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Abstract: Under physiological conditions, protein synthesis controls cell growth and survival and is
strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of
mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as
activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation
of the translational machinery. Besides mutations in upstream signaling pathways, deregulation
of global protein synthesis occurs through additional mechanisms including altered expression or
activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of
components involved in ribosome biogenesis and factors that control the adaptation of translation in
response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation
may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies
targeting these alterations have been investigated and have shown promising results in cell lines,
intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have
not clinically benefited from those advances so far. In this review, we outline the mechanisms that
lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in
developing therapeutic strategies that target these mechanisms for tumor therapy.
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1. Introduction

Colorectal cancer (CRC) is the third-most common type of cancer and one of the leading causes of
cancer-related deaths worldwide [1,2]. The standard of care for CRC includes surgical resection and
neo/adjuvant chemotherapy. Although the five-year survival rate of patients with metastasized CRC
has improved over the last few years due to resection of metastases and targeted treatment therapies,
it is still below 20% [3,4].

The development of CRC is characterized by a defined spectrum of genetic changes, known as
the adenoma-carcinoma sequence [5]. These specific alterations affect a plethora of cellular processes
including cell proliferation, survival, stemness, metabolism, replication, invasion, and protein
synthesis [6,7]. Among these, changes in the regulatory mechanisms of mRNA translation have
gained more and more attention during the past few years. Dysregulation of these mechanisms is
frequently observed in a variety of tumor entities, including CRC, and many links between oncogenic
alterations and the translation machinery have been established [8–10]. Accordingly, the rates of
protein synthesis are generally enhanced in malignant intestinal tissues as compared to normal tissues,
making protein synthesis an attractive target for anti-CRC therapy [11–13].
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In this review, we provide a mechanistic overview of deregulated mRNA translation in CRC and
highlight promising targeting strategies as well as clinical advances for the treatment of this cancer.

2. Mechanisms of Regulation of Protein Synthesis

Protein synthesis, including ribosome biogenesis, is one of the most energy-intensive processes in
living cells and is strictly regulated [14]. mRNA translation can be divided into four steps—initiation,
elongation, termination, and ribosome recycling—each of which has a characteristic requirement
for eukaryotic translation factors [15]. Here, we mainly focus on the process of initiation, as this is
well-studied for deregulated activity in cancer (Figure 1).
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Figure 1. Schematic overview of regulation of mRNA translation and targeting possibilities in CRC.
A large number of translation factors, signaling pathways, and ribosomal components are involved in
the regulation of mRNA translation in general, and in particular in CRC. Different targeting strategies
for interfering with deregulated protein synthesis have been developed as potential therapeutics,
but clinical efficacy has been limited so far. For simplicity, only translation factors and signaling
proteins are shown, which are described as potential therapeutic targets in the text (discussed in
detail in Section 4). Black lines with arrow: activating signal; black lines with T bar: inhibitory signal;
red lines with T bar: inhibition by small molecules or other substances; violet dots: amino acids
generating a polypeptide chain, yellow dot: phosphorylation; green dot: 7-methylguanosine cap of
mRNA; TC: ternary complex; ISR: integrated stress response; RNA pol I–III: RNA polymerase I–III.
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2.1. Translation Initiation

Translation initiation starts with the formation of a ternary complex (TC) consisting of
guanosine triphosphate (GTP)-bound eukaryotic initiation factor (eIF) 2 (eIF2-GTP) and initiator
Met-tRNA (Met-tRNAi

Met), which is delivered to the 40S ribosome. The TC-40S interaction is
stabilized by eIFs 1, 1A, 3, and 5, forming the 43S pre-initiation complex (PIC), ready for mRNA
binding [15–18]. Under physiological conditions, initiation of mRNA translation is then mediated
by the 5′–7-methylguanosine cap, which is bound by the eIF4F complex comprised of eIFs 4A, 4E,
and 4G, providing a binding site for the 43S PIC [19]. eIF4G functions as a scaffold, binding eIFs 4E
and 4A, poly(A)-binding protein (PABP), and eIF3 [15,20]. PABP binds the 3′ poly(A) tail of mRNAs,
and additional binding sites in PABP promote further protein–protein interactions, thereby influencing
translation and mRNA metabolism [21,22].

Once the 43S PIC is loaded onto the mRNA, the ribosome and associated factors migrate along the
5′ untranslated region (UTR) until the Met-tRNAi

Met anticodon pairs with a suitable AUG start codon,
leading to the formation of a stable 48S complex and hydrolysis of eIF2-bound GTP [23,24]. This step
is mediated by the eIF2-specific GTPase-activating protein eIF5, which binds eIF2 and activates its
GTPase activity. GTP hydrolysis triggers the partial dissociation of eIF2-GDP from 40S subunits [25].
For subsequent rounds of initiation, eIF2 is recycled by the eIF2B complex, which mediates guanine
nucleotide exchange.

The last stage of initiation requires joining of the 60S ribosomal subunit to assemble an
elongation-competent 80S ribosome [26]. This occurs simultaneously along with the dissociation of
eIFs 1, 1A, and 3 and the remaining eIF2-GDP, which is mediated by the ribosome-dependent GTPase
eIF5B [27].

2.2. Regulation and Alternative Pathways of Initiation

One of the most important steps during translation initiation is the formation of the eIF4F
complex [15]. In particular, eIF4E and the phosphorylation status of its binding partners, the eIF4E
binding proteins (4E-BPs), are limiting for the initiation process [28]. Hyperphosphorylation of 4E-BPs
decreases their capacity to bind eIF4E, whereas hypophosphorylation enhances the binding capacity
and prevents formation of an active eIF4F complex [29]. Furthermore, recycling of the TC, which is
mediated by the eIF2B complex, is a rate-limiting step of translation initiation. However, under stressful
conditions, eIF2α can be phosphorylated at S51 by the stress-related kinases GCN2, HRI, PERK, or PKR;
this is commonly known as the integrated stress response (ISR) [30,31]. Phosphorylation at this site
enhances the affinity of eIF2 to bind eIF2B, leading to the sequestration of this complex and reduction
of the nucleotide exchange function of eIF2B. Consequently, cap-dependent translation is impaired
and alternative pathways of translation initiation are promoted, including upstream open reading
frame (uORF)–mediated translation of stress-related genes or initiation at internal ribosome entry sites
(IRES) [31].

2.3. Elongation and Termination

Upon 80S complex formation, the ribosome is primed for translation elongation [32]. Once the
Met-tRNAi

Met anticodon is located at the peptidyl (P) site of the ribosome, it base-pairs with the
start codon of an mRNA [33]. The eukaryotic elongation factor (eEF) 1A binds aminoacyl-tRNA and
delivers it to the acceptor (A) site of the ribosome, in which the second codon of the open reading frame
is present. Upon codon recognition, aminoacyl-tRNA is incorporated into the A site. Subsequently,
a peptide bond is formed with the tRNA located in the P site and ratcheting of the ribosomal subunits
triggers eEF2-promoted movement of tRNAs from P and A sites to exit (E) and P sites, respectively [32].
Translation is terminated when the ribosome reaches the end of the coding region and a stop codon
enters the A site, followed by peptide release and ribosomal subunit dissociation.
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3. The Adenoma-Carcinoma Sequence and Its Impact on Deregulation of Protein Synthesis
in CRC

The majority of CRCs arise from benign adenomas that develop into a malignant carcinoma,
a process that is characterized by accumulation of specific mutations, the so-called adenoma-carcinoma
sequence (Figure 2) [34]. In over 95% of the cases, the initiating event is a mutation in the WNT signaling
pathway, of which 80% are mutations in the APC tumor suppressor gene [5,35]. Non-functional APC
leads to hyperactive WNT signaling, resulting in deregulated expression of WNT target genes [6].
Among these, the MYC oncogene is an essential driver of colorectal tumorigenesis, and MYC deletion
rescues intestinal hyperproliferation induced by loss of APC in vivo [36]. MYC drives the transcription
by all three RNA polymerases, thereby controling essential cellular processes including ribosome
biogenesis and protein synthesis [37–41]. Accordingly, overexpression of ribosomal proteins (RPs)
and enhanced ribosome biogenesis in general has been established as an early event during CRC
tumorigenesis [42]. APC deficiency, via MYC upregulation, regulates many more genes associated with
translation and is also implicated in balancing the cellular responses to stress signaling by influencing
activities of stress-related kinases and the eIF2α/eIF2B complex [12]. It is likely that this latter
mechanism is necessary for fine-tuning the rates of protein synthesis and the stress response in CRC
cells throughout all adenoma-carcinoma stages to ensure tumor cell survival. Further investigations are
needed to shed light on potential therapeutic implications. Another rate-limiting translation initiation
factor regulated by the APC-MYC axis is eIF4E. Correspondingly, its overexpression takes place in the
early adenoma stage, but nevertheless also correlates with late tumor stages and metastasis [43–45].
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Figure 2. Genetic alterations in CRC in the adenoma-carcinoma sequence and their influence on mRNA
translation. CRC develops over a series of clearly defined stages that are characterized by specific
changes in oncogenes and tumor suppressor genes, that in turn regulate diverse mechanisms involved
in mRNA translation. Black lines with arrow: activating signal; black lines with T bar: inhibitory
signal; violet dots: amino acids generating a polypeptide chain, yellow dot: phosphorylation; green dot:
7-methylguanosine cap of mRNA; TC: ternary complex; ISR: integrated stress response; RNA pol I-III:
RNA polymerase I–III.

In addition to MYC, two other oncogenic pathways—RAS/MAPK and PI3K/AKT—are master
regulators of protein synthesis and are frequently deregulated in CRC [35,46]. Alterations in these
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pathways occur later between the early and late adenoma stages. Therefore, it is not surprising
that increases in the levels of p-mTOR, p-p70-S6K1, and p-4E-BPs were found to be associated with
metastasis, which is the late event finally leading to an invasive carcinoma [47–49]. Besides upregulation
of mTORC1 activity via these later events, APC deficiency has also been shown to directly increase
mTORC1 signaling [50]. All in all, these essential associations between the genetic alterations in the
course of the adenoma-carcinoma sequence and deregulation of the translation machinery underscores
a fundamental role for enhanced protein synthesis rates in controling both the initiation and progression
of CRC.

4. Deregulation of Protein Synthesis in CRC and Potential Therapeutic Strategies

In this section, we summarize current knowledge about regulatory factors and mechanisms
involved in mRNA translation and how they are deregulated in CRC (Figure 1, and Table 1).
Furthermore, examples of targeting possibilities and their applicability in CRC are outlined.

Table 1. Deregulated factors and pathways in CRC.

Regulators of mRNA Translation Deregulation in CRC Impact on mRNA Translation

Ribosomal Components

RPL15 upregulation enhanced ribosome biogenesis

RPL22 mutation, downregulation
potentially deregulated translation of
pro-apoptotic proteins and
metastasis-related proteins

RPS20 mutation defect in pre-ribosomal RNA
maturation

RPS24 upregulation enhanced ribosome biogenesis

ribosomal RNAs
upregulation via MYC-mediated
deregulation of RNA pol I and III
activity

enhanced ribosome biogenesis

Signaling Pathways and
Associated Factors

RAS/MAPK signaling mutation and hyperactivation

hyperactivation of mTORC1 and
subsequent activation of p70-S6K1 and
inhibition of 4E-BPs leading to
enhanced translation initiation

PI3K/AKT signaling mutation and hyperactivation,
upregulation

hyperactivation of mTORC1 and
subsequent activation of p70-S6K1 and
inhibition of 4E-BPs leading to
enhanced translation initiation

PTEN deletion upregulation of PI3K/AKT signaling

mTORC1
mutation and hyperactivation,
overexpression, increased
phosphorylation of mTOR

activation of p70-S6K1 and inhibition of
4E-BPs leading to enhanced translation
initiation

4E-BPs increased phosphorylation release of eIF4E and enhanced
translation initiation

PDCD4 downregulation enhanced eIF4A activity and translation
initiation

p70-S6K1 increased phosphorylation
phosphorylation and inactivation of
PDCD4 and eEF2K and enhanced
translation initiation and elongation

Translation Elongation
Factors

eEF2K downregulation enhanced activity of eEF2 and
translation elongation

eEF2 upregulation enhanced translation elongation

Translation Initiation
Factors

eIF4E upregulation, increased
phosphorylation at S209 enhanced translation initiation

eIF4A1 upregulation enhanced translation initiation

eIF2α upregulation, increased
phosphorylation at S51

sequestration of eIF2B in an inactive
complex, thereby limiting high
translation rates

eIF2B complex upregulation enhanced complex formation with
p-eIF2α

Stress-related Kinase GCN2 increased activity increased phosphorylation of eIF2α

Summary of important ribosomal components, signaling proteins as well as translation factors, their deregulation
and impact on protein synthesis in CRC.
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4.1. Deregulation of Ribosome Biogenesis in CRC

Ribosomes are supramolecular RNA–protein complexes with a high degree of sequence and
structure conservation among bacteria, eukaryotes, and archaea [32]. The human ribosome comprises
80 ribosomal proteins as well as four ribosomal RNAs (rRNAs)—5S, 5.8S, 18S, and 28S rRNA [51].
First reports pointing to deregulated ribosome biogenesis in CRC reach back to the 1980s, where it was
shown that genes encoding RPs are overexpressed in human CRC cell lines and in samples of human
colon carcinoma as compared to normal mucosa [52–54]. Since then, several studies have validated the
deregulated expression of certain RPs in CRC, and also knockdown experiments, e.g., of RPS24 or
RPL15, showed that a decrease in RP levels reduces proliferation and migration and induces apoptosis
in CRC cells [42,55–57]. Therefore, the increased abundance of RPs can enhance ribosome biogenesis
and protein synthesis subsequently driving oncogenic transformation in CRC. This is consistent with
reports showing an upregulation of mRNAs and proteins associated with ribosome biogenesis in stem
cell-enriched murine intestinal organoids [58]. In contrast, mutation and loss of specific RP function is
linked to microsatellite-unstable (MSI) CRC and diseases with high susceptibility to CRC development,
such as ribosomopathy Diamon–Blackfan anemia (DBA) and familial CRC type X (FCCX), a hereditary
nonpolyposis microsatellite-stable (MSS) CRC [59–61].

Genes encoding RPs as well as factors necessary for rRNA processing and transport of ribosomal
subunits are transcribed by RNA polymerase II; this process is highly coordinated by the MYC
oncoprotein. Besides RNA polymerase II, RNA polymerases I and III are also involved in translational
regulation via the transcription of rRNA. As MYC induces transcription by all three RNA polymerases,
it stimulates rRNA synthesis [38–40,62,63]. MYC is almost universally amplified or overexpressed
in CRC due to APC mutation, which is an early event in CRC tumorigenesis (Figure 2, see also
Section 3) [6]. Consistent with this, a computational study of the MYC expression network from the
Cancer Genome Atlas (TCGA) showed that high MYC expression in colon and rectum adenocarcinoma
positively correlates with pathways associated with translation, ribosomes, and rRNA [64]. Regarding
ribosome biogenesis, enhanced rRNA synthesis in CRC cells is driven by MYC, as MYC depletion
reduces nascent levels of 5S, 5.8S, 18S, and 28S rRNAs, which is connected with decreased translation
rates [65]. More specifically, there is compelling evidence that rRNA synthesis is hyperactivated in CRC
due to APC deficiency in general. CRC cells lacking functional APC activate upstream binding factor
(UBF), a factor necessary for rDNA transcription, thereby enhancing the expression of pre-45S rRNA
in human CRC tissue samples and cell lines, which correlates with poor survival [66]. Furthermore,
recent studies validated that APC deficiency in CRC upregulates the expression of genes encoding RPs
and auxiliary factors of ribosome assembly, and enhances protein synthesis rates [11,12,66].

The second-most common mutation in CRC is found in KRAS, leading to constitutively active
MAPK signaling, which is also implicated in the regulation of rDNA synthesis [67]. Additionally,
CRC cells with mutant KRAS show increased expression of genes involved in ribosome biogenesis and
mRNA translation; this is associated with enhanced protein synthesis in CRC cells as compared to cells
with wild-type KRAS [68]. Finally, the mTOR signaling pathway is a master regulator of ribosome
biogenesis and is highly deregulated in CRC [69]. Mechanisms of deregulation of the mTOR pathway
are discussed in Section 4.2.

Targeting Ribosome Biogenesis in CRC

CRC is commonly treated using a combination of several chemotherapeutics (FOLFOX, FOLFIRI)
including 5-fluorouracil (5-FU) and oxaliplatin [4]. Interestingly, besides eliciting a DNA damage
response, both drugs affect ribosome biogenesis, particularly in CRC [70–74]. In addition to blocking
DNA synthesis, 5-FU can be incorporated into all RNA species, thereby altering RNA metabolism.
Accordingly, 5-FU leads to reduction of protein synthesis, possibly due to reduced ribosome biogenesis,
as well as translational reprogramming of specific mRNAs in CRC cells [71]. Oxaliplatin belongs to the
group of platinum-containing chemotherapeutics and is a derivative of cisplatin. Oxaliplatin treatment
of CRC is widely established and it has a different side-effect profile as compared to cisplatin,



Cancers 2020, 12, 1298 7 of 25

suggesting that oxaliplatin has a different mechanism of action [75,76]. Consistent with this, the efficacy
of oxaliplatin is not dependent on its ability to induce a DNA damage response, but rather to induce
ribosome biogenesis stress [72]. This, in turn, deprives the cells of translation machinery components,
on which CRC cells are highly dependent. These data imply that certain approved chemotherapeutic
drugs could be used in a more mechanism-based manner for the treatment of CRC, however, further
investigation is needed in this direction.

A more targeted approach for interfering with ribosome biogenesis is the development of specific
RNA polymerase I inhibitors, namely CX-3543 and CX-5461 [77–79]. Both these inhibitors bind to
G-quadruplex structures enriched in rDNA genes and inhibit the binding of certain co-factors and
transcription of rDNA. With respect to their anti-cancer effects, they are efficacious in vitro as well
as in vivo and are in phase I/II clinical trials for several hematological and solid malignancies [80,81].
Several studies have investigated the anti-cancer activities of CX-5461 and CX-3543 in both CRC cells
and xenograft models [77,82–84]. Interestingly, sensitivity to both compounds is dependent on the
DNA damage response proteins BRCA1/2 [83]. This implies that these inhibitors can be used for
treating cancer entities having defects in DNA damage repair, which is a common feature of MSI
CRC [84]. Moreover, CX-5461 not only affects CRC cell viability and xenograft growth, but also
stem cell properties and differentiation of murine intestinal organoids [85]. However, it requires
further clarification on how exactly ribosome biogenesis contributes to stem cell features and intestinal
tumorigenic transformation.

4.2. Deregulation of mTOR Signaling and Translation Factors in CRC

One major regulator of translation is the mTOR1 complex 1 (mTORC1), whose activity is primarily
controlled by the RAS/MAPK and PI3K/AKT pathways [46]. KRAS and PI3K/AKT are frequently
mutated or overexpressed in CRC, leading to hyperactivation of mTORC1, either indirectly via
MEK-ERK-RSK-Raptor phosphorylation in the case of KRAS or directly in the case of PI3K/AKT
(Figure 1) [6,69,86,87]. In addition, about 10% of patients with metastatic CRC carry BRAF mutations,
in particular the V600E mutation, which is associated with poor prognosis [88]. Mutation of BRAF
leads to increased phosphorylation and activity of this protein kinase and, in turn, sustained MAPK
pathway activity. Furthermore, PTEN, a negative regulator of PI3K/AKT, is also deleted in CRC [6].
Besides deregulated upstream signaling pathways, mTOR itself is found to be mutated in CRC,
with some of the mutations resulting in hyperactivation of mTORC1 [89,90]. Also, mRNA and protein
levels of mTOR are increased in heterozygous mutant Apc∆716 mice, a model for human familial
adenomatous polyposis (FAP), which is dependent on β-Catenin, suggesting a direct role of the WNT
signaling pathway in mTOR regulation [50].

The main effectors of mTOR signaling are p70-S6K1 and 4E-BPs. mTORC1 directly phosphorylates
4E-BPs, thereby relieving the inhibitory binding of 4E-BPs to eIF4E (see also Section 2.2.) [29]. Levels of
phosphorylated 4E-BPs are increased in CRC tissue as compared to normal mucosa, and this correlates
with metastasis and poor prognosis, and 4E-BPs have been established as critical mediators of the
tumourigenic properties of CRC [48,49,91]. The second effector of mTORC1 phosphorylation, p70-S6K1,
targets the ribosomal protein S6 (rpS6), PDCD4, and eEF2K [92]. Phosphorylation of p70-S6K1 has been
identified as a prognostic marker for CRC and is associated with poor survival [93]. p70-SK61-mediated
phosphorylation of PDCD4 and eEF2K induces degradation or inactivation of these proteins [94,95].
Being an established tumor suppressor, PDCD4 is downregulated in CRC, suggesting enhanced eIF4A
activity and translation initiation, since it usually binds and inhibits eIF4A [96–99]. When eEF2K is
inactivated by p70-S6K1, the inhibitory phosphorylation of eEF2 is relieved, and translation elongation
proceeds [100]. Correspondingly, eEF2K has tumor-suppressive functions in CRC, as depletion of
eEF2K enhances cell survival in CRC and low expression levels of eEF2K in CRC patient tissue
samples correlate with poor clinical outcome [101,102]. The role of eEF2K in the control of intestinal
tumorigenesis has also been validated in vivo, showing that mTORC1-p70-S6K1-mediated inactivation
of eEF2K enhances the activity of eEF2 in VillinCreERApcfl/fl mice, which accelerates translation
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elongation and protein synthesis in intestinal tissue [11]. Due to its role in driving translation
elongation, the substrate of eEF2K, eEF2, is overexpressed in gastrointestinal malignancies, including
CRC, and its knockdown impairs the proliferative potential of CRC cells [103,104]. Although the role
of other translation elongation factors in the development of CRC has not been well studied, a recent
systematic analysis of Oncomine and TCGA datasets revealed deregulated expression of several
elongation factors in CRC tissue, whereas the prognostic value of expression levels was variable [105].

It has long been known that eIFs are deregulated in cancer (see also for detailed review [8,106]).
The first translation initiation factor to be identified as overexpressed and correlated with CRC
progression and occurrence of metastasis was eIF4E [43–45,107]. In addition to upregulation of eIF4E,
eIF4E phosphorylation at S209 is significantly higher in CRC tissue than corresponding non-tumorigenic
tissue [108]. MNK1 and MNK2 are the two kinases that phosphorylate eIF4E, the only well-characterized
substrate of these kinases [109,110]. The role of eIF4E phosphorylation is not completely understood,
but it seems to be essential for the tumor-promoting functions of eIF4E [111]. Besides eIF4E, the RNA
helicase eIF4A1 is involved in positive regulation of translation initiation. It facilitates synthesis of many
proto-oncogenic mRNAs, such as the MYC mRNA, with long structured 5′ UTRs, which underlines
the role of eIF4A1 in cancer development [112]. eIF4A1 expression is increased in CRC tissue and is
directly regulated by miR-133a, which is downregulated in CRC [113]. Another member of the eIF4A
family, eIF4A2, plays a role in miRNA-mediated translational repression; however, this function of
eIF4A2 is debated [114–116]. eIF4A2 also promotes invasion of CRC cells as well as lung metastasis in
xenografts and is associated with poor prognosis [117]. In addition, there are numerous reports on
the deregulated expression of the majority of initiation factors in CRC, which will not be discussed in
detail here [118–126].

4.3. Targeting mTOR Signaling and Translation Factors in CRC

As mTOR signaling is activated in the majority of cancers, several inhibitor compounds,
inhibiting either PI3K or mTOR or both, have been developed during the last decade. Early studies
suggested the interference of mTOR activity for treatment of CRC [127]. The first established specific
mTORC1 inhibitor, rapamycin (sirolimus), and its analogues (rapalogues such as temsirolimus and
everolimus) have been extensively studied with respect to their anti-tumorigenic effects in CRC in vitro
and in vivo [50,69,86,128–131]. Unfortunately, single-agent partial mTOR inhibition has limited
therapeutic benefits, leading to feedback activation of the PI3K/AKT pathway and drug resistance [132].
This led to the development of the dual PI3K/mTOR inhibitor, which targets the ATP-binding sites
of both the kinases [133]. The impact of dual PI3K/mTOR inhibition on CRC has been reviewed in
detail in [69,86,134,135]. One widely used dual inhibitor, NVP-BEZ235 reduced the viability of both
mutant and wild-type PI3K catalytic subunit alpha (PI3KCA) cell lines, APC-deleted, PI3KCA-mutated
organoids and delayed tumor growth in respective colon tumor models [136,137]. An approach by
our group used BEZ235 to target MYC expression in CRC cells, as MYC turnover and translation
are highly regulated by the PI3K and mTOR pathways, respectively [97]. Surprisingly, instead of
reducing MYC protein levels, BEZ235 enhanced MYC expression due to elevated transcriptional
and cap-independent translational upregulation. This was counteracted by the natural compound
silvestrol, an eIF4A helicase inhibitor [138], which reduced MYC translation and intestinal tumor
growth. In addition to silvestrol, a second natural eIF4A inhibitor, elatol, elicited anti-tumorigenic
effects in CRC cell lines as well as in xenograft and PDX mouse models [117,139,140]. Besides natural
compounds, the synthetic eIF4A inhibitor FL3 reduces the viability of CRC cell lines as well as tumor
growth in CRC xenografts [141,142]. Regarding other subunits of the eIF4F complex, the small molecule
4EGI disrupts the interaction between eIF4E and eIF4G and stabilizes the association of eIF4E with
4E-BPs [143,144]. So far, there is limited data showing that 4EGI reduces the tumorigenic potential
of mouse or human CRC cells [145,146]. The function of eIF4E can also be indirectly targeted by
inhibiting MNK1/2-mediated phosphorylation at S209. This is an attractive approach, as MNK function
and eIF4E phosphorylation are not required for normal development [147]. Besides the anti-fungal
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agent cercosporamide, which was identified as an MNK1/2 inhibitor reducing CRC cell viability as
well as growth of CRC xenografts [148], the more specific MNK1/2 inhibitor eFT508 was identified
through structure-based design [149]. Although eFT508 was weakly effective against the growth
of CRC cells in vitro, it reduced tumor growth in a colon allograft model with comparable effects
to a newly developed MNK1/2 inhibitor [150]. Additionally, as MYC drives mRNA translation of
programmed death-ligand 1 (PD-L1) in KRAS-/MYC-driven liver cancer, which favors immune escape
of the tumor, treatment of those mice with eFT508 or anti-PD-L1 therapy significantly prolonged the
survival of the mice and reduced metastasis [151]. These data suggest that eFT508 may open a wide
spectrum of clinical applications including CRC.

4.4. Deregulation of the Translation Initiation Factors eIF2/eIF2B and the ISR in CRC

Two other essential regulators of translation initiation are the eIF2 complex (comprised of
eIF2α/β/γ), a part of the TC, and the eIF2B complex (comprised of two heterodimers of eIF2Bα/β/

γ/δ/ε) [152,153]. In addition to their role in controling initiation, the two complexes are involved
in the cellular stress response, in particular the ISR, mediated by phosphorylation of eIF2α by four
different kinases (see also Section 2.2) [154]. It is a common phenomenon that tumor cells encounter
various stress stimuli, including oncogene activation, replicative stress, hypoxia, nutrient deprivation,
and, therefore, have elevated p-eIF2α S51 levels [155–157]. The most studied eIF2α kinase is PERK,
which is classically activated by the accumulation of misfolded proteins in the endoplasmic reticulum
(ER), termed as “ER stress” [158]. On the one hand, active PERK/eIF2α signaling has been suggested
to have oncogenic potential in CRC, whereas on the other hand, a more tumor-suppressive role
of PERK in CRC has been documented [159–163]. Additionally, the PERK/eIF2α signaling node is
involved in the regulation of intestinal stemness and differentiation, where ER stress is associated
with loss of stemness in a PERK/eIF2α-dependent manner, defining a potential role of PERK/eIF2α
in CRC development [164,165]. The second eIF2α kinase, GCN2, is mainly activated by amino acid
deprivation, as it binds uncharged tRNAs [166]. Although there has been limited data on the influence
of GCN2 on CRC tumorigenesis, nutrient deprivation in solid tumors, including CRC, enhances the
activity of the GCN2/eIF2α pathway [12,167]. The third kinase, PKR, is activated by dsRNA binding in
response to viral infection, although other mechanisms have also been described [168,169]. However,
the contribution of PKR to tumorigenesis in general and to CRC development in particular is not well
defined, with studies claiming both tumor-suppressive and oncogenic roles of PKR/eIF2α signaling in
CRC [12,170–175].

Regarding the role of stress signaling in the development of CRC, it is interesting to note,
that intestinal inflammatory diseases (intestinal bowel disease, IBD), such as Crohn’s disease (CD) or
ulcerative colitis (UC), are also characterized by increased ER stress levels and ISR signaling [176].
Patients with IBD have a higher susceptibility to develop CRC, emphasizing the important influence of
deregulated stress pathways in CRC [177].

With respect to eIF2α, the key component of the ISR, both unphosphorylated and phosphorylated
forms are upregulated in CRC tissues as compared to normal mucosa, and elevated p-eIF2α S51
levels are found in the intestine of APC-deficient mice [12,178,179]. Enhanced eIF2α phosphorylation,
mediated by GCN2, is an important oncogenic mechanism in APC-deficient cells that are characterized
by elevated MYC and cellular stress levels in comparison to APC-proficient cells [12]. Phosphorylated
eIF2α binds tightly to eIF2B and sequesters it in an inactive complex, thereby limiting the otherwise
high translation rates and, in parallel, preventing dephosphorylation of eIF2α. Silencing of the eIF2B
subunit eIF2B5 (eIF2Bε) uncouples this mechanism, which finally leads to elevated protein synthesis
and stress signaling, thereby driving MYC-induced apoptosis. This establishes an essential dependency
of APC-deficient cells on eIF2B5. However, there is limited data describing the potential oncogenic
role of eIF2B in general, and detailed studies in CRC are lacking [180,181].
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4.5. Targeting the Translation Initiation Factors eIF2/eIF2B and the ISR in CRC

The aforementioned data point to potential therapeutic strategies for CRC by targeting the
p-eIF2α/eIF2B signaling node. Both eIF2 and eIF2B play an essential role in regulating mRNA
translation. There is a clear therapeutic window for targeting eIF2B; however, further studies are
needed to determine how exactly the activity or formation of the p-eIF2α/eIF2B complex has to be
modulated to specifically act on CRC cells [12]. Moreover, to date, there are no direct inhibitors available,
such as inhibitors of eIF2B5 GEF activity, disrupting the catalytic function of eIF2B, or small molecules
that inhibit the p-eIF2α/eIF2B interaction. One compound that interferes with p-eIF2α-mediated ISR
is the integrated stress response inhibitor (ISRIB). ISRIB was originally identified as an inhibitor of
the downstream effects of eIF2α phosphorylation during an ISR, and to stabilize the eIF2B decamer,
thereby enhancing GEF activity [152,182–188]. ISRIB has anti-tumorigenic effects in aggressive prostate
cancer and can be used in vivo; however, studies investigating the action of ISRIB on CRC are
lacking [189–192]. Another strategy to target eIF2α phosphorylation is the small molecule-mediated
inhibition of its phosphatase complex, with protein phosphatase 1 (PP1) as the catalytic core protein,
which dephosphorylates eIF2α to terminate the ISR [193–196]. Interestingly, salubrinal, a specific
inhibitor of PP1 [197], elicits reversible differentiation of intestinal stem cells via activation of an unfolded
protein response, resulting in increased sensitivity to oxaliplatin treatment in CRC xenografts [198].

As discussed above, activation of eIF2α kinases and ISR have oncogenic properties in certain
tumor settings. Therefore, inhibition of these kinases has been thought to be a promising anti-cancer
approach. In contrast, inhibition of PERK by the small molecule inhibitor GSK2656157, or the
related GSK2606414, does not specifically affect the viability of APC-deficient CRC cells or murine
intestinal organoids [12,199,200]. Inhibitor compounds for both GCN2 and PKR have also been
developed [201–205]. The first commercially available GCN2 inhibitor A-92, a triazolo [4,5-d]
pyrimidine derivative, reduces the viability of APC-deleted CRC cells as well as murine and
patient-derived organoids (PDOs), however, it cannot be used in vivo [12]. In parallel experiments,
the potent imidazolo-oxindole PKR inhibitor C16 induced cell death to a similar degree and with
similar specificity, but the mechanism was not well-defined. Despite its high potency and suitability for
in vivo use, C16 lacks specificity, as it also targets cyclin-dependent kinases [206]. Recently, approaches
for developing optimized GCN2 inhibitors, including compounds that contain the triazolo [4,5-d]
pyrimidine core, have been investigated; some of these small molecules exert anti-proliferative activity
in CRC cells [202–204]. In contrast, treatment with other GCN2 inhibitors alone had no effect on cell
viability but sensitized a panel of CRC cell lines to asparaginase treatment, which is usually used as an
anti-leukemic substance [203,207,208]. Besides the potential lack of specificity and unsuitability for
in vivo use, a major drawback of interfering with eIF2 kinase function is their redundancy, with GCN2
and PERK being able to compensate for each other [12,209–214].

In summary, more detailed studies are needed to provide clarifications regarding the conditions
under which the eIF2/ISR signaling pathways have pro-survival or pro-apoptotic roles in CRC and to
carefully evaluate possible therapeutic strategies.

5. Clinical Advances in Targeting Protein Synthesis in CRC

Over the last decade, several tyrosine kinase inhibitors as well as checkpoint inhibitors for
immunotherapies have been approved for the treatment of patients with advanced or relapsed CRC.
Among these, only a few target protein synthesis mechanisms. In this section, we highlight existing
clinical data and summarize ongoing clinical trials.

5.1. Clinical Data for Targeting mTOR Signaling in CRC

As discussed in Section 4.2 and Section 4.3, the mTOR pathway is a reasonable therapeutic target
in CRC. Although most of the inhibitors show promising results in vitro and in vivo, clinical trials
have mainly failed [136,215].
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5.1.1. mTORC1 Inhibitors—Rapalogues

In a phase II clinical trial, the therapeutic potential of everolimus was investigated in patients
with metastatic CRC previously treated with bevacizumab, and fluoropyrimidine-, oxaliplatin-,
and irinotecan-based regimens (NCT00419159) [216,217]. Overall, 199 patients were enrolled,
who received either 70 mg/week or 10 mg/day of everolimus, of which 71 patients per group
were included in the per protocol analysis. The best overall achieved response was stable disease in 45
out of 142 patients (31% in the 70 mg/week group and 32.4% in the 10 mg/day group). The median
duration of stable disease was 3.9 months in both groups, whereas overall survival was 4.9 months in
the weekly group and 5.9 months in the daily group. Specifically, patients with a KRAS mutation had
a reduced overall survival.

In a second phase II trial, patients with KRAS-mutated and chemotherapy-refractory CRC were
treated with temsirolimus until tumor progression, and with a combination of temsirolimus and
irinotecan from this point onwards (NCT00827684) [218]. The median time until tumor progression
was 45 days with temsirolimus monotherapy and 84 days with combination therapy. Patients receiving
monotherapy showed no response despite 38% of the patients showing stable disease, whereas 63% of
the patients receiving combination therapy showed stable disease. Furthermore, low plasma levels of
KRAS were associated with a significantly enhanced prognosis.

The combination of rapamycin therapy and a preoperative 5 × 5 Gy radiotherapy in rectal
cancer patients was also analyzed [219]. In part I dose escalation study, an unexpected high rate of
postoperative toxicity for surgery was observed three days after the last dose of rapamycin. In part
II of the trial, the time frame between the last dose of rapamycin and surgery was prolonged to
50 days. The percentage of pathological complete response and good responses (pT1), as expected
from other trials, were 3% and 10%, respectively. The metabolic activity of tumors was significantly
downregulated in PET-CT imaging after rapamycin treatment.

5.1.2. Single PI3K and Dual PI3K/mTOR Inhibitors

Buparlisib (BKM120) is a pan-class I PI3K inhibitor with an IC50 in the low nanomolar range [220].
Two phase I trials were carried out to evaluate the tolerable dose. One trial included only patients
with mutations in the PI3K pathway, and the other trial was performed in combination with irinotecan
(NCT01833169, NCT01304602) [221,222]. In both trials, BKM120 was well-tolerated by patients but did
not show any obvious therapeutic benefit. Moreover, an ongoing trial (NCT01591421) will evaluate the
impact of a combined treatment of BKM120 and panitumumab, a monoclonal antibody targeting the
epidermal growth factor receptor (EGFR), in recurrent or metastatic CRC with wild-type KRAS [223].

Alpelisib is a selective oral inhibitor of the PI3K catalytic subunit p110α [224]. In 2019, after positive
results were obtained in the placebo-controlled SOLAR-1 trial (NCT02437318), it was approved by the
FDA for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2
(HER2)-negative, PIK3CA-mutated, advanced, or metastatic breast cancer [225]. Results of the dose
escalation study suggested the therapeutic potential of alpelisib in CRC patients, with a disease control
rate of 34.3% [226]. A phase Ib dose escalation study demonstrated that alpelisib in combination with
a RAF kinase inhibitor and a monoclonal antibody targeting EGFR in BRAF-mutated CRC patients
showed promising results (NCT01719380) [227]. For the ongoing subsequent phase II trial, an interim
analysis of 102 patients suggested that alpelisib may have a progression-free survival benefit [228].

Finally, the dual PI3K/mTOR inhibitor GDC-0980 was evaluated in combination with 5-FU–based
chemotherapy in advanced CRC in a phase Ib trial, and a partial response in two out of 19 patients was
observed [229,230].

5.2. MNK1/2 Inhibitors in CRC

Currently, several phase I and II clinical trials evaluating the therapeutic potential of the MNK1/2
inhibitor eFT508 with or without anti-PD-L1 therapy in various tumor types have been initiated or
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already completed (clinicaltrials.gov). Of those, an already completed phase I/II trial (NCT03258398)
evaluated a combination therapy of eFT508 and avelumab, a human monoclonal antibody targeting
PD-L1, in patients with MSS CRC [231]. Experimental part 1 focused on evaluating the efficient dose
of eFT508 with a fixed dose of avelumab. In experimental part 2, the defined dose of eFT508 from part
1 was tested with or without avelumab. The readout is the overall response rate in a time frame of
8–16 weeks. The results of the experimental part 1 were published on the American Society of Clinical
Oncology (ASCO) conference in 2019. Of note, one patient from part 1 of the study showed a partial
response for more than 8 months. Further data on clinical responses are expected in 2020.

Another selective MNK1/2 inhibitor, BAY1143269, has been described to have strong anti-tumor
activity in vitro and in vivo [232]. Besides one phase I dose-finding trial (NCT02439346), no data on
the activity of this compound have been published so far.

5.3. Antisense Oligonucleotides Against eIF4E

As described in Section 4.2., eIF4E is deregulated in a vast majority of tumor entities including
CRC. Duffy et al. (2016) evaluated the impact of the antisense oligonucleotide ISIS 183750 targeting
eIF4E in a clinical trial including mainly patients with CRC (NCT01675128) [233]. Of the 15 patients
with irinotecan-refractory cancer, none showed a partial response, though seven (47%) had a stable
disease. The median progression-free survival was 1.9 months, and the median survival was 8.3 months.
Moreover, the peripheral blood samples of 13 out of 19 patients showed reduced eIF4E mRNA levels.
Though antisense oligonucleotides were detected in the tissue of all patients, eIF4E protein levels did
not change in CRC tissue.

6. Conclusions

The majority of the regulatory mechanisms of protein synthesis is deregulated in CRC. Over the
last decade, many factors and signaling pathways that contribute to balanced mRNA translation have
been investigated for their suitability as therapeutic targets in CRC (Figure 1). There is a tremendous
amount of data showing promising results in pre-clinical studies of strategies targeting ribosome
biogenesis, pathways regulating translation initiation, translation initiation factors, and translational
responses to stress. However, only a few of these strategies advanced into clinical trials, and of those,
most revealed only limited efficacy. Similar to what has been observed in other cancer types, in future,
it is necessary to carefully analyze whether inhibition of protein synthesis is the key targeting strategy
for CRC or there might be more efficient strategies to exploit the adaptive responses of cancer cells in
protein synthesis. Consistent with this, as protein synthesis is an essential and general cellular process,
there is a need to develop therapeutics that 1) have discrete targets within the translational machinery,
and 2) affect molecules or pathways that are specifically altered in intestinal tumor cells, but not in
non-malignant cells and tissues. One promising approach in this direction, that has gained attention
during recent years, is the establishment of intestinal PDO biobanks [234–237]. These biobanks contain
intestinal organoids of a large number of patients, that faithfully resemble the genomic landscapes of
the original tumors. Therefore, they can facilitate the understanding of the molecular events underlying
CRC progression, including deregulation of the translational machinery. Furthermore, they are valid
tools for drug screens to not only identify potential new targets of established drugs associated with
mRNA translation but also drug combinations of translation modulators that could be more efficient
than single targeting. In sum, this would clearly open the opportunity to extend therapeutic options
for CRC patients.
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