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Abstract

Continuous norming methods have seldom been subjected to scientific review. In this simu-

lation study, we compared parametric with semi-parametric continuous norming methods in

psychometric tests by constructing a fictitious population model within which a latent ability

increases with age across seven age groups. We drew samples of different sizes (n = 50,

75, 100, 150, 250, 500 and 1,000 per age group) and simulated the results of an easy,

medium, and difficult test scale based on Item Response Theory (IRT). We subjected the

resulting data to different continuous norming methods and compared the data fit under the

different test conditions with a representative cross-validation dataset of n = 10,000 per age

group. The most significant differences were found in suboptimal (i.e., too easy or too diffi-

cult) test scales and in ability levels that were far from the population mean. We discuss the

results with regard to the selection of the appropriate modeling techniques in psychometric

test construction, the required sample sizes, and the requirement to report appropriate

quantitative and qualitative test quality criteria for continuous norming methods in test

manuals.

Introduction

Precise and reliable norm scores are an important quality criterion for psychometric tests,

because critical life decisions, such as school placement decisions, rehabilitative treatment, and

psychotherapeutic intervention decisions, are often based on the results of psychometric tests.

In many countries, supportive measures for children with intellectual disabilities are almost

exclusively restricted to children with a general IQ below 70. The granting of support mea-

sures, therapy, or compensation for specific learning disorders at school also regularly depends

on whether a normed score of an appropriate test of reading, writing, or mathematics falls

below a certain threshold [1]. Furthermore, strict cutoffs play a vital role in epidemiologic

studies (e.g., in the seminal Isle of Wight studies [2]). Even in court decisions, an IQ score of

70 is used as a threshold to assess the accountability of a defendant. Given the importance of

such decisions, a psychometric test should not only possess sufficient reliability and validity of
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the obtained raw scores, but it should also be able to precisely rank the raw scores in relation

to the reference sample.

Conventional and continuous norming

Whenever there are precise criteria on how raw scores can directly be interpreted, as is the

case with criterion or mastery-referenced tests, there is no need to convert these raw scores

into norm scores. For example, a criterion-referenced reading test could require a child to

read aloud a text within a certain time and without exceeding a defined number of errors.

However, the vast majority of psychometric tests aim to classify a test result in relation to a ref-

erence population. Within this scope, raw scores of a certain test can only be interpreted mean-

ingfully, if population-based comparative scores–i.e., norm scores—are available [3]. Norm

Scores indicate how the raw scores of a test are distributed in the population, that is, they are

an estimator for the probability of a specific test result in the population. To produce the norm

tables, the empirical cumulative distribution function of the raw scores must be determined on

the basis of a sufficiently large and representative sample, which specifies this probability. The

latter can, for example, be expressed in the form of percentiles. However, since percentiles do

not represent a linear transformation of the raw scores, further computation with percentiles

may lead to bias. Therefore, the percentiles are usually transformed into norm scores like, for

example, IQ-scores or z-scores via normal rank transformation (i.e., by use of the inverse nor-

mal distribution function) and reported as such. The norming of psychometric tests can thus

be defined as setting up population-based reference scores in order to be able to assess the

exceptionality of an individual test result.

Many psychometric tests are based on the assumption that the raw scores are a manifest

expression of a latent personality trait or ability which itself cannot be directly assessed. As

highlighted in Fig 1, norming aims at mapping the raw scores of a test to that latent ability.

While the latter one is usually assumed to be normally distributed, the same unfortunately

does not apply to the raw score distribution. For example, most test scales have only a limited

range of discrete possible outcomes, which can lead to skewed distributions constrained with

floor or ceiling effects. The fact that abilities normally develop over the life span makes this

process even more complicated. In intelligence tests, for example, the raw scores, which are

supposed to reflect the level of the latent ability, increase swiftly with age. Therefore, a child

has to be compared to a sample of children with the same or similar age in order to be able to

assess the exceptionality of the individual test result. Consequently, in tests covering a wide age

range, the normative samples have to be split up into multiple subsamples with a sufficiently

narrow age range. This requirement quickly results in a large total sample size and can in addi-

tion lead to imbalances between the subsamples. At this point, continuous norming methods

come into play. Their aim is to continuously model the change of the raw score distributions

across age (as for example shown by the dashed lines in Fig 1C). Thus, norm scores can be

specified for very narrow age brackets or even for specific age levels or schooling durations.

Continuous norming can theoretically solve a whole series of problems of conventional norm-

ing: First, it reduces errors that occur due to random sampling. Second, it eliminates bias that

occurs because a child’s age does not correspond to the average age of the respective age group

within the normative sample. Third, the norm tables do not contain the usual gaps of conven-

tionally generated norm tables. Finally, continuous norming also requires smaller sample sizes

than conventional norming and thus makes the norming procedures more cost-efficient [3–

5].

There are several mathematical approaches, which can principally be used for continuous

norming. They differ in at least three aspects, (1) the assumptions about the distribution of the
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raw scores of a test scale, (2) the optimization procedures implemented to increase the good-

ness of fit, and finally (3) the operationalization of independent variables and dependent

measures.

Fig 1. Norming as the group-specific (e.g., age-specific) mapping of raw scores to latent abilities. While the latent trait or ability is normally distributed

in every single age group, the features and shapes of the resulting raw score distributions can change depending on age. As the norm scores are scaled with

respect to each separate age-group, they reflect the exceptionality of the test result within a certain age group but do not reflect general developmental

changes of the latent ability between age groups.

https://doi.org/10.1371/journal.pone.0222279.g001
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A first way to create continuous norms consists in modeling the age progressions for each

percentile individually, that is, the raw scores serve as the dependent variables, which are mod-

eled as a function of age, while the percentile (i.e., the level of the latent trait or ability) is kept

constant. This approach is also known as quantile regression [6,7]. It makes no specific

assumptions about the raw score distributions and can therefore–in accordance with statistic

convention–be classified as nonparametric. However, quantile regression is accompanied by

some major disadvantages. First, individual percentile curves may intersect, which would vio-

late the assumption that the assignment of raw scores to norm scores at a fixed age level must

be monotonic. Second, as each percentile is modeled individually, the method is rather cum-

bersome and inefficient to apply within psychometrics. And third, error minimization or

probability maximization of an overall model is not possible within this approach as there is

no joint estimation or linkage between the individual percentiles. These reasons may have con-

tributed to the fact that quantile regression has not been widely used to compute psychometric

test norms. At least we do not know of a single test in which this method was applied. There-

fore, although quantile regression may certainly be utile for the determination of specific cut-

offs or for other particular psychometric purposes, we have nevertheless decided to

concentrate in this article on those approaches that are actually in use for the computation of

continuous test norms.

The most widely used approach, parametric continuous norming, has so far mainly been

applied in intelligence tests such as the Wechsler series and KABC-II [8–14]. To our knowl-

edge, the first test to introduce this kind of continuous norming was the WAIS-R [8]. This

intelligence test for adults was launched in the U.S. in 1981. Its norming procedure is based on

the assumption that the raw scores are normally distributed at each single age level [15].

Hence, the normative sample of the WAIS-R was split up into different age groups, for which

the means and the standard deviations of the raw scores were computed separately. Subse-

quently, polynomial regression was used to model these two parameters as a function of age.

As a result, the estimated mean and standard deviation of the raw score distribution could be

determined easily from the regression equations for any specific age level within the normative

sample. Finally, norm scores could be calculated for each raw score and age from these two

parameters based on the normality assumption. However, violations of this assumption can

severely bias norm scores generated with this method. Unfortunately, such violations fre-

quently occur in psychometric tests. This drawback holds particularly true for tests that cover

a wide age range, since floor and ceiling effects often occur at the boundaries of such an age

range. Furthermore, in this relatively simple type of continuous norming, the means and stan-

dard deviations are modeled separately, which can lead to suboptimal data fit at individual age

levels.

To address violations of the normality assumption, researchers have suggested to first sub-

ject the raw scores to specific transformations aiming to approximate the raw score distribu-

tion to a normal distribution. For example, Cole and Green [16,17] used the so-called Box-Cox

transformation for this purpose (see Fig 2A, family of functions 2). In addition to parameters

for location and dispersion, the Box-Cox transformation has an additional skewness parameter

λ, which can also be fitted across age. In further developments of this method [18–21], various

families of functions have been used to transform the raw scores in such a way that the proba-

bility density of the resulting distribution is known. The functions vary in complexity, but gen-

erally possess three or more parameters capturing the location, dispersion, skewness and

sometimes also the kurtosis of the raw score distribution. These parameters are used to

approximate the probability densities of the raw score distributions at a fixed age. The age pro-

gression of the parameters is subsequently modeled with polynomial regression or related

mathematical procedures (e.g., splines). In addition, the individual parameters are generally
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not fitted independently across age. Instead, joint likelihood functions are used, that is, the

probability for the whole set of parameter values is maximized simultaneously. In line with the

general statistical nomenclature, we summarize this type of norming procedure under the

term parametric norming (Fig 2). Note that the specificity of this approach is not necessarily to

use a specific number of parameters to model a distribution, but instead to use specific families

of functions with characteristic shape (e.g., normal distribution, t distribution, exponential

Fig 2. Parametric continuous norming. Known parametric functions are used to model the raw score distributions at specific age levels. The function

parameters are subsequently modeled as a function of explanatory variables such as age.

https://doi.org/10.1371/journal.pone.0222279.g002
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power distribution, beta-binomial distribution, SinH-ArcsinH distribution, and many more).

For example, a function with only three parameters might fit a scale better than a function

with four parameters when the typical shape of the three-parameter function is better suited

for the specific raw score distribution. Therefore, when using parametric norming methods,

the main psychometric task is to select the most suitable distribution function for a specific

scale.

Our own approach [3,22,23] is a mixture between parametric and nonparametric methods

and can therefore be characterized as semi-parametric. As with parametric norming, we use a

type of parametrization to simultaneously fit the entire dataset. However, as with the nonpara-

metric approach, we make no assumptions about the raw score distribution. Instead, we only

assume that a raw score is the result of an interaction between the latent ability to be measured

and the applied set of test items. Consequently, the dependent variable in our approach is the

raw score–not the norm score. The age-specific person location θage (i.e., the level of the latent

ability with regard to those persons of the reference population who have the same age) and

the age a both serve as independent variables. As an estimator for θage, we use the empirically

observed percentiles, which are subjected to normal rank transformation prior to the modeling

procedure (= observed location, l). The observed locations thus correspond to conventional

norm scores. To fit the model, we apply polynomial regression. However, in contrast to the

approaches described above, we do not fit curves, but a two-dimensional surface (age x loca-

tion) in a three-dimensional space (age x location x raw score, Fig 3). The method can there-

fore be characterized as a regression-based fit of a hyperplane.

To better illustrate the rationale of this method, consider the optimal norming function

rexp = f(θage, a). This function determines the expected raw score rexp, a person with location

θage and age a is most likely to achieve on a given test scale. The problem with parametric

methods is that even with the optimal parameter specification, the used families of functions

are not necessarily able to adequately model the shape of this optimal norming function. For

example, the normal distribution cannot model functions with skewness or kurtosis. Likewise,

functions with a third parameter for skewness cannot account for kurtosis of the optimal

norming function. Therefore, scales with large floor or ceiling effects are usually difficult to

model with parametric distributions because they additionally include relevant higher-order

moments (e.g., hyperskewness). In contrast, polynomial regression at least theoretically pro-

vides an error-free solution for any optimal norming function because an arbitrary set of N
finite values can always be described mathematically by a polynomial of degree N-1 as a func-

tion of another variable (or several other variables). Consequently, for a sample size of

N = 1000, the entire range of expected raw scores could be modeled error-free with a polyno-

mial of degree 999 as a function of person location and age. This means that the following

equation would have to be resolved:

r ¼
P999

s;t¼0
cst l

sat; ð1Þ

which would, of course, be computationally complex. However, given that the raw scores of a

test are normally limited to finite values, a conclusion is that the higher-order terms of the

polynomial must quickly become very small and can therefore be neglected. Hence, only the

first three or four powers of location l and age a usually have to be included into the regression

equation to obtain sufficiently good data fit. The maximum power taken into account repre-

sents a smoothing parameter k of the norming function, that is, the lower k is selected, the

smoother the function. The clipping of the polynomial also has the advantage to prevent data

overfit. Finally, the optimal norming function is selected by including only terms that signifi-

cantly improve the coefficient of determination in the regression equation [3,23]. Fortunately
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and in contrast to parametric continuous norming, the procedure does not require searching

for a complex function to fit the data, because the polynomials will always provide a solution

to the fitting problem.

A concrete example for applying semi-parametric continuous norming in test construc-

tion. R packages and in-depth tutorials exist both for the parametric [21,24] and for the

semi-parametric approach [22,23]. Furthermore, a graphical user interface for the semi-

Fig 3. Semi-parametric continuous norming. Polynomial regression is applied to model a two-dimensional surface (age x location) in a three-

dimensional space (age x location x raw score).

https://doi.org/10.1371/journal.pone.0222279.g003

Continuous norming of psychometric tests

PLOS ONE | https://doi.org/10.1371/journal.pone.0222279 September 17, 2019 7 / 30

https://doi.org/10.1371/journal.pone.0222279.g003
https://doi.org/10.1371/journal.pone.0222279


parametric approach is available online via https://cnorm.shinyapps.io/cNORM/. With this

interface, test constructors can model their data and assess whether the approach is adequate

for their use case. To help readers, who are interested in applying semi-parametric continuous

norming, we want to give a brief overview on the steps. In addition to the following demon-

stration, we advise readers to consult the online tutorial [22] for additional information and to

repeat the procedure with the online user interface.

The procedure consists of the following steps:

1. Before statistical models are established, it is necessary to collect a sufficiently large norma-

tive sample and establish representativeness by stratifying it according to all relevant covari-

ates (e.g., sex, schooling . . .). The online user interface includes an exemplary dataset on

reading comprehension (‘elfe’ [25]) which includes seven age cohorts with the data of 200

children each. To our experience, smaller sample sizes (e.g., 50 cases per cohort, comp.

[4,5]) already suffice to model the data, but establishing representativeness becomes

increasingly difficult the smaller the dataset.

2. The next step is to prepare the data (tab “Preparation”) by computing conventional norm

scores for the raw score variable, for example by applying a normal rank transformation or

determining the percentiles within each age cohort. Afterwards, all powers of the norm

score l (l, l2, . . . lk) and the age variable a (a, a2, . . . ak) plus the respective interactions (l a, l
a2 . . . lkak) must be computed up to the required degree k, as for example k = 4.

3. These variables subsequently enter a regression analysis as independent variables with the

raw score serving as the dependent variable (tab “Modeling & Validation”). Finally, the sig-

nificant terms of the polynomial and the respective coefficients are determined to set up the

final regression formula [3]. The procedure usually leads to a simple norming models with

only three or four significant terms in the regression and a coefficient of determination fre-

quently above .98. It is advisable to keep the number of terms low, even at the expense of R2

in order to avoid overfitting.

4. Based on the regression function, the percentiles can be plotted (tab “Visualization”) to

assess if the model fits the data. It might be necessary to adjust the number of terms in the

regression, to rerun the modeling or to conduct a cross validation in order to retrieve opti-

mal results. Finally, the model can be used for compiling norm tables or to directly retrieve

norm scores for individual cases or datasets (tab “Prediction”). It is possible to assign norm

scores to raw scores or vice versa as a function of age.

Unfortunately, semi-parametric norming–like quantile regression–can lead to intersecting

percentile curves, which means that the monotonic relation between norm scores and raw

scores at specific age levels is violated. Such inconsistencies most frequently occur when the

test scale shows strong floor or ceiling effects (i.e., discriminating between different person

locations on the basis of a limited range of raw scores is not possible). Therefore, violations of

monotonicity can be used to select optimal models and to determine the valid measuring

range [22,23]. In this study, we used them in a very simple way, which is described in the

method section.

Verifiability and transparency of norming procedures

As described in the previous section, there are several approaches available to set up continuous

norming models. In contrast to other domains of test construction and analysis, quality criteria

for evaluating these models are not sufficiently developed though. While statistical indicators for

the reliability and validity of a specific test are usually reported in the respective test manuals to
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prove the test quality, one problem with continuous norming methods is that apart from a few

exceptions known to us [26,27], the manuals of psychometric tests rarely provide evidence to

prove the goodness of the norming model. Established procedures or specific characteristic val-

ues for this purpose are hardly available. Moreover, most test manuals even neglect to sufficiently

describe the norming procedure detailed enough to allow for any statistical validation. In case of

parametric continuous norming, they usually lack information about the chosen modeling func-

tions. For example, it is not described whether or to which degree these functions fulfill the

required distribution assumptions across the whole age range in the specific application. These

shortcomings make it difficult for users to assess the limitations of the applied norming proce-

dures and the resulting norm data. In our own efforts to fit psychometric test data on reading

comprehension and vocabulary [26,27] with parametric norming methods, we particularly

noted systematic deviations between the observed data and the fitted distribution curves at the

lower and upper bounds of the raw score distributions and age ranges. The fact that these norm-

ing methods lead to biased norm scores especially in the extreme ability ranges, is all the more

regrettable as these are the areas of the greatest importance in practical diagnostics [3].

Apart from the question on how to assess and communicate the goodness of fit of statisti-

cal norming models, there is also little information about which method provides the best

modeling results under specific conditions. For example, the sample size, the distribution of

item difficulties, the number of items within a scale and even the type of task or response

format (e.g., power vs. speed test) could play a role when it comes to the selection of an opti-

mal method. Since they have hitherto rarely been compared, it is impossible to choose the

most suitable method in advance based on existing evidence. Instead, the selection of meth-

ods is limited to purely data-driven trial-and-error strategies, which can lead to suboptimal

modeling results.

Focus and rationale of research in this simulation study

The purpose of the present simulation study was to make a quantitative comparison of the dif-

ferent continuous norming methods in order to identify specific strengths and weaknesses

under various conditions. However, comparing all methods under all possible conditions in

one study is not possible. That is why in this article we focused on the two approaches we con-

sider to be the most frequently used at present, namely parametric and semi-parametric con-

tinuous norming. In addition, we varied two general conditions that, in our opinion, are

probably particularly important with regard to the goodness of fit of the respective methods,

namely the sample size and the skewness of the raw score distributions. Variation of the latter

was achieved through systematic changes of the average item difficulty.

As described above, the difficulty with parametric methods is to find a function and select a

statistical model that fits the raw score distribution with sufficient precision, which is particu-

larly challenging for raw score distributions with pronounced floor or ceiling effects. There-

fore, our hypothesis was that the semi-parametric norming should outperform parametric

norming in scales that do not provide sufficient items with very high or very low difficulty,

that is, in scales that are generally very easy or very difficult for a given age. In addition, we sus-

pected that deviations from an optimal norming model should manifest primarily in extreme

ability ranges, because in these ranges the actual raw score distributions generally deviate most

from the theoretical distribution assumptions.

A basic assumption of parametric continuous norming is that means, standard deviations,

skewness and, where required, kurtosis of the raw score distributions can be estimated with

relatively small sample sizes. For example, Zhu and Chen [5] stated that parametric norming

with only 50 or 75 subjects per age group generally delivers sufficient goodness of fit. We
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therefore hypothesized that parametric continuous norming might outperform the semi-

parametric approach when using small sample sizes.

Method

Data generation and statistical modeling

In order to assess the goodness of fit of the different continuous norming methods, we first

constructed a population model with defined developmental increase of a fictitious ability

across age. We subsequently drew random samples of varying size out of this population

and simulated a fixed number of item responses for each subject in these samples in accor-

dance with a Rasch model. The average item difficulty of each set of items could be low,

medium or high. The item responses were summed to a total test raw score and subjected to

the different continuous norming methods. Finally, we evaluated the resulting assignments

of raw scores to norm scores by use of a large and completely representative cross-validation

sample. The six essential steps of the simulation are depicted in Fig 4. These steps were

repeated 3,150 times.

Since we wanted to run the simulation cycles in an automatized way, we had to resort to

methods that were both disclosed and available as software implementations, so that we could

embed them flexibly in the simulation. We therefore used two open-source R packages in their

latest versions: The GAMLSS (= Generalized Additive Models for Location, Scale and Shape)

package [24] was applied to do the parametric modeling and the cNORM (= Continuous

Norming) package [22,23] was used for the semi-parametric modeling (the packages are

described in S1 Appendix; code and raw data is available through S1 Code and S1 Dataset).

The individual steps and features of the simulation are described in more detail below.

Population model. We constructed a developmental model of a fictitious intellectual abil-

ity for a population with the following seven age groups: age group 1 [0.5; 1.5[, age group 2

[1.5; 2.5[, age group 3 [2.5; 3.5 [. . . up to age group 7 [6.5; 7.5[. In addition to age, we assigned

two person parameters to each subject. The first parameter, θAge, functioned as a normally dis-

tributed and z-standardized person parameter, which represented the fictitious latent ability

with respect to all subjects of exactly the same age. The second person parameter θPop, specified

the latent ability in relation to the total population, that is, θPop was z-standardized with regard

to all seven age groups. θPop was later used to simulate the test results based on the Rasch

model (see Table 1 for an overview of statistical abbreviations and symbols). To model the

development of the intellectual ability as realistically as possible, we used the normative sample

of a real vocabulary test [26] as a blueprint. The following polynomials describe the mean and

standard deviation of the unstandardized ability as a function of age:

1. Mability = 1.5 � Age—0.05 � Age2 + 0.0001 � Age4

2. SDability = 1 + 0.3 � Age—0.01 � Age2 + 0.00002 � Age4

The z-standardization of this ability across all seven age groups led to the following relation

between θPop and θAge:

3. θPop = (θAge � SDability + Mability—5.097) / 3.128

Fig 5 shows θPop as a function of age. Note that due to the slightly curved increase across

age, the latent ability parameter θPop was not normally distributed within the total population

but displayed a slight overall positive skew (gm = 0.36).

Sampling. We generated normative samples according to the population model described

above, that is, each sample contained seven age groups. Each age group had a size of n = 50, 75,
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100, 150, 250, 500 or 1,000. We drew two random parameters for each subject in the samples.

The first one was age, which was uniformly distributed across the specific age group. The sec-

ond one was the age-specific latent ability θAge, which was normally distributed with m = 0 and

sd = 1. We additionally transformed θAge into θPop as specified by the population model.

Simulation of test scales and test results. We generated three fictitious test scales with 20

test items each, following a Rasch model. We started the construction of these test scales with a

scale of medium difficulty. In this scale, the item locations δi matched a perfect normal distri-

bution with a mean value Mδ = 0.0 and standard deviation SDδ = 1.0. As a result, the solution

probabilities for the items were equally distributed between 0 and 1, that is, the items were

optimally suited for the defined population in the sense that they covered the latent ability very

well.

To create two additional scales with stronger floor or ceiling effects, we shifted the average

item location to Mδ = -1.0 (easy scale) or Mδ = 1.0 (difficult scale) while keeping a standard

deviation of SDδ = 1.0 in each scale.

Fig 4. Flow chart of the simulation cycles.

https://doi.org/10.1371/journal.pone.0222279.g004
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Because of the curvilinear trajectory of θPop, the skewness of the raw score distributions for

the three different test scales varied in the individual age groups, with the medium test scale

showing only a weak positive skew on average (gm = 0.14), followed by the easy test scale,

which had a moderate negative skew (gm = -0.48). The difficult test scale showed the highest

skew (gm = 0.83) of the raw score distributions with a pronounced floor effect at the lowest age

group. We therefore assumed that this scale should also entail the strongest differences with

regard to the results of the different norming methods.

To simulate the raw score on one of these scales for a subject i, 20 item responses were sim-

ulated for this subject according to the Rasch model using the item difficulties of the respective

scale. These responses were subsequently summed to a raw score yi of this subject for the

respective scale.

Statistical modeling. We subjected each normative sample to parametric and semi-

parametric norming methods. The parametric modeling was performed with the lms() func-

tion of the GAMLSS package. We specified specific families of distributions with GAMLSS

automatically choosing an optimal variant of the respective distribution, such as truncated or

stretched. Our focus was originally on the Normal Distribution Family (NO, two parameters)

and the Box-Cox Family (BC; including the three-parameter Box-Cox distribution sensu [16],

the four-parameter Box-Cox Power Exponential distribution, and a truncated Box-Cox distri-

bution). Since the BC family is not suitable for raw score distributions including zero (as is the

case with the simulated data), we additionally used the SinH-ArcsinH distribution (ShASh) as

recommended by the authors of the GAMLSS package [21]. Furthermore, to be able to still test

the BC family when scores of zero where included in the raw score distributions, we simply

added one point to each raw score when using the BC family for the modeling. This procedure

is comparable to including a very simple test item in the test scale (i.e., an icebreaker item with

a nearly 100% chance of being solved as is used in many psychometric tests). Such an item

does not add information about the ability of a person to the test results and should therefore

have no major impact on the modeling procedure (apart from the fact that the modeling is

also possible with the BC family). This item was deducted when finally assigning raw scores to

norm scores in order to be able to compare the assignments across methods.

For the semi-parametric modeling, we used the cNORM package with the default setting of

k = 4 as maximum degree of the polynomial, which means that the resulting polynomial could

Table 1. Statistical abbreviations and symbols used in the simulation.

Measure Description

θAge Person parameter representing a latent ability that is z-standardized with regard to

subjects of exactly the same age

θPop Latent ability that is z-standardized with respect to the whole population instead of the

specific age level of a person. This parameter was used to generate test data for the

normative samples and the cross-validation sample.

MSD Mean signed difference; measure to assess a general dislocation between predicted and

ideal norm scores in the cross-validation sample

RMSE Root mean square error; measure of the deviation between predicted and ideal norm

scores in the cross-validation sample

TIdeal Norm scores obtained from normal rank transformation of the empirical cumulative

distribution function of the large and representative cross-validation sample. The raw

scores assigned to these norm scores are essentially the raw scores statistically expected for

a person with a certain latent ability and age.

TcNORM, TNO, TBC and

TShASh

Norm scores predicted by the different continuous norming models (cNORM = semi-

parametric; NO = Normal distribution family; BC = Box-Cox family;

ShASh = SinH-ArcsinH family) on the basis of the normative samples

https://doi.org/10.1371/journal.pone.0222279.t001
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contain up to 24 terms plus the intercept. In order to determine the optimal number of terms

in the regression function, we used Ockham’s razor, that is, a pragmatic law of parsimony stat-

ing that the simplest models should be preferred. Our previous experiments with modeling

psychometric data had shown that, as a rule of thumb, usually the first four significant terms in

the multiple regression are sufficient to set up a semi-parametric norming model with a coeffi-

cient of determination generally above .99. Our very simple selection algorithm was therefore

to include four terms in the regression equation by default, and only to search for alternative

models in case of violations of monotonicity in the resulting model. (Note that we only took

into account violations within the range of the simulated normative data of each simulation

cycle.) In case of violations, we started with three terms and consecutively added significant

terms until a model without violations of monotonicity was found for the first time. This

model was finally selected as the optimum model. If no such model was found, we used the

maximum number of terms in the regression equation. In more than 75% of all simulations,

this procedure resulted in a polynomial with only three or four terms for the entire norming

model. In less than 0.1% of all cycles, the number of terms reached the maximum number of

24.

Cross-validation. The cross-validation sample contained only seven discrete age levels

(i.e., 1.0; 2.0; 3.0; 4.0; 5.0; 6.0 and 7.0) with n = 10,000 subjects each, amounting to a total of

N = 70,000 subjects. Furthermore, the person locations θAge in this sample matched a perfect

normal distribution at each age level, making the sample perfectly representative at these spe-

cific levels.

The cross-validation was performed by generating a raw score of the respective test scale for

each subject in the cross-validation sample. The generation of test data was performed in

Fig 5. Age progression of the fictitious ability in the simulated population. θAge corresponds to the latent ability z-
standardized with regard to subjects of exactly the same age and θPop corresponds to the latent ability z-standardized

with regard to the total population.

https://doi.org/10.1371/journal.pone.0222279.g005
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exactly the same way as in the normative samples. We subsequently computed conventional

norm scores for each of the subjects. To this purpose, we subjected the empirical raw score dis-

tribution at each specific age level in the cross-validation sample to a normal rank transforma-

tion. Note that we will express these and all other norm scores in the results section in the

form of T-scores with MT = 50 and SDT = 10. Given that each age level contained 10,000 sub-

jects and had a perfectly representative distribution of the latent ability, we assumed that the

resulting assignment of norm scores to raw scores represented a general upper limit of the

norming quality of the respective test scale. We therefore refer to these norm scores as the

ideal norm (TIdeal).

Subsequently, we converted the raw scores of each subject in the cross-validation sample

into norm scores according to the four continuous norming models (parametric: NO family,

BC family, ShASh; semi-parametric: cNORM) established on the basis of the much smaller

normative samples. Consequently, five different norm scores were assigned to each subject in

the cross-validation sample, namely the four modeled norm scores (TcNORM, TNO, TBC and

TShASh) and an ideal norm score (TIdeal), which essentially corresponded to the norm score a

person with a specific latent ability and age was statistically expected to achieve. An overview

of the statistical abbreviations and symbols is given in Table 1. The norm scores generated

with the continuous norming methods were subsequently compared to the ideal norm score

with the methods described below.

We performed 150 cycles for each combination of sample size and scale difficulty. This

resulted in a total of 7 x 3 x 150 = 3,150 simulation cycles. In some cases, the GAMLSS software

failed to return a model for one of the parametric methods. In such cases, we restarted the

cycle until a model was returned. cNORM never showed similar problems.

Assessment of model fit

The simulation performed according to the procedure described above has the advantage that

both the true age-specific location of each subject (θAge) and the ideal norm score (TIdeal) for

this subject are known. Note that θAge and TIdeal do not match perfectly. Instead, TIdeal cannot

capture all variance of θAge because of the respective test-scale limitations (i.e., discrete raw

scores, limited item numbers, suboptimal item difficulties and the non-linear development of

the latent ability).

To compare the model fit of the different methods, we drew on the root mean square error

(RMSE), which we determined from the difference between the norm scores predicted on the

basis of the normative data (i.e., TcNORM, TNO, TBC or TShASh) and Tideal in the cross-validation

samples. Since RMSE is not normally distributed, we decided to count the number of simula-

tion cycles in which each single method showed the lowest total RMSE of all methods. These

data were subjected to χ2 tests on equidistribution. The significance level for all tests was set to

α = .01 because of the risk of Type I errors with multiple comparisons. To assess the overall

dislocation of the modeled norm scores from the norm scores, we additionally computed the

Mean Signed Difference (MSD). As the analysis of the MSD was suggested in the review process

of the article, we conducted a second simulation to obtain the according values. Therefore, the

analysis of MSD and RMSE draws on two different datasets (available as S2 Dataset and S3

Dataset), but with otherwise identical parameters and equivalent results.

We also considered that most psychometricians would not mix both approaches in one

norming procedure but would be more likely to choose either parametric or semi-parametric

modeling. Furthermore, when using the parametric approach, they would probably compare

different families of functions and subsequently choose the one that fits best (e.g., NO, BC or

ShASh). To simulate this selection process, we additionally compared each single parametric
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method to one another and selected in each simulation cycle the one with the lowest RMSE as

the best parametric method. Using this procedure it was possible to compare the two different

approaches (parametric vs. semi-parametric) in general.

Finally, to be able to also analyze norming errors as a function of the latent ability, we seg-

mented the measurement range (based on TIdeal) between the T-scores 20 and 80 (i.e., norm

scores up to +/- 3 SD) into 12 intervals of five T-scores each and calculated the RMSE sepa-

rately for these intervals. More extreme norm scores were excluded in this analysis because

they usually play no major role in diagnostic decisions.

Results

Fig 6 shows the empirical cumulative distribution functions of the RMSE as a function of scale

difficulty (upper panel). In this figure and all following figures, the turquoise line represents

the semi-parametric method (cNORM) and the red lines represent the three parametric meth-

ods. The figure illustrates that the overall RMSE was below 2 T-score points in almost 98% of

all simulation cycles, when cNORM was used to calculate norm scores. In contrast, the cumu-

lative distribution functions of the RMSE for the parametric norming methods showed a cas-

cade-like pattern, indicating that the GAMLSS software generated suboptimal results in a

relevant number of simulation cycles. For example, applying the BC family to the easy scale led

to more than 50% of simulation cycles with an RMSE above 10 (i.e., higher than 1 SD of the

norm score distribution), which is a highly unacceptable value for any diagnostic purpose.

Although the software had issued a warning message that the fitting algorithm did not con-

verge in those cases, it had nevertheless returned a statistical model. The MSD (lower panel)

illustrates that the parametric approach produced high systematic bias, which strongly

depended on scale difficulty. The easy scale, which exhibits a pronounced bottom effect, led to

a positive dislocation of the predicted scores in the parametric models and most pronounced

in the Box Cox distribution family. The medium scale led to smaller systematic biases mostly

in negative direction, with Box Cox being least affected. The difficult scale, which exhibits a

ceiling effect, caused a large dislocation in negative direction in all parametric models with a

considerable increase with sample size. cNORM in contrast was neither affected by sample size

or scale difficulty and showed almost no systematic bias.

To give the parametric methods the benefit of doubt and to rule out biases related to miss-

ing convergence, we addressed this problem by assuming that an individual norming proce-

dure with GAMLSS–in contrast to the simplified simulation procedure used in this study–

would provide ways to avoid such severe mismatches without modifying the norming data

(i.e., without eliminating alleged outliers). Therefore, to avoid an unfair bias due to the inclu-

sion of obviously implausible models in the analyses, the descriptive data of RMSE and MSD
subsequently reported in Table 2 are based on a cleaned dataset that only includes converged

GAMLSS models with an RMSE below 10 (with cNORM, the RMSE was less than 10 in all

cases). In this table, the row “Included” reports the percentage of models included in the analy-

sis (i.e., with a total RMSE< 10).

Across all conditions, GAMLSS produced acceptable models in only 55.6% of all cases.

Moreover, the proportion of acceptable models showed a complex pattern of sensitivity to

sample size and scale difficulty. Interestingly, the analysis for medium difficulty revealed that

the lowest proportion of acceptable models (30.7% across all three parametric methods) was

found for a medium sample size of n = 150 per age group. A sample size of n = 100, which is

the typical sample size used for continuous norming [8–14], yielded only a slightly higher pro-

portion of acceptable models (35.5% across all three methods). For the scale with high diffi-

culty, the proportion of acceptable models markedly decreased with growing sample size and
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Fig 6. RMSE obtained by the different norming methods in the cross-validation sample as a function of scale difficulty (upper panel) and MSD per sample size

and difficulty (lower panel).

https://doi.org/10.1371/journal.pone.0222279.g006
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was generally lower for NO and ShASh (e.g., only 10.7% acceptable models for n = 1,000) com-

pared to BC. For the easy scale, the proportion showed a less uniform and less pronounced

dependence on sample size but was generally lower for BC compared to NO and ShASh.

In line with our expectations, the semi-parametric method was by far the most preferable of

all four methods when applied to the two suboptimal test scales, with the lowest RMSE in

87.9% of all simulation cycles when applied to the easy test scale, χ2(3) = 2,226.4, p< .001, and

the lowest RMSE in 93.7% of all simulation cycles when applied to the difficult test scale, χ2(3)

Table 2. RMSE and MSD as functions of sample size n and scale difficulty in the cleaned dataset.

Sample Size 50 75 100 150 250 500 1000 Overall

Scale difficulty: Easy

cNORM Included 100% 100% 100% 100% 100% 100% 100% 100%

RMSE 1.412 1.257 1.197 1.077 1.001 0.913 0.772 1.090

MSD 0.107 -0.055 -0.094 -0.054 -0.102 -0.064 -0.068 -0.078 0.055 0.094 0.054 0.102 0.064 0.068 0.078

GAMLSS_NO Included 75.3% 78.0% 84.0% 96.7% 94.7% 89.3% 96.7% 87.8%

RMSE 2.113 1.990 1.953 1.875 1.826 1.783 1.755 1.889

MSD 0.269 0.154 0.245 0.185 0.234 0.219 0.219 0.219

GAMLSS_BC Included 48.0% 43.3% 36.0% 40.7% 30.7% 35.3% 42.0% 39.4%

RMSE 1.738 1.675 1.607 1.511 1.441 1.455 1.468 1.567

MSD 0.177 0.106 0.281 0.112 0.161 0.147 0.204 0.171

GAMLSS_ShASh Included 75.3% 78.0% 84.0% 96.7% 94.7% 89.3% 96.7% 87.8%

RMSE 1.994 1.791 1.656 1.465 1.334 1.178 1.085 1.476

MSD 0.349 0.253 0.336 0.204 0.247 0.196 0.131 0.242

Scale difficulty: Medium

cNORM Included 100% 100% 100% 100% 100% 100% 100% 100%

RMSE 1.451 1.218 1.113 1.000 1.048 1.070 0.967 1.124

MSD 0.037 0.038 0.083 0.026 0.055 0.034 0.039 0.045

GAMLSS_NO Included 58.0% 45.4% 33.3% 28.7% 44.0% 54.0% 72.7% 48.0%

RMSE 1.696 1.626 1.538 1.424 1.340 1.300 1.255 1.442

MSD 0.112 0.074 0.124 0.085 0.110 0.114 0.082 0.100

GAMLSS_BC Included 64.7% 50.7% 40.0% 34.7% 50.0% 56.7% 67.3% 52.0%

RMSE 1.463 1.466 1.347 1.119 0.933 0.779 0.662 1.090

MSD 0.151 0.095 0.170 0.133 0.124 0.136 0.117 0.133

GAMLSS_ShASh Included 58.0% 45.3% 33.3% 28.7% 44.0% 54.0% 72.7% 48.0%

RMSE 1.584 1.499 1.359 1.156 1.013 0.903 0.834 1.167

MSD 0.131 0.081 0.134 0.087 0.092 0.102 0.064 0.099

Scale difficulty: Difficult

cNORM Included 100% 100% 100% 100% 100% 100% 100% 100%

RMSE 1.558 1.194 1.147 1.024 0.908 0.795 0.752 1.054

MSD 0.033 0.093 0.068 0.161 0.115 0.129 0.149 0.107

GAMLSS_NO Included 59.3% 63.3% 56.0% 42.0% 32.7% 29.3% 10.7% 41.9%

RMSE 1.867 1.759 1.678 1.599 1.554 1.495 1.473 1.6843

MSD 0.100 0.193 0.092 0.101 0.039 0.038 0.062 0.103

GAMLSS_BC Included 61.3% 68.7% 68.7% 64.0% 52.7% 40.0% 22.0% 53.9%

RMSE 2.259 2.128 2.079 2.044 2.222 2.038 1.655 2.102

MSD 0.021 0.032 -0.072 -0.050 -0.148 -0.084 -0.114 -0.044

GAMLSS_ShASh Included 59.3% 63.3% 56.0% 42.0% 32.7% 29.3% 10.7% 41.9%

RMSE 1.866 1.586 1.473 1.307 1.244 1.130 1.048 1.478

MSD 0.211 0.322 0.226 0.255 0.172 0.158 0.194 0.233

https://doi.org/10.1371/journal.pone.0222279.t002
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= 2,645.9, p< .001. However, contrary to our expectations, the semi-parametric method also

showed the lowest RMSE in 64.0% of all cycles with the medium scale, χ2(3) = 1,057.8, p<
.001.

The better performance of cNORM with regard to the suboptimal test scales was evident

not only for the total dataset but also for the cleaned dataset (i.e., the data set including only

models with RMSE< 10), with the lowest RMSE in 86.3% of all valid simulation cycles (i.e.,

simulation cycles with at least one parametric model with RMSE< 10) when applied to the

easy test scale, χ2(3) = 1,861.1, p< .001, and the lowest RMSE in 88.4% of all valid simulation

cycles when applied to the difficult test scale, χ2(3) = 1,217.3, p< .001. Moreover, in the vast

majority of conditions, it exhibited the smallest MSD as well, while it has to be noted that in

the cleaned data, there were only minor general dislocations in terms of MSD across all condi-

tions and methods. Table 3 shows all pairwise comparisons within the complete (white cells)

and the cleaned (grey cells) dataset as a function of scale difficulty.

It must also be noted, though, that after excluding all models with an RMSE� 10, the gen-

eral advantage of cNORM regarding the medium test scale vanished and was instead qualified

by a threefold interaction between method, scale difficulty, and sample size. This effect is illus-

trated in Fig 7, which shows the RMSE as a function of approach (semi-parametric vs. best

parametric), scale difficulty, and sample size. We included in this figure all simulation cycles

returning at least one parametric model with a RMSE< 10. Given that the RMSE is not nor-

mally distributed, we chose to depict percentiles of the respective distributions in this figure

instead of means and standard deviations. First, as can be seen from all three charts, the RMSE
generally decreases with increasing sample size irrespective of the scale difficulty. Against our

expectations, this pattern is similar for the semi-parametric and the parametric approach. Sec-

ond, with regard to the medium test scale, the semi-parametric approach numerically per-

formed best when the sample size was n = 75, 100 and 150 per age group. Yet, the counts

yielded only a marginally significant difference for n = 75 (p = .07). Moreover, the parametric

approach outperformed the semi-parametric when the sample size was n = 250 or higher (p<
.001 for all tests). Note, however, that these sample sizes are only rarely used for continuous

norming and that there was a selective dropout of the parametric models with increasing sam-

ple size. Third, in line with our hypotheses, the results produced with cNORM showed almost

no dependence on scale difficulty, with an average RMSE of 1.1 for all three scale difficulties.

In contrast, the results of the parametric approach were affected by scale difficulty, with the

best results for the medium test scale (average RMSE = 1.0) and the worst results for the diffi-

cult test scale (i.e., the scale with the highest skewness; average RMSE = 1.5).

When focusing on the parametric approach only, the modeling results showed a pro-

nounced interaction between the specific method and the scale difficulty (Fig 8). The depen-

dence on scale difficulty was most pronounced for the BC family, which yielded by far the

highest norming errors of all parametric methods when applied to the difficult test scale and

the lowest when applied to the medium test scale. ShASh and NO also achieved the best results

on the medium scale. However, the influence of skewness was much less pronounced for this

scale, with ShASh showing the lowest sensitivity to skewness.

The relatively low average norming errors reported in the results above do not necessarily

implicate superiority of a method across the whole ability range. Fig 9 shows the RMSE of the

different methods as a function of scale difficulty and latent ability. The sample size of n = 100,

which is typically used for continuous norming, is shown on the left panel. However, we also

included a larger sample size of n = 250 (right panel), because BC as well as ShASh on average

performed better than cNORM at this sample size and the size is still within the range of real-

life application scenarios, whereas the next larger sample size of n = 500 per age group is used

very rarely. First, as becomes clear when comparing all six charts depicted in Fig 9, cNORM
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very reliably delivered a U-shaped distribution of the RMSE as a function of ability indepen-

dent of sample size and scale difficulty. Moreover, within a critical range of +/- 2 SDs around

the population mean (i.e., T-scores 30–70), the RMSE never exceeded a T-score of 2. In

Table 3. Pairwise comparisons between the methods in the cross-validation based on lowest RMSE.

Compared to: cNORM GAMLSS–NO GAMLSS–BC GAMLSS—ShASh

Scale difficulty: Easy

Winner is cNORM % 99.3 94.1 92.2

N 1050 1050 1050

χ2 1020.8��� 816.8��� 748.0���

Winner is GAMLSS–NO % 0.8 57.4 6.6

N 922 1050 1050

χ2 892.7��� 23.0��� 780.2���

Winner is GAMLSS–BC % 15.0 83.7 26.4

N 414 412 1050

χ2 202.9��� 187.2��� 233,9���

Winner is GAMLSS–ShASh % 8.9 92.8 44.4

N 922 922 412

χ2 623.0��� 675.6��� 5.2�

Scale difficulty: Medium

Winner is cNORM % 90.9 67.9 75.5

N 1050 1050 1050

χ2 702.6��� 134.6��� 273.1���

Winner is GAMLSS–NO % 19.0 11.3 4.9

N 504 1050 1050

χ2 193.7��� 629.0��� 854.3���

Winner is GAMLSS–BC % 61.7 90.6 67.8

N 546 470 1050

χ2 29.9��� 309.9��� 133.1���

Winner is GAMLSS–ShASh % 51.0 90.1 20.0

N 504 503 470

χ2 0.2 323.5��� 169.2���

Scale difficulty: Difficult

Winner is cNORM % 97.9 95.9 96.1

N 1050 1050 1050

χ2 963.7��� 884.9��� 892.6���

Winner is GAMLSS–NO % 5.0 47.5 33.9

N 440 1050 1050

χ2 356.4��� 2.62 108.9���

Winner is GAMLSS–BC % 7.6 47.4 49.1

N 566 439 1050

χ2 407.0��� 1.2 0.34

Winner is GAMLSS–ShASh % 9.3 84.8 64.0

N 440 440 439

χ2 291.5��� 213.1��� 34.4���

Note. The % values indicate the proportion of valid simulation cycles in which the model in the leftmost column outperformed the compared model. Values in the white

cells represent the complete dataset; values in the grey cells include only GAMLSS models with an RMSE< 10. All df = 1

� p < .05

��� p< .001.

https://doi.org/10.1371/journal.pone.0222279.t003
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Fig 7. RMSE as a function of approach (semi-parametric vs. best parametric), sample size n and scale difficulty. The solid lines represent the 50th percentile,

whereas the dashed lines represent the 25th resp. 75th percentile. This analysis includes all simulation cycles with at least one parametric model with an

RMSE< 10.

https://doi.org/10.1371/journal.pone.0222279.g007

Fig 8. RMSE of the three parametric methods as a function of scale difficulty and sample size n. The figure includes all models with a RMSE< 10.

https://doi.org/10.1371/journal.pone.0222279.g008
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Fig 9. RMSE as a function of method, scale difficulty, and latent ability for sample size n = 100 (left panel) and n = 250 (right panel).

https://doi.org/10.1371/journal.pone.0222279.g009
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contrast, RMSE showed obvious spikes at some ability levels when parametric methods were

used. This pattern was especially true for the easy and the difficult test scale but also for the

medium test scale with a sample size of n = 100. Furthermore, the location of the spikes barely

depended on the sample size, which means that the deviations from the ideal norm scores are

systematic. The analysis of the MSD also confirmed this result. (An analogous figure, depicting

MSD as a function of method, scale difficulty, and latent ability, can be found in S1 Fig). The

highest spike occurred between T-scores 30 and 35 when the NO family was used and was

approximately 5 T-scores high (easy scale). This result was in line with our expectations that

skewed distributions cannot be modeled adequately with a normal distribution. Noteworthy,

however, was the fact that spikes of considerable size also occurred when using the BC family.

For example, when applying BC to the difficult test scale, a spike occurred between T-score 35

and 40. Moreover, the spike clearly increased with sample size and was as high as 4.5 T-scores

for n = 250, which strongly suggests that by using parametric methods, the norming error can

significantly increase with sample size at individual locations even though it decreases on aver-

age across the whole ability range.

Only when BC or ShASh were applied to the medium test scale with a sample size of

n = 250 no such spikes were detectable. Yet, neither BC nor ShASh outperformed cNORM at

all ability levels, although both methods were slightly superior to cNORM on average. At

T = 37.5, for example, cNORM showed the lowest RMSE of all methods. Hence, the overall dif-

ferences between BC, ShASh and cNORM under this specific condition were so small that

they would rarely have a significant impact on real test results, taking into account rounding

accuracy.

Discussion

Summary of results

In this simulation study, we compared the reliability of different parametric and semi-

parametric continuous norming methods depending on the skewness of the scale and the sam-

ple size. To this end, we repeatedly drew random normative samples with varying size and gen-

erated test results for these samples based on a Rasch model. We used test scales with three

levels of difficulty, namely, a scale with an optimal distribution of item difficulties (medium

scale), a scale with a moderate ceiling effect (easy scale), and a scale with a pronounced floor

effect (difficult scale). We subsequently generated statistical norming models from the test

results according to the different methods and assessed the model fit with a large and

completely representative cross-validation sample.

The semi-parametric approach outperformed the parametric one under most conditions.

In line with our expectations, semi-parametric norming yielded significantly lower norming

error for the suboptimal test scales with floor or ceiling effects. This superiority was indepen-

dent of the sample size. The largest differences between the semi-parametric and the paramet-

ric approach emerged for the test scale with the highest skewness of the raw score distribution

(i.e., the difficult test scale). Note that the main problem is not necessarily the skewness of the

data but rather the floor effect. However, given that real psychometric test scales usually have a

very limited number of items and that the distribution of item difficulties often is far from per-

fect, floor and ceiling effects are, in our experience, not the exception but rather the rule.

For the test scale with medium difficulty, the overall performance of both approaches was

more balanced. At those sample sizes typically used for continuous norming, the semi-

parametric method yielded slightly better results than the best fitting parametric method,

while for higher sample sizes it was exactly the opposite.
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It was also noteworthy that the quality of the three parametric methods depended to differ-

ent degrees on the scale difficulty. While the norming error only slightly depended on the scale

difficulty when using the ShASh function, the BC family yielded the lowest average norming

error of all parametric methods when applied to the medium test scale and the highest when

applied to the difficult test scale.

The analysis of the norming error as a function of the latent ability yielded even more

detailed results. As expected, the norming error reliably showed a U-shaped distribution when

using the semi-parametric method, regardless of sample size and scale difficulty. By contrast,

applying the parametric methods resulted in considerable deviations from the ideal norm at

specific levels of the latent ability, that is, the individual norming error was low at some ability

levels but very high at others. Large deviations of the ideal norm occurred not only in the

extreme ability ranges, but also in the moderately above- or below-average ranges. In some

cases, the height of the observed spikes even increased with growing sample size. Although the

magnitude of the effect depended on the skewness of the scale and the specific parametric

function, the same pattern was observable for all three parametric families of functions. Specif-

ically, the spikes were unexpectedly high for the BC family when applied to the difficult test

scale. In fact, Cole and Green [16] stated in their original article that the BC function is only

suitable for moderate skewness. Nevertheless, we had expected at least a slight performance

advantage of the BC family over the NO family for the difficult scale, because when the NO

family is used, skewness can only be modeled by truncating the distribution, which only allows

a very rough adjustment. Moreover, the norming error depicted in Fig 9 was averaged across

all age groups, which means that the spikes must have been even higher at specific age groups.

Under unfavorable conditions (e. g., specific combinations of age and ability level), parametric

norming can therefore yield individual norming errors of more than half a standard deviation,

even if the specific method shows low norming error when averaged across all age levels and

abilities. Such deviations from the ideal norm score could, of course, lead to serious diagnostic

mistakes.

At this point, it is important to raise the question of how a test author or psychometrician

would handle marked deviations from the empirical data at specific ability levels or age groups.

The first step in addressing deviations is to detect them. An urgent recommendation when

applying continuous norming methods is therefore to visualize and inspect the model fit thor-

oughly over the entire ability and age range. We will revisit this requirement later. The second

step is to interpret the deviations as errors of the norming model and not as outliers or random

noise of the empirical data. We are concerned that deviations are often misattributed to the

data instead of the statistical model, with the latter being the only valid interpretation in our

simulation. In line with this apprehension, one of the authors of the GAMLSS software recom-

mends reducing detectable spikes by eliminating supposed outliers [28]. This procedure would

not have reduced the norming errors in the present study but instead would have overesti-

mated the model fit. We therefore suggest to apply this strategy cautiously and sparingly.

Our last hypothesis, which predicted that the semi-parametric method would be more sen-

sitive to a change in sample size than the parametric methods, was not supported. Both

approaches benefited from an increase in sample size to about the same extent. It has to be

noted, though, that a substantial increase in sample size would in most cases only lead to

minor improvements in the precision of individual norm scores. Therefore, the results are still

in line with the assumption that continuous norming generally can draw on smaller sample

sizes compared to traditional norming procedures to achieve comparable results [4,5]. More-

over, as described above, when using parametric methods, convergence problems and even the

deviations from the ideal norm at specific ability levels grow with larger samples. This finding

might, in our opinion, result from an increase in statistical power. Given that the parametric
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modeling to some extent forces the raw score distributions into unsuitable shapes, the overall

error can only be kept low when high error is tolerated in some locations. This feature of

parametric modeling leads to the paradoxical effect that an increase in sample size might as

well increase the bias of the modeled norm scores.

Nevertheless, it must also be taken into account that the smaller the sample size, the more

difficult it is to establish sufficient representativeness of the normative sample in real life appli-

cations. This is especially true if several stratification variables must be taken into account.

Based on our own experience, the usual sample size of n = 100 per age group used for continu-

ous norming can often place enormous demands on the balancing of the most important strat-

ification variables (e.g., age, sex, ethnic group, geographic region etc.). Hence, the combination

of semi-parametric norming with moderately large representative samples (e.g., n = 100 to

200) seems to be the most solid approach to psychometric test norming in most application

cases, while at the same time being sufficiently cost-effective.

Limitations of the study

One problem we had to deal with in this simulation study was the relatively low percentage of

valid models returned by the software used for the parametric approach. Only about half of the

parametric models showed satisfactory model fit. In the other half, the used algorithms seem-

ingly did not converge and therefore returned models with unacceptable model fit. This prob-

lem even occurred for the test scale with optimal item difficulties, for which we had expected

the parametric approach to outperform the semi-parametric one. In our study, we could easily

handle this problem by running a sufficiently large number of simulation cycles and including

only the converging models in the subsequent analysis. In applied settings, however, psycho-

metricians must analyze only one – often imperfect – dataset. The question therefore is how

they should address the problem of non-convergence in real-life applications. In many of our

simulation cycles, only one of the applied families of functions failed to yield a converging

model, whereas the other models converged. Since we chose the best parametric method only

from the converging models, we might have selected suboptimal models in some cases,

because perhaps a function that failed to produce a converging solution in a specific case could

theoretically have been better suited for the data. Most psychometricians would probably

choose the appropriate function in a similar way, that is, based on the lowest RMSE between

empirical and modeled data, when applying the parametric approach in practice. Theoreti-

cally, it may be more advisable to select the function or family of functions on the basis of the

specific data properties (e.g., skewness, kurtosis, sample size, floor and ceiling effects and so

on) in advance, rather than adopting a trial-and-error strategy. If, however, the pre-selected

function does not return a converging model and the psychometrician meets this problem by

sorting out supposed outliers from the normative data, this procedure can again lead to subop-

timal models. It is therefore difficult to assess the practical impact of this problem.

Another shortcoming was that in the present study we could not evaluate all available

parametric functions but had to pre-select three specific families of functions. We focused on

these functions, because they are used in real psychometric tests [29] or were recommended

by the authors of GAMLSS [20] under specific conditions. We documented strengths and

weaknesses of these families of functions depending on the respective properties of the simu-

lated datasets. The GAMLSS package offers numerous additional functions to model raw score

distributions, which might fit our simulated datasets even better than the functions we used.

To the best of our knowledge, however, no further simulation studies are available to date in

which the goodness of fit of these functions has been demonstrated for scales with specific

properties. Consequently, a psychometrician applying the parametric approach in practice
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would again have no choice but to determine the function on the basis of a pure trial-and-

error strategy, which we have already rejected as suboptimal.

There are a few other conditions that may possibly affect the goodness of fit of the evaluated

methods, we could not systematically vary in this single study. For example, we used a fixed

number of items in the test scales. In practice, a higher number of items could reduce the skew-

ness of a scale, but only if the item difficulties were equally distributed across the whole ability

range. Reducing the skewness would be especially beneficial for parametric norming with the

BC family. As a consequence, differences between semi-parametric and parametric norming

could be partly narrowed. However, as already stated above, a perfect equidistribution of item

difficulties across the whole ability range is no realistic scenario, because very easy or very diffi-

cult items tend to provide unfavorable item parameters and therefore are often eliminated dur-

ing test construction.

In addition, we based our simulation on a Rasch model, which is only applicable for pure

power tests. One task of future simulation studies would therefore be to check the fit of differ-

ent norming methods for simulated data with more complex measurement models including

speed as well as power components.

Another problem of the simulation study was the necessity to rely on default settings of the

respective software packages instead of individual adjustments of parameters as would be the

case in applied settings. For example, we used a default smoothing algorithm and an auto-

mated model selection within each family of functions when applying the GAMLSS package.

Manually selecting the respective parameters might have led to better modeling results. On the

other hand, the selection strategy used with cNORM was also extremely simple and far from

optimum. It is therefore difficult to assess to what extent an individualized adjustment of the

modeling parameters would have influenced the results of this study.

A final limitation of this study is that we did not compare continuous norming to conven-

tional norming. A major reason for this shortcoming is that we wanted to evaluate the contin-

uous norming models at discrete age levels and therefore tailored the cross-validation sample

accordingly. However, a major source of error in the application of conventional norming is

precisely the fact that the norm scores are not provided for any specific age level, but for large

age ranges, with some children being relatively far from the average age of the respective age

group. We would not have been able to capture this source of error with the specific design of

our study, that is, it would have been biased in favor of conventional norming. Based on our

previous experience, we can, however, state that continuous norming generally leads to lower

bias of the norm scores when a suitable method is selected and carefully implemented [3]. Fig

10 (lower panel) illustrates this assumption by showing the relation between continuous and

discrete norming. The data on which this figure is based were obtained from a real vocabulary

test [26]. The conventional norms (depicted as dots) show considerable variation between the

individual age groups. A heavily jagged age course is discernible particularly in the ability

range, which is strongly below average (PR 2.5). It seems very unlikely that such an irregular

pattern would actually reflect the true age progression of a latent ability. In contrast, the con-

tinuous norming method (depicted as lines) compensates for the large differences between the

individual age groups and provides smooth percentiles across the entire ability range.

Recommendations for the evaluation and documentation of continuous

norming procedures

Although continuous norming methods have been in use for several decades, few peer-

reviewed articles have been published on this topic to date. Moreover, to the best of our knowl-

edge, not a single textbook on psychometrics contains any information about these methods.
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Fig 10. Percentile curves generated with the cNORM package based on the normative sample of a real vocabulary

test. The curves show which raw score (y-axis) is assigned to a specific ability level (each represented by a percentile

curve) at a certain age (x-axis). The upper panel shows a deliberately ill-executed norming procedure (31 terms, k = 5,

raw score RMSE = 3.33, norm score SE = 0.88), whereas the lower panel depicts an optimally executed procedure (7

terms, k = 4, raw score RMSE = 3.83, norm score SE = 1.11).

https://doi.org/10.1371/journal.pone.0222279.g010
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Even more concerning, however, is the fact that the test manuals themselves also rarely provide

sufficient information about the continuous norming methods and the goodness of fit of the

resulting models. As a first step to address this problem, we complete our article with a few

concrete recommendations for quality assessment and documentation of continuous norming

procedures.

Quantitative criteria. In our simulation study, we quantified the fit of the different norm-

ing methods with RMSE and MSD. The first is commonly used to evaluate the goodness of fit

of statistical models, because it captures all kinds of global and local differences between

observed and modeled data and can be applied very flexibly. In our specific case, we used the

RMSE to compare observed distributions based on simulated data of an ideal sample with

modeled distributions based on simulated data of suboptimal samples. Thus it was possible, to

analyze the extent to which the quality of the norm scores generally varied depending on the

sample size, the skewness of the raw score distributions, the ability level and the norming

method. MSD on the other hand was used to assess a general dislocation of the fitted to the

observed scores. Other researchers in this field have suggested calculating confidence intervals

for norm scores based on repeated sampling [4,30].

In general, we would like to encourage test authors to generally report more descriptive sta-

tistics that play or could play a role in the assessment of the norming procedures. For example,

we have demonstrated in this study that the skewness of the raw score distribution (resp. the

presence of floor or ceiling effects) is an important criterion with regard to the selection of

suitable parametric norming functions. Skewness parameters of the raw score distributions

could be reported very easily in test manuals.

Qualitative criteria. Another very simple way to document the quality of the norming

models in the test manuals is to provide graphical illustrations of the empirical data and the

modeled percentile curves across the entire age and ability range. Contrary to quantitative cri-

teria, the model fit can be assessed intuitively and with only minimum prior knowledge with

such illustrations. Compare, for example, the upper and the lower panel of Fig 10, which both

depict percentiles modeled with cNORM based on the same norming data of a real vocabulary

test. The upper panel shows percentiles we deliberately generated in a negligent and therefore

suboptimal way. The lowest percentile curve in this panel (PR 2.5) shows a fairly curvy trajec-

tory, which contradicts theoretical assumptions about the monotony of the vocabulary growth

during adolescence. The observed development of the raw scores across age was most likely

overfitted in this case. In contrast, the lower panel depicts diligent modeling of the same data

set (which, by the way, was based on an extremely simple mathematical model). The coefficient

of determination R2 is slightly lower than in the upper panel, but the percentiles are smooth

and increase monotonously. It can therefore be assumed that a good model fit has been

achieved without overfitting the data, which could further be verified by cross validating the

model.

Concluding remarks and outlook. In the field of continuous norming, the scientific dis-

course on the comparison of different norming methods is largely lacking. Only in the last few

years, open source software for that purpose is available to test authors and other scientists in

the form of R-packages. Although the mathematical methods and functions are fully disclosed

in these software packages, the evaluation and application of the specific continuous norming

methods and software packages may still be a major challenge for many test authors. We will

gladly provide assistance with the application of our own method and software package, and

we have also experienced comparable help with the authors of the GAMLSS package, whom

we would like to express our thanks to on this occasion. Both packages provide measures to

quantitatively and qualitatively assess and document the quality of the produced norm scores

and are therefore very useful tools for improving psychometric tests.
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The aim of our work is to provide a more precise assessment of human abilities and

achievements and thus also to improve decision-making in the field of applied psychometrics.

We hope that with this study we have taken another small step towards achieving this goal.
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