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Abstract: Approximately 20% of multiple myeloma (MM) cases harbor a point mutation in KRAS.
However, there is still no final consent on whether KRAS-mutations are associated with disease
outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM
patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is
mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRASp.G12C entered
into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less
common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced
in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus
dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy
and autologous stem cell transplantation. Moreover, the functional impact of KRASp.G12A and the
exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically,
KRASWT, KRASp.G12A, KRASp.A146T, and KRASp.A146V were overexpressed in HEK293 cells and the
KRASWT MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector
system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were
found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells.
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1. Introduction

Oncogenic activation of RAS-dependent pathways is a hallmark in a wide range of solid and
hematological malignancies [1,2], including multiple myeloma (MM) [3,4]. In their GTP-bound state,
RAS proteins show a high affinity towards downstream effectors such as PI3K, RAF, RAL, RIN, TIAM,
and PLCε, leading to the activation of the mitogen-activated protein/extracellular signal-regulated
kinase kinase 1 and 2 (MEK1/2) extracellular signal-regulated kinase 1 and 2 (ERK1/2) module, the
PI3K/AKT pathway, and other signaling cascades [5–8]. Thus, RAS proteins are involved in the
regulation of proliferation and survival. Up to 40% of MM cases harbor a point mutation in either KRAS
(~20%) or NRAS (~20%) and it has been shown that survival of MM cell lines depends on oncogenic
RAS [4,9,10]. Given the important role of mutated KRAS for the development and progression of many
tumor entities, targeting this oncogenic driver addresses an urgent clinical need. However, mutated
KRAS does not possess an accessible active site to which small molecules could bind [1]. Targeting
KRAS directly is thus a great challenge and after more than three decades of research, KRAS-inhibitors
have still not been implemented in cancer treatment [1,11]. However, recently AMG 510—a covalently
binding inhibitor of the p.G12C mutant of KRAS—was developed by leveraging the H95/Y96/Q99
cryptic pocket in GDP-KRASG12C, and has entered a phase 1/2 clinical trial (NCT03600883) after
biopharmaceutical optimization [1]. The prognostic outcome of patients with RAS mutated MM has
been assessed in several studies with contradicting conclusions, which may at least in part reflect the fact
that different treatment regimens have been used [3,12–17]. Of note, in trials treating relapsed/refractory
patients with proteasome inhibitors, no significant difference in overall survival between RAS-mutant
and RAS-WT patients was found [4,18].

Oncogenic point mutations in RAS most commonly occur in codons 12 and 13 of exon-2 and in
codon 61 of exon-3 [9,19–22]. These mutations impair intrinsic GTPase activity, thus preventing RAS
deactivation [8]. Consequently, RAS remains constitutively active and promotes cancer cell growth
and survival [2]. Moreover, mutations in KRAS are found in exon-4 (p.A146, p.K117) in approximately
4% of primary colorectal cancers and in 10% of colorectal cancer cell lines [23,24], as well as in a few
MM patients and in the MM cell line AMO1 [9,19,20,22,25,26]. Exon-4 mutations at codon 146 affect an
evolutionarily conserved region which is predicted to interact with the guanine base of GDP. These
lesions do not impair intrinsic KRAS GTPase activity [24,27], but increase the rate of guanine nucleotide
exchange, thus resulting in increased net-activation [28]. However, the activating potential of increased
nucleotide exchange was deemed to be lower than that of decreased GTPase activity, because the
latter translated into superior capacity for transformation [28]. Nevertheless, in vitro and in vivo
investigations with colorectal cancer models showed that exon-4 mutations conferred a dependence
on MEK/ERK-signaling and resistance to EGFR-targeted agents. They were also accompanied by
conversion to homozygosity and copy number (CN) gains of KRAS which may augment the activity of
mutations at this site [24]. However, the functional investigations were specifically focused on a single
mutation located in exon-4 (p.A146T) and on the exon-2 mutation p.G12D, and they were limited to
MEK/ERK-signaling and effects of MEK/ERK- and EGFR-inhibitors [24]. Moreover, to our knowledge,
no data about the functional role of exon-4 mutations in MM are available.

To investigate if the occurrence of KRAS-mutations has a prognostic role for newly diagnosed
MM patients treated with current treatment regimens including novel agents, and whether the exon-4
mutations may play a functional role in MM pathogenesis, we performed deep-sequencing of the
coding regions of KRAS in samples from 80 MM patients at diagnosis, who were then uniformly
treated with bortezomib and high-dose chemotherapy. Stable overexpression cell line models were
used to functionally investigate the impact of the exon-2 mutant KRASp.G12A and the exon-4 mutants
KRASp.A146T and KRASp.A146V on different survival pathways in MM and non-MM cell lines.
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2. Results

2.1. Sequencing, Filtering, and Validation

The sequencing of KRAS in newly diagnosed MM (NDMM) samples from 80 patients of
the “Deutsche Studiengruppe Multiples Myelom” (DSMM) uniformly treated with three cycles of
bortezomib plus dexamethasone and cyclophosphamide (VCD) and subsequent stem cell mobilization,
high-dose chemotherapy, and autologous stem cell transplantation and 12 MM cell lines revealed a
median on-target coverage of 121 with 92–140 reads per sample. A few samples showed only little or no
coverage in exon 3 and were thus re-sequenced using Sanger sequencing. In total, 104 base substitutions
or indels were detected and 34 substitutions and nine indels were assigned to the coding region of
KRAS. The indels predominantly occurred in homopolymers and were thus completely excluded
from further analysis. In the next filtering steps, synonymous single nucleotide variations (SNVs),
non-synonymous SNVs with a DNA variant allele frequency (VAF) of <5%, and SNVs that occurred in
only the forward or the reverse reads were excluded, which finally revealed 12 non-synonymous SNVs
in 24 primary MM and three MM cell lines for validation with Sanger sequencing or high resolution
melting (HRM). Six SNVs could not be confirmed by Sanger sequencing or HRM or were present
in both the tumor and corresponding normal samples, and for one SNV no suitable HRM primers
could be designed. The remaining six SNVs that were detected in 16 patients could be confirmed by
Sanger sequencing or by HRM. Two MM cell lines (MM1.S and RPMI8226) carried SNVs that were also
detected in a primary MM sample and one additional SNV was detected in the MM cell line AMO1,
as described previously [26].

2.2. Exon-4 KRAS-Mutations Are Rare in the Current Study Cohort

KRAS-mutations were detected in 20% (16/80) of NDMM patients. The mutations accumulated
in hotspot regions of exons 2, 3, and 4 at positions p.G12, p.Q61, p.Y64, and p.A146 (Figure 1A)
which is similar to the distribution that was revealed from the CoMMpass dataset (Figure 1B) and the
distributions reported by others [9,19,20,22,25]. The most commonly affected site in the current cohort
was p.Q61, while only one patient was affected by an exon-4 mutation. According to the calculated
tumor population rate, which was determined using the VAF and the copy number (CN)-status for
KRAS, the cohort was divided into nine patients with clonal KRAS-mutations and seven patients with
subclonal KRAS-mutations at diagnosis (Figure S1). The patient with the exon-4 mutation p.A146V
showed a VAF of 48% and was assigned to the group with clonal KRAS-mutations in the current cohort
(Figure S1). Likewise, the high VAF numbers at DNA level for p.A146 mutations in the CoMMpass
dataset (33–39% (n = 5); Figure 1B) suggested a clonal or at least major subclonal presence. This is
further underscored by RNA-level VAF-analyses also provided by the CoMMpass database, which for
p146 mutations range between 47–54% (n = 4) [25].

2.3. KRAS-Mutations at Diagnosis Have No Predictive Value in Patients Treated with VCD and
High-Dose Chemotherapy

In the current dataset, the occurrence of KRAS-mutations (20%) neither significantly correlated
with cytogenetic alterations such as t(4;14), t(11;14) or t(14;16), nor with deletions in 13q or 17p (Table 1).
The co-occurrence of KRAS- and DIS3-mutations was observed in just one patient. Thus, in contrast to a
previous analysis [29], no significant association between the occurrence of KRAS- and DIS3-mutations
was found in the current patient cohort (Table 1, p = 0.676).
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Figure 1. Distribution of KRAS mutations in the MM cohort studied, and also including two MM cell 
lines (AMO1, MM1.S) with known KRAS-mutations [26], (A) and within the CoMMpass dataset 
which was generated as part of the Multiple Myeloma Research Foundation Personalized Medicine 
Initiatives (Initiatives 2014) [25]; (B). Additionally shown is the biological relevance of the KRAS-
mutations detected in the current cohort according to the bioinformatic predictor tools GERP, 
PolyPhen and PhastCons. (A) The variant allele frequency is given as an approximate indicator of the 
level of clonality within the sample (A,B). The A146V mutation which was detected in a MM patient 
of the DSMM cohort was assigned to the group of clonal KRAS-mutations (see Figure S1). n: number, 
MM: multiple myeloma, AA: amino acid, SNV: single nucleotide variant. 
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Table 1. Correlation of the KRAS mutation-status with classic cytogenetic parameters. mut: mutation, 
WT: wild type. 

Cytogenetic Parameters KRAS Mut, n = 16 KRAS WT, n = 64 p-Value 
13q deletion; no, yes 9, 7 29, 35 0.577 
17p deletion; no, yes 14, 2 50, 14 0.504 

1q gain; no, yes 12, 4 41, 22 0.559 
9q gain; no, yes 10, 6 33, 31 0.577 
t(4;14); no, yes 12, 4 48, 16 1 

Figure 1. Distribution of KRAS mutations in the MM cohort studied, and also including two MM cell
lines (AMO1, MM1.S) with known KRAS-mutations [26], (A) and within the CoMMpass dataset which
was generated as part of the Multiple Myeloma Research Foundation Personalized Medicine Initiatives
(Initiatives 2014) [25]; (B). Additionally shown is the biological relevance of the KRAS-mutations
detected in the current cohort according to the bioinformatic predictor tools GERP, PolyPhen and
PhastCons. (A) The variant allele frequency is given as an approximate indicator of the level of clonality
within the sample (A,B). The A146V mutation which was detected in a MM patient of the DSMM
cohort was assigned to the group of clonal KRAS-mutations (see Figure S1). n: number, MM: multiple
myeloma, AA: amino acid, SNV: single nucleotide variant.

Table 1. Correlation of the KRAS mutation-status with classic cytogenetic parameters. mut: mutation,
WT: wild type.

Cytogenetic Parameters KRAS Mut, n = 16 KRAS WT, n = 64 p-Value

13q deletion; no, yes 9, 7 29, 35 0.577
17p deletion; no, yes 14, 2 50, 14 0.504

1q gain; no, yes 12, 4 41, 22 0.559
9q gain; no, yes 10, 6 33, 31 0.577
t(4;14); no, yes 12, 4 48, 16 1

t(11;14); no, yes 12, 4 49, 15 1
t(14;16); no, yes 15, 1 61, 2 0.498
t(8;14); no, yes 14, 2 61, 1 0.105

t(14;20); no, yes 16, 0 62, 0 1
DIS3 mut; no, yes 15, 1 56, 8 0.679

Moreover, KRAS-mutations were not significantly associated with clinical parameters such as age
or stage of the disease (Table S1) and did not correlate with outcome (progression free survival, event
free survival, overall survival) or with response to therapy (Table S1, Figure 2).



Cancers 2020, 12, 455 5 of 18

Cancers 2020, 12, x 5 of 18 

 

t(11;14); no, yes 12, 4 49, 15 1 
t(14;16); no, yes 15, 1 61, 2 0.498 
t(8;14); no, yes 14, 2 61, 1 0.105 

t(14;20); no, yes 16, 0 62, 0  1 
DIS3 mut; no, yes 15, 1 56, 8 0.679 

Moreover, KRAS-mutations were not significantly associated with clinical parameters such as 
age or stage of the disease (Table S1) and did not correlate with outcome (progression free survival, 
event free survival, overall survival) or with response to therapy (Table S1, Figure 2). 

The separation into clonal or subclonal presence of KRAS-mutations revealed a trend toward 
reduced overall survival in patients with clonal KRAS-mutations versus patients with minor subclone 
KRAS-mutations (43 months vs. 63 months, p = n.s.). However, these differences did not reach 
statistical significance (Figure S1). Likewise, neither clonal nor subclonal KRAS-mutations were 
associated with the occurrence of classic cytogenetic alterations (Figure S1). 

 
Figure 2. Kaplan Meier plots, showing the difference in overall survival, event free survival, and 
progression free survival between MM cases with or without KRAS mutation. 

2.4. Exon-4 Mutation in AMO1 Cells is Accompanied by Increased CN-Stage and Gene Expression Levels 

To investigate whether mutations in KRAS correlate with CN-alterations, copy neutral loss of 
heterozygosity, or differences in gene expression, SNP6.0 and HG-U133 plus 2.0 microarrays were 
used to interrogate the six MM cell lines AMO1, U266, MM1.S, OPM2, JJN3, and L363, which have 
previously been analyzed by whole exome sequencing [26] and were included in the current 
amplicon sequencing approach. Interestingly, a CN gain in 12p12.1-12q11 also affecting KRAS (CN-

Figure 2. Kaplan Meier plots, showing the difference in overall survival, event free survival, and
progression free survival between MM cases with or without KRAS mutation.

The separation into clonal or subclonal presence of KRAS-mutations revealed a trend toward
reduced overall survival in patients with clonal KRAS-mutations versus patients with minor subclone
KRAS-mutations (43 months vs. 63 months, p = n.s.). However, these differences did not reach statistical
significance (Figure S1). Likewise, neither clonal nor subclonal KRAS-mutations were associated with
the occurrence of classic cytogenetic alterations (Figure S1).

2.4. Exon-4 Mutation in AMO1 Cells is Accompanied by Increased CN-Stage and Gene Expression Levels

To investigate whether mutations in KRAS correlate with CN-alterations, copy neutral loss of
heterozygosity, or differences in gene expression, SNP6.0 and HG-U133 plus 2.0 microarrays were used
to interrogate the six MM cell lines AMO1, U266, MM1.S, OPM2, JJN3, and L363, which have previously
been analyzed by whole exome sequencing [26] and were included in the current amplicon sequencing
approach. Interestingly, a CN gain in 12p12.1-12q11 also affecting KRAS (CN-state 4) was observed in
AMO1 cells, which were found to have an allele frequency of 46% for KRASp.A146T. The KRASWT-cell
line OPM2 showed a gain in 12p12.1 involving also KRAS with a CN-state of 3. In contrast, no CN gain
was observed for KRASp.G12A-mutant MM1.S (~46% allele frequency) and KRASWT L363, U266, and
JJN3 cells. Consistent with the CN gain in AMO1 and OPM2, KRAS-expression was increased only in
these two cell lines (2.3-fold and 1.1-fold higher than the median expression, respectively).
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2.5. Exon-4 Mutations Do Not Appear to Influence the Cellular Localization of KRAS Protein

To investigate whether the exon-4 mutations impact KRAS-binding to the membrane, which
is reported to be essential for signal transduction [30], non-tumor HEK293 cells were stably
transfected with pLenti6.3-EmGFP-KRASWT/p.G12A/p.A146T/p.A146V and the pLenti6.2-EmGFP vector
control, respectively. Judged by fluorescence microscopy and by Western analysis, KRASWT and
KRASp.G12A, as well as both exon-4 mutants, were well expressed and—in contrast to the homogeneously
distributed EmGFP signal—appeared to be preferentially localized to the cell membrane (Figure 3,
Figure S2, Table S2).
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Figure 3. pLenti6.3 EmGFP-KRASWT/p.G12A/p.A146T/p.A146V expression in HEK293 cells as demonstrated
by Western blot and fluorescence microscopy analysis. All KRAS-constructs are predominantly localized
to the cell membrane of HEK293 cells compared to the pLenti6.2-EmGFP control 24 h after transfection.
Fluorescence microscopy analysis was performed at 400×magnification. The corresponding original
Western blots are shown in Figure S2. The raw intensities and the intensity ratios for each band are
listed in Table S2.

2.6. Exon-4 Mutations Specifically Activate MEK and ERK in HEK293 Cells

The calculated molecular weight for pLenti6.3-V5-KRAS and pLenti6.3-EmGFP-KRAS proteins
is ~25 kDa and ~51 kDa, respectively, which was confirmed by Western analysis (Figures 3 and 4,
Figure S3, Table S3). pLenti6.3-V5-KRAS-constructs were initially tested in HEK293 cells, in which
they were well expressed (Figure 4, Figure S3, Table S3). While overexpression of KRASWT already
had a significant activating effect on MEK, this activation was further increased for all KRAS-mutants
tested (Figure 4, Figure S3, Table S3). The activation of ERK was, however, only slightly seen upon the
overexpression of KRASG12A and KRASA146V (Figure 4, Figure S3, Table S3). No activation of PI3K,
AKT, mTOR, or of STAT3 was observed upon the overexpression of KRASWT or KRASmut (Figure 4,
Figure S3, Table S3).
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Figure 4. Representative expression and activation-levels of RTK effectors after transfection of KRASWT

and KRASmut constructs into HEK293 cells. The corresponding original Western blots are shown in
Figure S3. The raw intensities and the intensity ratios for each band are listed in Table S3.

2.7. The KRAS-Mutants KRASp.G12A/p.A146T/p.A146V Specifically Activate MEK/ERK-Signaling in the
KRASWT MM Cell Lines JJN3 and OPM2 and Can Sustain AKT Signalling in OPM2

Lentiviral transduction, as well as stable transposition with Sleeping Beauty vectors in the
KRASWT cell lines JJN3 and OPM2 generated stable KRAS-overexpressing cells for all types of KRAS
mutants (pLenti6.3-V5-KRASWT/p.G12A/p.A146T/p.A146V; pSB-CAG-HA-KRASWT/p.G12A/p.A146T/p.A146V)
(Figure 5A–C, Figure S4A–C, Table S4A–C). Lentiviral transduction, however, did not lead to equal
expression levels of all different KRAS-constructs in these cell lines (Figure 5A, Figure S4A, Table S4A).
Therefore, we also tried the Sleeping Beauty-based approach using HA-tagged KRAS constructs in
either CMV- or CAG-promotor-driven expression cassettes (only the latter experiments are shown in
this paper due to insufficient expression results with the CMV-promotor constructs). These experiments
led to similar results in JJN3 cells, with wild-type KRAS expressed at higher levels than the different
point mutants. Sleeping Beauty-mediated transposition produced more equal expression results in
OPM2 cells, however (Figure 5B,C, Figure S4B,C, Table S4B,C). Even though KRAS-mutants (specifically
KRASp.A146T and KRASp.A146V) were expressed at much lower levels compared to KRASWT following
lentiviral transfection of JJN3 and OPM2 cells, anincrease or at least comparable levels of activated
MEK and ERK (p-MEK and p-ERK) were observed upon the overexpression of KRASG12A/A146T/A146V

compared to KRASWTfor both MM cell lines tested (Figure 5A, Figure S4A, Table S4A). The activation of
MEK and ERK was particularly visible in Sleeping Beauty transposed OPM2 cells where KRASWT and
all KRAS-mutants were equally expressed and corresponded well with other readouts for an activated
RAS/MAPK cascade (phospho-ERK1/2; phospho-CRAF) in OPM2 (Figure 5B, Figure S4B, Table S4B).
In JJN3, a slight activation of MEK but no activation of ERK was visible after transposition with Sleeping
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Beauty vectors. However, this might be due to the lower expression of KRASp.G12A/p.A146T/p.A146V

compared to KRASWT that was also observed after lentiviral transfection. Notably, in addition to the
strong intrinsic activation of the RAS/MAPK cascade, which was clearly observed in OPM2 cells after
the transposition with Sleeping Beauty vectors, all KRAS mutants appeared capable to sustain high
intrinsic levels of phospho-AKT, which became visible in the analyses of pathway activity after 40 min
washout with phosphate buffered saline (PBS) and the resulting termination of fetal bovine serum
(FBS) mediated pathway activation (Figure 5C, Figure S4C, Table S4C). Whereas this treatment led to a
considerable attenuation of the high steady-state levels of phospho-AKT in either “normal” OPM2
cells expressing intrinsic levels of KRASWT or in OPM2 cells overexpressing KRASWT, it barely affected
the signal in mutant KRAS transfected cells (Figure 5C, Figure S4C, Table S4C). Notably, no activation
of mTOR, STAT3, or BRAF was observed upon the overexpression of KRASWT or any KRAS-mutant
in JJN3 and OPM2 cells (Figure 5A,B, Figure S4A,B, Table S4A,B). In summary, although consistent
overexpression of KRASWT and KRASp.G12A/p.A146T/p.A146V proteins could only partially be achieved,
our approach using two different stable transfection systems in two KRAS-wildtype MM cell line
models still proved the capacity for activation of two major oncogenic pathways not only for the
classical p.G12A mutant, but also for both p.A146 mutants.
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Figure 5. Representative expression and activation levels of RTK effectors upon the overexpression of
KRASWT and mutant KRAS in MM cells, following lentiviral transfection of JJN3 and OPM2 cells (A).
Stable transposition with Sleeping Beauty vectors of JJN3 and OPM2 cells, (B) or stable transposition
with Sleeping Beauty vectors in OPM2 cells, which were either harvested from normal culture medium
(Ø PBS) or after a 40 min washout period with PBS to curb FBS-mediated extracellular signals (40 min
PBS), (C). Note: The same sample preparation was used for the blots shown for OPM2 in (B,C) (left
part). The pictures for AKT and phospho-AKT staining are used in both figures. The corresponding
original Western blots are shown in Figure S4A–C. The raw intensities and the intensity ratios for
each band are listed in Table S4A–C. pLenti6.2: JJN3 or OPM2 cells transfected with the empty vector
pLenti6.2. pT2-CAG-puro: JJN3 or OPM2 cells transfected with the empty vector pT2-CAG-puro.

3. Discussion

Mutations in KRAS and NRAS are the most frequently detected point mutations in MM and it was
shown that survival of MM cell lines depends on oncogenic RAS [4,9,10]. After more than 30 years of
research aimed at developing useful RAS inhibitors, AMG 510, an inhibitor specifically for p.G12C
mutant KRAS, is now being tested in a clinical trial and is the first hope for targetting oncogenic
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KRAS therapeutically [1]. However, only a few studies exist in MM that investigated the clinical
role of KRAS-mutations after the introduction of novel agents such as bortezomib and lenalidomide,
which nowadays are routinely included in MM therapies [31], and all of these studies focused on
the role of KRAS-mutations in relapsed/refractory disease [4,18]. Moreover, functional investigations
on oncogenic KRAS in MM are rather limited. Specifically, no expression studies have so far been
reported that have investigated the role of the common exon-2 KRAS mutation p.G12A and the rare
exon-4 KRAS-mutations p.A146T and p.A146V regarding their impact on different survival pathways.
To our knowledge, only shRNA-mediated KRAS-knockdown experiments in MM cell lines [10] and
overexpression experiments of the exon-2 mutant p.G12V in the MM cell line ANBL6 have been
performed, but the latter analysis did not describe the influence on classical survival pathways such as
the MEK/ERK- and the PI3K/AKT-pathways [32,33]. Thus, our study aims to correlate the occurrence of
clonal and subclonal KRAS-mutations in a MM cohort at diagnosis, treated with bortezomib-containing
induction regimens, with common clinical and cytogenetic parameters, and to study the impact of the
KRASp.G12A, KRASp.A146T, and KRASp.A146V mutations on survival pathways in recombinant HEK293
and MM cell line models.

Our sequencing approach in the study cohort of the DSMM XI trial confirmed the reported
distribution of clonal and subclonal KRAS-mutations [9,19,20,22,34] and the results obtained by
correlation of the KRAS-mutation profile with survival are in line with previous observations in
bortezomib-treated patients at relapse [4,18]. KRAS-mutations did not have an influence on survival in
bortezomib-treated patients at diagnosis. However, in contrast to the findings by an in silico analysis
of the CoMMpass dataset [14], this was still evident after the separation into clonal and subclonal
prevalence in our current dataset. Consistent with this finding, no association was observed with
high-risk (e.g., del17p), intermediate-risk (e.g., t(4;14)), or standard-risk (e.g., t(11;14)) cytogenetic
parameters. This is in line with recent reports [13,18], but does not support the findings of Rasmussen
et al., who observed a positive-correlation of KRAS-mutations with high CCND1 expression (e.g.,
t(11;14)) and a negative correlation with the occurrence of the translocation t(4;14) [17]. Moreover,
in our cohort we found no evidence for co-occurrence of KRAS- and DIS3-mutations as previously
described, which might be due to the limited number of patients studied in the current analysis [20].

In summary, our analysis of the prognostic role of KRAS-mutations in a study cohort with newly
diagnosed MM, uniformly treated with three cycles of VCD and subsequent stem cell mobilization,
high-dose chemotherapy, and autologous stem cell transplantation, did not reveal a significant
correlation with survival.

Interestingly, however, the exon-4 KRAS mutation p.A146T detected in AMO1 was accompanied by
a CN-gain (CN-status = 4) and a 2.3-fold higher mRNA-expression of KRAS reminiscent of the situation
in colorectal cancer cell lines [24]. An shRNA-mediated KRAS-knockdown in this cell line, however,
had no influence on MEK-/ERK-signaling while a KRAS knockdown in the KRASp.G12A mutant MM
cell line MM1.S, which is neither affected by KRAS CN-gains nor increased mRNA expression, led
to reduced ERK-activity and survival [10], coherent with the activation of the RAS/MAPK pathway
in our current overexpression experiments of KRASp.G12A in HEK293, JJN3 and OPM2 cells. One
reason for this inconsistency among the two cell lines might be that the amount of shRNA used was
sufficient for a KRAS CN-status of 2 and moderate KRAS mRNA-expression, but not sufficient for
a KRAS CN-stauts of 4 and increased KRAS mRNA-expression. Activation of ERK by KRASp.G12A

was, however, not seen by Xu and colleagues in primary MM using an immunohistochemistry-based
approach [35]. It remains unclear whether this apparent lack of activation results from a different
technical approach, whether the expression of KRASp.G12A has a different effect in primary MM, or
whether the magnitude of its effects is dependent on the context within the individual pattern of
oncogenic lesions present in the affected cells. Interestingly, the common KRASp.G12A as well as the rare
exon-4 mutations KRASp.A146T and KRASp.A146V specifically activated MEK/ERK- and AKT-signaling
compared to KRASWT, although the activation of ERK and AKT in the lentiviral approach was not as
clear as in the Sleeping Beauty experiments, which might be due to the relatively low expression levels
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of the pLenti6.3-KRASp.A146T/p.A146V constructs. Furthermore, ERK- and MEK-activation were less
prominent in JJN3 overexpressing the KRAS-mutants and no activation of AKT was observed in this
MM cell line. Partly, this uneven pattern may be related to the strong differences in expression levels
encountered for the different KRAS constructs, and partly this may be a consequence of the different
patterns of oncogenic lesions affecting the RAS/MAPK and AKT-pathways in these cell lines [26,36].
For example, JJN3 cells appear to exist in different versions, and those used in this experiment harbour
an activating NRAS mutation [10] potentially impinging on the potential for the ectopic constructs to
leave their mark. OPM2, on the other hand, is characterized by the presence of an activating K650E
mutation in FGFR3 and by deficiency in PTEN. Especially the latter lesion, which affects the rate at
which AKT can be dephosphorylated, is responsible for the high constitutive levels of phosphorylated
AKT in this cell line [37] and it may be the decreased rate of AKT dephosphorylation that permits
the detection of the intrinsic activation of this pathway through the introduced RAS-mutants under
conditions of serum deprivation in OPM2 cells. However, while we could clearly demonstrate that
KRASp.G12A, KRASp.A146T, and KRASp.A146V activate MEK-/ERK-signaling and AKT in OPM2 cells, we
did not observe an influence of oncogenic KRAS on mTOR-activation in either OPM2 or JJN3. CRAF,
on the other hand, appears to play a role in relaying oncogenic KRAS activity, since the expression
of oncogenic KRAS in MM cells clearly affected the levels of activated CRAF. These observations
are mechanistically consistent with previous findings that described a switch from BRAF to CRAF
signaling upon the expression of mutant KRAS in melanoma cells [38,39]. Our functional analyses of a
common exon-2 (p.G12A) and of the uncommon exon-4 (p.A146T, p.A146V) KRAS mutations therefore
underscored their context-dependent capacity to activate and/or sustain oncogenic RAS/MAPK and
AKT signaling in MM cells. Unfortunately, normal plasma cells are not an accessible model to test the
functional consequences of the uncommon KRAS exon-4 mutations, nor is it clear which MM cell lines
would provide definitive answers to assess their transformative potential, since all display lesions
that already affect RAS-dependent pathways. Additionally, our difficulties to maintain constant and
similar expression levels of KRAS-constructs over extended periods of time in MM cells precluded
clonal competition analyses which might otherwise have provided some clues as to the potential
gain of fitness associated with such mutations. However, when characterized in MM patients (our
data, the CoMMpass dataset), and in the one case known from an MGUS sample [40] KRAS exon-4
mutations were always present with high allele frequency at DNA and RNA level (e.g., higher than
for the common exon-2 and exon-3 mutations p.G12 and p.Q61), suggesting that they are a major
determinant in the rise to clonal dominance. There is, however, also an interesting MM case described
by Corre et al. [34] in which a p.A146 KRAS mutation detected with a realtively high VAF of 25% at
diagnosis became superseded by an initially minor KRAS p.G13D clone at relapse.

In conclusion, these analyses suggest that p.A146 mutations merit full consideration when
assessing patients’ tumor genetics and could also be considered for the development of further
specific KRAS-inhibitors.

4. Materials and Methods

4.1. Patient Specimens and Human Cell Lines

The 80 MM patients of the DSMM XI trial, included in this study, were treated with
VCD, and subsequent stem cell mobilization, high-dose chemotherapy, and autologous stem cell
transplantation [29,41,42]. Primary MM cells were isolated from bone marrow aspirates by the
CD138+ microbead procedure (Miltenyi Biotec, Bergisch Gladbach, Germany) [43]. Peripheral blood
mononuclear cells of the same patients served as corresponding normal controls [29]. Approval for the
trial and the accompanying research projects was obtained from the local ethics commitee (ref. no.
18/09, approval renewed: 09 March, 2009, reference number AZ 76/13, date of approval: 18.04.2013),
and by the University of Ulm (application number: 307/08, date of approval: 21 January 2009).
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The human MM cell lines L363, JJN3, OPM2, U266, AMO1, KMS12BM, MOLP8, NCIH929, and
RPMI8226 were purchased from the “Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH” (DSMZ, Braunschweig, Germany), MM1.S from LGC Biolabs (Wesel, Germany), and INA6 was
a kind gift from Professor Martin Gramatzki (University Hospital Schleswig-Holstein, Kiel, Germany).
The human embryonic kidney cell line HEK293FT was obtained from Thermo Fisher Scientific
(Darmstadt, Germany). MM cells were cultured as described previously [29] and HEK293FT-cells
were grown in DMEM supplemented with 0.5% fetal bovine serum (FBS) and 6 mM L-glutamine.
To ensure long-term cell line authenticity, newly purchased cells were immediately expanded and
up to 40 aliquots were cryo-conserved (“stock bank”). From one of these aliquots, a second bank of
up to 30 aliquots (“working bank”) was then established. Subsequently, cell cultures were always
retired after 3–4 months and freshly re-instated from working bank aliquots as needed (“dead-end
cell culture”). Diminished working banks were replenished by repeating the procedure with the next
stock bank aliquot. Cultures used for preparation of the banks, as well as cultures in use for more
than a month, were monitored for mycoplasma negativity using the VenorGEM One-Step kit (Minerva
Biolabs, Berlin, Germany).

4.2. Amplicon Generation and Sequencing

A library of the whole coding sequence of KRAS (NM_004985.4, NM_033360.3) was prepared
using 50 ng DNA per sample. Amplicons for the coding regions of KRAS were generated using
exon-specific primers (Table S5) for all MM samples and MM cell lines with the 48-48 Access ArrayTM
IFC using the Fluidigm FCI Cycler System (Fluidigm, Amsterdam, The Netherlands) and sequenced
in a 12-plex format with the Roche 454 GS Junior (Roche, Mannheim, Germany), as described
previously [29]. Sequencing data are deposited at the European Genome-phenome Archive (EGA;
http://www.ebi.ac.uk/ega/), which is hosted at the EBI, under accession number EGAS00001003945.

4.3. Sequencing Data Analysis and Technical Verification

Sequencing data were analyzed with the GS Run Processor and the GS Amplicon Variant Analysis
software (Roche) and SNVs were annotated, filtered, and assigned to major and minor subclones as
described previously [29].

Moreover, the frequency of SNVs occurring in KRAS within the CoMMpass dataset was determined,
which was generated as part of the Multiple Myeloma Research Foundation Personalized Medicine
Initiatives (Initiatives 2014) [25].

4.4. Sanger Sequencing and High Resolution Meling (HRM)

All SNVs that were present in at least 5% of reads were technically verified by Sanger sequencing
(VAF of >20%) and HRM (VAF <20%) using the LightCycler 480 High Resolution Melt Master Kit
(Roche) as described previously [29,41]. Primers used for these purposes are listed in Table S6.

4.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8 software. Correlations of
KRAS-mutations with cytogenetic parameters and the clinical parameters gender, light chain, and event
were done with cross-tabulations in combination with Fisher’s exact test for significance. Correlation
with the clinical parameters heavy chain, stage, and response to treatment were done with the
two-way-ANOVA and age at diagnosis using the Welch test. Survival statistics were calculated using
Kaplan-Meier curves with log-rank tests for significance.

4.6. Generation of Transient and Stable KRAS-WT and KRAS-Mutant (p.G12A, p.A146T, p.A146V)
Overexpression and of KRAS-Knockdown Cell Lines

Functional analyses of KRAS exon-2 and exon-4 mutations required stable and transient
KRAS-overexpression and transient KRAS-knockdown (Figure 6). Stable overexpression in MM

http://www.ebi.ac.uk/ega/
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cells was achieved by lentiviral transduction or transfection (electroporation)/transposition with
Sleeping Beauty vectors. Transient overexpression in HEK293FT cells was achieved using lipofection,
and transient knockdown of KRAS was obtained by an siRNA-mediated approach.
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4.7. Isolation of RNA and cDNA Synthesis

RNA was isolated using the Qiagen All Prep Kit and transcribed into cDNA using an oligo (dT)18

primer and the First Strand cDNA Synthesis Kit (Thermo Fisher Scientific).

4.8. SNP 6.0 and HGU133 Plus 2.0 Microarray Analysis

CN-profiles and gene expression profiles of the cell lines AMO1, U266, L363, OPM2, JJN3,
and MM1.S were generated using SNP 6.0 and HG U133 plus 2.0 arrays (Thermo Fisher Scientific),
respectively. The hybridization of RNA and DNA to these arrays as well as washing and scanning was
performed according to the manufacturer’s instructions. Gene expression and CN-data were processed
with the Affymetrix Expression Console and the Affymetrix Genotyping Console Software (Thermo
Fisher Scientific), as described previously [44,45].

4.9. Generation of Donor and Expression Vectors for Lentiviral Transduction

The stable KRAS-WT and KRAS-mutant overexpression MM cell lines OPM2 and JJN3 were
generated with the ViraPower™ Lentiviral Expression System (Thermo Fisher Scientific, Darmstadt,
Germany). All steps were performed according to the guidelines of the manufacturer, if not otherwise
specified. Expression cassettes for the fusion-proteins attB-V5-KRAS and EmGFP-KRAS were generated
in a two-step fusion-PCR using different primer combinations (Table S7) and the FastStart High Fidelity
PCR System (Roche, Mannheim, Germany) as depicted in Figure S5. In a first PCR step, primers a and
b were used to amplify V5-KRAS with attb overhang, primers g and b to amplify KRAS with EmGFP
and atbb overhang, as well as primers e and h to amplify EmGFP with KRAS overhang (Table S7).
A second PCR step was then performed to add the complete attb-sites to the V5-KRAS and the pre-final
EmGFP KRAS construct and to fuse EmGFP to KRAS to generate the final attb-EmGFP-KRAS construct.
The Vivid Colors pLenti6.2-GW/EmGFP-vector served as a template for the EmGFP-construct, and
the KRAS-cDNAs of the MM-patient P30 and the cell lines AMO1, MM1.S as templates for the
KRAS-mutants p.A146V, p.A146T, and p.G12A, respectively. After technical verification of the
amplified products using a 1% agarose gel, they were purified with the PEG purification protocol
from Thermo Fisher Scientific (Darmstadt, Germany) and Sanger-sequenced, to confirm the presence
of the respective KRAS-mutations. For the generation of the entry vectors, pDONOR221-V5-KRAS
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and pDONOR221-EmGFP-KRAS 50 fmol of both the attB- PCR-product and the pDONOR221 were
used for the BP-recombination. Subsequently, 1 µL of this reaction was transformed into TOPO10
E. coli cells. Clones were picked and verified by Sanger sequencing using the M13 forward primer
that binds within the pDONOR221 and the reverse primer b that binds to the KRAS-cDNA (Figure S5,
Table S7), as well as by restriction digestion using the enzymes EcoRI and PvuI which cut the
vector pDONOR221 and KRAS-cDNA, respectively. The successfully cloned pDONOR221-V5-KRAS
and pDONOR-EmGFP-KRAS constructs were then used in the LR-recombination together with the
expression vector pLenti6.3 to generate the recombinant expression vectors pLenti6.3-V5-KRAS and
pLenti6.3-EmGFP-KRAS. Notably, the non-mutated WT-allele of AMO1 was used as KRAS-WT in this
reaction. Then, 2 µL of the LR-reaction were subsequently transformed into OneShotStbl3 E. coli cells
and positive clones identified via restriction digestion using the enzymes EcoRI-HF which cuts sites
within both KRAS and pLenti6.3 and Mfel-HF which cuts at a site only present in pLenti6.3. Clones
carrying plasmids with the correct restriction pattern were grown overnight (ON) and verified by
Sanger sequencing using the CMV forward primer and the reverse primer b (Figure S5, Table S7) which
bind to pLenti6.3 and KRAS, respectively.

4.10. Virus Production in HEK293FT Cells

One day prior to transfection, 6 × 105 HEK293FT cells were plated per well in 6-well plates.
Following incubation ON, the medium was replaced by 500 µL Opti-MEM I containing 10% FBS.
3.6 µL of Lipofectamine 2000 (Thermo Fisher Scientific, Darmstadt, Germany), which were were
then diluted with 150 µL Opti-MEM I, vortexed, and incubated for 5 min at room temperature (RT).
A mixture containing 0.3 µg expression vector, 0.9 µg of the lentiviral packaging mix (ViraPower™
Lentiviral Expression System, Thermo Fisher Scientific, Darmstadt, Germany), and 150 µL Opti-MEM
I+Lipofectamine 2000 was then incubated for another 20 min at RT and added to the HEK293FT cells
followed by incubation ON. The experiments for each expression construct were set up in triplicates.
pLenti6.2 was used as a positive control. After 24 h the medium was replaced by 1 mL DMEM and
incubation continued for another 24 h. The supernatant was removed, pooled for each construct, and
centrifuged for 5 min at 1500 rpm.

4.11. Viral Transduction of the MM Cell Lines OPM2 and JJN3

1 × 106 cells/well in 3 mL medium were plated in wells of a 6-well plate and 1 mL of the
virus-suspension was added to the cells which resulted in a multiplicity of infection (MOI) of ≤1.
Following overnight incubation, cells were transduced once more with 1 mL of the virus-suspension and
again incubated for 24 h. Duplicates were pooled and cells with EmGFP-constructs were FACS-sorted
and selected for low expression levels. Cells with V5-constructs were pooled and treated with 3 µg/mL
blasticidin for 14 days. The medium containing blasticidin was replaced every three days.

4.12. Generation of Stable Overexpression Cell Lines Using the Sleeping Beauty System

The coding sequence for WT and mutant KRAS was PCR-amplified off the above-described
lentiviral vectors with primers introducing NheI and NotI sites at the 5-prime and 3-prime ends,
respectively, and cloned into a modified pBluescript II vector adding a coding sequence for an
aminoterminal HA-tag. After sequence verification, the constructs were excised by digestion with
SpeI and NotI and subcloned into NheI/NotI acceptor sites within a CAG-promotor-driven expression
cassette of a modified Sleeping Beauty vector (pT2-CAG-puro). Subsequently, the recombinant
plasmids containing KRAS-WT or the KRAS-mutants p.G12A, p.A146T, and p.A146V, respectively,
were transfected together with a transposase expression plasmid into OPM2 and JJN3 cells via
electroporation according to previously published protocols [46]. Electroporated cells were cultured
under standard conditions with puromycin (2 µg/mL for 10 days) until upgrowth of stably transfected
polyclonal cultures, and aliquots were cryoconserved for longer-term storage.
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4.13. Transfection of HEK293FT Cells with Lipofectamine 2000

6 × 105 HEK293FT cells/well were plated in wells of a 6-well plate. Following incubation ON
the medium was replaced by 500 µL Opti-MEM I. A mixture containing 150 µL Opti-MEM I and
12 µL Lipofectamine 2000 was incubated for 5 min at RT and then supplemented with another
suspension containing 150 µL Opti-MEM I and 2.5 µg of the respective pLenti6.3-KRAS-construct
or an empty-vector control. Following 20 min incubation at RT, the mixture was added to the cells
which were subsequently incubated ON at 37 ◦C. Proteins were extracted from whole cell lysates
to study the influence of WT- and mutant-KRAS overexpression on different signaling pathways.
The expected molecular weight of the fusion-proteins was determined in advance using Expasy
(https://www.expasy.org/) and Sciencegateway (https://www.sciencegateway.org/).

4.14. FACS Analysis

Transduction efficiency, as well as numbers of dead and living cells, were determined by FACS
analysis using a BD FACS Canto II (BD Bioscience, Heidelberg, Germany) on cells transduced with
EmGFP-expression virus or transfected with Alexa 488 labeled siRNA or by incubation in 300 µL
FACS-buffer containing 1 µL propidiumiodide (PI) and 1 µL annexin V-APC stock solutions.

4.15. SDS PAGE and Immunoblotting

For the preparation of whole cell lysates from the KRAS-WT and mutant transfected/transduced
cell lines, 250 µL lysis buffer were added to 1 × 107 cells. A 1:10 pre-dilution of the supernatant in H2O
was then taken to determine the protein concentration by Bradford assay at a wavelength of 595 nm
with a FLUOstar Omega (BMG Labtech, Ortenberg, Germany). Then, 30 µg of protein was diluted
with 4x loading dye and heated to 95 ◦C for 5 min for sodium dodecylsulfate polyacrylamide gel
electrophoresis (SDS-PAGE) using 6% stacking and 10% separation gels. To determine the molecular
weight, the prestained (#26619, 10–250 kDa) or unstained (#26614, 10–200 kDa) protein ladders from
ThermoFisher Scientific were loaded on a separate lane of each polyacrylamide gel. After protein
transfer to nitrocellulose membranes using the wet western transfer system from Peqlab Biotechnologies
(Erlangen, Germany), the membranes were blocked with either 5% milk powder in Tris-buffered saline
with 0.1% Tween (TBS-T) or 5% BSA in TBS-T for 1 h at RT. After blocking of the membrane, the
respective primary antibody (KRAS, MEK, p-MEK1/2, ERK1/2, p-ERK1/2, p-STAT3, AKT, p-AKT, BRAF,
p-BRAF, CRAF, p-CRAF, p-mTOR, p-PI3K, tubulin α, anti-V5) was added and incubated at 4 ◦C ON
(Table S8). After incubation, membranes were washed 3x 10 min with TBS-T before the corresponding
secondary antibody (rabbit anti-mouse (#P0260) diluted 1:10000 in TBS-T; anti-mouse (#7076) diluted
1:3000 in 5%- BSA/TBS-T; anti-rabbit (#7074), diluted 1:2000 in 5% BSA/TBS-T) was added for 1–2 h at
RT (Table S8). Following the incubation with secondary antibody, membranes were washed 3x 10 min
with TBS-T. SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific, Darmstadt,
Germany) was added to the membrane for 1 min followed by the visualization of protein signals using
X-ray film. Intensity ratios were determined using the ImageJ software.

5. Conclusions

Our current analysis of the prognostic role of KRAS-mutations in a NDMM patient cohort, treated
uniformely with novel agents, did not reveal a significant correlation with survival. Functional analysis
of the common p.G12A exon-2 mutation and the rare exon-4 mutations p.A146T and p.A146V, however,
underscored their capacity to activate and/or sustain oncogenic Ras/MAPK and AKT signaling in
MM cells, confirming the importance of a mutation-driven activation of MEK-/ERK-signaling in this
disease [47]. These results indicate that the development of further mutation-specific KRAS-inhibitors,
such as the p.G12C-inhibitor AMG 510, could be of great value for the individual treatment of
KRAS-mutant MM patients.
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Western Blots corresponding to Figure 5A, showing the expression and activation levels of RTK effectors upon
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OPM2 cells. Negative (−): JJN3 or OPM2 cells without vector. pLenti6.2: JJN3 or OPM2 cells transfected with the
empty vector pLenti6.2, Figure S4B: Original Western Blots corresponding to Figure 5B, showing the expression
and activation levels of RTK effectors upon the overexpression of KRAS-WT and mutant KRAS in MM cells,
following stable transposition with Sleeping Beatuy vectors in JJN3 and OPM2 cells (B). Negative: JJN3 or OPM2
cells without the vector pT2-CAG-puro. pT2-CAG-puro: JJN3 or OPM2 cells transfected with the empty vector
pT2-CAG-puro, Figure S4C: Original Western Blots corresponding to Figure 5A–C, showing the expression and
activation levels of RTK effectors upon the overexpression of KRAS-WT and mutant KRAS in MM cells, following
stable transposition with Sleeping Beatuy vectors in OPM2 cells, which were either cultured in full cell culture
medium as described in materialand methods (Ø PBS) or kept 40 min in PBS without the addition of FBS (40 min
PBS). Negative: JJN3 or OPM2 cells without the vector pT2-CAG-puro. pT2-CAG-puro: JJN3 or OPM2 cells
transfected with the empty vector pT2-CAG-puro, Figure S5: Strategy of the two-step fusion-PCR using different
primer combinations to generate the fusion-proteins attB-V5-KRAS and EmGFP-KRAS (Table S III), Table S1:
Clinical parameters of MM patients with and without KRAS mutations, Table S2: Raw intensities and intensity
ratios of Western blot bands as well as fold change expression/activation, corresponding to Figure 3 and Figure S2,
Table S3: Raw intensities and intensity ratios of western blot bands as well as fold change expression/activation of
proteins, corresponding to Figure 4 and Figure S3, Table S4: Raw intensities and intensity ratios of western blot
bands as well as fold change expression/activation of proteins, corresponding to Figure 5A–C and Figure S4A–C,
Table S5: Exon specific KRAS-primers to generate the amplicons with the 48-48 Access ArrayTM IFC using the
Fluidigm FCI Cycler System (Fluidigm, Amsterdam, The Netherlands), Table S6: Primers for validation with High
Resolution Melting, Table S7: Primers for fusion PCR and for the validation of subsequent cloning procedures,
Table S8: Antibodies used for Western blotting and FACS analysis.
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