 

and showed to be beneficial for better peak shape and resolution. Better results were observed 

at 7 °C. However, the consequences of low temperatures were elevated backpressure and 

consequently long re-equilibration times and compromised robustness.  

Method development and optimization showed that the PFP-column material is powerful and 

suitable for the separation of Trp degradation products in pure Trp solutions and in the presence 
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of other AAs (Formulation 1). However, the applied conditions implied long analysis and re-

equilibration times, consequently relatively high mobile phase consumption, high backpressure 

and a lack of robustness. 

 



 
 
 
 
 

4 Final discussion 
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The studies performed aimed at the evaluation of Trp stability. This included the establishment 

of a degradation substance library and the development of a stability indicating method, which 

might be used in the manufacturing, processing and quality control of aqueous formulations 

containing Trp, such as parenteral nutrition solutions. The investigation of Trp degradation was 

studied under set conditions, limited to practical aspects and process-orientated, the 

identification of degradation substances and the development and comparison of suitable 

assessment methods. Special attention was paid to the isomeric Trp degradation products (i.e. 

diastereomers). Eventually, the methods were intended to be applied to pharmaceutical 

formulations. 

 

4.1 Stability of tryptophan 

Literature research resulted in the compilation of a substance library (8.3. Substance library). 

Only little information was found with regard to Trp stability in aqueous formulations after heat 

treatment comparable to steam sterilization by autoclaving. Most reports on Trp stability were 

conducted with peptides and proteins containing Trp using harsh treatment and/or non-

physiological conditions, which do not apply for parenteral AA formulations. On the other 

hand, several stability studies of parenteral formulations focused mainly on the interaction with 

other ingredients such as glucose, fatty acids, vitamins or other drugs and have been covered in 

the review. Hence, the information applicable to aqueous Trp formulations was limited. Thus, 

the preliminary tests performed demonstrated the stability problem of Trp after autoclaving, 

which has not been reported to our knowledge so far. A reproducible yellow discolouration was 

observed in Trp solutions, in the presence of (dissolved) oxygen after autoclaving process. The 

discolouration intensified with accumulation of heating cycles and during storage time. 

Consequently, the presence or the deprivation of oxygen were pointed out as the most 

contributing or impeding factor for the degradation of Trp, respectively. The pH range, in this 

case pH 5.5 -6.5, being the specified pH range of Formulation 1 - was shown to be neglectable 

for Trp stability. The duration of applied heating periods has an accelerating function and was 

shown to be proportional to the formation of each degradation product, assessed directly after 

heat treatment (3.2, Fig. 26). The differences in quantity are compensated within several days 

of storage at room temperature, as demonstrated by the analyses within 1 week and 1 year after 

autoclaving. The quantification showed similar amounts of degradation products (3.2 Tab. 11, 

1 year storage: 69.5-72.5 µg/mL, 3.5-3.6 %,), regardless of applied autoclaving duration. 
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Eventually, according to the quantification, the amounts of Trp degradation products reached a 

maximum after 1 year of storage and decreased to 2.8 % after 3 years of storage in total. 
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Figure 32: Overview of identified Trp degradation substances 

 

The identified degradation products are summarized in Fig. 32. Two Trp degradation products, 

namely NFK and Kyn are photosensitizers, which contribute to further Trp decomposition 

under day-light or UV-irradiation, respectively. Thus, UV-light protection of parenteral 

formulations during processing and storage should be obligatory.  

This study characterizes the development and concentration of Trp degradation products in the 

short term, namely directly after autoclaving and after one week, and in the long term, i.e. after 

one and three years of storage (after autoclaving). The percentage of degradation products 

changed during storage period. It was highest one year after autoclaving and decreased after 

three years of storage. Thus, the formation of Trp degradation products is not linear. An 

explanation might be that the substances Kyn and NFK and the Oia diastereomers are not stable 

and prone to decomposition, further oxidation or conversion, respectively. Additionally, the 

instability of prepared Kyn solutions was observed during sample preparation, e.g. the bright 

yellow colour of the solutions intensified within several days after preparation , and LC-UV/MS 

analyses demonstrated the decrease of the Kyn peak. Reported Kyn degradation products are 
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e.g. kynurenic acid, kynurenine yellow and 4-hydroxyquinoline, which were found by LC-MS 

analyses (8.1 Supporting information, Fig. A 1) [104, 129-132]. 

Presumably a major part of the “early stage” degradation products R,S/R,R Oia is oxidized to 

the DiOia diastereomers, because the DiOia diastereomers are predominant among all 

degradation substances after the storage periods (3.2, Tab. 13). 

The conclusions made upon Trp decomposition and, in particular the percentual degradation 

rates in pure Trp solutions, were shown to be transferable to parenteral AA formulations. 

An important additional factor, which influences amounts of degradation products in the long-

term, is the type of primary packaging used. Glassware was shown to be superior in comparison 

to autoclavable multi-layered plastic bags (MLB) for injectables, examined within a one-year 

of storage after autoclaving. Trp degradation was significantly higher in plastic containers and 

can be attributed to increased oxygen levels inside the container. An increased oxygen diffusion 

through the plastic material can be explained by the time-dependent alteration of some of the 

single layers, induced by heating, steam saturation and pressure during the autoclave process. 

It has to be discussed, if steam sterilization of products made in advance and stored in MLBs is 

appropriate. The oxygen permeability in relation to storage time of MLBs is a highly relevant 

issue for the stability of Trp-containing formulations. However, the preparation of parenteral 

solutions for immediate use in MLBs, like it is used e.g. in hospital pharmacies, is convenient 

and can be considered safe, because any parenteral administration is restricted to a maximum 

of 24 h.  

Taken together, Trp stability strongly depends on oxygen content and less on heating duration. 

Light irradiation and primary packaging used contribute to Trp stability as secondary factors. 

However, the heat induced by steam sterilization is an acceleration force, but the total amount 

of degradation products is controlled by oxygen concentration. Anyway, in aqueous solutions, 

Trp degradation and/or oxidation takes places even at trace levels of dissolved oxygen without 

heating but at much slower rates. Glassware is to be preferred over plastic containers for the 

preparation of bulk ware. The use of plastic material cannot be recommended, until the long-

term alterations of the single layers in the plastic material have been evaluated with regard to 

oxygen permeability. 
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4.2 Impurity assessment methods 

Diverse AA assessment methods were covered in the review, some amongst them might be 

suitable for the separation and assessment of Trp degradation products. However, the method 

developed should be direct, fast, robust and reliable for the detection and the quantification of 

impurities or Trp degradation products in bulk Trp and Trp-containing AA formulations. 

The compendial Trp impurity assessment method focuses on the quantitative determination of 

the by-products of the Trp synthesis. 1,1´ Ethylidene(bis)-Trp is especially limited due to its 

toxicity, whereas the other related impurities are summarized and limited altogether to a total 

amount of 100 ppm by other purity assessment methods beside the HPLC analysis. Thus, the 

compendial method does not facilitate the determination, nor the separation of Trp degradation 

products and is not suitable for the assessment thereof [82]. Based on the compendial method, 

a preliminary RP-HPLC method (Method A) was developed allowing MS detection 

additionally. The optimization efforts resulted in Method A 1 and succeeded in the separation 

and the assessment of Trp degradation substances within 17 min. Method A 1 uses a 125 mm 

instead of a 250 mm C-18 RP column and optimization showed best results with ammonium 

formiate buffer and formic acid as acidifier instead of trifluoroacetic acid. The method was 

validated for UV-detection, although it is compatible with linearly coupled MS-detection. 

However, UV-detection was shown to be sufficient for the assessment of the substances, hence 

the extensive validation of a HPLC-MS method was omitted. The separation of the degradation 

substances was challenging due to their structural similarities and the presence of several (three 

pairs) of diastereomers. The adjustment of the organic content and buffer strength of the eluents 

was decisive for a successful separation. The separation of the degradation substances is highly 

sensitive to minimal alterations of methanol content of mobile phase A (5 % v/v) and the 

gradient steepness, respectively. Absolute deviations of 1-3 % methanol in mobile phase A 

would lead to a loss of resolution and co-elution of the PIC and DiOia diastereomers and of the 

Oia b and NFK, respectively. The gradient steepness needed to be established carefully, due to 

the same reason. This problem was managed successfully by finding the optimal buffer and 

strength (30/60 mM ammonium formate in mobile phase A/B, respectively) and pH adjustment 

(apparent pH 3, adjusted with formic acid), resulting in a robust method with reliable results. 

Two alternative HPLC methods using ion pairing reagents (IP-RP-HPLC; Method B and C) and 

a modified column material (PFP-column; Method D 1 and 2) were developed, which are 

orthogonal techniques to traditional RP-HPLC. The alternative techniques are appropriate for 

the separation of small polar and charged compounds in general with a promising selectivity – 
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highly important in case of structural similarities. The IP-RP-HPLC was disadvantageous with 

regard to feasibility, because of long equilibration times, contamination of the HPLC system 

and high consumption of eluents. Moreover, system peaks appeared and diminished the quality 

of the chromatograms. The PFP-column showed good separation and excellent peak shapes of 

the Trp degradation products and was tested with stressed parenteral AA formulations. 

However, broad peaks were observed for the AA Phe, which overlapped the peaks of some 

degradation products. In addition, the method showed low robustness and was thus rejected 

from further optimization efforts. 



 
 
 
 
 

5 Summary 
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The stability of Trp in pure solutions and in parenteral AA formulations was evaluated with 

regard to typically used manufacturing processes, storage conditions and primary packaging. 

Therefore, thorough stability studies on Trp solutions were conducted beforehand. The applied 

stressing method, i.e. steam sterilization by autoclave, are chemically seen relatively mild but 

showed to be efficient to induce Trp degradation in the presence of oxygen. Subsequent 

identification, separation and characterization were challenging due to similar substance 

properties, numerous stereoisomers and pairs of diastereomers found amongst them. However, 

the identified o-aminoacetophenone compounds, Kyn and NFK, are associated with photo 

reactivity and have photo-oxidizing properties. Thus, best possible protection from UV-light, 

together with strict oxygen expulsion, are the most important criteria to impede Trp degradation 

after autoclaving. 

The identification of Trp degradation products was assisted by the compilation of a substance 

library, which included manifold reported and chemically plausible Trp degradation substances. 

The substances were classified for priority and their early or late-stage occurrence. The large 

number of possible substances and stereoisomers was narrowed down with the information 

retrieved from LC-UV/MS experiments. However, final identification was achieved by the 

synthesis of proposed substances as references. The following eight substances were 

characterized as Trp degradation substances: Kyn, NFK and three pairs of diastereomers 

R,R/R,S DiOia, R,R/R,S Oia and cis/trans PIC. Fig. 33 shows the proposed degradation pathway 

and demonstrates the close chemical relationship, which may be an explanation for the 

conversion of some substances into each other during the storage period. The proposed pathway 

brings together the results of different Trp stability and stressing studies, respectively [89, 94, 

97, 98, 103, 133]. To our knowledge, the simultaneous formation of the identified degradation 

substances has not been reported before and especially not under the stressing conditions 

applied. 
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Figure 33: Proposed Trp degradation pathway. 

 

The application of a traditional RP-HPLC method was compared to two developed IP-HPLC 

methods and a RP-HPLC methods using a modified perfluorinated column. Orthogonal 

analyses methods and especially the combination of UV and MS detection are necessary in 

order to indicate potentially undetected degradation substances. Main evaluation criteria were 

the separation performance, analyses time, reproducibility and feasibility. The best results upon 

assessment of all Trp degradation products, in both; pure Trp solutions and pharmaceutical 

formulations, were obtained by a traditional RP-HPLC. The optimized method was validated 

according to ICH guidelines Q2(R1) and meets the criteria of a stability-indicating HPLC-UV 

method. The validated method has a sufficient separation performance with an adequate 

selectivity indicating the Trp degradation substances next to each other and next to other AAs 

in finished pharmaceutical formulations.  

The detailed knowledge of Trp degradation and the method presented may be transferred 

practically to the pharmaceutical industry processing Trp-containing products. In general, the 

findings might contribute to the quality management of such pharmaceutical products during 
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manufacturing and storage. Additionally, the study results provide basic information for the 

establishment of an impurity consideration following the ICH guidelines Q3B (R2) (impurities 

in new drug products) for products containing Trp. However, further development of the 

method applying more sophisticated detectors or more potent HPLC techniques like e.g. 

UHPLC and the implication of more sensitive (MS) detectors like ToF-MS would be 

advantageous with regard to economic and practical aspects. 

 



 
 
 
 
 

6 Zusammenfassung 
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Diese Arbeit dient der Stabilitätsbeurteilung von Tryptophan (Trp) in parenteralen 

Aminosäurelösungen, insbesondere im Hinblick auf Einflussfaktoren wie der 

Herstellungsprozess, z.B. der Sterilisationsvorgang, Lagerungsbedingungen, sowie die Art der 

verwendeten Primärverpackung. Zunächst wurde die Stabilität von reinen Trp-Lösungen 

untersucht, die mehreren aufeinanderfolgenden Sterilisationszyklen im Autoklav ausgesetzt 

wurden. Generell stellt der Autoklavierprozess eine Vergleichsweise milde und kontrollierte 

Art der Hitzebelastung dar. Dabei wurde zwischen Lösungen unterschieden, die Sauerstoff 

enthielten und Lösungen, in denen der gelöste Sauerstoff mittels Stickstoffgas ausgetrieben 

wurde und die anschließend luftdicht verschlossen wurden. Es konnte festgestellt werden, dass 

der Autoklavierprozess, in Anwesenheit von Sauerstoff, zu einem Abbau von Trp führt, welcher 

sich außerdem auch durch eine Gelbfärbung der Lösungen zeigt. Die Identifizierung und 

Charakterisierung der Abbauprodukte erwies sich als schwierig aufgrund von sehr ähnlichen 

Substanzen, die eine Trennung mittels HPLC und die UV-Detektion alleine erschwerten. Die 

Massenspektroskopie zeigte erst, dass einige Abbauprodukte zeitgleich eluieren und einige 

isomere Formen vorliegen. Mithilfe von preparativer HPLC und Fragmentierung in der 

Ionenfalle konnten drei Diastereomeren-Paare gefunden werden, R,R/R,S Oia und DiOia, 

cis/trans PIC und zwei weitere Substanzen, Kyn und NFK. Die beiden letztgenannten Stoffe 

haben eine Sonderstellung, denn sie besitzen jeweils ein o-Aminoacetophenon-Grundgerüst 

anstelle des Indols, und absorbieren dadurch zusätzlich bei Wellenlängen von > 320 nm, und 

wirken photosensibilisierend, wodurch die Stabilität von Trp (unter Lichteinstrahlung) 

zusätzlich nachteilig beeinflusst wird. Daraus lässt sich ableiten, dass der Abbau von Trp in 

Lösungen maßgeblich durch strengen Sauerstoff- und Lichtausschluss verhindert werden kann. 

Die Abbildung Fig. 33 zeigt schematisch, wie die einzelnen Abbauprodukte möglicherweise 

entstehen und zusammenhängen könnten. Die Aufstellung der chemischen Zusammenhänge 

beruht auf den Ergebnissen verschiedener Trp-Stabilitätsstudien und bringt diese auf einen 

Nenner [89, 94, 97, 98, 103, 133]. Soweit durch die Literaturrecherche bekannt, wurde das 

zeitgleiche Auftreten aller hier identifizierten Abbauprodukte bislang noch nicht dokumentiert. 

Insbesondere wurden keine Studien über Stabilitätsprobleme, bedingt durch die Wasserdampf-

Sterilisation gefunden. Des Weiteren zeigten die quantitativen Untersuchungen von Lösungen, 

die eine Woche, ein und drei Jahre (nach einmaligem Autoklavieren) eingelagert wurden, dass 

die Abbauprodukte nicht linear entstehen und zunehmen, sondern, dass sich deren prozentuale 

Anteile dynamisch verändern (Kapitel 3.2.).  

Für die Identifizierung der Abbauprodukte von Trp war die Zusammenstellung einer Substanz-

Bibliothek äußerst hilfreich. Sie beinhaltet chemisch plausible Trp-Abbauprodukte, sowie aus 
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der Literatur bekannte Abbauprodukte, die durch verschiedenste Stressmethoden hervorgerufen 

werden. Diese Substanzen wurden nach Plausibilität und Priorität kategorisiert, um ein gezieltes 

Screening in gestressten (autoklavierten) Trp-Lösungen durchzuführen. Zusammen mit den 

Ergebnissen der LC-UV/MS Analyse konnte die Auswahl auf einige wenige Abbauprodukte 

begrenzt werden. Da es sich dabei um Isomere handelte, gelang die Identifizierung letztendlich 

erst durch die Synthese der in Frage kommenden Stoffe. 

Mithilfe der Synthese der Referenzsubstanzen konnte eine HPLC-UV Methode entwickelt, 

optimiert und nach den ICH Q2(R1) Richtlinien validiert werden, die eine Quantifizierung der 

Substanzen in reinen Trp-, und in handelsüblichen parenteralen Aminosäurelösungen 

ermöglicht. Für die validierte Methode wurde als stationäre Phase eine herkömmliche C18-

Säule verwendet. Zu Vergleichszwecken wurde eine Methode auf einer Pentafluorophenyl 

(PFP)-Säule entwickelt und optimiert (Method D 1 und D 2), sowie zwei RP-Methoden mit 

zwei analogen Ionen-Paar-Reagenzien (Method B und C). Verglichen und beurteilt wurden 

dabei die Trennleistungen, Analysendauer, Reproduzierbarkeit und die praktische 

Anwendbarkeit der jeweiligen Methoden. Die besten Ergebnisse wurden aber mittels der 

traditionellen RP-HPLC erreicht. 

Die Ergebnisse könnten für die Herstellung, Lagerung und Beurteilung von Trp-haltigen 

Lösungen durchaus relevant sein. Eine strenge Kontrolle der Sauerstoffwerte sowie ein 

kontinuierlicher Lichtschutz während und nach der Verarbeitung sind unverzichtbar. Die 

Ergebnisse erlauben außerdem ein gezieltes Screening nach Abbauprodukten, bzw. „Markern“. 

Die Erstellung von Beurteilungen, wie es z.B in den ICH Q3B(R2) Richtlinien gefordert ist, 

wird erleichtert, da die Identität bestimmt wurde und eine validierte Quantifizierungsmethode 

entwickelt wurde. Die Methode könnte für industrielle Zwecke noch weiter optimiert werden, 

indem z.B. eine UHPLC entwickelt wird oder sensiblere Detektoren, wie z.B. ein ToF-

Massendetektor, verwendet werden. Letztendlich sollte allerdings von der Arzneibuchmethode 

abgegrenzt werden, die Verunreinigungen aus dem Trp-Herstellungsprozess erfasst 

(1,1´ Ethyliden(bis)Trp). Die hier entwickelte Methode erfasst die Abbauprodukte von Trp in 

reinen Trp und in Trp-haltigen Aminosäurelösungen, die typischerweise durch Fehler bei der 

Herstellung oder den Autoklavierprozess hervorgerufen werden können. 
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7.1 Chemicals and material 

The chemicals and material used are described in chapter 3.2. (2.1. Chemicals and material). 

Further chemicals and reagents used are 5-OH-(DL)-Trp, L-Ile, L-Leu, L-Lys, DL-Met, L-Phe 

and L-Thr, were purchased from VWR International (Darmstadt, Germany), N-acetyl-(DL)-

Trp, L-Val, L-Arg, L-His, L-Ala, L-Gly and L-Tyr were from Sigma Aldrich, (Darmstadt, 

Germany) and 4-hydroxyquinoline, DL-Pro, L-Ser, and Taurine were received from TCI 

Chemicals (Eschborn, Germany), respectively. 

 

7.2 Apparatus  

HPLC-UV 

Apparatus Agilent HPLC 1100 series 

Degasser JP82039721-G1379B 

Binary Pump DE63059738-G1312A 

Autosampler DE64763639-G1329A 

Column thermostat DE63062591-G1316A 

VWD JP240018922-G1314A 

 

HPLC-UV/MS 

Apparatus Agilent HPLC 1100/1200 series 

Degasser JP6375118-G1379B 

Binary Pump DE23912089-G1312A 

Autosampler DE13203341-G1329A 

Column thermostat DE90374172-G1316A 

DAD DE43626774-G1315B 

MSD – ESI-Ion Trap DE24205141-G2445D 
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Preparative HPLC 

Apparatus Agilent HPLC 1100/1200 series 

Prep Pump A DE43601133-G1361A 

Prep Pump B DE43601127-G1361A 

Autosampler DE64755192-G2260A 

MWD DE43603402-G1365B 

Fraction collector DE43601287-G1364B 

 

7.3 Sample preparation 

The sample preparation is described in the experimental section in chapter 3.2. (2.5. Sample 

preparation).  

Other test solutions 

Stressed Trp reference solution 

The stressed Trp reference solution was prepared by dissolving 100 mg L-Trp in 50.0 mL water 

(2 mg/mL) followed by 10 min degassing in the ultrasonic bath. The pH was adjusted to 5.5 

with 0.01 M acetic acid. The solution was distributed into 50 mL autoclavable glass vials and 

subjected to 30 min autoclave (121 °C, 2.1 bar). The solution cooled down at RT and was stored 

at a dry and dark place at RT and retrieved for sampling as needed.  

Trp-Tyr-Phe solution 

The Trp-Tyr-Phe solution was prepared by dissolving 200 mg of L-Trp (2 mg/mL), 40 mg of 

L-Tyr (0.4 mg/mL) and 510 mg of L-Phe (5.1 mg/mL) in 100.0 mL water followed by 10 min 

degassing in the ultrasonic bath. The solution was distributed into one 50 mL autoclavable glass 

vial and subjected to 30 min autoclave (121 °C, 2.1 bar). 

Stressed AA test solution 

The stressed AA test solution was prepared by dissolving of : 5.0 g Ile, 7.4 g Leu, 6.6 g Lys, 

4.3 g Met, 5.1 g Phe, 4.4 g Thr, 2.0 g Trp, 6.2 g Val, 12.0 g Arg, 3.0 g His, 14.0 g Ala, 11.0 g 

Gly, 11.2 g Pro, 6.5 g Ser, 0.4 g Tyr, 1.0 g Taurine in 1000.0 mL water followed by 15 min 

degassing in the ultrasonic bath. Aliquots of 50 mL were distributed into autoclavable glass vial 

and subjected to autoclave (121 °C, 2.1 bar) as needed. The solution was cooled down to RT 

and kept in at 4 °C in the refrigerator. 
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Reference mix 1 

The Reference mix 1 was prepared by dissolving 1000 µg of 5-hydroxy-(DL)-Trp, N-acetyl-

(DL), Trp 4-hydroxyquinoline and L-Kyn in 10.0 mL water (conc. each: 100 µg/mL) followed 

by 10 min degassing in the ultrasonic bath. The solution was kept at 4 °C in the refrigerator and 

used within 4 weeks. 

HPLC sample preparation 

For HPLC analyses, 1000 µL of each specific sample was filtrated by 0.22 µm cellulose or 

polypropylene syringe filter. Thereof 500 µL were diluted with 500 µL mobile phase A 

(according to the applied method) into a brown glass vial and analysed immediately or kept at 

4 °C until use. 

Preparative LC samples 

Trp prep solution 

The Trp prep solution was prepared by dissolving of 200 mg of Trp in 100 ml water (2 mg/mL), 

followed by 10 min in the ultrasonic bath. The pH was adjusted to 6.5 with a 0.1 M sodium 

hydroxide solution. The solution was distributed into two 50 mL autoclavable glass vials and 

autoclaved for 90 m (121 °C, 2.1 bar).  

The autoclaved solutions were combined and condensed by water evaporation. The dry yellow 

residue was dissolved in 5 mL water followed by 15 min in the ultrasonic bath. The solution 

was distributed into four 1.5 mL brown glass HPLC vials and submitted to preparative LC. 

Fraction sample preparation 

Each collected fraction was condensed by water evaporation, the yellowish residues were 

dissolved in 1.5 mL of a mixture of water/methanol (95:5, v/v) and subjected to LC-MS/MS 

analyses (Method A 1).  

Pharmaceutical formulations 

Formulation 1 and Formulation 2 were kindly provided from Fresenius Kabi (Bad Homburg, 

Germany). The products were delivered and kept in glass bottles in a dry and dark container at 

RT. The measured pH of the Formulations 1 and 2 were within the given ranges of prescribing 

information, pH 5.5 - 6.3 and 5.4 - 5.8, respectively. Formulation 1 and Formulation 2 HPLC 

samples were prepared by dilution of 500 µl of the solutions with 500 µL of mobile phase A 

according to used analysis method.  
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Primary packaging 

The primary packaging material used for sample autoclaving was glassware: 50 ml autoclavable 

glass vials (Zscheile u. Klinger GmbH, Hamburg, Germany) and 100 mL plastic containers for 

injectables: Freeflex® (Fresenius Kabi, Bad Homburg, Germany). The glass vials are closed with 

a rubber (chlorbutyl) plugs and cramped aluminium lids. Freeflex® bags are made multi-layered 

polyolefin consisting of different blends of polypropylene, polyethylene and thermoplastic 

elastomer. The bags are free from polyvinylchloride (PVC), latex and phthalates and can be 

used for steam sterilization at 121 °C [134]. The plastic bags have a port system for aseptic 

filling and closing. 

 

7.4 Sample stressing 

Sample stressing were conducted by autoclaving. The heating durations of 30, 60 or 90 min 

were accumulated by subsequent 2, 4 or 6 autoclaving cycles (15 min in net sterilization phase), 

respectively.  

Autoclaving method 

Sample stressing was conducted by steam sterilization in a laboratory autoclave (Systec, 

Linden, Germany). The autoclave procedure comprises a heating phase (H-phase), the actual 

sterilization phase (S-phase) and a cooling phase (C-phase). The typical temperature for the 

sterilization of liquids or solids is 121 °C. Therefore, water vapor is pressurized to 2.1 bar and 

heated to the required temperature during the H-phases. When stable pressure and temperature 

are reached, the sample is in the S-phase, the actual net time of autoclavation. In the following 

C-phase pressure and temperature decrease to 1 bar and unloading temperature, respectively. 

The net time in the S-phase is programable and was set to the duration as needed. Settings of H 

or C-phase are not adjustable. 
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7.5 HPLC methods 

Method A 

HPLC settings 

Column: LiChroSpher® 100 LiChroCart® 250-4 (Merck, Darmstadt, Germany) 

4.6 x 250 mm RP-18e, particle size: 5µm 

Mobile phase A H2O/MeOH (95:5 v/v), 0.1 % TFA 

Mobile phase B MeOH, 0.1%TFA 

Flow rate 1 mL/min 

Injection volume 15 µL 

UV-detection λ = 254, 280, 340 nm 

Gradient 0 – 5 min: 0% B 

5 – 40 min: 0  35% B 

40 – 45 min: 35% B 

Re-equilibration time: 5 min 

 

MS settings 

Ion source ESI 

Polarity mode positive 

Dry temperature 350 °C 

Nebulizer 50.0 psi 

Dry gas nitrogen, 10.0 L/min 

Scan range 120 - 400 m/z 
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Method A 1 

HPLC settings 

Column: LiChroSpher® 100 LiChroCart® 250-4 (Merck, Darmstadt, 

Germany) 

4.6 x 250 mm RP-18e, particle size: 5µm 

Mobile phase A 30 mM NH4HCOOH/MeOH (95:5 v/v), 0.25 % FA 

Mobile phase B 60 mM NH4HCOOH/MeOH (50:50 v/v), 0.25 % FA 

Flow rate 1 mL/min 

Column temperature 15°C 

Injection volume 10 µL 

UV-detection λ = 254, 340 nm 

Gradient 0 – 10 min: 0 % B 

10 – 15 min: 0  30 % B 

15 – 20 min: 30 % B 

20 – 22 min: 30  90 % B 

22 – 28 min: 90 % B 

28 – 30 min: 90  0 % B 

Re-equilibration time: 5 min 

 

MS settings (optional) 

Ion source ESI 

Polarity mode positive 

Dry temperature 350 °C 

Nebulizer 50.0 psi 

Dry gas nitrogen, 10.0 L/min 

Scan range 50 - 400 m/z 
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Method B 

HPLC settings 

Column: LiChroSpher® 100 LiChroCart® 125-4 (Merck, Darmstadt, Germany) 

4.6 x 125 mm RP-18e, particle size: 5µm 

Mobile phase A 10 mM HFBA, H2O/MeOH (97.5:2.5 v/v), 0.1 % FA 

Mobile phase B MeOH/ACN (2:1 v/v), 0.1 % FA 

Injection volume 10 µL 

Flow rate 0.5 mL/min 

UV-detection λ = 254, 280, 340 nm 

Gradient 0 – 15 min: 5  15 % B 

15 – 20 min: 15  45 % B 

20 – 25 min: 45 % B 

25 – 30 min: 45  5 % B 

Re-equilibration time: 15 min 

 

MS settings  

Ion source ESI 

Polarity mode positive 

Dry temperature 325 °C 

Nebulizer 50.0 psi 

Dry gas nitrogen, 8.0 L/min 

Scan range 50 - 350 m/z 
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Method C 

HPLC settings 

Column: LiChroSpher® 100 LiChroCart® 125-4 (Merck, Darmstadt, Germany) 

4.6 x 125 mm RP-18e, particle size: 5µm 

Mobile phase A 10 mM NFPA, 30 mM NH4HCOOH/ACN (90:10 v/v), 0.1 % FA 

Mobile phase B ACN, 0.1 % FA 

Injection volume 10 µL 

Flow rate 0.5 mL/min 

UV-detection λ = 254, 280, 340 nm 

Gradient 0 – 15 min: 5  35 % B 

15 – 20 min: 35  45 % B 

20 – 25 min: 45  5 % B 

Re-equilibration time: 15 min 

 

MS settings  

Ion source ESI 

Polarity mode positive 

Dry temperature 325 °C 

Nebulizer 50.0 psi 

Dry gas nitrogen, 8.0 L/min 

Scan range 50 - 350 m/z 
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Method D 1 

HPLC settings 

Column: Kinetex® (Phenomenex®, Aschaffenburg, Germany) 

Core-shell PFP 

100 Å, 150 x 4.6 mm i.d. 

particle size: 2.6 µm 

Mobile phase A H2O/MeOH (95:5, v/v) 0.15 % FA 

Mobile phase B MeOH, 0.15 % FA 

Injection volume 10 µL 

Flow rate 0.4 mL/min 

UV-detection λ = 254 nm, 340 nm (VWD) 

Gradient 0 – 15 min: 0 % B 

15 – 16 min: 0  15% B 

16 – 30 min: 15% B 

30 – 35 min: 15  20% B 

35 – 40 min: 20  40% B 

40 – 45 min: 40 % B 

45 – 50 min: 40  0% B 

Re-equilibration time: 15 min 

 

MS settings (optional) 

Ion source ESI 

Polarity mode positive 

Dry temperature 350 °C 

Nebulizer 50.0 psi 

Dry gas nitrogen, 10.0 L/min 

Scan range 50 - 400 m/z 
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Method D 2 

HPLC settings 

Column: Kinetex®, Core-shell PFP, (Phenomenex®, Aschaffenburg, 

Germany) 

100 Å, 150 x 4.6 mm i.d. 

particle size: 2.6 µm 

Column temperature 7 °C 

Mobile phase A: 30 mM NH4HCOOH/MeOH (95:5, v/v) 0.25 % FA 

Mobile phase B: MeOH, 0.25 % FA 

Injection volume 10 µL 

Flow rate 0.4 mL/min 

UV-detection λ = 254 nm, 340 nm (VWD) 

Gradient 0 – 15 min: 0 % B 

15 – 16 min: 0  15% B 

16 – 30 min: 15% B 

30 – 35 min: 15  20% B 

35 – 40 min: 20  40% B 

40 – 45 min: 40 % B 

45 – 50 min: 40  0% B 

Re-equilibration time: 10 min 
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Method Prep 1 

HPLC settings 

Column: Gemini® NX-C-18 (Phenomenex, Aschaffenburg, Germany) 

110 Å, 250 x 10 mm i.d. 

particle size: 5µm 

Mobile phase A H2O, 0.1 % FA 

Mobile phase B ACN, 0.1 % FA 

Injection volume 15 µL 

Flow rate 1 mL/min 

UV-detection λ =254 nm 

Gradient 0 min: 5 % B 

0 – 2 min: 5 % B 

2 – 4 min: 5  10 % B 

4 – 7 min: 10 % B 

7 – 9 min: 10  15 % B 

9 – 12 min: 15 % B 

12 – 14 min: 15  100 % B 

14 – 17 min: 100 % B 

17 – 19 min: 100  5 % B 

19 – 20 min: 5 % B 

Re-equilibration time 2 min 
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Method Prep 2 

HPLC settings 

Column: Gemini® NX-C-18, (Phenomenex, Aschaffenburg, Germany) 

110 Å, 250 x 4.6 mm i.d. 

particle size: 5µm 

Mobile phase A H2O, 0.1 % FA 

Mobile phase B ACN, 0.1 % FA 

Injection volume 150 µL 

Flow rate 4 mL/min 

Column temperature RT 

UV-detection λ =254 nm 

Gradient 0 min: 5 % B 

0 – 2 min: 5 % B 

2 – 4 min: 5  10 % B 

4 – 7 min: 10 % B 

7 – 9 min: 10  15 % B 

9 – 12 min: 15 % B 

12 – 14 min: 15  100 % B 

14 – 17 min: 100 % B 

17 – 19 min: 100  5 % B 

19 – 20 min: 5 % B 

Re-equilibration time: 2 min 

 

Fractions 

 

A: 4.6 – 4.9 min 

B: 5.0 – 5.5 min 

C: 5.6 – 5.9 min 

D: 6.1 – 6.4 min 

E: 7.8 – 8.3 min 

F: 11.0 – 11.6 min 
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8.1 Supporting information 

AA Formulation 1 Formulation 2 
 conc. (g/L) 

Ile 5.0 4.92 
Leu 7.4 5.9 
Lys 6.6 6.8 
Met 4.3 4.2 
Phe 5.1 5.9 
Thr 4.4 4.2 
Trp 2.0 1.4 
Val 6.2 5.5 
Arg 12.0 8.4 
His 3.0 5.1 
Ala 14.0 12.0 
Gly 11.0 5.9 
Pro 11.2 5.1 
Ser 6.5 3.4 
Tyr 0.4 0.17 

Taurine 1.0 - 
Asp - 2.5 
Glu - 4.2 
Cys - 0.42 

excipients: glacial acid, water for injection 

Tab. A 1: The ingredients of Formulation 1 and 2; concentration in g/L. 
 

 

Fig. A 1: Degradation products of Kynurenine [104; 129-132]. 
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8.2 Sample images 
 

 

Figure A.2: Image of nitrogen purged Trp samples, pH 6.5, stored for 2 months after 
preparation and autoclaving, respectively: From left to right: not stressed (control), 30 min, 
60 min, 90 min autoclaving at 121 °C, 2.1 bar 

 

 

Figure A.3: Image of Trp samples with not controlled oxygen content (higher oxygen content), 
pH 6.5, stored for 2 months after preparation and autoclaving, respectively: From left to right: 
not stressed (control), 30 min, 60 min, 90 min autoclaving at 121 °C, 2.1 bar 
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Figure A.4: Image of Trp duplicate samples with not controlled oxygen content (higher oxygen 
content), pH 5.0- 6.5 (front to back), 1 week after preparation and autoclaving, respectively: 
From left to right: autoclave time 10 min, 20 min, 30 min, at 121 °C, 2.1 bar 

 

 

Figure A.5: Image of formulation 1 and 2 (right/left) in glass vials and in plastic bags for 
injectables. The received pharmaceutical products were redistributed and subjected to the 
autoclaving procedure (actually a second autoclaving step after the sterilization during 
manufacturing). From left to right: autoclave time 10 min, 20 min, 30 min, at 121 °C, 2.1 bar. 
The left samples with formulation 2 showed significantly stronger yellowing than formulation 
1, as explained in chapter 3.2. 

  



 Appendix  

145 
 

8.3  Substance library 

Indole/pyrrole oxidation and/or hydroxylation products 
 Structure, exact mass, IUPAC/ 

acronym 
Comments Reference 

1 

 

III  
Hydroxylation in position 5 is not 
preferred. Known Trp metabolite due 
to enzymatic conversion. 
Not main degradation product. 
Lower relevance. 

[1-3] 

220.08 
2-amino-3-(5-hydroxyindolin-3-
yl)propanoic acid 
5-OH-Trp 

2 

 

I 
Position 3 is reactive and prone to 
oxidation or hydroxylation. 
Probably poor (MS) stability and 
followed by pyrrole ring opening to 
NFK. 
Highly relevant, if detectable. 

[4-6] 

220.08 
2-amino-3-(3-hydroxyindolin-3-
yl)propanoic acid 
3-OH-Trp 

3 

 

I 
Position 2 is very reactive and prone to 
oxidation or hydroxylation. 
Diastereomers expected. 
Stabilized by keto-enol-tautomerism. 
Likely blue coloured. Highly relevant. 

[3, 4, 7-9] 

220.08 
2-amino-3-(2-oxoindolin-3-
yl)propanoic acid 
2-OH-Trp, Oia 

4 

 

I 
Hydroxylation of Oia in position 3 
gives equally stable DiOia 
diastereomers. Most abundant 
degradation product.  
Highly relevant, 

[4, 8, 10-
12] 

236.08 
2-amino-3-(3-hydroxy-2-
oxoindolin-3-yl)propanoic acid 
3-OH-Oia, DiOia 

5 

 

III 
Loss of water from DiOia can occur 
under natural conditions. Stable 
conjugated system. Maybe observed, 
but downstream product. 

* 

N
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218.07 
(Z)-2-amino-3-(2-oxoindolin-3-
ylidene)propanoic acid 

Low relevance. 
 

6 

 

III  
Dioxetane derivate, very like an 
intermediate. Extremely poor stability 
and thus not detectable by MS. 
Analytically not relevant. 

[10, 11] 

236.08 
2-amino-3-(2a,3-dihydro-7bH-
[1,2]dioxeto[3,4-b]indol-7b-
yl)propanoic acid 

Quinolones 
7 

 

II 
Well known in Trp metabolic 
degradation. Potent chromophore and 
stable substance. Rather downstream 
product. Potentially a relevant marker 
in the long-term with high chemical 
stability 

[13-15] 

173.17 
quinoline-2-carboxylic acid 
QCA, quinolinic acid 

8 

 

III 
Oxidized QCA, a downstream 
degradation product. 
Would be stable and detectable, if 
formed. Low relevance. 

* 

189.04 
4-hydroxyquinoline-2-carboxylic 
acid 
HQCA 

9 

 

II 
Decarboxylation of HQCA is 
thinkable. 
Maybe a downstream degradation 
product of DiOia with high probability 
and a potent marker. 

[2, 11] 

145.05 
quinolin-4-ol 
4-OH Quinoline 

Intramolecular rearrangement, three ring systems 

10 

NH

NH

COOH
HO

 

I 
Oxidation in position 3 and subsequent 
intramolecular rearrangement to three-
ring system but likely prone to 
eliminate water or rearrangement to 
more stable Oia. Cis/trans PIC isomers 
are expected, chemical stability is in 
question. 

[7, 11, 12] 

220.08 

N
H

COOH

NH2O
O

N COOH

N COOH

OH

N

OH
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3a-hydroxy-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole-
2-carboxylic acid 
PIC 
 

Theoretically a first-line degradation 
product, highly relevant. 

11 

 

I 
Probably a rearrangement of DiOia or 
reduction of dioxetane intermediate. 
Expected as cis/trans diastereomers. 
Stable, detectable, and highly relevant. 

[10, 11] 

236.08 
3a,8a-dihydroxy-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole-
2-carboxylic acid 
2-OH-PIC 

12 

 

III 
Hydroxylation of PIC in position 5 is 
not very likely due to low abundance 
of PIC and low position reactivity. 
Low relevance. 

* 

236.08 
3a,5-dihydroxy-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole-
2-carboxylic acid 
5-OH-PIC 

13 

 

III 
Formed by water elimination of 5-OH-
PIC. Would be stable and detectable, if 
formed. Rather not expected and low 
relevance. 

* 

218.07 
5-hydroxy-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole-
2-carboxylic acid 

14 

 

III 
Formed either by rearrangement of 5-
OH-Trp or hydroxylation of PIC. 
Substance is not expected, low 
relevance. 

* 

220.08 
5-hydroxy-1,2,3,3a,8,8a-
hexahydropyrrolo[2,3-b]indole-
2-carboxylic acid 
 

14 

 

II 
Stable substance and relevant, in 
presence of PIC. Targeted screening 

[11] 

NH

NH
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OH

HO

NH

NH
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202.7 
1,2,3,8-tetrahydropyrrolo[2,3-
b]indole-2-carboxylic acid 

recommended, maybe formed in MS 
ionisation process of PIC. 

17 

 

II 
Reported impurity in L-Trp products. 
Pictet-Spengler reaction of Trp in 
water. Detectable, therefore screening 
recommended 

[7, 16-18] 

230.11 
1-methyl-2,3,4,9-tetrahydro-1H-
pyrido[3,4-b]indole-3-carboxylic 
acid 
 

18 

 

III 
According to ref. possible impurity in 
L-Trp products. 
Lower relevance. 

[16, 17] 

286,17 
1-pentyl-2,3,4,9-tetrahydro-1H-
pyrido[3,4-b]indole-3-carboxylic 
acid 

Pyrrole cleavage 
19 

NH

COOH

NH2O

O H  

I 
Earlier degradation product. Most 
probable yellow coloured. 
De-formylation of anilines occurs 
rather slowly, depending on pH and/or 
temperature: intermediate stability due 
to self-condensation of keto-amines. 
Highly relevant. 

[1, 3, 4, 10-
12, 19-21] 

236.08 
(S)-2-amino-4-(2-
formamidophenyl)-4-
oxobutanoic acid 
N-formylkynurenine, NFK 
 

20 

NH2

COOH

NH2O

 

I 
Kyn 
Early stage and well-known 
degradation product (e.g. metabolic, 
electrolysis). Highly relevant. Isolated 
product may not be stable (see NFK). 
 

[1, 4, 12, 
20-22] 

208.08 
S)-2-amino-4-(2-aminophenyl)-
4-oxobutanoic acid 
Kynurenine, Kyn 
( 

N
H

COOH

NH

CH3

N
H

COOH
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21 

 

II 
May be formed due to Kyn oxidation, 
at higher Kyn concentration. Stable 
product and most probable 
contributing to yellowing. Down-
stream Trp degradation marker. 
Intermediate relevance. 

[1, 16, 20, 
21] 

224.08 
2-amino-4-(2-amino-3-
hydroxyphenyl)-4-oxobutanoic 
acid 
3-OH-Kyn 
 

22 

 

III 
Further downstream degradation 
product of Kyn, downstream product. 
Low relevance. 

[4] 

137.05 
2-aminobenzoic acid 
Anthranilic acid 
 

Aliphatic chain oxidation, reduction, and/or cleavage 
23 

 

II 
May be formed by dehydration of 3-
OH-Trp. Chromophore shifted towards 
visible spectrum. E/Z isomers possible. 
Interesting, but lower relevance. 

[19, 21] 

202.07 
(Z)-2-amino-3-(3H-indol-3-
ylidene)propanoic acid 
 
 
 

24 

 

II 
Isomer of the substance above, 
probably thermodynamically most 
favourable form. E/Z isomers possible. 
Interesting, intermediate relevance. 

[19, 21] 

202.07 
(Z)-2-amino-3-(1H-indol-3-
yl)acrylic acid 
 

25 

N
H

CHO

 

II 
Aromatic aldehyde, a known 
degradation product, albeit 
downstream. Probably a strong 
chromophore. Quite reactive to many 
functional groups. Relevant as 
mechanistic marker but not as early 
Trp degradation marker. Intermediate 
relevance. 

[11] 

145.05 
1H-indole-3-carbaldehyde 
IC 
 

NH2
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NH2O

OH

NH2
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N
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26 

 

I 
De-aminated, reduced product. May 
participate in internal redox reaction. 
Relevant since it eliminates need for 
an external oxidant (e.g. free radical). 
Albeit, chemically not common 
reaction of amino acids. Highly 
relevant for mechanistic consideration. 

* 

175.06 
2-(1H-indol-3-yl)acetic acid 
IAA 
 

27 

 

III 
5-OH product of substance above. 
Hydroxylation in position 5 is not most 
favourable. Low relevance. 

* 

191.06 
2-(5-hydroxy-1H-indol-3-
yl)acetic acid 
5-OH-IAA 
 

Dimerization products 
28 

 

II 
Unexpected dimer characterized by 
MS studies. Attributed to oxidation in 
solution, not an analytical artefact. 
Medium relevance. 

[2, 7, 19] 

333.15 
3-(6-((1H-indol-3-yl)methyl)-
1H-indol-3-yl)-2-
aminopropanoic acid 
 

29 

 

III 
Known impurity in Trp manufacturing. 
May be formed due to oxidative 
reaction, strongly depending on 
temperature and pH value. Low 
relevance. 

[16, 18] 

434.20 
3,3'-(ethane-1,1-diylbis(1H-
indole-1,3-diyl))bis(2-
aminopropanoic acid) 
1,1-EBT 

Tab. A 2: Theoretical Trp degradation substances. Degradation substances categorized for relevance 
due to probability and analytic aspects (I: high, II: intermediate, III: low). Comments give a brief 
assessment with regard to literature and internal communication/discussion with Fresenius Kabi (Bad 
Homburg, Germany). 

*no supporting literature found; comments refer to internal discussions and information provided by 
Fresenius Kabi. 
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8.5 Abbreviations 

1,1-EBT  1,1´ Ethylidene(bis)-Trp 

4-OH-Qn  4-Hydroxy-Quinoline 

5-OH-(DL)-Trp 5-Hydroxy-(DL)-Tryptophan 

AA   amino acid 

ACN   acetonitrile 

AiO    all-in-one 

API   active pharmaceutical ingredient 

BPC   base peak chromatogram 

C18   octadecyl carbon chain 

CI   confidence interval 

DiOia   Di-Oxindolylalanine (R,R/R,S 2-amino-3-hydroxy-2-oxoindolin- 

3-yl)propanoic acid) 

DL-Met  (D/L)-Methionine 

DL-Pro  D-/L-Proline 

EIC   extracted ion chromatogram 

EMA   European Medicines Agency 

EMS   Eosinophilia-Myalgia syndrome 

ESI   electrospray ionization 

FDA   Food and Drug Administration 

HPLC   high performance liquid chromatography 

HPBA   heptafluorobutyric acid 

ICH   International Conference of Harmonisation 

IP   ion pair 

IS   internal standard 

IV / i.v.  intravenous 

Kyn   Kynurenine 

L-Ala   L-Alanine 

L-Arg   L-Arginine 

L-Gly   L-Glycine 

L-His   L-Histidine 

L-Ile   L-Isoleucine 

L-Leu   L-Leucine 

L-Lys   L-Lysine 
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LOD   limit of detection 

LOQ   limit of quantification 

L-Phe   L-Phenylalanine 

L-Ser   L-Serine  

L-Thr   L-Threonine 

L-Trp   L-Tryptophan 

L-Tyr   L-Tyrosine 

L-Val   L-Valine 

MCB   multi-chamber bags 

MeOH   methanol 

MLB   multi-layered bags 

MS   mass spectroscopy 

N-Ac-Trp  N-Acetyl-(DL)-Trp 

NFPA   nonafluoropentanoic acid 

NFK   N´-formylkynurenine 

NMR   Nuclear Magnetic Resonance 

NP   nitrogen-purged 

OC   oxygen-containing 

Oia   Oxindolylalanine (R,R/R,S 2-amino-3-(oxoindolin-3-yl)propanoic acid) 

PFP   Ppntafluorophenyl 

Ph. Eur  European Pharmacopoeia 

PIC cis/trans 3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-

carboxylic acid 

Prep LC  preparative liquid chromatography 

PVC   polyvinylchloride 

R2   coefficient of determination 

RP   reversed phase 

Rt   retention time 

s.p.   system peak 

TIC   total ion chromatogram 

ToF-MS  time-of-flight mass spectrometry 

Trp   tryptophan 

UV/Vis  ultraviolet/visible (light) 
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