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Abstract: Adenosine receptors (ARs) play an important role in neurological and psychiatric disorders
such as Alzheimer’s disease, Parkinson’s disease, epilepsy and schizophrenia. The different subtypes
of ARs and the knowledge on their densities and status are important for understanding the
mechanisms underlying the pathogenesis of diseases and for developing new therapeutics. Looking
for new scaffolds for selective AR ligands, coumarin—chalcone hybrids were synthesized (compounds
1-8) and screened in radioligand binding (hA1, hAs and hA3) and adenylyl cyclase (hAjp) assays in
order to evaluate their affinity for the four human AR subtypes (#ARs). Coumarin—chalcone hybrid
has been established as a new scaffold suitable for the development of potent and selective ligands
for hA; or hAj subtypes. In general, hydroxy-substituted hybrids showed some affinity for the
hA;, while the methoxy counterparts were selective for the 1A3. The most potent 1A ligand was
compound 7 (Kj = 17.7 uM), whereas compound 4 was the most potent ligand for hA3 (K; = 2.49 uM).
In addition, docking studies with #A; and hAj; homology models were established to analyze the
structure—function relationships. Results showed that the different residues located on the protein
binding pocket could play an important role in ligand selectivity.
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1. Introduction

Adenosine receptors (ARs) are cell membrane receptors, belonging to the G protein-coupled
receptor (GPCRs) superfamily. ARs comprised of four different subtypes: Ay, Aps, Asp and Az [1].
Adenosine is a purine nucleoside and an endogenous modulator of several physiological processes [1-4].
Extracellular adenosine activates the Gj-coupled receptors of the A; and Aj subtypes, depressing the
action of the brain, heart, kidneys, and the immune system, amongst other systems, as a consequence
of the inhibition of adenylyl cyclase [5]. The A3 subtype of AR has been cloned [6,7], making it possible
to establish its pharmacological [8-11] and regulatory features [12].
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Due to their widespread presence in cells, ARs proved to be promising targets in drug discovery.
During the last decade, the search for selective ligands has been raised [13-15]. Several AR antagonists
appeared as promising drug candidates for different pathological processes such as inflammation
(As3) [14], heart and renal failure (A1) [16], or neurological disorders including Parkinson [17,18] and
Alzheimer’s diseases (A and/or A7) [19]. ARs can work as targets for various diseases and can open
a new window for new therapeutic approaches.

In particular, A; antagonists are effective as diuretic agents [20,21] and also show neuroprotective
activity in animal models of in vivo ischemia [22]. On the other hand, A3 antagonists are being
investigated as potential agents against renal injury [23] and also as neuroprotective agents [24,25],
while Aj agonists are also under consideration for treating conditions of the central nervous system
(CNS) and peripheral nervous system [26,27].

From the arsenal of molecules presenting high potency and selectivity on ARs, the xanthine
scaffold was the first to be used to develop the so-called classical AR antagonists [28,29]. In the search
for non-xanthine AR ligands, numerous structures were discovered over the years. Flavones and
isoflavones have played a remarkable role. As an example, genistein, was described as a competitive
antagonist at Aj in FRTL (thyroid) cells [30], and galangin was found to bind to the three subtypes of
ARs displaying micromolar affinity for the Az [31]. The affinity of flavonoids and other phytochemicals
to ARs brings about the hypothesis that probably other types of natural substances, namely those
present in the diet, can interact with this type of receptor.

Coumarins (chromone isosteres) and chalcones (a flavonoid precursor) are naturally occurring
benzopyran-related molecules presenting a variety of pharmacological activities [32-34]. Having in
mind that both the coumarin and chalcone nuclei are structurally close to flavonoids, the design of
novel AR ligands based on their scaffolds emerged as an interesting idea. Our study was also motivated
by the structural similarity between the coumarin and the chromone scaffolds, which were previously
described as AR ligands [35,36], and by the similarities with some coumarin derivatives previously
described in our group [37-42]. In this context, we focused our attention on the 3-benzoylcoumarin
core, considered as a hybrid scaffold in which the chalcone is fixed in a trans conformation through
the double bond of the pyrone ring of the coumarin skeleton (Figure 1), presenting a more restricted
conformation compared to the previously described coumarin—chalcone hybrids [36].
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Figure 1. Rational design of coumarin—chalcone hybrids.
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Therefore, based on the structural similarities between flavones, chalcones and coumarins,
we decided to design and synthesize a novel family of coumarin—chalcone hybrid derivatives and
study their activity on the different subtypes of human AR.

2. Results and Discussion

2.1. Chemistry

Two sets of coumarin—chalcone hybrids have been synthesized: one decorated with methoxy
substituents (1-4) and another with hydroxy substituents (5-8). An efficient and versatile Knoevenagel
reaction, treating a commercially available salicylaldehyde and the corresponding methoxylated
ethyl benzoylacetate with piperidine in ethanol (EtOH) at reflux for 2-6 h, allowed the desired
methoxy-3-benzoylcoumarins 1-4 with 85-97% yield. The hydroxy-3-benzoylcoumarins 5-8 were
obtained by hydrolysis of the corresponding methoxy derivatives, with 75-94% yield, by employing
boron tribromide (BBr3) as deprotecting reagent in dichloromethane (DCM) at 80 °C in a Schlenk tube
for 48 h [43]. The synthetic approach is illustrated in Scheme 1 and described in the methods and
materials section.

R o)
R2 CHO + (a) R2 O X O
Rs OH EtO,C Rs o~ o OMe
Ry R4

R1, Ry, R3, Ry = H, OMe 1-4

1R1=R2=R3=H;R4=OM6

2R1=R3=H;R2=R4=OMG

3R2=H;R1=R3=R4=OM9

4R2=R4=H;R1=R3=OMB
(b)

R o)
CCLC
Rs o Yo OH

R4
5-8

8 R2=R4=H;R1=R3= OH

Scheme 1. Synthetic route to obtain the coumarin-chalcone hybrids. Reagents and conditions: (a) piperidine,
EtOH, reflux, 2-6 h; (b) BBr3, DCM, 80 °C, 48 h.

2.2. Pharmacology

Adenosine Receptor Binding Affinity Assays

The adenosine binding affinity of derivatives 1-8 for the human AR subtypes hA;, hAja
and hAj, expressed in Chinese Hamster Ovary (CHO) cells, was determined in radioligand
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competition experiments [43,44]. In the binding affinity assay, it is measured the competition
of ligands for specific binding of [PHJCCPA (2-chloro-N®-cyclopentyladenosine) to hA;; specific
binding of [PHINECA (5’-N-ethylcarboxamidoadenosine) to hAj;a; and specific binding of
[*HJHEMADO (2-(1-hexynyl)-N 6-me’thyladenosine) to hAs. The results are expressed as K; (dissociation
constants), which were calculated with the program SCTFIT, and given as geometric means of
at least three experiments, including 95% confidence intervals. Due to the lack of a suitable
radioligand for the hA,p receptor, the potency of antagonists at the #A,p receptor was determined
by inhibition of NECA-stimulated adenylyl cyclase activity with increasing concentrations of
antagonist [43,44]. As a result, cAMP (cyclic adenosine monophosphate) production was inhibited in
a concentration-dependent fashion, and K;j values were calculated from the measured ICs; values [45].
Derivatives 1-8 were efficiently synthesized and their in vitro binding affinity for human
AR subtypes hA1, hAxa, hAzp and hAj, expressed in CHO cells, was evaluated. In the present
communication, the studies were focused on the inspection of the effect on the binding affinity of
different number and position of methoxy or hydroxy substituents on the 3-benzoylcoumarin scaffold.
Data obtained for the binding affinity for #A; and hAj3 is summarized in Table 1. For all the tested
compounds, no significant affinity was detected for the 1A (Ki > 100 uM) or hAyp (Kj > 10 uM).

Table 1. Binding affinity (K;) of compounds 1-8 on hA; and hA3 AR.

hA, hA3
Compound (K; uM) 3 (K; uM) 3
1 >100 >100
2 >100 >100
3 >30 b 9.03 (6.28-13.0)
4 >100 2.49 (2.33-2.66)
5 39.5 (25.3-61.5) 34.5 (29.7-40.1)
6 54.0 (49.8-58.5) >60P
7 17.7 (16.0-19.5) >30b
8 29.1 (20.4-41.5) >60 P
Theophylline 6.77 (4.07-11.3) 86.4 (73.6—101)

2 Results are geometric means of 3 experiments and given with 95% confidence intervals (in parentheses). ® At higher
concentrations, the compounds precipitate.

The binding affinity results show that derivatives 1 and 2, without substitutions on the coumarin
scaffold or with a single methoxy group at the position 6 of the coumarin core, respectively, display no
detectable binding affinity for the evaluated receptors (K; > 100 uM). However, the presence of two
methoxy groups at positions 5 and 7 (compounds 3 and 4, respectively) lead to an increment on both
the potency and selectivity for the hA3. Compound 3, presenting three methoxy groups at positions 5,
7 and 4’ proved to be hAj selective, displaying a K; = 9.03 uM, whereas compound 4, presenting an extra
methoxy groups at position 3’ is not only selective for A3, but also displays a increase in potency
(Ki =2.49 uM). Compared to theophylline, classically used as a reference compound, we would like to
highlight that both compounds 3 and 4 are more potent and hAj3 selective molecules.

Based on this data, it can be concluded that both nature and position of the substitution patterns
on the coumarin—chalcone scaffold play a key role in the interaction with the hA3. It can be highlighted
that positions 5 and 7 of the studied scaffold seem to be relevant for the observed selectivity and
potency. Analyzing the methoxylated derivatives 14, only the molecules presenting substituents at
these two positions (compounds 3 and 4) are hA3 active and selective ligands.

Interestingly, a similar tendency was observed for 1A binding of the hydroxylated derivatives
(5-8), which bear hydroxy groups instead of methoxy groups at positions 5 and 7 (compounds 7 and 8).
Derivatives 7 and 8 display the highest potency and selectivity of the studied series towards hA;,
but their activity towards this receptor is still low with K; = 17.7 uM and K; = 29.1 uM, respectively.
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2.3. Theoretical Evaluation of ADME Properties

In order to explore the drug-like properties of compounds 1-8, the lipophilicity, expressed as the
octanol/water partition coefficient and herein named clogP, as well as other theoretical calculations
such as number of hydrogen acceptors and number of hydrogen bond donors, and topological polar
surface area (TPSA), were calculated using the Molinspiration software [46]. Theoretical prediction of
absorption, distribution, metabolism and excretion (ADME) properties of all derivatives is summarized
in Table 2.

Table 2. Theoretical evaluation of the ADME properties of coumarin—chalcone hybrids.®

TPSA n-OH n-OHNH Volume

Compound  clogP (A%2)  Acceptors  Donors (A3
1 3.04 65.75 5 0 270.07
2 3.08 74.98 6 0 295.62
3 3.06 84.22 7 0 321.16
4 3.47 74.98 6 0 295.16
5 243 87.74 5 2 235.01
6 1.93 107.97 6 3 243.03
7 1.63 128.20 7 4 251.05
8 2.12 107.97 6 3 243.03

2 TPSA, topological polar surface area; n-OH, number of hydrogen acceptors; n-OHNH, number of hydrogen
bond donors.

Based on this theoretical data, it can be concluded that the study molecules 1-8 do not violate
any of Lipinski’s rules (namely molecular weight, clogP, number of hydrogen donors and acceptors).
In addition, TPSA, described as an indicator of membrane permeability, was favorable for the
studied compounds.

2.4. Molecular Modeling

hA; and hAjz homology models were successfully constructed (Materials and methods section).
A selection of models obtained from Induce Fit calculations were tested based on their ability to
discriminate between known ligands, decoys and between subtype-selective compounds. The models
selected for the docking calculations showed excellent results in both tests. A dataset of 200 randomly
selected decoys from the ZINC database [47] were mixed up with 22 known ligands of each adenosine
receptor subtype [48] Glide SP precision was used to dock the database to the hA; and hA; models [49].
Table 3 presents the area under the receiver operating characteristic (ROC) curve (AUROC) for both
systems. To differentiate between subtype-selective ligands, a second and more challenging test
was performed. As in a previous study [48], 66 subtype-selective molecules (22 hA1, 22 hAys and
22 hA3 compounds) were docked to the hA; model (22 true positives vs. 44 false positives) and to
the hA; (22 true positives vs. 44 false positives). Results corroborate those previously published by
Katritch et al. [50] and proved that the developed homology models are able to discriminate between
subtype-selective compounds (Table 3).

Table 3. Area under the ROC curve (AUROC) for the two homology models.

AUROC hAq hA;
test 12 0.91 0.95
test 2P 0.86 0.82

222 hA; or 22 hA3 ligands as true positives (TP) and 200 random decoys as false positives (FP) were considered.
b For hA;, 22 hA; selective compounds as TP and 22 hA; 5 + 22 hAz compounds as FP were considered. For hA3,
22 hA3 compounds as TP and 22 hAya + 22 hA; compounds as FP were considered.
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Glide SP molecular docking simulations were run with our data using the hA; and hAj3 selected
homology models as protein structures to detect the hypothetical binding mode of the new synthesized
compounds [51]. The Prime module was used to optimize the protein structure for each binding
mode [52]. Molecular docking simulations are represented in Figure 2.
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Figure 2. (a) Comparative study of the co-crystallized ligands (green carbons) in the 1Ay [3EML (left)
and 3UZC (right)] with the pose of compound 3 extracted from the #A3 docking calculations (grey
carbons). Binding pockets in 1Ay4 and hAz were superposed. (b) Pose extracted for compound 3 inside
the hAj3 after docking. Hydrogen bonds are represented in yellow color. (c) Hypothetical binding
mode for compound 5 (pink carbons) in the hAj3. (d) Pose obtained through docking simulations for
compound 7 (green carbons) in the #A; protein pocket.

Docking calculations and the established homology models for the hA; and hAj identified the
hypothetical binding mode and rationalized the interaction of these derivatives with their respective
ARs binding sites.

The calculations showed a high level of variability since all the synthetized derivatives yielded
different possible binding modes inside the pockets. Selection of the hypothetical binding pose was
accomplished considering the number of similar poses extracted from the simulations and geometrical
correspondence to crystallized ligands in the A4 (Figure 2a).

Docking results disclosed important data about the binding mode: the oxygens presented in the
benzopyrone system are oriented towards the Asn250 residue and the benzoyl moiety was buried
in the hAj3 pocket. This hypothetical binding mode corroborates the conformations shown by the
co-crystallized ligands in the 1A, (PDB: 3EML and 3UZC) [48,53] (Figure 2a,b). The pose of compound
3 produced effective hydrogen bonds with GIn167, Asn250 and His272 residues.

Interestingly, when methoxy substituents were demethylated and changed into hydroxy
equivalents (compounds 5-8) a modification in the profile of the studied derivatives was noticed: a loss
of affinity for 1Az and a tendency for interaction with #A;. The only compound that discloses some
affinity for both receptors was compound 5 (hA; K; = 39.5 and hAj K; = 34.5 uM), which presents
a catechol at positions 3’ and 4’ and no substitutions in the coumarin fragment. The hypothetical
binding mode for compound 5 in the 1Az pocket is represented in Figure 2c. The compound can
establish hydrogen bonds with Ala69, Asn250 and His272 residues. As observed in the 1Ay crystallized
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structure and previously published studies [54,55], the corresponding Asn250 residue seems to play
an important role in ligand recognition. The compound 5 pose inside the 1A pocket is likewise the
described pose in the hA3 one. However, the position was slightly shifted, and calculations were not
able to retrieve a hydrogen bond with the Asn250 residue. The introduction of an additional hydroxy
group at position 6 of the coumarin scaffold (compound 6), resulted in a loss of measurable A3 binding
affinity. The most noticeable binding affinities were found for derivatives with hydroxy substitutions
at positions 5 and 7 of the coumarin core, as stated for methoxy equivalents. Thereby, compound 7,
with the same substitution pattern as quercetin (Figure 1), that is, hydroxy groups at positions 5, 7, 3’
and 4/, displays hA; selectivity, and the best binding affinity (K; = 17.7 uM). Compound 8, with the
same substitution pattern as genistein (Figure 1, hydroxy substituents at positions 5, 7 and 4’) shows
a similar hA; selectivity (Kj = 29.1 uM). The pose obtained through docking calculations for compound
7 in the hA; protein pocket showed the possibility of establishment of hydrogen bonds with Glu172,
Asn254 and Thr277 residues (Figure 2d).

Moreover, we calculated the interaction energy contributions of the residues in hAj and hA;
pockets with compounds 3 and 7, respectively (Figure 3). The sum of different individual contributions,
such as Coulomb, van der Waals and hydrogen bond energies, was taken into account in the calculation
of the interaction energies for each residue.
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Figure 3. Interaction energy contribution (sum of Coulomb, van der Waals and hydrogen bond energies)
between the residues in the (a) #A3 and (b) 1A and the respective derivatives 3 and 7 (residues in
a distance of 3 A from the ligand).

In addition, Figure 4 shows the molecular surface around the two residues in the 1A and hA3
that could be responsible for the observed selectivity.

Regarding the interaction energy contributions (Figure 4), calculations showed that the molecular
surface around the two residues in the #A; and hAj3 could be responsible for the observed selectivity.
Phel68, Asn250, Ile268 and His272 are important residues in the interaction between compound 3 and
the hA3. Residues with important contributions in the stabilization of compound 7 inside the hA; are
Phel71, GIn172, Asn254, 1le274 and Thr277.
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Figure 4. Molecular surface showing favored interaction areas generated in the (a) #A; and (b) hA3.
Red color represents hydrogen-bond areas, green color shows hydrophobic areas, and blue represents
mildly polar interfaces. Protein structures are viewed from the extracellular side.

There are different residues in both hA; and hAj; with different hydrophobic/hydrophilic
characteristics, which may be important to understand the observed selectivity. Hydrophobic residues
in the hA3, such as Val169 and Leu264, could establish hydrophobic interactions and contribute towards
stabilizing the ligand when the derivatives present hydrophobic substituents, like methoxy groups
(i.e., 3 and 4) (Figure 4). However, in the case of 1A, the corresponding residues are Glul72 and
Thr270. They have hydrophilic characteristics and so can stabilize the binding of derivatives with polar
substituents, such as the hybrids with hydroxy groups (compounds 6-8). Yet, compound 5, with no
substituents in the coumarin ring, can be stabilized in the pocket of both proteins.

3. Materials and Methods
3.1. Chemistry

3.1.1. General Methods

Starting materials and reagents were obtained from commercial suppliers and were used without
purification. Melting points (mp) were determined using a Reichert Kofler thermopan or in capillary
tubes on a Biichi 510 (Flawil, Switzerland) apparatus and were uncorrected. 'H-NMR (300 MHz) and
13C-NMR (75.4 MHz) spectra were recorded with a Bruker AMX spectrometer (Bruker Daltonics Inc.,
Fremont, CA, USA) using DMSO-d; or CDClj as solvent. Chemical shifts (0) are expressed in parts per
million (ppm) using TMS as an internal standard. Coupling constants | are expressed in hertz (Hz).
Spin multiplicities are given as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublets)
and m (multiplet). Mass spectrometry was carried out with a Kratos MS-50 or a Varian MAT-711
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Elemental analyses were performed
by a Perkin-Elmer 240B microanalyzer (Thermo Fisher Scientific, Waltham, MA, USA) and were
within +0.4% of the calculated values in all cases. The analytical results were >95% purity for all
compounds. Flash Chromatography (FC) was performed on silica gel (Merck 60, 230400 mesh,
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Kenilworth, NJ, USA) and analytical TLC on precoated silica gel plates (Merck 60 F254, Kenilworth,
NJ, USA). Organic solutions were dried over anhydrous sodium sulfate. Concentration and evaporation
of the solvent after reaction or extraction was carried out on a Biichi rotavapor (BUCHI Labortechnik
AG, Switzerland) operating at reduced pressure. The purity of compounds was assessed by high
performance liquid chromatography (HPLC) coupled at diode array detector (DAD) on a Thermo
Quest Spectrasystem (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a P4000 pump,
an UV6000 UV-Vis diode array detector, and a SN4000 interface to be operated via a personal computer.
The instrument software ChromQuest 5.0 (Thermo Fisher Scientific, Waltham, MA, USA) was used for
data acquisition. Different analytical columns and mobile phases (all solvents were HPLC grade) were
tested. The mobile phase was HyO:CH3CN = 70:30 and an Eclipse xdb C18 column (5 um particle size,
0.46 mm i.d., 25 cm length; Agilent Technologies, CA, USA) was used. The purity of the compounds
was found to be higher than 95%.

3.1.2. Synthetic Protocol to Obtain the Methoxy-3-benzoylcoumarins 1-4

To a solution of the appropriate p-ketoester (1 mmol) and the corresponding salicylaldehyde
(1 mmol) in ethanol (5 mL) piperidine in catalytic amount (0.10 mL) was added. The reaction mixture
was refluxed for 2-6 h and, after completion (followed by TLC), the reaction was cooled, and the
precipitate was filtered and washed with cold ethanol and ether. The obtained solid was recrystallized
in DCM to afford the corresponding methoxy-3-benzoylcoumarin compounds.

3.1.3. Synthetic Protocol to Obtain the Hydroxy-3-benzoylcoumarins 5-8

In a Schlenk tube, the appropriate methoxy derivative compound 1-4 (1 mmol) was dissolved in
DCM (1 mL), and BBr3 (20 mmol, 1M) was added dropwise. The tube was sealed, and the reaction
mixture was heated at 80 °C for 48 h. The resulting crude product was treated with MeOH and rotated
to dryness. The obtained crude solid was recrystallized in MeOH or purified by flash chromatography
using hexane/ethyl acetate mixtures as eluent, to afford the desired hydroxy derivatives.

3-(3’,4’-Dimethoxybenzoyl)coumarin (1): 85% yield; white solid; mp 190-191 °C; 'H-NMR (300 MHz,
CDCl3) 8 ppm 8.01 (s, 1H, H-4), 7.71-7.52 (m, 3H, 3x Ar-H), 7.50-7.29 (m, 3H, 3x Ar-H), 6.87 (d, ] = 8.4 Hz,
1H, H-5'), 3.95 (s, 6H, 2x OCHj3); 1*C-NMR (75 MHz, CDCl3) § ppm 190.3, 154.8, 154.4, 149.5, 144.6,
133.6,129.3,129.2,127.8,125.7,125.2,118.5,117.2, 111.2, 110.2, 56.4, 56.3; EI-MS m/z (%): 311 ((M + 1]*,
59), 310 (M*, 100), 173 (41), 166 (25), 165 (99), 79 (22), 77 (22); Anal. Calcd. For C1gH1405: C 69.67,
H 4.55. Found: C 69.69, H 4.58.

6-Methoxy-3-(3’ 4’-dimethoxybenzoyl)coumarin (2): 97% yield; beige solid; mp 202-203 °C; 'H-NMR
(300 MHz, CDCl3) 6 ppm 7.78 (s, 1H, H-4), 7.38 (d, ] = 1.9 Hz, 1H, H-2), 7.26 (dd, ] = 8.4, 2.0 Hz, 1H,
H-6"),7.16 (d,] = 9.1 Hz, 1H, H-8), 7.04 (dd, ] =9.1,2.9 Hz, 1H, H-7), 6.82 (d, ] = 2.9 Hz, 1H, H-5), 6.70
(d, ] = 8.4 Hz, 1H, H-5'), 3.78 (s, 6H, 2x OCH3), 3.69 (s, 3H, OCH3); '*C-NMR (75 MHz, CDCl3) § ppm
190.4, 156.6, 154.4, 149.5, 149.3, 144.4,129.4, 128.0, 125.7, 121.6, 118.8, 118.2, 111.2, 110.8, 110.2, 56.4, 56.3,
56.1; EI-MS m/z (%): 341 (M + 1]*, 58), 340 (IM]*, 94), 165 (100), 77 (22); Anal. Calcd. For C19H;¢O4:
C 67.05, H4.74. Found: C 67.09, H 4.75.

5,7-Dimethoxy-3-(3’,4’-dimethoxybenzoyl)coumarin (3): 91% yield; pale yellow solid; mp 210-211 °C;
H-NMR (300 MHz, CDCl3) § ppm 8.19 (s, 1H, H-4), 7.34 (d, ] = 1.9 Hz, 1H, H-2"), 7.26 (dd, ] = 84,
2.0Hz, 1H, H-6"), 6.70 (d, ] = 8.4 Hz, 1H, H-5'), 6.29 (d, ] = 2.0 Hz, 1H, H-6), 6.14 (d, ] = 2.0 Hz, 1H, H-8),
3.77 (bs, 6H, 2x OCH3), 3.72 (bs, 6H, 2x OCHj3); 13C-NMR (75 MHz, CDCl3) § ppm 190.9, 165.8, 159.4,
158.4,158.0, 153.9, 149.3, 141.5, 130.0, 125.4, 121.3, 111.5, 110.1, 103.9, 95.4, 93.0, 56.3; EI-MS m/z (%):
371 (IM + 1]%, 24), 370 (M*, 100), 339 (21), 233 (30), 165 (63); Anal. Calcd. For Cp0H;30;: C 64.86,
H 4.90. Found: C 64.88, H 4.93.

5,7-Dimethoxy-3-(4’-methoxybenzoyl)coumarin (4): 97% yield; pale yellow solid; mp 174-175 °C;
'H-NMR (300 MHz, CDCl3) § ppm 8.21 (s, 1H, H-4),7.69 (d, ] = 8.8 Hz, 2H, H-2", H-6), 6.77 (d,] = 8.8 Hz,
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2H, H-3', H-5'), 6.29 (d, ] = 2.2 Hz, 1H, H-6), 6.13 (d, ] = 2.2 Hz, 1H, H-8), 3.72 (25, 3H + 3H, 2x OCH3),
3.70 (s, 3H, OCHj3); 3C-NMR (75 MHz, CDCl3) 5 ppm 190.7, 165.6, 163.8, 159.1, 158.2, 157.8, 141.5,
132.1,129.8,121.2,113.7, 103.8, 95.2, 92.8, 56.1, 56.0, 55.5; EI-MS m/z (%): 341 (IM + 1]*, 33), 340 (M*, 88),
325 (28) 312 (30), 309 (45), 297 (20), 233 (48), 135 (100), 92 (27), 77 (38). Anal. Calcd. For Cy9H;404:
C 67.05, H 4.74. Found: C 67.08, H 4.76.

5,7-Dihydroxy-3-(4’-hydroxybenzoyl)coumarin (8): 88% yield; pale green solid; mp 290-292 °C;
'H-NMR (300 MHz, DMSO-dg) § ppm 11.10 (s, 1H), 10.85 (s, 1H), 10.53 (s, 1H), 8.09 (d, ] = 1.4 Hz,
1H),7.67 (d, ] = 8.6 Hz, 2H), 6.80 (d, ] = 8.7 Hz, 2H), 6.25 (d, ] = 2.0 Hz, 1H), 6.22 (d, ] = 1.8 Hz, 1H);
I3C-NMR (75 MHz, DMSO-dg) 5 ppm 190.4, 164.2, 162.4, 158.8, 157.5, 157.2, 141.1, 132.3, 128.3, 119.0,
115.3, 101.5, 98.5, 94.3. EI-MS m/z (%): 299 (IM + 1]*, 9), 298 (M™, 31), 283 (16), 218 (20), 121 (100),
93 (26), 65 (27). Anal. Calcd. For C1H1¢Og: C 64.43, H 3.38. Found: C 64.39, H 3.37.

3.2. Biological Assays

3.2.1. Binding Affinity Assays

The binding affinity for hA;, hAza, hA3 of the synthetized compounds was evaluated using
radioligand competition experiments in CHO cells that were stably transfected with the individual
receptor subtypes [44,45]. The radioligands used were 1 nM [H]CCPA for hA; (Kp = 0.61 nM),
10 nM [PH]NECA for hAza (Kp = 20.1 nM), and 1 nM [PHJHEMADO for kA3 (Kp = 1.2 nM) receptors.
Due to the lack of a suitable radioligand for the hA;p receptor, the potency of antagonists at the 1A;p
receptor (expressed on CHO cells) was determined by inhibition of NECA-stimulated adenylyl cyclase
activity [44,45]. The ICsg for inhibition of cAMP (cyclic adenosine monophosphate) production was
determined and converted to K; values using the Cheng and Prusoff equation [56]. For all the tested
compounds, no measurable activity for the hA,p (K; > 10 uM) was detected.

3.2.2. Statistical Methods

K; values (dissociation constants) were determined in radioligand competition experiments
with 7-8 different concentrations of test compound and each concentration was tested in duplicate.
K; values are given as geometric means of three independent experiments with 95% confidence intervals.
The program Prism 6 (GraphPad Software) was used for the analysis of the competition curves.

3.3. Theoretical Evaluation of ADME Properties

cLogP was calculated by the methodology developed by Molinspiration as a sum of fragment-based
contributions and correction factors. Topological Polar Surface Area (TPSA) was calculated based
on the methodology published by Ertl et al. as a sum of fragment contributions [57]. Oxygen- and
nitrogen-centered polar fragments are considered. TPSA has been shown to be a very good descriptor
characterizing drug absorption, including intestinal absorption, bioavailability, Caco-2 permeability
and blood-brain barrier penetration. The method for calculation of molecule volume developed at
Molinspiration is based on group contributions. These have been obtained by fitting the sum of
fragment contributions to “real” 3D volume for a training set of about twelve thousand, mostly drug-like
molecules. Three-dimensional molecular geometries for a training set were fully optimized by the
semiempirical AM1 method.

3.4. Molecular Modeling

Homology modeling was carried out using the Molecular Operating Environment (MOE) suite [49].
Molecular docking simulations were performed with the Schrodinger package [51,52].
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3.4.1. Homology Models of hA; and hA3

Homology models of the KAl and hA3 were constructed. The crystallized structure of the 1Ay
receptor (PDB: 3EML) was used as a template [48]. Protein sequence alignment of the 3 receptors
(hA1, hAps and hA3) used to generate the homology models was performed as previously described
by Katritch et al. [50]. The alignment was made considering the highly conserved residues in the
different TM helices. MOE software was used to generate the homology models [49]. Protein geometry
was evaluated for the models taking into account Phi-Psi plots, rotamers, bond angles, bond lengths,
atom clashes, dihedrals and contact energies. The presence of different conserved disulfide bridges was
manually checked, such as the bridge between the corresponding Cys77 and Cys166 residues in the hAj4 .
Induce Fit Docking Workflow in the Schrodinger package was used to optimize the final models [58].
Selective high affinity ligands (compounds coll_11 and jaco_mre3008_f20) [50] were used to adapt the
protein pocket for the hA; and hAj3, respectively. This procedure involved three steps: 1) Glide-based
docking of the ligands using SP mode (standard-precision); 2) Protein pocket optimization using
Prime and considering the residues within 5A from the ligand poses; 3) Glide-based docking of the
ligands in the refined pocket using XP mode (Extra-precision). As previously described [50], homology
models were tested for their capability to discriminate ligands from decoys and between known
subtype-selective compounds. ROC curves were performed, and the best models were selected for
further molecular docking studies.

3.4.2. Molecular Docking of 1A; and hA3 ARs

Molecular docking studies using the #A; and hA3 homology models, selected in the previous step,
were carried out. Compounds were docked using Glide SP mode [52]. Ten poses for each ligand were
collected and optimized using MM-GBSA in Prime [53], taking into account a flexible protein region
defined by 5 A from the ligand. Final binding modes were selected, taking into account the number
of similar poses extracted from the calculations and geometrical correspondence to co-crystallized
ligands in the hAj4.

4. Conclusions

The current study was focused on the synthesis and the evaluation of binding affinity towards
the four subtypes of human ARs of a selected series of methoxy and hydroxy coumarin—chalcone
hybrids. Structure-activity relationship (SAR) studies of the new molecules highlighted that, in general,
methoxy substitutions, as in the example of compounds 3 and 4, allow a superior A3 binding affinity
and selectivity, whereas the hydroxy substitutions, as in the example of compounds 5-8, allow a modest
hA; binding affinity. Substitutions at positions 5 and 7 of the coumarin scaffold proved to be essential
for the potency and selectivity in both series of compounds. Compound 4, a methoxy derivative,
and compound 7, a hydroxy derivative, proved to be the most potent compounds of the studied
series, displaying a hA3 K; = 2.49 uM and a hA; K; = 17.7 uM, respectively. Docking calculations allow
an understanding the binding preference of the studied molecules. Finally, the theoretical values for
the ADME properties show that all the coumarin—chalcone hybrids 1-8 do not break any of Lipinski’s
rules, being promising scaffolds for further compound optimization.
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