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"Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the 

real thing. The theory says a lot, but does not really bring us closer to the secret of the 'Old 

One.' I, at any rate, am convinced that He is not playing at dice." 

-- Albert Einstein 



IV Chapter 1   Introduction – Binding of anions in artificial receptor systems 

 



Chapter 1   Introduction – Binding of anions in artificial receptor systems V 

 

Symbols and Abbreviations 
 

Ψ  total wave function 

ψ  electronic wave function 

Φ  nuclear wave function / electric field potential (chapter 3.3.1) 

ψS  Slater determinant 

φ  spin orbital 

φ   spatial orbital 

Ω  spin function 

χ  basis function 

R  nuclear coordinates 

r  spatial electron coordinates 

ω  spin coordinates 

x  spatial electron coordinates with spin coordinates 

H  Hamilton operator 

h  one electron operator 

g  two electron operator 

J  Coulomb operator 

K  exchange operator 

 

HF  Hartree Fock 

SCF  Self-Consistent Field 

AO  Atomic Orbital 

LCAO  Linear Combination of Atomic Orbitals 

MO  Molecular orbital 

CSF  Configuration state function 

DFT  Density Functional Theory 

MP2  Møller-Plesset perturbation theory 2nd order 

CCSD(T) Coupled Cluster theory with double excitations including triple excitations by 

perturbation theory 

GGA Generalized Gradient Approximation 

B-LYP Becke exchange functional and Lee, Yang and Parr’s correlation functional 

B3-LYP Becke’s 3 parameter functional and Lee, Yang and Parr’s correlation functional 

RI Resolution of Identity 
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COSMO COnductor-like Screening Model 

PCM Polarizable Continuum Model 

AM1 Austin Model 1 

PM3 Parameterized Model 3   

MNDO Modified Neglect of Differential Overlap 

MMFF94 Merck Molecular Force Field 

OPLS-AA Optimized Potentials for Liquid Solvents (All Atoms model) 
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Chapter 1 Introduction – Binding of anions in 

artificial receptor systems 

 

Supramolecular chemistry as an independent research field has been developed in the 

beginning of the 1960s with the synthesis of macrocyclic ligands for metal cations like crown 

ethers (Pederson et al.) and three-dimensional cryptands (Lehn et al.) or spherands (Cram et 

al.).1 The pioneering work of Cram, Lehn and Pederson in this new discipline was awarded in 

1987 with the Alfred Nobel prize and nowadays supramolecular chemistry has become a fast-

growing research field showing high interdisciplinarity between chemistry, biology and 

physics. It is defined as the chemistry of molecular assemblies which are formed by non-

covalent interactions between two compounds, often denoted as host and guest. In the field of 

enzymology this concept has been known long before as receptor-substrate binding or 

molecular recognition. Already in 1894 Emil Fischer described the discrimination of various 

substrates towards an enzyme as a “key-lock” principle depending on the complementarity of 

the molecular shape with the binding pocket.  

 

Today’s supramolecular chemistry comprises a large scope of research interests starting from 

biological relevant macrocyles, transport systems or neurotransmitters over artificial hosts 

that bind either cationic, anionic or neutral compounds to liquid crystals and other self-

assembling systems. The common ground on which all of these structures are based is the 

non-covalent character of the intermolecular interactions. The nature of these supramolecular 

interactions originates from electrostatic interactions2 which can be classified according to 

Table 1. The bond energies range from 350 kJ mol-1 similarly to covalent bonds to very weak 

van-der-Waals interactions.  

 

The non-covalent binding of anions as guest compounds presents a field in supramolecular 

chemistry that, in contrast to cationic or neutral substrate binding, has to deal with difficulties 

in constructing artificial receptors arising from the intrinsic properties of anions.3 Even simple 

inorganic anions and above all biological important anions show a non-spherical shape and 
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have a much larger system size compared to common cations. Moreover, anion hosts have to 

compete with the surrounding aqueous medium resulting in large free energies of solvation. 

Solvation stabilizes anions to a larger extent than cations of equal charge density by the 

formation of multiple and strong hydrogen bonds. Further aspect which have to be considered 

when designing artificial anion receptor systems are  

 

• the pH range dependency of anionic guests and cationic host molecules, especially 

those with protonated amino groups 

• the complementarity and preorganisation of the host-guest complex 

• the thermodynamic or kinetic selectivity of a host system towards several guest 

molecules 

 

Since the engineering of a kinetic selectivity as it occurs in many biochemical enzymes is still 

quite challenging, a thermodynamic selectivity by intelligent application of the 

complementarity and preorganisation concepts in conjunction with optimized host-guest 

interactions is easier to achieve. The problem occurring during a kinetic controlled process is 

that the guest molecule must not bind too strong and the receptor molecule should on one 

hand be perfectly complementary to the substrate, but on the other hand should be also 

flexible enough to adapt to the conformational change and modification in the charge 

distribution of the guest molecule along the complexation pathway. 
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Table 1 Classification of the various non-covalent interactions 

Interaction  Bond energy 
(kJ mol-1) Example 

Ionic interaction 
 (Ion pairing)  100-350 NaCl 

Ion-dipole interaction  50-200 Na+-18-crown-6 complex 

 strong 60-120 HF 

Hydrogen bonding medium 16-60 nucleobase pairing 

 weak <12 C―H···O hydrogen bond 

Cation-π-interaction  5-80 K+-benzene complex 

π –π-stacking  0-50 DNA  

Dipole-dipole 
interaction  5-50 Carbonyls 

Van-der-Waals 
interaction  <5  non-polar solvents, e.g. n-octane 
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 Arginine as carboxylate binding site 

Anions play an important role in biochemical processes as enzyme substrates and cofactors.4 

For instance, phosphate residues occurring in ADP or ATP can bind non-covalently to 

ATPase enzymes that are part of the energy transport system in the respiratory chain. One 

particularly important amino acid residue found within many anionic binding pockets of 

proteic hosts is arginine which can bind effectively phosphates, sulfates and carboxylates. 

Arginine itself represents an amphipathic amino acid with a hydrophobic long side chain and 

a hydrophilic terminal guanidine group. The guanidine group has a high proton affinity and is 

thus protonated under physiological conditions (guanidinium: pKa = 13.5). The cationic 

guanidinium rest in arginine can therefore form strong salt bridges with anionic substrates. 

One example for a naturally occurring arginine based anionic receptor is the carboxypeptidase 

A (CPA) that is responsible for the hydrolytic cleavage of ester bonds of C-terminal peptidic 

substrates possessing an aromatic rest in the β position. The X-ray structure of CPA with L-

phenyllactate as enzyme inhibitor is given in Figure 1 showing the carboxylate group of the 

substrate binding via two charge-assisted hydrogen bonds to the guanidinium moiety of an 

arginine residue.5  

Figure 1  Crystal structure of L-phenyllactate binding to carboxypeptidase A. 
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Artificial guanidinium-based receptors 

Already in the late 1970s Lehn and co-workers synthesized the first guanidinium-based anion 

receptors that were macrocycles containing up to three guanidinium moieties separated by 

various spacer groups. 3,6,7 However, the poor complexation behaviour based mainly on 

unspecific ionic interactions as well as macrocyclic and chelat effects made this type of 

receptors unfavourable. A decade later, in 1988, Schmidtchen and coworkers were able to 

present a bicyclic guanidinium system that showed improved binding characteristics due to 

the reduced hydration of the charged moiety and the introduction of anchor groups for 

stabilizing interactions with the backbone of the substrate.8 The butanol substituted derivative 

of A was able to complex p-nitrobenzoat in acetonitril with an estimated lower limit for the 

dissociation constant Kdiss of 10-4 M-1. De Mendoza extended this scaffold to design chiral 

derivatives of A which were able to discriminate between D/L enantiomers of aromatic 

carboxylate anions. With p-nitrobenzoat as substrate the receptor B showed an association 

constant in CDCl3 of K = 1609 M-1 and for N-acetyltryptophan the association for the L-

isomer was twice as high as for the D-isomer (Kass = 1051 vs. 534 M-1).9 
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In 1992, Hamilton and coworkers developed a bisguanidinium-based receptor C that 

exhibited an excellent complexation behaviour in acetonitril towards phosphodiesters (Kass = 5 

× 104 SM-1).10 It was shown that this receptor accelerates the phosphordiester cleavage in 

RNA by mimicking staphylococcal nuclease (SNase) by a factor of 300 compared to the 

uncatalysed reaction. Similar bisguanidinium systems were synthesized by Göbel or Anslyn 

that were able to complex multiple charged anions in rather polar solvents like DMSO or 

methanol with association constants up to 105 M-1.3 Unfortunately, all receptors showed poor 

association in increasingly competitive solvent media (from DSMO to water) and are 
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therefore not capable to bind monoanionic substrates like protein carboxylate structures under 

physiological conditions effectively.  

Guanidiniocarbonylpyrroles as carboxylate receptors 

 In 1999, Schmuck reported for the first time on a new class of receptor molecules for the 

binding of carboxylates in aqueous media.11 These 2-(guanidiniocarbonyl)-1H-pyrroles 

improve the ion pairing of simple guanidinium cations with oxo anions through a combination 

of ion pairing and multiple hydrogen bonds (see Figure 2). Due to the increased acidity of the 

acyl guanidinium moiety and the additional H-bonds, these complexes are much stronger than 

those of simple guanidinium cations allowing the complexation of carboxylates even in highly 

polar solvents like aqueous DMSO.3,4,6,12 An experimental comparative thermodynamic study 

with a series of structurally related guanidiniocarbonyl pyrroles demonstrated that the 

energetic contributions of the individual non-covalent interactions within this binding motif 

(the individual hydrogen bonds and the ion pair) are significantly different. Besides the ion 

pairing mainly the amide NH in position 5 of the pyrrole ring seemed to be important for the 

effective binding of the carboxylate substrate. Further studies showed that also the size and 

electronic structure of the aromatic ring is important.13 Pyrrole systems are superior to the 

analogous benzene derivatives which in turn show a higher binding affinity than pyridine 

derivatives, in which the nitrogen lone pair exerts additional repulsive effects on the bound 

carboxylates.  

 

N
HN
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N
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HH

H

H

O
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Figure 2 Guanidiniocarbonyl pyrroles efficiently bind carboxylates even in aqueous solvents 
due to a combination of ion pair formation and additional H-bonds.  

 

A zwitterionic derivative of this new structure motif with substitution of a carboxylate group 

in position 5 of the pyrrole ring system shows strong self-assembly to discrete dimers with an 

estimated association constant of 170 M-1 in water.14 The formation of discrete nanometre-
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sized cyclic dimers or vesicular structures could be observed in DMSO by separation of two 

zwitterionic monomeric units with different spacers (see Figure 3).15  

 

Figure 3 Formation of cyclic dimers consisting of bis-zwitterions, which then self-assemble 

into large vesicles [taken from ref. 15b]. 

 

The quantification of such supramolecular interactions has therefore been of great interest and 

one incremental approach, for example, is based on extrapolation from experimental 

thermodynamical data.16 However, this ansatz is only able to provide a semi-quantitative 

thermodynamic ranking of intermolecular effects. A real quantitative discrimination between 

all the various contributions that sum up to the overall stability was not yet possible and the 

questions concerning the binding mode of the guanidinium based receptor motif that could 

not be answered satisfactorily are in particular: 

• What are the contributions of each hydrogen bond to the dimerization energy and how 

important are cooperative effects? 

• What role does the salt bridge play upon complexation? 

• What influence do size and electronic structure of the ring system have on the anion 

binding? 

• How important are molecular solvent effects? 
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To summarize, one question arises inevitably during any rational design process which can be 

formulated as follows: “What makes a certain structure motif more favourable than others 

with respect to the property of interest and how can one further improve the structure motif in 

order to maximize the property in a given media?” 

On this account the present study has been performed in order to elucidate the various effects 

that affect the association process. The advantages of theoretical investigations are that one is 

able to quantify non-covalent interactions by means of fictional systems that may not be 

experimentally accessible. The newly gained knowledge on the binding modes can then be 

used for the development of a novel lead structure like for the rational design of artificial 

peptide receptors.17  
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Chapter 2 How to Quantify Intermolecular 

Interactions? 

2.1 Experimentally 

The quantification of non-covalent interactions by evaluation of association free energies is of 

central importance for the investigation and understanding of host-guest systems.18 In the 

following chapter the discussion of physical-chemical approaches to determine the energetics 

of supramolecular complexes will be restricted to the most popular experimental methods 

used in modern research labs and gives only a rough sketch of the various theoretical 

backgrounds of the spectroscopic methods available.19 Not regarded are for instance 

electrochemical, solubility-based or kinetic methods as well as calorimetry. Furthermore, it is 

assumed that the complexes are in a thermal equilibrium with 1:1 stoichiometry.  

2.1.1 Determination of association constants 

Considering a simple equilibrium reaction of a receptor R and a substrate S the association 

and dissociation constants are given by the law of mass action as 

[ ]
[ ][ ]SR

RS
K

K
Diss

Ass ==
1  eq. 2.1.1

The equilibrium concentrations of the free receptors and substrates can be calculated from the 

mass balance equations and the initial concentrations. 

[ ] [ ] [ ]
[ ] [ ] [ ]RSSS

RSRR
−=
−=

0

0  eq. 2.1.2

By substituting eq. 2.1.2 into eq. 2.1.1 one obtains a quadratic equation 

[ ] [ ] [ ]{ }[ ] [ ] [ ] 00000
2 =+++− SRRSKSRRS Diss  eq. 2.1.3

that can be solved easily to 
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[ ] [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]
2

4 00
2

0000 SRKSRKSR
RS DissDiss −++−++

=  eq. 2.1.4

Regarding now any spectroscopic methods the property of interest (e.g. absorbance, 

fluorescence, NMR shifts, reaction rates, conductance etc.) can be expressed as sum of 

contributions from all components consisting of intrinsic molar properties x times the 

equilibrium concentrations. With the mass balance equations one can write for the observed 

property  

[ ] [ ] [ ] [ ] [ ] [ ]RSxSxRxRSxSxRxX SRRSSRObs Δ++=++= 00  eq. 2.1.5

with 

SRRS xxxx −−=Δ  eq. 2.1.6

 

The equilibrium concentration of the complex is given by eq. 2.1.4 and therefore eq. 2.1.5 

represents a hyper surface determined by the variables [R]0, [S]0 and Δx. In general, the initial 

concentration of the receptor is held constant and the molar property difference Δx is recorded 

while the substrate is titrated to the solution. By a computer-aided non-linear curve regression 

of the observed titration curve one can eventually determine the dissociation constant KDiss 

from eq. 2.1.5. This analysis holds for all spectroscopic methods describing 1:1 association 

processes. Reactions with different stoichiometry require other formulations of the law of 

mass action and hence the here derived equations for the equilibrium concentrations of the 

complex are no longer valid.  

NMR studies 

NMR titration experiments are popular for studying complexation reactions since besides the 

association constants one also obtains information about the structural properties of the 

receptor-substrate complex.19 The “complexation-induced shifts” (CIS) are stronger for atoms 

directly involved in the association process by forming hydrogen bonds or undergoing other 

intermolecular interactions. Hence, these atoms show the largest modifications of the 

chemical (electronic) environment being reflected by the largest CIS’s. The major drawbacks 

of NMR studies of non-covalent interactions are on one hand the need for high concentrations 

in order to get a reasonable resolution of the NMR signals. However, this often entails 
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solubility difficulties in polar solvents. In nonpolar media in contrast, one would observe too 

large association constants that make a non-linear regression analysis unfeasible. On the other 

hand, restrictions in the applicability can also derive from protonation reactions that give 

similar curve progressions or changes of the pH value during the titration experiment.  

UV /Fluorescence spectroscopy 

Optical methods like the UV and the fluorescence spectroscopy are able to circumvent the 

difficulties of NMR titration experiments by the usage of buffer solutions that suppress 

protonation reactions as well as by their sensitivity which allows working with low 

concentrations (c $ 10-7 M). However, optical methods require chromophores that absorb the 

radiated light in the specific wave length region. In case of UV spectroscopy (200-700 nm) 

aromatic compounds like pyrroles usually fulfil this criterion. The intrinsic molar property 

being detected is the molar extinction coefficient difference Δε at the wave length of the 

maximum absorption analogous to eq. 2.1.5. If no chromophore showing UV absorption or 

fluorescence is present in the receptor or in the substrate, an “indicator displacement assay” 

(IDA) can be used.20 Hereby, the receptor is complexed by an indicator molecule called 

reporter which itself is then displaced by the addition of the actual substrate. The change in 

the absorption of the reporter can be used to evaluate the association constant of the receptor-

substrate complex if the affinity of the reporter to the host is known. 

Mass spectrometry (MS) 

The thermodynamics and kinetics of host-guest complexation reactions are studied with 

increasing popularity by MS techniques since they allow a direct comparison of 

supramolecular complexes in solution and gas phase. It is thus possible to study the intrinsic 

molecular properties in the absence of solvent molecules.21 However, soft ionization 

techniques are required which should preserve the host-guest complex and prevent 

fragmentation reactions. Besides various desorption methods (e.g. field desorption (FD), fast 

atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI)) showing 

only limited scope, the electrospray ionization technique (ESI) has been proven to be a 

powerful tool for highly sensitive detection of specific association reactions (e.g. ligand-

protein complexes).22 Under certain assumptions competition experiments can be performed 

to determine relative binding constants to the receptor from the relative intensities of the 

complex peaks. 
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The soft ionization process occurring during an electrospray experiment can be separated into 

three stages.23 

1. In the first stage small droplets are formed at the tip of a capillary. Due to the high 

voltage (positive pole) impressed on the capillary charge separation takes place and 

the enrichment of positive charge at the liquid surface causes the formation of a Taylor 

cone that results from the balance of the electric field and the surface tension. If the 

distance from the capillary end becomes too large, small droplets with positive excess 

charge are emitted in a constant spray (liquid filament) with I ~10-7 A. 

2. In the next step the droplets are reduced by solvent evaporation increasing the charge-

to-volume ratio until the Raleigh limit is reached (electrostatic repulsion > surface 

tension). Elastic surface vibrations cause the fission of the droplets into micro-droplets 

and this procedure is repeated several times until only highly charged nano-droplets 

remain. 

3. The formation of gaseous ions from the micro-droplets has been explained by two 

theories. The ‘charged residue model’ of Dole assumes that the nano-droplets contain 

only a single analyte ion that is brought into gas phase by further solvent evaporation. 

In contrast, the ‘ion emission model’ by Iribane and Thomson describes the formation 

of gaseous ions by emission from highly charged micro-droplets containing ~ 70 

elementary charges and representing an alternative to a further Raleigh-decay of the 

droplet. 

The principal function of the electrospray ionization mechanism is the disruption of the non-

covalent interactions between analyte and solvent-molecules. In order to analyze non-

covalently bound species the ESI-MS technique is thus reduced to ionisable associates that 

form considerably more stable complexes with each other than with the solvent molecules. 

2.1.2 Determination of entropy and enthalpy contributions 

The free energy of a complexation process composes of enthalpy and entropy contributions 

which can be determined either by calorimetry or by the temperature dependency of K.18 The 

van’t Hoff isochore is given as  

2

ln
RT

H
dT

Kd Δ
=  eq. 2.1.7

and can be integrated under the assumption that the enthalpy difference ΔH is constant within 

a small temperature interval to 
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∫∫ Δ+Δ−=Δ=Δ= S
T

HdT
T

HdT
T

HKR 111ln 22  eq. 2.1.8

The common approach is now to calculate ΔH as the slope of 1/T plotted against RlnK and the 

entropy difference is then determined from the free energy difference at standard temperature.  

STHG Δ−Δ=Δ  eq. 2.1.9

However, regarding common host-guest complexes the variation of ΔH often adds up to 20 kJ 

mol-1 for a temperature interval of 50 K. The temperature dependence of ΔH and ΔG is given 

by 

p
pp

C
dT

SdT
dT

Hd
Δ=⎟

⎠
⎞

⎜
⎝
⎛ Δ

=⎟
⎠
⎞

⎜
⎝
⎛ Δ  

 

eq. 2.1.10

Although the heat capacity itself also depends on temperature, an adequate assumption is to 

consider the change in heat capacity within a small temperature interval ΔCp as more or less 

constant. Therefore, the enthalpy difference can be calculated as sum of a constant (intrinsic) 

value ΔHi and a temperature correction. 

ipp HTCdTCHdH Δ+Δ=Δ=Δ=Δ ∫ ∫  eq. 2.1.11

Analogously to eq. 2.1.10 and eq. 2.1.11 one write can the entropy difference as a sum of an 

intrinsic entropy ΔSi and a temperature correction.  

ipp STCdT
T

CSdS Δ+Δ=Δ=Δ=Δ ∫∫ ln1  eq. 2.1.12

By substituting the corrected expressions for the enthalpy and entropy differences (eq. 2.1.11 

and eq. 2.1.12) into eq. 2.1.8 one gets a more sophisticated model for evaluation of enthalpy 

and entropy contributions to the Gibbs free energy. 

( )1ln1ln −Δ+Δ+Δ−= TCS
T

HKR pii  eq. 2.1.13

It should be noted that enthalpies and heat capacities determined by the temperature 

dependence of K are less precise than those obtained by calorimetry. Especially ΔCp requires 
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accurate association constants whereas ΔH values are less sensitive towards the error bars of 

the determined K values and the considered temperature intervals. Moreover, inconsistent 

reaction conditions over large temperature ranges can also deteriorate the results making a 

reliable determination of ΔCp unfeasible by this approach.  

2.2 Theoretically 

In principle, all theoretical models allow to determine directly the association energies of any 

given compound by the calculation of the potential energies of its components (see chapter 

2.2.1). However, a sound description of complexation reactions as they occur in nature is only 

given by the Gibbs free energy difference of all Boltzmann weighted conformers composed of 

enthalpic and entropic terms. These contributions can be estimated either by analytical 

formulas for the gas phase (see chapter 2.2.2) or Molecular Dynamics simulations (see 

chapter 3.4) that are able to calculate free energy differences of reactions taking place in 

explicit solvation.  

2.2.1 Calculation of dimerization energies 

In the following only the aggregation of two components respectively monomeric units shall 

be considered. In general, the binding energy can be simply calculated by the energy 

differences of the individual monomers and the aggregate. However, by using electronic 

structure methods with basis set expansions for the electronic wave functions one has to 

encounter a basis set superposition error (BSSE). The binding energy of a non-covalently 

bound complex is overestimated since it is described by a much larger basis set than the 

monomers. A monomeric unit within a dimer can use additionally the basis functions of the 

counterpart to describe its own charge distribution. Metaphorically speaking, the electron 

density of one monomer is spread more over the whole dimer and, as a consequence, the 

complex system is described as too stable. 
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A larger basis set now decreases the basis set superposition error and for an infinite basis no 

error would occur. However, hard- and software restrictions limit the basis set size and a good 

estimate for the magnitude is necessary. The counterpoise (CP) correction after Boys and 

Bernardi gives an approximation of the BSSE by calculating the energy difference between 

the monomers in dimer geometry with and without additional basis functions on the atom 

positions of the monomeric counterparts in the dimer complex.24 These orbitals are often 

denoted as "ghost orbitals" since they are not centred on any nucleus. To calculate the binding 

energy correctly, the difference in energy between the dimer and the monomers has to be 

reduced by the CP-correction.  

 

Figure 4 Various components of the counterpoise correction. 

The magnitude of the counterpoise correction for medium-sized dimer complexes showing 

ionic interactions as considered within this work ranges from at least 25 kJ mol-1 for a single 

valence basis set to 5-8 kJ mol-1 for a triple ξ basis set with additional diffuse functions. 

2.2.2 Calculation of entropy and enthalpy contributions 

Thermodynamical entities like entropy and enthalpy of a given molecule in gas phase are 

accessible via the molecular partition function that can be dissected approximatively into a 

translational, rotational, vibrational and electronical part.25 Since the latter component is 

described mainly by electronic structure calculations of the ground state, only the corrections 

for the translation, rotation and vibration have to be evaluated. The partition functions are 

approximated by the expression for an ideal gas in gas phase, i.e. no coupling between the 

degrees of freedom is assumed. The various partition functions can therefore be written (in 

a.u.) as  

( ){ } ( ) ( ){ }Dimer
B

Dimer
A

Ghost
B

Ghost
ABABA EEEEEEEE +−+−−+=Δ +  eq. 2.2.1

    

Monomer Dimer 

Monomer in dimer 

geometry with ghost 

orbitals 

Monomer in dimer 

geometry without 

ghost orbitals 
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Hereby, v denotes the volume per molecule of an ideal gas, I denotes the respective moment 

of inertia and σ is the symmetry number of the molecule. The zero point vibrational energy 

(ZVPE) in a.u. is calculated using a harmonic approximation to 

∑⋅=
i

ifZPVE ε
2
1  eq. 2.2.5

with f representing a scaling factor in the magnitude of 0.9 in order to adjust the 

overestimation of observed fundamentals by SCF calculated wavenumbers. The statistical 

thermodynamic gives the zero point energy corrected chemical potential as  

( )vibrottrans qqqRTZPVE ⋅⋅⋅−= lnμ  eq. 2.2.6

The inner energy can be written as the sum of the contributions of the translatory, rotatory and 

vibrational partition function, of which the first two are given by the simplified expressions 

for a rigid rotator by which every degree of freedom is set to 3/2 RT.26 Only the inner energy 

of the vibrational partition function must be calculated as a sum over all frequencies. 

( )( )
( )( )∑ −−⋅
−+⋅

++=

=
∂

∂
++=++=

i i

ii

vib
vib

kT
kT

RTZPVE

T
q

RTRTZPVEuRTZPVEU

/exp12
/exp1

3

ln
33 2

ε
εε  eq. 2.2.7

By making use of the ideal gas law the enthalpy is simply given as 



Chapter 2   How to Quantify Intermolecular Interactions? 17 

 

RTUH +=  eq. 2.2.8

Finally, the entropy can be calculated by applying the following expression. 

( )
T

HS μ−
=  eq. 2.2.9

These equations are based on approximations that are only applicable if the rotation can be 

treated classically, the molecules form an ideal gas or solution and the harmonic 

approximation regarding the vibrational modes are approvable. Other formulations in 

quantum chemistry software have been used that calculate the various contributions by 

inserting eq. 2.2.2 - eq. 2.2.4 into the statistical expression of the entropy.  

qk
dT

qkTS lnln
+⎟

⎠
⎞

⎜
⎝
⎛ ∂⋅=  eq. 2.2.10

In case of the translatory partition function one obtains the well-known Sackur-Tetrode 

equation for a monoatomic gas. 
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Chapter 3 Theoretical Methods 

"Anyone who is not shocked by quantum theory has not understood it." 

--Niels Henrik David Bohr 

 

 

In this chapter the main features of the theoretical methods used throughout this work are 

briefly described. A detailed description of the various approaches is hardly feasible and 

therefore the reader is referred to the references for further information. The main focus is 

rather to give an overview over the shortcoming and the advantage of each method than to 

provide a full description. The aim is to show the problems modern theoretical chemistry 

faces when treating mid-range bioorganic molecules in a realistic, i.e. aqueous surrounding. 

An appropriate treatment therefore requires the usage of both quantum mechanics and 

classical mechanics. 
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3.1 Electronic structure methods  

The explicit treatment of the electronic structure of a molecule is mandatory if one wants to 

describe inherent properties like ground state and excitation energies, charge distributions and  

interactions with external fields (electric or magnetic). In the recent past two approaches are 

commonly used, namely the electron correlation methods footed on the single determinant 

Hartree-Fock (HF) approach27 (chapter 3.1.1 and 3.1.2), and the density functional theory 

(DFT)28, which solves the Kohn-Sham equations (chapter 3.1.3) that are closely related to the 

HF formalism. Both methods can not be applied in a “black-box” manner since at least a basic 

knowledge of their theoretical fundament is needed in order to produce reasonable results 

(chapter 3.1.4).   

3.1.1 A short review on the self-consistent field (SCF) theory 

The following equations are all written in atomic units, i.e. the Planck’s constant h , the 

electron mass em and the permittivity of the vacuum 04πε are all set to unity, whereas AM , 

the mass of nucleus A, is given as a multiple of the electron mass. The time-independent, non-

relativistic Schrödinger equation is given as  

),(),( rRrRH Ψ=Ψ E  eq. 3.1.1 

with r and R denoting the spatial electron and nuclear coordinates, respectively. The 

Hamilton operator is defined as a sum of kinetic and potential operators, the latter represent 

the electron-electron, electron-nucleus and nucleus-nucleus Coulomb interactions. 
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 eq. 3.1.2

Since the mass of a nucleus is much greater than those of an electron, the heavy nuclei move 

more slowly than the light electrons. Their movement can therefore be considered in a 

reasonable approximation as being decoupled from the electron movement.  
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The Born-Oppenheimer approximation 

In the Born-Oppenheimer approximation the nuclear kinetic energy operator Tn is neglected 

and the Schrödinger equation is solved only for the electronic part of the wave function for a 

fixed geometry of the nuclei (“clamped nuclei assumption”). The total wave function can be 

written in terms of a Taylor series with the expansion coefficients as functions of the nuclear 

coordinates. 

∑
∞

=

Φ=Ψ
1

),()()(
i

ii, RrRRr ψ  eq. 3.1.3

The electronic Schrödinger equation therefore is given by 

),(),()(),( rRrRVVVTrRH nnneee i
el
iieiel ψεψψ =+++=  eq. 3.1.4

with el
iε denoting the eigenvalues of the electronic Schrödinger equation that give the potential 

energy surface (PES) for different positions of the nuclei. The dynamics of the nuclei is 

described by the Schrödinger equation of nuclear motion that gives as result the vibrations 

and rotations of a molecular system.  

)()()( RRT ii
el
in EΦ=Φ+ε  eq. 3.1.5

The exact solution of the Schrödinger equation also includes coupling elements Cij between 

different electronic states which basically are contributions that derive from the nuclear 

kinetic operator acting on the electronic wave function. 

)()()()( RRCRT i
j

jiji
el
in EΦ=+Φ+ ∑ χε  eq. 3.1.6

In the Born-Oppenheimer approximation these coupling elements are now set to zero 

assuming an adiabatic behaviour of the electronic wave function. However, if the electronic 

wave function changes drastically along a nuclear coordinate (“avoided crossing”), the Born-

Oppenheimer approximation fails and one has to take into account the coupling between 

different electronic states. 
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The Slater determinant 

For the solution of the electronic Schrödinger equation one uses a wave function that 

incorporates the electron spin as a quantum effect by a product ansatz for the one-electron 

functions. 

)()()( iiii ωrx Ω∗= φϕ  eq. 3.1.7

The spin orbitals φi(xi) consist of a spatial orbital part and a spin function part Ω(ω), that can 

have either α or β spin, and which obeys the orthonormality condition δαβ. 

Regarding now a many-electron system, the Pauli principle requires an antisymmetric wave 

function with respect to the interchange of two electron coordinates. This is equal to the 

condition that electrons have to differ in at least one quantum number. A further aspect that 

one has to allow for is the indistinguishability of two electrons. As a result, a simple product 

ansatz consisting of one-electron functions (Hartree product) fails and the electronic wave 

function is therefore constituted by a Slater determinant. 
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The Slater determinant fulfils all conditions mentioned above as it can be proved by regarding 

the spatial pair density 21

2
rr ddSψ  of two arbitrary electrons. This quantity can be obtained 

by integrating the pair density over the electron spins which itself can be either alike or 

unlike.  

The energy of a Slater determinant – The Hartree-Fock equations  

The energy of an approximate and normalized wave function like the Slater determinant can 

be evaluated by calculating the expectation value of the Hamilton operator. 

ψψ
ψψ
ψψ

el
el

elE H
H

==  eq. 3.1.9

The variational principle now states that the exact energy of the ground state E0 is a lower 

bound to the electronic energy of the approximate wave function. 
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elEE ≤0  eq. 3.1.10

In principle, by skilful choice of the trial wave function one is able to calculate the exact 

energy of any system. The parameters of the approximate wave function which can be varied 

are 

1. the expansion coefficients of the atomic orbitals when expanding the Slater 

determinant into a basis (see “Introduction of a basis – The Roothaan-Hall 

equations”) and  

2. the expansion coefficients of a generic multi-determinant trial wave function (see 

Chapter 3.1.2). 

The more flexible the trial wave function is constructed, the closer the expectation value will 

be to the exact ground state energy. The energy of a single determinant ansatz is described by 

the Hartree-Fock energy expression, in which the operators have been sorted according to the 

number of electron indices. The one and two electron operators are introduced as 
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By representing the Slater determinant through a permutation operator acting on the Hartree 

product, it is possible to evaluate all terms which contribute to the electronic energy and the 

expectation value can be written as 
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with 

)()()()( 211212 xxgxxJ jiiji ϕϕϕϕ =  

)()()()( 121212 xxgxxK jiiji ϕϕϕϕ =  

eq. 3.1.12

The Ji operator is denoted as Coulomb operator and it describes the classical coulomb 

repulsion between two charges, whereas the Ki operator is called the exchange operator that 

has no classical analogy. It interchanges the coordinates of two functions on the right hand 
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side of the integral and results from the claim for an antisymmetric wave function. In other 

words, it accounts for the correlated movement of electrons having the same spin and that try 

to avoid each other due to the Pauli principle (“Fermi hole”). 

The basic concept of Hartree-Fock is now to minimize the energy value by a variation of the 

spin orbitals under the orthonormality condition. 

0=
∂

∂

i

el

ϕ
ψψ H

 eq. 3.1.13

with ijji δϕϕ =  

The constrained optimization problem can be solved by the introduction of Lagrange 
multipliers εij into the linear system of equations.  

( )∑∑ −−=
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i
ijji

N

j
ijEL δϕϕε  eq. 3.1.14

The Lagrange function is stationary with respect to an orbital change. 
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ijEL 0ϕϕϕϕε  eq. 3.1.15

Inserting and differentiating the energy expression of eq. 3.1.12 leads to 
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with  
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jii υhKJhF +=−+= ∑  eq. 3.1.17
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The Fock operator Fi is an effective one-electron energy operator describing the kinetic 

energy and the electron-nuclei attraction of an electron (hi operator), as well as the energy 

within the mean field of all other electrons (Hartree-Fock potential HFυ ). With 
∗∂=∂ ϕϕϕϕ OO  eq. 3.1.1 can be reformulated to  

0  conjugatedcomplex =+⎥
⎦

⎤
⎢
⎣

⎡
−∂=∂ ∑∑

N

j
jijii

N

i
iL ϕεϕϕ F  eq. 3.1.18

The expression within the brackets must equal zero which leads to the well-known Hartree-

Fock equations.  

∑∑ =⇒=−
N

j
jijii

N

j
jijii ϕεϕϕεϕ FF           0  eq. 3.1.19

A unitary transformation diagonalizes the Lagrange multipliers matrix which leads to a set of 

pseudo-eigenvalue equations of canonical orbitals.  

iiii ϕεϕ ′=′F   eq. 3.1.20

The Lagrange multipliers are the expectation values of the Fock operator iiii ϕϕε ′′= F  and 

give the respective MO energies. Since the Fock operator depends on all occupied orbitals, 

these equations have to be solved iteratively until self-consistency is reached. The resulting 

orbitals are therefore called either Hartree-Fock (HF) or Self-Consistent-Field (SCF) orbitals. 

The total energy is the nuclear potential plus the sum over all SCF orbitals minus a correction 

term since the Fock operator counts the J and K operator twice. 
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The Fock equations for a closed shell system can be derived by the separation of the spatial 

and spin functions and integrating from the left with )( 1ωα . The final equations can then be 

written as 

iiii φεφ =f  eq. 3.1.22
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2/
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j
jii KJhf −+= ∑  eq. 3.1.23

with fi as the closed-shell Fock operator 

Introduction of a basis – The Roothaan-Hall equations 

So far no further specifications about the nature of the molecular orbitals have been made. For 

finite sized molecular systems it is convenient to expand each MO in terms of basis functions 

that represent atomic orbitals. 

LCAO ansatz:  ∑
=

=
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ii c
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νν χφ  eq. 3.1.24

Inserting eq. 3.1.24 into eq. 3.1.22 and integrating from the left with μχ  yields 
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This equation can be rewritten in short hand form as 
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eq. 3.1.26

SCεFC =  eq. 3.1.27

in matrix notation. Fμν and Sμν denote the Fock matrix and overlap matrix elements, 

respectively. The Fock matrix elements contain two-electron operators which are also 

expanded into a basis.29  
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The AO coefficients are summarized to a density matrix Dλσ and the electron density can then 

be expressed in terms of the basis functions. 

∑=
2/

2
N

j
jjccD σλλσ  eq. 3.1.29

∑ ∗=
λσ

σλλσ χχρ )()()( rrr D  eq. 3.1.30

The SCF procedure 

Since the Fock matrix depends on its own solution, the Roothaan-Hall equations must be 

solved iteratively as illustrated below. 

 
Figure 5 Flowchart of the SCF procedure  

yes 

Calculation of all one- and two-electron integrals hμν and Gμνλσ 

Generate initial guess for the MO coefficients (e.g. Extended Hückel calculation) 

Form the initial density matrix D 

Form and diagonalize the Fock matrix DGhF ⋅+=  

Build new density matrix D from the eigenvectors of F 

Convergence to the 

old density matrix?
SCF reached

no 
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3.1.2 Electron correlation methods 

In the basis set limit the Hartree-Fock theory gives the exact energy of a Slater determinant 

wave function. The wave function fully incorporates the exchange correlation by the 

antisymmetric nature of the Slater determinant. However, since the Fock operator is only an 

effective one-electron operator which describes the interaction of an electron within the 

averaged field of the surrounding electrons, the Coulomb correlation is neglected in a 

restricted HF ansatz.  The correlation energy is thus defined as the Coulomb correlation given 

by the energy difference between the Hartree-Fock limit and the exact (non-relativistic) 

energy.  

Static and dynamic electron correlation 

The electron correlation can be further decomposed into a static (near-degeneracy) correlation 

and a dynamic correlation. The static correlation can be seen by the wrong dissociation 

behaviour of a diatomic homonuclear covalent bond if only a single configuration of the 

system is taken into account. The Hartree-Fock ansatz gives in the dissociation limit an 

unphysical wave function with too large ionic contributions. By using a multi-determinant 

ansatz with already a few other configurations this bond dissociation failure can be 

circumvented. The HF wave function alone is not flexible enough to describe such kind of 

systems in a correct manner. 

The dynamic correlation comprises the instantaneous electrostatic interaction between 

electrons and therefore takes into account the explicit correlated movement of two electrons 

due to their electronic repulsion. Hence, the electronic wave function exhibits a hole at small 

distances of two electrons (“Coulomb cusp”) that is not described by the Hartree-Fock theory. 

 
Figure 6 Graphical representation of the Coulomb cusp 
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Available electron correlation methods 

The most straightforward method to include electron correlation is the configuration 

interaction (CI) of multiply excited determinants (singles (S), doubles (D), triples (T) etc.). 

The CI wave function is set up by a linear combination of Slater determinants weighted by 

expansion coefficients ci, which are determined by solving the matrix eigenvalue problem 

cHc CIE=  either numerically or iteratively. The diagonalization of the CI-matrix H yields the 

CI energy. In general, CI is capable to calculate the exact energy within a given basis set if all 

possible excitations are considered (“full CI”). However, the fast growing size of the CI 

matrix makes this an unfeasible task already for small organic molecules so that different 

truncations have to be made. Variations of the configuration interaction scheme are the multi-

configurational SCF (MCSCF) methods like CASSCF or RASSCF as well as the multi-

reference CI ansatz. A detailed description of these methods is waived - chapter 3.1.4 will 

give a classification of the CI method within other electron correlation methods.  

The electron correlation approaches that have been used throughout this work were the 

Møller-Plesset perturbation method 2nd order (MP2) based on the general many-body 

perturbation theory (chapter 3.1.2.1) and the coupled-cluster method (chapter 3.1.2.2). The 

latter has been fully applied for single and double excitations – triple excitations were 

approximated by perturbation methods. The so-called CCSD(T) approach is regarded as the 

“gold”-standard for single-point calculations in theoretical organic chemistry since it presents 

in conjunction with a reasonable basis set the best compromise of high accuracy and 

feasibility for small organic compounds.  

3.1.2.1 Møller-Plesset perturbation theory 

The basic concept behind perturbation theory is that a multi-dimensional problem can be 

approximated by the solution of a similar, but resolvable problem. The difference between the 

both problems can be regarded as a perturbation of the already known problem. The choice of 

the partitioning is in principle arbitrary, however, an important condition is that the 

perturbation must only be small in comparison to the reference system. The application field 

of this approach ranges from astrophysics (e.g. the calculation of planetary movement) to the 

description of matter in electric or magnetic fields. A general theoretical framework for 

describing a quantum mechanical perturbation is the many-body perturbation theory (MBPT) 

by Raleigh and Schrödinger. Starting from the MBPT equations, Møller and Plesset have 



30 Chapter 3   Theoretical Methods 

 

developed a method to compute the electron correlation energy, in which the Coulomb 

correlation is seen as a perturbation of the uncorrelated Fock equations.27  

Many-body perturbation theory 

The many-body perturbation theory defines a Hamilton operator to consist of a reference 

Hamiltonian H(0) and a perturbation operator H′ . The strength of the perturbation can be 

varied by the parameter λ. 

HHH ′+= λ0  eq. 3.1.31

with 1λ0 <<  

The known solutions for the reference Hamiltonian can be chosen to be orthonormal 

eigenfunctions of the unperturbed system. 
)0()0()0(

0 iii E ψψ =H  

with ijji δψψ =)0()0(  eq. 3.1.32

For the perturbed system in the ground state the Schrödinger equation can be written as 

Ψ=Ψ′+=Ψ E)λ( 0 HHH  eq. 3.1.33

If no perturbation takes place (λ = 0), eq. 3.1.33 will become equal eq. 3.1.32 to for the lowest 

energy state. The parameter λ can have any arbitrary value in the range from zero to one and 

the perturbed wave function and energy can be expressed in Taylor series in powers of the 

perturbation parameter.  

...λλλ )3(3)2(2)1()0( ++++=Ψ ψψψψ  eq. 3.1.34

...λλλ )3(3)2(2)1()0( ++++= EEEEE  eq. 3.1.35

The perturbed wave function Ψ  is intermediately normalized to the reference wave function 

(eq. 3.1.36). As a consequence from the orthonormality condition of eq. 3.1.32 one can see 

that all correction terms become orthogonal to the reference wave function. 
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 eq. 3.1.36

0)0()( =ψψ n  eq. 3.1.37

Inserting the Taylor expansions of eq. 3.1.34 and eq. 3.1.35 into eq. 3.1.33 yields 
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The brackets can now be expanded and the terms with the same power of λ are collected. 
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 eq. 3.1.39

The choice of perturbation parameter is arbitrary and every bracket must therefore be equal 

zero giving the perturbation equations of the zero, first, second, nth-order. 
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 eq. 3.1.40

These equations can now be integrated from the left with the reference wave function )0(ψ  

by making use of the intermediate normalization (eq. 3.1.37) and the hermiticity of the 

unperturbed Hamiltonian. 
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As a result all correction energies of the nth-order can be expressed by matrix elements of H′  

of the unperturbed reference wave function and the (n-1)th-order wave function.  
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)1()0()(:λ −′= nnn E ψψ H  eq. 3.1.42

Until now the wave function corrections )(nψ  have not been specified. As the unperturbed 

Schrödinger equation results in a complete set of wave functions (eq. 3.1.32), it is possible to 

expand the unknown wave function corrections in terms of this basis. 
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For the energy correction second-order, the first-order wave function correction thus can be 

written as  

...)0(
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The expansion coefficients can be calculated by means of the excited unperturbed problem. 

Starting from the first-order perturbation equation (eq. 3.1.40), the terms are sorted by the 

perturbation index and are integrated from the left with the reference wave function in the kth 

excited state.  
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Substituting the first order wave function correction with the Taylor expansion (eq. 3.1.44) 

and considering the intermediate normalization gives the expression for the kth expansion 

coefficient. 
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 eq. 3.1.46

The second-order energy correction can be written in the basis of the unperturbed excited 

wave functions. 

)1(

0

)0()0()2(
k

k
k cE ∑

≠

′= ψψ H  eq. 3.1.47

Finally, by inserting the expression for the expansion coefficients, the energy correction is 

written only in the basis of the unperturbed system.  
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The energy correction terms of higher orders can be derived analogously. However, when 

using perturbation theory for determining the electron correlation the second-order energy 

correction already accounts for ~80-90% of the correlation energy and higher order correction 

only play often a little role.  

Møller-Plesset perturbation theory 2nd order 

In order to calculate the correlation energy by means of perturbation theory one has to define 

a reasonable separation of the full many-body Hamiltonian into a reference Hamilton operator 

and a perturbation operator. Generally, this partition is arbitrary, but the perturbation should 

be as small as possible to assure good convergence. C. Møller and M. S. Plesset chose as 

zero-order reference Hamilton operator the sum of the one-electron Fock operators as defined 

in eq. 3.1.17 and as zero-order wave function the Hartree-Fock determinant. 
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The perturbation operator is thus defined as the difference between the electronic Hamiltonian 

(eq. 3.1.11) and the reference Hamilton operator.30  
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The Hartree-Fock potential operator is described as the sum of all Coulomb and exchange 

operators. 
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 eq. 3.1.51

The zero-order energy is now just the sum over all occupied MO energies. As already shown 

by eq. 3.1.21, this is not the Hartree-Fock energy which must be corrected by a coulomb and 

an exchange term. 
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The first order energy correction is given by 
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 eq. 3.1.54

By adding eq. 3.1.54 to eq. 3.1.53 one can see that the Hartree-Fock energy is the sum of the 

zero-order and first-order energy expression. The electron correlation energy is therefore 

taken into account beginning from the second-order energy correction. The energy correction 

term consists of matrix elements of H′  between the Hartree-Fock determinant and all exited 

states (see eq. 3.1.48). All triple and higher excitations do not contribute to E(0) since the 

perturbation is a two-electron operator and thus all matrix elements vanish. For the singly 

excited states the matrix elements become also zero due to the orthonormality of the canonical 

HF orbitals and the Brillouin’s theorem. 
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 eq. 3.1.55

The Brillouin’s theorem states that all CI matrix elements between the reference HF and 

singly excited Slater determinants vanish. 
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Hence, only the doubly excited determinants contribute to the second-order energy correction 

which can therefore be written as 
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eq. 3.1.57  

As )(iHFυ is an effective one-electron operator, these matrix elements become zero according 

to the Slater-Condon rules. By applying these rules to the remaining matrix elements, the final 

equation for the energy correction is obtained (in short-hand notation). 
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Slater-Condon: 
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The energy composed by the Hartree-Fock energy and its correction second-order is referred 

to as MP2 energy. A detailed discussion of the applicability and accuracy of the MP2 method 

is given in chapter 3.1.4. 
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3.1.2.2 Coupled-cluster theory 

Introduced already in the 1950s by F. Coester and H. Kümmel and reformulated by J. Čížek 

in 1966 for quantum chemistry problems, the coupled-cluster theory (CC) has become one of 

the most popular single-reference approaches in last decades when determining accurate 

geometries and enthalpies of small compounds in gas phase.27 Its major benefit arises from 

the strict multiplicativity of the chosen wave function resulting in a size consistent 

formulation of the electronic structure problem (see chapter 3.1.4). The basic concept in CC 

theory is to describe the exact wave function in a given basis set by an exponential ansatz of 

the HF wave function. 

HFψ)exp(T=Ψ  eq. 3.1.59

The cluster operator T is defined as 

nTTTTT ++++= K321  eq. 3.1.60

with T1 denoting the excitation operator of all single excitations, T2 representing all double 

excitations and so on. In the creation/annihilation operator notation of the second quantization 

they are written as 

r
ra

a
r
a aat ˆˆ

,

†
1 ∑=T  eq. 3.1.61

sr
srba

ba
rs
ab aaaat ˆˆˆˆ

,

††
2 ∑

<<

=T  eq. 3.1.62

The expansion coefficients t are called amplitudes and have to be determined in order to find 

the approximate solution of Ψ . The expansion of the cluster operator is restricted by the 

amount of electrons because no more than n excitations are possible. The exponential operator 

)exp(T can be expanded into a Taylor series given as 
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32 TTTTTTTTTT  eq. 3.1.63

In practice, the expansion of T into excitation operators (see eq. 3.1.60) is terminated at 

second or third excitation class since contributions of higher excitation operators are very 
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small. However, in contrast to CI methods also higher excitations are taken into account due 

to the exponential nature of the CC ansatz. Therefore, in case of the T2 excitation operator 

also quadruple, sextuple etc. excitations are included. 

 

The coupled-cluster energy is given as 

HFHFCCE ψψ )exp(TH=  eq. 3.1.64

Expanding the exponential operator and making use of the fact that the Hamilton operator 

consists only of one and two electron operators one can write for the coupled-cluster energy 

(after applying Brillouins theorem and Slater-Condon rules) 
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0 φφφφφφφφ  eq. 3.1.65

The coupled cluster energy is thus only determined by the singles and doubles amplitudes and 

the two-electron integrals. The determination of the cluster amplitudes t is done by left-

multiplying the Schrödinger equation with excited determinants build from the HF reference 

wave function in order to generate as set of coupled, non-linear equations that have to be 

solved iteratively. 

Inclusion of connected triple excitations arising from T3 is extremely expensive and only 

applicable to very small molecules. On this account various perturbation theoretical 

approaches to estimate the connected triples excitations have been developed. The most 

common method is denoted as CCSD(T) which fully includes the single and double excitation 

classes and uses a MP4-type correction for the triple excitations and terms describing the 

coupling between singles and triples. 
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3.1.3 Density functional theory 

Density functional theory (DFT) in the framework of the Kohn-Sham theory was originally 

applied in the field of solid state physics already in the 1970s, but the models used by 

physicists were not accurate enough for quantum chemical calculations. The situation 

changed drastically in the beginning of the 1990s when new models emerged helping the DFT 

to its breakthrough and rapid ascent in computational chemistry.  Nowadays, DFT has 

become the by far the most popular “tool” for investigating chemical questions and many 

program packages available require only little prior knowledge of the underlying theory. 

However, despite its great popularity one has to be aware of the conceptual deficiencies of 

DFT in order to produce reasonable results. Hence, a closer look at the theoretical basis is 

unavoidable and shall be given in this chapter, before chapter 3.1.4 will classify DFT in the 

context of the electron correlation methods.28 

The exchange-correlation hole  

In contrast to mere wave function based quantum mechanical methods, the key quantities of 

DFT are the electron density and the pair density, respectively, which are essential for 

describing the exchange and correlation effects. The electron density represents a probability 

density determining the probability of finding one electron with arbitrary spin within a 

defined volume element dr and is defined as the integral over all spins and all but one of the 

spatial coordinates.  

NN dddN xxsxxr LL 21

2

11 )()( ∫ Ψ=ρ  eq. 3.1.66

)(rρ  is a non-negative function that vanishes at infinity and integrates to the total number of 

electrons of the molecular system. 

0)( =∞→rρ  eq. 3.1.67

Nd =∫ 11 )( rrρ  eq. 3.1.68

Important properties of the electron density are the discontinuity of the gradient at nuclear 

positions resulting in a cusp and the asymptotic exponential decay for large distances from the 
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nuclei. The probability of finding two electrons with spin Ω1 and Ω2 at the same time within 

the volumes dr1 and dr2 is given by the pair density. 

NN ddNN xxxxxx LL 3

2

1212 )()1(),( ∫ Ψ−=ρ  eq. 3.1.69

Note that the pair density is also dependent on the spin of the two electrons and thus contains 

all information about electron correlation. It is now convenient to express the dependency of 

the pair density on the exchange (Fermi) and coulomb correlation by decomposition into 

products of independent electron densities and introduction of a correlation factor. 

[ ]),(1)()(),( 2121212 xxxxxx f+⋅⋅= ρρρ  eq. 3.1.70

The conditional probability gives the probability of finding any electron at a certain position if 

the position of a second electron is determined. 
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As it can be seen easily by inserting eq. 3.1.66 and eq. 3.1.69 the conditional probability 

integrates to N-1 electrons excluding the reference electron at x1. The exchange-correlation 

hole is defined by the difference between the conditional probability and the uncorrelated 

electron density of an electron at x2 describing a depletion of the electron density in vicinity 

of the reference electron. 
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The integration of the exchange-correlation hole gives -1 being exactly the charge of one 

electron. With these concepts of densities and probabilities at hand one can now write the 

expectation value of the electron-electron repulsion term in the Hamiltonian by means of the 

pair density representing the interaction of two electrons weighted by the probability of the 

interelectronic distance or in terms of the exchange-correlation hole (cf. eq. 3.1.72). 
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The first term represents the classical electrostatic interaction energy of two charge 

distributions including the unphysical self-interaction, whereas the latter gives the interaction 

energy of a charge distribution with the exchange-correlation hole correcting for the self-

interaction and correlation effects. The exchange-correlation hole can be separated into a 

exchange or Fermi part and a coulomb part which are associated with the Hartree-Fock 

definition of correlation, i.e. the Fermi hole accounts for the depletion in electron density due 

to the Pauli principle applying to electrons with the same spin, whereas the coulomb hole is 

due to electrostatic repulsion of two electrons (see Figure 7).   

 

 
              Fermi hole          Coulomb hole       Exchange-correlation hole 

Figure 7 Fermi, coulomb and exchange-correlation hole for H2 at the nuclear distance of 0.7 

Å. The position of the reference electron is indicated by an arrow [taken from Ref. 28]. 

The Hohenberg-Kohn theorems 

The basis for DFT was set by Hohenberg and Kohn in 1964 by proving that the ground-state 

energy and other properties of a system are uniquely defined by the electron density (first 

Hohenberg-Kohn theorem). 31 Therefore, all expectation values and as a consequence all 

observables are functionals of the ground state density of any molecular system. The 

electronic energy can thus be written as 
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 eq. 3.1.74

The kinetic energy of the electrons and the electron-electron interaction can be summarized to 

the Hohenberg-Kohn functional FHK since they are universally valid for any molecular system 

in the sense that their form is independent of the positions and charges of the nuclei. The 

problem that has to be tackled is to find good approximations for )]([ rρT  and hXC (see eq. 

3.1.73) as no explicit forms for both of these functionals are known. 

Hole 

RH-H 
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The second Hohenberg-Kohn theorem states that the energy of the true ground state electron 

density is a lower bound for any trial density. In other words, the variational principle ensures 

that the lowest total energy corresponds to the exact ground state electron density. 

]~[][0 ρρ EE ≤  eq. 3.1.75

The Kohn-Sham equations 

The question that inevitably poses is how do we know the correct form for the Hohenberg-

Kohn functional and how can we get the exact ground state electron density. In 1965, Kohn 

and Sham introduced their formulation and the foundation was laid for all modern DFT 

approaches.32 

To understand the approach one has to get familiar with the concept of a “non-interacting 

reference system”. Hereby, the Hamiltonian does not contain any electron-electron interaction 

and the electrons are moving within an effective, local potential VS(r). 
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In complete analogy to HF theory (cf. eq. 3.1.22) the ground state wave function is 

represented by a Slater determinant consisting of Kohn-Sham (KS) spin orbitals that are 

determined by the Kohn-Sham equations of this auxiliary non-interacting system. 
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The one-electron Kohn-Sham operator is defined as 

)(
2
1 2 rf Si

KS
i V+∇−=  eq. 3.1.78

The link from this artificial system to the real system under investigation is to choose the 

effective potential VS such that the electron density of the original many-body system is 

reproduced by summation over the squared moduli of the KS orbitals (the subscript S denotes 

the non-interacting reference system). 
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Early approximations to calculate the ground-state energy showed that the calculation of the 

kinetic energy of the electrons cannot be described by a simple functional form. The main 

idea of Kohn and Sham was to separate the functional FHK into parts that can be well 

described and into a part that contains all of the unknown rest. The kinetic energy of the non-

interacting reference system is given by 
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The true kinetic energy of the electrons can be expressed as a sum of the kinetic energy of the 

non-interacting reference system and a correction term. 

CTTT += S  eq. 3.1.81

Furthermore, as eq. 3.1.73 already indicates, the electronic interaction energy consists of a 

term J representing the classical coulomb interaction of two electron densities and a part Encl 

that is due to the non-classical electrostatic contributions. 
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The total energy can now be written as 
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 eq. 3.1.83

The first three terms are given by their well-known expressions whereas for the exchange-

correlation energy term EXC no explicit form is known. It is noteworthy that EXC consists not 

only of an energy correction due to the exchange-correlation hole hXC, but it also includes the 

correction for the true kinetic energy as well. 

With these definitions at hand, the effective local potential can be derived under the 

orthonormality constraint ijδ as 
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The potential VXC is simply defined as the functional derivative of EXC with respect to ρ. 

δρ
δ XC

XC
E

V ≡)( 1r  eq. 3.1.85

Once a good approximation for the exchange-correlation energy is available, the KS orbitals, 

the ground state density and finally the ground state energy can be calculated iteratively by a 

self-consistent field procedure, since the effective local potential itself is dependent on the 

electron density.  

From early attempts to gradient corrected approximations 

Already in 1927 Thomas and Fermi developed a simple expression for the kinetic energy 

based on the uniform electron gas that gives in combination with the classical expression for 

the electron-electron and nuclear-electron potentials the Thomas-Fermi approximation for the 

total energy of an isolated atom.  

∫= rr dTTF )()3(
10
3][ 3

5
3

22 ρπρ  eq. 3.1.86

However, exchange and correlation effects are completely neglected and the kinetic energy is 

only very rough approximated. Therefore, the Thomas and Fermi model was only of very 

limited use. In 1951 Slater derived an explicit expression for the exchange energy by 

approximating the Fermi hole.33 The approach also known as Xα or Hartree-Fock-Slater 

method became quite popular in physics but could not prevail in chemistry. Even more 

sophisticated models like the Thomas-Fermi-Dirac model describe the kinetic energy too 

poorly so that bonding in molecules does not occur. This problem was solved by the adiabatic 

connection of the non-interacting reference and the real system resulting in the “Local Density 

Approximation” (LDA) treating the electron density as a uniform electron gas. The exchange 

energy of a uniform electron gas is given by the Dirac formula and is identical to the Xα 

method if α is chosen as 2/3. 
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The correlation energy of a uniform electron density has been determined by Quantum 

Monte-Carlo simulations for various densities and was brought into analytical form e.g. by 

Vosko, Wilk and Nusair (VWN).34 The LDA approach has been widely used in solid state 

physics, but the accuracy required for quantum chemical calculations was still unsatisfying. 

An improvement over the local density approximation was made by considering not only the 

electron density but also its derivatives in order to account for the non-uniform character of 

the electron density in molecules. The so-called “Generalized Gradient Approximations” 

(GGA) often achieve MP2-like accuracy for ground state energies and geometries in gas 

phase (see chapter 3.1.4). For the exchange expression the functionals by Perdew and Wang 

(PW86) and by Becke (B88) enjoy great popularity, whereas the gradient approximations for 

the correlation energy by Perdew (P86), Perdew and Wang (PW91) or Lee, Yang and Parr 

(LYP) are common.35 The explicit forms of these functionals comprise complex formulas 

with various parameters that are fitted to experimental data or that are constructed by 

fundamental considerations of the properties a correct wave function should have. It is 

therefore a matter of opinion whether to consider GGA DFT an ab initio or semi-empirical 

approach. However, unlike for post-HF methods a systematic improvement of the level of 

theory is not possible since the exact form of the exchange and correlation functionals 

remains unknown and the real energy of a system does not consequently present a lower 

bound to the DFT calculated energies. 

Beside the pure GGA based functionals especially the hybrid functionals have gained large 

influence in computational chemistry by mixing the exact exchange energy that can be 

calculated analogously to the HF scheme (eq. 3.1.88) with the GGA exchange expression.  
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KS
exact
X ∫=

ρ
 eq. 3.1.88

However, a full replacement of the exchange energy expression would lead to a deterioration 

of the total energy since the definitions of both expressions are footed on different 

assumptions. The exact Fermi hole and the exact coulomb hole are both highly non-local 

quantities that add to result in the relative localized total exchange-correlation hole. However, 

in the LDA and GGA ansatz the energy expressions are derived for local densities assuming 

that both holes are localized since they depend solely on the density and its gradient at a 
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particular point in space. A solution to this dilemma was provided by Becke in 1993 by 

expressing the exchange-correlation energy of the Kohn-Sham scheme through the coupling-

strength integrated correlation hole as defined by the adiabatic connection method. 

21
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211 ),()(
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1 rr

rrr
dd

r
h

E XC
XC ∫=

ρ
 eq. 3.1.89

with the coupling-strength integrated correlation hole given as 

∫≡
1

0
2121 ),(),( λλ dhh XCXC rrrr  eq. 3.1.90

A value of λ = 0 would indicate that all electrons are non-interacting as defined for the 

reference system and thus no correlation energy occurs. In this case, the exchange energy is 

given exactly by Hartree-Fock theory employing the KS-orbitals (cf. eq. 3.1.88). A value of 

λ = 1 includes also electron correlation and the energy can be approximated by an EXC 

functional. The exact exchange-correlation energy would be given by a full integration of the 

integral given in eq. 3.1.89, however, since this turns out to be unfeasible, approximations 

have been generated of which the Becke-3-parameter functional in conjunction with the LYP 

correlation functional (B3LYP) soon became the most popular hybrid functional.36 
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The empirical parameters were fitted to the G2 data set for atomization and ionization 

energies as well as for the proton affinities (a = 0.20, b = 0.72, c = 0.81).  
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3.1.4 Drawbacks and benefits of the electronic structure methods 

The accuracy of the previously mentioned electronic structure methods is not only dependent 

on the basis set size or (in case of the wave function based electronic correlation methods) on 

the degree of truncation, but it is also restricted by the inherent methodology of the approach. 

Important issues concerning the applicability and performance are therefore discussed here 

briefly.  

Size consistency and size extensity 

Two of the issues that have to be addressed when discussing electronic structure theory are 

size consistency and size extensivity. On the one hand, size-consistency in the definition of 

Pople describes the additive separability of the wave function. Regarding for instance two 

molecules that are separated by an infinite distance, the energy of this non-interacting system 

should be in general the sum of the separately calculated energies of the two molecules. A 

stricter definition of size consistency states that the method should not only correctly describe 

the system in the non-interacting limit, but it should also be able to include the entire potential 

hyper surface of any dissociation process. Restricted Hartree-Fock or Kohn-Sham wave 

functions are size consistent for closed-shell fragmentation, however, when dissociating into 

open-shell fragments (e.g. H2 to 2 H), the second definition of size-consistency is not fulfilled 

as the open-shell fragments can only be treated by unrestricted methods. Perturbative theory 

like MP2 and coupled cluster methods are both size consistent, whereas for configuration 

interaction this is only valid for full CI calculations. CISD as example for a truncated CI wave 

function neglects quadruply excited states at the non-interacting limit and thus does not 

describe the simultaneous double excitations of both separated systems.  

Size extensivity on the other hand is a more mathematical formulation implying that the 

method scales linearly with the number of electrons. However, size extensivity does not 

ensure size consistency for dissociation processes, but at the non-interacting limit size 

extensivity also includes size consistency. All Hartree-Fock, DFT, perturbation theory and 

coupled cluster methods are size-extensive, whereas truncated CI methods are not. 

Dispersion effects in DFT 

One major drawback of density functional theory is the poor description in current functionals 

of weak interactions due to dispersion effects. Unfortunately, these effects can play an 
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important role in many organic biomolecules with π-π stacking interactions with the DNA 

being probably the most prominent example. It is therefore often necessary to validate DFT 

example calculations with respect to MP2 or coupled-cluster results in order to give estimates 

about the magnitude of error. As already mentioned in chapter 3.1.3 the popular B3LYP 

functional includes parameters that were fitted to the G2 test set. “Unusual” molecular 

structures that are not considered in this data base can cause significant error bars since the 

G2 test set consists of only 148 small and uncharged molecules.  

Performance comparison 

The formal scaling behaviour of important electronic structure methods in comparison to a 

rough quality ordering is given in Table 2. As one can see the effort increases non-linearly 

with respect to the basis set size for all methods and the very accurate CCSD(T) method 

already scales to the power of 7 with the number of basis functions making this approach only 

applicable to small compounds with a moderate basis set size. However, in order to reduce the 

formal scaling behaviour, techniques have been developed that are based on simplifying the 

calculation of the expensive two-electron-four-centre integrals. Popular methods are the 

resolution of identity (RI) formalism or the fast multipole moment method that are able to 

reach often linear scaling for HF, DFT or MP2 calculations.  

The accuracy of DFT calculations strongly depends on the method and the application field. 

In general, GGA functionals outperform LDA functionals for non-periodic molecular 

systems. The hybrid functionals (e.g. B3LYP) usually offer some improvement over pure 

GGA functionals performing often better than MP2. However, absolute errors are always 

larger indicating that DFT methods sometimes fail for peculiar molecular systems and that 

one has to be aware of the interpretability of the results.  

Table 2 The scaling behaviour as a function of basis functions N vs. accuracy. The average 

errors are given for the correlation energies compared to full CI applied to HB, H2O and HF at 

equilibrium geometries (kcal mol-1) and a polarized double ξ basis set. 

Method HF MP2 CISD CCSD CCSD(T) DFT 

Scaling N4  N5  N6 N6 N7 N4  

Accuracy  n/a 

Average. 
error n/a 10.4 5.8 1.9 0.3 n/a 
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3.2 Conformational analysis 

The determination of electronic binding energies of non-covalent assemblies requires the 

knowledge about the global minimum structures of the monomeric units as well as of their 

aggregates. Therefore, an extensive search strategy for finding the lowest lying minimum 

structure is indispensable. However, due to the increasing complexity associated with the 

system size a reasonable sampling of the conformational space is only feasible by computer-

aided search algorithms. Moreover, these algorithms depend on fast computations of the 

potential energies making most quantum mechanical approaches unemployable (an exception 

could be semi-empirical methods). Hence, nearly all conformational searches use force-field 

potential energies to determine low energy conformers within a pre-defined energy window. 

Chapter 3.2.1 gives a very short overview over the calculation of potential energies via 

molecular mechanics. Afterwards, some of the most common conformational search 

algorithms are presented (chapter 3.2.2). An advanced discussion on the interpretability of 

force-field calculations can be found in most molecular modeling textbooks. 37 

3.2.1 Brief introduction to molecular mechanics 

The molecular mechanics methods are based on a classical treatment of interaction potentials 

between atom types consisting of single atoms or atom groups (“united atoms”). These atom 

types are classified according to their characteristic binding patterns and each of them is 

described by a unique set of parameters. The force-field based interaction potentials 

characterize the geometry and ground-state energy of a molecule on the basis of analytical 

functions for the various potentials contributing to the potential energy. The electronic 

structure of the molecule is not taken into account explicitly and is only considered indirectly 

by the parameterization of the force field. The parameters are fitted either to experimental or 

theoretical data and the fitting method determines the quality and application field of each 

force field.  

The force field potential energy is composed of multiple terms that describe bonded 

interactions, non-bonded interactions and terms that represent cross-terms of coupled 

movements. The analytical forms of the bonded interactions are represented by truncated 

Taylor-expansions around the equilibrium (stretch energy, bending energy) or by a truncated 

Fourier series (torsional energy). However, the computationally most demanding parts in a 

force field calculation are the non-bonded interactions consisting of the weak short-range 
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interactions and the long-range electrostatic attractions/repulsions. The electrostatic 

interactions are given by the Coulomb potential for point-charges and have a large influence 

on the potential energy. The weak interaction is often spuriously equated with the van-der-

Waals energy; however, it is actually composed of two contrary effects. The repulsive part 

dominates at very small distances and is due to the Pauli repulsion of two electrons with the 

same spin, whereas the attractive part characterizes interactions between transient multipoles 

in molecules without permanent multipole moments. These attractive forces are called either 

dispersion forces or van-der-Waals forces. The weak interaction potential combines both the 

attractive and the repulsive interaction and is represented in general by a 12-6- Lennard-Jones 

potential, but also other analytical expressions like the Buckingham potential are possible. 

 

Figure 8  Lennard-Jones Potential: 
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3.2.2 Conformational search algorithms 

For the conformational search problem a variety of different methods are available which are 

classified accordingly (see reference 37, Chapter 9): 

⎯ systematic search algorithms 

⎯ random search algorithms 

⎯ eigenvector following approaches 

⎯ molecular dynamics based conformational search 

⎯ distance geometry 

⎯ global optimization methods (genetic algorithms, simulated annealing, tabu 

search) 

The global optimization methods can be applied on a wide range of multi-dimensional 

optimization tasks with the conformational search being only one of them. However, 

properties of real systems are usually averages from multiple low-energy structures and the 

consideration of a single structure is not sufficient for a quantitative modelling. The first three 

methods represent the most widespread approaches which are applied either purely or in a 

combined implementation. One problem that arises for all algorithms is the handling of cyclic 

molecules. Typically, ring structures are broken into acyclic structures that are subjected to 

ring closure constraints.  

Systematic unbounded multiple minimum approach (SUMM) 

The SUMM method represents a variation of a standard systematic search algorithm that 

overcomes two main difficulties of the depth-first strategy.38 This search type starts at a 

terminal node (e.g. node 13 in Figure 9) of a search tree which represents a conformational 

state with all torsional angles set to a defined value. By variation of a single torsional angle 

the search algorithm explores the conformational space by backtracking the search path and 

moving to the next terminal node. The limitations associated with this strategy are that the 

generated conformers are very similar to their precursors and one has to scan the whole search 

tree to cover all relevant structures. Second, an increase of the resolution, i.e. the torsional 

angle increments, implies that all conformations that have already been scanned before are 

reproduced. The SUMM approach now uses a breadth-first strategy that begins at a coarse 

torsion angle resolution (120°) and uses low energy structures at each step that have been 

generated previously. A systematic variation of the torsional parameters generates highly 
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diverse geometries and the search tree is scanned non-linearly. In case of the hexane example 

(see Figure 9), the SUMM algorithm would go from node 13 over node 22 to node 31 which 

covers the all branches of the root node. By recording all torsional variations that have been 

made on each minimum conformation, the search path will not be retraced. An increase in the 

torsional resolution thus results in previously undiscovered minimum conformers. 

 
Figure 9 Search tree of the conformational search problem of hexane. Terminal nodes 

represent conformational states of the molecule whereas branches indicate a variation of the 

torsional angle (here: in 120° steps) of one single bond. 

Monte-Carlo multiple minimum approach (MCMM) 

In contrast to the systematic search strategy of the SUMM approach, the Monte-Carlo method 

as introduced by Chang et al. searches the conformational space on a random walk by making 

completely unpredictable modifications of the torsional angles.39 The critical points in the 

algorithm are again the treatment of molecules containing rings and the proper choice of new 

input structures for the next search step. In order to steer the search into so far unvisited 

regions of the conformational space, the uniform usage protocol selects randomly starting 

structures from a pool of already generated conformers and weights the selection in favour of 

the least selected ones. The algorithm of the MCMM approach is given by the flow diagram 

in Figure 10. 
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Figure 10 Flow diagram of the Monte-Carlo multiple minimum algorithm. 
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Low- mode approach 

The low-mode approach is based on an eigenvector following concept that performs a normal 

mode analysis of the initial structure.40 The low frequency modes (< 250 cm-1) are stored in a 

non-mass-weighted Hessian matrix and the corresponding eigenvectors are searched 

systematically in both directions since they are considered to represent the torsional degrees 

of freedom. For this purpose the structure is perturbed in discrete steps along the eigenvectors 

until the potential energy exceeds a certain threshold during a single step. A subsequent 

energy minimization crosses a potential energy barrier in most cases and leads to new 

structures that are related to the initial structure. This conformational search approach 

therefore scans only the local neighbourhood of a minimum on the potential energy surface. 

The low-mode search never updates the eigenvector search direction which means that no re-

evaluation of the Hessian matrix is performed. 

In the case of the search directions being exhausted, the pure low-mode search can switch to a 

stochastic determination of the search direction by randomly mixing the eigenvectors. This 

procedure called mixed Monte-Carlo/low-mode approach guarantees the thorough scan of the 

potential hyper surface. 
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3.3 From gas-phase to solution 

The goal in theoretical organic chemistry is the description of physicochemical properties 

(local or macroscopic) and the prediction of reaction rates and mechanisms. Unfortunately, 

almost every reaction takes place in a condensed phase implicating effects on the inherent 

molecular properties. Calculations in gas-phase are suitable to only a limited extent to model 

the real behaviour of any solute unless the solvation has only little effect on the particular 

property being studied.  

A proper description of a solute in a condensed phase poses a nontrivial problem which lead 

to a variety of solvent models, each of them designed for different purposes. In the field of 

physics the emphasis was placed on creating various simplified expressions for the 

intermolecular interaction potentials for solvents footed solely on classical mechanics.41 In 

theoretical chemistry, however, the focus is on the electronic structure of a solvated molecule 

which requires a quantum mechanical treatment. Besides the so-called “supermolecule” 

ansatz, which tries to mimic the solvation shell by considering explicit solvent molecules (see 

chapter 3.3.2), the electrostatic continuum methods have become a popular tool to estimate 

solvation effects in the recent past (chapter 3.3.1). 

The process of bringing a solute from gas-phase to solution incorporates a variety of effects 

contributing to the free energy of solvation 0
SGΔ . In principle, it can be seen as interplay 

between the orientation and the polarization of the solvent molecules generating a reaction 

field on the one hand, and the electronic polarization of the solute itself on the other hand. 

The interaction energy between the solute and the solvent is in a balance with the energy costs 

of the solvation process. Contributions to the energy costs are from the self-interaction of the 

solvent molecules and the reaction field, the lost of configurational freedom, the costs to 

achieve polarization and the energy necessary to create a cavity in the condensed phase. It 

should be noted that the majority of the total cohesion energy (70-90%) of liquids derives 

from dispersion interactions. A reasonable approximation of the solvent effects on a solute 

thus should be based on an effective Hamiltonian method due to the non-classical origin of 

the dispersion energy. The free energy of solvation 0
SGΔ  consists formally of three 

components, whereas the van der Waals term can be split into a repulsive and dispersion part 

(see chapter 3.2.1). 
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Experimentally it is not feasible to separate the various contributions to the free energy of 

solvation 0
SGΔ  and the continuum approaches being introduced in chapter 3.3.1 are only 

capable to make predictions for the electrostatic part of the solvation energy. Therefore, the 

results can only provide information about the relative energies of a particular system.   

3.3.1 Continuum solvation 

In the following part of this work the focus is on the quantum mechanical description of a 

solute M, whereas classical continuum models describe the solute only as a polarizable charge 

distribution.42 The solvent molecules are supposed to be homogeneously distributed and can 

therefore be assumed in a good approximation to form a polarizable continuum as defined for 

dielelectric materials in electric fields.  

By placing the solute into a cavity generated in the continuum solvent, the solute can now be 

described by an effective Hamiltonian consisting of the unperturbed molecular Hamiltonian 

(see eq. 3.1.2) and the electrostatic interaction potential of the solvent. 

σVHH += )0(
MM  eq. 3.3.2

The Schrödinger equation thus gives 

Ψ=Ψ EMH  eq. 3.3.3

and the solute-solvent interaction energy can be written by introducing the electrostatic field 

potential σΦ  and the charge density of the solute M (nuclei and electrons) Mρ . 

∫∫ Φ=ΨΨ= ∗

space all

3

space all
11 )()(, rrrRRrrV dddddW MMNMS σσ ρLK  eq. 3.3.4

The electrostatic field potential produced by the solvent is depending on the charge density of 

the solute and vice versa. The solution of this non-linear problem requires an iterative 

procedure until self-consistency is reached. Quantum approaches to determine the interaction 

energy between σΦ  and Mρ  are amongst others multipole expansion (MPE) and apparent 

surface charge (ASC) methods of which the latter are of most importance.  
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The choice of the cavity shape can also have great influence on the quality of the employed 

method. Regular shapes like spheres or ellipsoids for the entire molecule are only very crude 

approximations and therefore molecular shapes consisting of overlapping atom-centred 

spheres or isodensity surfaces are mostly used. The radius of the spheres are slightly enlarged 

van-der-Waals radii with a factor of about 1.2 - 1.25. An inclusion of space within a solute 

that is not accessible by the solvent is considered as vacuum. For charged solutes (ions, 

zwitterions and ion pairs) the factor may need to be adopted due to non-linear effects in the 

polarization of the dielectric in high fields. It should be noted that dispersion, repulsion and 

cavitation terms require cavities of different size than the electrostatic terms. 

The boundary conditions for the continuum solvation models are given in Figure 11. Inside 

the cavity the well-known Poisson’s equation is fulfilled, whereas in the dielectric continuum 

no charge density of the solute occurs and thus changing the equation for the potential into 

Laplace’s equation. At the boundary the electrostatic field potentials of inside and outside the 

cavity are equal, for the first derivative, however, the dielectric constant needs to be taken into 

account. 

 
Figure 11  Boundary conditions of the continuum solvation model (in SI units) 
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3.3.1.1 The Apparent Surface Charge Method 

The apparent surface charge method is based on the induction of small grid charges on the 

surface of the cavity. The surface polarization charge can be described in terms of an induced 

polarization vector projected on the outward normal of the surface segment. 

nP vv
⋅−=σ  eq. 3.3.5

The polarization vector itself is directly proportional to the electric field arising from the 

solute and acting on the continuum surface. 
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Applying the boundary conditions and abbreviating the constant pre-factor one can write the 

polarization vector solely depending on the electric field potential inside of the cavity.   
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The electrostatic potential can now be separated into one part arising from the solute and one 

part reducing the potential due to the induced screening charges (self-interaction). 

σΦ−Φ=Φ Min  eq. 3.3.8

The electrostatic field potential can be derived from integrating the surface polarization 

charge over the cavity surface area A with respect to the vector s defining a point on that 

surface. 

∫ −
=Φ
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d s
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sr 2)()( σ
σ  eq. 3.3.9
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The surface polarization charge is therefore dependent on its own electrostatic field potential. 

( )
nv∂
Φ−Φ∂

⋅= ininM ,, σκσ  eq. 3.3.10

As the integration over a complex surface (see eq. 3.3.9) is very complicated the polarizable 

continuum models (PCM) use the boundary element method (BEM) that partitions the cavity 

surface into small elements Ak called tesserae. The electrostatic field potential can then be 

expressed by a sum over all apparent point charges qk that are placed in the tesserae k at point 

sk. 

∑ −
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k k

kq
sr

r)(σ  eq. 3.3.11

with )( kkk Aq sσ⋅=  eq. 3.3.12

The solution of the electrostatic problem is done quantum-mechanically either by an iterative 

solution within a SCF cycle with a fixed potential of the solute, or by an implementation into 

the Fock equation. 

3.3.1.2 The Conductor-like Screening Model 

The conductor-like screening model (COSMO) is related to the PCM approach and is 

therefore sometimes denoted as conductor-like polarizable continuum model (CPCM).43,44 

The method is based on a simplification of the boundary conditions by using an infinitely 

strong dielectric like a conductor. As a result the total electrostatic potential vanishes on the 

cavity surface and by scaling of the ideal screening charge densities ∗σ  one can reintroduce 

finite dielectrics with the factor )(εf . 

∗⋅= σεσ )(f  eq. 3.3.13

with 
x

f
+
−

=
ε
εε 1)(  

eq. 3.3.14

The scaling factor )(εf  includes a variable x that in general depends on the cavity and order 

of the lowest multipole moment of the solvent. However, in practical considerations it is set to 

a constant value (x = 0.5). For large dielectric constants the error is found to be very small and 
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at the lowest limit (ε = 2) one obtains a relative error that is within 10 %. The advantages, 

however, are lower computational costs and at the same time a greater numerical stability.  

The implementation of the COSMO equations is straightforward into any SCF code, whether 

in HF or KS theory. The boundary conditions simplify the electrostatic problem and one can 

rewrite the electrostatic potential in vector notation (cf. eq. 3.3.8 and eq. 3.3.11) as 

0)()()()( =+=+= ∗AqrΦrΦrΦrΦ MM σ  eq. 3.3.15

The mm× - matrix A represents a coulomb interaction matrix and the vector ∗q  includes all 

screening charges appearing on the m segments of the surface cavity. The ideal screening 

charges are therefore given by 

MΦAq ⋅−= −∗ 1  eq. 3.3.16

resulting in a explicit expression for the dielectric screening charges depending now only on 

the electrostatic field potential of the solute. 

Mff ΦAqq ⋅⋅−=⋅= −∗ 1)()( εε  eq. 3.3.17

The reduction of the total energy due to the screening effect of the dielectric is only half of the 

interaction energy of the solute with the screening charges since, since according to the linear 

response theory the other half is needed for solvent polarization. 
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The electrostatic field potential of the solute can be decomposed into an n-dimensional vector 

Q representing the charge distribution and a matrix B defining the density-segment 

interactions. 

BQΦ =M  eq. 3.3.19

In quantum approaches the charge distribution is equal to the elements of the density matrix. 

The energy reduction is thus given as 
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with 

BBAD 1−−= )(2
1 εf  eq. 3.3.21

being the Green function of the cavity.  

Finally, the total charge energy is given as 

B)QBAQ(CQDQQCQ 1−
− −=−=−= 2

1
2
1

2
1

dielCoulombchargecharge EEE  eq. 3.3.22

In a SCF scheme, the first step comprises the generation of all segments and the construction 

of the segment-segment interaction matrix A. Afterwards, the density-segment interaction 

matrix B is build and inverted, so that the Green function D can be calculated. This function 

can be used to modify all Coulomb interaction terms (nuclear energy, one-electron and two-

electron terms) of the SCF calculation. The COSMO-SCF calculations require only little time 

to evaluate the dielectric energy reduction terms and due to the damping of density 

fluctuations the entire SCF calculation is often accelerated.45  
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3.3.2 Explicit solvation 

All generic continuum models show one major disadvantage: they are simplified models 

which can only estimate the effect of solvation by the electrostatic interaction with the solute 

as a linear response to the electric field of the continuum solvent. Inhomogenities in the 

spatial distribution of the solvent molecules or the dynamical behaviour during geometrical 

changes of the solute are not taken into account, whereas dispersion and cavitation terms are 

often included semi-empirically by most continuum models. A quantum treatment of an 

explicitly solvated solute should therefore in general be able to compensate these drawbacks. 

However, in practice, an explicit solvation footed on a mere quantum mechanical description 

is not possible due to the following reasons: 

1. The exact amount of solvent molecules that are necessary to solvate a solute can not 

be determined as the interactions between the various solvation shells must be 

considered too. 

2. Edge effects of a small cluster of solvent molecules have a drastic impact on the 

proper description of the solute. 

3. The spatial distribution of the solvent molecules is not known. 

All of these problems make an explicit solvation of a target molecule for static quantum 

mechanical calculations unfeasible and can only be solved by simulation methods based on 

molecular mechanics, a QM/MM scheme or with the Car-Parrinello MD method. 46 
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3.4 Molecular simulations – Accounting for the entropy 

Molecular simulation methods like Molecular Dynamics (MD) or Monte-Carlo simulations 

are necessary when thermodynamic properties of a system (e.g. heat capacity, free energy) or 

the time-dependent behaviour are under investigation.47 In some cases the global minimum 

structure determines the properties of a system or it is possible to detect all minimum 

configurations manually in order to set up the partition function properly. However, this 

procedure is only applicable for small systems in gas phase. In most cases a full quantitative 

description of the energy surface is unfeasible due to its enormous amount of closely 

separated minima and techniques were developed to circumvent this problem. In the 

following chapter only the basic concept of a MD simulation is described and the 

Thermodynamic Integration is presented as one approach to account for the entropy by 

approximating the free energy of a molecular process. Further important technical methods 

that are not considered here are, for example, periodic boundary conditions, stochastic 

boundary conditions, cuff-offs, constraints (e.g. SHAKE) and thermostats or heat baths 

(Nosé-Hoover/Berendsen). 

3.4.1 Molecular Dynamics 

Statistical mechanics 

The determination of a thermodynamic property of a system is done experimentally by the 

measurement over a specified period τ  of the property A depending on the momenta and 

positions of all N particles of the system. The time average is thus defined as 

∫∞→
=

τ

τ τ 0

))(),((1lim dtttAA NN
time

rp  eq. 3.4.1

The ergodic hypothesis of statistical mechanics states that the time average of a given system 

is equal to an ensemble average. Ensembles in the sense of mathematical physics are 

collections of all possible systems which have different microscopic states, but which are in 

an identical macroscopic (thermodynamic) state. In molecular simulations one distinguishes 

between canonical (NVT), microcanonical (NVE) and isobaric-isothermal (NPT) ensembles, 

in which the particle number N, the volume V, the temperature T, the global potential energy 
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E or the pressure p are held constant. The ensemble average defines then the average value of 

the property A over all microscopic states of an ensemble during a simulation. 

NNNNNNNNN
ensemble

dAddAA ΓΓΓrprprp ∫∫∫ ⋅=⋅= )()(),(),( ππ  eq. 3.4.2

The integration is done over the momenta and positions of all particles with )( NΓπ  denoting 

the probability density of finding the ensemble in a certain state or configuration in the phase 

space NΓ . For the canonical NVT ensemble the probability density is the familiar Boltzmann 

distribution  
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with the partition function given as 
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eq. 3.4.4

 Newton’s equation of motion 

The movement of a particle (atom) is solved by integration of the differential equations 

obtained by Newton’s second law. 

dt
dm

dt
dm vrF ⋅=⋅= 2

2

 eq. 3.4.5

The equations can be solved analytically if the particle moves constantly (no forces acting on 

it) or if it experiences only a constant potential. However, due to the coupled motions of the 

atoms in a molecular system, the molecular dynamics simulation faces a many-body problem 

and therefore one has to solve the equations of motions by integrating numerically employing 

finite difference methods.  

The numerical integration yields a trajectory separated into small time steps that describes the 

positions, velocities and acceleration of the particles as they vary with time and from which 

the average values can be calculated. Initial coordinates for MD simulations of biomolecules 

are in general obtained by X-ray or NMR studies and the initial velocities are assigned 
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randomly by a Maxwell-Boltzmann distribution for a given temperature. After calculation of 

the forces acting on each atom based on the force field energy function, the new positions and 

velocities after an adequate time step are determined by solving a numerical algorithm. 

Finally, the new forces are recalculated and the last step is repeated for a chosen period to 

generate the full trajectory (see Figure 12). 

 

 
Figure 12 Schematic representation of a Molecular Dynamics simulation 

 

The key quantities of the equation of motion can be expressed by Taylor series expansions for 

infinitesimal time steps.  
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 eq. 3.4.6

The various algorithms in Molecular Dynamics use different truncated formulations for the 

positions and velocities at time tt δ+ . The most common and simplest algorithm is the Verlet 

algorithm which uses the accelerations and positions at a time t and the positions of the 

previous step ( tt δ− ) to predict the new positions.  

2)()()(2)( ttttttt δδδ arrr +−−=+  eq. 3.4.7

Equation eq. 3.4.7 can be simply derived by adding the Taylor expansions in second order in 

time tt δ+  and tt δ− . 
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 eq. 3.4.8

The velocities do not explicitly appear in the algorithm and can be calculated afterwards. 

Moreover, the Verlet algorithm needs a Taylor series for starting the simulation since at 0=t  

no set of positions for tt δ−  exist. A further common algorithm that avoids these 
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disadvantages is the Velocity-Verlet algorithm that gives positions, velocities and 

accelerations at the same time t.  

[ ] ttttttt

ttttttt

δδδ

δδδ

)()(
2
1)()(

)(
2
1)()()( 2

+++=+

++=+

aavv

avrr
 eq. 3.4.9

The implementation is somewhat more complicated since both the acceleration at time t and 

tt δ+ is needed. However, the Velocity-Verlet algorithm is more precise than the simpler 

Verlet method implicating a higher storage requirement. Further algorithms that improve the 

deficiency of the Verlet algorithm are the leap-frog, the Beeman’s and predictor-corrected 

algorithms which all make use of explicit velocities on the expense of higher computational 

costs.  

Performing a MD simulation 

A typical MD simulation consists of several consecutive procedures which should ensure 

energy conservation (see Figure 12). First, the initial structure is transformed into an internal 

coordinate structure and the force-field parameters are set for each atom type. The simulation 

is prepared by setting constraints, boundary conditions and cut-offs and an energy 

minimization is performed in order to avoid strong repulsive (“bad”) contacts that can be 

artefacts from crystallographic or NMR data. The actual molecular dynamic simulation is 

composed of heating the system to a defined temperature using a heat bath, equilibrating until 

constant kinetic and potential energies are observed, performing the production run and in 

some cases cooling the system down. The data collected during the production run can be 

analysed by statistical methods to obtain the thermodynamic properties of interest.   
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Figure 13 Flow-diagram of a standard MD simulation by using a CHARMM like force field 

consisting of a parameter file and a residue topology file. 

The Free Energy Problem 

The calculation of mechanical properties like the internal energy U, the pressure p or the heat 

capacity CV can be performed easily by means of standard MD or MC simulation methods 

whereas the determination of thermal (entropic) properties (free energies, chemical potentials, 

entropies) poses a problem. The reason for this inequality lies in the fact that mechanical 

properties are dependent on the derivative of the partition function. Thermal properties, 

however, are directly dependent on the partition function.  Regarding the internal energy one 

can write it as the ensemble average of the Hamiltonian (neglecting normalization constants). 
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 High values of the Hamiltonian have only very low probabilities and do not significantly 

contribute to the internal energy. A complete sampling of the phase space is therefore not 

necessary and the internal energy converges quite well during a MD or MC simulation. In 

contrast, high energy regions in the phase space make an important contribution on the 

Helmholtz free energy.48 
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eq. 3.4.11

 

As the Hamiltonian now appears in the exponent, the free energy is also dependent on high-

energy regions of the phase space. However, sampling all points in phase space ( = ergodic 

trajectory) is not applicable to real simulations leading to an erroneous determination of 

thermal properties. In contrast, the evaluation of the complete partition function is not 

necessary if one considers free energy differences between two states by sampling only the 

important parts extensively in which both states differ.  
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3.4.2 Thermodynamic Integration  

For the calculation of free energy differences three methods are commonly used, namely the 

Slow Growth, the Thermodynamic Perturbation and the Thermodynamic Integration 

method.49 These so-called coupling parameter approaches consider two states in the same 

phase space that are coupled via a parameter λ which determines a topographical transition 

coordinate. Besides structural transition coordinates (e.g. conformational change) and reaction 

coordinates (e.g. proton transfer) also creation/annihilation coordinates (e.g. interchange of a 

functional group or molecule) are possible.  

The Thermodynamic Integration method applies a basic mathematical identity to the free 

energy function A(λ) resulting in an exact expression for the free energy difference. 

λ
λ
λ dAA ∫ ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=Δ
1

0

)(  eq. 3.4.12

Deriving the expression for the Helmholtz free energy  
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with respect to λ leads to 
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eq. 3.4.14

The free energy difference is in general calculated by a finite difference approximation using 

a step size Δλ of 0.1. For each value of λ a MD simulation run is performed and the average of 

eq. 3.4.14 is determined.  



70 Chapter 3   Theoretical Methods 

 

Determining Entropy Differences 

The estimation of entropy differences (see ref. 50) of two states a and b can be done directly 

either by using the free energy difference between the endpoints of a thermodynamic 

integration pathway of a canonical ensemble 
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or by employing a finite difference approximation on the temperature derivative of the free 

energy 
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Latter approach assumes a constant difference in the heat capacity over the temperature range 

2ΔT. A third method to obtain entropy differences can be derived from the thermodynamic 

integration formula expressing the entropy as a function of the coupling parameter.  
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3.5 The QM/MM Method  

All studies of large molecular systems like proteins, nucleic acids, lipids, membranes or 

liquids require a classical treatment of the particles due to the enormous system size up to 

hundred thousands of atoms. Unfortunately, a mere force field based description does not 

account for bond formation or cleavage since changes in the covalence of an atom type cannot 

be parameterized. However, a quantum mechanical description of the entire system is not 

feasible so that in 1976 Warshel and Levitt proposed a hybrid QM/MM scheme that considers 

only a small part of the system in which the chemical reaction takes place by a QM 

calculation.51 The surrounding of the active region and the boundary region are treated by 

molecular mechanics with an appropriate coupling scheme connecting the QM and the MM 

part of the full system. 

Partitioning of the Hamiltonian 

The energy of the system is described by the time-independent Schrödinger equation (cf. eq. 

3.1.1) in which the quantal Hamiltonian is substituted by an effective Hamiltonian that splits 

into four parts.44,52  

boundaryMMQMMMQMeff HHHHH +++= /  eq. 3.5.1

The first term represents the quantum mechanical Hamiltonian in the Born-Oppenheimer 

approximation (cf. eq. 3.1.4), whereas the second term is simply replaced by the energy 

expression of a given force field (cf. chapter 3.2.1). The coupling between both regions is 

described by HQM/MM and is commonly treated by taking the electrostatic and weak 

interactions into account. 
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The weak interaction is analytically described by a standard Lennard-Jones potential (cf. 

Figure 8) and the electrostatic part includes both the electrons (i) and nuclei (α) of the QM 

region interacting with the MM atoms (M).  

Finally, the Hamiltonian for the boundary region is given by the boundary conditions of 

classical force field calculations (e.g. periodic boundary conditions or stochastic boundary 
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conditions) and can be separated into one part that affects the QM region and one part for the 

MM region. The total energy of the system is then calculated by the expectation value of the 

effective Hamiltonian given by 
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MMboundaryMM
QMboundaryMMQMQM EEE ++

ΨΨ

Ψ++Ψ
=

HHH
 eq. 3.5.3

Fragmentation of large molecules and coupling methods 

Considering a system consisting of well separated molecules like a solute surrounded by a 

solvent the determination of a QM and a MM region does not invoke severe problems. 

However, a suitable decomposition of a large biomolecule is much less obvious as one has to 

define QM and MM fragments that are connected via covalent bonds. In principle, one can 

distinguish two different approaches that deal with the problem how to describe the electronic 

structure of such a frontier bond (see ‘Hybrid Quantum Mechanical/Molecular Mechanical 

(QM/MM) Methods’ in ref. 44) The link atom methods include the addition of an atom or 

pseudoatom, whereas the fragment orbital approach uses a transformation of the atomic 

orbitals of the frontier QM atom into hybrid orbitals that are collinear to the bond axis and 

that are excluded from the regular orbital basis in the QM calculations. The associated 

electron densities of the fragment orbitals are considered as external point charges acting on 

the cationic QM fragment. 

The partitioning of the Hamiltonian and the definition of a QM/MM term as seen in equation 

eq. 3.5.2 is of course arbitrary and therefore various methods to describe the coupling 

between the QM and MM region have been developed.53 They are classified according to the 

embedding of the QM part into the MM surrounding: 

• The mechanical embedding scheme includes the interaction energy between both 

regions solely by a mechanic calculation of the system without any charge interactions 

between the QM and MM region. The QM part only “sees” the MM part in terms of a 

steric hindrance. 

• The electrostatic embedding scheme includes the MM atoms as point charges into the 

QM Hamiltonian. The electrostatic part of the QM/MM interaction is therefore taken 

into account in each SCF cycle, whereas the van-der-Waals and covalent interactions 

are still treated by molecular mechanics. 

• The polarized embedding scheme also includes the polarization of the MM region in 

order to improve the description of non-bonded QM/MM interactions.  
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Chapter 4 Results and Discussion 

"If the facts don't fit the theory, change the facts." 

 -- Albert Einstein 

 

 

4.1 Quantifying Supramolecular Processes by Knock-out Analogues 

4.1.1 Introduction 

The development of novel building blocks which are capable to self-assemble in polar 

solutions is one main goal in today’s supramolecular chemistry1,54 as molecular recognition-

directed self-assembly and self-organization can lead to the formation of highly complex and 

fascinating structures with new and interesting properties.55 However, so far only very few 

systems show strong self-assembly in polar, especially aqueous solution. For example, purely 

hydrogen bonded assemblies possess considerable association energies only in aprotic 

solvents of low polarity and are not stable in water due to the competitive solvation of donor 

and acceptor sites in water.56 Therefore, to achieve strong self-assembly hydrogen bonds have 

to be combined with additional noncovalent interactions such as metal coordination,57 salt 

bridges,58 hydrophobic59 or π−π−interactions. 60,61  

Based on the new recognition motif of Schmuck (cf. Figure 2) a self-complementary 

zwitterion 1 (see Figure 14) has been developed that forms extremely stable dimers as could 

be shown by X-ray, ESI-MS, and NMR solution studies.14 The association constant is 

approximately K > 1010 M-1 in DMSO and still surprisingly high (K = 170 M-1, ΔG ≈ -15 kJ 

mol-1) in water. Therefore compound 1 is one of the most efficient self-assembling systems 

relying solely on electrostatic interactions reported so far. Hence, an interesting question is 

which of the multiple binding interactions present in this dimer is mainly responsible for its 

unique binding properties? It could already be shown experimentally by comparison with a 

neutral amidopyridine pyrrole analogue that the charge interaction within the ion pair is 

crucial for its high stability. The neutral binding motif in this “knock-out” analogue 2 has the 
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same H-bond pattern like dimer 1 as could be proved by X-ray analysis. Nevertheless, the 

dimerization is several orders of magnitude less efficient. Whereas 2 dimerizes in chloroform 

with K > 104 M-1 already the addition of > 5 % DMSO completely disrupts these dimers due 

to the competitive solvation of the H-bond donor by the polar solvent.  
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Figure 14 Amidopyridine pyrrole carboxylic acids as neutral “knock-out” analogues of 

zwitterionic guanidiniocarbonyl pyrrole carboxylates: Translating the zwitterionic dimer 1   

into a neutral amidopyridine pyrrole carboxylic acid dimer 2 by “switching off” the ionic 

interactions while keeping the hydrogen bond network constant. 

 

On the basis of these data one could assume that the main important factor being responsible 

for the high stability of zwitterion 1 is simply the charge interaction. However, already a 

single guanidiniocarbonyl pyrrole/carboxylate ion pair is much stronger than simple salt 

bridges between carboxylates and ammonium ions or even the parent guanidinium cation. 

Therefore, one has to account for the various H-bonds, their number and strength, the 

properties of the actual ion pair and further secondary electrostatic and cooperative effects. In 

order to design even better self-assembling systems for future applications (e.g. for 

supramolecular polymers) a detailed understanding of the importance of these various non-

covalent interactions and their mutual interplay is needed. However, experimentally this is 

difficult to achieve as only the overall association energy can be determined. It is impossible 

to dissect this data into individual contributions of single interactions. The comparison of 

structurally closely related “knock-out” analogues is one way address this problem and to 

obtain at least semi-quantitative data (as shown above for zwitterion 1 and its neutral 

analogue 2). However, very often the most interesting “knock-out” analogues cannot be made 

synthetically or might not even be stable molecules at all. Computational determination of 

their stabilities does not encounter any of these problems and indeed high level theoretical 

approaches have already proven quite useful to analyze supramolecular systems in general.62 
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This approach is therefore used here to study in detail the various non-covalent interactions 

and factors that might be responsible for the high stability of zwitterion 1.  

In the present work the dissociation energies of a systematically varied series of “knock-out” 

analogues have been calculated by means of density functional approaches. This should give 

an insight into the strengths of the individual hydrogen bonds within these complex binding 

motifs which probably vary for every donor site. Additionally, it should elucidate the 

importance of cooperative effects (e.g. secondary interactions) which can be expected to be as 

important as already seen for the guanine cytosine pairing.63  

The compounds used in this study are shown in Figure 15. In each of these analogues one of 

the several non-covalent interactions present in 1 is switched-off. The amidopyridine dimer 2, 

which was also already studied experimentally, has the same H-bond pattern but no charge 

interactions. The “knock-out” analogues 3a, 4, 5 and 6 are again zwitterionic but the 

individual N-H hydrogen bond donor sites are replaced by either methylene groups as in the 

methyl (3a), amidine (4) and cyclopentadienyl (5) derivative or by an oxygen atom (in the 

furan derivative 6). Dimer 3b is obtained from 3a by an internal rotation. It possesses the 

same hydrogen pattern than 1 and was included to study the influence of a methylation of the 

amidinium unit on the stability. For arginine such effects were found to stabilize the 

zwitterionic species with respect to the neutral one (vide infra).64 For these latter “knock-out” 

analogues 3 - 6 no experimental data are available and at least for 3a and 5 this is probably 

impossible to achieve due to their conformational (3a) and tautomeric (5) instability.  
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Figure 15 Guanidiocarbonyl pyrrole carboxylate dimer (1), amidopyridine pyrrole carboxylic 

acid dimer (2), methyl derivative (3a, 3b), amidine derivative (4), cyclopentadienyl derivative 
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4.1.2 Computational Details 

The geometry optimizations of all compounds were performed with the TURBOMOLE 

program package65 at the BLYP/TZVPP level of theory35b-c,66 using the RI approximation.67 

For the zwitterionic species extra diffuse functions were added to the negative charged 

carboxylate oxygens in order to describe the diffuse shape of the valence orbitals properly. 

The TZVPP basis set was enlarged by 1s and 1p primitive uncontracted basis functions with 

an exponential coefficient of 0.068, whereas for the auxiliary basis sets the exponent was 

doubled (0.136). Dissociation energies were calculated including the counterpoise correction 

according to Boys and Bernardi.24  

In most computations the influence of a solvent is dissected in several parts.68 In the present 

paper the so-called electrostatic contributions (often also abbreviated as electrostatic 

component of solvation) were estimated using the COSMO43 approach as implemented in 

TURBOMOLE69 with a dielectric constant of ε = 78 to simulate a water like solvent. Since 

the COSMO implementation in TURBOMOLE only takes electrostatic contributions of the 

solvent into account, the non-electrostatic effects68 were estimated by single-point 

calculations (BLYP/6-31++G(d,p))70 on the optimized structures in water employing the 

Gaussian03 program package71 implementation of the COSMO.  

All optimized structures were characterized by harmonic frequency analysis employing either 

analytical derivatives (RI-DFT/BLYP/TZVP) for gas phase structures as implemented in 

TURBOMOLE or numerical derivatives (RIDFT/BLYP/TZVPP) for solvated structures using 

the SNF program, respectively.72 Thermodynamic corrections for the gas phase were obtained 

with TURBOMOLE employing the standard approach.65g-h Thermodynamic corrections in 

solution were obtained by frequency calculations with SNF program of the TURBOMOLE-

suite employing the COSMO approach with ε = 78.72 For the computation of entropy effects 

resulting from the translation motion (ΔStrans) this implementation uses the standard formula 

for gas phase.65g-h However, this approximation overestimates the absolute values. As a 

consequence the stability of dimer formation is underestimated as discussed recently.73,74 Let 

us take 2 as an example: Employing the approximation of Williams and coworkers73 to 

estimate ΔStrans for a solvent the absolute value for TΔS obtained with the standard formula 

decreases by about 20 kJ mol-1. Despite this influence we refrained from considering this 

effect due to the following reasons: Within the approximation of Williams and coworkers 

differences between compounds arise only due to their masses, i.e. only a small fraction of the 
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various effects are included. As a consequence mainly the absolute values change, but the 

differences between the various compounds studied here stay more or less constant. 

As expected75 test calculations employing various functionals and the MP2 approach76 

showed that the BLYP functional underestimates the dissociation energies. Nevertheless it 

gives geometrical parameters which are virtually identical to those obtained with the B3LYP 

functional. The latter predicted a stronger binding. Therefore we computed improved 

stabilities for solvent conditions employing the B3LYP functional based on previously 

optimized BLYP geometries. The thermodynamic corrections are also taken from BLYP 

calculations. Since we are more interested in solvent data the BLYP functional was employed 

for gas phase calculations throughout.  

Coupled Cluster computations75,77 indicate that also B3LYP often underestimates dissociation 

energies for hydrogen bonds. Consequently, its predictions may be looked upon as lower 

bounds for the dissociation energies. The computed differences between the various knock-

out analogues, however, should possess a considerably higher accuracy since the binding 

situations are quite similar. To get a deeper insight into the variations appearing in our series 

of model compounds the electrostatic potentials of all compounds for both gas phase and 

solvent have been calculated to visualize variations in the electronic distributions and 

molecular interactions of guanidiniocarbonyl pyrrole carboxylate 1 and its knock-out 

analogues 2 - 6. For these computations the Gaussian03 program package71 was used.  

4.1.3 Geometries 

Table 3 summarizes selected computed geometrical parameters whereas compares computed 

and measured distances of the bonds described in Figure 16. Table 4 contains data for 

compounds 1 and 2 for which X-ray data are available. For all covalent bonds, computed and 

measured structural parameters agree in the expected range (±0.02 Å). Measured and 

computed distances between the heavy centres of bonds 1-3 agree to about 0.1 Å. The larger 

deviations are expected due to the weakness of the bonds and crystal effects. 
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Table 3 Hydrogen bond lengths in (BLYP/TZVPP; solvent calculations performed with 

COSMO).a 

a Numbering of bonds according to Figure 16. b With fixed Cs symmetry 

 

According to the available X-ray data compound 1 and 2 exhibit a planar structure. In 

contrast, geometry optimizations in gas phase or polar solvent give slightly bended 

geometries but the bending potential is extremely flat. For 1 the planar geometry, which 

represents a local minimum, lays only about 1 kJmol-1 higher than the bended structure. For 2 

the energy difference is only 2 kJ mol-1. The differences are so small that π-π stacking 

interaction within the crystal can explain the difference between experiment and theory. 

Additionally, already dynamic effects (large amplitude bending motion) are expected to lead 

to averaged planar geometries in X-ray experiments and in solution 
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Figure 16 Numbering of the intermolecular bonds in the dimers. 

 

 bond  1 2 3  

 compound  gas phase solvent gas phase solvent gas phase solvent  

 1  1.68 1.86 1.58 1.69 1.79 1.81  

 2  1.77 1.72 1.85 1.88 1.82 1.86  

 2b  1.83 - 1.83 - 1.79 -  

 3a  - - 1.58 1.76 1.76 1.78  

 3b  1.65 1.81 1.60 1.70 1.79 1.80  

 4  1.52 1.77 - - 1.80 1.90  

 5  1.63 1.84 1.61 1.76 - -  

 6  1.54 1.74 1.62 1.77 - -  
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Table 4 Heteroatomic C@@@N distances obtained from X-ray studiesa and calculations 

(BLYP/TZVPP//gas phase). 

 bond  1 2 3  

 compound  X-ray calc.. X-ray calc. X-ray calc.  

 1  2.85 2.75 2.68 2.65 2.73 2.77  

 2  2.62 2.80 2.72 2.88 2.73 2.81  
a The amidopyridine pyrrole carboxylic acid dimer 2 was synthesized with hexyloxymethyl groups in position 3 

and 4 of the pyrrole ring.14  

 

Our calculations show that from the “knock-out” derivatives only the methyl derivatives 3a 

and 3b have a planar geometry. The geometries of the other compounds are more or less 

distorted due to steric or electronic effects. In and, which contain the electrostatic potentials, 

the distortions are best seen in the slight rotations of the carboxylate groups out of planarity. 

The optimization of the amidine derivative 4 revealed two conformers, differing only in the 

relative orientation of the methylene units within the dimer and resembling therefore in a side 

view a “boat” and a “chair” conformer, whereof the latter is ~ 5 kJ mol-1 more stable in gas-

phase. In the cyclopentadienyl derivative 5 a hydrogen atom of the methylene group of the 

ring system points towards the carboxylate group, so that the cyclopentadienyl rings are 

forced into an up and down orientation. Also for the knock-out analogues 3a and 4 the 

geometry optimizations lead to structures in which one of the hydrogen atoms of the methyl 

(3) or methylene (4) group is directed towards the carboxylate group. The distances are 

between 2.01 and 2.13 Å pointing to small attractive interactions. The distortions within the 

furan derivative 6 result from the electronic repulsion of the oxygen lone pairs of the furan 

oxygen and the carboxylate oxygen. This is expected to be a similar effect as observed 

experimentally for the pyridine derivatives.13  

The calculated hydrogen bond lengths for 1 in gas phase and polar solvent show, that solvent 

effects influence the individual bonds differently (Table 4). As expected the influence 

decreases going from the outer (bond 1 in Figure 2) to the inner bond (bond 3). Bond 1 

representing the second shortest one for the gas phase (1.68 Å) increases by 26 % and 

becomes the longest bond in a polar solvent (1.86 Å). Bond 2 is elongated by about 0.1 Å 

(7 %) but still remains the shortest bond. The influence on the inner bond is negligible (0.02 

Å or 1%). Comparing the hydrogen bond lengths of 2 obtained for gas-phase with the values 

calculated using the COSMO approach the inner H-bond is only slightly longer in solvent 

than in vacuum. The largest change in a magnitude of about 0.05 Å can be observed for the 
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outer bond, but in contrast to the zwitterionic dimer 1 the H-bond length now decreases a little 

upon solvation. This does not indicate increased bond strength but results from larger bending 

angles. 

 

Table 5 Contributions to the total dissociation energies (all values given in kJ mol-1). 

Thermodynamic corrections for T = 298 K). 

 
 1 2 3a 3b 4 5 6 

gas phase        
1ΔEelec 
2ΔEelec 

+438/+464 
+158/+170 

--/-- 
+116/-- +340/-- +443/-- +364/-- +364/-- +345/-- 

3ΔHcorr
 -9 -10 -11 -11 -21 -11 -6 

4TΔScorr +85 +61 +72 +74 +68 +80 +67 
6ΔG 
7ΔG 

+344/+370 

+64/+76 
--/-- 

+45/-- +256/-- +358/-- +275/-- +273/-- +272/-- 

solvent         
8ΔEelec +108 +48 +64 +111 +55 +64 +51 

9ΔE(n.e.) +9 +3 +6 +9 +4 +5 +4 
3ΔHcorr +1 -6 -3 -4 -4 +1 +2 

4TΔScorr +62 +62 +66 +50 +59 +58 +56 
10ΔG +56 -17 +1 +66 -3 +13 -2 

1Dissociation energy with respect to the zwitterionic monomers. The left value gives the BLYP result. For the 

right value the B3LYP functional was employed. 2Dissociation energy with respect to the neutral monomers. The 

left value gives the BLYP functional results, for the right value the B3LYP functional was employed. 
3Correction to the free dissociation energies to obtain the enthalpy term (BLYP computations). 4Correction to the 

free dissociation energies arising due to the entropy term (T=298 K, BLYP computations). 6Free dissociation 

energies ΔG = ΔE  + ΔHcorr - TΔScorr with respect to the zwitterionic monomers. The left value gives the 

dissociation energy obtained with the BLYP functional, the right value gives the dissociation energy computed 

with the B3LYP functional. 7Free dissociation energies ΔG = ΔE  + ΔHcorr - TΔScorr with respect to the neutral 

monomers assuming that the thermodynamic correction are similar to those computed for the dissociation into 

the zwitterionic monomers. The left value gives the dissociation energy obtained with the BLYP functional, the 

right value gives the results of the B3LYP functional. 8Dissociation energies with respect to the lowest lying 

monomers. These represent the zwitterionic forms for 1, 3-6, while it is the neutral monomer for 2. The B3LYP 

functional was employed in combination with BLYP geometries. 9Corrections to the free dissociation energies 

arising due to the non-electrostatic interactions (free energy of cavity, dispersion-repulsion interaction between 

solute and solvent). The calculations were performed with GAUSSIAN03 (BLYP computations). 10Free 

dissociation energies ΔG = ΔEelec + E(n.e.) + ΔHcorr - TΔScorr. Thermodynamic corrections are obtained with the 

BLYP functional. 
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4.1.4 Energies 

The calculated dissociation energies for gas-phase and solvent for all compounds 1-6 are 

given in Table 3. Table 3 also contains the computed thermodynamic corrections leading to 

the dimerization enthalpies and dimerization free energies. The electrostatic potentials 

mapped on isosurfaces of electron densities of all compounds in gas phase and polar solvent 

are given in Figure 18 to Figure 21. 

The zwitterionic dimer (1) 

For the gas phase the dissociation energy (ΔEelec) of zwitterion 1 with respect to the 

zwitterionic monomers is calculated to +464 kJ mol-1 (B3LYP/TZVPP). This value is 

surprisingly high compared to other guanidinium/carboxylate-based ion pairs, for example the 

arginine dimer.64,77 Arginine possesses a high affinity to form an abundant number of clusters 

when electrosprayed into gas phase.78 Theoretical studies77 predict that zwitterionic dimers 

are formed which are stabilized by two guanidinium-carboxylate salt bridges. The 

dissociation energy of the zwitterionic structure was calculated to 199 kJ mol-1 by Goddard III 

and coworkers.77 Hence, with respect to its zwitterionic monomers dimer 1 is more than twice 

as stable as the zwitterionic arginine dimer with respect to its zwitterionic monomers. A 

closer look at the dissociation channels reveals however that the possible reason for this 

extraordinary stability of dimer 1 lies more within the energy content of the corresponding 

monomers than the actual binding interactions within the dimers. Figure 17 summarizes the 

computed values for 1 and for the arginine dimer.64  
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Figure 17 Left: reaction diagram of 1 in gas phase (B3LYP/TZVPP//BLYP/TZVPP). Right: 

reaction diagram of arginine in gas-phase (B3LYP/6-31G**).34 The neutral form of a 

monomer is abbreviated as X, whereas X* denotes the zwitterionic analogue. 

 

The dissociation energies mentioned above refer to the dissociation into two zwitterionic 

monomers. However, in the gas phase isolated zwitterions are normally energetically less 

stable than the corresponding neutral monomers. The stability of such zwitterionic monomers 

is significantly depending on the possibility of internal charge interactions. For example, for 

arginine the neutral monomer is still more stable than the zwitterion but the energy difference 

between both forms is rather small (~ 5 kJ mol-1).77,79 Due to the flexibility of the molecule an 

effective intramolecular charge interactions between the carboxylate and the guanidinium 

cation is possible, stabilizing the zwitterionic form. Methylation of the arginine77 or the 

presence of an electric field80 is already sufficient to make the zwitterionic form the absolute 

minimum. Similar effects were recently found for guanidiniocarbonyl pyrrole/carboxylate 

zwitterions with flexible linkers of varying chain length between both ionic groups. It was 

shown that the stability of the zwitterionic form depends on the length of the linker.81 Only 
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those zwitterions in which the linker is long enough to allow internal charge interactions are 

zwitterionic in the gas phase. For the smaller ones the neutral form is more stable.  

For zwitterion 1 no internal charge stabilization is possible due to the rigidity of the molecule. 

In accordance with this, we compute an energy difference of 136 kJ mol-1 between the 

zwitterionic and the neutral monomer of 1 (Figure 17, left hand side). Hence, the energy 

difference is one order of magnitude larger than for arginine (Figure 17, right hand side). For 

the dimers, however, even in gas phase the zwitterionic form represents the minimum 

structure. The neutral dimer structures obtained through a double proton transfer from the 

guanidinium to the carboxylate groups also represent local minima on the hyper surface but 

are less stable. For 1 B3LYP/TZVPP predicts the neutral structure to be 22 kJ mol* above the 

zwitterionic structure. For the arginine dimer the difference between the neutral and the 

zwitterionic structure is computed to 56 kJmol-1.77 As the guanidinium group in arginine (pKa 

= 13.5) is about six orders of magnitude less acidic than the acyl guanidinium group in 1 (pKa 

=  7-8), proton transfer in 1 is expected to be easier as reflected by these data. 

The energetically most favourable dissociation channel should therefore lead from the 

zwitterionic dimers to the neutral monomers. If one considers this process, compound 1 and 

the arginine dimer become equally stable. For dimer 1 we compute a dissociation energy of 

192 kJ mol-1 while Goddard III and coworkers77 give a value of 189 kJ mol-1 for the arginine 

dimer (Figure 1). If one compares the dissociation of the less stable neutral dimers into its 

neutral monomers, the arginine dimer possesses a dissociation energy of about 133 kJ mol-1, 

whereas for 1 we find a dissociation energy of 170 kJ mol-1, respectively. The difference in 

the dissociation energies of both neutral structures is reasonable since 1 is stabilized by two 

additional hydrogen bonds between the pyrrole N-H unit and the carbonyl oxygen of the 

carboxylic acid.  

A dimerization free energy of about ΔG = +76 kJ mol-1 is calculated for the energetically 

most favourable dissociation of the zwitterionic dimer 1 into the neutral monomers using the 

same thermodynamic corrections as calculated for the dissociation into two zwitterions (ΔG = 

+370 kJ mol-1). However, in an attempt to dissociate 1 in the gas phase using IRMPD-MS 

techniques only fragmentation due to covalent bond rupture was observed.82 Assuming that 

such bond rupture needs energies in the range of a normal covalent bond (> 250 kJ mol-1) this 

experimental outcome indicates that dissociation of zwitterionic dimer 1 requires more energy 

than expected based on the calculated stabilities of both the dimer and monomers. But this 

dissociation channel requires a double proton transfer. Obviously, this imposes a large energy 

barrier onto the dissociation.  
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As expected for electrostatic interactions, solvation by a polar solvent drastically affects the 

stability of dimer 1. In general, the stability of salt bridges is influenced by the polarity of the 

solvent83 or microsolvation.84 In contrast to the situation in gas phase, for a polar solvent the 

zwitterionic form now represents the global minimum for both the monomer and the 

dimer.14,85 Therefore, the dissociation channel that has to be considered now leads from 

zwitterionic dimer 1 directly to the zwitterionic monomers. The dissociation energy of 1 to 

the zwitterionic monomers is reduced to +108 kJ mol-1 in water (≈ 23% of the gas-phase 

value) which translates into a dissociation free energy of ΔG = +56 kJ mol-1. This is quite 

reasonable compared to the experimental value of ΔG ≈ +15 kJ mol-1 measured from NMR 

dilution studies. In comparing these data, one has to take into account that our theoretical 

approach computes dissociation free energies for one single dimer of 1 in the solvent. The 

experimental values are however measured at millimolar concentrations. As the ionic strength 

(= salt concentration) of the solution has a tremendous destabilizing effect on the stability of 

salt bridges, it is not surprising that the experimental value is smaller than the calculated one. 

For example, Schneider assigns an upper limit of dissociation energies of ΔG ≈  8 kJ mol-1 to 

single organic ion pairs in an indefinite dilute solution,86 but at millimolar concentrations the 

corresponding association constants of these ion pairs are more than a factor of 1000 smaller! 

Gallivan and Dougherty came to a similar conclusion on the basis of a theoretical 

characterisation of the methylammonium-acetate dimer.62g The computed and measured data 

underline that similar to the situation in gas phase also for water as solvent dimer 1 is much 

more stable than other organic zwitterionic dimers. For regular organic zwitterionic dimers a 

stability of ΔG  ≤ 16 kJ mol-1 would be expected based on Schneider’s evaluation of literature 

data. Hence, our dimer 1 is at least three times more stable. Similar to the situation found in 

the gas phase part of this larger stability results probably again from the higher energy content 

of the rigid monomers of 1 compared to more flexible zwitterions. The instability of the 

zwitterionic monomer caused by its lack of intramolecular charge stabilization seems to 

emerge as an interesting principle for the realization of highly stable electrostatically driven 

self-assembly. 

With respect to the gas phase (Figure 18) the electrostatic potential computed for a polar 

solvent (Figure 20) shows a considerably higher polarization. The electrostatic potentials 

reflect nicely the strong binding interaction between both monomers.  
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Figure 18 Electrostatic potential (contour value = 0.02) mapped on the electron density 

(contour value = 0.015) of the dimers 1-6 in gas phase. 
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Figure 19 Electrostatic potential (contour value = 0.02) mapped on the electron density 

(contour value = 0.015) of the monomers 1-6 in gas phase. 
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Figure 20 Electrostatic potential (contour value = 0.02) mapped on the electron density 

(contour value = 0.015) of the dimers 1-6 in solvent. 
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Figure 21 Electrostatic potential (contour value = 0.02) mapped on the electron density 

(contour value = 0.015) of the monomers 1-6 in solvent. 
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The neutral analogue (2) 

The calculated dimer dissociation energies (gas phase ΔEelec = +116 kJ mol-1, ΔG= +45 kJ 

mol-1; polar solvent ΔEelec = +48 kJ mol-1, ΔG = -17 kJ mol-1) are much smaller compared to 

the zwitterionic dimer 1 reflecting the great importance of charge interactions within this kind 

of dimers. The influence of the solvent on 2 (reduction by about 60 %) is weaker than on the 

zwitterion 1 for which a reduction by about 80 % is calculated. Such an effect is generally 

found if salt bridges are compared to neutral hydrogen bonds. Even though the electronic 

dissociation energy is still negative, a positive free energy of dimerization ΔG is computed in 

water showing that the hydrogen binding interactions within the dimer are not sufficient to 

compete with solvation. In polar solvents the neutral analogue 2 is therefore predicted to exist 

only in form of monomers which was indeed experimentally observed.14 For the neutral dimer 

2 the polarization upon solvation reflected by the electrostatic potential is less pronounced 

than for 1 (Figure 18 to Figure 21). 

Knock-out analogues 3-6: “switching off” single hydrogen bonds 

From the comparison of the stabilities of 1 and its neutral analogue 2 one could conclude that 

the main and most important factor responsible for the different stabilities is the zwitterionic 

nature of 1 and hence the resulting coulomb interaction between the monomers. However, 

that this interpretation is premature can be seen by taking a look at the knock-out analogues 

3a, 4, 5 and 6. These are all zwitterionic species with extensive charge interactions between 

the monomers (see Figure 18 and Figure 20 for the electrostatic potentials) but different 

hydrogen binding schemes compared to 1. Despite their zwitterionic nature the calculated 

stabilities are much lower than for the parent zwitterion 1. In gas phase the dissociation 

energies with respect to the zwitterionic monomers of the dimers 3a, 4, 5 and 6 lie between 

+340 kJ mol-1 and +364 kJ mol-1 corresponding to about 80 % of the value for the zwitterion 1 

(BLYP computations).87 Solvation reduces their dissociation energies to about +48 to +64 kJ 

mol-1 which are only about half of the corresponding dissociation energy of 1 (B3LYP 

calculations). This clearly demonstrates that the mere charge interaction is not enough to 

explain the stability of dimer 1. The strength of the ion pair must be also influenced by the 

exact nature of hydrogen bond network.  

But the computed dissociation energies of 3 – 6 indicate that a second simple model based on 

just counting the number of formal hydrogen bonds within the binding motifs is not sufficient 

either. If one neglects the weaker C-H@@@O- bonds the knock-out analogues except 3b all 
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possess 4 instead of 6 formal hydrogen bonds in dimer 1. Based on the number of H-bonds, 

one would expect dissociation energies of about +300 kJ mol-1 for the gas phase and about 

+70 kJ mol-1 for a polar solvent (≈ 66 % of stability of dimer 1). On the one hand, the 

computed dissociation energies between +340 und +364 kJ mol-1 for the gas phase show that 

here the missing of two H-bonds relative to 1 is somehow compensated, i.e. the dimers are 

more stable than expected on the basis of this simple model. On the other hand, for a polar 

environment the dissociation energy decreases above average with respect to the number of 

H-bonds. With dissociation energies of about +48 to +64 kJ mol-1 the dimers are less stable 

than expected. Part of this finding can be probably explained by the effect, that in gas phase 

especially anionic groups have an extremely high energy content and benefit from any kind of 

molecular interaction, which allows a larger polarization of the negative charge.88 This 

stabilizing effect is more or less independent from the exact chemical nature of the monomer 

and its binding motif. Therefore, the relative importance of any other non-covalent interaction 

(such as H-bonds or even ion pairs) for the stability of the dimers is reduced in the gas phase. 

In a polar solution, however, the anion is already stabilized by the solvent molecules. Hence, 

the relative importance of additional or missing H-bonds increases.  

As both simple models (number of coulomb interactions and number of H-bonds) fail to 

predict the stability of these zwitterionic dimers, a more sophisticated insight into the various 

non-covalent interactions and their mutual interplay is needed. An estimate of the importance 

of the individual hydrogen bonds and of cooperative effects can be obtained by comparing the 

dissociation energies of 3a, 3b, 4, 5 and 6. Within this series compound 3b possesses the 

same hydrogen bond pattern as 1 and the same kind of charge interactions. Therefore, its 

dissociation energies in gas phase (+443 kJ mol-1) and polar solvent (+111 kJ mol-1) are more 

or less identical to those of 1.  

As mentioned before all the other „knock-out“ analogues 3a – 6 have a different H-binding 

pattern and all lead to a drastically reduced stability of the dimers compared to 1 (and 3b). But 

even though their number of formal H-bonds is identical their stabilities differ significantly. 

This is most likely due to the different nature of the H-bonds and additional secondary 

electrostatic effects. For example, in dimers 3a and 4 each carboxylate is bound by one 

neutral H-bond (from the pyrrole NH) and one ionic H-bond (from the amidinium or 

guanidinium moiety, respectively), whereas in dimers 5 and 6 both H-bonds are ionic. 

Furthermore, dimer 3a exhibits bidentated hydrogen bonds to the inner carboxylate oxygen 

and the outer oxygen is not bound at all, whereas in dimers 4 – 6 both oxygens are hydrogen 

bonded.  
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Let us first compare dimers 3a and 4. In the gas phase the dissociation energy of 4 is 29 kJ 

mol-1 higher than the dissociation energy of 3. Binding of both oxygen atoms by one H-bond 

each is obviously more efficient than two H-bonds to the same oxygen atom. However, for a 

polar solvent this trend is reversed. Upon solvation the stability of dimer 4 drops to 13 % of 

the gas phase value whereas the one of 3a decreases to about 17 %. As a consequence, in a 

polar environment dimer 3a is predicted to possess a higher dissociation energy than dimer 4 

(+64 vs. +55 kJ mol-1). This reflects the stronger impact of solvation on the solvent exposed 

hydrogen bond (bond 1) which is present in dimer 4 but not 3a. This effect could already be 

seen in the variation of the bond distances of the parent zwitterion 1 (Table 3). For 3a and 4 

additional C-H…– O2C interactions have to be considered. Based on computations for CH4
…– 

Cl (≈ 10 kJ mol-1)89 we estimate these effects to about 10 kJ mol-1 for the gas phase and about 

2-3 kJ mol-1 in a polar solvent.90,91 Higher values than for CH4
…– Cl could be assumed since 

the neighboured guanidinium group increases the acidity of the CH3 or CH2 group. A smaller 

value could be estimated since the charge of the carboxylate group is smeared over the whole 

unit. This effect will be enhanced by the interactions between the guanidinium group and the 

carboxylate group. In all respect the C-H…–O2C interactions can be considered to be much 

smaller than the effects discussed above. 

Surprisingly, for gas phase the calculations for the cyclopentadienyl derivative 5 predict a 

dissociation energy of +364 kJ mol-1 which is equal to the amidine derivative 4. One would 

expect a higher dissociation energy for 5 than for 4 since the H-bond pattern of 5 contains two 

ionic H-bonds instead of one neutral and one ionic one for 4, and furthermore, the binding 

motif of 5 allows attractive secondary interactions. Additionally, 5 could be stabilized by an 

attractive interaction between the CH2 group of the cyclopentadienyl unit and the carboxylate 

group. Obviously, this possible advantage is probably cancelled out to some extend by other 

factors. One possibility could be geometric strain in 5. Additionally the C-H…–O2C 

interactions could be decreased since the charge of the carboxylate group is smeared out as 

discussed for 4. For a polar environment 5 (decrease to 16 % of the dissociation energy in gas 

phase) becomes more stable than knock-out analogues 4 and 6 as expected for its binding 

motif with two ionic H-bonds and no further destabilizing secondary interactions. “Knock-

out” analogue 3a has a similar stability in water as 5, despite its less efficient binding motif. 

This again probably reflects the fact that the influence of the solvent on the stability of the 

various H-bonds depends on their accessibility.  

The furan derivative 6 exhibits the same H-bond pattern with two ionic H-bonds as the 

cyclopentadienyl derivative 5 and could have been expected to be equally stable. However, 



Chapter 4   Results and Discussion 93 

 

although the outer hydrogen bond is even shorter than in 5, repulsive secondary electrostatic 

effects connected with oxygen lone pairs of the furan oxygen and the bound carboxylate 

reduces the dissociation energies about 19 kJ mol-1 in gas phase and 13 kJ mol-1 in a polar 

solvent, respectively. This repulsive interaction, which is also nicely reflected from the 

electrostatic potentials of 6 (Figure 18 and Figure 20), makes dimer 6 even slightly less 

stable than the neutral analogue 2. 33 

The discussion so far was restricted to the mere electronic dissociation energies to analyze the 

intrinsic stabilities of the various binding motifs. Thermodynamic contributions leading from 

dissociation energies to the corresponding enthalpies and free energies considerably reduce 

the stability of all dimers (Table 5) with respect to their monomers. In gas phase the reduction 

is about 25 %. For a polar solvent the relative importance of the corrections is considerably 

stronger due to smaller absolute dissociation energies.91 As shown in Table 5 within a polar 

solvent the absolute values of the TΔS term vary between 50 and 66 kJ mol-1. The variations 

in ΔS among the series arrive mainly from the contributions of vibration (ΔSvib) while the 

corrections due to translation and rotation are very similar (see supplementary material). One 

could expect that the variations mainly correlate with the magnitude of the binding interaction 

between the monomers since as a result of this binding various low lying bending vibrations 

of the monomers are hindered considerably. However, such a correlation is not found as most 

prominently shown by a comparison between 1 and 3b. The dissociation energies of both 

compounds are very similar but their TΔS terms differ by 11 kJ mol-1 (≈  20 %). This may 

result from the rigidity of the molecules studied here. The size of TΔS is therefore probably 

determined by the reorganization of the whole electronic structure upon dimerization. The 

sum of the resulting subtle changes in all monomer bonds leading to various slight changes in 

many vibrations then determines the changes in ΔSvib. It is important to note that even the 

thermodynamic corrections change the trend in the predicted stabilities to some small extent. 

However, considering the theoretical approximations differences smaller than 5 kJ mol-1 are 

too small for sound predictions.  

On the basis of the computed ΔG values we see that besides 1 and 3b only dimer 5 is 

expected to form stable dimers in water. For all other analogues the dimerization in water is 

endergonic. And even for dimer 5 the dissociation free energy is rather small (ΔG = +13 kJ 

mol-1 for a hypothetical infinite dilute solution), probably not allowing its experimental 

detection due to the salt effect mentioned above, which will further decrease the stability in 

macroscopic samples. Apart from the fact that 5 due to its tautomeric instability can never be 

studied experimentally.  
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4.1.5 Conclusions  

The present study investigated the molecular interactions in 5-(guanidiniocarbonyl)-1H-

pyrrole-2-carboxylate by computing various “knock-out” analogues in which single hydrogen 

bonds are switched off. The influence of a polar solvent is tested and the computations clearly 

show that simple models fail to predict the stability of the knock-out analogues.  

The analysis of the “knock-out” analogues indicates that the following interactions seem to be 

important: a) charge interactions within ionic hydrogen binding networks are significantly 

more stable than simple point charge interactions, b) additional neutral H-bonds further 

stabilize the dimer but less efficiently than the ionic ones, c) solvation affects H-bonds 

differently depending on their accessibility and d) secondary electrostatic interactions further 

modulate the stability. 

The comparison of 5-(guanidiniocarbonyl)-1H-pyrrole-2-carboxylate dimer with the arginine 

dimer in gas phase revealed a final important effect: The zwitterionic monomer of 5-

(guanidiniocarbonyl)-1H-pyrrole-2-carboxylate has a considerably higher energy content than 

the zwitterionic form of arginine. The strong stabilization of the latter arises from the 

interaction of the charged ends which is prevented in 5-(guanidiniocarbonyl)-1H-pyrrole-2-

carboxylate due to its stiffness. Transferring this knowledge to the situation in a polar medium 

the high stability of the 5-(guanidiniocarbonyl)-1H-pyrrole-2-carboxylate dimer (e.g. in 

comparison to arginine) seems to result also from the monomers which are less stabilized. 

This finding suggests a new approach for the optimization of supramolecular self-assembly. 

To have a strong dimerization affinity the monomers should be as rich in energy as possible, 

i.e. this principle does not only focus on the number and strengths of the bonds in the dimers 

but tries to enforce this effect by thermodynamically high lying monomers. 
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4.2 Arginine as Model System for Guanidinium-Carboxylate Interactions 

Amongst all naturally occurring amino acids arginine is in the very focus of interest for 

various reasons. Due to the high basicity of the guanidine group situated in the side chain, its 

protonated form plays an important role in protein chemistry allowing the formation of strong 

salt bridge interactions with carboxylates or phosphates.92 Arginine is therefore present in 

many reactive centres of enzymes and plays also an important role in secondary and tertiary 

structure formation.93  
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Figure 22 Tautomeric forms of neutral arginine. Left: canonical monomer, right: zwitterionic 

monomer. 

 

Amino acids form stable zwitterions in aqueous solution whereas their canonical tautomers 

are strongly favoured in gas phase. An exception could be again arginine since the strong 

proton affinity of the guanidine group could outweigh the energy necessary for charge 

separation (see Figure 22). The question for the tautomeric form of the global minimum of 

arginine in gas phase has therefore been discussed widely by theoretical studies.64,77c-d,94 An 

experimental study trying to shed light on this problem was performed by Chapo et al. 

employing infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS). They 

identified two peaks at 1666 cm-1 and 1693 cm-1 which were assigned to carbonyl stretches of 

the carboxylic acid group present in the canonical form.79 Since symmetric and asymmetric 

stretches of the carboxylate group in the zwitterionic arginine could not be found in the 

expected range, they concluded that in gas phase the canonical form of arginine is mainly 

populated. However, Rak et al. doubted the interpretation of the measured spectrum on the 

basis of new theoretical findings which predicted the carbonyl bands to occur in a region that 

has not be recorded.77c Nevertheless, on the basis of the computed relative energies also their 

study predicts that the canonical form should dominate in the gas phase by 7 kJ mol-1. 

Due to its ability to form strong salt bridges, arginine is also an ideal model system to study 

guanidinium-carboxylate interactions.77a-b,78,95 Moreover, the strong non-covalent binding 

interactions of the guanidinium moiety with anionic groups is the basic concept of a research 
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field trying to mimic biological receptor systems in order to improve ligand-receptor 

interactions and to understand molecular recognition processes. 

4.2.1 Conformational Analysis in Gas Phase – The Quest for the Global 

Minimum  

4.2.1.1 Introduction 

Computational investigations are often hampered by the multiple-minimum problem 

appearing for all molecules which possess many rotatable single bonds. Due to the small 

amount of energy necessary for the internal rotation around such bonds a large number of 

local minima occur which are comparable in energy. The resulting difficulties arise since 

reliable theoretical studies require at least the knowledge of the global minimum. One 

example is the computation of aggregation energies which are of ample interest for many 

different fields of research e.g. supramolecular chemistry, protein-protein interaction etc. 

Exact predictions of aggregation energies for example presuppose the exact energies of the 

global minima of both the underlying monomers and dimers. The determination of free 

energy differences even needs information about all low lying conformers being populated for 

a given temperature. 

Therefore, one has to be aware of such problems when studying non-covalent interactions 

between arginine-like structural motifs occurring in biological and artificial host guest 

complexes.3,4,6,12,96 Chapter 4.1 disclosed the effects causing the large variations in the 

dissociation energies of different complexes which are presumably mainly bonded through 

the same interaction, namely ionic interactions between guanidinium and carboxylate 

moieties. This study uses arginine as reference system and thus a highly accurate computation 

of its dimerization energy is necessary.  

Besides the conformational state also the tautomeric state of arginine dominating the gas 

phase is still under dispute.64,77c-d,79,94 Like all other naturally occurring amino acids arginine 

forms stable zwitterions in aqueous solutions – in that case by an intramolecular protonation 

of the side chain guanidine. However, going from solution to gas phase conditions the 

canonical conformers of amino acids are strongly favoured. As already mentioned, a possible 

exception could be arginine which strong proton affinity could outweigh the energy necessary 

for charge separation. An addition of single water molecules or counterions can already 

strongly stabilize the zwitterionic structure as theoretical studies could prove.80,83b In gas 

phase arginine is also capable to form clusters consisting of zwitterionic monomeric units 
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which form discrete dimers or higher aggregates.77a,97  As already noted, a detailed 

understanding of the non-covalent bonding pattern of these aggregates is of special interest 

since they reveal various contributions (salt bridge, hydrogen bridge, cooperative effects…) 

which are similar to those occurring in guanidinium based carboxylate receptors (see review 

by Schug and Lindner).6   

Starting from arginine monomer and dimer structures given in the literature extensive 

conformational searches were performed in order to ensure that no minima are missed. These 

computations revealed a new global minimum which possesses a completely different 

structural arrangement than the minimum given in the literature. While all already known 

structures are stabilised only by directed hydrogen bonds, the new arrangements also allow 

additional stacking interactions. This structural motif is also found in many other low lying 

conformers which underlines its importance. Also these local minima were overlooked so far. 

Beside the new minima the various pitfalls in the conformational search which prevented the 

previous studies from finding these new minima are revealed. 

4.2.1.2 Computational Details 

The success of a conformational search depends on the trustiness of all methods employed in 

the various steps since a failure in a previous step (normally performed with a less accurate 

approach) can not always be corrected by the subsequent steps for which normally better 

methods are used. If for example the force field based generation of conformers only provides 

structures far away from the global minimum the subsequent refining procedures (geometry 

optimizations on higher theoretical levels) are not able to straighten out this error as the used 

optimization routines only lead to the next local minimum. Since conformation algorithms 

and force fields are often biased, in most cases the first step is performed with various 

combinations. For a validation of conformational search algorithms the stochastic Monte-

Carlo Multiple Minimum (MCMM)39 approach, the Pure Low Mode (LM) approach,40 the 

Mixed MCMM/Low Mode approach and the Systematic Unbound Multiple Minimum 

(SUMM)38 approach as implemented in the MacroModel8.0 program package98 have been 

used for scanning the conformational space. All conformational searches took between 2000 

to 5000 steps and were repeated from different starting structures if necessary. For the 

canonical monomer the number of generated conformers within an energy range of 50 kJ/mol 

exceeded several hundreds conformers so that the different structures were clustered by the 

XCluster program99 based on atomic RMSD (root-mean-square distance) differences of all 

atoms. The choice of an appropriate force field was made dependent on the protonation state 
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of the respective isomer. For the zwitterionic species the OPLS-AA force field100 as well as 

the MMFF94 force field101 yielded reasonable structures, however, for the canonical structure 

only the MMFF94 force field was found to give the most promising results (see Chapter 

4.2.1.3). The lowest lying energy structures were then pre-optimized on a B3LYP/TZVPP 

level using the TURBOMOLE program package.35b,e,65,102 Within this screening step DFT was 

used since it is well known to describe many properties with an excellent cost-benefit 

value.103 Afterwards the most promising monomer structures were fully optimized on RI-

BLYP, B3LYP and RI-MP2 level of theory employing either a TZVPP basis set or with 

additional diffuse functions on the carbonyl atoms in order to describe the diffuse shape of 

electron of the carboxylate atoms in the zwitterionic conformers properly (denoted as 

TZVPP+ in the following). Therefore, the basis set was enlarged by 1s and 1p primitive 

uncontracted basis functions with an exponential coefficient of 0.068, whereas for the 

auxiliary basis sets the exponent was doubled (0.136).104 On the MP2 optimized monomer 

conformers CCSD(T) calculations using the MOLPRO program package105 were performed 

employing a cc-pVDZ basis and an aug-cc-pVDZ basis for the oxygen atoms.106 For 

CCSD(T) the employment of larger basis sets were not feasible due to hardware and software 

restrictions.  

All optimized structures were characterized by harmonic frequency analysis and 

thermodynamic corrections which were obtained with TURBOMOLE on a RI-MP2/TZVP 

level. The free energies were calculated with a scaling factor for the wavenumbers of 0.937.107 

The IR spectra were simulated employing a Gauss fit for the line spectra. The contributions 

from all excitations were added according to the following equation: 
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with σ as the full width of at half maximum (here σ = 0.001) and ΔEi (in eV) and Ii as the 

calculated excitation energies and intensities, respectively.108 
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4.2.1.3 Force-Field Validation 

The initial generation of conformers is mostly performed on a force field level as this step 

requires very high numbers of computations. Therefore, reliable force fields are essential 

since poor starting geometries for subsequent optimizations on higher levels may not lead to 

the global minimum. For the zwitterionic arginine the conformational search (see below) 

employing the OPLS-AA force field resulted directly the thitherto known lowest zwitterionic 

conformer Z3. It is depicted in Figure 1 which gives the geometrical arrangements of the most 

important conformers obtained from RI-MP2/TZVPP+ optimizations. It should be noted that 

force field and MP2 geometries do not differ considerably. A second search employing the 

MMFF94 force field often gave the same or similar structures. Comparing both force fields it 

can be seen that the OPLS-AA force field mostly favours structures with directed hydrogen 

bonds. This effect results since the OPLS-AA force field, which was primarily designed to 

represent conformational energies and nonbonded parameters like hydrogen bonding of 

peptides and proteins properly100, lays more stress on the ionic interactions of the charged 

ends than the MMFF94 force field. Nevertheless, also stacked structures, e.g. the ZW19 

structure are obtained. The MMFF94 force field yields both structure types, however, the 

stacked conformers are favoured in the energy listing (see below). The quality of the 

MMFF94 force field was already discussed by Boyd and coworkers.109 Based on X-ray 

geometries as reference quantities they found that the MMFF94 force field yields often more 

accurate results than MP2-computations. That a carefully parameterized force field can give 

more accurate results than high level ab-initio procedures is known, especially for weak 

dispersion interactions which are very difficult to obtain by ab-initio procedures but can be 

parameterized quite well. However, using X-ray structures to determine the accuracy seems to 

be very problematic. The determination of X-ray structures includes severe optimization 

cycles which rely on force-field approaches. As a consequence of these fitting procedures the 

X-ray structures should be more similar to the force field than to ab-initio computations. 

It should be noted that the conformational search for the zwitterionic species is less delicate 

due to the strong ionic interaction which reduces the number of low lying conformers 

drastically. The preference of directed hydrogen bonds by the OPLS-AA force field leads to 

severe problems in the description of the aggregation behaviour of arginine-like zwitterionic 

monomers. 
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Optimization

OPLS−AA−1 C5  

Figure 23 The lowest energy canonical conformer OPLS-AA-1 generated by the Mixed 

MCMM/LowMode algorithm in conjunction with the OPLS-AA force field (left). Geometry 

optimization on DFT level (B-LYP/TZVPP+) gives a conformer which differs mainly by the 

geometry of the guanidine group (middle). It deviates from the C5 conformers (right) by the 

orientation of the terminal amino moieties.  

 

Such a dominating interaction does not exist for the canonical arginine conformers so that the 

conformational search generates a lot more conformers. A comparison between the two force 

fields MMFF94 and OPLS-AA showed that the latter indeed gives as first hit a structure 

resembling the minimum structure C5 in regard of the alkyl backbone but differing in the 

guanidine geometry. Here, the hydrogen of the proton acceptor nitrogen is displaced nearly 

perpendicular to the molecular plane of the guanidine group on force field level giving after 

ab initio geometry optimization the unfavourable tautomer OPLS-AA-1 shown in Figure 23, 

which lies 23 kJ/mol higher than the minimum structure C5 (RI-BLYP/TZVPP+). 

The lowest conformers of the MMFF94 force field are structurally different to the literature 

minimum conformer C5, which itself could not be found since it does not represent a local 

minimum in any of the force fields. A similar conformer, N20, was found on rank 20 differing 

only by +2 kJ/mol (RI-MP2/TZVPP+) in energy from C5 (Figure 24). Both deviate by the 

orientation of the amine hydrogen atoms of the guanidine group. An identical backbone 

including the correct representation of the guanidine group was found for a conformer listed 

on rank 392. However, a small rotation of the α-amino group results in a relative potential 

energy of +5 kJ/mol with regard to the lowest energy conformer C5 (RI-MP2/TZVPP+).  
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C5N20 N392  

Figure 24 RI-MP2/TZVPP+ optimized geometries of the canonical conformers N20, N392 

and C5. For N20 the structural difference to C5 is restricted to a flip of the amine hydrogens 

of the guanidine group, whereas in case of N392 a rotation of the α-amino group is found. 

4.2.1.4 Conformational Search Algorithms  

The conformational search algorithms used throughout this work follow different strategies. 

The Systematic Unbound Multiple Minimum (SUMM) approach38 obtains new conformers by 

a systematic variation of the torsion angles with an increasing resolution. The Pure Low Mode 

(LM)40 approach uses the second derivates from a given geometry and follows the lowest 

mode to escape the minimum. This approach possesses a local character, i.e. it only searches 

the near surrounding of a given minimum. The Monte-Carlo Multiple Minimum (MCMM) 

approach39 represents a stochastic variation of torsion and therefore possesses a more global 

character. A combination of MCMM and LM should comprise both local and global 

characters.  

The strong ionic interactions between the guanidinium moiety and the carboxylate group do 

not only reduce the number of possible low lying conformers of the zwitterionic structure. 

They also increase the well depth of the respective minima. The method of choice for 

searching this PES effectively was found to be the Systematic Unbound Multiple Minimum 

(SUMM) method. Its benefit results from the fast algorithm which varies the dihedrals 

systematically. Unlike stochastic methods, it is not retracing its search path resulting in a 

more rapid convergence in comparison to random search algorithms.  

Since the potential energy surface (PES) of canonical arginine is considerably smoother, 

sensitive search strategies are required in order to detect the numerous local minima. Due to 

the coarse grid in its first step, the SUMM approach turned out to be inefficient for such a 

situation. The success of the remaining algorithms is compared in Figure 25 which gives the 
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relative RI-MP2/TZVPP//B3LYP/TZVPP energies of the generated conformers with respect 

to structure (C5) given by Rak et al. For a better comparison only the MMFF94 conformers 

are given. As one can see in Figure 25the stochastic MCMM algorithm produces only one 

conformer that is lower in energy than C5. All others are clearly higher in energy. Taking into 

account that the various low lying minima possess a quite similar structure (see Figure 26), 

this indicates that the global character of this search impedes the finding of local minima 

lying close to each other on the PES. The conformational search in using the LM approach 

gave many conformers which possessed the same electronic energy after DFT geometry 

optimization (see Figure 25). A closer inspection showed that they represent the L and D 

configurations of the respective conformers, i.e. the LM algorithm overcomes the high energy 

barrier separating both enantiomers. This shows the strong local character of the LM approach 

since two enantiomers are more similar with respect to the internal coordinates than two 

conformers. However, this behaviour is unfavourable since in most conformational searches 

only one enantiomer is of interest. The mixed MCMM/LM algorithm combining local and 

global elements yields new low lying energy conformers which represent different minima 

also on the DFT PES. In summary, the mixed MCMM/LM approach in conjunction with the 

MMFF94 force field turned out to be the best choice for generating new and unique low-

energy conformers that can be handed over to more sophisticated ab initio methods.  
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Figure 25 Comparison of MP2/TZVPP//B3LYP/TZVPP energies (in kJ mol-1) of conformers 

generated by different conformational search algorithms using the MMFF94 force field with 

the previously published structures by Rak et al. The new conformers are termed according to 

their rank in the force field energy listing. Conformers which collapsed to a single minimum 

during the DFT optimization are encircled. Structures being identical to those given by Rak et 

al77c are indicated by a C (C1, C2, C3, C4). 
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4.2.1.5 Electronic Structure Optimizations 

A strong uncertainty results from the differences found in the energy ordering predicted by 

the force fields and by the ab-initio pre-optimisation. To minimize the unreliability of our 

approach a great amount of conformers were taken into account in order to ensure that all 

possible lowest level conformers are included. The selection of new candidates was done 

manually for the purpose to reduce the amount of conformers which where treated in the pre-

optimization to 30 per conformational search. The pre-optimization consists of a geometry 

optimization on the B3LYP/TZVPP level followed by single-point MP2/TZVPP computation. 

The single-point computations were necessary since DFT is well known for an excellent 

description of various properties110 and especially the interactions between charged species111, 

but often DFT does not encounter all important interactions properly (see Chapter 3.1.4). For 

the most promising conformers additional geometry optimizations employing DFT and MP2 

methods in conjunction with the TZVPP+ basis set were performed. The RI-MP2/TZVPP+ 

optimized geometries for both the canonical and zwitterionic conformers of arginine are given 

in Figure 26. The corresponding relative energies and bond length and angles are shown in 

Table 6 and Table 7, respectively. The two zwitterionic conformers have been selected from 

conformational searches employing the OPLS-AA (ZW19) as well as the MMFF94 force 

field (ZW1), whereas all new canonical structures resulted from a mixed MCMM/LM 

conformational search based on the MMFF94 force field. As noted before the structures C5 

and Z3 were already described in the literature.77c 

Furthermore, the multiple hydrogen binding patterns within the stacked structures 

comprehend hydrogen bonds of the type N–H···O from the guanidine to the protonated 

hydroxyl oxygen (N1, N3, N4). Such hydrogen bond types have not been mentioned for the 

arginine monomer yet. Nearly all new canonical structures also posses N–H···N bonds from 

the α-amino group to the guanidine rest (N1, N3, N4, N6, N19) having a back-donating-like 

character. N6 and N19 additionally show weak C–H···C hydrogen bonds (2.4 - 2.5 Å) 

stabilizing the backbone. 
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Figure 26 RI-MP2/TZVPP+ optimized geometries for canonical and zwitterionic conformers 

of arginine monomer. The nomenclature of the new conformers is based on the ranking after 

the conformational search and in case of the lowest reference conformations (C5, Z3) the 

names are adopted from the literature. 
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Table 6 Relative electronic energies in kJ/mol of the fully optimized conformer geometries in 

dependence of the level of theory 

Method N1 N2 N3 N4 N6 N19 C5 ZW1 ZW19 Z3 

B3LYP/TZVPP 0.0 -8.6 +4.5 +4.9 -3.6 -1.1 -6.8 - - - 

MP2/TZVPP1 0.0 +4.3 +5.8 +7.3 +6.6 +7.2 +6.3 - - - 

B-LYP/TZVPP+ 0.0 -10.6 +4.2 +4.4 -6.3 -2.6 -9.4 +1.8 -0.8 -0.8 

B3-LYP/TZVPP+ 0.0 -9.5 +4.6 +5.0 -4.0 -1.2 -7.4 +4.3 +3.5 +2.8 

RI-MP2/TZVPP+ 0.0 +5.5 +5.6 +7.1 +8.5 +8.7 +8.3 +7.1 +6.7 +15.7 

MP2/cc-VDZ2 0.0 +8.7 +8.4 +8.4 +15.4 +15.5 +11.2 -2.8 -2.5 +11.4 

CCSD(T)/cc-VDZ2 0.0 +7.4 +8.2 +7.7 +14.9 +14.2 +9.2 +1.6 +1.6 +15.0 

CCSD(T)/ 

extrapol.3 
0.0 +4.2 +5.4 +6.4 +8.0 +7.4 +6.3 +11.5 +10.8 +19.3 

 

                                                 
1 Relative single point energies on B3LYP/TZVPP optimized geometries 
2 Relative single point energies on RI-MP2/TZVPP+ optimized geometries 
3 Δ E(CCSD(T)/extrapol.)=ΔE(CCSD(T)/cc-VDZ)+{Δ E(MP2/TZVPP)-ΔE(MP2/cc-VDZ) 
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Table 7 Hydrogen bond lengths and selected intermolecular distances of canonical and 

zwitterionic tautomers of arginine (in Å) calculated on RI-MP2/TZVPP+ level of theory. For 

the labelling of the atoms see Figure 26. 

Structure OC1–H···NG1 CB–H···CC NA–H···NG1 NG2–H···OC1 OC1–H···NA NG3···CC 

C5 1.79 - - - - - 

N2 1.76 - - - - - 

N1 - - 2.32 2.48 1.82 2.70 

N3 - - 2.53 2.36 1.83 2.73 

N4 - - 2.32 2.48 1.83 2.83 

N6 - 2.53 1.98 - 1.81 - 

N19 - 2.42 2.12 - 1.83 - 

Structure NG1–H···OC1 NG3–H···OC2 NG3–H···NA NA–H···OC2  OC2···CG 

Z3 1.63 1.63 - 2.32  - 

ZW1 1.55 - 1.91 -  3.03 

ZW19 1.55 - 2.01 -  3.10 

 

 

 
Figure 27 Chair-like conformation of N1 
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All structures show strong interactions between the guanidine and the carboxyl moiety. 

However, while the already known structure type (e.g. N2, C5, Z3) is solely stabilized by 

directed hydrogen bonds, the new structure motif shows strong stacking interactions between 

the terminal groups leading to a parallel orientation of the carboxyl and the guanidine moiety. 

It is noteworthy that such stacked arrangements appear in canonical as well as zwitterionic 

conformers.  

One reason why these structures were overlooked before is shown by Table 6 revealing a 

strong dependency of the relative energies on the level of theory, i.e. on basis set size and 

method. In case of the canonical conformers the relative energies of DFT optimized 

conformers are remarkably higher (10-15 kJ mol-1) if stacked structures are considered, 

whereas structures showing classical O–H···N directed hydrogen bonds like N2 or C5 are 

predicted to be the most stable. This energy order is inverted if MP2/TZVPP single-point 

computations are performed on top of the B3LYP/TZVPP geometries. Such computations 

already predict the stacked N1 structure to be the most favourable conformer. If geometry 

optimizations are performed on the MP2/TZVPP+ level the relative energies change to some 

extend but the main trends remain. In order to estimate the accuracy of the MP2 results 

single-point CCSD(T) calculations have been performed on top of the optimized MP2 

geometries. Unfortunately, these calculations were only feasible with a correlation-consistent 

double-ξ basis set. Therefore the energies for a larger basis set have only been extrapolated 

using the basis set dependency of the MP2 calculations. Especially the N6 and the N19 

conformer both showing in principle the same binding pattern are affected by an enlargement 

of the basis by about 7 kJ mol-1. On this level of theory all directed bonded structures (C5, 

N2, N19, N6) are between 6-9 kJ mol-1 higher in energy than the new global minimum 

structure N1.  

Regarding the zwitterionic conformers it has to be noted that for some conformers (e.g. 

ZW19) DFT is even not able to predict the structure correctly. BLYP and B3LYP calculate 

the zwitterionic structures to lie about 10-12 kJ mol-1 above the lowest canonical structure 

predicted by DFT being N2. Additionally, DFT wrongly favours the directed hydrogen 

bonding pattern of Z3 with respect to the stacked structures of ZW1 and ZW19. Geometry 

optimizations on MP2/TZVPP+ level yield that the lowest zwitterionic conformer is only 7 kJ 

mol-1 less stable than the lowest canonical structure on this level of theory, which is N1. 

Compared to the N2 conformer this difference decreases even to 1 kJ mol-1. Furthermore, 

MP2/TZVPP+ computations predict the stacked structures to be energetically more 

favourable than the structure Z3 by about 8 kJ mol-1. CCSD(T)/cc-DVZ calculations amplify 
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this unbalance making the zwitterionic conformers ZW1 and ZW19 now almost as stable as 

the canonical structures (+1.6 kJ mol-1), whereas the relative energy of Z3 remains nearly 

unchanged. However, the stacked structures show a  very strong basis set dependency and 

thus these structures are proportionally stronger destabilized by the basis set extrapolation 

than Z3 and are therefore estimated to lie +11 kJ mol-1 higher than the lowest canonical 

structure. Since CCSD(T) should depend more strongly on the basis set size than MP2 we 

expect that the correct energy difference is slightly higher. 

The reason for the underestimation of stacked structures by DFT methods must be discussed 

separately for the canonical and zwitterionic structures since both discrepancies seem to result 

from different underlying effects. Figure 5 shows the chair-like structure of the canonical N1 

conformer that forms an open six-membered ring. The structure is only slightly strained as 

can be seen in the angles (see Table 8). The main stabilization of the structure results from 

the OC1–H···NA bond. It is only slightly longer than the OC1–H···NG1 bond which stabilizes 

the structures N2 and C5. Additional stabilizations arise from weak dispersive interactions 

between the guanidine nitrogen and the carboxylate carbon atom. With a distance of 2.70 Å 

the hydrogen bond is about 0.6 Å shorter than the sum of the van der Waals radii.112 

Moreover, as a consequence of the stacked orientation the arginine is able to form three 

additional hydrogen bonds of which two are real hydrogen bonds between the carboxylic acid 

and the guanidine moieties. Although each bond is remarkably larger than the hydrogen bond 

in N2 or C5 they also contribute slightly to the stabilization. From the distances of the 

hydrogen bonds (Table 7) also N6 could be expected to be lower in energy than N1. 

However, the missing stacking effects between the guanidinium and the carboxylate moiety 

present in N1 but not in N6 seem to outweigh the advantage of stronger hydrogen bonds. The 

multiple bonding pattern makes the stacked structure N1 the global minimum structure if 

MP2 or CCSD(T) methods are employed. In contrast, DFT fails for these types of conformers 

since it is well known to overestimate hydrogen bonding and the common functionals like 

B3LYP are not able to describe dispersion interactions like π-π-stacking.  

The N3 conformer is almost identical to the global minimum structure N1 differing only in 

the orientation of the hydrogen situated at the sp2-hybridized guanidine nitrogen. The 

resulting repulsive interactions with the backbone hydrogen atoms destabilize this 

conformation of about 5 kJ mol-1. While N1 possesses a chair-like conformation the N4 

structure represents the twist conformer lying 7 kJ mol-1 higher in energy. 
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γ
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Table 8 Angles in degree of the chair-like conformers N1, N3 and N4 (RI-MP2/TZVPP+). 

 N1 N3 N4 

α 113.0 112.8 113.0 

β 116.4 116.6 118.7 

γ 115.8 115.7 115.7 

δ 113.9 113.7 110.0 

ε 103.4 101.4 103.8 

ζ 87.5 87.7 82.3 

 
 

 

 

For the zwitterionic structures an analogous picture is found. Here, DFT (e.g. B3-

LYP/TZVPP+) predicts both structure types to be more or less similar in energy whereas MP2 

and CCSD(T)/extrapol. calculations compute the new stacked structures ZW19 and ZW1 to 

be lower in energy by about 9 kJmol-1. 

An analysis of the situation in ZW19 is provided by Figure 28. Geometry optimization with 

RI-BLYP/TZVPP+ results in the local minimum structure given on the left hand side of 

Figure 28 which lies ~10 kJ mol-1 above the global minimum N2 on this level of theory. If 

this structure is used as a starting point for a MP2 geometry optimization (RI-MP2/TZVPP+) 

the structure ZW19 shown on the right hand side of Figure 28 is obtained. RI-MP2/TZVPP+ 

predicts ZW19 to be 7 kJ mol-1 lower in energy than the DFT optimized structure and about 7 

kJmol-1 less stable than the global minimum N1. A single point RI-BLYP/TZVPP+ 

calculation on the MP2 optimized structures predicts it to be 19 kJ mol-1 higher in energy than 

the BLYP optimized structure.  
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Figure 28 Geometries of the zwitterionic conformer ZW19 in dependence of the method. The 

a) B-LYP/TZVPP+ optimized geometry and b) MP2/TZVPP+ geometry differ in energy of 

7.4 kJ mol-1 (MP2/TZVPP+) 

 

The reasons for the variations can be seen from an analysis of the ESP fit charges. Both 

approaches agree with that most of the positive charge is localized on the hydrogen atoms but 

they slightly differ in the charge delocalization between the heavier centres. Using 

MP2/TZVPP+ positive and negative charge is a bit more localized on the heavier centres in 

contrast to DFT which is in line with findings showing that DFT overestimates delocalizing 

effects.113 As a consequence of the more localized charges for MP2, the Coulomb interaction 

between the carboxylate oxygen and the central carbon atom of the guanidinium moiety leads 

to a decreased oxygen-carbon distance (Figure 28). A complete parallel orientation of both 

groups may be impeded by repulsive interactions between the oxygen and the nitrogen 

centres. It is noteworthy that the strong hydrogen bond between one of the oxygen atoms and 

one of the NH2 groups of the guanidinium remains nearly unchanged. Comparing the two low 

lying zwitterionic structures Z3 and ZW19 (Figure 26) it becomes clear that the increased 

electrostatic attractions outweigh at least one strong hydrogen bond. Besides the differences 

in the localization, one can also expect that the inability of DFT to account for dispersion 

effects is a second reason for the discrepancies. That dispersion effects are very important for 

guanidinium cations was recently shown by Brady and coworkers.114  

In accordance to Saykally and coworkers, Rak et al. predicted a canonical conformer of 

arginine to represent the global minimum in the gas phase.77,79 Using the MP2/6-31++G** 

approach the lowest lying zwitterionic structure was computed to lie only 7 kJmol-1 higher but 

the energy difference increased to about 17 kJmol-1 if CCSD was employed. Since the stacked 

zwitterionic structure ZW19 is found to lie considerably lower in energy than the already 
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known zwitterionic structure Z3, the question arises if it becomes the global minimum. This is 

not the case as can be seen from Table 6. Using the MP2/TZVPP+ approach the structure 

ZW19 is found to lie about 7 kJmol-1 above the lowest lying neutral structure N1 (Figure 26). 

CCSD(T) computations were performed to check the MP2 predictions. After the basis set 

extrapolation the zwitterionic structure ZW19 lies 11 kJ mol-1 higher in energy than the global 

minimum N1. However, since CCSD(T) should be more influenced by basis set effects than 

MP2 the 11 kJ mol-1 represents a lower limit.115 

Table 6 reveals that the computed energy differences between the various low lying isomers 

are so small that zero-point vibrational energy contributions and thermal effects are not 

negligible. The various contributions are summarized in with respect to structure N1.  Table 9 

shows that the structures exhibiting directed hydrogen bonds (N2, N6, N19) slightly benefit 

from the enthalpy and entropy corrections. Due to the thermodynamic corrections the energy 

difference between the global minimum (N1) and the now lowest lying zwitterionic structure 

ZW1 decreases to 9 kJmol-1 (extrapolated CCSD(T) values). In comparison to previous works 

the present approach could identify new global minimum structures for both the canonical as 

well as the zwitterionic tautomers and finds that the expected energy gap between these 

structures is only about half as large as predicted by earlier calculations which employed less 

accurate methods.77c 

 

Table 9 Thermodynamic corrections in kJmol-1 for RI-MP2/TZVPP+ optimized geometries 

calculated on RI-MP2/TZVP level (T=298.15 K).  

 N1 N2 N3 N4 N6 N19 C5 ZW1 ZW19 Z3 

ΔHcorr 0.0 -0.7 +0.2 -0.3 -0.2 0.0 -0.8 -4.0 -3.7 -5.4 

-TΔScorr 0.0 -2.9 +0.2 -0.5 -2.6 -2.1 -2.5 -2.0 +2.2 -0.8 

ΔGMP2
1 0.0 +2.0 +5.9 +6.3 +5.7 +6.6 +5.0 +5.0 +5.2 +9.5 

ΔGCCSD(T)
2 0.0 +0.7 +5.4 +5.6 +5.2 +5.3 +3.0 +9.4 +9.3 +13.1 

                                                 
1 ΔGMP2 = ΔEelec(RI-MP2/TZVPP+) + ΔHcorr - TΔScorr 

2 ΔGCCSD(T) = ΔEelec(CCSD(T)/extrapol.) + ΔHcorr - TΔScorr 
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4.2.1.6 Calculated Spectra 

According to our study arginine possesses conformers with large structural differences 

already within an energy range of less than 10 kJmol-1. Taking into account remaining 

uncertainties resulting from the conformational search and from the notoriously difficult 

estimate of entropy effects only experiment can provide an unambiguous answer which 

structure type represents the global minimum. Due to the differences in the intramolecular 

interactions vibrational spectroscopy should at least be able to distinguish between the various 

types of conformers (stacked arrangements vs. directed hydrogen bonds) and tautomers 

(canonical vs. zwitterionic form). This approach was utilized for the first time by Saykally 

and coworkers who concentrated on the region between 1500 and 1600 cm-1 in order to 

determine experimentally whether the canonical or the zwitterionic form represents the global 

minimum. However, as already pointed out by Rak et al. this energy range is not sufficient for 

a definite answer.  

To estimate which interval of the spectra is best suited for an unambiguous identification the 

RI-MP2 method was used to compute the various IR spectra. Figure 5 shows the calculated, 

unscaled line spectra of the various low lying energy conformers of canonical and 

zwitterionic arginine with the superimpositions of Gauss fitted curves. Characteristic peaks 

were assigned by vibrational mode analysis. The resulting labelling is given if peaks could be 

related to more or less uncoupled vibrations.  

All spectra can be divided into three major regions: (a) the fingerprint region below 1500 cm-1 

wavenumbers showing coupled scaffold and bending vibrations, (b) the region between 1600 

cm-1 and 1900 cm-1 consisting mainly of C=O and C=N stretch vibrations and (c) the 

hydrogen stretch vibrations between 2600 cm-1 and 4000 cm-1. Chapo et al. as well as Rak et 

al. both concentrated on region (b) in order to determine the tautomeric state of arginine. The 

spectra of the canonical conformers show mainly a C=O stretch band around 1860 cm-1 and a 

clear peak for one C=N stretch vibration in the guanidine part at ~1710 cm-1. Some other 

peaks occur representing COH bending or coupled vibrations which are quite similar for both 

forms of geometrical arrangements (linear H-bond vs. stacking orientation). Regarding the 

spectra of the zwitterionic arginine the symmetric O=C=O stretch band is rather weak and 

coupled with other vibrations. The large C=N stretch peak is shifted to larger wavenumbers 

(1830-1860 cm-1) in comparison to the canonical conformers and it is also coupled with NH 

stretch vibrations. However, whereas the assignments for the various conformers are different, 
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the experimentally accessible properties such as frequencies and intensities are too similar for 

a definitive determination of the structure of the global minimum. 

As expected region (c) containing the N-H and O-H vibrations would allow an unambiguous 

identification which type of conformer (stacked arrangements vs. directed hydrogen bonds) 

and tautomers (canonical vs. zwitterionic form) predominates in the gas phase. The 

conformers C5 and N2 possess a very intense peak at about 3300 cm-1 assigned to the stretch 

vibration of the O-H group. The high intensities result from their involvement in the directed 

hydrogen bond to the guanidinium group. The spectra of N2 and C5 show a slightly different 

energy gap between the OH-stretch and the CH-stretch vibrations which may be used to 

differentiate between both conformers. In any case this slight difference could be used to 

determine if both conformers were present in gas phase. 

The intensity of this vibration is drastically reduced when the arginine shows a stacked 

conformation (N1, N3, N4) and also a small shift towards ~3400 cm-1 is predicted. Therefore, 

this peak allows a differentiation between directed and stacked canonical conformers, whereas 

it is hardly possible to distinguish between N3 and N4 or N6 and N19, respectively. 

For the zwitterionic conformers Z3, ZW1 and ZW19 the N-H stretch vibrations of the 

zwitterionic hydrogen bond (NH⋅⋅⋅O) appear in this energy range. These vibrations all occur 

at wavenumbers well below 3300 cm-1 and should therefore be a characteristic evidence for 

the existence of zwitterionic conformers in the gas phase. A differentiation between stacked 

or directed types of conformers is also easily possible since the latter possesses two strong 

absorptions within a small energy range. In contrast, the stacked conformer ZW1 and ZW19 

shows strong peaks at about 3200 and 3400 cm-1, respectively. They are assigned to the NH 

stretch vibration of the NH⋅⋅⋅N hydrogen bond between the guanidinium group and the α-

amino nitrogen centre. Our calculations strongly suggest that the region around 3000 cm-1 can 

be used to experimentally differentiate between the various structures. Hence, this way allows 

an unambiguous determination of the global minimum of the arginine monomer. 

 

Figure 29 Pages 115 to 119: Gauss fitted curves of calculated vibration line spectra of neutral 

arginine conformers (RI-MP2/TZVP). Some relevant unscaled vibration modes are given. The 

peaks of high intensity were cut for the sake of clarity. 

p. 115: N1 (top), N2 (bottom); p. 116: N3 (top), N4 (bottom); p. 117: N6 (top), N19 (bottom); 

p. 118: C5 (top); Z3 (bottom); p. 119: ZW1 (top), ZW19 (bottom); 
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4.2.1.7 Conclusions 

In this chapter a strategy was presented that enables to identify minimum energy conformers 

in gas phase of the arginine monomer serving as a prototype for medium sized organic 

molecules that show strong intramolecular interactions. The methods used for various stages 

are shown and various pitfalls are discussed. Starting from an exhaustive force field based 

conformational search using different conformational search algorithms for the zwitterionic 

and the canonical tautomeric state of arginine, the lowest energy structures have been selected 

based on clustering and visual inspection. The subsequent optimizations on DFT and MP2 

level of theory employing a large basis set revealed the shortcoming of density functional 

approaches when describing stacking-like interactions. In this case, new geometrical 

arrangements were found that have not been reported so far comprising a stacked orientation 

of the terminal groups. For the arginine the explanation for this finding is twofold. In the case 

of the canonical structure a geometry optimization solely based on density functional theory 

would neglect dispersive interactions between the guanidine group and the carboxylic acid 

which can occur due to the high flexibility of the arginine. For the zwitterionic monomer it 

was shown that in addition to the lack of dispersion terms also the overestimation of hydrogen 

bonding and delocalization is the main reason for the deficiency of B3LYP or BLYP 

functionals. As a consequence, the electrostatic interactions between the carbonyl and 

guanidine moieties are underestimated and the stacked conformers are described poorly. 

Therefore, as a thumb rule, if treating non-covalently interacting systems that can undergo a 

π-π like stacking interaction, at least a simple electron correlation method like MP2 is 

mandatory in order to get appropriate relative energies of all possible conformations. This 

assumption should also hold for biochemical systems which are only hardly accessible to 

solvent molecules like many active sites in enzymes are. Single point energy calculations on 

CCSD(T)/cc-VDZ level finally confirmed the previously found trends for the relative 

energies of the conformers and a hitherto unknown global minimum conformer of arginine in 

gas phase (N1) was detected that is more than 8 kJ mol-1 lower in energy than the published 

structures.   

 

It was also shown that the new zwitterionic conformer ZW1 is energetically near the 

canonical global minimum (7 kJ mol-1) implicating that a rigorous exclusion of a zwitterionic 

state in gas phase as it was proposed by several studies before is not tenable. An unambiguous 

proof can therefore only be given by experiment. For this purpose we computed the gauss 
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fitted vibrational spectra for the lowest monomer structures and we were able to show that a 

comparison of the hydrogen stretch vibrations between 2600 cm-1 and 4000 cm-1 would make 

it possible to assign which tautomer (zwitterionic vs. canonical) and which type of conformer 

(directed hydrogen bonds vs. stacked orientation) dominates in gas phase.  

 

 

 

 

 

 

 

 



122 Chapter 4   Results and Discussion 

 

4.2.2 Self-Assembly of Gas Phase Arginine 

4.2.2.1 Introduction 

A successful rational design of new artificial receptor systems requires a profound knowledge 

of all inter- and intramolecular interactions as well as the ability to distinguish between 

molecular inherent and solvent effects. On this account theoretical studies are often used to 

investigate the gas phase properties of such systems which best reflect the molecular inherent 

effects. Moreover, theory also allows a differentiation between various interactions. In order 

to study the gas phase binding properties of guanidinium based artificial receptor systems we 

started to research on the dimerization of arginine monomers. A similar approach has already 

been performed by Goddard III and co-workers who calculated bonding energies of arginine 

dimers and trimers with respect to the global minimum of arginine published by Rak and 

coworkers.77a,c  

However, our conformational search in conjunction with accurate electron correlation 

computations yielded yet unknown conformers of arginine dimer systems which exhibit 

completely new types of geometrical arrangements not reported before. Additionally, new 

global minimum structures could be identified. Therefore, the first aim is to discuss the 

interactions which stabilize the new conformers and to give a brief outline why these 

structures could not be identified in the previous works. 

Second, it is studied to what extent a stiffening of a system can enhance its ability to self-

aggregate, e.g. to form stable dimers. The question arises from the previous study of the 

binding properties of the efficient carboxylate receptors developed by Schmuck and 

coworkers (see chapter 4.1). Within these dimer systems the non-covalent complexation 

includes a variety of effects like ionic interactions, hydrogen bonding and cooperativity which 

all contribute to the stabilization energy. However, recent theoretical studies of the 

dissociation processes of the dimer indicate that not only the additional hydrogen bonds 

compared to the parent guanidinium cation, but also the rigidity of the monomer is of utmost 

decisive importance for the stability of the dimer. Due to its strong rigidity the 2-

(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate monomer cannot be stabilized by 

intramolecular interactions between the charged terminal groups. As a result, the formation of 

assemblies leads to high dimerization energies. In contrast, arginine has a significant 

flexibility because of the large amount of rotatable bonds in the side chain so that the 

oppositely charged groups strongly interact already in the monomer. Arginine is expected to 
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show drastically reduced dimerization energies in comparison to the artificial systems 

introduced by Schmuck et al.. This difference can not only be explained simply by the 

difference in the binding motifs (e.g. number of H-bonds or acidity). To estimate how an 

artificial stiffening of arginine would enhance its complexation ability we computed the 

dimerization energy of a linear conformer of arginine. These calculations indicate that the 

dimerization energy of an artificial rigid arginine is about twice as large as for the flexible 

arginine. Therefore, at least for self-complementary systems, the stiffening of a molecule 

seems to be a suitable instrument to steer its complexation properties. A comparison to the 

completely rigid the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate shows that its inherent 

rigidity accounts to about 50% to the dimer stability.  
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4.2.2.2 Computational Details 

An efficient although exhaustive search of the conformational space as well as the choice of 

an appropriate force field is the crux in determining low-energy conformers of canonical and 

zwitterionic arginine monomers and their non-covalent assemblies.  An extensive validation 

revealed that for the arginine monomer and dimer the Mixed Monte-Carlo Multiple 

Minimum/Low Mode (MCMM/LowMode) approach39,40 and the Systematic Unbound 

Multiple Minimum (SUMM) algorithm38 as implemented in the MacroModel8.0 program 

package98 are the most effective tools for scanning the conformational space, whereas the 

OPLS-AA100 and the MMFF94101 force fields gave the best structures and energy order of the 

conformers.  

All conformational searches took between 2000 to 5000 steps and were repeated from 

different starting structures. In the next step the most promising structures were optimized on 

the RI-BLYP/SV(P) level of theory employing the TURBOMOLE program package, 

respectively. 35b,e,65,102,65 In these calculations a great number of conformers should be taken 

into account since the energy ordering resulting from the force field based conformational 

searches and from these DFT computations differ largely (see chapter 4.2.1). To keep the 

efforts manageable, the conformers treated in this step were manually selected after visual 

inspection. 

To determine the lowest lying structures of the dimer system the same strategy like for the 

monomer was used (see chapter 4.2.1). Due to software and hardware restrictions the RI-MP2 

optimizations were only feasible with a TZVP basis. The final electronic energies were then 

calculated by single-point calculations on RI-MP2 level employing the TZVPP+ basis in 

which the oxygen centres was augmented by one s and one p function with low exponents 

(ζ=0.068) in order to describe the diffuse shape of electrons of the carboxylate atoms in the 

zwitterionic conformers properly.104 For the auxiliary basis sets the exponent was doubled 

(ζ=0.136). CCSD(T) computations with reasonable basis sets were not possible. Dissociation 

energies of the dimer species were calculated including the counterpoise correction according 

to Boys and Bernardi.24 
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4.2.2.3 Geometries and Energies 

The conformational search for low lying conformers of the arginine dimer was performed 

with the same strategy as used for the monomer. All detected low lying structures consist of 

two zwitterionic species interacting through several charged H-bonds between the 

guanidinium and carboxylate moieties. Dimers consisting of canonical monomers are 

unfavourable since the zwitterionic forms are stabilized through the electric field of its 

counterpart. Hence, the formation of the strong bonded salt bridges outweighs the energy 

necessary to form the zwitterionic monomers. The deep minimum wells resulting from these 

strong salt bridges also explain the low number of conformers. 

The three lowest lying conformers detected within our conformational search (MMFF1, 

MMFF2 and MMFF4), which were all predicted by the MMFF94 force field, are depicted in 

Figure 30. Figure 30 also contains the lowest conformer given by Goddard III and co-

workers (DZ1) and the lowest structure predicted by the OPLS-AA force field (OPLS-

AA1).77a Table 10 summarizes the most important geometrical parameters. The geometrical 

differences between the MMFF structures and both other conformers (OPLS-AA1 and DZ1) 

are striking. In all structures the zwitterionic monomers form strong salt bridges between the 

guanidinium moiety and the carboxylate group of the counterpart through a network of 

directed hydrogen bonds. The striking differences result from the intramolecular interactions 

of the carboxylate and the guanidinium group of a given monomer. For the OPLS-AA1 and 

the DZ1 conformer these units also interact through one directed hydrogen bond necessitating 

a planar structure for the dimer. In contrast, in the MMFF structures the guanidinium and the 

carboxylate moiety of one monomer adopt a more parallel orientation leading to pocket-like 

structures.  

Within Figure 30 the opening of the pocket is in the foreground (R(O(2)···N(8)) = 4-5 Å). 

The bond lengths between O(1) and HN(7) (R = 1.98 - 2.12 Å) indicate moderate hydrogen 

bond strengths. The structural arrangement points to interactions resembling those found in 

the ZW19 conformer. With dimerization energies of about 200 kJ mol-1 (MP2/TZVPP) these 

pocket-like structures are about 60 kJ mol-1 more stable than the planar structures DZ1 and 

OPLS-AA1 (see Table 11). 

The stronger stabilization of the MMFF structures does not only result from the differences in 

the bonding network between the guanidinium and carboxylate moieties, but also from an 

additional hydrogen bond between the α-amino-nitrogen and the guanidinium moiety which 

cannot be formed in DZ1 or OPLS-AA1 due to their planarity. 
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The energy difference between MMFF1 and MMFF4 results from the interplay of the various 

bonding effects. In MMFF4 the intramolecular hydrogen bonds are shorter but the distances 

between the carboxylate and the guanidinium moieties (R(C(13)···C(14)) = 3.56 Å) are 

enlarged with respect to the MMFF1 dimer (R(C(13)···C(14)) = 3.22 Å). This indicates 

stronger hydrogen bonds but smaller electrostatic interactions between the negatively and 

positively charged terminal groups. The structural differences are caused by a flip of the alkyl 

backbone. MMFF2 represents a mixture between MMFF1 and MMFF4. 

The interactions stabilizing the pocket structures seem to comprise electrostatic and 

dispersions contributions. This is indicated by the differences between the dimerization 

energies computed with DFT and with MP2 as shown in Table 12 and underlines again the 

importance of stacking effects as already discussed for the monomers. For the MMFF 

structures DFT always yields considerably smaller stabilization energies (16-28 kJ mol-1) 

since it cannot account for the dispersion part. For the DZ1 and OPLS-AA1 DFT predicts 

slightly higher dimerization energies (ΔE ≈ 7 kJ mol-1) since the strengths of the directed 

hydrogen bonds seem to be overestimated in comparison to MP2. 

In conclusion, our calculations reveal new structures for the arginine dimer which are twice as 

stable relative to the monomer as the previously predicted structures. This shows that careful 

conformational searches are necessary since the lowest lying structures can be counter-

intuitive even for such well-known species as arginine. 
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Table 10 Selected atomic distances in zwitterionic arginine dimer conformers optimized on 

RI-MP2/TZVP level of theory. All values are given in Ångstrøm. 

Dimer Atoms Distance (Å) 

MMFF1 O(1)···HN(5), O(3)···HN(7) 1.79 

 O(2)···HN(6), O(4)···HN(8) 1.67 

 O(1)···HN(7), O(3)···HN(5) 2.12 

 N(10)···HN(9), N(11)···HN(12) 1.92 

 C(13)···C(14), C(15)···C(16) 3.22 

MMFF2 O(1)···HN(5) 1.77 

 O(2)···HN(6) 1.68 

 O(1)···HN(7) 2.10 

 N(10)···HN(9) 1.91 

 C(13)···C(14) 3.26 

 O(3)···HN(7) 1.86 

 O(4)···HN(8) 1.63 

 O(3)···HN(5) 1.97 

 N(11)···HN(12) 1.86 

 C(15)···C(16) 3.57 

MMFF4 O(1)···HN(5), O(3)···HN(7) 1.82 

 O(2)···HN(6), O(4)···HN(8) 1.66 

 O(1)···HN(7), O(3)···HN(5) 1.98 

 N(10)···HN(9), N(11)···HN(12) 1.86 

 C(13)···C(14), C(15)···C(16) 3.56 

OPLS-AA1 O(1)···HN(5), O(3)···HN(7) 1.71 

 O(2)···HN(6), O(4)···HN(8) 1.67 

 O(1)···HN(7), O(3)···HN(5) 1.80 

DZ1 O(1)···HN(5), O(3)···HN(7) 1.69 

 O(2)···HN(6), O(4)···HN(8) 1.71 

 O(1)···HN(7), O(3)···HN(5) 1.77 



128 Chapter 4   Results and Discussion 

 

 

Figure 30 RI-MP2/TZVP optimized structures of zwitterionic arginine dimers. 
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Table 11 Dimerization energies of zwitterionic arginine conformers calculated on a RI-

MP2/TZVP//RI-MP2/TZVPP+ level of theory with the respective thermodynamic corrections 

(T=298.15 K) determined on a RI-MP2/TZVP level of theory. All values are given in kJmol-1. 

Dimer MMFF1 MMFF2 MMFF4 OPLS-AA1 DZ1 

ΔE +224.7 +220.6 +218.6 +151.3 +156.5 

BSSE -16.3 -16.2 -15.8 -16.8 -16.9 

ΔE(BSSE corr.) +208.4 +204.4 +202.8 134.5 +139.6 

ΔHcorr -5.8 -5.3 -5.0 -3.8 -2.7 

-TΔScorr -67.2 -66.0 -65.1 -60.2 -60.1 

ΔGcorr +135.4 +133.1 +132.7 +70.5 +76.8 

 

Table 12 Comparison between counterpoise corrected electronic dimerization energies 

calculated for optimized structures on DFT and MP2 level of theory (TZVPP+ basis). All 

energies are given in kJ  mol-1. 

Dimer MMFF1 MMFF2 MMFF4 OPLS-AA1 DZ1 

ΔEcorr(B3LYP) +180.7 +183.0 +187.1 +141.4 +147.2 

ΔEcorr (MP2) +208.4 +204.4 +202.8 +134.5 +139.6 

ΔΔE -27.7 -21.4 -15.7 +6.9 +7.6 
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4.2.2.4 Importance of molecular rigidity for the stability of the dimer 

Compared to the arginine dimer (see Figure 30) the high stability of the 2-

(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer (Figure 31) can be traced back to an 

improved hydrogen bonding network, the higher acidic strength of the NH’s as well as the 

energy contents of the monomers. The energy contents of the arginine and the 2-

(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate monomer differ strongly since a stabilizing 

interaction between the oppositely charged ends can only take place in the flexible 

zwitterionic arginine. A comparison between arginine, an artificially stiffened arginine and 

the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate allows an estimate of the importance of 

the various effects. As model system for the artificially stiffened arginine a conformer was 

chosen in which the methylene groups are arranged in an all-trans orientation (Figure 31). 

The dimerization energy of 410 kJmol-1 (RI-MP2/TZVPP+//B3LYP/6-311++G**) is about 

180 kJmol-1 higher than for the regular arginine dimer (224 kJmol-1), although, due to 

geometrical constraints, only one hydrogen bond can be formed within one salt bridge.[43] The 

2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer possesses a dimerization energy of 

581 kJmol-1 (RI-MP2/TZVPP+) which is once more about 170 kJmol-1 higher than for the 

stiffened arginine dimer system. This comparison shows that the distinct higher stability of 

the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer results to about 50% from the 

rigidity of the monomeric units. The rest is due to the improved H-bonding network and the 

increased acidity of the acyl guanidinium moiety. 

 

 
 

410 kJ mol-1 581 kJ mol-1 

Figure 31 MP2/TZVPP+ calculated dimerization energies of an artificially linear arginine 

dimer (left) and 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate (right). 
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4.2.2.5 Conclusions 

The present study shows that the rigidity of a molecule significantly influences its self-

assembling properties. The prevention of stabilizing intra-molecular interactions within the 

monomers due to geometrical constraints strongly enhances the corresponding dimer stability. 

This was shown by comparing the self-assembly of arginine with that of 2-

(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate. 

The importance of rigidity was analyzed by calculating the dimerization energy of an 

artificially stiffened arginine dimer system and comparing it with the dimerization energy of 

the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer. 

The analysis shows that the high binding affinity of the 2-(guanidiniocarbonyl)-1H-pyrrole-5-

carboxylate results to about 50% from the rigidity of the monomers which cannot be 

stabilized by intramolecular interactions and are therefore high in energy. As a result 

dimerization is more favourable for rigid monomers stabilizing the terminal charges. This 

effect should therefore be strongly considered when optimizing the complexation ability of 

artificial self-complementary systems. A similar effect might be expected also for flexible 

non-complementary systems in which other stabilizing interactions can take place 

intramolecularly.  
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4.3 Gas-Phase Assemblies with Novel Structure Motifs 

4.3.1 Introduction 

From early days until now chemical intuition and experience has guided experimentalists 

through the rational design of novel structure motifs. In the last years it was shown by several 

studies that theoretical chemistry can have an important share to the process of developing 

novel lead structures since possible candidates can be identified already in early stages before 

experimental studies have to be performed.116 Besides the prediction of new substrates that 

show improved binding affinities towards certain receptors also the investigation and 

explanation of the binding modes make theoretical studies interesting for experimentalists.  

Lately, it has become apparent that it is of utmost interest to find new lead structures for an 

efficient anion binding in polar media.3,4 By now only very few synthetic receptors are 

capable to form stable non-covalent interactions with an anionic substrate in highly 

competitive media like aqueous solutions.6-10,12 In the end of the 1990’s Schmuck developed 

the 2-(guanidiniocarbonyl)-1H-pyrroles as novel lead structures for carboxylate receptor 

systems that improve the ion pairing of simple guanidinium cations with oxo anions through a 

combination of multiple hydrogen bond patterns and  increased acidity of the acyl 

guanidinium moiety (see Figure 2).11,13 It could be shown that 5-subsituted carboxylate 

derivates are able to form stable dimer systems in DMSO or even water with association 

constants of approximately K > 108 M-1 and K = 170 M-1 (ΔG ≈ -15 kJ mol-1), respectively.14 

Therefore compound 1 is one of the most efficient self-assembling systems relying solely on 

electrostatic interactions reported so far. In chapter 4.1 we investigated the various 

contributions of the hydrogen bonding network as well as the importance of the salt bridge by 

a comparative study of knock-out analogues of compound 1. That the rigidity of a 

zwitterionic monomeric unit is of decisive importance for an effective self-assembly has been 

shown by investigations on the structurally related arginine dimer systems (chapter 4.2). A 

rigid scaffold prevents the charged ends of the zwitterionic monomers to interact 

intramolecularly which stabilizes the monomers energetically and thus results in a smaller 

energy gain upon intermolecular complexation. With these concepts at hand we are now able 

to build up new guanidinium-based zwitterionic carboxylate receptors with variations in the 

rigid scaffold in order to enhance the willingness for self-assembly. The questions being 

subject of the present study are: 

 



Chapter 4   Results and Discussion 133 

 

1. How important is the preorganisation or geometrical orientation of the carboxylate and 

guanidinium moiety towards each other? 

2. What influence does the carbonyl group in vicinity of the guanidinium group have on 

its acidity? 

3. How important is the dipole moment for the aggregation strength and to what extent 

does delocalization over the entire molecule play a role? 

4. How large are molecular solvents effects and is there a way to treat them 

approximately with quantum chemical calculations? 

 

In order to answer these questions a great number of novel structures has been generated and 

the respective dimerization energies were calculated on a density functional level of theory. 

The emphasis hereby was less on creating synthetically available compounds than on trying to 

understand the principles of the binding modes of an effective anion receptor. Moreover, it 

should be stressed that only the potential energy values of the compounds relative to each 

other are of interest as only a qualitative description of their dimerization properties can be 

given. A quantitative interpretation is very delicate and should be avoided since solvation is 

taken into account only by a continuum ansatz. Therefore it is impossible to get a realistic 

description of the binding situation present in an explicit solvation shell. Also dynamic effects 

and thus entropic contributions play an important role in the association process and are only 

treated approximately by analytic formulas originally derived for ideal gases. 

4.3.2 Theoretical Details 

The novel structure motifs have been pre-optimized on a force-field level (MMFF94/PRCG 

minimization) using the Macromodel V8.0 suite.98,101 In some cases a conformational search 

has been necessary in order to detect all low-lying minimum conformers. This step was 

performed employing the mixed MCMM/LowMode algorithm.39,40 Due to the high rigidity of 

most of the designed structures a total step number of 1000 has been proven to be sufficient. 

The DFT-based structure optimizations of all compounds were performed with the 

TURBOMOLE program package65 at the BLYP/TZVPP+ level of theory35b,e,66 using the RI 

approximation.67 The standard TZVPP basis set was hereby enlarged by 1s and 1p primitive 

uncontracted basis functions with an exponential coefficient of 0.068, whereas for the 

auxiliary basis sets the exponent was doubled (0.136). The influence of a solvent was 

estimated for some compounds using the COSMO43 approach as implemented in 
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TURBOMOLE69b with appropriate dielectric constants for DMSO (ε = 46.7), methanol (ε = 

32.63) and water (ε = 78.0). 

On order to estimate the molecular effects of explicit solvent molecules some calculations 

have been performed with either a DMSO or a methanol molecule surrounded by gas phase or 

a continuum. Hereby, the positioning and structures of the non-covalently bound solvent 

molecules were obtained from force-field based conformational searches (mixed 

MCMM/LowMode/5000 steps). The structures for quantum mechanical calculations were 

selected by visual inspection. 

Thermodynamic corrections of solvated structures at T = 298.15 K were obtained by 

numerical differentiation employing the NumForce module as implemented in the Turbomole 

V5.8 suite. Previous studies have shown that for the given basis set size and level of theory 

the basis set superposition error is small by only 5 to 10 kJ mol-1 and thus has only little 

influence on the accuracy of the DFT calculated energies. This holds in particular for 

dimerization energies in solution which were obtained by the continuum ansatz which limits 

the interpretability of these values to a qualitative extent. We therefore refrained from 

evaluating the counterpoise-corrected dimerization energies and hence only the uncorrected 

values are given. 

4.3.3 Novel Structure Motifs 

Starting from simple six-membered aromatic ring systems with substitutions either in para 

other meta position the scaffold was extended to condensed aromatic systems and decoupled 

π-systems represented by the biphenylene derivatives. To investigate the importance of 

molecular solvent effects a more detailed study on m-carbonyl-guandiniobenzoate and the 

original pyrrole structure 2-guanidinio-carbonylpyrrole-6-carboxylate was performed 

elucidating the apparently contradictory experimental results. 

4.3.3.1 6-Membered Ring Structures 

The simplest interchange of the aromatic pyrrole ring system is the transformation to a 

benzene derivative as indicated by the graphical representation in Table 13. The dimerization 

energies given are electronic energy differences between monomers and dimer in gas phase 

without correcting for the basis set superposition error. Surprisingly, the removal of the 

pyrrole hydrogen bond donor affects the dimerization energy only by less than 5 % being in 

disagreement to experimental observations predicting the structure 7a to form much less 
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stable aggregates in DMSO or DMSO/methanol mixtures (see chapter 4.3.3.5). The para 

substituted benzene derivative 7b shows already a diminution of dimerization energy to about 

-380 kJ mol-1. This clearly demonstrates the importance of the formation of unstrained and 

linearized hydrogen bonds which cannot be compensated (at least under gas phase conditions) 

by increased dipole moments of the monomeric building blocks (19.9 vs. 23.9 D).   

 

Table 13 Gas phase dimerization energies (in kJmol-1) and optimized structures of 

guanidiniocarbonyl-carboxylate ring systems calculated on a RI-BLYP/TZVPP+ level of 

theory (no CP).  

Name Energy Structure monomer Structure dimer 

2-Guanidinio-

carbonylpyrrole-6-

carboxylate 

1 

-443 

 
 

m-Guanidinio-

carbonylbenzoate 

7a 

-424 

 
 

p-Guanidinio-

carbonylbenzoate 

7b 

-378 
 

 

 

The removal of the carbonyl function separating the ring system from the hydrogen donating 

guanidinium group results in even more destabilized dimer structures, although the difference 

between meta and para substitution vanishes. As depicted in Table 14 both structures (7c, 7d) 

show more strained geometries that can be seen by the twisted guanidinium groups in the 

monomers leading to less directed hydrogen bonds in the dimer. 
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Table 14 Gas phase dimerization energies (in kJ mol-1) and optimized structures of 

guanidiniocarboxylate ring systems calculated on a RI-BLYP/TZVPP+ level of theory (no 

CP). 

Name Energy Structure monomer Structure dimer 

m-Guanidinio-

benzoate 

7c 

-331 

 

 

p-Guanidinio-

benzoate 

7d 

-330 

 

  

1-Guanidinio-

pyridine-6-

carboxylate 

7e 

-278 

 
 

1-Guanidinio-

pyridine-5-

carboxylate 

7f 

-283 
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An undistorted planar geometry should therefore result in less deformed dimer geometries and 

thus give more stabilized aggregates. However, the pyridine based structure 7e clearly shows 

the dilemma of forcing a planar monomeric unit. In order to avoid the repulsive interaction 

between the benzene hydrogen and the guanidinium group one has to substitute this atom 

group by a single sp2-hybridized nitrogen atom. This atom can now serve as further hydrogen 

bond acceptor and thus stabilizes the monomer intramolecularly. This stabilizing effect of is 

in competition with the intermolecular interactions during the aggregation processes and 

therefore reduces the dimerization energy to less than -280 kJmol-1 in gas phase. The para 

substituted pyridine derivative 7f again gives similar energies which can be explained by the 

slightly favourable situation in the monomer which is, in contrast to 7e, not additionally 

stabilized by the proximate carboxylate group.  

4.3.3.2 Enlarging the π-System: Anellated Aromatic Rings 

The influence of the dipole moment plays an important role as structures 7d and 7f in Table 

14 could already show. This effect should be amplified in polar solvents which stabilize and 

increase partial charges in molecules. A simple proof is to enlarge the aromatic scaffold by 

further rigid anellated aromatic rings as shown in Table 15 and Table 16. A nice trend is 

observed rising from -424 kJ mol-1 for the benzene derivative 7a to -521 kJ mol-1 for the 

anthracene compound 8b. The non-linear increase in dimerization energies can be explained 

by the stronger stabilization of the benzene monomer in which the charged moieties are less 

separated in space and are thus stabilized stronger intramolecularly via direct interactions of 

the charged ends. Already in the naphthalene monomer the opposite charges are separated too 

far in order to experience a significant stabilization. A further elongation of the spacer like in 

anthracene has much less impact on the dimerization energy as observed for the naphthalene 

derivative 8a. In summary, the charged moieties of a monomeric unit are stabilized via 

coulomb interactions which decay as the square of the distance. As seen for the 6-membered 

ring structures the dimerization energy is decreased by about 80 kJ mol-1 after removal of the 

carbonyl group (structure 8c) which is a result of geometrical stress causing weakened 

hydrogen bonding. The planarization of the monomeric unit in the quinoline derivative 8d 

again stabilizes the monomer and therefore makes a dimerization less favourable.  
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Table 15 Gas phase dimerization energies (in kJ mol-1) and optimized structures of anellated 

aromatic ring systems calculated on a RI-BLYP/TZVPP+ level of theory (no CP). 

Name Energy Structure monomer Structure dimer 

m-

Guanidiniocarbonyl-

benzoate 

7a 

-424 

 
 

2-Guanidinio-

carbonyl-

naphthalene-7-

carboxylate 

8a 

-498 

 
 

2-Guanidinio-

carbonyl-

anthracene-7-

carboxylate 

8b 

-521 

 
 

 2-Guanidinio-

naphthalene-7-

carboxylate 

8c 

-416 

 

 

 

2-Guanidinio-

quinoline-7-

carboxylate 

8d 

-312 
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Table 16 Dipole moments (in Debye) and dimerization energies (in kJ mol-1) of selected 

anellated ring structures. 

Monomer structure  ∆EDim Dipole moment 

m-Guanidiniocarbonylbenzoate  7a -424 19.9 

2-Guanidiniocarbonylnaphthalene-7-carboxylate  8a -498 25.2 

2-Guanidiniocarbonylanthracene-7-carboxylate  8b -529 29.7 

 

4.3.3.3 Decoupled π –Systems: Biphenylene Derivatives 

In order to investigate the influence of the conjugated π-system biphenylenes can be used to 

set up monomeric units with electronically decoupled aromatic acceptor and donor moieties. 

Table 17 shows the dimer of the guanidiniocarbonyl derivative 9a which is 17 kJ mol-1 less 

stable as the structurally related naphthalene compound 8a, although the latter possesses a 

slightly smaller dipole moment (26.0 vs. 25.2 D). Like before, the direct attachment of the 

guanidinium group to the ring system (9b) reduces the gas phase energy of aggregation by 

further 40 kJ mol-1. In principle, an electron withdrawing group at the aromatic ring in the 

donor site should increase the acidity of the guanidinium group. However, substitution of a 

nitro group in meta position to the guanidinium group (9c) has no considerable influence on 

the dimerization process which is even slightly decreased contrariwise (-426 vs. -430 kJ  

mol-1). The para substitution of either a nitro/guanidinium group (9d) or an amino/carboxylate 

group (9e) both show no improvement over the 2-guanidinio-biphenylen-7-carboxylate 9b, 

although the dimer structures feature both less bended geometries with structurally 

complementary hydrogen donor and acceptor sites. However, the close intramolecular vicinity 

of the carboxylate and guanidinium group again stabilizes the monomeric unit too much so 

that the dimerization process is less favourable. 
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Table 17 Gas phase dimerization energies (in kJ mol-1) and optimized structures of 

biphenylene derivatives calculated on a RI-BLYP/TZVPP+ level of theory (no CP). 

Name Energy Structure monomer Structure dimer 

2-Guanidinio-

carbonyl-

biphenylen-7-

carboxylate 

9a 

-481 

 
 

2-Guanidinio-

biphenylen-7-

carboxylate 

9b 

-438 

 
 

3-Guanidinio-1-

nitroso-

biphenylen-6-

carboxylate 

9c 

-430 

 
 

4-Guanidinio-1-

nitroso-

biphenylen-6-

carboxylate 

9d 

-426 

  

1-Amino-6-

guanidinio-

biphenylen-4-

carboxylate 

9e 

-410 
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4.3.3.4 Importance of Preorganisation and Fixation: Indole-Derivatives 

The previous structure motifs already showed that the carbonyl function separating the ring 

system and the guanidinium group is of central importance for an effective carboxylate 

binding. The reason therefore seems to be primarily a geometrical advantage as in the dimer 

system both monomers show a good complementarity leading to more or less planar 

structures with directed hydrogen bonds (see structures 1, 7a, 8a, 8b, 9a). Hence, the good 

preorganisation in conjunction with an increased dipole moment should improve the binding 

affinity of the initial structure 1. The interchange of the pyrrole ring by the enlarged indole 

ring system leads to structure 4a (see Table 18) that indeed improves the binding energy by 

about 90 kJmol-1 in comparison to structure 1.  

Table 18 Gas phase dimerization energies (in kJ mol-1) and optimized structures of indole 

derivatives calculated on a RI-BLYP/TZVPP+ level of theory (no CP). 

Name Energy Structure monomer Structure dimer 

2-Guanidinio-

carbonylindole-6-

carboxylate 

10a 

-530 

 
 

7-Aza-2-

guanidinio-

carbonylindole-6-

carboxylate 

10b 

-527 

 
 

5,7-Diaza-2-

guanidinio-

carbonylindole-6-

carboxylate 

10c 

-529 
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Continuation of Table 18 

2-Guanidinio-

carbonylindene-6-

carboxylate 

10d 

-422 

 
 

7-Amidinio-

indole-2-

carboxylate 

11a 

-442 

 
 

6-Aza-7-

guanidinioindole-

2-carboxylate 

11b 

-431 

 
 

4-Amino-6-aza-7-

guanidinioindole-

2-carboxylate 

11c 

-420 

 
 

6-Aza-7-

guanidinio-4-

nitrosoindole-2-

carboxylate 

11d 

-453 
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Attempts to increase the binding affinity by destabilizing the monomer with the insertion of 

one or two nitrogen atoms in α – position of the carboxylate carbon atom (see structure 10b 

and 10c) failed. In contrast to the regular indole derivative 10a both azaindole monomers 

show twisted carboxylate groups perpendicular to the ring systems improving the electron 

density overlap with the lone pair of the nitrogen atom. This stabilization is lost by 

dimerization during which the carboxylate groups are rotating back into the molecular plane. 

Moreover, the two oppositely lying lone pairs of the nitrogen atoms of the monomers lead to 

additional repulsive interactions making these structures less favourable.  

The importance of the pyrrole N-H donor group can be seen by structure 10d which is about 

100 kJ mol-1 less stable than the dimer structure 10a. Here, the indole scaffold has been 

substituted by an indene scaffold showing no interaction with the carboxylate oxygen atoms. 

Besides the knock-out of two hydrogen bonds which have an additional entropic share in the 

high dimerization energy of structure 10a (chelate effect) also the aromaticity is distorted in 

the indene dimer. However, this distortion has only a slight influence on the dipole moment of 

the monomer 10d  (25.1 D) which is decreased by only 0.3 D in comparison to monomer 10a 

(25.4 D). 

In summary, the present results indicate that the strong stability of the dimer 10a arises from 

the cooperative, salt bridged hydrogen bonding network, the rigid backbone which separates 

the opposite charges in the zwitterionic monomer effectively and thus induces a higher dipole, 

as well as the perfect complementarity and steric orientation between the guanidinium and 

carboxylate groups.  

The insertion of the carbonyl function separating the ring system from the guanidinium group 

seems to be very important for the steric orientation of the hydrogen donor and acceptor site, 

whereas the strong acidity which is expected to highly contribute to the dimer stability has not 

yet been determined. To check the effect of the carbonyl function on the acidity of the 

guanidinium group the structures 11a to 11d have been calculated. The structures are 

characterized by a substitution of the carbonyl function with an aromatic ring system 

consisting either of a benzene or pyridine ring attached to the pyrrole ring. Although they 

therefore represent indoles or azaindoles, their dimerization energies must be compared to 

structure 1 (∆EDim = -443 kJ mol-1) instead of structure 10a. Structure 11a possesses the same 

binding energy as the guanidiniocarbonylpyrrole 1 showing that the increase of acidity of the 

hydrogen donor ability by the adjacent carbonyl function is of minor importance for the 

strong dimerization. However, it should be noted that structure 11a differs from structure 1 in 

the hydrogen donor site as the guanidinium group has been replaced by an amidinium group. 
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The modification of monomer 11a with a guanidinium group leads to strong repulsive 

interactions of the NH2 rest with the hydrogen atoms of the 6-membered ring. This implicates 

a twist of the entire guanidinium group with respect to the molecular plane leading to an 

intramolecular hydrogen transfer to the carboxylate group. Of course, this effect is strongly 

advantaged by the long range charge interactions in gas phase and should not occur in 

solvation. In order to prevent such an undesirable proton transfer the relevant amino group is 

substituted by a methyl group (see structure 11a) and therefore strongly resembles the 

“knock-out” analogue 3b (see chapter 4.1). This analogue of structure 1 is the rotamer of 

structure 3a in which one of the amide groups of the guanidinium moiety has been replaced 

by a methyl group. In comparison to the guanidiniocarbonylpyrrole 1 one sees that the 

dimerization of monomer 11a benefits from a stronger destabilized monomer structure which 

additionally possesses a more localized positive charge distribution on the amidinium 

nitrogen atoms than for the strongly delocalized guanidinium group. This effect could be 

observed for the “knock-out” structure 3b which showed a slightly higher dimerization energy 

even in solution than the reference structure 1 (-66 vs. -56 kJ mol-1). 

An unfavourable twisted structure is avoided in monomer 11b. It consists of an azaindole in 

which the interfering CH unit is substituted with a nitrogen atom. Table 18 clearly shows that 

in comparison to structure 11a the association is only very slightly affected (ΔE = -11 kJ  

mol-1). Although the monomeric unit is stabilized by a strong intramolecular hydrogen bond, 

the dimerization energy should not be affected since this stabilization is also present in the 

dimer. Actually one would expect a slight increase in the binding energy as the electron 

negative nitrogen atom raises the acidity of the guanidinium group.  By the positioning of 

electron pushing or electron pulling groups at the electron poor aromatic ring system one can 

either reduce (structure 11c) or increase (structure 11d) the dimerization affinity. The nitro 

substituted structure 11d even possesses a higher dimerization energy than structure 1. It is 

important to note that the fixation of the rotation around the pyrrole – carbonyl carbon bond 

as possible in structure 1 is prevented in all structures 11a to 11d which should increase in 

general the affinity for dimerization as the stiffening of the scaffold leads to a smaller entropic 

lost upon complexation.  

In summary, on the basis of gas-phase calculated electronic dimerization energies structure 

10a seems to be the most promising candidate for improving the dimerization affinity of 

guanidinium based carboxylate receptors. As shown by structures 11a to 11d the carbonyl 

function separating the guanidinium group from the ring system seems to be mainly important 

for a good preorganisation leading to an effective carboxylate binding and less for increasing 
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the acidity. Calculations of azaindole derivatives which substitute the more electron negative 

oxygen atom by an aromatic nitrogen atom (structures 11b to 11d) indicate that the electronic 

influence is only of minor importance on the aggregation energy. The calculation of a 7-

guanidinioindole-2-carboxylate monomer in gas phase failed due to an intramolecular proton 

shift. However, solvation effects should stabilize this structure and thus an experimental 

determination of the dimerization energy would give a clear answer about the importance of 

the carbonyl function with respect to the hydrogen donor activity of the guanidinium moiety. 
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4.3.3.5 Benzene vs. Pyrrole Derivative: Molecular Solvation Effects 

The association constants of the pyrrole derivative 7a in DMSO/methanol mixtures obtained 

experimentally by isothermal titration calorimetry experiments (ITC) are given in Table 19. 

In contrast to the gas phase calculations (see Table 13) the experimental findings show that 

the benzene derivative m-guanidiniocarbonyl-benzoate (7a) forms much less stable aggregates 

in DMSO/methanol mixtures than structure 1 in DMSO. With an estimated dimerization 

constant Kdim of at least 108 M-1 the free enthalpy difference ΔG298 of the pyrrole derivative is 

calculated to -45 kJ mol-1, so that the energy difference between 1 and 7a can be assumed in a 

rough guess to be in the range of 30-40 kJ mol-1 (see Table 19). Surprisingly, with an 

increasing amount of methanol the measured free enthalpy difference of 7a even rises, 

although methanol is known for weakening non-covalently bound aggregates stronger. It 

formally possesses a smaller dielectric than DMSO, but due to the protic character of the 

hydroxyl group it is able to form competitive hydrogen bonds to the solute. The enthalpic 

contribution to the overall Gibbs free energy declines for the benzene derivative 7a in 

DMSO/methanol mixtures with increasing percentage of methanol, whereas the free enthalpy 

itself arises pointing to an entropy steered reaction. Regarding solely the relative gas phase 

dimerization energies between 1 and 7a, the experimentally observed energy difference is 

clearly underestimated (ΔE ≈ 20 kJ mol-1) although in the right order of magnitude.  

 

Table 19 Experimental Kdiss and ΔH values obtained by ITC measurements of association 

constants and the calculated enthalpy contributions to the Gibbs free energy (in kJ mol-1) at T 

= 295.15 K.  

 Kdiss [mM] ΔH Kdim [M-1] ΔG 

25 % DMSO in methanol 0.23 -26.3 4580 -20.7 

50 % DMSO in methanol 0.54 -27.1 1840 -18.4 

100 % DMSO† 2.8 ± 1.4 -2.5 ± 0.2 513 -15.3 

† The Kdiss values measured in pure DMSO are not really significant due to their large variance. NMR-titration 

experiments gave an dimerization constant KDim = 4  
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Table 20 Calculated dimerization energies (B-LYP/TZVPP+) of structures 1 and 7a in gas 

phase and solution. The solvent is simulated by either a pure continuum model or with an 

additional explicit solvent molecule. All values are given in kJ mol-1. 

Continuum dimerization energy 

 ε 
2-Guanidiniocarbonyl- 

pyrrole-6-carboxylate 

m-Guanidiniocarbonyl-

benzoate 

Gas phase 0 -443 -424 

DMSO 46.7 -112 -79 

Methanol 32.63 -119 -85 

Explicit solvation energy of monomers 

 ε 
2-Guanidiniocarbonyl- 

pyrrole-6-carboxylate 

m-Guanidiniocarbonyl-

benzoate 

0 -133 -135 
+ 1 DMSO 

46.7 -22 -18 

0 -96 -116 
+ 1 Methanol 

32.63 -16 -22 

Dimerization energy of explicitly solvated monomers 

 ε 
2-Guanidiniocarbonyl- 

pyrrole-6-carboxylate 

m-Guanidiniocarbonyl-

benzoate 

0 -276 -241 
DMSO 

46.7 -95 -71 

0 -338 -274 
Methanol 

32.63 -111 -68 
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Figure 32 Gas-phase optimized (B-LYP/TZVPP+) structures of monomers and dimers of 1 

and 7a explicitly solvated by one DMSO (top) or one methanol (bottom) per monomeric unit. 
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Figure 33 B-LYP/TZVPP+ optimized monomers and dimers of 1 and 7a explicitly solvated 

by one DMSO (top) or one methanol (bottom) per monomeric unit and further solvated by a 

continuum model (COSMO) of the solvent with ε = 46.7 and 32.63 for DMSO and methanol. 
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To estimate the effect of solvation on the stability of the dimers the electronic energies of 

structures 1 and 7a have been calculated on a B-LYP/TZVPP+ level of theory (Table 20) 

employing a continuum model (COSMO) for the solvent with the respective dielectrics for 

DMSO (ε = 47.6) and methanol (ε = 32.63). As one can see from Table 20 the continuum 

solvation drastically reduces the dimerization energies of both compounds by several 

hundreds kJ mol-1. However, the difference between the dimerization energies of 1 and 7a 

remains nearly unchanged. This causes a larger relative difference between the pyrrole and 

the benzene derivative for solvation, whereas in gas phase the difference of both dimerization 

energies is small in relation to the overall magnitude. Moreover, in solution the benzene 

derivative 7a is slightly more destabilized resulting in a relative energy difference between 

both derivatives of about 30 kJ mol-1 in both solvents. Although the relative electronic 

energies agree quite well with experimental observations, the unexpected inversion of the 

dimer stability of the benzene derivative by the increasing addition of methanol to DSMO can 

not be explained by this simple continuum model. Obviously molecular solvent effects have 

to be taken into account which seem to be important for the dimer stability. For this reason 

calculations were performed which include one explicit solvent molecule, i.e. one DMSO or 

one methanol, respectively. Table 20 shows the binding energies of the solvent molecules to 

the monomers as well as the dimerization energies of the explicitly solvated monomers in gas 

phase or solvation. The DFT optimized structures are given in Figure 32 for gas phase and in 

Figure 33 for continuum solvation. The DMSO molecule binds significantly stronger to both 

monomers in gas phase than a single methanol due to its larger dipole moment (~ 4 D) that 

counteracts the large dipole of the zwitterionic monomers. However, in a dielectric 

environment this effect is negated and the binding of a methanol to a benzene derivative 

becomes even more favourable than for DMSO (-22 vs. -18 kJ mol-1). Regarding the 

explicitly solvated dimerization energies of m-guanidiniocarbonylbenzoate (7a) the energies 

obtained for methanol and DSMO seem to be equally high, whereas for the pyrrole derivative 

(1) solvation in methanol should yield much higher stabilization upon aggregation. This 

conclusion seems to be contradictory to experimental experience and a solution to this 

dilemma is only provided by regarding the full thermodynamic cycles of the dimerization 

processes (see Figure 34). In gas phase, the benzene derivative binds a methanol molecule 

significantly stronger than the pyrrole derivative (-232 vs. -190 kJ mol-1) making the methanol 

solvated dimer nearly as stable as the DMSO solvated one (-506 vs. -511 kJ/mol). This trend 

can be observed also for the continuum solvated aggregates, which now even favour the 

methanol complexed monomer by about 8 kJ mol-1 and the dimer by about 6 kJ mol-1. In a 
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sufficiently diluted solution of a 50% DMSO/methanol mixture this energy differences 

correspond to Boltzmann distributions of about 1:25 and 1:11, respectively. However, 

reducing the percentage of DMSO in the solvent mixture entropically benefits the formation 

of methanol solvated m-guanidiniocarbonylbenzoate monomers as the possibility for the 

formation of the solvent complex increases statistically. Although the dimer formation of the 

explicit solvated monomers shows in case of methanol a slightly smaller binding energy than 

for DMSO (-69 vs. -71 kJ mol-1), the entropy gain makes the dimer formation more 

favourable in mixtures with a larger percentage of methanol than DMSO.  
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Pyrrole derivative (1) Benzene derivative (7a) 

  

Gas-phase Gas-phase 

 

 

with COSMO with COSMO 

Figure 34 Thermodynamic cycles of the dimerization process of structures 1 and 7a 

(abbreviated as A) in the presence of one explicit DMSO or methanol solvent molecule (S) 

per monomeric unit. The electronic energies (in kJ mol-1) given in the graphs are calculated 

on a B-LYP/TZVPP+ level of theory either in gas-phase or with a continuum model 

(COSMO) of the solvent with ε = 46.7 for DMSO and ε = 32.63 for methanol, respectively.  



Chapter 4   Results and Discussion 153 

 

In order to obtain the Gibbs free energies of the dimerization processes the enthalpic and 

entropic contributions to the electronic energies have been calculated numerically on a  

B-LYP/TZVPP+ level of theory (see Table 21).  The influence of the solvent on the 

thermodynamic corrections has been estimated by a continuum model with a dielectric of ε = 

78 corresponding to an aqueous surrounding. This solvent has been chosen as for the 2-

guanidiniocarbonylpyrrole-6-carboxylate (1) the dimerization constant KDim has been 

extrapolated from NMR titration experiments to 170 M-1 which corresponds to a Gibbs free 

energy of about 13 kJ mol-1. In principle, two conformations in the zwitterionic monomer 

structure are possible: (1) the curved orientation of the guanidiniocarbonyl group that exhibits 

the same conformation as present in the dimer and (2) the linearized conformation that 

possesses a larger dipole moment. While in gas phase a high dipole moment destabilizes such 

conformers, solvation generally favours the opposite. This principle is best reflected by 

regarding the dimerization energies of the pyrrole derivative 1. The continuum model 

stabilizes the linearized conformation stronger leading to a reduced dimerization energy. 

However, the benzene derivative 2 is more destabilized in the linear conformation although 

the dipole moment of this conformation is with 39 D much larger than in the curved geometry 

(29 D). The reason for this alleged anomaly lies in the destabilization of the monomer by a 

slight rotation of the guanidinium group due to the repulsive interaction between the 

backward amide hydrogen and the benzene hydrogen in para position. This close contact is 

not present in the linearized pyrrole derivative 1. One might now assume that the linearized 

conformation of the monomeric pyrrole derivative 1 should be present in a realistic (i.e. 

explicit) solvation and the calculated Gibbs free energy of 15 kJ mol-1 seems to fit also 

perfectly to the experimental value (13 kJ mol-1). However, test calculations with two explicit 

water molecules have shown a good fit of the solvent molecules into the binding pocket 

forming a hydrogen bonding network from the guanidinium moiety to the carboxylate oxygen 

atoms. In protic solvents it is therefore reasonable to presume a curved conformation which is 

stabilized mainly by molecular solvation effects. The large discrepancy between the 

experimental and calculated Gibbs free energy for the dimerization lies in the deficient 

description of thermodynamic corrections by continuum models. In contrast to absolute 

values the relative Gibbs free energies between two derivatives should be more meaningful as 

for both systems similar errors are made for the same solvent. In case of structure 1 and 7a the 

free energies differ about 23 kJ mol-1 which would make the benzene dimer 7a unstable in 

aqueous solution. 
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Table 21 Electronic energies and thermodynamic corrections for structures 1 and 7a 

calculated on a B-LYP/TZVPP+ level of theory and employing a continuum model (COSMO) 

for water as solvent (ε = 78.0). All values are given in kJ mol-1. 

 
Monomer 

conformation 
ΔE ΔH -TΔS ΔG 

 
104 -2 -64 +39 2-Guanidiniocarbonyl- 

pyrrole-6-carboxylate 

(1) 
 

83 -3 -66 +15 

 
73 +1 -58 +16 m-Guandinio-carbonyl-

benzoate 

(7a) 

 
76 +0 -59 +18 
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4.3.3.6 Conclusion 

In this chapter novel structure motifs that are able to bind carboxylate anions effectively have 

been examined by DFT gas-phase studies of dimer assemblies consisting of zwitterionic 

monomers.  The 2-guanidiniocarbonylpyrrole-6-carboxylate (1) which shows a strong dimer 

stability with an association constants of K ≈ 170 M-1 in water has been used as origin 

structure for improving the binding modes by substituting the rigid scaffold with various ring 

structures. In the previous chapters the effect of salt bridges, multiple hydrogen bonding 

patterns and rigid scaffolds on the dimer stability of guanidinium-based carboxylate receptors 

has already been reported. The focus of this comparative study was now to elucidate the 

influence of dipole moment, preorganisation, complementarity, delocalization and solvent 

effects on the dimer stability and to make predictions for an improved structure motif. 

The influence of the dipole moment was clearly shown by the dimerization energies of 

various anellated ring structures. An increased separation of the carboxyl and guanidinium 

moiety results in larger dipoles which are more likely to aggregate. The decoupled 

biphenylene structures with additional electron pushing or withdrawing substituents could not 

achieve further improvement on the dimerization affinity. The importance of monomeric 

complementarity and unstrained dimer structures has been underlined by the benzene 

derivatives. As seen already for the dimerization of monomeric arginine (chapter 4.2.2) the 

intramolecular interactions present in both pyridine derivatives strongly reduce the 

dimerization energies. The indole derivative 10a combines the advantages of a pyrrole based 

receptor with an increased dipole moment which makes this structure motif more stable in gas 

phase than the pyrrole derivative 1. The carbonyl function separating the ring system from the 

hydrogen donor site is hereby responsible for the good preorganisation whereas the effect on 

the acidity of the guanidinium group is only of minor importance as seen for the azaindole 

derivatives. Furthermore, the high dimerization energies of the pyrrole and indole derivatives 

underline the importance of the pyrrole N-H hydrogen bond leading to an additional fixation 

of the carboxyl group in the binding pocket (“Gulliver effect”).17 

Finally, by comparison with experimental dimerization constants in varying DSMO/methanol 

mixtures showed the great influence of molecular solvation effects on the dimer stability in 

different solvents. A pure continuum model like COSMO is often not accurate enough to 

include all important solvent effects, but we could show that the inclusion of already one 

explicit solvent molecule can be sufficient to explain trends in the binding constants of m-

guanidiniocarbonylbenzoate diluted in such solvent mixtures. The calculation of Gibbs free 
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enthalpies is still an unsolved problem since the analytic formulas used here have been 

derived originally for ideal gases and are thus in principle inapplicable for condensed phases. 

However, the comparison of ITC measured dimerization constants in DMSO of the pyrrole 

derivative 1 and the benzene derivative 7a with calculated dimerization energies showed that 

the relative energy differences are estimated quite well with a continuum model. The 

calculations of thermodynamic corrections can then give a hint about the stability of a given 

dimer system if only the relative Gibbs free enthalpy with regard to 2-

guanidiniocarbonylpyrrole-6-carboxylate (1) is taken into account. Therefore, the 2-

guanidiniocarbonylindole-6-carboxylate (10a) should be a promising candidate for an 

effective dimerization even in highly competitive media.  
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4.4 Cooperativity Effects in Supramolecular Assemblies – NMR Shift 

Studies in Adenosine-Carboxylic Acid Complexes 

4.4.1 Introduction 

Hydrogen bond interactions constitute a major driving force in the formation of specific 

molecular and complex geometries. Thus, protein and nucleic acid secondary and tertiary 

structural elements as well as many natural and artificial host-guest complexes are partly 

based on the directive power of intra- and intermolecular hydrogen bond formation. 117,118 In 

the past, NMR spectroscopic techniques have been established as a powerful tool to study the 

strength and geometry of hydrogen bonds in both the solid and the liquid state.119 For the 

latter, however, NMR signals normally correspond to an average over fast exchanging 

hydrogen bonded species at ambient temperatures, thus restricting the detailed 

characterization of hydrogen bonds of individual hydrogen bonded associates.120 However, 

employing deuterated freonic mixtures as NMR solvents allows high resolution NMR spectra 

to be acquired in the liquid state down to 100 K where the regime of slow hydrogen bond 

exchange within the NMR time scale is reached for even weakly hydrogen bonded systems.121 
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Figure 35 Adenine nucleobase with hydrogen bond donor and acceptor sites at the Hoogsteen 

(left) and Watson-Crick face (right). 

 

Weisz et al. have recently presented low-temperature NMR studies on the binding of an acetic 

acid ligand to adenosine.122 Because of its multiple functionalities, this nucleobase can engage 

in cyclic hydrogen bonds with a carboxylic acid at either its Hoogsteen or Watson-Crick site 

(Figure 35). In fact, only trimolecular complexes A·HAc2 (12a, Figure 36) and A2·HAc 

(12b,) with both Watson-Crick and Hoogsteen sites of the central adenine base occupied were 
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observed at low temperatures. In all complexes the acetic acid OH proton is still localized 

closer to the oxygen of acetic acid in a neutral, non-ion pairing complex.  

N

NN

N
N

H3C

H H CH3

O

O

H

H3C

O
O

H

1a

N

NN

N
N

H3C

H H CH3

O

O

H

H3C

O
O

H

1a

N

NN

N
N

H H

N

N
N

N

NH
H

H

H

CH3

O

O

H

H3C

CH3

1b 

N

NN

N
N

H H

N

N
N

N

NH
H

H

H

CH3

O

O

H

H3C

CH3

1b 1c

N

NN

N
N

H H CH3

O

O

H

H3C

1c

N

NN

N
N

H H CH3

O

O

H

H3C

 

Figure 36 Computed complexes of 9-methyladenine and acetic acid. 
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Figure 37 Atom numbering used for the adenine complexes 

 

Comparing the A·HAc2 (12a) and A2·HAc complex (12b), the NMR experiment finds a more 

deshielded proton for the latter in the O-H---N1 hydrogen bridge at the Watson Crick site (see 

Figure 37 for atom numbering). For 12a the measured value of δ(H1’) is 17.1 ppm while 

17.76 ppm is obtained for 12b. Obviously, some cooperativity effects arise between 

Hoogsteen and Watson-Crick binding since the proton chemical shift constitutes a sensitive 

indicator for the relative hydrogen bond strength.3,121,123,124,125,126,127 Anticipated cooperativity 

12a 

12b 12c 
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effects in these higher-order complexes124,125 and their dependence on the type of ligand124 are 

little understood, yet are not only important for the development of adenine receptor 

molecules that are often based on carboxylic acids128 but also for a better understanding of 

interactions within nucleic acids and nucleic acid - protein complexes.129 

The downfield shift observed in δ(H1’) when going from 12a to 12b may result from a 

displacement of the H1’ proton towards the N1 acceptor atom pointing to a strengthening of 

the hydrogen bond. Such a strengthening of the hydrogen bond is often associated with an 

elongation of the covalent bond between the hydrogen and the donor. A corresponding 

example was recently reported by Kar and Scheiner124 who investigated cooperative effects in 

chains consisting of up to five water molecules. For the gas phase their computations predict 

an elongation of the covalent OH bond by about 0.003 Å for the donor water molecule 

positioned at the end of the chain when going from the water dimer to the water trimer. This 

small change in the geometry was accompanied by a variation of 0.7 ppm in the chemical 

shift of the bridging hydrogen computed at the equilibrium geometry. Going from the water 

monomer to the dimer the variations were 0.006 Å and 2.8 ppm, respectively. 

A similar finding was reported by Dingley et al.125 who studied cooperative effects in T·A-T 

and C·G-C triplets and found a strong correlation between the 1H chemical shift of the imino 

proton and the size of the two-bond scalar coupling across a hydrogen bond 2hJNN. A similar 

but inverse correlation is found between the proton chemical shift and the (absolute) size of 

the covalent 1JHN scalar coupling. Based on DFT computations for a model system they 

concluded that most of the experimentally observed variations in the parameter are likely 

caused by changes in the donor acceptor distances. In this study and in the investigation of 

Kar and Scheiner124 the computed NMR chemical shifts did not include effects resulting from 

vibrational motions. 

The downfield shift could also result from vibrational effects. These effects have been shown 

to be important for the 1H chemical shift126,130,131,132 and were considered in extensive 

investigations on primary and secondary geometric H/D isotope effects on low barrier 

hydrogen bonds performed by Limbach and coworkers. In a series of papers126 correlations 

between 1H chemical shifts and hydrogen bond geometries were studied with the inclusion of 

vibrationally averaged bond distances allowing for the transfer of chemical shift data into 

hydrogen bond geometries. Employing empirical corrections for anharmonic zero-point 

vibrations, these correlations are able to describe isotope effects on hydrogen bond geometries 

from the weak to the strong hydrogen bond regime, taking into account single and double-
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well situations.126 Isotope effects for intramolecular hydrogen bonds were also studied.133 The 

influence of vibration anharmonicity was studies by J. Del Bene and coworkers.134 

Important in this respect are also the extensive investigations of Steiner et al.135 who used data 

of low-temperature neutron diffraction measurements to establish geometric hydrogen bond 

correlations.  

The present work continues the investigations of such cooperative effects in complexes of 

substituted acetic acid and adenosine as model systems. In order to extend the series in a most 

appropriate way, new experimental data for additional compounds is briefly presented. 

Insights into the importance of various effects are obtained by high-level computations which 

include solvent effects and account for vibrational effects. Both are found to be extremely 

important. In addition to providing detailed insights into the contribution of various effects, 

computations are also used to extend the known series to yet experimentally inaccessible 

complexes. A critical evaluation of the theoretical approach is enabled by the new 

experimental data and the combination of theory and experiment provides for a more detailed 

and comprehensive understanding of the effects in multiple binding. 

4.4.2 Experimental Findings 

In order to investigate adenosine complex geometries and cooperativity effects on ligand 

binding, Weisz and coworkers studied the association of adenosine with chloroacetic acid 

through low temperature NMR experiments using a freonic solvent in order to reach the slow 

hydrogen bond exchange regime below 133 K.1 1H NMR spectra acquired at 123 K for 

mixtures of chloroacetic acid (HAcCl) and 2',3',5'-tri-O-(tert-butyldimethylsilyl)-1-15N-

adenosine in various stoichiometric ratios are shown in Figure 38. With adenosine in excess, 

two doublets at 18.67 ppm and 17.64 ppm are observed at low field (Figure 38 top). 

Employing additional 1H{15N}decoupling experiments, both of these OH protons are 

unambiguously identified as bound to the adenine Watson-Crick site through their scalar 

coupling of JNH ~ 79 Hz and JNH ~ 85 Hz with the labelled endocyclic N1 nitrogen. Such 

large couplings to the nitrogen acceptor atom demonstrate that these protons are mostly 

transferred to adenine N1 adopting ion pairing species. This is also confirmed by the increase 

                                                 
1 NMR experiments were performed on a Bruker AMX500 spectrometer. Temperatures were 

adjusted by a Eurotherm Variable Temperature Unit to an accuracy of ±1.0 °C. 1H chemical 

shifts in a Freon mixture were referenced relative to CHClF2 (δH = 7.13 ppm). 
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in the JNH scalar coupling for the more upfield shifted resonance and by the corresponding 15N 

chemical shifts measured with a 2D 1H-15N heteronuclear multiple-quantum coherence 

(HMQC) experiment at 125 K. Thus, more upfield shifted Watson-Crick proton resonances 

scalar coupled to 15N are correlated with more upfield shifted 15N1 signals as expected for a 

proton location closer to nitrogen. 
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Figure 38 Carboxylic acid OH proton resonances for mixtures of 2’,3’,5’-tri-O-(tert-

butyldimethylsilyl)-1-15N-adenosine and chloroacetic acid with different molar ratios in Freon 

at 123 K. Solid and open circles denote the Watson-Crick and Hoogsteen bound proton in a 

1:2 A:HacCl complex. 

 

With all of the acid exclusively bound at the adenine Watson-Crick site, the two resonances at 

low concentrations of chloroacetic acid with stoichiometric ratios of A:HAcCl ~ 1.5:1 can be 

assigned to 2:1 or 1:1 complexes 13b and 13c (Figure 39). Adding more acid, the situation 

gets significantly more complex and an increasing number of signals appear, some of them 

being significantly exchange broadened at a 1:1 stoichiometric ratio (Figure 38 centre). 

Obviously, with the acid in excess several different species coexist in solution making a 

detailed structural characterization of all the complexes a difficult task. However, protons 

hydrogen bonded to adenine N1 are easily recognized by their 1H-15N scalar coupling. 

Information on the more upfield shifted singlet signals comes from 2D NOE contacts 

observed at 123 K. As expected from their participation in a Watson-Crick hydrogen bond, 
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the 15N scalar coupled signals exhibit NOE crosspeaks to adenine H2. Correspondingly, NOE 

crosspeaks to adenine H8 identify protons bound to the Hoogsteen face of adenosine. Note, 

that in addition to the absence of a corresponding 2JNH scalar coupling, H8 protons of 

adenosine are easily distinguished from H2 protons by their NOE crosspeaks to sugar 

protons.136 In addition, a third type of OH resonances at 15.45 and 15.55 ppm exhibiting no 

connectivities to any adenine base protons must be assigned to protons in a OHO hydrogen 

bond between two carboxylic acid molecules. 

The two resonances at 19.30 ppm and 15.83 ppm having the same intensity on integration 

display NOE contacts to the same amino protons at 11.39 and 9.17 ppm and must be assigned 

to a 1:2 A-(HAcCl)2 complex 13a (Figure 39). As is apparent from Figure 38, they are 

increasingly formed with increasing acid concentration as expected. No attempt was made to 

assign additional, higher-order complexes that coexist at low temperatures. Interestingly, 

however, no chloroacetic acid dimers are formed even with an excess of acid as is evident 

from comparison with a chloroacetic acid solution at 123K (δdimer = 13.15 ppm). Rather, 

binding of a third acid molecule to form linear aggregates like 13d (Figure 39) may account 

for the observed most upfield shifted OHO proton resonances at 15.45 and 15.55 ppm (Figure 

38 bottom). 
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Figure 39 Geometries of complexes formed between adenosine and chloroacetic acid at low 

temperatures in a Freon solvent; arrows in complex 13a indicate experimentally observed 

NOE contacts. 

4.4.3 Computational Details 

1H NMR chemical shifts of inter- or intramolecular hydrogen bonds are considerably 

influenced by vibrational motions.126,130,131,132 Additionally, temperature137 and solvent 

effects127 have to be taken into account. The latter may quite strongly affect the proton 

dynamics.126,138 To account for the vibrational effects, a two-dimensional treatment including 

the high- and low-frequency stretching of the hydrogen bond would be desirable131 but 

requires a two dimensional potential energy surface. Since we are primarily interested in the 

trends along a series of molecules, such a treatment would be overly expensive. Moreover, 

many studies indicate that an effective one-dimensional treatment covers the major 

effects.126d,130,132,139 The present work therefore employs an effective one dimensional 

treatment to investigate its suitability in explaining the experimental data. To largely include 

the coupling between the high- and low-frequency stretching of the hydrogen bond, the 

hydrogen bond stretching potential was computed by relaxing the N-O distance at each point. 

13a 13b 

13c 13d 
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Within this treatment one moves along the minimum energy path of the two-dimensional 

surface131 thus effectively accounting for the coupling between both motions. 

The effective one-dimensional potential for the shuttling motion of H1’ between O2’ and N1 

(for an atom numbering see Figure 37) was computed employing the B3LYP functional36,35e 

in combination with a TZVP basis set.66 As described elsewhere the B3LYP functional in 

combination with a triple zeta split valence basis should provide very accurate results for 

geometries and energies of hydrogen bonded structures.140 In these computations all internal 

coordinates except for the vibrational coordinate were optimized. All computations were 

performed with the TURBOMOLE program package.65 Solvent effects are included by using 

the Conductor-like Screening Model (COSMO).43,69 Because the dielectric constant of Freon 

solutions varies to some extent depending on temperature and composition, we choose ε=40 

as a compromise.141 

For the present problem both the O-H [R(H1’-O2’)] and the N-H [R(H1’-N1)] distance of the 

Watson-Crick hydrogen bond were considered as vibrational coordinates with calculated 

potentials exhibiting two minima under solvent conditions. In the following, R0(H1’-O2’) and 

R0(H1’-N1) represent the equilibrium bond length of the proton covalently attached to oxygen 

(neutral structure) and to nitrogen (ion pairing structure), respectively. For R(H1’-O2’) > 

R0(H1’-O2’), the R(H1’-O2’) coordinate can serve as the vibrational coordinate, i.e., the 

effective one-dimensional potential can be computed for optimized geometries with fixed 

R(H1’-O2’) values. However, for R(H1’-O2’) < R0(H1’-O2’) a steep repulsive potential and 

therefore an erroneous behaviour of the effective potential curve arises because the carboxylic 

acid molecule would rather dissociate from the adenine base (breaking the O−H···N hydrogen 

bond) than compressing the OH-bond. The dissociation energy amounts to about 30 kJmol-1 

(2500 cm-1). This branch of the potential can only be obtained if the NH distance is used as 

vibrational coordinate. Since a corresponding problem exists for small NH distances, both 

potentials have to be merged in order to obtain the full effective potential. In the present paper 

the potential with fixed N-H distances is used for the values of the vibrational coordinate 

larger than 1.25 Å. For those smaller than 1.25 Å, the O-H bond is employed. The correlation 

given in Figure 40 allows for a better understanding of the relationship between the 

vibrational coordinate and the actual bond distances. Also, the distances for the computed 

minima are given in the respective tables. 
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Figure 40 Correlation between the vibrational coordinate and the bond distances ROH (solid 

line) and RNH (broken line). All values are given in Ångstrøm. 

 

NMR shielding tensors were calculated on a RHF/TZVP level using the GIAO approach for 

the gas phase. The relative 1H chemical shifts are calculated with the 1H shielding constant of 

TMS (σ(HTMS) = 32.257). This level was used in various computations of relative 1H 

shielding constants127,142 which showed that the RHF/TZVP approach possesses an accuracy 

of about 0.2 ppm for relative 1H chemical shifts in most cases. In a recent review142b it was 

stated that in contrast to the success of DFT in the calculation of molecular structures and 

energies DFT does not provide a systematic improvement over RHF in the calculation of 

magnetic shielding constants. Hence, we use DFT only to compute the potential energy 

surfaces.  

In order to obtain the vibrationally averaged NMR shielding constants we used the approach 

developed by Peric et al.143 For the computation of the reduced mass μ the whole motion of 

the supermolecule has to be considered. Between the minima [R(H1’-N1) > R0(H1’-N1) and 
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moves away leading to a flatter potential compared to the OH bond compression. 

Consequently, for this part of the potential curve a higher value for the reduced mass had to 

be taken. A similar problem arises for the part of the potential surface with R(H1’-N1) < 

R0(H1’-N1). Test computations employing different reduced masses show, however, that these 

effects are small. Therefore, a value of μ=1 a.u. was taken for the whole surface. Temperature 

effects were taken into account assuming a Boltzmann distribution with v = 0 and v = 1 

vibrational levels. Test calculations show that the influence of the v = 2 level is negligible. 

4.4.4 Calculation of averaged NMR – shifts 

Results of gas phase computations on the Watson-Crick hydrogen bond geometry and proton 

chemical shift δ(H1’) of complexes 12a-c (Figure 36) and 13a (Figure 39) are summarized in 

Table 22. In all systems only the structure with the proton H1’ attached to the carboxylate 

group (neutral structure) represents a minimum. This situation is in agreement with the 

experimental data for 12a-c but in disagreement for 13a with its experimentally observed ion 

pairing structure. The δ(H1’) values computed for the equilibrium structures of 12a-c deviate 

by about 1.0 ppm from the measured data, i.e., despite the agreement in the overall 

geometrical structure the deviation between experiment and theory for δ(H1’) is much larger 

than the expected error bars.127,142 Nevertheless, while the computed absolute values for 

δ(H1’) disagree, the difference between 12a and b is nicely reproduced on this level of theory. 

 

Table 22 Summary of the gas phase computations. Structural parameters d are given in Å, 

NMR chemical shifts δ in ppm 

System ad(N··H··O) 
vibrational 

coordinate 
δ(H1’) 

12a 1.707/1.016 1.707 16.20 
12b 1.691/1.020 1.691 16.76 

12c 1.693/1.019 1.693 16.59 

13a 1.668/1.023 1.668 17.41 

 

aLeft and right numbers refer to the proton-nitrogen and proton-oxygen distance, respectively. 



Chapter 4   Results and Discussion 167 

 

Table 23 Summary of the computed energy differences ΔE (kJmol-1), structural parameters d 

(Å) and NMR chemical shifts δ (ppm) of the minima for ε = 40. The respective potential 

curves are given in Figure 41 and Figure 42.  

System aΔE bΔE1
╪ cd(N··H··O) 

vibrational 

coordinate 
dd(N··H··O) 

vibrational 

coordinate 
eδ(H1’) fδ(H1’) 

12a 5.2 9.5 1.681/1.022 1.681 1.082/1.551 0.949 16.81 20.53 
12b 2.8 8.2 1.686/1.022 1.686 1.077/1.572 0.928 16.95 20.08 

12c 3.6 8.6 1.683/1.022 1.683 1.075/1.578 0.922 16.87 19.86 

13a 7.4 1.9 1.603/1.041 1.603 1.066/1.611 0.889 18.75 19.04 

 
If the influence of the Freon matrix is taken into account within the framework of the 

COSMO approach (ε = 40), ionic structures in which the proton H1’ is bound to N1 rather than 

to O2’ are sufficiently stabilized to become minima (Table 23). For the systems 12a-c these 

minima are only 3-5 kJ/mol above the global minimum, which corresponds to the equilibrium 

structure found for the gas phase computations (neutral structure). The OH distances increase 

by only 0.002 – 0.006 Å in the Freon matrix with the δ(H1’) values computed for the global 

minima moving towards the measured data. For compound 12a it only differs by 0.3 ppm 

from the experimental value which is within the range of the expected error bars. For 12b the 

deviation still amounts to 0.8 ppm being larger than the expected inaccuracy. The computed 

δ(H1’) values for 12a and 12b differ by only 0.1 ppm, i.e., at this level theory cannot explain 

the difference of nearly 0.7 ppm observed experimentally. 

If the influence of the Freon matrix is taken into account, theory and experiment agree with 

respect to the hydrogen bond geometry of compound 13a since the ion pairing structure 

becomes the global minimum lying more than 7 kJmol-1 below the minimum of a neutral 

structure. For this ion pairing species the computed δ(H1’) value is 19.0 ppm and thus only 0.3 

ppm lower than the experimental value. This nice agreement supports the expectation that 

differences between the δ(H1’) values of systems 12a and 12b on the one hand and 13a on the 

other hand result from a proton migration. 

aEnergy difference between both minima. bBarrier height from the minimum in which the proton is attached 

to the carboxylate group. cStructural parameters of the minimum for which the proton is attached to the 

oxygen. Left and right numbers refer to the proton-nitrogen and proton-oxygen distance, respectively. 
dStructural parameters of the minimum for which the proton is attached to the nitrogen. Left and right 

numbers refer to the proton-nitrogen and proton-oxygen distance, respectively. eNMR chemical shift for the 

proton attached to oxygen (neutral structure). fNMR chemical shift for the proton attached to nitrogen (ion 

pairing structure). 
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The computations also predict two potential minima for the Hoogsteen hydrogen bond to 

adenine N7 in a Freon matrix (not shown). However, with energy differences of 17 kJmol-1 

(12a) and 13 kJmol-1 (13a), respectively, the influence of these minima are negligible. 

For an accurate calculation of proton chemical shifts an average over the vibrational motions 

is often necessary.130 This is also expected for the present systems since δ(H1’) considerably 

depends on the vibrational coordinate (Figure 41; for a correlation between the vibrational 

coordinate and the bond distances see Figure 40). This dependence is also indicated by the 

shape of the vibrational wave functions which are exemplarily shown for complexes 1c and 

13a in Figure 42. A comparison of the various potentials is given in Figure 43. The 

vibrationally averaged δ(H1’) values are summarized in Table 24. A comparison with the 

experimentally accessible chemical shifts (Table 25) clearly shows that at this level of theory 

the values predicted for compounds 12a and 13a (T = 128 K) show an excellent agreement 

with the measured data. To some extent this excellent agreement is surely fortuitous since the 

absolute experimental values depend to some extent on the explicit Freon composition of the 

particular sample which is not accounted for in our theoretical approach. Note, however, that 

the relative shifts do not depend on the actual composition. For 12b the deviation is about 0.3 

ppm, i.e. all computed δ(H1’) values agree with their experimental counterparts within error 

bars. This indicates that this computational approach accounts for all important effects (see 

below).  
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Figure 41 Comparison of the computed relative 1H chemical shifts δ(H1’) along the potential 

curves for systems 12a-c and 13a. The computations were performed with the RHF/TZVP 

ansatz. 
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Figure 42 Computed potential curves, energy positions of the vibrational states and the 

corresponding wave functions for system 12c (a) and 13a (b). The computations were 

performed with the B3LYP/TZVP ansatz. The minimum on the right hand side corresponds to 

a proton close to the carboxyl oxygen. 
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Figure 43 Comparison of the computed potential energy curves. All computations were 

performed with the B3LYP/TZVP ansatz. 

 

Table 24 Summary of averaged NMR chemical shifts δ (ppm) 

System v = 0 v = 1   

 aenergy δ(H1’) aenergy δ(H1’) bBoltz. δ(H1’)128 K 

12a 301 17.1 691 20.5 0.013 17.2 
12b 295 17.9 532 20.1 0.07 18.1 

12c 296 17.6 578 20.2 0.042 17.7 

13a 316 19.3 809 20.1 0.004 19.3 
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Test calculations showed a negligible influence of the v = 2 levels. 
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Table 25 Experimental 1H chemical shifts δ (ppm) and JNH coupling constants (Hz) of H1’ 

and H1“ protons in Watson-Crick and Hoogsteen hydrogen bonds of adenosine-acid 

complexes 

N1-H-O N7-H-O 
complex 

pKa 

(25 oC) δ(H1’) JNH δ(H1“) JNH 

12aa 4.75 17.10 0 15.11 0 

12ba 4.75 17.76 0 -- -- 

13a 2.85 19.30 76 15.83 0 

 

4.4.5 Discussion 

Low temperature NMR experiments on adenosine-chloroacetic acid mixtures in aprotic 

solvents indicate various coexisting higher-order complexes whose formation depends on the 

acid to adenine base molar ratio. In contrast, previous measurements on various adenine-acid 

mixtures under fast exchange conditions at ambient temperatures have been interpreted in 

terms of a simple 1:1 association model and higher-order complexes have mostly been 

excluded.144,145,146 This might be attributed to the different enthalpic as well as entropic 

factors that will increasingly favour aggregation to higher-order aggregates at lower 

temperatures. 

The nature of hydrogen bonds can be assessed by NMR spectral parameters like 1H NMR 

chemical shifts or 1H-15N scalar couplings of the proton in the hydrogen bridge. Based on our 

computations (Figure 41) a weakening of the proton-donor bond accompanied by a 

strengthening of the proton-acceptor bond will give rise to a maximum in the proton chemical 

shift at about 26 ppm for a centralized proton (neglecting vibrational effects). If the proton is 

further transferred towards the acceptor atom, the proton chemical shift is predicted to 

decrease again. Such a proton shift is nicely seen for both Hoogsteen and Watson-Crick 

hydrogen bonds when going from the 1:2 to the 2:1 adenosine-acetic acid complex and finally 

to the 1:2 adenosine- chloroacetic acid complex, all of which are experimentally accessible. 

JNH scalar couplings as measured in specifically 1-15N labelled adenine nucleoside complexes 

unambiguously point to the formation of neutral complexes with acetic acid (Table 25).6 In 

contrast, for chloroacetic acid the Watson-Crick bound proton is transferred to the nucleobase 

forming ion pairing species. Correspondingly, no JNH scalar coupling is observed for Watson-

a Reference 122 
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Crick adenosine - acetic acid complexes whereas a coupling of 76 Hz for the chloroacetic acid 

1:2 complex, close to the value expected for a covalent N-H bond with bond order one, 

indicates an almost complete proton transfer to the N1 acceptor. Interestingly, excess 

chloroacetic acid does not form additional cyclic carboxylic acid dimers but seems to 

hydrogen-bond to the negatively charged carboxylic acid oxygen of the ion pairing associates 

in a linear fashion. This behaviour corresponds to the formation of charge relay chains 

previously observed between acetic acid (HAc) and pyridine at low temperatures.126f,18 

Disregarding the N3 endocyclic nitrogen, the adenine base possesses two proton acceptor 

sites which can engage in a cyclic hydrogen bond with carboxylic acids, namely N1 and N7. 

In water the pKa for N1-protonation of adenosine is 3.5 whereas N7 protonation does not take 

place above pH 1-2. Correspondingly, the hydrogen bond proton is more shifted toward the 

more basic N1 nitrogen in a Watson-Crick geometry when compared to the N7 in a 

Hoogsteen geometry. In no cases a resolved scalar coupling is found for N7 bound protons 

when using a 7-15N labelled adenine nucleoside, i.e., neutral complexes are always formed at 

the Hoogsteen face. 

The differences found in the hydrogen bond geometries of 12a and 13a allow for a critical 

evaluation of the theoretical approach. Indeed, with respect to the geometries of the various 

complexes, experiment and theory only agree if the influence of the Freon matrix is taken into 

account. By including solvent effects, theory predicts a neutral structure for 12a and b and a 

ion pairing structure for 13a (see Figure 43). Also, in line with the experiment, theory always 

finds hydrogen atoms located closer to the oxygen donor within the hydrogen bonds at the 

Hoogsteen site. In addition to the hydrogen bond geometries, the computed proton chemical 

shifts also agree well with their experimental counterparts, however, vibrational effects have 

to be included (Table 23 and Table 24). 

The good agreement indicates that the employed approach seems to include all important 

effects. Consequently, theory can also provide an insight into the origin responsible for the 

trends. Clearly, the differences between 12a and b on the one hand and 13a on the other hand 

result from a gradual proton transfer induced by the stronger acidity of the chloroacetic acid. 

For the differences between 12a and 12b, however, structural effects seem to be less 

important. The variations in the equilibrium bond distances when going from 12a to 12b 

(ΔRO-H < 0.001 Å; ΔRN---H ≈ 0.005 Å) are small and the chemical shifts computed for the 

equilibrium structures (16.81 vs. 16.95 ppm) theory strongly underestimates the 

experimentally determined difference in δ(H1’) (17.1 vs. 17.76 ppm) 
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Table 26 Summary of the various contributions to the averaged NMR chemical shifts δ(ppm). 

All computations were performed with ε = 40. For more information see text. 

Potential curve 

from system 

NMR values 

from system 

δ(H1’) 

v = 0 

12a 12a 17.12 
a12a 12a 16.92 

12a 12b 17.37 

12b 12b 17.90 

12b 12a 17.64 
a12b 12b 17.46 

 

 

 

An analysis of the various effects is given in Table 26. By combining the potential curve of 

system 12a with the NMR shielding curve of system 12b, a vibrationally averaged δ(H1’) 

value of 17.37 ppm is obtained. It deviates by 0.25 ppm from the “pure” δ(H1’) value of 12a, 

i.e., the slight difference in the NMR shielding curve (Figure 41) accounts for one third of the 

overall effect. The strong influence of the potential curve can be seen from the calculation 

which combines the potential curve of 12b with the NMR shielding curve of 12a increasing 

the value of δ(H1’) to 17.64 ppm. This is about 2/3 of the overall effect for T = 0.0. The 

influence of the double-well nature of the potentials of 12a and 12b can be seen from the 

second and the last row of Table 26. If the second minima are omitted, averaged δ(H1’) values 

of 16.92 ppm (12a) and 17.46 ppm (12b) are computed. They deviate by 0.2 ppm (12a) and 

0.4 ppm (12b) from the values obtained with the double-well potentials. Assuming a 

Boltzmann distribution for T = 128 K the value of δ(H1’) increases by about 0.1 ppm for 12a 

and 0.2 ppm for 12b (Table 24). 

With vibrationally averaged bond distances 〈R(N⋅⋅⋅H)〉v=0 the trends can be explained by 

changes in the averaged geometries. For 12a and 12b the values amount to 1.6855 Å and 

1.6514 Å, respectively, in line with an effective proton displacement towards the nitrogen 

acceptor. If the δ(H1’) values for these distances are taken from Figure 41, one obtains δ(H1’) 

= 16.71 ppm for 12a and δ(H1’) = 17.56 ppm for 12b. Using this picture our model is in line 

with the findings of Limbach and coworkers.126f,147 Due to the importance of solvent effects 

for the present problem, the question arises whether the used theoretical approach correctly 

aThe average was obtained using a potential curve in which only the minimum with the proton at the 

carboxylate group was taken into account. 
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mirrors the physical situation.148 The adaptation of the environment to changes in the 

electronic structure of the solute can be divided into polarization effects of the electron shells 

of the solvent molecules and effects resulting from molecular reorientation (rotation, 

translation, etc.). While the former will be much faster than the proton transfer process 

described by the computed double-minimum potentials, the latter (and probably more 

important ones) will be slower. Thus, the solvent will mainly be adapted to the situation at the 

global minimum. Going from the global to the local minimum, an only partial adaptation will 

result in an imperfect orientation of the environment. In contrast, continuum approaches 

assume a complete reorientation of the surroundings. As a consequence, the computed energy 

differences between global and local minima are smaller than in the real situation of a 

shuttling proton. Correcting for this shortcoming, the importance of the second minima 

diminishes in 12a and 12b and their influence may even vanish completely (this is even more 

true for 13a). This situation is shown by the second and the last row of Table 26 where the 

second minima have not been taken into account. The computed values for δ(H1’) are 16.92 

ppm (12a) and 17.46 ppm (12b), i.e., even in this case the trend is nicely reproduced and 

vibrational effects are still the major contributors. Although absolute values deviate more 

from their experimental counterparts, the agreement is still good considering the uncertainties 

in experiment and theory. 

Clearly, a 1:1 adenosine-acetic acid complex 12c serves as an important reference for the 

evaluation of cooperativity effects in binding a second ligand. Unfortunately, such a 1:1 

complex was not found experimentally at low temperatures, however, our computations also 

allow a structural characterization for this bimolecular complex. As shown in Figure 9, 

binding a second ligand at the adenine Hoogsteen site primarily affects energy differences 

between minima for the potential curve of the Watson Crick OH⋅⋅⋅⋅N hydrogen bond. These 

effects manifest themselves in a weakening of the H-bond and in a shielding of the H1’ proton 

upon binding a second acetic acid at the Hoogsteen site in 12a. In contrast, a strengthening of 

the H-bond and a deshielding of the H1’ proton is calculated upon binding a second adenine 

base in 12b (see Table 24). Likewise, an averaged proton position closer to N1 is suggested 

by a more upfield chemical shift measured in the ion pairing complex 13c compared to 13a 

with a second Hoogsteen bound acid. 

These (anti)cooperativity effects can be rationalized in terms of electron-withdrawing and 

electron-releasing effects exerted by bound ligands. Electron density is expected to gradually 

decrease in the whole purine ring system upon binding ligands with increasing electron 

withdrawing properties. This in turn should reduce the acceptor capability of the endocyclic 
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nitrogen with a concomitant shift of the averaged proton location closer to the donor atom. 

However, when substituting the electron-releasing adenine nucleobase for a Hoogsteen bound 

second carboxylic acid, the proton is further shifted towards the more potent N1 acceptor 

resulting in a downfield or upfield shift in a neutral or ion pairing complex, respectively. 

Also, binding of a second adenine being essentially basic may even benefit from protonation 

at N1 and from the concomitant increase in acidity of the exocyclic amino donor. 

In the present study the cooperative effects between N…H-O hydrogen bonds are mediated by 

the purine ring system. This can be compared to the results of Kar and Scheiner124 who 

investigated the cooperativity in OH…O hydrogen bonds employing chains of water 

molecules (H2O)n up to n=5. Going from n=2 (no additional second ligand) to n=3 (one 

additional second ligand) correspond to the changes found between 12c and 12a. In their 

model system the overall effect is smaller due to the lower acidity of the second ligand. 

Nevertheless, having a smaller mediating system the overall effects could be similar. Indeed, 

based on gas phase results this seems to be the case. For the water chain the covalent O-H 

bond elongates by about 0.003 Å, i.e., the effect is similar to our system with a change in the 

equilibrium geometry of also about 0.003 Å (Table 22). For the water chain the computed 

chemical shift of the bridging hydrogen changes by about 0.7 ppm and is thus comparable to 

the change of about 0.4 ppm in our system. A comparison of the effects in a solvent is not 

possible since Kar and Scheiner only discussed the influence of a solvent on binding energies 

but not on geometries and chemical shifts. Nevertheless, they concluded that the cooperative 

effects will diminish since the computed binding energies decrease dramatically. As for 

variations in equilibrium distances this is indeed found in this study, however, due to 

vibrational effects variations in chemical shifts could still be more pronounced. 

4.4.6 Conclusion 

Chemical shift calculations applying vibrational averaging faithfully reproduce experimental 

proton chemical shifts in adenosine-carboxylic acid complexes obtained at very low 

temperatures in the slow hydrogen bond exchange regime. Therefore, geometries on 

complexes not accessible under the solution conditions employed can be calculated 

complementing the available experimental data. On the basis of this combination of 

experimental and theoretical data, reliable information can be obtained on the strength of 

individual hydrogen bonds and on the cooperativity of multiple binding to the adenine 

nucleobase. Clearly, such knowledge is not only important for the design of artificial adenine 
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receptors but also for a better understanding of the many biological interactions involving 

adenine, e.g., as a component in polymeric nucleic acids or in adenine cofactors. 
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Chapter 5 Summary 

The effective binding of anions like carboxylates and phosphates in aqueous solutions is of 

particular interest for various reasons. On the one hand anions play an important role in many 

biochemical processes as enzyme substrates or co-factors making a profound understanding 

of the binding modes under physiological conditions essential. On the other hand there is a 

vast number of possible uses for artificial anion receptor systems. It ranges from rational drug 

design of active agents against methicillin-resistant staphylococcus aureus (MRSA) germs or 

other infectious diseases threatening immuno-deficient patients to the development of self-

assembling functional materials consisting of zwitterionic building blocks. However, it is 

challenging to develop such artificial structure motifs that are able to complex anions 

efficiently, as a highly competitive media like an aqueous surrounding strongly weakens non-

covalently formed complexes.  

 

The natural archetypes of effective anion receptors are enzymes that contain often arginine as 

relevant amino acid in the binding pocket. For this reason, one class of artificial anion 

receptors that emerged more than two decades ago mimics the anion binding with the 

guanidinium group present in the amino acid side chain. In 1999, Schmuck and coworkers 

developed a new class of guanidinium-based oxo anion receptor that binds carboxylates even 

in aqueous media. The binding modes of the 2-(guanidiniocarbonyl)-1H-pyrroles are based on 

individually weak non-covalent interaction between artificial host and substrate like ion 

pairing and multiple hydrogen bonds. The combination of these effects leads to 

unprecedented high association constants (“Gulliver effect”). The zwitterionic derivative with 

substitution of a carboxylate group in position 5 of the pyrrole ring system (structure 1, 

Figure 44) shows a strong self-assembly to discrete dimers with an estimated association 

constant of 170 M-1 even in water. In order to further improve the structure motif for an 

effective oxo anion binding it is therefore of great interest to quantify the different 

intermolecular interactions between two monomeric units of 1.  
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Figure 44 2-(Guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer (1) as prototype for an 

effective guanidinium-based carboxylate receptor. 

 

Against this background several theoretical ab initio studies were conducted in order to 

elucidate the influences of intrinsic properties as well as solvent effects on the stability of 

self-assembled dimers. In chapter 4.1 the molecular interactions in the 2-

(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer (1) were investigated by comparison to 

various “knock-out” analogues. In these analogues single hydrogen bonds were switched off 

by substitution of hydrogen donor atoms with either methylene groups or ether bridges. The 

calculations were done for vacuum and solvation, as represented by a conductor-like 

polarizable continuum. It could be shown that the application of a simple continuum solvent 

model fails to predict the absolute energies of the knock-out analogues in strongly polar 

solvents. However, the calculated trends can explain the relative stabilities.  The analysis of 

the stabilities of the various “knock-out” analogues thus revealed four issues that seem to be 

important for an efficient binding: 

 

1. The salt-bridged hydrogen bonds are essential for the overall stability and are much 

more effective than simple point charge interactions without hydrogen bonds. 

2. Additional neutral hydrogen bonds from the pyrrole ring further stabilize the dimer 

system but their influence is much smaller than that of ionic hydrogen bonds. 

3. Solvation effects are strongly dependent on the accessibility, i.e. solvent-exposed 

hydrogen bonds are more weakened than inner hydrogen bonds. 

4. A multiple hydrogen bonding pattern comprises secondary interactions that contribute 

significantly to the dimer stability. 

 

Finally, the comparison of the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer (1) 

with the arginine dimer showed that the extraordinary stabilization upon dimerization in gas 

phase is ascribed to the rigidity of the zwitterionic monomers which have an considerably 
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higher energy content than arginine. The intramolecular interactions of the charged moieties 

which are due to the flexible backbone are responsible for the strong stabilization of 

monomeric arginine. As this intramolecular stabilization is prevented in structure 1 the 

dimers are stronger stabilized by the intermolecular complexation.  

 

In chapter 4.2 the structural similarity of arginine with 2-(guanidiniocarbonyl)-1H-pyrrole-5-

carboxylate (1) was used in order to examine the dependence of self-assembly from the 

flexibility of the molecular structure. Arginine as model system has several advantages when 

studying intermolecular guanidinium-carboxylate interactions, namely (1.) it is a natural 

occurring amino acid of biological relevance showing multiple hydrogen bonded 

guanidinium-carboxylate interactions, (2.) it possesses a flexible backbone which allows 

strong conformational changes in order to form best possible hydrogen bonds and (3.) many 

experimental and theoretical studies are already at hand. The calculation of dimerization 

energies requires the determination of the global (and sometimes also local) minimum 

structures which poses a non-trivial problem even for medium-sized molecules with a flexible 

scaffold like arginine. It is therefore essential to develop a strategy to identify all relevant 

minimum energy conformers with reliable relative energy ranking.  

In chapter 4.2.1 new global minimum structures of the canonical and zwitterionic arginine in 

gas phase were found by means of exhaustive force field based conformational searches in 

conjunction with ab initio structure optimizations of the lowest energy conformers on a MP2 

level of theory with a large basis set comprising additional diffuse functions. Moreover, most 

of the newly identified minimum conformers of both the zwitterionic and canonical tautomer 

revealed geometrical arrangements with hitherto unreported stacked orientations of the 

terminal groups. These unusual geometrical arrangements were overlooked so far by other 

theoretical studies due to the deficiencies of density functional approaches. Therefore, it could 

be shown that for non-covalently bound systems possessing π-π like stacking interactions only 

post-HF electron correlation methods are able to give the appropriate relative energies of all 

possible conformers. All trends found on a MP2 level of theory could be confirmed by 

CCSD(T) calculations on the MP2 optimized geometries and finally a novel global minimum 

structure (see Figure 45) was detected that is more than 8 kJ mol-1 lower in energy than the 

previously published conformers. 

There was a vivid discussion in the literature whether arginine occurs in gas phase as 

zwitterion or in the canonical state.64,77c-d,79,94 The strong proton affinity of the guanidine 

group could outweigh the energy required for charge separation and it is well known that 
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already one cation strongly stabilizes zwitterionic species. We could show that the lowest 

zwitterionic conformer ZW1 (see Figure 45) is only 7 kJ mol-1 (MP2/TZVPP+) higher in 

energy than the canonical global minimum N1. Therefore, the rigorous exclusion of the 

zwitterionic state in the gas phase that was proposed in several theoretical and experimental 

studies is no longer valid and an unambiguous proof could only be given by experiments. One 

possibility to distinguish between both tautomers would be the comparison of the hydrogen 

stretch vibrations between 2600 and 4000 cm-1 as we could demonstrate by computed 

vibrational spectra of the lowest monomer structures. 

 
N1 

 
ZW1 

Figure 45 Minimum structures of arginine: global minimum (N1) and the lowest zwitterionic 

minimum (ZW1) optimized on a RI-MP2/TZVPP+ level of theory 

 

The same strategy for finding minimum energy conformers of the arginine monomer has also 

been employed for the arginine dimer structures. While previous theoretical studies favoured 

directed hydrogen bonds (see dimer structure DZ1 in Figure 46) the new global minimum 

structure MMFF1 is about 60 kJ mol-1 (RI-MP2/TZVPP+//RI-MP2/TZVP) more stable and 

exhibits a stacked orientation of the guanidinium and carboxylate groups.  
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MMFF1 

 
DZ1 

Figure 46 Minimum structures of arginine dimer: new global minimum structures MMFF1 

(left) and the local minimum structure DZ1 published by Goddard III et al.77a (right) both 

optimized on a RI-MP2/TZVP level of theory. 

 

The importance of rigidity on the dimer stability was proven by calculations of an artificially 

stiffened arginine dimer system. Although the hydrogen bonding pattern of the artificial 

arginine is less distinct, the comparison with the 2-(guanidiniocarbonyl)-1H-pyrrole-5-

carboxylate dimer (see Figure 47) revealed that it shows a dimerization energy that is nearly 

of the same magnitude as for the pyrrole derivative and twice as large as for the global 

minimum structure MMFF1. Thus the high binding affinity of the 2-(guanidiniocarbonyl)-1H-

pyrrole-5-carboxylate dimer (1) results by about 50% from the rigidity of the monomers 

which prevents any intramolecular stabilization. 

 

 
 

410 kJ mol-1 

 
 

1:  581 kJ mol-1 

Figure 47 MP2/TZVPP+ calculated dimers of an artificially linear arginine (left) and 2-

(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate (right). 
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In chapter 4.3 novel structure motifs with varying ring systems have been examined on a DFT 

level of theory in order to make proposals for an improved carboxylate binding motif. The 

study of benzene and pyridine derivatives showed the importance of complementarity of the 

monomers which minimizes possible geometrical strains in the dimers. Again many structures 

clearly indicated that any intramolecular stabilization within the monomers strongly reduces 

the dimerization energy. The direct dependency of the dimerization energy on an increasing 

dipole moment was demonstrated by various anellated ring structures. The influence of the 

delocalization in the monomer on the dimerization energy was examined by variation of the 

electronic structure of electronically decoupled biphenylenes with electron pushing or 

withdrawing substituents. However, this approach did not allow to improve the dimerization 

affinity. A significant increase in the dimerization energy of about 90 kJ mol-1 with respect to 

the 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer was observed for the indole 

derivative 10a which benefits from a larger dipole moment in conjunction with the good 

binding behaviour of the guanidiniocarbonylpyrrole moiety (see Figure 48).  In both the 

pyrrole (1) and the indole derivative (10a) the additional pyrrole hydrogen bond stabilizes the 

dimer by a stronger fixation of the carboxyl group in the binding pocket (“Gulliver effect”). 

 

 
Figure 48 Optimized structure of 2-guanidinio-carbonylindole-6-carboxylate dimer (10a) in 

gas phase (B-LYP/TZVPP+). 

 

Schmuck et al. proposed that the carbonyl function in vicinity of the guanidinium group 

implies an increase of the acidity of the hydrogen donor site which is essential for the strong 

binding affinity. However, with the aid of various substituted 7-guanidinioindole-2-

carboxylate derivatives we could show that the carbonyl function is mainly responsible for the 

advantageous preorganisation, whereas the effect on the acidity seems to be only of minor 

importance.  
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The influence of molecular solvent effects on potential energies was investigated by 

calculated dimerization energies in continuum solvation and experimental dimerization 

constants of m-guandiniocarbonylbenzoate 7a obtained in varying DMSO/methanol solvent 

compositions. We could show that only by inclusion of explicit solvent molecules it is 

possible to explain the experimentally observed trends. Furthermore, the calculation of Gibbs 

free enthalpies for association reactions is still problematic since thermodynamic 

contributions for the condensed phase were calculated by means of analytical formulas of an 

ideal gas. However, ITC measured dimerization constants indicate that the computed relative 

energy differences are already in good accordance with experimental findings. As a 

consequence, the calculated Gibbs free enthalpies can then be used to estimate the dimer 

stability in a given solvent if the experimental association constant of a reference system that 

is structurally related is available. Based on these results the 2-guanidiniocarbonylindole-6-

carboxylate (10a) seems to be a very promising candidate that should form discrete dimers 

even in highly polar solvents.  

In the last chapter cooperativity effects in supramolecular assemblies have been investigated. 

This was achieved by NMR shift calculations of adenosine-carboxylic acid complexes as 

model systems and comparison to experimental low-temperature NMR studies. We could 

demonstrate that only by applying vibrational averaged NMR shifts the experimental proton 

shifts obtained at very low temperatures in the hydrogen bond exchange regime could be 

reproduced. As a result, by combining experimental and theoretical data one can obtain 

reliable information on the strength of individual hydrogen bonds and of the cooperativity 

within multiple hydrogen binding patterns of self-assembling systems. 
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Chapter 6 Zusammenfassung 

Eine effektive Bindung von Anionen wie Carboxylaten und Phosphaten in wässrigen 

Lösungen ist aus verschiedenen Gründen von großem Interesse. Auf der einen Seite spielen 

Anionen in vielen biologischen Prozessen eine wichtige Rolle als Enzymsubstrate oder Co-

Faktoren. Deshalb ist ein tiefgreifendes Verständnis der  Bindungsmodi unter physiologischen 

Bedingungen besonders wichtig. Auf der anderen Seite können künstliche 

Anionenrezeptorsysteme vielseitig eingesetzt werden. Dies reicht vom rationalen Drug 

Design von Wirkstoffen gegen Methicillin-resistente Staphylococcus Aureus (MRSA) Keime 

und andere Infektionskrankheiten, die besonders für immunschwache Patienten eine Gefahr 

darstellen, bis hin zur Entwicklung von Funktionswerkstoffen, welche sich aus 

zwitterionischen Bausteinen selbst-organisierend  zusammensetzen. Die Entwicklung von 

solchen künstlichen Strukturmotiven, welche Anionen effizient komplexieren können, ist 

jedoch sehr anspruchsvoll, da die nicht-kovalent gebundenen Komplexe durch 

hochkompetitive Medien wie wässrige Lösungen stark geschwächt werden.  

 

Die natürlichen Vorbilder effektiver Anionenrezeptoren sind Enzyme, welche oftmals Arginin 

als entscheidende Aminosäure in der Bindungstasche tragen. Aus diesem Grund wurde vor  

mehr als zwei Jahrzehnten eine Klasse von künstlichen Anionenrezeptoren entwickelt, welche 

versucht die natürliche Bindung von Anionen in Arginin zu imitieren. Die positiv geladenene 

Guanidiniumgruppe, wie sie in der Seitenkette von Arginin vorkommt, ist daher das zentrale 

Strukturmerkmal für viele Anionenrezeptoren. Im Jahre 1999 gelang es Schmuck und 

Mitarbeitern eine neue Klasse von Guanidinium-basierten  Oxoanionenrezeptoren zu 

entwickeln, die Carboxylate sogar in wässrigen Medien binden können. Die Bindungsmodi 

der 2-(Guanidiniocarbonyl)-1H-pyrrole basieren auf einer Kombination von einzeln betrachtet 

schwachen nicht-kovalenten Wechselwirkungen wie Ionenpaarbildung und multiplen 

Wasserstoffbrückenbindungen zwischen künstlichem Rezeptor und Substrat. Jedoch erst die 

Kombination dieser Effekte führt zu den hohen Assoziationskonstanten („Gulliver-Effekt“). 

Durch Substitution einer Carboxylatgruppe in Position 5 des Pyrrolringes erhält man ein 

zwitterionisches Derivat (Struktur 1, siehe Figure 49), welches sich in Wasser mit einer 
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Assoziationskonstante von schätzungsweise 170 M-1 zu einzelnen Dimeren zusammenlagert. 

Um das Strukturmotiv hinsichtlich einer noch effektiveren Anionenbindung weiter verbessern 

zu können, ist es daher von großem Interesse, die verschiedenartigen intermolekularen 

Wechselwirkungen zwischen den beiden monomeren Einheiten von Dimer 1 zu 

quantifizieren.  
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Figure 49 2-(Guanidiniocarbonyl)-1H-pyrrol-5-carboxylat Dimer (1) als Prototyp für einen 

effektiven Guanidinium-basierten Carboxylat Rezeptor. 

 

Vor diesem Hintergrund wurden verschiedene theoretische ab initio Studien durchgeführt, um 

die Einflüsse von intrinsischen Eigenschaften sowie von Solvenseffekten  auf die Stabilität 

sich selbst zusammenlagernden Dimeren aufzuklären. In Kapitel 4.1 wurden die molekularen 

Wechselwirkungen im 2-(Guanidiniocarbonyl)-1H-pyrrole-5-carboxylat-Dimer (1) durch 

Vergleich mit verschiedenen „Knock-out“ Analoga untersucht. In diesen Analoga wurden 

einzelne Wasserstoffbrückenbindungen durch Substitution von Wasserstoffdonoren mit 

Methylengruppen oder Etherbrücken ausgeschaltet. Die Berechnungen wurden für Vakuum 

oder Solvensumgebung durchgeführt, wobei letztere durch ein polarisierbares, so genanntes 

„conductor-like“  Kontinuummodell dargestellt wurde. Es konnte gezeigt werden, dass die 

Anwendung eines vereinfachten Kontinuum-Solvensmodells nicht ausreicht, die absoluten 

Energien der „Knock-out“ Analoga in stark polaren Lösungsmitteln vorherzusagen, jedoch 

können die berechneten Trends Auskunft über die relativen Stabilitäten geben. Die Analyse 

der Stabilitäten der verschiedenen „Knock-out“ Analoga ergab, dass folgende  vier Punkte für 

eine effiziente Bindung wichtig zu sein scheinen. 

 

1. Die durch die Salzbrücke verstärkten Wasserstoffbrückenbindungen sind essentiell für 

die Gesamtstabilität und zudem deutlich effektiver als einfache Punkladungswechsel-

wirkungen ohne Wasserstoffbrückenbindungen.  
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2. Weitere neutrale Wasserstoffbrückenbindungen ausgehend vom Pyrrolring 

stabilisieren zusätzlich das Dimersystem, jedoch ist ihr Einfluss deutlich geringer als 

der von ionischen Wasserstoffbrückenbindungen. 

3. Lösungsmitteleffekte sind stark abhängig davon, wie leicht eine Bindungsstelle für 

Solvensmoleküle zugänglich ist. Lösungsmittelexponierte Wasserstoffbrücken-

bindungen werden stärker geschwächt als innere Wasserstoffbrückenbindungen. 

4. Ein multiples Wasserstoffbrückenmuster weist sekundäre Wechselwirkungen auf, 

welche entscheidend zur Dimerstabilität beitragen. 

 

Letztendlich zeigte der direkte Vergleich des 2-(Guanidiniocarbonyl)-1H-pyrrole-5-

carboxylat-Dimers (1) mit dem Arginin Dimer in Gasphase, dass die außergewöhnliche 

Stabilisierung bei der Dimerisierung auch der Rigidität der zwitterionischen Monomere 

zugeschrieben werden muss. Die starke Stabilisierung des monomeren Arginins ergibt sich 

durch intramolekulare Wechselwirkungen der geladenen Enden, welche sich aufgrund des 

flexiblen Grundgerüsts ausbilden können. Da diese intramolekulare Stabilisierung in Struktur 

1 verhindert wird, sind die einzelnen Monomere deutlich energiereicher, sodass durch die 

intermolekulare Komplexierung stärker stabilisierte Dimere resultieren. 

 

In Kapitel 4.2 wurde die strukturelle Ähnlichkeit von Arginin mit 2-(Guanidiniocarbonyl)-

1H-pyrrole-5-carboxylat (1) ausgenutzt, um die Abhängigkeit der Stärke der Dimerisierung 

von der Flexibilität der molekularen Struktur eingehender zu untersuchen. Die Wahl von 

Arginin als Modellsystem hat mehrere Vorteile bei der Untersuchung intermolekularer 

Guanidinium-Carboxylat Wechselwirkungen, nämlich (1.) handelt es sich hierbei um eine 

natürlich vorkommende Aminosäure mit biologischer Relevanz, welche multiple 

wasserstoffverbrückte Guanidinium-Carboxylat Wechselwirkungen aufweist, (2.) besitzt 

Arginine ein flexibles Grundgerüst, welches große konformative Veränderungen erlaubt, um 

bestmögliche Wasserstoffbrückenbindungen ausbilden zu können und (3.) sind viele 

experimentelle und theoretische Studien bereits vorhanden. Die Berechnung von 

Dimerisierungsenergien erfordert die Bestimmung der globalen (und manchmal auch lokalen) 

Minimumsstrukturen, was sogar für mittelgroße Moleküle mit flexiblem Gerüst ein nicht-

triviales Problem darstellt. Es ist daher wichtig eine Strategie zu entwickeln, die es einem 

erlaubt, alle relevanten energetischen Minimumskonformere zu identifizieren und dabei die 

korrekte Rangfolge der relativen Energien mit hoher Zuverlässigkeit wiederzugeben. 
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In Kapitel 4.2.1 wurden neue globale Minimumsstrukturen des kanonischen und 

zwitterionischen Arginins in der Gasphase bestimmt. Dies geschah mit Hilfe von 

umfangreichen kraftfeldbasierten Konformationssuchen in Verbindung mit ab initio 

Strukturoptimierungen der energetisch niedrigsten Konformere auf MP2 Niveau und großem 

Basissatz mit zusätzlichen diffusen Funktionen. Zudem zeigten die meisten der neu 

identifizierten Minimumskonformere sowohl des zwitterionischen als auch des kanonischen 

Tautomers geometrische Anordnungen mit bis dahin unbekannten gestapelten Orientierungen 

der endständigen Gruppen. Diese ungewöhnlichen geometrischen Strukturen wurden bislang 

von anderen theoretischen Studien aufgrund von Unzulänglichkeiten der 

dichtefunktionalbasierten Verfahren übersehen. Es konnte daher gezeigt werden, dass nur 

post-HF Elektronenkorrelationsmethoden in der Lage sind, für nicht-kovalent gebundene 

Systeme mit π-π-artigen Stapelwechselwirkungen die richtigen relativen Energien aller 

möglichen Konformere wiederzugeben. Durch CCSD(T) Rechnungen auf den MP2 

optimierten Geometrien konnten alle auf MP2 Niveau gefundenen Trends bestätigt werden 

und es wurde letztendlich eine neuartige globale Minimumsstruktur (N1) gefunden, welche 

eine um mehr als 8 kJ mol-1 niedrigere Energie besitzt als die bislang veröffentlichten 

Konformere (siehe Figure 50). 

Es wurde in der Literatur intensiv darüber diskutiert, ob Arginin in der Gasphase im 

zwitterionischen oder kanonischen Zustand vorliegt. 64,77c-d,79,94 Die starke Protonenaffinität 

der Guanidingruppe könnte hierbei die Energie aufwiegen, welche für eine Ladungstrennung 

nötig wäre. Es ist außerdem bekannt, dass ein schon zusätzliches Kation das zwitterionische 

Tautomer in Gasphase stabilisieren kann. Wir konnten zeigen, dass das niedrigste 

zwitterionische Konformer ZW1 (siehe Figure 50) um nur 7 kJ mol-1 energetisch höher liegt 

als das kanonische globale Minimum N1. Daher ist es nicht möglich, einen zwitterionischen 

Zustand in der Gasphase rigoros auszuschließen und ein eindeutiger Beweis könnte nur durch 

das Experiment erbracht werden. Eine Möglichkeit, um zwischen beiden Tautomeren zu 

unterscheiden, wäre der Vergleich der Wasserstoffstreckschwingungen zwischen 2600 und 

4000 cm-1, wie wir mit berechneten Vibrationsspektren der niedrigsten Konformere zeigen 

konnten.  



Chapter 6   Zusammenfassung 191 

 

 
N1 

 
ZW1 

Figure 50 Minimumsstrukturen von Arginin: globales Minimum (N1) und das niedrigste 

zwitterionische Minimum (ZW1). Beide Strukturen wurden auf RI-MP2/TZVPP+ Niveau 

optimiert. 

 

 
MMFF1 

 
DZ1 

Figure 51 Minimumsstrukturen des Arginin Dimers: globales Minimum (MMFF1) und das 

von Goddard III et al. veröffentlichte lokale Minimum (DZ1)77a. Beide Strukturen wurden auf 

RI-MP2/TZVPP+ Niveau optimiert. 

 

Die gleiche Strategie für das Auffinden von energetischen Minimumskonformeren, wie sie 

bereits für das Arginin Monomer benutzt wurde, wurde auch im Falle der Dimere von Arginin 

verwendet. Im Gegensatz zu vorhergehenden theoretischen Untersuchungen, welche 

ausschließlich gerichtete Wasserstoffbrückenbindungen bevorzugten, ist die neue globale 

Minimumsstruktur ungefähr 60 kJ mol-1 (RI-MP2/TZVPP+//RI-MP2/TZVP) stabiler und 

weist ebenfalls eine gestapelte Orientierung der Guanidinium- und Carboxylatgruppen auf 

(siehe Figure 51). 
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410 kJ mol-1 

 
 

1:  581 kJ mol-1 

Figure 52 MP2/TZVPP+ berechnete Dimere eines artifiziellen linearen Arginins (links) und 

2-(Guanidiniocarbonyl)-1H-pyrrol-5-carboxylat (rechts). 

 

Der Einfluss der Rigidität auf die Dimerstabilität wurde durch Berechnungen eines künstlich 

versteiften Arginin Dimersystems bewiesen. Der Vergleich mit dem 2-(Guanidiniocarbonyl)-

1H-pyrrole-5-carboxylat Dimer (siehe Figure 52) offenbarte, dass das artifiziell versteifte 

Arginin eine Dimerisierungsenergie besitzt, die, (a) doppelt so groß wie die der globalen 

Minimumsstruktur MMFF1 ist und (b) in einer ähnlicher Größenordnung wie für das 

Pyrrolderivat liegt, obwohl das Wasserstoffbrückenbindungsmuster weniger ausgeprägt ist. 

Die hohe Bindungsaffinität des 2-(Guanidiniocarbonyl)-1H-pyrrole-5-carboxylat Dimers (1) 

ergibt sich daher zu etwa 50% aus der Rigidität der Monomere, welche jegliche 

intramolekulare Stabilisierung verhindert. 

 

Um Vorschläge für ein verbessertes Carboxylatbindungsmotiv machen zu können, wurden in 

Kapitel 4.3 neuartige Strukturmotive mit veränderten Ringsystemen auf DFT Niveau 

untersucht. Die Studie von Benzol- und Pyridinderivaten zeigte die Wichtigkeit der 

Komplementarität der Monomere zueinander, welche mögliche geometrische Spannungen in 

den Dimerstrukturen minimiert. Es konnte erneut anhand vieler Strukturen klar gezeigt 

werden, dass jede intramolekulare Stabilisierung innerhalb der Monomere die 

Dimerisierungsenergie erheblich verringert. Die direkte Abhängigkeit der 

Dimerisierungsenergie von einem zunehmenden Dipolmoment wurde durch verschiedene 

anellierte Ringstrukturen bewiesen. Der Einfluss der Delokalisierung in den Monomeren auf 

die Dimerisierungsenergie wurde durch Veränderung der Elektronenstruktur von elektronisch 

entkoppelten Biphenylenen mit elektronenziehenden und elektronenschiebenden 

Substituenten untersucht. Diese Vorgehensweise führte jedoch zu keiner Verbesserung der 
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Dimerisierungsaffinität. Eine erhebliche Zunahme der Dimerisierungsenergie von etwa 90 kJ 

mol-1 bezogen auf das 2-(Guanidiniocarbonyl)-1H-pyrrole-5-carboxylat Dimer wurde für das 

Indolderivat 10a beobachtet, welches von einem größerem Dipolmoment in Verbindung mit 

dem guten Bindungsverhalten der Guanidiniumcarbonylpyrrol-Gruppe profitiert (siehe 

Figure 53). Die zusätzlich vorhandenen Wasserstoffbrückenbindungen des Pyrrolrings im 

Pyrrolderivat (1) als auch im Indolderivat (10a) verstärken die Stabilisierung des Dimers 

durch stärkere Fixierung des Carboxylats in der Bindungstasche („Gulliver-Effekt“). 

 

 
Figure 53 Optimierte Dimerstruktur von 2-Guanidiniocarbonylindole-6-carboxylat (10a) in 

Gasphase (B-LYP/TZVPP+). 

 

Es wurde von Schmuck et al. vermutet, dass die Carbonylfunktion, welche an die 

Guanidiniumgruppe angrenzt, eine Erhöhung der Azidität der Wasserstoffdonorseite 

verursacht, die entscheidend für die starke Bindungsaffinität sei. Mit Hilfe von verschiedenen 

substituierten 7-Guanidinioindole-2-carboxylaten konnte gezeigt werden, dass die 

Carbonylfunktion hauptsächlich für eine gute Präorganisation verantwortlich ist, wohingegen 

der Effekt auf die Azidität eine geringere Bedeutung besitzt. 

Der Einfluss von molekularen Solvenseffekten auf potentielle Energien wurde durch den 

Vergleich von im Kontinuum-Solvensmodell berechneten Energien von m-

Guanidiniocarbonylbenzoat 7a mit experimentellen Dimerisierungskonstanten untersucht, 

welche in unterschiedlichen DMSO/Methanol Mischungen gemessen wurden. Wir konnten 

beweisen, dass es nur mit Berücksichtigung von expliziten Lösungsmittelmolekülen möglich 

ist, die experimentell beobachteten Trends zu erklären. Zudem konnte gezeigt werden, dass 

die Berechnung von Gibbs freien Enthalpien für Assoziationsreaktionen weiterhin 

problematisch ist. Dieser Umstand ist darauf zurückzuführen, dass die thermodynamischen 

Beiträge für die kondensierte Phase mit Hilfe von analytischen Formeln für ideale Gase 
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berechnet wurden. Allerdings zeigen die ITC gemessenen Dimerisierungskonstanten, dass die 

berechneten relativen Energieunterschiede bereits in guter Übereinstimmung mit den 

experimentellen Werten sind. Dies hat zur Folge, dass man die berechneten Gibbs freien 

Enthalpien dazu verwenden kann, die Dimerstabilität in einem gegebenen Lösungsmittel 

abzuschätzen, falls die experimentelle Assoziationskonstante eines strukturell verwandten 

Referenzsystem in demselben Solvens bekannt ist. Aufgrund dieser Ergebnisse scheint das 2-

Guanidiniocarbonylindol-6-carboxylat (10a) ein sehr viel versprechender Kandidat zu sein, 

Dimere sogar in hochpolaren Lösungsmitteln ausbilden zu können. 

Im letzten Kapitel wurden Kooperativitätseffekte in supramolekularen Systemen untersucht. 

Als Modellsysteme dienten hierbei Adenosin-Carbonsäure-Komplexe, deren berechnete NMR 

Verschiebungen mit experimentellen Niedrigtemperatur-NMR-Studien verglichen wurden. 

Wir konnten zeigen, dass nur durch die Verwendung von schwingungsgemittelten NMR 

Verschiebungen die experimentelle Protonenverschiebung reproduziert werden kann, welche 

unter Tieftemperaturbedingungen im Austauschregime von Wasserstoffbrückenbindungen 

erhalten wurde. Als Ergebnis dieser Studie zeigt sich, das durch die Verknüpfung von 

experimentellen und theoretischen Daten verlässliche Informationen über die individuellen 

Wasserstoffbrückenbindungsstärken und die Kooperativität innerhalb des multiplen 

Wasserstoffbrückenbindungsnetzwerkes von nicht-kovalent gebundenen Systemen erhalten 

werden können.  
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Chapter 7 Outlook 

"An expert is a man who has made all the mistakes which can be made in a very narrow 

field." 

--Niels Henrik David Bohr 

 

In the course of this work an approach was presented which enables to quantify non-covalent 

interactions of supramolecular systems by using force-field conformational searches and 

subsequent ab initio computations. Hereby it has become apparent that the proper description 

of solvated assemblies is still unsatisfying. As already mentioned the polarizable continuum 

models like COSMO lack two important issues that are necessary for a sound description of 

any assembling process. On the one hand the contributions arising from solvent 

inhomogenities, dispersion terms or cavitation are neglected as only the electrostatic 

interactions between solvent and solute are considered. On the other hand, and probably the 

more critical point, the proper description of thermodynamic effects is crucial for a correct 

determination of free energies of association. However, in contrast to gas-phase systems no 

explicit analytical functions for the enthalpy and entropy contributions exist. Especially the 

contributions arising from translational degrees of freedom of the solution have a great 

influence on the stability of the complex under investigation. Most quantum mechanical 

program packages simply use the same formulas derived for gas-phase systems which results 

in erroneous free energies for the complexation process. On this account Williams and co-

workers have proposed an approximation scheme which corrects for the overestimation of the 

translation motion. However, a correct description of the association in solution can only be 

given by simulation methods as no analytical functions without extensive approximations are 

known for the thermodynamic corrections for solutes. Hardware and software limitations 

make a quantum chemical description of the full system, i.e. solute surrounded by solvent 

molecules with boundary conditions applied, for the moment and in presumably the near 

future unfeasible and therefore at least parts of the system have to be approximated by force 

field methods. Hereby, two principally different proceedings are possible. On the one hand 

one can simulate the whole association process with a well-parameterized force-field being 
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able to account for changes in the electronic structure during the aggregation. On the other 

hand, it is possible to employ a QM/MM ansatz (see Chapter 3.5) which incorporates the 

electrostatic effect of the solvent molecules as point charges acting on the quantum system. 

Polarizable Force Fields 

The performance of classical force fields is strongly dependent on the application field. This 

can be seen for CHARMM that was developed for large-scale bio-systems like proteins and 

nucleic acids or by MMFF94 which was designed primarily for smaller organic compounds. 

In case of the macromolecular force fields fast computations are mandatory whereas the 

experimental accuracy to which geometries can be determined is low compared to the 

possibilities available for small systems. Hence, experiments and computations match quite 

well for these types of force fields applied on macromolecular systems. In order to achieve a 

high efficiency most of the terms are truncated after the quadratic term affecting especially 

the calculation of non-bonded interactions that represent the bottle-neck of any force field. 

Moreover, the proteins und nucleic acids are dissected into residues (amino acids or 

nucleobases) which are parameterized to experimental data. As a result, the parameters 

employed in these force fields are excellent only for macromolecules containing the standard 

residues. A variation in the molecular structure yields either less accurate results or the force 

field is not even able to recognize the system as interactions between some atom types have 

not been parameterized. The more general force fields like MMFF94 are mainly developed to 

reproduce the potential energy surfaces of small to mid-size organic compounds in gas phase 

with a good accuracy. However, using an explicit solvation ansatz with several thousands of 

solvent molecules makes these force field types unfavourable for molecular simulations since 

the computations of non-bonded interactions become too time-consuming in comparison to 

macromolecular force fields. Moreover, all force fields represented so far show one major 

drawback: in all static force fields the electron distribution of the molecule is simply reduced 

to point charges located at the atom centres. Therefore, these force fields do not allow for 

systems in which the polarizability of the electron sheath has a large impact in the potential 

energy. This is the case when studying highly polar fluids like water or assembling processes 

in which strong intermolecular forces influence the charge distribution of the monomeric 

units. A solution to this dilemma is provided by the development of so-called “polarizable 

force-fields” which use either inducible multipoles or fluctuating charges in order to account 

for changes in the electron distribution. While the former method solves the interactions of 

the formally introduced multipoles self-consistently, the latter considers the partial charges as 
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dynamic variables. The energy necessary for transferring a charge between two atom centres 

is usually approximated by a quadratic function. Currently, many research groups are 

developing new polarizable force fields which seem to be very promising for simulating 

association processes and non-covalent enzyme-ligand interactions. However, beside the 

inclusion of polarizability the application of such a force field is still highly dependent on the 

parameterization to experimentally or quantum chemically obtained data.   

QM/MM – MD Calculations 

A second approach to circumvent the inaccuracy of continuum solvation models for the 

calculation of supramolecular processes is to employ a QM/MM ansatz. The molecular 

assemblies are treated by semi-empirical or ab initio methods, whereas the surrounding 

solvent is approximated by force field methods. Regarding reaction studies of enzymes 

confined mainly to proton transfers in the active site, QM/MM calculations have been 

successfully applied in the recent past. In contrast to these well-defined chemical systems the 

investigation of assembling processes faces more fundamental difficulties which should be 

addressed briefly here. The main issues are 

(1) Reaction coordinate 

(2) System size and boundary conditions 

(3) Constraints 

(4) Thermodynamic correction factors  

(5) QM level of theory 

In the following the solvated dimer of 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate is 

taken as example to disclose the technical and principal hindrances that have to be overcome 

when performing a QM/MM-MD simulation of any supramolecular process in explicit 

solvent. 

 

Re (1): 

The right choice of a reaction coordinate is of decisive importance for a meaningful 

simulation since it is not possible to determine unambiguously the association pathway of the 

assembling process. Therefore, we have chosen a coordinate system in which the dimer is 

located in the z-plane and the origin is placed in the middle of the connecting line of both 

pyrrole hydrogen atoms being the x-coordinate (see Figure 54 left). A displacement of each 

monomer in +x and –x direction, respectively, represents the reaction coordinate along which 

the phase space will be sampled stepwise in order to estimate the free energy of association. 
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The coupling parameter λ indicates the step length of the gradual separation of both 

monomers. A reasonable step size should be between 0.2 and 0.5 Å in order to achieve a 

distance of 5 Å in total within 10 to 20 steps. Since each step requires a full MD run including 

heating and sampling of several picoseconds, the simulations should be on one hand long 

enough to reach energy conservation, but on the other hand they should be as short as possible 

due to long computation times (one MD run of 60 ps needs 7 to 10 days on a 2.6 GHz Xeon-

Workstation). 

  

 
Figure 54 Left: The isolated 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate dimer system 

in the orientation of the reaction coordinate represented by the abscissa. Right: The solvated 

structure with stochastic boundary conditions 

 

Re (2): 

The system size of course determines the computational costs, but it should also be chosen 

large enough to minimize boundary effects. Since it is by now not possible to apply a periodic 

boundary condition in the ChemShell environment, one has to simulate a stochastic boundary 

potential by freezing an outer layer of solvent molecules of 15 Å. Adding the total size of the 

assembly and the maximum length of separation this yields a solvation sphere of 35 Å radius 

including 6 325 waters (see Figure 54 right). 

 

Y 

X
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Re (3): 

Besides the constraint of the coupling parameter λ that determines the distance between the 

two monomers other constraints can be useful in order to avoid unwanted geometrical 

arrangements. In this example a gradual displacement of the monomeric units without any 

further restriction would lead to a linear head-to-tail arrangement of the solutes. Since one is 

interested in the free energy of the non-covalent interaction of the entire system, both binding 

sites in the dimer should be separated simultaneously. This implies further constraints that 

should conserve in average the distance for all parts of the monomeric units by setting a 

harmonic potential between another atom pair. 

 

Re (4): 

The use of constraints results in unphysical approximations which should be corrected after 

the free energy simulation. Although all solvent molecules in the inner shell can freely move 

and thus adapt to the changing situation during the displacement of the monomers, the 

degrees of freedom of the solutes are still restricted. Therefore a correction factor for the 

translational and rotational motion of the solute should be added which could be determined 

by simple test systems. 

 

Re (5): 

Finally, the level of theory of the quantum mechanical part dominates the quality of the 

QM/MM calculation. Since for every time step one SCF cycle is performed, the calculations 

should be very fast and the theory should also exhibit robustness and reliability. The 

performance criterion restricts the application to semi-empirical methods or density functional 

theory in conjunction with density fitting methods (e.g. resolution of identity (RI) approach) 

and small basis sets. In the case of 2-(guanidiniocarbonyl)-1H-pyrrole-5-carboxylate DFT is 

already to time-consuming to perform MD simulations and therefore the semi-empirical 

AM1, PM3 and MNDO have been taken into consideration. Gas-phase optimization and 

comparison to higher level DFT calculations revealed that PM3 seems to be best suitable for 

describing the non-covalent interactions as it can be seen from Table 27.  

Y 
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Method H-bond 1 H-bond 2 H-bond 3 ΔE (kJ mol-1) 

B3LYP/TZVPP+ 1.68 1.58 1.78 464 

PM3 1.71 1.69 1.78 464 

AM1 1.91 1.94 2.08 401 

MNDO - - 2.87 290 

Table 27 Gas-phase hydrogen bond length (in Å) and dimerization energies (in kJ mol-1) of 

various semi-empirical methods in comparison to ab-initio values (see Table 5). 

Coincidentally, the B3-LYP/TZVPP+ optimization with BSSE correction gives the exactly 

the same dimerization energy as PM3. It is known that PM3 calculates the hydrogen bond 

lengths and energies quite good, whereas AM1 gives distorted hydrogen bond geometries, 

low rotational barriers and no ideal flat π-systems. AM1 is underestimating the hydrogen 

bond network whereas MNDO is not even able to predict the planar geometry of the 

monomers correctly as the guanidinium groups are optimized perpendicular to the pyrrole 

ring system. Furthermore, it is also well known for its large deficiencies in describing weak 

interactions like hydrogen bonds.   

 

In conclusion, a physically grounded and sufficiently accurate access to determine 

thermodynamically corrected aggregation energies of supramolecular processes is still a 

challenging task for future researches. However, the first steps towards this objective are 

made by preliminary QM/MM-MD simulations. Despite the above mentioned difficulties it 

still seems to be a feasible approach to calculate free energy differences of such non-covalent 

interactions. If it will be possible to perform such calculations, it will be also of great interest 

to include ions in order to simulate solutions with varying salt concentrations. 
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