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1. Overview

In the last 40 years, complexity theory has grown to a rich and powerful field in
theoretical computer science. The main task of complexity theory is the classifi-
cation of problems with respect to their consumption of resources (e.g., running
time, required memory or number of needed processors).

To study the computational complexity (i.e., consumption of resources) of
problems, all “similar” problems are grouped into a “complexity class”. The main
intention behind this is the hope to get a better insight into the common proper-
ties of these problems and therefore to obtain a better understanding of why some
problems are easy to solve, whereas for others practical algorithms are either not
known or are even proven not to exist.

Clearly, when we want to measure the consumption of resources which are
needed to solve a problem, we have to talk about the computing device we want
to use. In the history of complexity theory, the Turing-machine in various modi-
fications has proven to be a good, robust, and realistic model for this task. Hence
all results in this thesis are based on Turing-machines as computational devices.

Everybody who is familiar with the task of finding an algorithm for a given
problem is aware of the following dilemma: Often one is able to find a suitable
algorithm very fast, others are trickier to find. In some other cases no fast algo-
rithm is known despite tremendous efforts to find one. This led to the situation
that by 1970, many problems with no known fast algorithm had been discovered,
and it was unknown, whether fast algorithms either did not exist or whether so
far nobody had been clever enough to find one.

A major breakthrough in this situation was the introduction of the com-
plexity classes P and NP, which were introduced by Stephan A. Cook in 1971
(cf. [Coo71]). (Implicitly Leonid Levin achieved the same results independently
in [Lev73].) While P is the class of problems which can be solved efficiently, i.e.,
in polynomial time, the class NP consists of all problems which can be solved
by a non deterministic Turing-machine in polynomial time. Today the class P
is used as a “definition” of computational “easiness” or “tractability”; we call a
problem, which is solvable in polynomial time by a deterministic Turing-machine
“easy”, whereas all other problems are called “intractable”. Hence the classes P
and NP are of immense importance.

The problem whether these two classes coincide or differ is known nowadays

as the famous P
?
= NP problem. Nearly everybody who is aware of the basics of

algorithms is familiar with this problem, showing that it has a huge influence on
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all aspects of theoretical computer science and especially on complexity theory.
Therefore it is not astonishing, that nearly all results in complexity theory are

related to this question and also the present thesis is connected to the P
?
= NP

problem.

Interestingly, the P
?
= NP problem has a history at least reaching back to

1956, when Gödel sent a letter to von Neumann, in which he stated the following
problem:

Given a first-order formula1 F and a natural number n, determine if there
is a proof of F of length n.

Gödel was interested in the number of steps needed by a Turing-machine to
solve this problem and asked whether there is an algorithm for this problem
running in linear or quadratic time2.

Nowadays, a problem which is closely related to Gödel’s problem is known as
SAT and is used in varying contexts of complexity theory. Moreover SAT was
identified by Cook as an example for a problem which is most likely not solvable
by any polynomial time algorithm. To justify this statement, he proved the com-
pleteness of SAT for NP, which means that SAT is one of the hardest problems
in the class NP. To classify problems in NP we have to compare them with all
other problems in NP. As a tool for comparing the computational complexity of
problems Cook introduced the concept of reductions. The intention behind reduc-
tions is to partially order problems (out of NP) with respect to the computational
power needed to solve them. Informally, a reduction compares the complexity of
two problems in the following way: a problem A can be reduced to a problem B if
there is an easy transformation which converts an input x for A into an input x′

for B and x belongs to A iff x′ belongs to B. This means that we can solve A
with the help of B and the easy transformation, hence B cannot be easier than
A. If we are able to find a problem inside NP, which has the property that it is
not easier than any other problem in NP, then this problem is one of the hardest
in NP. In Cook’s terminology such a problem is called NP-complete and has a
very special property: If we are able to find a polynomial time algorithm for an
NP-complete problem, then P = NP and if we are able to show that P 6= NP
then we know that there cannot exist an efficient method for solving such an NP-
complete problem. Because of this property we can imagine that we have distilled
all substantial properties from all problems of NP into one problem. This fact
makes NP-complete problems so important for complexity theory.

Another important way of looking at the P
?
= NP problem comes from proof-

theory. It is known that P can be considered as the class of all problems A such
that, for any input x for A, we can find a proof or witness for the membership of
x efficiently, if x ∈ A holds. On the other hand, NP is the class of all problems

1 Formel des “engeren Funktionenkalküls”.
2 Such an algorithm would mean “dass die Anzahl der Schritte gegenüber dem blossen Probieren von

N auf logN (oder (logN)2) verringert werden kann”.
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B such that there exists a short proof of membership, which can be checked
efficiently. Take as an example the problem SAT. The input of this problem is
a propositional formula H. If H ∈ SAT we know that there is an assignment of
all variables occurring in H, such that this assignment satisfies H. Since we can
efficiently check for an arbitrary assignment whether it satisfies a given formula or
not, the existence of a satisfying assignment is a proof of the membership of H to
SAT. Since such an assignment is short with respect to the length of the formula
H, this shows that SAT belongs to NP. In contrast to this use the problem
HORN-SAT, where we have to check the existence of a satisfying assignment of a
Horn-formula. There exists a well known fast algorithm to determine a satisfying
assignment of a Horn-formula iff one exists (see [Pap94]), hence a witness for
H ∈ HORN-SAT can be easily computed, showing that HORN-SAT belongs to
the class P.

But the concept of NP-completeness is also important for the design of al-
gorithms. If we can prove that a given problem is NP-complete, we have shown
that all known tools for designing algorithms cannot help us to manage it, be-
cause nobody was able to show P = NP up to now. Moreover, it is likely that we
will never find an efficient algorithm, because it is widely believed in complexity
theory that P 6= NP. The importance for practical purposes is supported by a
steadily growing list of NP-complete problems, which belong to logics, network-
ing, storage and retrieval, graph theory, algebra, and number theory. An early
collection of more than 300 NP-complete problems can be found in [GJ79].

In complexity theory, the study of NP led to numerous related classes, e.g.,
the classes of the polynomial-time hierarchy PH, PP, L, #P, and #L. (For
a diagram showing some inclusional relationships see Fig. 2.1.) The concept of
completeness is not only restricted to the class NP. Less well known as NP-
complete problems, there are also many P-complete problems examined today.
Many of these problems are related to Boolean formulas and Boolean circuits, e.g.,
the problem of finding a satisfying assignment of a Horn-formula, which plays an
important role in the theory of databases and programming languages. A source
of P-complete problems having a similar intention as [GJ79] is [GHR95]. Today
we know complete problems for subclasses of P, like NL, ⊕L and L, too.

As mentioned above, Cook showed that SAT is an NP-complete problem and
various modifications and restrictions of SAT were used to show completeness
results, not only for NP, but, e.g., for P, NL, ⊕L, PP, Σp

k, and #P. Hence
some questions arise: Why is SAT so hard to solve? Are there restrictions of SAT
which are not so hard to solve? Can we prove that these restricted versions of SAT
are complete for well-known subclasses of NP? And the other way around: How
do we have to generalize the SAT-problem to obtain completeness results beyond
NP, maybe for the classes of the polynomial time hierarchy, PP or PSPACE?
And finally: Do the results for circuits and formulas differ? The present work will
focus on these questions.
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Boolean functions
In the 1920s, Emil Leon Post extensively studied Boolean functions. Almost
twenty years later he published his work in [Pos41], where he presented his re-
sults comprehensively. Today these superb results are not widely known and the
only other source for his results is the monograph [JGK70], which is a German
translation of a Russian original, giving a summary of [Pos41]. One of his main
outcomes was the identification of all closed sets of Boolean functions, showing
that all those classes are generated by a finite base. For this, he used the super-
position of Boolean functions as the operation to combine them, where we are
allowed to identify, permute, and substitute variables to construct a new function.
Intuitively, this is the same as combining Boolean functions by soldering inputs
and outputs together, forming a new Boolean function.
This impressive result is not widely known, but the resulting completeness test
for Boolean functions can be found in basic textbooks about theoretical computer
science (e.g., [Wag94]). We call a set of Boolean functions complete iff its closure
under superposition is the set of all Boolean functions. Post showed that there are
five maximal closed classes of Boolean function; these are circled bold in Figure
2.2 (these maximal closed classes are known as “Post’s classes”). Hence we know
that a set of Boolean functions, which does not belong to any of these five classes,
must be a complete set (cf. Corollary 2.10).

Generalized propositional formulas and circuits
When we define propositional formulas inductively, we start with propositional
variables. In the induction step, we are allowed to combine smaller propositional
formulas with connector symbols. It is common to use symbols for the Boolean
and, or and not function, since it is known that all Boolean functions can be
represented in this way. Similarly, this technique is used to introduce Boolean
circuits. The only difference between circuits and formulas is that circuits have the
structure of an acyclic directed graph, whereas we restrict formulas to a tree-like
form. We will see later that this restriction of formulas leads to different results in
some cases. Now it is natural to generalize circuits and formulas in the following
way: We are allowed to use connection symbols which represent Boolean functions
out of a fixed set B of Boolean functions. Later we will use the term B-circuit
or B-formula for these generalized Boolean formulas and circuits. Moreover, we
will see that B-circuits and B-formulas represent all Boolean functions out of
the closure under superposition of B. Because of this, we can make use of Post’s
results to study our generalized circuits and formulas. Since all closed sets of
Boolean functions are known, we are able to give results about “all definable
generalized propositional logics” by varying the used set B. Similarly, we are
able to study problems related to circuits built over arbitrary bases, i.e., sets of
Boolean functions used as gate-types (cf. Chapter 3 and Chapter 4).
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Boolean constraint satisfaction problems
Let us start with a prototypical example for constraint satisfaction problems.
3 -SAT is a very well-known restriction of SAT, which is still NP-complete. Here
we have to search for satisfying assignments of a propositional formula in conjunc-
tive normal form, i.e., all inputs are of the form C1∧C2∧· · ·∧Cm, where each Ci
(clause) consists of a disjunction of Boolean variables, which might be negated.
Hence a satisfying assignment has to fulfill each clause in parallel. Therefore, each
clause is called a “constraint” for our overall solution. But such clauses are not
very general and they are hardly useful to model “natural” constraints. To over-
come this restriction, in 1978, Thomas Schaefer invented a strong generalization
of this concept. He replaced the clauses with an arbitrary Boolean predicate out
of a fixed set S and called the resulting formulas S-formulas. Now it is easy to
define satisfiability problems, like, e.g., EXACTLY-ONE-IN-THREE-SAT, where
we require that a satisfying assignment assigns exactly one variable of each clause
to true. While studying this kind of formulas, he gave a broad criterion to de-
cide the complexity of this family of satisfiability problems and was able to show
that the complexity only depends on the used set of predicates. Very surprisingly,
Schaefer proved that the satisfiability problem for S-formulas is either decideable
in P or complete for NP. Hence he called this theorem a dichotomy theorem for
generalized constraint satisfaction. This is an interesting, surprising, and not very
obvious property, because Ladner showed in [Lad75] that there are infinitely many
degrees between P and NP, under the assumption that P 6= NP, hence there is
no evident reason why none of Schaefers problems can be found in one of these in-
termediate degrees. Influenced by Schaefers results, many other problems related
to S-formulas were studied (see [Cre95, CH96, KST97, KSW97, CKS99, KK01]
and Section 5.4.), leading to a wealth of completeness results for e.g., PSPACE,
#P, and MAXSNP. Following this branch of complexity theory, in Section 5.4
we will study the problem of finding the smallest (largest, resp.) satisfying as-
signment of an S-formula.

A short summary
In Chapter 2 we will give a short introduction into the topics of complexity

theory which will be needed here. For a comprehensive introduction into com-
plexity theory see [Pap94, BDG95, BDG90]. After that we advance to Boolean
functions and give a short summary about closed classes of Boolean functions.
This section heavily hinges on results achieved by Emil Leon Post already in the
twenties of the 20th century (see [Pos41]). We finish this chapter with the intro-
duction of generalized Boolean circuits and formulas and some basic notations
for them.

In Chapter 3 we will study various problems related to generalized Boolean
circuits and formulas. First we will study the circuit value problem for generalized
Boolean circuits in Section 3.2, since it plays a central role for all other problems
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which will be considered in this work. After that we will completely classify the
satisfiability and tautology problem for generalized circuits, which leads various
completeness results for NP, coNP and classes below them (cf. Section 3.3). As
a natural generalization we will study quantified generalized Boolean circuits in
Section 3.4 and obtain results for quantified circuits having a bounded or un-
bounded number of quantifiers. Additionally there can be found results about
the complexity of determining the number of satisfying assignments of general-
ized circuits and of checking whether a given circuit has more than k satisfying
assignments. At the end of this chapter we present a beautiful result by Harry
Lewis about generalized formulas and we use it to study the satisfiability problem
related to B-formulas.

In Chapter 4 we will present results for the equivalence problem and the iso-
morphism problem of B-circuits and B-formulas. This means that we completely
clarify the complexity whether two given circuits or formulas represent the same
Boolean function. In the isomorphism case, this is beyond the means of present
techniques, hence in some cases we only give lower bounds, which are as good as
the trivial lower bounds known for the unrestricted isomorphism problem.

Finally in Chapter 5 we study the complexity of finding the lexicographically
smallest and largest satisfying assignment for a given generalized formula. In
contrast to the other chapters we study two different kinds of formulas, namely
B-formulas and S-formulas. After a brief introduction into relevant known results,
we turn to the generalized formulas in the Post context. After that we conclude
with formulas initially introduced by Thomas Schaefer in [Sch78].

Finally note that Chapter 3 is based on [RW00] and that Chapter 5 was pub-
lished in [RV00]. The material which will be presented in Chapter 4 was not
published before.



2. Basics

2.1 Complexity theory

In this section we will informally introduce some standard notations and results
from complexity theory. For more details see [BDG95, BDG90, Pap94].

The complexity classes P, NP, L, NL, and PSPACE are defined as the
classes of languages (problems) which can be accepted by deterministic polynomi-
ally time bounded Turing-machines, nondeterministic polynomially time bounded
Turing-machines, deterministic logarithmically space bounded Turing-machines,
nondeterministic logarithmically space bounded Turing-machines, and determin-
istic polynomially space bounded Turing-machines, resp. Let PP be the class
of languages which can be accepted by a nondeterministic polynomially time
bounded Turing-machine M in the following manner: An input (x, k) is accepted
by M iff more than k of M ’s computation paths on input x are accepting paths.
Let ⊕L be the class of languages which can be accepted by a nondeterministic
logarithmically space bounded Turing-machine M in the following manner: An
input x is accepted by M iff the number of M ’s accepting paths on input x is
odd.

Following the notation from [BDG95, BDG90] we use a generic notation for
time- and space-bounded classes of problems, which can be solved by determinis-
tic and nondeterministic multi-tape Turing-machines; DTIME(s), DSPACE(s),
NTIME(s) and NSPACE(s), where s : N → N is the given bound for time or
space. Now L = DSPACE(log n), NL = NSPACE(log n), P = DTIME(nO(1)),
NP = NTIME(nO(1)) and PSPACE = DSPACE(nO(1)).

For a class K of languages let coK =def {A | A ∈ K}. Furthermore let PK,
NPK, LK, and NLK be the classes of languages accepted by the type of machines
used for the classes P, NP, L, and NL, resp., but which have the additional
ability to ask queries to languages from K free of charge (such machines are
called oracle Turing machines). If we want to restrict the number of queries to
s, we will write PK[s], NPK[s], LK[s], and NLK[s].

The classes of the polynomial time hierarchy are inductively defined as fol-
lows: Σp

0 = Πp
0 = Θp

0 = ∆p
0 =def P. For k ≥ 1 we define Σp

k =def NPΣp
k− 1 ,

Πp
k =def coΣp

k = coNPΣp
k− 1 , Θp

k =def PΣp
k− 1 [log n], ∆p

k =def PΣp
k− 1 and

PH =def

⋃
k≥0 Σp

k.
Let FL (FP, resp.) be the class of functions which can be computed by a deter-

ministic logarithmically space (deterministic polynomially time, resp.) bounded
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Turing-machine. For a nondeterministic polynomially time bounded machine M
let #M(x) be the number of accepting paths of M on input x. Let #P be the
class of all such functions #M . For a class K of sets and a function s : N→ N, let
FLK‖ [s] be the class of all functions which are computable by a logspace bounded
Turing-machine which, for inputs of length n, can make at most s(n) parallel
queries (i.e., the list of all queries is formed before any of them is asked) to a
language from K.

Here are some basic facts on the complexity classes defined above. A graphical
overview is given in Figure 2.1.

Theorem 2.1 ([Sav70]). Let s(n) ≥ log n be a space constructible function.
Then the following inclusion holds:

NSPACE(s) ⊆ DSPACE(s2).

A proof for Theorem 2.1 can also be found in [BDG95], Corollary 2.28.

Theorem 2.2 ([Sze87, Imm88]). Let s(n) ≥ log n be a space constructible
function. Then the following equality holds:

NSPACE(s) = coNSPACE(s).

A proof for Theorem 2.2 can also be found in [BDG95], Theorem 2.26.

Theorem 2.3. 1. L ⊆ NL ∩ ⊕L ⊆ NL ∪ ⊕L ⊆ P ⊆ NP ⊆ PSPACE.
2. NL ∪ ⊕L ⊆ DSPACE(log2 n).
3. The classes L, NL, ⊕L, P, PP, and PSPACE are closed under complemen-

tation.
4. Σp

k ∪Πp
k ⊆ Σp

k+ 1 ∩Πp
k+ 1 for k ≥ 1 and

⋃
k≥1(Σp

k ∪Πp
k) ⊆ PSPACE.

5. FP ⊆ #P.
6. For every f ∈ #P there exist f ′ ∈ #P and a logspace computable function g

such that f(x) = g(x)− f ′(x) for all x.

Proof. The first inclusion of Statement 1 is obvious. For the other inclusions see
[BDG95], Theorem 2.26.

The inclusion NL ⊆ DSPACE(log2 n) is a direct consequence of Theorem
2.1. The other inclusion follows by ⊕L ⊆ NC2 (cf. [BDHM92]) and NC2 ⊆
DSPACE(log2 n) (cf. [Vol99], Theorem 2.32). Note that NC2 is the class of all
problems which can be solved by circuits of polynomial size and log2 n depth (for
details see [Vol99]).

Clearly any class of languages which can be solved by a deterministic Turing-
machine is closed under complement (cf. [BDG95], Proposition 3.2). Hence the
statement follows immediately for L, P, and PSPACE. That NL is closed under
complement is a direct consequence of Theorem 2.2. For the closure of ⊕L simply
add one accepting path to the ⊕L-computation (for details see [BDHM92]) and
to show the closure of PP simply interchange the accepting and rejecting states
of the used polynomial time Turing-machine (see [BDG95], Proposition 6.6).
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For Statement 4 see [BDG95], Proposition 8.4 and Theorem 8.5.
For Statement 5 let f ∈ FP. To show that f ∈ #P simply compute f(x)

in polynomial time and branch nondeterministically into f(x) accepting states
(cf. [Val79]).

For the last statement let f ∈ #P and M the corresponding polynomial time
Turing-machine for f . Without loss of generality each path of M has length p(|x|)
for a suitable polynom p. Now let M ′ be the polynomial time Turing-machine
that emerges if we interchange the accepting and rejecting states of M . Clearly
#M = 2p(|x|) −#M ′. Now define g(x) =def 2p(|x|) and f ′(x) =def #M ′(x). ut

To compare the complexity of languages or functions we use reducibilities .
For languages A and B we write A ≤log

m B if there exists a logspace computable
function g such that x ∈ A iff g(x) ∈ B for all x. For functions f and h we write
f ≤log

m h if there exists a logspace computable function g such that f(x) = h(g(x))
for all x. A function f is logspace 1-Turing reducible to h (f ≤log

1-T h) if there exist
two functions g1, g2 ∈ FL such that for all x we have: f(x) = g1(h(g2(x)), x). We
say that g1, g2 establish the 1-Turing reduction from f to h. When we claim a
1-Turing reducibility below, we will always witness this by constructing suitable
functions g1, g2. All these reduction are reflexive and transitive relations.

A language A is called ≤log
m -hard (≤log

m -complete, resp.) for a class K of lan-
guages iff B ≤log

m A for every B ∈ K (A ∈ K and B ≤log
m A for every B ∈ K, resp.).

In the same way one defines hardness and completeness for the reducibilities ≤log
m

and ≤log
1-T for functions.

The next proposition will be used in varying contexts in this work.

Proposition 2.4 ([Sze87, HRV00]). 1. LL = L
2. LNL = NL
3. L⊕L = ⊕L

Proof. The first statement follows by the technique of recomputation. The second
statement is a direct consequence of Theorem 2.2, because due to this result
the logspace alternation hierarchy collapses to NL. For the third statement see
[HRV00]. ut

In this work we need the following problems, which are complete for the classes
NL and ⊕L, resp.

Problem: Graph Accessibility Problem (GAP)

Instance: A directed acyclic graph G whose vertices have outdegree 0
or 2, a start vertex s and a target vertex t

Output: Is there a path in G which leads from s to t?

Problem: Graph Odd Accessibility Problem (GOAP)

Instance: A directed acyclic graph G whose vertices have outdegree 0
or 2, a start vertex s and a target vertex t

Output: Is the number of paths in G, which lead from s to t, odd?
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Theorem 2.5. 1. GAP and GAP are ≤log
m -complete for NL.

2. GOAP and GOAP are ≤log
m -complete for ⊕L.

Proof. Upper bounds. Obviously GAP ∈ NL and GOAP ∈ ⊕L.
Lower bounds. LetM be aO(log n) space bounded Turing-machine, which accepts
a language A ∈ NL (A ∈ ⊕L, resp.).

We will call the complete description of the current state of M a configuration
(see [Pap94], p. 21). Intuitively a configuration is a “snapshot” or “core-dump” of
a Turing-machine while computing. So a configuration of M includes the current
state, contents of the working tapes and the position of the heads on the working
tape. Clearly a configuration of M needs at most c log n space for a suitable c > 0.

We can assume without loss of generality that M has exactly one accept-
ing configuration and that every step of the computation nondeterministically
branches exactly to two successor configurations. Moreover we can assume with-
out loss of generality that M never reaches the same configuration two times. For
this simply add a counter to M , which counts the performed steps during the
computation.

Now we can construct in logarithmic space the configuration graph GM(x) of
M on input x as follows: The set of vertices of GM(x) is the set of all possible
configurations of M with input x. Two vertices C1, C2 of GM(x) are connected by
a directed edge iff C2 is a direct successor of C1 in the computation of M on
x. Note that because of the special nature of M each vertex of GM(x) has either
outdegree 0 or 2 and GM(x) is clearly acyclic. Moreover we have a special start
vertex s, the start configuration and a target vertex t, the accepting configuration.

Case 1: A ∈ NL.
Clearly x ∈ A iff M accepts x iff there is a path from s to t in GM(x) iff
(GM(x), s, t) ∈ GAP.

Case 2: A ∈ ⊕L.
Clearly x ∈ A iff M accepts x iff there is a odd number of paths from s to
t in GM(x) iff (GM(x), s, t) ∈ GOAP.

This shows that for all A ∈ NL (A ∈ ⊕L, resp.) it holds that A ≤log
m GAP

(A ≤log
m GOAP, resp.). Since NL is closed under complement (see Theorem 2.3)

also GAP is complete for NL. Additionally it is easy to show that ⊕L is closed
under complement (see Theorem 2.3). Hence GOAP is complete for ⊕L too. ut

Later we use the coNP-complete problem 3 -TAUT, which is defined as follows:

Problem: 3 -TAUT

Instance: A propositional formula H in 3 -DNF

Question: Is H a tautology?

In this work we will restrict ourselves to the case that each disjunct has exactly
3 literals.

Proposition 2.6 ([GJ79], LO8). 3 -TAUT is ≤log
m -complete for coNP.
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2.2 Boolean functions and closed classes

A function f : {0, 1}n → {0, 1} with n ≥ 0 is called an n-ary Boolean function.
By BF we denote the class of all Boolean functions. In particular, let 0 and 1
be the 0-ary constant functions having value 0 and 1, resp., let id and non be
the unary functions defined by id(a) = a and non(a) = 1 iff a = 0 and let et,
vel, aeq, and aut be the binary functions defined by et(a, b) = 1 iff a = b = 1,
vel(a, b) = 0 iff a = b = 0, aeq(a, b) = 1 iff a = b, and aut(a, b) = 1 iff a 6= b.
We also write 0 instead of 0 (note that we use 0 as the symbol for the constant
Boolean function 0), 1 instead of 1 (note that we use 1 as the symbol for the
constant Boolean function 1), x or ¬x instead of non(x), x∧y, x ·y, or xy instead
of et(x, y), x∨y instead of vel(x, y), x↔ y instead of aeq(x, y), and x⊕y instead
of aut(x, y). For i ∈ {1, . . . , n}, the i-th variable of the n-ary Boolean function f
is said to be fictive iff f(a1, . . . ai−1, 0, ai+1, . . . , an) = f(a1, . . . ai−1, 1, ai+1, . . . , an)
for all a1, . . . ai−1, ai+1, . . . , an ∈ {0, 1}.

For a set B of Boolean functions let [B] be the smallest class which contains
B and which is closed under superposition (i.e., substitution, permutation of
variables and identification of variables, introduction of fictive variables). More
precisely we define these operations as follows:

– Substitution: Let fn and gm be Boolean functions. Then we define hn+m−1 as
h(a1, . . . , an−1, b1, . . . , bm) =def f(a1, . . . , an−1, g(b1, . . . , bm)) for all a1, . . . , an−1,
b1, . . . , bm ∈ {0, 1}.

– Permutation of variables: Let fn be a Boolean function and π : {1, . . . , n} →
{1, . . . , n} be a permutation. Then we define g(a1, . . . , an) =def f(aπ(1), . . . , aπ(n))
for all a1, . . . , an ∈ {0, 1}.

– Identification of the last variables: Let fn be a Boolean function. Then we define
gn−1 as g(a1, . . . , an−1) =def f(a1, . . . , an−1, an−1) for all a1, . . . , an−1 ∈ {0, 1}.

– Introduction of a fictive variable: Let fn be a Boolean function. Then we define
gn+1 as g(a1, . . . , an+1) =def f(a1, . . . , an) for all a1, . . . , an+1 ∈ {0, 1}.

A set B of Boolean functions is called a base of the class F of Boolean functions
if [B] = F and it is called complete if [B] = BF. A class F of Boolean functions
is called closed if [F ] = F .

We will see that the closed classes of Boolean functions are tightly related to
the sets of Boolean functions computed by B-circuits and B-formulas (cf. Section
2.3).

Now consider some special properties of Boolean functions. Let n ≥ 0. An
n-ary Boolean function f is said to be

– a-reproducing iff f(a, a, . . . , a) = a (a ∈ {0, 1}),
– linear iff there exist a0, a1, . . . , an ∈ {0, 1} such that
f(b1, . . . , bn) = a0⊕(a1∧b1)⊕(a2∧b2)⊕· · ·⊕(an∧bn) for all b0, b1, . . . , bn ∈ {0, 1},

– self-dual iff f(a1, . . . , an) = f(a1, . . . an) for all a1, . . . , an ∈ {0, 1},
– monotone iff fm(a1, . . . , an) ≤ fm(b1, . . . , bn) for all a1, . . . , an, b1, . . . , bn ∈
{0, 1} such that a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn,
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– a-separating iff there exists an i ∈ {1, . . . , n} such that f−1(a) ⊆ {0, 1}i−1 ×
{a} × {0, 1}n−i (a ∈ {0, 1}),

– a-separating of degree m iff for every U ⊆ f−1(a) such that |U | = m there exists
an i ∈ {1, . . . , n} such that U ⊆ {0, 1}i−1×{a}×{0, 1}n−i (a ∈ {0, 1}, m ≥ 2).

For a set B of Boolean functions we define B to be 0-reproducing, 1-
reproducing, linear, self-dual, monotone, 0-separating, 1-separating, 0-separating
of degreem or 1-separating of degreem if all functions f ∈ B are 0-reproducing, 1-
reproducing, linear, self-dual, monotone, 0-separating, 1-separating, 0-separating
of degree m or 1-separating of degree m, resp.

The classes of all Boolean functions which are 0-reproducing, 1-reproducing,
linear, self-dual, monotone, 0-separating, 1-separating, 0-separating of degree m,
and 1-separating of degree m, resp., are denoted by R0, R1, L, D, M, S0, S1, Sm0 ,
and Sm1 , resp.

The closed classes of Boolean functions were intensively studied by E. L. Post
already at the beginning of the twenties of the 20th century, where he gave a
complete characterization of these classes (cf. [Pos41]). In this work we will make
substantial use of his main results, which are presented in the following two
theorems. For a detailed presentation see also the monograph [JGK70].

Theorem 2.7 ([Pos41]). 1. The complete list of closed classes of Boolean func-
tions is:
– BF, R0, R1, R =def R0 ∩ R1,
– M, M0 =def M ∩ R0, M1 =def M ∩ R1, M2 =def M ∩ R,
– D, D1 =def D ∩ R, D2 =def D ∩M,
– L, L0 =def L ∩ R0, L1 =def L ∩ R1, L2 =def L ∩ R, L3 =def L ∩D,
– S0, S02 =def S0 ∩ R, S01 =def S0 ∩M, S00 =def S0 ∩ R ∩M,
– S1, S12 =def S1 ∩ R, S11 =def S1 ∩M, S10 =def S1 ∩ R ∩M,
– Sm0 , Sm02 =def Sm0 ∩ R, Sm01 =def Sm0 ∩M, Sm00 =def Sm0 ∩ R ∩M for m ≥ 2,
– Sm1 , Sm12 =def Sm1 ∩ R, Sm11 =def Sm1 ∩M, Sm10 =def Sm1 ∩ R ∩M for m ≥ 2,
– E =def [et] ∪ [0] ∪ [1], E0 =def [et] ∪ [0], E1 =def [et] ∪ [1], E2 =def [et],
– V =def [vel] ∪ [0] ∪ [1], V0 =def [vel] ∪ [0], V1 =def [vel] ∪ [1], V2 =def [vel],
– N =def [non] ∪ [0], N2 =def [non],
– I =def [id] ∪ [0] ∪ [1], I0 =def [id] ∪ [0], I1 =def [id] ∪ [1], I2 =def [id],
– C =def [0] ∪ [1], C0 =def [0], C1 =def [1] and ∅.

2. All inclusional relationships between the closed classes of Boolean functions
are presented in Figure 2.2.

3. There exists an algorithm which, given a finite set B ⊆ BF, determines the
closed class of Boolean functions from the list above which coincides with [B].

4. There exists an algorithm which, given f ∈ BF and a finite set B ⊆ BF,
decides whether f ∈ [B] or not.

Now let us consider two examples:



24 2. Basics

R1 R0

BF

R

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

C

C1 C0

N

∅
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Example 2.8. We define the Boolean function f 3 such that f(x, y, z) = 1 iff
exactly one argument has the value 1. Clearly, f is 0-reproducing but not 1-
reproducing. Now assume that f is a linear function, i.e., f(x, y, z) = a0 ⊕ (a1 ∧
x)⊕(a2∧y)⊕(a3∧z) for suitable a0, a1, a2, a3 ∈ {0, 1}. Since f(0, 0, 0) = 0 we know
a0 = 0 and it follows that a1 = a2 = a3 = 1, because of f(1, 0, 0) = f(0, 1, 0) =
f(0, 0, 1) = 1. But this is a contradiction because f(1, 1, 1) = 0, showing that f is
not linear. Furthermore f is not monotone since f(1, 0, 0) = 1 and f(1, 1, 1) = 0,
and it is not self-dual because of f(0, 0, 0) = f(1, 1, 1). Finally, f cannot be 1-
separating of degree 2 because of f(0, 0, 1) = f(0, 1, 0) = 1. Summarizing the
above, f is not in R1, L, M, D, and S2

1 but it is in R0. A short look at Figure 2.2
shows [{f}] = R0.

Example 2.9. Set B =def {vel, g}, where g(x, y) = non(aut(x, y)). Now we want
to determine [B]. Clearly B is not in R0, since g(0, 0) = 1, but in R1, because
g(1, 1) = vel(1, 1) = 1. The set B is not linear, because vel is not linear. For
this suppose that vel is linear and therefore vel(x, y) = a0 ⊕ (a1 ∧ x) ⊕ (a2 ∧ y),
where a0, a1, a2 ∈ {0, 1}. Hence a0 = 0 and a1 = a2 = 1, because of vel(0, 0) = 0
and vel(0, 1) = vel(1, 0) = 1. But this is a contradiction, since vel(1, 1) = 1 too.
Also B is not monotone, since (0, 0) < (1, 0), but g(0, 0) = 1 and g(1, 0) = 0 and
not selfdual, because vel(0, 1) = vel(1, 0). Moreover B is not S2

0, since g−1(0) =
{(0, 1), (1, 0)}. By Figure 2.2 we obtain that [B] = R1.

Because of Theorem 2.7 there exist five maximal non-complete closed classes
of Boolean functions, which are circled bold in Figure 2.2. Using these classes the
well-known result follows:

Corollary 2.10. A class B of Boolean functions is complete if and only if B 6⊆
R0, B 6⊆ R1, B 6⊆ L, B 6⊆ D, and B 6⊆ M.

The following theorem gives us some information about bases of closed classes
of Boolean functions.

Theorem 2.11 ([Pos41]). Every closed class of Boolean functions has a finite
base. In particular:

1. {et, vel, non} is a base of BF.
2. {vel, x ∧ (y ⊕ z ⊕ 1)}

is a base of R.
3. {et, aut} is a base of R0.
4. {vel, x⊕ y ⊕ 1} is a base of R1.
5. {et, vel, 0, 1} is a base of M.
6. {et, vel, 1} is a base of M1.
7. {et, vel, 0} is a base of M0.
8. {et, vel} is a base of M2.
9. {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}

is a base of D.

10. {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
is a base of D1.

11. {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
is a base of D2.

12. {aut, 1} is a base of L.
13. {aut} is a base of L0.
14. {x⊕ y ⊕ 1} is a base of L1.
15. {x⊕ y ⊕ z} is a base of L2.
16. {x⊕ y ⊕ z ⊕ 1} is a base of L3.
17. {x ∨ y} is a base of S0.
18. {x ∧ y} is a base of S1.
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19. {x ∨ (y ∧ z)} is a base of S02.
20. {x ∧ (y ∨ z)} is a base of S12.
21. {x ∨ (y ∧ z)} is a base of S00.
22. {x ∧ (y ∨ z)} is a base of S10.
23. {0, x ∧ (y ∨ z)} is a base of S11.
24. {1, x ∨ (y ∧ z)} is a base of S01.
25. {x ∨ y, dual(hm)} is a base of Sm0 .
26. {x ∧ y, hm} is a base of Sm1 .
27. {x ∨ (y ∧ z), dual(hm)}

is a base of Sm02.
28. {x ∧ (y ∨ z), hm} is a base of Sm12.
29. {x ∨ (y ∧ z), dual(h2)}

is a base of S2
00.

30. {dual(hm)} is a base of Sm00,
where m ≥ 3.

31. {x ∧ (y ∨ z), h2} is a base of S2
10.

32. {hm} is a base of Sm10,
where m ≥ 3.

33. {1, dual(hm)} is a base of Sm01.

34. {0, hm} is a base of Sm11.
35. {et, 0, 1} is a base of E.
36. {et, 1} is a base of E1.
37. {et, 0} is a base of E0.
38. {et} is a base of E2.
39. {vel, 0, 1} is a base of V.
40. {vel, 1} is a base of V1.
41. {vel, 0} is a base of V0.
42. {vel} is a base of V2.
43. {non, 1} is a base of N.
44. {non} is a base of N2.
45. {id, 0, 1} is a base of I.
46. {id, 1} is a base of I1.
47. {id, 0} is a base of I0.
48. {id} is a base of I2.
49. {0, 1} is a base of C.
50. {1} is a base of C1.
51. {0} is a base of C0.

We define hm(x1, . . . , xm+1) =def

m+1∨
i=1

(x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xm+1).

For an n-ary Boolean function f define the Boolean function dual(f) by
dual(f)(x1, . . . , xn) =def f(x1, . . . , xn). The functions f and dual(f) are said to be
dual . Obviously, dual(dual(f)) = f . Furthermore, f is self-dual iff dual(f) = f .
For a class F of Boolean functions define dual(F ) =def {dual(f) | f ∈ F}. The
classes F and dual(F ) are called dual.
For some examples of Boolean functions and their dual function see Figure 2.3.

f dual(f)
0 1
1 0

et(x, y) vel(x, y)
vel(x, y) et(x, y)

non(x) non(x)
id(x) id(x)

aut(x, y) aeq(x, y)
et(x,non(y)) vel(x,non(y))

Fig. 2.3. Some Boolean functions and their dual function.

Proposition 2.12 (Duality principle). 1. Let g be a Boolean function such
that g(x1, . . . , xn) = f(f1(x1

1, . . . , x
1
m1

), . . . , fl(x
l
1, . . . , x

l
ml

)). For the dual func-
tion of g it holds that dual(g) = dual(f)(dual(f1), . . . , dual(fl)).

2. If B is a finite set of Boolean functions then [dual(B)] = dual([B]).
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3. Every closed class is dual to its “mirror class” (via the symmetry axis in
Figure 2.2).

4. Let F be a closed class. Then dual(F ) is a closed class too.

Proof. For the first statement observe the following:

dual(g) = dual(f(f1(x1
1, . . . , x

1
m1

), . . . , fl(x
l
1, . . . , x

l
ml

)))
= ¬f(f1(¬x1

1, . . . ,¬x1
m1

), . . . , fl(¬xl1, . . . ,¬xlml))
= ¬f(¬¬f1(¬x1

1, . . . ,¬x1
m1

), . . . ,¬¬fl(¬xl1, . . . ,¬xlml))
= ¬f(¬dual(f1(x1

1, . . . , x
1
m1

)), . . . ,¬dual(fl(x
l
1, . . . , x

l
ml

)))
= dual(f)(dual(f1(x1

1, . . . , x
1
m1

)), . . . , dual(fl(x
l
1, . . . , x

l
ml

)))

The second statement is a direct consequence of the first statement.
For the third statement use the base B of an arbitrary closed class, given by

Theorem 2.11, and calculate dual(B). Again by Theorem 2.11 we obtain that
dual(B) is a base of the “mirror class”, which proves the claim by the second
statement.

Finally note that the last statement is also a direct consequence of the second
statement. ut

2.3 Generalized circuits and formulas

In the present work we focus on the study of computational problems related to
generalized circuits and formulas, which are closely related to Post’s framework
(cf. Section 2.2). Hence we will introduce them in this section.

In basic textbooks propositional logic is always introduced in two steps. First
we define the syntax by specifying propositional variables and connectors for
combining them and the second step is the definition of the semantic of the
defined formulas. In this step we associate a Boolean function to each connector.
It is common to use ∧, ∨ and ¬ as symbols for the Boolean functions et, vel
and non, because {et, vel, non} is a complete set (cf. Corollary 2.10), and thus
we can represent all Boolean functions by using formulas, which are build by
making use of ∧, ∨ and ¬ as connectors for propositional variables. A natural
generalization would be the following approach. Choose a finite set of Boolean
functions, not necessarily complete, and symbols for them. Now define formulas
by using these symbols as connectors and their corresponding Boolean function as
the semantic of them. By doing so, we can introduce for each fixed set B another
generalized propositional logic. In a similar way we can introduce circuits. Here
we only use gate-types which represent Boolean functions out of the fixed set of
Boolean functions to build our circuits.

In the following chapters we will study various problems related to such gen-
eralized circuits and formulas, but due to the overwhelming number of them we
have to restrict ourselves to a special subset of these problems. To have an easy
to use definition we will first introduce our generalized circuits and after that we
will consider the generalized formulas as a special case of them.



28 2. Basics

Informally, for a finite set B of Boolean functions, a B-circuit C with input
variables x1, . . . , xn is a directed acyclic graph with a special output node, which
has the following properties: Every vertex (gate) with in-degree 0 is labeled with
an xi or a 0-ary function from B. Every vertex (gate) with in-degree k > 0 is
labeled with a k-ary function from B. Given values a1, . . . , an ∈ {0, 1} to x1, . . . ,
xn, every gate computes a Boolean value by applying the Boolean function of this
gate to the values of the incoming edges. The Boolean value computed by the
output gate is denoted by fC(a1, . . . , an). In such a way the B-circuit C computes
the n-ary Boolean function fC . To be more precise:

Definition 2.13. Let B be a finite set of Boolean functions and B̃ the set of
symbols for them. A B-circuit C with input-variables x1, . . . , xn is a tuple

C(x1, . . . , xn) = (P,E, o, α, β, γ),

where (P,E) is a finite directed acyclic graph, o ∈ P is the output-gate, α : P →
{1, . . . , |P |} and γ : E → {1, . . . , |E|} are injective functions and β : P → B̃∪{x1,
. . . , xn} such that the following conditions hold:

– If v ∈ P has in-degree 0, then β(v) ∈ {x1, . . . , xn} or β(v) is a symbol for a
0-ary Boolean function from B.

– If v ∈ P has in-degree k > 0, then β(v) is a symbol for a k-ary Boolean function
from B.

If v ∈ P has in-degree k0 and out-degree k1, then we say: v is a gate in C with
fan-in k0 and fan-out k1. If v is a gate in C we also write v ∈ C instead of v ∈ P .
If e = (u, v) ∈ E then we say: e is a wire in C and u is a predecessor-gate of v.
If β(v) = xi for some 1 ≤ i ≤ n, then v is an input-gate. We denote the set of
input-variables of C by Var(C) =def {x1, . . . , xn}.

Since a Boolean formula can be interpreted as a tree-like circuit, it is reasonable
to define B-formulas as the subset of B-circuits C, such that each gate in C has
at most fan-out 1.

The idea behind Definition 2.13 is that the function α gives each gate of C an
unique number, that the function γ defines an ordering on the edges, and that
the function β defines the type of v ∈ P , where v is either an input-gate or
“computation gate”, representing a Boolean function out of B.

Note that we explicitly allow that different input-gates are labeled by the
same variable (i.e., β may not be injective). Where this property is useless in the
circuit-case, we need it in the formula-case to make use of a variable for more
than one time.

A B-circuit C = (P,E, o, α, β, γ) with n input-variables computes a Boolean
function fC : {0, 1}n → {0, 1}, as defined in the following:

Definition 2.14. Let B be a finite set of Boolean functions, C = (P,E, o, α, β, γ)
be a B-circuit with input-variables x1, . . . , xn, and a1, . . . , an ∈ {0, 1}. Now we
define for each gate v of C inductively a function fv : {0, 1}n → {0, 1} as follows:
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– If v ∈ P has fan-in 0 and β(v) = xi, where 1 ≤ i ≤ n, then fv(a1, . . . , an) =def ai.
If v has fan-in 0 and β(v) = c is a symbol for a 0-ary function from B, then
fv(a1, . . . , an) =def c.

– If v ∈ P has fan-in k > 0, β(v) is a symbol for a k-ary function out of B, v1,
. . . , vk are predecessor-gates of v which are ordered by γ(v1) < · · · < γ(vk)
and the wire (vi, v) represents a substitution of the i-th argument of fβ(v)

by fvi(a1, . . . , an), then fv(a1, . . . , an) =def fβ(v)(fv1(a1, . . . , an), . . . , fvk(a1, . . . ,
an)), where fβ(v) is the Boolean function represented by β(v).

Now we define the function computed by C as fC(a1, . . . , an) =def fo(a1, . . . , an).

Additionally note that not all input-gates must be connected to other gates in
a B-circuit or B-formula, because we allow unconnected input-gates, having a
fan-out 0 and fan-in 0. Clearly these variables are fictive, and we will call them
syntactically fictive variables . Additionally our B-formulas have the symbol for
the id-function for free, because we are allowed to introduce wires independently
from the used set B. By using the definitions above we obtain the following
obvious proposition:

Proposition 2.15. Let B be a finite set of Boolean functions. Then

{fH | H is B-formula} = [B ∪ {id}] = {fC | C is B-circuit}.

Furthermore, let 〈B〉 =def {fC | C is a B-circuit} be the set of all Boolean func-
tions which can be computed by B-circuits.

Finally have in mind that the term gate-type will be replaced by function-
symbol when we work with B-formulas. This is done for more closeness to the
terms used in (propositional) logic.

Definition 2.16. Let B be a finite set of Boolean functions and C (H, resp.) a
B-circuit (B-formula, resp.). Then dual(C) (dual(H), resp.) is the dual(B)-circuit
(dual(B)-formula, resp.), which arises from C (H, resp.), when we replace every
gate of type f (f -function symbol, resp.) by a gate of type dual(f) (dual(f)-
function symbol, resp.).

By this definition we directly obtain that fdual(C) = dual(fC) (cf. Proposition
2.12.1).

Let V = {x1, . . . , xn} be a finite set of propositional variables. An assignment
with respect to V is a function I : V → {0, 1}. When the set V of variables is
clear from the context, we will simply speak of an assignment . In order for an
assignment w.r.t. V to be compatible with a circuit C (formula H, resp.), we
must have Var(C) = V (Var(H) = V , resp.). An assignment I satisfies a cir-
cuit C(x1, . . . , xn) (a formula H(x1, . . . , xn), resp.), if fC(I(x1), . . . , I(xn)) = 1
(fH(I(x1), . . . , I(xn)) = 1, resp.). That an assignment I satisfies C (H, resp.)
will be denoted by I |= C (I |= H, resp.). We will write C1(x1, . . . , xn) ≡ C2(x1,
. . . , xn) for B-circuits C1 and C2, if fC1(a1, . . . , an) = fC2(a1, . . . , an) for all
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a1, . . . , an ∈ {0, 1}. An analogous notation will be used for B-formulas. If I
is an assignment w.r.t. V , y 6∈ V , and a ∈ {0, 1}, then I ∪ {y := a} de-
notes the assignment I ′ w.r.t. V ∪ {y}, defined by I ′(y) = a and I ′(x) = I(x)
for all x 6= y. On the other hand, for {xi1 , xi2 , . . . , xim} ⊆ V , we denote by
I ′ = I/{xi1 , xi2 , . . . , xim} the assignment I ′ w.r.t. {xi1 , xi2 , . . . , xim}, given by
I ′(x) = I(x) iff x ∈ {xi1 , xi2 , . . . , xim}. If V = {x1, . . . , xk}, x1 < · · · < xk, then
an assignment I with I(xi) = ai will also be denoted by (a1, . . . , ak).

For counting the number of satisfying and unsatisfying assignments of B-
circuits (B-formulas, resp.) we define a counting operator as follows:

Definition 2.17. Let B be a finite set of Boolean functions and C be a B-circuit.
We define #1(C(x1, . . . , xn)) =def |{α ∈ {0, 1}n | fC(α) = 1}| and similarly
#0(C(x1, . . . , xn)) =def |{α ∈ {0, 1}n | fC(α) = 0}|.

An analogous definition will be used for B-formulas.

Proposition 2.18. Let B be a finite set of Boolean functions and C be a B-
circuit. Then the following equality holds for B-circuits: #1(C(x1, . . . , xn)) =
2n −#1(dual(C(x1, . . . , xn))).

Proof. Follows by the simple fact that #1(C) = #0(dual(C)). ut
Note that the same statement holds for B-formulas too.

Now let A be a property related to Boolean functions. For a finite set B of
Boolean functions define

A(B) =def {(C, a) | C is a B-circuit such that (fC , a) has property A}.

In order to study the complexity of A(B) the following question is very impor-
tant: How can we relate the complexity of A(B) and A(B′) by relating the sets
B and B′ of Boolean functions? The following proposition gives a satisfactory
answer.

Proposition 2.19. Let A be a property of Boolean functions, and let B and B′

be finite sets of Boolean functions.

1. If B ⊆ 〈B′〉 then A(B) ≤log
m A(B′).

2. If 〈B〉 = 〈B′〉 then A(B) ≡log
m A(B′).

Proof. Statement 2 is an immediate consequence of Statement 1. For the latter
just mention the obvious fact that B ⊆ 〈B′〉 implies that there exists a logspace
computable function g converting every B-circuit C into a B′-circuit g(C) such
that fC = fg(C). (A gate which represents h in C is simply replaced by a B′-circuit
computing h.) ut

Note that a similar proposition cannot be stated for B-formulas easily. The
reason for this is that replacing each function-symbol in a B-formula H by a
suitable B′-formula can result in an exponential sized B′-formula g(H). Clearly
this cannot be done by a logspace function (cf. Sec 3.7).
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In the following we will make substantial use of the fact that the complexity
of A(B) depends only on 〈B〉. To this end it is necessary to study the classes of
Boolean functions which have the form 〈B〉. As seen above, it turns out that these
are exactly those classes of Boolean functions which contain the identity function
and which are closed under superposition (i.e., substitution, permutation of vari-
ables, identification of variables, and introduction of fictive variables). Because of
this connection we can make heavy use of Post’s results in the following.



32 2. Basics



3. Satisfiability- and counting-problems

3.1 Introduction

The complexity of formula-based and circuit-based combinatorial problems was
studied through more than three decades of Complexity Theory. Already in 1971,
S.A. Cook [Coo71] proved that the satisfiability problem for Boolean formulas is
NP-complete: This was the first NP-complete problem ever discovered. R.E. Lad-
ner [Lad77] proved in 1977 that the circuit value problem is P-complete. In many
cases when a new complexity class was introduced and investigated, a formula-
based or circuit-based combinatorial problem was the first which was proven to
be complete for this class ([SM73, Gil77], for example). However, usually these
problems were defined using formulas or circuits with a complete base of function
symbols or gates, mostly with the base {∧,∨,¬}. But what can be said about
the complexity of such problems when a different base is used? There are sev-
eral special results of this kind (e.g. [Sim75, Gol77, Lew79, GP86]). In particular,
there are very detailed investigations for the special case of Boolean formulas
in conjunctive normal form in [Sch78, Cre95, CH96, CH97, KST97, RV00]. But
there are no results answering this question for generalized circuits and formulas
in full generality. In this chapter we will give complete characterizations of the
complexity of some combinatorial problems defined by B-circuits and B-formulas

In Sections 3.2-3.6 we study the complexity of the circuit value problem, the
satisfiability problem and the tautology problem, some quantified circuit prob-
lems, the counting function, and the threshold problem for B-circuits. In Section
3.7 we end up with some results about B-formulas, i.e., tree-like B-circuits. We
give complete characterizations of their complexity as in the following example.
Let the satisfiability problem SATC(B) be the set of all B-circuits which evaluate
to 1 for at least one input tuple. If B consists only of 1-reproducing functions,
of self-dual functions, or of non-functions (for definitions see Section 2.2), then
SATC(B) is in L. Otherwise, if B consists only of and-functions or of or-functions
then SATC(B) is ≤log

m -complete for NL. Otherwise, if B consists only of linear
functions then SATC(B) is ≤log

m -complete for ⊕L. Otherwise, if SATC(B) con-
sists only of monotone functions then SATC(B) is ≤log

m -complete for P. Otherwise
SATC(B) is ≤log

m -complete for NP.
Note that the results of this chapter are based on [RW00].
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3.2 The circuit value problem

Let B be a finite set of Boolean functions. The circuit value problem for B-circuits
is defined as:

Problem: VALC(B)

Instance: A B-circuit C(x1, . . . , xn) and a ∈ {0, 1}n
Question: Is fC(a) = 1?

Similarly we define the formula value problem for B-formulas VALF(B).

It is obvious that VALC(B) ∈ P for every finite set B of Boolean functions.
The polynomial time function eval from Figure 3.2 illustrates this simple fact.

function eval(C(x1, . . . , xn), (a1, . . . , an));
begin

mark all gates which are labeled by xi with ai;
mark all gates associated with the constant 0 (1, resp.) function by 0 (1, resp.);
while (output-gate is not marked) do begin

pick an unmarked gate g(x1, . . . , xn) whose predecessors p1, . . . , pn
are marked by b1, . . . , bn;
calculate c = fg(b1, . . . , bn); /* Function fg is associated with gate g */
mark the gate g with c

end;
if (output-gate is marked with 1) then

accept
else

reject
end.

Fig. 3.1. A polynomial-time algorithm for VALC(B).

The following facts on the complexity of VALC(B) are well known from the
literature.

Theorem 3.1. Let B be a finite set of Boolean functions.

1. [Lad77] If [B] = BF then VALC(B) is ≤log
m -complete for P.

2. [Gol77] If {et, vel} ⊆ [B] then VALC(B) is ≤log
m -complete for P.

3. [GP86] Let B be a set of binary Boolean functions. If {et, vel} ⊆ [B] or (B 6⊆ L
and B 6⊆ M) then VALC(B) is ≤log

m -complete for P, otherwise VALC(B) is
acceptable in log2 n space.

We start the investigation of the complexity of VALC(B) by strengthening
Proposition 2.19 for this particular case.

Proposition 3.2. Let B and B′ be finite sets of Boolean functions.

1. If B ⊆ [B′ ∪ {id, 0, 1}] then VALC(B) ≤log
m VALC(B′).

2. If [B ∪ {id, 0, 1}] = [B′ ∪ {id, 0, 1}] then VALC(B) ≡log
m VALC(B′).
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Proof. As for Proposition 2.19, but additionally a 0-gate (1-gate, resp.) is replaced
by an input gate labeled with the Boolean value 0 (1, resp.). ut

Therefore, for the study of the complexity of VALC(B), only those closed
classes of Boolean functions are of importance which contain id, 0, and 1. To
obtain Proposition 3.3 take for any closed class of Figure 2.2 the corresponding
base F , given in Theorem 2.11 and calculate [F ∪ {0, 1, id}].

Proposition 3.3. The closed classes of Boolean functions containing id, 0, and
1 are BF, M, V, E, L, N, and IC, where IC =def [id, 0, 1]. The inclusional rela-
tionships between these classes are presented in Figure 3.2.

IC

V E N

M L

BF

Fig. 3.2. All closed classes of Boolean functions containing id, 0, and 1.

Now we are ready to prove our main theorem on the complexity of VALC(B).

Theorem 3.4. Let B be a finite set of Boolean functions:

if (B ⊆ N) then
VALC(B) ∈ L

else if ((B ⊆ E) or (B ⊆ V)) then
VALC(B) is ≤log

m -complete for NL
else if (B ⊆ L) then

VALC(B) is ≤log
m -complete for ⊕L

else
VALC(B) is ≤log

m -complete for P

There exists an algorithm which decides which of the cases above takes place.

Proof. 1. If B ⊆ N = [{non, id, 0, 1}] then, by Proposition 3.2, we get VALC(B)
≤log

m VALC({non}). For a {non}-circuit C, there is fC(a) = 1 iff the non-fictive
path in backward direction, starting at the output-gate, either has even length
and ends in an input-gate with value 1 or has odd length and ends in an input-gate
with value 0. This can be checked in logarithmic space.
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2. Let B 6⊆ N and B ⊆ V. By Proposition 3.3 and Theorem 2.11 we
obtain [B ∪ {id, 0, 1}] = V = [{vel, id, 0, 1}], and by Proposition 3.2 we get
VALC(B) ≡log

m VALC({vel}).
Upper bound. For a {vel}-circuit C there is fC(a) = 1 iff at least one of the
non-fictive paths in backward direction from the output-gate ends in an input-
gate with value 1. This is a graph accessibility problem which can be solved in
nondeterministic logarithmic space.
Lower bound. We prove GAP ≤log

m VALC({vel}) (cf. Theorem 2.5.1). Given a
directed acyclic graph G whose vertices have outdegree 0 or 2, a start vertex s,
and a target vertex t with outdegree 0. We construct in logarithmic space a {vel}-
circuit C as follows: Every outdegree 2 vertex becomes a vel-gate, the vertex t
becomes an input gate with input value 1, and every other outdegree 0 vertex be-
comes an input gate with input value 0. The vertex s becomes the output-gate of
C. Let a be the input string constructed (i.e., the input-values of all input-gates)
in this way. Obviously, there exists a path in G from s to t iff (C, a) ∈ VALC(B).

3. The case B 6⊆ N and B ⊆ E is treated in the same way; just replace V by E,
vel by et, GAP by GAP and mark t with input-value 0 and every other outdegree
0 vertex with input-value 1.

4. Let B 6⊆ N and B ⊆ L. By Proposition 3.3 and Theorem 2.11 we
obtain [B ∪ {id, 0, 1}] = L = [{aut, id, 0, 1}], and by Proposition 3.2 we get
VALC(B) ≡log

m VALC({aut}).
Upper bound. For an {aut}-circuit C there is fC(a) = 1 iff the number of non-
fictive paths from the output-gate to an input-gate with value 1 is odd. This can
be checked by a ⊕L-computation.
Lower bound. We prove GOAP ≤log

m VALC({aut}) (cf. Theorem 2.5.2). This can
be done in the same way as GAP ≤log

m VALC({vel}) in Item 2 of this proof.
5. Let B 6⊆ V, B 6⊆ E, and B 6⊆ L . By Proposition 3.3 we have {et, vel} ⊆ M ⊆

[B ∪ {id, 0, 1}], and by Proposition 3.2 we get VALC({et, vel}) ≤log
m VALC(B).

However, VALC({et, vel}) is ≤log
m -complete for P by Theorem 3.1, and VALC(B)

is obviously in P. ut
Notice that Theorem 3.4 improves the Goldschlager-Parberry result (Theorem

3.1.3) in two ways:

– Theorem 3.1.3 applies only to finite sets B of binary Boolean functions, whereas
Theorem 3.4 applies to all finite sets B of Boolean functions.

– Theorem 3.1.3 distinguishes only between “P-complete” and “acceptable in
log2 n space”, whereas Theorem 3.4 splits the latter case into the cases “NL-
complete”, “⊕L-complete”, and “acceptable in log n space” (cf. Theorem 2.3).

Finally let us mention that the Goldschlager-Parberry criterion for sets B
of binary Boolean functions is not valid for arbitrary finite sets B of Boolean
functions. Take for example B = {xy ∨ xz}. By Theorem 2.11 we know that
[B] = S10 and [{vel}] = V2. A short look at Figure 2.2 shows that vel 6∈ [B].
Because of B ⊆ M this would correspond to the “otherwise” case of Theorem
3.1.3. However, Theorem 3.4 shows that VALC(B) is ≤log

m -complete for P.
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Fig. 3.3. The complexity of VALC(B).
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3.3 Satisfiability and tautology

In this section we study the complexity of the satisfiability problem and the
tautology problem for B-circuits. For a finite set B of Boolean functions we
define:

Problem: SATC(B)

Instance: A B-circuit C(x1, . . . , xn)

Question: Exists an a ∈ {0, 1}n such that fC(a) = 1?

Problem: TAUTC(B)

Instance: A B-circuit C(x1, . . . , xn)

Question: For all a ∈ {0, 1}n hold fC(a) = 1?

It is obvious that SATC(B) ∈ NP and TAUTC(B) ∈ coNP for every finite
set B of Boolean functions. The following facts about the complexity of SATC(B)
can easily be derived from the literature, where special cases of B-formulas (i.e.,
B-circuits with fan-out at most 1) were considered.

Theorem 3.5. Let B be a finite set of Boolean functions.

1. [Coo71] If [B] = BF then SATC(B) is ≤log
m -complete for NP and TAUTC(B)

is ≤log
m -complete for coNP.

2. [Lew79] If x ∧ y ∈ [B] then SATC(B) is ≤log
m -complete for NP.

In some special cases the complexity of SATC(B) can be related to the com-
plexity of VALC(B).

Proposition 3.6. Let B be a finite set of Boolean functions.

1. If B ⊆ M then SATC(B) ≤log
m VALC(B).

2. If 0 ∈ [B] ⊆ M then VALC(B) ≤log
m SATC(B).

3. If 0, 1 ∈ [B] then VALC(B) ≤log
m SATC(B).

Proof. 1. The reduction is given by C(x1, . . . , xn) ∈ SATC(B) iff (C, 1n) ∈
VALC(B).

2. Convert a B-circuit C(x1, . . . , xn) with an input string a ∈ {0, 1}n into a
B-circuit C ′(x1, . . . , xn) as follows: Replace every input gate with value 0 by a
B-circuit computing 0 and replace every input gate with value 1 by an input
gate with a new input variable. Obviously, (C, a) ∈ VALC(B) iff C ′ ∈ SATC(B),
because fC is a monotone function.

3. Convert a B-circuit C(x1, . . . , xn) with an input string a ∈ {0, 1}n into a
B-circuit C ′ as follows: Replace every input gate with value 0 by a B-circuit
computing 0 and replace every input gate with value 1 by a B-circuit computing
1. Obviously, (C, a) ∈ VALC(B) iff C ′ ∈ SATC(B). ut

Proposition 3.7. If B is a finite set of Boolean functions containing et then
SATC(B ∪ {1}) ≤log

m SATC(B).
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Proof. A (B∪{1})-circuit C with input variables x1, . . . , xn is converted into a B-
circuit C ′ with input variables x1, . . . , xn, z by replacing every 1-gate by a z-gate.
Hence fC′(x1, . . . , xn, 1) = fC(x1, . . . , xn). Now construct a B-circuit C ′′ with
input variables x1, . . . , xn, z such that fC′′(x1, . . . , xn, z) = fC′(x1, . . . , xn, z) ∧ z.
We obtain: C is satisfiable iff C ′′ is satisfiable. ut

Now we are ready to prove the main theorem on the complexity of SATC(B).

Theorem 3.8. Let B be a finite set of Boolean functions.

if ((B ⊆ R1) or (B ⊆ D) or (B ⊆ N)) then
SATC(B) ∈ L

else if ((B ⊆ E) or (B ⊆ V)) then
SATC(B) is ≤log

m -complete for NL
else if (B ⊆ L) then

SATC(B) is ≤log
m -complete for ⊕L

else if (B ⊆ M) then
SATC(B) is ≤log

m -complete for P
else

SATC(B) is ≤log
m -complete for NP.

There exists an algorithm which decides which of the cases above takes place.

Proof. 1. Let B ⊆ R1, and let C be a B-circuit. By Proposition 2.15 we obtain
fC ∈ [B ∪ {id}] ⊆ R1. Hence fC(1, . . . 1) = 1, and C ∈ SATC(B).

2. Let B ⊆ D, and let C be a B-circuit. By Proposition 2.15 we obtain fC ∈
[B ∪ {id}] ⊆ D. Hence fC(0, . . . , 0) = 1 or fC(1, . . . , 1) = 1, and C ∈ SATC(B).

3. If B ⊆ N = [{non, 1}] then, by Proposition 2.19, we get SATC(B) ≤log
m

SATC({non, 1}). For a {non, 1}-circuit C(x1, . . . , xn), there exists an a ∈ {0, 1}n
such that fC(a) = 1 iff the “backward path” from the output-gate either ends in
an input-gate or it ends in a constant 1-gate and has even length. This can be
checked in logarithmic space.

4. Let B 6⊆ R1, B 6⊆ N, and B ⊆ V. An inspection of Figure 2.2 yields [B] = V0

or [B] = V. Consequently 0 ∈ V0 ⊆ [B] ⊆ M, and by Proposition 3.6 we obtain
SATC(B) ≡log

m VALC(B). Now Theorem 3.4 yields that SATC(B) is ≤log
m -complete

for NL.
5. The case B 6⊆ R1, B 6⊆ N, and B ⊆ E is treated in the same way; just

replace V by E.
6. Let B 6⊆ R1, B 6⊆ N, and B ⊆ L. An inspection of Figure 2.2 yields

[B] = L0 or [B] = L. Consequently, aut ∈ L0 ⊆ [B ∪ {id}] and, by Theorem
2.11, we have B ⊆ L = [{aut, 1}] = [{aut, 1, id}]. By Proposition 2.19 we obtain
SATC({aut}) ≤log

m SATC(B) ≤log
m SATC({aut, 1}).

Upper bound. For an {aut, 1}-circuit C(x1, . . . , xn) let m0 be the number of paths
from the output gate to a constant 1-gate, and for i = 1, . . . , n, let mi be the
number of paths from the output gate to an xi-gate. Obviously, xi is fictive in fC
iff mi is even. Consequently, C is satisfiable iff at least one of the numbers m0,m1,
. . . ,mn is odd. This can be checked by a L⊕L computation. By Proposition 2.4
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we have L⊕L = ⊕L.
Lower Bound. We prove GOAP ≤log

m SATC({aut}) (cf. Theorem 2.5). Given a
directed acyclic graph G whose vertices have outdegree 0 or 2, a start vertex
s, and a target vertex t with outdegree 0. We construct in logarithmic space
an {aut}-circuit C with only one input variable x as follows: Every outdegree
2 vertex becomes an aut-gate, the vertex t becomes an x-gate, and every other
outdegree 0 vertex becomes an aut-gate with both incoming edges from an x-gate.
The vertex s becomes the output gate of C. If there is an odd number of paths
in G from s to t, then fC = id, otherwise fC is the unary constant 0 function.

7. Let B 6⊆ R1, B 6⊆ D, B 6⊆ V, B 6⊆ E, and B ⊆ M. An inspection of Figure 2.2
yields 0 ∈ S11 ⊆ [B] ⊆ M. By Proposition 3.6 we obtain SATC(B) ≡log

m VALC(B).
Now Theorem 3.4 yields that SATC(B) is ≤log

m -complete for P.
8. Let B 6⊆ R1, B 6⊆ D, B 6⊆ L, and B 6⊆ M. An inspection of Figure 2.2

yields S1 ⊆ [B]. Observe x ∧ y ∈ S1. By Theorem 3.5 we get that SATC(B) is
≤log

m -complete for NP. ut

Now we turn to the tautology problem. Remember that we defined (cf. Def-
inition 2.16) for a B-circuit C its dual-circuit dual(C) be the dual(B)-circuit
which arises from C by replacing every f -gate by a dual(f)-gate. Clearly,
fdual(C) = dual(fC). We will use this fact for the following duality principle.

Proposition 3.9. For any finite set B of Boolean functions, TAUTC(B) ≡log
m

SATC(dual(B)).

Proof. For a B-circuit C it holds that C ∈ TAUTC(B) iff fC ≡ 1 iff fdual(C) ≡
0 iff dual(C) ∈ SATC(dual(B)). ut

Using this proposition we are able to prove the main theorem on the complexity
of the tautology problem for B-circuits (TAUTC(B)).

Theorem 3.10. Let be B a finite set of Boolean functions.
if ((B ⊆ R0) or (B ⊆ D) or (B ⊆ N)) then

TAUTC(B) ∈ L
else if ((B ⊆ E) or (B ⊆ V)) then

TAUTC(B) is ≤log
m -complete for NL

else if (B ⊆ L) then
TAUTC(B) is ≤log

m -complete for ⊕L
else if (B ⊆ M) then

TAUTC(B) is ≤log
m -complete for P

else
TAUTC(B) is ≤log

m -complete for coNP.
There exists an algorithm which decides which of the cases above takes place.

Proof. The theorem follows from Theorem 3.8 and Proposition 3.9 by using the
facts dual(N) = N, dual(D) = D, dual(R0) = R1, dual(V) = E, dual(E) = V,
dual(L) = L, and dual(M) = M (cf. Proposition 2.12.3) as well as coL = L,
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Fig. 3.4. The complexity of SATC(B).
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coNL = NL, co⊕L = ⊕L, and coP = P (cf. Theorem 2.3). For example: If
B 6⊆ R0, B 6⊆ D, B 6⊆ N, and B ⊆ V then dual(B) 6⊆ R1, dual(B) 6⊆ D,
dual(B) 6⊆ N, and dual(B) ⊆ E. By Theorem 3.8 the problem SATC(dual(B)) is
≤log

m -complete for NL, and by Proposition 3.9 the problem TAUTC(B) is ≤log
m -

complete for coNL = NL. ut

3.4 Quantifiers

In this section we study the complexity of problems defined by B-circuits with
quantified input variables. For Q1, Q2, . . . , Qn ∈ {∃,∀} and k ≥ 1, we call
Q1Q2 . . . Qn a Σk-string (a Πk-string , resp.) if Q1 = ∃ (Q1 = ∀, resp.) and there
are at most k− 1 alternations between ∃ and ∀ in Q1Q2 . . . Qn. For a finite set B
of Boolean functions define:

Problem: ΣC
k (B)

Instance: A B-circuit C(x1, . . . , xn) and a Σk-string Q1 . . . Qn

Question: Q1x1 . . . Qnxn fC(x1, . . . , xn) = 1?

Problem: ΠC
k (B)

Instance: A B-circuit C(x1, . . . , xn) and a Πk-string Q1 . . . Qn

Question: Q1x1 . . . Qnxn fC(x1, . . . , xn) = 1?

Problem: QBFC(B)

Instance: A B-circuit C(x1, . . . , xn) and quantifiers Q1, . . . , Qn ∈ {∃,∀}
Question: Q1x1 . . . Qnxn fC(x1, . . . , xn) = 1?

Notice that ΣC
1 (B) = SATC(B) and ΠC

1 (B) = TAUTC(B) have already been
treated in the previous section. Here we concentrate on the case k ≥ 2.

It is obvious that ΣC
k (B) ∈ Σp

k, ΠC
k (B) ∈ Πp

k, and QBFC(B) ∈ PSPACE
for every finite set B of Boolean functions. The following results can easily be
derived from the literature, where these results are proved for the special case of
B-formulas.

Theorem 3.11. [SM73] Let B be a finite set of Boolean functions such that
[B] = BF, and let k ≥ 1. Then ΣC

k (B) is ≤log
m -complete for Σp

k, ΠC
k (B) is ≤log

m -
complete for Πp

k, and QBFC(B) is ≤log
m -complete for PSPACE.

In the following we show that for sets B of monotone Boolean functions the
complexity of ΣC

k (B), ΠC
k (B) and QBFC(B) can be related to the complexity of

VALC(B).

Proposition 3.12. Let B ⊆ M be a finite set of Boolean functions. Then
ΣC
k (B) ≡log

m ΠC
k (B) ≡log

m QBFC(B) ≡log
m VALC(B) for every k ≥ 2.
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Fig. 3.5. The complexity of TAUTC(B).
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Proof. First we show that ΣC
k (B) ≤log

m VALC(B), ΠC
k (B) ≤log

m VALC(B), and
QBFC(B) ≤log

m VALC(B). Let C(x1, . . . , xn) be a B-circuit and let Q1, . . . , Qn ∈
{∃,∀}. Defining ai = 1 iffQi = ∃ for 1 ≤ i ≤ n we obtainQ1x1Q2x2 . . . QnxnfC(x1,
. . . , xn) = 1 iff f(a1, . . . , an) = 1.

Next we show VALC(B) ≤log
m ΣC

k (B), VALC(B) ≤log
m ΠC

k (B), and VALC(B) ≤log
m

QBFC(B). Convert a B-circuit C(x1, . . . , xn) with an input string a ∈ {0, 1}n
into a B-circuit C ′ with two input-variables x and z as follows: Every input-gate
with value 0 becomes a z-gate, and every input gate with value 1 becomes an
x-gate. Finally note that (C, a) ∈ VALC(B) iff ∃x∀zC ′ ∈ ΣC

k (B) iff ∀z∃xC ′ ∈
ΠC
k (B) iff ∀z∃xC ′ ∈ QBFC(B), which can be checked by expanding ∃x∀zC ′ and
∀z∃xC ′ into a quantor-free representation. ut
Theorem 3.13. Let be B a finite set of Boolean functions, and let k ≥ 2.

if (B ⊆ N) then
ΣC
k (B),ΠC

k (B),QBFC(B) ∈ L
else if ((B ⊆ E) or (B ⊆ V)) then

ΣC
k (B),ΠC

k (B), and QBFC(B) are complete for NL
else if (B ⊆ L) then

ΣC
k (B),ΠC

k (B), and QBFC(B) are complete for ⊕L
else if (B ⊆ M) then

ΣC
k (B),ΠC

k (B), and QBFC(B) are complete for P
else

ΣC
k (B) is ≤log

m -complete for Σp
k

ΠC
k (B) is ≤log

m -complete for Πp
k

QBFC(B) is ≤log
m -complete for PSPACE.

There exists an algorithm which decides which of the cases above takes place.

Proof. 1. If B ⊆ N then, by Proposition 2.19 and Theorem 2.11, we get ΣC
k (B) ≤log

m

ΣC
k ({non, 1}), ΠC

k (B) ≤log
m ΠC

k ({non, 1}), and QBFC(B) ≤log
m QBFC({non, 1}).

For a {non, 1}-circuit C we have Q1x1Q2x2 . . . QnxnfC(x1, . . . , xn) = 1 iff the
“backward path” from the output gate either ends in an input gate with an
existentially quantified variable or it ends in a 1-gate and has even length. This
can be checked in logarithmic space.

2. Let B 6⊆ N and (B ⊆ V or B ⊆ E). By Proposition 3.12 we have ΣC
k (B) ≡log

m

ΠC
k (B) ≡log

m QBFC(B) ≡log
m VALC(B), and by Theorem 3.4 we obtain that these

problems are ≤log
m -complete for NL.

3. Let B 6⊆ N and B ⊆ L. An inspection of Figure 2.2 yields L2 ⊆ [B] ⊆ L.
Define h(x, y, z) =def x⊕y⊕z. By Theorem 2.11 we get h ∈ L2 and L = [{aut, 1}],
and by Proposition 2.19 we obtain ΣC

k ({h}) ≤log
m ΣC

k (B) ≤log
m ΣC

k ({aut, 1}),
ΠC
k ({h}) ≤log

m ΠC
k (B) ≤log

m ΠC
k ({aut, 1}), and QBFC({h}) ≤log

m QBFC(B) ≤log
m

QBFC({aut, 1}).
Upper bound. For an {aut, 1}-circuit C(x1, . . . , xn) let m0 be the number of paths
from the output gate to a constant 1-gate, and for i = 1, . . . , n, let mi be the
number of paths from the output gate to an xi-gate. Obviously, xi is fictive in fC
iff mi is even. We conclude:
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Q1x1 . . . QnxnfC(x1, . . . , xn) = 1 iff
iff either fC(0n) = 1 and x1, . . . , xn are fictive or there exists a non-fictive
xi such that Qi = ∃ and either i = n or xi+1, . . . , xn are fictive.

iff either m0 is odd and m1, . . . ,mn are even or there exists an i such that
Qi = ∃, mi is odd and either i = n or mi+1, . . . ,mn are even.

The latter condition can be checked by a L⊕L computation. By Theorem 2.4
we have L⊕L = ⊕L.
Lower Bound. By Theorem 2.5 it is sufficient to prove GOAP ≤log

m ΠC
2 ({h})

and GOAP ≤log
m ΣC

2 ({h}). Given a directed acyclic graph G whose vertices have
outdegree 0 or 2, a start vertex s, and a target vertex t with outdegree 0. We
construct in logarithmic space a {h}-circuit C with input variables x, y and
z as follows: Every outdegree 2 vertex becomes a h-gate where the additional
incoming edge comes from a z-gate. The vertex t becomes an x-gate, and every
other outdegree 0 vertex becomes a z-gate. It is not hard to see that fC(x, z) =
g(z) for some Boolean function g if the number of paths in G from s to t is
even and fC(x, z) = x ⊕ g(z) otherwise. Construct a {h}-circuit C ′ such that
fC′(x, y, z) = fC(x, z) ⊕ fC(y, z) ⊕ z (note that in the circuit which represents
fC(y, z) the original target-gate is labeled with y). Now, if the number of paths in
G from s to t is even then fC′(x, y, z) = z and consequently ∃z∀x∀yC ′ ∈ ΣC

2 ({h})
and ∀z∃x∃yC ′ 6∈ ΠC

2 ({h}). On the other hand, if the number of paths in G from
s to t is odd then fC′(x, y, z) = x⊕ y⊕ z and consequently ∀z∃x∃yC ′ ∈ ΠC

2 ({h})
and ∃z∀x∀yC ′ 6∈ ΣC

2 ({h}).
4. Let B 6⊆ V, B 6⊆ E, and B ⊆ M. By Proposition 3.12 we have ΣC

k (B) ≡log
m

ΠC
k (B) ≡log

m QBFC(B) ≡log
m VALC(B), and by Theorem 3.4 we obtain that these

problems are ≤log
m -complete for P.

5. Let B 6⊆ M and B 6⊆ L. An inspection of Figure 2.2 yields S02 ⊆ [B],
S12 ⊆ [B], or D1 ⊆ [B]. Define the functions h1(x, u, v, z) =def (x ∨ u) · v · z ∨ u,
h2(x, u, v, z) =def (x∨u)·v ·z∨u·z, and h3(x, u, v, z) =def (x∨u)·v ·z∨u·(x∨v∨z).
Observe that h1, h2, and h3 are 0-reproducing and 1-reproducing, that h1 is
0-separating (note that for any (x, y, v, z) ∈ h−1

1 (0) u = 0 holds), that h2 is 1-
separating (note that for any (x, y, v, z) ∈ h−1

2 (1) z = 1 holds), and that h3 is self-
dual (this can be checked by inspecting the truthtable). Hence h1 ∈ R0∩R1∩S0 =
S02, h2 ∈ R0 ∩ R1 ∩ S1 = S12, and h3 ∈ R0 ∩ R1 ∩ D = D1. Thus there exists an
h ∈ [B] such that h(x, u, 0, 1) = x ∨ u and h(x, u, v, z) ≤ u for all (v, z) 6= (0, 1).
Observe that B ∪ {0, 1} is complete. By Theorem 3.11 it is sufficient to prove
ΣC
k (B ∪ {0, 1}) ≤log

m ΣC
k (B) and ΠC

k (B ∪ {0, 1}) ≤log
m ΠC

k (B) for k ≥ 2 as well as
QBFC(B ∪ {0, 1}) ≤log

m QBFC(B), since the corresponding upper bounds clearly
hold. For a (B∪{0, 1})-circuit C we construct a B-circuit C1 with two new input
variables such that fC(W,X, Y ) = fC1(W,X, Y, 0, 1) where W,X, Y stand for sets
of variables. Now we construct a B-circuit C2 such that fC2(W,X, Y, u, v, z) =
h(fC1(W,X, Y, v, z), u, v, z). Hence we have fC2(W,X, Y, u, 0, 1) = fC(W,X, Y )∨u
and fC2(W,X, Y, u, v, z) ≤ u for (v, z) 6= (0, 1). We observe that for all w,
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∃X∀Y fC(W,X, Y ) iff ∃X∀Y ∀u(fC(W,X, Y ) ∨ u)
iff ∃v∃z∃X∀Y ∀ufC2(W,X, Y, u, v, z)

and
∀X∃Y fC(W,X, Y ) iff ∀u∀X∃Y (fC(W,X, Y ) ∨ u)

iff ∀u∀X∃Y ∃v∃zfC2(W,X, Y, u, v, z).

Since the set W can contain arbitrarily quantified variables this gives the
desired reductions. ut

3.5 Counting functions

In this section we study the complexity of functions which count the number of
satisfying inputs of a B-circuit. For any finite set B of Boolean functions define
the counting function as follows:

Problem: #C(B)

Instance: A B-circuit C

Output: #1(C)

It is obvious that #C(B) ∈ #P for every finite set B of Boolean functions.
The following results on the complexity of #C(B) can be found in or easily be
derived from the literature.

Theorem 3.14 ([Sim75]). Let B be a finite set of Boolean functions.

1. If [B] = BF then #C(B) is ≤log
m -complete for #P.

2. #C({et, vel, non}) restricted to circuits in conjunctive normal form is ≤log
m -

complete for #P.

Other examples for #P complete functions can be found in [Pap94], pp. 442f.
To study the complexity of #C(B) in the general case we will use the following

propositions which are analogues to Proposition 2.19 and Proposition 3.7 and
which are proved in the same way.

Proposition 3.15. Let B and B′ be finite sets of Boolean functions.

1. If B ⊆ 〈B′〉 then #C(B) ≤log
m #C(B′).

2. If 〈B〉 = 〈B′〉 then #C(B) ≡log
m #C(B′).

Proposition 3.16. If B is a finite set of Boolean functions containing et then
#C(B ∪ {1}) ≤log

m #C(B).

Proof. Note that the reduction in proof of Proposition 3.7 is parsimonious. ut
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Fig. 3.6. The complexity of QBFC(B).
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We will use the following obvious duality principle.

Proposition 3.17.
Let B be a finite set of Boolean functions, then #C(B) ≤log

1-T #C(dual(B)) and
#C(dual(B)) ≤log

1-T #C(B).

Proof. This is a direct consequence of Proposition 2.18. ut

Next we prove a lemma about the representation of #P functions by #C(B)
functions.

Lemma 3.18. Let B be a finite set of Boolean functions.

1. If [B] ⊇ S1 then #C(B) is ≤log
m -complete for #P, i.e., for every function

f ∈ #P there exists a logspace computable function h generating B-circuits
such that f(x) = #1(h(x)).

2. If [B] ⊇ S10 or [B] ⊇ S00 then #C(B) is ≤log
1-T-complete for #P. More specif-

ically, for every function f ∈ #P there exist logspace computable functions
h1, h2 generating B-circuits and logspace computable functions h′1, h

′
2 such that

f(x) = #1(h1(x))− h′1(x) = h′2(x)−#1(h2(x)).

Proof. 1. Because of et ∈ S1 and by Proposition 3.16 we obtain #C(B ∪{1}) ≤log
m

#C(B). Observe [B ∪ {1}] = BF. Now Theorem 3.14 yields that #C(B) is ≤log
m -

complete for #P.
2. Let [B] ⊇ S10. Because of et ∈ S10 and Proposition 3.16 we obtain

#C(B∪{1}) ≤log
m #C(B). By Figure 2.2 and Proposition 2.11 we have {et, vel} ⊆

M1 = [S10 ∪ {1}] ⊆ [B ∪ {1}]. By Proposition 3.15.1 it is sufficient to prove
the statement for B = {et, vel}, and by Theorem 3.14.2 it is sufficient to prove
#C({et, vel, non})(C) = #C({et, vel})(h1(C)) − h′1(C) = h′2(C) − #C({et, vel})
(h2(C)) for suitable logspace computable functions h1, h

′
1, h2, h

′
2 and all circuits

C in conjunctive normal form. Let C(x1, . . . , xn) be such a circuit. Choose new
variables y1, . . . , yn, and let C1(x1, . . . , xn, y1, . . . , yn) be that circuit which arises
from C when every xi is replaced with yi. By defining C2 =def

∧n
i=1(xi ↔ yi)∧C1

we obtain C2 ≡ C3∧C4 where C3 =def

∨n
i=1(xi∧yi) and C4 =def

∧n
i=1(xi∨yi)∧C1.

We conclude #1(C) = #1(C2) = #1(C3 ∧ C4) = #1(C3 ∨ C4) − #1(C3) =
#1(C3 ∨ C4)− (4n − 3n).
On the other hand, by Theorem 2.3 we know that for every function f ∈ #P
there exist a function f ′ ∈ #P and a logspace computable function g such that
f(x) = g(x)−f ′(x) for all x. By the above we get a logspace computable function
h, which generates B-circuits and a logspace computable function g′ such that
f ′(x) = #1(h(x))− g′(x) for all x. Hence f(x) = (g(x) + g′(x))−#1(h(x)) for all
x.
Now let [B] ⊇ S00. By Proposition 2.12 we obtain [dual(B)] = dual([B]) ⊇
dual(S00) = S10. By the S10-case we get for every f ∈ #P logspace computable
functions h′1, h

′
2, h1, h2 such that f(x) = #1(h1(x)) − h′1(x) = h′2(x) −#1(h2(x))

where h1(x) and h2(x) are dual(B)-circuits. Let n1 (n2, resp.) be the num-
ber of variables associated with h1(x) (h2, resp.). By Proposition 2.18 we get
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f(x) = (2n1 − #1(dual(h1(x))) − h′1(x) = (2n1 − h′1(x)) − #1(dual(h1(x))) and
f(x) = h′2(x)− (2n2 −#1(dual(h2(x))) = #1(dual(h2(x)))− (2n2 − h′2(x)) where
dual(h1(x)) and dual(h2(x)) are B-circuits. ut

Now we are able to prove our main result on the complexity of #C(B).

Theorem 3.19. Let be B a finite set of Boolean functions.

if ((B ⊆ N) or (B ⊆ D)) then
#C(B) ∈ FL

else if ((B ⊆ E) or (B ⊆ V)) then

#C(B) is ≤log
1-T -complete for FLNL

‖ [O(log n)]

else if (B ⊆ L) then

#C(B) is ≤log
1-T -hard for FL⊕L

‖ [1] and

#C(B) ∈ FL⊕L
‖ [2]

else if (B ⊆ R1) then

#C(B) is ≤log
1-T -complete for #P,

but not ≤log
m -complete for #P

else if (B ⊆ M) then

#C(B) is ≤log
1-T -complete for #P.

If #C(B) is ≤log
m -complete for #P then P = NP.

else
#C(B) is ≤log

m -complete for #P.
There exists an algorithm which decides which of the cases above takes place.

Proof. 1. If B ⊆ N then, by Theorem 2.11, we obtain B ⊆ [{non, 1}] and hence
#C(B) ≤log

m #C({non, 1}). Let C be a {non, 1}-circuit with n input variables.
Follow the “backward path” from the output gate as long as an indegree 0 gate is
reached. If this is a 1-gate and the path has even length then #1(C) = 2n. If this
is a 1-gate and the path has odd length then #1(C) = 0. If this is an input-gate
then #1(C) = 2n−1. This algorithm works in logspace.

2. If B ⊆ D and C(x1, . . . , xn) is a B-circuit then #1(C) = 2n−1.
3. Let B 6⊆ N and B ⊆ E. By Figure 2.2 and Theorem 2.11 we ob-

tain [{et}] = E2 ⊆ [B] ⊆ E = [{et, 0, 1}]. By Proposition 3.15 we obtain
#C({et}) ≤log

m #C(B) ≤log
m #C({et, 0, 1}).

Upper bound. For a non-constant {et, 0, 1}-circuit C(x1, . . . , xn) we have fC(x1,
. . . , xn) =

∧
i∈IC xi, where IC =def {i | xi is non-fictive in fC}, and hence #1(C) =

2n−|IC |. It is sufficient to prove that the function C → |IC | is in FLNL
‖ [O(log n)],

since we can check whether C represents a constant function by two NL-queries
(cf. Theorem 3.8 and Theorem 3.10). Observe that xi is non-fictive iff fC(1n) = 1
and fC(1i−101n−i) = 0. By Theorem 3.4 the problem of evaluating C is in NL
and hence the set SC =def {(C, i) | the i-th bit of |IC | is 1} is in LNL = NL
(cf. Proposition 2.4). Consequently, |IC | = cSC (C, 0)cSC (C, 1) . . . cSC (C,m) where
m = dlog ne.
Lower bound. For a function f ∈ FLNL

‖ [O(log n)] there exists logspace com-
putable functions g1 and g′2 such that g′2(x) = (G0, . . . , Gm) and f(x) =
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g1(cGAP(Gm) . . . cGAP(G1)cGAP(G0), x), where m =def dc log ne for suitable c > 0.
(Note that GAP is complete for NL, hence we can replace any NL-oracle by
GAP.) Now let f ′(G1, . . . , Gk) =def

∑k
i=1 cGAP(Gi). In the following we will

show that f ≤log
1-T f ′ and f ′ ≤log

1-T #C({et}), hence #C({et}) is ≤log
1-T-hard for

FLNL
‖ [O(log n)].

f ≤log
1-T f ′: Since f(x) = g1(cGAP(Gm) . . . cGAP(G0), x) = g1(

∑m
i=0 cGAP(Gi) · 2i,

x) = g1(
∑m

i=0

∑2i

j=1 cGAP(Gi), x), there is a logspace computable function g2,
which simulates g′2 in a suitable way, such that

g2(x) = (G0, G1, G1, G2, . . . , Gm, Gm, . . . , Gm︸ ︷︷ ︸
2m−times

)

holds. Therefore f(x) = g1(f ′(g2(x)), x), showing that f ≤log
1-T f

′.
f ′ ≤log

1-T #C({et}): From every argument Gi construct an {et}-circuit C ′i with
input variables ui and z as follows. Every outdegree 2 vertex of Gi becomes an
et-gate, the start vertex of Gi becomes the output gate of C ′i, the target vertex
of Gi becomes an ui-gate, and every other outdegree 0 vertex of Gi becomes a
z-gate. Finally let Ci =def C

′
i ∧ z. Obviously, if Gi ∈ GAP then fCi(ui, z) = ui∧ z,

otherwise fCi(ui, z) = z. Now construct an {et}-circuit C in such a way that
C(u1, . . . , uk, z) =

∧k
i=1 Ci(ui, z). Consequently, fC has

∑k
i=1 cGAP(Gi) + 1 non-

fictive variables and hence #C({et})(C) = 2k−
∑k
i=1 cGAP(Gi), i.e.,

∑k
i=1 cGAP(Gi) =

k − log2 #C({et})(C) and therefore f ′ ≤log
1-T #C({et}).

4. Let B 6⊆ N and B ⊆ V. By inspecting Figure 2.2 we obtain that V2 ⊆ [B] ⊆
V. Moreover we know by Proposition 2.12 that E2 = dual(V2) ⊆ dual([B]) =
[dual(B)] ⊆ dual(V) = E. Hence #C(dual(B)) is ≤log

1-T-hard for FLNL
‖ [O(log n)].

By Proposition 3.17 we obtain that #C(B) is ≤log
1-T-hard for FLNL

‖ [O(log n)]. Since

FLNL
‖ [O(log n)] is closed under ≤log

1-T-reductions (use recomputation to show this
(cf. [BDG95], Lemma 3.35)) the upper bound follows.

5. Let B 6⊆ N, B 6⊆ D, and B ⊆ L. A look at Figure 2.2 shows that
L0 ⊆ [B] ⊆ L or L1 ⊆ [B] ⊆ L.
Let L0 ⊆ [B] ⊆ L. By Theorem 2.11 we obtain [{aut}] ⊆ [B] ⊆ [{aut, 1}], and by
Proposition 3.15 we obtain #C({aut}) ≤log

m #C(B) ≤log
m #C({aut, 1}).

Upper bound. Let C be an {aut, 1}-circuit with n input variables. There are
three different cases. If fC has a non-fictive variable then #1(C) = 2n−1. Other-
wise fC is a constant. If fC = 0 (fC = 1, resp.) then #1(C) = 0 (#1(C) = 2n,
resp.) Which of these cases takes place can be found out by two queries. To check
whether fC has non-fictive variables use the query “do there exists an i such that
fC(0n) 6= fC(0i−110n−i)?” and to distinguish the cases fC = 0 and fC = 1 we
have additionally to ask “fC(0n) = 1?”. However, by Theorem 3.4 these are ⊕L
queries (notice that L⊕L = ⊕L by Proposition 2.4).
Lower bound. It is sufficient to prove that there exist logspace computable func-
tions g1 and g2 such that cGOAP(G) = g1(#C({aut})(g2(G))), where cGOAP is the
characteristic function of GOAP (cf. Theorem 2.5). Given a directed acyclic graph
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G whose vertices have outdegree 0 or 2, a start vertex s, and a target vertex t
with outdegree 0. We construct an {aut}-circuit C with two input variables x
and z as follows: Every outdegree 2 vertex becomes an aut-gate, the vertex t
becomes an aut-gate with incoming edges from an x-gate and a z-gate, and every
outdegree 0 vertex becomes an aut-gate with both incoming edges from a z-gate.
The start-vertex s becomes the output gate of C. If there is an odd number of
paths from s to t in G then fC(x, z) = x ⊕ z and hence #1(C) = 2. Otherwise
fC(x, z) = 0 and hence #1(C) = 0. Consequently cGOAP(G) = 1

2
·#C({aut})(C),

which shows the needed reduction.
Now let L1 ⊆ [B] ⊆ L. By Proposition 2.12 we obtain L0 = dual(L1) ⊆
dual([B]) = [dual(B)] ⊆ dual(L) = L, and by the above we get that #C(dual(B))
is ≤log

1-T-hard for FL⊕L
‖ [1]. With Proposition 3.17 we conclude that #C(B) is ≤log

1-T-

hard for FL⊕L
‖ [1]. Since FL⊕L

‖ [2] is closed under ≤log
1-T-reductions, we conclude by

Proposition 3.15 that #C(B) ∈ FL⊕L
‖ [2].

6. Let B 6⊆ D, B 6⊆ V, B 6⊆ E, B 6⊆ L, and B ⊆ R1. An inspection of Figure
2.2 shows that [B] ⊇ S10 or [B] ⊇ S00. By Lemma 3.18 we obtain that #C(B)
is ≤log

1-T-complete for #P. Because of B ⊆ R1 we have #C(B)(C) > 0 for every
B-circuit C. Hence #C(B) cannot be ≤log

m -complete for #P.
7. Let B 6⊆ D, B 6⊆ V, B 6⊆ E, B 6⊆ L, and B ⊆ M. As above we obtain that

#C(B) is ≤log
1-T-complete for #P. Assume that #C(B) is ≤log

m -complete for #P.
For an arbitrary A ∈ NP there exists an f ∈ #P such that x ∈ A iff f(x) > 0
for every x. Since #C(B) is ≤log

m -complete for #P there exists a logspace com-
putable function h such that f(x) = #C(B)(h(x)) for every x. Consequently,
x ∈ A iff #C(B)(h(x)) > 0 iff h(x) ∈ SATC(B). Because of B ⊆ M we obtain
A ∈ P by Theorem 3.8.

8. Let B 6⊆ D, B 6⊆ L, B 6⊆ R1, and B 6⊆ M. An inspection of Figure 2.2
shows that [B] ⊇ S1. By Lemma 3.18 we obtain that #C(B) is ≤log

m -complete for
#P. ut

In the case that L0 ⊆ [B] ⊆ L or L1 ⊆ [B] ⊆ L there is an oddity left. Here the
lower bound and the upper bound do not coincide in contrast to all other cases
discussed so far. Therefore one might ask whether it is possible to improve the
situation. For this assume that the upper bound is not optimal and we have to
improve it to FL⊕L

‖ [1]. Now note that for any {aut, 1}-circuit C(x1, . . . , xn) one of

the three cases #1(C) = 2n−1, #1(C) = 0 or #1(C) = 2n holds. Therefore we had
to handle 3 cases with one answer by a ⊕L-oracle, since as long as L 6= ⊕L holds,
it is not clear how we can gain additional information (like satisfiability, circuit
value, etc) in the logspace base computation. Hence it seems to be a complicated
task to improve the upper bound.

Another possibility would be to improve the lower bound. For this we have to
show that #C({aut, 1}) is ≤log

1-T-hard for FL⊕L
‖ [2]. For this note that two oracle

queries result in four possible computation paths. Therefore we have to code four
possible different situations into one {aut, 1}-circuit and ask for the number of
satisfying assignments of this circuit. As mentioned above we only have three
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different possibilities for the number of satisfying assignments of an {aut, 1}-
circuit. Therefore it is not clear how to do the reduction.

In both cases it is not clear how to improve the upper bound respectively lower
bound and hence we are forced to give a different lower bound and upper bound
in this special case.

3.6 The threshold problem

In this section we will study the complexity of the threshold problem, which is
defined for every finite set B of Boolean functions as follows:

Problem: THRC(B)

Instance: A B-circuit C and k ≥ 0

Question: Is #1(C) > k?

Obviously, THRC(B) ∈ PP.
The following result on the complexity of THRC(B) can easily be derived from

the literature, where it is proved for the special case of {et, vel, non}-formulas.

Theorem 3.20. [Gil77] For a finite set B of Boolean functions, if [B] = BF then
THRC(B) is even ≤log

m -complete for PP.

Note that this completeness result also holds for {et, vel, non}-formulas in 3 -CNF.

Now we are ready to prove the main theorem on the complexity of THRC(B):

Theorem 3.21. Let be B a finite set of Boolean functions.

if ((B ⊆ N) or (B ⊆ D)) then
THRC(B) ∈ L

else if ((B ⊆ E) or (B ⊆ V)) then
THRC(B) is ≤log

m -complete for NL
else if (B ⊆ L) then

THRC(B) is ≤log
m -complete for ⊕L

else
THRC(B) is ≤log

m -complete for PP.
There exists an algorithm which decides which of the cases above takes place.

Proof. 1. If B ⊆ N or B ⊆ D then, by Theorem 3.19, we have #C(B) ∈ FL and
consequently PP(B) ∈ L.

2. LetB 6⊆ N andB ⊆ E. By Theorem 3.19 we obtain #C(B) ∈ FLNL
‖ [O(log n)]

and hence THRC(B) ∈ LNL = NL (cf. Proposition 2.4).
For the lower bound it is sufficient to prove GAP ≤log

m THRC({et}) (cf. Theo-
rem 2.5). As in Item 3 (second part) of the proof of Theorem 3.19 we construct
for a graph G an {et}-circuit C with the following property: If G ∈ GAP then
fC(u, z) = u∧ z, and fC(u, z) = z otherwise. Hence, if G ∈ GAP then #1(C) = 2
and (C, 2) ∈ THRC({et}). Otherwise #1(C) = 1 and (C, 2) 6∈ THRC({et}).
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3. The case B 6⊆ N and B ⊆ V is done in an analogous manner.
4. The case B 6⊆ N, B 6⊆ D, and B ⊆ L is also done analogously using the

construction in Item 5 of the proof of Theorem 3.19 and the problem GOAP.
5. Let B 6⊆ D, B 6⊆ V, B 6⊆ E, and B 6⊆ L. An inspection of Figure 2.2 shows

that [B] ⊇ S10 or [B] ⊇ S00 For a set A ∈ PP there exists a f ∈ #P such
that (x, k) ∈ A iff f(x) ≥ k. By Lemma 3.18 there exist logspace computable
functions g and h such that f(x) = #1(h(x)) − g(x). Consequently, (x, k) ∈
A iff #1(h(x)) ≥ g(x) + k iff (h(x), g(x) + k) ∈ THRC(B). ut

3.7 Tree-like circuits

In the previous sections we studied problems related to circuits. What can be
said about tree-like B-circuits, i.e., B-formulas?

Informally we can say that all completeness results for complexity classes be-
yond P remain valid for B-formulas. For classes inside P this is not true since the
evaluation problem of B-formulas can be easier than the evaluation problem for
B-circuits. It is known that the formula value problem of {et, vel, non}-formulas
is complete for NC1, the class of problems which can be solved by {et, vel, non}-
circuits of polynomial size (i.e., number of gates), bounded fan-in and logarith-
mic depth (i.e., length of the longest path from an input-gate to the output-gate
(cf. [Bus87])).

As a brief example of how to deal with formulas we will shortly study the sat-
isfiability problem and the tautology problem for B-formulas, defined as follows:

Problem: SATF(B)

Instance: A B-formula H(x1, . . . , xn)

Question: Exists a a ∈ {0, 1}n such that fH(a) = 1?

Problem: TAUTF(B)

Instance: A B-formula H(x1, . . . , xn)

Question: For all a ∈ {0, 1}n hold fH(a) = 1?

One might think that it is easy to prove that if S1 ⊆ [B], then SATF(B) is
≤log

m -complete for NP by using the techniques of Proposition 3.7 and Theorem
3.8. But there is one major drawback. Let B = {g}, where g(x, y) = x∧y is a base
of S1. Clearly g(x, g(x, y)) = et(x, y). Therefore we have a B-formula representing
the et-function, but this B-formula contains the variable x more than one time.
If we simply use this B-formula to transform an {et, vel, non}-formula into a B-
formula an exponential “blow-up” of the resulting formula can happen. (Note
that we were able to avoid this problem in the SATC(B)-case by using the fact
that all gates in a B-circuit can have a fan-out of more than 1.) Hence we cannot
hope to find a suitable reduction function, which produces the needed B-formula.
Because of this, it is not clear how to show that SAT ≤log

m SATF(S1) holds.
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Fig. 3.7. The complexity of THRC(B).
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For this problem there are two completely different ways out. First we can use
a restricted version of SAT, being still complete for NP, as a starting point, such
that this problem does not occur. We will use this technique in Section 5.3, where
we focus on B-formulas. For this we use the problem 3 -SAT to avoid the blow-up
by inserting brackets into CNF-formulas in a special way.

The other loophole hinges on a beautiful result achieved by Lewis (see [Lew79]):

Proposition 3.22 ([Lew79]). Let B be a complete set of Boolean functions,
i.e., [B] = BF. Then the following three statements hold:

1. There is a B-formula N(x) ≡ x having only one occurrence of x.
2. There is a B-formula E(x, y) ≡ x ∧ y having only one occurrence of each of

the variables x, y.
3. There is a B-formula V (x, y) ≡ x ∨ y having only one occurrence of each of

the variables x, y.

Clearly by using such formulas we can avoid the problem of exponential blow-
up and the resulting B-formula is computable in logspace. Now, by using Propo-
sition 3.22 we can proof the following lemma, which was stated the first time in
[Lew79]:

Lemma 3.23 ([Lew79]). Let B be a finite set of Boolean functions. If S1 ⊆ [B]
then SATF(B) is ≤log

m -complete for NP.

Proof. Use the B-formulas N , E and V from Proposition 3.22 to show SAT ≤log
m

SATF(B). For this note that [B ∪ {1}] = BF. Using Proposition 3.7, adapted to
the formula case, the statement follows. ut

Using this result we can give the following dichotomy result for SATF(B),
which shows the succinctness of circuits.

Theorem 3.24. Let B be a finite set of Boolean functions.

if ( S1 ⊆ [B]) then
SATF(B) is ≤log

m -complete for NP
else

SATF(B) ∈ L.

Proof. The first part of this theorem is given by Lemma 3.23. Now following
Theorem 3.8 we have only to prove that SATF(B) ∈ L in the cases that SATC(B)
is NL-complete, ⊕L-complete or P-complete, because SATF(B) ≤log

m SATC(B)
and hence if SATC(B) ∈ L also SATF(B) ∈ L. Using Lemma 4.11 from Chapter
4 this can be shown as follows:

Case 1: [B] = V0, [B] = V, [B] = E0, [B] = E or S11 ⊆ [B] ⊆ M
Let H be a B-formula. We know that H(x1, . . . , xn) ∈ SATF(B) iff (H, 1n) ∈
VALF(B) (cf. Proposition 3.6). Since {et, vel, non} is a complete set of Boolean
functions, there is by Proposition 3.22 a logspace computable {et, vel, non}-
formula H ′(x1, . . . , xn) such that fH = fH′ . Hence H ∈ SATF(B) iff
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(H ′, 1n) ∈ VALF({et, vel, non}), which shows that SATF(B) ≤log
m VALF({et,

vel, non}). Using the result of Buss ([Bus87]) that VALF({et, vel, non}) ∈ NC1

and the fact that the logspace-closure of NC1 is clearly L we conclude that
SATF(B) ∈ L.

Case 2: [B] = L0 or [B] = L
Let H(x1, . . . , xn) be an arbitrary B-formula. Since B is linear, the Boolean
function represented by H can be written as fH(x1, . . . , xn) = a0 ⊕ (a1 ∧
x1) ⊕ · · · ⊕ (an ∧ xn), where a0, . . . , an ∈ {0, 1}. Note that a0 = fH(0n) and
ai = fH(0n−110i−n) ⊕ a0 for 1 ≤ i ≤ n. Since H ∈ SATF(B) iff a0 = 1 or
there is an i such that ai = 1, we conclude that SATF(B) ∈ LL = L, because
the formula value problem can be solved by a L-computation in this case
(cf. Lemma 4.11). ut

Note that we also can make use of Lemma 4.11 in the cases [B] = V0, [B] = V,
[B] = E0 or [B] = E.

By adapting Proposition 3.9 and the fact that L is closed under complement
we achieve the following dichotomy theorem for TAUTF(B).

Theorem 3.25. Let B be a finite set of Boolean functions.

if ( S0 ⊆ [B]) then
TAUTF(B) is ≤log

m -complete for coNP
else

TAUTF(B) ∈ L.

Similarly we can achieve results for quantified formulas, counting functions
related to B-formulas and the threshold problem.



4. Equivalence- and isomorphism-problems

4.1 Introduction

Besides the problems in Chapter 3, other interesting problems in the theory of
Boolean functions were studied. Two of them are the properties of being equal
or isomorphic (i.e. is there a permutation of the variables of the first function,
such that this modified function is equal to the second function). This question
has a history going back to the 19th century (see [BRS98] for a list of early refer-
ences). Moreover in [BRS98] other generalized equality relations for propositional
formulas were studied.

In the case of unrestricted formulas it is known that the Boolean equivalence-
problem for formulas and circuits is coNP-complete, whereas only very weak
lower and upper bounds for the Boolean isomorphism-problem are known. By a
reduction from the tautology problem, which is coNP-complete, a lower bound
for the isomorphism problem can be easily derived. An upper bound for the
isomorphism problem is clearly Σp

2 , since a Σp
2-algorithm can existentially guess

a permutation of variables and universally check the functions for equality.
In [AT00] it was shown that the complement of the Boolean isomorphism-problem
for formulas and circuits has an one-round interactive proof, where the verifier has
access to an NP oracle. In that paper a better lower bound for the isomorphism-
problem of unrestricted propositional formulas was given, too. More precisely
Agrawal and Thierauf have shown that UOCLIQUE ≤p

m ISOF holds, where by
ISOF we denote the isomorphism-problem of unrestricted propositional formulas
and by UOCLIQUE the problem of checking whether the largest clique in a
graph is unique. It is known that UOCLIQUE is ≤p

m-hard for 1-NP, a superclass
of coNP, where 1-NP denotes the class of all problems, whose solution can be
found on exactly one path in nondeterministic polynomial time. Additionally it
is known that the graph isomorphism-problem can be reduced to the Boolean
isomorphism-problem for unrestricted Boolean formulas (see [BRS98]).

In this chapter we focus on the complexity of checking whether two given
B-formulas represent the same Boolean function (equivalence-problem for B-
formulas) or represent isomorphic Boolean functions (isomorphism-problem for
B-formulas). Moreover these problems are studied for B-circuits too. We restrict
ourselves to these two equality relations of Boolean functions, because they corre-
late with a restricted superposition (note that superposition includes the permu-
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tation of variables) and therefore they nicely fit into the context of Post’s closed
classes.

We give, where possible, tight upper and lower bounds for the isomorphism-
problem of B-formulas and B-circuits. In all other cases we show the coNP-
hardness for the isomorphism-problem, which is as good as the trivial lower bound
in the unrestricted case. Note that the upper bound Σp

2 holds for our B-formulas
and B-circuits as well, since we restrict ourselves to possibly non-complete sets of
Boolean functions used as connectors for our generalized propositional formulas
or circuits. For the equivalence-problem we always give tight upper and lower
bounds, showing that this problem is in L, NL-complete, ⊕L-complete or coNP-
complete, depending on the used set B.

4.2 Preliminaries

Definition 4.1. Let B be a finite set of Boolean functions, C(x1, . . . , xn) =
(P,E, o, α, β, γ) be a B-circuit and π : {1, . . . , n} → {1, . . . , n} be a permuta-
tion. For convenience we use π(xi) =def xπ(i) for a propositional variable xi, where
1 ≤ i ≤ n. We define π(C) =def (P,E, o, α, β′, γ), where β′(v) =def β(v) iff
β(v) 6∈ {x1, . . . , xn} and β′(v) =def π(β(v)) otherwise. As a shortcut for this def-
inition we use π(C(x1, . . . , xn)) = C(xπ(1), . . . , xπ(n)), which symbolizes that in
π(C) the variables xi are replaced by xπ(i).

The Boolean equivalence- and isomorphism relation forB-circuits is introduced
as follows:

C1 ≡ C1 ⇔def fC1(a1, . . . , an) = fC2(a1, . . . , an) for all a1, . . . , an ∈ {0, 1}.
C1
∼= C1 ⇔def There exists a permutation π : {1, . . . , n} → {1, . . . , n}

such that π(C1) ≡ C2.

These definitions will be analogously used for B-formulas.

Note that in both cases the sets of input-variables of C1 and C2 are equal. This
can be easily achieved by adding syntactically fictive variables when needed. By
this definition it is clear that H1 ≡ H2 iff for all assignments I it holds that
I |= H1 ⇐⇒ I |= H2. Moreover note that C1 ≡ C2 iff dual(C1) ≡ dual(C2)
and H1 ≡ H2 iff dual(H1) ≡ dual(H2).

Now we are ready to define the Boolean equality-problem for B-circuits:

Problem: EQC(B)

Instance: Two B-circuits C1 and C2

Question: Is C1 ≡ C2?

Similarly we define the Boolean equality-problem EQF(B) for B-formulas. Next
we introduce the isomorphism-problem for B-circuits:

Problem: ISOC(B)
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Instance: Two B-circuits C1 and C2

Question: Is C1
∼= C2?

Analogously we define the Boolean isomorphism-problem ISOF(B) for B-
formulas.

Since we must be able to talk about assignments of π(H) for a B-formula H
and a permutation π, we define the assignment π(I) as follows:

Definition 4.2. Let π : {1, . . . , n} → {1, . . . , n} be a permutation and I : {x1,
. . . , xn} → {0, 1} be an assignment such that I(xi) = ai, where ai ∈ {0, 1} and
1 ≤ i ≤ n. We define the assignment π(I) by π(I)(xπ(i)) =def ai.

Proposition 4.3. Let H1(x1, . . . , xn) ∼= H2(x1, . . . , xn) via π : {1, . . . , n} →
{1, . . . , n} and I be an assignment which is compatible with H1 and H2. Then
the following two statements hold:

1. I |= π(H1) iff I |= H2

2. I |= H1 iff π(I) |= H2

Proof. Let H1
∼= H2 via permutation π. Hence we know that π(H1) ≡ H2 and

therefore fπ(H1)(a1, . . . , an) = fH2(a1, . . . , an) for all a1, . . . , an ∈ {0, 1}. Because
of this we conclude for an assignment I that I |= π(H1) iff I |= H2.

Now let I, I ′ be assignments which are defined as follows: I(xi) =def ai and
I ′(π(xi)) =def ai, where 1 ≤ i ≤ n. Clearly I |= H1 iff fH1(a1, . . . , an) = 1 iff
I ′ |= π(H1), because we get π(H1) from H1 by substituting the variables xi by
π(xi). Because of the first statement we conclude that I ′ |= π(H1) iff I ′ |= H2

and therefore I |= H1 iff I ′ |= H2. Finally note that I ′ = π(I), which proves the
second statement. ut
Clearly this proposition holds for B-formulas as well as for B-circuits.

Example 4.4. Let H1(x1, x2) = x1 ∧ (¬x1 ∨ ¬x2) and H2(x1, x2) = ¬x1 ∧ x2.
Obviously H1 6≡ H2, since (1, 0) |= H1 and (1, 0) 6|= H2. Note that (1, 0) ((0, 1),
resp.) is the only satisfying assignment forH1 (H2, resp.). The permutation π(1) =
2 and π(2) = 1 shows that H1

∼= H2. Now we know that π(H1) = x2∧(¬x2∨¬x1)
and (0, 1) is the only model for π(H1) by the first part of Proposition 4.3. Since
(1, 0) is the only model of H1, we know that π((1, 0)) = (0, 1) is the only model
of H2 by the second part of Proposition 4.3.

The next proposition shows, that if we permute the variables of a given B-circuit
or B-formula then the number of satisfying assignments remains equal.

Proposition 4.5. Let H1(x1, . . . , xn) and H2(x1, . . . , xn) be B-formulas such that
H1
∼= H2. Then #1(H1) = #1(H2) and #0(H1) = #0(H2) hold.

Proof. Let H1(x1, . . . , xn) ∼= H2(x1, . . . , xn). Hence there exists a permutation
π : {1, . . . , n} → {1, . . . , n} such that π(H1) ≡ H2. By Proposition 4.3 we know
that I |= H1 iff π(I) |= H2. Now we conclude that |{I | I |= H1}| = |{π(I) |
π(I) |= H2}| = |{I ′ | I ′ |= H2}|. Therefore #1(H1) = #1(H2). By the facts
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#0(H1) = 2n −#1(H1) and #0(H2) = 2n −#1(H2) the second statement follows
immediately. ut

It is obvious that the proof of Proposition 4.5 works for B-circuits too. Note
that the opposite direction of Proposition 4.5 does not hold, as x⊕ y 6∼= ¬(x⊕ y)
and #1(x⊕ y) = #1(¬(x⊕ y)) = 2 shows.

Next we give an upper bound for the equivalence-problem of B-formulas and
B-circuits. Later we will see that this upper bound is tight for B-circuits and
B-formulas in some cases. Moreover we show that the equivalence-problem and
the isomorphism-problem for B-circuits and dual(B)-circuits (B-formulas and
dual(B)-formulas, resp.) is of equal complexity.

Proposition 4.6. Let B be a finite set of Boolean functions. Then the following
three statements hold:

1. EQF(B) ≤log
m EQC(B) and ISOF(B) ≤log

m ISOC(B),
2. EQF(B) ∈ coNP and EQC(B) ∈ coNP,
3. EQF(B) ≡log

m EQF(dual(B)) and EQC(B) ≡log
m EQC(dual(B)),

4. ISOF(B) ≡log
m ISOF(dual(B)) and ISOC(B) ≡log

m ISOC(dual(B)).

Proof. Statement 1 follows directly from Definition 2.13, since B-formulas are
defined to be fan-out 1 B-circuits.

For Statement 2 note that EQC(B) is in coNP, since we can guess an assign-
ment nondeterministically and accept iff the values of the two evaluated circuits
coincide for the guessed assignment. Because coNP is closed under logspace re-
ductions EQF(B) ∈ coNP follows from Statement 1.

For Statement 3 we show that EQF(B) ≤log
m EQF(dual(B)) (EQC(B) ≤log

m

EQC(dual(B)), resp.) by g((H1, H2)) =def (dual(H1), dual(H2)) (g((C1, C2)) =def

(dual(C1), dual(C2)), resp.). First note that g ∈ FL, since B is a finite set and
dual(H1) as well as dual(H2) (dual(C1) as well as dual(C2), resp.) can be calcu-
lated by simply replacing the function-symbols ofH1 andH2 (gate-types of C1 and
C2, resp.) by the function-symbol (gate-type, resp.) of their dual function. Clearly
dual(H1) and dual(H2) are dual(B)-formulas (dual(C1) and dual(C2) are dual(B)-
circuits, resp.). Let fH1 and fH2 (fC1 and fC2 , resp.) be n-ary Boolean func-
tions, then fH1(α) = fH2(α) iff fdual(H1)(α) = dual(fH1)(α) = dual(fH2)(α) =
fdual(H2)(α) (fC1(α) = fC2(α) iff fdual(C1)(α) = dual(fC1)(α) = dual(fC2)(α) =
fdual(C2)(α), resp.) for all α ∈ {0, 1}n, showing that EQF(B) ≤log

m EQF(dual(B))
(EQC(B) ≤log

m EQC(dual(B)), resp.) holds.
For the other direction note that for an arbitrary B-formula H (B-circuit C,
resp.) it holds that dual(dual(H)) = H (dual(dual(C)) = C, resp.). By using
the same argument as above, clearly EQF(dual(B)) ≤log

m EQF(dual(dual(B))) =
EQF(B) (EQC(dual(B)) ≤log

m EQC(dual(dual(B))) = EQC(B), resp.). Therefore
EQF(B) ≡log

m EQF(dual(B)) and EQC(B) ≡log
m EQC(dual(B)).

To prove Statement 4 we use the fact that ISOF(B) ≤log
m ISOF(dual(B)) by

g(H1, H2) =def (dual(H1), dual(H2)). For this note that for a suitable permutation
π the following holds: H1

∼= H2 iff π(H1) ≡ H2 iff dual(π(H1)) ≡ dual(H2)
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iff π(dual(H1)) ≡ dual(H2) iff dual(H1) ∼= dual(H2). The rest of Statement 4
follows by the arguments used in Statement 3. ut

Similar to problems related with one B-circuit we can check properties related
with two B-circuits. For this we define:

E(B) =def {(C1, C2) | C1 and C2 are B-circuits such that
fC1 and fC2 have property E } .

This gives the following proposition which is closely related with Proposition
2.19.

Proposition 4.7. Let E be a property of Boolean functions, and let B and B′ be
finite sets of Boolean functions.

1. If B ⊆ 〈B′〉 then E(B) ≤log
m E(B′).

2. If 〈B〉 = 〈B′〉 then E(B) ≡log
m E(B′).

Proof. Use the arguments given in proof of Proposition 2.19. ut

4.3 Main results

In case [B] ⊆ N there exists a unique path from the output-gate to some
input-gate or a gate which is labeled by a constant function. This is because
every allowed Boolean function has one non-fictive variable at most. Hence the
equivalence- and isomorphism-problem for such kinds of B-formulas and B-
circuits is easy to solve. The next lemma will show this more precisely:

Lemma 4.8. Let B be a finite set of Boolean functions and [B] ⊆ N. Then
EQC(B) ∈ L, EQF(B) ∈ L, ISOC(B) ∈ L and ISOF(B) ∈ L.

Proof. To show EQC(B) ∈ L and ISOC(B) ∈ L note that all functions in B
have at most 1 non-fictive variable. Therefore there exists a unique path from the
output-gate to a ’target-gate’, which is either an input-gate or a gate computing
a constant. Let s1 (s2, resp.) be the output gate of C1 (C2, resp.) and t1 (t2, resp.)
the ’target’-gate in C1 (C2, resp.).

For the first part of the statement we argue that (C1, C2) ∈ EQC(B) iff either
t1 and t2 are marked by the same variable and the number modulo 2 of non-gates
in the paths is the same or t1 and t2 compute the same (different, resp.) constant
function and the number modulo 2 of non-gates in the two paths is the same (is
different, resp.). This can be checked in logarithmic space. Moreover we know by
Proposition 4.6.1 that EQF(B) ≤log

m EQC(B) holds, showing that EQF(B) ∈ L.
For the second part we mention that (C1, C2) ∈ ISOC(B) iff either t1 and

t2 are marked by a variable and the number modulo 2 of non-gates in the paths
is the same or both are marked by a constant and C1 ≡ C2. Again this can
be checked in logarithmic space as seen above. The statements ISOF(B) ∈ L
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immediately follows by Proposition 4.6.1 and the fact that L is closed under log-
space reductions. ut

If we restrict ourselves to vel-functions (et-functions, resp.) we will prove that
the isomorphism- and equivalence-problem for such B-circuits is complete for
NL. For this we use the graph accessibility problem (GAP), which is well known
to be NL-complete. If we only use exclusive-or functions for our B-circuits we
will show that the equivalence- and isomorphism-problem is ⊕L-complete. To
show this we use the ⊕L-complete graph odd accessibility problem (GOAP) as a
starting point.
In contrast to these results we will later show that the corresponding problems
for B-formulas can be decided in deterministic logarithmic space.

Theorem 4.9. Let B be a finite set of Boolean functions. If E2 ⊆ [B] ⊆ E
or V2 ⊆ [B] ⊆ V, then EQC(B) and ISOC(B) are ≤log

m -complete for NL. If
L2 ⊆ [B] ⊆ L, then EQC(B) and ISOC(B) are ≤log

m -complete for ⊕L.

Proof. First let V2 ⊆ [B] ⊆ V.
Upper bound: By Theorem 3.4 we know that VALC(B) ∈ NL. Let C1(x1, . . . , xn)
and C2(x1, . . . , xn) be two B-circuits. The Boolean functions described by C1 and
C2 can be expressed as follows: fC1(x1, . . . , xn) = a0 ∨ (a1 ∧ x1) ∨ · · · ∨ (an ∧ xn)
and fC2(x1, . . . , xn) = b0 ∨ (b1 ∧ x1) ∨ · · · ∨ (bn ∧ xn), where a1, . . . , an, b1, . . . ,
bn ∈ {0, 1}.
Clearly (C1, C2) ∈ EQC(B) iff either a0 = b0 = 1 or a0 = b0 = 0 and ai = bi
for 1 ≤ i ≤ n. The values of ai and bi, where 0 ≤ i ≤ n, can be determined by
using the following fact: a0 = 0 (b0 = 0, resp.) iff fC1(0n) = 0 (fC2(0n) = 0,
resp.) and ai = 0 (bi = 0, resp.) for 1 ≤ i ≤ n iff a0 = 0 (b0 = 0, resp.) and
fC1(0i−110n−i) = 0 (fC2(0i−110n−i) = 0, resp.). This can be checked in logarithmic
space with the help of VALC(B) as an oracle. Since VALC(B) ∈ NL we conclude
by using Proposition 2.4 that EQC(B) is in LNL = NL.
Similarly (C1, C2) ∈ ISOC(B) iff either a0 = b0 = 1 or |{i | ai = 1, 1 ≤ i ≤
n}| = |{i | bi = 1, 1 ≤ i ≤ n}| and a0 = b0 = 0. Since the values of ai and bi can
be obtained by an NL-computation and the cardinality of {i | ai = 1, 1 ≤ i ≤ n}
and {i | bi = 1, 1 ≤ i ≤ n} can be compared and stored in logarithmic space, we
conclude that ISOC(B) ∈ LNL = NL by Proposition 2.4.

Lower bound: We show that GAP ≤log
m EQC(B) and GAP ≤log

m ISOC(B)
hold. According to Proposition 4.7 it is sufficient to show GAP ≤log

m EQC({vel})
and GAP ≤log

m ISOC({vel}). Given a directed acyclic graph G whose uniquely
numbered vertices have outdegree 0 or 2, a start vertex s and a target vertex t,
having outdegree 0. Next construct two similar B-circuits C1 and C2 as follows:
Every vertex having outdegree 2 becomes a vel-gate, the vertex s becomes the
output-gate of C1 and C2. Every outdegree 0 vertex which is not the target
vertex t becomes an input-gate marked by xj, where j is the unique number of
this outdegree 0 vertex. Now the target-vertex t is replaced by the small circuit
vel(y, y′) in C1 and with y in C2. Finally we add another input-gate y′′ in C1
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and two another input-gates y′ and y′′ in C2, which are not connected with other
gates.
The variable y′′ is a (syntactically) fictive variable in C1(xj1 , . . . , xjm , y, y

′, y′′)
and both y′ and y′′ are (syntactically) fictive variables in C2(xj1 , . . . , xjm , y, y

′, y′′),
where (m+1) is the number of outdegree 0 vertices in G. Obviously, if there exists
no path from s to t then (C1, C2) ∈ EQC(B) and therefore (C1, C2) ∈ ISOC(B)
by π = id, since the variables y, y′ and y′′ are fictive in both C1 and C2. Next
assume that there is a path between s and t. In this case y, y′ are not fictive
in C1 and y is not fictive in C2, but y′′ is fictive in C1 and y′, y′′ are fictive in
C2. Therefore the number of non-fictive variables in C1 is bigger by one than the
number of non-fictive variables in C2 and we conclude that #1(C1) > #1(C2).
By Proposition 4.5 we know that C1 6∼= C2 and therefore (C1, C2) 6∈ ISOC(B) and
in particular (C1, C2) 6∈ EQC(B). Because the described transformation can be
calculated in logarithmic space this establishes the reduction. By Theorem 2.5
the statement follows.

Now let E2 ⊆ [B] ⊆ E. In this case we have already shown that EQC(dual(B))
and ISOC(dual(B)) are ≤log

m -complete for NL. Using Proposition 4.6 the second
statement follows immediately.

Finally let L2 ⊆ [B] ⊆ L.
Upper bound: Let C1 and C2 be B-circuits. The Boolean functions described
by the B-circuits C1(x1, . . . , xn) and C2(x1, . . . , xn) can be expressed as fol-
lows: fC1(x1, . . . , xn) = a0 ⊕ (a1 ∧ x1) ⊕ · · · ⊕ (an ∧ xn) and fC2(x1, . . . , xn) =
b0 ⊕ (b1 ∧ x1)⊕ · · · ⊕ (bn ∧ xn), where a1, . . . , an, b1, . . . , bn ∈ {0, 1}.
Clearly (C1, C2) ∈ EQC(B) iff ai = bi for 0 ≤ i ≤ n. Similar to the case
V2 ⊆ [B] ⊆ V the values ai and bi for 0 ≤ i ≤ n can be determined by a
⊕L-calculation, since we know by Theorem 3.4 that VALC(B) ∈ ⊕L. In par-
ticular a0 = fC1(0, . . . , 0), b0 = fC2(0, . . . , 0), ai = fC1(0i−110n−i) ⊕ a0 and
bi = fC2(0i−110n−i)⊕ b0, where 1 ≤ i ≤ n. Hence EQC(B) ∈ L⊕L and by Propo-
sition 2.4 EQC(B) ∈ ⊕L.
For the upper bound of ISOC(B) we argue that (C1, C2) ∈ ISOC(B) iff a0 = b0

and |{i | ai = 1, 1 ≤ i ≤ n}| = |{i | bi = 1, 1 ≤ i ≤ n}|. Because the values ai and
bi can be obtained by a ⊕L-computation we end up with ISOC(B) ∈ L⊕L = ⊕L
by Proposition 2.4.

Lower bound: We show that GOAP ≤log
m EQC(B) and GOAP ≤log

m ISOC(B)
hold. Because of Proposition 4.7 it is sufficient to show that GOAP ≤log

m EQC({h})
and GOAP ≤log

m ISOC({h}), where h(x, y, z) =def x⊕y⊕z is a base of L2 (cf. The-
orem 2.11). Now construct a {h}-circuit C1 as follows: Every outdegree 2 vertex
becomes a h-gate, where an additional incoming edge is connected to a z input-
gate. The target vertex is replaced by the small circuit y ⊕ y′ ⊕ y′′. Every other
outdegree 0 vertex becomes a z input-gate. Clearly this circuit computes g(z) for
some suitable Boolean function g iff G ∈ GOAP and y⊕y′⊕y′′⊕g(z) otherwise.
Secondly build a {h}-circuit C2 in the same way, but replace the target vertex by
a y-gate and add y′, y′′ as syntactically fictive variables. Hence C2 computes g(z)
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iff G ∈ GOAP and y ⊕ g(z) otherwise. This gives G ∈ GOAP iff C1 and C2

compute g(z) iff (C1, C2) ∈ EQC({h}). Additionally we know if G ∈ GOAP then
(C1, C2) ∈ ISOC({h}) via π = id. Now let G 6∈ GOAP. In this case the number
of non-fictive variables in C1 is bigger than the number of non-fictive variables in
C2, showing that C1 6∼= C2 and GOAP ≤log

m ISOC({h}). ut

Theorem 3.4 shows that in the cases V2 ⊆ [B] ⊆ V and E2 ⊆ [B] ⊆ E the
circuit value problem is complete for NL and in the case L2 ⊆ [B] ⊆ L that
it is complete for ⊕L. The next two lemmas show that this does not hold for
B-formulas as well. In contrast to the circuit value problem the formula value
problem VALF(B) is in L in all these three cases, which gives us a hint that the
equality- and isomorphism-problem for B-formulas is easier in this cases.

Lemma 4.10. Let B be a finite set of Boolean functions. Then the following the
statements hold.

1. If V2 ⊆ [B] ⊆ V then VALF(B) ≤log
m VALF({vel}).

2. If E2 ⊆ [B] ⊆ E then VALF(B) ≤log
m VALF({et}).

3. If L2 ⊆ [B] ⊆ L then VALF(B) ≤log
m VALF({aut}).

Proof. First let V2 ⊆ [B] ⊆ V. Note that any function f ∈ B can be represented
as

f(x1, . . . , xm) = a0 ∨ (a1 ∧ x1) ∨ · · · ∨ (am ∧ xm)
= a0 ∨

∨
ai=1

xi, where a0, . . . , am ∈ {0, 1}.

Let (H,α) be an instance of VALF(B). We construct a {vel, 0, 1}-formula H ′ as
follows: Every function-symbol R in the B-formula H is replaced by a {vel, 0, 1}-
formula R′, which represents the same Boolean function. If the function-symbol
R has fictive inputs, the edges connected with these inputs will be deleted in
H ′. Since each variable of R occurs only once in R′, the size of H ′ is polyno-
mially bounded in the size of H. Therefore (H,α) ∈ VALF(B) iff (H ′, α) ∈
VALF({vel, 0, 1}) and VALF(B) ≤log

m VALF({vel, 0, 1}), because the described
transformation can be calculated in logarithmic space (note that B is finite).
Now replace all occurrences of 0 (1, resp.) by a new variable, call the resulting
formula H ′′ and construct a new assignment α′ by assigning 0 (1, resp.) to all
these variables. Clearly (H ′, α) ∈ VALF({vel, 0, 1}) iff (H ′′, α′) ∈ VALF({vel}),
showing that VALF(B) ≤log

m VALF({vel}).
Let E2 ⊆ [B] ⊆ E (L2 ⊆ [B] ⊆ L, resp.). By using the same technique

as above, the fact that any function f ∈ B can be represented as f(x1, . . . ,
xm) = a0∧(a1∨x1)∧· · ·∧(am∨xm) (f(x1, . . . , xm) = a0⊕(a1∧x1)⊕· · ·⊕(am∧xm),
resp.) and replacing all symbols for vel by the symbol for et (aut, resp.) the result
follows. ut

Lemma 4.11. Let B be a finite set of Boolean functions such that V2 ⊆ [B] ⊆ V,
E2 ⊆ [B] ⊆ E or L2 ⊆ [B] ⊆ L, then VALF(B) ∈ L.
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Proof. For the first case let B be a finite set of Boolean functions such that
V2 ⊆ [B] ⊆ V holds. As shown in Lemma 4.10 it is sufficient to restrict ourselves
to {vel}-formulas. Since B-formulas are defined to be B-circuits having a fan-out
of at most 1, they form a tree, where the leafs are the input-variables and the
root is the output-gate t. Clearly we can check in logarithmic space, whether
for a given gate s there is a non-fictive path from s to t. Now let H(x1, . . . ,
xn) be a {vel}-formula and α = (a1, . . . , an) ∈ {0, 1}n be an assignment for H.
Since (H,α) ∈ VALF(B) iff there exists an input-variable xi, where 1 ≤ i ≤ n,
such that ai = 1 and there exists a non-fictive path from xi to t, we can check
(H,α) ∈ VALF(B) in deterministic logarithmic space.

The second case E2 ⊆ [B] ⊆ E can be shown similarly to the previous case.
For this observe that (H,α) 6∈ VALF(B) iff there exists an input-gate xi, where
1 ≤ i ≤ n, such that αi = 0 and there exists a non-fictive path for xi to t.
Again this can be checked in logarithmic space. The statement follows, since
deterministic logarithmic space is obviously closed under complement.

For the third case let B be a finite set of Boolean functions such that L2 ⊆
[B] ⊆ L. As shown in Lemma 4.10 it is sufficient to use VALF({aut}) as an upper
bound. Obviously (H,α) ∈ VALF({aut}) iff the number of input-variables xi,
where 1 ≤ i ≤ n, such that ai = 1 and there is a non-fictive path which starts at
xi and ends at t, is odd. (Note that more than one input-gate can be labeled with
the same variable xi, since all gates have a fan-out of at most 1. Hence it can be
the case that we have to consider the same variable more than once.) Again this
can be checked in logarithmic space, showing the third statement. ut

The next theorem clarifies the succinctness of circuits. When EQC(B) and
ISOC(B) are NL-complete or ⊕L-complete, the formula case is still easy to solve,
as we will see in the Theorem below.

Theorem 4.12. Let B be a finite set of Boolean functions. If E2 ⊆ [B] ⊆ E,
V2 ⊆ [B] ⊆ V or L2 ⊆ [B] ⊆ L, then EQF(B) ∈ L and ISOF(B) ∈ L.

Proof. In the proof of Theorem 4.9 we showed that EQC(B) ∈ LVALC(B) and
ISOC(B) ∈ LVALC(B). By the same construction we see that EQF(B) ∈ LVALF(B)

and ISOF(B) ∈ LISOF(B). By using Proposition 2.4 and Lemma 4.11 the statement
follows. ut

It is well known that NC1 ⊆ L (see [Vol99]), where NC1 is the class
of problems which can be solved by {et, vel, non}-circuits of polynomial size
(i.e., the number of gates), bounded fan-in and logarithmic depth (i.e., the
length of the longest path from an input-gate to the output-gate). Moreover
Buss showed in [Bus87], that VALF({et, vel, non}) is complete for NC1. Hence
VALF({vel}) ∈ NC1 and VALF({et}) ∈ NC1. If VALF({aut}) ∈ NC1 holds too,
then Lemma 4.12 can be refined to EQF(B) ∈ LNC1

and ISOF(B) ∈ LNC1
.

Moreover the result for EQF({vel}) can be easily improved by the following ob-
servation: The L base-computation used in the proof of Theorem 4.12 can be
replaced by an AC0 computation, where AC0 is the class of problems which



66 4. Equivalence- and isomorphism-problems

can be solved by {vel, et, non}-circuits of polynomial size, unbounded fan-in and
constant depth, because two {vel}-circuits C1 and C2, such that fC1(x1, . . . ,
xn) = a0∨(a1∧x1)∨· · ·∨(an∧xn) and fC2(x1, . . . , xn) = b0∨(b1∧x1)∨· · ·∨(bn∧xn)
are equal (i.e., C1 ≡ C2) iff (a0 ↔ 1∧b0 ↔ 1)⊕ (a0 ↔ 0∧b0 ↔ 0∧

∧n
i=1 ai ↔ bi)

is satisfied. Hence EQF({vel}) can be solved by an AC0-circuit equipped with

VALF({vel}) oracle-gates. This shows that EQF({vel}) ∈ (AC0)
VALF({vel}) ⊆

(AC0)
NC1

⊆ (NC1)
NC1

= NC1 (for the last equality see [Vol99], Theorem
4.21). A similar result can be achieved for EQF({et}).

The next lemma shows that it is possible to construct for every monotone
3 -DNF-formula an equivalent (B ∪ {0, 1})-formula in logarithmic space, if (B ∪
{0, 1}) is a base for M. This means that we are able to avoid an exponential
blow-up of the size of the resulting (B ∪ {0, 1})-formula.

Lemma 4.13. Let k > 0 be fixed and B be a finite set of Boolean functions, such
that E(x, y, v, u) and V (x, y, v, u) are B-formulas, fulfilling E(x, y, 0, 1) ≡ x ∧ y
and V (x, y, 0, 1) ≡ x∨y. Then, for any monotone k-DNF formula H(x1, . . . , xn),
there exists a B-formula H ′(x1, . . . , xn, u, v) such that H ′(x1, . . . , xn, 0, 1) ≡ H(x1,
. . . , xn). Moreover, H ′ can be computed from H in logarithmic space.

Proof. Since {∧,∨} forms a basis for all monotone functions (without constants),
we can trivially transform every monotone k-DNF formula into a (B ∪ {0, 1})-
formula. In the case of a given monotone k-DNF formula with m clauses, to avoid
an exponential blow-up while replacing the m ∨’s, we insert parentheses in such a
way that we get a tree of depth logm, and then replace each ∨ by an appropriate
(B ∪ {0, 1})-formula. Finally, the k − 1 ∧’s inside the clauses are replaced by
suitable B-formulas. ut

In the following we show how to build two monotone formulas out of a 3 -DNF
formula, such that these two monotone formulas are equivalent iff the 3 -DNF
formula is a tautology.

Lemma 4.14. Let B be a finite set of Boolean functions such that {vel, et} ⊆
[B]. Then there exist logspace computable B-formulas H1 and H2, which can be
computed out of H, such that H ∈ 3 -TAUT iff H1 ≡ H2 iff H1

∼= H2 iff
#1(H1) = #1(H2).

Moreover the formulas H1 and H2 do not represent constant Boolean functions
(i.e., H1 6≡ 0, H1 6≡ 1, H2 6≡ 0 and H1 6≡ 1).

Proof. In the following we describe the needed logspace computable function.
For this let H(x1, . . . , xn) be a 3 -DNF formula (remember that all instances of
3 -TAUT are in 3-DNF) and define V− =def {xj1 , xj2 , . . . , xjm} the set of variables
that occur negated in H. If V− 6= ∅, then let H ′(x1, . . . , xn, yj1 , yj2 , . . . , yjm) be
the monotone formula that emerges when we replace all negated variables by new
unnegated variables {yj1 , yj2 , . . . , yjm} in H and define the monotone formula H ′′

as follows: H ′′(x1, . . . , xn, yj1 , yj2 , . . . , yjm) =def

∧m
l=1(xjl ∨yjl). By Lemma 4.13 we
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can construct B-formulas H1 and H2 in logarithmic space, such that H1 ≡ H ′∧H ′′
and H2 ≡ H ′′. In the case that V− = ∅ let H1 ≡ x ∧ y and H2 ≡ x ∨ y.

First let V− = ∅. Since any monotone 3 -DNF formula Φ(x1, . . . , xn) (note that
we are not allowed to use constants) is not a tautology, because Φ is clearly not
satisfied by the assignment {x1 := 0, x2 := 0, . . . , xn := 0}, we give x∧y and x∨y
as the output. This fulfills the statement, since x ∧ y 6≡ x ∨ y, x ∧ y 6∼= x ∨ y and
#1(x ∧ y) 6= #1(x ∨ y).

For the following claim let V− 6= ∅:
Claim: H ∈ 3 -TAUT iff H1 ≡ H2 iff H1

∼= H2 iff #1(H1) = #1(H2).
“⇒”: Let I be an arbitrary assignment which is compatible with H1 and H2. If
there exists an i such that I/{xji} = {xji := 0} and I/{yji} = {yji := 0} then
I 6|= H1 and I 6|= H2, where 1 ≤ i ≤ n. In the other case we know that for all
I/{xji} = {xji := aji} and I/{yji} = {yji := bji} aji = 1 or bji = 1 holds. Clearly
I |= H ′ since H ∈ 3 -TAUT and we simply replaced all negated variables H by
positive variables. To be more precise, remember that all assignments I, having
the property that for all xji ∈ V− either I/{xji} = {xji := 1} and I/{yji} =
{yji := 0} or I/{xji} = {xji := 0} and I/{yji} = {yji := 1} holds, simulate an
assignment I ′ =def I/{x1, . . . , xn} on H correctly. In the case that there exists an
1 ≤ i ≤ m such that I/{xji} = {xji := 1} and I/{yji} = {yji := 1} we conclude
that I |= H ′ more than ever, because we have replaced any negated variable by
a positive one. Moreover I |= H ′′, giving us that I |= H1 and I |= H2. Hence
H1 ≡ H2, #1(H1) = #1(H2) and H1

∼= H2 with π = id.

“⇐”: Let H(x1, . . . , xn) 6∈ 3 -TAUT, then there exists an assignment I ′ such that
I ′ 6|= H and I ′/{xj1 , xj2 , . . . , xjm} = {xj1 := aj1 , xj2 := aj2 , . . . , xjm := ajm}. We
define I as follows: I =def I

′ ∪ {yj1 := 1− aj1 , yj2 := 1− aj2 , . . . , yjm := 1− ajm}.
Clearly I 6|= H ′, because for all xji ∈ V− we know that either I/{xji} = {xji := 1}
and I/{yji} = {yji := 0} or I/{xji} = {xji := 0} and I/{yji} = {yji := 1}, which
simulates the original assignment I ′ on H. Hence I 6|= H1, but I |= H2, which
shows that H1 6≡ H2 and #1(H1) < #1(H2). To show this note that if I |= H1

then I |= H2. Hence #1(H1) ≤ #1(H2). Now assume that #1(H1) = #1(H2) and
therefore #0(H1) = #0(H2) hold. We know that there is an assignment I 6|= H1,
but I |= H2. Because of this there must exists an assignment I ′′ such that I ′′ |= H1,
but I ′′ 6|= H2, because #0(H1) = #0(H2). This is a contradiction, showing that
#1(H2) 6= #1(H1) and by Proposition 4.5 we conclude that H1 6∼= H2.

Finally we summarize H ∈ 3 -TAUT iff H1 ≡ H2, H ∈ 3 -TAUT iff
#1(H2) = #1(H1) and H ∈ 3 -TAUT iff H1

∼= H2. Additionally note that
(0, . . . , 0) 6|= H1 and (0, . . . , 0) 6|= H2, but (1, . . . , 1) |= H1 and (1, . . . , 1) |= H2.
Hence the formulas H1 and H2 clearly can not represent a constant function. ut

The property that the formulas H1 and H2 can not represent a constant
Boolean function will play an important role in the proof of Theorem 4.17. More-
over we will make use of the special form of H1 and H2 there.
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Theorem 4.15. Let B be a finite set of Boolean functions, such that et ∈ [B]
and vel ∈ [B ∪ {1}]. Then EQF(B) is ≤log

m -complete for coNP and ISOF(B) is
≤log

m -hard for coNP.

Proof. Upper bound for EQF(B) is given by Proposition 4.6.2.
Lower bound: Since et ∈ [B] and vel ∈ [B ∪ {1}] there exists B-formulas
E(x, y) and V (x, y, z), such that E(x, y) ≡ x ∧ y and V (x, y, 1) ≡ x ∨ y.
Hence by Lemma 4.14 there exists logspace computable B-formulas H1(x1, . . . ,
xn, yj1 , . . . yjm , u) and H2(x1, . . . , xn, yj1 , . . . yjm , u) such that H ∈ 3 -TAUT iff
H1(x1, . . . , xn, yj1 , . . . yjm , 1) ≡ H2(x1, . . . , xn, yj1 , . . . yjm , 1) and H ∈ 3 -TAUT iff
H1(x1, . . . , xn, yj1 , . . . yjm , 1) ∼= H2(x1, . . . , xn, yj1 , . . . yjm , 1).

Claim 1: H ∈ 3 -TAUT iff (H1 ∧ u,H2 ∧ u) ∈ EQF(B).
For all assignments I such that I/{u} = {u := 0} it holds that I 6|= H1 ∧ u
and I 6|= H2 ∧ u. For the next argument let I be an assignment which has
the property I/{u} = {u := 1}. Clearly H1(x1, . . . , xn, yj1 , . . . , yjm , 1) ∧ 1 ≡
H1(x1, . . . , xn, yj1 , . . . , yjm , 1) and H2(x1, . . . , xn, yjm , . . . , yjl , 1) ∧ 1 ≡ H2(x1,
. . . , xn, yjm , . . . , yjl , 1), which shows that H ∈ 3 -TAUT iff (H1∧u,H2∧u) ∈
EQF(B) by Lemma 4.14.

Claim 2: H ∈ 3 -TAUT iff (H1 ∧ u,H2 ∧ u) ∈ ISOF(B).
By Claim 1 we know that if H ∈ 3 -TAUT then H1∧u ≡ H2∧u and therefore
H1∧u ∼= H2∧u via π = id. Conversely if H 6∈ 3 -TAUT, then by Lemma 4.14
#1(H1(x1, . . . , xn, yj1 , . . . , yjm , u) ∧ u) = #1(H1(x1, . . . , xn, yj1 , . . . , yjm , 1)) 6=
#1(H2(x1, . . . , xn, yj1 , . . . , yjm , 1)) = #1(H2(x1, . . . , xn, yj1 , . . . , yjm , u)∧u) and
by using Proposition 4.5 we conclude H1 ∧ u 6∼= H2 ∧ u.

Because this reduction can be calculated in logarithmic space we deduce that
3 -TAUT ≤log

m EQF(B) and 3 -TAUT ≤log
m ISOF(B). The statement follows by

Proposition 2.6. ut

Corollary 4.16. Let B be a set of Boolean functions such that S10 ⊆ [B] or
S00 ⊆ [B]. Then EQF(B) and EQC(B) are ≤log

m -complete for coNP and ISOF(B)
and ISOC(B) are ≤log

m -hard for coNP.

Proof. First let S10 ⊆ [B]. By Theorem 2.11 we know that g(x, y, z) = x∧ (y ∨ z)
is a base of S10. Since g(x, y, y) = x ∧ y and g(1, x, y) = x ∨ y we know that
et ∈ [B] and vel ∈ [B ∪ {1}]. By Theorem 4.15 we conclude that EQF(B) is
≤log

m -complete for coNP and ISOF(B) is ≤log
m -hard for coNP. Now let S00 ⊆ [B].

By inspecting Figure 2.2 we obtain that S10 ⊆ [B] as well, or S10 ⊆ dual([B]).
Use Proposition 4.6.3 and 4.6.4 to complete the proof for EQF(B) and ISOF(B).
Finally, by Proposition 4.6.1 and 4.6.2 the circuit case follows immediately. ut

Now only two closed classes of Boolean functions are left: D and D2. In this
case the construction of Theorem 4.15 cannot work, since we see by Figure 2.2
that neither et ∈ D2 nor vel ∈ D2 (note that E2 6⊆ D2 and V2 6⊆ D2). Hence we
have no possibility to use the et-function to force an additional variable to 1 for
all satisfying assignments. In the following we will see that this is not needed.
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Instead we use two new variables as a replacement for 0 and 1 and show, that in
any case we get either two formulas representing the same constant function or
formulas which match to Lemma 4.14.

Theorem 4.17. Let B be a finite set of Boolean functions such that D2 ⊆ [B] ⊆
D. Then EQF(B) and EQC(B) are ≤log

m -complete for coNP and ISOF(B) and
ISOC(B) are ≤log

m -hard for coNP.

Proof. Upper bound for EQF(B) and EQC(B) is given by Proposition 4.6.2.
Lower bound for EQC(B). By Theorem 2.11 we know that g(x, y, z) = (x ∧ y) ∨
(x∧ z)∨ (y ∧ z) is a base for D2. Clearly g(x, y, 0) = x∧ y and g(x, y, 1) = x∨ y,
showing that et, vel ∈ [B ∪ {0, 1}]. Hence there exists B-formulas E(x, y, z) and
V (x, y, z) (not necessarily different) such that E(x, y, 0) ≡ V (x, y, 0) ≡ x∧ y and
V (x, y, 1) ≡ E(x, y, 1) ≡ x ∨ y.

By using Lemma 4.14 we can build two B-formulas H1(x1, . . . , xn, yj1 , yj2 , . . . ,
yjm , u, v) and H2(x1, . . . , xn, yj1 , yj2 , . . . , yjm , u, v), where u is the replacement for
the constant 0 and v is the replacement for 1, such that H(x1, . . . , xn) ∈ 3 -TAUT
iff H1(x1, . . . , xn, yj1 , yj2 , . . . , yjm , 0, 1) ≡ H2(x1, . . . , xn, yj1 , yj2 , . . . , yjm , 0, 1).

Since the transformation of H into H1 and H2 can be calculated in logarithmic
space, we only have to prove that

H ∈ 3 -TAUT iff (V (u,E(H1, v, u), v), V (u,E(H2, v, u), v)) ∈ EQF(B).

Note that it is possible that a variable in V or E occurs more than one
time. Despite that possibility, Lemma 4.14 takes care that the length of H1

and H2 is polynomially bounded in the length of H and V (u,E(H1, v, u), v),
V (u,E(H2, v, u), v)) can be calculated in logarithmic space.

In the following let I be an arbitrary assignment compatible with H1 and H2.

Case 1: I/{u, v} = {u := 0, v := 0}.
In this case clearly V (x, y, 0) ≡ E(x, y, 0) ≡ x ∧ y, V (u,E(H1(x1, . . . ,
xn, yj1 , yj2 , . . . , yjm , u, v), v, u), v) ≡ u ∧ (H ′1 ∧ v) ≡ 0 and V (u,E(H2(x1, . . . ,
xn, yj1 , yj2 , . . . , yjm , u, v), v, u), v) ≡ u ∧ (H ′2 ∧ v) ≡ 0, where H ′1 and H ′2 are
the formulas that emerge out of H1 and H2 by substituting u and v by 0.
Therefore I 6|= V (u,E(H1, v, u), v) and I 6|= V (u,E(H2, v, u), v).

Case 2: I/{u, v} = {u := 1, v := 1}.
Similarly to Case 1 we know that V (x, y, 1) ≡ E(x, y, 1) ≡ x ∨ y. Hence
V (u,E(H1(x1, . . . , xn, yj1 , yj2 , . . . , yjm , u, v), v, u), v) ≡ u ∨ (H ′1 ∨ v) ≡ 1 and
V (u,E(H2(x1, . . . , xn, yj1 , yj2 , . . . , yjm , u, v), v, u), v) ≡ u∨ (H ′2∨v) ≡ 1, where
H ′1 and H ′2 are the formulas that emerge out of H1 and H2 by substituting u
and v by 1. Therefore I |= V (u,E(H1, v, u), v) and I |= V (u,E(H2, v, u), v).

Case 3: I/{u, v} = {u := 0, v := 1}.
In this case we have V (u,E(H1, v, u), v) ≡ u ∨ (H1 ∧ v) ≡ H1(x1, . . . ,
xn, yj1 , yj2 , . . . , yjm , 0, 1), V (u,E(H2, v, u), v) ≡ u ∨ (H2 ∧ v) ≡ H2(x1, . . . ,
xn, yj1 , yj2 , . . . , yjm , 0, 1) and by Lemma 4.14 we know that H ∈ 3 -TAUT
iff H1(x1, . . . , xn, yj1 , yj2 , . . . , yjm , 0, 1) ≡ H2(x1, . . . , xn, yj1 , yj2 , . . . , yjm , 0, 1).
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Hence we conclude H ∈ 3 -TAUT iff V (u,E(H1, v, u), v) ≡ V (u,E(H2, v, u),
v) in this case.

Case 4: I/{u, v} = {u := 1, v := 0}.
Note that dual(vel) = et and dual(et) = vel (cf. Fig. 2.3). Since E(x, y, 1) ≡
x ∨ y and V (x, y, 0) ≡ x ∧ y we conclude that V (u,E(H1, v, u), v) ≡ u ∧
(dual(H1(x1, . . . , xn, yj1 , yj2 , . . . , yjm , 0, 1)) ∨ v) ≡ dual(H1(x1, . . . , xn, yj1 , yj2 ,
. . . , yjm , 0, 1)) and V (u,E(H2, v, u), v) ≡ u ∧ (dual(H2(x1, . . . , xn, yj1 , yj2 , . . . ,
yjm , 0, 1)) ∨ v) ≡ dual(H2(x1, . . . , xn, yj1 , yj2 , . . . , yjm , 0, 1)).

Because (dual(H1), dual(H2)) ∈ EQF(dual(B)) = EQF(B) iff (H1, H2) ∈
EQF(B) (note that dual(H1) and dual(H2) are B-formulas, since [B] is selfdual),
we end up with:

H ∈ 3 -TAUT iff (H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1),
H2(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)) ∈ EQF(B)

iff (dual(H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)),
dual(H2(x1, . . . , xn, yj1 , . . . , yjm , 0, 1))) ∈ EQF(B).

Finally we have by the claims 1-4 that H ∈ 3 -TAUT iff (V (u,E(H1, v, u), v),
V (u,E(H2, v, u), v)) ∈ EQF(B) and hence EQF(B) is ≤log

m -hard for coNP. By
Proposition 4.6.1 we deduce that EQC(B) is ≤log

m -hard for coNP as well.

Lower bound for ISOF(B). We already know, that if H ∈ 3 -TAUT, then
V (u,E(H1, v, u), v) ≡ V (u,E(H2, v, u), v). Hence if H ∈ 3 -TAUT, then (V (u,
E(H1, v, u), v), V (u,E(H2, v, u), v)) ∈ ISOF(B) via π = id. First we define

F1(x1, . . . , xn, yj1 , . . . , yjm , u, v)=def V (u,
E(H1(x1, . . . , xn, yj1 , . . . , yjm , u, v), v, u),
v),

F2(x1, . . . , xn, yj1 , . . . , yjm , u, v)=def V (u,
E(H2(x1, . . . , xn, yj1 , . . . , yjm , u, v), v, u),
v).

Now conversely assume that H 6∈ 3 -TAUT, but F1
∼= F2. Hence there is a

suitable permutation π such that

π(F1) =π(V (u,E(H1(x1, . . . , xn, yj1 , . . . , yjm , u, v), v, u), v))
=V (π(u),

E(H1(π(x1), . . . , π(xn), π(yj1), . . . , π(yjm), π(u), π(v)), π(v), π(u)),
π(v))

≡V (u,E(H2(x1, . . . , xn, yj1 , . . . , yjm), v, u), v)
=F2,

which gives that for all compatible assignments I |= π(F1) iff I |= F2 holds. In
the following we prove that no such permutation can exists, giving us the needed
contradiction.
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Case 1: π(u) ∈ {x1, . . . , xn, yj1 , . . . , yjm} and π(v) ∈ {x1, . . . , xn, yj1 , . . . , yjm}.
First note that neither π(u) ∈ {u, v} nor π(v) ∈ {u, v}, so we are able to
define an assignment I as follows: I =def {π(u) := 0, π(v) := 0, v := 1, u :=
1} ∪ {xi := 0 | π(u) 6= xi, π(v) 6= xi and 1 ≤ i ≤ n} ∪ {yjl := 0 | π(u) 6=
yjl , π(v) 6= yjl and 1 ≤ l ≤ m}. Clearly I 6|= π(F1), but I |= F2. This is a
contradiction to the assumption π(F1) ≡ F2.

Case 2: π(u) ∈ {x1, . . . , xn, yj1 , . . . , yjm} and π(v) 6∈ {x1, . . . , xn, yj1 , . . . , yjm}.
In the next two sub-cases, we consider assignments I such that I/{π(u), u} =
{π(u) := 0, u := 1} only.

Case 2.1: π(v) = v.
Now look at all assignments I such that I/{v} = {v := 1}. Clearly all such
assignments are models of F2, since I/{u, v} = {u := 1, v := 1}. Next
note that I |= π(F1) iff I/{yj1 , . . . , yjm , yj1 , . . . , yjm} |= π(H1(x1, . . . ,
xn, yj1 , . . . , yjm , 0, 1)), because π(v) is set to 1 and π(u) is set to 0. Clearly
π(H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)) is a constant function iff H1(x1, . . . ,
xn, yj1 , . . . , yjm , 0, 1) is a constant function. But this is a contradiction,
since Lemma 4.14 gives us that H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1) represents
not a constant function.

Case 2.2: π(v) = u.
Analogous to Case 2.1.

Case 3: π(v) ∈ {x1, . . . , xn, yj1 , . . . , yjm} and π(u) 6∈ {x1, . . . , xn, yj1 , . . . , yjm}.
In the next two sub-cases we consider assignments I such that I/{π(v), v} =
{π(v) := 1, v := 0} only.

Case 3.1: π(u) = u.
Now look at all assignments I such that I/{u} = {u := 0}. Clearly all such
assignments are not models of F2, since I/{u, v} = {u := 0, v := 0}. Next
note that I |= π(F1) iff I/{yj1 , . . . , yjm , yj1 , . . . , yjm} |= π(H1(x1, . . . ,
xn, yj1 , . . . , yjm , 0, 1)), because π(v) is set to 1 and π(u) is set to 0. Clearly
π(H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)) is a constant function iff H1(x1, . . . ,
xn, yj1 , . . . , yjm , 0, 1) is a constant function. But this is a contradiction,
since Lemma 4.14 gives us that H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1) represents
not a constant function.

Case 3.2: π(u) = v.
Analogous to Case 3.1.

Case 4: π(v) = u and π(u) = v.
In this case we restrict ourselves to all assignments I such that I/{u, v} =
{u := 1, v := 0}. Hence we obtain I |= π(F1) iff I/{yj1 , . . . , yjm , yj1 , . . . ,
yjm} |= π(H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)) iff I/{yj1 , . . . , yjm , yj1 , . . . , yjm} |=
dual(H2(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)) and therefore |{I | I |= π(H1(x1, . . . ,
xn, yj1 , . . . , yjm , 0, 1))}| = |{I | I |= dual(H2(x1, . . . , xn, yj1 , . . . , yjm , 0, 1))}|.
Without loss of generality we can assume that the 3 -DNF formula H has at
least three different negated literals. To achieve this, we can simply replace
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3 -TAUT by 3 -TAUT′ in Lemma 4.14. The problem 3 -TAUT′ is defined as
follows:

Problem: 3 -TAUT′

Instance: A propositional formula H in 3 -DNF, having at least three
different negated literals

Question: Is H a tautology?

Clearly this problem is coNP-complete too. Hence H2 is of the form

H2(xj1 , . . . , xjm , yj1 , . . . , yjm , 0, 1) ≡
m∧
l=1

(xjl ∨ yjl), m ≥ 3

Now notice that #1(H2(xj1 , . . . , xjm , yj1 , . . . , yjm , 0, 1)) = 3m and by Proposi-
tion 2.18 #1(dual(H2(xj1 , . . . , xjm , yj1 , . . . , yjm , 0, 1))) = 22m−3m. By a simple
induction we can show that for any m ≥ 3 the inequality 3m < 22m−3m holds.
The formula H1 is of the form H ′ ∧ H2 (see Lemma 4.14) and we obtain
(cf. Proposition 4.5) that |{I | I |= π(H1)}| = |{I | I |= H1}| ≤ 2n−m · 3m <
2n−m · (22m − 3m) = 2n−m · |{I | I |= dual(H2(xj1 , . . . , xjm , yj1 , . . . , yjm , 0, 1))}|
= |{I | I |= dual(H2(x1, . . . , xn, yj1 , . . . , yjm , 0, 1))}|. This shows that π(H1) 6≡
H2, which is a contradiction to our assumption.

Case 5: π(u) = u and π(v) = v.
Now take only such assignments into account such that I/{u, v} = {u :=
0, v := 1}. Hence I/{x1, . . . , xn, yj1 , . . . , yjm} |= π(H1(x1, . . . , xn, yj1 , . . . , yjm ,
0, 1)) iff I |= π(F1) iff I |= F2 iff I/{x1, . . . , xn, yj1 , . . . , yjm} |= H2(x1,
. . . , xn, yj1 , . . . , yjm , 0, 1). But this is a contradiction since Lemma 4.14 gives
us that π(H1(x1, . . . , xn, yj1 , . . . , yjm , 0, 1)) 6≡ H2(x1, . . . , xn, yj1 , . . . , yjm , 0, 1).

In all possible five cases our assumption F1
∼= F2 results in a contradiction.

Hence we conclude F1 6∼= F2. The statement for the circuit case follows by Propo-
sition 4.6. ut

This leads us to the following classification theorems for the complexity of the
equivalence- and isomorphism-problem of B-circuits and B-formulas:

Theorem 4.18. Let B be a finite set of Boolean functions. The complexity of
EQC(B) and ISOC(B) is completely characterized by

if (B ⊆ N) then
EQC(B) ∈ L and ISOC(B) ∈ L

else if (B ⊆ E) or (B ⊆ V) then
EQC(B) and ISOC(B) are ≤log

m -complete for NL
else if (B ⊆ L) then

EQC(B) and ISOC(B) are ≤log
m -complete for ⊕L

else
EQC(B) is ≤log

m -complete for coNP and
ISOC(B) is ≤log

m -hard for coNP.
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Proof. The first case [B] ⊆ N is shown by Lemma 4.8 and the second and third
case by Lemma 4.9. Now let B be a finite set of Boolean functions such that
[B] 6⊆ N, [B] 6⊆ E, [B] 6⊆ V and [B] 6⊆ L. By carefully inspecting Figure 2.2
we conclude that S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B] holds in all other cases. By
Corollary 4.16 and Theorem 4.17 the statement follows. ut

Theorem 4.19. Let B be a finite set of Boolean functions. The complexity of
ISOF(B) and of ISOC(B) is given by the following dichotomy theorem:

if (B ⊆ V) or (B ⊆ E) or (B ⊆ L) then
EQF(B) ∈ L and ISOF(B) ∈ L

else
EQF(B) is ≤log

m -complete for coNP and ISOF(B) is ≤log
m -hard for coNP.

Proof. The first part follows by Lemma 4.8 and Theorem 4.12. The second part
is shown by using Figure 2.2, Corollary 4.16 and Theorem 4.17. ut

Finally it should be mentioned that we used the same reduction to show
the coNP-hardness of EQF(B) and ISOF(B). Therefore it cannot be expected
that this reduction is powerful enough to show a better lower bound for the
isomorphism-problem. Note that this reduction does not use the ability of per-
muting variables. Hence it seems possible that a reduction showing a better lower
bound for the isomorphism-problem has to take a non-trivial permutation into
account.

Another interesting problem arises in the context of the isomorphism-problem
of Boolean formulas. It is well-known that the satisfiability-problem for unre-
stricted Boolean formulas is complete for NP, but the satisfiability-problem for
monotone Boolean formulas is solvable in P (cf. Chapter 3). We showed that in
both cases the isomorphism-problem is coNP-hard, but it might be possible to
show a better upper bound for the isomorphism-problem of monotone formulas
(M2 ⊆ [B] ⊆ M) than for the isomorphism-problem of unrestricted formulas.
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Fig. 4.1. The complexity of EQC(B).
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Fig. 4.2. The complexity of EQF(B).
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5. Optimization problems

5.1 Introduction

Another interesting and important class of problems is related to the task of
finding lexicographically smallest or largest solutions. For example, we are given
a propositional formula and are charged with the job of finding the smallest
satisfying assignment of this formula. To deal with this kind of problems the
class OptP was introduced by Krentel in 1988 [Kre88]. While MaxSNP and
MinSNP (cf. [Pap94], pp. 311ff) are defined logically by making use of Fa-
gin’s characterization of NP [Fag74], the class OptP is defined by using Turing
machines. It is interesting to know that OptP is a superclass of MaxSNP and
MinSNP. The canonical complete problems for OptP are the problems LexMax-
SAT and LexMinSAT of determining the lexicographically maximal or minimal
satisfying assignment of a given (unrestricted) propositional formula. Note that
these problems are suspected not to be in MaxSNP or MinSNP.

We also examine the problem to determine if in the minimal or maximal sat-
isfying assignment the first variable is set to true. These problems are known as
OddLexMinSAT and OddLexMaxSAT, and were shown to be PNP-complete for
unrestricted propositional formulas by Wagner [Wag87]. For an exact definition
we refer to Sect. 5.3.2 and Sect. 5.4.4. Considering formulas given by a set of
Boolean connectives or constraints, we obtain dichotomy theorems for different
variations of OddLexMinSAT and OddLexMaxSAT, showing that these problems
are either complete for PNP or polynomial-time solvable.

In contrast to the previous chapters, we will study the problem of finding
minimal and maximal satisfying assignments of two different kinds of generalized
propositional formulas here. In Sect. 5.3 we will focus on B-formulas, whereas
we will cope with so called S-CSPs in Sect. 5.4. S-CSPs were introduced by
Thomas Schaefer in 1978 (cf. [Sch78]) and regained interest in the last years. For
a short overview we refer to Sect. 5.4.1. We can regard S-CSPs as generalized
propositional formulas in conjunctive normalform, where each clause is a symbol
for a Boolean function out of S. We will show for example that if constants are
allowed in S-CSPs, then the problem of deciding satisfiability is NP-complete if
and only if the problem of finding the smallest assignment is OptP-complete. (In
the case that constants are forbidden, an analogous result does not hold unless
P = NP.)
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In contrast to this, if constants are forbidden then we completely identify those
cases where the optimization problem is hard and the decision problem is easy.

After presenting some notations and preliminary results in Sect. 5.2.1 and
Sect. 5.2.2, we will turn to B-formulas in the Post-context in Sect. 5.3. In Sect. 5.4
we will advance with Schaefer’s constraint satisfaction problems.

Note that the results of this chapter are based on [RV00].

5.2 Maximization and minimization problems

5.2.1 Ordered assignments

As mentioned in the introduction we want to talk about lexicographically smallest
(biggest, resp.) satisfying assignments and we want to compare truth assignments
lexicographically. Because of that we have to talk about the first, second, etc.
variable. In the following we will additionally assume an ordering on V without
further mention.
An ordering on the variables induces an ordering on assignments as follows: (a1,
. . . , ak) < (b1, . . . , bk) if and only if there is an i ≤ k such that for all j < i we
have aj = bj and ai < bi. We refer to this ordering as the lexicographical ordering .
We write (a1, . . . , ak) |=min Φ ((a1, . . . , ak) |=max Φ, resp.) iff (a1, . . . , ak) |= Φ and
there exists no lexicographically smaller (larger, resp.) (a′1, . . . , a

′
k) ∈ {0, 1}k such

that (a′1, . . . , a
′
k) |= Φ.

5.2.2 The class OptP

The study of optimization problems in computational complexity theory started
with the work of Krentel [Kre88, Kre92]. He defined the class OptP and an
oracle hierarchy built on this class using so called metric Turing machines . We
do not need this machine model here; therefore we proceed by defining the class
OptP and its subclasses MinP and MaxP (explicitly introduced the first time
in [Köb89]) using a characterization given in [VW95].

We fix the alphabet Σ = {0, 1}. Let FP denote the class of all functions
f : Σ∗ → Σ∗ computable deterministically in polynomial time. Using one of the
well-known bijections between Σ∗ and the set of natural numbers (e.g., dyadic
encoding) we may also think of FP (and the other classes of functions defined
below) as a class of number-theoretic functions.

Definition 5.1. A function h belongs to the class MinP if there is a function
f ∈ FP and a polynomial p such that, for all x,

h(x) = min
|y|=p(|x|)

f(x, y),

where minimization is taken with respect to lexicographical order. The class
MaxP is defined by taking the maximum of these values. Finally, let OptP =
MinP ∪MaxP.
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OptP is a subclass of FPNP, and it is well known that the closure of all three
classes MinP, MaxP, and OptP under 1-Turing reductions coincides with the
class FPNP; which means that showing completeness of a problem for MinP
generally implies hardness of the same problem for MaxP and completeness for
OptP, see [Kre88, VW95, Vol94].

Krentel in [Kre88] presented a number of problems complete for OptP under
1-Turing reducibility. The most important one for us is the problem of finding
the lexicographically minimal satisfying assignment of a given formula, defined
as follows:

Problem: LexMin3 -SAT

Instance: A propositional formula Φ in 3-CNF

Output: The lexicographically smallest satisfying assignment of Φ, or
“⊥” if Φ is unsatisfiable

The problem LexMax3 -SAT is defined analogously.

Proposition 5.2 ([Kre88]). The problems LexMin3 -SAT and LexMax3 -SAT
are ≤log

1-T-complete for OptP.

5.3 Finding optimal assignments of B-formulas

5.3.1 Dichotomy theorems for LexMinSAT(B) and LexMaxSAT(B)

In this section we study the complexity of finding the lexicographical smallest
(largest, resp.) satisfying assignment of B-formulas, for all finite sets B of Boolean
functions; formally:

Problem: LexMinSAT(B)

Instance: A B-formula Φ

Output: The lexicographically smallest satisfying assignment of Φ, or
“⊥” if Φ is unsatisfiable

The corresponding maximization problem is denoted by LexMaxSAT(B).
The cases of formulas with easy LexMin/MaxSAT-problem are easy to identify:

Lemma 5.3. If B is a finite set of Boolean functions such that B ⊆ R1, then
LexMaxSAT(B) ∈ FP.

Proof. If Φ(x1, . . . , xn) is a B-formula, then fΦ(1n) = 1. ut

Lemma 5.4. If B is a finite set of Boolean functions such that B ⊆ M or B ⊆ L,
then LexMinSAT(B) ∈ FP and LexMaxSAT(B) ∈ FP.
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Proof. The following is a slight modification of an algorithm presented in [CH97]
(cf. Fig.5.1):

In both cases SATF(B) ∈ P, because SATC(B) ∈ P and SATF(B) ≤log
m

SATC(B) (cf. Theorem 3.8 and Theorem 2.3). Hence, given Φ, a minimal sat-
isfying assignment can be computed as follows: Consider all variables x in Φ in
their order, first set x to false and if the resulting formula is satisfiable then
proceed with x := false to the next variable. If the resulting formula is not satis-
fiable, then we set x to true and test satisfiability. If now the result is satisfiable,
we proceed (with x := true) to the next variable, otherwise we output ⊥. ut

function calc smallest satisfying assignment(Φ(x1, . . . , xn));
begin

e := Φ;
if (Φ is satisfiable) then begin

for i := 1 to n do begin
e′ := e;
replace xi in e′ by constant 0;
if (e′ is satisfiable) then begin
A[i] := 0;
e := e′

end
else begin
A[i] := 1;
replace xi in e by constant 1

end
end;
writeln(A)

end
else

writeln(⊥)
end.

Fig. 5.1. An algorithm to calculate the lexicographically minimal satisfying assignment.

We will now show that in all other cases, computing minimal or maximal
assignments is hard, i.e., complete for OptP. Clearly, for all B, LexMinSAT(B) ∈
MinP (LexMaxSAT(B) ∈MaxP, resp.). Hence, in the subsequent theorems we
have to prove hardness via suitable reductions.

The following easy lemma shows that we can construct, for any 3 -CNF-
formula, a logically equivalent (B ∪ {0, 1})-formula, if B together with the con-
stants 0 and 1 forms a complete base. This is very similar to Lemma 4.13.

Lemma 5.5. Let k > 0 be fixed and B be a finite set of Boolean functions such
that there are B-formulas E(x, y, v, u) and N(x, v, u) with E(x, y, 0, 1) ≡ x ∧ y
and N(x, 0, 1) ≡ x. Then, for any k-CNF formula Φ(x1, . . . , xn), there exists a
B-formula Ψ(x1, . . . , xn, u, v) such that Ψ(x1, . . . , xn, 0, 1) ≡ Φ(x1, . . . , xn). More-
over, Ψ can be computed from Φ in logarithmic space.

Proof. Since {∧,¬} forms a complete basis, we can trivially transform every k-
CNF formula into a (B∪{0, 1})-formula. In the case of a given CNF-formula with
m clauses, to avoid an exponential blowup while replacing the m ∧’s, we insert
parentheses in such a way that we get a tree of depth logm, and then replace
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each ∧ by an appropriate (B ∪ {0, 1})-formula. Finally, the k − 1 ∨’s inside the
clauses are replaced by corresponding B-formulas. ut

For some bases B, the constants 0 and 1 needed in the preceding lemma are
easy to construct. This is the contents of the following theorem.

Theorem 5.6. If B is a finite set of Boolean functions such that [B] ⊇ S1, then
LexMinSAT(B) (LexMaxSAT(B), resp.) is ≤log

1-T-complete for MinP (MaxP,
resp.).

Proof. From Theorem 2.11 we know that the function g(x, y) = x∧y is a base for
S1. It is obvious that g(x, g(x, y)) = x ∧ y and g(1, x) = x. Since [B] ⊇ S1 there
exist B-formulas G(x, y) ≡ g(x, y), E(x, y, v, u) ≡ x∧ y and N(x, u, 1) ≡ x. Note
that the variables u and v are not used in E and that u is not used in N .

Let Φ(x1, . . . , xn) be a 3 -CNF formula. We use Lemma 5.5 to obtain Ψ′(x1,
. . . , xn, u, v) such that Φ(x1, . . . , xn) ≡ Ψ′(x1, . . . , xn, u, 1). Now let Ψ(x1, . . . ,
xn, u, v) =def E(Ψ′(x1, . . . , xn, u, v), v). Clearly I |=min Φ iff I ∪ {u := 0, v :=
1} |=min Ψ (I |=max Φ iff I ∪ {u := 1, v := 1} |=max Ψ, resp.).

Let g2 ∈ FL compute the above transformation of Φ into Ψ. From an assign-
ment for Ψ, remove the variables u and v by function g1 ∈ FL; or simply output
⊥ if Ψ is unsatisfiable. The functions g1, g2 witness LexMin3 -SAT ≤log

1-T LexMin-
SAT(B) (LexMax3 -SAT ≤log

1-T LexMaxSAT(B)). ut

For other bases, the constants are not obtained so easily. Next we show how to
exploit the order of variables in such a way that the minimal model of a formula
is forced to assign the values 0 and 1 to particular variables. We will then use
these variables as a replacement for the constants needed in Lemma 5.5.

Lemma 5.7. Let B be a finite set of Boolean functions. If there are B-formulas
E(x, y, v, u), N(x, v, u) and F (v, u, x) such that E(x, y, 0, 1) ≡ x∧y, N(x, 0, 1) ≡
x, F (0, 0, x) ≡ 0, F (0, 1, x) ≡ x and not F (1, 0, x) ≡ F (1, 1, x) ≡ 0, then LexMin-
SAT(B) is ≤log

1-T-complete for MinP.

Proof. We show that LexMin3 -SAT ≤log
1-T LexMinSAT(B). Let Φ(x1, . . . , xn) be

a 3 -CNF formula. The function g2 for the 1-Turing reduction works as described
below:

Since there exist B-formulas E and N we can use Lemma 5.5 to obtain Ψ′(x1,
. . . , xn, v, u) in logarithmic space such that Φ(x1, . . . , xn) ≡ Ψ′(x1, . . . , xn, 0, 1).
Let be Ψ(x1, . . . , xn, v, u) =def F (v, u,Ψ′). The variables are ordered by v < u <
x1 < x2 < · · · < xn.

Claim 1: I |=min Φ iff I ∪ {v := 0, u := 1} |=min Ψ.
“⇒”: Let I |=min Φ. Any I ′ |= Ψ does not assign u = v = 0, so if there exists
an I ′ < I ∪ {v := 0, u := 1} then I ′/{u, v} = {v := 0, u := 1} and I ′/{x1, . . . ,
xn} < I. But this is a contradiction since I ′/{x1, . . . , xn} |= Φ (recall that
Ψ(x1, . . . , xn, 0, 1) ≡ Φ(x1, . . . , xn)).
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“⇐”: Let I ∪ {v := 0, u := 1} |=min Ψ. If there is an assignment I ′ < I
and I ′ |= Φ then I ′ ∪ {v := 0, u := 1} |= Ψ, which is a contradiction since
I ′ ∪ {v := 0, u := 1} < I ∪ {v := 0, u := 1}.

Claim 2: Φ is unsatisfiable iff I ′ |=min Ψ where I ′ ≥ {x1 = x2 = · · · = u :=
0, v := 1}.
First note that Ψ is satisfiable since F (1, 0,Ξ) 6≡ 0 or F (1, 1,Ξ) 6≡ 0. So there
exists an assignment I |= Ψ.
“⇒”: Let Φ(x1, . . . , xn) be unsatisfiable. Suppose that there is an I ′ |= Ψ such
that I ′ < {x1 = x2 = · · · = xn = u := 0, v := 1} then I ′/{x1, x2, . . . , xn} |= Φ,
because I ′ cannot assign v = 0 and u = 0. But this is a contradiction since Φ
is not satisfiable.
“⇐”: Let I ′ |=min Ψ and I ′ ≥ {x1 = x2 = · · · = u := 0, v := 1}. If I |= Φ
then I ∪ {v := 0, u := 1} < {x1 = x2 = · · · = xn = u := 0, v := 1} and
I ∪ {v := 0, u := 1} |= Ψ which is a contradiction since I ′ |=min Ψ.

Now the function g1 of the 1-Turing reduction simply outputs “⊥” if it gets
an assignment I ′ greater than or equal to {x1 = x2 = · · · = u := 0, v := 1} as an
input. In all other cases it removes the assignments for v and u and outputs the
resulting assignment. This proves LexMin3 -SAT ≤log

1-T LexMinSAT(B). ut
For various non complete sets B one can show that formulas E, N , and F ,

as required in the above lemma, exist. Hence we obtain complexity results for
more non complete classes of Boolean functions. As we pointed out before the
statement of the lemma, in this case we do depend on the order of the variables
(in contrast to Theorem 5.6).

Theorem 5.8. If B is a finite set of functions such that [B] ⊇ S02, [B] ⊇ S12 or
[B] ⊇ D1, then LexMinSAT(B) is ≤log

1-T-complete for MinP.

Proof.

Case 1: [B] ⊇ S02.
From Theorem 2.11 we know that g(x, y, z) = x∨ (y∧ z) is a base for S02. Let
be g′(x, y) =def g(0, x, y) = x∧y. Clearly g′(x, g′(x, y)) = x∧y and g′(1, x) = x.
Since [B] ⊇ S02 there exist B-formulas E(x, y, v, u) and N(x, v, u) such that
E(x, y, 0, u) ≡ x∧y (again the variable u is not used in E) and N(x, 0, 1) ≡ x.
Moreover note that g(x, y, g(x, y, z)) = x ∨ (y ∧ z) and therefore there exists
a B-formula F such that F (v, u, z) ≡ v ∨ (u ∧ z). We obtain F (0, 0, x) ≡ 0,
F (0, 1, x) ≡ x, F (1, 0, x) ≡ 1 and F (1, 1, x) ≡ 1. Using Lemmas 5.5 and 5.7
the statement follows.

Case 2: [B] ⊇ S12.
From Theorem 2.11 we know that g(x, y, z) = x ∧ (y ∨ z) is a base for S12.
Obviously g(x, y, 1) = x∧ y, g(1, 0, x) = x and g(x, y, g(x, y, z)) = x∧ (y ∨ z).
Hence there exist B-formulas E(x, y, v, u), N(x, v, u) and F (v, u, z) such that
E(x, y, 0, 1) ≡ x ∧ y, N(x, 0, 1) ≡ x and F (v, u, z) ≡ u ∧ (v ∨ z). Hence,
F (0, 0, x) ≡ 0, F (0, 1, x) ≡ x, F (1, 0, x) ≡ 0 and F (1, 1, x) ≡ 1. Using Lem-
mas 5.5 and 5.7 the statement follows.
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Case 3: [B] ⊇ D1.
From Theorem 2.11 we know that g(x, y, z) = (x∧y)∨(x∧z)∨(y∧z) is a base
for D1. We obtain g(x, y, 1) = x ∧ y, g(0, 1, x) = x and g(x, y, g(x, y, z)) =
(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). Since [B] ⊇ D1 we know that there exists B-
formulas E(x, y, v, u), N(x, v, u) and F (v, u, x) such that E(x, y, 0, 1) ≡ x∧y,
N(x, 0, 1) ≡ x and F (v, u, z) ≡ (v∧u)∨(v∧z)∨(u∧z). Hence, F (0, 0, x) ≡ 0,
F (0, 1, x) ≡ x and F (1, 1, x) ≡ 1. Using Lemmas 5.5 and 5.7 the statement
follows. ut

Combining Lemma 5.4 and Theorem 5.8, we are now ready to prove a di-
chotomy theorem for LexMinSAT(B) for arbitrary finite sets of Boolean functions
B:

Corollary 5.9 (Dichotomy Theorem for LexMinSAT(B)). Let B be a finite
set of Boolean functions. If [B] ⊇ S02, [B] ⊇ S12 or [B] ⊇ D1, then LexMin-
SAT(B) is ≤log

1-T-complete for MinP. In all other cases LexMinSAT(B) ∈ FP.

Proof. The first part of the statement is proved by Theorem 5.8. Now let B be a
finite set of Boolean functions such that [B] 6⊇ S02, [B] 6⊇ S12 and [B] 6⊇ D1. By
inspecting Figure 2.2 we obtain that either B ⊆ M or B ⊆ L. Using Lemma 5.4
the second part of the statement follows. ut

Turning now to LexMaxSAT(B), we observe that, if non ∈ [B], the problem of
finding the minimal satisfying assignment of a B-formula reduces to the problem
of determining the maximal satisfying assignment of a B-formula. We will use
this to show that LexMaxSAT(B) is hard for OptP if B is the set of selfdual
functions (D).

Lemma 5.10. Let B be a finite set of Boolean functions. If non ∈ [B], then
LexMinSAT(B) ≤log

1-T LexMaxSAT(B).

Proof. Let Φ(x1, . . . , xn) be an arbitrary B-formula. We define the B-formula
ΦR(x1, . . . , xn) =def Φ(x1, . . . , xn). Note that ΦR is a B-formula since non ∈ [B].
Clearly I |=min Φ iff I |=max ΦR.

The 1-Turing reduction now works as follows: First g2 replaces any occurrence
of xi by a formula representing non(x), for 1 ≤ i ≤ n, resulting in ΦR. The
function g1 simply maps ⊥ to ⊥ and any assignment I to I. ut

Now we are able to prove a Dichotomy Theorem for LexMaxSAT(B).

Corollary 5.11 (Dichotomy Theorem for LexMaxSAT(B)). Let B be a fi-
nite set of Boolean functions. If [B] ⊇ S1 or [B] ⊇ D, then LexMaxSAT(B) is
≤log

1-T-complete for MaxP. In all other cases LexMaxSAT(B) ∈ FP.

Proof. The case [B] ⊇ S1 is given in Theorem 5.6.
Now let [B] ⊇ D. From Theorem 2.11 we know that g(x, y, z) = (x∧ y)∨ (x∧

z) ∨ (y ∧ z) is a base of D. Clearly there exists a B-formula N(x) ≡ x, because
g(y, y, x) = x. Since LexMaxSAT(D) ∈MaxP, LexMinSAT(D) is ≤log

1-T-complete
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Fig. 5.2. The complexity of LexMinSAT(B).
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for MinP (see Corollary 5.9) and LexMinSAT(D) ≤log
1-T LexMaxSAT(D), we con-

clude that LexMaxSAT(D) is ≤log
1-T-complete for MaxP.

Finally, let B be a finite set of Boolean functions such that [B] 6⊇ S1 and [B] 6⊇
D. Using Figure 2.2 we see that B must be monotone, linear or 1-reproducing.
From Lemma 5.4 and Proposition 5.3 it follows that LexMaxSAT(B) ∈ FP. ut

C

I

V E N

M L

BF
Finally, let us remark that a dichotomy result for B-

formulas with constants, i.e., 0, 1 ∈ [B], is much easier. Re-
call that the graph of all closed classes containing the con-
stants (but not necessarily the identity functions) is given to
the right (cf. Section 3.2). The classes V , E and M contain
all vel, et and monotone functions, whereas N and L con-
tain the non functions and the linear functions. The class
I consists of all identity functions, the class C of all con-
stant functions. This graph can easily be found by adding
the constant 0-ary functions 0 and 1 to all classes shown in Figure 2.2 and using
Posts techniques to identify the resulting classes (cf. Examples 2.8 and 2.9).

Now by the techniques of Lemma 5.4 and Lemma 5.5 the following dichotomy
result for LexMinSAT(B ∪ {0, 1}) and LexMaxSAT(B ∪ {0, 1}) can be deduced:

Corollary 5.12. Let B be a finite set of Boolean functions, such that [B ∪ {0, 1}]
= BF. Then LexMinSAT(B ∪ {0, 1}) (LexMaxSAT(B ∪ {0, 1}), resp.) is ≤log

1-T-
complete for MinP (MaxP, resp.). In all other cases LexMinSAT(B ∪{0, 1}) ∈
FP (LexMaxSAT(B ∪ {0, 1}) ∈ FP, resp.).

5.3.2 Completeness results for the class PNP

Given a function f : Σ∗ → Σ∗, define the set Lf = {x ∈ Σ∗ | the last bit of f(x)
is a 1}. Often it turns out that if f is complete for OptP under 1-Turing reduc-

tions, then the set Lf is complete for PNP under usual many-one reductions; a
precise statement is given below.

In our context the above problem translates to the question if the lexicographi-
cally minimal (maximal, resp.) satisfying assignment of a given B-formula is odd.
We will call this problem OddLexMinSAT(B) (OddLexMaxSAT(B), resp.). More
precisely:

Problem: OddLexMinSAT(B)

Instance: A B-formula Φ(x1, . . . , xn)

Question: Is in the lexicographically smallest satisfying assignment of Φ
the variable xn set to 1?

The corresponding problems for unrestricted propositional formulas will be
denoted by OddLexMinSAT and OddLexMaxSAT. The following result is known:

Proposition 5.13 ([Wag87]). OddLexMinSAT and OddLexMaxSAT are com-
plete for the class PNP under many-one reductions.
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Fig. 5.3. The complexity of LexMaxSAT(B).
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If f is complete for MinP or MaxP under functional many-one reductions
(that is, 1-Turing reductions where the outer function g1 is the identity), then Lf
is complete for PNP under usual many-one reductions [Kre88], see also [Vol94]. In
the case that f is only 1-Turing complete a similar result is not known. However,
by a separate proof, the complexity of OddLexMinSAT(B) and OddLexMax-
SAT(B) can be determined.

Next we give a Dichotomy Theorem for OddLexMinSAT(B) and OddLexMax-
SAT(B).

Theorem 5.14. For any finite set B of Boolean functions, OddLexMinSAT(B)
(OddLexMaxSAT(B), resp.) is complete for PNP iff LexMinSAT(B) (LexMax-
SAT(B), resp.) is complete for MinP (MaxP, resp.).

Proof. Observe that in the case that LexMinSAT(B) ∈ FP (LexMaxSAT(B) ∈
FP, resp.) we are able to compute the lexicographically smallest (largest, resp.)
solution in polynomial time. Because of this we can clearly decide OddLexMin-
SAT(B) (OddLexMaxSAT(B), resp.) in polynomial time by checking the value
of the most significant bit in this assignment.

Clearly OddLexMinSAT(B) ∈ PNP (OddLexMaxSAT(B) ∈ PNP, resp.).
Now let LexMinSAT(B) (LexMaxSAT(B), resp.) be complete for MinP (MaxP,
resp.). In these cases we show how to reduce OddLexMin3 -SAT to OddLexMin-
SAT(B) (OddLexMax3 -SAT to OddLexMaxSAT(B), resp.). Note that in all
these cases [B ∪ {0, 1}] = BF. Hence there exists a B-formula A(x, y, v, u) such
that A(x, y, 0, 1) ≡ x ↔ y. Now modify the reduction function g2 of Lemma 5.7
such that we obtain a formula Ψ = F (u, v, (Ψ′ ∧A(xn, z, v, u))), where z is larger
than any other variable used in this construction. Now for any 3 -CNF-formula
Φ where I |=min Φ and I ′ |=min Ψ it holds that I(xn) = I ′(xn) = I(z). So
Φ ∈ OddLexMin3 -SAT iff Ψ ∈ OddLexMinSAT(B). By the same modification
of the reduction function in Theorem 5.6 we can show that Φ ∈ OddLexMax-
3 -SAT iff Φ′ ∈ OddLexMaxSAT(B) holds. ut

5.4 Constraint satisfaction problems

5.4.1 Introduction

In 1978 Thomas J. Schaefer proved a remarkable result. He examined satisfiability
of propositional formulas for certain syntactically restricted formula classes. Each
such class is given by a set S of Boolean functions allowed when constructing for-
mulas. An S-formula in his sense is a conjunction of clauses, where each clause
consists of a Boolean function from S applied to some propositional variables.
Such a Boolean function can be interpreted as a constraint that has to be fulfilled
by a given assignment; the satisfiability problem for S-formulas hence provides a
mathematical model for the examination of the complexity of constraint satisfac-
tion problems. Let CSP(S) denote the problem to decide for a given S-formula
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if it is satisfiable. Schaefer showed that, depending on S, the problem CSP(S) is
either (1) efficiently solvable (i. e., in polynomial time) or (2) NP-complete; and
he gave a simple criterion that, given S, allows one to determine whether (1) or
(2) holds. Since the complexity of CSP(S) is either easy or hard (and not located
in one of the – under the assumption P 6= NP – infinitely many intermediate
degrees between P and the NP-complete sets [Lad75]), Schaefer called this a
“dichotomy theorem for satisfiability”.

In the last few years, these results regained interest among complexity theo-
rists. Constraint satisfaction problems were studied by Nadia Creignou and others
[Cre95, CH96, CH97], see also the monograph [CKS99]. Considering different ver-
sions of satisfiability, optimization and counting problems, dichotomy theorems
for classes as NP, MaxSNP, and #P were obtained. Also, the study of Schaefer’s
formulas lead to remarkable results about approximability of optimization prob-
lems in the constraint satisfaction context [KST97, KSW97].

In this section, we continue this line of research by considering the complexity
of determining the lexicographically minimal (maximal, resp.) satisfying assign-
ment of a given S-formula. In the case of unrestricted formulas, these problems
are known to be complete for Krentel’s class OptP [Kre88] (cf. Section 5.2.2).
The main results, presented in this section, is a clarification of the complexity of
the problem to determine maximal or minimal satisfying assignments of formu-
las given by a set of constraints. We will show that in all cases, the considered
problem is either complete for OptP or solvable in polynomial time, depending
on the set of allowed connectives/constraints.

The problem of maximizing (or minimizing) the number of clauses satisfied
in (unrestricted) propositional formula is complete for the class MaxSNP (or
MinSNP). In 1995 Nadia Creignou examined this problem for S-formulas. Inter-
estingly she also obtained a dichotomy theorem: She proved that this problem is
either polynomial-time solvable or MaxSNP-complete, depending on properties
of S [Cre95] (In 1997 the approximability of this problem and the corresponding
minimization problem was examined in [KSW97, KST97], leading to a number of
deep results.). The complexity of counting problems and enumeration problems
based on satisfiability of S-formulas was studied in [CH96, CH97].

5.4.2 Preliminaries

Let S be a set of Boolean functions. In this section we will always assume that
such S are nonempty and finite. S-formulas in the Schaefer sense, or, S-CSPs ,
will now be propositional formulas consisting of clauses built by using functions
from S applied to arbitrary variables. Formally, let S = {f1, f2, . . . , fn} be a set
of Boolean functions and V be a set of variables. An S-CSP Φ (over V ) is a finite
conjunction of clauses Φ = C1 ∧ · · · ∧ Ck, where each Ci is of the form f̃(x1, . . . ,
xk), f ∈ S, f̃ is the symbol representing f , k is the arity of f , and x1, . . . , xk ∈ V .
If some variables of an S-CSP Φ are replaced by the constants 0 or 1 then this
new formula Φ′ is called S-CSP with constants. If Φ = C1∧· · ·∧Ck is a CSP over
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V , and I is an assignment with respect to V , then I |= Φ if Φ satisfies all clauses
Ci. Here, a clause f̃(x1, . . . , xk) is satisfied, if f

(
I(x1), . . . , I(xk)

)
= 1. By Φ

[
x
y

]
we denote the formula created by simultaneously replacing each occurrence of x
in Φ by y, where x, y are either variables or constants.

We will consider different types of Boolean functions, following the terminology
of Schaefer [Sch78].

– The Boolean function f is called 0-valid if f(0, . . . , 0) = 1 and 1-valid if
f(1, . . . , 1) = 1.

– The Boolean function f is called Horn (anti-Horn, resp.) if f is represented by
a CNF formula having at most one unnegated (negated, resp.) variable in any
conjunct.

– A Boolean function f is called bijunctive if it is represented by a CNF formula
having at most two variables in each conjunct.

– The Boolean function f is called affine if it can be represented by a conjunction
of affine functions.

We remark that Schaefer’s term 1-valid coincides with Post’s 1-reproducing.
A set S of Boolean functions is called 0-valid (1-valid, Horn, anti-Horn, affine,

bijunctive, resp.) iff every function in S is 0-valid (1-valid, Horn, anti-Horn,
affine, bijunctive, resp.).

The satisfiability problem for S-CSPs (S-CSPs with constants, resp.) is de-
noted by CSP(S) (CSPC(S), resp.). Schaefer’s main result, a dichotomy theorem
for satisfiability of constraint satisfaction problems (i.e., propositional formulas
of the form “conjunction of a set of constraints”), can be stated as follows:

Proposition 5.15. Let S be a set of Boolean functions. If S is Horn, anti-Horn,
affine or bijunctive, then CSPC(S) is polynomial-time decideable. In all other
cases CSPC(S) is NP-complete.

Proposition 5.16. Let S be a set of Boolean functions. If S is 0-valid, 1-valid,
Horn, anti-Horn, affine or bijunctive, then CSP(S) is polynomial-time decideable.
In all other cases CSP(S) is NP-complete.

As a technical tool to obtain the above results, Schaefer defined the set of
existentially quantified S-CSPs with constants, GenC(S), to be the smallest set of
formulas having the following closure properties:

– For any k ∈ N, any k-ary function f ∈ S, and u ∈ (V ∪ {0, 1})k, the formula
f̃(u) is in GenC(S), where f̃ is a symbol for f .

– If Φ and Ψ are in GenC(S), then Φ∧Ψ and (∃x)Φ (for x ∈ V ) are in GenC(S).

Define Gen(S) =def {Φ | Φ ∈ GenC(S) and Φ has no constants}, RepC(S) =def

{fΦ | Φ ∈ GenC(S)} and Rep(S) =def {fΦ | Φ ∈ Gen(S)} be the sets of functions
represented by formulas from GenC(S) and Gen(S), resp. The following results
proved by Schaefer will be needed in this section:
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Proposition 5.17 ([Sch78], Theorem 3.0). Let S be a set of Boolean func-
tions. If S is Horn, anti-Horn, affine or bijunctive, then RepC(S) satisfies the
same condition. Otherwise, RepC(S) is the set of all Boolean functions BF.

Proposition 5.18 ([Sch78], Lemma 4.3). Let S be a set of Boolean functions.
Then at least one of the following four statements holds:

(1) S is 0-valid
(2) S is 1-valid
(3) fx, f¬x ∈ Rep(S)
(4) fx 6≡y ∈ Rep(S)

Finally the following proposition gives an easy possibility to decide whether a
given set of Boolean functions S is bijunctive, Horn, anti-Horn or affine. Hence we
can easily determine the complexity of CSP(S) and CSPC(S). For this proposition
we will use ∧, ∨ and ⊕ as component wise application of et, vel or aut on k-tuples
t ∈ {0, 1}k.

Proposition 5.19 ([KK01]). Let f : {0, 1}k → {0, 1} be a Boolean function.
This function is

– Horn if and only if for all t1, t2 such that f(t1) = 1, f(t2) = 1 also f(t1∧t2) = 1,
– anti-Horn if and only if for all t1, t2 such that f(t1) = 1, f(t2) = 1 also f(t1 ∨
t2) = 1,

– bijunctive if and only if for all t1, t2, t3 such that f(t1) = 1, f(t2) = 1 and
f(t3) = 1 also f((t1 ∨ t2) ∧ (t1 ∨ t3) ∧ (t2 ∨ t3)) = 1, and

– affine if and only if for all t1, t2, t3 such that f(t1) = 1, f(t2) = 1 and f(t3) = 1
also f(t1 ⊕ t2 ⊕ t3) = 1.

Note that such criteria were already provided by Schaefer in [Sch78], but
Dechter and Pearl [DP92] gave the much easier criterion presented above. More-
over there is an algorithm which produces a defining propositional formula
for a given Boolean function that is Horn, anti-Horn, bijunctive or affine (see
[DP92, KV98]).

5.4.3 Finding optimal assignments of S-CSPs

In this section, we will consider formulas that are given as a conjunction of con-
straints (given by Boolean functions applied to a subset of the variables). At first
sight, one might hope that the machinery developed by Post and heavily used in
the previous sections is applicable here. However, the “upper-level” conjunction is
of a restricted nature, and this does not fit into Post’s definition of (unrestricted)
superposition. Informally, Schaefer-like results cannot be obtained mechanically
from Post/Lewis-like results, but new proofs are needed.

Dichotomy theorems for the problem to determine minimal satisfying assign-
ments of constraint satisfaction problems with respect to the component-wise
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order of Boolean vectors were obtained in [KK99, KK01]. In contrast we will
consider lexicographical ordering, as in the previous section.

The main result of this section is to answer the question for what syntactically
restricted classes of formulas, given by a set S of Boolean constraints, Proposi-
tion 5.2 remains valid. For this, we will consider the following problems:

Problem: LexMinCSP(S)

Instance: An S-CSP Φ

Output: The lexicographically smallest satisfying assignment of Φ, or
“⊥” if Φ is unsatisfiable

The corresponding minimization problem for S-CSPs with constants is de-
noted by LexMinCSPC(S). We also examine the analogous maximization prob-
lems LexMaxCSP(S) and LexMaxCSPC(S).

There are known algorithms for calculating satisfying assignments of CSPs
in polynomial time for certain restricted classes of formulas [CH97]. We first
observe that these algorithms can easily be modified to find minimal satisfying
assignments.

Lemma 5.20. Let S be a set of Boolean functions. If S is bijunctive, Horn, anti-
Horn or affine, then LexMinCSPC(C),LexMinCSP(C) ∈ FP. If S is 0-valid, then
LexMinCSP(S) ∈ FP.

Proof. It is well known (see, e.g., [Pap94]) that in all four cases, the satisfiability
problem is in P. The claim follows by using the algorithm given in Fig. 5.1. ut

We remark that, if S contains at least one function which is not bijunctive,
one function which is not Horn, one function which is not anti-Horn, and one
function which is not affine, then LexMinCSPC(S) cannot be in FP (unless P
= NP), because Proposition 5.15 shows that the corresponding decision problem
(which is the problem of deciding whether there is any satisfying assignment, not
necessarily the minimal one) is NP-complete.

A similar result, which relies on Proposition 5.16, holds for LexMinCSP(S).
The only case which requires a bit care is that of a 1-valid set S. Hardness here
follows a result in [CH97], which shows that the problem to decide if there exists
a satisfying assignment which differs from the vector (1, 1, . . . , 1) is NP-complete.

By the following theorems we strengthen these observations by showing that
if LexMinCSPC(S) or LexMinCSP(S) are not contained in FP, then they are
already complete for OptP.

Theorem 5.21. Let S be a set of Boolean functions. If S does not fulfill the
properties Horn, anti-Horn, bijunctive or affine, then LexMinCSPC(S) is ≤log

1-T-
complete for MinP.

Proof. Obviously LexMinCSPC(S) ∈MinP. Now we have to prove ≤log
1-T-hardness

for MinP.
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If S does not fulfills the properties Horn, anti-Horn, bijunctive or affine then
Proposition 5.17 shows that RepC(S) includes all Boolean functions.

Let fi be any Boolean function. Proposition 5.17 tells us that there exists
an existentially quantified S-CSP Ψ = ∃y1 . . . ∃ykΨ′, representing fi, where Ψ′

contains no quantifier. Any clause of a 3 -SAT formula can be represented by one
out of a finite number of Boolean functions. So any clause Ci of a 3 -SAT formula
Φ can be represented by an S-CSP Φi. Var(Φi) consists of the variables in Var(Ci)
plus a number of variables of the form yj. We pick different sets of yj-variables
for different formulas Φi.

Now we construct a function g2 ∈ FL mapping a 3 -SAT formula Φ into an
S-CSP Ψ by replacing each Ci by the corresponding Φ′i, where Var(Ψ) consists of
Var(Φ) = {x1, . . . , xn} plus a set of variables of the form yj. We order the variables
by their index and by alphabet, i.e., x1 < x2 < x3 < · · · < y1 < y2 < . . . .
Note that we can drop the ∃-quantifiers of the variables yj since we ask for a
satisfying assignment of Ψ. The ordering of the variables ensures that in the
minimal satisfying assignment of Ψ the variables in {x1, . . . , xn} will be minimal
with respect to satisfaction of Φ.

Now the function g1 ∈ FL shortens the assignment and removes all bits be-
longing to the variables yj. Thus g1 applied to the minimal satisfying assignment
of Ψ = g2(Φ) produces the minimal satisfying assignment for Φ. This shows that
LexMin3 -SAT ≤log

1-T LexMinCSPC(S). ut

Note that our proof heavily hinges on Schaefer’s Proposition 5.17. However
Schaefer’s technique always introduces new variables, which pose no problem in
his context, but are not allowed here. We can only remove these new variables in
the end because we have the power of 1-Turing reductions here.

Mainly we are interested in formulas without constants. So we have to get rid
of the constants in the construction of the just given proof. This is achieved in
the reduction which we now present.

Theorem 5.22. Let S be a set of Boolean functions. If S is not 0-valid, Horn,
anti-Horn, bijunctive or affine, then LexMinCSP(S) is ≤log

1-T-complete for MinP.

Proof. Clearly LexMinCSP(S) ∈MinP. We want to show that LexMinCSPC(S)
reduces to LexMinCSP(S).

Case 1: S is not 1-valid.
Using Proposition 5.18 we know, that fx, f¬x ∈ Rep(S) or fx 6≡y ∈ Rep(S).
In what follows, we again sort all variables first alphabetically, and then by
index.

Case 1.1: fx, f¬x ∈ Rep(S).
Let Φ an S-CSP with constants and Var(Φ) = {x1, . . . , xn}. Now we can
remove the constants by replacing any 1 by y1 and 0 by y0 and adding
clauses representing {y1} and {¬y0}. Define the function g2 such that
g2(Φ) performs exactly the just described replacement.
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Now I |=min Φ if and only if I ′ =def I ∪ {y0 := 0, y1 := 1} |=min Ψ, where
Ψ =def g2(Φ). The function g1 removes the last two bits (assignments of y0

and y1) from I ′, showing that LexMinCSPC(S) ≤log
1-T LexMinCSP(S).

Case 1.2: fx 6≡y ∈ Rep(S).
Let Φ be an S-CSP with constants and Var(Φ) = {x1, . . . , xn}. We con-
struct an S-CSP Ψ =def Φ

[
0
v

] [
1
u

]
∧ (u 6≡ v) without constants, where

u, v are new variables and v < u < x1 < x2 < · · · < xn. Define g2 by
g2(Φ) = Ψ. If Ir |=min Φ then clearly I ′ =def Ir ∪ {v := 0, u := 1} |=min Ψ.
If Φ is unsatisfiable, then either Ψ is unsatisfiable, too, or I ′′ |=min Ψ,
where I ′′ = Iw ∪ {v := 1, u := 0}.
A logspace computable function g1 can distinguish these cases and compute
a minimal assignment for Φ or ⊥, given an assignment for Ψ. The functions
g1 and g2 show that LexMinCSPC(S) ≤log

1-T LexMinCSP(S).

Case 2: S is 1-valid.
Having an S-CSP with constants we construct one without constants in
logspace by g2 as follows. Let f ∈ S be a function which is not 0-valid
but 1-valid and Ψ =def Φ

[
0
v

] [
1
u

]
∧ f̃(u, . . . , u), where u, v are new vari-

ables and v < u < x1 < x2 < · · · < xn. We claim that I |=min Φ iff
I ∪ {v := 0, u := 1} |=min Ψ.
First suppose that I |=min Φ. It is clear from the clause f̃(u, . . . , u) that we
have to choose u := 1. Since we are interested in the lexicographically smallest
solution we have to choose v := 0 giving us immediately I ∪ {v := 0, u :=
1} |=min Ψ. Now let I ∪ {v := 0, u := 1} |=min Ψ. Suppose that there exists a
satisfying solution Is for Φ being lexicographically smaller than I. Obviously
Is ∪ {v := 0, u := 1} is a lexicographically smaller satisfying assignment than
I ∪ {v := 0, u := 1} giving us a contradiction to I ∪ {v := 0, u := 1} |=min Ψ.
The case that Φ is unsatisfiable can be detected as in case 1.2. This shows
that LexMinCSPC(S) ≤log

1-T LexMinCSP(S). ut

Thus we get dichotomy theorems for finding lexicographically minimal sat-
isfying assignments of CSPs, both for the case of formulas with constants and
without constants.

Corollary 5.23 (Dichotomy Theorem for LexMinCSP(·) with const.).
Let S be a set of Boolean functions. If S is bijunctive, Horn, anti-Horn or affine,
then LexMinCSPC(S) ∈ FP. In all other cases LexMinCSPC(S) is ≤log

1-T-complete
for MinP.

Corollary 5.24 (Dichotomy Theorem for LexMinCSP(·)). Let S be a set of
Boolean functions. If S is 0-valid, bijunctive, Horn, anti-Horn or affine, then we
have LexMinCSP(S) ∈ FP. In all other cases LexMinCSP(S) is ≤log

1-T-complete
for MinP.

If we compare the classes of functions in the statements of the above corollaries
with those occurring in Schaefer’s results (Propositions 5.15 and 5.16), we imme-
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diately obtain the following consequence which completely clarifies the connection
between decision and optimization problems for constraint satisfaction.

Corollary 5.25. Let S be a set of Boolean functions.

1. CSPC(S) is NP-complete if and only if LexMinCSPC(S) is MinP complete.
2. If CSP(S) is NP-complete then LexMinCSP(S) is MinP complete.
3. If S is a set of Boolean functions which is 1-valid but is not 0-valid, Horn,

anti-Horn, bijunctive, or affine, then CSP(S) is in P but LexMinCSP(S) is
MinP complete.

Example 5.26. Note that we will use ∧, ∨ and ⊕ as component wise application
of et, vel or aut on tuples t ∈ {0, 1}3. Hierarchical SAT is the variant of 3 -SAT
where only unnegated variables occur and we require that in each clause if either
the first or the second variable are satisfied then the third variable is not satisfied,
and if the third variable is satisfied then also the first and second variable are
satisfied. In our framework this problem is given by S = {f 3}, where f(t) = 1
iff t ∈ {(1, 0, 0), (0, 1, 0), (1, 1, 1)}. Clearly S is 1-valid but not 0-valid. Now

by Proposition 5.19 we see that S is not Horn, because (1, 0, 0) ∧ (0, 1, 0) =
(0, 0, 0) and f(0, 0, 0) 6= 1, not anti-Horn, since (1, 0, 0) ∨ (0, 1, 0) = (1, 1, 0) and
f(1, 1, 0) 6= 1, not bijunctive, because ((1, 0, 0) ∨ (0, 1, 0)) ∧ ((1, 0, 0) ∨ (1, 1, 1)) ∧
((0, 1, 0)∨ (1, 1, 1)) = (1, 1, 0)∧ (1, 1, 1)∧ (1, 1, 1) = (1, 1, 0) and f(1, 1, 0) 6= 1 and
not affine, because (1, 0, 0)⊕ (0, 1, 0)⊕ (1, 1, 1) = (0, 0, 1) and f(0, 0, 1) 6= 1. Thus
CSP(S) is in P but LexMinCSP(S) is MinP complete.

Results analogous to the above for the problem of finding maximal assignments
can be proved:

Theorem 5.27 (Dichotomy Theorem for LexMaxCSP(·)). Let S be a set of
Boolean functions.

1. If S is bijunctive, Horn, anti-Horn or affine, then LexMaxCSPC(S) ∈ FP.
In all other cases LexMaxCSPC(S) is ≤log

1-T-complete for MaxP.
2. If S is 1-valid, bijunctive, Horn, anti-Horn or affine, then LexMaxCSP(S) ∈

FP. Otherwise LexMaxCSP(S) is ≤log
1-T-complete for MaxP.

5.4.4 Completeness results for the class PNP

Similar as in Subsect. 5.3.2 for B-formulas, we now examine the problem if the
largest variable in a lexicographically minimal assignment of a given S-CSP gets
the value 1. Let us denote this problem by

Problem: OddLexMinCSP(S)

Instance: An S-CSP Φ(x1, . . . , xn)

Question: Is in the lexicographically smallest satisfying assignment of Φ
the variable xn set to 1?
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In the case that S-CSPs with constants are allowed,we denote this by OddLexMin-
CSPC(S). (In the case of maximization we use the notation OddLexMaxCSP(S)
and OddLexMaxCSPC(S).)

Theorem 5.28 (Dichotomy Theorem for OddLexMinCSPC(·)). Let S be a
set of Boolean functions. If S is affine, bijunctive, Horn or anti-Horn, then
OddLexMinCSPC(S) ∈ P. In all other cases OddLexMinCSPC(S) is complete
for PNP under many-one reductions.

Proof. If S is bijunctive, Horn, anti-Horn or affine, then OddLexMinCSPC(S) ∈
P, since we can use the technique of Lemma 5.20 to find the minimal assignment,
and then we accept if and only if the truth value 1 is assigned to the largest
variable.

In the other cases we reduce OddLexMin3 -SAT to OddLexMinCSPC(S). In
the proof of Theorem 5.21 we showed how to transform an arbitrary formula Φ
with Var(Φ) = {x1, . . . , xn} into an S-CSP at the cost of introducing new vari-
ables of the form yj. We modify this construction as follows: Introduce one more
variable z (larger than all the other variables). Transform Φ into Φ′ as described
in Theorem 5.21. Finally set Φ′′ = Φ′ ∧ (xn ≡ z). (Observe that the predicate
≡ is in RepC(S), because of Proposition 5.17.) Let I, I ′, I ′′ be the minimal sat-
isfying assignments of Φ, Φ′ and Φ′′. Observe that they all agree on assignments
of the variables in Var(Φ). Now we have I(xn) = I ′(xn) = I ′′(xn) = I ′′(z). Thus
Φ ∈ OddLexMin3 -SAT if and only if Φ′′ ∈ OddLexMinCSPC(S), which proves
the claimed hardness result. ut

Theorem 5.29 (Dichotomy Theorem for OddLexMinCSP(·)). Let S be a set
of Boolean functions. If S is 0-valid, bijunctive, Horn, anti-Horn or affine, then
OddLexMinCSP(S) ∈ P. In all other cases OddLexMinCSP(S) is complete for
PNP under many-one reductions.

Proof. Similar to the proof of the previous theorem. The easy case is obvious.
In the hard case define Φ′′ as above, and then use the construction of Theorem
5.22 to remove the constants. Let Φ′′′ be the resulting formula. The variables
introduced in this last step should be smaller than z. Then we can argue as in
the previous proof that z is assigned one in a minimal assignment for Φ′′′ if and
only if xn is assigned one in a minimal assignment for Φ. ut

Again, results for maximal assignments are proved analogously:

Theorem 5.30 (Dichotomy Theorem for OddLexMaxCSP(·)). Let S be a
set of Boolean functions.

1. If S is bijunctive, Horn, anti-Horn or affine, then OddLexMaxCSPC(S) ∈ P.
In all other cases OddLexMaxCSPC(S) is complete for PNP under many-one
reductions.

2. If S is 1-valid, bijunctive, Horn, anti-Horn or affine, then the problem
OddLexMaxCSP(S) is in P . In all other cases OddLexMaxCSP(S) is com-
plete for PNP under many-one reductions.
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In this chapter we determined the complexity of the problem to compute the
lexicographically minimal or maximal satisfying assignment of a given proposi-
tional formula, and the problem to determine if in this assignment the largest
variable is one, for different restricted formula classes. We obtained a number of
dichotomy results, showing that the complexity of the first problem is either in
FP or OptP-complete, while the latter problem is either in P or PNP-complete.

One might ask if it is not possible to obtain our results about constraint
satisfaction problems from the seemingly more general results obtained in Section
5.3. However this seems not to be the case, because the “upper-level” conjunction
is of a restricted nature, and this does not fit into Post’s definition of (unrestricted)
superposition. Another hint in that direction is that the results we obtain in the
constraint satisfaction context do not speak about closed sets of Boolean functions
(the Schaefer classes 0-valid, (anti-)Horn, and bijunctive are not closed in the
sense of Post).

Finally another question that arises is, if we can even prove our completeness
results for many-one reductions (i.e., always have g1(x) = x). However this cannot
be expected for “syntactic” reasons. For example, in Sect. 5.3, if we use a non-
complete base S1 ⊆ B ⊂ BF we have to introduce new variables for using them
as a replacement for the constants we need to construct our B-formulas. The
assignments to these variables have to be removed later, which means that we
need the full power of 1-Turing reductions to do some final manipulation of the
value of the function we reduce to.
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