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Abstract: In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by
investigating aggregated classes. The increase in data with a very high spatial resolution enables
investigations on a fine-grained feature level which can help us to better understand the dynamics of
land surfaces by taking object dynamics into account. To extract fine-grained features and objects,
the most popular deep-learning model for image analysis is commonly used: the convolutional neural
network (CNN). In this review, we provide a comprehensive overview of the impact of deep learning
on EO applications by reviewing 429 studies on image segmentation and object detection with CNNs.
We extensively examine the spatial distribution of study sites, employed sensors, used datasets and
CNN architectures, and give a thorough overview of applications in EO which used CNNs. Our main
finding is that CNNs are in an advanced transition phase from computer vision to EO. Upon this,
we argue that in the near future, investigations which analyze object dynamics with CNNs will have
a significant impact on EO research. With a focus on EO applications in this Part II, we complete the
methodological review provided in Part I.

Keywords: artificial intelligence; AI; machine learning; deep learning; neural networks;
convolutional neural networks; CNN; image segmentation; object detection; earth observation

1. Introduction

The availability of spatio-temporal Earth observation data has increased dramatically over recent
decades. This data provides the needed information to understand and monitor land-surface dynamics
on a large scale, for example: urban growth and the distribution of settlements [1], vegetation cover
and its temporal dynamics [2], and water availability [3]. Traditionally such studies analyze aggregated
classes: buildings and impervious surfaces are summarized as built-up areas, trees and grassland
become regions with different vegetation intensities, and open water and shorelines are mapped as
binary water masks. However, to investigate the intrinsic characteristics of land cover and land use
classes, the spatio-temporal dynamics of the single entities which compose those classes must be taken
into account. Doing so will allow us to better understand the livelihoods on our planet: is urban
growth characterized by expansion or redensification? Which kind of buildings are newly built and
how are existing buildings modified? Which specific species and plant communities are present in
areas labeled as vegetated? How does human interaction with ecosystems specifically affect single
maybe endangered species? Is a specific ship the cause for a specific oil spill?

The spatio-temporal patterns of single entities like vehicles for transportation, the accumulation
of humans and goods or artificial infrastructures enables the description of space and how it is
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used precisely. Therewith, answering urgent geoscientific research questions becomes possible and
Earth observation as a tool can be more intensively used in everyday applications. Overall, in Earth
observation, land surface dynamics could be better described as specific things within general classes.

One crucial requirement to identify objects in remote sensing images is the availability of
spatio-temporal Earth observation data with a high to very high resolution. With the ongoing
development of spaceborne missions and open archives, the trend in increasing data availability
will continue in the near future. Nevertheless, due to the vast amount of data, processing techniques
are required that are adaptive, account for spatio-temporal characteristics, fast in processing and can
be automated while still competing with human performance or even outperforming them [4,5].

With the emergence of deep learning, a technique has been introduced which is able to meet
these requirements [4]. During the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
in 2012, Krizhevsky et al. [6] proved the potential of convolutional neural networks (CNNs) by
outperforming established methods [7]. The proposed CNN predicts only on learned features from
training data instead of using handcrafted features designed by humans. Since 2012, the diversity
of deep-learning models has been steadily increasing. Today, they are state-of-the-art techniques for
image segmentation and object detection which can extract fine-grained information and objects from
imagery data. Furthermore, the capabilities of artificial intelligence and deep learning were found to
be exceptionally relevant to current ecological challenges as well as their interactions with economy
and society, as formulated in the sustainable development goals [8].

These properties make deep learning the most promising tool for handling complex, large-scale
environmental information, with CNNs especially capable of analyzing imagery data. Considering
the leading role of deep learning in image recognition, image segmentation and object detection,
these methods can automatically archive and classify Earth observation data on a scene, instance and
pixel level. Hence, deep learning is ideally suited for Earth observation research in order to create
inventories of objects towards a digital twin earth [9] as illustrated in Figure 1, in order to better
analyze object dynamics and their impact on our planet.

With these features of deep learning in mind, the question arises how, and for which data types
and applications, deep learning has been used in Earth observation research. Previous reviews
about deep learning on Earth observation discussed the potential of deep learning [4,10–14] or the
usage of different model types [10–14] in a broad perspective. More recent reviews also started
discussing deep learning from a data type perspective, like for hyperspectral [15–17] or radar [18]
data as well as from an application perspective as in [19] for change detection. In most of these
reviews, the CNN deep-learning model type received the most attention and can today be seen as
an established deep-learning model in Earth observation applications. Due to the importance of the
CNN, not just in the field of Earth observation but also in computer vision [20], this review focuses
specifically on CNNs for object detection and image segmentation applied to Earth observation data.
Furthermore, to provide a detailed review of the most common data and architectures, the review
focuses on the most used sensors types, like optical, multispectral and radar. To our knowledge,
this review is the first in Earth observation with a detailed perspective on a specific deep-learning
model type, allowing a comprehensive discussions which will help to understand recent developments
and current applications.

The predecessor of this review series, Part I: Evolution and Recent Trends [21] hereafter referred to as
“Part I”, is dedicated to thoroughly reviewing the history of CNNs in the field of computer vision since
its emergence in 2012 until late 2019. This review, Part II: Applications, describes the transition from
CNNs developed in the field of computer vision to their application in the field of Earth observation
research in depth by reviewing 429 papers published in Earth observation journals. In detail, the scope
of this review is to give an overview of the:

• spatial distribution of research teams and study sites,
• most employed platforms and sensor types,
• frequently used annotated deep-learning datasets featuring Earth observation data,
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• application domains and specific applications, where deep learning for object detection and image
segmentation was used,

• most employed CNN architectures and their adaptations to remote sensing data applied for object
detection and image segmentation,

• deep-learning frameworks which are commonly used by Earth observation researchers.

Figure 1. Conceptual overview of the derivation of digital entities from remotely sensed data using
deep-learning techniques. The upper left part describes the natural earth with different land surfaces,
objects and their interactions. The upper right part shows the digitized version of the natural earth with
a focus on extracting specific entities. The lower part describes a deep-learning workflow: the creation of
training data; model building and training; and application of the trained model to produce large-scale
inventories of objects and their dynamics on Earth’s surface.

Continuing from Part I [21], where the theoretical background on CNNs was provided, this review
further lowers the entry barriers for researchers who want to apply deep learning in Earth observation.
This is done by presenting the above-mentioned attributes of CNNs in Earth observation research and
pointing to the established methods in combination with data types and applications. This will
help to find the best combination of data, models and frameworks to successfully implement
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a deep-learning workflow as pictured in Figure 1. Furthermore, we show new perspectives of
deep-learning applications to Earth observation data by discussing recent developments.

2. Review Methodology

Figure 2a describes the review process. The majority of reviewed sources come from 14 peer-reviewed
journals with a focus on Earth observation by analyzing imagery data, see Figure 2b. In addition,
the IGARSS proceedings were included due to their combination of method development and
application of deep learning from an Earth observation perspective. Finally, to picture the reach
of Earth observation in a multidisciplinary context, Scientific Reports by Nature publishing was added,
resulting in 16 journals, see Figure 2b.

Figure 2. (a) Summary of the review process of 16 journals and 429 included papers. The search period
for potential papers starts in 2012, due to the initial introduction of CNNs by Krizhevsky et al. [6]
for image processing. (b) Overview of the included journals, publishers and number of papers per
journal. (c) Temporal distribution of the 429 papers separated by task: object detection (168) and image
segmentation (261).

A search string queried the journal databases: “deep learning” OR “convolutional neural
network” OR “fully convolutional” OR “convolutional network”. With respect to Part I [21],
we defined the work of Krizhevsky et al. [6] in 2012 as starting point for the emergence of CNNs in
image analysis and included all articles until 2019 to maintain a whole year frequency. The resulting
3526 potential papers were then filtered by title, giving 766 candidates, and further screened by abstract.
To focus on publications which mainly extract spatial features from imagery data, we included articles
which used optical, LiDAR, multispectral, thermal or radar data in combination with a CNN as
the deep-learning model. To specifically concentrate on image segmentation and object detection,
we excluded all publications which investigate image recognition tasks, in EO often referred to as scene
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recognition, where a single label is predicted for the entire image. Furthermore, to focus thematically,
we concentrate on land-surface processes and therewith excluded publications which investigate
atmosphere or atmosphere-land interaction applications. These criteria for in- and exclusion lead
to a selection of studies which can be compared and discussed together since they follow similar
approaches in CNN architectures and at the same time represent a wide thematical variety.

Finally, with 429 papers, the review represents the development of deep learning in Earth
observation since 2012. Despite the searched period from 2012 until 2019, the onset of CNNs used
for image segmentation and object detection in an Earth observation context took place in 2015
and increased to 253 papers in 2019, see Figure 2c. Since 2016 the group of papers concerning
image segmentation is larger than the group using CNNs for object detection. The review was
conducted based on the 429 selected papers by full-text reads while looking for attributes like the
spatial distribution of author’s affiliations and study sites, researched applications as well as employed
datasets, remote sensing sensors, CNN architectures and deep-learning frameworks. Therefore,
the reported CNN architecture for each paper is the best performing architecture investigated,
especially in ablation studies which compare multiple architectures. The complete table of all
429 papers reviewed with all determined attributes is provided in Appendix A in .csv format.

3. Results of the Review

3.1. Spatial Distribution of Studies

The spatial distribution of first author’s affiliations depicted in Figure 3 clearly shows the largest
share have Asian affiliations (68%), with 62% coming from China alone. Furthermore, European
and American affiliations contribute with about 19% and 10% respectively. The high number of
publications from Chinese affiliations can be explained by a high contribution of papers with a strong
methodological background. Such papers have a focus on developing deep-learning algorithms for
Earth observation data and mostly use well-established datasets for ablation studies.

Figure 3. Overview of first author affiliation grouped by countries and continents. The largest shares
among the continents are: Asia (68%), Europe (20%) and America (11%); and the largest shares among
the countries are: China (62%), USA, Germany and Netherlands (each 5%).

Further details become clear when looking at the distribution of study sites in Figure 4. In Figure 4a
which shows study sites of all publications, the class Multilocal has the biggest share and together
with studies of class Not specified, they represent about 38% of all studies. It is characteristic that
most of these studies took data from multiple locations or not-further defined places with a minor
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focus on a geoscientific research question or a distinct study site. Rather, they focus on the technical
implementation of CNNs on Earth observation data and proof-of-concept studies, which are an
essential driver of the increasing usage of CNNs in Earth observation research. In this subgroup of
studies without a specific located study site, the contribution from authors with a Chinese affiliation
(84%) is by far the largest. The next two larger contributors are Germany and France with 2% each.

Figure 4. Overview of study site locations, where Multilocal refers to locations scattered over multiple
continents commonly without a distinct spatial focus. (a) The study site locations for all 429 reviewed
studies. (b) Study site locations of studies which used open datasets (38%), commonly focusing
on method development. (c) Study site locations of studies which used custom datasets (62%)
which investigate method development, and especially proof-of-concept studies as well as large-scale
geoscientific research questions.

Furthermore, when splitting the study sites into two groups, as presented in Figure 4b,c,
the substantial contribution of Chinese studies especially in publications with a methodological
focus, becomes evident. The used datasets separate the two groups: the first group in (b) shows the
studies, which are using established datasets. With this, the used datasets define the study sites, and the
focus is on examining an algorithm for a specific task. The second group (c) shows studies which use a
customized dataset and therefore the selected location is more meaningful for the underlying research
question. Contributions from Chinese affiliations in the first group (b) are about 78%, higher than their
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overall contribution (62%). As follows, contributions of Chinese affiliations in group (c) with custom
study sites are still high (52%) but lower compared to the overall contribution.

The number of studies located in Germany is also noticeable when separating the study sites in
the two groups mentioned above. In group (b) there are 39 studies, whereas the share drops to only
6 studies in group (c). This imbalance results from two well-established datasets, the ISPRS Potsdam
and Vaihingen [22] datasets, commonly used for ablation studies of image segmentation algorithms.
Interestingly, 54% of the 39 studies with a German location in group (b) are published by authors who
are with Chinese affiliations, which further proves the Chinese contribution to method development
in deep learning for Earth observation.

Furthermore, a closer look at Figure 4c shows the still small number (3%) of studies with both a
global perspective and customized datasets, or in other words deep learning applied to geoscientific
research questions on a global scale. However, the study site distribution of customized datasets shows
a more balanced picture, except for the African continent.

3.2. Platforms and Sensors

Traditionally, deep learning with CNNs was developed in computer vision for RGB image
analysis where rich feature information is present due to a sufficient image resolution such as in the
ImageNet [7], PASCAL VOC [23,24], MSCOCO [25] or Cityscape [26,27] datasets. Therefore, widely
used CNN models are designed for three-channel input data and are often the starting point for
investigations in other domains like Earth observation. This origin can be related to the most commonly
investigated data types. Optical RGB images with a very high (<100 cm) and high (100 < 500 cm)
spatial resolution are the most widely used imagery data in Earth observation with 56%, as depicted in
Figure 5a.

Figure 5. (a) Distribution of employed sensor types and their combinations with the largest shares
for optical (56%), multispectral (26%) and radar (13%) sensor types. (b) Distribution of employed
platforms and their combination with the largest shares for satellites (43%), aircraft (26%) and their
combination (20%).

Studies which apply multispectral or radar data have shares of 26% and 13% respectively.
However, especially in radar remote sensing, deep learning is gaining in popularity [18]. The number of
publications which exploit radar data increased from 4% in 2017 to 15% in 2018 and 2019. This increase
indicates the subsequent percolation of deep-learning methods in Earth observation. Sensors which
provide a high spatial resolution are by far the most widely employed across all sensor types. Data
with a spatial resolution <500 cm (VHR and high) are used in 79% of the publications and even when
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increasing the spatial resolution to <100 cm (VHR) they still represent 43% of all studies and are
therewith the largest group.

Figure 5b shows that 43% of the studies used spaceborne platforms, whereas 36% solely rely
on airborne platforms. The use of airborne platforms supports the above-given statement about the
usage of data with a very high to high spatial resolution. Furthermore, it also supports the findings in
Section 3.1 that most publications focus on small-scale, proof-of-concept and method development
studies rather than large-scale applications. However, the 43% of publications which use spaceborne
platforms should have the potential to investigate larger scales, beyond regional and national data
acquisition projects. Still, the majority investigate local, single scenes or smaller clippings, scattered
over multiple scenes, also focusing on proof of concept or method development. Therefore, the spatial
resolution of the imagery data is mainly very high or high when looking at the spaceborne missions
employed by the studies, see Figure 6.

Figure 6. Overview of the most employed spaceborne missions in the 429 studies. Google Earth is
also included due to its importance for receiving optical images with a high and very high spatial
resolution, even when the underlying mission is not reconstructable. Overall, the overview shows the
relevance of missions which focus on a high to very high spatial resolution and optical sensors.

A prominent number of studies use Google Earth as a data source. Even when the zoom level
in Google Earth determines the platform and mission, the reported spatial resolution in such studies
was between 50 and 200 cm, which indicates that a spaceborne optical sensor sensed the image.
Hence, Google Earth appears among spaceborne optical missions, even when conveying every specific
mission was not possible. Besides Google Earth, the reported spaceborne missions Gaofen 1 + 2 and
WorldView 1–4 are the most established data sources, both known for their high spatial resolution.
Similar to the study contributions, with the Gaofen missions, Chinese remote sensing missions are also
prominent in the field of data acquisition. Frequently employed spaceborne radar missions such as
TerraSAR-X, RadarSat 1 + 2 and Gaofen-3 also have a relatively high spatial resolution among radar
sensors. The large number of 29 studies which use Sentinel-1 data can be related to 17 investigations
that work on ship detection, which will be further discussed in Section 3.4.1.
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3.3. Datasets Used

Freely available datasets and their often-associated challenges play an essential role in
the development of deep-learning methods. The impact of datasets like ImageNet [7],
PASCAL VOC [23,24], MSCOCO [25] or Cityscape [26,27] are striking on the evolution of CNNs
as discussed in Part I [21]. A similar impact can be seen in the field of Earth observation. Datasets
which were present since early 2013 have widely affected the development of CNN architectures as
well as the fields of application. Table 1 summarizes the most frequently used datasets within the
429 studies in this review.

When looking at the datasets for image segmentation, the strong relation to urban VHR feature
extraction, building footprints and road extraction becomes evident. The already mentioned ISPRS
Potsdam and Vaihingen datasets [22] are the most widely used. Together with the IEEE Zeebruges
dataset [28], they are applicable in both urban VHR feature extraction and less frequently used for
extracting building footprints. The Massachusetts buildings and roads datasets published by Mnih [29]
are also commonly used in the settlement domain. Building footprint extraction is further enhanced
by several SpaceNet challenges featuring building footprints [30–33] as well as by the WHU Building
dataset [34]. Road segmentation was also a topic of several datasets and challenges like the DeepGlobe
Roads challenge in 2018 [35] or two SpaceNet challenges [36,37] as well as the published dataset by
Cheng et al. [38].

The most popular datasets for object detection are multi-class object detection datasets like
NWPU VHR-10 [39], DOTA (Dataset for OD in Aerial Images) [40] or RSOD (Remote Sensing
Object Detection) [41]. They provide bounding boxes for 10 to 15 classes, and in case of DOTA the
bounding boxes are also available as rotated bounding boxes. Like ISPRS Potsdam and Vaihingen [22],
those datasets are mainly used for method development and ablation studies. Nevertheless, since single
classes can be extracted easily from such datasets, they are also frequently used for ship, car or aircraft
detection, which are all classes that are commonly present in multi-class datasets. Other datasets
focus solely on a single class, often related to the transportation sector. SSDD (SAR Ship Detection
Dataset) [42] and OpenSARShip [43,44] both focus on ship detection from SAR imagery, whereas
Munich 3K [45], VEDAI (Vehicle Detection in Aerial Imagery) [46], and busy parking lot are used for
car detection. Busy parking lot is special in the way that it is an annotated high-resolution video [47].

Overall, open datasets and challenges have a significant influence on the topics investigated by
researchers, which will be further discussed in the next Section 3.4. However, 265 studies (62%) used
custom datasets or combined custom datasets with the datasets mentioned above. In order to create
custom datasets, labeling by hand is the most common and accurate but also labor-intensive way,
whereas creating datasets from synthetic data is fast, generic and offers an inexpensive alternative
as shown by Isikdogan et al. [48] and Kong et al. [49]. Since synthetic data is hard to create for
multispectral and radar remote sensing, weakly supervised approaches [50–52] and studies that
leverage OSM (Open Street Map) data [53–68] offer insights in how to use fuzzy data sources [69].
Thus, researchers are encouraged to use such approaches or small-scale hand-labeled datasets for
proof-of-concept studies in order to build custom, large-scale, deep-learning datasets in the next step.
When building deep-learning datasets, several properties should be considered, Long et al. [5] give a
thorough discussion about the creation of benchmark datasets, to which we refer for further reading.
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Table 1. Overview of used open datasets which were mentioned two times or more in the reviewed publications. The column, Task describes the main usage of the
datasets from a methodological perspective divided into the two groups: object detection (OD) and image segmentation (IS). The application domains settlement,
transportation and multi-class object detection are the most prominent. Of specific applications the detection of ships, cars and multiple object classes as well as the
extraction of building footprints, urban VHR features and road network extraction are the most investigated topics.

Dataset Year Task Domain Application Sensor Count

ISPRS Vaihingen [22] 2016 IS settlement urban VHR feature extraction multispectral 47
ISPRS Potsdam [22] 2016 IS settlement urban VHR feature extraction multispectral 35
NWPU VHR 10 [39] 2014 OD multi-class OD 33
DOTA (Dataset for OD in Aerial
Images) [40] 2018 OD multi-class OD optical 17

Massachusetts Building [29] 2013 IS settlement building footprint optical 11
Munich 3K [45] 2016 OD transportation cars optical 9
Massachusetts Roads [29] 2013 IS transportation road network optical 9
SSDD (SAR Ship Detection Dataset)
[42] 2017 OD transportation ships SAR 9

VEDAI (Vehicle Detection in Aerial
Imagery) [46] 2016 OD transportation cars optical 7

AIRSAR UAVSAR [70] 2016 IS agriculture/ transportation multi crop type/ship SAR 7
WHU Building Aerial [34] 2018 IS settlement building footprint optical 6
Cheng roads [38] 2017 IS transportation road network optical 5
RSOD (Remote Sensing OD) [41,71] 2015 OD multi-class OD optical 5
IEEE Zeebruges [28] 2015 IS settlement urban VHR feature extraction optical + LiDAR 4
HRSC2016 (High-Resolution Ship
Collections) [72] 2016 OD transportation ships optical 4

GID (Gaofen Image Dataset) [73] 2018 IS general LCLU multi-class LCLU multispectral 4
Zhang Aircraft [50] 2016 OD transportation aircraft optical 3
SpaceNet Building [31] 2017 IS settlement building footprint multispectral 3
UCAS-AOD [74] 2015 OD transportation cars/aircraft optical 3
LCZ42 (Local Climate Zone 42) [75] 2020 IS settlement local climate zones multispectral + SAR 2
Busy parking lot [47] 2018 OD transportation cars optical 2
DeepGlobe Roads [35] 2018 IS transportation road network multispectral 2
NWPU RESICS 45 (Remote Sensing
Image Scene Classification) [76] 2017 OD multi-class OD/settlement industry optical 2

INRIA (Institut national de
recherche en informatique et en
automatique) [77]

2017 IS settlement building footprint optical 2

Open SAR Ship Dataset [43,44] 2017 OD transportation ships SAR 2
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3.4. Research Domains and Applications

In Figure 7, nine application domains are depicted to provide an overview of the diversity of
applications of deep learning in Earth observation. Three categories, settlement, transportation and
multi-class object detection, are directly connected to the previously mentioned datasets. Within these
categories, the classes ships, road network and cars as well as building footprints and urban VHR
feature extraction and the entire group multi-class object detection, represent 53% of all publications.
Through this, the influence of open datasets become distinct and show the strong data-driven paradigm,
which is necessary for method development and establishing CNNs as a common tool for the Earth
observation community.

Figure 7. Detailed summary of all 429 investigated applications and their nine greater categories, called
application domains. Transportation (27%), settlement(26%) and general land cover land use (LCLU)
(13%) have the largest shares among the domains. Ship detection (12%), urban VHR feature extraction
and building footprints (each 10%), as well as the entire group of multi-class object detection (11%),
are the most investigated specific applications.

In this section, all nine application domains will be investigated thoroughly by mentioning
both research topics for which CNN-based deep-learning models are already established and novel
applications. In the following, the domains and single applications will be discussed by decreasing
order of the number of publications, following Figure 7.

3.4.1. Transportation

Of all reviewed publications, 27% investigate targets related to the transportation sector, such as
the detection of ships, cars, aircraft or entire airports as well as the segmentation of road networks.
Ship detection is one of the most studied Earth observation object detection problems, with many best
practice examples on how to transfer deep-learning algorithms to the specific needs of remotely sensed
data [57,78–110]. Hereby, the relatively more challenging inshore ship detection, compared to offshore
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situations, draws the most interest. For better detection, studies are using land-sea masks derived by
elevation models or coastlines from OSM to suppress false detection of ship-like structures on land [57].
Other studies process the land-sea mask jointly on the same image the ships are detected from,
within one deep-learning model. This is done by combining an early land-sea binary segmentation
before the ship detection step [86–89]. Another approach is to train on negative land samples, in order
to teach the model that ships do not appear in such an environment [91,92]. In addition, Chen et al. [90]
proposed a method, which produces specific ship aware attention masks before detection, which are
then used to support more precise ship localization during the detection process.

Images with a very high resolution were especially used to detect ships in situations where they
are lying very close together, like in harbors or near harbor berths. In order to separate multiple
ships or disentangle ships and harbor structures, rotated bounding boxes were found to be very
useful [79,93–105]. In contrast to horizontal bounding boxes, they allow a higher signal to noise
ratio and hence, better detection performance [95]. Also, the overlap of nearby bounding boxes
decreases, which prevents falsely suppressed bounding boxes of dense conglomerations of ships.
Other approaches optimize the detection performance for densely packed ships and near land
anchoring situations by incorporating nearby spatial context into the detection model [78,97,106].

By combining object detection with further classification or segmentation modules, studies were
also able to determine a specific ship class [57,103,107,108], extract instance masks for ships [95,106] or
even predict their direction [103,109]. Since ships are relatively small targets against a large non-target
background, the sea, weighted cost functions were used to improve training and performance [110]
significantly. Overall, ship detection is an application which uses both radar and optical data. 44% use
radar data, often coming from the SSDD [42] or OpenSARShip datasets [43,44], whereas 56% use
optical data. However, considering the increasing performance of ship detection, there is a lack of
studies which after detection, analyze the information in a spatio-temporal context.

For modern traffic managing, car detection form remotely sensed data is an important tool.
Problems and also solutions are similar to ship detection: the targets are relatively small and densely
packed in parking lots or traffic jams; also, the orientation is important to predict the travel direction.
Hence, car detection requires rotated bounding boxes [111,112], prediction of instance attributes like
the orientation after detection [113] or segmentation masks [47,114–116] likewise to ship detection.
Furthermore, cars are relatively tiny objects in an even more complex environment than ships.
Therefore, Koga et al. [117] and Gao et al. [118] gave special consideration to deal with complex
environments and hard to train examples by employing hard example mining during the training of
their deep-learning models.

The studies of Li et al. [112] and Mou and Zhu [47] investigated detection and segmentation
of car instances from remotely sensed video footage of a parking lot. Therewith, they proved
that deep-learning algorithms are capable of processing up to 10 frames per second [112] of very
high-resolution optical data to monitor dense traffic situations.

In the aviation sector, both airports [119–121] and aircraft were detected [50,122–127]. Hereof,
Zhao et al. [125] successfully extracted instance masks for each aircraft and Wang et al. [126] jointly
detected and classified the type of aircraft in a military context. Hou et al. [127] tracked aircraft in
video footage sensed by the spaceborne Jilin-1 VHR optical sensor, pushing the border from detection
to tracking which is highly important in a transportation context.

Applications with a stronger focus on segmentation within the transportation group are mainly
extracting road networks [38,62,128–137]. The early work of Mnih [29] in 2013 provided the open
Massachusetts roads dataset, followed by SpaceNet [36,37] and DeepGlobe [35] challenges, as well
as further datasets [38]. Since roads appear in a complex environment which contains very similar
surfaces and at the same time binary road segmentation has an imbalanced target–background ratio,
studies focused on handling of these problems. Lu et al. [129] counterbalanced the target–background
imbalance by weighted cost functions and gained stable results on multiple scales and spatially
transferable models. Wei et al. [130] incorporated expert knowledge into the cost function by describing
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typical geometric structures for a better focus on roads. More recently, the combination of multiple
CNN models [131,132] and heavy CNN architecture adaptation [128,133] led to further improvements.

Beside the road surface area, centerlines are of interest and models were designed to derive
them jointly [38,129,134,135]. In other approaches, Wu et al. [62] and Yang et al. [136] showed how
OSM centerlines could be used as the only label to segment road networks successfully. Going into
even more detail, Azimi et al. [137] proposed Aerial LaneNet to segment road markings from very
high-resolution imagery.

3.4.2. Settlement

Similar to the transportation sector, 26% of the publications investigated studies in a settlement
context. The aforementioned ISPRS Potsdam and Vaihingen datasets [22] are responsible for the
large group on urban VHR feature extraction. Most of those studies have a methodological focus,
disentangling the complex structures in an urban environment [138–154]. Hence, further details
are discussed in Section 3.5.2 with a focus on the progress which was made in image segmentation
architectures for remote sensing.

Closely related to general urban feature extraction, are the specific building footprint
applications. Few early studies focused on detecting buildings, but soon not just bounding
boxes or point locations, but the footprint of the buildings was derived using image
segmentation [34,53,55,56,61,63,64,66,155–167]. Again, Mnih [29] and the Wuhan university [34]
provided important datasets. Furthermore, SpaceNet [30–33] and DeepGlobe [35] challenges with
their own datasets increased the attention on this application. The INRIA dataset [77] is a benchmark
dataset which enabled studies to take global differences in the building structure into account [155,156].
Several studies used OSM labels and obtained reasonable results [53,55,56,66], helping to build models
which are invariant to large-scale differences in building structures. Still, OSM data accuracy is highly
heterogeneous [53]. For example, in east African rural areas Vargas-Munoz et al. [63] amended OSM
data by adding unlabeled buildings using a deep-learning approach which derived building footprints,
compared them with OSM layers and added missing entries; and Maggiori et al. [55] used raw and
inaccurate OSM labels as a starting point and manually labeled data to refine those during the training
of the model to finally derive building footprints in France.

Since accurately derived edges of buildings and noisy results are the major issues, much attention
was given to remedy this weakness by exploiting edge signals [64], edge-sensitive cost
functions [157–159], sophisticated model designs [56,61,155,156,160–164], the usage of conditional
random fields (CRFs) for refinement of the derived footprints [165] and multiscale approaches [166].
Even though those insights were reported for building footprint extraction, they are also important for
remote sensing image segmentation in general.

Using those findings, Yang et al. [157] were able to apply a deep-learning-based approach to
extract building footprints in a nationwide survey for the United States. Another large-scale application
was conducted by Wen et al. [167] in Fujian Province, China. They employed an instance segmentation
approach, which can derive footprints of buildings with complex structures in urban as well as
rural environments.

The detection of areas of informal settlements or footprints of buildings within such areas were
studied in [168–174]. A multi-temporal perspective on how those areas change over four time steps
was conducted by Liu et al. [174]. In general urban settings, settlement changes like new build
areas or changes in building structures were investigated by employing change detection approaches
which use both multispectral and optical [175–177] as well as radar data [178–180]. Fewer studies
investigated specific industrial applications like the detection of power plants and chimneys [181–183],
derived cadastral boundaries [184,185] or recently differentiated urban areas due to their local climate
zones [186,187].
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3.4.3. General Land Cover and Land Use

LCLU mapping has a long tradition in Earth observation, and with 13% of all publications,
LCLU is the third largest group of applications of the reviewed papers. The majority of multi-class
LCLU publications conducted proof-of-concept studies on a local scale by demonstrating how
deep-learning models can be applied in complex scenarios with many classes by reaching high
spatial accuracies [188–196]. However, large-scale applications were also investigated, which often
classify more aggregated classes due to the lower spatial resolution of the input data [58,73,197–201].

Further studies with a specific context focused on coastal [202] and alpine [203] environments,
as well as wetlands [204–207], by deriving multi-class LCLU maps. Other LCLU applications applied
a binary classification to focus on the presence of a single class. The majority of those studies looked
for built-up areas [54,208–211], waterbodies [212–216], shorelines [217,218] or river networks [48,219].

3.4.4. Multi-Class Object Detection

With CNNs it became possible to detect multiple objects of different classes in images, based on
their intrinsic features. In remote sensing, two datasets established themselves as baselines and pushed
the capabilities of deep-learning-based object detection models. 11% of the reviewed publications
investigated multi-class object detection from which 66% used the older NWPU VHR-10 dataset with
10 object classes [39] and 26% the more recent and challenging DOTA dataset with 15 object classes
and rotated bounding box annotations [40].

Since objects in remotely sensed imagery appear to be relatively small, not centered in the middle
of the image, densely cluttered, partly occluded and with an arbitrary orientation angle [12,21,220,221],
object detection on remote sensing images is a challenging task. In order to cope with these challenges,
studies trained models to be capable of handling multiple scales [222–227] or focus especially
on small objects [228]. Also, the spatial context was taken into account for better detection and
classification [229–232] following the idea that not only the target itself contains a distinct signal,
but also the typical surrounding in which it appears. Occlusion is particularly vital in overhead images,
since near ground objects, which are often targets in multi-class object detection, can be occluded by
several layers of obstruction. Clouds, high buildings, steep topography and above-ground vegetation
like tree crowns can all together occlude objects. Ren et al. [233] took such examples into account
and trained an object detector which is aware of partly occluded objects and through this still able to
detect them.

The findings in object detection studies from the transportation sector for ships, cars and aircraft
are highly related to multi-class object detection. With the DOTA dataset, orientated bounding boxes
became easily available and models were designed to predict the rotation offset jointly with the
xy-offset to provide rotated bounding boxes [223,229,234]. These studies are performing better than
the former approaches which solely trained on rotated images, to make the model rotation invariant.
Finally, instance segmentation was applied in [235] and also rotated bounding boxes for object detection
with subsequent instance mask segmentation, resulting in state-of-the-art performance [236].

3.4.5. Agriculture

The agricultural sector was investigated in 10% of the publications. Typically, the classification
of multiple crop types has the biggest share with 29%. What is particularly important for crop
type classification is the phenology, hence temporal signals must be considered to be well as spatial
boundaries. Spatially aware CNNs were mainly discussed until now; however, temporal exploitation
is possible with CNNs. Several studies used CNNs in a multi-temporal context to investigate crop
type classification [237–245]. Zhou et al. [240] combined two time steps and classified each pixel due
to the one-dimensional concatenation of the spectral signals, hence the spatial context was dismissed.
Similarly using a spatial neighborhood of 8× 8 pixel and a temporal receptive field of three time
steps, Ji et al. [239] classified crop types by extracting three-dimensional features. Pelletier et al. [238]



Remote Sens. 2020, 12, 3053 15 of 47

proposed a spectral-temporal guided CNN and Zhong et al. [237] a 1D CNN that classifies EVI time
series. In both studies, the employed CNNs were able to outperform baseline models based on random
forest and recurrent neural networks.

In general, CNNs and RNNs [246] or specifically LSTMs [247] are two different types of
deep-learning models, of which the latter is originally designed to exploit sequential data. Hence,
RNNs and LSTMs were also used for crop type mapping or LCLU investigations [248–252].
Nevertheless, CNNs and RNNs or LSTMs do not directly compete. Several studies [253–258] proved
that combinations of both can reach higher accuracies than singular models, hence CNNs complement
the temporal or sequential perspective of RNNs and LSTMs with a spatial perspective. Since this
review focuses on CNNs, such models are not discussed further here. However, we want to highlight
their recently increasing importance, especially in applications for crop type mapping and LCLU.

More studies in the agriculture sector applied CNNs to distinguish and outline farmland and
smallholder parcels [259–263]. On a much closer perspective, specific crop plants were monitored
mainly by UAV-based imagery like corn [264], sorghum [265], strawberries [266], figs [267] or opium
poppy [268]. Together with a study that detected livestock [269], they demonstrated new applications of
very high-resolution remote sensing data. Single oil palm trees in monocultures were counted [270–272]
and rice fields mapped [273–275] on a large scale using data from spaceborne sensors. Jiang et al. [275]
used EVI time series to exploit a temporal rather than a spatial signal, in order to distinguish rice fields
in a complex landscape. Another single proof-of-concept study segmented marine aquaculture in
very high-resolution spaceborne, multispectral imagery at one location of 110 km2 in the East Chinese
Sea [276].

3.4.6. Natural Vegetation

In 4% of the reviewed publications, natural vegetation like forests and near-surface plant societies
were studied. Mazza [277] used TanDEM-X SAR data to classify forested areas in a proof-of-concept
study. Refs. [278–280] investigated the health of forests and trees, where Safonova et al. [280] looked for
damages caused by bark beetle and Hamdi et al. [279] for areas affected by storms. On an individual
level, trees and tree crowns were detected in optical imagery [281–284].

Near-surface vegetation like shrubs and weeds were studied in order to monitor the distribution
of weeds which lead to an increase in fire severity [285] or to generate maps of specific endangered
species [286]. Other studies focused on disentangling species from a complex environment to generate
species segmentation maps, giving close detailed information about their spatial distribution and plant
communities [287–290].

3.4.7. Natural Hazards

Natural hazards were also investigated by 4% of the publications. A major focus is
on damage assessment after natural hazards like earthquakes [291–293], tsunamis [294,295],
their combination [296] or wildfires [297]. In four studies flooded areas were derived, two by
spaceborne sensors on a larger scale [298,299] and two by UAVs for fast response mapping on
a local scale [300,301]. Also, on a local scale with UAVs, slope failures were investigated by
Ghorbanzadeh et al. [302]. Due to the needs of fast response analysis on a large-scale, spaceborne data
acquisition under all weather conditions is necessary, hence the use of radar data is crucial. The studies
of Bai et al. [294] and Li et al. [299] used TerraSAR-X data for post-earthquake-tsunami and immediate
flood event investigations respectively, and Zhang et al. [297] used Sentinel-1 data to locate burned
areas after wildfires.

3.4.8. Cryosphere

With 2% of all publications, studies which discuss topics of the cryosphere are among the smallest
groups. Applications are monitoring calving glacier margins [303], the Antarctic coastline [304]
and sea ice [305,306] or detecting permafrost induced structures [307] and segmenting permafrost
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degradation [308] as well as deriving ice and snow coverage [309]. Hereby, the publication of
Baumhoer et al. [304] is to highlight. This proof-of-concept study develops a deep-learning-based
method, which can monitor the Antarctic coastline, by segmentation of Sentinel-1 data in different
locations. This CNN-based deep-learning model was recently incorporated into a set of methods
to answer geoscientific research questions on a large scale [310]. Such a large-scale application
of radar data with deep learning was found to be missing until now in Earth observation [18].
Therewith, these two consecutive studies describe the evolution of deep learning in Earth observation
characteristically: from method development to a stronger implementation as a tool for answering
large-scale research questions.

3.4.9. Wildlife

Applications using spaceborne, airborne and UAV platforms to acquire very high-resolution data,
exploit the capabilities of deep-learning models to detect tiny but for ecosystems highly important
features like wildlife. Using data recorded from spaceborne platforms, Guirado et al. [311] were able
to detect whales and Bowler et al. [312] albatrosses. Imagery acquired by UAV overflights were used
to detect mammals [313] and data sensed by airborne sensors attached to planes to detect seals [314].

3.5. Employed CNN Architectures

The decision on the appropriate architecture for a given research question and resources is of
particular importance when optimizing the outcome. This became a challenging task due to the vast
amount of deep-learning models, their variations and the fast-moving field. In this section, we provide
an overview of the most used and established CNN architectures for image segmentation and object
detection as well as feature extractors in Earth observation research. This overview can be used as a
starting point in a decision process to build a deep-learning environment.

Since the introduction of AlexNet for image recognition in 2012, the diversity of applications and
CNN architectures has greatly increased. A thorough introduction to the evolution and recent trends
of CNN architectures is provided in Part I [21]. However, in order to give some intuition on the tasks
and architectures of CNNs discussed in this section, the main characteristics are briefly summarized at
the beginning of each subsection. Also, in the next sections, the single architectures and variations are
summarized in groups, in order to provide a better overview. In case that an architecture could not be
assigned to a group because its architecture design is too unique and no apparent relation to the major
CNN architecture families is discernable, it was assigned to the group Custom. Furthermore, the group
Other is used to summarize items of architecture designs which appear less than five times.

3.5.1. Convolutional Backbones

A CNN architecture mainly consists of an input layer; the feature extractor also called
convolutional backbone; and the head, which performs a task-specific action on the extracted features,
like image segmentation or object detection. This section focuses on the convolutional backbone,
which subsequently extracts semantically high-level features from the input data and therewith has
a strong influence on the performance of a CNN model. During model design, a backbone should
be chosen that balances depth, number of parameters, processing power consumption and feature
representation. For a detailed overview of convolutional backbones, we refer to Part I, Section 3.1 [21].

As pictured in Figure 8, architectures from the ResNet family and Vintage architectures are the
most commonly used feature extractors (67%). The ResNet designs are known for their so-called
residual connection, which made training deep networks possible [315]. ResNet models show a good
balance in the number of parameters and accuracy, and they are made to be less complex compared
to Inception designs [316], and therefore easy to adapt [21]. As the name suggests, the group Vintage
contains relatively old architectures like the VGG-Net, introduced between 2012 and 2014 [6,317,318].
They are widely used as feature extractors since their early occurrence but compared to ResNet, they
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show a lower accuracy while using more parameters [21,156]. Nevertheless, they appear to be among
the most used models.

The third largest group of custom models is often similar to Vintage designs in their combination
of stacked convolution and pooling operations. Still, single designs are especially made to take remote
sensing data characteristics into account [38,61,192,241]. It is important to note the small group of six
items which use MobileNets [145,268,319–322], of which five were published in 2019. They describe
an onset of interest in parameter efficient models with high accuracy and they prove that such models
can compete in Earth observation studies.

Figure 8. Overview of the commonly employed convolutional backbones or feature extractors in
image segmentation and object detection. ResNet (35%) as well as Vintage designs (32%), like the
VGG-Net, are the most widely used feature extractors, whereas recently developed parameter efficient
architectures like the MobileNets (1%) belong to a minority in Earth observation studies.

A closer look at the specific architectures used within the groups ResNet and Vintage reveals that
the depth of the architectures used in Earth observation differs from the depth of the best performing
models on benchmark datasets in the field of computer vision, see Part I Section 3.1 [21]. For instance,
in computer vision ResNet-152 and VGG-19 perform better on the ImageNet benchmark dataset than
their shallower counterparts ResNet-100 and VGG-16 [315,318]. However, the shallower models are
more frequently used in Earth observation, see Figure 8. The arguments for shallower models in Earth
observation as in computer vision and especially ImageNet are manifold but reveal essential insights
about remotely sensed data analyzed by deep learning.

The deeper a model, the more parameters it has. This makes it capable of classifying 1000 classes
precisely, as necessary for ImageNet, but that many parameters are not needed for a 2–20 class remote
sensing application. It is even more likely that such a number of free parameters could easily overfit
the model. In case the Earth observation dataset is too small, many such parameters cannot be
sufficiently trained, hence shallower networks which mostly have fewer parameters are in favor [38].
Also, with fewer parameters, the processable tile size of a remote sensing scene increases which
minimizes border effects, allows more context and contributes to less noisy results [216]. However,
since spatially tiny targets characterize remote sensing data, a deep feature extractor can easily oversee
those spatially small details. With the depth of a model, the so-called receptive field grows, and the final
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features extracted subsequently are no longer aware of tiny objects and fine-grained borders. Hence to
preserve their information, a shallower convolutional backbone is one solution [323,324]. Finally, many
studies decide on a shallower model, even when a deeper model gains a higher accuracy since the
shallower model has a much better accuracy-parameter ratio and is considered computationally
superior [38,118,156,325].

This reasoning reflects the overall usage of shallower architectures in the reviewed studies,
where the ResNet models and the VGG models of the Vintage architectures can be considered
established convolutional backbones for Earth observation applications.

When discussing convolutional backbones as well as the similarities and differences between
Earth observation and computer vision, transfer learning is an important issue to highlight. In transfer
learning, the convolutional backbone of a deep-learning model is pre-trained on a dataset which often
comes from another domain and then fine-tuned on a smaller dataset of the target domain. The idea
is to use a large dataset which initially teaches the model to understand basic feature extraction so
that it starts with a better intuition when it first sees data of the target domain. Of the 429 reviewed
papers, 38% used a transfer learning approach, of which 63% used the pre-trained weights of the
ImageNet dataset. This makes weights pre-trained on ImageNet the most widely used for transfer
learning approaches in Earth observation. Even though many examples exist where transfer learned
models are performing better than models trained from scratch [157,281,326], this general assumption
cannot be made in every case. One example is that models pre-trained on ImageNet are optimized
for RGB images. Analyzing more than three channels is not directly possible with weights that
were pre-trained on RGB data [304,327]. However, expanding the pre-trained input channels is
possible [157], for instance, by doubling the first filter banks of the first convolution, as demonstrated
by Bishke et al. [328]. A more critical issue is highlighted in studies, which investigated radar imagery.
The speckle and geometrical properties in radar images make them appear very different to natural
images. Hence, models pre-trained on ImageNet and fine-tuned on radar imagery perform even worse
than the same models trained solely on the radar data [107,205,329]. In conclusion, transfer learning
of pre-trained models is an opportunity for better results [114], primarily when optical data is used.
In cases where the target dataset strongly differs from the pre-trained dataset, the positive effects can
be smaller or even worse than a training approach from scratch [85,107,204,205,329,330].

3.5.2. Image Segmentation

Image segmentation describes the task of pixel wise classification. In order to achieve this, CNNs
were first used in the so-called patch-based classification approach, where a convolutional backbone
moves with a small input size like 9× 9 pixel over the image and classifies the center pixel or the entire
patch upon the extracted features. Later in 2014, FCNs (Fully Convolutional Networks) [331] were
introduced, which use the entire image as input and after feature extraction, in this context called the
encoder, restores input resolution in the decoder, and classifies each pixel afterwards. The result is an
input resolution segmentation mask where each pixel is assigned to a single class. Restoration of the
input resolution can be achieved using operations like bilinear interpolation which characterizes the
group of naïve-decoder models. Another way to do this is upsampling by trainable deconvolutional
layers and merging information of the encoder path with the decoder path, called encoder-decoder
models. For further explanation and examples, we refer to Part I Section 3.2 [21].

Figure 9 illustrates that of the 261 studies which used CNNs for image segmentation, 62% are
encoder-decoder models and of these, 54% can be related to the U-Net design. The dominance of
encoder-decoder models in Earth observation can be related to an already mentioned property of
remote sensing data: the occurrence of tiny and fine-grained targets. Due to the usage of information
from early stages in the encoder during upsampling to restore input image resolution, tiny and spatially
accurate features have a much stronger influence on the segmentation as in naïve-decoder models [133].
Since such details are often of significant interest in Earth observation applications, encoder-decoder
designs became the most favored models.



Remote Sens. 2020, 12, 3053 19 of 47

The U-Net model, initially designed for biomedical image segmentation [332], gained much
attention due to its good performance at the time it was published and its clear, structured design.
This made it an intensively researched and modified model [21]. In Earth observation applications,
image segmentation must deal with blobby results which are contrary to the intent to segment details
and fine-grained class boundaries. In order to overcome this contradiction, atrous convolutions
and the effective atrous spatial pyramid pooling module (ASPP) from the DeepLab family [333–336]
were integrated into the U-Net in multiple studies [133,169,196,215,221,276,285,309,337–342]. Atrous
convolution maintains image resolution during feature extraction, which supports the attention to
detail [151,163,202,343,344], where the ASPP module also takes spatial context into account which
results in less blobby segmentation masks [145,146,345]. In order to gain better results, the final
segmentation masks were further refined using CRFs (Conditional Random Fields) [60,165,212,218,346],
as well as multiscale segmentation approaches that fuse features of multiple scales before predicting
the per pixel class [146,152,189].

Figure 9. Overview of the commonly employed architectures for image segmentation. With 62%
encoder-decoder models are the most frequently used especially the U-Net design (33%). Followed by
patch-based approaches (26%) and naïve-decoder models (8%).

Other modifications in architecture design which recently received more attention are the so-called
attention modules. They originate from the SE (Squeeze and Excitation) module, which multiplies
the output of a convolutional operation by trainable weights [347]. Therewith, some results
gain more attention than others. In Earth observation, the modules are often called channel
and spatial attention modules: where channel attention modules weight the channels that hold
the extracted features globally and spatial attention modules weight areas of those channels
spatially [128,143,164,197,219,276,342,348,349]. This technique supports the idea that not all features
which are extracted by a neural network affect the results equally.

Similarly, there are gated connections, which incorporate feature selection during the decoding
process. Instead of passing raw features from the encoder to the decoder to enrich spatial accuracy,
these features are refined by gated skip connections [64,148,350]. Another model modification is
used in studies which exploit multi-modal data. Data fusion with CNNs offers many possibilities;
in so-called early fusion, the input data is fused before or during the first convolutional operation.



Remote Sens. 2020, 12, 3053 20 of 47

On the other hand, late fusion first extracts features in parallel and fuses them deep in the network
structure. Between those options, intermediate fusion and even shuffling can increase feature
representation [56,58,140,144,146,152,162,188,195,203,346,351–354]. However, all these modifications
in architecture design demonstrate that established CNNs for image segmentation need to be
adjusted or even explicitly designed to gain state-of-the-art performance in Earth observation [161].
Nevertheless, their modular designs encourage extensive experiments and optimization.

Finally, in Figure 9 the percentage of patch-based approaches is still high (33%), despite the fact
that this technique was one of the first approaches used to segment images and since the emergence of
FCN in 2014, was found to be inferior. This is true for high spatial resolution images with rich feature
information. Nevertheless, medium to low spatial resolution imagery, which is used in large-scale
Earth observation applications like Landsat data, does not necessarily show the kind of spatial feature
richness that modern CNN architectures are designed for [186,187,195,199,202,206,211,239,274,355,356].
Hence, patch-based approaches are still a model of choice for this kind of data. This statement is
supported by the share of image segmentation studies with a lower spatial resolution above five
meters, which is more than twice as high for patch-based models (38%) as in all other approaches
(17%), where higher resolution dominates.

3.5.3. Object Detection

In object detection, instances of objects are detected in an image, commonly using a bounding box
to describe their position and extent. Two major approaches exist which apply CNNs: two-stage and
one-stage detectors. Two-stage detectors first predict regions of interest which contain most probable,
class agnostic object candidates and perform adjacent bounding box regression and object classification.
One-stage detectors perform object localization, classification and bounding box regression in a
single shot. The latter commonly perform faster but are less accurate. A detailed introduction to
state-of-the-art CNN-based object detection algorithms is provided in Part I, Section 3.3 [21].

Figure 10 shows that in Earth observation applications on object detection, the two-stage approach
dominates with 63%. Thereof, the well-established R-CNN models [357] are the most used and of
those, 73% belong to the Faster R-CNN design [358].

Like the U-Net architecture in image segmentation, R-CNN models are known for their
modularity, which makes the model a good starting point for customization. Another argument
for using two-stage approaches is better accuracy, even when their computational consumption
is relatively high. One-stage detectors were also used and modified to better fit the needs of
Earth observation applications, especially in studies where processing speed is critical or hardware
limited [82,292,321,359,360]. The SSD [361] and YOLO [362–364] models are among the most widely
used, which can be related to their good performance and extensive documentation, experiments and
advancements in computer vision.

Similar to the challenges faced in image segmentation, tiny objects, which can be densely cluttered
and with an arbitrary rotation, are the main challenges in object detection. In Section 3.4, it was already
reported that predicting rotated bounding boxes contribute to better results for specific applications.
73% of the models capable of predicting the angle offset belong to two-stage detectors and 27% to
one-stage detectors, which demonstrates an advantage of the modular two-stage architectures for
model modifications. However, the architecture modification to predict rotated bounding boxes is one
among many to tackle the challenging characteristics of remotely sensed data.

The feature pyramid network (FPN) [365] module is commonly known to enrich extracted
features and pass them to the detector on multiple scales. FPN and resembling techniques
were leveraged in several studies, which also proposed further modifications of this particular
structure [65,80,95,100,124,125,225,227,232,235,236,325,366–375]. Other positive effects on detecting
objects in remotely sensed images were found in modifications which compensate for the
spatial information loss that happens during feature extraction [228,376]. Similar to image
segmentation, a widely used modification is the use of atrous convolutions to maintain high
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resolution during feature extraction [106,227,232,326,369,377–379]. In order to shift the model
architecture to concentrate on important features, attention modules were incorporated which
makes them a widely used architecture modification in both object detection and image
segmentation [81,94,96,125,225,230,360,367,375,380,381].

Figure 10. Overview of the commonly employed architectures for object detection. With 63% two-stage
detector models are the most frequently used especially designs from the R-CNN family (57%).
Followed by one-stage detector models (25%) and patch-based approaches (9%).

Further object detection specific modifications are the applications of deformable convolutions to
better extract object related features [232,233,372,377,382,383], as well as to specifically take the spatial
context of objects into account [78,106,125,230–232,236,366,376]. In order to better exploit complicated
training examples, hard example mining is used to focus on challenging situations [117,119,326,384].
As in computer vision, the cascading design of the Faster R-CNN model [385] proved that adaptive
intersection over union (IoU see Part I, Section 3.2 [21]) thresholds are an efficient way for better
performance, especially on tiny objects [232,377,386]. Overall, modifications of architectures highly
depend on the size, distribution and characteristics of the target defined by the application as well as
the used data. For two-stage detectors, Faster R-CNN [358] and its variants of cascading models [385]
and Mask R-CNN [387] are the most established and promising designs in Earth observation.

3.6. Deep-Learning Frameworks

As shown in the previous sections, the transfer of deep-learning methods from computer vision
to Earth observation is covered by a large share of studies. The majority have a strong focus on
method development in which they modify deep-learning architectures, cost functions and optimize
model training. However, recently the share of studies which apply deep-learning methods to answer
specific geoscientific research questions is getting bigger. Both groups have special requirements
on deep-learning frameworks: studies with a focus on method development need to dive deep into
model structures and demand flexibility and freedom in customization, whereas studies focusing on
application tend to use stable, established and streamlined model building tools.

Different frameworks are known to offer more freedom or more accessible functionality.
Pytorch [388] and native TensorFlow [389] offer deep and complex customization, whereas the Keras
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API [390] is known for its intuitive handling. Interestingly, with recent studies focusing on applications,
Keras is receiving much more attention, as pictured in Figure 11. This indicates a user community
which prefers established functionalities to use deep learning as a tool, but still wants to have the
opportunity to customize. Still, the share of Pytorch and TensorFlow remains high, which points to
users who need more freedom to customize their models or optimize their data pipeline.

Figure 11. Temporal development of employed deep-learning frameworks by numbers of studies which
reported the chosen framework. Of the 66 Keras-based studies, 47 reported the underlying backend,
of which 44 used TensorFlow. This number is not included in the TensorFlow count, presented in
the figure.

The usage of the early Caffe framework [391], which at some point forked and one branch
eventually became Pytorch, decreases. In contrast, the number of studies which use Pytorch increases,
indicating that parts of the Caffe user community turned to Pytorch. All the frameworks pictured
in Figure 11 are fully open source besides the Matlab-based MatConvNet [392], which shows a
comparably smaller share than the open access frameworks. Overall, the increase in deep learning as a
tool to answer geoscientific research questions can be seen in the increase of users who select open
access, well documented and subsequently more stable frameworks to apply deep learning.

4. Discussion and Future Prospects

4.1. Discussion of the Review Results

The results presented in the previous sections and summarized in Figure 12 demonstrate that deep
learning with CNNs in Earth observation is in an advanced transition phase from computer vision.
The main study focus of the reviewed publications was on method development and proof-of-concept
studies, which are characterized by using existing datasets or datasets on a smaller spatial scale.
These studies are essential to establish and prove the capabilities and limitations of CNNs in Earth
observation research. However, recent studies have begun to investigate large-scale applications with
CNNs and incorporate CNNs as a major tool in large-scale geoscientific research.

In the following, the reviewed aspects of employed sensor types, datasets, architectures and
applications are discussed. The most used sensor types are those which provide optical data with
a high to very high spatial resolution. The dominance of RGB data with rich spatial features can be
related to the origin of deep learning with CNNs in computer vision, where also rich feature RGB
input data drives the development of CNN research. The increasing use of more Earth observation
specific data from multispectral and radar sensors shows the progress made in adapting CNNs for
remote sensing data. However, for all sensor types, a high spatial resolution is proven to be crucial
for extracting objects and fine-grained class boundaries, which can better be detected when strong
representational features can be extracted from the input data. When following the motivation of CNNs
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in Earth observation towards an inventory of things in order to analyze object dynamics, high spatial
resolution data is and will be the main focus of employed sensor types in Earth observation.

Figure 12. Visual summary of the major findings of this review, separated into study focus, datasets,
applications, sensors and used architectures, from left to right. The size of the hexagons represents
the importance of the labeled topic, except for applications, where the pie chart depicts the shares of
the topics.

From the open datasets in Earth observation, the most widely used cover a small range
of application topics: building footprints, car, ship and multi-object detection, as well as road
network extraction. Even when datasets of further topics exist, and their variation is increasing
recently, the majority of the reviewed publications investigate datasets which contain targets of the
above-mentioned applications. Hereby, they made progress in extracting and answering research
questions of the specific application targets. However, primarily they used such datasets to find
solutions on how to optimize CNNs coming from the computer vision domain for analyzing Earth
observation data. This strong data-driven method development in the early phase of the transition of
CNNs from computer vision to Earth observation is subsequently complemented by studies which
created custom datasets. Those studies indicate the recent trend of dataset creation which is driven
by research questions of land-surface dynamics. Accompanying this observation in datasets is the
shift of the study focus from method development to proof of concept and finally, large-scale studies,
which we characterize as the advanced transition phase.

The methodological insights which were made during this transition phase are prominent in the
employed architectures and their modifications. For feature extraction, architectures form the ResNet
family and Vintage designs like VGG are the most commonly used. Therefore, in Earth observation
shallower model variants are chosen, compared to computer vision. The most frequent arguments for
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shallower models were to avoid overfitting or vanishing of tiny features through large receptive fields
as well as to reach a better accuracy-parameter ratio. In image segmentation, the encoder-decoder
design and the U-Net is the most widely used. The usage of this specific model is justified by better
spatial refinement during the decoding process of fine-grained details by sharing entire feature maps
from the encoder with the decoder. The gain in spatial accuracy due to this approach was found to
be beneficial for Earth observation applications where tiny and fine-grained structures are important.
However, where such fine-grained information is not prominent in the data due to a lower spatial
resolution, patch-based approaches are also applied. For object detection, the highly modular R-CNN
and especially the Faster R-CNN design of the two-stage detector approach dominates. The modular
design allows for intensive modifications, and follow up architectures like Cascade R-CNN and
Mask R-CNN show promising results in more precise predictions for deriving instance segmentation,
which will be necessary when analyzing spatio-temporal object dynamics. Overall, architectures were
intensively modified to better fit the needs of Earth observation studies. Here, attention modules
are often found to be effective in both image segmentation and object detection. The methodological
basis, which was developed during the phase of transition from computer vision to Earth observation,
offers the opportunity for fast and successful architecture modification in future studies.

When finally looking at the applications where CNNs were used, the picture is similar to the
most commonly used datasets: transportation, settlement and multi-object detection are among the
four largest, together accounting for 66% of all studies. Building footprints and road extraction
as well as car, ship and multi-object detection belong to the most intensively researched topics.
With general LCLU mapping, a traditional Earth observation research topic is the third largest
group with 13% of all studies. The similarity between the topics of the most used open datasets,
as discussed above, and the investigated applications of all reviewed studies indicate the data-driven
paradigm of the transition phase. The optimization of specific problems on available datasets is used
to push method development and establish CNNs in Earth observation before answering geoscientific
research questions. Furthermore, the three large application groups (transportation, settlement and
multi-class object detection) have a strong focus on relatively small but numerous artificial objects
in one image. This large number of studies is also attributable to the strength of CNNs to identify
the characteristic features of entities in imagery data and localize them precisely. Hence, CNNs are
exceptionally well suited to answer questions related to these application sectors. On the other hand,
applications in LCLU, where CNNs also perform successfully, typically cope with more indifferent
spatial boundaries. Furthermore, spectral and temporal signals are also necessary, hence more complex
model modifications to CNNs, or combination with other model types, and expert knowledge are
needed. Also, few datasets exist in this domain which are suited to deep learning. Therefore, there are
fewer studies in this area compared to applications where deep learning with CNNs is traditionally
more established.

However, with the subsequently proven capabilities of CNNs in Earth observation research,
studies are recently starting to use CNNs on applications which generally rely on other methods like
random forest. In addition to that new applications are being investigated, most with a focus on
analyzing entities with an object detection approach, which widen the field in which Earth observation
can be applied.

4.2. Future Prospects

With the results of the review summarized and discussed in the last section, with regards to study
focus, sensor types, datasets, architectures and applications, this section provides future prospects
to these aspects. Figure 13 pictures a graphical summary of upcoming trends of CNNs in Earth
observation and their potential drivers.

The ongoing transition from computer vision to Earth observation will continue and change
the foci of studies. This will lead to a decrease in proof-of-concept studies and at the same time,
to an increase in studies which answer large-scale geoscientific research questions using CNNs.
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Especially large-scale datasets which provide a global variance of training examples will lead to a
better spatial transferability and thus push large-scale studies forward. Method development will
remain a challenging and acutely investigated topic, due to the fast-moving developments coming
from computer vision and the possibilities to modify CNN architectures in general. Also, method
development will play a significant role in making CNNs spatially transferable and less likely to overfit
when more global datasets become publically available.

Figure 13. Visual summary of future prospects, separated into study focus, datasets, applications,
sensors and used architectures. The size of the hexagons represents the importance of the labeled topic,
except for applications, where the pie chart depicts the relevance of a topic. In addition, the drivers
of future prospects are depicted with a green triangle. They are arranged in such a way that their
proximity to the thematic fields roughly reflects their influence on the five aspects.

Optical imagery sensors with a high to very high spatial resolution will remain the most employed
data sources for Earth observation with CNNs. Such data provides a rich feature depth for multiple
objects at the same time and is therefore an excellent choice to detect and segment entities of multiple
classes jointly in one image. Furthermore, data accessibility will increase due to the opening of archives
containing previously sensed optical images with a very high spatial resolution, as well as future
spaceborne missions. The latter will increase not only spatial resolution but also temporal resolution,
and also provide high-resolution video footage sensed from space. However, multispectral and radar
sensors, as well as their combination, will be more employed based on recent findings. CNN models
became more adapted or were specially designed to deal with such input data, and insights on their
behavior in deep-learning approaches were made, as reported in this review.

Another driver for increasing the attention for specific sensors are deep-learning challenges,
where teams can compete by solving specific topics. The recently ended SpaceNet 6 challenge on
building footprints extracted from multispectral and SAR data [33] is an example for the potential of
such events and how to use them to push methods which analyze multi-sensor data. The multi-sensor
focus of SpaceNet 6 as well as the recently published dataset SEN12MS [393] are characteristic for
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pushing deep-learning research and are an indicator for research interest in focusing on sensors other
than optical systems.

Datasets are one of the main drivers of deep-learning development, which was widely reported
and discussed in this review and in Part I [21]. Hence more and larger datasets will be created which can
be used for benchmarking. Nevertheless, the creation of datasets and particularly large and benchmark
datasets is labor-intensive. In order to encourage researchers to create custom datasets, alternatives
should be provided besides creating datasets just by labeling images by hand. Weakly supervised
learning has already been mentioned as an opportunity to leverage fuzzy labeled data [10–12] and
activate data sources unused until now [69]. Another way to create datasets, which was only used
once in the reviewed papers, is to synthesize data. The authors Isikdogan et al. [48] and recently
Kong et al. [49] demonstrated that using fully synthetically created training data in Earth observation
is possible and could further increase the variety of datasets. Overall, with an increasing variety of
datasets, researchers will be able to analyze multiple parameters of land-surface dynamics better and
combine them into deep-learning workflows which help to answer complex research questions.

The modification of architectures which come from computer vision is necessary to analyze
data in Earth observation successfully. Furthermore, custom model designs, which are tailored to
the needs of Earth observation data, are becoming more popular. However, parameter efficiency
is important in both cases to save computing power and avoid overfitting. By choosing shallower
model variants of designs from the ResNet Family or Vintage designs, the number of parameters has
already been taken into account. However, with the emergence of MobileNets [394,395] and neural
architecture search [396–398] new possibilities are emerging to create parameter efficient designs [399]
and architectures particularly built for Earth observation problems. Efficient designs will be of greater
interest to increase the effectiveness of feature extractors. The application of neural architecture search
was already part of the discussion of Part I [21]. In the meantime, Wang et al. [400] proposed RSNet,
a network designed for remote sensing data by leveraging neural architecture search. This study
demonstrates that neural architecture search, which increased the accuracy-parameter ratio in computer
vision significantly, can also be used to create specific architectures for Earth observation.

Even when CNNs are the most widely used deep-learning model types in Earth observation,
applications with a multi-temporal perspective are particularly sparse, as reported in this review.
Hence, the combination with other model types, like LSTMs which support the representational
capacity for sequential signals, see Section 3.4.5, will lead to an increase in applications. This will be of
increasing interest not just to better derive information with a temporal signature, but also to analyze
object dynamics and make future predictions.

Another driver aims more towards the training of neural networks and is not necessarily limited
to CNNs. Loss functions, which assess the model’s performance during training and provide the
signal on which the model is optimized, offer the possibility to incorporate expert knowledge into the
network. An example included in this review is the work of Wei et al. [130] who embedded geometrical
structures into the loss function for better road extraction. By adding already existing knowledge
from an expert’s perspective to predict complex systems upon remotely sensed data, new research
applications can be exploited.

All drivers will finally impact the applications of CNNs in Earth observation. More applications
will be investigated, and new applications added which today have never been in focus from an
Earth observation perspective since, with deep learning, more detailed information is accessible.
However, it is to be expected that specific applications will further dominate, due to their interest
from research and practical applications. Those applications will be in sectors where humans interact
and operate economically, like transportation and settlements. When analyzing object dynamics,
the livelihoods of our planet can be closely monitored and quantified. This will not just provide valid
data for research and political decision-makers, but also to everyday economic managers who decide
about short term strategies on a regional and global scale. Therefore, a broad inventory of things is
essential to compare current situations with the past, and to predict and manage in near-real time.
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5. Conclusions

In this review, we provide an extensive overview of the convolutional neural network (CNN) for
image segmentation and object detection in Earth observation research by analyzing 429 publications.
The main findings of this review highlight the fact that CNNs are in an advanced transition from
computer vision to Earth observation. This transition is characterized by data-driven method
development, which provides adapted models and small-scale proof-of-concept studies. Together they
build a basis for large-scale geoscientific research questions which use CNNs. This trend will continue
and finally provide a global, digital inventory of things derived by CNNs from Earth observation data,
to analyze object dynamics and their impact on land surfaces.

In detail, the 429 publications were analyzed with regard to five major aspects: (1) the spatial
distribution of the studies globally, (2) the employed sensor types, (3) the most commonly used
open datasets, (4) the specific applications in which CNNs are used in Earth observation research,
and (5) CNN architectures and modifications to fit the needs of remotely sensed data. The results are:

1. The study site locations are mainly from three continents: Asia (21%), Europe (17%), and America
(14%), whereas, studies with a global perspective (4%) or a focus on polar regions (3%) and
Africa (1%) have the smallest shares. The largest shares of national study sites are from China
(14%), Germany (10%), and the US (9%). Studies with multiple locations (31%) or without any
specification (8%) are mainly investigating method development or proof of concepts. Also 83%
of the German study sites are in Potsdam and Vaihingen, from which datasets are available for
method development and ablation studies.

2. The most employed sensor systems are optical sensors (56%) which provide a high to very high
spatial resolution. They are followed by multispectral (26%) and radar (13%) sensors. Only 4%
of the studies employ multi-sensor data. Imagery data of optical sensors with a high spatial
resolution are often acquired via Google Earth. More directly, the most commonly investigated
spaceborne missions with optical and multispectral sensors are Gaofen 1 + 2 and WorldView 1–4;
and Sentinel-1 and TerraSAR-X for radar systems. This shows the importance of high to very high
spatial resolution data, and in case of Sentinel-1 of freely available data archives.

3. Datasets are highly important for the development of deep-learning algorithms and are strong
drivers for specific applications when they are publicly available. Custom datasets, which were
used solely or combined with existing open datasets, were investigated in 62% of the studies.
Publicly available, open datasets are prominent in the settlement and transportation sectors. Here,
a specific focus is on building footprints, road extraction or car and ship detection. They are by
far the most frequently used open datasets. Important datasets for method development in image
segmentation are the well-known ISPRS Potsdam and Vaihingen datasets; and for object detection
the NWPU VHR-10 and DOTA dataset.

4. Applications in Earth observation in which CNNs are widely used are: transportation (27%)
and settlement (26%), as well as the strong method development related multi-class object
detection (11%). Here, ship detection (12%), as well as building footprint and urban VHR feature
extraction with both 10%, are among the most deeply studied specific applications and therewith
demonstrate a focus on detecting entities in remote sensing data. Classical Earth observation
domains like LCLU (13%), agriculture (10%) and natural vegetation (4%) are less frequently
studied. Still, proof-of-concept studies show how research questions of these domains can be
answered by analyzing many single entities and their impact of the wider land cover class they
belong to. With a focus on the extraction and detection of fine-grained boundaries and entities,
Earth observation with CNNs will be able to quantify object dynamics on a large scale. This will
increase the interest from everyday applications for short term decision making and management
in economy and practice. Hence, application domains which are characterized by artificial objects
will continue to be the most investigated group.
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5. In both image segmentation and object detection, CNN architectures for feature extraction are
dominated by designs related to the ResNet family (35%) and the older VGG (32%) architecture.
Lately, efficient designs like the MobileNets (1%) were also successfully employed. In image
segmentation, encoder-decoder designs (62%) are used, especially the U-Net model (33%).
They are followed by patch-based approaches (33%) for data with a lower spatial resolution.
In object detection, the two-stage detector approach (63%) is the most widely used, and of
these approaches, the R-CNN family with the Faster R-CNN model (57%) is the most prevalent.
Commonly made modifications to adapt CNNs to Earth observation tackle tiny objects and
fine-grained boundary class problems by using attention modules, atrous convolution and rotated
bounding boxes.

With this Part II of the review, we continued to provide thorough insights into deep learning
with CNNs in Earth observation, with a special focus on researchers who want to use this
method. Deep learning models and CNNs in particular are an established tool in Earth observation,
whose relevance will further continue to increase. Driven by a strong method development and
numerous proof-of-concept studies, large-scale geoscientific research studies will provide novel
answers. They will investigate the interconnections between small and numerous objects and
large-scale land covers to understand land-surface dynamics on a new level. Due to the opening of
archives which contain data with a very high spatial resolution, we propose a surge of studies with a
focus on object dynamics which will extensively employ the CNN deep-learning model.
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