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Abstract

Adding interactions to topological (non-)trivial free fermion systems can in general have four
different effects: (i) In symmetry protected topological band insulators, the correlations may
lead to the spontaneous breaking of some protecting symmetries by long-range order that
gaps the topological boundary modes. (ii) In free fermion (semi-)metal, the interaction could
vice versa also generate long-range order that in turn induces a topological mass term and
thus generates non-trivial phases dynamically. (iii) Correlation might reduce the topological
classification of free fermion systems by allowing adiabatic deformations between states
of formerly distinct phases. (iv) Interaction can generate long-range entangled topological
order in states such as quantum spin liquids or fractional quantum Hall states that cannot be
represented by non-interacting systems. During the course of this thesis, we use numerically
exact quantum Monte Carlo algorithms to study various model systems that (potentially)
represent one of the four scenarios, respectively.

First, we investigate a two-dimensional dxy-wave, spin-singlet superconductor, which is
relevant for high-Tc materials such as the cuprates. This model represents nodal topological
superconductors and exhibits chiral flat-band edge states that are protected by time-reversal
and translational invariance. We introduce the conventional Hubbard interaction along the
edge in order to study their stability with respect to correlations and find ferromagnetic or-
der in case of repulsive interaction as well as charge-density-wave order and/or additional
is-wave pairing for attractive couplings. A mean-field analysis that, for the first time, is
formulated in terms of the Majorana edge modes suggests that any order has normal and
superconducting contributions. For example, the ferromagnetic order appears in linear su-
perposition with triplet pairing. This finding is well confirmed by the numerically exact
quantum Monte Carlo investigation.

Second, we consider spinless electrons on a two-dimensional Lieb lattice that are subject
to nearest-neighbor Coulomb repulsion. The low energy modes of the free fermion part
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constitute a spin-1 Dirac cone that might be gapped by several mass terms. One option breaks
time-reversal symmetry and generates a topological Chern insulator, which mainly motivated
this study. We employ two flavors of quantum Monte Carlo methods and find instead the
formation of charge-density-wave order that breaks particle-hole symmetry. Additionally,
due to sublattices of unequal size in Lieb lattices, this induces a finite chemical potential that
drives the system away from half-filling. We argue that this mechanism potentially extends
the range of solvable models with finite doping by coupling the Lieb lattice to the target
system of interest.

Third, we construct a system with four layers of a topological insulators and interlayer
correlation that respects one independent time-reversal and a unitary Z2 symmetry. Previous
studies claim a reduced topological classification from Z to Z4, for example by gapping out
degenerate zero modes in topological defects once the correlation term is designed properly.
Our interaction is chosen according to this analysis such that there should exist an adia-
batic deformation between states whose topological invariant differs by ∆w =±4 in the free
fermion classification. We use a projective quantum Monte Carlo algorithm to determine the
ground-state phase diagram and find a symmetry breaking regime, in addition to the non-
interacting semi-metal, that separates the free fermion insulators. Frustration reduces the
size of the long-range ordered region until it is replaced by a first order phase transition.
Within the investigated range of parameters, there is no adiabatic path deforming the for-
merly distinct free fermion states into each other. We conclude that the prescribed reduction
rules, which often use the bulk-boundary correspondence, are necessary but not sufficient
and require a more careful investigation.

Fourth, we study conduction electron on a honeycomb lattice that form a Dirac semi-metal
Kondo coupled to spin-1/2 degrees of freedom on a Kagome lattice. The local moments are
described by a variant of the Balents-Fisher-Girvin model that has been shown to host a
ferromagnetic phase and a Z2 spin liquid at strong frustration. Here, we report the first
numerical exact quantum Monte Carlo simulation of the Kondo-coupled system that does
not exhibit the negative-sign problem. When the local moments form a ferromagnet, the
Kondo coupling induces an anti-ferromagnetic mass term in the conduction-electron system.
At large frustration, the Dirac cone remains massless and the spin system forms a Z2 spin
liquid. Owing to the odd number of spins per unit cell, this constitutes a non-Fermi liquid
that violates Luttinger’s theorem which relates the Fermi volume to the particle density in a
Fermi liquid. This phase is a specific realization of the so called ’fractional Fermi liquid‘ as
it has been first introduced in the context of heavy fermion models.
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Zusammenfassung

Durch Hinzufügen von Wechselwirkungen zu topologisch (nicht-)trivialen, freien Fermion-
systemen können im Allgemeinen vier verschiedene Effekte entstehen: (i) Im Fall von sym-
metriegeschützen topologischen Bandisolatoren können Korrelationen durch langreichweiti-
ge Ordnung einige der schützenden Symmetrien spontan brechen, sodass die topologischen
Randzustände eine Bandlücken aufweisen. (ii) In (Halb-)metallen mit freien Elektronen kön-
nen Wechselwirkungen im Gegenzug langreichweitige Ordnung erzeugen, welche wiederum
einen topologischen Massenterm induzieren und so eine nicht-triviale Phase dynamisch er-
zeugen. (iii) Korrelationen können außerdem zur Reduktion der topologischen Klassifikati-
on freier Fermionsystemen führen, indem sie adiabatische Manipulationen zwischen zuvor
verschiedenen Zuständen ermöglichen. (iv) Wechselwirkungen können langreichweitig ver-
schränkte topologische Ordnung in Zuständen wie Quanten-Spin-Flüssigkeiten oder frak-
tionellen Quanten-Hall-Zuständen erzeugen, die nicht durch wechselwirkungsfreie Syste-
me dargestellt werden können. Im Laufe dieser Dissertation benutzen wir numerisch-exakte
Quanten-Monte-Carlo Algorithmen um verschiedene Modelsysteme zu untersuchen, die (po-
tentiell) eines der vier Szenarien darstellen.

Als Erstes untersuchen wir zwei-dimensionale, dxy-Wellen, spin-singlet Supraleiter, die
relevant für Hochtemperatur-Supraleiter wie den Cupraten sind. Dieses Model repräsen-
tiert lückenlose Supraleiter und weist chirale dispersionslose Randzustände auf, die durch
Zeitumkehr- und Translationssymmetrie geschützt sind. Wir führen die übliche Hubbard-
Wechselwirkung entlang des Randes ein um die Stabilität in Bezug auf Korrelationen zu
untersuchen und beobachten ferromagnetische Ordnung im Fall von repulsiven Wechselwir-
kungen sowie Ladungsdichtewellen und/oder zusätzliche is-Wellen-Paarung bei attraktiven
Kopplungen. Eine Molekularfeldanalyse, die zum ersten Mal bezüglich der Majorana Rand-
zuständen formuliert wird, deutet an, dass jede Ordnung normale und supraleitende Beiträge
enthält. Diese Erkenntnis wird durch die numerisch-exakte Quanten-Monte-Carlo Untersu-
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chung gut bestätigt.
Als Zweites betrachten wir spinlose Elektronen auf einem zwei-dimensionalen Lieb-Gitter

die der nächsten-Nachbar Coulombwechselwirkung ausgesetzt sind. Die Niedrigenergiemo-
den des freien Teilsystems bilden Spin-1 Dirac-Fermionen mit verschiedenen möglichen
Massentermen. Bei einem davon wird die Zeitumkehrsymmetrie gebrochen und ein topo-
logischer Chern-Isolator erzeugt, was die Hauptmotivation dieser Untersuchen darstellt. Wir
verwenden zwei verschiedene Arten der Quanten-Monte-Carlo Methoden und finden statt-
dessen die Bildung von Ladungsdichtewellenordnung, welche die Teilchen-Loch-Symmetrie
bricht. Zusätzlich führt dies, durch die verschieden großen Untergitter die Lieb-Gitters, zu
einem endlichen chemischen Potential und treibt das System weg von Halbfüllung. Wir ar-
gumentieren, dass dieser Mechanismus möglicherweise die Breite von lösbaren Modellen
mit endlicher Dotierung erweitert, indem das Lieb-Gitter an das Zielmodel von Interesse
angekoppelt wird.

Als Drittes konstruieren wir ein System, bestehend aus vier Schichten eines topologischen
Isolators, mit Wechselwirkungen zwischen den Schichten, das eine unabhängige Zeitumkehr-
und eine unitäre Z2 Symmetrie respektiert. Vorangegangene Untersuchungen legen nahe ei-
ne von Z auf Z4 reduzierte topologische Klassifikation, zum Beispiel durch das Aufspal-
ten entarteter Nullmoden in topologischen Defekten, sofern die Korrelationen entsprechend
entworfen wurden. Unsere Wechselwirkungen sind den Regeln dieser Analysis folgend ge-
wählt, sodass ein adiabatischer Pfad zwischen Zuständen, deren topologische Quantenzahl
sich um ∆q =±4 unterscheiden, existieren sollte. Wir benutzen einen projektiven Quanten-
Monte-Carlo Algorithmus um das Phasendiagramm des Grundzustandes zu bestimmen und
erhalten, zusätzlich zum nicht-wechselwirkenden Halbleiter, einen symmetriegebrochenen
Bereich der die nicht-wechselwirkenden Isolatoren voneinander trennt. Frustration reduziert
die Größe dieser Region mit langreichweitiger Ordnung bis sie durch einen Phasenübergang
erster Ordnung ersetzt wird. Im betrachteten Parameterbereich gibt es keinen adiabatischen
Pfad, der zuvor verschiedene nicht-wechselwirkende Zustände ineinander überführt. Wir
schließen daraus, dass die beschriebenen Regel zur Reduktion, die oft die Korrespondenz
zwischen dem Probeninneren und dem Rand verwenden, notwendig aber nicht hinreichend
sind und dass es hierzu weiterer Studien bedarf.

Als Viertes betrachten wir Leitungselektronen auf einem Honigwabengitter, die einen Di-
rac Halbleiter verkörpern, und Kondo-gekoppeln diese mit Spin-1/2 Freiheitsgraden auf ei-
nem Kagomegitter. Die lokalen Momente werden durch eine Variante des Balents-Fisher-
Girvin Models beschrieben, welches nachweislich eine ferromagnetische Phase und eine Z2

Spinflüssigkeit bei starker Frustration beherbergt. Wir berichten hier über die erste numerisch-
exakte Quanten-Monte-Carlo Simulation des Kondo-gekoppelten Systems, die kein negati-
ves Vorzeichenproblem aufweist. Wenn die lokalen Momente einen Ferromagneten bilden,
überträgt dies einen antiferromagnetischen Massenterm auf das System der Leitungselektro-
nen. Bei starker Frustration bleiben die Dirac-Fermionen masselos und das Spinsystem bil-
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det eine Z2 Spinflüssigkeit. Aufgrund der ungeraden Anzahl von Spin-Freiheitsgraden pro
Einheitszelle stellt dies keine Fermiflüssigkeit dar und verletzt das Theorem von Luttinger,
dass das Fermivolumen mit der Teilchendichte der Fermiflüssigkeit verbindet. Diese Phase
ist eine spezielle Realisation der sogenannten ‘fraktionellen Fermiflüssigkeit’ die zuerst im
Zusammenhang mit Schwerfermion-Systeme eingeführt worden ist.
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CHAPTER 1

Introduction

In 1972, Kosterlitz and Thouless developed the theory of ‘topological long-range order’ in
two-dimensional classical systems [1,2] that was awarded with the Nobel prize in 2016. This
theory is, for example, relevant for the two dimensional XY model where the order param-
eter is a unit two-dimensional vector. The ground state of this model cannot exhibit a finite
magnetization due to its instability with respect to low-energy spin waves [3]. However, the
spin waves due not ‘destroy the order’ completely such that the states is critical with power-
law correlation functions. Most interestingly, this critical phase persists at low but finite
temperatures and exhibits a phase transition to a regular disordered phase. This phenomenon
cannot be understood within the Ginsburg-Landau theory. However, there also exist topolog-
ical vortex configurations, in addition to spin wave excitation, and it is their condensation,
when two vortices form a bound state, that introduces the finite temperature phase transition.
This seminal work introduced the notion of topology to the field on (theoretical) condensed
matter physics.

The first experimental realization of topological phases of matter is the quantum Hall ef-
fect (QHE) [4]. In classical physics, an electrical current in a two-dimensional electron gas
induces a perpendicular Hall conductance if one applies an external magnetic field perpen-
dicular to the plane [5]. Interestingly, this Hall conductance is quantized at low temperatures
and high magnetic fields while the applied current is dissipationless within each plateau [4].
A semi-classical analysis provides a first understanding. Classical electrons in a magnetic
field move in circular cyclotron orbital that get quantized in a quantum mechanical theory.
In the bulk of the sample, these orbitals are localized such that it is insulating. The electrons
close to the samples boundary will hit the edge and are then reflected. This leads to con-
ducting channels along the edge where the right- and left-movers are located on the opposite
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1. Introduction

edges such that this current is dissipationless. This constitutes one hallmark of topological
phases, namely the bulk-boundary correspondence.

A first proper quantum-mechanical explanation of the QHE was presented in Ref. [6]
where the authors introduced the so-called ‘TKNN invariant’ which quantizes the Hall plateaus.
This quantity characterizes the Berry curvature of filled Landau levels in the same way as the
genus g characterizes closed two-dimensional manifolds by counting its number of ‘holes’.
For example, a sphere as well as a bowl do not contain a ‘hole’ (g = 0) whereas the torus or
a coffee mug have one of them (g = 1). This also illustrates the insensitivity to local details,
only ‘global’ properties matter. This has direct consequences for the experiment, namely that
the quantization of the Hall conductivity is one of the most precise experiments and vastly
independent of the sample’s chemical composition, disorder, lattice defects and other local
deformations. Hence, it is even used to define the standard for the electric resistance in the
current international system of units.

In 1988, Haldane introduced a lattice regularization of the quantum Hall effect [7] for spin-
less fermions on the honeycomb lattice which hosts a Dirac semi-metal when the electrons
are only subject to nearest-neighbor hopping. Adding next-nearest-neighbor terms generates
an insulating state by gaping the Dirac cones and either inversion or time-reversal symme-
try is broken. The latter constitutes a topological state, which is nowadays also know as a
Chern insulator, similar to the QHE without Landau levels or requiring an external magnetic
field. However, this study received little interest until 2005 when Kane and Mele extended
the model to spinful fermions where the two spin components realize opposite topologi-
cal invariants such that the whole system is again time-reversal symmetric [8, 9]. The total
Chern number vanishes, however, a Z2 valued topological index is still meaningful and the
topologically non-trivial quantum spin Hall (QSH) phase, also known as two-dimensional
topological insulator (TI), exhibits helical edge modes protected from back scattering due to
time-reversal symmetry. This model was proposed to describe graphene, but the spin-orbit
coupling, which induces the topological mass term, is too small such that graphene is a semi-
metal. The Kane-Mele model has only very recently been realized experimentally in bis-
muthene, grown on a SiC substrate, as a candidate for a high-temperature quantum spin Hall
material [10]. Already in 2006, Bernevig, Hughes and Zhang proposed a different realiza-
tion of the same topological phase in a quantum well structure of mercury/cadmium-telluride
compounds [11] that were soon synthesized and characterized to host QSH states [12] and
the first three-dimensional topological insulator was discovered in 2008 [13].

These discoveries triggered tremendous progress in the field of symmetry-protected topo-
logical phases [14–17]. The topology of gapped, free fermion models with or without non-
spatial symmetries such as time-reversal (TRS), particle-hole (PHS) and the combination
thereof, the chiral symmetry are fully classified as it is summarized in the ‘periodic table’
of topology which is also know as ten-fold way [18, 19]. For example, the QHE and the
Haldane model do not obey a non-spatial symmetry, apart from the global charge conserva-
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tion, and are therefore representations of the symmetry class A that may exhibit a Z valued
topological invariant. The Kane-Mele model exhibits a TRS (T 2 = −1) and falls into class
AII with two topological distinct phases that are characterized by a Z2 index. This classifi-
cation has been extended to also include lattice symmetries which introduced the notion of
crystalline topological insulators that are protected by inversion symmetry [20–22]. Lately,
an catalog of (potentially) high-quality topological materials was developed which is based
on irreducible representation at high-symmetry lattice momenta [23].

This symmetry-based classification raises the question concerning the robustness of the
invariants as well as the topological boundary states. In Ref. [9], the authors argued that
electron interaction may induce backscattering, however, this is an irrelevant term that can-
not open a mass gap for the helical edge mode but it might still lead to a finite edge conduc-
tivity. Interestingly, even magnetic impurities cannot have a huge effect on the edge states
of the two-dimensional TI unless the interaction is very strong [24]. Actually, the site of
the impurity on the edge can then be interpreted as part of the vacuum as the edge state is
propagating around the impurity [25]. Similarly, the helical Majorana edge modes of topo-
logical superconductors (TSC) with time-reversal symmetry are stable with respect to weak
disorder whereas they partially localize on the outermost sites and reappear in the adjacent
region [26]. Zero energy flat bands, the protected boundary states of nodal TSCs, are stable
with respect to edge roughness but they do acquire a finite energy from weak non-magnetic
and are gapped by magnetic or strong non-magnetic disorder [27]. Interestingly, impurities
may also be seen as a feature rather then an issue as they give rise to quasiparticle interfer-
ence (QPI) pattern in the vicinity of dilute defects. These pattern are sensitive to the helical
nature of the surface states and can be measured using Fourier-transform scanning tunnel-
ing spectroscopy [28]. Thus this technique provides valuable information about the surface
states of TIs [29, 30] and it can even be used to distinguish the different topological bound-
ary states of TSCs such as helical Majorana modes, Majorana arc states and zero-energy flat
bands [31].

Combining interaction and topology can generate at least four different effects and each
scenario will be discussed in more detail below:

(i) Correlation may lead to long-range order that violates the protecting symmetry and
gaps the topological boundary states (see Ch. 3).

(ii) Complementary to this scenario, interactions can also induce topological non-trivial
mass terms to gap a metal by spontaneous symmetry breaking (see Ch. 4).

(iii) Contrary, correlations may also reduce the topological classification of free fermions
by adiabatically connecting states of formerly distinct phases (see Ch. 5).

(iv) Alternatively, interaction can give rise to states with topological order with long-range
entanglement that do not have a non-interacting analog (see Ch. 6).
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1. Introduction

Several studies considered the effects of correlations on the topologically protected bound-
ary states that originate from the bulk-boundary correspondence. As mentioned before, the
Kane-Mele model exhibits helical edge modes. Adding strong repulsive density interactions
leads to slowly decaying spin excitations and inelastic spin-flip processes that strongly mod-
ifies the low-energy regime of the single-particle edge spectrum such that it appears to be
similar to the zigzag edge of graphene [32]. In the latter, the nodes of the bulk Dirac cones
are projected to two separated momenta in the edge Brillouin zone that gives rise to a spin-
degenerate flat-band edge mode1. It is expected that this boundary state of the topological
semi-metal is even more unstable due to the high density of states at the Fermi level and
indeed, both experiments [33] and theoretical studies [34, 35] show an instability towards
anti-ferromagnetism along the edge as a consequence of repulsive correlations. Nodal topo-
logical superconductors exhibit similar flat-band edge states [36–39] and the particle-hole
symmetry enforces a vanishing energy of these boundary. Several studies discussed possi-
ble instabilities and identified magnetic order and charge-density-wave states or additional
pairing amplitudes as the most relevant scenarios in case of repulsive and attractive density
interactions, respectively [40–46].

A complementary approach is based a (non-topological) metallic states which acquires a
topological non-trivial mass term due to spontaneous symmetry breaking that is induced by
interactions [47]. This first example of this has recently been reported in Ref. [48]. The
authors used quantum Monte Carlo techniques to investigate spinful electrons on the hon-
eycomb lattice and a specifically tailored interaction and found two different long-range
ordered phases. One phase is described by the Kane-Mele model on a mean-field level and
realizes the quantum spin Hall state. Interestingly, topological skyrmion excitation of the
mean-field order parameter play an important role in the direct, second order phase transi-
tion to the second phase, a conventional s-wave superconductor. Each skyrmion carries twice
the electrical charge such that their condensation generates superconductivity and the phase
transition might be a realization of a deconfined quantum critical point [49, 50].

Scenario (iii) introduces the notion of symmetry protected topological (SPT) phases as
(weakly) interacting states that have a finite gap to excitation, exhibit short-ranged entangle-
ment and preserve a given set of symmetries. States that represent the same topological phase
can be adiabatically deformed into each other whereas a path between topologically distinct
states necessarily requires either a gap closing or a broken symmetry. Non-trivial SPT states
exhibit protected boundary modes, similar to non-trivial band insulators. The spin-1 Haldane
chain is considered to be one of the first examples of such a state [51]. This setup introduces
deformations of topological free-fermion states which crucially depends on the interaction,
i.e., the correlation effects prevent the non-interacting band gap to close without spontaneous

1This spectrum is readily understood if one reduces the spin-orbit coupling of the Kane-Mele model such that
the Fermi velocity is decreased until the former helical edge state forms spin-full flat band when the bulk
gap closes.
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symmetry breaking. This gives rise to the so-called reduced topological classification.
The first example of such a reduction was designed by Fidkowski and Kitaev [52]. They

considered eight chains of spinless topological superconductor that each host a single Ma-
jorana mode localized at the end of a chain [53]. Most importantly, a specifically chosen
interaction term, which involves all eight modes at one end of the chain, generated a unique
and symmetric ground state as well as an explicit deformation of bulk states that differ by
eight in their topological invariant. Hence, the former Z classification is reduced to Z8 in the
presence of correlations. This insight led to further studies of different symmetry classes and
higher dimensions [54–64] that often exploit the bulk-boundary correspondence [54–56],
investigate zero-dimensional topological defects [57, 58], employ the entanglement spec-
trum [59, 60], use braining statistics [61], or group cohomology [62].

Lastly, interaction can also generate states with topological order such as fractional quan-
tum Hall states [65,66], fractional topological insulators [67] or quantum spin liquids (QSL)
[68–71]. So what is a (gapped) QSL? Historically, QSLs are defined as correlated spin sys-
tems that do not order at arbitrary low or zero temperature2, however, the discussion of a
positive definition is highly controversial, especially for gapless spin liquids. Gapped QSLs
exhibit a ground-state degeneracy that depends on the genus g of the lattice or equivalently
QSLs are states with long-range entanglement [74]. The following paragraph reviews the
main properties of topological order, focuses on gapped Z2 topological order, which was
first studied in Refs. [75, 76], and largely follows the review presented in Ref. [74].

The canonical model systems for a gapped QSL are the toric code [77] and the Kitaev
honeycomb model [78] which also hosts a gapless QSL. A system with topological order ex-
hibits degenerate ground states where the number of ground states depends on the boundary
conditions of the model, e.g., the ground states of two-dimensional toric code are four-fold
degenerate on the torus. This degeneracy also leads to a universal contribution to the entan-
glement entropy S(A) ∼ soL− γ , where A is a sub-region of the lattice. The non-universal
coefficient s0 stems from the local entanglement, which is generically present in any gapped
system, that gives rise to the “area law”. γ is the universal contribution that depends on the
ground state degeneracy, e.g., γ = ln(2) for the above toric code. As the entanglement en-
tropy is manifestly positive, a positive topological contribution directly shows, that there is
no local basis for which s0 = 0 which illustrates the aforementioned “long-range entangle-
ment”. Interestingly, the ground-state degeneracy is also linked to exotic, gapped excitations
that are known as anyons. They have to be created in pairs and each excitation is always con-
nected to a second one via a “string”, e.g., by a line of flipped spins in the toric code, which
gives rise to an unusual braiding statistic. The following procedure illustrates the relation of
the anyons, the boundary conditions of the lattice and the topological ground-state degener-
acy. First, we create an anyon pair which costs a given energy, then move one of them around

2This can lead to false positive assessments, for example, when numerical simulations cannot reach the lattice
sizes that are required to detect the presence of long-range order [72, 73].
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of the torus’ holes, and finally annihilate the anyon pair, which releases the creation energy.
This non-local procedure connects the different ground states and links their number to the
genus of the lattice manifold. As a final remark, let us mention the Lieb-Schultz-Mattis-
Hastings theorem [79,80], according to which a gapped state of a model with an odd number
of spin-1/2 degrees of freedom per unit cell has to exhibit topological order in the absence
of symmetry breaking, i.e., there does not exist a trivial, short-range entangled, gapped and
symmetric ground state.

Isakov et.al. investigated a hard-core boson model with topological order, a variant of the
Balents-Fisher-Girvin (BFG) model [81–83], first introduced in Ref. [84], using quantum
Monte Carlo techniques. This model hosts a superfluid phase, a QSL and a direct 3D XY ∗

transition between the two phases with a critical exponent η = 1.47(3) that is unconven-
tionally large [85]. This is an important results as it controls the importance of the Kondo
coupling between the spin system and conduction electron [86]. Here, the Kondo coupling
is irrelevant (η > 1), from a renormalization group perspective, such that the spin and con-
duction electrons decouple, whereas in a conventional setting, e.g., with a regular 3D XY
transition (η ' 0.038 [87]), where the Kondo coupling remains active throughout the phase
transition.

Before we discuss further aspects of Kondo coupling and topological order, let us take
a step back and review more conventional Kondo models, beginning with a single Kondo
impurity. In 1961, Anderson introduce a model of conduction electrons and a single, lo-
calized f -electron site and studied the emergence of a local moment when the coulomb
repulsion suppresses charge fluctuations on this f -electron site [88]3. Kondo discussed the
effect of a single local moment on the resistivity of the conduction electrons and discovered
that higher order spin-flip scattering generates a ln(T ) contribution [92], which in case of
anti-ferromagnetic spin coupling explains the minimum in R(T ) that has been reported by
experiments [92]. However, this logarithmic contribution also posed the ‘Kondo problem’ as
a divergent resistivity in a metal at T = 0 is nonphysical and cannot be found in experiments.
The ‘poor man’s derivation of scaling laws’ by Anderson [93] showed on a perturbative level
that the coupling between conduction electrons and local moments increase when the tem-
perature is reduced and thus limits the temperature range in which the analysis by Kondo is
applicable. The Kondo problem was then solved using the non-perturbative numerical renor-
malization group approach [94] and the saturation of the resistivity is nowadays understood
as the conduction electrons form a Kondo cloud which screens the magnetic impurity with
spin-1/2 given that time-reversal symmetry is present.

Let us discuss one more intermediate step by introducing a regular lattice of local moments
that are described by a Kondo lattice model. Here, the conduction electron can mediate an
indirect Ruderman-Kittel-Kasuya-Yoshida (RKKY) exchange interaction between the local

3This model is also known as the single-impurity Anderson model (SIAM) and forms the backbone of the
dynamical mean-field theory (DMFT) method [89–91]
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moments that in turn might induce magnetic order [95–97]. This leads to a competition
between states where the Kondo cloud screens the local moments and anti-ferromagnetic
ordered states. A comparison of the associated energy scales, given by the binding energy of
Kondo singlet EK ∼ e−1/|J| and the energy of the AFM EAFM ∼ J2, suggest a magnetically
ordered state at weak Kondo coupling J and a screening phase at strong interactions, which
are separated by a quantum phase transition [98]. Indeed, a large N expansion for SU(N)

symmetric models yields a ground state of local Kondo singlets with a vanishing critical
value Jc = 0 for the phase transition [99] and the RKKY interaction is only generated as
a higher order corrections [100]. A unbiased quantum Monte Carlo study of the SU(2)
symmetric KLM on a square lattice with a half-filled conduction band [101] confirmed the
AFM to Kondo singlet phase transition and interestingly showed that the screening is also
finite in the AFM phase. Actually, the Kondo effect induces a finite hybridization between
conduction and the localized f -electrons which gives rise to the notion of Kondo insulators
and heavy Fermi liquids [102–104].

Let us now return to topological order and note that the decoupling of local moments
and conduction electrons which was mentioned above, seems to violate Luttinger’s sum
rule [105], which states that the size of the Fermi volume cannot change with interactions,
and Oshikawa’s theorem [106], which showed that the local moments contribute to the Fermi
sea, if the number of spins per unit cell is odd. Actually, we even expect this violation when
the QSL is Kondo coupled to conduction electrons as it is stable against weak coupling due to
the topological order and the finite energy gap. However, as it was pointed out in Ref. [107],
Oshikawa’s theorem has to be modified if the ground state is degenerate and this introduces
a new phase, the socalled ‘fractional Fermi liquid’ (FL*) phase where electronic quasipar-
ticles coexist with the spinon and associated topological excitations of the QSL [86,107,108].

During the course of this thesis, we study four model systems with quantum Monte Carlo
methods that are motivated by the aforementioned four different scenarios for the interplay
of topology and interaction as we detail below. The remainder is organized as follows:

In Chapter 2, we begin with a introduction to generic Monte Carlo techniques that fo-
cuses on potential pitfalls such as the negative-sign problem, fat tails in the distribution
of observables, or autocorrelation/warmup issues and how one might overcome these chal-
lenges. Next, we illustrate two flavors of quantum Monte Carlo (QMC) algorithms, namely
the continuous-time QMC method in the interaction expansion (CT-INT) [109] and the aux-
iliary field QMC technique (BSS) [110], and discus a logarithmic stabilization scheme to
access temperature regimes and/or interaction strength which otherwise generate numerical
numbers that exceed the range of double variables. We close this chapter with a few remarks
on the most common observable and the detection of phase transitions and spontaneous sym-
metry breaking.

In Chapter 3, we define a model Hamiltonian that consists of a two-dimensional dxy-wave
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singlet superconductor, which represents a nodal TSC and hosts flat-band Majorana bound-
ary modes, and additional Hubbard interaction along the edge. A mean-field analysis in the
basis of the chiral Majorana modes shows that the mass terms of the edge states is associated
with spontaneous symmetry breaking and linear superposition of normal and superconduct-
ing order parameters. This analysis is also able to identify the relevant instabilities as mag-
netic order, and charge-density-wave and/or additional superconductivity in case of repulsive
and attractive interaction, respectively. The QMC simulation confirms this insight and is in
remarkable agreement with the mean-field analysis as the high density of states and the low
dimensionality of the model suggest that quantum fluctuations play an important role.

In Chapter 4, we investigate spinless fermions on a two-dimensional Lieb lattice at half-
filling with repulsive nearest-neighbor density interaction. The low energy spectrum of non-
interacting model represents a spin-1 Dirac cone and spontaneous breaking of TRS can gen-
erate a Chern insulator similar to the Haldane model. However, we find a finite temperature
Ising phase transition with a charge-density-wave order that breaks PHS and induces a ther-
modynamic instability towards a filling fraction of 1/3 or 2/3. Interestingly, the probability
distribution of the squared order parameter exhibits qualitatively different fat tails for the two
QMC methods, such that the central limit theorem is inapplicable tp the CT-INT algorithm.

In Chapter 5, we design a model system in symmetry class A′, which preserves a TRS and
a unitary Z2 symmetry, such that the topology of the free fermion model is classified by a Z
valued winding number4. It has been argued that a specifically chosen interaction reduces the
topological classification from Z to Z4 and we test this hypothesis using a numerically exact
and unbiased QMC method. Instead of an adiabatic deformation between states that differ
in their winding number by 4, we find a extended region of spontaneous symmetry breaking.
An attempt to frustrate the long-range order gives rise to a first order phase transition and
we conclude that the previous arguments may very well be necessary but apparently not
sufficient conditions for the reduced topological classification.

In Chapter 6, we consider local moments, described by a variant of the BFG model, Kondo
coupled to conduction electrons on the honeycomb lattice. The spin system exhibits a phase
transition from an easy-plane ferromagnet to a gapped Z2 QSL upon increasing the level of
frustration, and the non-interaction conduction electrons form a Dirac semi-metal at half fill-
ing. As both the Dirac cone and the spin liquid are stable phases, they are expected to persist
even in the presence of weak Kondo coupling. However, this constitutes a violation of Lut-
tinger’s sum rule as the Fermi surface remains ‘small’, in the sense that only the conduction
electrons contribute, even though a ‘large’ surface, to which the odd number of local mo-
ments contribute as well, is required by Oshikawa’s theorem. This phase of decoupled spins

4The two-dimensional topological insulator only preserve the TRS and spin-orbit coupling violates the con-
servation of Sz such that the Z2 topological invariant is given by spin Chern number modulo 2. Here, we
require a conservation of Sz mod 2 which excludes the spin orbit coupling and the topology is defined by
the Z-valued spin Chern number.
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and electrons was introduced as a ‘fractional Fermi liquid’ and we report its first numerical
realization using QMC techniques.

We close this thesis with a conclusion and an outlook for future directions in chapter 7.
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CHAPTER 2

Methods

Interacting fermions are showing plenty of very interesting phenomena such as spontaneous
symmetry breaking, like superconductivity or magnetism, topological order as realized in
fractional quantum Hall states [65, 66] or quantum spin liquids [68–71], exotic phase transi-
tions like deconfined quantum critical points [49, 50], and much more.

In some cases, analytic solutions are possible, sometimes even exact results as for the
Kitaev spin liquid [78], or approximations like the Laughlin state [111] for fractional quan-
tum Hall systems. However, one often has to rely on numerical methods. Arguably the
most famous example of an only partly solved system is the Hubbard model [112] on the
two dimensional square lattice. Various methods have been developed and used to deter-
mine the phase diagram, each has its advantages and disadvantages. Exact diagonalization
(ED) [113, 114] can access the full parameter space, i.e. attractive and repulsive interactions
as well as finite doping. But as the size of the Hilbert space grows exponentially with the sys-
tems size, ED is limited to rather small lattices. The density-matrix-renormalization-group
(DMRG) [115–117] approach was invented for one dimensional systems and nevertheless
has successfully been applied to (infinite) cylinders. Here, the circumference is limited by the
growing entanglement entropy that in turn determines the required bond dimension and the
according numerical expense. The functional renormalization group (fRG) [118] approach
can access large lattices at finite doping for repulsive interaction in order to understand the
mechanism behind high Tc-superconductivity in cuprates. It is well equipped to detect lead-
ing instabilities to determine the qualitative phase diagram, but it suffers from systematic
errors due to the truncation scheme.

Quantum Monte Carlo (QMC) methods are again numerically exact, overcome the ex-
ponential scaling of ED and thus enable us to study larger lattices. An increasing number
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of models can be simulated without experiencing the infamous negative-sign problem (see
next Sec. 2.1), e.g., the attractive Hubbard model as well as the repulsive one at half filling
(on bipartite lattices). However, some models or parameter sets are not accessible due to
this problem which leads to en exponential scaling of the compute time, e.g., the repulsive
Hubbard model with finite doping.

In the following, we employ two flavors of fermionic quantum Monte Carlo methods, the
continuous-time interaction expansion (CT-INT) [109] and the auxiliary-field (BSS) [110]
algorithm (see Sec. 2.2 and Sec. 2.3). A more detailed explanation about the implementations
can be found in Ref. [119, 120] for the former and Ref. [121] for the latter. The CT-INT
method essentially samples Feynman diagrams with vertices in real-space and continuous
imaginary time, hence the name. This version’s numerical expense scales as (LDβ )3 where
β is the inverse temperature and LD the number of interacting lattice sites. It is therefore
especially adequate when the interaction is constraint only to a sub-region of the whole
lattice, e.g., the one dimensional edge of a two dimensional topological material (see Ch. 3).

The second method uses auxiliary fields introduced by a Hubbard-Stratonovich transfor-
mation and provides two major advantages. First, it offers some flexibility in which channel
the interaction is decomposed, e.g., whether the density and/or the spin channel is used. This
influences the negative-sign-problem and, in some cases, an intelligent choice may solve this
issue. Second, the algorithm’s effort (LD)3β also scales cubic in the number of lattice sites
(including non-interacting ones), but only linear with inverse temperature. Additionally,
it is possible to chose a tailored trial wave function such that a projective version quickly
converges to the interacting ground state [122, 123]. This allows us to study both finite tem-
perature aspects (Ch. 4) as well as T = 0 physics (Ch. 5 and Ch. 6).

2.1. Generic Monte Carlo aspects

In order to set up a Monte Carlo algorithm one has to define the configurations C in the
space C, the weight of the configuration w(C) and the observable(s) O(C) – here we consider
only one observable for readability. Given that the weight is always positive, otherwise
there is a negative-sign-problem as discussed in the next section, one can interpret p(C) =

w(C)/∑C∈C w(C) as the probability of the configuration C. The expectation value of the
observable is determined by O = ∑C∈C p(C)O(C).

The key idea of any Monte Carlo scheme is to use a finite number N of the configurations
Ci sampled according to the probability p such that OMC(N) = 1/N ∑

N
i=1 O(Ci) which clearly

converges to O with increasing N. The central limit theorem governs the convergence rate,
given that the distribution of the observable O(Ci) has a finite variance, and states that the
deviation |O−OMC(N)| ∼ N−1/2 for large enough N. The theorem also ensures that the
Monte Carlo estimate OMC(N) follows a Gaussian distribution, parameterized by the mean
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value OMC(N) and its standard deviation σOMC(N). There are many ways to extract the error
of Monte Carlo estimates, one popular option is the jackknife method. In situations where the
central limit theorem does not apply, one notices fat tails in the distribution of the observable,
i.e., some configurations are generated extremely rarely due to an almost vanishing weight
w(Ci) while having huge contributions to the measurement O(Ci) (see Sec. 2.1.2).

If the probability p is known, it might be possible to sample the configurations Ci directly.
However, especially in solid state physics, the weight w is given but the normalization is
unknown. The Markov chain, combined with Metropolis-Hastings acceptance schemes [124,
125], allows us the sample the configurations Ci with the appropriate distribution even in this
case. The crucial idea is to compare two configurations (C and C′) and balance their relative
probability according to their relative weight which is independent from the normalization.
In practice, one usually starts from the configuration C and proposes an update to C′ with
probability T (C→C′). Accepting this move at a rate r = min(1, T (C′→C)w(C′)

T (C→C′)w(C) ) respects the
detailed balance between the two configurations and, in the long run, generates the overall
correct distribution of the configurations, given that all of them can be reached such that the
algorithm is ergodic.

2.1.1. Sign problem

In condensed matter theory, the weight of the configuration is always extracted from the
partition sum Z = Tr[exp(−βH)] where β is the inverse temperature and H the Hamilto-
nian of the system at hand. The definition of the configuration is quite different in various
methods but, generically, configuration with negative weight w(Ci) < 0 are possible. One
illustrative example is the exchange of two fermions and the according minus sign in the
two-dimensional worldline Monte Carlo, geometrical frustration is another common source
of the negative-sign problem [126].

Even though the interpretation of the weight as a probability is not possible any more, one
can use the absolute value of the weight to sample the configurations.

O =
∑C∈C w(C)O(C)

∑C∈C w(C)
=

∑C∈C |w(C)|sign(C)O(C)/∑C∈C |w(C)|
∑C∈C |w(C)|sign(C)/∑C∈C |w(C)|

=
∑C∈C ps(C)sign(C)O(C)

∑C∈C ps(C)sign(C)
=
〈sO〉
〈s〉 , (2.1)

where ps(C) = |w(C)|/∑C∈C |w(C)|. Apparently, this change mainly recasts the problem.
To visualize this, assume an observable O(Ci) fluctuating around some finite value and a
severe sign problem where almost half of the weights are negative. Then the average of
both the sign and the sign-weighted observable almost vanish such that it is expensive to
restore their finite ratio. To quantify this, note that the average sign is the ratio of two
partition functions such that it scales exponentially with the euclidean system size LDβ ,
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Figure 2.1.: Distribution of the (squared) order parameter for unbinned data from AF-QMC
and CT-INT simulations. The data from the CT-INT simulation shows slowly
decaying tails which renders the variance ill-defined. This figure is brought
forward from Ch. 4 and will be discussed in more detail there.

〈s〉 ∼ ∑C∈C ps(C)sign(C) ∼ exp(−αLDβ ), where α ≥ 0 is an intrinsic quantity. In order to
calculate the observable, the error of the sign σs ∼ N−1/2 has to be smaller than the average
sign itself and this requires a compute time TCPU ∼ exp(2αLDβ ). Hence we are left with an
exponentially hard problem.

2.1.2. Fat tails

The existence of fat tails in the distribution of some observable is related to the existence
of zeros in the weight function w(C). Those can be possible even in the absence of the
negative sign problem. The vanishing partition function and the according configuration of
zero weight is never generated and therefore does not directly cause the fat tails. Instead,
the configurations in the vicinity of those zeros, especially in Monte Carlo formulations
with a continuous sampling degree of freedom, have arbitrarily small weight. Hence they
are generated only as extremely rare events. At the same time, the contribution of those
rare events to the given observable does not have to be small and could actually become
arbitrarily large.

Let P(O) be the probability distribution of the observable and assume that the expectation
value exists because we are studying a physical system. Then 〈O〉= ∫ ∞

−∞
OP(O)dO is finite

and the distribution obeys P(|O|) ∼ |O|2−ε for large |O| with ε > 0. This, however, is not
sufficient to meet the conditions of the central limit theorem that requires a finite variance and
ε > 1, accordingly. In Ch. 4 we face this issue for the CT-INT method whereas the fat tails
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Figure 2.2.: The autocorrelation function AutoO(tQMC) (a) and the scaling of the error with
effective bin size (b) of three equal time spin-spin correlation functionsO of the
Hubbard model in the Mz decoupling. Simulations were done on a 6×6 square
lattice, with U/t = 4 and β t = 6. The original bin contained only one sweep and
we calculated around one million bins on a single core. The different autocorre-
lation times for the xy-plane compared to the z-direction can be detected from the
decay rate of the autocorrelation function (a) and from the point where saturation
of the error sets in (b), which defines the required effective bin size for indepen-
dent measurements. Apparently, the improved estimator (Sx+Sy+Sz)/3 has the
smallest autocorrelation time. This figure has been taken from Ref. [127].

are absent when we use the BSS algorithm, as apparent from the copied and moved forward
Fig. 2.1. One explanation for this difference is the discrete character of the configuration
space for BSS such that the configurations cannot be arbitrarily close to the zeros of the
partition function compared to the continuous space of CT-INT.

2.1.3. Warmup, autocorrelation & error analysis

The Markov chain method is an extremely useful way to simulate unnormalized weight dis-
tributions. However it often requires somewhat small changes between two configurations
such that the weights of them are similar and the proposed move is accepted often enough.
Due to those small variations, a certain number of updates is required to generate a new in-
dependent configuration and the time scale associated with this is commonly known as the
auto-correlation time tauto. Due to the generically random starting point within the config-
uration space, the simulation has to run longer than at least a few auto-correlation times in
order to generate equilibrium configurations before evaluating any observable.

In Fig. 2.2(a), we present a representative plot of the auto-correlation function

AutoO(tQMC) =
N−tQMC

∑
i=0

(Oi−〈O〉)
(
Oi+tQMC−〈O〉

)
(Oi−〈O〉)(Oi−〈O〉)

(2.2)
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with the shorthand notation Oi = O(Ci). Here we use the BSS algorithm for the two di-
mensional Hubbard model and analyze various spin operators as observable O. This clearly
shows that there is not one unique time scale. Instead the auto-correlation time depends on
the given observable of interest.

This effect also influences the error analysis such that one tends to underestimate the true
uncertainty of the Monte Carlo average. Therefore, let us briefly review the jackknife error
estimation. The so-called jackknife bins are defined as O(i) = (N−1)−1

∑k 6=i Ok, where we
drop the ith original data point. The expectation value of the observable is 〈O〉= N−1

∑i O(i)

and here it is important to first generate the jackknife bins before any further evaluation,
e.g., before taking the ratio in 〈sO〉/〈s〉 when the negative-sign problem is present. The
standard error, including bias correction, is given by σ2

OMC(N) =
N−1

N ∑i[O(i)−〈O〉]2. When
the simulation exhibits considerable auto-correlation times, then the measured data points
Oi do not fluctuate as much as independent samples are supposed to. Hence, the overall
standard error σOMC(N) is too small. However, it is possible to generate less correlated bins
by averaging over NRebin of the original data, OI = ∑

NRebin−1
k=0 Ok+I NRebin . This procedure is

also know as rebinning and often performed within the Monte Carlo algorithm as it reduces
the storage requirements and writing to disk operations. Using this rebinned data in the
jackknife analysis approaches the correct value of σOMC(N) once the rebinning is larger then
the auto-correlation time, as apparent in Fig. 2.2(b).

For some Monte Carlo methods, global updates have been successfully designed to solve
this challenge, both for fermionic and bosonic methods. Celebrated examples are the Wolf
and the Swendsen-Wang algorithms [128, 129] which solved the Ising model, allowing to
determine precise critical exponents of the phase transition, or the worm/loop updates in the
context of the stochastic series expansion [130–133]. However, for the two fermionic meth-
ods, introduced in the following, such generic global moves have not been established.

In summary, we have discussed that Monte Carlo algorithms stochastically sample the
important configuration efficiently such that formerly exponentially hard problems can be
solved in polynomial compute time given that the negative-sign problem is absent. Addi-
tionally, we presented two major pitfalls that have to be considered during Monte Carlo
simulations. (1) Some observables may exhibit fat tails in their probability distribution such
that the computation is becoming quite expensive and – in the extreme case – the central
limit theorem might not apply. Here, the conventional error analysis is misleading as the un-
derlying distribution, assumed when reporting the mean value and the standard error, is not
Gaussian any more. (2) Additionally, some observables might have long auto-correlation
times. Then, the error estimate is typically to optimistic such that the results appear to be
more precise than they actually are. Related to this are the warmup times that control the
convergence rate of the observable’s expectation value, starting from a random configura-
tion/value to the correct result.
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2.2. Continuous-time quantum Monte Carlo (CT-INT)

The partition function Z = Tr[exp(−βH)] is the defining quantity in statistical mechanics
and used to derive the configuration space with the according weights for the quantum Monte
Carlo algorithm. This procedure is not unique and there are various approaches, some use
above form and are referred to as operator-based methods whereas others, including the CT-
INT algorithm, are action based and require the path integral formulation of the partition
function Z =

∫ D{ψ , ψ̄}exp[−S(ψ, ψ̄)] with S(ψ, ψ̄) being the action as a function of the
fermionic field ψ(x,τ) and its complex conjugate ψ̄(x,τ).

In the next step, the action is split into a non-interacting part S0(ψ, ψ̄), which may contain
any terms up to the second power of the fields, and the interaction Sint(ψ, ψ̄), which collects
the remaining contributions, such that S(ψ, ψ̄) = S0(ψ, ψ̄)+ Sint(ψ, ψ̄). For concreteness,
let us use the spinful, SU(2)-symmetric Hubbard model at half filling with

S0(ψ, ψ̄) = − ∑
x,y,σ

βx

0

ψ̄σ (x,τ)G−1
0 (x− y,τ− τ

′)ψσ (y,τ ′)dτdτ
′ (2.3)

Sint(ψ, ψ̄) = U ∑
x,s

∫
β

0
[ψ̄↑(x,τ)ψ↑(x,τ)−1/2+ sα↑]×

[ψ̄↓(x,τ)ψ↓(x,τ)−1/2+ sα↓]dτ (2.4)

where G0(x,y,τ) is the non-interacting Greens function, that encodes the details of the lattice,
the single particle hopping elements as well as the chemical potential. Note that the term sα ,
once summed over s, adds a constant to the action of the original Hubbard action without α .
This only influences the overall (unknown) normalization, it does not change the physics but
allows choices of α to avoid possible sign problems [134].

In the last step, we expand the partition function in powers of the coupling strength U ,

Z =
∞

∑
n=0

n

∏
i=1

[
∑
xi,si

∫
β

0
dτi

]
(−U)n

n!

∫
D{ψ , ψ̄}T (exp[−S0(ψ, ψ̄)]

n

∏
i=1

v(xi,si,τi)) (2.5)

= Z0

∞

∑
n=0

n

∏
i=1

[
∑
xi,si

∫
β

0
dτi

]
(−U)n

n!

〈
n

∏
i=1

v(xi,si,τi)

〉
0

(2.6)

= Z0 ∑
C∈C

(−U)n

n!

〈
n

∏
i=1

v(xi,si,τi)

〉
0

. (2.7)

Here we have introduced the shorthand notation for the vertex v(xi,si,τi)=∏σ=↑,↓[nσ (xi,τi)−
1/2+ siασ ], T (. . .) refers to the time ordering for fermion fields and we also use the abbre-
viation 〈. . .〉0 = Z−1

0
∫ D{ψ , ψ̄}T (. . .exp[−S0(ψ, ψ̄)]) for non-interacting expectation val-

ues. The comparison of the last two lines in the equation above identifies the configu-
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ration space as lists of the vertex positions {xi,si,τi} for a given order n such that C =

{n,{x1,s1,τ1}, · · · ,{xn,sn,τn}}. The weight of each configuration can also be inferred as
w(C) = (−2U)n

n! 〈∏n
i=1 v(xi,si,τi)〉0. Observe that the expectation value is taken with respect

to the non-interacting system. In most cases, the model is conserving the particle number1

such that the weight can be expressed as a determinant of a matrix M. For simplicity, let
us exploit the SU(2) symmetry such that the spin sectors completely decouple and we have
detM = detM↑ detM↓ with the matrix elements Mσ

i j = G0(xi− x j,τi− τ j)−δi j(1/2− siασ )

with i, j ∈ {1,n}.
The configuration space then also suggest the update moves used to construct the Markov

chain, namely the addition and the removal of one or more vertices. The Metropolis scheme
requires the ratio w(C′)/w(C), that compares the determinants of two matrices which have
almost equal dimension. This can be done in a very efficient and numerically stable manner
by using the fast update schemes presented in Refs. [119,120]. These two moves allow us to
explore the full configuration space and are therefore ergodic. Nevertheless, it is beneficial to
also propose updates of the auxiliary variable si of the ith vertex due to the low computational
cost of this move.

Last, but not least, we discuss the measurement of observables. For a given configuration
C, we take all expectation values with respect to a non-interacting theory and Ref[David]
has shown that Wick’s theorem can then be used to calculate any higher-order correlation
function from the single-particle Green’s function of that configuration C. This leads to the
basic building block

〈〈ψ̄σ (x,τ)ψσ (y,τ ′)〉〉C =
〈ψ̄σ (x,τ)ψσ (y,τ ′)∏

n
i=1 v(xi,si,τi)〉0

〈∏n
i=1 v(xi,si,τi)〉0

. (2.8)

Note, that the Greens function 〈〈ψ̄σ (x,τ)ψσ (y,τ ′)〉〉C again is a ratio of matrices with almost
equal dimension such that we can once more profit from the fast update scheme.

The purpose of this section has been to present the main ideas and concepts of the CT-
INT algorithm and show that this QMC method samples all possible Feynman diagrams by
adding and removing vertices. A more detailed discussion is presented in Refs. [119, 120]
and readers, who are interested in developing their own implementation, are referred to those
manuscripts.

1In Ch. 3, we will discuss a superconducting system such that the particle number is not conserved. However,
we can utilize another global U(1) symmetry related to the conservation of Sz in spin-singlet superconduc-
tors.
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2.3. Auxiliary-field quantum Monte Carlo (BSS)

2.3. Auxiliary-field quantum Monte Carlo (BSS)

In contrast to the above action-based CT-INT method, the auxiliary-field algorithm is operator-
based. The partition function is again the starting point of the derivation. Let us use the
same Hubbard model to illustrate the key setup of the method, this time from the Hamilto-
nian perspective, H =H0 +U ∑x(nx,↑+ nx,↓− 1)2. First, we perform a Trotter decomposi-
tion [135–137]

exp(−βH) = [exp(−∆τH)]LTrott (2.9)

= [exp(−∆τH0)∏
x

exp(−∆τU(nx,↑+nx,↓−1)2)]LTrott +O(∆τ
2) ,(2.10)

with ∆τ = β/LTrott. H0 describes the non-interacting part of the system, just like S0 in the
previous section.

As the interaction is a perfect square, we can use a discrete version of the Hubbard-
Stratonovich transformation for an operator A

exp(−∆τUA2) =
1
4 ∑

s=±1,±2
γ(s)exp(

√
−∆τUη(s)A)+O(∆τ

4) , (2.11)

given that γ(±1) = 1+
√

6/3 and γ(±2) = 1−
√

6/3 as well as η(±1) =±
√

2(3−
√

6) and

η(±2) =±
√

2(3+
√

6). We perform this transformation for each interaction term, indexed
by the real-space position x here, and for each time-slice indexed by 1 ≤ τ ≤ LTrott. Hence,
this leads to a space-time dependent auxiliary field sx,τ . As a result, we can write the partition
function

Z = Tr[exp(−βH)] (2.12)

∼ ∑
sx,τ

Tr
[
∏

τ

Bτ(sx,τ)

]
with (2.13)

Bτ(sx,τ) = exp(−∆τH0)∏
x

γ(sx,τ)exp(
√
−∆τUη(sx,τ)(nx,↑+nx,↓−1)). (2.14)

This equation nicely illustrates the configuration space of the BSS method that is given
by the auxiliary fields sx,τ . The weight of each field configuration is determined by the Tr in
the fermionic Fock space. The trace can be reduced to a determinant in the single-particle
Hilbert space Tr[∏τ Bτ(sx,τ)] = det[1+∏τ Bτ(sx,τ)] as, for a given field configuration, we are
left with a non-interacting Gaussian theory. The updating scheme then proposes to change
the field configuration by modifying one single sx,τ for a given position x and time τ .

Similar to the CT-INT algorithm we can once more use Wick’s theorem to calculate any
other higher order correlation function from the knowledge of the single-particle Green’s
function. For more details, especially on the stabilization schemes required due to the expo-
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nentially large and small scales in exp(−βH) as well as the calculation of the single-particle
Green’s function, the interested reader is referred to Ref. [121, 138].

Before we move on to the next section, let us briefly discuss the projective version of
this method that allows us to access ground state physics more efficiently then by simply
lowering the temperature of the system (β →∞). The key idea is to use a trial wave function
|Ψtrial〉 and to project this state to the interacting ground state by applying the exponentiated
Hamiltonian exp(−ΘH)|Ψtrial〉 = exp(−ΘEGS)∑n exp(−Θ(En − EGS))|n〉〈n|Ψtrial〉. Here
|n〉 is an eigenstate of the full Hamiltonian with energy En and EGS is the energy of the ground
state. This clearly shows that any excitation is suppressed exponentially fast upon increasing
the parameter Θ. The overlap 〈n|Ψtrial〉 of the trial wave function and the eigenstates is
both a great feature but also a caveat to be considered. On the positive site, we have the
freedom to choose a ‘good’ trial wave function. If, for example, the ground state is known
to be a spin-singlet and the lowest excitation are triplet excitation, we can choose a singlet
as a trial wave function without any triplet component, thus increasing the effective gap
and accordingly the convergence rate. On the negative side, however, one can accidentally
define a trial wave function that does not overlap with the true ground state at all and thereby
produce wrong results. The implementation of this idea is rather simple as one essentially
replaces the trace in the weight by the trial wave function and adds the projection length,
Tr[. . . ]→〈Ψtrial|exp(−ΘH) . . .exp(−ΘH)|Ψtrial〉. Also, this projection scheme allows us to
focus solely on the lowest energy state and the numerical calculations are thus more stable
than the finite temperature version.

Logarithmic stabilization scheme

Increasing the inverse temperature introduces a challenge for the numerical stability of the
algorithm. Here we have to control the various scales of A j = ∏

j
τ=0 Bτ where Bτ is the

product of all exponentiated operators on the ith time slice, as defined in the previous section.
Apparently, some models, e.g., in Ch. 6 generate Eigenvalues in A j which exceeded the
range of double precision of order 10±308. To overcome this issue, we store the scale of A j

on a logarithmic axis and implemented the following stabilization scheme. Assume that we
already have a QR decomposition of A j−1 = Q j−1eλ j−1R j−1 where Q j−1 is the orthogonal
part, eλ j−1 is diagonal and separates the main scales, and R j−1 encodes their mixing. To
generate the QR decomposition of A j = B jA j−1 we perform the following steps:

1. Calculate M̃ j = B jQ j−1.

2. Use the permutation Pj to sort the columns of M j = M̃ jPj according to the column
norm of M jeλ j−1 . Permute λ j−1 and R j−1 with P−1

j to correct this manipulation.

3. Perform a QR decomposition of M j = Q jR̃ j without further pivoting.
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4. Extract the scales of R̃ as (D j)n = |(R̃ j)nn|.

5. Determine the new scales λ j = log(D j)+λ j−1.

6. Calculate R j = D−1
j e−λ j−1R̃ jeλ j−1R j−1.

This scheme keeps all the advantages of QR decomposition with pivoting to handle expo-
nentially large and small scales of A j which is paramount to a stable BSS algorithm, even
when double precision suffices. Here, the key point is not store the scales as D’s but rather
as eλ j−1 as to handle values that are much larger than 10±308.

2.4. How to detect symmetry breaking and phase
transitions numerically?

Spontaneous symmetry breaking occurs, when the Hamiltonian respects a certain symmetry,
e.g., the SU(2) symmetry in the Hubbard model, whereas the ground state does not, as it
is spontaneously chosen from a degenerate set of ground states with a vanishing transition
probability from one ground state to another in the thermodynamic limit. The partition func-
tion is by design respecting the symmetries of the Hamiltonian and consequently an ergodic
Monte Carlo has to do so as well. However, we have to distinguish two scenarios here. On
one hand, the symmetry can be conserved by each configuration Ci, e.g., when we use the
density channel Hubbard-Stratonovich decomposition for the BSS algorithm. On the other
hand, individual configurations Ci may break the symmetry, but then there exists one or more
symmetry related configurations C̃is that have equal weight and that restores the symmetry
on average, e.g., when we use the spin channel for the decomposition2.

Consequently, it is impossible to determine symmetry breaking order parameters directly.
However, we can access the according correlation function of the operatorsA and B, defined
by

CA,B(d) =
1
L

L

∑
x

(
〈A†

xBx−d〉−〈A†
x〉〈Bx−d〉

)
(2.15)

CA,B(q) =
L

∑
d

eiqdCA,B(d) , (2.16)

for real and momentum space, respectively. A sketch of correlation functions is shown in
Fig. 2.3. In the disordered phase, the correlation function decays exponentially with distance

2In these cases, the phenomenon of critical slowing down might occur, when the time-scale associated with
the symmetry restoration is diverging. This typically occurs when global moves, e.g., a global rotation of
the spins relate the configuration partners, while the updating scheme only includes local moves. The local
moves in principle may also restore the symmetry, however they have to overcome an exponentially large
(with euclidean volume) energy barrier and the accordingly small acceptance probability.
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Figure 2.3.: Sketch of correlation functions in real (panels (a) and (b)) and momentum space
(panel (c)) with various correlation length scales. The green diamonds repre-
sent long-range order with a non-analytical (divergence) behavior at qinst, the
associated wave vector.

d as represented by the blue and orange curve. Hence every value CA,B(q) remains finite
as we approach the thermodynamic limit L→ ∞. In a symmetry broken phase, however,
far apart observables are still related to each other, represented by the green data points.
The correlation function then remains finite for large distances d (see Fig. 2.3(b)) and the
Fourier transformation generates a linear divergence with system size L at specific momenta
qinst as in Fig. 2.3(c). This enables the detection of the absolute value of the mean-field like
order parameter m =

√
L−1CA,A(qinst). For example, the spin-spin correlation function with

A = S signals ferromagnetically ordered states with an instability at qinst = 0, as well as
anti-ferromagnetic order with qinst = π , assuming a one dimensional model system.

First order transitions

In general, the transition between two phases can be of first or second order, distinguished
by a discontinuous jump in the first or in higher derivatives of the free energy F with re-
spect to the tuning parameter g. In the canonical ensemble, the free energy is defined as
F = −β−1 ln(Z) with Z being the canonical partition sum. Observe that the projective ver-
sion of the BSS algorithm explicitly fixes the number of particles by specifying the trial wave
function. Technically, the finite temperature version as well as the CT-INT method do not fix
the number of particles, but rather specify a chemical potential µ such that the methods sam-
ple the grand-canonical partition function. However, most of the time, we use particle-hole
symmetry to avoid sign-problems during the remainder of this thesis. The chemical potential
is therefore set to µ = 0 and the two partition functions are indistinguishable. Taking again
the Hubbard model as an example and using the interaction strength as the tuning parameter
g =U , the first derivative of the free energy is given as

∂F
∂U

=−(βZ)−1 Tr
[

exp(−βH)∑
x
(nx,↑+nx,↓−1)2

]
=−(βU)−1〈Hpot〉 , (2.17)

where we introduced the potential energyHpot =U ∑x(nx,↑+nx,↓−1)2 in the last line.
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2.4. How to detect symmetry breaking and phase transitions numerically?

Second order phase transitions

Second order phase transitions, on the other hand, display a non-analytic but continuous
behavior in both the first derivative ∂F

∂g as well as the order parameter m(g). Here it is useful
to define a correlation ratio

r = 1−CA,A(qinst +δ )

CA,A(qinst)
, (2.18)

where δ is an increment of the lattice in momentum space (δ ∼ 1/L). For the disordered
phase, C(q) is an analytic function such that r→ 0 with increasing lattice size L→ ∞ (com-
pare Fig. 2.3(c)). For a ordered phase, in contrast, the ratio converges to 1 in the thermody-
namic limit. Right at the critical point of the phase transition this ratio is lattice size inde-
pendent as it is an renormalization-group invariant quantity that follows the scaling ansatz

r = f ((U−Uc)/Uc L1/ν) (2.19)

for the vicinity of the critical point. f (x) is a non-universal, analytic function and Uc the
critical value of the coupling strength, again for the Hubbard model as an example, locating
the phase boundary. The order parameter obeys a similar scaling ansatz, however, the order
parameter itself is not RG invariant and therefore requires an additional critical exponent β .
Then m = L−β/νg((U −Uc)/Uc L1/ν) for quantum phase transitions and m = L−β/νh((T −
Tc)/Tc L1/ν) for finite temperature phase transitions with a critical temperature Tc.

Spectral functions

Last but not least, the single-particle Green’s function and the according spectra are interest-
ing observables. Hence, let us define the imaginary-time resolved Green’s function

G(k,τ) = 〈ck(τ)c
†
k(0)〉 (2.20)

= Z−1
∑
n,m

e+τ(En−Em)e−βEn〈n|ck |m〉〈m|c
†
k |n〉 (2.21)

=
∫

∞

−∞

A(k,ω)K(ω,τ)dω . (2.22)

The second line (Eq. (2.21)) is the Lehmann representation where n and m label eigenstates
of the full interacting system. This illustrates the connection of the Green’s function with the
matrix elements of the single-particle creation/annihilation operators. To make the connec-
tion with the maximum entropy method, we expressed the propagator in terms of the fermion
kernel K(ω,τ) = exp(−τω)/(1+exp(−βω)) where β is again the inverse temperature. The
stochastic maximum-entropy method [139, 140] solves the last equation from above. This is
required as we can only measure G(k,τ) on the imaginary time axis, but ultimately, we are
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interested in the spectrum as a function of real frequencies ω ,

A(k,ω) = Z−1
∑
n,m

(e−βEn + e−βEm)|〈n|ck |m〉|2δ (ω− (Em−En)) . (2.23)

Let us assume very low temperature (large β ) to develop an intuition for the spectrum
A(k,ω). Here we can approximate Z−1e−βEn as δ (En− E0) such that either the state n
or m has to be a ground state with energy E0. Then we have

lim
β→∞

A(k,ω) = ∑
n
(δ (ω−∆E)|〈n|c†

k |0〉|2 +δ (ω +∆E)|〈n|ck |0〉|2) (2.24)

with ∆E = En−E0 > 0 such that we can associate any contribution with positive frequency
to particle excitation from the ground state to another eigenstate n whereas the negative
frequencies stem from hole excitations.
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CHAPTER 3

Edge instabilities of topological superconductors

The discovery of topological insulators [11–13] has established the existence of novel surface
states [14–17] that are protected by their non-trivial bulk topology. Some of those boundary
states exhibit a flat dispersion relation and thus are highly susceptible to correlation effects
[33–35, 40–46, 141, 142]. These surface states may occur in topological semi metals [142–
144] as well as in nodal topological superconductors [36–39]. In the latter, particle-hole-
symmetry (PHS) enforces the energy of the flat band to vanish and gives rise to the notion of
neutral Majorana bands [39, 145, 146].

Looking at the surface Brillouin zone, the flat bands are terminated by the projection of
the bulk Fermi surface. Depending on the dimensionality of the enclosed area, this gives rise
to an extensive ground state degeneracy g which diverges linearly (1D) or quadratically (2D)
with system size. This is in violation of the third law of thermodynamics, which states that
the entropy S = kB lng has to vanish (unique ground state) or remain constant (topological
order or glassy phases) at absolute zero. As a consequence, arbitrarily weak interaction gap
the topologically protected boundary modes and induce novel symmetry broken states at the
surface [33–35,44–46,141,142,147]. Due to the low dimensionality of the surface states and
their macroscopic degeneracy, fluctuations around mean-field saddle points should be taken
into account [148].

Here, we use quantum Monte Carlo techniques [109, 119] to investigate the stability of
flat-band surface states in dxy-wave spin-singlet superconductors with respect to interactions.
This model is relevant for high-temperature cuprate SCs [149, 150]. Tunnel junction exper-
iments on the normal-metal YBa2Cu3O7−x exhibits a sharp zero-bias peak for intermediate
temperatures [151–157] that is interpreted as a signature of flat-band edge states. This peak
then splits into two finite-bias peaks at lower temperatures [158, 159] that is considered as
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3. Edge instabilities of topological superconductors

a sign of spontaneous symmetry breaking. However, experiments do not always report the
splitting of the zero bias peak at the lowest temperatures [160].

In this project, we (i) refine the mean-field analysis by using a Majorana basis compared
to previous works using complex fermion operators [40–45] that provides new insights to a
hierarchy of fermionic correlations, and (ii) include all fluctuations by employing the numer-
ically exact continuous-time QMC (see Sec. 2.2). Any Majorana bilinear mass term, which
gaps out the boundary modes, breaks the physical time-reversal and/or translation symmetry.
In the Monte Carlo simulation, we find long-range order in coherent superposition of normal
and superconducting operators in agreement with the hierarchy developed on the mean-field
level. For repulsive interaction, the anti-ferromagnetic order is combined with triplet su-
perconductivity, whereas, for attractive interaction, we find s-wave singlet SC mixed with
spontaneous current order and/or charge-density-waves (CDW) in superposition with singlet
cooper pairing of finite momentum.

This study was carried out under the supervision of F. F. Assaad and A. P. Schnyder and
the following results of this project have been published in Ref. [P1]. This chapter contains
reprinted figures with permission from Ref. [P1]. Copyright (2016) by the American Physical
Society.

3.1. Model

We start from a phenomenological model system of dxy-wave superconductors in two dimen-
sion using the Bogoliubov–de Gennes Hamiltonian H0 = ∑k Ψ

†
kH(k)Ψk, with the Nambu

spinor Ψk = (ck↑,c
†
−k↓)

T and

H(k) =

(
εk ∆k

∆∗k −ε−k

)
. (3.1)

The operator c†
kσ

creates an electron of spin σ and momentum k = (k‖ = kx,k⊥ = ky)
T.

This labeling of momenta already anticipates the later introduced ribbon geometry with open
boundary conditions in the y- and periodic ones for the x-direction (see Fig. 3.1). The normal
state dispersion relation is given by εk =−2t (cosk‖+cosk⊥)−µ with the hopping integral
t and the chemical potential µ . The contribution ∆k = ∆dxy sink‖ sink⊥ introduces dxy-wave
spin-singlet superconductivity with a pairing amplitude ∆dxy .

To discuss the topology of this two-dimensional nodal system, we interpret H
(
k‖,k⊥

)
as a

set of fully gapped one-dimensional chains Hk‖(k⊥), indexed by k‖. Each subsystem belongs
to the class BDI and its topology is classified by a winding number. If 2|t| > |µk‖ | and
∆k‖ 6= 0, the subsystem exhibits a nontrivial bulk topology and hosts protected zero energy

edge states (created by γ
†
k‖

) once open boundary conditions for the perpendicular direction k⊥
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Figure 3.1.: Visualization of the square lattice in ribbon ge-
ometry: normal hopping terms along nearest
neighbor bond (solid red), superconducting dxy-
wave pairing on next-nearest neighbor bonds
(dashed greed), on-site chemical potential in the
bulk and interactions along the edge (filled blue
circles). We assume periodic boundary condi-
tions in the parallel x-direction and open ones
for the perpendicular y-direction

are imposed. Here we use the shorthand notations µk‖ = µ+2t cos(k‖) and ∆k‖ =∆dxy sin(k‖).
The aim of the project is to study correlation effects of these Majorana edge states. Hence,

we add the conventional Hubbard interaction along the top edge (i⊥,0 = 1) by refining the
Hamiltonian toH=H0 +Hint with

Hint =−
2U
3L ∑

q‖

S−q‖Sq‖ =
2U
3L ∑

q‖

S(Ψ)
−q‖S

(Ψ)
q‖ . (3.2)

Here it is useful to define both the conventional spin operator Sq = ∑k‖ c†
k‖

σ
2 ck‖+q and addi-

tionally the pseudo-spin operator of the Nambu basis S(Ψ)
q = ∑k‖Ψ

†
k‖

τ
2 Ψk‖+q.

In Fig. 3.1, we present a graphical representation of our model Hamiltonian. The interact-
ing sites are marked in blue, solid red bonds depict normal hopping terms, and the dashed
green lines visualize the dxy pairing. Unless stated otherwise, we use t as the unit of energy
set (t,µ,∆dxy ,L⊥) = (1.0,0.0,1.0,102). We study the effect of finite doping (µ 6= 0) and our
results do not crucially depend on ∆dxy and L⊥ as long as the system is topological and L⊥ is
large enough to separate the exponentially-localized boundary modes of opposite edges.

3.2. Mean-field considerations

Let us examine some mean-field scenarios before presenting the numerical simulations. The
most important step in this analysis is the projection of conventional approaches, such as
m = 〈S0〉 for ferromagnetic order, onto the edge modes as the relevant low-energy degrees
of freedom. A detailed derivation of the boundary modes can be found in appendix A. Let us
briefly summarize the main findings here, namely that topological flat-band states are created
by

γ
†
k‖

=
L⊥

∑
i⊥=1

φk‖(i⊥)
1√
2
(c†

k‖,i⊥↑− i sk‖ c−k‖,i⊥↓) , (3.3)
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where sk‖ = sgn(t∆dxy sin(k‖)) labels the chirality and φk‖(i⊥) denotes the wave function of
the boundary mode. Additionally, we found that the wave function can be chosen to by real
valued and also that it is even in momentum k‖.

In the following, we project the fermion operators onto the zero-energy boundary modes
and use this projection to identify possible instabilities. We present the relation of different
types of long-range order to the according Majorana mass terms which all break either time-
reversal and/or translation symmetry. Interestingly, we find that each mass can be associated
the a unique set of coherent combination of normal and superconducting order parameters,
in contrast to previous mean-field studies that discussed only the leading order contribution.

3.2.1. Fermionic operators projected onto edge states

First, we decompose the fermion operators Ψk‖,i⊥ = (ck‖,i⊥;↑,c
†
−k‖,i⊥;↓) in terms of the eigen-

states ηk‖,n of the non-interacting system, using the unitary matrix U which diagonalizes H,
with

ηk‖,n = ∑
i⊥,τ

Un,(i⊥,τ)(k‖)Ψk‖,i⊥;τ (3.4a)

Ψk‖,i⊥;τ = ∑
n

U†
(i⊥,τ),n(k‖)ηk‖,n . (3.4b)

Second, we project onto the edge states by keeping only the zero-energy, exponentially
localized modes with En = 0 given by ηk‖,n = γk‖ , and ignore all other high energy contribu-
tions:

ck‖,i⊥,↑ →
1√
2

φk‖(i⊥)γk‖ (3.5a)

ck‖,i⊥,↓ →
−i sk‖√

2
φk‖(i⊥)γ

†
−k‖

(3.5b)

Finally, we combine Eq. (3.3) and Eq. (3.5) to generate the replacement rules of the pro-
jection onto chiral edge states

ck‖,i⊥,↑ →
φ 2

k‖
(i⊥)

2

(
ck‖,i⊥,↑+ isk‖c

†
−k‖,i⊥,↓

)
+ . . . (3.6a)

ck‖,i⊥,↓ →
φ 2

k‖
(i⊥)

2

(
ck‖,i⊥,↓− isk‖c

†
−k‖,i⊥,↑

)
+ . . . . (3.6b)

We are interested in the signatures along the edge, hence we will restrict the Monte Carlo
observable to the edge sites. Therefore, we kept only the contributions along those position
i⊥ in the above. Additional terms due to the sum in Eq. (3.3) are represented by (. . .).
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operator definitions operator definitions

n j c†
jσ

0c j ∆
b,s
j cT

j iτy
τ0

2 c j+1

S j c†
j
σ
2 c j ∆

b
j cT

j iτy
τ
2 c j+1

J j c†
j

iσ0

2 c j+1 +h.c. ∆s
j −c j↑c j↓

nb
j c†

j
σ0

2 c j+1 +h.c.

Table 3.1.: List of various operators, both on-site and nearest-neighbors.

3.2.2. Repulsive interaction

In the presence of repulsive interactions one expects ferromagnetic instabilities, hence we
approximate Hint by a mean-field decoupling mS0 with m = 〈S0〉. Due to the SU(2)-spin
symmetry of the Hamiltonian, the orientation m remains arbitrary. A nonzero value |m|
breaks both time-reversal and spin-rotation symmetry.

Using the projection rules derived above by substituting Eq. (3.5) into the definition of the
physical spin operator, we obtain the Majorana mass term

Hrep. MF = mS0 =
1
2

π

∑
k‖=0

Γ
†
k‖

mk‖τΓk‖
+ · · · , (3.7)

with the basis Γ
†
k‖
= (γ†

k‖
,−i sk‖ γ−k‖

) and mk‖ = φ 2
k‖
(i⊥,0)m. The (· · ·) represent edge-bulk

and bulk-bulk contributions.
To make the connection with the QMC simulations, we express Eq. (3.7) in terms of

fermionic correlations along the edge, or equivalently, we apply the replacement rules of
Eq. (3.6) to the physical spin operator S0. This generates an expression with the forth power
of the wave function, φ 4

k‖
(i⊥) and sk‖φ

4
k‖
(i⊥). As the wave function is even in k‖ while the

chirality sk‖ inherits the sign of k‖, the former is also even and latter odd in momentum.
Accordingly, we can expand φ 4

k‖
(i⊥)/2 = a0 + . . . and sk‖φ

4
k‖
(i⊥)/2 = 2b1 sin(kk‖)+ . . . in

terms of harmonic functions. We find the following decompositions

Sx
0 = ∑

j

[
a0Sx

j +b1(∆
b,x
j +∆

b,x
j

†
)
]
+ . . . (3.8a)

Sy
0 = ∑

j

[
a0Sy

j +b1(∆
b,y
j +∆

b,y
j

†
)
]
+ . . . (3.8b)

Sz
0 = ∑

j

[
a0Sz

j−b1(∆
b,z
j +∆

b,z
j

†
)
]
+ . . . . (3.8c)

The fermion operators on the right hand side are defined in Tab. 3.1.
Due to the chiral structure of the edge states, a non-zero mass |m| corresponds to a coher-

ent superposition of FM and spin-triplet SC, where the in-plane (out-of-plane) components
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3. Edge instabilities of topological superconductors

are parallel (antiparallel) aligned. The decomposition of the k‖ dependence of φ 4
k‖

in har-
monics induces further contributions on next-nearest neighbor and higher-order bonds, that
oscillate between normal and SC operators.

This analysis demonstrates the level at which normal and SC order are intertwined. If the
edge supports another state with the same wave function φk‖(i⊥) of opposite chirality, the
anomalous contribution c† in Eq. (3.6) cancels and the only consequence of the projection
is a prefactor of φ 2

k‖
(i⊥). Hence, a conventional SC ground state may also dynamically mix

normal and SC order parameter, but the linear superposition here stems from the chiral nature
of the Majorana modes.

The above derivation assumed half filling, such that the SC nodes are located in the edge
Brillouin zone at 0 and π . The analysis itself however does not crucially depend on this
assumption. Doping the system away from half filling shortens the flat band and the sum-
mation in Eq. (3.7) has to be adapted accordingly. Nevertheless, the edge states still come in
(k‖,−k‖) pairs and there is again a mixing of normal and SC operators. The only point that
requires more work is the decomposition in harmonic functions and the Fourier transforma-
tion that lead to the equations above.

This reproduces the edge splitting terms known from Ref. [45].

3.2.3. Attractive interactions

As indicated by Eq. (3.2), the transformation ck→ Ψk renders U > 0 repulsive in terms of
S(Ψ)

q . Hence, we expect pseudo-magnetic instabilities. First focusing on homogeneous insta-
bilities (qinst = 0), we find that S(Ψ)

0 projected on the Majorana states is vanishing except for
the y component. Therefore only a condensation of Sy,(Ψ)

0 gaps the edge spectrum. Including
inhomogeneous order (i.e., qinst 6= 0) opens additional channels. It is natural to study those
wave vectors qinst that maximize the nesting between edge states with opposite chiral eigen-
value. At half filling, this fixes qinst = π and projecting S(Ψ)

π on the Majorana states generates
nontrivial operators for the x and z but a vanishing y component, complementary to qinst = 0.

In the following calculations, we use the particle-hole-symmetry at half filling explicitly
that guarantees the relation φk‖(i⊥) = −(−1)i⊥φk‖+π(i⊥). As the interaction is restrained
to i⊥ = 1 and the QMC study is performed in this layer only, we drop the sign completely.
The projection of S(Ψ)

q onto the edge states vanishes for the x- and z-component with q = 0
and for the y-component with q = π . The three non-vanishing parts (Sx,(Ψ)

π ,Sy,(Ψ)
0 ,Sz,(Ψ)

π )T

generate the Majorana mass terms with Γ̃
†
k‖
= (γ†

k‖
,−i sk‖ γ

†
k‖−π

)

Hattr. MF = g(Sx,(Ψ)
π ,Sy,(Ψ)

0 ,Sz,(Ψ)
π )T =

1
2

π

∑
k‖=0

Γ̃
†
k‖

(
gx

k‖τ
x + g̃k‖τ

)
Γ̃k‖

+ · · · , (3.9)

with the order parameter gx
k‖
= φ 2

k‖
(i⊥,0)gx and g̃k‖ = φ 2

k‖
(i⊥,0)g× ex.
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3.3. Method

At half filling, we make use of a sublattice symmetry USL =∑k‖,i⊥(−1)i⊥Ψ
†
k‖,i⊥

τx

2 Ψk‖+π,i⊥
.

This symmetry generates rotations in the (y,z) plane that change the orientation of g̃, but
leave |g̃| and gx invariant. Hence, there is a competition between these two channels. In-
terestingly, the sublattice symmetry combines a time-reversal and a translation-symmetry-
breaking sector in g̃.

As before, we rewrite Eq. (3.9) in terms of fermionic operators by substituting Eq. (3.6)
into the definition of S(Ψ)

q :

Sx(Ψ)
π = ∑

j
(−1) j

[
a0(∆

s
j +∆

s
j
†)+b1nb

j

]
+ . . . (3.10a)

Sy(Ψ)
0 = ∑

j

[
−ia0(∆

s
j−∆

s
j
†)+b1J j

]
+ . . . (3.10b)

Sz(Ψ)
π = ∑

j
(−1) j

[
a0n j−b1(∆

b,s
j +∆

b,s
j

†
)
]
+ . . . (3.10c)

We obtain once more linear superpositions of normal and SC operators. Sx,(ψ)
π combines

finite-momentum s-wave pairing with a bond-density-wave instability, Sy,(ψ)
0 contains com-

plex s-wave SC and edge current operators, and Sz,(ψ)
π includes a CDW instability and finite-

momentum singlet SC on nearest-neighbor bonds.
Doping the system breaks the symmetry USL. As a result, the constraint on Sy,(ψ) and

Sz,(ψ) is lifted, which allows for a competition between both channels. As the bulk nodes
move away from 0 or π , the nesting wave vector qinst decreases and we expect instabilities
in the Sx,(ψ) and Sz,(ψ) channel at qinst < π .

As we have shown above, the projection onto the edge modes is able to identify the rele-
vant order parameters, the associated Majorana mass terms and the according fermion corre-
lation functions. The results are summarized for both repulsive (upper two rows) as well as
attractive interactions (lower three rows) in Tab. 3.2.

3.3. Method

We have argued before, that the high density of states at the Fermi level combined with the
reduced dimensionality of the edge modes requires a proper treatment of the fluctuations
around mean-field saddle points. Therefore, we study this model using the numerically ex-
act continuous-time quantum Monte Carlo method introduced in Sec. 2.2. Usually, the non-
interacting part of models studied by QMC approaches does not include superconductivity.
However, it has been show that the algorithm can also be formulated in the Nambu-Basis
Ψ in case of s-wave singlet pairing [120, 161, 162]. This setup employs the conventional
spin rotation symmetry Sz of the original fermions that generates a global U(1) charge con-
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3. Edge instabilities of topological superconductors

non-zero vev mass term fermionic correlation along interacting edge〈
Sx,y

0

〉
1
2 ∑

π
k‖=0 Γ

†
k‖

mx,y
k‖

τx,yΓk‖ ∑ j

[
a0Sx,y

j +b1(∆
b;x,y
j +∆

b;x,y
j

†
)
]
+ · · ·〈

Sz
0

〉
1
2 ∑

π
k‖=0 Γ

†
k‖

mz
k‖

τzΓk‖ ∑ j

[
a0Sz

j−b1(∆
b,z
j +∆

b,z
j

†
)
]
+ · · ·〈

Sx(Ψ)
π

〉
1
2 ∑

π
k‖=0 Γ̃

†
k‖

gx
k‖

τxΓ̃k‖ ∑ j(−1) j
[
a0(∆

s
j +∆s

j
†)+b1nb

j

]
+ · · ·〈

Sy(Ψ)
0

〉
1
2 ∑

π
k‖=0 Γ̃

†
k‖
(−gy

k‖
)τzΓ̃k‖ ∑ j

[
−ia0(∆

s
j−∆s

j
†)+b1J j

]
+ · · ·〈

Sz(Ψ)
π

〉
1
2 ∑

π
k‖=0 Γ̃

†
k‖

gz
k‖

τyΓ̃k‖ ∑ j(−1) j
[
a0n j−b1(∆

b,s
j +∆

b,s
j

†
)
]
+ · · ·

Table 3.2.: Summary of all possible MF channels at half filling. The left table lists possi-
ble vacuum expectation values (vev), their associated masses for the edge states,
and the characterizing fermionic correlations. We use Γ

†
k‖
= (γ†

k‖
,−i sk‖ γ−k‖

) and

Γ̃
†
k‖
= (γ†

k‖
,−i sk‖ γ

†
k‖−π

) . The (· · ·) indicate additional operators on higher-order

bonds.

servation in Nambu space. Consequently, the are no anomalous Green’s functions 〈ΨiΨj〉
and 〈Ψ†

i Ψ
†
j 〉. Hence, Wick’s theorem generates a single determinate for the weight of the

configuration.
To make the connection with Sec. 2.2, let us express the grand-canonical partition sum

using the action S with a Gaussian part S0 and an interacting contribution Sint

S0 = −∑
i,j

βx

0

dτ dτ
′
Ψ

†
i,τG−1

0 (i− j,τ− τ
′)Ψj,τ ′ (3.11)

Sint = −U ∑
ie

∫
β

0
dτ ∏

σ

(Ψ†
σ ,ie,τΨσ ,ie,τ −

1
2
) , (3.12)

where G−1
0 (i− j,τ − τ ′) is the free BdG-Green’s function of the two-dimensional system

Eq. (3.1) in ribbon geometry. The configuration space, sampled stochastically, is given by the
set of n vertices v(x j,τ j) = ∏σ=↑,↓[Ψ

†
σ ,x j,τ jΨσ ,x j,τ j −1/2] where x j is restricted to positions

along the edge as only those sites are interacting.
When we evaluate the weight of a configuration, w(Cn) =

Un

n! 〈∏n
j=1 v j〉0, we can make use

of Wick’s theorem that will exclusively evoke propagators between two edge sites. It is also
straight forward to show that the average expansion order 〈n〉 = −β 〈Hint〉 is proportional
to the potential energy. This is an extensive quantity which scales linear with the number
of interacting edge sites. Accordingly, the simulation appears to be one-dimensional. Nev-
ertheless the Green’s function still contains the information about all possible paths in the
original two-dimensional system and thereby respects all degrees of freedom including bulk
states [32, 163, 164]. In precisely this sense, we have integrated out the bulk degrees of
freedom.
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3.4. Results

At half filling (µ = 0) the absence of the negative-sign problem for attractive interactions
(U < 0) is guarantied by the symmetry of the Hamiltonian with respect to the transformation
Ψi,σ →Di,σ Ψ

†
i,σ where the diagonal matrix Di,σ = σ(−1)ix+iy . This particle-hole symmetry

enforces the single particle Green’s function G(Ψ)
(i,σ),(j,σ ′)(τ) = 〈Ψ

†
i,σ (τ)Ψj,σ ′(0)〉0 to respect

the relation

G(Ψ)
(i,σ),(j,σ ′)(τ) = −Dj,σ ′G

(Ψ)
(j,σ ′),(i,σ)

(−τ)Di,σ , (3.13)

where the overall negative sign originates from the usual anti-periodic boundary conditions in
imaginary time for fermions. Using Wick’s theorem, the weight of a configuration is given as
w(Cn) =

Un

n! det[M] with the 2n×2n-matrix Mq,q′ = G(Ψ)
(iq,σq),(iq′ ,σq′)

(τq−τq′)−1/2δqq′ . Here,
odd values of q refer to the σ =↑ and the even ones to the ↓ factor of Eq. (3.12).

Due to the PHS, the diagonal elements vanish and the off-diagonal entries are related
through Eq. (3.13) such that MT = −DMD. Observe that det[D] = (−1)n as each vertex
contains one site of the even and odd sublattice. For attractive interaction (U < 0), we
have Un = (−U)n(−1)n with (−U)n > 0. Hence, the weight can be rewritten as w(Cn) =
(−U)n

n! det[DM] ≥ 0 where crucially DM is a real1, anti-symmetric matrix with positive de-
terminate. Observe that repulsive interaction introduce a trivial sign-problem as (−U)n is
not positive (U > 0) that cannot be cured by introducing the auxiliary spins as discussed in
Sec. 2.2. These spins violate the particle-hole symmetry for an individual configuration such
that the sign of the determinant is not controllable anymore. This has first been understood
by Huffman and Chandrasekharan in Ref. [165].

Finally, let us briefly mention the main observables here, a more detailed discussion is
presented in Sec. 2.4. The single-particle spectra Atot(ω,k) = −(2π)−1

∑σ ImGσ (ω,k) are
extracted from the time-ordered Green’s function 〈c†

k,σ (τ)ck,σ (0)〉 using the stochastic max-
imum entropy method [139, 140]. To identify the mentioned Majorana mass terms, we de-
termine equal-time correlation functions of the according fermion operators A and B,

CA,B(q) =
1
L

L

∑
n,n′

eiq(n−n′)
(
〈A†

nBn′〉−〈A†
n〉〈Bn′〉

)
. (3.14)

3.4. Results

The QMC simulation is sign-problem free for attractive interactions (U =−2) at half filling
such that we can perform a scaling analysis and extrapolate to the thermodynamic limit. Dop-
ing and/or repulsive interaction introduce a sign problem such that the required computation
time diverges exponentially with system size. Hence, we cannot approach the thermody-

1In position space, every matrix element of the non-interacting Hamiltonian is real valued and therefore the
Green’s function is also real.
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3.4. Results

namic limit anymore and therefore only extract leading instabilities with fixed L = 32 and
U =±1.

Attractive interactions: We first study the system at half filling and set the inverse tem-
perature to β/t = 100. The single particle spectrum is shown in Fig. 3.2(a) and we observe
that the zero-energy flat bands develop a dispersion and gap out. Hence the interaction along
the edge dynamically generates Majorana masses and many of the mass terms discussed
above can generate such a edge spectrum. However, each channel leads to an unique set of
coherent fermionic correlations that may be seen as its fingerprint. In Figs. 3.2(b)–(d) we
present the correlation function for the associated operators according to Tab. 3.1. The data
suggests instabilities for both |gx| 6= 0 (Sx(Ψ)

π -channel) and |g̃| 6= 0 (Sy(Ψ)
0 - and Sz(Ψ)

π -channel),
apparent from the non-analytic behavior at q= 0 or q= π , respectively. Each nontrivial cross
correlation confirms the expected coherent superposition of normal and SC correlations, in-
cluding the phase relation between the particle-hole and particle-particle contribution.

Without suffering from the negative-sign problem, we can systematically increase the sys-
tem size while keeping a fixed ratio β/L = 50/8. Figure 4.3 visualizes the scaling behavior
of the correlation function for the CDW, representing the g̃ channel, and for s-wave singlet
SC, representing the gx-channel. The extrapolation of the data suggests long-range order
at T = 0 in the g̃ channel, whereas gx vanishes. Observe that we employed the enhanced
symmetry of the zero-energy subspace (i.e., the chiral nature of the edge states) to derive
the fermionic correlation functions associated to each Majorana mass. However, this sym-
metry does not manifest itself for the order parameter as it would unify the three channels
by promoting the U(1) sublattice symmetry to a SU(2) symmetry. This can be seen as one
instance where the bulk states that are ignored in the mean-field analysis, contribute in the
full system.

Doping the system breaks the sublattice symmetry and allows a competition between the
Sy(Ψ)

0 - and Sz(Ψ)
qinst -channels. Figure 4.2(e) depicts the single particle spectrum and we again

observe a splitting of the flat-band. Due to the negative-sign problem, the interaction strength
is reduced which explains the smaller Majorana mass compared to the system at half filling.
Once more the correlation function in Figs. 3.2(f)–(h) show instabilities in all channels, visi-
ble as non-analytic behavior, which is best seen in the cross correlations between normal and

fit

0 0.04 0.08 0.12
0
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0.04

0.05 Figure 3.3.: Finite size scaling of |g̃|2 and
|gx|2 with fixed β = 50

8 L in
red squares and green discs,
respectively. The extrapola-
tion forA= n suggests long-
range order (|g̃| 6= 0) at T =
0.
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Figure 3.4.: We present the single particle spectrum Atot(ω,k) (a) and the correlation func-
tions (b) for L = 32 and β/t = 100. The edge states have been gapped out and
the FM is coherently mixed with triplet SC.

SC contributions. The doping of µ = −0.586 induces a nesting vector qinst = ±3
4π , which

explains the instabilities for these momenta in the Sx(Ψ) and Sz(Ψ) channel. Even though the
extrapolation to the ground state of the thermodynamic limit is even more interesting then
before, it is prohibited by the numerical effort that increases exponentially with the euclidean
space-time βL. However, we can speculate that the Sy(Ψ)

0 -channel might be favorable as it
does not depend on the nesting vector qinst but rather introduces a mass gap by scattering
edge states with ±k‖ into each other.

Repulsive interactions: Here, the system is again at half filling and the results for
L = 32 and β = 100 are shown in Fig. 3.4. The spectral function is depicted in panel (a)
for the whole edge Brillouin zone. The Majorana states are again dispersive and develop
a gap everywhere except for the bulk node projections at k‖ = 0 or k‖ = π . Due to the
weaker interaction strength compared to the attractive case, the Majorana mass is reduced.
We can nevertheless confirm that edge ferromagnetism is the leading instability as it has
been discussed on the mean-field level in Ref. [45] and Sec. 3.2. In contrast to previous
studies, however, we find in our analysis that the ferromagnet is coherently mixed with a
(anti-)parallel polarized triplet SC. This is well confirmed by the correlation functions de-
picted in Fig. 3.4(b).

3.5. Discussion

Previous studies discussed ferromagnetism or additional is-wave pairing as leading insta-
bilities of the boundary modes on a mean-field level [40–45]. In contrast to those works,
we show that one should view the possible instabilities from the perspective of Majorana
mass terms. The most important consequence is the linear superposition of particle-hole and
particle-particle channels. For example, the ferromagnetic order is coherently mixed with
triplet superconductivity, similarly is-wave pairing is combined with spontaneous current
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3.5. Discussion

order. The former is relevant for repulsive interaction and the latter for attractive ones.
We find a remarkable agreement between the mean-field analysis and the numerically

exact results of the quantum Monte Carlo simulations. To appreciate this, it is important to
realize the somewhat crude approximation made during the derivation. We have completely
ignored any bulk-state contributions, even though there is no energy gap separating the nodal
bulk from the zero-energy boundary states. Related to this, higher order contribution may
lead to processes that flip between states of different chiralities [27].

The coherence between the various order parameter is a directly tied to the chiral nature
of the Majorana flat-bands along the edge. Hence, probing the phase relation can provide
useful insights into the edge-state character. Interestingly, we may be able to test this in ex-
periments. Let us focus on the case of repulsive interaction which is the most likely scenario
for underdoped YBCO cuprates. We propose to build SC-FM-SC Josephson junctions [166]
and control the polarization of the triplet component using the orientation of the ferromagnet
in the middle of the junction, e.g., by weak external fields. We expect the ferromagnetic
order along the edge to be aligned with the magnet of the junction. Observe that this setup
allows a switch between parallel and anti-parallel polarized triplet components which should
leave non-trivial signatures in the Josephson current. Also one can compare junctions with
interfaces in the (110) direction (with topological Majorana modes) and the (100) version
(without edge mode) in order to control the background to the measured signal.2 Finally,
in case of attractive interactions, it might be possible to detect the CDW order using STM
experiments, once the order is pinned by impurities or the underlying lattice [167].

One interesting avenue for future investigations are topological non-centrosymmetric su-
perconductors. Here, inversion symmetry is broken by the lattice such that Rashba spin-orbit
coupling as well as the mixing of singlet and triplet components in the pairing amplitude
should be included. As a result, one can define systems with half of the degrees of freedom
along the edge, e.g., one could design a system where the flat band only exists for k‖ > 0.
This renders the flat band more stable as all mass terms of this work connect modes at k‖ > 0
and k‖< 0 of opposite chirality. However, it is still at odds with the laws of thermodynamics.

2We thank P. Brouwer for very useful discussions especially for pointing out some ideas that led to the
proposed experimental setup.
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CHAPTER 4

Spontaneous particle-hole symmetry breaking of
correlated fermions on the Lieb lattice

It is widely accepted that fermionic quantum Monte Carlo methods may only be applied to
certain models – unless one is willing to give up the polynomial scaling of the numerical
expense and suffer the infamous negative-sign problem. In the previous chapter, we had to
experience the numerical limits set by the negative-sign problem first hand. In its absence,
we were able to extrapolate to the thermodynamic limit, in its presence, this was numerically
to expensive. The origin of the negative-sign problem can vary from method to method. In
the auxiliary-field QMC [110], the polynomial scaling is usually ensured by a symmetry of
the action after the Hubbard-Stratonovich decomposition which may be explicit in the rep-
resentation of complex [168] or Majorana [169–171] fermions. A popular class of solvable
models respect a particle-hole symmetry (PHS) – restricting the system to half filling – and
contain repulsive interaction on non-frustrated lattices [172]. Here, we gain insights into
properties away from half-filling from simulations that preserve PHS. However, the symme-
try will be spontaneously broken by a variant of charge order that simultaneously induces a
finite chemical potential.

We study fermions on the Lieb lattice that is a square lattice with additional sites in the
center of the original bonds, also know as a face-centered square lattice. This structure is
sometimes used to model the CuO planes of cuprates in order to understand high temper-
ature superconductivity. Here, we instead focus on fundamental properties of two linear
dispersing modes and a flat band that is induced by perfect destructive interference of the
three orbital unit cell. In case of spinful fermions with SU(2) symmetry, the system is prone
to ferromagnetic order [173]. In contrast, the ground state for spinless fermions is either
unique or doubly degenerate [174]. Generically, correlation effects play an important role
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4. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

whenever there is a high density of states at the Fermi level, here it is even diverging lin-
early with the system size. Previous works already studied the robustness of the flat band
with respect to magnetic fields [175], spin-orbit interactions [175–177], local [178–181]
and inter-site [182, 183] Coulomb repulsion, attractive interactions [184, 185], as well as
disorder [186]. The interested reader is referred to the more complete review on strongly-
correlated flat-band systems in Ref. [187]. The Lieb lattice geometry has been constructed
in optical lattices [188,189] and populating them with spin-polarized fermionic atoms would
experimentally realize the scenario presented here.

The low-energy band structure of this model represents a spin-1 Dirac cone for which the
charge order is just one out of many possible symmetry breaking terms. Another option is the
spontaneous generation of current order. This band gap induces a topologically non-trivial
band structure with the according chiral edge modes, once open boundary conditions are
introduced. Hence, the long-range current-order scenario would represent a spontaneously
generated quantum anomalous Hall (QAH) state. For spinful fermions, the first dynamic
realization of a quantum spin Hall (QSH) phase is established in Ref. [48] where a decon-
fined quantum critical point between the QSH and a superconducting states demonstrates the
interesting physics present in such systems. Here, such a current order is not found.

We employ continuous-time QMC (Sec. 2.2), auxiliary-field QMC (Sec. 2.3) and exact di-
agonalization techniques in order to study spinless fermions on the Lieb lattice with repulsive
nearest-neighbor interactions. Both QMC methods rely on the PHS at half-filling to avoid
the negative-sign problem and conserve the number of particles. Breaking the PHS with
charge order relates to an Ising order and may already occur at finite temperature [190,191].
In those studies, charge ordering does not induce finite doping which is the conventional sce-
nario. Here, the situation is fundamentally different due to fractional filling related to sub-
lattices of unequal size. In fact, the symmetry breaking charge-density-wave (CDW) states
correspond to filling fractions of 1/3 or 2/3, depending on the sign of the Ising order pa-
rameter. The QMC algorithms are formulated in a configuration space where each elements
preserves the PHS such that the negative sign problem is avoided. Hence, the simulation is
forced to ‘see’ both CDW states with equal weight. Nevertheless, we show the possibility
to infer the properties the symmetry broken states and thereby gain access to systems away
from half-filling.

This work was done in collaboration with M. Bercx1 and T. C. Lang under the guiding
supervision of F. F. Assaad. The corresponding publication of this project is Ref. [P4] and
the following contains reprinted figures with permission from Ref. [P4]. Copyright (2017)
by the American Physical Society.

1Both Martin Bercx and I contributed equally during this project. Martin developed the Majorana QMC
implementation and I performed the CT-INT and exact diagonalization calculations.
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Figure 4.1.: The bipartite lattice structure of the Lieb lattice (a) with the three orbitals A, B
and C per unit cell indicated in gray and the dispersion of the non-interacting
system (b) which features a single linearly dispersing cone at the corner of the
Brillouin zone.

4.1. Model & Symmetries

We study spinless fermions on a two-dimensional Lieb lattice [cf. Fig. 4.1(a)] interacting via
a nearest-neighbor Coulomb repulsion described byH0 +HV , with

H0 = −t ∑
〈i,j〉

(c†
i cj +H.c.) , (4.1)

HV = V ∑
〈i,j〉

(
ni −

1
2

)(
nj −

1
2

)
(4.2)

= −V
2 ∑
〈i,j〉

[(
c†

i cj +H.c.
)2
− 1

2

]
, (4.3)

where c†
i creates a spinless electron on lattice site i, t denotes the hopping amplitude and V

the interaction strength. The Fourier transformation of the non-interacting Hamiltonian to
momentum space generatesH0 = ∑k Ψ

†
k H(k)Ψk with Ψ

†
k =

(
c†

Ak,c
†
Bk,c

†
Ck

)
and expanding

it to leading order around the M-point at (π,π) gives

H(M+q) =−t(qx Sx +qy Sy)+O(q2) . (4.4)

Here the S matrices are the spin S = 1 representation of the SU(2) Lie-Algebra [175, 192,
193]. The eigenvalues are given by {0,±|q|} such that the Hamiltonian hosts a zero en-
ergy flat band and two linear dispersing modes as it is typical for a spin-1-cone [192]. The
spectrum for the whole Brillouin zone is depicted in Fig. 4.1(b).

The zero mode is not a coincidence but it is rather strongly tied to the symmetry of the
Hamiltonian with respect to the transformation c†

i → sici . The sign si partitions the Lieb
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4. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

lattice into an odd (even) sublattice with si = −1 (si = +1) when the site i is in sublattice
A (B or C). Clearly, the even part is twice as large as the odd one. This constitutes the
property which is causing the later discussed charge order to also induce a finite doping
driving the system away from half filling. To further discuss the symmetries of the model,
let us introduce the Majorana basis

ci =
1

2
√

si
(γi + iηi) , c†

i =

√
si

2
(γi− iηi) . (4.5)

The fermion commutation relation, {ci,c
†
j }= δij, fixes the Majorana commutation relations

to {γi,γj}= {ηi,ηj}= 2δij and {γi,ηj}= 0. Rewriting the hopping operator for bond 〈i, j〉
in terms of the new basis results in

c†
i cj + c†

j ci =
i
2
(γiγj +ηiηj) . (4.6)

Observe that this form explicitly demonstrates an underlying O(2) symmetry which contains
both the U(1) ' SO(2) charge conservation of Eq. (4.1) as well as the PHS symmetry of
bipartite lattices that allowed the different phase choice for the sublattices in Eq. (4.5). The
latter is represented by the reflection operation R = σz and completes the O(2) group. It is
also interesting to observe that the hopping amplitude t being real induces an anti-unitary
time-reversal symmetry γj↔ sjηj, which will be used to show the absence of the negative-
sign problem for the BSS algorithm in the following section.

4.2. QMC methods

The interacting fermion model defined in Eqs. (4.1)–(4.3) can be solved by multiple quantum
Monte Carlo variants, without formally encountering a sign problem. We will employ the
continuous time QMC within the interaction expansion (CT-INT) [109, 119] (see Sec. 2.2)
as well as an auxiliary field algorithm (AF-QMC) [110, 121] in the Majorana representation
with slight modifications compared to Sec. 2.3. Both methods are briefly discussed in the
following, mainly focusing on the absence of the negative-sign problem, before we compare
the two QMC methods. We find that the CT-INT algorithm heavily suffers from fat tail
distributions (see Sec. 2.1.2) for the order parameter such that we rely on the AF-QMC to
investigate the phase transition. This section is closed with a discussion of the potentially
optimal method of choice, the continuous-time auxiliary field approach, which generically
interpolates between the other two flavors. However, we show that this does not hold in this
model.

56



4.2. QMC methods

4.2.1. Continuous-time QMC algorithm

First, we focus on the CT-INT algorithm, introduced in Sec. 2.2, which stochastically sam-
ples the grand-canonical partition function Z. The formalism is action based where one
distinguishes the Gaussian part S0 and the interaction part Sint

S0 = −∑
i,j

βx

0

dτ dτ
′c†

i,τG−1
0 (i− j,τ− τ

′)cj,τ ′ (4.7)

Sint = V ∑
〈i,j〉

∫
β

0
dτ

(
c†

i,τci,τ −
1
2

)(
c†

j,τcj,τ −
1
2

)
. (4.8)

In Ref. [165], Huffman and Chandrasekharan have demonstrated that the sign of 〈Sint
n〉0

exactly cancels the alternating sign (−1)n. The requirements of the proof are bipartite lattices
with real hopping and repulsive density-density interaction (V > 0) between sites of different
sublattices. Additionally, both the Hamiltonian, but also each configuration has to respect
the particle-hole symmetry. In comparison to Sec. 2.2, this requires the choice of α = 0.
The symmetry then ensures that the configuration’s weight w(C) = (−1)n 〈Sint

n〉0 can be
expressed as the determinant of a real and anti-symmetric matrix M. Hence, the determinant
is non-negative and the simulations do not suffer the negative sign problem. Actually, we
have encountered this mechanism already in the previous chapter 4 for the case of attractive
interaction at half-filling and the interested reader is referred to there for a more detailed
discussion.

4.2.2. Auxiliary-field QMC algorithm

Second, we employ the BSS algorithm in a formulation that preserves the O(2) symmetry,
which is discussed in Sec. 4.1, in order to avoid the sign problem. Therefore, we cannot
use the conventional decoupling of the interaction in the density or the magnetic channel,
e.g. as it is done in Ref. [194], but rather choose the hopping channel as first introduced in
Ref. [169]. In principle, we could proceed by introducing a four-valued discrete Hubbard-
Stratonovich transformation as in Eq. (2.11) of Sec. 2.3. However, we can here make use of
the relation Tij

4 = Tij
2, with the shorthand notation Tij = c†

i cj + c†
j ci, such that

e−∆τV(ni− 1
2 )(nj− 1

2) = e
∆τV

2 [Tij
2− 1

2 ] (4.9)

=
1
2

e−
V ∆τ

4 ∑
σij=±1

e−λσijTij .

The last identity holds, given that cosh(λ ) = exp(V ∆τ/2). This, in turn, requires only a two-
valued auxiliary field σijto make it exact to all orders of ∆τ , in contrast to the approximation
used in the BSS method.
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4. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

Proceeding along the same line of argument as in Sec. 2.3, we perform a Trotter decom-
position and introduce the auxiliary fields from above such that

Z = Tr
[
e−β (H0+HV )

]
= Tr

[
Nτ

∏
τ

e−∆τ(H0+HV )

]

∼ ∑
{σ}

Tr

[
Nτ

∏
τ

e−∆τH0 ∏
〈i,j〉

e−λσij,τTij

]
+O(∆τ

2) (4.10)

∼ ∑
{σ}

Tr

[
Nτ

∏
τ

∏
〈i,j〉

e
i
2 (∆τt−λσij,τ )(γiγj+ηiηj)

]
+O(∆τ

2)

∼ ∑
{σ}

Wγ({σ})Wη({σ})+O(∆τ
2) . (4.11)

In the third line, we have dropped a constant normalization factor. The important part, how-
ever is the factorization W ({σ}) = Wγ({σ})Wη({σ}) of the configurations weight within
the Majorana representation2 as it was first shown in Ref. [169]. Observe that the anti-
unitary TRS mentioned in Sec. 4.1 relates the two factors as it interchanges γ and η such
that Wγ({σ}) =W ∗η ({σ}). Hence the total weight is non-negative W ({σ})≥ 0 and the sim-
ulation does not suffer from the negative-sign problem. This statement holds even when the
algorithm is formulated in terms of the original fermions as in Eq. (4.10) without ever intro-
ducing the Majorana basis of Eq. (4.11) explicitly. General considerations on how to avoid
the sign problem within the Majorana representation can be found in Ref. [169–171, 195].

4.2.3. Comparison of QMC methods

The CT-INT method stochastically evaluates the series expansion of the grand-canonical par-
tition function to all orders, and imaginary time can be treated as a continuous parameter. In
the AF-QMC algorithm, the imaginary time is discretized with a finite resolution ∆τ [see
Eq. (4.10)]. The systematic error introduced by the discretization acts as a high-energy cut-
off. Therefore, the low-energy physics is insensitive to the discretization once ∆τ is chosen
to be small enough. For the AF-QMC simulations we use ∆τt = 0.1 throughout this project.

Various versions of QMC algorithms may lead to remarkably different probability distri-
bution of observables. An example of this is shown in Fig. 4.2 where we present the dis-
tribution for m2, the squared CDW order parameter. Most noticeable is the different power
law decay for large values of m2. By fitting the tail as P(m2) = a(m2)2−ε , we extracted the

2One way to see the factorization is to express the trace of the fock space as a usual path integral in terms of
complex fermions,

∫ Dφ̄Dφ ∏
Nτ
τ ∏〈i,j〉 e

(∆τt−λσij,τ )(φ̄i,τ φj,τ+h.c.). Then express the complex Grassmann field

φ into two real ones, γ and η , in analogy to Eq. (4.5). This yields
∫ DγDη ∏

Nτ
τ ∏〈i,j〉 e

i
2 (∆τt−λσij,τ )(γiγj+ηiηj)

that clearly factorizes as γ and η anticommute.
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Figure 4.2.: Distribution of the (squared) order parameter for unbinned data from AF-QMC
and CT-INT simulations. The data from the CT-INT simulation shows slowly
decaying tails which renders the variance ill-defined.

exponent ε = 6.3 for the BSS algorithm whereas the CT-INT method yields ε = 0.1. As it
is discussed in Sec. 2.1.2, this is in agreement with the physical constraint of a finite order
parameter, 〈m2〉 = ∫

∞

0 d[m2]P(m2)m2 < ∞. However, the CT-INT method barely meets the
requirement such that the variance σm2 is infinite as ε < 1 (see Sec. 2.1.2). This means that
the CT-INT method is not only much more expensive computational wise but also that the
central limit theorem is not applicable for this specific observable3.

Hence, we cannot use this QMC method to detect long-range order and instead employ
the more favorable BSS algorithm. One possible explanation for the different behavior of
the two methods might be the discrete nature of the BSS configuration space compared to
the continuous one in CT-INT. In the latter, it seems to be easier to approach configurations
with zero weight W (C0) = 0. Even though C0 will never be accepted by the QMC method,
its vicinity does contribute with arbitrary small weight and leads to rare events. On the other
hand, the observable of interest can have a considerable contribution in that region of the
configuration space, such that the fat tail is generated. The discrete character of the configu-
ration space might act as a regularization of this issue. However, the AF-QMC method may
itself be affected by diverging variances which has been studied recently and a remedy has
been proposed in Ref. [196].

The question then arises how to formulate an efficient sign problem free continuous-time
QMC algorithm for the Lieb lattice. Here we briefly argue that the method of choice is the
CT-AUX algorithm [119, 197] which is sign problem free in the Majorana representation.

3According to the central limit theorem, any distribution turns into a Gaussian one, given that it is folded
often enough if the original variance is finite. When extracting confidence levels in terms of error bars, it is
implicitly assumed that the distribution of the observable/measurement is Gaussian and fully described by
its mean and the variance.

59



4. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

Consider the partition function

eβ4L2K Z
Z0

= Z0
−1Tre−β(H0+∑〈ij〉[V(ni− 1

2)(nj− 1
2)−K])

=
∞

∑
n=0

(K−V/4)n

n!

n

∏
k=1

(∫
β

0
dτk ∑
〈ik,jk〉

)
〈T Hint

〈injn〉,τn
· · ·Hint

〈i1j1〉,τ1
〉0 , (4.12)

where K is a real parameter and

Hint
〈ij〉 = 1− V

K−V/4

[(
ni−

1
2

)(
nj−

1
2

)
− 1

4

]
= 1+

V
2K−V/2

Tij
2

=
1
2 ∑

s=±1
esαTij . (4.13)

The last identity follows again from the relation Tij
4 = Tij

2 and hence the necessary choice
of α is given by V

2K−V/2 + 1 = cosh(α). Therefore the algorithm can only be formulated
for K >V/4. In general, the parameter K can be tuned to maximize the efficiency of the
algorithm and also to avoid numerical instabilities due to nearly singular matrices [119].
With this expression, the partition function reads

eβ4L2K Z
Z0

=
∞

∑
n=0

(K−V/4)n

2n n!

n

∏
k=1

(∫
β

0
dτk ∑
〈ik,jk〉

)
〈T esnαTinjn(τn) · · ·es1αTi1j1(τ1)〉0 (4.14)

and this method is also free of the negative-sign problem due to the same reasons discussed
in Sec. 4.2.2.

The CT-AUX methods can also be used to interpolate between the BSS and the CT-INT
approach as, on one hand, it is a weak-coupling expansion similar to the latter and, on the
other hand, uses a Hubbard-Stratonovich decompositions as in the former method Ref. [198].
Observe that the average expansion order is proportional to 〈∑〈ij〉Hint

〈ij〉〉 such that it diverges
linearly for large K → ∞. These vertices will then be distributed evenly in space-time. To
approach the continuous time limit in the BSS method, we have to set ∆τ → ∞ that also
generates a divergent density of operators and auxiliary fields. In the limit K = 0 the ex-
pansion sampled by the CT-AUX algorithm is identical to the one of the CT-INT method.
However, the condition K > V/4 for the hopping decomposition of this model, is blocking
the CT-AUX algorithm as an interpolation between the BSS and CT-INT methods here.
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Figure 4.3.: Ground-state energy E for fixed electron density n and various interaction
strengths V on an L = 2 lattice from exact diagonalization. The distribution
of the charge density for the ground state with 1/3- and 2/3-filling is illustrated
in the insets. Lines are meant as guides to the eye only.

4.3. Results

First, we study a 2×2 lattice employing exact diagonalization and present the ground-state
energy as a function of fixed particle number for various values of interaction strength V in
Fig. 4.3. Due to the presence of the flat band at the chemical potential, the derivative of the
free energy with respect to the particle number vanishes dF/dN = 0 such that the system is
thermodynamically unstable. Interestingly, the instability drives the model away from half
filling and towards a filling fraction of n = 1/3 or n = 2/3. The ground states of the sectors
with a fixed number of particles are generically degenerate, only for N = 4 and N = 8, we
find a unique state. The insets visualize the density distribution of both states, where the
area of the gray discs is proportional to the local density and the dotted circles represent
a homogeneous distribution as a reference. This clearly characterizes them as CDW states
that break PHS and that are linked to each other by a particle-hole transformation. Also the
overall twofold ground-state degeneracy is in agreement with the theorem of Ref. [174].

Second, we employ both QMC methods in order to study larger lattices and test the hy-
pothesis of spontaneous symmetry breaking by the formation of charge order at finite temper-
atures. Hence the density correlation function are used (i) to examine the spatial pattern and
the according length scale as well as (ii) to obtain the (squared) order parameter and extrap-
olate it to the thermodynamic limit. Once we have established the existence of the symmetry
broken phase, we continue with a proper finite-size scaling analysis to both confirm the Ising
nature and determine the critical temperature of the phase transition in Sec. 4.3.1. Finally,
we present the single-particle spectra in Sec. 4.3.2 which equally detect the symmetry bro-
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4. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

ken phase. In the previous Sec. 4.2.3, we have shown that the order parameter suffers from
fat tails for the CT-INT method such that the following data has been generated using the
AF-QMC algorithm, unless stated otherwise as in Sec. 4.3.2.

In order to examine the spatial pattern of the charge distribution, let us define the density
correlation function

C(r) =
1

4L2 ∑
i,j

(
〈ninj〉−〈ni〉〈nj〉

)
δ ((i− j)− r

2
a1) . (4.15)

The resulting pattern are shown in Fig. 4.4(a) representing a path starting on say sublattice A
of one unit cell. Then the path contains sites of alternating A and C orbitals where the site of
r = 1 the same unit cell, r = 2 and r = 3 represents the neighboring one, up to the maximal
distance when r = L. Here we used a 12× 12 lattice, a coupling strength V/t = 2 and
various inverse temperatures β . First of all, the alternating sign of the correlation function
C(r) confirms the CDW pattern. The correlation decays exponentially at high temperatures
of β t = 1, best seen in the inset. For low temperatures (β t = 3), the amplitude |C(r)| seems
to remain constant for the largest accessible distances. This behavior is consistent with a
CDW state for β t = 3. The data for β t = 2 requires a more careful analysis with respect to
system size.

Hence, let us define a finite size version of the order parameter m(T,L) =
√

Tr[N(Q = 0)],
which – strictly speaking – only becomes the order parameter in the thermodynamic limit
L→∞. Here, it is useful to slightly modify the correlation function from above by essentially,
taking the A, B and C sublattice as orbitals and use the (linearized) position x = {1, · · · ,L2}

that now refers to the unit cell of the lattice. Then we have Nab(Q) = 1
L2

L2

∑
x
〈na

1nb
x〉−〈na

1〉〈nb
x〉

as a 3× 3 matrix. Figure 4.4(b) shows the extracted (squared) order parameter m(T,L)
for various temperatures as a function of linear system size L = 4,6,8,10,12, and 15 in a
logarithmic plot. Observe that the curve for β t = 2 shows a clear downturn upon increasing
the system size, hence it extrapolates to m= 0 for L→∞ such that the thermodynamic limit is
disordered. Actually, this trend is also present for β t < 2.4. In contrast, temperatures below
β t = 2.5 remain rather constant upto the largest available lattice size. Therefore, the data is
consistent with a finite-temperature phase transition between β t = 2.4 and β t = 2.5. In the
upcoming section we will determine a critical value βct = 2.491(5) for the phase transition
by using the finite-size scaling analysis.

In addition, we also tested various other correlation function, mainly for the current chan-
nel, without detecting any sign of long-range order (not shown). Hence, time-reversal sym-
metry is conserved and there does not exist a spontaneously generated, topological QAH
state within this model.
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Figure 4.4.: Density correlation function for L = 12 and at V/t = 2 as a function of spatial
separation along the lattice axes (a). The inset displays the growing correlation
length on a semi-logarithmic scale. Panel (b) shows the the finite-size behavior
of the (squared) order parameter on a double-logarithmic scale. The data is
compatible with a phase transition between β t = 2.4 and β t = 2.5.

4.3.1. Finite-Temperature phase transition

To test the claimed Ising nature of the phase transition, we perform a finite-size scaling ansatz

mi(Ti,Li) = L−β/ν

i F [(Ti−Tc)/Tc L1/ν

i ] , (4.16)

with the critical exponents β = 1/8 and ν = 1 that are known for the two dimensional Ising
universality class and kept fixed during the following analysis. Tc is the critical temperature
at which the phase transition takes place and F is a non-universal function. In the follow-
ing, we will approximate F in the vicinity of the critical temperature Tc by a polynomial

F̃(x) =
kmax
∑

k=0
uk xk up to fourth order (kmax ≤ 4). This leaves at the most six parameters that

are determined by fitting the ansatz to the Monte Carlo data mi(Ti,Li) weighted according to
their statistical uncertainty σm,i. The quality of the fit is measured by χ2/d.o.f. with

χ
2 =

Ndata

∑
i=1

{
mi(Ti,Li)L

β/ν

i −F̃ [(Ti−Tc)/Tc L1/ν

i ]

σm,i

}2

(4.17)

and the fitting procedure has to minimize this quantity. We have also compared our finite-
size scaling method to a recently proposed method [199], based on Bayesian statistics, and
we obtained the same critical temperatures within error bars (not shown).

The extracted critical temperatures are summarized in Tab. 4.1 that also indicates the order
of the polynomial F̃(x) as well as χ2/d.o.f. for the goodness of the fit. Observe that the latter
is of order 1 for every investigated interaction strength. This nicely confirms the Ising nature
of the phase transition. In Figs. 4.5(a)-(e), we present a visualization of the data collapse and
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V/t 0.75 1 1.5 2 3
Tc/t 0.0619(2) 0.1029(2) 0.2277(5) 0.4013(6) 0.773(2)

k 3 4 3 3 2
χ/d.o.f. 21.92/15 41.21/20 18.24/12 19.35/14 4.45/8

Table 4.1.: For each interaction strength V the critical temperature Tc/t is obtained from the
fit of the (squared) order parameter to a polynomial of order k.

panel (f) shows the extracted Tc(V ) as a function of coupling strength V/t. At V/t = 5, the
resolution ∆τt = 0.1 of inverse temperatures is too coarse for an accurate fit of the scaling
function. Therefore we used the crossing points of mLβ/ν(T ) together with a conservative
error to estimate Tc(V/t = 5) = 1.51±0.06.

According to the Stoner criterion for the weak coupling regime, one would expect a lin-
ear relation V ∼ T resulting from the Curie-type non-interacting susceptibility for localized
states. This behavior can indeed be seen in the standard charge-order mean-field approxi-
mation. However, as a consequence of many-body correlations, the QMC simulation result
has a dominating quadratic contribution. For strong Coulomb repulsion |V | � 1, the t-V
model maps onto a classical two dimensional Ising model, such that the critical temperature
Tc,t-V = Tc,Ising|V |/4 [194] increases linearly with interaction strength V . For the Ising model
on the Lieb lattice we have computed the estimate Tc,Ising = 1.310(1) and indicate the strong
coupling limit as the dotted line in Fig. 4.5(f). This approximation is consistent with the
critical temperatures extracted from the QMC data.

4.3.2. Dynamics

The symmetry breaking is equally visible in the single-particle spectrum as the PHS protects
the zero-energy flat band. Therefore we measure the imaginary time-resolved Green’s func-
tion G(k,τ) and perform an analytic continuation using the stochastic maximum-entropy
method to extract the spectrum A(k,ω) as introduced in Refs. [139, 200]. For this observ-
able, the CT-INT method does not suffer from fat tails, essentially because it is a lower order
correlation function5 [201]. Hence we used this QMC version here and the results are shown
in Fig. 4.6.

Panel (a) displays the fermion spectrum representative for temperatures above the phase
transition (T > Tc). The band structure is very similar to the non-interacting case, up to a
renormalization of the band width, where the main difference is spectral broadening due to

4At V/t = 5, the resolution ∆τt = 0.1 of inverse temperatures is too coarse for an accurate fit of the scaling
function. Therefore we used the crossing points of mLβ/ν(T ) together with a conservative error to estimate
Tc(V/t = 5) = 1.51±0.06.

5It is simply the single-particle Green’s function whereas the density correlation function, upon Wick decom-
position, is given by the product of two of them.
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4. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice

Figure 4.6.: The one-particle spectral function at temperature (a) T = 0.5 above Tc and (b)
T = 0.2 below the Ising transition for an L = 10 lattice and V/t = 2. The spec-
trum in (b) can be interpreted as the superposition of the dispersions for (c)
1/3-filling and (d) 2/3 filling (here obtained from mean-field calculations).

temperature6 and the finite lifetime of the bare fermions. Most importantly, the zero-energy
flat band persists indicating the preservation of particle-hole symmetry.

Panel (b) shows a spectrum representing temperatures below the critical value (T < Tc)
and a clear single-particle gap is visible as expected for the insulating CDW. Hence, the
PHS is broken and the flat band remains (almost) dispersionless but appears to be doubled as
well as shifted to a finite energy ω ∼±1. This spectrum, including the very unconventional
doubling of bands, is understandable as a combination of both CDW states introduced from
ED. In panels (c) and (d), we present the single-particle spectrum for those states on a mean-
field level. Panel (c) has the perfectly flat band shifted to higher energies such that the filling
fraction is n = 1/3 whereas it is shifted to lower energies in panel (d) leading to a filling
of n = 2/3. As the QMC has to preserve PHS for each configuration, the results also are
particle-hole symmetric, and matches an equal weight combination of both CDW states:

Gn=1/2(k,τ) =
1
2
[
Gn=1/3(k,τ)+Gn=2/3(k,τ)

]
. (4.18)

In this sense, we even recognize the instability towards finite doping, even though the simu-
lation is always at half filling and we cannot access the two ground states individually.

6In Sec. 2.4 we discussed that the spectrum is essentially defined by single-particle excitations of the ground
state, given that the temperature is low enough. At high temperatures, other low-energy states also con-
tribute according to their Boltzmann weight which broadens the formerly sharp lines.
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4.4. Discussion

The numerical simulations were quite challenging, despite the absence of the negative-sign
problem, but they also opened doors to previously inaccessible parameter regimes away
from half filling. The observed fat tails, which may render a QMC method inapplicable,
are dependent on the flavor of the QMC as they were much worse for the CT-INT method
compared to the more favorable auxiliary-field approach. We conjectured that the CT-AUX
algorithm might be the method of choice for this model.

Exact diagonalization indicated two CDW states, related by a particle-hole transformation,
as the ground states of the interacting model which drive the system away from half filling.
Using the BSS method, we presented strong evidence for spontaneous breaking of PHS at
finite temperatures. The according phase transition belongs to the two dimensional Ising uni-
versality class and we find a critical temperature Tc(V ) that predominantly scales quadrat-
ically with weak interaction strength V < 1 whereas mean-field theory predicts a leading
linear order. This can be taken as a sign of strong fluctuation effects due to the flat band
that are neglected on the mean-field level. Finally, we have shown that the single-particle
spectrum, even though constraint to be particle-hole symmetric, should be interpreted as a
linear superposition of two CDW ground states with a filling fraction of n= 1/3 and n= 2/3,
respectively.

One important observation is the relation between charge order and finite doping with
〈n−3/2〉 6= 0 where n is the particle density per unit cell, due to the unequal-size bipartition
of the Lieb lattice. This effect raises the question, if one can use this setup to simulate other
interesting models with finite doping that otherwise suffer from the negative-sign problem.
One possible scenario contains two layers where one of them is defined on the Lieb lattice (1)
and the other one is the target layer of interest (2) with an assumed SU(N) symmetry. The
two subsystems are then coupled via an interaction of the form µ(n(1)i −3/2)(n(2)i −N/2)
such that the CDW order in the Lieb lattice induces an effective chemical potential µtarget =

µ〈n(1)i −3/2〉 for the target subsystem, once the system is below Tc. Here we assumed that
the nature of the phase transition remains unaffected by the coupling of the Lieb lattice part
to the target system7.

7Alternatively one can break particle-hole symmetry explicitly on the Lieb lattice, by adding a staggered
chemical potential. Within the Majorana representation, this will not introduce a sign problem (cf.
Ref. [171]).
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CHAPTER 5

Reduction of the topological classification

Recently there has been rapid progress in topological quantum matter [14–17], motivated
by the discovery of topological insulators [11–13] which are insulating in the bulk but ex-
hibit gapless excitations at the boundary. Non-interacting systems with given non-spatial
symmetries, such as time-reversal or particle-hole symmetry, have been characterized exten-
sively [18, 19]. The presence of interaction gives rise to the notion of symmetry-protected
topological (SPT) phases that describe short-range entangled gapped states with a given sym-
metry. Importantly, quantum states of the same phase can be deformed into each other with-
out closing the gap while preserving the symmetry, representations of different topology,
however, may not be connected adiabatically. Non-trivial SPT phases exhibit gapless bound-
ary excitations, similar to the uncorrelated topological states.

The inclusion of interaction can modify free fermion models in at least three different
ways: (i) spontaneous symmetry breaking can induce topological non-trivial mass terms
[48], which motivated the project discussed in Ch. 4, (ii) interaction can give rise to topo-
logical order with long-range entanglement as in fractional quantum Hall states [65, 66],
fractional topological insulators [67] or quantum spin liquids [68–71], all of which do not
have a non-interacting analog, or (iii) correlations may reduce the topological classification
of free fermion system by adiabatically connecting states of formerly distinct phases.

The first example of such a reduction was considered by Fidkowski and Kitaev [52]. They
studied a spinless superconductor in one dimension with an unconventional time-reversal
symmetry (T 2 =+1), representing class BDI, and showed that a specifically chosen interac-
tion gaps out 8 topological Majorana boundary modes and adiabatically connects bulk states
whose winding number differ by 8. This demonstrates the “collapse” of the non-interaction
classification form Z to Z8. In comparison to this study, the gap opening of protected edge
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5. Reduction of the topological classification

modes in Ch. 3 is accompanied by spontaneous symmetry breaking. Later on, this result
has been generalized to different symmetry classes and higher dimensions [54–64]. These
investigations often make use of the bulk-boundary correspondence, e.g., by showing that
interaction symmetrically gap the topological modes at the boundary [54–56] or in 0D de-
fects that follow from dimensional reduction [57,58], by investigating the signatures of these
boundary states in the entanglement spectrum [59, 60], or in braiding statistics [61]. An
alternative approach is based on group cohomology [62].

Complementary to this, we aim to construct an explicit adiabatic connection of the bulk
states that represent topologically distinct phases in the free fermion classification. Here,
we focus on symmetry class A′ in two dimensions where the classification is expected to be
reduced from Z to Z4. To this end, we construct SPT phases that differ by 4 in the winding
number, introduce an interaction term that follows the rules of Ref. [58], and determine
the phase diagram. We find an extended region of spontaneous symmetry breaking – in
addition to the non-interacting semi-metal – that separates the topologically distinct phases.
Interestingly, we are able to frustrate the long-range order that in turn introduces a first order
phase transition which then blocks the adiabatic path. The given phase diagram suggest that
the guidelines, which have been uncovered so far, may be necessary, but they do not seem to
be sufficient.

The remainder is structured as follows. In Sec. 5.1, we define the microscopic model and
discuss its symmetries. In Sec. 5.2, we analyze possible mean-field scenarios with sponta-
neous symmetry breaking, identify the most relevant option and argue that the exact solu-
tion of the atomic limit provides reasonable hope for the existence of an adiabatic path. A
brief discussion of the quantum Monte Carlo (QMC) method is found in Sec. 5.3 before we
present the numerical results in Sec. 5.4 and conclude with a discussion of their implications
in Sec. 5.5.

This project has been studied in collaboration with R. Queiroz and E. Khalaf under the
supervision of F. F. Assaad and has been published in Ref. [P1].

5.1. Model & symmetries

We begin by introducing the free fermion part of the model H0 = ∑k Ψ
†
kH(k)Ψk which

essentially represents two copies of a Quantum-Hall system with opposite topology, similar
to the construction of some quantum spin Hall models [8, 11, 202, 203]. We have

H(k) = t

(
H+(k) 0

0 H−(k)

)
(5.1a)

H±(k) = sin(kx)σx + sin(ky)σy±m(k)σz +∆[sin2(kx)+ sin2(ky)]σ0 (5.1b)

m(k) = 2+λ + cos(kx)+ cos(ky) , (5.1c)
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Figure 5.1.: Graphical visualization of H0 showing the localization of the Dirac cone(s) for
λ =−2 and λ = 0. The 3D-vector plots depict the orientation of d̂ representing
topological (left and middle) and trivial (right) insulators. For readability, we
also color-coded the z-component.

where Ψ
†
k is the creation operator of a four-component spinor with momentum k. The basic

building blocks H±(k) represent lattice regularization of the quantum Hall effect [7]. The
energy scale is set by t which will also be used as the unit of energy (t = 1) throughout the
rest of this project. The first two terms in Eq. (5.1b), sin(kx)σx + sin(ky)σy, host one Dirac
cone at each of the four time-reversal invariant momenta that can be gapped by m(k)σz. For
the specific values of λ = 0, λ = −2 or λ = −4 at least one of the Dirac cones remains
massless (compare with Fig. 5.1) whereas any other value describes an insulating state. The
last term in Eq. (5.1b), ∆ = 0.25 is used to break the particle-hole symmetry within H±(k).

At this point, the model obeys a unitary U(1) symmetry generated by R = τz⊗ 1, such
that H± act on the respective± sector of R and the two sectors cannot mix. Additional, there
is one independent, anti-unitary time-reversal symmetry defined by Kτx⊗σy with complex
conjugation K. Hence the model belongs to symmetry class A′ and is very closely related
to the well know topological insulators (TIs). There, one may introduce spin-orbit coupling
which breaks the spin conservation as long as the time-reversal symmetry is respected.

In order to discuss the topology of the gapped states, it is useful to first focus on H+, de-
fine a vector d = (sin(kx),sin(ky),m(k)) and introduce the winding number w+ = 1

4π

s
BZ d̂ ·

(∂kx d̂× ∂kyd̂) with d̂ = d/|d| [11]. As it is visualized in Fig. 5.1, the parameter λ tunes the
system from a trivial insulator (λ > 0) through a semi-metal with a Dirac cone at k = (π,π)

(λ = 0) to a topological insulator (−2 < λ < 0) of winding +1. At λ = −2, the system
exhibits one Dirac cone at each k = (0,π) and k = (π,0). The winding number of the full
Hamiltonian is then given as w = 1/2(w+−w−) where w− =−w+ due to the time-reversal
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5. Reduction of the topological classification

symmetry connecting the two sectors. Observe that small values of ∆ only modify the energy
of the bands and, as long as the band gap does not close, the wave functions do not change.
Hence the topology is insensitive to (small) ∆.

According to predictions in previous studies [58], we expect a reduction of the topolog-
ical classification from Z to Z4. Therefore, we introduce four copies of the above system
by modifying H0 = ∑k,o Ψ

†
k,oH(k)Ψk,o, where o ∈ {A,B,C,D} labels the copy and will be

referred to as layer degree of freedom. In Ref. [58], the authors describe a scheme which
introduces a lattice of zero-dimensional defects that inherit the bulk topology in the sense
that those defects exhibit n topologically degenerate zero modes where n matches the topo-
logical invariant of the bulk. For two-dimensional models, this is done by first realizing
one-dimensional edge modes at a domain wall and secondly adding an oscillating mass term
along this domain wall with appropriately chosen symmetries, such that each node of the
mass term localizes zero modes. This construction in turn allows to derive an explicit inter-
action term which gaps those defects without breaking any symmetry. Using this recipe, we
designed the following interaction

Hint = U ∑
i,α=±

Ψ
†
i,Aγ5PαΨi,BΨ

†
i,Dγ5PαΨi,C +h.c. (5.2a)

Pα =
1
2
(1+ iαγ3γ4) , (5.2b)

where the γ matrices act on the original Dirac components [γ1,2 = 1⊗σ x,y, γ3,4,5 = τz,y,x⊗
σ z]. Observe that R = iγ4γ5 and therefore R, γ4 and γ5 form an SU(2) algebra such that the
interaction reduces the R symmetry from a continuous U(1) to a discrete Z2 that transforms
γ5→−γ5. Physically, the interaction introduces correlated pair hopping of electrons between
layers A→ B and D→C while flipping the R charge. This term does allow, e.g., two R =+

electrons being scattered into two R = − ones such that the R charge is only conserved
modulo 2 which illustrates the U(1)→ Z2 reduction1.

5.2. Mean-field theory & atomic limit

Before moving on to the method and numerical results, let us develop an intuition on possible
phases. We will first discuss various mean-field scenarios that might break some of the
protecting symmetries. Then we will solve the atomic limit analytically. This provides an
additional argument, complementary to the edge state analysis of Ref. [58], on the existence
of an adiabatic path and the according reduction of the topological classification.

To discuss mean-field scenarios, it is very useful to divide the four layers into two pairs,

1The attentive reader might have realized that this correlated hopping actually changes R by 4. However, in
the canonical ensemble, the total number of particles is conserved and at half-filling with an even number
of fermions, the total R charge itself has to be even and thus this reduces the U(1) symmetry to Z2.
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Figure 5.2.: Spectrum of the model defined in Eq. (5.1) in ribbon geometry representing the
symmetric (red) and the symmetry broken scenario (black) with an mean-field
order parameter m = 0.6 andHMF = m∑i Mx

i .

namely (A,B) and (C,D) and introduce the two pseudo-spin operators with β = x,y

S1,α,β
i = (Ψ†

i,AΨ
†
i,B)s

β ⊗ γ5Pα(Ψi,AΨi,B)
T (5.3a)

S2,α,β
i = (Ψ†

i,CΨ
†
i,D)s

β ⊗ γ5Pα(Ψi,CΨi,D)
T (5.3b)

where the Pauli matrices sβ act on layer index within each pair. This allows us to rewrite the
interaction as

Hint =
U
8 ∑

i,α=±,
β=x,y

∑
τ=±

τ

(
S1,α,β

i + τ S2,α,β
i

)2
(5.4)

and shows the possibility to minimize the energy for τ =−, given that U > 0, by the gener-
ation of pseudo-magnetic order in the xy-plane of

Mβ

i = ∑
α=±

(
S1,α,β

i − S2,α,β
i

)
. (5.5)

This order parameter breaks the R symmetry and anti-commutes with Eq. (5.1a) such that
it introduces a gap in both the bulk and edge state spectrum. As Eq. (5.4) points out, the
interaction is symmetric under rotation around the z-axis of the pseudo-spins, and hence
the orientation of M within the xy-plane is arbitrary and also breaks this symmetry sponta-
neously.

Without loss of generality, we choose the x direction for the magnetization and intro-
duce HMF = m∑i Mx

i . In Fig. 5.2 we present the energy spectrum for H0 +HMF with open
boundary condition in y direction. The solid black lines represent a non-zero mean-field
expectation value m > 0 and the red lines overlay the symmetric version (m = 0). We can
clearly observe the introduced gap of the former massless Dirac edge state.
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5. Reduction of the topological classification

To make the connection between this mean-field scenario and the phase diagram, let us
discuss the limiting cases. Keeping the interaction strength small, we expect stable Dirac
cones for λ ∼ 0 and λ ∼ −2 as the density of states at the Fermi level vanishes at half
filling [72, 73, 204–207]. The insulating states provide an intrinsic scale of energy, namely
the band gap, such that the correlation should reach comparable strength before it leads to
significant changes.

The more interesting limiting case is the strongly interacting one with U/t � 1. Starting
from the limit t = 0, we can solve Hint analytically, as the lattice sites completely decouple
and we are left with a zero-dimensional problem. In the following, we calculate the full
spectrum and show that there is a unique ground state. For readability, let us drop the position
index i for the remainder of this analytic derivation. Note that P± act as projectors such
that the Fock space can be decomposed into two separate blocks which have an identical
spectrum. Hence it is sufficient to focus on one subspace, say H+. Let εi be an eigenvalue
ofH+ with degeneracy gi. The full spectrum is then given by εi + ε j with degeneracy gig j.

In the previous Sec. 5.1, we have chosen a basis for the γ-matrices in which R is diagonal
to remind the reader of popular QSH models. Here, however, it is more convenient to choose
a different basis in which both γ5 = τx⊗σ z and iγ3γ4 = τx⊗σ z are diagonal2. Note that
the local fermion degrees of freedom H+ within one layer o is then fully classified by the
eigenvalues s5 = ± of γ5 such that P+Ψo,s5 = Ψo,s5 and γ5Ψo,s5 = s5Ψo,s5 . This leads to the
definition of four new spin operators:

Sa = (Ψ†
A,+Ψ

†
B,+)σσσ(ΨA,+ΨB,+)

T (5.6)

Sb = (Ψ†
A,−Ψ

†
B,−)σσσ(ΨA,−ΨB,−)

T (5.7)

Sc = (Ψ†
C,+Ψ

†
D,+)σσσ(ΨC,+ΨD,+)

T (5.8)

Sd = (Ψ†
C,−Ψ

†
D,−)σσσ(ΨC,−ΨD,−)

T , (5.9)

such that the Hamiltonian can be written as H+ = hac− had− hbc + hbd where we used the
shorthand notation hi j = U(S+i S−j + h.c.). Note that this has mapped Eq. (5.2) to a model
with four sites on a ring (a-c-b-d) that conserves the local parity3 as well as the total Sz spin
component which can be used to further block-diagonalize the Hamiltonian.

Let us first consider the subspace where at least both a and b or both c and d sites are parity
even. Observe that every second site represents a spin singlet such that spin-flip processes
on all bonds are prohibited. Hence, the Hamiltonian and all eigenvalues vanish.

Next, we discuss the cases where only the a or b as well as only the c or d site is single

2Note that γ5 and Pα commute with each other such that they may be diagonalized simultaneously. However,
γ5 anti-commutes with R such that there is no basis which diagonalizes all three of them.

3Actually, the local number of particles is conserved. However, in the following it is more useful to distinguish
the parity only as both empty and double-occupied sites constitute a spin-singlet which effectively removes
that site from the ring.
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5.2. Mean-field theory & atomic limit

occupied. Then, only one bond operator, say hac, is non-zero. From the spin conservation
follows that the sectors with maximal value of |Sz| have a vanishing Hamiltonian as the spin-
flip operators cannot act on those states. The Sz = 0 subspace contains the two eigenstates
| ↑a↓c〉± | ↓a↑c〉 with the according eigenvalues ±U .

Third, we consider the subspace where exactly one parity is even, e.g., site b, such that
H+ = hac− had . Once more the states with maximal |Sz| = 3/2 are eigenstates of energy
zero. In the Sz =±1/2 subspace we find the Hamiltonian

H1/2 =U

 0 1 −1
1 0 0
−1 0 0

 , (5.10)

using the basis {| ↓a↑c↑d〉, | ↑a↓c↑d〉, | ↑a↑c↓d〉}. Here the eigenvalues are given by ±
√

2U
and zero.

The last and most interesting subspace has only odd parity sites. Like before, the two states
with Sz = 2 are eigenstates with vanishing energy. In the Sz =±1 sector we find eigenvalues
of 0 and ±2U . The wave function of the −2U state is

φ1 = 1/2(| ↓a↑b↑c↑d〉− | ↑a↓b↑c↑d〉− | ↑a↑b↓c↑d〉+ | ↑a↑b↑c↓d〉) . (5.11)

Finally, for Sz = 0 there are multiple states with vanishing energy, but only one state is
associated with the eigenvalues ±2

√
2U , respectively, where the ground state wave function

is

φ0 = 1/2
(
| ↓a↓b↑c↑d〉+ | ↑a↑b↓c↓d〉

+ 1/
√

2[| ↓a↑b↓c↑d〉− | ↓a↑b↑c↓d〉− | ↑a↓b↓c↑d〉+ | ↑a↓b↑c↓d〉]
)
. (5.12)

In summary, the full spectrum of H+ consists of 186 states of vanishing energy, 16 states
with energies ±U and ±

√
2U each, 2 modes for ±2U and a unique state at energy ±2

√
2U .

It is also interesting to notice that lowest excitation has an energy of ω = 2(
√

2− 1)U
and changes the spin by ∆Sz = ±1. It is straight forward to show that the lowest states φ0

and φ1 are related as [(S+a − S+b )− (S+c − S+d )]φ0 ∼ φ1. Note that the b and d sites have
negative γ5 eigenvalues. This, combined with the second relative minus sign between (a,b)
and (c,d) indicates the relation to the operator Mβ

i defined in Eq. (5.5) which has already
been identified as the most dangerous mean-field channel. Here, we learn that this operator
also exhibits the lowest excitation of the strongly interacting limit.

We have shown that the block H+ exhibit a gaped and unique ground state, which is
therefore also symmetric. The overall ground state of the full lattice model is then a product
state that is also gapped, unique and respects all symmetries. Allowing finite, but small
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values of t will change details of the ground-state wave-function. Especially it will no longer
be a product state of purely local states. However, it will remain unique and symmetric until
the hopping energy-scale set by t is comparable to the many-body gap. This is quite opposite
to the regular Hubbard model on the two-dimensional square lattice where any finite value
of t generates anti-ferromagnetic order.

To summarize, the limiting cases all exhibit unique ground states that share the same
symmetries. As the strongly interacting state is a local product state, it is a representation
of an atomic limit and very likely adiabatically connected to the trivial band insulators. The
topological insulator is also stable against small interactions that where specifically chosen to
allow a connection of the topological state to the strong interacting limit as the topologically
protected defect states are symmetrically gapped [58]. However, especially for intermediate
coupling strength along the path from the topological insulator to the Mott phase at strong
interacting, the energy scales mix and spontaneous symmetry breaking might occur. The
dangerous channel here is given by pseudo-magnetic order.

5.3. Method

Why should we go beyond mean field? The considerations of Sec. 5.2 allow two scenarios for
intermediate coupling strength, both are in agreement with the theorems on non-interacting
systems. Either the order parameters vanishes and the bulk gap closes at the topological
phase transition, or, the non-zero order parameters ensures a finite bulk gap at the expense
of a broken symmetry. However the interaction constructed following the rules of Ref. [58]
aims at a different path, namely an adiabatic connection of two topological distinct phases.
Such a setup has to keep the band gap finite while preserving all protecting symmetries.
Hence this connection cannot be made on a mean-field level and requires an intermediate
state without a quasi particle description. In other words, one replaces poles of the Greens
function that cross the Fermi surface (band gap closing) by zeros (no spectral weight) in
order to change the topological invariant.

To solve the interacting system, we use the ALF package [138], a general implementation
of the auxiliary field Quantum Monte Carlo [110] method which is discussed in Sec. 2.3.
The zero-temperature version of this algorithm provides access to ground-state properties by
using a trial wave function |ψT 〉, we take the non-interacting ground state, and project it to the
correlated one by applying the exponentiated Hamiltonian exp(−ΘH)|ψT 〉 [122,123]. Here
Θ controls the projection length, the result converges exponentially fast and we choose Θ =

20 for the remainder of this work. The simulation of this model in the above formulation does
not suffer a sign problem due to an anti-unitary symmetry which guarantees the positivity of
each configurations weight.

Three observables are the main focus of this study. The first derivative of the free en-
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Figure 5.3.: Comparison of the single-particle spectrum A(ω) at the Dirac point k =
(π,π) extracted by analytic continuation using the stochastic maximum entropy
method, with the band dispersion (solid black line) extracted from fitting the tail
of time-displace Greens function. This proves that the assumption of a single
low-energy excitation is justified.

ergy ∂F/∂U = −β/U〈Hint〉 signals a first-order phase transition for increasing interac-
tion strength U . To detect second-order phase transitions, we define a correlation ratio
r = 1− S(q=δq)

S(q=0) where S(q) is the correlation function in momentum space and δq the small-
est but finite momentum available on the given lattice size. Observe that q = 0 assumes a
homogeneous instability which is justified according to the mean-field analysis. The corre-
lation function is given as

S(q) =
1
L2 ∑

i,j
exp[iq(i− j)] ∑

β=x,y

〈
Mβ

i Mβ

j

〉
. (5.13)

In case of long-range homogeneous order S(0) diverges linear with system size L2 whereas
the correlation function remains finite for any other value of q, hence r = 1 for the thermo-
dynamic limit. In systems without long-range order, S(q) is a smooth function such that r
converges to zero for large lattices. As r is an RG-invariant quantity it exhibits a crossing
point for different system sizes at the phase transition.

The third observable of interest is the single-particle gap that allows us to track the semi-
metallic Dirac cones that separate the insulators of different topology for U = 0. The single-
particle greens functions are given by Gp

k(τ) = ∑o〈T Ψk,o(τ)γ
0Ψ

†
−k,o(0)〉 for particle exci-

tations and Gh
k(τ) =−∑o〈T Ψk,o(0)γ

0Ψ
†
−k,o(τ)〉 for hole excitations. If we assume a single

quasi-particle mode at low energies gapped from higher energy excitations, then both greens
function behave as Gk(τ) ∼ ak exp(−τεk) for large values of τ where εk is the excitation
energy and ak its spectral weight. As a sanity check of this assumption, we compare the
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extracted energies with the full spectrum (see Fig. 5.3) determined by MaxEnt [140] (see
Sec. 2.4) which proves that the assumption is justified.

5.4. Results

We have shown above that the limit of strong interaction generates a gapped and symmetric
ground state. Those two properties also apply to both non-interacting ground states, repre-
senting −2 < λ < 0 and 0 < λ , such that the adiabatic connection seems to be plausible, at
least in principle. To test this hypothesis, we will track the semi-metallic phase and analyze
the most dangerous correlation function identified in the mean-field considerations.

Tracking the semi metal: Note that the two Hamiltonians with±(λ +2) can be mapped
onto each other. First, the mapping has to shift the momenta as k→ k+(π,π) such that
m(λ+2)(k) = −m−(λ+2)(k+(π,π)). To absorb the sign changes in the first three terms of
Eq. (5.1b) the Dirac spinor has to transform as Ψk,o→ γ4Ψk,o. Therefore, the position of the
semi-metal with two Dirac cones at (π,0) and (0,π) has to remain at fixed λ =−2.0 whereas
the Dirac cone at (π,π) generically occurs at renormalized values λ ∼ 0. It is interesting to
notice that the γ4 anti-commutes with R such that the winding w→−w is inverted and the
two Hamiltonian represent opposite topologies.

One might also be concerned that the interaction might lead to a meandering of the Dirac
cone within the Brillouin zone. If we had kept the PHS with ∆ = 0, then the cones are
symmetry constraint to the time-reversal invariant momenta. On one hand, we fine-tuned the
symmetry breaking such that the Dirac cones remain gapless in the free fermion system, and
on the other hand, the numerical results show that the Dirac cone remain where they are.

Let us introduce λc(U) as the critical value at which the semi-metal marks the topological
phase transition between the TI with winding w = +4 and the trivial insulator. For the
free fermion system, we have λc(0) = 0. To locate the phase transition, we set a fixed
interaction strength, e.g., U = 1.0, and scan the single particle spectrum for various values
of λ . The resulting excitation energies ε(π,π) of the Dirac cone are presented in Fig. 5.4(a).
The results depend on the lattice size and a visual extrapolation suggests a semi-metal at
λc(1.0) = −0.04± 0.02. We repeat this analysis for various values of U and also confirm
the symmetry constrained position λc(U) = −2.0 for the Dirac semi-metal with cones at
(0,π) and (π,0) which separates the w = +4 TI from the one with winding w = −4 at
−4.0 . λ <−2.0. The results are summarized in panel (c).

Symmetry-broken phase: Here, we focus on the intermediate region of the phase di-
agram where the energy scales of the correlation and the kinetic energy compete with each
other. During the mean-field analysis (see Sec. 5.2), we have identified this regime between
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Figure 5.4.: On the left hand side, we present the extracted energies εk=(π,π) for the lowest
particle/hole excitation. The system size scaling suggest a gap closing for λc =
−0.04±0.02. In the central panel, the correlation ratio r is presented and the size
scaling is consistent with a symmetry broken phase between Uc = 1.65± 0.02
and Uc = 3.2±0.2. The right hand side summarizes various scans in the phase
diagram.

the TI and the Mott insulator at strong interactions as the one most prone to spontaneous
symmetry breaking with long-range pseudo-magnetic order.

Let us start with a fixed value of λ =−0.5 and analyze the correlation ratio r with increas-
ing interaction strength U . The resulting data is depicted in Fig. 5.4(b) for various lattice
sizes. We clearly see that the ratio systematically decreases with increasing L if the correla-
tion strength is smaller than Uc = 1.65± 0.02 or larger than Uc = 3.2± 0.2 such that there
is no long-range order here. In the intermediate region, the correlation ration increases with
system size that indicates spontaneous symmetry breaking due to a finite pseudo-magnetic
order in xy-plane of Mβ

i . The critical values stated above are extracted from the crossing
point where the ratio coincides for all lattices. The second phase transition from the ordered
phase to the Mott insulator requires larger interaction strength such that the QMC simulation
become more challenging, hence the smaller lattice sizes and larger error estimate. Again,
we repeat this calculation for various values of λ and summarize the phase boundary in
panel (c).

Phase diagram: In panel (c), we plot the full phase diagram and confirm the expected
stability of the Dirac semi metals as well as the insulators at weak coupling strength. The
simulations also detect the symmetric state with strong correlation. In the middle of the
phase diagram, where kinetic and potential energies are of similar order, we find long-range
order in exactly the dangerous channel that we have identified in Sec. 5.2. This phase breaks
the protecting R symmetry and therefore allows a hybridization of counter-propagating edge
modes as shown in Fig. 5.2. As a result, we cannot find an adiabatic path between the two
non-interaction topological insulators. Instead, any path in this phase diagram either contains
a semi-metallic state or a symmetry-breaking phase.
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5. Reduction of the topological classification

Figure 5.5.: The left hand side show the phase diagram for weak frustration V = 0.75 with
a smaller region of long-range order compared to V = 0 that seems to be most
stable for λ = −2. In the middle, we present the phase diagram for fixed λ =
−2.0 for various frustration strength V . For V > 2.5, the symmetry broken phase
is replaced by a first order phase transition. On the right hand side, the phase
diagram is presented for high levels of frustration.

Can frustration remedy the problem: The main idea is to add the z-component of the
pseudo-spins defined in Eq. (5.3) and use this to frustrate the in-plane order without changing
the wave functions of the limiting cases. To form a proper SU(2) algebra, we have to drop
the γ5 matrix acting on the Dirac components as (γ5)

2 = 1 such that

S1,α,z
i = (Ψ†

i,AΨ
†
i,B)s

z⊗Pα(Ψi,A,Ψi,B)
T (5.14a)

S2,α,z
i = (Ψ†

i,CΨ
†
i,D)s

z⊗Pα(Ψi,C,Ψi,D)
T . (5.14b)

Observe that this z-component generates rotations within the xy-plane of the pseudo-spins
that leave the Hamiltonian invariant. Additionally, the transformation (A↔ B) combined
with (C↔ D) also is a symmetry operation under which S1/2,α,z

i → −S1/2,α,z
i is inverted.

Hence, any unique ground state has to be an eigenstate of ∑i,α=±
(

S1,α,z
i + S2,α,z

i

)
with a

vanishing expectation value. In the large U limit, the sites and α-subblocks decouple such

that we introduce an additional interaction term Hfrust = V ∑i,α=±
(

S1,α,z
i + S2,α,z

i

)2
which

minimizes Sz locally without changing the ground state.
As depicted in Fig. 5.5, weak frustration does reduce the size of the symmetry broken

phase. In panel (a), we present the phase diagram for V = 0.75. The symmetry broken
phase now extends only to λ ∼ 0.5 whereas in the unfrustrated model it reaches λ ∼ 0.
Additionally, we find that the long-range ordered region is shifted towards weaker coupling
strength U while also the range in U has been reduced. This trend is also clearly visible
in panel (b) where we kept λ = −2.0 fixed. The Dirac cones at (π,0) and (0,π) persist
for weak coupling strength U and V . Increasing U generates the long-ranged ordered state
before at large U the symmetric Mott insulator appears. With higher level of frustration the
symmetry broken phase is replaced by a direct first order phase transition between the Dirac
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semi-metal and the Mott insulator. In Fig. 5.5(c), we show that the first order phase transition
extends also to λ >−2.0 and connects to other semi metal of the (π,π) Dirac cone.

5.5. Discussion

In the framework of this study there is no adiabatic path between topological (w = 4) and
trivial (w= 0) insulators. The semi-metal separating the non-interacting insulators persist for
small coupling strength in U and is terminated by either a second-order phase transition to a
long-range ordered phase or by a first order transition to a symmetric Mott insulator related
to the large U limit. Also the topological insulator either undergoes a symmetry breaking
second order or a first-order phase transition.

As we did not and can not test all possible interaction terms with the according paths, this
does not disprove the reduction from Z to Z4. Instead, our results show that the conditions
on the form of the interaction presented so far may very well be necessary, but they do not
seem to be sufficient. One popular line of argument for the reduction focuses on the topologi-
cally protected boundary states and designs interaction terms to gap out the boundary modes
symmetrically. Often this reduces the problem to purely local defects, e.g. the boundary
of one-dimensional Kitaev chains is zero-dimensional as well as the dimensional reduction
scheme, that also generates local defects which inherit the topology of the full bulk sys-
tem by the according number of modes. However, this decreased dimensionality does have
strong implications on the possibility of spontaneous symmetry breaking in the ground state
that may only occur in one (two) or higher dimensions for discrete (continuous) symmetries
according to Mermin-Wagner theorem [3]. And it is exactly this mechanism which blocks
the path we were looking for.

From the two-dimensional bulk perspective, the phase diagram exhibits various critical
points. Even though the focus of this study was to establish the phases themselves, it is inter-
esting to discuss those critical theories briefly. There are Wilson-Fisher transitions between
the topological insulator and the ordered phase as well as between the ordered phase and the
Mott insulator. Additionally, we expect the critical point where the semi-metal is gapped by
symmetry breaking to be described by a Gross-Neveu theory [207, 208].

The results of this work raise a few questions, mainly focused on the missing pieces re-
quired to find the adiabatic path. In Fig. 5.6, we sketch two alternative scenarios for the bulk
phase diagram, (a) the symmetric mass generation for the Dirac cone as well as (b) a sepa-
rated region of symmetry breaking that terminates the semi-metal line. Several studies have
reported the formation of a correlated single-particle gap of SU(4)-symmetric Dirac system
without the generation of long-range order [209,210]. Most surprisingly, it is claimed to be a
second order transition. In Ref. [211], the authors propose a theory that involves fractional-
ization in order to explain this exotic phase transition. It would be very promising to include
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top. trivial

b)       symmetry breaking

LRO

top. trivial

a)        symmetric mass

Figure 5.6.: There exist at least two alternative bulk scenarios with (a) symmetric mass gen-
eration (green cross) or (b) a symmetry breaking region (red circle) with long-
range order (LRO) terminating the semi-metal between topologically distinct
non-interacting states. Observe that the region with LRO connects to only one
semi-metal and not two both as in our numerical phase diagram in Fig. 5.4(c).
Both scenarios allow an adiabatic path and are not realized in the range of pa-
rameters investigated in this study.

the same kind of bulk criticality in our setup in order to find the adiabatic connection and
then investigate the details of how this affects the topological aspects.

In contrast, the scenario (b) shows that this symmetric mass generation is not required and
that there also exist more conventional options in which the symmetry broken region we find
is split into two separate ones. However, there is no obvious approach to engineer this phase
diagram. One avenue again involves the bulk boundary correspondence and attempts to fine-
tune bulk parameter [212] such that the energy scales respect the following hierarchy. The
interaction strength should be smaller than the bulk gap U/t < ∆bulk/t but still large enough
to gap the edge modes U/vedge > Uc

edge/vedge where vedge is the Fermi velocity of the edge
mode and Uc

edge the critical interaction strength.
As many studies make use of the bulk-boundary correspondence, it would also be inter-

esting to test this hypothesis by itself. To this end, one could study the properties of the edge
state in the region of the phase diagram that is adiabatically connected to the non-interacting
topological states. Does there exist a region, probably at rather strong interactions right
before the bulk system undergoes the phase transition, where the edge spectrum is already
gapped out? In this case, there are at least two scenarios, (i) the edge state mass origi-
nates from spontaneous symmetry breaking [213] as discussed in Ch. 3 or (ii) the edge is
symmetrically gapped and topologically trivial. Whereas the former is consistent with the
bulk-boundary correspondence, the latter option may constitute a violation of the hypothesis.
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CHAPTER 6

Fractional Fermi liquid in a frustrated Kondo lattice model

Thus far, we have been focusing on symmetry protected topological phases and their stability
with respect to interactions in Ch. 3 and Ch. 5. In Ch. 4, we have presented an attempt to gen-
erate a quantum anomalous Hall state dynamically. In two dimensions, however, there also
exists the possibility of topological order which constitutes a distinct state of matter from the
scenarios above. Most importantly, this phase does not require a protecting symmetry and is
instead characterized by topological ground-state degeneracy. Celebrated examples include
electrons in fractional quantum Hall states [65, 66] and – more relevant for this project –
quantum spin liquids [68–71] formed by local moments.

This raises the question: What happens if those moments are coupled to extended conduc-
tion electrons (c) via Kondo interaction of amplitude JK? In case of a single magnetic spin-
1/2 impurity coupled to a metallic environment with time-reversal symmetry, the interaction
is relevant and introduces a Kondo cloud of electrons at low temperatures that screen the lo-
cal moment collectively [93,102]. In case of multiple local moments on a lattice, this picture
breaks down and the problem is much harder to solve. In this lattice setup, the Kondo cou-
pling of conduction electrons with the local moments induces two competing energy scales:
the Kondo screening and the indirect Ruderman-Kittel-Kasuya-Yoshida (RKKY) exchange
interaction [95–97]. In this domain, possible states are constrained by the Lieb-Schultz-
Mattis-Hastings-Oshikawa theorem [79, 80, 106]. In the absence of magnetic order there are
at least two possible scenarios: (1) the formation of a heavy Fermi liquid where the local mo-
ments contribute to the Fermi volume and thus generates a ‘large’ Fermi surface of ‘heavy’
quasiparticles. The Kondo insulator is a special version of this scenario when the ‘large’
Fermi surface vanishes, e.g. for single-orbital conduction electrons at half filling coupled
to one local moment per unit cell. A distinct possibility (2) are local moments that decou-
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Figure 6.1.: (a) Schematic phase diagram of the BFG model in the absence of Kondo cou-
pling. (b) Schematic phase diagram of the BFG model in the presence of Kondo
coupling. The stability of the ‘FL*’phase is is set by the gap in the BFG model
scales as (J⊥)2/Jz in the strong coupling limit.

ple from the conduction electrons at low energies and form a spin-liquid phase [107, 214].
Here, the spin degrees of freedom no longer contribute to the Fermi volume and therefore the
‘small’ Fermi surface is restored in the sense that its size is given by the conduction electrons
alone. This scenario constitutes a violation of Luttinger’s theorem [105] and is also known
as a ‘fractional Fermi liquid’ phase (‘FL*’ phase), first introduced in Refs. [107, 214].

The transition from the ‘large’ to the ‘small’ Fermi surface is often referred to as Kondo
breakdown and poses a challenging issue in experiments on heavy fermion materials [103,
107, 215]. In one realization, the Kondo breakdown coincides with the transition between
a heavy Fermi liquid and a magnetically ordered phase without screening as it has been
observed in YbRh2Si2 [216] and CeCu6−xAux [217]. A different, and more related, case
is seen in Co and Ir doped YbRh2Si2 [218] where transitions of a heavy Fermi liquid or
an anti-ferromagnet to a non-magnetic phase without Kondo screening are reported. The
latter is an exotic phase, inconsistent with a Fermi liquid as the ground state, if the unit cell
contains an odd number of spin-1/2 degrees of freedom in the absence of other symmetry
breaking, e.g., lattice translations [106, 107, 214]. In this scenario, the local moments either
have to be topologically ordered or exhibit a gapless spectrum [80]. We also note that the
Kondo breakdown is closely related to the concept of ‘orbital selective Mott transition’ as
discussed in Ref. [219]. Our work might also be relevant for several other heavy fermion
materials that show a poorly understood phenomenology such as CePdAl [220–223], κ-
(ET)4Hg2.89Br8 [224], YbAgGe [225], YbAl3C3 [226] and Yb2Pt2Pb [227]. Microscopic
descriptions of these systems have indicated that frustration plays an important role here.

In this study, we report the first numerical realization of a fractional Fermi liquid as well as
a phase transition to a magnetically ordered phase that exhibits finite Kondo screening. From
a technical point of view, we were able to simulate frustrated local moments Kondo coupled
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to conduction electrons without suffering the infamous negative-sign problem [228]. The
model essentially consists of two building blocks, (1) local moments described by a variant
of the Balents-Fisher-Girvin (BFG) model [81–83], first introduced in Ref. [84], and (2)
conduction electrons on the honeycomb lattice hosting a Dirac semi-metal at half-filling.
The BFG model supports a magnetically ordered state and a transition to a gapped Z2 spin-
liquid upon increasing the frustration as sketched in Fig. 6.1(a). At finite, but weak Kondo
coupling and large frustration, the spin-liquid is gapped and the semi-metal has a vanishing
density of states at the Fermi level, such that both states are expected to persist. However,
this phase violates Luttinger’s sum rule as a metallic state should exhibit a ‘large’ Fermi
surface covering half of the Brillouin zone1. At larger values of Kondo coupling, the energy
scale set by the interaction exceeds the gap of the BFG model such that the topological order
is destroyed. Thus, the system enters a conventional phase with electron-like quasiparticles.
We test these hypothesis by studying the spectral function of conduction electrons as well
as investigating the mutual information that quantifies the amount of entanglement between
conduction electrons and local moments to shed light on the formation of Kondo singlets.

This work has been performed under the supervision of F. F. Assaad and T. Grover and is
published as Ref. [P2].

6.1. Model

We investigate the following generalized Kondo lattice model (KLM) described by H =

Hc +HS +HK with

Hc = −t ∑
〈xxx,yyy〉,σ

c†
xxx,σ cyyy,σ +h.c. (6.1)

HS = −J⊥ ∑
〈iii, jjj〉

(
S f ,+

iii S f ,−
jjj +h.c.

)
+ Jz

∑
7

(
S f ,z
7
)2

HK = JK ∑
〈xxx,iii〉

[
Sc,z

xxx S f ,z
iii − (−1)xxx

(
Sc,+

xxx S f ,−
iii +h.c.

)]
.

Here, c†
xxx,σ creates a conduction electron of spin σ in a Wannier state centered at position

xxx. They are subject to hopping processes along nearest neighbors of a honeycomb lattice,
labeled as 〈xxx,yyy〉. The spin operator of the conduction electrons is SSSc

xxx =
1
2 ∑s,s′ c

†
xxx,sσσσ s,s′cxxx,s′ .

The local moments (spin-1/2) are described by SSS f
iii located on the kagome lattice, which

corresponds to the median of the honeycomb lattice (see Fig.6.2). The Hamiltonian HS is
a variant of the BFG model (Ref. [81, 84]) containing spin flip processes of amplitude J⊥

1Observe that the half-filled honeycomb lattice, which has to orbitals per unit cell, exhibits a vanishing Fermi
volume with a Fermi surface of two single points. Adding 3 spin-1/2 degrees of freedom per unit cell
amounts occupy an additional half of the Brillouin zone, omitting complete filled bands.
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Figure 6.2.: Left: The model - The conduction (c-) electrons hop, with matrix element t,
between nearest neighbor sites of the honeycomb lattice denoted by the red and
blue circles. The kagome lattice (black) supports impurity spins described by the
Balents-Fisher-Girvin model with nearest neighbor spin-flip J⊥ and interactions
on hexagons of strength Jz (green). The two systems are Kondo-coupled with
strength JK for each bond in the elemental triangles (thick red and blue bonds).
For details see Eq. (6.1). Right: Various patches Γ used to extract the Renyi
mutual information. Subsets (b) and (c) belong to the triangle sequence, (d) and
(e) are built out of unit cells.

on nearest neighbor bonds, indexed by 〈iii, jjj〉. The interaction of strength Jz minimizes the
total z-component of spin on a hexagon S f ,z

7 = ∑iii∈7 S f ,z
iii . Finally, the conduction electrons

and the local moments are Kondo coupled, according to HK , along nearest neighbor bonds
〈xxx,iii〉 between the kagome and honeycomb lattices (Fig. 6.2). The factor (−1)xxx, which takes
the value 1 (−1) on the A (B) sublattice of the honeycomb lattice, is necessary to avoid the
negative sign problem. In particular it cannot be gauged away since the kagome lattice is not
bipartite. In relation to Fig.6.1, Jz plays the role of frustration, and JK is the Kondo coupling.
Due to the energy gap of the spin liquid and the associated stability of the phase, the sign
structure of the Kondo interaction is not relevant for the ‘fractional’ Fermi liquid phase. It
does however influence the possibility of non-magnetic ‘heavy’ fermion phases.

6.1.1. Symmetries & heavy fermi liquids

In this section, we consider possible non-magnetic mean-field scenarios in the context of
our model such as the Kondo insulator and the heavy Fermi liquid phase which are often
realized in conventional Kondo lattice systems. To this end, it is convenient to introduce the
following two operators ∆0

xxx,iii = ∑s c†
xxx,s fiii,s + h.c. and ∆

z
xxx,iii = c†

xxx,↑ fiii,↑− (−1)xxxc†
xxx,↓ fiii,↓+ h.c. so

that the Kondo coupling of Eq. (6.1) can be written as HK =− JK
4 ∑〈xxx,iii〉(∆

z
xxx,iii)

2. Whereas the
former usually generates the Kondo insulator in conventional Kondo lattice systems at half
filling as well as the heavy Fermi liquid at finite doping [103, 104], the later is more natural
in the model defined by Eq. (6.1) due to the sign structure of the Kondo coupling. In the
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U σ x σ z σ0 σ0

α − − + −
βx − + − −
βy + + + −
βz + − − −

Table 6.1.: Table of independent particle-hole symmetries. See the Sec. 6.1.1 for the nota-
tion.

following, we first describe the symmetries of the model and then discuss their implications
for non-magnetic mean-field approximations.

Our system, defined by Eq. (6.1), has several continuous and discrete symmetries. There
exist two distinct U(1) symmetries. First, the total number of conduction electrons is con-
served. Second, the Hamiltonian is invariant under spin rotations aroung the z-axis, gener-
ated by ∑xxx Sc,z

xxx +∑iii S f ,z
iii such that the total Sz-component is also conserved. Additionally,

the system exhibits several discrete, unitary and anti-unitary particle-hole symmetries that
are listed in Table 6.1. They are implemented with the help of a unitary matrix U , acting
as c†

xxx,s→ (−1)xxxUs,s′cxxx,s′ and f †
iii,s→Us,s′ fiii,s′ . The transformation may (α = −1) or may not

(α =+1) include a complex conjugation acting as
√
−1→ α

√
−1 such that the sign α dis-

tinguishes between unitary and anti-unitary transformations. We characterize their action on
the spin operators using the sign-tuple βββ = (βx,βy,βz) that specifies the transformation of
both Sc,l

xxx → βlS
c,l
xxx and S f ,l

iii → βlS
c,l
iii .

At the level of free fermion band-structure, the particle-hole symmetries listed above guar-
antee the existence of flat bands. In particular, either of the symmetries (U,α) = (σ0,−)
and (U,α) = (σ z,−) guarantee that there is a flat band. This is because these transforma-
tions do not mix up and down spin components, which leads to an odd number (=five) of
bands for each spin sector. Furthermore, the anti-unitary nature of the symmetry implies that
c(k)→ c†(k). Thus there always exists a flat band at zero energy in each spin sector. Such
a flat band will generically be unstable with respect to interactions. For example, a mag-
netically ordered state in the z-direction will break both of these particle-hole symmetries,
according to Table 6.1.

A natural mean-field approximation uses the hybridization term ∆z = ∑〈xxx,iii〉∆
z
xxx,iii which pre-

serves the particle-hole symmetry listed as (σ x, -) in Table 6.1, but breaks (σ z,−),(σ0,+)

and (σ0,−), as well as T R1 and T R2. The mean-field Hamiltonian Hc +∆z still has a spin-
degenerate flat band at the chemical potential. However, this band is not protected by sym-
metries. For example, a magnetization in the z-direction, which respects the remaining Sz-
spin-rotation as well as the particle-hole symmetry with (σ x,−), can induce a single-particle
gap should therefore be included as well. This generates a magnetically order state and
numerically we do not find any evidence for a finite magnetization in the z-direction.

Let us next consider mean-field solutions based on symmetry arguments. As discussed
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Figure 6.3.: Cut of the spectrum from K′ to K with the Fermi energy marked by the dashed,
orange line constraint to the half filled case and Fermi surface (blue, dashed) of
a heavy Fermi Liquid state with ∆ = 0.4 and t ′ = 0.2. The shaded area marks
the occupied part of the BZ.

before, to obtain dispersive bands requires the breaking of at least some symmetries. One
option is the uniform hybridization, ∑〈xxx,iii〉∆0

xxx,iii, that preserves the time reversal symmetries
T R1 and T R2, but violates all particle-hole symmetries. As a consequence, direct f-electron
hopping terms given by ∑〈iii, jjj〉,s f †

iii,s f jjj,s+h.c. , are no longer excluded by symmetry and should
then also be taken into account. The mean-field Hamiltonian for such a heavy Fermi Liquid
is defined by

HhFL =Hc +∆ ∑
〈xxx,iii〉

∆
0
xxx,iii + t ′ ∑

〈iii, jjj〉,s
f †
iii,s f jjj,s +h.c. . (6.2)

The resulting band-structure is shown in Fig. 6.3 where we have used the (arbitrary) param-
eters ∆ = 0.4 and t ′ = 0.2. The left hand side depicts a cut from K′ to Γ to K and we clearly
recognize a dispersive band in the middle of the spectrum replacing the aforementioned flat
band at zero energy. Each band is spin degenerate which enhances the Sz symmetry to a full
SU(2) and consequently, the state is paramagnetic. The right hand side presents the required
Fermi surface (blue, dashed) in order to keep the electron density fixed at half-filling. Con-
sistent with Oshikawa’s argument [106], we find a ‘large’ Fermi surface that encloses half of
the Brillouin zone as depicted by the shaded area in Fig.6.3. The effective chemical potential
required for half filling is marked by the dashed orange line in the left panel.

To summarize, the natural mean-field decoupling of Eq. (6.1) leads to a magnetic phase
and a symmetry-based approach generates a heavy Fermi liquid that we do not find numer-
ically in the investigated range of parameters. Additional AFM scenarios will be discussed
in the following section on limiting cases.

6.1.2. limiting cases

Let us consider various limiting cases of the Hamiltonian H, already sketched in Fig. 6.1,
and start with the limit J⊥� Jz,JK and arbitrary values of t, representing the region around
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the origin of the sketch. Here, the ground state of the pure BFG model is ferromagnetically
ordered in the XY plane [84]. Owing to the sign structure (−1)xxx of the Kondo interaction,
this induces an anti-ferromagnetic in-plane order of the conduction electrons. Thus the Dirac
cones exhibit a single-particle gap such that the full system forms a magnetic insulator.

Next, let us discuss the limit JK � J⊥ & Jz, t and first set all parameters but JK to zero.
Here the transformation cxxx,↓→−(−1)xxxcx,↓maps the Kondo interaction onto an anti-ferromag-
netic Heisenberg model. The Kagome and the honeycomb lattices constitute a bipartition
such that the interaction is not frustrated. This leads to a ground state with AFM order
where the local moments and the conduction electron have opposite polarization. Revert-
ing above transformation flips the in-plane components for the odd honeycomb sublattice.
Now let us switch on J⊥,Jz with J⊥ & Jz such that the in-plane polarization is more favor-
able that those with finite z-components as the latter is breaking the additional symmetry
S f ,z

iii →−S f ,z
iii ,S f ,x

iii → S f ,x
iii ,S f ,y

iii → S f ,y
iii . Observe that the XY spin texture is identical to the

limit discussed in the previous paragraph. Hence, we expect an adiabatic connection be-
tween the two limits without another phase transition in-between. Also this phase is stable
with respect to finite values of t due to the stiffness associated with symmetry breaking.

The most interesting limit is Jz � J⊥� JK . Let us begin with the parameter set where
only Jz and t are finite while every other one vanishes. Here the conduction electrons form
a Dirac semi-metal at half filling and the ground state of the (classical) spins is highly de-
generate which diverges exponentially with system size [81]. Finite values for J⊥/Jz � 1
introduce quantum fluctuations that lift the classical degeneracy and the local moments
form a gapped Z2 spin-liquid with topological order [81]. It is remarkable to notice that
small values of Kondo coupling do not change this phase considerably as it is discussed in
Refs. [107, 214]. From a renormalization group perspective this stems from the irrelevance
of the Kondo coupling at the fixed point of a Dirac semi-metal and a gapped Z2 spin liquid,
based on weak-coupling perturbative arguments. Hence, the conduction electrons and local
moments decouple at low energies and form a fractional non-Fermi liquid ‘FL*’ phase with
a ‘small’ Fermi surface as introduced in Refs. [107, 214]. Physically, in this phase the local
moments are highly entangled with each other such that the formation of Kondo singlets or
the tendency to magnetic order is suppressed.

To appreciate the exotic nature of the ‘FL*’ phase, it should be compared to conventional
heavy Fermi liquids that satisfy the Luttinger sum rule [107, 108]:

(i) In a ‘heavy’ Fermi liquid, the Fermi volume is given by VhFL = K(ntot mod 2) where
ntot = nc +n f is the total number of conduction and f -electrons per unit cell and K =

(2π)2/(2v0) is the phase space factor for a unit cell of size v0. In contrast, the local
moments do not contribute to the Fermi volume VFL* = K(nc mod 2) in the ‘FL*’
phase. Here, we have two electrons from the two orbital honeycomb lattice (semi-
metal with completely filled bands apart from the Dirac points) and three spin-1/2
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6. Fractional Fermi liquid in a frustrated Kondo lattice model

degrees of freedom per unit cell. Hence, Kondo screening induces a ‘large’ Fermi
surface VhFL = K that encloses half of the Brillouin zone whereas the Fermi volume
of the fractional Fermi liquid vanishes VFL* = 0.

(ii) In addition to conventional electronic quasiparticle, the ‘FL*’ phase also exhibits non-
local emergent vison excitations that stem from the topological degeneracy of the spin-
liquid ground states. In Ref. [106, 107], it is argued that these excitation allow the
formation of a ‘small’ Fermi surface of volume VFL*.

Previously, we discussed several mean-field ansätze and showed that the nature of possible
Fermi liquid states strongly depend on symmetries. When the SU(2) spin rotation as well
as the particle-hole symmetry is preserved then there has to exist a spin-degenerate flat band
pinned at the Fermi level. Such a state is inherently unstable as discussed in Sec. 3 and
Refs. [33,35,44,45,127,142,173,187,213]. We also found essentially two ways to introduce
Kondo screening via hybridization of c- and f -electrons that either break PHS – in case of
uniform hybridization – or TRS – when the sign structure (−1)xxx of the Kondo coupling is
incorporated. The latter term requires fine-tuning in order to remain paramagnetic whereas
the former naturally generates a non-magnetic heavy Fermi liquid. However, in the range
of parameters studied here, we do not find such phases. It is interesting to notice that the
TRS breaking hybridization does not violate any additional symmetry of the magnetic phase.
Hence it should be relevant especially for large JK and might be one source of entanglement
between c- and f -electrons.

6.2. Method & observables

We investigate the Hamiltonian defined in Eq. (6.1) using the auxiliary field quantum Monte
Carlo method [110, 121, 229]. The pure BFG model has been solved using the bosonic
stochastic series expansion without suffering from the negative-sign problem given that J⊥≥
0 renders the coupling ferromagnetic [84]. The conduction electron subsystem is amendable
to the fermionic BSS algorithm. In Ref. [228] the authors show that it is then possible to
introduce a Kondo coupling in the form ofHK between the spin model and the particle-hole
symmetric conduction fermions without generating a negative-sign problem. In order to
apply the fermionic auxiliary field method, we fermionize the local moments by introducing
f -electrons that are subject to the constraint of single-occupied sites ∑s f †

iii,s fiii,s = 1. The local

moments are then given by SSS f
iii = 1

2 ∑s,s′ f †
iii,sσσσ s,s′ fiii,s′ . Similar to simulations of generic Kondo

lattice models [101, 230] this condition corresponds to a local conservation law. Hence, it
can be imposed very efficiently with the help of an intrinsic Hubbard interaction. We have
used the ALF package [138] to carry out the numerical investigation and some more details
of our implementation are outlined in the following section 6.2.1.

90



6.2. Method & observables

Despite the absence of sign problem, the simulations of this model are challenging. On
one hand, the fermionization leads to a large number of auxiliary fields, 33 per unit cell,
and, on the other hand, the efficient projection onto single-occupied f -electron sites with
an effective Hubbard interaction of strength U = J⊥+ 4Jz generates comparatively large
scales in e−∆τH. This renders the simulation relatively prone to numerical instabilities. As a
consequence, we have used a small imaginary time step ∆τt = 0.01. In addition to the stabil-
ity issues, this model also generates exponentially large scales in e−βH that lay beyond the
range of double precision variables. To overcome this issue, we introduced the logarithmic
stabilization scheme as discussed in Sec. 2.3.

The biggest challenge turns out to be the long autocorrelation times. We tried to im-
prove this issue by using global moves that mimic the ring-exchange processes related to
vison excitations, as well as by implementing parallel tempering schemes. Nevertheless,
these long autocorrelation times remain the limiting factor to access system sizes bigger than
those presented here, in particular 3× 3 and 6× 3 unit cells. For both lattices sizes, and
the considered periodic boundary conditions, Dirac points are present. However, only the
6× 3 allows to simultaneously satisfy S f ,z

7 = 0 in all hexagons. Observe that our model
contains 2 spin-full fermionic and 3 spin-1/2 degrees of freedom per unit cell such that the
many-body Fock-space is 263 and 2126 dimensional and therefore well beyond the capabili-
ties of state-of-the-art exact diagonalization algorithms that may reach cluster sizes of up to
48 spins [231].

We compute spin-spin correlations SAFM = 1/L∑IIIJJJ〈Sx
III Sx

JJJ + Sy
III Sy

JJJ〉 where the net spin per
unit cell III is defined as SSSIII = ∑iii∈III SSS f

iii +∑xxx∈III(−1)xxxSSSc
xxx and captures the aforementioned ferro-

antiferromagnetic order of both f-spins and conduction electrons. The spectral function of
the conduction electrons Ac(kkk,ω) = − 1

π
Im Gret

c (kkk,ω) can be extracted from the imaginary
time resolved Greens function Gc(kkk,τ) = ∑α,σ 〈c†

kkk,α,σ (τ)ckkk,α,σ (0)〉 by using the maximum-
entropy method [139,140] (see also Sec. 2.4). Here α is the orbital index for the honeycomb
lattice. The auxiliary field QMC method also allows to study the entanglement properties
of fermionic models [232–237]. In particular, as shown in Refs. [233, 234], the second
Renyi entropy S2 can be computed from the knowledge of Greens-functions GA, restricted
to subsystem A for two independent Monte Carlo samples. An alternative approach exploits
the replica trick, e.g. for fermionic [238–241], bosonic [84], or spin systems [242, 243]. For
a given subsystem of conduction electrons Γc and of local moments Γ f , the Renyi mutual
information between Γc and Γ f is I2(Γc,Γ f ) ≡ −S2(Γc∪Γ f )+ S2(Γc)+ S2(Γ f ). Here, we
define two sequences of Γs as shown in Fig. 6.2(b), (c) and, Fig. 6.2(d),(e), respectively. In
the calculation of the Renyi mutual information we use an improved estimator that restores
the C3 lattice symmetry by averaging over rotationally equivalent Γs.
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6. Fractional Fermi liquid in a frustrated Kondo lattice model

6.2.1. Fermionization & implementation of the model

Let us first state the fermionized Hamiltonian that is simulated, Hqmc, and then show its
equivalence to Eq. (6.1).

Hqmc = −t ∑
〈xxx,yyy〉,σ

c̃†
xxx,σ c̃yyy,σ +h.c.− J⊥

4 ∑
〈iii, jjj〉

2

(
∑
σ

f̃ †
iii,σ f̃ jjj,σ +h.c.

)2

+

(
n f̃

iii +n f̃
jjj −1

)2


−Jz

4 ∑
7

∑
iii7< jjj7

(
n f̃

iii −n f̃
jjj

)2
− JK

4 ∑
〈iii,xxx〉

(
∑
σ

f̃ †
iii,σ c̃xxx,σ +h.c.

)2

, (6.3)

with (c̃†
xxx,↑, c̃

†
xxx,↓) = (c†

xxx,↑,(−1)xxxcxxx,↓) and ( f̃ †
iii,↑, f̃ †

iii,↓) = ( f †
iii,↑, fiii,↓). The Hamiltonian above is

identical to Eq. (6.1) up to the following five terms:

Hqmc−H = +(J⊥+4Jz)∑
iii
(n f

iii −1)2 (6.4a)

+J⊥ ∑
〈iii, jjj〉

f †
iii,↑ f †

iii,↓ f jjj,↓ f jjj,↑+
JK

2 ∑
〈iii,xxx〉

(−1)xxx f †
iii,↑ f †

iii,↓cxxx,↓cxxx,↑+h.c. (6.4b)

+
J⊥

2 ∑
〈iii, jjj〉

(n f
iii −1)(n f

jjj −1)+
JK

4 ∑
〈iii,xxx〉

(n f
iii −1)(nc

xxx−1) . (6.4c)

The first term, Eq. (6.4a), is the well known repulsive Hubbard interaction that suppress
charge fluctuations of f -electrons. The local parity of the f -electrons (n f

iii − 1)2 commutes
with the Hamiltonian as the relevant terms, Eq. (6.4b), describe pair-hopping processes that
modify the local occupation by 2. Hence the Hubbard interaction projects onto the sec-
tor with single-occupied f -electron sites exponentially fast and the relevant scale is set by
β (J⊥+ 4Jz). In this subspace of single-occupied f -electron sites, pair-hopping terms are
blocked by the Pauli exclusion principle and also the other contributions in Eq. (6.4c) vanish
such thatHqmc|(n f

iii −1)2=0 =H. The interested reader is referred to the supplemental material
of Ref. [228], in particular Eq. (9), for more information. Observe that Hqmc is explicitly
SU(2) invariant and that all interaction terms are attractive for J⊥,Jz,JK > 0. In this case,
the negative-sign problem is absent.2

6.3. Results

The pure BFG model supports a second order phase transition between a magnetic ordered
phase and a Z2 spin liquid at Jz

c/J⊥ ' 7.07 [84]. Recently, the dynamics of this model have
been investigated in Ref. [244] where the authors report a spin and a vision gap at an inter-

2The attractive interaction assure a real Hubbard-Stratonovich decoupling with Eq. (2.11) as −∆τ(−J) > 0.
Hence the determinate is real and its square, due to the SU(2)-symmetry, is positive.
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6.3. Results

Figure 6.4.: We consider lattices L = 3×3 and L = 3×6 unit cells at an inverse temperature
β = 12 and at Jz = 7.5. (a) Spin-spin correlations SAFM (See text), (b) Renyi
mutual informations I2(Γc,Γ f ) per site of the patch Γc∪Γ f for L = 3×6. Here
we consider the patches listed in Fig. 6.2(b)-(e). (c) Conduction electron spectral
function at the Dirac point KKK for the 3×6 lattice. (d) Same as (c), but at the Γ-
point. The imaginary time data from which panels (c) and (d) stem are presented
in the Fig. 6.6.

action strength of Jz/J⊥ = 8.3 as ∆s/J⊥ ' 7.12 and ∆v/J⊥ ' 0.2, respectively. The vision
excitation remains gapped at the phase transition whereas the spin gap scales as (Jz− Jz

c)
νz

with the dynamical critical exponent z = 1 and ν ' 0.67, which correspond to the exponents
of the 3D XY* model [82, 86, 245]. We have fixed the temperature to β t = 12 and from the
discussion above, this choice of temperature places us well below the spin gap and allows us
to resolve the vison excitation gap. From here on out, we fix J⊥ = t and use t = 1 as the unit
of energy3.

The numerical results for a scan in JK at a fixed value of Jz = 7.5 are presented in Fig. 6.4.
Starting at JK = 0.0, the conduction electrons and the local moments are explicitly decoupled
such that the electrons form a Dirac semi-metal. With increasing JK , the Dirac cone remains
stable as apparent from the gapless single-particle spectrum at the Dirac point K reported in
panel (c). In comparison to the non-interacting limit, the spectral weight is being reduced
and broadened, until a full gap opens up around JK ∼ 1.3. This transition coincides with the
sharp upturn of the magnetization as presented in panel (a). For values below JK . 1.5, the
response decreases with system size whereas it increases for larger values. This is in agree-

3This arbitrary choice is not expected to have a tremendous effect on the results here. Mainly because we are
interested in the numerical realization of the ‘fractional Fermi liquid’ phase. (J⊥)2/Jz sets the gap of the
spin liquid such that the ‘FL*’ phase persists for small enough Kondo couplings, relatively insensitive to
the conduction-electron energy scale t.
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6. Fractional Fermi liquid in a frustrated Kondo lattice model

Figure 6.5.: We consider lattices L = 3×3 and L = 3×6 unit cells at an inverse temperature
β = 12 and at JK = 1. (a) Spin-spin correlations SAFM (See text), (b) Renyi
mutual information I2(Γc,Γ f ) per site of the patch Γc∪Γ f for L = 3× 6. Here
we consider the patches listed in Fig. 6.2(b)-(e). (c) Conduction electron spectral
function at the Dirac point KKK for the 3×6 lattice. (d) same as (c), but at the Γ-
point. The imaginary time data from which panels (c) and (d) stem are presented
in the Fig. 6.6.

ment with spontaneous symmetry breaking and the establishment of a finite magnetization
as discussed in the limiting cases of Sec. 6.1.2.

The attentive reader might have realized that the weak interaction strength also set compar-
atively small Kondo scales that might be hard to resolve, especially within the limited lattice
sizes and finite temperatures accessible by the QMC simulation. To address this point, we
report a complementary scan with various levels of frustration Jz and fixed Kondo coupling
JK = 1 in Fig. 6.5. At weak level of frustration, we expect a magnetic insulator and the
single-particle gap presented in panel (c) as well as the scaling behavior of the spin-spin cor-
relation function shown in panel (a) are consistent with this. At higher frustration, the gap
of the Dirac cone is first reduced until a gapless spectrum is recovered for Jz & 7 when the
local moments form a Z2 spin liquid.

Additionally, there are interesting features present in the spectrum of the conduction elec-
trons at the center of the Brillouin zone Γ. We find a weak but finite signal at low energies
ω ∼ 0.5 in Fig. 6.4(d) for weak Kondo coupling which disappears around JK ∼ 1.3. Hence
it is only present in the ‘FL*’ phase where the local moments exhibit topological order. A
similar mode is present in Fig. 6.5(d) starting at Jz ∼ 7, again only for the fractional Fermi
liquid state. As shown in the following section (see Sec. 6.3.1), this is not an artifact of
the MaxEnt method but also directly visible in the imaginary-time resolved greens function.
The energy scale of this mode and its disappearance when the topological order is destroyed
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6.3. Results

suggest that this feature is related to the vison excitation of the spin liquid. Indeed the vison
does not carry a Z2 gauge charge such that it generically couples to conduction electrons.

It is also worth to study alternative, more direct measure of Kondo screening. Therefore
we investigate the (second) Renyi mutual information I2 between the c-electrons and the
local moments as reported in Ref. [246]. This quantity is sensitive to all energy scales4,
hence even for the perfectly decoupled ‘FL*’ ground state, we expect a small but still finite
value. Therefore the mutual information only vanishes at JK = 0 where the full Hilbert space
decouples and not only the ground state. In the opposite limit of maximal entanglement, two
singlets might be formed between two conduction electrons and two out-of the three local
moments per unit cell such that 4 log(2)/5 is the upper bound on the mutual information
per site. The magnetic phase lies in between those limits as the local moments and the
conduction electrons will also develop a finite entanglement within each other.

In Fig. 6.4 (b) and Fig. 6.5 (b) we report an entanglement that seems to follow a vol-
ume law as the various patch sizes fall on top of each other. They systematically grow as
the Kondo interaction is increased or the frustration reduced, respectively. The (almost)
vanishing entanglement for JK . 1.3 and Jz & 7, respectively, is consistent with decoupled
c- and f -electrons as in the ground state of the ‘FL*’ phase. Note that the values found
here are much smaller than those reported for generic, unfrustrated Kondo lattice model oin
Ref. [246]. Furthermore, even on a limited size lattices such as ours, one can already see sig-
natures of the transition from the magnetically ordered phase to the ‘FL*’ phase as indicated
by the changing slope in the coefficient of the Renyi mutual information at the transition.

6.3.1. Time displaced Greens function

Here we report the imaginary-time displaced Greens functions of conduction electrons, Gc(kkk,τ)=

∑α,σ 〈c†
kkk,α,σ (τ)ckkk,α,σ (0)〉 where α is the orbital and σ the spin index. The dynamical data

presented before, is obtained by solving

Gc(kkk,τ) =
1
π

∫
dω

e−τω

1+ e−βω
Ac(kkk,ω) (6.5)

for Ac(kkk,ω) using the stochastic maximum entropy method [139, 140]. The features pre-
sented so far can clearly be detected in the imaginary time data presented here and are thus
not an artifact of the cumbersome analytic continuation. In Fig. 6.6, the left hand side panels
presents the JK scan at a fixed Jz = 7.5 whereas on the right hand side we show the Jz scan
at constant JK = 1.0.

Panels (a) and (b) depict the Greens function at the Dirac points. In both cases, the gapless
mode is clearly visible in the ‘FL*’phase since Gc(KKK,τ) shows a plateau at large imaginary

4The mutual information falls into the class of equal-time correlators which effectively integrate over all
frequencies.
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Figure 6.6.: The simulations were performed on the L = 3×6 lattice at an inverse tempera-
ture of β = 12. Left panels corresponds to the JK scan at Jz = 7.5 and the right
to the Jz scan at JK = 1.0. For large JK or small Jz, we restricted the time domain
in (c) and (d) to τ < 3.5 and τ < 3.75, respectively, since beyond this scale, the
data becomes very noisy.
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times. The height of this plateau encodes the quasi-particle residue.
Panels (c) and (d) present the equivalent data for the center of the Brillouin zone at the Γ

point. In the ‘FL*’phase we see a clear feature with small intensity at large values of τ . It
is this feature in the imaginary time Green function that generates the low energy spectral
weight in Figs. 6.4(d) and 6.5(d) in the ‘FL*’phase. As mentioned before, we interpret this
feature as a signature of the vison excitation.

Another possible analysis makes use of the identity,

lim
β→∞

βGc(kkk,τ = β/2) = Ac(kkk,ω = 0), (6.6)

that holds when Ac(kkk,ω) is a smooth function. At finite temperatures, βGc(kkk,τ = β/2) will
provide an estimate of the spectral weight in an energy window around ω = 0 with a width
set by 1/β . Panels (e) and (f) plot this quantity both at the Γ and Dirac points. Overall, these
panels again confirm that in the ‘FL*’phase we observe low energy excitations with small
intensity at the Γ point and low energy excitations with large spectral weight at the Dirac
point. Note that in panel (e), corresponding to the JK scan, the intensity of the feature at the
Γ point first grows and then decreases since both at JK = 0, where the spin and conduction
electrons decouple and the conduction electrons form a Dirac spectrum, and at JK� 1 where
in the magnetic insulating phase, no low lying single particle weight is expected at the Γ

point.

6.4. Discussion

In this study, we simulated a frustrated Kondo lattice model using a quantum Monte Carlo
method without suffering the infamous negative-sign problem. Therefore, we can report the
first numerical realization of a fractional Fermi liquid that remarkably violates Luttinger’s
sum rule by having a ‘small’ Fermi surface due to topological order. The numerics are
extremely challenging, mainly due to long auto-correlation times, and they should therefore
be viewed as a prove of principle. To improve future numerical studies, it might be helpful to
directly simulate spinon systems subject to Z2 gauge fields, e.g., following Refs. [191, 247,
248], and couple them to conduction electrons. This is promising as we had to generate the
‘emergent’ topological order dynamically from regular spins on a lattice. With the help of
improved models, it should be possible to access the phase transition numerically and test
the proposed field theory of the critical point [86]. The Kondo coupling is claimed to be
irrelevant due to the large anomalous exponent of the spin system. Therefore one expects
well defined electronic quasiparticles at the phase transition and the spin part should be
characterized by the critical exponents of the 3D XY* transition [82, 245].

In addition, it would be interesting to study the sub-leading contributions to the Renyi en-
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6. Fractional Fermi liquid in a frustrated Kondo lattice model

tanglement entropy, a quantity that has already been used in Ref. [84] to identify the topolog-
ical order in the pure BFG model. Within the fractional Fermi liquid phase, the sub-leading
corrections are given as γ = γtopo + γDirac, where γtopo = log(2) stems from the topological
order of the BFG model and γDirac is the shape-dependent universal contribution from the
Dirac semi-metal [249, 250]. At the phase transition, however, γ = γtopo + γDirac + γ3D XY

picks up the additional contribution of the universality class due to irrelevance of Kondo
coupling [249].

To conclude, let us reconnect with the introduction where we have discussed on the rele-
vance of frustration in experiments on heavy fermion systems. Our simulations demonstrate
that among other things, the frustration can give rise to universal features like a ‘small’ Fermi
surface and therefore illustrates one possible explanation of Kondo breakdown.
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CHAPTER 7

Conclusion & outlook

In recent years, there has been tremendous progress in the field of topological free fermion
systems [14–17], stimulated by the discovery of topological band insulators [11–13]. The
inclusion of interaction poses questions that are harder to solve and during the course of this
thesis, we gained access to four different aspects of correlated topological model systems.
Our methods of choice were two flavors of quantum Monte Carlo algorithms, namely the
continuous-time interaction expansion approach (CT-INT) and the auxiliary-field method
(BSS). Both algorithms solve the model Hamiltonian in polynomial compute time, given that
the negative-sign problem is absent. In Ch. 3, the model generically exhibits the negative-
sign problem and we experienced its implication first hand, when the extrapolation to the
thermodynamic limit was too expensive and we were left with the discussion of leading
instabilities instead of long-range order.

However, numerical simulations can still be challenging even in the absence of the infa-
mous sign problem. In Ch. 4, the (squared) order parameter exhibited a fat tail in its probabil-
ity distribution for the CT-INT method such that the central-limit theorem was inapplicable.
We saw that this issue strongly depends on the details of the QMC method and we could
rely on the BSS algorithm to study the phase transition. Interestingly, the continuous-time
auxiliary-field method, which usually interpolates between the CT-INT and BSS algorithm,
could not connect the two methods in this model. Additionally, long auto-correlation times
may lead to inefficient numerical simulations as apparent from Ch. 6 and parallel tempering
schemes and/or global moves that mimic physical excitation can improve the efficiency.

In Ch. 3, we discussed a nodal topological superconductor that exhibits Majorana flat-
bands at zero energy which are located between the projection of the bulk nodes within the
boundary Brillouin zone. Several studies had discussed various mean-field scenarios before,
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however, we reported the first numerical exact QMC solution that properly addresses the
influence of quantum fluctuation which are expected to be large due to the low dimensionality
and the high density of states along the edge. We find the ferromagnetic instability in case of
repulsive interaction and charge-density-wave and/or additional is-wave order for attractive
couplings. Both are in agreement with the previous insights. However, we demonstrate
the importance of the edge mode’s chirality in a refined mean-field discussion that induce
linear superposition of normal and superconducting order parameters. The QMC simulation
confirm that, for example, the ferromagnetic order is coherently mixed with triplet pairing.
We also proposed an experimental setup that should be able to detect this coherence. In
future studies, it would be interesting to extend this model to non-centrosymmetric lattices
in which spin-orbit coupling as well as the mixing of singlet and triplet superconductivity
have to be taken into account. This can lead to a single Majorana flat-band, compared to two
bands from before, that should modify its stability.

In Ch. 4, we considered spinless fermions with nearest-neighbor repulsion, motivated by
a scenario in which spontaneous time-reversal-symmetry breaking generates a topological
Chern insulator. Instead we found the formation of charge-density-wave order as a thermo-
dynamic instability that breaks the particle-hole-symmetry and effectively dopes the lattice
model to a filling fraction of 1/3 or 2/3. This insight led to the proposal that uses the
particle-hole-symmetry to guarantee the absence of the negative-sign problem as well as the
thermodynamic instability to effectively dope a second ’target‘ layer in order to investigate
models away from half filling and thereby increase the range of solvable models. We also
compared the two QMC flavors and argued that a third option, the continuous-time auxiliary
field algorithm, should be the method of choice for such models as it combines the advan-
tages of the weak coupling expansion and the more favorable probability distribution of the
BSS method, which exhibits less severe fat tails.

In Ch. 5, we explicitly tested the adiabatic connection of bulk states that represent topolog-
ically distinct free fermion phases in a numerically exact manner. This setup was motivated
by previous works that had derived specific types of interaction terms which symmetrically
gap the degenerate topological boundary states. We found an extended symmetry broken
regime that separates the topological phases, in addition to the (non-interacting) Dirac semi-
metal. Adding frustration does not pave the way of the adiabatic connection as a direct
first-order phase transition then replaces the long-range ordered state. We discussed several
implications of our finding that mainly evolve around the statement that the conditions intro-
duced so far may very well be necessary, however they do not appear to be sufficient in the
context of this study. For future investigations, we propose to either fine-tune bulk parame-
ters, which, for example, concentrate the currently homogeneous Berry curvature within the
Brillouin zone, such that the model is more friendly with respect to the hierarchy of energy
scales used in the boundary state based arguments. Alternatively, we also discuss the phase
diagram from a bulk criticality point of view and review the symmetric mass generation in
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a SU(4) symmetric ‘graphene’ model [209–211]. This is one possibility to terminate the
semi-metal, however, a small symmetry broken domain at the end point constitutes a more
conventional setup. Finally, it would be very interesting to test the bulk-boundary correspon-
dence on its own as it might be possible to gap out the boundary modes even though the bulk
is still deformable to representations of non-trivial topological free fermion phases. This
could be the first example where the bulk-boundary correspondence is violated.

In Ch. 6, we report a numerical simulation of frustrated local moments Kondo coupled to a
Dirac semi-metal that does not exhibit the negative-sign problem. We present convincing ev-
idence for a decoupling of the spin system and the conduction electrons at strong frustration
and weak Kondo coupling. On one hand, we find an (almost) vanishing mutual information
between the spin and the electron subsystem and, on the other hand, the Dirac cone remains
massless such that the electrons exhibit a ‘small’ Fermi surface which violates Luttinger’s
theorem. Combining both observations strongly indicates that this phase is not a regular but
rather a ‘fractional Fermi liquid’. From a technical perspective, the simulation were limited
by long auto-correlation times which restricted the accessible lattice size as well as the tem-
perature range. We believe that it will be rewarding to further investigate the exotic phase
transition between the ‘fractional Fermi liquid’ and the magnetically ordered phase (at low
frustration). To overcome the algorithmic challenges, we propose to design a similar model
of spinons with a Z2 gauge interaction, the fundamental excitations of the quantum spin liq-
uid, and couple them directly to conduction electrons rather then generating those degrees of
freedom dynamically in frustrated spin-1/2 models.

In summary, we have investigated four different model systems that – in principle – rep-
resent the distinct scenarios for the interplay of topology and interactions. We showed that
correlations can induce spontaneous symmetry breaking that gaps the topological boundary
modes in Ch. 3. An attempt to dynamically generate a topological mass term was reported
in Ch. 4 where we found another kind of symmetry breaking. The first realization of that
has now been provided in Ref. [48]. In Ch. 5, we determined the phase diagram for an SPT
model and concluded that the current arguments on the reduced classification of correlated
topological states might contain necessary but not sufficient conditions. Finally, we present
the first numerical realization of a ‘fractional Fermi liquid’ in Ch. 6.
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APPENDIX A

Topology, edge states and mass terms

Let us interpret the two-dimensional model defined by Eq. (3.1) as a set of one-dimensional
chains indexed by k‖. These subsystems are then described by the Hamiltonian Hk‖ =

∑k⊥Ψ
†
kHk‖

(k⊥)Ψk with

Hk‖(k⊥) =−(2t cos(k⊥)+µk‖)τz +∆k‖ sin(k⊥)τx . (A.1)

Before we derive the edge state of Eq. (A.1), we start by discussing symmetry class
of each model Hamiltonian for a given and fixed k‖. Within each one-dimensional sys-
tem, there exists one commuting time-reversal symmetry Tk‖ = UTK (TRS) and one anti-
commuting Ck‖ = UCK (PHS). Observe that the complex conjugation K inverts only the
perpendicular momentum k⊥ but leaves the parallel contribution invariant which stresses the
index character of this part (KΨk‖,k⊥K = Ψk‖,−k⊥). Consequently, the unitary parts act as

U†
T,CHk‖(k⊥)UT,C =±H∗k‖(−k⊥) and are given by UT =−τz and UC = iτx for TRS and PHS,

respectively. It is straight forward to show that both symmetry operations square to unity,
C2

k‖
= +1 and T 2

k‖
= +1.1 These properties places each system Hk‖ into symmetry class

BDI [18, 37].
Actually, for a fixed k‖, Eq. (A.1) is an instance of the Kitaev chain specified by the param-

eters µk‖ = µ +2t cos(k‖) and ∆k‖ = ∆dxy sin(k‖) [53]. Hence, the one-dimensional system is
topologically non-trivial for 2|t| > |µk‖ |, provided ∆k‖ 6= 0. The topological invariant is the

winding number Wk‖ = (2πi)−1 ∫ 2π

0 d k⊥∂k⊥ ln(qk), where we used qk = εk + i∆k [251]. In
Fig. A.1(a), we present a vector plot of the phase qk/|qk| for a finite chemical potential. The

1We made explicit use of the spin-symmetry, namely σz, by block-diagonalizing the full Hamiltonian.
Eq. (3.1) represents the ↑↑-sector (still containing all physical information), hence T 2

k‖
6=−1.
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(a) (b)

Figure A.1.: (a) Wave-function topology of Eq. (3.1). The left part shows the normal state
Fermi surface (black, solid), the nodal lines of ∆k (red, dashed), the phase of
εk + i∆k (blue arrows), and the topological charge of the bulk nodes (green).
The right part shows the edge spectrum containing zero-energy flat-bands. (b)
Visualization of Eq. (A.2): Hopping along the black (dashed red) bonds for
sk‖ = sgn(t∆k‖) positive (negative); unpaired zero-energy modes Ψ

†
±;k‖,i⊥=1 and

Ψ
†
∓;k‖,i⊥=L⊥

at the ends of the chain.

Fermi surface is depicted as a solid black line and the nodes of the superconducting pairing
is represented as dashed red lines. Traversing k⊥ for a fixed value k‖ ≈ ±π nicely shows
both the trivial winding, namely none, as well as the absence of zero-energy edge states. For
k‖ ≈ ±0, the phase winds around the origin of the complex plane once and the does exist a
zero-energy mode in the spectrum.

Next, let us use a heuristic but very intuitive argument to illustrate the existence of edge
states. It is common to distinguish two pairing regimes, the weak-pairing one (2|t| > |µk‖ |)
and the strong-pairing limit (2|t| < |µk‖ |). Observe that any representation in the latter can
be adiabatically connected to a band insulator, with either a fully occupied or unoccupied
single band, by turning of the pairing completely ∆k‖ = 0. Hence this regime is topologically
trivial. For the opposite regime, we may adiabatically tune the weak-pairing Hamiltonian
to the high-symmetry point with (µk‖ ,∆k‖) = (0,2t sgn[t∆k‖ ]). Here, we can readily infer
qk‖ =−2t exp(−isgn[t∆k‖ ]k⊥) and conclude that this phase shows a non-trivial winding with
its sign determined by sgn[t∆k‖ ]. Hence, the region k‖ ≈ ±π in Fig. A.1(a) is representing
the trivial strong-pairing regime whereas k‖ ≈ 0 stands for the weak-pairing scenario. The
figure also nicely shows that the topology can only change at the nodal points of the bulk
spectrum and thus that the flat bands always connect projection of those nodes to the edge
Brillouin zone.

With this picture at hand, we are equipped to derive the edge states more rigorously and
also determine the form of their wave functions. We can combine TRS and PHS into the
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chiral symmetry Sk‖ = Ck‖Tk‖ = −τy which anti-commutes with the Hamiltonian. In the
chiral basis, Ψ±;k‖ , the Eq. (A.1) is off-diagonal. Lastly, we perform a Fourier transformation
in the perpendicular direction k⊥ and obtain

Hk‖ ∼−2t ∑
i⊥

Ψ
†
+sk‖ ;k‖,i⊥

Ψ−sk‖ ;k‖,i⊥+1 +h.c. , (A.2)

where we introduced the short hand notation sk‖ = sgn(t∆k‖). In Fig. A.1(b), we depict an
illustration of Hamiltonian (A.2). Depending on the sign sk‖ , either the black (positive) or the
dashed red bonds (negative) are non-zero whereas the other one vanishes. Hence, the chain
is decoupled into pairs of Majorana operators with opposite chiral eigenvalue. For open
boundary conditions, the Majorana operators Ψ

†
−sk‖ ;k‖,i⊥=1 and Ψ+sk‖ ;k‖,i⊥=L⊥

are unpaired,

realizing Majorana zero modes localized at the ends of the chain. By tuning the parameters
(µk‖ ,∆k‖) away from the high symmetry point, the edge modes acquire a finite decay length

and are now described by γ
†
k‖
= ∑i⊥ φk‖(i⊥)Ψ

†
−sk‖ ;k‖,i⊥

, with the wave function φk‖(i⊥) [53].

This result is derived in the remaining part of this section
The chiral symmetry Sk‖ allows to classify zero energy edge states by their chirality and

we therefore use the chiral basis |±〉 = 1√
2
(1,∓i)T with Sk‖ |s〉 = s |s〉. This leads to the

ansatz Φs(y) = eκs y |s〉 and the requirement ofHk‖Φs(y) = EΦs(y) with E = 0 generates the
secular equation

0 = 2
tk‖
∆k‖

cosh(κs)+
µk‖

∆k‖
+ ssinh(κs), (A.3a)

that determines κs,α

eκs,± =
−µk‖±

√
∆2

k‖
− (4t2−µ2

k‖
)

2t + s∆k‖
. (A.3b)

To fulfill the boundary conditions Φs(y = 0) = 0 and Φs(y→ ∞) = 0 for a half-infinite
geometry, the wave function has to be proportional to eκs,+y−eκs,−y. Additionally, normaliz-
ability requires that both |eκs,± | are either smaller or larger than 1. The former (latter) is then
localized around y= 1 (y= L⊥). In the weak paring limit, we can use |

√
∆2

k‖
− (4t2−µ2

k‖
)|<

|∆k‖ | to approximate |eκs,± | <
|2t|+|∆k‖ |
|2t+s∆k‖ |

. Hence, the chirality s = sgn(t∆k‖) state is exponen-

tially localized around y = 1, whereas the state of opposite chirality is localized on the other
edge, which can be inferred from the relation eκ+,± = e−κ−,∓ .

From now on, we focus on the top edge (y = 1) and introduce the creation operator γ
†
k‖

for
the according bound state Φk‖ with momentum k‖ and chirality sk‖ = sgn(t∆k‖)

γ
†
k‖

=
L⊥

∑
i⊥=1

φk‖(i⊥)
1√
2
(c†

k‖,i⊥↑− i sk‖ c−k‖,i⊥↓), (A.4a)

φk‖(y) = N−1(e
yκsk‖ ,+− e

yκsk‖ ,−) , (A.4b)
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with the normalization N 2 = ∑
L⊥
y=1 |e

yκsk‖ ,+ − e
yκsk‖ ,− |. As e

κsk‖ ,± are either both real or a
complex conjugate pair, φk‖(y) can be chosen to be real, which is assumed from now on. We
also observe that φ−k‖(y) = φk‖(y).

These edge states are charge neutral, carry a spin of Sz =+1 and their chirality is locked to
the momentum as sgn(k‖). In analogy to the edge states of a quantum-spin-hall system, the
state with opposite chirality is bound to the second edge at infinity. Observe that the neutral
edge states can still carry an electrical current as the electron-like contribution propagates in
the opposite way as the hole-like part. In contrast, it cannot contribute to spin currents along
the edge.

The flatness of the Majorana fermions (E = 0) is protected by the standard TRS (ck →
iσyc−k) and translation symmetry along the edge. All possible mass terms are given by

Hq = ∑
k‖

[
aq(k‖)γ

†
k‖

γk‖+q +bq(k‖)γ−k‖γk‖+q +h.c.
]
. (A.5)

The edge state operators transform under TRS as γ
†
k‖
→−isk‖γk‖

and Eq. (A.5) accordingly
as

Hq→−∑
k‖

sgn
(
sin(k‖)sin(k‖+q)

)[
aq(k‖)γ

†
k‖

γk‖+q +bq(k‖)γ−k‖γk‖+q +h.c.
]
. (A.6)

All homogeneous mass terms with q = 0 break only TRS, whereas all other terms with
q 6= 0,π break both TRS and translation symmetry. The instability with q = π is special,
since it only breaks translation, but not TRS.
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