
Results in Engineering 3 (2019) 100027
Contents lists available at ScienceDirect

Results in Engineering

journal homepage: www.editorialmanager.com/rineng/Default.aspx
Improving engineering models of terramechanics for planetary exploration

A.J.R. Lopez-Arreguin a, S. Montenegro b,*

a Institute of Space Systems, TU-Braunschweig, Hermann-Blenk-Strasse 23, Braunschweig, 38108, Germany
b Informatik VIII, Universit€at Wurzburg, Germany
A R T I C L E I N F O

Keywords:
Wheel
Terramechanics
Forces
Torque
Robotics
* Corresponding author.
E-mail address: amenosis.lopez@tu-braunschwei

https://doi.org/10.1016/j.rineng.2019.100027
Received 13 June 2019; Received in revised form 9
2590-1230/© 2019 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

This short letter proposes more consolidated explicit solutions for the forces and torques acting on typical rover
wheels, that can be used as a method to determine their average mobility characteristics in planetary soils. The
closed loop solutions stand in one of the verified methods, but at difference of the previous, observables are
decoupled requiring a less amount of physical parameters to measure. As a result, we show that with knowledge of
terrain properties, wheel driving performance rely in a single observable only. Because of their generality, the
formulated equations established here can have further implications in autonomy and control of rovers or
planetary soil characterization.
Introduction

Planetary exploration

Key advances in space robotics have notable examples: science lab-
oratories dropped in Mars or the Moon using wheeled rovers capable to
do multi-disciplinary tasks while enduring extreme environments [1]. As
planetary surfaces are covered by soils typically made out of regolith to
bedrocks, rovers shall detect and avoid physically-visible obstacles using
onboard sensors. But avoiding collisions with geological features is not
the only hazard: most wheels can get stuck in the loose terrain if the rover
mobility is not sensed accordingly. Thus, a lot of emphasis is focused onto
the wheel-soil mechanics interaction, where the forces and torques acting
on the center of mass of the wheels are representative. Many rovers also
use grousers, which are protrusions or convex patterns on the wheels or
tracks of vehicles that essentially improve their tractive effort. In the
presence of such adapted wheel geometry, none of the well-known ter-
ramechanics model based on Bekker [2] and Wong [3] capture the dy-
namic effects arising in experimental measurements [4]. Further, the
only expressions available in the literature, relate the wheel forces on
diverse parameters that are difficult to measure in an actual rover com-
mision (e.g. the multi-axis stresses [5]). Thus, deriving simplified forms
of the forces/torques equations depending in a different set of more
disposed parameters, can be a key for optimal tracking of the rover
performance and avoid getting stuck in soils of low cohesion, as typical
planetary surfaces. This is the purpose of this letter as will be related next.
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Previous work

The progress of analytical terramechanics formulations are important
to help in the design of better space hardware or for development of
complex control laws for rovers. For instance, in the field of terra-
mechanics the terrain parameters (e.g. bearing or shearing properties),
wheel parameters (radius, width, lug number or lug geometry), wheel-
terrain interaction parameters (e.g. combined rigidity coefficient, fric-
tional coefficient), and motion state variables (slip ratio, contact angles
and sinkage), are together employed to develop general mechanics
models of wheel-terrain interaction (stresses and forces analytical ex-
pressions) [6]. Meanwhile the improvement of terramechanic models
regarding stress formulations were formerly addressed in the well known
Bekker's work [7], by Wong and Reece [5], and lately Shibly [8], Meirion
[9] or Irani [4]. On the other hand, the progress on explicit force models
have been much less developed recently. Only Iagnemma [10] and
Shibbly [8] adapted analytical close-form expressions from the classical
terramechanics models for terrain parameter identification, while Ding
et al. [11,12] developed explicit formulations that can be applied in the
parametric design of optimal wheel radius and width according a given
mass. From these previous authors, however, only the work of Ding
seems to be robust enough to deal with complex slip-sinkage phenome-
non as present in laboratory experiments. Further, the explicit solutions
of the wheel forces and torques introduced in the literature, are often
resolved in terms of highly coupled expressions and depending in a very
large set of observables and fitting constants. Thus, in this short letter we
stand on one of the verified equations of the macroscopic forces and
st 2019
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torques [11,12] acting over typical rover wheels with grousers, and
derive a simplification that allows to track their time-characteristics in
terms of one single motion state variable (the slip ratio) while reducing
the number of fitting-related constants. The model can be also extrapo-
lated to wheels with straight (plane) surfaces.

Normal and shear stress modeling

Let the normal wheel stress σ be formulated as a power-law function
[2,6] in terms of sinkage z:

σ¼Ks zN (1)

with Ks is the sinkage modulus representing a soil-strength parameter
(characterized e.g. during pressure-sinkage tests), andN ¼ noþ n2 s is the
sinkage exponent set in terms of fitting constants no and n2 [11]. In the
previous, s represents the wheel slip ratio:

s¼

8>>>><
>>>>:

1� vx
rω

if driving

rω
vx

� 1 if braking
(2)

Hence, if the wheel lies static (not rotated), the slip would be zero,
and the static sinkage would be z ¼ zo while N ¼ no. Since the wheel
intrusion into the soil can be parametrized along the contact angle θ, we
can demonstrate the sinkage in the wheel rear (θm � θ � θ1) is [3]:

zðθÞ¼ rðcosθ� cosθ1Þ (3)

where r is the wheel radius, θ1 is the entry angle and θm the angle of
maximum stress as displayed in Fig. 1(a). On the other hand, in the front
region of the wheel (θ2 � θ < θm), sinkage can be given by [3]:

zðθÞ¼ r cos
�
θ1 � θ � θ2

θm � θ2
ðθ1 � θmÞ

�
� r cosθ1 (4)

Notice Eqs. (3) and (4) refer normal stresses are composed of two
distribution functions along the wheel-soil interaction path. On the other
hand, the shear stresses can be evaluated along the traveling direction (x-
direction in Fig. 1(a)). The Janosi-Hanamoto is the standard formula to
model τx:
Fig. 1. (a) Basic terramechanics parameters set for a wheel with straight surfaces. (b)
soil. Here, soil constants are: c ¼ 0 kPa, ϕ ¼ 0:478 rad, n ¼ 0:91, K ¼ 0:005 m, kc ¼

2

τxðθÞ¼E½cþ σ ðθÞtanϕ� (5)
where E is a function defined in terms of the soil shearing coefficient K:

E ¼ 1� exp
�
� r
K

�
ðθ1 � θ � ð1� sÞðsinθ1 � sinθÞÞ (6)

Fig. 1(b) plots σ and τx using the previous models. The wheel di-
mensions are r ¼ 0:2m and b ¼ 0:1m, covered with soil properties shown
in the figure caption for sandy soil. Notice the distinct transition of the
stress profiles between the forward and rearward regions of the wheel. In
many cases, those can be approximated by linear functions [8,13] (for
instance in typical natural terrains of low cohesion). Shibly et al. [8]
derived the simplified stress equations in the following form:

σ1 ðθÞ¼ σm
θ1 � θ

θ1 � θm
ðθm � θ� θ1Þ (7a)

σ2 ðθÞ¼ σm
θ � θ2
θm � θ2

ðθ2 � θ� θmÞ (7b)

τ1x ðθÞ¼ τm
θ1 � θ

θ1 � θm
ðθm � θ� θ1Þ (7c)

τ2x ðθÞ¼ τm
θ � θ2
θm � θ2

ðθ2 � θ� θmÞ (7d)

In Eq. (7), τm and σm are the stresses evaluated at the angle θm, where
the sinkage is:

zðθmÞ � 1
2
z (8)

with z ¼ zðtÞ the total sinkage measured at time t.

Force equations

Wheel forces and torques are the basic mean to evaluate the rover
performance. In the case of wheel with straight surfaces (e.g. Fig. 1(a)),
they can be integrated with knowledge of the multiple stresses acting on
the differential wheel-soil contact area r b dθ. In case the wheel in-
corporates grousers with a height h, as shown in Fig. 2, we must define an
average shearing radius rs where the stress τ can be considered to act [6]:

rs ¼ r þ λs h (9)
The plot of the normal stress distributions σ ðθÞ and shear stresses τ ðθÞ for sandy
�0:66 kN

mnþ1 and kϕ ¼ 754:13 kN
mnþ2, from which Ks ¼ kc=bþ kϕ.



þ1
2

Fig. 2. The addition of lugs onto wheels allows to confere greater traction and improve the general rover performance. (a) Typical parameters of lugs. (b) Shearing
radius definition, where rs ¼ r þ λs h.
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with λs is the lug coefficient, typically set to 0.5 [12]. The forces along the
traveling direction and normal to the soil, as well as the torque now can
be integrated explicitly:

Fx ¼ rsb
Z θ1

θ2

½τx ðθÞcosθ� σ ðθÞsinθ�dθ (10a)

Fz ¼ rsb
Z θ1

θ2

½τx ðθÞsinθ� σ ðθÞcosθ�dθ (10b)

T ¼ r2s b
Z θ1

θ2

½τx ðθÞ�dθ (10c)

Typically, Eq. (10) is experimentally evaluated by multiple-axis force
transducers mounted in the wheel or the testbed [14], or by measuring σ
and τx along the contact path per rotation [15]. On the other hand, we
can show with the linearized normal and shear stresses, forces and tor-
ques can be solved explicitly to obtain:

Fx ¼ � B X þ A Y (11a)

Fz ¼A X þ B Y (11b)

T ¼ r H Y (11c)

In the previous, X ¼ rs bσm and Y ¼ rs bτm, while A and B are
magnified constants that can be defined through [12]:

A¼ cosθm � cosθ2
θm � θ2

þ cosθm � cosθ1
θ1 � θm

(12a)

B¼ sin θm � sin θ2
θm � θ2

þ sin θm � sin θ1
θ1 � θm

(12b)

H¼ θ1 � θ2
2

(12c)

From above, the physical meaning of term AY is traction force pro-
vided by the wheel, while �BX is the motion resistance exerted by the
soil over the wheel center mass acting in the opposite direction of travel.
Further, AX will represent the vertical force components due to normal
stress, and BY the shear stress contribution along the same vertical axis.
Also, AX ≫ BY if the wheel is static. It is now interesting to explore a
simplification method for Eq. (12), that at difference from previous
methods (e.g. Refs. [11,12]), can be decoupled relying on the sinkage or
slip only. Because in soils of interest as in Mars or Lunar surface, the exit
angle is very low [8], the entry angle can be approximated by:
3

θ1 ¼ arccosð1� z=rÞ
2

(13)
Following, terms A and B from Eq. (12) can be expressed in relation to
wheel parameters and fitting constants λA and λB [11]:

A � ð1� λAÞ
ffiffiffiffiffi
z
2r

r
(14a)

B � ð1þ λBÞ z
2r

(14b)

From Eqs. (11), (12) and (14), we can immediately obtain the explicit
solution for the longitudinal force:

Fx ðtÞ ¼ � ð1þ λBÞ b Ks

�
zðtÞ
2

�NðtÞþ1

þ rs
ffiffi
r

p ð1� λAÞ b E Ks tan ϕ
�
zðtÞ
2

�NðtÞ

þ rs
ffiffi
r

p ð1� λAÞ b E c
�
zðtÞ
2

�1
2

(15)

Eq. (15) reflects that Fx can be mapped with knowledge of all soil-
related parameters (Ks, E, ϕ, c), thus only requiring time measurements
of the sinkage and slip (hence N can be determinable as derived before).
Similarly, the normal force would depend in the same observables as
above:

Fz ðtÞ ¼ rs
r
ð1þ λBÞ b E Ks tan ϕ

�
zðtÞ
2

�NðtÞþ1

þ ffiffi
r

p ð1� λAÞb Ks

�
zðtÞ
2

�NðtÞþ1
2

þ rs
r
ð1þ λBÞ b E c

�
zðtÞ
2

�
(16)

Finally, the torque explicit formula relies in less constants than for
previous forces:

T ðtÞ¼ r2s
2

b E arccos
�
1� zðtÞ

r

� "
cþ

�
zðtÞ
2

�NðtÞ
Ks tanϕ

#
(17)

It is interesting to note, how previous formulations can be derived
through slip and sinkage measurements in time. However, it would be
desirable to rely only on a single variable only (e.g. the slip), as sinkage
estimation is not straightforward (we would need onboard cameras and
imaging processing techniques [16,17]). Thus, the sinkage variation in
time can be approximated through [18]:

zðtÞ¼ 1þ s
1� 0:5 s

zo (18)
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where zo is the static sinkage. Finally, in previous work explicit solutions
of the longitudinal or normal forces were addressed as function of the
torque (or viceversa) with highly coupled equations, and the experiments
showed an overall good compromise in the results with a low relative
error (in general of less than 4:13%) [12]. The expressions presented here
were derived using experimentally-verified solutions for the magnified
constants (Eq. (14)), that allow us to resolve Fx, Fz and T equally as only
function of the sinkage, wheel and terrain parameters, and some fitting
constants. Thus, the newer expressions introduced (Eqs. 15–17) may be
fundamental for further applications in the domain of in-situ detection of
forces or torques given few rover observables.

Conclusion

We shown that wheel forces in low cohesion soils can attain new
explicit solutions related to soil constants and only the sinkage or slip
evolution. Because none of the previous authors have placed emphasis in
derive the equations decoupled, here we first note only one observable is
required to compute the longitudinal force, thus avoiding the typical
process of numerical integration of the stress distributions. Also, most
researchers use of force/torque transducers which are inherently com-
plex to instrument in actual rovers, hence attaining large complexity to
perform terramechanical studies, that can be advantaged by tracking the
slip alone with the method proposed above. Further, since the vertical
force can be easily inferred by a rover (e.g. kinematic analysis of the
suspension [8]), the formula can be used for soil parameter identifica-
tion, in order to characterize some of the terrain constants. Finally, as the
previous equations can account for lugged wheels, the dynamic oscilla-
tions typically observed for this rigid models are not accounted, although
the equations derived typically represent the mean of the fluctuations in
general [4].
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