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Purpose: The gradient system transfer function (GSTF) characterizes the frequency 
transfer behavior of a dynamic gradient system and can be used to correct non‐
Cartesian k‐space trajectories. This study analyzes the impact of the gradient coil 
temperature of a 3T scanner on the GSTF.
Methods: GSTF self‐ and B0‐cross‐terms were acquired for a 3T Siemens scan-
ner (Siemens Healthcare, Erlangen, Germany) using a phantom‐based measurement 
technique. The GSTF terms were measured for various temperature states up to 
45°C. The gradient coil temperatures were measured continuously utilizing 12 tem-
perature sensors which are integrated by the vendor. Different modeling approaches 
were applied and compared.
Results: The self‐terms depend linearly on temperature, whereas the B0‐cross‐term 
does not. Effects induced by thermal variation are negligible for the phase response. 
The self‐terms are best represented by a linear model including the three gradient 
coil sensors that showed the maximum temperature dependence for the three axes. 
The use of time derivatives of the temperature did not lead to an improvement of the 
model. The B0‐cross‐terms can be modeled by a convolution model which considers 
coil‐specific heat transportation.
Conclusion: The temperature dependency of the GSTF was analyzed for a 3T 
Siemens scanner. The self‐ and B0‐cross‐terms can be modeled using a linear and 
convolution modeling approach based on the three main temperature sensor elements.
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1  |   INTRODUCTION

It is commonly known that hardware imperfections of the 
MR scanner are caused by gradient coil coupling, amplifier 
imperfections, mechanical oscillations, and eddy currents, 
which give rise to gradient waveform infidelity.1-6 These 
deviations between the actual and nominal gradients do 
not significantly influence the image quality in single‐echo 
Cartesian imaging, because they mainly cause shifts of the 
entire k‐space which are not visible in magnitude images. 
However, image artifacts have been shown for spiral7-9 or for 
echo planar imaging (EPI) sequences.7,8

Besides the built‐in eddy‐current compensation and pre‐
emphasis techniques, which are integrated by the scanner ven-
dors,10-12 attempts have been made in the MR community to 
overcome those hardware imperfections by applying various 
strategies to compensate for gradient delays using postpro-
cessing techniques.13-16 Moreover, gradient field monitoring 
enables measuring the actual trajectories which are played 
out by the scanner using phantoms or field cameras.7,8,17,18 
Lately, this method was replaced by a more general tech-
nique which makes use of the linear and time‐invariant system  
characteristics: the acquisition of the gradient system impulse 
response function (GIRF) or its Fourier transform, that is, the 
gradient system transfer function (GSTF).19-21 The effect of 
different terms of the GSTF on image quality has been shown 
recently.7,8,22 The GSTF information can be used for gradient 
correction, which can be applied for trajectory prediction7,8 
during image reconstruction or as a pre‐emphasis9,23 before 
the gradient waveform is played out by the scanner. Most ben-
eficial, the GSTF can be acquired as a one‐time calibration and 
can then be utilized to correct arbitrary gradient waveforms.19 
Consequently, this straightforward approach eliminates cum-
bersome and time‐consuming trajectory measurement for each 
trajectory type, imaging protocol, or slice orientation.

An additional challenge arises when highly demand-
ing applications may lead to heating of the MR system. 
Temperature changes could affect the gradient system re-
sponse, which ultimately corrupts trajectory correction proce-
dures.24,25 Therefore, the aim of this study was to investigate 
the temperature dependency of the self‐ and B0‐cross‐terms 
for a clinical 3T Siemens system and to compare differ-
ent models for an accurate description of the temperature‐ 
dependent GSTF characteristics.

2  |   METHODS

2.1  |  GSTF theory
Assuming linear and time‐invariant characteristics, the dy-
namic gradient system can be described by the GSTF. The 
GSTF specifies the frequency‐dependent amplitude and 
phase transfer. This article only briefly presents the GSTF 

theory; a more detailed explanation is provided in the 
literature.8,19,26,27

The gradient response out(t) played out by the gradient 
system can be calculated (Equation 1) by convolving the 
nominal input gradient gin(t) with the GIRF h(t):

In the frequency domain, this convolution can be de-
scribed (Equation 2) as a simple multiplication of the respec-
tive Fourier‐transformed quantities Gin(f) and H(f):

In our implementation, the determination of H(f) is per-
formed by measuring the output as the response of N dif-
ferent triangular input gradients with different pulse widths. 
The measurement is performed using a standard spherical 
phantom. Determining the phase evolutions Φslice1 and Φslice2 
in two parallel slices of distance Δx enables the calculation 
of the response out(t), which can be a gradient or B0 output 
(Equations 3 and 4):

The reference phases Φslice1,ref (t) and Φslice2,ref (t) for both 
slices were additionally acquired by not playing out the tri-
angular gradient waveforms. γ represents the gyromagnetic 
ratio. The gradient output gout(t) describes the response of the 
dynamic gradient system and the B0 output the response of 
the B0 field Bout(t). Equations 3 and 4 assume that the slices 
are at equal distance (Δx∕2) of either side of the isocenter.

Finally, the transfer function can be calculated for every 
direction k, the input gradient is played out, and for every 
direction l the output gradient is measured (Equation 5):

The index i represents a particular triangular waveform. 
The self‐term (first order) field components are represented 
by k= l=

[
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]
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2.2  |  GSTF measurement and 
gradient heating
All experiments were performed on a 3T MAGNETOM 
Skyra MR scanner (Siemens Healthcare, Erlangen, Germany) 
with a bore diameter of 70 cm. Figure 1 shows the sequence 
diagram of the GSTF measurement and the heating sequence 
which was used in this study. The acquisitions of the self‐ 
and B0‐field‐terms were achieved using a prototype sequence 
including 12 triangularly shaped input gradient pulses which 
lead to a broad spectral frequency coverage. The gradient 
pulse durations were varied between 100 and 320 µs with a 
fixed slew rate of 180 T/m/s. The signal phase was measured 
in two parallel slices, vertical to the input gradient direction 
with a slice position of ±16.5 mm from the isocenter and 
with a slice thickness of 3 mm. The flip angle was set to 90° 
and the bandwidth was 119 kHz for all acquisitions. Each 
readout had a duration of 10 ms. During gradient heating, 
50 repetitions of the measurement were performed, while the 
cooling phase comprised 80 measurement repetitions. This 
results in heating periods of 40 minutes and cooling periods 
of 64 minutes. The maximum temperatures were reached at 
the end of each heating period. GSTF data were calculated 
for each repetition to achieve maximum temporal resolution.

The gradient temperature was monitored with 12 tempera-
ture sensors (TSs), integrated by the vendor. Three sensors 
are located on the gradient cable connectors and nine in the 
gradient coil. The temperature data were sampled with a tem-
poral resolution of 10 seconds. To achieve different system 
temperatures, the GSTF measurement sequence was supple-
mented by bipolar trapezoidal heating gradients, which can 
be enabled for every gradient axis. All heating experiments 
were performed with heating gradients of constant amplitude 
(AH = 23 mT/m) and variable duration (tH = 120–480 ms) 
at a constant repetition time of 1 second. This means that 
the duty cycles for the heating gradients were varied between 
12% and 48%. These parameters generate gradient system 
local temperatures of up to 45°C.

2.3  |  Temperature‐dependent GSTF models
A linear model was used to describe the temperature‐ 
dependent changes ΔGSTFself of the transfer function in the 
self‐terms (Equation 6):

with the measured input Imeas and model parameter m.
Two different approaches were implemented. The first 

one only considers the measured temperature values T as the 
model input Imeas (Equation 7):

As shown in Equation 7, the measured input consists of 
the temperatures T for up to 12 TSs. The temperature values 
were acquired for discrete time points from t = 0 to t = N.

Besides the sensor temperatures T, the second approach 
also includes the temperature derivatives Ṫ for the measured 
input Imeas.

Additionally, Equation 6 was evaluated for two different 
sensor combination approaches: First, a real‐sensor model 
(RSM) only containing gradient coil sensors GS 3, 4, and 9, 
which show the strongest temperature response for x/y/z‐axis 
gradient. Second, a virtual‐sensor model (VSM) was created, 
where the measured input Imeas consists of 1 to 12 virtual sen-
sors resulting from a principal component analysis (PCA) for 
all 12 sensors.

To describe the temperature‐dependent changes of the 
B0‐cross‐terms, a linear model (RSM‐based, gradient coil 
sensors GS 3, 4, and 9) was used with and without including 
gradient cable sensors (CS). These linear approaches were 
compared to a convolution‐model approach, where Bateman‐
functions b(t) were used as convolution kernels (Equation 8):

(6)ΔGSTFself = Imeas ⋅ m,

(7)Imeas =

⎛
⎜⎜⎜⎝

1

⋮

1

T (TS1)t=0 ⋯ T (TS12)t=0

⋮ ⋱ ⋮

T (TS1)t=N … T (TS12)t=N

⎞
⎟⎟⎟⎠

.

F I G U R E  1   GSTF measurement 
sequence using N = 12 triangular shaped 
pulses. The trapezoidal bipolar gradient 
pulses, which heat the gradient system to a 
steady temperature state. The temperature 
can be adjusted by the gradient amplitude 
AH and the gradient duration tH.  
ADC = analog to digital converter;  
RF = radiofrequency
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The Bateman‐convolution kernels were defined as 
b (t)= e−k1⋅t−e−k2⋅t. For Equation 8, two different model rep-
resentations were compared: The same convolution kernel 
is applied to every sensor (one convolution model; OCM), 
or sensor‐specific kernels are used (individual convolution 
model; ICM). The model parameters m, k1, and k2 were fitted 
for all approaches using least‐square minimization.

All different modeling approaches were compared quan-
titatively using χ2 between 0 and 4 kHz as a goodness‐ 
of‐fit measure. The Bayesian information criterion (BIC) 
was calculated to compare models with different numbers of 

independent parameters. ΔBIC values can be used to rank the 
model performance.

3  |   RESULTS

3.1  |  Temperature characteristics of the  
self‐ and B0‐cross‐terms
Figure 2A shows the determined temperature curves for dif-
ferent duty cycles of the heating sequence: 0% (cooling), 12%, 
24%, 36%, and 48%. The higher the duty cycle of the heat-
ing sequence, the higher the maximum temperature reached 
at the end of the heating period. Coil sensor 9 showed the 

(8)ΔGSTFB0 = (Imeas ∗b (t) ) ⋅ m.

F I G U R E  2   Temperature data are logged every 10 seconds by 12 temperature sensors, during heating experiments. Each heating cycle (red 
sectors) is followed by a cooling period (blue sectors). The gradient coil temperature sensors with the highest sensitivity on every gradient axis 
are coil sensors 3, 4, and 9, and the sensors mounted at the gradient cable connectors are represented with dash‐point lines (cable sensors 1–3). 
Temperature profile (A) shows different thermal levels on the z‐gradient axis, which were accomplished by varying the heating duty cycle between 
12% and 48%. This results in 22°C, 27°C, 32°C, and 37°C for coil sensor 9 at the end of each heating period, respectively. Temperature profile (B) 
visualizes heating of the x‐, y‐, and z‐gradient axes, when the same heating duty cycle of 48% is applied
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F I G U R E  3   The z‐self term increases linearly with rising temperatures (A), whereas the phase response is mostly independent, apart for tiny 
deviations (<0.02) for the mechanical resonances (B). The linear temperature dependency is visualized exemplarily for three frequencies at 1, 2, and 3  
kHz (dashed lines in (A)), exhibiting high correlation coefficients r > 0.84 (C). The temperature dependency for the z→B0 term is visualized in (D). 
There is no linear temperature dependency r < 0.51 for the z→B0 term, which is exemplarily shown for the frequencies at 1, 2, and 3 kHz (E). (A), 
(B), and (D) show data of the end of a cooling or heating period for different duty cycles (0%, 12%, 24%, 36%, and 48%). Temperatures in (C) and 
(E) are values at the end of the heating periods measured by coil sensor 9. Temperature and GSTF values are averaged over 8 minutes
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following maximum temperatures at the end of the heating 
phases: 22.3°C (duty cycle 12%), 27.5°C (duty cycle 24%), 
32.5°C (duty cycle 36%), and 37.8°C (duty cycle 48%).  
At the end of each cooling phase, the standard reference 
temperature (~18°C) was reestablished again. The corre-
sponding z‐self‐term data at different duty cycles is visual-
ized in Figure 3A. The GSTF magnitude responses show a 
considerable temperature dependency, mainly a broadening 
of magnitude profiles and a slight shift of the mechanical 
resonances toward lower frequencies for higher temperatures. 
Conversely, the temperature‐dependent deviation in the phase 
is negligible (Figure 3B); at most, the mechanical resonances 
are slightly affected by temperature changes (Figure 3B).  
Figure 3C displays the GSTF at three frequencies at 1, 2, and 
3 kHz of the z‐self‐term and shows that the magnitude is lin-
early dependent on the temperature (correlation, r > 84%).

For the z→B0‐term, the change in the magnitude is visu-
alized in Figure 3D. The GSTF at frequencies at 1, 2, and 3 

kHz indicate that magnitude and temperature do not correlate 
well (r < 0.51; Figure 3E).

3.2  |  Temperature‐dependent self‐ and  
B0‐cross‐term models
All model approaches were created based on the temperature 
profile, visualized in Figure 2B. Here, the heating gradient 
was used to heat all three gradient axes sequentially with a 
fixed duty cycle of 48%, which leads to maximum tempera-
tures of 36.0°C (coil sensor 9) for the z‐axis, 40.5°C (coil 
sensor 3) for the x‐axis, and 45.0°C (coil sensor 4) for the 
y‐axis. Cable sensors show a slower response behavior than 
gradient coil sensors.

The PCA analysis of the VSM‐dependent self‐terms shows 
that at least the first three main sensor components are required 
to model the measured GSTF magnitude curve. The sum of 
the first three eigenvalues of the measured input Imeas cover 

F I G U R E  4   (A) Comparison of the measured z‐self‐term magnitude at 34°C and the prediction of different model approaches: VSM (three 
sensors) and RSM (three sensors), with/without temperature derivative (Ṫ). (B) Temporal comparison of the z‐self‐term magnitude (average of 
frequency range) according to the heating profile (Figure 2B). (C) Small ΔBIC values suggest that the use of 3 sensors in a linear model provides 
the best predication of the measured data and are most suitable for the linear model. An integration of temperature derivatives is not necessary 
(ΔBIC < 2)
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with 97% most of the contained information. The self‐term 
GSTF in the frequency domain (for 34°C, at coil sensor 9) and 
the temporal profile (magnitude averaged for 0–5 kHz) show 
a good qualitative fit with and without including temperature 
derivatives (Figure 4A,B). The RSM is based on the gradient 
coil sensors 3, 4, and 9, with the highest temperature response 
for each gradient axis. The deviations between measured and 
modeled data are also small for the RSM (Figure 4A,B).  
The χ2 values are <0.0012 for all modeling approaches and 
only show small differences in the region of mechanical res-
onances. The ΔBIC values in Figure 4C reveal that the most 
suitable models are using three sensors. Including more sen-
sors increases BIC values. The differences in ΔBIC (<2) of 
the different model approaches using three sensors are too 
small to favor one model.

In contrast to the self‐terms, the B0‐cross‐terms are not 
described well by a linear model (Figures 3E and 5A,B). The 

differences between the B0‐cross‐terms and the linear fit are 
systematic and cannot be explained by the noise level. Also 
adding three cable sensors to the linear RSM, which are charac-
terized by a more temperature‐preserving behavior (Figure 2),  
does not have a major impact. Contrary to the linear models, 
convolution models are a good representation of the tempera-
ture‐dependent changes of the B0‐field‐term. The OCM de-
livers good modeling results, which can be even surpassed 
by the ICM (Figures 5C, D), which considers sensor‐specific 
heat transportation instead of assuming the same heat trans-
portation model for all sensors. The Bateman convolution 
kernels for both approaches are visualized in Figure 5E. The 
modeling results can also be expressed quantitatively by the 
corresponding χ2 values, which are lower for the Bateman 
approaches than for the linear approaches. The small-
est χ2 values were achieved using the ICM (χ2 < 0.0012). 
The ΔBIC values support this statement: The ICM fits the 

F I G U R E  5   Comparison of the measured z→B0‐cross‐term at 34°C and the predication of linear model approaches with/without cable sensors 
(A) and the convolution models (C). Panels (B, D) show the corresponding temporal comparison of the z→B0‐cross‐term according to the heating 
profile (Figure 2B). Panels (A‐D) visualize that the convolution models deliver much better fitting results than the standard linear model, which shows 
only a small improvement by including the cable sensors. Panel (E) displays the corresponding Bateman convolution kernels for the OCM and ICM



1526  |      STICH et al.

B0‐cross‐terms best (ΔBIC = 0), followed by the OCM as the 
second best model (ΔBIC = 345). ΔBIC = 1125 and ΔBIC =  
1172 were obtained for the linear model with and without 
cable sensors, respectively.

4  |   DISCUSSION AND 
CONCLUSION

In this work, the temperature dependency of the gradient 
system transfer function was analyzed for the self‐ and B0‐ 
cross‐terms. All temperature experiments were performed 
on a 3T Siemens scanner system, using temperature sensors, 
which are integrated by the vendor, for precise monitoring of 
the temperature of a high temporal resolution.

The GSTF was acquired with a phantom‐based thin slice 
approach.8 Acquisition parameters, like the slice distance and 
thickness, were used as described by Campbell‐Washburn  
et al.8 The read‐out duration was set to 10 ms, which results 
in a frequency resolution of 100 Hz.

We observed that there is a linear relationship between 
the temperature‐induced magnitude change and the gradient 
temperature for the self‐term magnitude response, whereas 
the phase response showed only minor temperature‐induced 
deviations. We observed slight shifts of the mechanical reso-
nances toward lower frequencies for the self‐terms (Figure 3)  
during gradient heating. The B0‐cross‐terms also indicated 
changes when heating the gradient system. A linear relation-
ship between the change in the B0‐cross‐term and the tem-
perature was not evident in this case.

This study further shows that a linear model is eligible for 
modeling the GSTF self‐terms. For both temperature exper-
iments, where only one gradient axis (Figure 2A) and all 3 
gradient axes (Figure 2B) were heated, three sensors are nec-
essary and sufficient to describe the system comprehensively. 
Using more than three sensors resulted in an increased BIC. 
The RSM shows that the sensor with the highest temperature 
contribution for each gradient axis is a meaningful choice for 
describing the GSTF course adequately. Moreover, it is not 
necessary to include the temperature derivatives in the model 
approach. For the B0‐cross‐terms, heat transportation has to 
be considered to describe the temperature response charac-
teristics. Therefore, a Bateman‐convolution kernel was intro-
duced to consider heat transportation in the model. The best 
result could be achieved for the ICM with three sensor‐specific  
Bateman‐convolution kernels, which describe individual heat 
transportation for every gradient axis. We assume the slow 
B0 effect must be traced back to heating of other parts of the 
scanner rather than the gradient coils. Possible candidates 
might be shim plates or gradient wires.

Busch et al.25 also measured the GSTF self‐terms for dif-
ferent temperatures and noticed changes in the magnitude 

response while heating a 3T Achieva scanner (Philips 
Healthcare, Best, The Netherlands). As reported in this 
work, no variations in gradient delays were detected25 for 
different temperature states. Similar to our results, some 
temperature‐dependent shifts of the mechanical resonances 
could be observed. The analysis of the effect of these shifts 
for different applications will be considered in future work. 
In contrast to that, Brodsky et al.24 reported changes in the 
gradient delay times after applying gradient heating for 
a 1.5T Excite scanner (GE Healthcare, Waukesha, WI). 
Previous studies28,29 also worked on the analysis and model 
generation for the gradient system transfer functions of 
Philips systems. In contrast to the analysis presented here, 
temperature sensor elements were manually attached at 
several scanner locations. In these studies,28,29 the thermal 
model of the GIRF was created using seven temperatures 
and their time derivatives combined with a linear modeling 
approach. The researchers’ observation, that the integration 
of temperature derivatives is beneficial, might be reasoned 
by the fact that the sensors are not directly integrated within 
the coils as it is the case in this work. In our study, the most 
efficient model was obtained without including tempera-
ture derivatives and by using only the three most sensitive 
built‐in temperature sensors. To model the B0‐cross‐terms, 
the introduction of additional convolution kernels was nec-
essary to mimic heat transportation.

Besides a global frequency‐dependent B0‐shift attribut-
able to gradient heating, Hermann et al.30 also reported on 
B0 variations in a spatial dependency after heating the gra-
dient system with a periodically rotated overlapping paral-
lel lines with enhanced reconstruction EPI diffusion tensor 
imaging (DTI) sequence. Our focus laid on the dynamic 
properties of the gradient system and the static effects as 
described in Hermann et al.30 were not investigated in this 
work.

In conclusion, this work successfully analyzed the tem-
perature dependency of the GSTF self‐ and B0‐cross‐terms 
and developed models to predict authentic gradient system 
characteristic for arbitrary temperature states. In the future, 
this knowledge can be integrated into GSTF‐based trajec-
tory correction techniques7-9,22 by correcting the nominal 
gradient waveforms with the GSTF which fits the current 
temperature sate of the gradient system. This could further 
diminish artefacts, especially in warm temperature states 
which can be obtained by demanding sequences, as for ex-
ample in DTI.
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