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Multiple host use and the dynamics of host switching in
host–parasite systems
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Abstract. 1. The link between multi-host use and host switching in host–parasite
interactions is a continuing area of debate. Lycaenid butterflies in the genus Maculinea,
for example, exploit societies of different Myrmica ant species across their ranges, but
there is only rare evidence that they simultaneously utilise multiple hosts at a local site,
even where alternative hosts are present.
2. We present a simple population-genetic model accounting for the proportion of

two alternative hosts and the fitness of parasite genotypes on each host. In agreement
with standard models, we conclude that simultaneous host use is possible whenever fit-
ness of heterozygotes on alternative hosts is not too low.
3. We specifically focus on host-shifting dynamics when the frequency of hosts

changes. We find that (i) host shifting may proceed so rapidly that multiple host use is
unlikely to be observed, (ii) back and forth transition in host use can exhibit a hysteresis
loop, (iii) the parasites’ host use may not be proportional to local host frequencies and be
restricted to the rarer host under some conditions, and (iv) that a substantial decline in
parasite abundance may typically precede a shift in host use.
4. We conclude that focusing not just on possible equilibrium conditions but also con-

sidering the dynamics of host shifting in non-equilibrium situations may provide added
insights into host–parasite systems.

Key words. Host–parasite interaction, Maculinea butterfly, Myrmica ant, non-
equilibrium dynamics, population genetics.

Introduction

Host–parasite interactions are ubiquitous across ecosystems and
are widely recognised as important drivers of dynamic evolution-
ary change, a perspective that inspired the Red Queen hypothesis
(van Valen, 1973), the idea that parasitism promotes recombina-
tion and sex (e.g. Hamilton, 1980; Bell & Smith, 1987; Salathé
et al., 2008) and the concept of the geographic mosaic of coevolu-
tion (Thompson, 2009). The range of strategies and counter-
strategies that have evolved in antagonists is impressive, and, in
many cases, parasites can overcome the defence of a potential host
only by being highly specialised. Yet in other cases, e.g. leaf min-
ing or galling insects, communities are dominated by generalist
species utilising a range of host species (Askew & Shaw, 1974;

Bailey et al., 2009) with frequent shifting from one host to another
(Hardy & Cook, 2010). Also, where invasive host species reach
enemy free space, they recruit natural enemies from the local par-
asite species pool, either expanding the latter’s host range or stim-
ulating switching to the new resource all together (Cornell &
Hawkins, 1993; Schönrogge et al., 2012).

The genus of lycaenid Maculinea (syn. Phengaris; Fric et al.,
2007) butterflies provides a system where understanding the con-
straints for host switching would contribute greatly to our under-
standing of its current patterns of host use. The five European
species have been studied extensively as social parasites infiltrating
colonies ofMyrmica ants. The impact ofMaculinea larvae on their
host colonies can indeed be dramatic: depending on whether they
follow a cuckoo or predatory strategy (Thomas et al., 2005b);
Maculinea infections can result in the complete demise of an
infected ant colony. Adoption of young caterpillars into ant colo-
nies (the butterfly larvae begin their life cycles by feeding on spe-
cific host plants; Thomas et al., 2005a) involves a number of
complex and intricate interactions with their (potential) hosts
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including chemical deceit, acoustic signalling, and behavioural
mimicry (Thomas et al., 2005b; 2013; Barbero et al., 2009; Fürst
et al., 2012; Casacci et al., 2013).

The complexity of these adaptive traits seemed consistent with
high levels of host specificity, and early field sampling suggested
that each Maculinea species survived only with a single Myrmica
host species despite larvae being carried to the nest by up to five dif-
ferentMyrmica species (Thomas et al., 1989). Notwithstanding arte-
factual errors in the literature (Thomas et al., 2005a), this viewhad to
be revised. It is now clear that mostMaculinea species successfully
exploit colonies of different Myrmica species in different parts of
their range (Thomas et al., 2005a,b,; Nash et al., 2008; Tartally
et al., 2008). The predatory speciesMa. arion andMa. teleius show
generally lower intra-population host specificity than the cuckoo
species (Thomas et al., 2005a) but nonetheless cannot establish via-
ble populations on non-primary hosts (Thomas et al., 1998;2009).
This even holds for Ma. teleius (primary host is My. scabrinodis),
where rather high survival rates on a secondary host (My. rubra)
have been reported (Thomas et al., 2005b). Yet, a few populations
are apparently supported by My. rubra in otherwise My. scabrino-
dis-exploiting regions in central Europe (Witek et al., 2008; 2010).

The cuckoo species, Ma. alcon and Ma. rebeli, are typically
highly specific to a single host ant – locally and uniformly across
wide regions, with just 0%–2% survival in the nests of non-host
Myrmica (e.g. Thomas et al., 2005b; 2013; Witek et al., 2008).
Host switches only occur at greater distances across Europe,
involving mimicry of ants with very different chemical recogni-
tion profiles (cuticular hydrocarbon profiles, CHC) (Elmes et al.,
2002), i.e.My. scabrinodis andMy. rubra orMy. ruginodis in the
case ofMa. alcon andMy. sabuleti andMy. schencki in the case
of Ma. rebeli (Nash et al., 2008; Thomas et al., 2013). Remark-
ably, multiple host use has been reported (My. rubra and rugino-
dis) forMa. alcon for some but not all the study sites in Denmark
where both hosts were present. My. scabrinodis, an important
host in other regions was not utilised, however, despite being
quite abundant on some sites (Als et al., 2002). In some parts
of Europe, notably in Austria (Schlick-Steiner et al., 2004), the
Italian Apennines (Casacci et al., 2019) and the Carpathian
Basin (Tartally et al., 2008) near the range boundaries of differ-
ent ant-exploiting types, Ma. rebeli is recorded as exploiting
more than one host species on the same site. It is unclear whether
these unusual sites support hybrids, co-occurring cryptic (sub-)
species, polymorphisms, true generalists, or whether the Myr-
mica populations are unusually receptive to intruders in these
regions (Thomas et al., 2005a). A recent and extensive review
demonstrated that, wherever multiple hosts occurs on a site, a
non-proportional use of host ant species is observed in the major-
ity of cases (Tartally et al., 2019). And where multiple host use
did occur, the CHC profiles of alternative host populations seem
to be very similar (Casacci et al., 2019). In the case of the Aus-
trian sites, CHC profiles of pre-adoption larvae seem to match
those of two different host species, initially suggesting a general-
ist strategy of Ma. rebeli in that region (Schlick-Steiner et al.,
2004). Moreover, other explanations are not precluded since
groups of five Ma. rebeli larvae at a time were used to extract
semio-chemicals; furthermore, later studies of Ma. rebeli from
other regions showed that the critical host-specific mimetic
semio-chemicals are secreted by the parasites only after several

days spent in host nests, while individuals adopted by other spe-
cies of Myrmica suppress these secretions and rely (usually
unsuccessfully) on camouflage from semio-chemicals acquired
through contact with their hosts (Schönrogge et al., 2004;
Thomas et al., 2013). In summary, with the few exceptions for
Ma. alcon, Ma. teleius and Ma. rebeli mentioned, Maculinea
populations are typically not successful in locally exploiting dif-
ferent hosts even if alternative putative host species co-occur, in
some cases in greater abundance than the primary host (Thomas
et al., 1989; 2005a; Steiner et al., 2003; Nash et al., 2008; Tar-
tally et al., 2008; 2019; Andersen et al., 2014). Further, some
sites have beenmonitored over many years (up to 45 generations;
e.g. Thomas et al., 2009; Ugelvig et al., 2011; Andersen et al.,
2014), but to our knowledge, none of these studies provides
direct evidence for a temporal host-shift, despite the inference
from the study by Nash et al. (2008).

The failure to observe multiple local host use is puzzling as host–
parasite interactions, as amatter of principle, introduce an element of
frequency-dependent selection into the evolutionary arms race
(Dybdahl & Lively, 1998; Thompson, 2009) and the potential for
rapid turn over in community composition. Rare host species are
more likely to evade specialised parasitism providing possible bene-
fits in competition with other host species (Carius et al., 2001;
Rolff & Siva-Jothy, 2003; Yoder & Nuismer, 2010). In multi-
species communities, this should favour coexistence of multiple
host–parasite pairs (Chaianunporn & Hovestadt, 2011) or introduce
frequent turnover of antagonistic species (pairs) in local communi-
ties (Carvalho & Crisp, 1987; Savill & Hogeweg, 1999; Chaianun-
porn & Hovestadt, 2012; Rabajante et al., 2015), or promote
coevolutionary alternation. We have to recognise, however, that
shifting host usewithin a species of interbreeding parasites, a process
called coevolutionary alternation (see Nuismer & Thompson,
2006), may not progress in the same way as, e.g. the invasion of a
new parasite species into a community that utilises a different (and
more abundant) host.

One reason why host shifting may in fact be difficult has long
been recognised: heterozygote disadvantage (see Clarke & O’Do-
nald, 1964; Ayala & Campbell, 1974). Whenever host utilisation
requires a specific – and at least in part – genetically based strategy
or profile to match the defensive means of a specific host, genetic
heterozygotes emerging from the mating of homozygotes that are
eachwell adapted to alternative hosts may perform poorly on either
host. Because the probability for homozygotes is proportional to
p2, rare alleles (with proportion p in the population) will occur
much more frequently in heterozygotes. Under such conditions,
it may be extremely difficult for a new mutant or immigrant to
establish in a parasite population despite the fact that its host may
be more abundant than that of the resident population.

The argument of heterozygous disadvantage (which by defini-
tion does not apply if we consider non-interbreeding species in a
community) is not a new one. Yet previous analysis of the phe-
nomenon has primarily focused on generating statements about
equilibrium conditions. Although, in natural landscapes or meta-
populations that are dynamic and stochastic, where immigration
of host and parasites from other sites occurs continuously, and
where the abundances of the alternative host species may contin-
uously change, it may be more informative to investigate how
the presence of a heterozygote disadvantage affects the timing

© 2019 The Authors. Insect Conservation and Diversity published by JohnWiley & Sons Ltd on behalf of Royal Entomological Society., Insect
Conservation and Diversity, doi: 10.1111/icad.12374

512 Thomas Hovestadt et al.



and dynamics of transitions from using one host to another. To
explore these questions in more detail, we provide a simple
model of a local host–parasite population that is linked to an
external world by immigration.

Model and numerical simulations

General description

We develop a model for the population and genetic dynamics
of a single population of a diploid parasite that may undergo
coevolutionary alternation. Later on we introduce continuous
immigration of parasite individuals from an external source,
e.g. other surrounding populations; assuming ongoing mutations
would have a comparable effect. We assume a simple genetic
system where alleles h or c code for the specialisation on either
of two possible host species (H or C); the role of the relative per-
formance of heterozygotes whc on either host’s population
dynamics is one of the critical parameters to explore. Our
approach here differs from the study by Nuismer and Thompson
(2006) in three important attributes: (i) association with different
hosts occurs at random, i.e. parasites do not show a preference
for one or the other host; consequently, after mating eggs or off-
spring are randomly associated with hosts in proportion to the
hosts’ abundance. Yet, model behaviour should be similar if par-
asites would need to search longer for a rare suitable host and
thus loose net-fertility compared to a parasite phenotype that
can infect a more abundant host. (ii) Traits affecting fitness on
different hosts are discrete and cannot be expressed in full at
the same time, and (iii) we assume diploid organisms with a sin-
gle locus genetics and random mating between adult parasites.
These assumptions appear justified in the case of Maculinea as
these butterflies deposit eggs on specific host plants. Only later
is each young larva carried into the nest of the first foraging
worker of any Myrmica species that encounters it, regardless of
whether it is a host ant or one of up to four non-host Myrmica
species that commonly forage beneath the initial foodplants
(Thomas et al., 2005b). This assumption is not undermined by
recent research that indicates that Ma. arion uses host-plant
defence chemicals to root disturbance as cues to bias oviposition
to plants growing in the vicinity of any Myrmica nest (Patricelli
et al., 2015). Therefore, phenotypes of Maculinea teleius and
Ma. nausithous may bias oviposition to their shared food plants
that grow near their respective host species by selecting growth
forms that coincide with the host’s optimum niches (Thomas
et al. 2005a). The effect is likely not strong and there is no indi-
cation that Maculinea genotypes specialised on different hosts
would differ intra-specifically in their egg-laying behaviour;
such an effect could easily be incorporated, however, in the
model that follows.

With the assumptions provided above and given that the relative
proportion fofhostH remainsconstant in time, the temporaldynamics
ofgeneh in theparasite’spopulation is definedby the followingequa-
tion derived in full in Supplement A of the Supporting Information:

Here, term pt is the proportion of allele h, qt = 1 − pt is the pro-
portion of allele c in the parasite population at time t, wX,xy pro-
vides the density-independent probability of survival of an egg
or young larvae of parasite of genotype xy on host X (either H
or C), and st, X is the density-dependent survival of larvae com-
peting on host X that survived previous density-independent
selection. We do not define an explicit population model for
the hosts; later on, we consider, however, what would happen
if, under the impact of parasitism or for any other reason, the rel-
ative abundance of different hosts would change in time. All fur-
ther mathematical details of model derivation are outlined in
Supplement A of the Supporting Information, but the model’s
properties can be summarised in the schematic Fig. 1: We can
recognise three possible situations (I, II, and III) under the
assumption that the proportion of hosts f remains fixed (more
on this below): (I and I*) The overall fitness expectation w of
one homozygote (yy = hh or cc) parasite is larger while that of
the other homozygote is below fitness expectation of heterozy-
goteswyy(f ) ≤wxy(f ) < wxx(f ). In this case, only one evolutionary
outcome is possible independent of starting conditions: The
homozygote with higher fitness expectation will ultimately dom-
inate the gene pool. The gene can always invade a population
dominated by the other allele (use of the alternative host)
because it has a higher fitness even when rare (as a heterozy-
gote). (II) If host proportions are so that the fitness expectations
for both homozygotes are higher than that of the heterozygotes
wxy(f ) < wyy(f ) ≤ wxx(f ) the evolutionary outcome will depend
on the starting conditions: Neither allele could invade a popula-
tion dominated by the other allele because the rare allele would
mostly occur in heterozygotes while the dominant would mostly
occur in fitter homozygotes. (III) The fitness of heterozygotes is
above that of both homozygotes wxx(f ) ≤ wyy(f ) < wxy(f ). In this
case, a stable coexistence in host use is predicted as both alleles
could invade a population dominated by the other. A necessary
condition for this to happen is that – at least in a certain range
of values for f – the fitness of heterozygotes is above the inter-
section point of the two lines for the homozygotes’ fitness (see
Supplement B of the Supporting Information for formal proof).

Our model differs from simple textbook models only with
regard to the additional effect of the relative proportion f of host
H. The relative abundance of hosts operates as a weighting fac-
tor, especially relevant for the expected overall fitness of homo-
zygotes. For this reason, it depends on the specific combination
of values of f on the one hand and the expected fitness of different
genotypes on different hosts (the set wX,xy of fitness values) on

pt + 1 =
ptf � st,H pt �wH,hh + qt �wH,hc

� �
+ 1− fð Þ � st,C � pt �wC,hh + qt �wC,hc

� �

st,H � f � p2t �wH,hh + 2 �pt �qt �wH,hc + q2t �wH,cc
� �

+ st,C � 1− fð Þ � p2t �wC,hh + 2 �pt �qt �wC,hc + q2t �wC,cc
� �
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the other, whether (i) stable coexistence is possible, i.e. whether
a classical heterozygote disadvantage or a benefit emerges
(Fig. 1b), and (ii) how a transition from using one host to using
another might proceed.

More trivial, situations are also conceivable, e.g. that heterozy-
gotes always have a fitness benefit whatever the relative host abun-
dance f. Note, however, that across a gradient in f we can only
combine case (I) and (II) or case (I) and (III), but all three cases
never simultaneously emerge for a given set of fitness values wX,

xy. Figure 1c shows an extreme case where the heterozygotes never
have a larger fitness than either of the homozygotes, i.e. a situation
where only case (II) applies whatever the value of f.

Numerical simulations of dynamic system

As outlined, one of the two alleles would go extinct in a closed
system if the relevant parameters were not to create a type III
zone; this is only possible if fitness of heterozygotes is rather
large on at least one of the possible hosts and relative host abun-
dance f falls into an intermediate range. If regional genetic diver-
sity in host use exists, however, immigration could maintain rare
alleles at low levels in any local population (as could mutations).
Further, the proportional abundance of hosts (ft) or the suscepti-
bility of hosts may change in time, not least due to the impacts of
the established parasite type on its host (e.g. Ashby et al., 2019);
corresponding evidence exists for the Myrmica ants infected by
Maculinea (Hochberg et al., 1994; Elmes et al., 1996; Thomas
et al., 1997). In general, however, there is little reason to believe
that Maculinea parasitism has a relevant effect on Myrmica
hosts’ population dynamics or evolution (Elmes et al., 1998).

This is one reason why we abstain from implementing a full
(e.g. Cortez & Weitz 2014) eco-evolutionary host–parasite
model here that would allow us to determine the degree to which
the host–parasite interaction itself might be responsible for

inducing a cycle in host abundance – we will thus not provide
answers to this question. Note that such a model would also need
to be more complex and parameter rich with at least 2 × 3 addi-
tional parameters for describing the interaction of the three geno-
types with the two possible hosts and 2–4 parameters for
regulation of the two hosts’ population dynamics. Our more lim-
ited goal is to describe the temporal dynamics of host switching
in the parasite provided that host frequencies do change over
time as a possible explanation for why multiple host use might
be observed so rarely even though the opportunity (availability
of alternative hosts) seems to be there. The reason for such
changes in host abundancemight indeed be the impact of the par-
asites (eco-evolutionary feedback), but it could also be due to
changes in the abiotic environment, interactions between hosts,
or the impact of other predators that attack the same host species.
For the validity of the arguments that follow it is not important to
knowwhich factor may be responsible for generating the dynam-
ics in host abundance or availability.

In the following, we will provide – again at a very basic level –
a scenario for the dynamics of host shifting in systems where
host abundance ft fluctuates over time in a sinusoidal pattern with
phase φ and where an equal and small number Ihh = Icc of non-
mated parasites of both homozygotes immigrates at any time-
step. As said, we do this without defining a proper dynamics
for the host population (but see discussion); we just investigate
how a shift in host use would proceed provided that ft gradually
changes in time. The details of implementation of this dynamic
system are provided in the Supplement C of the Supporting
Information.

Data evaluation

We iterate the dynamics of the system according to the equa-
tion system defined in the Supporting Information appendices A

(a) (b) (c)

Fig. 1. Schematic graph of expectedfitness for homozygotes hh (red line), homozygotes cc (blue line) and heterozygotes hc (dark grey line) in dependence
of the proportion f of host of typeH and under the assumption that parasite genotypes are randomly paired with hosts. (a) Fitness of heterozygotes is never
larger than that of both homozygotes at the same time, (b) fitness of heterozygotes may be larger than that of both homozygotes, and (c) fitness of hetero-
zygotes is always lower than that of either homozygote. Three principal zones can be identified: Fitness of one homozygote is above and that of the other
homozygote below that of heterozygotes (I and I*), fitness of both homozygotes is above fitness of heterozygotes (II), and fitness of both homozygotes falls
below that of heterozygotes (III). The exemplary arrows in paled colours showhow, in each region, inwhich directionfitness of alleleh (red arrow) or c (blue
arrow) would change with increasing proportion - arrows always start at the value for heterozygotes as rare alleles will only occur in heterozygotes. A clas-
sical heterozygote benefit only emerges in region III where the rare gene can always invade and stable coexistence is possible; outcome in region II depends
on starting conditions (more details in text and Supplement B of the Supporting Information).
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and C over several complete cycles of host frequency ftwith start
values f0 = fmax and p0 = 0.99 and by applying the modification
for allele frequency and adult population size as specified in Sup-
plement C of the Supporting Information, eq. (S9). We keep the
value for ft fixed at f0 for the first 50 generations to allow equili-
brating of pt and only then implement the cyclic change in ft as
defined by Supplement C (Supporting Information) eq. (S8);
results for these first 50 generations are removed from data set
before data evaluation.
For presentation, we follow the temporal dynamics of the pro-

portion pt of allele h in the population (measured at the end of the
cycle, i.e. in the surviving and emerging larvae but before immi-
gration) and parasite population size Nt over the next 800 gener-
ations. For each simulation run, we then define the proportion of
the total simulation time (generations) where the frequency of
both alleles (h and c) falls into a coexistence range defined by
the arbitrarily selected detection threshold d = 0.025; we assume
that typical field investigations would fail, e.g. due to limited
sample size, to provide evidence for genes that make up less than
2.5% of the gene pool. Choosing other values for d has no prin-
cipal effect on results.We thus count any situation as coexistence
where d ≤ pt ≤ 1 − d during the last two full cycles in ft. We fur-
ther define the minimum values for pt and Nt reached during the
final simulation cycle.
We generate corresponding results for combinations of

parameter values coming from the range wH,hc = wC, hc 2 [0…
1], net fertility (surviving egg number) R 2 [1.5…6.5], Ihh/
K = Icc/K 2 {0.001, 0.005, 0.025}, and the length φ of a full
cycle through fmax ! fmin ! fmax taken from the values
φ 2 {200, 100, 50} generations; note that a transition from the
maximum to the minimum value of ft takes half as long as these
values, i.e. just 25 generations in the fastest cycle. The range of
value for R covers a fair spectrum of net-fertility values reported
for insects (Hassell et al., 1976), wX,xy values cover the whole
possible spectrum and values for immigration rate, and Ixx/K
cover a range as it may occur in metapopulations without being
so large as to create panmictic populations.

Results

All numerical simulations rapidly settle into stable cycles driven
by the temporal dynamics in host abundance ft: after a maximum
of four cycles, values for pt and Nt estimated for ft values in the
same phase (ft = ft + ϕ) become identical, i.e. pt = pt + ϕ and
Nt = Nt + ϕ. In Fig. 2, we provide some exemplary graphs for
the scenarios where the fitness of homozygotes in the wrong host
is always zero (wX,yy = 0) showing the dynamics in allele fre-
quency and parasite population size as the proportion ft of host
H fluctuates through time. We recognise that with low heterozy-
gote fitness (wX,xy = 0.1) the parasite population is typically dom-
inated by just one allele; transitions from using one host to using
the other occur in very brief periods, i.e. within a few genera-
tions. This implies that field biologists would often enough fail
to report coexistence of parasites specialised on different host
even though both hosts are available at all times. Note also that
the dynamics of these transitions provides a case of hysteresis:
The proportion of host H has to drop to very small values before

the transition to host C comes about, whereas for the back-
transition to occur ft has first to increase to rather large values
again. This further implies that at most times, the abundance of
allele h does not reflect the relative abundance of host H (values
in the ft- pt phase plot are typically far from the main diagonal;
Fig. 2d.1). These effects are subdued as we enlarge values for
wX,xy, that is, the transition from using one host to using the other
becomes more gradual. With values of wX,yy = 0.7, the frequency
of allele h more or less corresponds to the actual frequency of
host H. We further note that periods of transition in host use
may be associated with a substantial reduction in the parasite’s
population size, especially if wX,xy is small (Fig. 2c and Support-
ing Information Fig. A1).

The scenario presented in Fig. 2 corresponds to that shown in
Fig. 1a for the case wX,yy < 0.5, i.e. the case where a stable equi-
librium does not exist in the static case, and with that in Fig. 1b, if

(a)

(b)

(c)

(d1) (d2) (d3)

Fig. 2. Dynamics of host transition under fluctuating relative abundance
f of hostH. (a) Dynamics of host abundance according to eq. (S8) in Sup-
plement C of the Supporting Information with fmin = 0.1, fmax = 0.9, and a
period of φ = 200. (b) Dynamics in the proportion of allele h, coding for
use of hostH. Full line for fitness of heterozygoteswX,xy = 0.1, dotted line
and wX,xy = 0.4, hatched line wX,xy = 0.7. The thin horizontal dotted line
indicates the detection threshold utilised in data analysis (d = 0.025) –
all generations where p and 1-p are both above this threshold are counted
as coexistence. (c) Temporal dynamics of parasite population size; line
coding as in (b). Panels (d.1)–(d.3) provide phase diagrams in the host-
abundance – allele frequency plane for the three values of wX,xy 2 (0.1,
0.4, 0.7). Red dots mark start and end point of cycle. Cycles follow the
top trajectory and return on the bottom trajectory to the point of origin.
Maximum habitat capacity K = 1000, parasite net fertility R = 4, number
of immigrants per generation Ihh = Icc = 5and wX,yy = 0 in all scenarios.
See Supporting Information Fig. A2 for results from similar simulations
but with wX,xy = wX,yy.
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wX,xy > 0.5. In Supporting Information Fig. A2, we provide
results for similar simulations but with the assumption that wX,

xy = wX,yy. It is noteworthy that in these latter simulations the
strong cycles in allele frequency ptand the hysteresis described
above are maintained also for the high values wX,xy = wX,yy = 0.7.
Further, a host shift occurs the later in the cycle, the larger w

X,xy
,

whereas in Fig. 2b, we recognise the opposite trend.
In Fig. 3, we summarise the effects of heterozygote fitnesswX,xy,

parasite net growth rate R, proportional number of parasite immi-
grants (I/K of type hh and cc), and length φ of a full cycle through
host abundance f for the fraction of generations where coexistence
would be detected at a threshold of d ≥ 0.025. Coexistence is
affected by all variables investigated with an interesting uni-modal
response to changes in net fertility R: For values of R < 2.5, the
fraction of generations with detectable coexistence declines with
increasing R but beyond that value the fraction of generations with
reported coexistence would gradually increase again. Massive
immigration of homozygotes, i.e. c. 5% of maximum adult popula-
tion size (lower row of panels in Fig. 3) also greatly increase the

proportion of generations where both alleles would be found in
the population (note that the proportion is measured at the end of
the larval life cycle, i.e. after selection but before immigration).
Finally, with faster host cycles, a larger proportion of generations
will fall into the coexistence range. Overall, the preconditions to
find coexistence (with the liberal definition applied here) are high
heterozygote fitness in combination with either very low or rapid
parasite growth rates and substantial parasite immigration (see
discussion).

In the alternative scenario with wX,xy = wX,yy, we find a more
complex pattern; note that this scenario corresponds to that shown
in Fig. 1c with a zone II across the whole range of host abundance
(unstable equilibrium). Especially with low immigration, we find
large and separate domains in parameter space where coexistence
of species would rarely be detected (Supporting Informa-
tion Fig. A3). One domain (low heterozygote fitness) is in principle
similar to that obtained in the previous simulations but a second
with intermediate values for fitness wX,xy = wX,yy and rather large
values of R emerges because a host transition does not occur at

Fig. 3. Effect of heterozygote fitness wX,xy, parasite net fertility R, immigration, and host cycle length φ on the fraction of generations with coexistence
identified at a detection level of d = 0.025. Immigration is identical for homozygotes of type hh and cc and expressed in proportion to the maximum habitat
carrying capacity (K = 1000). wX,yy = 0 in all simulations. Coexistence was identified over the last two full host cycles, i.e. over the last 400, 200, or
100 generations out of the 850 generations iterated.
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all noticeable by the fact that pt values (initialised with
p0 = 0.99) never fall to values below 0.9 (results not shown).
Finally, as wX,xy = wX,yy approaches the value of 1, all fitness
values become similar and, with symmetric immigration as
assumed here, stable coexistence emerges with pt values close
to 0.5.

Discussion

The genetic model presented here is very simple, neither reflect-
ing the specificities of Maculinea genetics nor accounting for
many aspects of its ecology; in particular, we ignore possible
eco-evolutionary feedback effects as was done in the model for
haploid organisms published by Ashby et al. (2019).We believe,
however, that we can take some messages from the model that
should not critically depend on the simplifying assumptions we
made here; in Supplement D of the Supporting Information, we
discuss the effect of relaxing some of these assumptions. In addi-
tion, the argumentation provided will also apply if alternative
hosts were not different host species but just distinct host geno-
types, e.g. genotypes with different CHC profiles; such profiles
play a great role in the nest-mate recognition of social insects
(Howard & Blomquist, 2005). In this case, local defensive coad-
aptation in host species would be possible only if gene flow
between genotypes is sufficiently low, as seems to be the case
in Danish My. rubra populations that are host to Ma. alcon
(Nash et al., 2008).
Clearly, the most critical component in our model is the fitness

matrix defining performance of different genotypes on different
hosts and thus the trade-off between specialising on one host
and the fitness when utilising alternative hosts. For the standard
scenario assumed our results provide a clear message. To
observe stable coexistence in alternative host use, the fitness of
heterozygotes must not be too low. Otherwise, the parasite pop-
ulation will at most times be dominated by one or the other strat-
egy as stable coexistence is impossible. If the frequency of hosts
(f) itself remains stable in time, a coexistence of strategies is only
possible, if the parameter combination defines a zone III situation,
as shown in Fig. 1b, i.e. if 1 − w < f < w with wH,hc = wC, hc = w
andw > 0.5, in other words, if host abundances and fitness param-
eters are so that heterozygotes have an overall fitness benefit com-
pared to either homozygous parasite. This may, for example, be
the situation in case of Danish Ma. alcon populations that infect
the very similar (in terms of CHC profiles) My. rubra and My.
ruginoides but not the more dissimilar but also commonMy. scab-
rinodis that is the primary host in other regions (Als et al., 2002;
Tartally et al., 2019). Similarly, in some Italian sites, ant species
simultaneously exploited are quite similar in their CHC profiles,
whereasMa. rebeli did not survive in colonies of another principle
host (in other European regions),My. scabrinodis (Casacci et al.,
2019). Another interesting case of multiple host use on a local site
is the simultaneous use ofMy. scabrinodis andMy. vandeliwhere
the latter ant species is itself believed to parasitiseMy. scabrinodis
colonies and thus to have evolved CHC profiles similar to that of
My. scabrinodis (Tartally et al., 2019). In these cases, the hetero-
zygote disadvantage may be low enough to allow for a stable
mixed host use strategy.

More interesting, however, are the results from our dynamic
simulations where we assume a gradual and cyclic shift in host
relative abundance ft; note that the change in ft might also reflect
evolutionary changes in host accessibility or defence itself
driven by the exploitation by parasites (Nuismer et al., 2005;
Ashby et al., 2019). Periods of multiple host use may be observ-
able in these scenarios, but typically the transition from using
one host to using the other should be fast so that short-term
(field) studies are unlikely to provide evidence for the coexis-
tence of alternative host use strategies. Mechanisms that would
promote the likelihood of (detectable) coexistence are fast para-
site growth, fast host cycles (trivially so as transitions occur more
frequently) and substantial gene flow into the population (see
below). Although, for transitions in host use to occur, host abun-
dance must show a considerable change in relative abundance. In
the special case of the Myrmica-Maculinea interaction, it is
unlikely that the population-wise effect of Maculinea on Myr-
mica populations is sufficient to create such dramatic changes
(Elmes et al., 1998): even though individual infected colonies
may suffer severely (e.g. Thomas & Wardlaw, 1992; Wardlaw
et al., 2000), only a small proportion of colonies is usually
affected. Observed changes inMyrmica populations were rather
a consequence of, e.g. land-use changes (Elmes & Thomas,
1992). Further, whenever coexistence of strategies is observed,
it is likely that hosts are not utilised in proportion of their relative
abundance (Tartally et al., 2019), an observation that agrees with
the model behaviour shown in Fig. 2 and Supporting Informa-
tion Fig. A2. Disproportional host use was, for example,
observed for the Danish populations of Ma. alcon with multiple
host use (Als et al., 2002) and in some Italian sites (Casacci
et al., 2019).

Of special interest in this context is the non-linear effect of
parasite net fertility R on resulting coexistence (Fig. 3): at very
low values of R, coexistence is possible because transition from
one strategy to the other progresses just too slowly in relation to
the host cycle in f, i.e. host cycles are too fast for the parasite sys-
tem ever to settle into a stable equilibrium. Otherwise, with
increasing R coexistence is more likely because high values of
R benefit the rare gene more than the resident gene, as resource
competition on the rarely affected host is lower.

In a similar vein, we note that the symmetric immigration
assumed in our model disproportionately favours the rare gene
– immigration works like a numerical boost to fertility R with
an increasing per capita effect the smaller the resident population
size. This allows host switching at larger population size and
makes observation of coexistence more likely. This may be the
case in some areas with a regional mosaic in CHC-profiles of
one host, My. rubra, infected by Ma. alcon in Denmark (Als
et al., 2002; Nash et al., 2008). On the contrary, in Maculinea
usually one host-use strategy dominates over very large regions
(Sielezniew & Stankiewicz, 2002; Settele et al., 2005; Thomas
et al., 2005a; 2013; Tartally et al., 2008; 2019; Witek et al.,
2008; 2010; Patricelli et al., 2010). Immigration is then likely
biased in favour of the dominant strategy and consequently
rather diminishes the ability of a rare invading strategy to spread
in a local population even if the corresponding host species was
more abundant than the host used by the majority. To express
this differently, in a landscape dominated by a single host-use
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strategy, establishment of an alternative strategy is less likely
due to the fact that the majority of immigrants will follow the res-
ident strategy, too. Emergence of a landscape level mosaic in
host use could be promoted, however, if the parasites themselves
impose a strong effect on their host population as compared to,
e.g. the role of habitat (Nash et al., 2008; Chaianunporn &
Hovestadt, 2011); corresponding empirical evidence has been
suggested for parasitic plants (Pennings & Callaway, 1996).

We must stress the difference between the coexistence of dif-
ferent host–parasite combinations in the community context as
contrasted to multiple hosts use by a single parasite species
(genetic diversity). Multiple host use within a parasite species
leads to the formation of heterozygotes, whose fitness we exten-
sively examined in our scenarios; we have demonstrated that the
formation of heterozygotes may undermine the coexistence of
multiple host-use strategies. Where multiple species pairs coex-
ist, this question obviously never arises, because heterozygotes
are never formed (see Rabajante et al., 2015). We can conse-
quently conclude that mechanisms like assortative mating,
whereby mating primarily occurs between individuals using
the same host, or genetic dominance (Durinx & Van Dooren,
2009) would make local coexistence in host use more likely
(Sorenson et al., 2003).

The population genetic dynamics principles we have pre-
sented here are as such simple and presumably apply also under
different circumstances. Yet, we do not provide cues on how rel-
evant the mechanism we provide might be in any particular sys-
tem, for example whether host cycles and thus host shifting may
be driven by the eco-evolutionary feedbacks resulting from the
host–parasite interaction itself (Ashby et al., 2019). Note, how-
ever, that many of these models have been developed with hap-
loid organisms respectively a quantitative genetics in mind that
cannot be applied to the dynamics of discrete genotypes as we
have assumed here (for overview, see Govaert et al., 2019; Lion,
2018), yet Lively (2012) provides an example of an simple eco-
evolutionary model assuming a diploid two-allele genetics.
Therefore, the population genetic effects described here do as
such not depend on the mechanism underlying a cycle in hosts’
abundance and/or susceptibility. Indeed, if a host would –

e.g. due to changing habitat conditions – shift permanently from
high to low frequency, the potential, subsequent host-shifting
dynamics in a parasite population would approximately be
described by just a half-cycle of the dynamics shown in Fig. 2
or Supporting Information Fig. A2.

Our modelling exercise was inspired by empirical observa-
tions of the carefully studied Myrmica-Maculinea association.
We thus want to evaluate empirical observations in the light of
our model. In particular, we think that the model provides a
framework for interpreting the many and sometimes diverging
observations of the Maculinea-Myrmica system (e.g. Thomas
et al., 1998; 2005a; 2013; Sielezniew & Stankiewicz, 2002; Set-
tele et al., 2005; Pech et al., 2007; Tartally et al., 2008).

The most general statements of our model are (i) observations
of local coexistence of alternative host-use strategies should be
rare provided that the fitness of heterozygous Maculinea geno-
types is rather low (and equally that of homozygotes on the alter-
native host); for this expectation to hold, it is not important
whether the underlying genetics is as simple as assumed here

as long as offspring of matings between alternative host-use
strategies develop intermediate phenotypes. (ii) Where several
hosts are successfully infiltrated, host use should typically not
be in proportion to their relative abundance. In this context, we
are not aware of any studies were Maculinea individuals have
been genotyped, but both of the above predictions are supported
by the comprehensive review recently published by Tartally
et al. (2019): on about 70% of 419Maculinea sites, only one host
species was utilised despite the nearly universal presence of
alternative hosts. And where alternative hosts were used, utilisa-
tion was rarely in proportion to host abundance, with a number of
instances where the rare host was over-exploited (cf. fig. 5 in the
study by Tartally et al., 2019). Further, most of the records of
more than one host ant species producing adults Maculinea on
the same site are of the predatory Ma. arion and Ma. teleius,
and at least some – probably most of these – occur because the
main host was parasitised initially, but all the brood were eaten
in the final spurt of growth causing the ant colony to desert its
nest leaving the brood parasite behind. A neighbouring colony
of anotherMyrmica spp may then bud off and occupy the vacant
nest site, which containsMaculinea pupae (Thomas &Wardlaw,
1992; Thomas et al., 2005a).

In principle, parasites might evolve the ability to exploit sev-
eral hosts without a relevant trade-off (Joshi & Thompson,
1995) as may be the case for many insect herbivores. In the spe-
cific case of Maculinea, and especially in the case of the very
well integrated and interacting cuckoo species (Thomas et al.,
1998; 2005a; 2013; Als et al., 2004), the route to successful
adoption involves many steps of deceit including presentation
of the right CHC profile (e.g. Thomas et al., 2005a; 2013; Nash
et al., 2008), and behavioural and acoustic simulation (Barbero
et al., 2009; Schönrogge et al., 2016). It seems unlikely that
the full suite of these adaptations could be expressed phenotypi-
cally in two or more sets so that larvae could invade alternative
hosts equally well, in particular if the alternative hosts are rather
different in their attributes. Thus, to the best of our knowledge,
this has not been investigated for Maculinea by testing the
host-specificity of offspring bred from males and females that
originate from populations using different host species either
between or within sites. Moreover, hosts themselves would be
under pressure to evolve contrasting recognition systems that
cannot be mimicked at the same time (Nash et al., 2008; Yoder &
Nuismer, 2010; Chaianunporn & Hovestadt, 2011).

Interestingly, the predatory Ma. teleius is the Maculinea spe-
cies with the strongest evidence for the local exploitation of mul-
tiple Myrmica host species, at least on a minority of local sites.
On current knowledge Ma. teleius is also the least specialised
of the Maculinea species due to its specific life style and devel-
oped defence mechanisms (Thomas et al., 2005a; Witek et al.,
2010). In the light of our model, this observation could be
explained if the heterozygote disadvantage is lower in this spe-
cies, resulting in a situation allowing for stable coexistence (type
III zone in our Fig. 1). This is not necessarily an intrinsic attribute
of the social parasite but could also emanate from the fact that its
principal secondary host, My. rubra, is the most highly polygy-
nous of the known ant host species, a situation that tends to result
in a less precise chemical recognition system, making it more
readily invaded by close but imperfect chemical mimics
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(Gardner et al., 2007; Fürst et al., 2012). Further, adoption of
Ma. alcon from sites where they use different hosts took longer
than that of larvae from populations using only one host – and
adoption of larvae taken from the same site as the ants used in
the tests was fastest (Als et al., 2001); these observations indicate
local adaptation of butterfly populations and a cost to a generalist
strategy or a disadvantage for heterozygotes.
The expression of a heterozygote disadvantage (and the disad-

vantage of homozygotes on wrong hosts) may also depend on
the general well-being of individual host ant colonies and thus on
environmental conditions. For example under laboratory condi-
tions, where ants are both unstressed and supplied with food ad
libitum, Myrmica ants are much more tolerant of infiltration by
social parasites; it was only when ants were stressed that theMacu-
linea larvae were destroyed in colonies of host species to which
they were not adapted (Elmes et al., 2004; Schönrogge et al.,
2004; Thomas et al., 2013). Thus, unusually favourable conditions
for theMyrmica host ants, in particular regions or in certain years,
might also promote coexistence of alternative host use strategies.
As stated earlier, any mechanism that promotes genetic sepa-

ration between host races, like assortative mating, would pro-
mote local coexistence in host use. In Maculinea, assortative
mating might occur if, for example, individuals using different
hosts tend to emerge on different dates or if different hosts were
spatially separated, so that individuals using the same host are
more likely to mate with each other. It is noteworthy in this con-
text that Maculinea butterflies are known for their low mobility
(Nowicki et al., 2005; Ugelvig et al., 2012) with evidence for
the formation of home ranges even within rather small sites
(Hovestadt et al., 2011). Nonetheless, the fact that evidence for
local coexistence of host races in Maculinea is rare tends to
undermine the proposition of the existence of true but cryptic
species’ (see Als et al., 2004) that utilise alternative hosts.
Given the fact that Maculinea larvae typically inflict strong

damage on host ant colonies (Thomas et al., 1997; 2009), it
remains a separate question as to why, even though theoretically
expected, evidence for massive population cycles and coexis-
tence of different strategies at the local or regional scale have
rarely been reported. Several factors may be responsible. First,
Myrmica colonies on a given site are not susceptible to Maculi-
nea infiltration if their foraging ranges (>1–3 m) do not include
the host plants that Maculinea need in their early life stages
(Thomas et al., 1998; 2005a); as explained already before, a high
proportion of host colonies are thus often located in safe sites and
the overall effect ofMaculinea on its host’s population is usually
small. Second, typical habitats may show spatial structure with a
mosaic of habitat conditions favouring one or the other of the
possible host species (Thomas et al., 1998). Third, in cases
where egg deposition on host plants is largely random, there
would be an implicit decline in Maculinea net-fertility as soon
as the spatial cover of host declines, as larvae are less likely to
be found by host ants. This density-dependent effect may in turn
reduce the pressure on hosts as hosts become rarer.
In summary, with our model, we want to exemplify that an

analysis of the dynamic attributes of interactive systems may
provide additional insights beyond those provided by equilib-
rium analyses alone. Here, we show that, given that certain
assumptions are met, host shifting may rarely occur and only at

a moment when an alternative host becomes (much) more abun-
dant than the host currently used. Furthermore, transitions may
then occur at such a fast rate that the likelihood for simulta-
neously observing use of alternative hosts may indeed be small.
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Nomenclature

R net fertility of parasites
ft relative abundance of host H (abundance of host C

is 1 − f)
p, q = 1 − p proportion of alleles h and c in parasite population
Nt number of adult (mating) parasites in population
Zt number parasite zygotes (eggs) of genotypes hh,

hc, and cc generated (eq. S1)
Zt, X number parasite zygotes associated with host X,

X 2 (H, C) (eq. S2)
Lt, X number parasite larvae adopted by host X (eq. S3)
L0t, X number parasite larvae surviving density-

dependent competition on host X (eq. S5)
K carrying capacity of parasite population (defined

by hosts’ abilities)
wX,xy adoption probability (fitness) of parasite with

genotype xy 2 (hh, hc, cc) on host X
φ length of full host cycle from fmax ! fmin ! fmax

Ixx number of homozygous immigrants of genotype xx

Supporting information

Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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Figure A1 Effect of heterozygote fitness, net growth rate,
immigration, and host cycle length on the minimum parasite
population size reached during a full cycle of host abundance.
Results from the simulations shown in Figure of main text. Max-
imum carrying capacity for parasites is K = 1000.

Figure A2. Dynamics of host transition under fluctuating rel-
ative abundance f of host H. All parameters and settings as in
Figure of main text but here with wX,xy = wX,yy throughout. Blue
dots show starting point in phase diagrams, red dots end-points.

Figure A3. Effect of heterozygote fitness wX,xy, net growth
rate R, immigration Icc/K, and host cycle length on the fraction
of generations with coexistence reported at the detection level
0.025. All settings identical to Figure except that here wX,

xy = wX,yy.
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