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1. Introduction

We wish to determine indecomposable local almost completely decom-

posable groups with a critical typeset in (1, 2) configuration. As a

(1, 2)-type configuration we understand an ordered set {τ1, τ2, τ3} of

three types with the single order relation τ2 < τ3. Arnold and Dugas, [2]

and [6] obtained that local almost completely decomposable groups of

type (1, 2), briefly (1, 2)-groups, with fixed critical types τ1, τ2, τ3, and

regulator quotient of exponent at least p7, allow infinitely many iso-

morphism types of indecomposable groups. It is not known if the

exponent 7 is minimal, i.e., if there are only finitely many isomor-

phism types of such indecomposable groups with smaller exponent.

We describe groups by representing matrices relative to the two main

invariants of almost completely decomposable groups, namely the iso-

morphism types of the regulator and the regulator quotient, with the

intention to show that there are only finitely many indecomposable

(1, 2)-groups with those invariants. Note that representing matrices

describe an almost completely decomposable group G as an extension

of the regulator R by the regulator quotient G/R.

Since we are interested in indecomposable groups we may assume the

group G to be p-reduced, and moreover, we can switch the groups

within a near-isomorphism class. This last statement is due, first to

the fact that nearly isomorphic groups coincide in these two invari-

ants, and secondly to a theorem of Arnold [1, Corollary 12.9], saying

that groups that are directly decomposable share this property with all

nearly isomorphic groups.

All final results are collected in the Theorems 10.1 and 10.2. It is shown

that indecomposable (1, 2)-groups with regulator quotient of exponent

≤ p4 are of rank ≤ 5. It is proved that there is an indecomposable

group of rank 4 and there is an explicit test example of a group of

rank 5. The latter group is not known to be indecomposable or not.

Moreover, there are several isomorphism types of regulator quotients,

also for higher exponents, for which there are no indecomposable (1, 2)-

groups. In so far the remaining gap for regulator quotients of exponent

p5, p6 gets smaller. But there are still a lot of open problems waiting

for an answer whether for example there are finitely or infinitely many

isomorphism types of indecomposable (1, 2)-groups for those exponents

and a fixed critical typeset.
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2. Preliminaries

Let R =
⊕n

i=1 Sixi ⊂ QR be a completely decomposable group, com-

pletely decomposed, with rational groups Z ⊂ Si ⊂ Q. We call this

a decomposition of R and the set X = (x1, . . . , xn) a decomposition

basis of R. Let m be a natural number. If p−1 /∈ Si for all primes p

dividing m and pSi 6= Si, then X is called an m-decomposition ba-

sis for the given decomposition of R. If additionally Si ⊂ Sj for

t(Si) ≤ t(Sj) where t(Si) and t(Sj) denote the types of Si and Sj
respectively, then X is called an m-Koehler basis for the given decom-

position of R. For each decomposition of R there exist such m-Koehler

bases. Since a Koehler basis for the given decomposition of R has the

form (a1x1, . . . , anxn), where the ai are rational numbers, we can even

realize any set (T1, . . . , Tn) of rational groups Ti, where Ti ∼= Si such

that the properties of an m-Koehler basis hold for the Ti. A torsion-free

abelian group is called m-reduced, for a natural number m, if there is no

proper p-divisible subgroup for any prime p dividing m, or equivalently

for the group R, there is pSi 6= Si for all 1 ≤ i ≤ n and all p dividing m.

A torsion-free abelian group G of finite rank is called almost completely

decomposable if it has a completely decomposable subgroup, say R, of

finite index. In particular, G ism-reduced if and only if R ism-reduced.

The completely decomposable subgroups of an almost completely de-

composable group G with minimal (finite) index are called regulating

subgroups. The intersection of all the (finitely many) regulating sub-

groups of G is called the regulator of G. This regulator is a uniquely

determined subgroup, that is known to be completely decomposable.

The isomorphism types of the regulator and the regulator quotient are

isomorphism invariants of an almost completely decomposable group.

Note that the quotient of an almost completely decomposable group

relative to some regulating subgroup is not an invariant.

Proposition 2.1. Let m be a natural number and let

R =
n⊕
i=1

S ′
ix

′
i =

n⊕
i=1

T ′
iy

′
i

be two direct decompositions of the completely decomposable m-reduced

group R with S ′
i
∼= T ′

i . Then there are two m-Koehler bases (x1, . . . , xn)

and (y1, . . . , yn) of R for the two decompositions of R, respectively, such

that
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(1) R =
⊕n

i=1 Sixi =
⊕n

i=1 Siyi, where xi ∈ S ′
ix

′
i and yi ∈ T ′

iy
′
i,

(2) xi =
∑n

j=1 ρi,jyj, where ρi,j ∈ Z,

(3) Si =
⋂n
j=1 ρi,jSj, and ρi,j = 0 if Si 6⊂ Sj,

(4) det(ρi,j) is relatively prime to m.

Proof. (1) is obvious, say R =
⊕n

i=1 S
′
ix

′
i =

⊕n
i=1 S

′
iy

′
i.

(2): There are rationals ρ′i,j ∈ Si such that x′i =
∑n

j=1 ρ
′
i,jy

′
j. If there

is a prime divisor q of the denominator of some ρ′i,j with qS ′
j = S ′

j,

then we replace y′j by y′′j = q−ty′j, where t is sufficiently big to change

all ρ′i,j to ρ′′i,j such that all the denominators of all ρ′′i,j are relatively

prime to q. Those changes of the basis elements y′j do not change the

coefficient groups S ′
j. Thus (y′′1 , . . . , y

′′
n) is still an m-Koehler basis, and

we may assume that the least common multiple s of the denominators

of all ρ′′i,j in the expression x′i =
∑n

j=1 ρ
′′
i,jy

′′
j has no prime divisor q for

which there exist q-divisible coefficient groups S ′
j. The least common

multiple s of the denominators of all ρ′′i,j is relatively prime to m, since

we have m-Koehler bases.

Now we replace all y′′j by yj = s−1
j y′′j , where sj is a natural number such

that Sjyj = S ′
js

−1
j y′′j with q−1 /∈ Sj for all primes q dividing the least

common multiple s. This changes all coefficients ρ′′i,j to integers ρ∗i,j.

Thus we obtain R =
⊕n

i=1 S
′
ix

′
i =

⊕n
i=1 Siyi. and x′i =

∑n
j=1 ρ

∗
i,jyj. Do-

ing the same with the m-Koehler basis (x′1, . . . , x
′
n), i.e., Sjxj = S ′

jt
−1
j x′j

for suitable natural numbers tj with q−1 /∈ Sj for all primes q dividing

the least common multiple s, we get R =
⊕n

i=1 Sixi =
⊕n

i=1 S
′
it
−1
i x′i =⊕n

i=1 Siyi, and xi =
∑n

j=1 ρi,jyj, where ρi,j = t−1
i ρ∗i,j ∈ Sj, and since

ρ∗i,j ∈ Z we have ρi,j ∈ Z. This shows (2).

(3): The equation follows by

χ(xi) = χ(yi) =
n⋂
j=1

χ(ρi,jyj).

Consequently, ρi,j = 0 if Si 6⊂ Sj.

(4): To show that the determinant of the matrix ρ = (ρi,j) is relatively

prime to m, observe that the adjoint ρ′ of ρ satisfies ρρ′ = det(ρ)En,

where En is the unit matrix. Then det(ρ)yj =
∑n

i=1 ρ
′
i,jxi, implying

that det(ρ) is relatively prime to m. �

The transition with the matrix ρ from one m-Koehler basis of R to

another m-Koehler basis, as in Proposition 2.1, can be considered

as an automorphism ρ of the divisible hull QR, defined as ρ(xi) =



7∑n
j=1 ρi,jyj. This automorphism is called an (R,m)-automorphism.

An (R,m)-automorphism ρ preserves the divisible hulls of the type

subgroups R(τ), i.e., ρ(QR(τ)) ⊂ QR(τ) for all types τ .

An almost completely decomposable group G is called m-local, if the

regulator quotient is a group of exponent dividing m.

Lemma 2.2. Let G be an m-local, m-reduced almost completely de-

composable group with regulator R. If ρ is an (R,m)-automorphism,

then the group H = R + ρ(G) is nearly isomorphic to G.

Proof. By definition of ρ we have ρ(G) ⊂ H with index relatively prime

to m. Thus G,H are nearly isomorphic by [10, Theorem 9.2.4]. �

Lemma 2.3. Let G be an m-reduced almost completely decompos-

able group with a completely decomposable subgroup R such that G/R

is a finite group of exponent dividing m. If (x1, . . . , xn) is an m-

decomposition basis of R, and if (g′1 +R, . . . , g′r+R) is a basis of G/R,

where the cyclic group Z(g′j + R) ∼= Zkj
, i.e., kj divides m, then there

are representatives

gj =
1

kj

(
αj,1x1 + · · ·+ αj,nxn

)
∈ g′j +R,

for 1 ≤ j ≤ r, with integers αj,i. Moreover, the entry αj,i is unique

modulo kj.

Proof. Let

g′j =
1

kj

(
α′
j,1x1 + · · ·+ α′

j,nxn
)
,

where α′
j,ixi ∈ R. Then α′

j,i = βj,i/γj,i is a fraction in canceled form,
and the denominator γj,i is relatively prime to m, since we have an
m-decomposition basis. Let ρ be the least common multiple of all
γ′j,1, . . . , γ

′
j,n, and let q, s be integers such that qρ = 1 + skj. Then

g′j = (qρ− skj)g′j =
1
kj

(
qρα′j,1x1 + · · ·+ qρα′j,nxn

)
− s
(
α′j,1x1 + · · ·+α′j,nxn

)
.

Since α′
j,1x1 + · · ·+α′

j,nxn ∈ R and since all coefficients qρα′
j,i ∈ Z, the

desired representative is gj = k−1
j

(
qρα′

j,1x1 + · · ·+ qρα′
j,nxn

)
.

Moreover, if there are two different representatives gj, g
′
j with integer

coefficients, then

g′j − gj =
1

kj

(
(α′

j,1 − αj,1)x1 + · · ·+ (α′
j,n − αj,n)xn

)
∈ R,
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and k−1
j (α′

j,i−αj,i)xi ∈ R for all 1 ≤ i ≤ n. Thus α′
j,i ≡ αj,i modulo kj

for all 1 ≤ i ≤ n, since G is m-reduced and since we have an m-

decomposition basis. �

LetG be anm-local, m-reduced almost completely decomposable group

with regulator R and regulator quotient G/R ∼=
⊕r

h=1 Zkh
. Let S =

diag
(
k−1
h | 1 ≤ h ≤ r

)
be a diagonal matrix corresponding to the isomor-

phism type of the regulator quotient. Relative to an m-decomposition

basis (x1, . . . , xn) of R and a basis (g1 + R, . . . , gr + R) of the finite

group G/R, there is an r×n integer matrix α = (αj,i) as in Lemma 2.3.

The matrix Sα is called representing matrix of G relative to the two

given bases. Note that Sα is unique, if we choose the integer entries

0 ≤ αj,i < kj for all j, i.

Conversely, suppose that R =
⊕n

i=1 Sixi with an m-decomposition ba-

sis (x1, . . . , xn). Let S = diag(k1
−1, . . . , kr

−1) be a diagonal matrix

and let α = (αi,j) be an r × n integer matrix with r ≤ n. Then

the decomposition of R and Sα, both together, determine a unique

group G = 〈R, g1, . . . , gr〉 with R ⊂ G ⊂ QR, where

gj =
1

kj

(
αj,1x1 + · · ·+ αj,nxn

)
,

for 1 ≤ j ≤ r. Replacing the entries αj,i by α′
j,i, where αj,i ≡ α′

j,i

mod kj, will not change G. We therefore assume in general that all

entries αj,i satisfy 0 ≤ αj,i < kj. In particular, we put αj,i = 0 if

αj,i ∈ kj Z.

We need a well known fact on finite abelian groups. Let Ḡ =
⊕r

h=1 Z ḡh,
where Z ḡh ∼= Zpkh , be a finite group of rank r and exponent m, with

basis (ḡ1, . . . , ḡr). Each automorphism of Ḡ allows a description by an

integer matrix U with determinant relatively prime to m. Let S =

diag
(
k−1
h | 1 ≤ h ≤ r

)
, corresponding to the isomorphism type of Ḡ.

Then the integer matrix U of size r and with determinant relatively

prime to m describes an automorphism of Ḡ relative to the given basis

if and only if there is an integer matrix U ′ such that US = SU ′, cf. [7,

Section 3.11, Theorem 3.15]. Clearly, the integer matrix U ′ is also of

size r and has determinant relatively prime to m.

Proposition 2.4. Let Sα be the representing matrix of an m-local,

m-reduced almost completely decomposable group G with regulator R
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relative to an m-Koehler basis of R and a basis of G/R. Let an au-

tomorphism of the regulator quotient be described by the integer ma-

trix U with determinant relatively prime to m, and US = SU ′. Let

an (R,m)-automorphism ρ be described by the integer matrix (ρi,j).

Then the group H = R + ρ(G), that is nearly isomorphic to G, has a

representing matrix

S
(
U ′α(ρi,j)

)
.

Proof. Let Sα be the representing matrix of the group G relative to

the m-Koehler basis (x1, . . . , xn) of R and the basis (g1 +R, . . . , gr+R)

of the regulator quotient, where the generators gj are given as in

Lemma 2.3 relative to the m-Koehler basis (x1, . . . , xn). If the au-

tomorphism of the regulator quotient is given by U , then the new gen-

erators g′j are given by the matrix SU ′α relative to the m-Koehler ba-

sis (x1, . . . , xn). Now switching to the new m-Koehler basis (y1, . . . , yn)

by ρ, as in Proposition 2.1, we get the representing matrix S
(
U ′α(ρi,j)

)
of H as desired. �

We illustrate these basis transformations by an example.

Example. The two groups G = Z[11−1]x + Z[31−1]y + Z x+2y
5

and

H = Z[11−1]x + Z[31−1]y + Z x+y
5

have the regulator R = Z[11−1]x ⊕
Z[31−1]y. The groups G,H are nearly isomorphic, but not isomorphic.

The regulator has the two 5-Koehler bases {x, 2y} and {x, y}. There is

no automorphism of the regulator R = Z[11−1]x⊕Z[31−1]y that maps

those bases onto each other, since 11 ≡ 31 ≡ 1 ( mod 5). Clearly, there

is an (R, p)-automorphism, since 2 is a unit modulo 5. The choice

of a new Koehler basis in general means that we change to another

group. By way of contradiction assume that the restriction α|R of an

isomorphism α : G −→ H is an automorphism of R, thus it is given by

a rational 2× 2 matrix A of the form A =
(
a 0
0 b

)
, relative to the basis

(x, y) of Qx ⊕ Q y. The matrix A is diagonal, since R is rigid. The

entries a ∈ Aut Z[11−1] and b ∈ Aut Z[31−1], i.e., a = 11s and b = 31t

for s, t ∈ Z. The automorphism α|R (or the isomorphism α) induces

an automorphism α of 5−1R/R that is described by the 2 × 2 matrix

A =
(
ā 0
0 b̄

)
∈ GL(2,Z5) relative to the basis (5−1x + R, 5−1y + R) of

5−1R/R. i.e., ā = a + 5 Z, b̄ = b + 5 Z ∈ Z /5 Z. We have ā = b̄ = 1,

since 11 ≡ 31 ≡ 1 ( mod 5) . Hence ᾱ is the identity on 5−1R/R,
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thus ᾱ(G/R) = G/R 6= H/R, a contradiction. Thus G,H are not

isomorphic.

Remark 2.5. If an almost completely decomposable group G is de-

composable, then there is a decomposition basis (x1, . . . , xn) of its regu-

lator such that G = 〈x1, . . . , xs〉∗⊕〈xs+1, . . . , xn〉∗, the sum of two pure

hulls in G. Then there is a basis of the regulator quotient such that

a corresponding representing matrix is the direct sum of two matrices,

i.e., it is a block diagonal matrix. By Proposition 2.1 the (R,m)-

automorphisms allow to switch between arbitrary decompositions of

the regulator. By Lemma 2.2 we get a nearly isomorphic group this

way, and by Proposition 2.4 it is clear how to obtain a representing

matrix of those groups. Thus for decomposition questions it is enough

to use (R,m)-automorphisms and automorphisms of the regulator quo-

tient.

The transition from one m-Koehler basis to another m-Koehler basis

by an (R,m)-automorphism and from one basis of the regulator quo-

tient to another one transforms a representing matrix of a group to the

representing matrix of another group that is nearly isomorphic. We for-

mulate this briefly by saying, that we get a corresponding representing

matrix.

Let p be a prime. We call an integer m a unit modulo p if m is not divis-

ible by p. An integer matrix is said to be p-invertible if its determinant

is a unit modulo p. Two integer matrices of the same format are called

congruent modulo pk if all entries of the difference matrix are divisible

by pk. The p-rank of an integer matrix is the rank of the reduction

of this matrix modulo p over the Galois field GF(p). A square integer

matrix is p-invertible if and only if its reduction modulo p is invertible.

For later use we formulate an elementary result for integer matrices.

Lemma 2.6. Let p be a prime, let r, n, k be natural numbers. For an

integer matrix M of format r × n the following are equivalent:

(1) All matrices LMY , where L is a p-invertible lower triangular

matrix and Y is p-invertible, have the property that every row

has at least one entry that is a unit modulo p.

(2) r ≤ n and for all p-invertible matrices X there is a p-invertible

matrix Y such that XMY ≡ (Er, 0) modulo pk, where Er de-

notes the unit matrix of size r.

(3) M has p-rank r.
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Proof. It is enough to show that (1) implies (2). We consider all ma-

trices over the field Zp. Then the indicated property translates to

“entries not 0” instead of “units modulo p”. Thus M has rank r,

i.e., r ≤ n. Since the lower triangular matrices over a field describe

the Gauß algorithm downwards, there is an invertible lower triangular

matrix L and a permutation matrix Q such that LMQ has upper tri-

angular form, cf. the LU -decomposition for matrices over fields. Thus

there is an invertible matrix Y such that LMY has precisely r en-

tries 1 along the main diagonal, and all other entries are 0. Now we

consider the original integer matrices. For every p-invertible integer

matrix X, the matrix XM has p-rank r and there is a column permu-

tation P such that XMP = (N,H), where N is p-invertible. Consid-

ering these matrices over the ring Z /pk Z, the matrix N is invertible

and with Y = P
(
N−1 −N−1H

0 E

)
we obtain the desired result. �
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3. (111,222)-groups

A p-local, p-reduced almost completely decomposable group of type

(1, 2) is briefly called a (1, 2)-group. Now we specialize the notation

to (1, 2)-groups. The regulator quotient G/R ∼=
⊕f

h=1

(
Zpkh

)lh , where

k = k1 > · · · > kh ≥ 1, is a finite p-group of exponent pk and rank

r =
∑f

h=1 lh. The regulator quotient has the hth step
(
Zpkh

)lh . A basis

of G/R is the union of the bases of those steps, where

{gj +R |
h−1∑
i=1

li < j ≤
h∑
i=1

li}

is a basis of the hth step of the regulator quotient. The regulator is

the direct sum R = R1⊕R2⊕R3, where Ri is homogeneous of rank ri,

and n = r1 + r2 + r3 is the rank of G, and the types of the Ri form a

(1, 2)-diagram. R is the regulator of G if and only if R1 and R2 ⊕ R3

are pure in G.

To obtain a representing matrix for the group G, we fix a p-Koehler

basis
(
x1, . . . , xr1 ; y1, . . . , yr2 ; z1, . . . , zr3

)
of the regulator R according

to the given decomposition of R. Thus, if R is the regulator of G, and

since G is p-reduced, the characteristics of the elements of a p-Koehler

basis all have p-height χp(xi) = χp(yi) = χp(zi) = 0.

Let (gj +R | 1 ≤ j ≤ r) be a basis of the regulator quotient G/R,

(3.1) gj = p−kh

( r1∑
i=1

αjixi +

r2∑
i=1

βjiyi +

r3∑
i=1

γjizi

)
,

where the negative p-power in front is p−kh if
∑h−1

i=1 li < j ≤
∑h

i=1 li
for 1 ≤ h ≤ f , according to the given decomposition of the regulator

quotient.

By Lemma 2.3 the three matrices α = (αji), β = (βji), γ = (γji) may

be assumed to have integer entries, and they form a so called section

matrix
(
α, β, γ

)
of overall format r × n, whereas the single sections

α, β, γ are of format r × r1, r × r2, r × r3, respectively. Let S =

diag
(
p−khElh | 1 ≤ h ≤ f

)
, where the unit matrices Elh are of size lh

and k = k1 > k2 > · · · > kf ≥ 1 with the exponent pk = exp(G/R)

of the regulator quotient. The matrix M = S(α, β, γ) is a representing

matrix of the group G. The section matrix (α, β, γ) is called section

part of the representing matrix M . Clearly, the matrix S is given by

the isomorphism type of the regulator quotient, i.e., S is unique for a

given G. Moreover, S together with the section part ofM determines G
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up to isomorphism but the section part of a representing matrix is not

unique.

The isomorphism type of the regulator of a (1, 2)-group is given by the

sequence
(
(r1, τ1), (r2, τ2), (r3, τ3)

)
, and the isomorphism type of the

regulator quotient is given by the sequence
(
(kh, lh) | h = 1, . . . , f

)
.

A representing matrix M = S(α, β, γ) of such a group reflects all in-

variants of the isomorphism types of the regulator and the regulator

quotient except of the specific critical types τ1, τ2, τ3 of G.

A more precise description of the automorphisms of G/R and of (R, p)-

automorphisms by matrices is necessary. By Proposition 2.1 an integer

matrix V describing an (R, p)-automorphism has block structure ac-

cording to the (1, 2)-type constellation,

V =

X1 0 0

0 X2 X4

0 0 X3

 ,

where X1, X2, X3 are p-invertible matrices, and X4 is arbitrary. For

decomposition questions it is enough to consider (R, p)-automorphisms,

cf. Remark 2.5.

The integer matrices describing automorphisms of finite abelian p-

groups inherit a block structure by the block structure of the group.

Specialized to our case let l1, . . . , lf be natural numbers. An integer

matrix

M = (Aij) =


A11 A12 . . . A1f

A21 A22 . . . A2f
...

...
. . .

...

Af1 Af2 . . . Aff


with blocks Aij of format li × lj and

∑f
i=1 li = r, is called a block

matrix of format (lh)h. Note that the block matrix M is square of

size r. Let k = k1 > · · · > kh ≥ 1 with natural numbers kh. A

block matrix of format (lh)h is called an (lh, kh)h-automorphism ma-

trix if all diagonal blocks Aii are p-invertible and if Aij ∈ pkj−ki M(li ×
lj,Z) for all i > j. Note that an (lh, kh)h-automorphism matrix is

p-invertible and describes an automorphism of a finite p-group isomor-

phic to
⊕f

h=1

(
Zpkh

)lh relative to some basis. Moreover, for a fixed

sequence (lh, kh)h, the set of all (lh, kh)h-automorphism matrices forms

a multiplicative group.
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Let H =
⊕r

i=1 Zhi ∼=
⊕f

h=1

(
Zpkh

)lh be a finite p-group of exponent pk

and rank r =
∑f

h=1 lh. Let S = diag
(
p−khElh | 1 ≤ h ≤ f

)
, where

the unit matrices Elh are of size lh corresponding to the isomorphism

type of H. The p-invertible integer matrix U of size r describes an

automorphism of H relative to the given basis if and only if there is

a p-invertible integer matrix U ′ such that US = SU ′. In particular,

(lh, kh)h-automorphism matrices describe automorphisms of H, and if

U = (Uij), using block notation, then U ′ = (U ′
ij), where all diagonal

blocks U ′
ii are p-invertible and U ′

ij ∈ pki−kj M(li × lj,Z) for all i < j.

The following Lemma is a straightforward consequence of Proposi-

tion 2.4.

Lemma 3.1. Let S(α, β, γ) be the representing matrix of a (1, 2)-group

with regulator R. Let an automorphism of the regulator quotient be

given by the (lh, kh)h-automorphism matrix U , and US = SU ′.

Let an (R, p)-automorphism be given by the p-invertible integer matrix

V =
(
X1 0 0
0 X2 X4
0 0 X3

)
. Then the corresponding representing matrix is

S(U ′αX1, U
′βX2, U

′γX3 + U ′βX4).
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4. Properties of Representing Matrices

We collect some properties of representing matrices. In particular, we

are interested in properties that are forced by the indecomposability of

the group G, and the fact that R is the regulator.

If the regulator quotient of a group G has exponent pk, then replac-

ing the section part (α, β, γ) of a representing matrix by a section

matrix (α′, β′, γ′), that is congruent modulo pk, will not change the

group. More precisely, by Lemma 2.3, the entries αj,i, βj,i, γj,i of the sec-

tion matrix
(
(αj,i), (βj,i), (γj,i)

)
are unique only modulo pkh , where kh

and j correspond to each other. We will in general replace the entries

αj,i, βj,i, γj,i by 0 if they are in pkh Z.

If there are row permutations and column permutations that change

the section part (α, β, γ) into a block diagonal form ( A 0
0 B ) modulo pk,

then the group is directly decomposable. In particular, included is the

special case that there is no block B, i.e., the representing matrix is

of the form (A, 0) modulo pk. Clearly, if the representing matrix has a

0-column modulo pk, then the group has a direct summand of rank 1,

a rational group. Groups without rational direct summands are called

clipped.

Lemma 4.1. If S(α, β, γ) is a representing matrix of a (1, 2)-group,

then there is a unit in each row of α and there is a unit in each row of

(β, γ).

Proof. If there is a row in α without unit, then R2 ⊕ R3 is not pure

in G. If there is a row in (β, γ) without unit, then R1 is not pure in G.

In either case the regulator criterion for R would be violated. �

We state that the properties of a representing matrix S(α, β, γ) as in

Lemma 4.1 will not get lost if a p-Koehler basis of the regulator is

replaced by any other p-Koehler basis, and the same for some replace-

ment of a basis of G/R by any other basis.

Lemma 4.2. If S(α, β, γ) is a representing matrix of a clipped (1, 2)-

group, then the matrix α is (square) p-invertible. Moreover, there is a

p-Koehler basis of R1 and representatives of the basis elements of G/R

such that S(E, β, γ) is the corresponding representing matrix.

Proof. Changing the p-Koehler basis of the regulator and the basis of

the regulator quotient, translates by Lemma 3.1 for the first part α of

the section matrix to the matrix α′ = U ′αX1, where US = SU ′ for
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some (lh, kh)h-automorphism matrix U . The matrices U ′ form a group

that contains the subgroup of p-invertible lower triangular matrices,

and X1 is p-invertible. Thus, by Lemma 2.6 there are U ′ and X1

such that U ′αX1 ≡ (Er, 0) modulo pk. But since the group is clipped

no 0-columns occur, hence α is square and p-invertible. Moreover, by

Lemma 3.1 we may chooseX1 = α−1 changing the p-Koehler basis of R1

and no basis changes in R2, R3. Then the corresponding representing

matrix is congruent to S(E, β, γ) modulo pk. Finally there is a suitable

choice of representatives in the basis elements of the regulator quotient

such that precisely the unit matrix Er is obtained as the first part of

the section matrix. �

The matrices β and γ are of format r × r2 and r × r3, respectively.

They have a step structure (lh)
f
h=1, i.e., r =

∑f
h=1 lh, and the submatrix

βh = (βi,j), where
∑h−1

k=1 lk < i ≤
∑h

k=1 lk and 1 ≤ j ≤ r2, is called the

hth step of β. Similarly γ has an (lh)
f
h=1 step structure.

Lemma 4.3. Let G be (1, 2)-group with a representing matrix S(E, β, γ).

Suppose that all entries {βb,j | 1 ≤ j ≤ r2} ⊂ pt Z of the bth row of β

be contained in pt Z for some t ≥ 0. Suppose that βb,j = ptβ∗b,j ∈
pt Z \pt+1 Z for some 1 ≤ j ≤ r2, i.e., β∗b,j is relatively prime to p.

Then there is a p-decomposition basis of R2 such that the bth row of

β′ of the corresponding representing matrix S(E, β′, γ) has the form

(0, . . . , 0, pt, 0, . . . , 0) where the entry pt is at the jth position. More-

over, for all c 6= b

• β′c,j = βc,jβ
∗
b,j

−1,

• β′c,l = βc,l − βc,jβ
∗
b,j

−1βb,l for all l 6= j and l ≤ r2,

where β∗b,j
−1 ∈ Z, β∗b,j

−1β∗b,j ≡ 1 (mod pk) and pkG ⊂ R.

If βb,j is a unit, i.e., t = 0, then there is a p-Koehler basis of R2 ⊕ R3

such that the bth row of (β′, γ′) of the corresponding representing matrix

S(E, β′, γ′) has the form (0, 0, . . . , 1, 0, . . . , 0) with entry 1 at the jth

position and for all c 6= b there is additional

• γ′c,l = γc,l − βc,jβ
−1
b,j γb,l for all l ≤ r3.

In particular, βc,j ∈ ps Z if and only if β′c,j ∈ ps Z.

Proof. Let (x1, . . . , xr1 ; y1, . . . , yr2 ; z1, . . . , zr3) be the p-Koehler basis of

R = R1 ⊕ R2 ⊕ R3 for the given representing matrix. There is a new
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p-Koehler basis of R2 with the element

y′j = yj + p−t
r2∑
l=1
l 6=j

βb,lyl

instead of yj. This changes the representing matrix to S(E, β′, γ) where

the bth row of β′ has the form (0, . . . , 0, pt, 0, . . . , 0) and pt is in the jth

column. To avoid duplication in the proof we deal with only the case

that βb,j is a unit. Then there is a new p-Koehler basis of R2⊕R3 with

the element

y′j =

r2∑
l=1

βb,lyl +

r3∑
s=1

γb,szs

instead of yj. This changes the representing matrix to S(E, β′, γ′)

where the bth row of (β′, γ′) has the form (0, 0, . . . , 0, 1, 0, . . . , 0) with

entry 1 at the jth position. Denote an arbitrary row of (β, γ) with

index c as a representing element of a generating element of G/R in

the form

gc = p−k
′(
xc +

r2∑
l=1

βc,lyl +

r3∑
s=1

γc,szs
)
.

If we choose (y′1, . . . , y
′
j, . . . , y

′
r2

; z1, . . . , zr3) where y′l = yl for all l 6= j

and y′j defined as above, as a new basis of R2 ⊕R3, then modulo R

gc≡ p−k′
[xc +

r2∑
l=1
l 6=j

βc,ly
′
l +

r3∑
s=1

γc,szs + βc,jβ
−1
b,j (y′j −

r2∑
l=1
l 6=j

βb,ly
′
l −

r3∑
s=1

γb,szs)]

≡ p−k′
[xc + βc,jβ

−1
b,j y

′
j +

r2∑
l=1
l 6=j

(βc,l − βc,jβ
−1
b,j βb,l)y′l +

r3∑
s=1

(γc,s − βc,jβ
−1
b,j γb,s)zs]. �

Lemma 4.4. Let G be (1, 2)-group with a representing matrix S(E, β, γ).

If in the bth row of γ there is a unit γb,j for some 1 ≤ j ≤ r2, then

there is a p-Koehler basis of R3 such that the new corresponding rep-

resenting matrix is S(E, β, γ′) where the bth row of γ′ has the form

(0, 0, . . . , 1, 0, . . . , 0) with entry 1 at the jth position. Moreover, for all

c 6= b

γ′c,j = γc,jγ
−1
b,j and γ′c,l = γc,l − γc,jγ

−1
b,j γb,l for all l 6= j,

where γ−1
b,j ∈ Z, γ−1

b,j γb,j ≡ 1 (mod pk) and pkG ⊂ R.

In particular, γc,j ∈ ps Z if and only if γ′c,j ∈ ps Z.
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Proof. Let (z1, z2, . . . , zr3) be a p-Koehler basis of R3. If γb,j is a unit,

then there is a new p-decomposition basis of R3 with the element

z′j =

r3∑
s=1

γb,szs

instead of zj. This changes the representing matrix to S(E, β, γ′) where

the bth row of γ′ has the form (0, 0, . . . , 0, 1, 0, . . . , 0) with the entry 1

at the jth position. The new γ′ is obtained by exactly the same rules

as in the analogous proof of Lemma 4.3. Clearly, this transformation

will not change β. �

A straightforward consequence of Lemma 4.3 and Lemma 4.4 is the

following corollary.

Corollary 4.5. Let G be a (1, 2)-group with S(E, β, γ) as representing

matrix

(1) Suppose that βb,j = pt where t ≥ 1 and j1, . . . , js ∈ [1, r2] such

that βb,jl ∈ pt Z \0. Replacing yb by

y′b = yb + p−t
s∑
l=1

βb,jlyl

changes only the entries of β with column indices jl. In partic-

ular, if βc,jl = 0 for c 6= b, then β′c,jl = −βc,jβb,jl.
(2) Suppose that γb,j is a p-unit and j1, . . . , js ∈ [1, r3] such that

γb,jl 6= 0. Replacing zb by

z′b = zb +
s∑
l=1

γb,jlzjl

changes only the entries of γ with column indices jl. In partic-

ular, if γc,jl = 0 for c 6= b, then γ′c,jl = −γc,jγb,jl.

A zero matrix with a rows and b columns is denoted by 0[a× b]. Recall

that the unit matrix of size s is denoted by Es. Let for a matrix β the

subblock of β consisting of the rows with index a ≤ c ≤ b be denoted

by β[a,b].

Lemma 4.6. Let G be (1, 2)-group with a representing matrix S(E, β, γ).

Suppose that no entry of the subblock β[a,b] is a unit. If γ[a,b] = (0[(b−
a) × s], δ), then there is a p-Koehler basis of R3 and a basis of G/R

such that the corresponding representing matrix (β′, γ′) has the follow-

ing properties:
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• β′[1,a−1] = β[1,a−1].

• There is no unit in β′[a,b].

• The first s columns of γ[1,a−1] and γ′[1,a−1] are the same. If the

last r3 − s columns of γ form the 0-matrix, then this part of γ′

forms the 0-matrix.
• There is r3 ≥ s+ b− a and

γ′[a,b] =
(
0[(b− a)× s], Eb−a, 0[(b− a)×

(
r3 − (s+ b− a)

)
]
)
.

Proof. Since there is no unit in β[a,b], all units of this block of (β, γ)

are in γ[a,b]. Assume that γa,j is a unit for some s < j ≤ r3. By

Lemma 4.4 there is a p-Koehler basis of R3 such that the ath row of γ

is changed to (0, 0, . . . , 0, 1, 0, . . . , 0) where the entry 1 has the column

index s + 1. This transformation does not change β. Moreover, there

is a basis of G/R such that γc,s+1 = 0 for all a + 1 ≤ c ≤ b. This

basis transformation of G/R changes the entries of β with row indices

c where a + 1 ≤ c ≤ b. But there are no changes in β[1,a−1]. Let

S(E, β′′, γ′′) be the new representing matrix. Then we have

β′′[1,a−1] = β[1,a−1].

Since there is no unit in β′′[a,b] and by Lemma 4.4 the first s columns

of γ′′[1,a−1] and γ[1,a−1] are the same. Furthermore, by Lemma 2.6 and

Lemma 4.1 the submatrix of the last r3− s columns of γ′′[a,b] has p-rank

b− a. Thus r3 ≥ s + b− a and there is a p-Koehler basis of R3 and a

basis of G/R such that we finally get

γ′[a,b] = (0[(b− a)× s], Eb−a, 0[(b− a)× (r3 − (s+ b− a))]).

If the last r3 − s columns of γ form the 0-matrix, then by Lemma 4.4

this part of γ′ forms the 0-matrix. �

Lemma 4.7. Let S(E, β, γ) be a representing matrix of a (1, 2)-group.

Suppose that the entry βa,b ∈ pt Z \pt+1 Z, t ≥ 0, is in the hth block.

Then there is a basis of G/R such that the corresponding representing

matrix is S(E, β′, γ′) with the property that

(1) β′c,b in the sth block, s ≥ h, is either β′c,b = 0 or β′c,b /∈ pt Z,

(2) β′c,b in the sth block, s < h, is either β′c,b = 0 or β′c,b /∈ pks−kh+t Z.

In particular, if βa,b is a unit, i.e., t = 0, then for c > a all βc,b = 0.

Proof. We may assume that βa,b = pt. Denote a row of (β, γ) with

index c as representing element of a generating element of G/R in the
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form

gc = p−kh′ (xc +

r2∑
l=1

βc,lyl +

r3∑
s=1

γc,szs).

For c > a and βc,b ∈ pt Z, in the sth block of β, s ≥ h, we choose

representatives for a new basis of G/R by

g′c = gc − pkh−ks−tβc,bga,

g′j = gj for j 6= c.

Then the representing matrix changes to S(E, β′, γ′) where β′c,b = 0.

For c < a and βc,b ∈ pks−kh+t Z, in the sth block of β, s < h, we choose

representatives for a new basis of G/R by

g′c = gc − pkh−ks−tβc,bga,

g′j = gj for j 6= c.

Then the representing matrix changes to S(E, β′, γ′) where β′c,b = 0.

�

Lemma 4.8. Let S(E, β′, γ) be a representing matrix of a (1, 2)-group.

If β′ has a unit β′a,b in the hth block, then there is a p-Koehler basis

of R2 ⊕R3 and a basis of the regulator quotient such that the first row

of the hth block of (β, γ) of the corresponding representing matrix is

(0, . . . , 1, 0, . . . , 0), where the entry 1 is at the bth position and the bth

column of (β, γ) is (β1,b, . . . , βPh−1
i=1 li,b

, 1, 0, . . . , 0)t.

Moreover, if βi,b is an entry of β in the sth block, for s ≤ h, and in the

bth column, then either βi,b = 0 or βi,b /∈ pks−kh Z.

Proof. If β′a,b in the hth block of β′ is a unit, then, by Lemma 4.3, there

is a p-Koehler basis of R2 ⊕R3 such that the ath row of the hth block

of the new representing matrix (β, γ) is (0, . . . , 1, 0, . . . , 0), where the

entry 1 is at the bth position. We may permute the ath row to the first

row in the hth block by a change of basis of G/R, and the rest follows

by Lemma 4.7. �
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5. Normal Form

Let A = (Aij) ∈M(m×n,Z) be a block matrix with blocks Aij, where

Aij ∈M(ui × vj,Z) and u1 + · · ·+ uq1 = m and v1 + · · ·+ vq2 = n.

(Aij | j) is the ith block row of the block matrix (Aij), i.e., a matrix of

format ui × (
∑

j vj).

Definition. Let M = S(α, β, γ) be a representing matrix of a (1, 2)-

group G where S = diag(p−khElh | h = 1, . . . , f). Then M is said to be

in normal form of format (kh, lh,mh)
f
h=1 if α = Er, where r =

∑f
h=1 lh,

the matrix β is of format r× r2, the matrix γ is of format r× r3 and β

and γ are block matrices with block rows β1, . . . , βf and γ1, . . . , γf ,

respectively, i.e., β =

(
β1

...
βf

)
where βh is of format lh×r2 and γ =

( γ1
...
γf

)
where γh is of format lh × r3 for all h = 1, . . . , f . Moreover, the block

rows of β and γ have the following structure:

• r2 ≥
∑f

z=1mz, and βh has block rows β
(1)
h and β

(2)
h for h =

1, . . . , f of format mh × r2 and (lh − mh)× r2, respectively.

β
(1)
h =

(
0
[
mh ×

h−1∑
z=1

mz

]
, Emh

, 0
[
mh × (r2 −

h∑
z=1

mz)
])
,

β
(2)
h =

(
0
[
(lh −mh)×

h∑
z=1

mz

]
, pβ′h

)
,

where β′h is of format (lh −mh)× (r2 −
∑h

z=1mz).

If mh = 0 or lh = mh, then one of these two block rows do not

exist.

• r3 ≥
∑h

z=1(lz − mz) and γh has block rows γ
(1)
h and γ

(2)
h for

h = 1, . . . , f of format mh× r3 and (lh− mh)× r3, respectively.

γ
(1)
h = 0

[
mh × r3

]
,

γ
(2)
h =

(
0
[
(lh−mh)×

h−1∑
z=1

(lz−mz)
]
, E(lh−mh), 0

[
(lh−mh)×(r3−

h∑
z=1

(lz−mz))
])
.

If mh = 0, then γ
(1)
h does not exist, and if lh = mh, then γ

(2)
h

does not exist.

Lemma 5.1. Let G be a (1, 2)-group with G/R ∼=
⊕f

h=1(Zpkh )lh. Then

there is a p-Koehler basis of R and a corresponding representing matrix

S(E, β, γ) such that the hth block of (β, γ) has the form
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(βh, γh) =

Emh
0 0

0 pηh Elh−mh 0

,

Figure 1

i.e., (βh, γh) is in normal form. If mh = lh, then (βh, γh) = (Elh , 0). If

mh = 0, then (βh, γh) = (pηh, Elh , 0).

Moreover, if G has a representing matrix S(E, β′, γ′) with a zero row

in the hth block of β′, then there is also a zero row in the hth block

of β.

Proof. Let G be represented by S(E, β′, γ′) relative to a p-Koehler basis

of R. If there is no unit in β′h, then by Lemma 4.6, Figure 1 specifies

to (βh, γh) = (pηh, Elh , 0), i.e., mh = 0 and the block row beginning

with Emh
does not exist.

Let a be minimal where
∑h−1

u=1 lu < a ≤
∑h

u=1 lu with respect to that

there is a unit in the ath row of β′h. By Lemma 4.8 there is a p-

Koehler basis of R2 ⊕R3 and a basis of G/R such that the first row of

(β′h, γ
′
h) changes to (1, 0, . . . , 0) and the first column of β′h changes to

(1, 0, . . . , 0)t. There is possibly again a row with minimal index b where

a < b ≤
∑h

u=1 lu such that there is a unit in the bth row of β′h. Then

again by Lemma 4.8 there is a p-Koehler basis of R2 ⊕R3 and a basis

of G/R such that the second row of (β′h, γ
′
h) changes to (0, 1, 0, . . . , 0)

and the second column of β′h changes to (0, 1, 0, . . . , 0)t. We may con-

tinue with this procedure for β′h as far as there are units. Then (β′h, γ
′
h)

changes to (β′′h, γ
′′
h) where

(β′′h, γ
′′
h) =

(
Emh

0 0

0 ∗ ∗

)
.

If mh = lh, then (β′′h, γ
′′
h) specifies to (βh, γh) = (Elh , 0). If mh < lh,

then (β′′h, γ
′′
h) has the form

(β′′h, γ
′′
h) =

(
Emh

0 0

0 pδ(1) δ(2)

)
.

If there was a 0-row in β′h, then this row is not changed by the above

basis transformations and will occur in the matrix pδ(1).



25

Since each row of the matrix (β, γ) has to contain a unit, forced by

the regulator criterion, the matrix δ(2) has at least that many columns

as rows, i.e., r3 ≥ lh − mh. By Lemma 4.6, the matrix δ(2) changes

to (Elh−mh
, 0). The unit matrix Emh

and the corresponding rows and

columns remain unchanged. Moreover, no new units occur in β′′h. Hence

(β′′h, γ
′′
h) changes to (βh, γh) where

(βh, γh) =

(
Emh

0 0 0

0 pηh Elh−mh
0

)
. �

Lemma 5.2. Let G be a (1, 2)-group with G/R ∼=
⊕f

h=1(Zpkh )lh, where

f ≥ 2. Then there is a p-Koehler basis of R and a corresponding

representing matrix S(E, β, γ) such that the hth and (h+1)th blocks of

(β, γ) have the form as in Figure 2.

(
βh γh
βh+1 γh+1

)
=

Emh
0 0

pηh Elh−mh 0

Emh+1
0 0

0 0 pηh+1 0 Elh+1−mh+1 0

Figure 2

In particular,

• if mh = 0, then r3 ≥ lh and (βh, γh) has the form

(βh, γh) = (pηh, Elh , 0[lh × (r3 − lh)]).

• If mh = lh, then r2 ≥ lh and (βh, γh) has the form

(βh, γh) = (Elh , 0[lh × (r2 − lh)], 0[lh × r3]).

• If mh+1 = 0, then r3 ≥ lh + lh+1 −mh and (βh+1, γh+1) has the
form

(βh+1, γh+1) = (0[lh+1 ×mh], pηh+1,

0[lh+1 × (lh −mh)], Elh+1
, 0[lh+1 × (r3 − (lh −mh + lh+1))].
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• If mh+1 = lh+1, then r2 ≥ mh + lh+1 and (βh+1, γh+1) has the
form

(βh+1, γh+1) = (0[lh+1×mh], Elh+1
, 0[lh+1× (r2− (mh+ lh+1))], 0[lh+1×r3]).

Moreover, if G has a representing matrix S(E, β′, γ′) with a zero row

in the hth or in the (h+ 1)th block of β′, then there is also a zero row

in the hth or in the (h+ 1)th block of β, respectively.

Proof. LetG be represented by S(E, β′, γ′) with S = diag(p−khElh | h).
Then by Lemma 5.1 there is a p-Koehler basis of R2 ⊕ R3 and a basis

of G/R such that (β′, γ′) changes to (β′′, γ′′) where the hth block row

of (β′′, γ′′) has the form

(β′′h, γ
′′
h) =

(
Emh

0 0 0
0 pηh Elh−mh

0

)
.

Moreover, if mh = 0, then (βh, γh) = (pηh, Elh , 0[lh × (r3 − lh)]) and if

mh = lh, then (βh, γh) = (Elh , 0[lh × (r2 − lh)], 0[lh × r3]).

Hence we have(
β′′h γ′′h
β′′h+1 γ′′h+1

)
=

 Emh
0 0 0

0 pηh Elh−mh
0

δ1 δ2 δ3 δ4

 .

Then there is a basis transformation of G/R such that δ1 = 0[lh+1×mh]
and δ3 = 0[lh+1 × (lh −mh)]. The hth block of β′′ is unchanged. The
matrix δ2 is of format lh+1× (r2−mh) where r2−mh ≥ lh+1 because of
the regulator criterion. Then by Lemma 5.1 there is a p-Koehler basis

of R2 and a basis of G/R such that δ2 changes to δ′2 =
(
Emh+1

0
0 pµ2

)
.

The matrix δ4 in (β′′h+1, γ
′′
h+1) is of format lh+1× (r3− (lh−mh)) where

r3 − (lh−mh) ≥ lh+1 −mh+1 because of the regulator criterion. Hence
by Lemma 5.1 the matrix (δ2, δ4) changes to

(δ′2, δ
′
4) =

(
Emh+1

0 0 0
0 pµ2 Elh+1−mh+1

0

)
.

Thus the (h+ 1)th block of (β′′, γ′′) has the form

(β′′h+1 | γ′′h+1) =
(

0 Emh+1
0 0 0 0

0 0 pµ2 0 Elh+1−mh+1
0

)
.

If mh+1 = 0, then

(βh+1, γh+1) = (0[lh+1×mh, pηh+1], 0[lh+1×(lh−mh)], Elh+1 , 0[lh+1×(r3−(lh−mh + lh+1))]).
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If mh+1 = lh+1, then r2 ≥ mh + lh+1 by the regulator criterion and

(βh+1, γh+1) = (0[lh+1 ×mh], Elh+1 , 0[lh+1 × (r2 − (mh + lh+1))], 0[lh+1 × r3]).

The matrix Emh
in βh, the unit matrix Elh−mh

in γh and the corre-

sponding rows and columns are not changed. Moreover, no new units

occur in the hth block of (β′′, γ′′). If there was a zero row in β′h, then

this row is not changed and will occur in the matrix ηh. If the origi-

nal β′ has a 0-row in (h+ 1)th block it will remain unchanged and will

occur in µ2. Thus the new representing matrix is S(E, β, γ) where the

hth block and (h+1)th block of (β, γ) have the form as in Figure 2. �

Lemma 5.3. Let G be a (1, 2)-group with G/R ∼=
⊕f

h=1(Zpkh
)lh. If

kh − kh+1 = 1 for some h = 1, . . . , f − 1, then there is a p-Koehler

basis of R and a basis of G/R such that the corresponding representing

matrix is S(E, β∗, γ∗) where

(
βh∗ γh∗
βh+1
∗ γh+1

∗

)
=

Emh
0 0

0 pD1 0 0 Elh−mh 0

Emh+1
0 0

0 0 0 0 pD2 0 Elh+1−mh+1 0

,

with diagonal matrices pD1 and pD2. The matrices pD1 and pD2 con-

tain only p-powers as entries. If mh = 0 or mh = lh, then either the

block row and block column containing the unit matrix Emh
does not

exist or the block row and block column containing pD1 does not exist

and if mh+1 = 0 or mh+1 = lh+1, then either the block row and block

column containing the unit matrix Emh+1
does not exist or the block

row and block column containing pD2 does not exist.

Proof. LetG be represented by S(E, β, γ) and let (βh, γh) and (βh+1, γh+1)
be the hth and (h + 1)th blocks of (β, γ), respectively. Then by

Lemma 5.2

M =

(
βh γh

βh+1 γh+1

)
=


Emh

0 0 0 0 0

0 pη(1) pη(2) E 0 0

0 Emh+1 0 0 0 0

0 0 pη(3) 0 E 0

 .



28

Since kh − kh+1 = 1 there is a basis transformation of G/R such that

pη(1) = 0, that does not change anything else.

Now we apply basis transformations of G/R only affecting the rows of

pη(2) and pη(3). Those will neither change the rows of Emh
nor of Emh+1

.

There are additional changes in γ that we consider later. Hence only

the matrix ψ =
(
pη(2)

pη(3)

)
is treated by the adequate automorphisms

of G/R.

Let
(
ψa,b | a, b

)
be the ideal generated by all entries of ψ such that(

ψa,b | a, b
)
⊂ pt1 Z \pt1+1 Z. If there is an entry pη

(2)
a,b with pη

(2)
a,b Z ⊂

pt1 Z \pt1+1 Z, then by Corollary 4.5 there is a p-Koehler basis of R2 and

by Lemma 4.7 a basis of G/R such that the first row of pη(2) changes

to (pt1 , 0, . . . , 0) and the first column of ψ changes to (pt1 , 0, . . . , 0)t,

i.e., ψ changes to the form as in Figure 3. If there is no entry pη
(2)
a,b

with pη
(2)
a,b Z ⊂ pt1 Z \pt1+1 Z, then by Corollary 4.5 there is a p-Koehler

basis of R2 and by Lemma 4.7 there is a basis of G/R such that the

first row of pη(3) takes the form (0, . . . , 0, pt1) and the last column of

ψ changes to (0, . . . , 0, pt1 , 0, . . . , 0)t. This last conclusion follows by

kh − kh+1 = 1. Hence we get ψ as in Figure 4.

Because of notational reasons the p-powers that are in the first part of

ψ are denoted by ti and those in the right part of ψ are denoted by si
where i ≥ 1.

ψ =

pt1 0 . . . 0

0
... pη(4)

0

0
... pη(5)

0

Figure 3

ψ1 =

0

pη(6) ...

0

0 · · · 0 pt1

0

pη(7) ...

0

Figure 4

If we repeat this procedure with

(
pη(4)

pη(5)

)
or

(
pη(6)

pη(7)

)
, respectively,

then the first row and first column in the case of Figure 3 will not

change. Also in the case of Figure 4 the first row of the second block

of ψ1 and the last column of ψ1 will not change. Thus we obtain one

of the cases as in Figure 5, 6 or 7,
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ψ2 =

pt1 0 0 . . . 0

0 pt2 0 . . . 0

0 0

...
... pν(1)

0 0

0 0

...
... pν(2)

0 0

Figure 5

ψ3 =

pt1 0 0 · · · 0

0 0

... pν(3) 0

0 0

0 0 · · · 0 ps1

0 0

... pν(4)
...

0 0

Figure 6

ψ4 =

0 0

pν(5)
...

...

0 0

0 . . . 0 0 ps1

0 . . . 0 ps2 0

0 0

pν(6)
...

...

0 0

Figure 7

where 0 < t1 ≤ t2 and 0 < s1 ≤ s2.

Successively repeating this procedure on the submatrices pν(j) the orig-

inal matrix ψ changes to ψ′ where

ψ′ =

 pD1 0 0

0 0 0

0 0 pθ

 ,

where pD1 is a diagonal matrix and pD1 has only p-powers, not equal

to 1, as entries, and pθ =

 0 ... 0 ps1

0 ... ps2 0

... ...
...

psu 0 ... 0

 with si ≥ 1 for i = 1, . . . , u.

There is a row permutation, i.e., a new basis of G/R, such that pθ

changes to a diagonal matrix pD2 = diag(psu , . . . , ps1). This basis

transformation does not change the other blocks of β. But the unit

matrix for α is changed. By Lemma 4.2 we obtain the unit matrix

back without changing anything else. Hence ψ′ changes to ψ′′ where

ψ′′ =

 pD1 0 0

0 0 0

0 0 pD2


with diagonal matrices pD1 and pD2. Furthermore, pD1 and pD2 have

only p-powers as entries.
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As mentioned before the above transformations do not change the the
rows of the block matrices Emh

and Emh+1
. Clearly, the unit matrices

in γ will change to invertible matrices U1 and U2, respectively. More-
over, we get

(
βh1 γh1
βh+1

1 γh+1
1

)
=


Emh

0 0 0 0 0 0 0
0 0 pD1 0 0 U1 τ (1) 0
0 Emh+1

0 0 0 0 0 0
0 0 0 0 pD2 τ (2) U2 0

 ,

with suitable matrices τ (1) and τ (2). Then by Corollary 4.5 there is a

p-Koehler basis of R3 such that τ (1) = 0 and τ (2) = 0, since U1, U2 were

invertible. This basis transformation does not change β. Hence the

matrix M changes to the claimed form of

(
βh∗ γh∗
βh+1
∗ γh+1

∗

)
. �

Lemma 5.4. Let G be a (1, 2)-group with representing matrix S(E, β, γ).

Then there is a p-Koehler basis of R and a basis of G/R such that the

corresponding representing matrix is S(E, β′, γ′) where

(β∗, γ∗) =

Em1 0 0

pµ1 El1−m1 0

Em2 0 0

pµ2 El2−m2 0

. . .
...

. . .
...

Emf
0 0

0 0 0 0 pµf 0 0 0 Elf−mf 0

Figure 8
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• If mh = 0, then r3 ≥
∑h

s=1(ls −ms) and

(βh, γh) = (0[lh ×
h∑
s=1

ms], pµh,

0[lh ×
h−1∑
s=1

(ls −ms)], Elh , 0[lh × (r3 −
h∑
s=1

(ls −ms))]),

• if mh = lh, then r2 ≥
∑h

s=1ms and

(βh, γh) = (0[lh ×
h−1∑
s=1

ms], Elh , 0[lh × (r2 −
h∑
s=1

ms)], 0[lh × r3]).

Proof. By Lemma 4.7 and Lemma 5.1 the matrix (β, γ) can be trans-
formed to the following matrix (β′, γ′) where r2 ≥ m1 and r3 ≥ l1−m1

since there is a unit in each row of (β′, γ′).

(β′, γ′) =

E 0 0

pµ1 E 0

β1 γ1

0 0

There are only zero matrices below the unit matrices in (β′, γ′) by

Lemma 4.7. Now we apply Lemma 4.7 and Lemma 5.1 on the sub-

matrix (β1, γ1). Then (β′, γ′) changes to the following matrix (β′′, γ′′)

where r2 ≥ m1 +m2 and r3 ≥ (l1−m1)+ (l2−m2) since there is a unit

in each row of (β′′, γ′′).
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(β′′, γ′′) =

E 0 0

pµ1 E 0

E 0 0

pµ2 E 0

β2 γ2

0 0 0 0

Again by Lemma 4.7 there are only 0-matrices below the unit matrices

in (β′′, γ′′). Moreover, by Lemma 4.6 the form of the first block does

not change and the 0-matrices in (β′, γ′) remain unchanged. By in-

duction, successively applying Lemma 4.7 and and Lemma 5.1, we get

r2 ≥
∑h

s=1ms and r3 ≥
∑h

s=1(ls−ms) and we obtain finally (β∗, γ∗) as

in Figure 8. �
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6. General Decomposability

The basic technique to handle decompositions is the next, well known,

lemma.

Lemma 6.1. ([8, 9.3]) Let A = B ⊕ C be an abelian group with fully

invariant subgroup F . Then F = (F ∩B)⊕ (F ∩ C).

In general intersections and sums of fully invariant subgroups are fully

invariant. Fully invariance is a transitive property. In torsion-free

abelian groups pure hulls of fully invariant subgroups are fully invari-

ant. In the context of an almost completely decomposable group G

there are certain fully invariant groups that play an important role.

The regulator R, the type subgroups G(τ), G](τ), and nG.

Also helpful for considering decompositions of almost completely de-

composable groups is the following result.

Lemma 6.2. Let n be a natural number, let A be a torsion-free abelian

group, and X, Y,X ′, Y ′, R ⊂ A, where X ⊂ X ′, Y ⊂ Y ′, X ⊕ Y ⊂∗ R

and X ′/X and Y ′/Y are torsion. Then

n−1R ∩ (X ′ ⊕ Y ′) = (n−1X ∩X ′)⊕ (n−1Y ∩ Y ′).

Proof. Obviously n−1R∩ (X ′⊕ Y ′) ⊃ (n−1X ∩X ′)⊕ (n−1Y ∩ Y ′). Let

r = x′ + y′ ∈ n−1R ∩ (X ′ ⊕ Y ′) in unique presentation in X ′ ⊕ Y ′.

Then nr = nx′ + ny′ ∈ R where nx′ ∈ X ′ and ny′ ∈ Y ′. On the

other hand nr ∈ 〈X ⊕ Y 〉R∗ = X ⊕ Y , since X ′ ⊕ Y ′ ⊂ 〈X ⊕ Y 〉A∗
and X ⊕ Y ⊂∗ R. Hence nr = x + y with unique representation in

X ⊕ Y . By X ⊂ X ′ and Y ⊂ Y ′ we get x = nx′, y = ny′, i.e.,

nx′ ∈ X, ny′ ∈ Y . Thus x′ ∈ n−1X ∩X ′ and y′ ∈ n−1Y ∩Y ′, such that

n−1R ∩ (X ′ ⊕ Y ′) ⊂ (n−1X ∩X ′)⊕ (n−1Y ∩ Y ′). �

For a decomposable (1, 2)-group G = H ⊕ L with regulator R = R1 ⊕
R2 ⊕ R3 we obtain by Lemma 6.1 and by the Dedekind modular law

the following facts:

R1 = (R1 ∩H)⊕ (R1 ∩ L),

R3 = (R3 ∩H)⊕ (R3 ∩ L),

R2 ⊕R3 =
[
H ∩

(
R2 ⊕ (R3 ∩ L)

)]
⊕
[
L ∩

(
R2 ⊕ (R3 ∩H)

)]
⊕R3,

G/R3
∼= H/(H ∩R3)⊕ L/(L ∩R3) is a (1, 1)-group,

G/R1
∼= H/(H ∩R1)⊕ L/(L ∩R1) is completely decomposable.

Moreover, we know that an indecomposable (1, 1)-group has rank ≤ 2.
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The next corollary displays how Lemma 6.2 can be used.

Corollary 6.3. Let G = H ⊕ L be a direct decomposable almost com-

pletely decomposable group with regulator R. Then for non-negative

integers i, j

p−iR∩ (pjG+R) =
(
p−iR∩H ∩ (pjG+R)

)
⊕
(
p−iR∩L∩ (pjG+R)

)
.

There are some simple constellations in a representing matrix that allow

to read off direct summands of rank 2, 3, 4, 5, respectively.

Proposition 6.4. Let G be a (1, 2)-group with S(E, β, γ) as a repre-

senting matrix.
(1) If

(β, γ) =

0

...

0

0 · · · 0 1 0 · · · 0 0 · · · 0

0

...

0

where 1 is at position (i, j) in β, then 〈xi, yj〉∗ is a direct sum-

mand of rank 2.

If

(β, γ) =

0

...

0

0 · · · 0 0 · · · 0 1 0 · · · 0

0

...

0

where 1 is at position (i, j) in γ, then 〈xi, zj〉∗ is a direct sum-

mand of rank 2.

(2) If

(β, γ) =

0 0

...
...

0 0

0 · · · 0 pl 0 · · · 0 0 · · · 0 1 0 · · · 0

0 0

...
...

0 0

where pl 6= 1 is at position (i, j) in β, then 〈xi, yj, zi〉∗ is a direct

summand of rank 3.
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(3) If

(β, γ) =

0 0

...
...

0 0

0 · · · 0 pl 0 · · · 0 0 · · · 0 1 0 · · · 0

0 0

...
...

0 0

0 · · · 0 1 0 · · · 0 0 · · · 0 0 0 · · · 0

0 0

...
...

0 0

where pl 6= 1 is at position (i1, j) and 1 at position (i2, j), both

in β, then 〈xi1 , xi2 , yj, zi1〉∗ is a direct summand of rank 4.

(4) If

(β, γ) =

0 0 0

..

.
..
.

..

.

0 0

0 · · · 0 pm 0 · · · 0 0 · · · 0 1 0 · · · 0 · · · · · · 0

0 0 0

...
...

...

0 0 0

0 · · · 0 pn 0 · · · 0 0 · · · 0 0 · · · 0 1 0 · · · 0

0 0 0

...
...

...

0 0 0

where pm 6= 1 is at position (i1, j), and pn 6= 1, at position (i2, j)

in β, then 〈xi1 , xi2 , yj, zi1 , zi2〉∗ is a direct summand of rank 5.

Lemma 6.5. Let G be a (1, 2)-group with representing matrix S(E, β, γ).

If there is a zero row in β, then G is decomposable.

Proof. Let S(E, β, γ) be the representing matrix of G. By Lemma 5.4

the matrix (β, γ) has the form as in Figure 8. Now assume that the

ith row, that is in the hth block βh of β, is zero. This 0-row occurs in

the second part of the hth block , i.e., it is in pµh in Figure 8. Then

for j = i−
∑h

s=1ms, there is a direct summand 〈xi, zj〉∗ of G of rank 2,

c.f. Proposition 6.4. Thus G is decomposable. �

Lemma 6.6. Let G be an indecomposable (1, 2)-group with a represent-

ing matrix S(E, β, γ). If the entry βa,b in the hth block βh is a unit, then
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there is an s < h such that the sth step βs has an entry βc,b /∈ pks−kh Z
in the same column b.

In particular, no entry of the first block β1 of the representing matrix

of an indecomposable group is a unit, and if k = k2 + 1, then also no

entry of the second block β2 of the representing matrix is a unit.

Proof. Let the entry βa,b in the hth block βh be a unit. If βc,b ∈ pks−kh Z
for all entries in the blocks βs of β where s < h, then by Proposition 6.4

〈xa, yb〉∗ is a direct summand, contradicting the indecomposability ofG.

The statements for the first and the second blocks of β are immediate

consequences. �
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7. About Decompositions for Regulator quotient of

Exponent pk

Theorem 7.1. An indecomposable (1, 2)-group with homocyclic regu-

lator quotient has rank 3. In particular, there is a natural number l < k

for an indecomposable (1, 2)-group G with homocyclic regulator quotient

of exponent pk, k ≥ 2, such that G has the normal form

G =
[
〈x〉∗ ⊕ 〈y〉∗ ⊕ 〈z〉∗

]
+ p−k Z(x+ ply + z).

Proof. Let G be the indecomposable group with regulator R. By

Lemma 5.4, and by Lemma 6.6 and since the regulator quotient is

homocyclic, a representing matrix has the form p−k(E, pη, E). By

Lemma 3.1 and the elementary divisor theorem there is a basis of the

regulator quotient and a p-decomposition basis of R2 such that the

corresponding pη has non-zero entries only on the main diagonal, i.e.,

pη = diag(pi1 , . . . , pis , 0, . . .) where 1 ≤ i1 ≤ · · · ≤ is < pk. If, in par-

ticular, k = 1, then pη = 0 and G has a direct summand of rank 2

and is decomposable. Thus, k ≥ 2. By Proposition 6.4 a 0-line in pη

causes a direct summand of rank 2. This is a contradiction since G is

an indecomposable (1, 2)-group, hence at least of rank 3. Thus pη is

square and each row of the representing matrix displays a direct sum-

mand of rank 3, already in the desired normal form with an entry pl,

1 ≤ l < k. Those summands of rank 3 are indecomposable, since an

easy application in this special case shows that such a summand is

clipped. �

Theorem 7.2. A (1, 2)-group with regulator quotient isomorphic to

(Zpk)l1⊕(Zpk−1)l2 is decomposable and the direct sum of rational groups,

of indecomposable (1, 1)-groups of rank 2, and of indecomposable (1, 2)-

group with homocyclic regulator quotient of rank 3.

Proof. By Lemma 5.3 we obtain a normal form for the representing

matrix. If we omit the obvious direct summands of rank 1 and of rank 2,

then we get a representing matrix of the form S(E, pη, E), where η is

a square diagonal matrix with p-power entries on the main diagonal.

Each row of the representing matrix displays a direct summand of

rank 3, already in the desired normal form for groups with homocyclic

regulator quotient. Those summands of rank 3 are indecomposable by

Lemma 7.1. �
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Theorem 7.3. An indecomposable (1, 2)-group with regulator quotient

isomorphic to (Zpk)l1 ⊕ (Zp)
l2 with k ≥ 3 is of rank 4.

In particular, there is a natural number l < k−1 for an indecomposable

(1, 2)-group G with the above regulator quotient such that G has the

normal form

G =
[
〈x1〉∗⊕〈x2〉∗⊕〈y〉∗⊕〈z〉∗

]
+ p−k Z(x1 + ply+ z) + p−1 Z(x2 + y).

Proof. By Lemma 5.2 we have a normal form of the representing ma-

trix of the group G as in Figure 2. Omitting all the obvious direct

summands of rank ≤ 3, and using that the entries in the second block

of β are either p-units or 0 we get the normal form:(
β, γ

)
=

[
pη1 pη2 E

E 0 0

]
.

By Lemma 3.1 we may even assume that the block matrix (pη1, pη2)

has p-powers on the main diagonal and all other entries are 0. By

Proposition 6.4 and since G is indecomposable, the matrix pη1 is a

square diagonal matrix of size l1, and pη2 = 0. So we end up with the

normal form: (
β, γ

)
=

[
pη1 E

E 0

]
.

Thus l1 = l2 and 〈x1, xl1+1, y1, z1〉∗ is a direct summand of G of rank 4.

Thus l1 = l2 = 1 and G is of rank 4 and in the desired normal form.

Note for k < 3 this normal form can be simplified to pη1 = 0.

It remains to prove that this groupG is indecomposable. First note that

the group G is clipped as shown below. The matrix (β, γ) =
(
p 1
1 0

)
is

p-invertible. By Lemma 3.1 all basis transformations transform (β, γ)

into an equivalent matrix that is also p-invertible and does not contain

a 0-line. A rational direct summand of type as x1 is equivalent to

the existence of a 0-row of β, and the existence of a rational direct

summand of one of the both other types is equivalent to the existence

of a 0-column of (β, γ). Hence G is clipped.

Second, if G = H⊕L, then we may assume that the regulator quotient

of H is pk. All possible representatives g of an element in the regulator

quotient of order pk are up to some unit factor and modulo the regulator

of the form

g = p−k(x1+p
ly+z)+ap−1(x2+y) = p−k

(
x1+ap

k−1x2+(pl+apk−1)y+z
)
.
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All those elements g have non-zero coefficients in Q〈x1, x2〉 and since

pl+apk−1 is never a unit, there is no decomposition of R′
2⊕R3 = R2⊕R3

such that g ∈ 〈R1 ⊕R′
2〉∗. Thus H is not of rank 2, it must be at least

of rank 3. Hence, since G is clipped, it is indecomposable. �
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8. Decomposability for Regulator quotient

(Zpk)l1 ⊕ (Zpk−1)l2 ⊕ (Zpk−1)l3 with k ≤ 6

Lemma 8.1. Let G be a (1, 2)-group with regulator quotient

G/R ' (Zpm)s ⊕ Zpn ,

where m > n. Let S(E, β, γ) be the representing matrix of G with

(β, γ) =

(
piE

E
pfµ

)
where i > f and µ = (µj | j) and at least one

entry µj is a unit. Then there is a p-decomposition basis of R and a

basis of G/R such that the representing matrix changes to S(E, β′, γ′)

where

(β′, γ′) =

(
piE

E
pf 0 . . . 0

)
.

Proof. Let (x1, . . . , xs+1; y1, . . . , ys; z1, . . . , zs+1) be the p-Koehler basis

of R. Let (g1 +R, . . . , gs +R, h+R) be a basis of G/R where

• gk = p−m(xk + piyk + zk) for 1 ≤ k ≤ s and

• h = p−n(xs+1+pf
s∑
j=1

µjyj+zs+1), where µj ∈ Z for j = 1, . . . , s.

We may assume that µ1 is a unit, say µ1 = 1. Then there is a new

p-Koehler basis of R2 with the element

y′1 = y1 +
s∑
l=2

µlyl.

Then by Lemma 4.3 the matrix β changes to the matrix β′′ where

the first row of β′′ has the form (pi,−piµ2, . . . ,−piµs) and the last

row of β′′, the matrix pfµ, has the form (pf , 0, . . . , 0) . All the other

rows remain unchanged. Now we choose the new basis of G/R as

(g′1 +R, g2 +R, . . . , gs +R, h) where

g′1 = g1 + µ2g2 + · · ·+ µsgs

as a new basis of G/R such that β′′ changes to β′ =
(

piE

pf 0 . . . 0

)
and the matrix γ changes to an upper triangular matrix. But then by

Lemma 4.4 there is a basis of R3, using the diagonal entries as pivots,

such that again the unit matrix in γ is reestablished. Hence the claimed

form of (β, γ) is obtained. �
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Theorem 8.2. Let G be a (1, 2)-group with regulator quotient

G/R ' (Zpk)l1 ⊕ (Zpk−1)l2 ⊕ (Zpk−2)l3

of exponent ≤ p6. Then G is decomposable.

Proof. Assume that G is indecomposable with a representing matrix
S(E, β, γ). If there is a unit in the first two blocks of β, then by
Lemma 6.6 the groupG has a direct summand of rank 2. By Lemma 6.5
the same is true if there is a 0-row in β. Since the group is in particular
clipped, there is no 0-column in β, and by Lemma 5.3 the matrix (β, γ)
has the following normal form:

(β, γ) =

pD1 0 0 E 0 0

0 pD2 0 0 E 0

X Y Z 0 0 W

where D1, D2 are diagonal matrices with p-powers (possibly 1) on the

diagonal of size h1, h2, respectively. The unit matrices in γ are already

used to create the 0-blocks in the block row (X, Y, Z, 0, 0,W ), and it is

used that β has no 0-row.

G has rank ≥ 7 forced by the regulator quotient. In the following we

change the representing matrix without changing the respective letters

indicating the relevant blocks.

By the Gauss algorithm downward we may assume that the columns

of β with index ≤ h1 + h2, i.e., columns with pD1, pD2 above, have

the following property:

Property: If pd ∈ ps Z \ps+1 Z is an entry in pD1, pD2,

on the diagonal, respectively, then x ∈ (ps−1 Z \ps Z) ∪ {0}
for all entries x in the same column of X,Y , respectively.

(∗)

If there is an entry of X or Y , say x, that does not have this property,
then by Lemma 4.7 there is a basis of G/R, using the entry in pD1,pD2

as pivot, such that x changes to 0. This will change the last block row
(0, 0,W ) in γ. But by Lemma 4.8 there is a basis of R2⊕R3 such that
again the original form (0, 0,W ) is obtained. Either there is a unit
in (X, Y, Z) and we take it as a pivot, or there is no unit in a row of
(X,Y, Z), but then by the regulator criterion there is a unit in W that
is used as a pivot. Hence we may assume that each column of β with
index ≤ h1 + h2 has Property (∗).
If there is a unit in (Y, Z) with position (i, j) in β, then by Lemma 4.8
there is a basis of R2 ⊕ R3 such that the ith row of (β, γ) changes to
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(0, . . . , 0, 1, 0, . . .) where the entry 1 is at position j and by Lemma 4.7
there is a basis of G/R such that the jth column of β changes to
(0, . . . , 0, 1, 0, . . . , 0)t. But then by Proposition 6.4 there is a direct
summand of rank 2, contradicting the assumption that G is inde-
composable. Hence the entries of the matrices Y and Z are in pZ.
Moreover, by row and column permutations the matrix pD1 changes

to
 

pE 0

0 p2D1

!
, where pE is of size h3. This changes the unit matrix

in the first block of γ, but by column permutations in γ again the unit
matrix is reestablished, without changing (β, γ) elsewhere. By Prop-
erty (∗) there are units in all columns of X corresponding to pE, i.e.,
with index ≤ h3, and there is no unit in the columns of X with in-
dex > h3. Otherwise, by Proposition 6.4, using such a unit as pivot,
there is a direct summand of rank 2, contradicting the assumption
that G is indecomposable. By Lemma 4.8 there is a p-Koehler basis
of R2 ⊕R3 and by Lemma 4.7 there is a basis of G/R such that (β, γ)
changes to

(β, γ) =

pE 0 E 0
0 p2D1 0 0 E 0

0 pD2 0 0 E 0

E pX1 pY1 pZ1 0
0 pX2 pY2 pZ2 0 E

If there is a p-unit in D2, at position (i, j) in β, then the ith row
of β is of the form (0, . . . , 0, p, 0, . . . , 0) where p has column index j
and by Lemma 4.7 there is a basis of G/R such that the jth column
of β changes to (0, . . . , 0, p, 0, . . . , 0)t where p is at position (i, j). But
then 〈xi, yj, zi〉∗ is a direct summand of rank 3 by Proposition 6.4,
contradicting the assumption that G is indecomposable. Hence the
entries of the matrices pD2 are in p2 Z.
If there is a row pivot in Z2 for the block row (pX2, pY2, pZ2), at position
(i, j) in β, then by Corollary 4.5 there is a p-Koehler basis of R2 such
that the ith row of (β, γ) changes to (0, . . . , 0, p, 0, . . . , 0, 1, 0, . . . , 0)
where p is at position (i, j) and 1 is at position (i, l) where l = i− h3.
Moreover, by Lemma 4.7 there is a basis of G/R such that the jth
column of β changes to (0, . . . , 0, p, 0, . . . , 0)t where p has row index i.
This changes the submatrixM = γ([l1+l2+1, l1+l2+h3], [l1+l2+1, r3]),
and the unit matrix in the last block of γ. But then by Corollary 4.5
there is a p-Koehler basis of R3 such that again the unit matrix in
the last block of γ is obtained. Furthermore, by Lemma 4.8 there is a
p-Koehler basis of R2 ⊕R3, using the entries of the unit matrix in the
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last block of β as pivots, such that again M changes to 0. This changes
the submatrix M ′ = γ([1, h3], [l1 + l2 + 1, r3]) in the first block of γ.
By Corollary 4.5 there is p-Koehler basis of R3 such that again the
M ′ changes to 0. All the other rows and columns remain unchanged.
Then 〈xi, yj, zi〉∗ is a direct summand of G of rank 3 by Proposition 6.4,
contradicting the assumption that G is indecomposable. Hence there
is no row pivot in pZ2 for the block row (pX2, pY2, pZ2), in particular
the entries of pZ2 are in p2 Z.
Similarly, if there is a row pivot in pZ1 for (pX1, pY1, pZ1), at position
(i, j) in β, then by Corollary 4.5 there is a p-Koehler basis of R2 such
that the ith row of (β, γ) changes to (0, . . . , 0, 1, 0, . . . , 0, p, 0, . . . , 0)
where p is in pZ1, at position (i, j) in β, and 1 is at position (i, l) where
l = i − (l1 + l2). Furthermore, by Lemma 4.7 there is a basis of G/R
such that the jth column of β changes to (0, . . . , 0, p, 0, . . . , 0)t where p
has row index i. This changes the unit matrix in the last block of β and
the submatrix N = β([l1 + l2 +h3 +1, r], [1, h3]) below E in β. Then by
Corollary 4.5 there is a p-Koehler basis of R2 such that again the unit
matrix in the last block of β is obtained. This changes pE in the first
block of β, but by Lemma 8.1 again pE is reestablished. By Lemma 4.3
the new entries of N are all divisible by p since the entries of pZ2 are
in p2 Z. Then by Lemma 4.7 there is a basis of G/R, using the entries
of pE as pivots, such that again the original N is obtained. This causes
some changes in the submatrix N ′ = γ([l1 + l2 + h3 + 1, r], [1, h3]) in
the last block of γ. By Corollary 4.5 there is a p-decomposition basis
of R3, using the entries of E in γ as pivots, such that again N ′ changes
to 0. But then by Proposition 6.4 there is a direct summand of rank 5,
contradicting the assumption that G is indecomposable of rank ≥ 7.
Hence there is no row pivot in pZ1 for (pX1, pY1, pZ1) i.e., the entries
of pZ1 are in p2 Z. By the same arguments above there is no row pivot
in pY for the block row (pX, pY, pZ), in particular the entries of pY
are in p2 Z. Hence all the row pivots of the block row (pX, pY, pZ) are
in pX. Moreover, there is no zero row in X. Otherwise, since the row
pivots of (pX, pY, pZ) are in pX this row of (Y, Z) is also 0. Then by
Proposition 6.4 there is a direct summand of rank ≤ 4, contradicting
the assumption that G is indecomposable. By Property (∗), and since
the entries of Y are in p2 Z , the entries of p2D2 are in p3 Z. Hence
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(β, γ) changes to

(β, γ) =

pE 0 E 0
0 p2D1 0 0 E 0

0 p3D2 0 0 E 0

E pX1 p2Y1 p2Z1 0
0 pX2 p2Y2 p2Z2 0 E

If the regulator quotient is of exponent p4, then p2Y = 0 and p2Z = 0.

But then by Proposition 6.4 there is a direct summand of rank ≤ 3.

Hence these matrices do not exist, contradicting the given regulator

quotient. Hence the group G with regulator quotient of exponent p4 is

decomposable.
Now let the exponent of the regulator quotient be p5 or p6. By Lemma
4.7 there is a basis of G/R such that the entries in each column of pX1

that have higher p-power divisors than the entries in the same column
of pX2 change to 0. The remaining entries in pX1 are automatically
column pivots. Then we permute the smallest p-power divisor in pX1,
at position (1, 1) in pX1. By Corollary 4.5 there is a p-Koehler basis of
R2 and since the entries in pX1 are column pivots by Lemma 4.7 there
is a basis of G/R such that pX changes to

pX =

pt1 0 . . . 0

0
...

pX′

0

We repeat the same procedure with the matrix pX ′. The first row and
the first column of the matrix pX will not change. Thus we obtain

pX =

pt1 0 0 . . . 0

0 pt2 0 . . . 0

0 0

...
... pX′′

0 0

.
Successively repeating this procedure on the submatrices, and using
that pX has no 0-row and no 0-column the matrix pX changes to 
pX1

pX2

!
=

 
pD3 0

0 pθ

!
. This changes the submatrix H = β([l1 + l2 + h3 +

1, r], [1, h3] below E in β, but does not change the property that all
the pivots are in pX. The new entries of H are all divisible by p. By
Lemma 4.7 there is a basis of G/R, using the entries of pE as pivots,
such that again H changes to 0. This causes changes in the matrix
H ′ = γ([l1 + l2 + h3 + 1, r], [1, h3]). But then by Corollary 4.5 there is
a basis of R3, using the entries of E in the last block of γ as pivots,
such that again H ′ changes to 0. All the other rows and columns
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remain unchanged. Moreover, by Corollary 4.5 there is a p-Koehler
basis of R2 and by Lemma 4.7 there is a basis of G/R such that pθ
changes to pD4, where D4 is a diagonal matrix with p-powers on the
diagonal. This will change the matrix p2D1 and the unit matrix in the
last block of γ, but by Property (∗) there is a basis of G/R such that
again p2D1 is reestablished. By Corollary 4.5 there is a basis of R3

such that again the unit matrix in γ is obtained. Hence the matrix pX

changes to the matrix

(
pD3 0
0 pD4

)
and (β, γ) has the following form:

(β, γ) =

pE 0 E 0
0 p2D1 0 0 E 0

0 p3D2 0 0 E 0

E pD3 0 p2Y1 p2Z1 0
0 0 pD4 p2Y2 p2Z2 0 E

By Corollary 4.5 there is a basis of R2, using the entries of the unit
matrix in β as pivots, such that the first row of (E, pD3) changes to
(1, 0, . . . , 0). This changes the entry at position (1, 1) in the submatrix
T = β([1, h3], [h3 + 1, l1]) in the first block of β. By Property (∗)
if the entry in p2D1, at position (i, j) in β, where i = j = h3 + 1,
is in ps Z \ps+1 Z, then the entry in pD3, at position (l, j) in β, with
l = l1 + l2 + 1, is in ps−1Z \ ps Z. Thus by Lemma 4.3 the new entry at
position (1, 1) in the matrix T , is in ps Z \ps+1 Z. Hence by Lemma 4.7
there is a basis of G/R, using the entries of p2D1 as pivots, such that
the jth column of β changes to (0, . . . , 0, ps, 0, . . . , 0)t where ps has row
index i. This will change the submatrix T ′ = γ([1, h3], [h3+1, l1]) in the
first block of γ. By Corollary 4.5 there is a basis ofR3 such that again T ′

changes to 0. All the other rows and columns remain unchanged. But
then 〈xi, yj, zi〉∗ is a direct summand of rank 3 by Proposition 6.4,
contradicting the assumption that G is indecomposable of rank ≥ 7.
Hence the unit matrix in the last block of β and the corresponding
columns do not exist and (β, γ) changes to

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pX p2Y p2Z 0 E

Now we show that there is no zero row in p2Z. Assume that the ith row
of p2Z is zero. If the ith row of p2Y is also zero, then by Corollary 4.5
there is a p-Koehler basis of R2 such that the ith row of β changes to
(0, . . . , 0, pl, 0, . . . , 0) where pl is the pivot of the ith row of β, that is in
pX and at position (i, j) in β. This changes p2D1 but by Property (∗),
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there is a basis of G/R such that again the matrix p2D1 is obtained.
Moreover, there is a basis of G/R such that the jth column changes
to (0, . . . , 0, pl+1, 0, . . . , 0, pl, 0, . . . , 0)t, where pl+1 is in p2D1 and at
position (j, j) in β, and pl is at position (i, j) in β. This changes only
the unit matrix in the last block of γ to a lower triangular matrix. By
Corollary 4.5 there is a p-Koehler basis of R3 such that again the unit
matrix in the last block of γ is reestablished. Then by Proposition 4.5
there is a direct summand of rank 5, contradicting the assumption that
G is indecomposable of rank ≥ 7. Hence, if the ith row of p2Z is zero,
then there is at least one non-zero entry in the ith row of p2Y . Assume
that the entry pl in p2Y , at position (i, j) in β, is the row pivot of the
ith row of p2Y . By the assumption that the ith row of p2Z is zero
and by choosing a new basis of R2 the ith row of (p2Y, p2Z) changes to
(0, . . . , 0, pl, 0, . . . , 0) where pl has column index j. This changes p3D2,
but by Property (∗) there is a basis of G/R such that again p3D2 is
reestablished. Moreover, there is a basis of G/R such that the jth
column of β changes to (0, . . . , 0, pl, 0, . . . , 0)t where pl has row index i.
This changes the submatrix A = β([l1 + 1, l1 + l2], [1, l1]) in the second
block of β, and causes some changes in γ which are not important for
our result. By Lemma 4.7 there is a basis of G/R, using the entries
of p2D1 as pivots, such that again the matrix A changes to 0. But
then there is a 0-row in the second block of β, i.e., by Proposition 6.4
a direct summand of rank 2, contradicting the assumption that G is
indecomposable. Thus there is no 0-row in Z and since G is clipped
there is no 0-column in Z. Thus, and by the assumption that the
given regulator quotient is of exponent ≤ 6, by Lemma 4.3 there is a
p-Koehler basis of R2 and by Lemma 4.7 there is a basis of G/R such

that p2Z changes to the matrix
 
p2E 0

0 p3E

!
. This causes some changes

in the unit matrix in the last block of γ, but then there is a p-Koehler
basis of R3 such that again the original γ is obtained. Thus (β, γ)
changes to

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pX1 p2Y1 p2E 0 0 E 0
pX2 p2Y2 0 p3E 0 E

By Corollary 4.5 there is a p-decomposition basis of R2 such that p2Y1

changes to 0. All the other rows and columns remain unchanged. Since
all the row pivots of the block row (pX1, p

2Y1, p
2E) are in pX1 the

entries of pX1 are in (pZ \p2 Z)∪{0}. Thus, and since there is no zero
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row in pX1 by Corollary 4.5 there is a p-Koehler basis of R2 and by
Lemma 4.7 there is a basis of G/R such that pX1 changes to (pE, 0).
This will change p2D1, and the matrix p2E to a lower triangular matrix
and the unit matrix in γ. But by Property (∗) there is a basis of G/R
such that again p2D1 is obtained and by Corollary 4.5 there is a basis
of R2 such that again p2E is reestablished. Moreover, by Corollary 4.5
there is a basis of R3 such that again the unit matrix in γ is obtained.
Thus (β, γ) changes to

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE 0 0 p2E 0 0 E 0
pX2 pX ′

2 p2Y2 0 p3E 0 E

where pE is of size h4.

If the given regulator quotient is of exponent p5, then p3E is the 0-

matrix and the second part of the last block of (β, γ) does not exist.

But then by Proposition 6.4 there is a direct summand of rank 6. Hence

pE and the corresponding rows and columns do not exist, contradicting

the given regulator quotient. Thus the groupG with the given regulator

quotient of exponent p5 is decomposable.

Now let the regulator quotient be of exponent p6. By Corollary 4.5

there is a basis of R2 and by Lemma 4.7 there is a basis of G/R such

that (pX2, pX
′
2) changes to

(
0 pE 0

p2X ′′
2 0 p2X3

)
where pE is of size h5.

This changes p2D1, the matrix p3E gets a lower triangular matrix and

the unit matrix B = γ([l1 + l2 + h4 + 1, r], [l1 + l2 + h4 + 1, r3]). By

Property (∗), there is a basis of G/R such that again p2D1 is obtained.

Moreover, there is a p-Koehler basis of R2, using the diagonal entries of

the lower triangular matrix as pivots, such that again the matrix p3E

is reestablished, without changing (β, γ) elsewhere. By Corollary 4.5

there is a basis of R3, using the diagonal entries of B as pivots, such

that again the matrix B changes to unit matrix. Thus (β, γ) changes

to

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE 0 0 p2E 0 0 E 0
0 pE 0

p2Y2 0 p3E 0 E
p2X ′′

2 0 p2X3
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Moreover, there is a basis of G/R, with pivots in pE above, such that
the submatrix pX ′′

2 changes to 0. This will change the submatrices
F = β([l1 + l2 + h4 + h5 + 1, r], [l1 + l2 + 1, l1 + l2 + h4]) below p2E
and F ′ = γ([l1 + l2 + h4 + h5 + 1, r], [l1 + l2 + 1, l1 + l2 + h4]) below E
in γ. The new entries of F are divisible by p2. By Corollary 4.5
there is a p-Koehler basis of R2, using the entries of p3E, such that
the entries of F that are in p3 Z change to 0. Hence the new entries
of F are ∈ (p2 Z \p3 Z)∪ {0}. But since all the row pivots of the block
row (pX, p2Y, p2Z) are in pX, the matrix F is zero. Furthermore, by
Corollary 4.5 there is a basis of R3, using the entries of E in the last
block of γ as pivots, such that F ′ changes to 0. Thus (β, γ) has the
following form:

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE 0 0 p2E 0 0 E 0

0
pE 0

p2Y2 0 p3E 0 E
0 p2X3

Then by Proposition 6.4 there is a direct summand of rank 6. Hence
pE = β([l1 + l2 +1, l1 + l2 +h4], [1, h4]) and the corresponding rows and
columns do not exist and (β, γ) has the following form:

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE 0 p2Y2 p3E 0 E

0 p2X3 p2Y ′
2

Since there is no 0-row and no 0-column in p2X3, and since the entries
of p2X3 are in (p2 Z \p3 Z) ∪ {0} by Corollary 4.5 there is a p-Koehler
basis of R2 and by Lemma 4.7 there is a basis of G/R such that p2X ′′

2

changes to p2E. This will change p2D1, and p3E and the unit matrix
in the last block of γ. But by Property (∗) there is a basis of G/R such
that again p2D1 is obtained. By Corollary 4.5 there is a basis of R2

such that again p3E is obtained and a basis of R3 such that again the
unit matrix in γ is reestablished. Again by Corollary 4.5 there is a p-
Koehler basis, using the entries of p3E as pivots, such that the entries
of p2Y ′

2 that are in p3 Z change to 0. All the other rows and columns
remain unchanged. Hence the entries of p2Y2 ∈ (p2 Z \p3 Z{0}. Since
all the row pivots for (p2X3, p

2Y ′
2 , 0, p

3E) are in p2X3 the matrix p2Y ′
2
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is 0. Thus (β, γ) has the following form:

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE 0 p2Y2 p3E 0 E

0 p2E 0

But then by Proposition 6.4 there is a direct summand of rank 6. Hence

the matrix p2E and the corresponding rows and columns do not exist

and (β, γ) has the following form:

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE p2Y2 p3E 0 E

There is no 0-row and no 0-column in p2Y2. Otherwise there is a direct
summand of rank 6. Hence p2Y2 changes to p2E. This will change p3D2,
and the matrices pE and p3E to a lower triangular matrix. But by
Property (∗), there is a basis of G/R such that again p3D2 is obtained.
There is a basis of R2 such that again the matrices p2E and p3E are
obtained. Hence (β, γ) has the form:

(β, γ) =

p2D1 0 E 0

0 p3D2 0 0 E 0

pE p2E p3E 0 0 E

There is a p-Koehler basis of R2 such that the ith row of (β, γ) where

i = l1 + l2 + 1 changes to (p, . . . , 0, . . . , 0, p3, . . . , 0, 1, . . . , 0) where p

is at position (i, 1), and p3 is at position (i, j) where j = i and 1 is

in γ, at position (i, l) where l = i . This changes only the entry at

position (1, 1) in the submatrix H = β([1, l1], [l1 + 1, l1 + 12]) in the

first block of β. The new entry at position (1, 1) in H, and at position

(1, l1 + 1) in β, is divisible by p3. Hence there is a basis of G/R, using

the entries of p3D2 as pivots, such that again the submatrix H changes

to 0. Then by Proposition 6.4 there is a direct summand of rank 3,

contradicting the assumption that G is indecomposable. Hence p3D2

and the corresponding rows and columns do not exist, contradicting the

given regulator quotient. Thus the group G with the given regulator

quotient of exponent p6 is decomposable. �
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9. (1, 2)-Groups with Regulator quotient of Exponent ≤ p4

Theorem 9.1. There is no indecomposable (1, 2)-group with regulator

quotient of exponent p. An indecomposable (1, 2)-group with regulator

quotient G/R of exponent p2 is of rank 3.

Proof. Let G be a (1, 2)-group with (homocyclic) regulator quotient

of exponent p. By Theorem 7.1 the group G is decomposable. If the

regulator quotient G/R ∼= (Zp2)
l1 ⊕ (Zp)

l2 , then by Theorem 7.2 the

group G is decomposable. Hence G/R ∼= (Zp2)
l, i.e., the regulator

quotient is homocyclic. Then by Theorem 7.1 the group G has rank 3

if it is indecomposable. �

Theorem 9.2. An indecomposable (1, 2)-group with regulator quotient

of exponent p3 is of rank 3 or 4.

Proof. We discuss the different isomorphism types of the regulator quo-

tient G/R. If G/R ∼= (Zp3)
l or G/R ∼= (Zp3)

l1 ⊕ (Zp2)
l2 , then G is

of rank 3 by Theorem 7.1 and by Theorem 7.2. The case G/R ∼=
(Zp3)

l1 ⊕ (Zp2)
l2 ⊕ (Zp)

l3 cannot happen by Theorem 8.2. There is only

left the case G/R ∼= (Zp3)
l1 ⊕ (Zp)

l2 , and by Theorem 7.3 the rank of G

is then 4. �

Let G be a (1, 2)-group with a representing matrix S(E, β, γ) and with

regulator quotient G/R of exponent p4. If the group G is indecompos-

able with regulator quotient G/R ' (Zp4)
l1 , then by Theorem 7.1 the

group G has rank 3. By Theorem 7.2 there is no indecomposable (1, 2)-

group G with the regulator quotient G/R ' (Zp4)
l1 ⊕ (Zp3)

l2 . If G is

indecomposable with the regulator quotient G/R ' (Zp4)
l1 ⊕ (Zp1)

l2 ,

then by Theorem 7.3 the group G has rank 4. Moreover, if the regu-

lator quotient G/R ' (Zp4)
l1 ⊕ (Zp3)

l2 ⊕ (Zp2)
l3 , then by Theorem 8.2

the group G is decomposable. Now we will discuss the remaining iso-

morphism types of the regulator quotient G/R of exponent p4.

Theorem 9.3. An indecomposable (1, 2)-group G with regulator quo-

tient G/R ' (Zp4)
l1 ⊕ (Zp2)

l2 is of rank ≤ 5.

Proof. Let S(E, β, γ) be the representing matrix of G. If there is a
unit in the first block of β, then by Lemma 4.3, by Lemma 4.7 and
by Proposition 6.4 the group G has a direct summand of rank 2. By
Lemma 6.5 the same is true if there is a 0-row in β. In the following we
successively change the bases of R and of G/R, but to simplify notation
we will use the same letters for β, γ and all occurring submatrices
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in (β, γ), choosing new bases of R or of G/R. By Lemma 5.2 there is
a p-Koehler basis of R and a basis of G/R such that (β, γ) changes to

(β, γ) =

pE 0 E 0 0 0

p2E 0 0 E 0 0
0 0 p3E 0 0 0 E 0

δ η ζ ρ 0 φ1

with block matrices δ, η, ζ, ρ and φ1.
By Lemma 4.3, by Lemma 4.7 and Proposition 6.4 if there is a unit
in η, at position (i, j) in β, then 〈xi, yj〉∗ is a direct summand of rank 2.
Hence all entries of η are in pZ. The same holds for the matrices ζ
and ρ. Moreover, there is no zero column in δ,η,ζ and ρ. Otherwise by
Proposition 6.4 there is a direct summand of rank ≤ 3.
By Lemma 4.3 there is a basis of R2 and by Lemma 4.7 there is a

basis of G/R such that the matrix δ changes to

(
E 0

0 pδ

)
where E

is of size h3. This will change pE but by Lemma 8.1 again pE is
reestablished. Hence (β, γ) changes to

(β, γ) =

pE 0 E 0 0 0

p2E 0 0 E 0 0
0

0 p3E 0 0 0 E 0

E 0 pη pζ pρ 0 φ1

0 pδ pµ1 pµ2 pµ3 0 φ2

where pE is of size h1.
By Lemma 4.8 there is a basis of R2⊕R3, using the entries of the iden-
tity matrix in the second block of β as pivots, such that φ1 changes to 0
and pη, pζ and pρ remain unchanged. This will change the submatrix
Y = γ([1, h1]× [r3 − l1, r3]). But then by Corollary 4.5 there is a basis
of R3, using the entries of Eh1 in the first part of the first block of γ as
pivots, again Y changes to 0 without changing γ somewhere else. By
the regulator condition there is a unit in each row of φ2. Since G is
clipped there is no zero row in φ2. Hence by Lemma 4.4 there is a new
basis of R3 and by Lemma 4.7 there is a new basis of G/R such that φ2

changes to E without changing γ elsewhere. Moreover, by Lemma 4.7
there is a basis of G/R, using the entries of pE as pivots, such that pδ
changes to 0. This will change the submatrix A = β([l1+h3+1], [1, h3])
below E in β, and the submatrix A′ = γ([l1 + h3 + 1, r], [1, h1]). By
Lemma 4.7 there is a basis of G/R, using the entries of E in β as pivots,
such that again A changes to 0. By Lemma 4.3 there is a basis of R3,
using the entries of E in the last block of γ as pivots, such that again
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the submatrix A′ changes to 0. But then there is a direct summand
of rank 3, contradicting that G is indecomposable. Hence pδ and the
corresponding columns do not exist and (β, γ) changes to

(β, γ) =

pE 0 E 0 0 0

p2E 0 0 E 0 0
0

0 p3E 0 0 0 E 0

E pη pζ pρ 0 0
0 pµ1 pµ2 pµ3 0 E

Recall that pE is of size h1 and let p2E be of size h2. Assume that the
matrix µ2 has a p-unit, at position (i, j) in β. Since the entries of the
submatrix pµ2 ∈ (pZ \p2 Z) ∪ 0, there is a p-Koehler basis of R2 such
that the ith row of (β, γ) changes to (0, . . . , 0, p, 0 . . . , 1, 0, . . . , 0) where
p is at position (i, j) and in the matrix pµ2, and the entry 1 is at position
(i, l) in γ where l = i− h1. This causes some changes in the block row
of β with p3E that are not important for our result. Moreover, by
Lemma 4.7 there is a new basis of G/R such that the jth column of β
changes to (0, . . . , 0, p, 0, . . . , 0)t where the entry p is in the ith row of β.
This changes the submatrix M = γ([h1 +h2 +1, l1], [r3− l1, r3]) and the
submatrix N = γ([l1 +1, l1 +h1], [r3− l1, r3]). By Corollary 4.5 there is
a new basis of R2 such that M changes to 0 and by Lemma 4.8 there
is a new basis of R2 ⊕ R3 such that again the matrix N changes to 0.
All the other rows and columns remain unchanged. Then 〈xi, yj, zl〉∗ is
a direct summand of rank 3 by Proposition 6.4. Hence pµ2 = 0 and by
the same arguments also pµ3 = 0. Thus (β, γ) changes to

(β, γ) =

pE 0 E 0 0 0
p2E 0 0 E 0 0

0
0 p3E 0 0 0 E 0

E pη pζ pρ 0 0
0 pµ1 0 0 0 E

If µ1 has a p-unit, at position (i, j) in β, then by Lemma 4.3 there is a
p-decomposition basis of R2 such that the ith row of (β, γ) changes to
(0, . . . , 0, p, 0, . . . , 0, 1, 0, . . . , 0) where p is in the matrix pµ1, at posi-
tion (i, j) in β, and the entry 1 is at position (i, l) in γ where l = i−h1.
This will change p2E, but by Lemma 8.1 again the matrix p2E is
obtained. Moreover, there is a basis of G/R such that the jth col-
umn of β changes to (0, . . . , 0, p2, 0, . . . , 0, p, 0, . . . , 0)t where p2 has
row index j and p has row index i. This will change the submatrix
N = γ([l1 + 1, l1 + h1], [r3 − l1, r3]). But then by Lemma 4.8 there is
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a basis of R2 ⊕ R3, using the entries of Eh1 in the second block of β
as pivots, such that again N changes to 0. This causes changes only
in the submatrix Y = γ([1, h1], [r3 − l1, r3]) in the first block of γ. By
Corollary 4.5 there is a basis of R3 such that again Y changes to 0. All
the other rows and columns remain unchanged. Then 〈xj, xi, yj, zj, zl〉
is a direct summand of rank 5 by Proposition 6.4, contradicting the
assumption that G is indecomposable. Hence pµ1 = 0. But then by
Proposition 6.4 the group G has a direct summand of rank 2, contra-
dicting the assumption. Thus the matrix pµ1 and the corresponding
rows and columns do not exist and (β, γ) has the following form:

(β, γ) =

pE 0 E 0 0
p2E 0 0 E 0

0 0 p3E 0 0 0 E

E pη pζ pρ 0

If the matrix ρ has a p-unit, at position (i, j) in β, then by Corollary 4.5
there is a p-Koehler basis of R2 such that the ith row of β changes to
(0, . . . , 0, 1, 0, . . . , 0, p, 0, . . . , 0) where 1 has column index i − l1 and p
has column index j. Moreover, by Lemma 4.7 there is a new basis
of G/R such that the jth column of β changes to (0, . . . , 0, p, 0, . . . , 0)t

where p has the row index i. This will change the unit matrix in the
second block of β. But by Corollary 4.5 there is a new basis of R2

such that again this unit matrix is obtained. This will change the
matrix pE in β. But by Lemma 8.1 again the matrix pE is obtained.
This causes changes in Eh1 in the first block of γ. By Corollary 4.5
there is a basis of R3 such that this unit matrix in the first block of β
is reestablished without changing γ elsewhere. Then 〈xa, xi, ya, yj, za〉
is a direct summand of rank 5 by Proposition 6.4, where a = i − l1.
Hence pρ and the corresponding rows and columns do not exist and
(β, γ) has the following form:

(β, γ) =

pE 0 E 0 0
p2E 0 0 E 0

0 0 p3E 0 0 E

E pη pζ 0

If there is a p-unit, in ζ, at position (i, j) in β, then by Corollary 4.5
there is a p-Koehler basis of R2 and by Lemma 4.7 there is a basis of
G/R such that the ith row of β changes to (0, . . . , 0, 1, 0, . . . , 0, p, 0, . . . , 0)
where 1 has column index i − l1 and p has column index j. This will
change the matrix p3E and the submatrix X = β([h1 +h2 +1, l1], [h1 +
1, h1 +h2]). By Lemma 8.1 again the matrix p3E is obtained. The new
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entries of X are divisible by p3 by Lemma 4.3. Then there is a basis
of G/R such that again X changes to 0 without changing β elsewhere.
But this will change the submatrix Y = γ([h1+h2+1, l1], [h1+1, h1+h2]).
Then by Corollary 4.5 there is a basis of R3, using the entries of E in γ
as pivots, such that Y changes to 0, without changing (β, γ) somewhere
else. Moreover, by Lemma 4.7 there is a new basis of G/R such that
the jth column of β changes to (0, . . . , 0, p, 0, . . . , 0)t. This will change
the submatrix T = β([h1 +h2 + 1, l1], [1, h1]). The new entries of T are
all divisible by p2 by Lemma 4.3. Then there is a basis of G/R such that
again T changes to 0 without changing β somewhere else. This causes
some changes in γ that do not play an important role for the result.
But then there is a zero row in the submatrix β([h1 +h2 +1, l1], [1, r2]),
i.e., a direct summand of rank 2 by Proposition 6.4, contradicting the
assumption that G is indecomposable. Hence the block matrix p3E
and the corresponding rows and columns do not exist and (β, γ) has
the following form:

(β, γ) =
pE 0 E 0
0 p2E 0 E

E pη 0 0

There is a basis of R2, using the entries of E in β as pivots, such that pη

changes to 0. This will change the submatrix B = β([1, h1], [h1 +1, l1]).

The new entries of T are divisible by p2. But then by Lemma 4.7 there

is a basis of G/R, using the entries of p2E as pivots, such that again B

changes to 0. This causes changes in B′ = γ([1, h1], [h1 + 1, l1]). By

Corollary 4.5 there is a basis of R3, using the entries of E in γ, such

that again B′ changes to 0. But then there is a direct summand of

rank ≤ 4. Since G is indecomposable the part (β, γ) has either the

form

(
p 1

1 0

)
or

(
p2 1 0

p 0 1

)
, i.e., the group G has rank ≤ 5 if it is

indecomposable. �

Theorem 9.4. Let G be a (1, 2)-group with regulator quotient

G/R ' (Zp4)
l1 ⊕ (Zp3)

l2 ⊕ (Zp1)
l3 .

Then G is decomposable.

Proof. Assume that G is indecomposable with a representing matrix
S(E, β, γ). Then by Lemma 6.6 there is no unit in the first two blocks
of β and by Lemma 5.3 the part (β, γ) of the representing has the
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normal form

(β, γ) =

pD1 0 0 E 0 0

0 0 pD2 0 E 0

µ ν η 0 0 ρ

with diagonal matrices pD1 and pD2. Note that the group G with the

given regulator quotient is of rank ≥ 6. In the following we successively

change the bases of R and of G/R, but to simplify notation we will use

the same letters for β, γ and all occurring submatrices in (β, γ).

The entries of µ,ν,η and ρ are units or zero and no 0-column exists in

these matrices. Otherwise there is a direct summand of rank ≤ 3.

If there is a unit in ν, at position (i, j) in β, then 〈xi, yj〉∗ is a direct sum-

mand of rank 2 by Lemma 4.3, by Lemma 4.7 and by Proposition 6.4,

contradicting the assumption that G is indecomposable. Hence ν = 0.

But this contradicts the fact that there is no 0-column in ν. Hence ν

and the corresponding columns do not exist. Applying row permuta-

tions and column permutations to the matrix (β, γ) changes (β, γ) to

(β, γ) =

pE 0 0

0 p2E 0 0 E 0 0

0 0 p3E

pE 0
0

0 p2E
0 E 0

µ ζ σ η ψ 0 ρ

By the same arguments as above the matrices σ and ψ, and the corre-

sponding columns do not exist. Thus (β, γ) changes to

(β, γ) =

pE 0 E 0

0 p2E 0 0 E 0

0 0 pE 0 0 E 0

µ ζ η 0 ρ

where pE in the first block of β is of size h1.

If there is a unit in ζ, at position (i, j) in β, then by Lemma 4.8 there

is a p-Koehler basis of R2 ⊕R3 such that the ith row of (β, γ) changes

to (0, . . . , 0, 1, 0, . . . , 0) where 1 has the column index j. This changes

the matrix p2E and the submatrices X = β([h1 + 1, l1], [1, h1]) and

Y = β([h1 + 1, l1], [l1 + 1, r2]) and Z = γ([h1 + 1, l1], [l1 + 1, r3]). By

Lemma 8.1 again the matrix p2E is obtained. By Corollary 4.5 there
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is a p-Koehler basis of R3 such that again Z changes to 0, without

changing γ somewhere else. The new entries of X any Y are divisible

by p2 by Lemma 4.3. Then by Lemma 4.7 there is a basis of G/R such

that again the matrices X and Y change to 0. This causes changes in

T = γ([h1 +1, l1], [1, h1]) and in V = γ([h1 +1, l1], [l1 +1, r3−h1]). But

by Corollary 4.5 there is a basis of R3 such that again T and V change

to 0, without changing (β, γ) elsewhere. Moreover, by Lemma 4.7

there is a basis of G/R such that the jth column of β changes to

(0, . . . , 0, p2, 0, . . . , 0, 1, 0, . . . , 0)t where the entry p2 is at position (j, j)

and 1 is at position (i, j) in β. All the other rows and columns of

(β, γ) remain unchanged. But then 〈xj, xi, yj, zi〉∗ is a direct summand

of rank 4 by Proposition 6.4, contradicting the assumption that G is

an indecomposable group of rank ≥ 6. Hence the matrix ζ and its

corresponding columns do not exist. Thus (β, γ) has the following

form:

(β, γ) =

pE 0 E 0

0 pE 0 E 0

µ η 0 ρ

By the same arguments as above for the non-existence of ζ also the

matrix η and the corresponding columns do not exist. But then the

second block of β is zero, i.e., by Proposition 6.5 there is a direct

summand of rank 2. Hence the second block of (β, γ) does not exist,

contradicting the given regulator quotient. �

Theorem 9.5. Let G be a (1, 2)-group with regulator quotient

G/R ' (Zp4)
l1 ⊕ (Zp2)

l2 ⊕ (Zp1)
l3 .

Then G is decomposable.

Proof. Assume that G is indecomposable with a representing matrix
S(E, β, γ) . By Lemma 6.6 there is no unit in the first block of β.
Moreover, there is no zero row in β. Otherwise, by Lemma 6.5 there is
a direct summand of rank 2. By Lemma 5.2 there is a p-Koehler basis
of R and a basis of G/R such that (β, γ) changes to

(β, γ) =

pE 0
0 p2E 0 E 0

0 p3E 0

µ ν η ζ 0 φ1

δ σ κ ρ 0 φ2
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Note that the group G with the given regulator quotient is of rank ≥ 5.

In the following we successively change the bases of R and of G/R,

but to simplify notation we will use the same letters for β, γ and all

occurring submatrices in (β, γ), choosing new bases of R or of G/R. By

Proposition 6.4 if there is a unit in ζ, at position (i, j) in β, then 〈xi, yj〉∗
is a direct summand of rank 2. Hence all entries of ζ are in pZ. The

same holds for ν and η, i.e., all entries of ν and η are in pZ.

If there is a unit in ρ, at position (i, j) in β, then by Lemma 4.8 there is

a new p-Koehler basis of R2⊕R3 such that the ith row of (β, γ) changes

to (0, . . . , 0, 1, 0, . . . , 0) where 1 has column index j and by Lemma 4.7

there is a new basis of G/R such that the jth column of β changes to

(0, . . . , 0, 1, 0, . . . , 0)t where 1 has row index i. Then 〈xi, yj〉∗ is a direct

summand of rank 2 by Proposition 6.4, contradicting the assumption

that G is indecomposable. Since the entries of ρ are units or zeros,

ρ = 0. The same holds for κ. Thus (β, γ) changes to

(β, γ) =

pE 0
0 p2E 0 E 0

0 p3E 0

µ pν pη pζ 0 φ1

δ σ 0 0 0 φ2

where pE is of size h1 and p2E is of size h2.
If there is a unit in σ, at position (i, j) in β, then there is a p-Koehler
basis of R2 ⊕R3 such that the ith row changes to (0, . . . , 0, 1, 0, . . . , 0)
where 1 has column index j. This changes p2E, and the submatrices
X = β([h1 +1, h1 +h2], [1, h1]) and Y = γ([h1 +1, h1 +h2], [h1 +h2 +1, r3]).
The new entries ofX are all divisible by p2 by Lemma 4.3. Then there is
a new basis of G/R such that X changes to 0. By Lemma 8.1 again the
matrix p2E is obtained and by Corollary 4.5 there is a new basis of R3

such that Y changes to 0. Moreover, there is a basis of G/R such that
the jth column of β changes to (0, . . . , 0, p2, 0, . . . , 0, . . . , 0, 1, 0, . . . , 0)t

where p2 has the row index j and 1 has the row index i. All the other
rows and columns remain unchanged. Then by Proposition 6.4 there
is a direct summand of rank ≤ 4, contradicting the assumption that G
is an indecomposable group of rank ≥ 5. Thus, and since the entries
of σ are units or zero the matrix σ = 0. Hence (β, γ) has the following
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form

(β, γ) =

pE 0
0 p2E 0 E 0

0 p3E 0

µ pν pη pζ 0 φ1

δ 0 0 0 0 φ2

Since the entries of µ are units or zero by Corollary 4.5 there is a
basis of R2 and by Lemma 4.7 there is a basis of G/R such that µ

changes to
 

E 0

0 0

!
. This will change pE, but by Lemma 8.1 again pE

is obtained. Hence (β, γ) changes to

(β, γ) =

pE 0
0 p2E 0 E 0

0 p3E 0

E 0

0 0
pν pη pζ 0 φ1

0 δ 0 0 0 0 φ2

By the same arguments as above for the matrix σ, also δ = 0. But then

the last block of β is 0. By Proposition 6.4 there is a direct summand of

rank 2, contradicting the assumption that G is indecomposable. Thus,

the matrix δ does not exist, contradicting the given regulator quotient.

�

Theorem 9.6. Let G be a (1, 2)-group with regulator quotient

G/R ' (Zp4)
l1 ⊕ (Zp3)

l2 ⊕ (Zp2)
l3 ⊕ (Zp1)

l4 .

Then G is decomposable.

Proof. Assume that G is indecomposable with a representing matrix
S(E, β, γ). By Lemma 6.6 there is no unit in the first two blocks of β.
By Lemma 5.3 the matrix (β, γ) has the normal form

(β, γ) =

pD1 0 0 E 0 0

0 pD2 0 0 E 0

µ ν φ 0 0 κ

ζ ν ρ 0 0 τ

with diagonal matrices pD1 and pD2.
Note that the group G with the given regulator quotient is of rank ≥ 8.
In the following we successively change the bases of R and of G/R,
but to simplify notation we will use the same letters for β, γ and all
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occurring submatrices in (β, γ). By row permutations and column per-
mutations the matrix (β, γ) changes to

(β, γ) =

pE 0 0
0 p2E 0 0 0 E 0 0
0 0 p3E

pE 0
0

0 p2E
0 0 E 0

µ δ θ η σ φ 0 0 κ

ζ ψ ω ν ς ρ 0 0 τ

There is no unit in δ,θ,η,σ,φ, ω,ς and ρ. Otherwise by Proposition 6.4
there is a direct summand of rank 2. Hence all entries of δ,θ,η,σ and φ
are in pZ. Thus, and since the entries of ω and ς and ρ are units or
zero, the submatrix ω = 0, and the submatrices ς = 0 and ρ = 0.
There is a p-Koehler basis of R2 and a basis of G/R such that the

matrix µ changes to

(
E 0

0 pµ

)
where E is of size h4. This changes pE

in the first block of β, but by Lemma 8.1 again pE is reestablished.
Moreover, there is a p-decomposition basis of R2 ⊕ R3, and a basis
of G/R , using the entries of E in β, such that (β, γ) changes to

(β, γ) =

pE 0 0
0 p2E 0 0 0 E 0 0
0 0 p3E

pE 0
0

0 p2E
0 0 E 0

E 0 pδ pθ pη pσ pφ 0 0 0
0 pµ pδ′ pθ′ pη′ pσ′ pφ′ 0 0 κ′

0 ζ ψ 0 ν 0 0 0 0 τ

where pE and p2E in the first block of β are of size h1 and h2 respec-

tively, and the matrix pE in the second block of β is of size h3.
By the regulator condition there is a unit in each row of κ′. Hence
there is a p-Koehler basis of R3 and a basis of G/R such that κ′ changes
to (E, 0). Moreover, there is a basis of G/R, using the entries of pE as
pivots, such that pµ changes to 0. This changes the 0-matrix below E
in β, and the submatrix X = γ([l1 + l2 + h4 + 1, l1 + l2 + l3], [1, h1]).
There is a basis of G/R, using the entries of E in β as pivots, such that
again the 0-matrix below E is obtained. There is a basis of R3, using
the entries of κ′ = (E, 0) such that X changes to 0. Furthermore, if
there is a unit in ψ, at position (i, j) in β, then by Lemma 4.8 there is
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a p-Koehler basis of R2⊕R3 such that the ith row of (β, γ) changes to
(0, . . . , 0, 1, 0, . . . , 0) where 1 has column index j. By Corollary 4.5 this
causes changes in the block row (0, p2E, 0, E, 0), in the first block of
(β, γ). There are also changes in the third block of (β, γ) but they are
not important for our result. By Lemma 8.1 again the matrix p2E
is obtained. By Corollary 4.5 the new entries of the submatrices
Y = β([h1+1, h1+h2], [1, h1]), and Z = β([h1+1, h1+h2], [l1+1, l1+h3])
are divisible by p2. Then by Lemma 4.7, using the entries of pE in the
first block of β as pivots, again the matrix Y changes to 0. Similarly,
by Lemma 4.7, using the entries of pE in the second block of β as piv-
ots, Z changes to 0. This will change the first block of γ. But then by
Corollary 4.5 there is a p-Koehler basis of R3 such that again the first
block of γ is reestablished, without changing (β, γ) elsewhere. More-
over, there is a basis of G/R such that the jth column of β changes
to (0, . . . , 0, p2, 0, . . . , 0, 1, 0, . . . , 0)t without changing (β, γ) elsewhere.
But then 〈xj, xi, yj, zj〉∗ is a direct summand of rank 4 by Proposi-
tion 6.4, contradicting the assumption that G is indecomposable of
rank ≥ 8. Hence ψ = 0. Thus, and by the same arguments as above
ν = 0. Hence (β, γ) changes to

(β, γ) =

pE 0 0
0 p2E 0 0 0 E 0 0
0 0 p3E

pE 0
0

0 p2E
0 0 E 0

E 0 pδ pθ pη pσ pφ 0 0 0
0 0 pδ′ pθ′ pη′ pσ′ pφ′ 0 0 κ′

0 ζ 0 0 0 0 0 0 0 τ

If there is a unit in ζ, then by Proposition 6.4 there is a direct summand

of rank ≤ 5. Hence the matrix ζ = 0. But then by Proposition 6.4

there is a direct summand of rank 2. Thus the matrix τ does not exist,

contradicting the given regulator quotient. �
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10. Conclusions and open questions

We collect all results.

Theorem 10.1. Indecomposable (1, 2)-groups with regulator quotient

of exponent p2 are of rank 3.

Indecomposable (1, 2)-groups with regulator quotient of exponent p3 are

of rank 3 or of rank 4.

Indecomposable (1, 2)-groups with regulator quotient of exponent p4 are

of rank ≤ 5. This boundary is sharp if and only if the test example G4,

given below, is indecomposable. In particular, the regulator quotient of

indecomposable (1, 2)-groups with regulator quotient of exponent p4 is

either isomorphic to Zl1
p4 ⊕Zl2

p2 or homocyclic, Zl
p4.

Indecomposable (1, 2)-groups with homocyclic regulator quotient of ex-

ponent ≥ p2 are of rank 3.

Indecomposable (1, 2)-groups with regulator quotient of exponent ≥ p3

and isomorphic to

(Zpk)l1 ⊕ (Zp)
l2

are of rank 4.

Theorem 10.2. There is no indecomposable (1, 2)-group with regulator

quotient of exponent p.

There is no indecomposable (1, 2)-group with regulator quotient of ex-

ponent pk and isomorphic to

(Zpk)l1 ⊕ (Zpk−1)l2 .

There is no indecomposable (1, 2)-group with regulator quotient of ex-

ponent ≤ p6 and isomorphic to

(Zpk)l1 ⊕ (Zpk−1)l2 ⊕ (Zpk−2)l3 .

Open Questions.

(1) Test example G4. The estimation rankG ≤ 5 for the maximal

rank of an indecomposable (1, 2)-groups G with regulator quotient of

exponent p4 is not known to be sharp. For this it remains to prove that

the group G4, explicitly given by its representing matrix

S(E, β, γ) =

(
p−4 0

0 p−2

)(
1 0 p2 1 0

0 1 p 0 1

)
.

is indecomposable.
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(2) There are some isomorphism types of the regulator quotient in the

cases of exponent p5 and p6, which are not dealt with. It is not clear if

the same arguments apply as before.
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