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Abstract

This thesis is concerned with the solution of control and state constrained optimal control prob-
lems, which are governed by elliptic partial differential equations. Problems of this type are chal-
lenging since they suffer from the low regularity of the multiplier corresponding to the state con-
straint. Applying an augmented Lagrangian method we overcome these difficulties by working
with multiplier approximations in L2(Ω). For each problem class, we introduce the solution al-
gorithm, carry out a thoroughly convergence analysis and illustrate our theoretical findings with
numerical examples.
The thesis is divided into two parts. The first part focuses on classical PDE constrained optimal
control problems. We start by studying linear-quadratic objective functionals, which include the
standard tracking type term and an additional regularization term as well as the case, where the
regularization term is replaced by an L1(Ω)-norm term, which makes the problem ill-posed. We
deepen our study of the augmented Lagrangian algorithm by examining the more complicated
class of optimal control problems that are governed by a semilinear partial differential equation.
The second part investigates the broader class of multi-player control problems. While the exami-
nation of jointly convex generalized Nash equilibrium problems (GNEP) is a simple extension of
the linear elliptic optimal control case, the complexity is increased significantly for pure GNEPs.
The existence of solutions of jointly convex GNEPs is well-studied. However, solution algorithms
may suffer from non-uniqueness of solutions. Therefore, the last part of this thesis is devoted to
the analysis of the uniqueness of normalized equilibria.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Lösung von kontroll- und zustandsbeschränkten
Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedin-
gungen. Da die zur Zustandsbeschränkung zugehörigen Multiplikatoren nur eine niedrige Re-
gularität aufweisen, sind Probleme dieses Typs besonders anspruchsvoll. Zur Lösung dieser Pro-
blemklasse wird ein augmentiertes Lagrange-Verfahren angewandt, das Annäherungen der Multi-
plikatoren in L2(Ω) verwendet. Für jede Problemklasse erfolgt eine Präsentation des Lösungsal-
gorithmus, eine sorgfältige Konvergenzanalysis sowie eine Veranschaulichung der theoretischen
Ergebnisse durch numerische Beispiele.
Die Arbeit ist in zwei verschiedene Themenbereiche gegliedert. Der erste Teil widmet sich klas-
sischen Optimalsteuerungsproblemen. Dabei wird zuerst der linear-quadratische und somit kon-
vexe Fall untersucht. Hier setzt sich das Kostenfunktional aus einem Tracking-Type Term sowie
einem L2(Ω)-Regularisierungsterm oder einem L1(Ω)-Term zusammen. Wir erweitern unsere
Analysis auf nichtkonvexe Probleme. In diesem Fall erschwert die Nichtlinearität der zugrun-
deliegenden partiellen Differentialgleichung die Konvergenzanalysis des zugehörigen Optimal-
steuerungsproblems maßgeblich.
Der zweite Teil der Arbeit nutzt die Grundlagen, die im ersten Teil erarbeitet wurden und un-
tersucht die allgemeiner gehaltene Problemklasse der Nash-Mehrspielerprobleme. Während die
Untersuchung von konvexen verallgemeinerten Nash-Gleichsgewichtsproblemen (engl.: Genera-
lized Nash Equilibrium Problem, kurz: GNEP) mit einer für alle Spieler identischen Restriktion
eine einfache Erweiterung von linear elliptischen Optimalsteuerungsproblemen darstellt, erhöht
sich der Schwierigkeitsgrad für Mehrspielerprobleme ohne gemeinsame Restriktion drastisch. Die
Eindeutigkeit von normalisierten Nash-Gleichgewichten ist, im Gegensatz zu deren Existenz, nicht
ausreichend erforscht, was insbesondere eine Schwierigkeit für Lösungsalgorithmen darstellt. Aus
diesem Grund wird im letzten Teil dieser Arbeit die Eindeutigkeit von Lösungen gesondert be-
trachtet.
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CHAPTER 1

INTRODUCTION

In this work we study optimal control problems of distributed type, which are governed by ellip-
tic partial differential equations with homogeneous Dirichlet or Neumann boundary conditions.
Moreover, we imply inequality constraints on the variables of the optimal control problem. Single
player, as well as multi-player optimal control problems are investigated.

1.1 Motivation

The aim of this section is to give a short introduction into optimal control theory and its applica-
tions.

Many processes in nature and technology can be described by partial differential equations (PDE).
Among them can be found processes like heat distribution, diffusion, wave propagation, fluid
flows, elastic deformation and option pricing. With the help of a control variable u, we want to
influence the solution or state y of a partial differential equation:

Control u → Partial Differential Equation → State y.

This process should take place in such a way that a certain objective functional J(y, u), which
depends on y and u, will be minimized. Various applications in the industrial, medical and eco-
nomical context are covered by this setting. However, lots of real world applications require
additional constraints on the control u and the state y. Let us illustrate this on the following ex-
ample from the medical field: In cancer therapy [40], one wants to approximate a desired heat
distribution yd in a domain Ω in order to fight cancer cells. In this case, the control u represents a
heat source, which acts inside the domain. However, the control u only possesses bounded heating
or cooling capacities. Moreover, due to health reasons, the patient’s body temperature should not
exceed a certain maximum. In this way, additional constraints on the state and control are arising.
Another application for pointwise state constrained optimal control problems can be found in the
production process for bulk single crystals [92].

Let the control space U and the state space Y be some Banach spaces to be specified. Then, a
general optimal control problem for a control u ∈ U and a state y ∈ Y takes the form:

minimize
y∈Y, u∈U

J(y, u) subject to y = Su, u ∈ Uad, y ∈ Yad.

Here, J : Y ×U → R denotes the objective functional, while S : U → Y is the solution operator
of an underlying partial differential equation. The sets Uad and Yad represent the previously
mentioned constraints on the control and the state. If every control u ∈ U admits a unique state

3



4 1. Introduction

y, we can eliminate the state by setting y := Su. Then the objective functional is only dependent
on u, i.e., f (u) := J(Su, u), the so-called reduced formulation. Thus, the abstract problem turns
into the following formulation:

minimize
u∈U

f (u) subject to u ∈ Fad := {u ∈ Uad, Su ∈ Yad}. (1.1)

The proceeding in optimal control theory usually is as follows: The discussion of PDE constrained
optimal control problems requires the analysis of the underlying PDE concerning solvability,
uniqueness and regularity of solutions. Moreover, existence results concerning optimal controls
and optimality conditions have to be established. These results can be used to develop suitable
solution algorithms.

1.2 Formulation of the Problem

In this thesis, we are mainly concerned with the following PDE constrained optimal control prob-
lem. Let Ω ⊆ Rd denote an open, bounded domain and let U and Y be given by the function
spaces U := L2(Ω) and Y := YPDE ∩ C(Ω). The space YPDE depends on the type of underlying
partial differential equations. For our purposes suitable candidates will be the spaces H1(Ω) and
H1

0(Ω). We are searching for optimal controls u ∈ L2(Ω) that solve the following optimization
problem

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(1.2)

where yd ∈ L2(Ω), ψ ∈ C(Ω) and α > 0. The control u is constrained by lower and upper
bounds ua, ub which are assumed to be elements of L2(Ω) with ua(x) ≤ ub(x). The solution
operator S : L2(Ω) → YPDE ∩ C(Ω) maps the control u to the solution y of an associated, pos-
sibly nonlinear, PDE. In this thesis, S is always assumed to be continuously Fréchet differentiable
and completely continuous. For linear S, problem (1.2) is a strictly convex optimization prob-
lem. However, if S is nonlinear, for instance if S is the solution operator of a semilinear partial
differential equation, problem (1.2) turns into a non-convex problem.

1.2.1 Linear Optimal Control Problems

Let us first consider the case that S is linear. It is well known that under suitable constraint
qualifications first-order necessary optimality conditions for problem (1.2) can be established. In
general, however, the Lagrange multiplier associated to the state constraint y ≤ ψ is only a mea-
sure in C(Ω)

∗
=M(Ω), see, e.g., [26]. Under additional assumptions it has been proven in [32]

that the multiplier is an element of the more restrictive space H−1(Ω). These assumptions are
satisfied, e.g., for ψ being constant. This low regularity of the Lagrange multiplier makes the nu-
merical solution of state constrained optimal control problems challenging. Thus, in recent years
different approaches were studied to overcome this problem. These approaches have in common
that the state constraint is relaxed in a suitable way. Let us mention Lavrentiev-regularization
[61, 93], which turns the control problem into a problem with mixed control-state constraints.
Penalization-based approaches were studied in [53, 57, 58, 65], their combination with a path-
following strategy was investigated in [55, 56]. Both types of methods are obtained as special
cases of the so-called virtual control regularization approach developed in [79, 80]. Interior point
methods, which generate feasible iterates are considered for instance in [82, 112], where in the
recent work [82] complexity estimates are provided.



1.2. Formulation of the Problem 5

Augmented Lagrangian methods are well-known in optimization. However, there is only a limited
number of publications dedicated to the application of such methods to optimal control problems
with state constraints. In [14,15] the state equation is augmented, but the inequality constraints on
the state are still present in the augmented Lagrangian subproblem. In [17,63] problems with con-
straints in a Hilbert space are studied. However, the convergence analysis needs that the constraints
are in a finite-dimensional space. Nevertheless, the natural choice for the state constraint function
space is C(Ω), which is not a Hilbert space. This limits the applicability of the above mentioned
results. The goal of this work is therefore to analyze the classical augmented Lagrangian method
in the general setting of problems with state constraints: state constraints in C(Ω) (not in a –
possibly finite-dimensional – Hilbert space) with multipliers in C(Ω)

∗
.

In the first part of this thesis, we present an augmented Lagrangian algorithm that solves a se-
quence of subproblems that are control constrained only, i.e.,

minimize
uρ∈L2(Ω)

fAL(uρ, µ, ρ) := f (uρ) +
1

2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to ua(x) ≤ uρ(x) ≤ ub(x) a.e. in Ω,
(1.3)

where S denotes the same solution operator as for the unregularized problem (1.2), ρ > 0 and
µ ∈ L2(Ω). Moreover, (·)+ := max(0, ·) in the pointwise everywhere sense. Compared to
the unregularized problem, the occurring subproblems can be solved by efficient optimization
algorithms. We establish a special update rule that performs the classical augmented Lagrange
update only if a sufficient decrease of the maximal constraint violation and the violation of the
complementarity condition is achieved. This type of update rule has its predecessors in finite
dimensional nonlinear optimization [36, 37, 84]. Further, this update allows us to guarantee the
L1(Ω)-boundedness of generated multiplier approximations, which is crucial for the convergence
analysis, since it is necessary for obtaining a weak-* convergent subsequence inM(Ω). While
penalty methods suffer from the fact that the penalty parameter tends to infinity, augmented La-
grangian methods for finite-dimensional optimization problems do not require this property. Sur-
prisingly, such a result is not available for the augmented Lagrangian method studied in this thesis.
However, for the case that S is linear, we will prove, see Theorem 3.18, that the penalty param-
eters are bounded only if there is a multiplier to the state constraint in L2(Ω), which is not the
case in general. Such an observation was also made in the contribution [73]. There, a modified
augmented Lagrangian method is investigated, which is in the spirit of recent developments for
finite-dimensional optimization problems [18] and allows for a simpler convergence analysis.

1.2.2 Semilinear Optimal Control Problems

If the solution operator S is nonlinear, problem (1.2) turns into a non-convex optimization prob-
lem. The convergence analysis of solution algorithms of non-convex optimal control problems
suffers significantly from non-uniqueness of local and global solutions and only few contributions
can be found in the literature. Let us mention the so-called virtual control approach [80], Lavren-
tiev regularization [97], and Moreau-Yosida regularization [94]. All of these publications discuss
under which conditions local solutions of the unregularized problem can be approximated by se-
quences of local solutions of the regularized problems, but do not provide convergence results
for the overall iterative solution method. The convergence analysis of safe-guarded augmented
Lagrangian methods has been considered in [20, 73].

Our goal is to extend the augmented Lagrangian method presented in Chapter 3 and to provide
the corresponding convergence analysis in order to solve (1.2) for nonlinear S. By penalizing the
state constraint, one has to solve subproblems of the type (1.3). Given penalty parameters ρk and
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multiplier estimates µk, new iterates (yk+1, uk+1) of the algorithm are computed as stationary
points of (1.3) for (ρ, µ) := (ρk, µk).
The question of convergence of the algorithm is linked to the question of feasibility of limit points
of iterates that are only stationary points of the augmented Lagrangian subproblem. In particular,
the subproblem may have stationary points that are located arbitrarily far from the feasible set and
there is no rule to determine which stationary points have to be chosen in the solution process of the
subproblem in order to guarantee convergence. Specifically for augmented Lagrangian methods,
feasibility of limit points is not guaranteed, see for instance [71]. Consequently, feasibility is either
imposed as an additional assumption [36, 37, 73] or is an implication of a constraint qualification
[20, 73]. Let us mention that the classical quadratic penalty method is contained in [20, 73] as a
special case, and the comments regarding feasibility of limit points apply equally to this method.
The crucial point of augmented Lagrangian methods is the questions when and how to update
the penalty parameter and multiplier. As for the linear case, we use an update rule that performs
the classical augmented Lagrangian update only if a sufficient decrease of the maximal constraint
violation and the violation of the complementarity condition is achieved. Accordingly, during all
other steps the penalty parameter is increased, but the multiplier remains unchanged. This allows
us to conclude feasibility of a weak limit point if and only if an infinite number of multiplier up-
dates is executed, see Theorem 5.9. It would be favourable if the penalty parameter is increased
only finitely many times. In this case, the penalty parameter is only bounded in exceptional sit-
uations, i.e., if the multiplier is a function in L2(Ω), see Theorem 5.28. In practice, solutions of
the augmented Lagrangian subproblems are obtained by iterative methods, which naturally use the
previous iterate as starting point. Thus, it is realistic to expect that the iterates stay in a neighbour-
hood of a local solution of the original problem. One main result of this section is to prove that
such a situation can occur, i.e., for each iteration, we provide existence of a stationary point of the
subproblem in exactly this neighborhood. Therefore, we investigate the auxiliary problem

minimize
uρ∈L2(Ω)

fAL(uρ, µ, ρ) := f (uρ) +
1

2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to ua(x) ≤ uρ(x) ≤ ub(x) a.e. in Ω,∥∥ū− uρ

∥∥
L2(Ω)

≤ r,

(1.4)

that possesses solutions that are close enough to a local solution ū of (1.2). We will prove under
a quadratic growth condition that for ρ large enough global solutions of this auxiliary problem
are local solutions of the augmented Lagrangian subproblem. Moreover, if we assume that the
algorithm chooses the global solutions of the auxiliary problem as KKT points of the augmented
Lagrangian subproblem and the penalty parameter remains bounded, then the multiplier is a func-
tion in L2(Ω).

1.2.3 Ill-Posed Optimal Control Problems with Sparse Controls

Another challenging problem is to replace the regularizing Tikhonov term in (1.2) by an L1(Ω)-
norm term, which results in the optimal control problem

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) + β ‖u‖L1(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(1.5)

where β > 0 is a fixed parameter. The motivation for the L1(Ω)-term in the cost functional is the
following: The optimal solution ū of this optimal control problem is sparse, i.e., the control is zero
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on large parts of the domain if β is large enough. This can be used in the optimal placement of
controllers, especially in situations where it is not desirable to control the system from the whole
domain Ω, see [113]. Such sparsity promoting optimal control problems without state constraints
have been studied in e.g. [118–120] for optimal control of linear partial differential equations and
in [28, 30] for the optimal control of semilinear equations. For sufficient second-order conditions
for the state constrained sparsity promoting optimal control problem with a semilinear partial
differential equation we refer to [34].
Our aim is to modify and extend the method that will be used for solving (1.2). The main idea
is the following: To deal with the ill-posedness of (1.5), we add a Tikhonov regularization. To
overcome the problems, that arise due to the pointwise state constraints, we apply the augmented
Lagrangian method. Thus, in every iteration we examine the optimal control problem

minimize
uρ∈L2(Ω)

f α
AL(uρ, µ, ρ) := f (uρ) +

α

2
‖u‖2

L2(Ω) +
1

2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to ua(x) ≤ uρ(x) ≤ ub(x) a.e. in Ω.
(1.6)

Both variables, the regularization parameter α and the penalization parameter ρ are coupled in our
method. During the algorithm we decrease the regularization parameter α → 0 while increasing
the penalization parameter ρ → ∞. Since the decrease of α is a classical Tikhonov regulariza-
tion approach, we aim to achieve strong convergence against the solution of (1.5). Apart from
the augmented Lagrangian method there exist some other different approaches to deal with state
constraints. We want to mention [89], in which a simultaneous Tikhonov and Lavrentiev regular-
ization had been applied for (1.5) without an additional L1(Ω)-norm therm. There, the motivation
was to derive error estimates under a source condition and the assumption that the state constraints
are not active for solutions of (1.5). Furthermore, the authors assumed that for the lower bound on
the control it holds ua = 0. In our approach, we do not assume any of the above, which allows us
to apply our method to a larger class of problems.

1.2.4 Jointly Convex Multi-Player Optimal Control Problems

The optimal control problems (1.2) and (1.3) can basically be taken as single player optimal con-
trol problems that can be customized to a larger problem class: the multi-player optimal control
problems or generalized Nash equilibrium problems (GNEP). Let N ∈ N denote the number of
players. The player ν ∈ {1, ..., N} is in control of the variable uν ∈ L2(Ω). The strategies of all
players, except the ν-th player are denoted by u−ν ∈ L2(Ω)N−1. To emphasize the role of player
ν’s variable, we use the notation u := (uν, u−ν). We are searching for a control u ∈ L2(Ω)N

such that for all ν the control uν solves the following associated PDE constrained optimal control
problem:

minimize
uν∈L2(Ω)

f ν(u) :=
1
2
‖Su− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad := {uν ∈ L2(Ω) | uν

a(x) ≤ uν(x) ≤ uν
b(x) a.e. in Ω},

Su(x) ≤ ψ(x) in Ω,

(1.7)

where S : L2(Ω)N → YPDE ∩ C(Ω) denotes the solution operator of the underlying partial dif-
ferential equation. Since the state constraint Su ≤ ψ is the same for all players, it is commonly
referred to as joint constraint, turning problem (1.7) into a so-called jointly convex generalized
Nash equilibrium problem. Defining the set

Fad :=
{

u ∈ Uad := U1
ad × · · · ×UN

ad | Su ≤ ψ
}

,
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the generalized Nash equilibrium problem (1.7) can be expressed as a variational inequality (VI)
problem, or simply as the problem of finding a point ū ∈ Fad such that

(F(ū), v− ū) ≥ 0 ∀v ∈ Fad,

where F(u) :=
(

Du1 f 1(u), ..., DuN f N(u)
)
. Problems of this type have widely been studied in

finite dimensions, see for instance the survey papers [44,48]. For GNEPs in Banach spaces Carlson
[24] extended the work of Rosen [108] and provided conditions for the existence and uniqueness of
so-called normalized Nash equilibria. Most other papers only deal with specific problem classes,
e.g. [21, 102–104, 109, 110, 115] for standard NEPs and [42, 51, 59, 60] for GNEPs. In [59, 60]
GNEPs in the convex optimal control setting with pointwise state and control constraints have been
studied. Here, a Moreau-Yosida type penalty approach has been made to overcome the problems
that are arising due to the state constraints. We also want to mention the contribution [69], where
an augmented Lagrangian method with safeguarded multiplier has been applied to GNEPs in a
setting that includes also the jointly convex optimal control case. Jointly convex GNEPs exhibit
better solution properties, i.e., normalized equilibria of the GNEPs as well as solutions of the
arising subproblems are unique in our optimal control setting.
We will solve (1.7) by applying a simple extension of the augmented Lagrangian method devel-
oped for (1.2). Including the state constraints into the objective functional leads to a system of
problems where each player’s minimization problem is given by

minimize
uν

ρ∈L2(Ω)
f ν
AL(uρ, µ, ρ) := f ν(uν

ρ, u−ν
ρ ) +

1
2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to uν
ρ ∈ Uν

ad.

In this case, the remaining constraints do not depend on the other players’ controls. Problems of
this type are called Nash equilibrium problems (NEP).

1.2.5 Generalized Multi-Player Optimal Control Problems

The investigation of multi-player optimal control problems complicates if the control-to-state map-
ping and the state constraint ψν differs for each player. In this case, the control uν solves the
following associated PDE constrained optimal control problem:

minimize
uν∈L2(Ω)

f ν(uν, u−ν) :=
1
2
‖Sνu− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω)

subject to Uν
ad := {uν ∈ L2(Ω) | uν

a(x) ≤ uν(x) ≤ uν
b(x) a.e. in Ω},

Sνu(x) ≤ ψν(x) in Ω,

(1.8)

where Sν : L2(Ω)N → YPDE ∩C(Ω) is the solution operator of the respective linear elliptic PDE.
The bounds uν

a , uν
b are assumed to be L2(Ω) functions and ψν ∈ C(Ω) for all ν. The N different

state constraints may lead to N different multipliers. Let us emphasize that each player’s state,
i.e., the solution Sνu of each players PDE is affected by the other players’ strategies u−ν, leading
to a coupled system of optimal control problems. Defining the multifunction Fad(u) : L2(Ω)N ⇒
L2(Ω)N

Fad(u) :=
{

v ∈ L2(Ω)N | ∀ν = 1, . . . , N vν ∈ Uν
ad and Sν(vν, u−ν) ≤ ψν

}
,

the generalized Nash equilibrium problem (1.8) can be expressed as a quasi-variational inequality
(QVI) problem, i.e., as the problem of finding a point ū ∈ Fad(ū) such that

(F(ū), v− ū) ≥ 0 ∀v ∈ Fad(ū),
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where F(u) :=
(

Du1 f 1(u), ..., DuN f N(u)
)
. QVIs have been introduced in the context of stochas-

tic impulse control in the paper [13] by Bensoussan and Lions, who also recognized the connection
between generalized Nash games and quasi-variational inequalities [12]. QVIs became a powerful
modelling tool for various application areas, for instance mechanics, economics and biology. Only
few approaches have been made to solve finite-dimensional QVIs numerically. The first globally
convergent algorithm using a fixed point approach has been made in [35]. In [45] an interior point
method has been applied to the arising KKT conditions. Our approach is based on the work of
Pang and Fukushima [98], see also the extensions [68, 70], where a sequential penalty approach
has been proposed to general QVIs in finite dimensions. In the recent years the interest in QVIs
in infinite dimensions strongly increased since they permit to model various physical phenom-
ena. Here, Barett and Prigozhin [7–10] did lots of research concerning formation and growth of
sand piles, determination of lakes and superconductivity, see also [83,105]. Concerning existence
results and convergence theory, the concept of weak Mosco-continuity [96] plays a fundamental
role. In order to prove existence of solution of the corresponding QVI, we will work with a Slater-
type constraint qualification, which implies weak Mosco-continuity on the admissible set Uad.

We solve (1.8) by applying the augmented Lagrangian method that will be developed in Chapter 3
and 5. We include the state constraints into the objective functional, while the control constraints
are treated directly. This leads to a Nash equilibrium problem, where each player’s minimization
problem is given by

minimize
uν

ρ∈L2(Ω)
f ν
AL(uρ, µν, ρν) := f ν(uν

ρ, u−ν
ρ ) +

1
2ρν

∥∥(µν + ρν(Sνuρ − ψν))+
∥∥2

L2(Ω)

subject to uν
ρ ∈ Uν

ad.

In this way, the subproblem has been simplified to a standard variational inequality, which can
be equivalently reformulated in form of the GNEP’s optimality conditions, that has to be solved
during the solution process.

In [60] a GNEP in the optimal control setting with pointwise state and control constraints was
investigated. The authors provided a result that establishes the associated optimality system sup-
posing that the state equation is of the form Ay = ∑N

ν=1 uν and the single states yν are given via
yν := Kνy, where Kν ∈ L(YPDE, L2(Ω)). However, in the following, this work concentrated on
the special class of jointly convex GNEPs that admit normalized equilibria. Moreover, in [72] a
Lagrange multiplier method for QVIs in a rather general setting has been developed that includes
the optimal control case.

1.2.6 Uniqueness of Non-Reducible Multi-Player Control Problems

As already mentioned, the investigation of multi-player control problems in the function space
setting often considers problems of the type where each player aims at minimizing the optimal
control problem

minimize
uν∈L2(Ω)

1
2
‖CSu− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad, g(u) ∈ K,

(1.9)

where the operator S : L2(Ω)→ YPDE denotes the solution operator of an underlying linear ellip-
tic partial differential equation with a suitable Banach space YPDE. Further, C ∈ L(YPDE, L2(Ω))
and g ∈ L(L2(Ω)N , YPDE) are given linear and continuous mappings, yν

d ∈ L2(Ω), and αν is
a non-negative regularization parameter. Moreover, the set Uν

ad ⊂ L2(Ω) is bounded, closed,
convex and K ⊆ YPDE is a closed, convex cone. The joint constraint g(u) ∈ K coincides for
each player, which makes the problem a jointly convex GNEP. Problems of this type have first



10 1. Introduction

been investigated in [59]. Here, C := Id, g(u) := Su − ψ, ψ ∈ C(Ω), and K is the cone of
non-negative continuous functions. The authors extended their investigation in [60]. In [42, 69],
general settings of jointly convex GNEPs, which include the optimal control case, have been in-
vestigated. Some of the literature above investigates the solution of (1.9) via the application of
a Moreau-Yosida regularization or a Lagrange multiplier method. Supposing K is given as the
cone of non-positive continuous function, this treatment requires for each player the solution of
the following subproblem:

minimize
uν∈L2(Ω)

1
2
‖CSu− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω) +
1

2ρ
‖(µ + ρg(u))+‖2

L2(Ω)

subject to uν ∈ Uν
ad,

(1.10)

where ρ > 0 is a positive penalization parameter and µ ∈ L2(Ω). In this case, each player’s
constraint does not depend on the opponents’ strategies u−ν, which makes (1.10) a simpler Nash
equilibrium problem. For the Moreau-Yosida regularization, one typically chooses µ equal to
zero, while the augmented Lagrangian approach uses an adaptive update of µ, which is dependent
on the previous iterates. In general, this process yields fewer outer iterations for the augmented
Lagrangian method. However, solving (1.10) with a semi-smooth Newton method, the different
choice of µ does in general hardly affect the number of inner iterations. The existence of (gen-
eralized) Nash equilibria is well studied for both problems. A common approach is to apply the
Kakutani-Fan-Glicksberg Theorem [49]. Moreover, solutions of problem (1.9) as well as solu-
tions of (1.10) can be characterized via solutions of strongly monotone variational inequalities.
Applying the theory of VIs [78, Chap. III] directly yields existence of solutions. Finally, we want
to mention that both problems fall into the category of potential games in the sense of Monderer
[95]. In our setting, this means that the problem can be reduced to a single convex PDE con-
strained optimization problem [60, Prop. 3.10]. Existence of unique solutions of this problems
can be deduced by standard arguments from optimization theory.

However, the situation becomes considerably more complicated if we generalize (1.9) in the fol-
lowing way: Now, each player aims at minimizing

minimize
uν∈L2(Ω)

1
2
‖CνSu− yν

d‖
2
L2(Ω) +

α

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad, g(u) ∈ K.

(1.11)

The setting is the same as for (1.9) but now the linear mapping Cν ∈ L(YPDE, L2(Ω)) may differ
for each player. The corresponding augmented Nash equilibrium problem is given by

minimize
uν∈L2(Ω)

1
2
‖CνSu− yν

d‖
2
L2(Ω) +

α

2
‖uν‖2

L2(Ω) +
1

2ρ
‖(µ + ρg(u))+‖2

L2(Ω)

subject to uν ∈ Uν
ad.

(1.12)

Existence of solutions for these problems can again be proven by a fixed point approach [60, Thm.
3.4]. However, problems of this type cannot be reduced to a single control problem and we can
not expect in general that the resulting first-order optimality system is a (strongly) monotone VI.
Thus, uniqueness of normalized solutions is not clear. The first idea concerning the assurance of a
unique Nash equilibrium has been investigated in finite dimensions by Rosen [108], who defined
the notion of strict diagonal convexity. This notion was extended to the infinite dimensional setting
by Carlson [22–25] and requires that the combined objectives are strictly diagonal convex. This
basically coincides with the property that the resulting first-order optimality system is a strongly
monotone VI. A sufficient condition is given in [108] by a certain kind of definiteness of the
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second derivative of the combined objective functionals. However, it is not clear if this condition
is satisfied in our case. In our approach we will show existence and uniqueness of variational
equilibria of the GNEP (1.11) and the NEP (1.12) by imposing an assumption on the regularization
parameter α > 0.

Let us motivate the investigation of problems of the type (1.11) and (1.12). In multicriterion
optimization, interaction between several criteria must be considered. Here, Tang, Désidéri and
Periaux [115] investigated an airfoil design optimization problem, where they combined the so-
called adjoint method with a formulation from game theory. The authors considered different
design targets as objectives, which correspond to minimization problems. The design variable is,
by physical considerations, split into several subsets corresponding to the design targets, which
results in the choice Cν := χν, where χν denotes the standard characteristic function of a subset
Ων of Ω. However, each design variable effects the same physical system, which is described
by partial differential equations. Hence, the objectives are mutually in conflict and we are in the
situation of a non-reducible NEP.

It is a common choice to solve the arising subproblems (1.12) with a semi-smooth Newton method.
We will show that the method can be expected to converge superlinear only if α is sufficiently
large, see Theorem 8.11. For values of α, which do not satisfy this condition, it might be possible
to show at least in an experimental way that no other equilibrium exists. Therefore, one might
use a simple path-following on α with an initial value, which is greater than the critical value. As
soon as α drops below this critical value, one could apply a deflation technique for semi-smooth
equations [47] in order to search for distinct solutions and provide experimental evidence that no
other equilibrium exists.

1.3 Structure of the Thesis

The outline of this thesis is as follows.

Chapter 2 starts with recalling all necessary notations and results from functional analysis, PDE
and optimization theory. In particular, we clarify existence and uniqueness of solutions of the
underlying PDE. We introduce the control-to-state mapping and derive a characterization of its
adjoint operator. Moreover, partial differential equations that incorporate measures on its right
side are briefly discussed. We continue with some existence results concerning general optimiza-
tion problems. After that, we derive the corresponding necessary optimality conditions. First, we
limit ourselves to multiplierfree formulations. Introducing suitable constraint qualifications, we
end up with optimality conditions involving Lagrange multipliers. Moreover, we introduce the
reader to the augmented Lagrangian method, which is investigated throughout this thesis. Finally,
we collect results concerning solvability and optimality conditions of the problems (1.2) and (1.3).

In the first part of the thesis we will focus on the investigation of a solution algorithm for the
optimal control problem (1.2).

Chapter 3 concerns the investigation of an augmented Lagrangian algorithm for problem (1.2),
as already sketched in Section 1.2.1. We restrict ourselves to the case that S is linear. We prove
strong convergence of the primal variables as well as weak convergence of the adjoint states and
weak-* convergence of the multipliers associated to the state constraint. In addition, we show that
the sequence of generated penalty parameters is bounded only in exceptional situations, which is
different from classical results in finite-dimensional optimization.

Chapter 4 deals with the ill-posed optimal control problem (1.5). We couple the augmented La-
grangian method from Chapter 3 with a Tikhonov regularization. The coupling between the reg-
ularization parameter introduced by the Tikhonov regularization and the penalty parameter from
the augmented Lagrangian method allows us to prove strong convergence of the controls and their
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corresponding states. Moreover, convergence results proving the weak convergence of the adjoint
state and weak-* convergence of the multiplier are provided.

Chapter 5 aims at extending the results from Chapter 3 to a larger class of optimal control problems
in order to solve non-convex elliptic problems. We show strong convergence of subsequences of
the primal variables to a local solution of the original problem as well as weak convergence of the
adjoint states and weak-* convergence of the multipliers associated to the state constraint. We use
an auxiliary function and prove the existence of a KKT point of the subproblem in arbitrary small
neighborhoods of a local solution of the original problem under a quadratic growth condition.

The second part of this thesis is devoted to generalized Nash equilibrium problems in the optimal
control setting.

Chapter 6 investigates an augmented Lagrangian algorithm for jointly convex multi-player opti-
mal control problems. We adapt the augmented Lagrangian method from Chapter 3 and show
strong convergence of the primal variables to the unique normalized equilibrium as well as weak
convergence of the adjoint states and weak-* convergence of the multipliers associated to the joint
constraint.

Chapter 7 contains an extension of Chapter 6, which considers generalized Nash equilibrium prob-
lems. Under a Slater-type constraint qualification, which implies weak Mosco-continuity of the
feasible set, we prove an existence result. Further, we prove convergence of the applied method.

In Chapter 8 we investigate a special class of Nash equilibrium problems that cannot be reduced to
single player optimal control problems. We derive a sufficient condition, that proves the existence
and uniqueness of normalized solutions. Problems of this type can be solved by a semi-smooth
Newton method. Applying the same condition as needed for the uniqueness of solutions, we derive
superlinear convergence for the associated Newton method and the equivalent active-set method.
We also provide detailed finite element discretizations for both methods.



CHAPTER 2

BACKGROUND

This chapter aims at collecting all necessary notations and results from functional analysis, PDE
and optimization theory. In the first sections, we focus on functional analysis, introduce function
spaces and the differentiation in normed spaces. We will skip the proofs and refer the reader for
instance to the books [5, 38, 41, 116, 121].

2.1 Basics from Functional Analysis

A normed vector space is called a Banach space if it is complete with respect to its norm. Let U
and W denote Banach spaces that are endowed with the norms ‖·‖U and ‖·‖W , respectively. An
operator A : U → W is called continuous if limn→∞ un = u in U implies limn→∞ Aun = Au
in W. Further, if A is linear, it is called bounded if there exists a constant c > 0 independent
of u such that ‖Au‖W ≤ c ‖u‖U . For linear operators boundedness and continuity coincide.
Let L(U, W) denote the space of all linear and continuous operators from U to W and assume
A ∈ L(U, W). Then, the quantity

‖A‖L(U,W) = sup
u∈U, ‖u‖U=1

‖Au‖W

is finite and called operator norm. Endowed with this norm, L(U, W) is a Banach space itself.
The space U∗ := L(U, R) is called the dual space of U. For elements u∗ ∈ U∗ and u ∈ U we
define the duality paring

u∗(u) =: 〈u∗, u〉U∗,U .

The canonical embedding of U in the bidual space U∗∗ := (U∗)∗

iU : U → U∗∗, u 7→ [u∗ ∈ U∗ 7→ u∗(u)]

defines a linear, continuous isometry. If iU is surjective, the Banach space U is called reflexive. In
this case we identify U∗∗ with U. Let H denote a complete Banach space, whose norm is induced
by an inner product, i.e.,

‖u‖H :=
√
(u, u)H.

Then H is called a Hilbert space. The following theorem characterizes the dual space H∗ of a
Hilbert space H.

Theorem 2.1 (Fréchet-Riesz [5, Thm. 6.1][38, §3 Thm. 3.4]). Let H denote a Hilbert space
with inner product (·, ·)H. Then the mapping RH : H → H∗, (RHu)( f ) = ( f , u)H is bijective,
isometric and conjugate linear. With other words, for every linear and continuous functional
F ∈ H∗ there exists an element f ∈ H such that F(u) = ( f , u)H and ‖ f ‖H = ‖F‖H∗ .

13
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Due to the Riesz-Theorem, we can identify H∗ with H. Consequently, every Hilbert space is
reflexive.
For a linear operator A : U → W and an arbitrary element w∗ ∈ W∗ the adjoint operator
A? : W∗ → U∗ is defined by (A?w∗)u := w∗(Au) and we can write

〈Au, w∗〉W,W∗ = 〈u, A?w∗〉U,U∗ ∀w∗ ∈W∗, u ∈ U.

Let H1, H2 denote Hilbert spaces, A ∈ L(H1, H2) and let RHi : Hi → H∗i denote the Riesz
isometries from Theorem 2.1. Then the adjoint operator (in the Hilbert space sense) A∗ is given
by R−1

H1
A?RH2 and it is characterized by the relationship

(Au, w)H2 = (u, A∗w)H1 ∀u ∈ H1, w ∈ H2.

For H1 = H2 we say that A is self-adjoint if A∗ = A. In the following, we will make no
difference between the adjoint operator A? and the adjoint operator in Hilbert spaces A∗ and use
only the notation A∗.

We distinguish between different kinds of convergence:

Definition 2.2. Let U be a real Banach space. We say that a sequence
a) (un)n ⊆ U converges strongly to u ∈ U and write un → u if ‖un − u‖U → 0.
b) (un)n ⊆ U converges weakly to u ∈ U and write un ⇀ u if f (un) → f (u) for every

f ∈ U∗.
c) ( fn)n ⊆ U∗ converges weak-* to f ∈ U∗ and write fn ⇀∗ f if fn(u) → f ∗(u) for every

u ∈ U.

We refer to u∗ as a (weak) limit point of a sequence (un)n if there exists a subsequence (unk)nk

such that unk ⇀ u∗, unk → u∗, respectively. If u∗ is the (weak) limit of (un)n, then the whole
sequence converges (weakly). We extend the well-known concepts of closed and compact sets:

Definition 2.3. Let U denote a normed vector space and M ⊆ U. We say that M is
a) closed if for every sequence (un)n ⊆ M with un → u it holds u ∈ M.
b) weakly sequentially closed if for every sequence (un)n ⊆ M with un ⇀ u it holds u ∈ M.
c) (weakly) sequentially compact if every sequence (un)n ⊆ M contains a (weak) convergent

subsequence with (weak) limit in M.
d) Let M∗ ⊆ U∗. Then M∗ is weak-* sequentially compact if every sequence (u∗n)n ⊆ M∗

contains a weak-* convergent subsequence with weak-* limit in M∗.

Given a Banach space U and a bounded sequence (un)n ⊆ U the following results are helpful to
determine if U contains a convergent subsequence in the weak or weak-* sense.

Theorem 2.4 (Banach-Alaoglu [5, Thm. 8.5]). Let U be a separable normed linear space. Then
the closed unit ball in U∗ is weak-* sequentially compact.

Theorem 2.5 (Eberlein-S̆mulyan [121, Thm. VIII.3.18, Thm. VIII.6.1]). Let U be a normed
space. Then, the closed unit ball is weakly sequentially compact if and only if U is reflexive.

In particular, Theorem 2.5 implies that for a reflexive Banach space U, every non-empty, bounded,
closed, convex set is weakly sequentially compact. Moreover, [121, Thm. VIII.6.1] implies that
these sets are also weakly compact. Let us define some different kinds of continuity for a given
function A : U →W.
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Definition 2.6. Let U, V be real Banach spaces and A : U → V. We say that the function A is in
a point u ∈ U
a) continuous if un → u implies Aun → Au.
b) weakly continuous if un ⇀ u implies Aun ⇀ Au.
c) completely continuous if un ⇀ u implies Aun → Au.

We say that a linear operator A : U → W is compact if it maps bounded sets in U into precom-
pact sets in W, i.e., sets with compact closure. This definition immediately yields the complete
continuity of compact operators.

Theorem 2.7 ([5, Lem. 20.2]). Let U, W be real Banach spaces and A : U → W be compact.
Then A is completely continuous. The converse holds true if U is reflexive.

2.2 Function Spaces

Let us introduce some standard function spaces. Let d ∈N and Ω ⊆ Rd denote an open, bounded
domain with boundary Γ := ∂Ω. The space of bounded continuous functions u : Ω → R, en-
dowed with the norm ‖u(x)‖∞ := maxx∈Ω |u(x)|, is denoted by C(Ω). It is well known, that
C(Ω) is a separable Banach space. We define C∞(Ω) as the vector space of infinitely differen-
tiable functions on Ω, and C∞

0 (Ω) as the space of functions u ∈ C∞(Ω) with compact support.
Moreover, C0,1(Ω) denotes the space of Lipschitz-continuous functions

C0,1(Ω) :=
{

f ∈ C(Ω) | L := sup
{
| f (u)− f (v)|
|u− v| < ∞, u 6= v ∈ Ω

}}
.

With the norm ‖u‖C0,1(Ω) := ‖u‖∞ + L, this is a Banach space. According to the Riesz-Radon
theorem, the space of regular Borel measuresM(Ω) on Ω is the dual space of C(Ω). The Riesz-
Markow representation theorem [111, Theorem 6.19] yields the representation

〈µ, y〉M(Ω),C(Ω) =
∫

Ω
y dµ.

We identify a function µ̃ ∈ L2(Ω) with an element µ ∈ M(Ω) via

〈µ, y〉M(Ω),C(Ω) =
∫

Ω
y dµ :=

∫
Ω

yµ̃ dx = (y, µ̃)L2(Ω) ∀y ∈ C(Ω).

Thus, the definition of the norm yields the basic estimate

‖µ‖M(Ω) = sup
y∈C(Ω),
‖y‖C(Ω)=1

|
∫

Ω
y dµ| = sup

y∈C(Ω),
‖y‖C(Ω)=1

|
∫

Ω
yµ̃ dx| ≤ ‖µ̃‖L1(Ω) .

SinceM(Ω) is the dual of the separable space C(Ω), the Banach-Alaoglu theorem (Theorem 2.4)
yields, that the closed unit ball inM(Ω) is weak-* sequentially compact. Thus, every bounded
sequence (un)n ⊆M(Ω) contains a weak-* convergent subsequence with weak limit inM(Ω).

Further, for a measurable function u : Ω → R the essential supremum of u over Ω is denoted by
ess supΩ u := inf{M ∈ R | u(x) ≤ M a.e. in Ω}. We define the norms

‖u‖Lp(Ω) :=
(∫

Ω
|u(x)|p dx

)1/p

if 1 ≤ p < ∞ and ‖u‖L∞(Ω) := ess sup
Ω
|u|.
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It is well known that the Lebesgue spaces

Lp(Ω) := {u : Ω→ R measurable and ‖u‖Lp(Ω) < ∞},

equipped with the corresponding norms, are Banach spaces. In particular, for 1 < p < ∞, they
are reflexive. For p = 2, the corresponding norm is induced by the scalar product

(u, v)L2(Ω) :=
∫

Ω
u(x)v(x)dx,

via ‖u‖2
L2(Ω) = (u, u)L2(Ω), which makes the space L2(Ω) a Hilbert space. Consequently, by the

Eberlein-S̆mulyan theorem (Theorem 2.5), every bounded sequence (un)n ⊆ Lp(Ω), 1 < p < ∞
contains a weak convergent subsequence with weak limit in Lp(Ω).

Lemma 2.8 (Hölder inequality [5, Lem. 3.18]). Let p, q ∈ [1, ∞] with 1
p + 1

q = 1, where
1
∞ := 0. If u ∈ Lp(Ω) and v ∈ Lq(Ω), then uv ∈ L1(Ω) and ‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω) ‖v‖Lq(Ω) .

For the special case p = q = 2, the Hölder inequality∫
Ω

uv dx ≤ ‖u‖L2(Ω) ‖v‖L2(Ω)

is known as Cauchy-Schwarz inequality.

The last important class of function spaces we are concerned with are the Sobolev spaces Wk,p(Ω),
where k ∈N0 and p ∈ [1, ∞], i.e.,

Wk,p(Ω) := {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω) for all α ∈Nd
0 with |α| ≤ k}.

Here, α = (α1, ..., αd) is a given multi-index and Dαu the associated weak derivative. Equipped
with the norm

‖u‖Wk,p(Ω) :=

(
∑

0≤|α|≤k
‖Dαu‖Lp(Ω)

)1/p

, if 1 ≤ p < ∞,

‖u‖Wk,∞(Ω) := max
0≤|α|≤k

‖Dαu‖L∞(Ω) ,

these spaces become Banach spaces, which are reflexive for 1 < p < ∞. For p = 2 we set
Hk(Ω) := Wk,2(Ω). The scalar product

(u, v)Hk(Ω) = ∑
0≤|α|≤k

(Dαu, Dαv)L2(Ω)

induces the norm ‖u‖2
Hk(Ω) = (u, u)Hk(Ω). This makes Hk(Ω) a Hilbert space. Finally, for

k ∈ N0 and 1 ≤ p ≤ ∞ we define the space Wk,p
0 (Ω) as the closure of C∞

0 (Ω) with respect
to the norm ‖·‖Wk,p(Ω). In particular, we set Hk

0(Ω) := Wk,2
0 (Ω), which is again a Hilbert

space. As a closed subspace of the Banach space Wk,p(Ω) the space Wk,p
0 (Ω) is a Banach space

itself. Next, for k ∈ N we define H−k(Ω) as the dual space of Hk
0(Ω). A prominent candidate,

which involves this function space, is the Laplace operator ∆ : H1
0(Ω) → H−1(Ω) which is an

isometric isomorphism between these spaces. If the boundary Γ satisfies a certain regularity, the
trace operator allows us to interpret the functions in W1,p

0 (Ω) as functions of W1,p(Ω) with zero
boundary values.
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Theorem 2.9 (Trace theorem [5, A 8.6]). Let Ω be a bounded domain with Lipschitz boundary
Γ. Let 1 ≤ p ≤ ∞. Then there exists a linear and continuous operator τ : W1,p(Ω) → Lp(Γ)
such that for all u ∈W1,p(Ω) ∩ C(Ω) it holds τu := u

∣∣
Γ almost everywhere on Γ.

Thus, for bounded domains Ω with Lipschitz boundary Γ we define

W1,p
0 (Ω) := {u ∈W1,p(Ω) | u

∣∣
Γ = 0}.

Sobolev spaces enjoy a certain regularity that can be characterized with the help of embedding
theorems.

Theorem 2.10 (Sobolev embedding theorem [1, Thm. 5.4]). Let Ω ⊆ Rd, d ∈ N, be an open
bounded domain with Lipschitz boundary. Let k ∈ N and 1 ≤ p < ∞. Then the following
embeddings are continuous:

a) for kp < d: Wk,p ↪→ Lq(Ω) for all 1 ≤ q ≤ dp
d−kp ,

b) for kp = d: Wk,p ↪→ Lq(Ω) for all 1 ≤ q < ∞,
c) for kp > d: Wk,p(Ω) ↪→ C(Ω).

All of the embeddings above are compact if q is strictly smaller than the corresponding upper
bound. Further, for arbitrary open, bounded domains Ω ⊂ Rd all assertions hold for Wk,p(Ω)

replaced by Wk,p
0 (Ω).

In particular, the Sobolev embedding theorem implies the following frequently used embeddings:

H1(Ω) ↪→ C(Ω), for Ω ⊆ R,

H1(Ω) ↪→ Lq(Ω), 1 ≤ q < ∞, for Ω ⊆ R2,

H1(Ω) ↪→ L6(Ω), for Ω ⊆ R3,

W1,s(Ω)
c
↪→ L2(Ω), s ∈ (1, d/(d− 1)) for Ω ⊆ Rd, d ∈ {2, 3}.

2.3 Differentiation in Normed Spaces

In this section, we introduce the basic concepts of differentiability in infinite dimensional normed
spaces. The concept of derivatives is needed for the characterization of minimizers of an optimiza-
tion problem, see Section 2.5.3. We start with the notion of the convex subdifferential.

Let R := R ∪ {+∞} denote the extended values of the real numbers. The effective domain of
a function f : U → R is defined by dom( f ) := {u ∈ U | f (u) < ∞}. If dom( f ) 6= ∅, the
functional f is called proper.

Definition 2.11. Let U be a normed space, f : U → R proper and u ∈ dom( f ). Then

∂ f (u) := {u∗ ∈ U∗ | f (v)− f (u) ≥ 〈u∗, v− u〉U∗,U ∀v ∈ U}

denotes the (convex) subdifferential of f in u. Each element u∗ ∈ ∂ f (u) is called subgradient.

Let us collect some properties of the subdifferential.

Theorem 2.12 ([43, Prop. I.5.2, I.5.5, I.5.6, I.5.7]). Let f , g : U → R be proper and convex.
a) The subdifferential ∂ f is monotone.
b) Let f be continuous at a point u ∈ dom( f ). Then ∂ f (u) 6= ∅. Moreover, ∂ f (v) 6= ∅ for all

v ∈ int (dom( f )).
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c) Let u ∈ dom( f ) ∩ dom(g). Then ∂ f (u) + ∂g(u) ⊂ ∂( f + g)(u). Equality holds if there
exists an û ∈ dom( f ) ∩ dom(g) with f continuous in û.

d) Let A ∈ L(W, U). Then for each u ∈ dom( f ◦ A) holds the inclusion ∂( f ◦ A)(u) ⊇
A∗∂ f (u) := {A∗v∗ | v∗ ∈ ∂ f (Au)}. Equality holds if there exists a ŵ ∈ W such that f is
continuous in Aŵ.

Let us give two examples.

Example 2.13. For a convex set C with corresponding indicator function δC, the subdifferential
for all u ∈ C is given by the (convex) normal cone of the set C at the point u, i.e.,

∂δC(u) = {u∗ ∈ U∗ | 〈u∗, v− u〉U∗,U ≤ 0 ∀v ∈ C} =: NC(u).

Example 2.14. Let us consider j(u) := ‖u‖L1(Ω). By definition every λ ∈ ∂j(u) satisfies∫
Ω

λ(v− u)dx ≤ ‖v‖L1(Ω) − ‖u‖L1(Ω) ∀v ∈ L1(Ω). (2.1)

Since j is a convex function with dom(j) = L1(Ω) the subdifferential is always non-empty.
Moreover, λ ∈ ∂j(u) ⊆ L∞(Ω) if and only if

λ


= 1 if u(x) > 0,
= −1 if u(x) < 0,
∈ [−1, 1] if u(x) = 0,

see [28]. We will need the subdifferential of j(u) to establish first-order conditions for an ill-posed
state constrained optimal control problem with sparse controls in Chapter 4.

Note, that the calculus rules for the convex subdifferential are only valid for convex functions.
Thus, in order to derive optimality conditions for non-convex optimality problems, it is necessary
to establish a different notion of differentiability. Let f : U → W with U, W normed spaces. If
for u ∈ U and h ∈ U the limit

δ f (u; h) := lim
t→0+

f (u + th)− f (u)
t

(2.2)

in W exists, then it is called the directional derivative of f at u in direction h and f is called
directional differentiable in u in direction h.

Definition 2.15 (Gâteaux derivative). If the directional derivative (2.2) exists in u for all direc-
tions h and there exists a linear and continuous operator A ∈ L(U, W) such that

δ f (u; h) = Ah,

then we call A the Gâteaux derivative of f in u and use the notation DG f := A.

For f : U → R proper, convex and Gâteaux differentiable, it holds ∂ f (u) = {DG f (u)}, i.e.,
the subdifferential is a singleton [43, Prop. I.5.3]. The following characterization of convexity for
Gâteaux differentiable functions is well known.

Lemma 2.16 ([43, Prop. I.5.4]). Let f : U → R be Gâteaux differentiable on the convex set
C ⊆ U. Then f is convex on C if and only if

f (v)− f (u) ≥ DG f (u)(v− u) ∀u, v ∈ C.

Moreover, the function is strictly convex if the inequality is strict for all u 6= v ∈ C.
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Definition 2.17 (Fréchet derivative). We say that the function f is Fréchet differentiable in a
point u if there exists A ∈ L(U, W) such that

lim
‖h‖U→0

‖ f (u + h)− f (u)− Ah‖W
‖h‖U

= 0.

We write f ′(u) := A for the Fréchet derivative of f at the point u.

Every Fréchet differentiable function is Gâteaux differentiable and the derivatives coincide. Fur-
ther, in contrast to Gâteaux differentiability, Fréchet differentiability implies continuity of a func-
tion.

Lemma 2.18 (Chain rule [116, Thm. 2.20]). Let U, V, W be normed linear spaces. Let g : U →
V and f : V → W be Fréchet differentiable at u ∈ U and g(u), respectively. Then f ◦ g is
Fréchet differentiable at u and it holds

( f ◦ g)′(u) = f ′(g(u))g′(u).

2.4 PDE Theory

Throughout this thesis we will encounter partial differential equations with homogeneous Dirichlet
boundary conditions as well as homogeneous Neumann boundary conditions. However, in this
chapter we will treat the Neumann case only. Nevertheless, we want to point out that similar
results also hold true for the Dirichlet case. For further details we refer to [26, 29, 50, 116].

Let Ω be a bounded Lipschitz domain. Throughout this thesis we will assume that the second-
order elliptic operator A satisfies the following properties:

Assumption 2.19. Let A denote the following operator

(Ay)(x) := −
d

∑
i,j=1

∂xj(aij(x)∂xi y(x)) + a0(x)y(x),

where the coefficients aij with, 1 ≤ i, j ≤ d and a0 ≥ 0 a.e. in Ω are given as functions in L∞(Ω)
and satisfy aij = aji. In addition, we assume that A is a uniform elliptic operator, i.e., there is
δ > 0 such that

d

∑
i,j=1

aij(x)ξiξ j ≥ δ|ξ|2 ∀ξ ∈ Rd, a.e. in Ω

is satisfied. Furthermore, in the case of Neumann boundary conditions we assume a0 6≡ 0 and
define the co-normal derivative

∂νA y =
d

∑
i,j=1

aij(x)∂xi y(x)νj(x),

where ν denotes the outward unit normal vector on Γ.

2.4.1 Elliptic Partial Differential Equations

We start with the investigation of the partial differential equation

Ay = u in Ω,
∂νA y = 0 on Γ.

(2.3)
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Throughout this chapter, we assume the linear elliptic operator A and the co-normal derivative
∂νA to satisfy Assumption 2.19. We are searching for a solution of (2.3) in the solution space
Y := H1(Ω). Later on, we will refer to the solution of this equation as the state y. The equation
itself will therefore be called state equation. First, we introduce the corresponding bilinear form
a : Y×Y → R by

a(y, v) :=
∫

Ω

(
d

∑
i,j=1

aij(x)∂xi y(x)∂xj + a0(x)y(x)

)
v(x)dx.

Then, we define a linear and continuous functional on Y

F(v) :=
∫

Ω
u(x)v(x)dx.

A function y ∈ Y is called a weak solution of (2.3) if it holds

a(y, v) = F(v) ∀v ∈ Y.

Based on the Lax-Milgram Lemma, one can deduce existence and uniqueness of weak solutions.

Lemma 2.20 (Lax-Milgram [116, Lem. 2.2]). Let Y be a real Hilbert space and let a : Y ×
Y → R be a bilinear form. If there exist constants c1 and c2 such that a satisfies the following
conditions:

a) Boundedness: |a(y, v)| ≤ c1 ‖y‖Y ‖v‖Y ∀y, v ∈ Y,
b) Coercivity: a(y, y) ≥ c2 ‖y‖2

Y ∀y ∈ Y,

then for every F ∈ Y∗ the equation

a(y, v) = F(v) ∀v ∈ Y

admits a unique solution y ∈ Y. Furthermore, there exists a constant c independent of F such that

‖y‖Y ≤ c ‖F‖Y∗ .

Applying Lemma 2.20 we can deduce the following theorem:

Theorem 2.21. For every u ∈ L2(Ω) the elliptic partial differential equation (2.3) admits a
unique weak solution y ∈ H1(Ω). Moreover, there exists a constant c independent of u such that
the following estimate is satisfied

‖y‖H1(Ω) ≤ c ‖u‖L2(Ω) .

However, treating pointwise state constraints requires the continuity of the state y. This is due to
the fact that the forthcoming optimality theory is in the need of a convex cone K with non-empty
interior. This is satisfied for Y = C(Ω). We will give more details in Section 2.5.3. The following
theorem yields the desired higher regularity of the state y.

Theorem 2.22. The elliptic partial differential equation (2.3) admits a unique weak solution in
y ∈ H1(Ω) ∩ C(Ω). Moreover, there exists a constant c independent of u such that

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ c ‖u‖L2(Ω) .

If in addition (un)n is such that un ⇀ u in L2(Ω), then the corresponding solutions (yn)n of
(2.3) converge strongly in H1(Ω) and C(Ω) to the solution y of (2.3) to data u.
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Proof. The corresponding proof can be found in Casas [27, Theorem 3.1]. The Dirichlet case is
treated in [29, Theorem 2.1].

We introduce the control-to-state mapping or the solution operator S := A−1 that maps every
u ∈ L2(Ω) to the unique weak solution of (2.3).

S : L2(Ω)→ (H1(Ω) ∩ C(Ω)), u 7→ y, y = Su. (2.4)

The previous theorem allows to derive the following properties of the solution operator.

Theorem 2.23. The control-to-state mapping S : L2(Ω) → H1(Ω) ∩ C(Ω), u 7→ y is a linear,
continuous, hence, Fréchet differentiable operator. Moreover, S is compact.

Proof. The operator S is linear, continuous and completely continuous, see Theorem 2.22. Since
L2(Ω) is a reflexive Banach space, we can conclude the compactness of S, see [38, Proposition
VI.3.3].

The complete continuity of the solution operator S is a crucial property. It will be essentially
needed for carrying out our convergence analysis. Due to the embedding ι : H1(Ω) ↪→ L2(Ω) we
can consider the solution operator S as a mapping from L2(Ω) to L2(Ω). However, for the sake
of simplicity, we will neglect an explicit specification of the embedding operator ι.
The adjoint operator of the solution operator S from the previous theorem is the solution operator
of a PDE itself, the so-called adjoint equation.

Lemma 2.24. Let y be the weak solution of (2.3) with associated solution operator S. Then for
z ∈ L2(Ω) the function H1(Ω) 3 p := S∗z is the solution of

A∗p = z in Ω,
∂νA∗ p = 0 on Γ.

Proof. We know from Theorem 2.22 that the solution operator S = A−1 is linear and continuous.
Hence, (A∗)−1 = (A−1)

∗ is a linear and continuous operator and we can conclude existence and
uniqueness of a solution p ∈ H1(Ω). For Neumann boundary conditions the characterization of
p follows directly from [116, Lem. 2.31]. The Dirichlet case can be treated in the same way.

2.4.2 Elliptic Equations with Measures

Let us now investigate partial differential equations where elements ofM(Ω) appear on the right
hand side of the equation. We will encounter this type of PDEs during the derivation of optimality
conditions of optimal control problems. Let z ∈ L2(Ω), µ ∈ M(Ω) be a regular Borel measure
that can be split up as µ = µΩ + µΓ where µΩ denotes the restriction of µ on Ω, i.e., µ|Ω and µΓ
the restriction on Γ. We investigate the partial differential equation

A∗p = z + µΩ in Ω,
∂νA∗ p = µΓ on Γ.

(2.5)

Following Tröltzsch [116, Sec. 7.2.3] and Casas [27], a function p ∈W1,s(Ω), s ∈ (1, d/(d− 1))
is called a very weak solution of (2.5) if it satisfies∫

Ω
A∗v(x)p(x)dx +

∫
Γ

∂νA∗ v(x)p(x) ds(x)

=
∫

Ω
z(x)v(x)dx +

∫
Ω

v(x) dµΩ(x) +
∫

Γ
v(x) dµΓ(x),
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for all v ∈ Vr,s := {v ∈ H1(Ω) ∩ C(Ω) | A∗v ∈ Lr(Ω), ∂νA∗ ∈ Ls(Γ)}.
The following theorem states existence and uniqueness of the very weak solution of (2.5). This
result is due to [27, Thm. 4.3], see also [2]. The Dirichlet case is treated in [26, Thm. 4].

Theorem 2.25. Let S denote the solution operator (2.4) and set p := S∗(z + µ) ∈ L2(Ω).
Then p is the unique very weak solution of (2.5) that satisfies p ∈ W1,s(Ω), s ∈ (1, d/(d− 1)).
Moreover, there exists a constant c > 0 independent of µ such that

‖p‖W1,s(Ω) ≤ c
(
‖z‖L2(Ω) + ‖µ‖M(Ω)

)
.

2.5 Optimization Theory

The aim of this section is to give a short introduction into optimization theory. We will gather
well-established results from literature that are necessary for the reader to follow the subsequent
investigations of this thesis. This includes existence of solutions as well as primal and dual opti-
mality conditions. Note that we will just give a brief overview, which is far from being complete.
For more details, we refer the reader to the books [6, 19, 39, 43, 62, 90, 116].

We first focus on the minimization problem of the general type

minimize
u∈U

f (u) subject to u ∈ F ⊆ U. (2.6)

Here, U is a Banach space and f : U → R a given mapping. The set F is called the feasible set.
A point u ∈ F is a feasible point. Later on, we will focus on feasible sets given by

F := {u ∈ U | u ∈ C, g(u) ∈ K},

where C ⊆ U and K ⊆ Y are non-empty, closed, convex sets and Y is a Banach space. Moreover,
g : U → Y is continuously Fréchet differentiable.

2.5.1 Cones

In this section we will introduce some basic concepts concerning various types of cones that are
needed for our optimization theory. Let K ⊂ U be a non-empty set. We call the set K a cone if
y ∈ K implies cy ∈ K for all positive c ∈ R. Moreover, for an arbitrary set K we define the dual
and the polar cone via

K∗ := {φ ∈ U∗ | 〈φ, u〉 ≥ 0, ∀u ∈ K} (Dual cone)

K◦ := {φ ∈ U∗ | 〈φ, u〉 ≤ 0, ∀u ∈ K} (Polar one).

Obviously, it holds K∗ = −K◦.

Definition 2.26 (Tangent cone, normal cone and radial cone). Let C ⊆ U denote an arbitrary
set.
a) For u ∈ U the tangent cone of C at u is defined by

TC(u) :=
{

d ∈ U | ∃(uk)k ⊆ U, ∃(tk)k ↘ 0 : uk → u,
uk − u

tk
→ d

}
.

Let C ⊆ U be a convex set. We define
b) the normal cone NC(u) of C at u as NC(u) := {φ ∈ U∗ | 〈φ, v− u〉 ≤ 0 ∀v ∈ C}.
c) the radial coneRC(u) of C at u asRC(u) := {d ∈ C | d = α(v− u) ∀v ∈ C, α > 0}.
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Whenever C is convex we have TC(u) = RC(u). Using this representation we obtain

NC(u) = TC(u)◦. (2.7)

We will use this representation to reformulate the optimality conditions in a more suitable way,
see Theorem 2.39. The following lemma gives a characterization of the inclusion µ ∈ TK(y)◦,
y ∈ K for a convex cone K.

Lemma 2.27 ([11, Ex. 6.39]). Let K ⊆ Y be a non-empty convex cone. Further, let y ∈ K and
µ ∈ Y∗. Then it holds, that µ ∈ TK(y)◦ if and only if µ ∈ K◦, 〈µ, y〉Y∗,Y = 0.

A convex cone K induces the order relation

y ≤K v ⇔ y− v ∈ K.

We say that a function g is convex with respect to K if

g(λu1 + (1− λu2)) ≤K λg(u1) + (1− λ)g(u2) ∀u1, u2 ∈ U, λ ∈ [0, 1].

A class of functions that satisfy this K-convexity are affine linear functions. K-convexity coincides
with the standard definition of convexity if K is the convex cone of non-positive real numbers.

Lemma 2.28 ([90, 8.2 Prop. 2]). Let g : U → Y be convex with respect to the convex cone
K ⊆ Y. Then the set {u ∈ U | g(u) ∈ K} is convex.

2.5.2 Existence of Solutions

In this section we will collect existence results for the solution of the minimization problem (2.6).

Definition 2.29 (Global and local solution). A function ū ∈ F is called
a) global solution or optimal solution of (2.6) if it satisfies f (ū) ≤ f (u) for all u ∈ F .
b) local solution or local optimal solution of (2.6) if there exists a δ > 0 such that for all u ∈ F

with ‖u− ū‖U ≤ δ it holds f (ū) ≤ f (u).

Weak lower semicontinuity and weak coercivity are crucial properties for proving existence of
solutions.

Definition 2.30 (Weak lower semicontinuity). We say that a function f : U → R is weakly
lower semicontinuous (w.l.s.c.) in u ∈ U if for all weak convergent sequences un ⇀ u it holds
f (u) ≤ lim infn→∞ f (un). If f is w.l.s.c. in every u ∈ U, we say that f is w.l.s.c. in U.

Definition 2.31 (Weak coercivity). A function f : U → R is called weakly coercive if for every
sequence (un)n ⊂ U with ‖un‖ → ∞ it holds lim‖un‖U→∞ f (un) = ∞.

Theorem 2.32 (Weierstrass [11, Thm. 1.28][43, II Prop. 1.2]). Let U be a normed space and
F ⊆ U a non-empty, closed, convex set. Further, let f : U → R be proper and weakly lower
semicontinuous. If either (i) F is weakly compact or (ii) U is a reflexive Banach space and f is
weakly coercive on F , then (2.6) has a global solution.

Since every convex and continuous function in a Banach space is weakly lower semicontinuous,
we arrive directly at the following corollary:

Corollary 2.33 ([43, Prop. 1.2]). The weak lower semicontinuity of f in Theorem 2.32 can be
replaced by convexity combined with continuity. Moreover, if f is strictly convex and continuous,
then the solution is unique.
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2.5.3 Optimality Conditions

In this section we will derive necessary and sufficient optimality conditions.

Primal Optimality Conditions

The tangent cone can be used to establish first-order optimality conditions for constrained opti-
mization problems.

Lemma 2.34 ([62, Thm. 1.5.2]). Let U be a normed space, F ⊆ U be a closed, convex set and
f : U → R a proper, Fréchet differentiable function. If ū is a local solution of (2.6), then it holds

〈 f ′(ū), d〉U∗,U ≥ 0 ∀d ∈ TF (ū). (2.8)

Condition (2.8) can be reformulated in − f ′(ū) ∈ TF (ū)◦. However, this condition is rather
abstract and hard to analyze. If f is a proper, Gâteaux differentiable function and F a convex set,
minima can be characterized in a more concrete way.

Lemma 2.35 ([116, Lem. 2.21]). Let U be a normed space, f : U → R a proper, Gâteaux
differentiable function and F ⊆ U a convex set.
a) If ū is a local minimum of problem (2.6), then it holds

DG f (ū)(u− ū) ≥ 0 ∀u ∈ F . (2.9)

b) If f is additionally convex, then ū is a global solution of problem (2.6) if and only if (2.9) is
satisfied.

To end this section, let us briefly consider problems that are not even Gâteaux differentiable. If
f : U → R is a convex function, minima can be characterized with the help of the (convex)
subdifferential, see Definition 2.11. Reformulating the constrained minimization problem (2.6),
we aim at minimizing the function f̃ (u) := f (u) + δF over u ∈ U. Hence, (2.6) turned into a
(convex), unconstrained minimization problem whose minima can be characterized with Fermat’s
Theorem, which is a direct consequence of the definition of the subdifferential.

Theorem 2.36 (Fermat’s Theorem). Let f : U → R be proper. Then ū is a minimizer of f if and
only if 0 ∈ ∂ f (ū).

A popular example is the optimal control problem with sparse controls

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) + β ‖u‖L1(Ω) subject to u ∈ Uad, Su ≤ ψ,

where β ≥ 0. This problem will be treated in Chapter 4. We can apply Fermat’s Theorem 2.36 to
the minimization problem (2.6) and derive directly first-order necessary optimality conditions.

Lemma 2.37. Let f : U → R be a proper, convex function and F a convex set. Assume that there
exists û ∈ int(F )∩ dom( f ). Then, ū is a global solution of (2.6) if and only if for all g ∈ ∂ f (ū)

〈g, v− ū〉U∗,U ≥ 0 ∀v ∈ F .

Since ∂ f = {DG f } for Gâteaux differentiable functions, the optimality conditions from Lemma
2.37 coincide with those from Lemma 2.35. However, the existence of an inner point of the
feasible set Fad is crucial and not trivial. We will see in the next section that this assumption, the
so-called Slater condition, is also a suitable regularity condition for deriving existence of Lagrange
multipliers .
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Primal-Dual Optimality Conditions

In this section we will apply the Karush-Kuhn-Tucker theory in order to derive first-order opti-
mality conditions. Under a suitable constraint qualification we will show existence of Lagrange
multipliers. Let us recall the minimization problem

minimize f (u) subject to u ∈ F = {u ∈ U | u ∈ C, g(u) ∈ K}. (2.10)

Throughout this section we assume that U and Y are Banach spaces. Further, f and g are Fréchtet
differentiable functions and the sets C ⊆ U and K ⊆ Y are non-empty, closed, convex sets.

The optimality conditions from the previous section only consider the primal variables. Incorpo-
rating the special structure of the set F we arrive at the following definition:

Definition 2.38 (KKT-Point). A tuple (ū, µ̄, ν̄) ∈ U × Y∗ ×U∗ is called Karush-Kuhn-Tucker
(KKT) point of (2.10) if it satisfies

ū ∈ F , f ′(ū) + g′(ū)∗µ̄ + ν̄ = 0, µ̄ ∈ TK(g(ū))◦, ν̄ ∈ TC(ū)◦. (2.11)

The elements µ̄ and ν̄ are called Lagrange multipliers.

If K is a convex cone, the characterization (2.7) and Lemma 2.27 make it possible to reformulate
the KKT conditions.

Theorem 2.39. Let K ⊆ Y be a non-empty convex cone. Then for any feasible point ū ∈ F the
KKT conditions (2.11) are equivalent to

〈 f ′(ū) + g′(ū)∗µ̄, u− ū)〉U∗,U ≥ 0 ∀u ∈ C,
〈µ̄, g(ū)〉Y∗,Y = 0, µ̄ ∈ K◦.

Definition 2.40 (Zowe-Kurcyusz constraint qualification). Let ū ∈ F be a feasible point. We
say that
a) the Zowe-Kurcyusz constraint qualification (ZKCQ) is satisfied in ū if

Y = g′(ū)RC(ū)−RK(g(ū)).

b) the Robinson constraint qualification (RCQ) is satisfied in ū if

0 ∈ int
(

g(ū) + g′(ū)(C− ū)− K
)

.

In 1979 Zowe and Kurcyusz proved the generalized open mapping theorem [122, Theorem 2.1].
Applying this result, it can be shown that these two constraint qualifications are equivalent.

Theorem 2.41 ([122]). For a feasible point ū ∈ F , the Zowe-Kurcyusz condition and the Robin-
son condition are equivalent.

These constraint qualifications allow us to achieve existence of Lagrange multipliers.

Theorem 2.42 ([122, Thm. 4.1]). Let ū be a local solution of the minimization problem (2.10)
and ZKCQ be satisfied. Then there exist Lagrange multipliers (µ̄, ν̄) ∈ Y∗ ×U such that (2.11)
is satisfied.

The Zowe-Kurcyusz condition is a very abstract condition. The following constraint qualification
is often easier to verify. From now on we assume K to be a convex cone.
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Definition 2.43 (Linearized Slater condition). A feasible point ū ∈ F satisfies the linearized
Slater condition if there exists û ∈ C with

g(ū) + g′(ū)(û− ū) ∈ int(K).

Lemma 2.44 ([19, Lem. 2.99]). If ū ∈ F satisfies the linearized Slater condition, then ZKCQ is
satisfied in ū. The converse is true, if int(K) is non-empty.

For the remaining part of this section, we will assume that f is a convex function and g is convex
with respect to K.

Theorem 2.45 ([62, Thm. 1.55]). Let g be convex with respect to K and assume that there exists
û ∈ C such that

g(û) ∈ int(K). (2.12)

Then the linearized Slater condition is satisfied in every feasible point ū ∈ F . In particular,
ZKCQ is satisfied for every feasible point.

Condition (2.12) is called Slater condition. In opposite to all other constraint qualification the
Slater condition does not depend on the optimal solution ū, which is a huge advantage. However,
it still requires necessarily that the interior of the convex cone K is non-empty. This assumption is
crucial and by far not trivial, since it is often not satisfied. A popular example is the cone

K := L2(Ω)− := {y ∈ L2(Ω) | y ≤ 0 a.e. in Ω},

which does not contain an inner point, see [116, Chap. 6]. However, the space of non-positive con-
tinuous functions C(Ω) is an appropriate candidate instead. This makes it reasonable to consider
pointwise inequality constraints of the type y ≤ ψ, with y, ψ ∈ C(Ω). Finally, the following result
states that, for convex functions, the KKT conditions are not only necessary but also sufficient.

Theorem 2.46. Let f : U → R be convex and g : U → Y be convex with respect to K. Let
(ū, µ̄, ν̄) denote a KKT point of (2.10). Then ū is a global solution of (2.10).

Proof. We chose an arbitrary point u ∈ F . Since f is convex we arrive with Lemma 2.16 at

f (u)− f (ū) ≥ f ′(ū)(u− ū) = −〈µ̄, g′(ū)(u− ū)〉 − 〈ν̄, u− ū〉.

We know that u − ū ∈ RC(ū) ⊂ TC(ū) and ν̄ ∈ TC(ū)◦. Hence, we obtain 〈ν̄, u − ū〉 ≤ 0.
The convexity of g implies g(ū + t(u − ū)) ∈ K, ∀t ∈ [0, 1]. The Fréchet differentiability of
g implies limt→0

1
t (g(ū + t(u− ū))− g(ū)) = g′(ū)(u− ū) and by definition of the tangent

cone g′(ū)(u− ū) ∈ TK(g(ū)). Together with µ̄ ∈ TK(ū)◦ this shows 〈µ̄, g′(ū)(u− ū)〉 ≤ 0.
Putting all together we obtain f (u) ≥ f (ū) for all feasible u. Thus, ū is a global solution of
(2.10).

2.6 The Augmented Lagrangian Method

Following [114] this section aims at giving a short introduction in augmented Lagrangian methods
in Banach spaces.
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The Method of Multipliers for Equality Constraints

In 1969 Hestenes [52] and Powell [101] provided an efficient method, the method of multipliers,
to solve finite-dimensional minimization problems, which include equality constraints. Adapting
the general framework from finite dimensions, we consider a Banach space U, a Hilbert space H
and the minimization problem

minimize
u∈C

f (u) subject to h(u) = 0. (2.13)

Further, f : U → R, h : U → H are given mappings and C ⊆ U is a non-empty closed convex
set. Penalizing the violation of the equality constraint, we investigate the augmented Lagrangian

LAL(u, µ, ρ) := f (u) + (µ, h(u))︸ ︷︷ ︸
=:L(u,µ)

+
ρ

2
‖h(u)‖2

H ,

where L(u, µ) denotes the Lagrangian function of (2.13) and ρ ∈ R a positive parameter, the
so-called penalty parameter. Assuming that the functions f and h are continuously differentiable
and µ and ρ are fixed, we obtain from Lemma 2.35 that a solution ū of minu∈C LAL(u, µ, ρ) has
to satisfy

(L′AL(ū, µ, ρ), v− ū) ≥ 0 ∀v ∈ C
⇔ ( f ′(ū) + h′(ū)∗(µ + ρh(ū)), v− ū) ≥ 0 ∀v ∈ C.

Comparing this inequality with the first-order conditions for the Lagrangian function of (2.13)
given by ( f ′(ū) + h′(ū)∗µ, v− ū) ≥ 0 ∀v ∈ C, this immediately suggests to consider

µ̄ := µ + ρh(u) (2.14)

as a reasonable estimate for the Lagrange multiplier. Choosing an initial value for µ1 and ρ1, the
method of multipliers now basically consists of the following two steps: For given µk and ρk one
computes the minimizer of the corresponding augmented Lagrangian. After that, the multiplier is
updated according the Hestenes-Powell multiplier update from (2.14). Hence, we obtain

uk = arg min
u∈C
LAL,k(u, µk, ρk),

µk+1 = µk + ρkh(uk).

It remains to fix an update rule for the penalty parameter. Usually, if the violation of the equality
constraints shows sufficient decrease, it is reasonable to keep the current value of ρ. Otherwise the
penalty parameter will be increased by a factor θ > 1.

The Method of Multipliers for Inequality Constraints

Let us now adapt the concept for equality constraints to problems of the type

minimize f (u) subject to u ∈ F = {u ∈ U | u ∈ C, g(u) ∈ K},

where f : U → R and g : U → Y are given mappings. Further, C ⊆ U is a non-empty closed
convex set and K ⊆ Y is a closed convex cone. Assuming that E : Y ↪→ H densely and K ⊆ H is
a closed convex set with E−1(K) = K, we are allowed to equivalently investigate the problem

minimize f (u) subject to u ∈ F = {u ∈ U | u ∈ C, g(u) ∈ K}. (2.15)
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In order to apply the theory of the original method of multipliers, we need to reformulate (2.15)
as an equality constrained problem. To do so, we introduce the slack variable s ∈ K and consider
the equality constrained problem

minimize
(u,s)∈C×K

f (u) subject to g(u)− s = 0.

Defining h : U × H → H, h(u, s) := g(u)− s, the corresponding augmented Lagrangian on the
space U × H is given by

Ls
AL(u, s, µ, ρ) = f (u) + (µ, h(u, s)) +

ρ

2
‖h(u, s)‖2

H

= f (u) +
ρ

2

∥∥∥∥µ

ρ
+ g(u)− s

∥∥∥∥2

H
− ‖µ‖

2
H

2ρ
.

Minimizing the last formula for each fixed u ∈ U with respect to s ∈ K, results in the following
augmented Lagrangian function, which is only dependent on u and µ:

LAL : U × H ×R→ R, LAL(u, µ, ρ) := f (u) +
ρ

2
dist2

(
µ

ρ
+ g(u),K

)
− ‖µ‖

2
H

2ρ
,

where dist(·,K) = infs∈K ‖· − s‖H. Moreover, for fixed multiplier µ and penalty parameter ρ,
the element s̄(u) := PK(g(u) + µ

ρ ) is the minimal value of s. Thus,

h(u, s̄(u)) = g(u)− PK

(
g(u) +

µ

ρ

)
and for the current iterates uk+1, µk and ρk the multiplier update corresponding to (2.14) yields

µk+1 = µk + ρkh(uk+1, s̄(uk+1)) = ρk

(
g(uk+1) +

µk

ρk
− PK

(
g(uk+1) +

µk

ρk

))
. (2.16)

Applying the classical method of multipliers results in the following general algorithm.

Algorithm 2.1 Original Augmented Lagrangian Method for Cone Constraints
Let (u0, µ1) ∈ U × H and ρ1 > 0 be given. Choose θ > 1, τ ∈ (0, 1) and set k := 1.

1: Compute a solution uk of the problem min
u∈U
LAL,k(u, µk, ρk).

2: Update the multiplier µk+1 according to (2.16).

3: If it holds ‖h(uk, s̄(uk))‖H ≤ τ ‖h(uk−1, s̄(uk−1))‖H, set ρk+1 := ρk. Otherwise, increase
the penalty parameter ρk+1 := θρk.

4: If the stopping criterion is not satisfied, set k := k + 1 and go to step 1.

However, for infinite dimensional problems Algorithm 2.1 is not directly applicable. First, the
convergence analysis of the algorithm requires a certain boundedness property of the Lagrange
multiplier, which is not guaranteed by the basic multiplier method. Moreover, at least in finite
dimensions, augmented Lagrangian methods possess the advantageous property that the penalty
remains bounded, i.e., the penalty parameter has to be increased only finitely many times. Since
a penalty parameter tending to infinity may cause heavy numerical instabilities during numerical
computations it is favourable to transfer this property to the infinite dimensional setting.
Conn et al. [36, 37] introduced an algorithm for finite-dimensional nonlinear optimization prob-
lems, which is constructed in such a way that the penalty parameter remains bounded. This algo-
rithm differs from the original method of multipliers by distinguishing after each iteration whether
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the step has been successful or not. If the step has been successful, the multiplier is updated, while
the penalty parameter remains unchanged. Otherwise, if the step has been not successful, the
multiplier is not updated, but the penalty parameter is increased. Based on this finite-dimensional
investigations, we adapted this procedure to the infinite dimensional case and end up with the
following general algorithm for inequality constrained optimization problems.

Algorithm 2.2 Augmented Lagrangian Method for Cone Constraints
Let (u0, µ1) ∈ U × H and ρ1 > 0 be given. Choose θ > 1, τ ∈ (0, 1) and set k := 1.

1: Compute a solution uk of the problem min
u∈C
LAL,k(u, µk, ρk).

2: If the step is successful, update the multiplier µk+1 := ρk

(
g(uk) +

µk
ρk
− PK

(
g(uk) +

µk
ρk

))
and set ρk+1 := ρk.

3: Otherwise, increase the penalty parameter ρk+1 := θρk.

4: If a certain stopping criterion is not satisfied, set k := k + 1 and go to step 1.

Let us point out the main difference between Algorithm 2.2 and the original method from Algo-
rithm 2.1. The Lagrange multiplier is not updated in every iteration of the algorithm, but only if
a step is considered to be successful. To determine if this is the case, we will basically check on
a reasonable measure of feasibility and complementarity. Moreover, we aim to choose our up-
date rule from Step 2 and Step 3 in such a way that the sequence of multipliers (µk)k is bounded
in L1(Ω). This is crucial to obtain a weak-* convergent subsequence of multipliers in M(Ω).
We will specify the algorithm applied to pointwise state constrained optimal control problems in
Section 2.7.3.
Another way to handle this challenge has been proposed in [73], see also [114]. Here, the authors
apply the multiplier update rule from the original method of multipliers. Thus, in every iteration
of the algorithm the subproblem consists in solving

minimize
u∈C

LAL,k(u, wk, ρk),

and updating the Lagrange multiplier via

µk+1 := ρk

(
g(uk) +

wk

ρk
− PK

(
g(uk) +

wk

ρk

))
.

Here, wk ∈ H is an element of a bounded set B ⊂ H instead of the multiplier µk. In practice, the
authors choose wk := PB(µk) as the so-called safeguarded multiplier sequence. In this way, (wk)k
is a bounded sequence, which is, in this case, the main ingredient to obtain suitable convergence
results.

2.7 The Optimal Control Problems – Basic Results

This section aims at collecting basic results that are needed for the discussion of PDE constrained
optimal control problems with pointwise state constraints. Hereby, we restrict ourselves to the
case that the solution operator S is linear, i.e., the underlying partial differential equation is linear.
For results concerning nonlinear PDEs we refer the reader to Chapter 5. For more details about
optimal control theory we refer the reader to the books [39, 62, 116]. Moreover, we will specify
the augmented Lagrangian algorithm that will be used to solve state constrained optimal control
problems.
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2.7.1 The State Constrained Optimal Control Problem

Let Ω ⊆ Rd, d ∈ {2, 3} denote an open bounded domain with Lipschitz boundary. We start by
introducing the optimal control problem given in its reduced formulation

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(P)

where yd ∈ L2(Ω) and α is a positive regularization parameter. The upper and lower constraints
on the control u satisfy ua(x) ≤ ub(x) and are elements of L2(Ω), while ψ is given in C(Ω). The
operator S denotes the control-to-state mapping of the linear elliptic partial differential equation
(2.3). Thus, by Theorem 2.23, S : L2(Ω) → H1(Ω) ∩ C(Ω) is linear, continuous and compact.
In particular, it is completely continuous and Fréchet differentiable. We are searching for a control
u ∈ U := L2(Ω) with associated state y ∈ Y := H1(Ω) ∩ C(Ω). We define the admissible and
feasible set

Uad := {u ∈ L2(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Fad := {u ∈ L2(Ω) | u ∈ Uad, Su(x) ≤ ψ in Ω}.

It is easy to see, that the set Uad is non-empty, bounded, closed and convex, hence weakly compact.
For S linear, it is straight forward to prove that the feasible set is also weakly compact.

Theorem 2.47. Assume that the set Fad is non-empty. Then, Fad is weakly compact and (P) has a
unique global solution.

Proof. The boundedness of Uad implies boundedness of Fad. Moreover, the complete continuity
of S allows us to conclude closedness of Fad. The linearity and continuity of S implies that
g(u) := Su−ψ is convex with respect to the closed convex cone of non-positive functions. Thus,
Lemma 2.28 yields convexity of Fad and we obtain its weak compactness. Due to the linearity
of S, the objective function f is continuous and strictly convex (α > 0), hence, weakly lower
semicontinuous and we can apply Corollary 2.33 to obtain existence of a unique solution.

However, if S is a nonlinear operator, for instance the solution operator of a semilinear partial
differential equation, then the feasible set Fad is still closed, but not convex. Nevertheless, one can
conclude its weak compactness and apply Theorem 2.32.

Let us establish first-order necessary optimality conditions for the convex problem (P). Due to
convexity, these conditions are also sufficient.

Theorem 2.48 (Primal first-order optimality conditions). The control ū is a minimizer of (P)
if and only if

(S∗(Sū− yd) + αū, u− ū) ≥ 0 ∀u ∈ Fad.

Proof. We know from the proof of Theorem 2.47 that Fad is convex. Thus, we can apply Lemma
2.35.

However, this formulation does not reveal the difficulties that are arising from the pure state con-
straints, since the corresponding constraints are hidden in the feasible set Fad. This is why a further
investigation of the optimality conditions with the help of Lagrange multipliers is helpful. For this
purpose, the fulfilment of a suitable constraint qualification is required. For problem (P) the Slater
condition (2.12) is a convenient choice.
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Theorem 2.49 (First-order optimality conditions with multipliers). Assume that there exists
û ∈ Uad and σ > 0 such that

Sû(x) ≤ ψ(x)− σ in Ω (2.17)

is satisfied. Then, ū is a solution of (P) if and only if there exists an adjoint state p̄ ∈W1,s(Ω), s ∈
(1, d/(d− 1)) and a Lagrange multiplier µ̄ ∈ M(Ω) such that the following optimality system
is satisfied:

ȳ = Sū, p̄ =S∗(Sū− yd + µ̄),
( p̄ + αū, u− ū)) ≥ 0 ∀u ∈ Uad,

〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0, µ̄ ≥ 0, ȳ ≤ ψ.

Here, the property µ̄ ≥ 0 means that 〈µ̄, ξ〉M(Ω),C(Ω) ≥ 0 for all ξ ∈ C(Ω) with ξ ≥ 0, i.e., µ̄

lies in the dual of the non-negative cone C(Ω)+.

Proof. We set U := L2(Ω), Y := H1(Ω) ∩ C(Ω), C := Uad, g(u) := Su − ψ, and K :=
C(Ω)− := {u ∈ C(Ω) | u(x) ≤ 0 in Ω}. Let ū denote a solution of (P). Since we assumed that
the Slater condition is satisfied, we can conclude from Theorem 2.45 and Lemma 2.44 that ZKCQ
is satisfied in every feasible point. Hence, existence of a Lagrange multiplier µ̄ ∈ Y∗ follows with
Theorem 2.42. Since K is a non-empty convex cone we arrive with Theorem 2.39 at

(S∗(Sū− yd + µ̄ + αū, u− ū) ≥ 0 ∀u ∈ Uad,

〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0, µ̄ ∈ C(Ω)
◦
−.

The definition of the polar cone yields

C(Ω)
◦
− = {φ ∈ Y∗ | 〈φ, ξ〉 ≤ 0, ∀ξ ∈ C(Ω)−}
= {φ ∈ Y∗ | 〈φ, ξ〉 ≥ 0, ∀ξ ∈ C(Ω)+} = C(Ω)

∗
+.

Thus, µ ∈ C(Ω)
∗
+. Introducing the adjoint states p̄ := S∗(Sū − yd + µ̄), we end up with the

desired optimality system. Casas [27] showed that the adjoint state is an element of the space
W1,s, s ∈ (1, d/(d− 1)). Theorem 2.46 shows that the KKT conditions are also sufficient.

Remark 2.50. By Theorem 2.25 we know that the adjoint state p̄ from Theorem 2.49 is the very
weak solution of the adjoint equation

A∗ p̄ = ȳ− yd + µ̄Ω in Ω,
∂νA∗ p̄ = µ̄Γ on Γ.

In general, the Lagrange multiplier µ̄ and thus the adjoint state p̄ from Theorem 2.49 need not to
be unique. A sufficient condition for uniqueness of the adjoint state p̄ and the Lagrange multiplier
µ̄ is given by a certain separation condition on the active sets, see [80, Lemma 1]. There the
following result was proven:

Lemma 2.51. Let ū be an optimal control of (P) and let (2.17) be satisfied. Moreover, suppose
there exists δ > 0 such that the active sets

Ay = {x ∈ Ω | ȳ(x) = ψ(x)}
Au = {x ∈ Ω | ū(x) = ua(x) ∨ ū(x) = ub(x)}

satisfy dist(Ay, Au) ≥ δ, i.e., the active sets are well separated. Then, the corresponding adjoint
state p̄ and the Lagrange multiplier µ̄ are uniquely determined.
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2.7.2 The Augmented Lagrangian Subproblem

We consider the augmented Lagrangian subproblem

minimize
uρ∈L2(Ω)

fAL(uρ, µ, ρ) := f (uρ) +
1

2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to uρ ∈ Uad,
(PAL)

where S denotes the same solution operator as given in the unregularized problem (P). Further,
α > 0, ρ is a positive penalization parameter and µ ∈ L2(Ω).

Theorem 2.52 (Existence of an optimal control). The optimization problem (PAL) admits a
unique global solution.

Proof. The set Uad is weakly compact. Since S is linear and continuous, the cost functional fAL
is strictly convex (α > 0) and continuous in uρ. Hence, the claim follows by Corollary 2.33.

First-order optimality conditions can now directly be established by Lemma 2.35. Thanks to the
convexity of (PAL), these conditions are also sufficient.

Theorem 2.53 (First-order optimality conditions). The control ūρ is a global solution of (PAL)
if and only if

(S∗(Sūρ − yd + (µ + ρ(Sūρ − ψ))+) + αūρ, u− ūρ) ≥ 0 ∀u ∈ Uad,

which is equivalent to the existence of p̄ρ ∈ H1(Ω) and µ̄ρ ∈ L2(Ω) such that

ȳρ = Sūρ, p̄ρ = S∗(Sūρ − yd + µ̄ρ),
( p̄ρ + αūρ, u− ūρ)) ≥ 0 ∀u ∈ Uad,

µ̄ρ = (µ+ρ(Sūρ − ψ))+

is satisfied.

Remark 2.54. By Lemma 2.24 we know that the adjoint state p̄ρ ∈ H1(Ω) from Theorem 2.53
is the weak solution of the adjoint equation

A∗ p̄ρ = ȳρ − yd + µ̄ρ in Ω,
∂νA∗ p̄ρ = 0 on Γ.

Remark 2.55. In contrast to the original problem (P), the multipliers p̄ρ and µ̄ρ from (PAL) are
unique. This is due to the explicit construction of µ̄ρ.

2.7.3 The Augmented Lagrangian Algorithm

We aim at solving the pointwise state constrained optimal control problem (P) with the augmented
Lagrangian method that has been introduced in Section 2.6. To satisfy the therein used general
framework we set

U := L2(Ω), Y := H1(Ω) ∩ C(Ω), C := Uad, g(u) := Su− ψ, K := C(Ω)−

H := L2(Ω), K := L2(Ω)−.

The corresponding augmented Lagrangian is given by LAL : L2(Ω)× L2(Ω)×R→ R

LAL(u, µ, ρ) := f (u) +
ρ

2

∥∥∥∥(µ

ρ
+ Su− ψ)+

∥∥∥∥2

L2(Ω)

−
‖µ‖2

L2(Ω)

2ρ
.
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Rearranging the second term and noting that the last term can be neglected (for minimization with
respect to u), we intend to solve

minimize
u∈Uad

LAL(u, µ, ρ) := f (u) +
1

2ρ
‖(µ + ρ(Su− ψ))+‖2

L2(Ω) , (2.18)

which is exactly the augmented Lagrangian subproblem (PAL). Let ūk denote a solution of (2.18)
for given ρk > 0 and µk ∈ L2(Ω). Then an update candidate for the Lagrange multiplier is
according to (2.16) given by

µk+1 = (µk + ρk(Sūk − ψ))+ . (2.19)

Formula (2.19) will play an important role in the convergence analysis. Let ū denote a solution of
(P) and ūk a solution of (PAL) for given ρk > 0 and µk ∈ L2(Ω). We define

Rk := ‖(Sūk − ψ)+‖C(Ω̄) + |(µ̄k, ψ− Sūk)|.

As already pointed out in Section 2.6, the boundedness of the multiplier estimates in L1(Ω) is
a crucial issue for the convergence analysis of augmented Lagrangian methods in this setting.
This boundedness property cannot be guaranteed for the sequence (ūk)k, which denotes the se-
quence of solutions of the augmented Lagrangian subproblem minu∈Uad LAL(u, µk) for given µk
and ρk. Inspired by [36, 37], we will therefore investigate the sequence of so-called successful
iterates (u+

n )n with corresponding multiplier approximations µ+
n . Here, we consider a step to be

successful if the quantity Rk shows, compared to the last successful step, sufficient decrease, i.e.,
Rk ≤ τR+

n−1 :=
∥∥(Su+

n−1 − ψ)+
∥∥

C(Ω̄)
+ |(µ+

n−1, ψ− Su+
n−1)|. During all successful steps the

multiplier update as given in (2.19) is carried out, while the penalty parameter remains unchanged.
If the step is not successful, the penalty parameter is increased.
Applying Algorithm 2.2 to the optimal control problem (P), we arrive at the following algorithm:

Algorithm 2.3 Modified Augmented Lagrangian Algorithm for Problem (P)
Let (ū0, µ1) ∈ L2(Ω)× L2(Ω) and ρ1 > 0 be given with µ1 ≥ 0. Choose θ > 1, τ ∈ (0, 1),
R+

0 � 0 and set k := 1, n := 1.
1: Compute a solution ūk of minu∈Uad LAL,k(u, µk).

2: Compute µ̄k := (µk + ρk(Sūk − ψ))+ .

3: Compute a measure for feasibility and complementarity Rk.

4: If Rk ≤ τR+
n−1, then the step k is successful: We set

µk+1 = µ̄k, ρk+1 := ρk

and define

u+
n := ūk, µ+

n := µk+1, R+
n := Rk.

Finally, we set n := n + 1.

5: Otherwise, the step k is not successful: We set µk+1 := µk and increase the penalty parameter
ρk+1 := θρk.

6: If R+
n−1 ≤ ε then stop, otherwise set k := k + 1 and go to step 1.

Let us comment on the choice of Rk. This quantity depends on the sufficient decrease of feasibility
and complementarity. Moreover, Rk can be used as termination criterion in Algorithm 2.3, where
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the algorithm is stopped if this quantity is small enough.

The algorithm is well-defined. However, one of the main tasks is to prove that infinitely many steps
are successful. Let us point out the importance of this issue. Assume that only a finite number of
steps are successful and let m denote the index of the last successful step. Then all steps k with
k > m are not successful. According to Algorithm 2.3, step 5, we do not gain any new iterates u+

n .
Moreover there is no update on the Lagrange multiplier, while the penalty parameter ρ tends to
infinity. Hence, the algorithm is caught in an infinite loop between steps 1, 2, 3, and 5. In order to
prove that only a finite numbers of steps are not successful, we will investigate the solutions of the
augmented subproblem (PAL) with fixed multiplier approximation µ and penalization parameter ρ
tending to infinity. This choice reduces the method to the classical quadratic penalty approach with
additional shift parameter µ, which is also known under the name Moreau-Yosida regularization
[53, 55, 58].

2.8 Multi-Player Optimization Problems

2.8.1 Generalized Nash Equilibrium Problems

In this section, we will introduce the reader to the different solution concepts for (generalized)
Nash equilibrium problems. Let 1 < N ∈ N denote the number of players. Each player ν ∈
{1, ..., N} is in control of the variable uν ∈ Uν, where Uν is a real Banach space. The strategies
of all players, except the ν-th player are denoted by u−ν ∈ U−ν, leading to the notation u :=
(uν, u−ν). The strategy space of all players is given by U := U1 × · · · ×UN . Each player aims
at minimizing

minimize
uν∈Uν

f ν(uν, u−ν) subject to uν ∈ F ν(u−ν), (2.20)

where
F ν(u−ν) := {vν ∈ Cν | gν(vν, u−ν) ∈ K} ⊆ U.

Here, f ν : U → R is a convex and continuous objective functional, Cν ⊂ Uν is a non-empty,
bounded, closed, convex set, and K ⊆ Y a closed, convex cone, where Y is a Banach space.
Further, gν : U → Y is a convex, continuously Fréchet differentiable mapping. Throughout this
section, we assume f ν(·, u−ν) to be convex and continuously Fréchet differentiable for any given
u−ν. A point ū ∈ U is called feasible, if ū ∈ F (ū) := F 1(ū−1)× · · · × FN(ū−N). Solutions
of the GNEP are defined as follows.

Definition 2.56 (Generalized Nash equilibrium). A feasible point ū is a generalized Nash equi-
librium or a solution of the GNEP (2.20) if and only if for every ν it holds

f ν(ūν, ū−ν) ≤ f ν(vν, ū−ν) ∀vν ∈ F ν(ū−ν). (2.21)

From now on, we use the notation

F : U → U∗, F(ū) := (Du1 f 1(ū), ..., DuN f N(ū)).

Since the objective functional f ν is convex in uν for given u−ν, condition (2.21) can for each
player be equivalently expressed as the ν-th players optimality condition, see Lemma 2.35. Thus,
concatenating each player’s optimality condition yields another characterisation of a generalized
Nash equilibrium.
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Lemma 2.57 (First-order optimality condition). A feasible point ū ∈ F (ū) is a solution of the
GNEP (2.20) if and only if

(Duν f ν(ūν, ū−ν), vν − ūν) ≥ 0 ∀vν ∈ F ν(ū−ν), (2.22)

is satisfied for all ν.

Moreover, due to the convexity of the objective functional the generalized Nash equilibrium prob-
lem can be reformulated as a quasi-variational inequality (QVI).

Lemma 2.58. The GNEP (2.20) can be reformulated as the quasi variational inequality

ū ∈ F (ū), (F(ū), v− ū) ≥ 0 ∀v ∈ F (ū) := F 1(ū−1)× · · · × FN(ū−N). (QVI)

Proof. Concatenating each player’s optimality conditions (2.22) it follows immediately that any
solution ū of the GNEP is a solution of (QVI). For the converse, since f ν(·, u−ν) is convex, we
obtain for all v ∈ F (ū) with Lemma 2.16

N

∑
ν=1

(
f ν(vν, ū−ν)− f ν(ūν, ū−ν)

)
≥

N

∑
ν=1

(Duν f ν(ūν, ū−ν), vν − ūν) = (F(ū), v− ū) ≥ 0.

Fixing ν and inserting the points v := (vν, ū−ν) ∈ F (ū), where vν ∈ F ν(ū−ν) is chosen
arbitrary, we arrive at

f ν(ūν, ū−ν) ≤ f ν(vν, ū−ν) ∀vν ∈ F ν(ū−ν),

which implies that any solution ū of the QVI is a solution of the GNEP.

Let Φ denote the solution operator of the variational inequality associated to F and F (u) for some
fixed u:

w = Φ(u) ⇔ w ∈ F (u), (F(w), v− w) ≥ 0 ∀v ∈ F (u).
Then u is a solution of (QVI) if and only if

u = Φ(u). (2.23)

Thus, searching for a generalized Nash equilibrium of (2.20) results in solving the fixed point
equation (2.23). Kakutani’s fixed point theorem [67] is an important tool for proving existence
of solutions of generalized Nash equilibria in finite dimensions. In 1952, Glicksberg [49] showed
that Kakutani’s theorem can be extended from the Euclidean space to convex linear topological
spaces which implies the minimax theorem of Ky Fan [46] for continuous games with continuous
payoff.

Theorem 2.59 (Kakutani-Fan-Glicksberg [3, Cor. 17.55]). Let K be a non-empty, compact,
and convex subset of a locally convex Hausdorff space X. Further let Φ : K ⇒ K have a closed
graph and non-empty convex values. Then the set of fixed points of Φ is compact and non-empty.

In order to apply Theorem 2.59 we consider the setting

Uν := (L2(Ω), τweak), X :=
N

∏
ν=1

Uν, K := C := C1 × ...× CN ,

where τweak denotes the weak topology on L2(Ω). The sets Cν ∈ L2(Ω) are non-empty, closed,
bounded and convex, hence weakly sequentially compact. Moreover, the Eberlein-S̆mulian The-
orem (Theorem 2.5) yields weak compactness. We recall that graph(Φ) is weakly sequentially
closed if

xk ⇀ x∗, yk ∈ Φ(xk), yk ⇀ y∗ implies y∗ ∈ Φ(x∗).

The following result helps us now to check the assumptions of Theorem 2.59.
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Lemma 2.60. LetK denote a non-empty, weakly compact, and convex subsetK ⊂ X of a Banach
space X and Φ : K⇒ K. If graph(Φ) is weakly sequentially closed, Φ has a closed graph in the
weak topology.

Proof. For the Graph of Φ we have graph(Φ) ⊆ K2, with K2 weakly compact. Let us assume
that graph(Φ) is weakly sequentially closed. Then graph(Φ) is also weakly sequentially compact.
By a result from Eberlein and S̆mulian, we obtain that graph(Φ) is weakly compact, hence weakly
closed. This coincides with Φ having a closed graph in the weak topology.

Thus, in order to apply Theorem 2.59, it is enough to check if graph(Φ) is weakly sequentially
closed and Φ has non-empty convex values.

2.8.2 Jointly Convex GNEPs

Let us investigate a slight modification of the GNEP (2.20). From now on the functions gν coincide
for each player. Thus, each player attempts to solve

minimize
uν∈Uν

f ν(uν, u−ν) subject to (uν, u−ν) ∈ F , (2.24)

where
F := {u ∈ C | g(u) ∈ K} ⊆ U.

denotes the feasible set. Here, f ν : U → R is a convex and continuous objective functional,
C := C1 × · · · × CN where Cν ⊂ Uν are non-empty, closed, convex sets, and K ⊆ Y a closed,
convex cone, where Y is a Banach space. Further, g : U → Y is a convex, continuously Fréchet
differentiable mapping. Since in this case the constraint g(u) ∈ K is the same for each player, it is
commonly called joint constraint. Problems with this particular structure are called jointly convex
generalized Nash equilibrium problems. The solution concept of jointly convex GNEPs involves
another characterization of solutions which is based on the Nikaido-Isoda (NI) function

Ψ(u, v) :=
N

∑
ν=1

f ν(uν, u−ν)−
N

∑
ν=1

f ν(vν, u−ν).

Definition 2.61 (Normalized equilibrium/ Variational equilibrium ). Let ū ∈ F be a feasible
point. Then ū is called a normalized Nash equilibrium (NE) or variational equilibrium if

N

∑
ν=1

f ν(ūν, ū−ν) ≤
N

∑
ν=1

f ν(vν, ū−ν) ∀v ∈ F . (2.25)

Note, that the above characterization of a normalized equilibrium can be equivalently expressed
as

Ψ(ū, v) ≤ 0 ∀v ∈ F . (2.26)

Every variational equilibrium is a generalized Nash equilibrium. This can be seen by inserting the
points v := (vν, ū−ν), with vν ∈ F (ū−ν), into the Definition 2.61. Note, that the characterization
(2.26) is equivalent to ū being a solution of the concave maximization problem

max
v∈F

Ψ(ū, v). (2.27)

Establishing first-order necessary optimality conditions of the concave maximization problem
(2.27), we obtain that a normalized Nash equilibrium ū can equivalently be characterized as a
point ū ∈ F that solves the following variational inequality (VI):

ū ∈ F , (F(ū), v− ū) ≥ 0 ∀v ∈ F . (2.28)
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If f ν is for instance given by a tracking-type objective functional and the set C is additionally
bounded, it is possible to prove existence of solutions by applying the Kakutani-Fan-Glicksberg-
Theorem 2.59. However, this proof does not imply uniqueness of solutions. Nevertheless, exis-
tence of a unique normalized equilibrium can be shown via the standard solution theory of varia-
tional inequalities, assumed F is strongly monotone.

Definition 2.62 (Monotone operators). Let U denote a real Banach space with C ⊆ U. We say
that an operator A : U → U∗ is
a) monotone on C if 〈Au− Aw, u− w〉U∗,U ≥ 0 for all u, w ∈ C.
b) strongly monotone on C if there exists a constant c > 0 such that

〈Au− Aw, u− w〉U∗,U ≥ c ‖u− w‖2
U ∀u, w ∈ C.

Theorem 2.63 (Existence of a normalized Nash equilibrium [78, Thm. III.1.4]). If the sets Cν

are non-empty, closed, convex, and bounded and F is monotone, then there exists a normalized
solution of the GNEP (2.24). Moreover, if the sets Cν are non-empty, closed and convex and F is
strongly monotone, then the solution is unique.

Let us emphasize that unique equilibria are often crucial for numerical implementations and
throughout the execution of convergence analysis. If the problem under consideration falls into
the category of potential games in the sense of Monderer [95], it is possible to reduce the GNEP
(2.20) to a single convex optimization problem. Existence of unique solutions of this problems
can then be deduced by standard arguments from optimization theory, see for instance [60, Prop
3.10]. However, there are special types of GNEPs that cannot be reduced to a single optimization
problem and it cannot be expected in general that the resulting first-order optimality system is a
(strongly) monotone VI. We will treat an example of this case in Chapter 8.

2.8.3 Nash Equilibrium Problems

Let us now take a closer look at the case that each player’s constraints are independent of the other
players’ strategies. In this situation each player aims at minimizing

minimize
uν∈Uν

f ν(uν, u−ν) subject to uν ∈ F ν ⊆ Uν. (2.29)

Here, f ν : U → R is a linear and continuous objective functional and F ν ⊆ Uν is a non-empty,
closed, convex set. Problems of this type are called Nash equilibrium problems (NEP). In an
analogue way to GNEPs, we define the feasible set F := F 1 × · · · × FN and a solution of the
NEP:

Definition 2.64. Let ū ∈ F . Then ū is a Nash equilibrium or a solution of the NEP (2.29) if and
only if for every ν it holds

f ν(ūν, ū−ν) ≤ f ν(vν, ū−ν) ∀vν ∈ F ν.

Since the set of constraints does not depend on u, reformulating the NEP (2.29) results in a varia-
tional inequality instead of a QVI (see Lemma 2.58).

Lemma 2.65. The NEP (2.29) can be equivalently reformulated as the variational inequality

ū ∈ F , (F(ū), v− ū) ≥ 0 ∀v ∈ F . (VI)



38 2. Background

Proof. Concatenating the first-order necessary optimality conditions for the ν-th problem for any
fixed ū−ν results in

(Duν fν(ūν, ū−ν), vν − ūν) ≥ 0 ∀vν ∈ F ν

and we arrive directly at the variational inequality (VI). The converse can be shown like for the
QVI case, see Lemma 2.58.

Applying the solution theory of (strongly) monotone variational inequalities yields the following
existence result.

Theorem 2.66 (Existence of a Nash equilibrium [78, Cor. III.1.8]). If the sets F ν are non-
empty, closed, convex and bounded and F is monotone, then there exists a solution of the NEP
(2.29). Moreover, if the sets F ν are non-empty, closed and convex and F is strongly monotone,
then the solution is unique.
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Optimal Control Problems

39





CHAPTER 3

LINEAR OPTIMAL
CONTROL PROBLEMS

This chapter deals with the solution of a convex optimal control problem governed by an ellip-
tic partial differential equation with homogeneous Neumann boundary conditions and pointwise
control and state constraints. The problem is given by

minimize J(y, u) :=
1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω) (3.1)

subject to

Ay = u in Ω,
∂νA y = 0 on ∂Ω,

y ≤ ψ in Ω,
ua ≤ u ≤ ub a.e. in Ω.

Here, A denotes a linear elliptic operator of second-order. For instance, we can choose A :=
−∆ + Id. As already mentioned in the introduction (Section 1.2.1), the Lagrange multiplier as-
sociated to the state constraint y ≤ ψ is only a measure in C(Ω)

∗
= M(Ω). By applying an

augmented Lagrangian method, the state constraints are replaced by a penalization term, which is
augmenting the inequality constraint in the objective functional. In this way, we have to solve a
sequence of optimal control problems that are only control constrained. We establish an update
rule that performs the classical augmented Lagrangian update (see Section 2.6) only if a sufficient
decrease of the maximal constraint violation and the violation of the complementarity condition is
achieved. This is crucial for our convergence analysis, since it enables us to conclude boundedness
of the multiplier sequence in L1(Ω).

We start this chapter by giving a detailed formulation, including optimality conditions, of the
problem to solve in Section 3.1. We develop the augmented Lagrangian method in Section 3.2. In
order to guarantee the boundedness of generated multiplier approximations, we investigate a spe-
cial multiplier update rule: the classical multiplier update is performed only if a certain measure
of feasibility and violation of complementarity shows sufficient decrease, see Section 3.2.2. The
convergence of the method is studied in Section 3.3. The main results of this section are bounded-
ness of iterates (Lemma 3.14) and their convergence (Theorem 3.15) to the solution of the original
problem. In addition, we show that the sequence of generated penalty parameters is bounded only
in exceptional situations, which is different from classical results in finite-dimensional optimiza-
tion (Theorem 3.18). We demonstrate the performance of the method for selected problems in
Section 3.4. The results of this chapter can be found in the publication [77].

41
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3.1 The Optimal Control Problem

This section concerns a detailed introduction of the optimal control problem under investigation.
We make the concrete problem setting clear, collect results about existence and uniqueness of
solutions and derive optimality conditions.

3.1.1 Problem Setting

Denote by Ω ⊂ Rd, d = 2, 3, a bounded Lipschitz domain with boundary Γ. We aim at solving
the following optimal control problem:

Minimize
J(y, u) :=

1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω)

over all (y, u) ∈ (H1(Ω) ∩ C(Ω))× L2(Ω) subject to the elliptic equation

(Ay)(x) = u(x) in Ω,
(∂νA y)(x) = 0 on Γ,

and subject to the pointwise state and control constraints

y(x) ≤ ψ(x) in Ω,
ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.

In the sequel, we will work with the following set of standing assumptions.

Assumption 3.1. Let Assumption 2.19 be satisfied. Further, the given data satisfy yd ∈ L2(Ω),
α > 0, ua, ub ∈ L2(Ω) with ua ≤ ub and ψ ∈ C(Ω).

Due to the assumptions above, we know from Theorem 2.22 that for every u ∈ L2(Ω) there exists
a uniquely determined weak solution y ∈ H1(Ω) ∩ C(Ω) of the state equation. The control-to-
state mapping S : u 7→ y is linear and continuous from L2(Ω) to H1(Ω) ∩ C(Ω). Further, by
Theorem 2.23, S is compact. We introduce the reduced formulation of (3.1)

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(P)

and recall the admissible and feasible sets

Uad := {u ∈ L2(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Fad := {u ∈ L2(Ω) | u ∈ Uad, Su(x) ≤ ψ(x) in Ω}.

Let us mention that the analysis below does not rely on the particular structure of Uad. In fact, all
the results are valid if Uad is assumed to be non-empty, convex, and closed in L2(Ω). Theorem
2.47 yields existence of a unique solution.

Theorem 3.2 (Existence of solutions of the optimal control problem). Let Assumption 3.1 be
satisfied. Assume that the feasible set Fad is non-empty. Then there exists a uniquely determined
global solution ū ∈ L2(Ω) of (P).
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3.1.2 Optimality Conditions

Existence of Lagrange multipliers to state constrained optimal control problems is not guaran-
teed without any regularity assumptions. In the sequel, we will work with the following Slater
condition.

Assumption 3.3 (Slater condition). We assume that there exists û ∈ Uad and σ > 0 such that
for ŷ = Sû it holds

ŷ(x) ≤ ψ(x)− σ ∀x ∈ Ω.

First-order optimality conditions can be derived with Theorem 2.49, see also Remark 2.50.

Theorem 3.4 (First-order necessary optimality conditions). Let Assumption 3.3 be satisfied.
Then ū is a solution of (P) if and only if there exists an adjoint state p̄ ∈W1,s(Ω), s ∈ (1, d/(d−
1)) and a Lagrange multiplier µ̄ ∈ M(Ω) with µ̄ = µ̄|Ω + µ̄|Γ, such that the following optimality
system is satisfied:

Aȳ = ū in Ω,
∂νA ȳ = 0 on Γ,

(3.2a)

A∗ p̄ = ȳ− yd + µ̄Ω in Ω,
∂νA∗ p̄ = µ̄Γ on Γ,

(3.2b)

( p̄ + αū, u− ū) ≥ 0 ∀u ∈ Uad, (3.2c)

〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0, µ̄ ≥ 0, ȳ ≤ ψ. (3.2d)

3.2 The Augmented Lagrangian Method

Since the Lagrange multiplier corresponding to the pointwise state constraint is only a measure,
its numerical treatment causes difficulties. To overcome these, we replace the inequality constraint
y ≤ ψ by an augmented penalization term as presented in Section 2.6. The complete algorithm
will be presented in Section 3.2.3 below.

3.2.1 The Augmented Lagrangian Optimal Control Problem

Following the argumentation from Section 2.7.3, we consider the augmented Lagrangian subprob-
lem

minimize
uρ∈L2(Ω)

fAL(uρ, µ, ρ) := f (uρ) +
1

2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to uρ ∈ Uad.
(PAL)

We know from Theorem 2.52 that (PAL) admits a unique global solution.

Theorem 3.5 (Existence of solutions of the augmented Lagrangian subproblem). For every
ρ > 0 and every µ ∈ L2(Ω) the augmented Lagrangian control problem (PAL) admits a unique
global solution ūρ ∈ Uad with associated optimal state ȳρ = Sūρ.

Since the problem (PAL) does not have to satisfy state constraints, the first-order optimality system
is fulfilled without any further regularity assumptions, see Theorem 2.53.
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Theorem 3.6 (First-order necessary optimality conditions). The point ūρ is the unique solution
of (PAL) if and only if there exists an associated state ȳρ ∈ H1(Ω) ∩ C(Ω) and a unique adjoint
state p̄ρ ∈ H1(Ω), satisfying the following system.

Aȳρ = ūρ in Ω,
∂νA ȳρ = 0 on Γ,

(3.3a)

A∗ p̄ρ = ȳρ − yd + µ̄ρ in Ω,
∂νA∗ p̄ρ = 0 on Γ,

(3.3b)

( p̄ρ + αūρ, u− ūρ) ≥ 0 ∀u ∈ Uad, (3.3c)

µ̄ρ :=
(
µ + ρ(ȳρ − ψ)

)
+

. (3.3d)

Due to the choice of µ̄ρ in (3.3d), the optimality system (3.3) of the augmented problem is very
similar to optimality system (3.2) of the original problem (P). In fact, if (ȳρ, ūρ, p̄ρ, µ̄ρ) solves
(3.3), ȳρ is feasible, and (µ̄ρ, ȳρ − ψ) = 0 holds, then the point (ȳρ, ūρ, p̄ρ, µ̄ρ) is a KKT point of
the original problem. Another observation is that it is enough to control the L1(Ω)-norm of µ̄ρ in
order to derive bounds on the solution (ȳρ, ūρ, p̄ρ) of (3.3). Here, we have the following theorem.

Theorem 3.7. Let ρ > 0 and µ ∈ L2(Ω) be given. Let s ∈ (1, d/(d− 1)). Then there exists a
constant c > 0 independent of ρ and µ such that for all solutions (ȳρ, ūρ, p̄ρ, µ̄ρ) of (3.3) it holds

‖ȳρ‖H1(Ω) + ‖ȳρ‖C(Ω) + ‖ūρ‖L2(Ω) + ‖ p̄ρ‖W1,s(Ω) ≤ c(‖µ̄ρ‖L1(Ω) + 1).

Proof. Let us test the state equation (3.3a) with p̄ρ and the adjoint equation (3.3b) with ȳρ. This
yields

( p̄ρ, ūρ) = (ȳρ − yd, ȳρ) + (µ̄ρ, ȳρ).

Using the optimal control ū of the original problem as test function in (3.3c), we obtain

(ȳρ − yd, ȳρ) + (µ̄ρ, ȳρ) ≤ (αūρ, ū− ūρ) + ( p̄ρ, ū).

This inequality can be rewritten equivalently as

‖ȳρ‖2
L2(Ω) + α‖ūρ‖2

L2(Ω) ≤ (αūρ, ū) + ( p̄ρ, ū) + (yd, ȳρ)− (µ̄ρ, ȳρ).

Applying Young’s inequality and the estimate −(µ̄ρ, ȳρ) ≤
∥∥µ̄ρ

∥∥
L1(Ω)

∥∥ȳρ

∥∥
C(Ω)

, we have

1
2
‖ȳρ‖2

L2(Ω) +
α

2
‖ūρ‖2

L2(Ω) ≤
α

2
‖ū‖2

L2(Ω) + ‖ p̄ρ‖L2(Ω)‖ū‖L2(Ω)

+
1
2
‖yd‖2

L2(Ω) + ‖µ̄ρ‖L1(Ω)‖ȳρ‖C(Ω).

Let us fix s̄ ∈ (1, d/(d − 1)) such that W1,s̄(Ω) is continuously embedded in L2(Ω). Then,
we obtain from the Theorems 2.22 and 2.25 that there exist constants c1, c2 > 0, which are
independent of ρ and µ, such that

1
2
‖ȳρ‖2

L2(Ω) +
α

2
‖ūρ‖2

L2(Ω) ≤
α

2
‖ū‖2

L2(Ω) +
1
2
‖yd‖2

L2(Ω) + c1
∥∥µ̄ρ

∥∥
L1(Ω)

∥∥ūρ

∥∥
L2(Ω)

+ c2

(∥∥ȳρ

∥∥
L2(Ω)

+ ‖yd‖L2(Ω) +
∥∥µ̄ρ

∥∥
L1(Ω)

)
‖ū‖L2(Ω) .

With Young’s inequality we arrive at

‖ȳρ‖2
L2(Ω) + α‖ūρ‖2

L2(Ω) ≤ c
(
‖µ̄ρ‖2

L1(Ω) + ‖ū‖
2
L2(Ω) + ‖yd‖2

L2(Ω)

)
.

This implies the bound on the L2-norms of ūρ and ȳρ. Using again the regularity results from
Theorems 2.22 and 2.25, the claim is proven.
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3.2.2 The Multiplier Update Rule

In the following, let (PAL)k denote the augmented Lagrangian subproblem (PAL) for given penalty
parameter ρ := ρk and multiplier µ := µk. We will denote its solution by ūk with corresponding
state ȳk, adjoint state p̄k and updated multiplier µ̄k, which is given by (3.3d). For convenience, let
us restate the optimality system of (PAL)k, which is solved by (ȳk, ūk, p̄k, µ̄k):

Aȳk = ūk in Ω,
∂νA ȳk = 0 on Γ,

(3.4a)

A∗ p̄k = ȳk − yd + µ̄k in Ω,
∂νA∗ p̄k = 0 on Γ,

(3.4b)

( p̄k + αūk, u− ūk) ≥ 0 ∀u ∈ Uad, (3.4c)

µ̄k := (µk + ρk(ȳk − ψ))+ . (3.4d)

Let us start this section with a basic estimate, which will be useful in the sequel.

Lemma 3.8. Let (ȳ, ū, p̄, µ̄) be a solution of (3.2), and let (ȳk, ūk, p̄k, µ̄k) solve (3.4). Then it
holds

‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω) ≤ (µ̄k, ψ− ȳk) + 〈µ̄, ȳk − ψ〉M(Ω),C(Ω).

Proof. Using (3.2b),(3.2c) and (3.4b),(3.4c), we obtain

‖ȳ− ȳk‖2
L2(Ω) = (A∗( p̄− p̄k), ȳ− ȳk)− (µ̄− µ̄k, ȳ− ȳk)

= (( p̄− p̄k), ū− ūk)− (µ̄− µ̄k, ȳ− ȳk)

≤ −α ‖ū− ūk‖2
L2(Ω) − (µ̄− µ̄k, ȳ− ȳk),

which implies

‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω) ≤ (µ̄k − µ̄, ȳ− ȳk). (3.5)

The term on the right-hand side of equation (3.5) can be split into two parts:

(µ̄k, ȳ− ȳk) = (µ̄k, ȳ− ψ) + (µ̄k, ψ− ȳk) ≤ (µ̄k, ψ− ȳk) (3.6)

and

−〈µ̄, ȳ− ȳk〉M(Ω),C(Ω) = −〈µ̄, ȳ− ψ〉M(Ω),C(Ω) − 〈µ̄, ψ− ȳk〉M(Ω),C(Ω)

= 〈µ̄, ȳk − ψ〉M(Ω),C(Ω).
(3.7)

Here, we used the complementarity relation (3.2d) as well as ȳ ≤ ψ and µ̄k ≥ 0. Putting the
inequalities (3.5), (3.6), and (3.7) together, we get

‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω) ≤ (µ̄k, ψ− ȳk) + 〈µ̄, ȳk − ψ〉M(Ω),C(Ω),

which is the claim.

Our multiplier update decision is motivated by the following result, which estimates the difference
of solutions of the augmented Lagrangian subproblem to the solution of the original problem. The
upper bound of the error contains the violation of the state constraint and the mismatch in the
complementarity condition.
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Lemma 3.9. Let (ȳ, ū, p̄, µ̄) and (ȳk, ūk, p̄k, µ̄k) be given as in Lemma 3.8. Then it holds

‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω) ≤ ‖µ̄‖M(Ω) ‖(ȳk − ψ)+‖C(Ω) + (µ̄k, ψ− ȳk).

Proof. The claim follows directly from Lemma 3.8 using the estimate

〈µ̄, ȳk − ψ〉M(Ω),C(Ω) ≤ ‖µ̄‖M(Ω) ‖(ȳk − ψ)+‖C(Ω) .

This result shows that the iterates (ȳk, ūk) will converge to the solution of the original problem if
the quantity

‖(ȳk − ψ)+‖C(Ω) + |(µ̄k, ψ− ȳk)|

tends to zero for k → ∞. We will say that a step of Algorithm 1 is successful if this quantity
decreases sufficiently fast. Specifically, we will say that step k was successful if the condition

‖(ȳk − ψ)+‖C(Ω) + |(µ̄k, ψ− ȳk)| ≤ τ
(∥∥(y+n − ψ)+

∥∥
C(Ω)

+ |(µ+
n , ψ− y+n )|

)
is satisfied with τ ∈ (0, 1). Here, we denoted by step n, n < k, the previous successful step
with corresponding iterates y+n , u+

n , p+n and µ+
n . Moreover, the quantity above can be used as

termination criterion, where the iteration is stopped if this quantity is small enough.

3.2.3 The Augmented Lagrangian Algorithm in Detail

Let us now state the concrete algorithm with the update rule as described in the previous section.

Algorithm 3.1 Augmented Lagrangian Algorithm for (P)

Let (ȳ0, ū0, p̄0) ∈ (H1(Ω) ∩ C(Ω)) × L2(Ω) ×W1,s(Ω), ρ1 > 0 and µ1 ∈ L2(Ω) be given
with µ1 ≥ 0. Choose θ > 1, τ ∈ (0, 1), ε ≥ 0, R+

0 � 1. Set k = 1 and n = 1.
1: Compute a solution (ȳk, ūk, p̄k) of (PAL)k.

2: Set µ̄k := (µk + ρk(ȳk − ψ))+ .

3: Compute Rk := ‖(ȳk − ψ)+‖C(Ω) + |(µ̄k, ψ− ȳk)|.

4: If Rk ≤ τR+
n−1, then the step k is successful. Set

µk+1 := µ̄k, ρk+1 := ρk

and define
(y+n , u+

n , p+n ) := (ȳk, ūk, p̄k), µ+
n := µk+1, R+

n := Rk.

Set n := n + 1.

5: Otherwise, the step k is not successful. Set µk+1 := µk and increase the penalty parameter
ρk+1 := θρk.

6: If R+
n−1 ≤ ε, then stop. Otherwise set k := k + 1 and go to step 1.

Although the algorithm is well-defined, we still have to prove that infinitely many steps are suc-
cessful. Otherwise the algorithm is caught in an infinite loop between steps 1, 2, 3, and 5, see
the discussion at the end of Section 2.7.3. In the sequel, we analyze Algorithm 3.1 with tolerance
ε = 0. If for some n it holds R+

n = 0, then by Lemma 3.9 the current iterate is a solution of the
original problem. Otherwise, the method will iterate infinitely. In order to prove that infinitely
many steps are successful, we will investigate the solutions of the augmented Lagrangian KKT
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system (3.3) with fixed multiplier approximation µ and penalization parameter ρ tending to infin-
ity. In this situation, the method reduces to a penalty method with additional shift parameter µ.
Such a scheme was already investigated in [55]. However, in this publication a much stronger reg-
ularity condition was imposed, which can only be fulfilled if the state constraints are considered
in H2(Ω).

Lemma 3.10. Let (ρk)k be a sequence of positive numbers with ρk → ∞. Let µ ∈ L2(Ω) with
µ ≥ 0 be given. Let ū be a solution of (P) with corresponding state ȳ and (ȳk, ūk, p̄k) be solutions
of the optimality system (3.4). Then for k→ ∞, it holds

(ȳk, ūk)→ (ȳ, ū) in (H1(Ω) ∩ C(Ω))× L2(Ω).

Proof. The general idea of the proof follows [55]. Using an observation from the proof of [65,
Theorem 3.1], we find

(µ̄k, ȳ− ȳk) = (µ̄k,− µ

ρk
− ȳk + ψ− ψ + ȳ +

µ

ρk
)

= − 1
ρk
‖µ̄k‖2

L2(Ω) +
1
ρk
(µ̄k, µ) + (µ̄k, ȳ− ψ)

≤ − 1
ρk
‖µ̄k‖2

L2(Ω) +
1

2ρk

(
‖µ̄k‖2

L2(Ω) + ‖µ‖
2
L2(Ω)

)
= − 1

2ρk
‖µ̄k‖2

L2(Ω) +
1

2ρk
‖µ‖2

L2(Ω) .

(3.8)

From inequality (3.5) in the proof of Lemma 3.8, we get

‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω) ≤ (µ̄k, ȳ− ȳk)− 〈µ̄, ȳ− ȳk〉
≤ (µ̄k, ȳ− ȳk) + ‖µ̄‖M(Ω) ‖ȳ− ȳk‖C(Ω)

≤ (µ̄k, ȳ− ȳk) +
α

2
‖ū− ūk‖2

L2(Ω) +
c2

2α
‖µ̄‖2

M(Ω) ,

(3.9)

where we used Young’s inequality and the regularity result from Theorem 2.22. With inequality
(3.8) this leads to

‖ȳ− ȳk‖2
L2(Ω) +

α

2
‖ū− ūk‖2

L2(Ω) +
1

2ρk
‖µ̄k‖2

L2(Ω) ≤
1

2ρk
‖µ‖2

L2(Ω) +
c2

2α
‖µ̄‖2

M(Ω) . (3.10)

Hence, the sequence (ūk)k is bounded in L2(Ω), which implies the boundedness of (ȳk)k in
H1(Ω) ∩ C(Ω). This allows to extract weakly convergent subsequences ūk′ ⇀ u∗ in L2(Ω) and
ȳk′ ⇀ y∗ in H1(Ω). Since the embedding H1(Ω) ↪→ L2(Ω) is compact, the sequence (ȳk′)k′

converges strongly in L2(Ω). With the compactness of S we obtain strong convergence ȳk′ to y∗

in C(Ω). In order to prove y∗ ≤ ψ, we use the identity

1
ρk
‖µ̄k‖2

L2(Ω) = ρk

∥∥∥∥max
(

0,
µ

ρk
+ ȳk − ψ

)∥∥∥∥2

L2(Ω)

, (3.11)

which is bounded because of (3.10). As the term max
(

0, µ
ρk′

+ ȳk′ − ψ
)

converges to the limit

max(0, y∗ − ψ) in L2(Ω) for k′ → ∞, we obtain y∗ ≤ ψ by passing to the limit in (3.11). This
shows that y∗ is feasible. To argue that y∗ = ȳ and u∗ = ū, we use again inequality (3.5) and
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(3.8) to conclude

‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω)

≤ (µ̄k, ȳ− ȳk)− 〈µ̄, ȳ− ψ〉M(Ω),C(Ω) + 〈µ̄, ȳk − ψ〉M(Ω),C(Ω)

≤ 1
2ρk
‖µ‖2

L2(Ω) + 〈µ̄, ȳk − ψ〉M(Ω),C(Ω).

Passing to the limit k′ → ∞ yields

0 ≤ lim
k′→∞

‖ȳ− ȳk′‖2
L2(Ω) + α ‖ū− ūk′‖2

L2(Ω) ≤ 〈µ̄, y∗ − ψ〉M(Ω),C(Ω) ≤ 0,

and consequently ūk′ → ū in L2(Ω). The compactness of S immediately yields the strong con-
vergence ȳk′ → ȳ in H1(Ω) ∩ C(Ω). As the limit is independent of the taken subsequence, we
obtain convergence of the whole sequences (uk)k and (yk)k to ū and ȳ, respectively.

Lemma 3.11. Under the same assumptions as in Lemma 3.10, it holds

lim
k→∞

(µ̄k, ψ− ȳk) = 0.

Proof. First, we estimate

(µ̄k, ψ− ȳk) =
1
ρk
(µ̄k,−µ + ρk(ψ− ȳk) + µ) = − 1

ρk
‖µ̄k‖2

L2(Ω) +
1
ρk
(µ̄k, µ)

≤ − 1
ρk
‖µ̄k‖2

L2(Ω) +
1

2ρk
‖µ̄k‖2

L2(Ω) +
1

2ρk
‖µ‖2

L2(Ω)

≤ 1
2ρk
‖µ‖2

L2(Ω) ,

which proves

lim sup
k→∞

(µ̄k, ψ− ȳk) ≤ 0. (3.12)

From Lemma 3.8 we get

(µ̄k, ψ− ȳk) ≥ ‖ȳ− ȳk‖2
L2(Ω) + α ‖ū− ūk‖2

L2(Ω) + 〈µ̄, ψ− ȳk〉M(Ω),C(Ω),

which leads with Lemma 3.10 to

lim inf
k→∞

(µ̄k, ψ− ȳk) ≥ 0. (3.13)

The inequalities (3.12) and (3.13) yield the claim.

Using these two results, we can show that an infinite number of successful steps are taken.

Lemma 3.12. Algorithm 3.1 makes infinitely many successful steps.

Proof. We assume the algorithm to do a finite number of successful steps only. Then there is an
index m such that all steps k with k > m are not successful. According to Algorithm 3.1 it holds
µk = µm for all k > m , Rk > τRm > 0 and ρk → ∞. However, by Lemma 3.10 and Lemma
3.11 we get

lim
k→∞

Rk = lim
k→∞
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ− ȳk)| = 0,

yielding a contradiction.
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3.3 Convergence of the Algorithm

Let us recall that the sequence (y+n , u+
n , p+n )n denotes the solution of the n-th successful iteration

of Algorithm 3.1 with µ+
n being the corresponding approximation of the Lagrange multiplier. We

want to show convergence of the algorithm next. The most important part is proving L1(Ω)-
boundedness of the Lagrange multipliers µ+

n , which is accomplished in Lemma 3.14 below.

Lemma 3.13. Let y+n , µ+
n be given as defined in Algorithm 2. Then it holds

|(µ+
n , ψ− y+n )| ≤ τn−1

(∥∥(y+1 − ψ)+
∥∥

C(Ω)
+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ− y+1 )+
∥∥

L2(Ω)

)
.

Proof. By definition of a successful step in Algorithm 3.1, we get the result directly by induction
and the Cauchy-Schwarz inequality.

Let us now show the L1(Ω)-boundedness of the sequence of Lagrange multipliers (µ+
n )n.

Lemma 3.14 (Boundedness of the iterates). Let Assumption 3.3 be fulfilled. Then Algorithm 3.1
generates an infinite sequence of bounded iterates, i.e., there is a constant C > 0 such that for all
n ∈N it holds∥∥y+n

∥∥
H1(Ω)

+
∥∥y+n

∥∥
C(Ω)

+
∥∥u+

n
∥∥

L2(Ω)
+
∥∥p+n

∥∥
W1,s(Ω)

+
∥∥µ+

n
∥∥

L1(Ω)
≤ C.

Proof. Let (ŷ, û) be the Slater point given by Assumption 3.3, i.e., there exists σ > 0, such that
ŷ + σ ≤ ψ. Then we can estimate

σ||µ+
n ||L1(Ω) =

∫
Ω

σµ+
n dx ≤

∫
Ω

µ+
n (ψ− ŷ)dx

=
∫

Ω
µ+

n (ψ− y+n + y+n − ŷ)dx

=
∫

Ω
µ+

n (ψ− y+n )︸ ︷︷ ︸
(I)

dx +
∫

Ω
µ+

n (y
+
n − ŷ)dx︸ ︷︷ ︸
(II)

.

The first part (I) can be estimated with Lemma 3.13 yielding∫
Ω

µ+
n (ψ− y+n )dx ≤ |(µ+

n , ψ− y+n )|

≤ τn−1
(∥∥(y+1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ− y+1 )+
∥∥

L2(Ω)

)
= τn−1C.

(3.14)

Applying the Cauchy–Schwarz and Young’s inequality we observe that

α(u+
n , û− u+

n ) = α(u+
n − û, û− u+

n ) + α(û, û− u+
n )

≤ −α
∥∥û− u+

n
∥∥2

L2(Ω)
+ α ‖û‖L2(Ω)

∥∥û− u+
n
∥∥

L2(Ω)

≤ −α
∥∥û− u+

n
∥∥2

L2(Ω)
+

α

2
‖û‖2

L2(Ω) +
α

2

∥∥û− u+
n
∥∥2

L2(Ω)

≤ −α

2

∥∥û− u+
n
∥∥2

L2(Ω)
+

α

2
‖û‖2

L2(Ω) .
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Similarly, we obtain

(y+n − yd, ŷ− y+n ) = (y+n − ŷ, ŷ− y+n ) + (ŷ− yd, ŷ− y+n )

≤ −1
2

∥∥ŷ− y+n
∥∥2

L2(Ω)
+

1
2
‖ŷ− yd‖2

L2(Ω) .

The second part (II) can now be estimated as follows∫
Ω

µ+
n (y

+
n − ŷ)dx = 〈A∗p+n − (y+n − yd), y+n − ŷ〉M(Ω),C(Ω)

= (p+n , u+
n − û)− (y+n − yd, y+n − ŷ)

≤ α(u+
n , û− u+

n ) + (y+n − yd, ŷ− y+n )

≤− α

2

∥∥û− u+
n
∥∥2

L2(Ω)
− 1

2

∥∥ŷ− y+n
∥∥2

L2(Ω)

+
α

2
‖û‖2

L2(Ω) +
1
2
‖ŷ− yd‖2

L2(Ω) .

(3.15)

Combining (3.14) and (3.15) yields∥∥µ+
n
∥∥

L1(Ω)
+

α

2σ

∥∥û− u+
n
∥∥2

L2(Ω)
+

1
2σ

∥∥ŷ− y+n
∥∥2

L2(Ω)

≤ τn−1

σ
C +

α

2σ
‖û‖2

L2(Ω) +
1

2σ
‖ŷ− yd‖2

L2(Ω) .

Since τ ∈ (0, 1) by assumption, the right-hand side is bounded. Consequently, we get bounded-
ness of (u+

n )n in L2(Ω) and boundedness of (µ+
n )n in L1(Ω). By the regularity result Theorem

2.22, the sequence (y+n )n is uniformly bounded in H1(Ω) ∩ C(Ω). Boundedness of (p+n )n fol-
lows directly from Theorem 3.7.

Let us note that the proof of the previous Lemma 3.14 yields boundedness of (u+
n )n without using

boundedness of the admissible set Uad.

Theorem 3.15 (Convergence of solutions of the augmented Lagrangian algorithm). Let ū be
the solution of (P) with corresponding state ȳ. As n → ∞ we have for the sequence (y+n , u+

n )n
generated by Algorithm 3.1

(y+n , u+
n )→ (ȳ, ū) in (H1(Ω) ∩ C(Ω))× L2(Ω).

Proof. Since the algorithm yields an infinite number of successful steps (Lemma 3.12) we get

lim
n→∞

R+
n = lim

n→∞

∥∥(y+n − ψ)+
∥∥

C(Ω)
+ |(µ+

n , ψ− y+n )| = 0. (3.16)

From Lemma 3.8 we get the following inequality∥∥ȳ− y+n
∥∥2

L2(Ω)
+ α

∥∥ū− u+
n
∥∥2

L2(Ω)
≤ 〈µ̄, y+n − ψ〉M(Ω),C(Ω) + |(µ

+
n , ψ− y+n )|

≤ ‖µ̄‖M(Ω)

∥∥(y+n − ψ)+
∥∥

C(Ω)
+ |(µ+

n , ψ− y+n )|.

With (3.16) from above, we conclude

0 ≤ lim
n→∞

∥∥ȳ− y+n
∥∥2

L2(Ω)
+ α

∥∥ū− u+
n
∥∥2

L2(Ω)
≤ 0,

yielding y+n → ȳ in L2(Ω) and u+
n → ū in L2(Ω). In addition, we get strong convergence of

y+n → ȳ in H1(Ω) ∩ C(Ω) since S is compact.



3.3. Convergence of the Algorithm 51

The next step in the convergence analysis is to show the convergence of the sequences of the
dual quantities (µ+

n )n and (p+n )n to multipliers and adjoint states of the original problem (P).
Since these sequences are bounded in L1(Ω) and W1,s(Ω), s ∈ (1, d/(d− 1)), we can extract
weak-* and weakly convergent subsequences inM(Ω) and W1,s(Ω), respectively. These weak
subsequential limits are indeed Lagrange multipliers for the original problem.

Theorem 3.16 (Subsequential convergence of dual quantities). Let subsequences (p+nj
, µ+

nj
)nj of

(p+n , µ+
n )n be given such that µ+

nj
⇀∗ µ̄ inM(Ω) and p+nj

⇀ p̄ in W1,s(Ω), s ∈ (1, d/(d− 1)).
Then (ȳ, ū, p̄, µ̄) satisfies the optimality system (3.2) of the original problem (P).

Proof. The proof that the limits satisfy the adjoint equation (3.2b) can be found in [61, Lemma
2.6]. It remains to prove that the weak-* limit of µ+

nj
is indeed a Lagrange multiplier. First, we

prove the positivity property 〈µ̄, ϕ〉 ≥ 0 ∀ϕ ∈ C(Ω) with ϕ ≥ 0. By construction of the update
of the Lagrange multiplier we obtain that µ+

n ≥ 0 pointwise, which implies∫
Ω

µ+
n ϕ dx ≥ 0 ∀ϕ ∈ C(Ω) with ϕ ≥ 0,

which in turn yields

0 ≤
∫

Ω
µ+

nj
ϕ dx → 〈µ̄, ϕ〉M(Ω),C(Ω) ∀ϕ ∈ C(Ω) with ϕ ≥ 0.

Next, we show that the complementary slackness condition 〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0 is fulfilled.
From Theorem 3.15 we get ynj → ȳ in C(Ω). Hence, we obtain

0 = lim
j→∞

∣∣∣(µ+
nj

, ψ− y+nj
)
∣∣∣ = ∣∣∣〈µ̄, ψ− ȳ〉M(Ω),C(Ω)

∣∣∣ ,

and, thus, the validity of the complementary condition. The inequality ( p̄ + αū, u− ū) ≥ 0 for
u ∈ Uad follows with u+

nj
→ ū in L2(Ω) and p+nj

⇀ p̄ in L2(Ω) from (3.4c). This shows that
(ȳ, ū, p̄, µ̄) satisfies (3.2).

Let us put this convergence result into perspective. Similar results, i.e., strong convergence
of primal quantities and weak/weak-* convergence of dual quantities, are available for many
other methods. For instance, such results were established for Lavrentiev-regularization [61],
penalization-based approaches combined with path-following methods [56], and interior point
methods [82, 112].
Since Lagrange multipliers are not uniquely determined in general, we cannot expect weak con-
vergence of the whole sequences (µ+

n )n and (p+n )n. If we assume uniqueness of multipliers then
this is possible indeed.

Corollary 3.17. Let (ȳ, ū, p̄, µ̄) satisfy (3.2). Let us assume that ( p̄, µ̄) are uniquely determined
Lagrange multipliers. Then it holds with s ∈ (1, d/(d− 1))

p+n ⇀ p̄ in W1,s(Ω),

µ+
n ⇀∗ µ̄ inM(Ω).

Let us now prove that bounded penalty parameters imply existence of Lagrange multipliers in
L2(Ω).

Theorem 3.18 (Boundedness of penalty parameters implies multipliers in L2(Ω)). Let the
assumptions of the previous Theorem 3.16 be satisfied. Assume that (ρn)n is a bounded sequence.
Then (µ+

n )n is bounded in L2(Ω), and the multiplier µ̄ given by Theorem 3.16 belongs to L2(Ω).
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Proof. Inequality (3.5) in the proof of Lemma 3.8 and the complementarity condition (3.2d) imply∥∥ȳ− y+n
∥∥2

L2(Ω)
+ α

∥∥ū− u+
n
∥∥2

L2(Ω)
≤ 〈µ̄, y+n − ψ〉M(Ω),C(Ω) + (µ+

n , ȳ− y+n ).

Then inequality (3.8) from the proof of Lemma 3.9 yields∥∥ȳ− y+n
∥∥2

L2(Ω)
+ α

∥∥ū− u+
n
∥∥2

L2(Ω)
≤ 〈µ̄, y+n − ψ〉+ (µ+

n , ȳ− y+n )

≤ ‖µ̄‖M(Ω)

∥∥(y+n − ψ)+
∥∥

C(Ω)
+

1
2ρn

∥∥µ+
n−1

∥∥2
L2(Ω)

− 1
2ρn

∥∥µ+
n
∥∥2

L2(Ω)
.

Rearranging the terms, we obtain

1
2ρn

∥∥µ+
n
∥∥2

L2(Ω)
− 1

2ρn

∥∥µ+
n−1

∥∥2
L2(Ω)

≤ ‖µ̄‖M(Ω)

∥∥(y+n − ψ)+
∥∥

C(Ω)
.

Since ρn ≥ ρn−1, we get

1
2ρn

∥∥µ+
n
∥∥2

L2(Ω)
− 1

2ρn−1

∥∥µ+
n−1

∥∥2
L2(Ω)

≤ ‖µ̄‖M(Ω)

∥∥(y+n − ψ)+
∥∥

C(Ω)
.

Summing up we obtain

1
2ρn

∥∥µ+
n
∥∥2

L2(Ω)
≤ ‖µ̄‖M(Ω)

n

∑
j=1

∥∥∥(y+j − ψ)+
∥∥∥

C(Ω)
≤ ‖µ̄‖M(Ω)

n

∑
j=1

R+
j

≤ ‖µ̄‖M(Ω)

τ

1− τ
R+

0 .

This implies the boundedness of (µ+
n )n in L2(Ω). Arguing as in the proof of Theorem 3.16, we can

prove that weak accumulation points of (µ+
n )n in L2(Ω) are multipliers to the state constraint.

Let us emphasize that this result constitutes a remarkable difference to augmented Lagrangian
methods in the finite dimensional setting, where the penalty parameter does not need to go to
infinity. It is an open problem to modify the augmented Lagrangian scheme to obtain a method
with this property.

3.4 Numerical Examples

In this section, we report on numerical results for the solution of an elliptic pointwise state con-
strained optimal control problem in two dimensions. All optimal control problems have been
solved using Algorithm 3.1 implemented with FEniCS [86] using the DOLFIN [87] Python in-
terface. We solved the discretized subproblems (PAL)k by applying an active-set method, which
can also be interpreted as a semi-smooth Newton method, see [64] for solving state constrained
optimal control problems and [116, Section 2.12.4] for an application to control constraints. The
exact solution of the subproblem is obtained if there is no change in the active set [64, Proposition
2.1]. For all examples, the augmented Lagrangian algorithm was stopped as soon as

R+
n =

∥∥(y+n − ψ)+
∥∥

C(Ω̄)
+ |(µ+

n , ψ− y+n )| ≤ 10−6

was satisfied, i.e., the violation of feasibility and complementarity is sufficiently small. Since the
discretized version of the subproblems (3.3) are solved almost exactly, this yields a discrete KKT
point of the original problem, which is, due to convexity, a global solution. In the following,
(ȳh, ūh, p̄h, µ̄h) denotes the calculated solution after the stopping criterion is reached.
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3.4.1 Example 1 – Control and State Constrained Problem

We consider an optimal control problem with with Ω = (0, 1)2 given by

minimize J(y, u) :=
1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω)

subject to − ∆y = u in Ω, y = 0 on Γ,

y ≤ ψ in Ω,
ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.

This setting differs slightly from the setting in which our convergence theory has been developed.
Here, the given PDE has to satisfy homogeneous Dirichlet boundary conditions. Since the state
equation of this example admits H2(Ω)-regular solutions, regularity results similar to Theorem
2.22 and Theorem 2.25 are satisfied, see [26, Theorem 4]. Moreover, KKT conditions analogous
to (3.2) can be established, see [26, Theorem 2]. The convergence analysis of the augmented
Lagrangian method is not affected at all and can be transferred line by line to this problem setting.
For this test case we adapt the numerical example from [55]. With x := (x1, x2) ∈ Ω we set

yd(x) := 10(sin(2πx1) + x2), ψ(x) := 0.01, α := 0.15,
ua(x) := −0.5, ub(x) := 0.5.

The algorithm was initialized with ρ1 := 100 and (ȳo, ū0, p̄0, µ1) equal to zero. We choose
τ := 0.1 as the parameter in the decision concerning successful steps. If a step has not been
successful, the penalization parameter is increased by the factor θ := 5. Figure 3.1 shows the
numerical solution of Example 1. All figures depict results gained for a triangular mesh with 105

degrees of freedom (dofs).

Optimal state ȳh Optimal control ūh

Optimal multiplier µ̄h

Figure 3.1: (Example 1) Computed results for approximately 105 degrees of freedom.
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3.4.2 Example 2 – State Constrained Problem with Exact Solution

In [107] an example has been presented such that the state constraint y ≥ ψ has to be satisfied. We
modify the given example such that the constraints suit our setting. Thus, we consider the domain
Ω = (−1, 2)2 and the optimal control problem

minimize J(y, u) :=
1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω)

subject to − ∆y = u + f in Ω, y = 0 on Γ,

y ≤ ψ in Ω.

Since the function f belongs to L2(Ω), the state equation admits solutions in H2(Ω), and the
remarks for Example 1 are valid here as well. Hence, our convergence theory readily transfers
to this problem setting. To shorten our notation we set r := r(x1, x2) := (x2

1 + x2
2)

1/2. For the
functions

yd(r) := ȳ(r)− 1
2π

χr≤1(4− 9r),

ψ(r) := − 1
2πα

(
1
4
− r

2

)
,

f (r) := − 1
8π

χr≤1(4− 9r + 4r2 − 4r3),

the exact solution of the optimal control problem is given by

ȳ(r) := − 1
2πα

χr≤1

(
r2

4
(log r− 2) +

r3

4
+

1
4

)
,

ū(r) :=
1

2πα
χr≤1(log r + r2 − r3),

p̄(r) := −αū(r),
µ̄(r) := δ0(r).

For this example we choose α := 1.0. We started the algorithm with ρ1 := 0.5 and (ȳ0, ū0, p̄0, µ1)
equal to zero and set τ := 0.11, as well as θ := 10. Figure 3.2 and 3.3 depict our numerical results
for Example 2 for a triangular mesh with approximately 105 degrees of freedom. The computed
Lagrange multiplier behaves like expected, approximating δ0(r).

Optimal control ūh. Optimal multiplier µ̄h.

Figure 3.2: (Example 2) Computed optimal control ūh (left) and optimal multiplier µ̄h (right).
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Figure 3.3: (Example 2) State constraint ψ and optimal state ȳh (transparent).

Since the exact solution of the problem is known, the errors of the control ‖ūh − ū‖L2(Ω) and the
error of the state ‖ȳh − ȳ‖L2(Ω) can be evaluated. Figure 3.4 depicts the errors depending on the
numbers of degrees of freedom, showing once again convergence of our algorithm.

102 103 104 105 10610−3

10−2

10−1 ‖ȳh − ȳ‖L2(Ω)

‖ūh − ū‖L2(Ω)

Figure 3.4: (Example 2) Errors ‖ūh − ū‖L2(Ω) and ‖ȳh − ȳ‖L2(Ω) vs. degrees of freedom.

3.4.3 Iteration Numbers and Penalization Parameter

Finally, let us report about the number of iterations and the final penalization parameter for dif-
ferent refinements of the mesh in both examples. Table 3.1 shows the number of outer iterations,
i.e., the iteration numbers of the augmented Lagrangian algorithm until the stopping criterion is
reached for our two examined examples. Further, the accumulated inner iteration numbers, that
are needed to solve the subproblems using a primal-dual active set method is given. It also shows
the penalization parameter ρmax of the final iteration and the L1(Ω)-norm of the approximated
Lagrange multiplier.
Figure 3.5 illustrates the L1(Ω)-norm of the approximated Lagrange multiplier µk during the
iterations. Clearly, this sequence is bounded in L1(Ω). In addition, the values of the penalization
parameters ρk are depicted in logarithmic scale. As can be seen, this sequence is not bounded. If
it would be bounded, then the sequence (µk)k would be bounded in L2(Ω) due to Theorem 3.18.
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Degrees of freedom 102 103 104 105

Example 1 outer it 11 13 15 15
inner it 29 44 55 65
ρmax 1.6 · 106 3.9 · 107 9.8 · 108 9.8 · 108

‖µh‖L1(Ω) 2.927 2.905 2.900 2.901
Example 2 outer it 10 10 12 14

inner it 16 23 35 43
ρmax 5 · 104 5 · 105 5 · 106 5 · 108

‖µh‖L1(Ω) 0.911 0.9996 1.060 1.070

Table 3.1: Iteration history for both examples and different discretizations.
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Figure 3.5: (Example 1 & 2) L1(Ω)-norm of discrete multipliers µk, penalty parameters ρk vs.
iteration number. Top: Example 1, Bottom: Example 2.



CHAPTER 4

ILL-POSED STATE CONSTRAINED OPTIMAL
CONTROL PROBLEMS WITH SPARSE

CONTROLS

In this chapter, we extend the results from the previous chapter by replacing the regularizing
Tikhonov term in the objective functional by an L1(Ω)-norm term, which causes sparsity of the
control.

Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain with boundary Γ. We consider the
following optimal control problem:

minimize
u∈L2(Ω)

J(y, u) :=
1
2
||y− yd||2L2(Ω) + β‖u‖L1(Ω) (4.1)

subject to

Ay = u in Ω,
y = 0 on Γ,

y ≤ ψ in Ω,
ua ≤ u ≤ ub a.e. in Ω.

Here, β ≥ 0 is a positive parameter, A is a second order elliptic operator, ψ ∈ C(Ω), yd ∈
L2(Ω) and ua, ub are functions in L∞(Ω). For abbreviation, we set j(u) := ‖u‖L1(Ω). The
main difficulties in this problem are the pointwise state constraints y(x) ≤ ψ(x) and the convex
but non-differentiable term ‖u‖L1(Ω). Note, that there is no additional L2(Ω)-regularization term
present in (4.1), which makes the problem ill-posed and numerically challenging.

Our aim is to modify and extend the method presented in Chapter 3 to obtain a numerical scheme
to solve (4.1). The main idea is the following: To deal with the ill-posedness of (4.1), we add a
Tikhonov regularization term, which results in

minimize Jα(y, u) := J(y, u) +
α

2
‖u‖2

L2(Ω). (4.2)

Here, α > 0 is positive regularization parameter. Moreover, to overcome the problems, that arise
due to the pointwise state constraints, we apply an augmented Lagrangian method. By penalizing
the state constraint, in every iteration the following optimal control problem has to be solved:

minimize Jα
ρ (y, u) := J(y, u) +

α

2
‖u‖2

L2(Ω) +
1

2ρ

∥∥(µ + ρ(y− ψ))+
∥∥2 (4.3)

57
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subject to an elliptic partial differential equation and bilateral control constraints. Here, again
α > 0 denotes the regularization parameter of the Tikhonov term, while ρ is the penalization
parameter of the augmented state constraints. Both variables are coupled in our method. During
the algorithm we decrease the regularization parameter α → 0 while increasing the penalization
parameter ρ → ∞. The coupling is described in detail in Section 4.5. Since the decrease of
α is a classical Tikhonov regularization approach, we aim to achieve strong convergence against
the solution of (4.1). Now, let ū denote the solution of (4.1), uα the solution of (4.2) and uα

ρ the
solution of (4.3). Similar to [89] we split the error into the Tikhonov error and the Lagrange error
in order to show convergence of the algorithm

‖ū− uα
ρ‖L2(Ω) ≤ ‖ū− uα‖L2(Ω)︸ ︷︷ ︸

Tikhonov error

+ ‖uα − uα
ρ‖L2(Ω)︸ ︷︷ ︸

Lagrange error

.

This chapter is organized as follows: We start by collecting results for the original problem in
Section 4.1 and for the regularized problem in Section 4.2. The augmented Lagrangian subprob-
lem, as well as the augmented Lagrangian method are introduced in Section 4.3. Section 4.4 aims
at showing convergence of the algorithm. A detailed description of the numerical solution of the
augmented Lagrangian subproblem can be found in Section 4.5. The results of this chapter have
been published in [75].

4.1 The Original Problem

Throughout this chapter let A satisfy Assumption 2.19. Then, the following result holds true.

Theorem 4.1 ([29, Theorem 2.1]). For every u ∈ L2(Ω) there exists a unique weak solution
y ∈ H1

0(Ω) ∩ C(Ω) of the state equation and it holds

‖y‖H1
0 (Ω) + ‖y‖C(Ω) ≤ c ‖u‖L2(Ω)

with a constant c > 0 independent of u. Moreover, the control-to-state mapping S : L2(Ω) →
H1

0(Ω) ∩ C(Ω), u 7→ y is a linear, continuous and compact operator.

We introduce the reduced formulation of problem (4.1).

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) + β ‖u‖L1(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(P)

In the following, we will use the admissible set and the feasible set with respect to the state and
control constraints denoted by

Uad := {u ∈ L∞(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Fad := {u ∈ L2(Ω) | u ∈ Uad, Su ≤ ψ in Ω}.

Theorem 4.2. Assume that the set Fad is non-empty. Then, there exists a unique solution ū of (P).

Proof. Since S is injective, we obtain that the reduced cost functional f is strictly convex and
continuous. As the set Fad is weakly compact, see Theorem 2.47, existence of solutions follows
directly from Corollary 2.33.
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To guarantee the existence of Lagrange multipliers, we will throughout this chapter assume that the
Slater condition from Assumption 3.3 is satisfied. This allows us to derive first-order optimality
conditions, see also Lemma 2.37.

Theorem 4.3 (First-order optimality conditions [34, Theorem 2.5]). Let ū be a solution of the
problem (P). Furthermore, let the Slater condition from Assumption 3.3 be fulfilled. Then, there
exists an adjoint state p̄ ∈ W1,s

0 (Ω), s ∈ [1, d/(d− 1)), a Lagrange multiplier µ̄ ∈ M(Ω) and
a subgradient λ̄ ∈ ∂j(ū) such that the following optimality system

Aȳ = ū in Ω,
ȳ = 0 on Γ,

. (4.4a)

A∗ p̄ = ȳ− yd + µ̄ in Ω,
p̄ = 0 on Γ,

. (4.4b)

( p̄ + βλ̄, u− ū) ≥ 0 ∀u ∈ Uad, (4.4c)

〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0, µ̄ ≥ 0, ȳ ≤ ψ, (4.4d)

is fulfilled.

The next theorem shows the relation between the adjoint state and the control. One can see, that if
β is large, the control will be zero on large parts of Ω. Hence, ū is sparse.

Lemma 4.4 ([28, Theorem 3.1]). Let (ȳ, ū, p̄, λ̄, µ̄) satisfy the optimality system (4.4a)-(4.4d).
Then the following relations hold for θ > 0:

ū(x)


= ua(x) if p̄(x) > β

= ub(x) if p̄(x) < −β

= 0 if | p̄(x)| < β

∈ [ua(x), ub(x)] if | p̄(x)| = β

,

λ̄(x) = P[−1,+1]

(
− 1

β
p̄(x)

)
,

ū(x) = P[ua(x),ub(x)]
(
ū(x)− θ( p̄(x) + βλ̄(x))

)
.

From the second formula it follows that λ̄ is unique if the multiplier µ̄ and adjoint state p̄ are
unique.

4.2 The Regularized Problem

Solving problem (P) directly is challenging for mainly two reasons. First, the multiplier cor-
responding to the state constraints is only a measure. The second challenge is its ill-posedness.
Small perturbations of the given data yd may lead to large errors in the associated optimal controls.
To deal with this issue we will use the well known Tikhonov regularization technique with some
positive regularization parameter α > 0. The regularized problem is in its reduced formulation
given by

minimize
u∈L2(Ω)

f α(u) :=
1
2
‖Su− yd‖2

L2(Ω) + β ‖u‖L1(Ω) +
α

2
‖u‖2

L2(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(Pα)
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Since f α is strongly convex, it is clear, that (Pα) admits a unique solution uα with associated state
yα. One can expect that uα converges to the solution of (P) as α→ 0. Similar results can be found
in the literature, e.g. [118].

Lemma 4.5. Let uα be the unique solution of (Pα) with α > 0 with associated state yα. Fur-
thermore let ū be the unique solution of (P) and ȳ its associated optimal state. Then, we have for
α→ 0

‖uα − ū‖L2(Ω) → 0,
1
α
‖yα − ȳ‖2

L2(Ω) → 0.

Proof. We first show that ‖uα‖L2(Ω) ≤ ‖ū‖L2(Ω) for all α > 0. We start with

f (uα) +
α

2
‖uα‖2

L2(Ω) = fα(uα) ≤ fα(ū) = f (ū) +
α

2
‖ū‖2

L2(Ω) ≤ f (uα) +
α

2
‖ū‖2

L2(Ω),

where we exploited the optimality of uα for (Pα) and the optimality of ū for (P). This yields
‖uα‖L2(Ω) ≤ ‖ū‖L2(Ω). Now we use that the set Uad is weakly compact and extract a subsequence
uαi ⇀ u∗ ∈ Uad. Since the operator S is compact, see Theorem 4.1, we obtain strong convergence
of the state on the subsequence yαi → y∗ = Su∗ in H1

0(Ω) ∩ C(Ω). Now let u ∈ Uad be
arbitrary, then

f (u∗) = lim
i→∞

f (uαi) = lim
i→∞

fαi(u
αi) ≤ lim

i→∞
fαi(u) = f (u).

Hence u∗ is a minimizer of f . The solution ū of (P) is unique, thus we obtain ū = u∗. As the
norm is weakly lower semicontinuous we get

lim sup
i→∞

‖uαi‖ ≤ ‖u∗‖L2(Ω) ≤ lim inf
i→∞

‖uαi‖L2(Ω) ≤ lim sup
i→∞

‖uαi‖L2(Ω),

which shows ‖uαi‖L2(Ω) → ‖u∗‖L2(Ω). As a well known fact, weak and norm convergence yield
strong convergence and, hence, we obtain uαi → u∗ in L2(Ω). As the sequence uαi was arbitrarily
chosen we obtain convergence of the whole sequence uα → ū. We now want to show improved
convergence results for the states. Since the function

Jy : L2(Ω)→ R, y 7→ 1
2
‖y− yd‖2

L2(Ω)

is a strongly convex function in y we know that the following inequality holds for all t ∈ [0, 1]
and y1, y2 ∈ L2(Ω) with some m > 0

Jy(ty1 + (1− t)y2) ≤ tJy(y1) + (1− t)Jy(y2)−m · t(1− t)‖y1 − y2‖2
L2(Ω).

Now let u ∈ Fad and define t := 1
2 , y1 := ȳ = Sū and y2 := y = Su. Furthermore, note that with

u, ū ∈ Fad the convex combination is also feasible. To be precise, we obtain with the optimality
of ū that

Jy(ȳ) ≤ Jy

(
1
2

ȳ +
1
2

y
)
≤ 1

2
Jy(ȳ) +

1
2

Jy(y)−
m
4
‖ȳ− y‖2

L2(Ω).

Rearranging this inequality above yields the following growth condition

f (ū) + c‖ȳ− y‖2
L2(Ω) ≤ f (u) ∀u ∈ Fad.
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This growth condition can now be used to establish improved convergence results for the states
yα. Recall that fα(uα) ≤ fα(ū) and estimate

f (ū) + c‖yα − ȳ‖2
L2(Ω) +

α

2
‖uα‖2

L2(Ω) ≤ f (uα) +
α

2
‖uα‖2

L2(Ω) = fα(uα)

≤ fα(ū) = f (ū) +
α

2
‖ū‖2

L2(Ω).

This implies
‖yα − ȳ‖2

L2(Ω) ≤ c · α
(
‖ū‖2

L2(Ω) − ‖u
α‖2

L2(Ω)

)
.

Using the already established strong convergence uα → ū, we get

lim
α→0

1
α
‖yα − ȳ‖2

L2(Ω) = 0,

which finishes the proof.

With the Slater condition from Assumption 3.3, first-order necessary optimality conditions can be
established for the regularized problem.

Theorem 4.6 (First-order necessary optimality conditions [34, Theorem 2.5]). Let uα be the
solution of the problem (Pα) with corresponding state yα. Furthermore, let Assumption 3.3 be
satisfied. Then, there exists an adjoint state pα ∈ W1,s

0 (Ω), s ∈ [1, d/(d − 1)), a Lagrange
multiplier µα ∈ M(Ω), and a subdifferential λα ∈ ∂j(uα) such that the following optimality
system holds:

Ayα = uα in Ω,
yα = 0 on Γ,

(4.5a)

A∗pα = yα − yd + µα in Ω,
pα = 0 on Γ,

(4.5b)

(pα + αuα + βλα, u− uα) ≥ 0 ∀u ∈ Uad, (4.5c)

〈µα, yα − ψ〉M(Ω),C(Ω) = 0, µα ≥ 0, yα ≤ ψ. (4.5d)

In the following, we collect some results similar to Lemma 4.4.

Lemma 4.7. Let (yα, uα, pα, λα, µα) satisfy the optimality system (4.5a)-(4.5d). Then the follow-
ing relations hold:

uα(x) =



ua(x) if β− αua(x) < pα(x)
1
α (β− pα(x)) if β ≤ pα(x) ≤ β− αua(x)
0 if |pα(x)| < β
1
α (−β− pα(x)) if − αub(x)− β ≤ pα(x) ≤ −β

ub(x) if pα(x) < −αub(x)− β,

λα(x) = P[−1,1]

(
− 1

β
(pα(x) + αuα(x))

)
,

uα(x) = P[ua(x),ub(x)]

(
−1

α
(pα(x) + βλα(x))

)
.
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Proof. These results can be proven by using a pointwise interpretation of the optimality condition
(4.5c).

In the subsequent analysis we will need that the multipliers for the problem (Pα) are uniformly
bounded inM(Ω) for all α ≥ 0. We will make use of the Slater condition to prove this. Note
that for α = 0 the problem (Pα) reduces to problem (P).

Lemma 4.8. Let 0 ≤ α ≤ c̃ and define the set

Mα := {µα ∈ M(Ω) : (yα, uα, pα, λα, µα) satisfy (4.5a)− (4.5d)}

of all multipliers associated with problem (Pα). Then the multipliers are uniformly bounded, i.e.,
there exists a constant C > 0 independent from α such that

‖µα‖M(Ω) ≤ C, ∀α ≥ 0 ∀µα ∈ Mα.

Proof. We follow the book of Tröltzsch [116] and consider the solution mapping S : L2(Ω) →
H1

0(Ω) ∩ C(Ω). Then the dual operator is a mapping S∗ : M(Ω)→ L2(Ω). Let α ≥ 0 be given
and uα be the solution of (Pα) with corresponding state yα and associated multiplier µα. We now
use the Slater condition and compute for any f ∈ C(Ω) with ‖ f ‖∞ = 1:

σ

∣∣∣∣∣∣
∫
Ω

f dµα

∣∣∣∣∣∣ ≤ σ
∫
Ω

| f |dµα ≤
∫
Ω

σdµα ≤
∫
Ω

(ψ− ŷ)dµα

= 〈µα, ψ− yα〉M(Ω),C(Ω)︸ ︷︷ ︸
=0 by (4.5d)

+〈µα, yα − ŷ〉M(Ω),C(Ω)

= 〈µα, S(uα − û)〉M(Ω),C(Ω)

=
∫
Ω

(S∗µα)(uα − û)dx.

Now, with Theorem 2.25 recall that the adjoint equation (4.5b) can be rewritten as

S∗µα = S∗(yd − Suα) + pα.

Furthermore, by assumption uα ∈ Uad and Theorem 4.1, we obtain that uα and yα are uniformly
bounded in L2(Ω). This now yields

σ‖µα‖M(Ω) = σ sup
f∈C(Ω), ‖ f ‖∞=1

∣∣∣∣∣∣
∫
Ω

f dµα

∣∣∣∣∣∣
=
∫
Ω

(S∗(yd − Suα))(uα − û)dx +
∫
Ω

pα(uα − û)dx.

We now apply the optimality condition (4.5c) and obtain with the boundedness of λα, see Lemma
4.7, and the boundedness of α that the following holds

σ‖µα‖M(Ω) ≤ c‖uα − û‖L2(Ω)‖yd − yα‖L2(Ω) +
∫
Ω

(αuα + βλα)(û− uα)dx

≤ c‖uα − û‖L2(Ω)

(
‖yd − yα‖L2(Ω) + ‖αuα + βλα‖L2(Ω)

)
≤ C.

Dividing the above inequality by σ > 0 finishes the proof.
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4.3 The Augmented Lagrangian Method

In the following we want to solve the regularized problem (Pα) for α ↘ 0. For fixed α we follow
the idea presented in Chapter 3 and replace the inequality constraint y ≤ ψ by an augmented
penalization term. In that way we get rid of the measure in the corresponding optimality system
and work with a more regular approximation instead.

4.3.1 The Augmented Lagrangian Optimal Control Problem

In each step of the augmented Lagrangian method the following subproblem has to be solved:

minimize
u∈L2(Ω)

f α
ρ (u, µ, ρ) := f (u) +

1
2ρ
‖(µ + ρ(Su− ψ))+‖2

L2(Ω)

subject to u ∈ Uad.
(Pα

AL)

with α, ρ > 0, subject to the control constraints u ∈ Uad. A solution of (Pα
AL) will be denoted by

uα
ρ with associated state yα

ρ and adjoint state pα
ρ . We know from Corollary 2.33 that the subproblem

is uniquely solvable.

Theorem 4.9 (Existence of solutions of the augmented Lagrangian subproblem). For every
ρ > 0, µ ∈ L2(Ω) with µ ≥ 0 the augmented Lagrangian subproblem (Pα

AL) admits a unique
solution uα

ρ ∈ Uad.

First-order optimality conditions can be established in a straight forward manner, see Lemma 2.37.

Theorem 4.10 (First-order necessary optimality conditions). Let uα
ρ be the solution of (Pα

AL)
with associated state yα

ρ . Then there exists a unique adjoint state pα
ρ ∈ H1

0(Ω) associated with the
optimal control uα

ρ and a subdifferential λα
ρ ∈ ∂j(uα

ρ), satisfying the following system

Ayα
ρ = uα

ρ in Ω,

yα
ρ = 0 on Γ,

(4.6a)

A∗pα
ρ = yα

ρ − yd + µα
ρ in Ω,

pα
ρ = 0 on Γ,

(4.6b)

(pα
ρ + αuα

ρ + βλα
ρ , u− uα

ρ) ≥ 0 ∀u ∈ Uad, (4.6c)

µα
ρ :=

(
µ + ρ(yα

ρ − ψ)
)
+

. (4.6d)

4.3.2 The Augmented Lagrangian Algorithm

In the following, let (Pα
AL)k denote the augmented Lagrangian subproblem (Pα

AL) for given penalty
parameter ρ := ρk, multiplier µ := µk and regularization parameter α := αk. We will denote its
solution by ūk with corresponding state ȳk, adjoint state p̄k and updated multiplier µ̄k, which is
given by (4.6d). We continue with a technical estimate, which will be useful in the subsequent
analysis.

Lemma 4.11. Let αk > 0 be given and let (yαk , uαk , pαk , λαk , µαk) be the solution of (4.5) and let
(ȳk, ūk, p̄k, λ̄k, µ̄k) solve (4.6). Then it holds

‖yαk − ȳk‖2
L2(Ω) + αk ‖uαk − ūk‖2

L2(Ω) ≤ (µ̄k − µαk , yαk − ȳk) (4.7)

≤ (µ̄k, ψ− ȳk) + 〈µαk , ȳk − ψ〉M(Ω),C(Ω). (4.8)
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Proof. We have λαk ∈ ∂j(uαk) and λ̄k ∈ ∂j(ūk). Exploiting that the subdifferential is a monotone
operator, i.e., (λαk − λ̄k, ūk − uαk) ≤ 0, the proof can be done like the proof of Lemma 3.8.

The following result motivates the update rule and is a direct consequence of Lemma 4.11 .

Lemma 4.12. Let (yαk , uαk , pαk , λαk , µαk) and (ȳk, ūk, p̄k, λ̄k, µ̄k) be given as in Lemma 4.11. Then
it holds

1
αk
‖yαk − ȳk‖2

L2(Ω) + ‖u
αk − ūk‖2

L2(Ω) ≤
C
αk

(
‖(ȳk − ψ)+‖C(Ω) + |(µ̄k, ψ− ȳk)|

)
, (4.9)

where C is the constant from Lemma 4.8.

Proof. We estimate the second term from the right-hand side of (4.8) from Lemma 4.11 via

〈µαk , ȳk − ψ〉 ≤ ‖µαk‖M(Ω) ‖(ȳk − ψ)+‖C(Ω) .

The result now follows using the uniform boundedness of µαk , see Lemma 4.8.

This result shows that the iterates ȳk, ūk will converge to the solution of the regularized problem
(Pα) for fixed αk, if the quantity

1
αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ− ȳk)|

)
tends to zero for k → ∞. Motivated by this finding, we adapt the update rule from Step 4 of
Algorithm 3.1 and end up with the following algorithm:

Algorithm 4.1 Augmented Lagrangian Algorithm for (P)

Let (ȳ0, ū0, p̄0) ∈ (H1
0(Ω) ∩ C(Ω))× L2(Ω)×W1,s

0 (Ω), α1 > 0, ρ1 > 0 and µ1 ∈ L2(Ω) be
given with µ1 ≥ 0. Choose θ > 1, 0 < ω < 1, τ ∈ (0, 1). Set k := 1 and n := 1.

1: Compute a solution (ȳk, ūk, p̄k, λ̄k) of (Pα
AL)k.

2: Set µ̄k := (µk + ρk(ȳk − ψ))+.

3: Compute Rk := 1
αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ− ȳk)|

)
.

4: If Rk ≤ τR+
n−1 then the step k is successful, set

αk+1 := ωαk

µk+1 := µ̄k

ρk+1 := ρk

and define (y+n , u+
n , p+n , λ+

n ) := (ȳk, ūk, p̄k, λ̄k), as well as µ+
n := µk+1, R+

n := Rk and
α+

n := αk. Set n := n + 1.

5: Otherwise, the step k is not successful, set µk+1 := µk and αk+1 := αk, and increase the
penalty parameter ρk+1 := θρk.

6: If a stopping criterion is satisfied stop, otherwise set k := k + 1 and go to step 1.

Note that the regularization parameter αk is only decreased when the algorithm produces a suc-
cessful step. We will take advantage of this in the subsequent analysis. Moreover, in Chapter 3
the quantity Rk was also used as a stopping criterion. However, this is not possible here, as we
proceed to let α go to zero. Instead, we will check the first-order optimality conditions for problem
(P) as a stopping criterion. This will be described in detail in Section 4.5.
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4.4 Convergence Results

The main aim of this section is to prove that the proposed algorithm produces infinitely many
successful steps. In order to prove this, we consider the augmented Lagrangian KKT system
of the minimization problem (Pα

AL). We fix the multiplier approximation µ, the regularization
parameter α and let the penalization parameter ρ tend to infinity.

Lemma 4.13. Let µ ∈ L2(Ω) with µ ≥ 0 and α > 0 be given. Let uα
ρ be a solution of (Pα

AL),
yα

ρ = Suα
ρ with ρ > 0 and uα be the solution of (Pα) with yα = Suα. Then it holds

a) uα
ρ → uα in L2(Ω) and yα

ρ → yα in H1
0(Ω) ∩ C(Ω) for ρ→ ∞.

b) limρ→∞(µα
ρ , ψ− yα

ρ) = 0.

Proof. The first assertion follows from the estimate (4.7) with the same proof strategy as in Lemma
3.10. The second one can be proven as in Lemma 3.11.

With the help of this result, we can show that our algorithm produces infinitely many successful
steps. This will be crucial in the convergence analysis in the next section.

Lemma 4.14. The augmented Lagrangian algorithm makes infinitely many successful steps.

Proof. Since αk remains constant during all not successful steps, this can be proven with the help
of Lemma 4.13 as in the proof of Lemma 3.12.

In this section we want to show convergence of Algorithm 4.1. Let us recall that the sequence
(y+n , u+

n , p+n )n denotes the solution of the n-th successful iteration of Algorithm 4.1 with µ+
n

being the corresponding approximation of the Lagrange multiplier. We start with proving L1(Ω)-
boundedness of the Lagrange multipliers µ+

n , which is accomplished in Lemma 4.16 below. To
prove this result we need an auxiliary estimate first.

Lemma 4.15. Let y+n , µ+
n be given as defined in Algorithm 4.1. Then it holds

1
α+

n
|(µ+

n , ψ− y+n )| ≤
τn−1

α+
1

(∥∥(y+1 − ψ)+
∥∥

C(Ω)
+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ− y+1 )+
∥∥

L2(Ω)

)
. (4.10)

Proof. This follows directly from the definition of a successful step.

Let us now show the L1(Ω)-boundedness of the sequence of Lagrange multipliers (µ+
n )n.

Lemma 4.16 (Boundedness of the Lagrange multiplier). Let Assumption 3.3 be fulfilled. Then
Algorithm 4.1 generates an infinite sequence of bounded iterates, i.e., there is a constant C > 0
such that for all n it holds ‖µ+

n ‖L1(Ω) ≤ C.

Proof. Since u+
n and y+n are uniformly bounded, the subgradient λ+

n ∈ L∞(Ω) is uniformly
bounded by construction and the sequence (α+

n )n is monotonically decreasing, the proof can be
done like the proof of Lemma 3.14, see also the proof of Lemma 4.8.

Theorem 4.17 (Convergence of solutions). As n → ∞ we have for the sequence (y+n , u+
n )n

generated by Algorithm 4.1

(y+n , u+
n )→ (ȳ, ū) in (H1

0(Ω) ∩ C(Ω))× L2(Ω),

where ū denotes the unique solution of problem (P).
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Proof. Since the algorithm yields an infinite number of successful steps (Lemma 4.14) we arrive
at

lim
n→∞

R+
n = lim

n→∞

1
α+

n

(∥∥(y+n − ψ)+
∥∥

C(Ω)
+ |(µ+

n , ψ− y+n )|
)
= 0. (4.11)

with α+
n → 0. Let (yα+n , uα+n , pα+n , λα+n , µα+n ) be a solution of (4.5) for α := α+

n . Then we obtain
from Lemma 4.11 the following inequality

1
α+

n

∥∥∥yα+n − y+n
∥∥∥2

L2(Ω)
+
∥∥∥uα+n − u+

n

∥∥∥2

L2(Ω)
≤ 1

α+
n

(
〈µα+n , y+n − ψ〉M(Ω),C(Ω) + |(µ

+
n , ψ− y+n )|

)
≤ 1

α+
n

(∥∥∥µα+n
∥∥∥
M(Ω)

∥∥(y+n − ψ)+
∥∥

C(Ω)
+ |(µ+

n , ψ− y+n )|
)

≤ c
α+

n

(∥∥(y+n − ψ)+
∥∥

C(Ω)
+ |(µ+

n , ψ− y+n )|
)

.

Note, that in the last step we used Lemma 4.8. With (4.11) from above, we conclude

lim
n→∞

1
α+

n

∥∥∥yα+n − y+n
∥∥∥2

L2(Ω)
+
∥∥∥uα+n − u+

n

∥∥∥2

L2(Ω)
= 0. (4.12)

We now split the error as described in the introduction

‖u+
n − ū‖L2(Ω) ≤ ‖u+

n − uα+n ‖L2(Ω)︸ ︷︷ ︸
Lagrange error

+ ‖uα+n − ū‖L2(Ω)︸ ︷︷ ︸
Tikhonov error

. (4.13)

Using (4.12) we obtain that the first term on the right hand side of (4.13) converges to zero. Now,
we use the fact that our algorithm creates infinitely many successful steps, which gives α+

n → 0
as n → ∞. We therefore conclude that uα+n → ū, see Lemma 4.5. Hence, also the second term
on the right hand side of (4.13) converges to zero. So in total, we obtain u+

n → ū in L2(Ω).
Convergence of y+n → ȳ follows from Theorem 4.1, which finishes the proof.

Corollary 4.18. For the sequence (y+n )n generated by Algorithm 4.1 we obtain

1
α+

n
‖y+n − ȳ‖2

L2(Ω) → 0,

which is similar to the results obtained for a Tikhonov regularization without state constraints, see
[118] and Lemma 4.5.

Proof. We split the error to obtain with some c > 0 independent from n:

1
α+

n
‖y+n − ȳ‖2

L2(Ω) ≤
c

α+
n
‖y+n − yα+n ‖2

L2(Ω) +
c

α+
n
‖yα+n − ȳ‖2

L2(Ω).

The result is now an immediate consequence of (4.12) and Lemma 4.5.

Theorem 4.19. Let s ∈ (1, d/(d− 1)) such that the embedding W1,s
0 (Ω) → L2(Ω) is compact.

Moreover, let subsequences (y+nj
, u+

nj
, p+nj

, λ+
nj

, µ+
nj
)nj of (y+n , u+

n , p+n , λ+
n , µ+

n )n be given, such that

p+nj
⇀ p̄ in W1,s

0 and µ+
nj

∗
⇀ µ̄ inM(Ω). Then, (ȳ, ū, p̄, λ̄, µ̄), where λ̄ = P[−1,1](−β−1 p̄(x)),

satisfy the optimality system (4.4).



4.5. The Numerical Method in Detail 67

Proof. The proof mainly follows Lemma 3.16. The only thing, which remains to show is the
validity of the variational inequality (4.4c). By the compact embedding W1,s

0 (Ω) → L2(Ω) we
obtain strong convergence of p+nj

→ p̄ in L2(Ω). Further, the representation from Lemma 4.7
yields

λ+
nj
= P[−1,1]

(
− 1

β
(p+nj

+ α+
n u+

nj
)(x)

)
.

The facts, that u+
nj

is bounded and α+
nj
↘ 0, yield λ+

nj
→ λ̄ in L2(Ω). The strong convergence of

the control u+
nj
→ ū in L2(Ω) now allows us to conclude

(p+nj
+ α+

nj
u+

nj
+ βλ+

nj
, u− u+

nj
)→ ( p̄ + βλ̄, u− ū) ≥ 0 ∀u ∈ Uad.

Let us now assume that the adjoint state p̄ and the multiplier corresponding to the state constraint
µ̄ are unique, then the following result is a immediate consequence of the precedent theorem.

Theorem 4.20. Let (ū, ȳ, p̄, λ̄, µ̄) satisfy the KKT-system (4.4). Let us assume that ( p̄, µ̄) are
uniquely given. Pick s ∈ (1, d/(d− 1)) such that the embedding W1,s

0 (Ω)→ L2(Ω) is compact.
Then λ̄ is also unique and it holds

p+n ⇀ p̄ in W1,s
0 (Ω),

µ+
n
∗
⇀ µ̄ inM(Ω),

λ+
n → λ̄ in L2(Ω).

4.5 The Numerical Method in Detail

In this section we want to introduce an active-set method for the solution of the subproblems
arising in the augmented Lagrangian method stated in Algorithm 4.1. The subproblem is given as

min
u∈Uad

1
2
||y− yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω) +

1
2ρ
‖(µ + ρ(y− ψ))+‖2

L2(Ω) . (Pα
AL)

We follow [113] and introduce multipliers for the bilateral inequality constraints for the control.
Hence, the optimal solution (ȳ, ū, p̄) ∈ H1

0(Ω)× L2(Ω)× H1
0(Ω) of (Pα

AL) is characterized by
the existence of λ, λa, λb ∈ L2(Ω) such that{

Aȳ = ū in Ω,
ȳ = 0 on Γ,

(4.14a)

{
A∗ p̄ = ȳ− yd + µ̄ in Ω,

p̄ = 0 on Γ,
(4.14b)

p̄ + αū + λ + λb − λa = 0, (4.14c)

λa ≥ 0, ū− ua ≥ 0, λa(ū− ua) = 0, (4.14d)

λb ≥ 0, ub − ū ≥ 0, λb(ub − ū) = 0, (4.14e)
λ = β on {x ∈ Ω : ū > 0},
|λ| ≤ β on {x ∈ Ω : ū = 0},

λ = −β on {x ∈ Ω : ū < 0},
(4.14f)

µ̄ := (µ + ρ(ȳ− ψ))+ . (4.14g)
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Here (4.14a) is the state equation, (4.14b) characterizes the adjoint state, (4.14d)-(4.14e) define
the multipliers for the control constraints and (4.14f) reflects the fact that λ ∈ ∂β‖ū‖L1(Ω). The
arising subproblems (Pα

AL) are solved by combining two methods. The first method is the active-
set method presented by Stadler [113], where optimal control problems of type (Pα

AL) were solved,
but without augmented state constraints. The second is the method established by Ito and Kunisch
[64], who presented an active-set method for optimal control problems with state constraints but
without an L1(Ω)-cost term. Like in [113] we set

ξ := λ− λa + λb,

where λ denotes the subdifferential of β ‖ū‖L1(Ω), λa the corresponding multiplier to the lower
control constraints ua− u ≤ 0 and λb the multiplier corresponding to the upper control constraint
u− ub ≤ 0. Then (4.14a)-(4.14g) can be rewritten [113, Lemma 2.2] as

S∗(Sū− yd + (µ + ρ(ȳ− ψ))+) + αū + ξ = 0, (4.15a)

ū−max(0, ū + c(ξ − β)−min(0, ū + c(ξ + β)

+ max(0, ū− ub + c(ξ − β)) + min(0, (ū− ua) + c(ξ + β)) = 0,
(4.15b)

with c > 0, where the multipliers can be derived via the formula

λ = min(β, max(−β, ξ)),
λa = −min(0, ξ + β),

λb = max(0, ξ − β).

(4.16)

Solving (4.15a) for ξ and inserting the solution in (4.15b), the arising equation can be solved with
a semi-smooth Newton method, or equivalently an active-set method, see [113, Sec. 4.3]. In the
following yk, uk, pk and λk are iterates generated by the active-set method, which is described in
Algorithm 4.2 below. We define the following sets, see also Lemma 4.7:

Y k
+ = {x ∈ Ω : (µ + ρ(yk − ψ)) > 0},
Y k
− = Ω \ Y k

+,

Ak
a = {x ∈ Ω : pk ≥ β− αua},
Ak

0 = {x ∈ Ω : |pk| < β},
Ak

b = {x ∈ Ω : pk ≤ −αub − β},
Ik
− = {x ∈ Ω : β ≤ pk < β− αua},
Ik
+ = {x ∈ Ω : −αub − β < pk ≤ −β}.

The setsAk
a,Ak

0 andAk
b are called active sets, as onAk

a we obtain uk = ua, onAk
b we get uk = ub

and on Ak
0 we have uk = 0. Obviously, the five sets Ak

a, Ak
0, Ak

b, Ik
− and Ik

+ are disjoint and their
union is Ω. The sets Y k

− and Y k
+ are motivated by (4.14g). Note that (4.17b) in Algorithm 4.2 can

be equivalently written as

uk+1 =


ua on Ak

a,
0 on Ak

0,
ub on Ak

b,

ξk+1 =

{
−β on Ik

−,
β on Ik

+,

but it is more accessible in this form. The computation of the L1(Ω)-subgradient follows from the
reconstruction formula (4.16). Further, the termination criterion yields a solution of the augmented
Lagrangian subproblem (Pα

AL).
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Algorithm 4.2 Active-set method for solving (Pα
AL)

Choose initial data u0, p0 and parameters α, ρ, compute the sets Y0
−, Y0

+, A0
a, A0

0, A0
b, I0
−, I0

+ .
1: Solve for (yk+1, uk+1, pk+1, ξk+1) satisfying

Ayk+1 − uk+1 = 0,
−A∗pk+1 + yk+1 − yd + µk+1 = 0,

pk+1 + αuk+1 + ξk+1 = 0,
(4.17a)

(1− χAk
a
− χAk

b
− χAk

0
)ξk+1 + (1− χIk

−
− χIk

+
)uk+1

= χAk
a
ua + χAk

b
ub − χIk

−
β + χIk

+
β,

(4.17b)

µk+1 =

{
0 on Y k

−,
µ + ρ(yk+1 − ψ) on Y k

+.
(4.17c)

2: Compute the sets Y k+1
− ,Y k+1

+ ,Ak+1
a ,Ak+1

0 ,Ak+1
b , Ik+1

− , Ik+1
+ .

3: If the following equalities hold: Ak+1
a = Ak

a, Ak+1
0 = Ak

0, Ak+1
b = Ak

b, Ik+1
− = Ik

−,
Ik+1
+ = Ik

+, Y k+1
− = Y k

− and Y k+1
+ = Y k

+ then go step 4. Otherwise set k := k + 1 and go to
step 2.

4: Compute the subdifferential λk+1 := min (β, max(−β, ξk+1)) and stop the algorithm.

Lemma 4.21. If the following equalities hold

Ak+1
a = Ak

a, Ak+1
0 = Ak

0, Ak+1
b = Ak

b, Ik+1
− = Ik

−,
Ik+1
+ = Ik

+, Y k+1
− = Y k

−, Y k+1
+ = Y k

+,

then (uk+1, yk+1, pk+1, µk+1, λk+1) is a solution to (4.6) with α, µ and β fixed.

Proof. For a detailed proof we refer to [100, Lemma 7.1.1].

However, high values of the penalty parameter ρ paired with small values of the Tikhonov param-
eter α may evoke bad stability during solution of the subproblem. As a termination criterion, we
check the optimality conditions of the current iterate given by (u+

n , y+n , p+n , λ+
n , µ+

n ), i.e., we stop
the algorithm if the following inequality is satisfied:∥∥∥u+

n − P[ua,ub]

(
u+

n − (p+n + βλ+
n )
)∥∥∥

L2(Ω)
+
∥∥(y+n − ψ)+

∥∥
C(Ω)

+ |(µ+
n , y+n − ψ)| ≤ ε.

4.6 Numerical Examples

In the following we want to present several numerical examples for Algorithm 4.1. The imple-
mentation was done with FEniCS [86] using the DOLFIN [87] Python interface. We apply our
method for problems of the following form:

minimize J(y, u) :=
1
2
||y− yd||2L2(Ω) + β‖u‖L1(Ω)
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subject to

Ay = u + f in Ω,
y = 0 on Γ,

y ≤ ψ in Ω,
ua ≤ u ≤ ub a.e. in Ω.

The additional variable f ∈ L2(Ω) allows us to construct test problems with known solutions.

4.6.1 Example 1: Bang-Bang-Off Example in Two Space Dimension

We set ua := −1, ub := 1. Let Ω be the circle around 0 with radius 2. We now define the
following functions. For clarity and to shorten our notation we set r := r(x, y) :=

√
x2 + y2.

ȳ(x, y) :=

{
1 if r < 1
32− 120 · r + 180 · r2 − 130 · r3 + 45 · r4 − 6 · r5 if r ≥ 1

p̄(x, y) := sin(x) · sin(y) ·
(

1− 5
4

r3 +
15
16

r4 − 3
16

r5
)

ū(x, y) := −sign( p̄(x, y))

µ̄(x, y) :=

{
Exp

(
− 1

1−r2

)
if r < 1

0 if r ≥ 1

ψ(x, y) := 1.

Some calculation show that µ̄, p̄ ∈ C2(Ω̄) and µ̄ ∈ C(Ω). Furthermore, ȳ = p̄ = 0 on Γ. We
now set

f (x, y) := −∆ȳ(x, y)− ū(x, y),
yd(x, y) := ∆ p̄(x, y) + ȳ(x, y) + µ̄(x, y).

One now can check that for β = 0 the functions (ȳ, ū, p̄, µ̄) satisfy the KKT conditions defined
in Theorem 4.3 leading to a bang-bang solution. For β 6= 0 we expect the optimal solution to
exhibit a bang-bang-off structure. Here no exact solution is known. We computed the solution
of this problem for different values of β on a regular triangular grid with approximately 1.3 · 105

degrees of freedom. The parameter used for this computation are τ := 0.8, ω := 0.9, θ := 5 and
ε := 5 · 10−5. We started with α := 0.1, ρ := 1 and (ȳo, ūo, p̄0, λ̄0, µ1) equal to zero. Additional
information for the calculations can be found in Table 4.1 while the computed controls can be seen
in Figure 4.1. As expected we observe that the solution becomes more sparse as β becomes large.
Taking a look at the final values of the regularization parameter α and penalization parameter ρ we
see, that they are of the same order of magnitude for all β.

β final α final ρ
outer

iterations
accumulated

inner iterations

0.05 9.7 · 10−4 6.1 · 109 58 165

0.1 5.7 · 10−4 3.1 · 1010 64 176

0.2 2.5 · 10−4 3.1 · 1010 65 171

0.5 4.6 · 10−4 3.1 · 1010 66 167

Table 4.1: (Example 1) Additional information for the computation for different β.
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Figure 4.1: (Example 1) Computed discrete control ūh for different values of β. From left to right
and from top to bottom: β = 0.05, β = 0.1, β = 0.2, β = 0.5.

4.6.2 Example 2

For the next example we set Ω := (0, 1)2, ua := −1, ub := 1 and β := 10−3. Furthermore
τ := 0.8, ω := 0.7 and θ := 5. Now define

ψ(x, y) := 0.01, yd(x, y) :=
1

2π
sin(πx) sin(πy)

Note that here no exact solution is available. If the state constraints and the L1(Ω)-term are
neglected the exact solution is given by

ȳ(x, y) := yd(x, y), ū(x, y) := ∆yd(x, y).

This example is taken from [99] and is an example of an optimal control problem where the desired
state is reachable and the source condition ū = S∗w with an element w ∈ L2(Ω) is satisfied if
the state constraints are not present. We computed the solution on a regular triangular grid with
6.6 · 104 degrees of freedom and ε := 10−5. As starting values we set α := 0.01 and ρ := 10.
The stopping criterion has been satisfied after 38 outer iterations and (accumulated) 151 inner
iterations with the final values α = 2.3 · 10−5 and ρ = 3.9 · 109. The computed results can be
seen in Figure 4.2 and Figure 4.3. Clearly, the control ūh exhibits a bang-bang-off structure and
the state ȳh satisfies the state constraint.
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Figure 4.2: (Example 2) Computed results. From left to right: Control ūh, state ȳh.

Figure 4.3: (Example 2) Computed results. From left to right: Adjoint state p̄h and multiplier µ̄h.
The range of µ̄h is given by µ̄h(x) ∈ [0, 40].



CHAPTER 5

SEMILINEAR OPTIMAL
CONTROL PROBLEMS

In this chapter the solution of an optimal control problem subject to a semilinear elliptic state
equation and pointwise control and state constraints will be studied. The control problem is non-
convex due to the nonlinearity of the state equation. Let Ω ⊂ Rd, d = 2, 3 be an open, bounded
domain with boundary Γ. The problem under consideration is given by

minimize J(y, u) :=
1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω) (5.1)

subject to

Ay + d(y) = u in Ω, (5.2)

∂νA y = 0 on Γ,

y ≤ ψ in Ω,
ua ≤ u ≤ ub. a.e. in Ω

Here, A denotes a second-order elliptic operator while d(y) is a nonlinear term in y. The setting
of the optimal control problem will be made precise in Section 5.1.

In order to solve (5.1), we extend the augmented Lagrangian method from Chapter 3 and provide
convergence results for the overall iterative solution method. This task is challenging since fea-
sibility of limit points can not be guaranteed for augmented Lagrangian methods, which are only
stationary points of the augmented subproblem. In an analogue way to Chapter 3 we perform the
classical multiplier update only if a sufficient decrease in the maximal constraint violation and the
complementarity condition is achieved and consider these steps as successful. This approach will
enable us to conclude feasibility of a weak limit point of iterates if and only if an infinite number
of steps is successful.

The outline of this chapter is as follows: In Section 5.1 we start collecting results about the un-
regularized optimal control problem. Next, in Section 5.2 we present the augmented Lagrangian
method. Section 5.2.3 is dedicated to show that every weak limit point of the sequence generated
by our algorithm is a KKT point of the original problem. Further, in Section 5.3 we construct an
auxiliary problem that claims solutions near a local solution of the original problem. Exploiting
appropriate properties of this auxiliary problem, we prove that for ρ sufficiently large solutions of
the auxiliary problem are local solutions of the augmented Lagrangian subproblem. In Section 5.4
we consider second-order sufficient conditions. To illustrate our theoretical findings we present
numerical examples in Section 5.5.

The results of this chapter are submitted for publication [74].

73
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5.1 The Optimal Control Problem

Let Y denote the space Y := H1(Ω) ∩ C(Ω), and set U := L2(Ω). We want to solve the
following state constrained optimal control problem: Minimize

J(y, u) :=
1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω)

over all (y, u) ∈ Y×Uad subject to the semilinear elliptic equation

(Ay)(x) + d(x, y) = u(x) in Ω,
(∂νA y)(x) = 0 on Γ,

and subject to the pointwise state constraints

y(x) ≤ ψ(x) in Ω,
ua(x) ≤ u(x) ≤ ub(x) in Ω.

In the sequel, we will work with the following set of standing assumptions.

Assumption 5.1 (Standing assumptions). a) Let Ω ⊂ Rd, d = {2, 3} be a bounded domain
with C1,1-boundary Γ or a bounded, convex domain with polygonal boundary Γ.

b) The given data satisfy yd ∈ L2(Ω), ψ ∈ C(Ω).
c) Let the differential operator A satisfy Assumption 2.19.
d) The function d(x, y) : Ω×R is measurable with respect to x ∈ Ω for all fixed y ∈ R and

twice continuously differentiable with respect to y for almost all x ∈ Ω. Moreover, for y = 0
the function d and its derivatives with respect to y up to order two are bounded, i.e. there exists
C > 0 such that

‖d(·, 0)‖∞ +

∥∥∥∥∂d
∂y

(·, 0)
∥∥∥∥

∞
+

∥∥∥∥∂2d
∂y2 (·, 0)

∥∥∥∥
∞
≤ C

is satisfied. Further
dy(x, y) ≥ 0 for almost all x ∈ Ω.

The derivatives of d with respect to y are uniformly Lipschitz up to order two on bounded sets,
i.e, there exists a constant M and a constant L(M), that is dependent of M such that∥∥∥∥∂2d

∂y2 (·, y1)−
∂2d
∂y2 (·, y2)

∥∥∥∥
∞
≤ L(M)|y1 − y2|

for almost every x ∈ Ω and all y1, y2 ∈ [−M, M]. Finally, there is a subset EΩ ⊂ Ω of
positive measure with dy(x, y) > 0 in EΩ ×R.

5.1.1 Analysis of the Optimal Control Problem

5.1.1.1 The State Equation

A function y ∈ H1(Ω) is called a weak solution of the state equation (5.2) if for all v ∈ H1(Ω)
there holds∫

Ω

N

∑
i,j=1

aij(x)∂xi y(x)∂xj v(x) + a0(x)y(x)dx +
∫

Ω
d(x, y)v(x)dx =

∫
Ω

u(x)v(x)dx.
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Theorem 5.2 (Existence of solution of the state equation). Let Assumption 5.1 be satisfied. Then
for every u ∈ L2(Ω), the elliptic partial differential equation

Ay + d(y) = u in Ω,
∂νA y = 0 on Γ

(5.3)

admits a unique weak solution y ∈ H1(Ω) ∩ C(Ω), and it holds

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ c ‖u‖L2(Ω)

with c > 0 independent of u. If in addition (un)n is such that un ⇀ u ∈ L2(Ω) then the
corresponding solutions (yn)n of (5.3) converge strongly in H1(Ω) ∩ C(Ω) to the solution y of
(5.3) to data u.

Proof. The proof stating existence of a solution, its uniqueness, and the estimates of the norm
can be found in [27, Thm. 3.1]. The compact inclusion L2(Ω) ⊂ H−1(Ω) and the fact that
u ∈ L2(Ω) provides solutions in H2(Ω) [79, Thm. 5], which can be embedded compactly in
C(Ω) [1, Thm. 5.4] imply the additional statement.

We introduce the control-to-state operator

S : L2(Ω)→ H1(Ω) ∩ C(Ω), u 7→ y.

It is well known [116, Thm. 4.16] that S is locally Lipschitz continuous from L2(Ω) to the function
space H1(Ω) ∩ C(Ω), i.e., there exists a constant L such that

‖y1 − y2‖H1(Ω) + ‖y1 − y2‖C(Ω) ≤ L ‖u1 − u2‖L2(Ω) (5.4)

is satisfied for all ui ∈ L2(Ω), i = 1, 2, with corresponding states yi = S(ui). We define the
admissible and feasible sets

Uad := {u ∈ L2(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Fad := {u ∈ L2(Ω) | u ∈ Uad, Su(x) ≤ ψ(x) in Ω}.

The reduced formulation of problem (5.1) is given by

minimize
u∈L2(Ω)

f (u) :=
1
2
‖Su− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω,

Su(x) ≤ ψ(x) in Ω,

(P)

For further use we want to recall a result concerning differentiability of the nonlinear control-to-
state mapping S.

Theorem 5.3 (Differentiability of the solution mapping). Let Assumption 5.1 be satisfied. Then
the mapping S : L2(Ω) → H1(Ω) ∩ C(Ω), that is defined by S(u) = y, is twice continuously
Fréchet differentiable. Furthermore for all u, h ∈ L2(Ω), yh = S′(u)h is defined as solution of

Ayh + dy(y)yh = h in Ω,
∂νA yh = 0 on Γ.

Moreover, for every h1, h2 ∈ L2(Ω), yh1,h2 = S′′(u)[h1, h2] is the solution of

Ayh1,h2 + dy(y)yh1,h2 = −dyy(y)yh1 yh2 in Ω,
∂νA yh1,h2 = 0 on Γ,

where yhi = S′(u)hi, i = 1, 2.
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Proof. The proof for the first derivative of S : Lr(Ω)→ H1(Ω) ∩ C(Ω), r > N/2 can be found
in [116, Thm. 4.17]. We refer to [116, Thm. 4.24] for the proof of second-order differentiability
of S : L∞(Ω)→ H1(Ω) ∩ C(Ω) which is also valid for S : L2(Ω)→ H1(Ω) ∩ C(Ω).

5.1.1.2 Existence of Solutions and Optimality Conditions

Under the standing assumptions we can show existence of solutions of the reduced control problem
(P). By standard arguments we get the following theorem.

Theorem 5.4 (Existence of solution of the optimal control problem). Let Assumption 5.1 be
satisfied. Assume that the feasible set Fad is nonempty. Then there exists at least one global
solution ū of (P).

Proof. This follows directly from Theorem 2.32, see also [62, Thm. 1.45].

Due to non-convexity, global solutions of problem (P) are not unique in general. Also, in addition
there might be local solutions. The existence of Lagrange multipliers for state constrained optimal
control problems is not guaranteed without some regularity assumption. In order to formulate first-
order necessary optimality conditions we will work with the following linearized Slater condition.

Assumption 5.5 (Linearized Slater condition). A feasible point ū satisfies the linearized Slater
condition, if there exists û ∈ Uad and σ > 0 such that it holds

S(ū)(x) + S′(ū)(û− ū)(x) ≤ ψ(x)− σ ∀x ∈ Ω.

Based on the linearized Slater condition first-order necessary optimality conditions for problem
(P) can be established.

Theorem 5.6 (First-order necessary optimality conditions). Let ū be a local solution of problem
(P) that satisfies Assumption 5.5. Let ȳ = S(ū) denote the corresponding state. Then there exists
an adjoint state p̄ ∈ W1,s(Ω), s ∈ (1, d/(d− 1)) and a Lagrange multiplier µ̄ ∈ M(Ω) with
µ̄ = µ̄

∣∣
Ω + µ̄

∣∣
Γ such that the following optimality system

Aȳ + d(ȳ) = ū in Ω,
∂νA ȳ = 0 on Γ,

(5.5a)

A∗ p̄ + dy(ȳ) p̄ = ȳ− yd + µ̄Ω in Ω,
∂νA∗ p̄ = µ̄Γ on Γ,

(5.5b)

( p̄ + αū, u− ū) ≥ 0 ∀u ∈ Uad, (5.5c)

〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0, µ̄ ≥ 0, ȳ ≤ ψ (5.5d)

is fulfilled. Here, the inequality µ̄ ≥ 0 means 〈µ̄, ϕ〉M(Ω),C(Ω) ≥ 0 for all ϕ ∈ C(Ω) with ϕ ≥ 0.

Proof. Since the linearized Slater condition implies the Zowe-Kurcyusz condition (Lemma 2.44),
this follows directly with Theorem 2.42.

Let us emphasize that due to the presence of control as well as state constraints, the adjoint state
p̄ and the Lagrange multiplier µ̄ need not to be unique.
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5.2 The Augmented Lagrangian Method

Like in Chapter 3 we eliminate the explicit state constraint S(u) ≤ ψ from the set of constraints
by adding an augmented Lagrangian term to the cost functional. Let ρ > 0 denote a penalization
parameter and µ a fixed function in L2(Ω). Then in every step k of the augmented Lagrangian
method one has to solve subproblems of the type

minimize
uρ∈L2(Ω)

fAL(uρ, µ, ρ) := f (uρ) +
1

2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)

subject to uρ ∈ Uad.
(PAL)

5.2.1 Analysis of the Augmented Lagrangian Subproblem

In the following, existence of an optimal control and existence of a corresponding adjoint state
will be proven. Existence of solutions follows directly by standard theory, see Theorem 2.32.

Theorem 5.7 (Existence of solutions of the augmented Lagrangian subproblem). For every
ρ > 0, µ ∈ L2(Ω) with µ ≥ 0 the augmented Lagrangian subproblem (PAL) admits at least one
global solution ūρ ∈ Uad.

Since the problem (PAL) has no state constraints, the first-order optimality system is fulfilled
without any further regularity assumptions.

Theorem 5.8 (First-order necessary optimality conditions). For given ρ > 0 and 0 ≤ µ ∈
L2(Ω) let ūρ be a solution of (PAL) with corresponding state ȳρ. Then for every given ūρ there
exists a unique adjoint state p̄ρ ∈ H1(Ω) satisfying the following system

Aȳρ + d(ȳρ) = ūρ in Ω,
∂νA ȳρ = 0 on Γ,

(5.6a)

A∗ p̄ρ + dy(ȳρ) p̄ρ = ȳρ − yd + µ̄ρ in Ω,
∂νA∗ ȳρ = 0 on Γ,

(5.6b)

( p̄ρ + αūρ, u− ūρ) ≥ 0, ∀u ∈ Uad (5.6c)

µ̄ρ =
(
µ + ρ(ȳρ − ψ)

)
+

. (5.6d)

Proof. For the existence of an adjoint state p̄ρ ∈ H1(Ω) that satisfies the KKT system we refer
to [62, Cor. 1.3, p.73]. By construction we get a unique µ̄ρ for each given ūρ. Due to Theorem
2.25 the adjoint equation admits a unique solution. Thus, the adjoint state p̄ρ is unique for every
control ūρ.

Finally, in Algorithm 5.1 we present the augmented Lagrangian algorithm, which is based on the
algorithm that has been developed in Chapter 3. The definition of a successful step is a variant of
the strategy used in [36, 37].
In the following we will call the step k successful if the quantity

Rk := ‖(ȳk − ψ)+‖C(Ω) + (µ̄k, ψ− ȳk)+

shows sufficient decrease (see step 4 of the algorithm). Otherwise we will call the step not success-
ful. The first part of Rk measures the maximal constraint violation while the second term quantifies
the fulfilment of the complementarity condition in the second part. Since (µ̄k(x), ψ(x)− ȳk(x))
is nonnegative for every feasible ȳk it is enough to check on the smallness of (µ̄k, ψ− ȳk)+ in the
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Algorithm 5.1 Augmented Lagrangian Algorithm

Let (ȳ0, ū0, p̄0) ∈ (H1(Ω) ∩ C(Ω)) × L2(Ω) ×W1,s(Ω), ρ1 > 0 and µ1 ∈ L2(Ω) be given
with µ1 ≥ 0. Choose θ > 1, τ ∈ (0, 1), ε ≥ 0, R+

0 � 1. Set k := 1 and n := 1.
1: Solve the optimality system (5.6) for µ := µk, and obtain (ȳk, ūk, p̄k).
2: Set µ̄k := (µk + ρk(ȳk − ψ))+.
3: Compute Rk := ‖(ȳk − ψ)+‖C(Ω) + (µ̄k, ψ− ȳk)+.
4: If Rk ≤ τR+

n−1 then the step k is successful. Set

µk+1 := µ̄k, ρk+1 := ρk

and define
(y+n , u+

n , p+n ) := (ȳk, ūk, p̄k), µ+
n := µk+1, R+

n := Rk.

Set n := n + 1.
5: Otherwise the step k is not successful, set µk+1 := µk, increase penalty parameter ρk+1 := θρk.
6: If R+

n−1 ≤ ε then stop, otherwise set k := k + 1 and go to step 1.

second term for quantifying whether or not the complementarity condition is satisfied.

From now on let (PAL)k denote the augmented Lagrangian subproblem (PAL) for given penalty
parameter ρ := ρk and multiplier µ := µk. We will denote its solution by ūk with corresponding
state ȳk, adjoint state p̄k and updated multiplier µ̄k.

5.2.2 Successful Steps and Feasibility of Limit Points

The question of convergence of the algorithm is linked to the question of feasibility of limit points
of the iterates (ūk)k. Here, it turns out that the feasibility of limit points is tightly linked with the
occurrence of infinitely many successful steps.
Let us emphasize that for non-convex optimization problems the feasibility of limit points of aug-
mented Lagrangian methods is not guaranteed. Typically, the feasibility of limit points is an
additional assumption in convergence results [36, 37, 73]. Or the feasibility is the consequence of
a constraint qualification assumed to hold in the limit point [20, 71].

Theorem 5.9. Let (ūk)k denote the sequence that is generated by Algorithm 5.1. Then (ūk)k has
a feasible weak limit point if and only if infinitely many steps in the execution of Algorithm 5.1
were successful.

Proof. First, suppose that infinitely many steps were successful. Let (y+n , u+
n , p+n , µ+

n )n denote the
sequence of successful iterates generated by Algorithm 5.1. By the boundedness of (u+

n )n ∈ Uad
we get existence of a subsequence u+

n′ ⇀ u∗ in L2(Ω) and y+n′ → y∗ in H1(Ω) ∩ C(Ω) by
Theorem 5.2. Due to the definition of successful steps, we have that ‖(y+n − ψ)+‖C(Ω) ≤ R+

n →
0 and u∗ is a feasible control of (P).
Suppose now that only finitely many steps were successful. Let m be the largest index of a suc-
cessful step. Hence, all steps k with k > m are not successful. According to Algorithm 5.1 it
holds µk = µm for all k > m. We will prove lim supk→∞ (µ̄k, ψ− ȳk)+ ≤ 0 first. Let

Ωk := {x ∈ Ω : (µ̄k(x), ψ(x)− ȳk(x)) ≥ 0} .
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Then the desired estimate follows easily by pointwise evaluation of the contributing quantities in

(µ̄k, ψ− ȳk)+ = (µ̄k,−µm

ρk
+ ψ− ȳk +

µm

ρk
)+ ≤ −

1
ρk
‖µ̄k‖2

L2(Ωk)
+

1
ρk
(µ̄k, µm)L2(Ωk)

≤ − 1
2ρk
‖µ̄k‖2

L2(Ωk)
+

1
2ρk
‖µm‖2

L2(Ωk)
≤ 1

2ρk
‖µm‖2

L2(Ω) ,

where we applied Young’s inequality. The algorithm only makes l ≥ 0 successful steps, which
implies Rk > τR+

l for all k > m. This proves with µk = µ+
l

lim inf
k→∞

‖(ȳk − ψ)+‖C(Ω) = lim inf
k→∞

(
Rk − (µ̄k, ψ− ȳk)+

)
≥ τR+

l − lim sup
k→∞

(µ̄k, ψ− ȳk)+ ≥ τR+
l > 0.

Let u∗ be a weak limit of the subsequence (uk′)k′ with associated state y∗. Then, arguing as in the
first part of the proof, we have

‖(y∗ − ψ)+‖C(Ω) = lim
k′→∞

‖(ȳk′ − ψ)+‖C(Ω) ≥ τR+
l > 0,

and u∗ is not feasible.

The proof of the previous theorem shows that if the algorithm performs infinitely many successful
steps then every limit point of (u+

n )n is feasible for the original problem. In case that only finitely
many steps are successful, we have the following additional result.

Theorem 5.10. Let us assume that Algorithm 5.1 does a finite number of successful steps only.
Let (ūk)k denote the sequence that is generated by the algorithm and let u∗ be a weak limit point
of (ūk)k. Then u∗ is infeasible for (P) and it is a stationary point of the minimization problem

min
u∈Uad

‖(S(u)− ψ)+‖2
L2(Ω) . (5.7)

Proof. The infeasibility of u∗ is a consequence of Theorem 5.9. Let m be the index of the last
successful step. Dividing the first-order optimality condition of the augmented Lagrangian sub-
problem by ρk(

S′(ūk)
∗
(

S(ūk)− yd

ρk
+

(
µm

ρk
+ S(ūk)− ψ

)
+

)
+ α

ūk

ρk
, v− ūk

)
≥ 0 ∀v ∈ Uad

and taking the limit k→ ∞ yields

(S′(u∗)∗(S(u∗)− ψ)+), v− u∗) ≥ 0 ∀v ∈ Uad,

which is exactly the optimality condition for (5.7).

In [20,71] such a stationarity property together with a suitable constraint qualification was used to
prove feasibility of limit points. Another way to obtain feasibility of u∗ is to assume the bound-
edness of the sequence of multipliers ( 1

ρk
‖µ̄k‖2

L2(Ω))k. Assumptions of this kind are common for
augmented Lagrangian methods. The multiplier update of [37, Algorithm 2] is constructed such
that a related boundedness result holds. In safeguarded augmented Lagrangian methods, see, e.g.,
[18,73], a bounded sequence of safeguarded multipliers is used to define the multiplier update. In
our situation, this would amount to choosing a bounded sequence (wk)k in L2(Ω) and computing
stationary points of minu∈Uad fAL(u, wk, ρk) instead of minu∈Uad fAL(u, µk, ρk), which results in
the safe-guarded multiplier update µk+1 := (wk + ρk(ȳk − ψ))+.
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Theorem 5.11. Assume that in step 1 of Algorithm 5.1, the solutions (ȳk, ūk, p̄k) of (5.6) are
chosen such that

1
ρk
‖µ̄k‖2

L2(Ω) =
1
ρk
‖(µk + ρk(ȳk − ψ))+‖2

L2(Ω)

is uniformly bounded. Then every weak limit point u∗ of (ūk)k is feasible.

Proof. Suppose first, that (ρk)k is bounded. Then the algorithm performs only finitely many
unsuccessful steps. Consequently, the tails of the sequence of iterates (ūk)k and of the sequence
of successful iterates (u+

n )n coincide. By Theorem 5.9, all weak limit points of (u+
n )n and thus of

(ūk)k are feasible.
Now, consider the case ρk → +∞. Due to the assumption, there is M > 0 such that

1
ρk
‖(µk + ρk(ȳk − ψ))+‖2

L2(Ω) = ρk

∥∥∥∥(µk

ρk
+ ȳk − ψ

)
+

∥∥∥∥2

L2(Ω)

≤ M,

which yields with µk ≥ 0 the estimate

M
ρk
≥
∥∥∥∥(µk

ρk
+ ȳk − ψ

)
+

∥∥∥∥2

L2(Ω)

≥
∥∥(ȳk − ψ)+

∥∥2
L2(Ω)

.

This proves limk→∞
∥∥(ȳk − ψ)+

∥∥2
L2(Ω)

= 0. By the compactness result of Theorem 5.2, the claim
follows.

Under the assumptions of the previous theorem, Algorithm 5.1 makes infinitely many successful
steps by Theorem 5.9. In the case that Algorithm 5.1 chooses ūk to be global minimizers of the
augmented Lagrangian subproblem the boundedness assumption of Theorem 5.11 is satisfied.

Theorem 5.12. Let the feasible set Fad be non-empty. Assume that in step 1 of Algorithm 5.1, ūk
is chosen to be a global minimizer of the augmented Lagrangian subproblem. Then the augmented
Lagrangian algorithm makes infinitely many successful steps.

Proof. Let ū be a global solution of the original problem. Assume that algorithm performs only
finitely many successful steps. Let k > m, where m is the largest index of a successful step. This
implies µk = µm. Then we obtain

1
2ρk
‖µ̄k‖2

L2(Ω) ≤ f (ūk) +
1

2ρk
‖µ̄k‖2

L2(Ω)

≤ f (ū) +
1

2ρk
‖(µk + ρk(S(ū)− ψ))+‖2

L2(Ω)

= f (ū) +
1

2ρk
‖(µm + ρk(S(ū)− ψ))+‖2

L2(Ω) ≤ f (ū) +
1

2ρk
‖µm‖2

L2(Ω) .

Hence, all assumptions of Theorem 5.11 are satisfied, and all weak limit points of (ūk)k are fea-
sible. As this sequence is bounded, there exists such weak limit points. This contradicts Theorem
5.9, and the algorithm performs infinitely many successful steps.

Note that this strategy is only viable if the original problem and thus the augmented Lagrangian
subproblems are convex. Then computing stationary points is equivalent to computing global
minima. In practice, solutions of the augmented Lagrangian subproblems are obtained by iterative
methods. Naturally, these methods use the previous iterate as starting point. Thus, it is a realistic
scenario that the iterates stay in a neighbourhood of a local solution of the original problem. One
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main result of this chapter is to prove that such a situation can occur. To this end, let ū be a strict
local solution of (P). For some radius r > 0, let us consider the auxiliary problem

minimize
ur

ρ∈L2(Ω)
f r
AL(u

r
ρ, µ, ρ) := f (ur

ρ) +
1

2ρ

∥∥∥(µ + ρ(S(ur
ρ)− ψ)

)
+

∥∥∥2

L2(Ω)

subject to ur
ρ ∈ Uad,

∥∥∥ur
ρ − ū

∥∥∥
L2(Ω)

≤ r.
(5.8)

The radius r is chosen sufficiently small such that a quadratic growth condition is satisfied. This
auxiliary problem will be analyzed in detail in Section 5.3. We will show that global solutions of
the auxiliary problem are local solutions of the augmented Lagrangian subproblem, provided the
penalty parameter ρ is sufficiently large. In addition, we will prove that if the iterates of Algorithm
5.1 are chosen as such a solution then the algorithm performs infinitely many successful steps. We
refer to Theorem 5.27 and Theorem 5.28.
Let us close this section with an example demonstrating that augmented Lagrangian methods
will not deliver feasible limit points in general. The example is taken from [71]: Consider the
minimization problem in R given by

min x subject to 1− x3 ≤ 0.

Clearly, x∗ = 1 is the global solution. Note that the inequality constraint is defined by a non-
convex function, while the feasible set is the interval [1,+∞). For penalty parameter ρ > 0 and
multiplier estimate µ ≥ 0, the augmented Lagrangian is defined by

L(x, µ, ρ) := x +
1

2ρ

(
(µ + ρ(1− x3))+

)2
.

As argued in [71], the augmented Lagrangian function admits for all possible values of ρ and µ
a local minimum xρ,µ < 0. If the method chooses these minima as iterates, then limit points are
clearly not feasible. This applies equally well to the classical quadratic penalty method, which
corresponds to the choice µ = 0.

5.2.3 Convergence towards KKT Points

In the previous section we have investigated several cases and conditions under which Algorithm
5.1 generates infinitely many successful steps. In the following, we will always assume that this
is the case, i.e., the method produces an infinite sequence of successful iterates (y+n , u+

n , p+n )n.
By Theorem 5.9, we know that (u+

n )n has a feasible weak limit point. However, we do not know
yet, if u∗ is a stationary point, i.e., if (p+n , µ+

n )n converges in some sense to (p∗, µ∗) such that
(y∗, u∗, p∗, µ∗) satisfies the optimality system (5.5). To achieve this aim, we have to suppose ad-
ditional properties of the weak limit point u∗. In the rest of this section, we will prove convergence
of the dual quantities (p+n , µ+

n )n under the assumption that the weak limit point u∗ satisfies the
linearized Slater condition Assumption 5.5. We start with several auxiliary results.

Lemma 5.13. Let (uk)k, (hk)k denote sequences in L2(Ω) that converge weakly to the limits
u∗, h∗, respectively. Then for k→ ∞ we have∥∥S′(uk)hk − S′(u∗)h∗

∥∥
C(Ω)

→ 0.

Proof. From Theorem 5.2 we know that yk := S(uk) is the unique weak solution of the state
equation

Ayk + d(yk) = uk in Ω,
∂νA yk = 0 on Γ.
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Further, for uk ⇀ u∗ in L2(Ω) we get yk → y∗ in H1(Ω) ∩ C(Ω). Let now zk denote the
linearized state zk := S′(uk)hk. Then by Theorem 5.3 we know that zk is the unique solution of

Azk + dy(yk)zk = hk in Ω,
∂νA zk = 0 on Γ.

Further, let z∗ := S′(u∗)h∗ solve the equation

Az∗ + dy(y∗)z∗ = h∗ in Ω,
∂νA z∗ = 0 on Γ.

We subtract both PDEs and set ek := S′(uk)hk − S′(u∗)h∗

Aek + dy(yk)zk − dy(y∗)z∗ = hk − h∗ in Ω,
∂νA ek = 0 on Γ.

Inserting the identity dy(yk)zk− dy(y∗)z∗ =
(
dy(yk)− dy(y∗)

)
zk + dy(y∗)(zk− z∗) we obtain

Aek + dy(y∗)ek = (hk − h∗)− (dy(yk)− dy(y∗))zk in Ω,
∂νA ek = 0 on Γ.

From Assumption 5.1 we know that dy is locally Lipschitz continuous, i.e.,∥∥dy(y1)− dy(y2)
∥∥

L∞(Ω)
≤ L ‖y1 − y2‖L∞(Ω) .

Concluding, for yk → y∗ in L∞(Ω) we have dy(yk) → dy(y∗) in L∞(Ω). Due to hk ⇀ h∗ in
L2(Ω) and the boundedness of zk in L2(Ω) we gain ek → 0 in H1(Ω) ∩ C(Ω). Hence,∥∥S′(uk)hk − S′(u∗)h∗

∥∥
C(Ω)

→ 0

and the proof is done.

Let us recall that (y+n , u+
n , p+n , µ+

n ) denotes the solution of the n-th successful iteration of Algo-
rithm 5.1. We want to investigate the convergence properties of the algorithm for a weak limit
point u∗ of (u+

n )n. A point u∗ ∈ Uad satisfies the linearized Slater condition if there exists a
û ∈ Uad and σ > 0 such that

S(u∗)(x) + S′(u∗)(û− u∗)(x) ≤ ψ(x)− σ ∀x ∈ Ω. (5.9)

Lemma 5.14. Let u∗ denote a weak limit point of (u+
n )n that satisfies the linearized Slater condi-

tion (5.9). Then there exists an N0 ∈N such that for all n′ > N0 the control u+
n′ satisfies

S(u+
n′) + S′(u+

n′)(û− u+
n′) ≤ ψ− σ

2
. (5.10)

Proof. By Theorem 5.3 we have strong convergence S(u+
n′) → S(u∗) in H1(Ω) ∩ C(Ω). By

Theorem 5.13 we obtain S′(u+
n′)(û− u+

n′)→ S′(u∗)(û− u∗) in C(Ω). Using the identity

S(u+
n′) + S′(u+

n′)(û− u+
n′) = S(u∗) + S′(u∗)(û− u∗)

+ S(u+
n′)− S(u∗)

+ S′(u+
n′)(û− u+

n′)− S′(u∗)(û− u∗)

and exploiting the specified convergence results, we conclude existence of an N0 ∈N such that

S(u+
n′) + S′(u+

n′)(û− u+
n′) ≤ ψ− σ

2
, ∀n′ > N0.
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We recall an estimate for the second term of the update rule, see Lemma 3.13 that is necessary
to state L1-boundedness of the Lagrange multiplier. This estimate does not require any additional
assumption, it just results from the structure of the update rule.

Lemma 5.15. Let y+n , µ+
n be given as defined in Algorithm 5.1. Then for all n > 1 it holds

(µ+
n , ψ− y+n )+ ≤ τn−1

(∥∥(y+1 − ψ)+
∥∥

C(Ω)
+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ− y+1 )+
∥∥

L2(Ω)

)
.

Lemma 5.16 (Boundedness of the Lagrange multiplier). Let (y+n , u+
n , p+n , µ+

n )n denote the se-
quence that is generated by Algorithm 5.1. Let (u+

n′)n′ denote a subsequence of (u+
n )n that con-

verges weakly to u∗. If u∗ satisfies the linearized Slater condition from (5.9), then the correspond-
ing sequence of multipliers (µ+

n′)n′ is bounded in L1(Ω), i.e., there is a constant C > 0 independent
of n′ such that for all n′ it holds ∥∥µ+

n′
∥∥

L1(Ω)
≤ C.

Proof. Writing (5.6c) in variational form we see

(p+n′ + αu+
n′ , u− u+

n′) ≥ 0 ∀u ∈ Uad.

Using the identity
p+n′ = S′(u+

n′)
∗(y+n′ − yd + µ+

n′)

we obtain

(S′(u+
n′)
∗(y+n′ − yd + µ+

n′) + αu+
n′ , u− u+

n′) ≥ 0 ∀u ∈ Uad.

Rearranging terms yields

(µ+
n′ , S′(u+

n′)(u
+
n′ − u)) ≤ (y+n′ − yd, S′(u+

n′)(u− u+
n′)) + (αu+

n′ , u− u+
n′).

Testing the left hand side of the previous inequality with the test function u := û ∈ Uad we get

(µ+
n′ , S′(u+

n′)(u
+
n′ − û)) = (µ+

n′ , S′(u+
n′)(u

+
n′ − û)) + (µ+

n′ , S(u+
n′)− ψ)− (µ+

n′ , S(u+
n′)− ψ)

= −(µ+
n′ , S(u+

n′) + S′(u+
n′)(û− u+

n′)− ψ) + (µ+
n′ , S(u+

n′)− ψ).

By Lemma 5.14 we know that there exists an N0 such that for all n′ > N0 the control u+
n′ satisfies

(5.10). Hence for all n′ > N0 we obtain

σ

2

∥∥µ+
n′
∥∥

L1(Ω)
≤ −(µ+

n′ , S(u+
n′) + S′(u+

n′)(û− u+
n′)− ψ).

Thus, we estimate

σ

2

∥∥µ+
n′
∥∥

L1(Ω)
≤(µ+

n′ , ψ− S(u+
n′)) + (y+n′ − yd, S′(u+

n′)(û− u+
n′)) + (αu+

n′ , û− u+
n′)

≤(µ+
n′ , ψ− y+n′)+ +

∥∥y+n′ − yd
∥∥

L2(Ω)

∥∥S′(u+
n′)(û− u+

n′)
∥∥

L2(Ω)

+ α
∥∥u+

n′
∥∥

L2(Ω)
+
∥∥û− u+

n′
∥∥

L2(Ω)
.

From Theorem 5.3 we know that yh := S′(u+
n′)(û − u+

n′) is the weak solution of a uniquely
solvable partial differential equation with right-hand side û− u+

n′ . Hence, it is norm bounded by
c
∥∥û− u+

n′
∥∥

L2(Ω)
with c > 0 independent of n. Further, exploiting Theorem 5.2 and Lemma 5.15,

the boundedness of the terms on the right-hand side now follows directly from the boundedness of
the admissible set Uad. This yields the assertion.
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Let us conclude this section with the following result on convergence.

Theorem 5.17 (Convergence towards KKT points). Let (y+n , u+
n , p+n , µ+

n )n denote the sequence
that is generated by Algorithm 5.1. Let u∗ denote a weak limit point of (u+

n )n. If u∗ satisfies
the linearized Slater condition from (5.9), then there exist subsequences (y+n′ , u+

n′ , p+n′ , µ+
n′)n′ of

(y+n , u+
n , p+n , µ+

n )n such that

u+
n′ → u∗ in L2(Ω), y+n′ → y∗ in H1(Ω) ∩ C(Ω),

p+n′ ⇀ p∗ in W1,s(Ω), s ∈ [1, d/(d− 1)) µ+
n′ ⇀

∗ µ∗ inM(Ω)

and (y∗, u∗, p∗, µ∗) is a KKT point of the original problem (P).

Proof. Since (u+
n )n is bounded in L2(Ω) we can extract a weak convergent subsequence u+

n′ ⇀

u∗ in L2(Ω), thus y+n′ → y∗ in H1(Ω) ∩ C(Ω) due to Theorem 5.2. Hence, (5.5a) ist satisfied.
Since u+

n′ satisfies a linearized Slater condition by Lemma 5.14 for n′ sufficiently large, Lemma
5.16 yields L1(Ω)-boundedness of (µ+

n′)n′ . By the Eberlein-S̆mulyan Theorem 2.5 we can extract
a weak-* convergent subsequence in M(Ω) denoted w.l.o.g. by µn′ ⇀

∗ µ∗. Convergence of
p+n′ ⇀ p∗ in W1,s(Ω), s ∈ [1, d/(d − 1)) can now be shown as in [80, Lem. 11]. Thus, the
adjoint equation (5.5b) is satisfied. The space W1,s(Ω) is compactly embedded in L2(Ω). Hence
p+n′ → p∗ in L2(Ω) and we get

0 ≤ lim inf
n→∞

(p+n′ + αu+
n′ , u− u+

n′) ≤ (p∗, u− u∗)− lim inf
k→∞

(αu+
n′ , u+

n′ − u)

≤ (p∗, u− u∗)− (αu∗, u∗ − u) = (p∗ + αu∗, u− u∗),

where we exploited the weak lower semicontinuity of (αu+
n′ , u− u+

n′), u ∈ L2(Ω). Hence, (5.5c)
is satisfied. Due to the structure of the update rule we have

lim
n′→∞

R+
n′ = lim

n′→∞

∥∥(y+n′ − ψ)+
∥∥

C(Ω)
+ (µ+

n′ , ψ− y+n′)+ = 0.

This implies y∗ ≤ ψ and 〈µ∗, ψ− y∗〉+ = 0. In addition, y∗ ≤ ψ and µ∗ ≥ 0 implies 〈µ∗, ψ−
y∗〉M(Ω),C(Ω) ≥ 0, and we get 〈µ∗, ψ − y∗〉M(Ω),C(Ω) = 0. Thus (5.5d) is satisfied. We have
proven that (y∗, u∗, p∗, µ∗) is a KKT point of (P), i.e., (y∗, u∗, p∗, µ∗) solves (5.5). It remains to
show strong convergence of u+

n′ → u∗ in L2(Ω). Testing (5.5c) with u+
n′ and (5.6c) with u∗ and

adding both inequalities we arrive at

(p∗ − p+n′ + α(u∗ − u+
n′), u+

n′ − u∗) ≥ 0.

Hence,
α
∥∥u+

n′ − u∗
∥∥2

L2(Ω)
≤ (p∗ − p+n′ , u+

n′ − u∗).

Since we already know that p+n′ → p∗ in L2(Ω) and u+
n′ ⇀ u∗ in L2(Ω) this directly yields

u+
n′ → u∗ in L2(Ω).

Remark 5.18. The proof of Theorem 5.17 above requires R+
n → 0 only. This opens up the

possibility to modify the decision about successful steps in algorithm 5.1. We report about such a
modification in Section 5.5.

5.3 Convergence towards Local Solutions

So far, we have been able to show that a weak limit point that has been generated by Algorithm 5.1
is a stationary point of the original problem (P) if it satisfies the linearized Slater condition. If a
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weak limit point satisfies a second-order condition, we gain convergence to a local solution. How-
ever, the convergence result from Theorem 5.17 yields convergence of a subsequence of (u+

n )n
only. Accordingly, during all other steps the algorithm might choose solutions of the KKT system
(5.6) that are far away from a desired local minimum ū. Here the following questions arise:

1. For every fixed µ does there exist a KKT point of the arising subproblem that satisfies ūk ∈
Br(ū)?
and

2. Is an infinite number of steps successful if the algorithm chooses these KKT points in step 1?
Indeed these questions can be answered positively. We will show in this section that for every fixed
µ there exists a KKT point of the augmented Lagrangian subproblem such that for ρ sufficiently
large ūk ∈ Br(ū). One should keep in mind, that also in this case there is no warranty that forces
the algorithm to choose exactly these solutions. However, if the previous iterates are used in
numerical computations as a starting point for the computation of the next iterate, the remaining
iterates are likely located in Br(ū). In order to reach this result we need the following assumption
which is rather standard.

Assumption 5.19 (Quadratic growth condition (QGC)). Let ū ∈ Uad be a control satisfying
the first-order necessary optimality conditions (5.5). We assume that there exist β > 0 and rū > 0
such that the quadratic growth condition

f (u) ≥ f (ū) + β ‖u− ū‖2
L2(Ω) (5.11)

is satisfied for all feasible u ∈ Uad, S(u) ≤ ψ with ‖u− ū‖L2(Ω) ≤ rū. Hence, ū is a local
solution in the sense of L2(Ω) for problem (P).

Let us mention that the quadratic growth condition can be implied by some well known second-
order sufficient condition (SSC). We refer the reader to Section 5.4 for more details.

Our idea now is the following: In order to show that in every iteration of the algorithm there
exists ūk ∈ Br(ū) we want to estimate the error norm ‖ūk − ū‖2

L2(Ω). Here we want to exploit
the quadratic growth condition from Assumption 5.19. However, this condition requires a control
u ∈ Uad that is feasible for the original problem (P), which has explicit state constraints. Since
the solutions of the augmented Lagrangian subproblems cannot be expected to be feasible for the
original problem in general, we consider an auxiliary problem. Due to the special construction
of this problem one can construct an auxiliary control that is feasible for the original problem
(P). This idea has been presented for instance in [33] for a finite-element approximation as well
as in [80] for regularizing a semilinear elliptic optimal control problem with state constraints by
applying a virtual control approach.

5.3.1 The Auxiliary Problem

Let ū be a local solution of (P) that satisfies the first-order necessary optimality conditions (5.5) of
Theorem 5.6 and the quadratic growth condition from Assumption 5.19. Following the idea from
[33, 80] we consider the following auxiliary problem

minimize
ur

ρ∈L2(Ω)
f r
AL(u

r
ρ, µ, ρ) := f (ur

ρ) +
1

2ρ

∥∥∥(µ + ρ(S(ur
ρ)− ψ)

)
+

∥∥∥2

L2(Ω)

subject to ur
ρ ∈ Uad,

∥∥∥ur
ρ − ū

∥∥∥
L2(Ω)

≤ r.
(5.12)

We choose r < rū such that the quadratic growth condition from Assumption 5.19 is satisfied. In
the following we define the set of admissible controls of (5.12) by

Ur
ad := {u ∈ Uad | ‖u− ū‖L2(Ω) ≤ r}.



86 5. Semilinear Optimal Control Problems

Since the set Ur
ad is closed, convex and bounded, the auxiliary problem admits at least one (global)

solution. Moreover, replacing Uad with Ur
ad, first-order necessary optimality conditions can be

derived as for the augmented Lagrangian subproblem, see Theorem 5.6.

5.3.2 Construction of a Feasible Control

In this section we want to construct a control ur,δ ∈ Ur
ad that is feasible for the original problem

(P), i.e., ur,δ ∈ Uad and S(ur,δ) ≤ ψ. Based on a Slater point assumption controls of this type
have already been constructed in [91] for obtaining error estimates of finite element approxima-
tion of linear elliptic state constrained optimal control problems. In [80] these techniques were
combined with the idea of the auxiliary problem presented for nonlinear optimal control problems
in [33].

We follow the strategy from [80]. This work applied the virtual control approach in order to
solve (P). In this approach the state constraints are relaxed by considering mixed control-state-
constraints instead of pure state constraints. To obtain optimality conditions for the corresponding
auxiliary problem the authors showed that the linearized Slater condition of the original problem
can be carried over to feasible controls of the auxiliary problem. This transferred linearized Slater
condition is also the main ingredient for the construction of feasible controls of the original prob-
lem. In our case, the state constraints have been removed from the set of explicit constraints by
augmentation. Thus it is not necessary to establish a linearized Slater condition for the auxiliary
problem in order to establish optimality conditions. However the Slater-type inequality that is
deduced in the following lemma is still needed for our analysis, see Lemma 5.21.

Lemma 5.20. Let ū satisfy Assumption 5.5 with σ > 0 and associated linearized Slater point û.
For r > 0 let us define

ûr := ū + t(û− ū), t :=
r

max(r, ‖û− ū‖L2(Ω))
, σr := tσ.

Then it holds ‖ûr − ū‖L2(Ω) ≤ r and there exists an r̄ > 0 such that for all r ∈ (0, r̄) and all
ūr

ρ ∈ Ur
ad the following inequality is satisfied

S(ūr
ρ) + S′(ūr

ρ)(û
r − ūr

ρ) ≤ ψ− σr

2
. (5.13)

Proof. By definition of ûr and t it holds ‖ûr − ū‖L2(Ω) ≤ r. Inserting the definition of ûr we
obtain

S(ū) + S′(ū)(ûr − ū) = S(ū) + tS′(ū)(û− ū)
= (1− t)S(ū) + t

(
S(ū) + S′(ū)(û− ū)

)
≤ ψ− tσ =: ψ− σr.

Note, that we exploited the feasibility of S(ū) and the linearized Slater condition in the last step.
Hence, ûr is a linearized Slater point of the original problem (P) in the neighborhood of ū. We
have ‖ûr − ū‖ ≤ r,

∥∥∥ū− ūr
ρ

∥∥∥ ≤ r and hence
∥∥∥ûr − ūr

ρ

∥∥∥ ≤ 2r. Since S and S′ are Lipschitz we

obtain (if r sufficiently small)
∥∥∥S(ūr

ρ)− S(ū)
∥∥∥

C(Ω)
≤ σr/6,

∥∥∥S′(ū)(ū− ūr
ρ)
∥∥∥

C(Ω)
≤ σr/6 and
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∥∥∥(S′(ūr
ρ)− S′(ū))(ûr − ūr

ρ)
∥∥∥

C(Ω)
≤ σr/6 . Hence,

S(ūr
ρ) + S′(ūr

ρ)(û
r − ūr

ρ) = S(ū) + S′(ū)(ûr − ū)

+ S(ūr
ρ)− S(ū)

+ (S′(ūr
ρ)− S′(ū))(ûr − ūr

ρ) + S′(ū)(ū− ūr
ρ)

≤ ψ− σr

2
.

Thus, ûr satisfies (5.13) and the proof is done.

In the following lemma we will construct feasible controls for (P) to be used in the sequel for our
convergence analysis. The construction of an admissible control ur,δ ∈ Ur

ad that is also feasible
for (P) is based on the fact that ūr

ρ satisfies Lemma 5.20.

We define the maximal violation of ūr
ρ with respect to the state constraints ȳr

ρ ≤ ψ by

d[ūr
ρ, (P)] :=

∥∥∥(ȳr
ρ − ψ)+

∥∥∥
C(Ω)

, (5.14)

where ȳr
ρ = S(ūr

ρ).

Lemma 5.21. Let all assumptions from Lemma 5.20 be satisfied and define δρ ∈ (0, 1) via

δρ :=
d[ūr

ρ, (P)]
d[ūr

ρ, (P)] + σr
4

.

Then there exists r̄ > 0 such that for all r ∈ (0, r̄) and ūr
ρ ∈ Ur

ad the auxiliary control

ur,δ := ūr
ρ + δ(ûr − ūr

ρ)

is feasible for the original problem (P), i.e., S(ur,δ) ≤ ψ for all δ ∈ [δρ, 1].

Proof. Applying (5.13) the proof follows the argumentation from [80, Lem. 7].

The error between the auxiliary control ur,δ and the global solution ūr
ρ of (5.12) is bounded by the

maximal constraint violation.

Lemma 5.22. The constructed feasible control ur,δ from Lemma 5.21 satisfies for δ := δρ the
estimate ∥∥∥ūr

ρ − ur,δ
∥∥∥

L2(Ω)
≤ cd[ūr

ρ, (P)].

Proof. We estimate δρ from Lemma 5.21 by

δρ =
d[ūr

ρ, (P)]
d[ūr

ρ, (P)] + σr
4
≤ 4

d[ūr
ρ, (P)]
σr

.

Together with
∥∥∥ûr − ūr

ρ

∥∥∥
L2(Ω)

≤ 2r and the definition of σr from Lemma 5.20 we arrive at

∥∥∥ūr
ρ − ur,δ

∥∥∥
L2(Ω)

=
∥∥∥δρ(ûr − ūr

ρ)
∥∥∥

L2(Ω)
≤ 8r

d[ūr
ρ, (P)]
σr

≤ 8
max{r, ‖ûr − ū‖L2(Ω)}

σ
d[ūr

ρ, (P)] ≤ cd[ūr
ρ, (P)]

and the proof is done.
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Finally we are able to apply the quadratic growth condition from Assumption 5.19.

Lemma 5.23. Let ū be a local solution of (P) that satisfies the quadratic growth condition As-
sumption 5.19 and the linearized Slater condition Assumption 5.5. Let µ ∈ L2(Ω) be fixed. Then
there exists r̄ ∈ (0, rū) such that for all r ∈ (0, r̄), the global solution ūr

ρ of the auxiliary problem
(5.12) satisfies

β
∥∥∥ūr

ρ − ū
∥∥∥2

L2(Ω)
+

1
2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)
≤ c

∥∥∥(ȳr
ρ − ψ)+

∥∥∥
C(Ω)

+
1

2ρ
‖µ‖2

L2(Ω) , (5.15)

with a constant c > 0 that is independent of ρ and µ.

Proof. As has been shown in Lemma 5.21 there exists r̄ ∈ (0, rū) such that for all r ∈ (0, r̄) the
control ur,δ is feasible for (P). We insert the special choice u = ur,δ with δ := δρ in the quadratic
growth condition (5.11) and obtain

f (ur,δ) ≥ f (ū) + β
∥∥∥ur,δ − ū

∥∥∥2

L2(Ω)

= f (ū) + β
∥∥∥ur,δ − ūr

ρ + ūr
ρ − ū

∥∥∥2

L2(Ω)

≥ f (ū) + β

(∥∥∥ur,δ − ūr
ρ

∥∥∥2

L2(Ω)
− 2|(ur,δ − ūr

ρ, ūr
ρ − ū)|+

∥∥∥ūr
ρ − ū

∥∥∥2

L2(Ω)

)
≥ f (ū) + β

∥∥∥ūr
ρ − ū

∥∥∥2

L2(Ω)
− c

∥∥∥ūr
ρ − ur,δ

∥∥∥
L2(Ω)

, (5.16)

where we exploited that
∥∥∥ūr

ρ − ū
∥∥∥2

L2(Ω)
≤ r2 and

∥∥∥ūr
ρ − ur,δ

∥∥∥
L2(Ω)

is bounded by the maximal

constraint violation (Lemma 5.22). Rearranging the terms of (5.16) and applying Lemma 5.22 we
get

β
∥∥∥ūr

ρ − ū
∥∥∥2

L2(Ω)
≤ f (ur,δ)− f (ū) + c

∥∥∥ur,δ − ūr
ρ

∥∥∥
L2(Ω)

≤ f (ur,δ)− f (ūr
ρ) + f (ūr

ρ)− f (ū) + cd[ūr
ρ, (P)].

We recall the definition of the reduced cost functional of the auxiliary problem (5.12)

f r
AL(ū

r
ρ, µ, ρ) := f (ūr

ρ) +
1

2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)
, µ̄r

ρ = (µ + ρ(S(ūr
ρ)− ψ))+.

Exploiting the Lipschitz continuity of the solution operator S for the estimate

| f (ur,δ)− f (ūr
ρ)| ≤ c

∥∥∥ur,δ − ūr
ρ

∥∥∥
L2(Ω)

,

with a constant c which is only dependent on ū and exploiting the optimality of ūr
ρ for (5.12)

as well as applying the definition of the reduced cost functional and the feasibility of ū for the
auxiliary problem, we get

β
∥∥∥ūr

ρ − ū
∥∥∥2

L2(Ω)
≤ f (ūr

ρ)− f (ū) + cd[ūr
ρ, (P)]

≤ f r
AL(ū

r
ρ, µ, ρ)− f r

AL(ū, µ, ρ)− 1
2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)

+
1

2ρ
‖(µ + ρ(S(ū)− ψ))+‖2

L2(Ω) + cd[ūr
ρ, (P)]

≤− 1
2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)
+

1
2ρ
‖(µ + ρ(S(ū)− ψ))+‖2

L2(Ω) + cd[ūr
ρ, (P)].
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Noting that it holds

1
2ρ
‖(µ + ρ(S(ū)− ψ))+‖2

L2(Ω) ≤
1

2ρ
‖µ‖2

L2(Ω)

we get with (5.14)

β
∥∥∥ūr

ρ − ū
∥∥∥2

L2(Ω)
+

1
2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)
≤ cd[ūr

ρ, (P)] +
1

2ρ
‖µ‖2

L2(Ω)

= c
∥∥∥(ȳr

ρ − ψ)+
∥∥∥

C(Ω)
+

1
2ρ
‖µ‖2

L2(Ω)

which yields the claim.

5.3.3 An Estimate of the Maximal Constraint Violation

In this section we will derive an estimate on the maximal constraint violation. We recall an esti-
mate from [81, Lem. 4].

Lemma 5.24. Let f ∈ C0,1(Ω) be given with ‖ f ‖C0,1(Ω) ≤ L. Then there exists a constant
cL > 0, which is only dependent on L, such that the following estimate is satisfied

‖ f ‖C(Ω) ≤ cL ‖ f ‖
2

2+N
L2(Ω)

.

Theorem 5.25. Let µ ∈ L2(Ω) be fixed and r̄ be given as in Lemma 5.23. Further, let ūr
ρ be

an optimal control of the auxiliary problem (5.12) with r ∈ (0, r̄). Then the maximal violation
d[ūr

ρ, (P)] of ūr
ρ with respect to (P) can be estimated by

d[ūr
ρ, (P)] ≤ c

(
1
ρ

)1/(2+N) (
1 +

1
2ρ
‖µ‖2

L2(Ω)

)1/(2+N)

,

where c > 0 is independent of r, ρ, µ.

Proof. Since ūr
ρ ∈ L∞(Ω) we get with a regularity result [79, Thm. 5] that ȳr

ρ ∈ W2,q(Ω) for all
1 < q < ∞. Due to the embedding W2,q(Ω) ↪→ C0,1(Ω) for q > N we can apply Lemma 5.24
and get the following estimate

d[ūr
ρ, (P)] =

∥∥∥(S(ūr
ρ)− ψ)+

∥∥∥
C(Ω)

≤ cL

∥∥∥(ȳr
ρ − ψ)+

∥∥∥2/(2+N)

L2(Ω)

≤ cL

∥∥∥∥1
ρ

(
µ + ρ(ȳr

ρ − ψ)
)
+

∥∥∥∥2/(2+N)

L2(Ω)

= cL

(
1
ρ

∥∥∥µ̄r
ρ

∥∥∥
L2(Ω)

)2/(2+N)

.
(5.17)

From Lemma 5.23 we obtain

1
2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)
≤ c

∥∥∥(ȳr
ρ − ψ)+

∥∥∥
C(Ω)

+
1

2ρ
‖µ‖2

L2(Ω) .

Since
∥∥∥yr

ρ′

∥∥∥
C(Ω)

is uniformly bounded by Theorem 5.2 and ur
ρ′ ∈ Ur

ad, there is c > 0 independent

of r, ρ, µ such that
1

2ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)
≤ c +

1
2ρ
‖µ‖2

L2(Ω) .
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Straight forward calculations now yield(
1
ρ

∥∥∥µ̄r
ρ

∥∥∥
L2(Ω)

)2/(2+N)

=

(
1
ρ

)1/(2+N) [1
ρ

∥∥∥µ̄r
ρ

∥∥∥2

L2(Ω)

]1/(2+N)

≤ c
(

1
ρ

)1/(2+N) (
1 +

1
2ρ
‖µ‖2

L2(Ω)

)1/(2+N)

,

which is the desired estimate.

5.3.4 Main Results

We can now formulate our main results of this section. Let us start with a result that shows that
a local solution ū of the original problem (P) can be approximated by a sequence of successful
iterates (u+

n )n, which are KKT points of the augmented Lagrangian subproblem in an arbitrary
small neighborhood of a local solution ū of (P). Since the successful iterates basically are found
by fixing µ and letting ρk tend to infinity, this investigation basically reduces to the investigation
of a quadratic penalty method with a fixed shift.
Throughout this section we assume that ū is a local solution of (P) satisfying the QGC from
Assumption 5.19 and the linearized Slater condition from Assumption 5.5.

Theorem 5.26. Let µ ∈ L2(Ω) be fix, r̄ be given as in Lemma 5.23, and let ūr
ρ denote a global

solution of the auxiliary problem (5.12).
Then we have:
a) For every r ∈ (0, r̄) there is a ρ̄, which is dependent on µ, such that for all ρ > ρ̄ it holds∥∥∥ūr

ρ − ū
∥∥∥

L2(Ω)
< r.

b) For every r ∈ (0, r̄) the points ūr
ρ are local solutions of the augmented Lagrangian subproblem

(PAL)k, provided that ρ > ρ̄.

Proof. a) The first statement follows directly from Lemma 5.23, the estimate of the maximal
constraint violation from Theorem 5.25 and the Lipschitz continuity of the solution operator (5.4).
b) Let u ∈ Uad be chosen arbitrarily such that

∥∥∥u− ūr
ρ

∥∥∥
L2(Ω)

≤ r
2 . Applying statement a) we

obtain

‖u− ū‖L2(Ω) ≤
∥∥∥u− ūr

ρ

∥∥∥
L2(Ω)

+
∥∥∥ūr

ρ − ū
∥∥∥

L2(Ω)
≤ r

2
+

r
2
= r

for ρ sufficiently large. Thus, u ∈ Ur
ad. Since ūr

ρ is the global solution of the auxiliary problem

we obtain fAL(u) ≥ fAL(ūr
ρ) for all u ∈ Uad with

∥∥∥u− ūr
ρ

∥∥∥
L2(Ω)

≤ r
2 .

In Theorem 5.26 we have accomplished to prove that it is at least possible to approximate a local
solution of the original problem (P) by a sequence of stationary points of the augmented La-
grangian subproblem. Moreover, Theorem 5.26 is the basis of the further analysis of the behavior
of Algorithm 5.1 if in step 1 (ȳk, ūk, p̄k) is chosen as a global solution of the auxiliary problem
(5.12).

Theorem 5.27. Assume that in step 1 of Algorithm 5.1 (ȳk, ūk, p̄k) is chosen as a global solution
of the auxiliary problem (5.12) if this global solution solves the optimality system of the augmented
Lagrangian subproblem (5.6). Then Algorithm 5.1 makes infinitely many successful steps.

Proof. Theorem 5.26 justifies that global solutions of the auxiliary problem (5.12) are local solu-
tions and hence KKT points of the augmented Lagrangian subproblem. The remaining part of the
proof follows the proof strategy of Theorem 5.12.
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Moreover, if the penalty parameter remains bounded, the resulting multiplier µ̄ is a function in
L2(Ω) and ( 1

ρk
‖µ̄k‖2

L2(Ω))k is uniformly bounded.

Theorem 5.28. Assume that the sequence of penalty parameters (ρk)k is bounded. Suppose fur-
ther that (ȳk, ūk, p̄k) is chosen as a global solution of the auxiliary problem (5.12) for all k large
enough. Then the sequences (‖µ̄k‖L2(Ω))k and ( 1

ρk
‖µ̄k‖2

L2(Ω))k are bounded. The multiplier µ̄

given by Theorem 5.17 belongs to L2(Ω).

Proof. By assumption, the algorithm makes only finitely many unsuccessful steps, and ρk = ρ̄
holds for all k large enough. In addition, for all k large enough the iterates are global solutions of
the auxiliary problem (5.12). Rearranging the terms from Lemma 5.23, we obtain for large k

1
2ρ̄
‖µ̄k‖2

L2(Ω) −
1

2ρ̄
‖µ̄k−1‖2

L2(Ω) ≤ c ‖(ȳk − ψ)+‖C(Ω) ≤ c Rk.

By definition of successful steps, we have ∑k Rk < +∞. Hence, summing the above inequality
yields the boundedness of (µ̄k)k in L2(Ω). Since ρk ≥ ρ0, the sequence ( 1

ρk
‖µ̄k‖2

L2(Ω))k is
bounded as well.

One has to keep in mind that the quadratic growth condition is only a local condition. Hence, the
result of Theorem 5.26 is actually the best we can expect. In particular, the subproblems (PAL)k
may have solutions arbitrarily far from ū and we cannot exclude the possibility that these solutions
are chosen in the subproblem solution process from Algorithm 5.1. However, one can prevent this
kind of scenario by using the previous iterate ūk as a starting point for the computation of ūk+1.
In this way it is reasonable to expect that as soon as one of the iterates ūk lies in Br(ū) (with r
as above) and the penalty parameter is sufficiently large, the remaining iterates will stay in Br(ū)
and converge to ū. In practice, the occurring subproblems will be solved with a semi-smooth
Newton method, see Section 5.5, which is only locally superlinear convergent. In order to obtain
convergence of the overall method, it is necessary to assume that the initial value of the augmented
Lagrangian method is close enough the solution of the penalized subproblem. As soon as as the
algorithm has once computed a KKT point of this subproblem, which is sufficiently close to a
local solution ū, it is reasonable to expect the whole method to converge.

5.4 Second-Order Sufficient Conditions

We take up the quadratic growth condition from Assumption 5.19. This condition is implied by a
second-order sufficient condition, see [29]. We define the Lagrangian function

min
u∈Uad

L(u, µ) = f (u) +
∫

Ω
(S(u)− ψ) dµ

where y = S(u) and assume that for all (ȳ, p̄, µ̄) satisfying the first-order necessary optimality
conditions (5.5) to ū it holds

∂2L
∂u2 (ū, µ̄)[h, h] ≥ 0, ∀h ∈ Cū\{0}, (5.18)

where Cū denotes the cone of critical directions as defined in [29]. Since the solution operator S
(Theorem 5.3) and the cost functional J : L2(Ω) → R are of class C2 (see [29, 31]), inequality
(5.18) together with the first-order necessary conditions implies the quadratic growth condition
from Assumption 5.19, see [29, Thm. 4.1, Remark 4.2] and [116]. Note, that the multiplier µ̄ does
not need to be unique. That is why (5.18) is imposed for every multiplier.
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Let us return to the convergence analysis of Algorithm 5.1. If in addition to the assumptions of
Theorem 5.17, u∗ satisfies the QGC from Assumption 5.19, then u∗ obviously is a local solution.
Second-order sufficient conditions not only allow us to prove convergence to a local solution but
also to show local uniqueness of stationary points of the augmented Lagrangian subproblem. This
is an important issue for numerical methods. In [79] the authors proved that the Moreau-Yosida
regularization without additional shift parameter is equivalent to the virtual control problem for
a specific choice of therein appearing parameters. This equivalence can be transferred to the
augmented Lagrangian subproblem (PAL).

Remark 5.29. Let ū ∈ Uad be a control that satisfies the first-order necessary optimality condi-
tions (5.5) and let µ̄ be the unique Lagrange multiplier w.r.t. the state constraints. We assume that
there exists a constant δ > 0 such that

∂2L
∂u2 (ū, µ̄)[h, h] ≥ δ ‖h‖2

L2(Ω) , ∀h ∈ L2(Ω). (5.19)

One can prove that the SSC (5.19) can be carried over to the augmented Lagrangian subproblems.
Let µ ∈ L2(Ω) and ρ > 0 be fixed. Let ūρ ∈ Uad be a control that satisfies ūρ ∈ Br(ū) and the
first-order necessary optimality conditions (5.6). Let the SSC (5.19) be satisfied. Then there exists
a constant δ′ > 0, which is independent of µ such that for all h ∈ L2(Ω) the following condition

f ′′(ūρ)h2 + ((µ + ρ(S(ūρ)− ψ)+, S′′(ūρ)h2) ≥ δ′ ‖h‖2
L2(Ω)

or equivalently ∫
Ω
(y2

h − p̄ρdyy(x, ȳρ)y2
h + αh2) dx ≥ δ′ ‖h‖2

L2(Ω)

is fulfilled for all (h, yh) ∈ L2(Ω) × H1(Ω) provided that ρ is sufficiently large. Here, yh =
S′(ūρ)h and p̄ρ is the solution of the adjoint equation of the augmented Lagrangian subproblem.
Thus, there exists a constant β > 0 and γ > 0 such that the quadratic growth condition

fAL(u, µ, ρ) ≥ fAL(ūρ, µ, ρ) + β
∥∥u− ūρ

∥∥2
L2(Ω)

holds for all u ∈ Uad with
∥∥u− ūρ

∥∥
L2(Ω)

≤ γ and ūρ is a local solution with corresponding
state ȳρ of the augmented Lagrangian subproblem. Here, Theorem 13 from [80] yields the carried
over version of the second-order condition for a virtual control problem. In [79, Prop. 3] it is
proved that this condition implies a quadratic growth condition for the virtual control problem.
Further, following the arguments as in [79, Thm. 5] this results can be adapted to the augmented
Lagrangian subproblem.

5.5 Numerical Examples

In this section we report on numerical results for the solution of a semilinear elliptic pointwise
state constrained optimal control problem in two dimensions. All optimal control problems have
been solved using the above stated augmented Lagrangian algorithm implemented with FEniCS
[86] using the DOLFIN [87] Python interface.
In every outer iteration of the augmented Lagrangian algorithm the KKT system (5.6) has to be
solved for given µ and ρ. This is done by applying a semi-smooth Newton method. We define the
sets

Aa
k :=

{
x ∈ Ω : −1

α
p̄k ≤ ua

}
, Ab

k :=
{

x ∈ Ω : − 1
α

p̄k ≥ ub

}
,

Yk := {x ∈ Ω : (µ + ρ(ȳk − ψ))(x) > 0} .
(5.20)
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Then system (5.6) can be stated as

Aȳk + d(ȳk) = ūk

A∗ p̄k + dy(ȳk) p̄k = ȳk − yd + χYk (µ + ρ(ȳk − ψ))

ūk + (1− χAa
k
− χAb

k
)

1
α

p̄k = χAa
k
ua + χAb

k
ub.

(5.21)

The semi-smooth Newton method for solving (5.6) is given in Algorithm 5.2.

Algorithm 5.2 Semi-smooth Newton method for the augmented Lagrangian subproblem

1: Set k = 0, ρ > 0, α > 0, set µ ∈ L2(Ω), yd ∈ L2(Ω), ψ ∈ C(Ω).
Choose (y0, u0, p0) in (H1(Ω) ∩ C(Ω))× L2(Ω)× H1(Ω)

2: repeat
3: Set Aa

k,Ab
kand Yk as defined in (5.20)

4: Solve for δy, δu, δp by solving

G(yk, uk, pk)(δy, δu, δp) = −F(yk, uk, pk)

where

G(yk, uk, pk) :=

 A + dy(yk) −Id 0
−(Id + χYk ρ · Id) + dyy(yk)pk 0 A∗ + dy(yk)

0 Id 1
α (1− χAa

k
− χAb

k
)


and

F(yk, uk, pk) :=

 Ayk + d(yk)− uk

A∗pk + dy(yk)pk − yk + yd − χYk (µ + ρ(yk − ψ))

uk + (1− χAa
k
− χAb

k
) 1

α pk − χAa
k
ua − χAb

k
ub


5: Set yk+1 =: yk + δy, uk+1 := uk + δu and pk+1 := pk + δp,
6: Set k := k + 1.
7: until a suitable stopping criterion is satisfied.

Since the linear parts of the system can be solved exactly, we choose the error that arises during
the linearization of the discretized system (5.21) as a stopping criterion. We terminate the semi-
smooth Newton method as soon as

max(r1, r2, r3) ≤ 10−6,

where

r1 :=
∥∥d(yk)−

(
dy(yk−1)(yk − yk−1) + d(yk−1)

)∥∥
L2(Ω)

,

r2 :=
∥∥∥dy(yk)− (dy(yk−1)pk + dyy(yk−1)pk−1(yk − yk−1)) + (χYk − χYk−1

)(µ + ρ(yk − ψ)
∥∥∥

L2(Ω)
,

r3 :=
∥∥∥∥uk − PUad

(
− 1

α
pk

)∥∥∥∥
L2(Ω)

is satisfied. In the following, (ȳh, ūh, p̄h, µ̄h) denote the calculated solutions after the stopping
criterion is reached. We consider optimal control problems like

minimize J(y, u) :=
1
2
||y− yd||2L2(Ω) +

α

2
||u||2L2(Ω)

subject to y = Su, y ≤ ψ, u ∈ Uad,
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where Ω = (0, 1)× (0, 1). As not mentioned otherwise, we initialize (ȳ0, ū0, p̄0, µ1) equal to zero
and the penalty parameter with ρ0 := 1.0. The parameter in the decision concerning successful
steps τ is chosen dependent on the example. If a step has not been successful, the penalization
parameter is increased by the factor θ := 10. We stopped the algorithm as soon as

R+
n :=

∥∥(y+n − ψ)+
∥∥

C(Ω)
+ (µ+

n , ψ− y+n )+ ≤ 10−4 (5.22)

was satisfied. Since the stopping criterion from Algorithm 5.2 yields (ȳh, ūh, p̄h) that satisfies
(5.5a)-(5.5c) with the desired accuracy this is a suitable stopping criterion.
We compare our method to the plain penalty method. In order to do so, we penalize the state
constraint via the standard Moreau-Yosida regularization (ρ/2) ‖(y− ψ)+‖2 and increase the
penalty parameter in every iteration of the arising algorithm via the factor θ, which is the same as
for the augmented Lagrangian method. The algorithm is stopped as soon as (5.22) is satisfied. In
this situation, all iterates are successful iterates corresponding to the notation y+n , u+

n , p+n , µ+
n and

the approximation of the multiplier µ+
n is computed via µ+

n := ρ(y+n − ψ)+. We will refer to this
method as the MY method.
Moreover, we will examine the behavior of the algorithm, in particular the behavior of the penalty
parameter ρ, dependent on the different choices of τ. The natural choice of τ < 1 as a constant,
postulates a linear decrease of the quantity R+

n . We will refer to this choice of τ as the method
AL I. Additionally, we want to investigate the case that the choice of τ is modified such that no
linear decrease is required any more. In this way, due to construction of the algorithm, one would
expect more successful steps, hence, more updates of the multiplier and less increase of the penalty
parameter. In the following we set

τk :=


τ0 ∈ (0, 1), if k = 0,
τk−1, if the step k been successful,

cn

cn+
1−τ0

τ0

, if the step k has not been successful.

Thus, τ remains unchanged, if the step has been successful, otherwise, we increase its value
according to the third case, where cn is the number of successful steps until the k-th iteration.
Clearly, this sequence is monotonically increasing with limit 1. Note, that this choice of τ entails
a slight change in Lemma 5.15, where the factor τn has to be replaced via ∏n

j=1 τj. However, since
τj ∈ (0, 1) the remaining convergence analysis, see in particular Lemma 5.16, is not influenced.
We will indicate this choice of τ as the AL II method.
Let us briefly comment on the influence of the tuning parameter τ on the number of successful
updates. For a constant choice of τ, one would naturally expect a higher number of successful
steps and a smaller value of the final penalty parameter ρ for a large value of τ. We checked all of
our numerical examples for different values of τ. As expected, a larger value of τ leads to more
successful updates. However, enlarging τ had no influence on the final penalty parameter. Thus,
for the subsequent comparison of the different numerical methods in our examples we rely on the
choice of τ that yields the best results concerning low iteration numbers and final value of ρ.

Example 1

Let Ω := (0, 1)× (0, 1). Let us first consider an optimal control problem that is governed by the
following partial differential equation

−∆y + y + exp(y) = u in Ω,
∂νy = 0 on Γ.
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Clearly d(y) := exp(y) satisfies the required assumptions from Assumption 5.1. We set yd(x) :=
8 sin(πx1) sin(πx2)− 4, ψ(x) := 1.0 and Uad := {u ∈ L∞(Ω) : − 100 ≤ u(x) ≤ 200}. We
choose α := 10−5. Figure 5.1 illustrates the computed results for the augmented Lagrangian
method with constant τ := 0.4 for a degree of freedom of 104. Table 5.1 shows iterations num-
bers for the Moreau-Yosida method compared with the augmented Lagrangian method for two
different choices of τ. For the constant choice of τ in AL I the augmented Lagrangian method
converges nearly as fast as the Moreau-Yosida regularization method, however the penalty param-
eter is smaller. The value of the final penalty parameter can even be decreased more for AL II.
Figure 5.2 depicts the behavior of the penalty parameter for AL I and AL II for a degree of freedom
of 105. While the penalty parameter tends towards infinity pretty fast for the constant choice of
τ in AL I, it can be more controlled for AL II. However, the large percentage of successful steps
results in high iteration numbers compared to the other two methods.

Optimal state ȳh Optimal control ūh

Optimal multiplier µ̄h Optimal adjoint state p̄h.

Figure 5.1: (Example 1) Computed results for approximately 104 degrees of freedom.

MY AL I AL II
dof Outer Inner Final ρ Outer Inner Final ρ Outer Inner Final ρ

102 6 12 106 7 14 101 7 14 101

103 6 17 106 11 23 103 23 36 102

104 6 23 106 11 28 104 31 53 103

105 6 25 106 12 35 105 45 73 103

Table 5.1: (Example 1) Iteration numbers and final value of the penalty parameter ρ with the
parameters θ = 10, τ := 0.4 for AL I and τ0 := 0.5 for AL II.
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5 10 15 20 25 30 35 40 45

101

103

105

it

ρk AL I
ρk AL II

Figure 5.2: (Example 1) L1(Ω)-norm of discrete multipliers µk, penalty parameters ρk vs. iteration
number for a degree of freedom of 105.

Example 2

Next, we consider the partial differential equation

−∆y + y3 = u + f in Ω,
∂νy = 0 on Γ

and construct (ȳ, ū, p̄, µ̄) that satisfy the KKT system (5.5). Let Ω := B2(0). We consider
box constraints and set ua := −5, ub := 5. For clarity and to shorten our notation we set

r := r(x1, x2) :=
√

x2
1 + x2

2 and define the following functions

ȳ(x1, x2) :=

{
1 if r < 1
32− 120 · r + 180 · r2 − 130 · r3 + 45 · r4 − 6 · r5 if r ≥ 1

,

p̄(x1, x2) := 2 cos
(

3
4

πx1

)
cos

(
3
4

πx2

)
·
(

1− 5
4

r3 +
15
16

r4 − 3
16

r5
)

,

ū(x1, x2) := PUad

(
−1

α
p̄(x1, x2)

)
,

µ̄(x1, x2) :=

{
exp

(
− 1

1−r2

)
if r < 1

0 if r ≥ 1
,

ψ(x1, x2) := 1.

Some calculation show that ȳ, p̄ ∈ C2(Ω) and µ̄ ∈ C(Ω). Furthermore ∂νȳ = ∂ν p̄ = 0 on Γ. We
now set

f (x1, x2) := −∆ȳ(x1, x2) + ȳ3(x1, x2)− ū(x1, x2),

yd(x1, x2) := ∆ p̄(x1, x2)− 3ȳ2(x1, x2) p̄(x1, x2) + ȳ(x1, x2) + µ̄(x1, x2).

We start the algorithm with α := 0.1, ρ0 := 1, and τ := 0.5. Figure 5.3 depicts the computed
result for constant τ := 0.1 and a degree of freedom of 105. The iteration numbers given in Table
5.2 indicate once more that the augmented Lagrangian method is a suitable method to solve state
constrained optimal control problems with a resulting low value of the final penalty parameter ρ
compared to the quadratic penalty method. Moreover, in this example the iteration numbers scale
well with increasing dimension. This might be due to the case that the multiplier enjoys a higher
regularity. In fact µ̄ is an L2(Ω)-function. Furthermore, Figure 5.4 supports Theorem 5.28 by
emphasizing the likely boundedness of the penalty parameter for AL II.
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Optimal state ȳh Optimal multiplier µ̄h

Optimal control ūh Optimal adjoint state p̄h

Figure 5.3: (Example 2) Computed results for approximately 105 degrees of freedom.

MY AL I AL II
dof Outer Inner Final ρ Outer Inner Final ρ Outer Inner Final ρ

102 6 16 106 7 18 103 10 22 103

103 6 23 106 9 29 105 12 29 103

104 5 20 105 6 19 103 10 24 102

105 5 19 105 6 20 103 10 24 102

Table 5.2: (Example 2) Iteration numbers and final value of the penalty parameter ρ with the
parameters θ = 10.0, τ := 0.1 for AL I and τ0 := 0.5 for AL II.

2 4 6 8 10
100

101

102

103

it

ρk AL I
ρk AL II

Figure 5.4: (Example 2) penalty parameters ρk vs. iteration number for different choices of θ for
a degree of freedom of 105.
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Example 3

We adapt an example from Chapter 3, which can also be found in [107] for state constraints given
by y ≥ ψ. In this case Ω := (−1, 2)× (−1, 2). This example does not include constraints on the
control. The optimal control problem is governed by the semilinear partial differential equation

−∆y + y5 = u + f in Ω,
∂νy = 0 on Γ

which satisfies Assumption 5.1. We set r := r(x1, x2) :=
√

x2
1 + x2

2. The state constraint is given

by ψ(r) := − 1
2πα

( 1
4 −

r
2

)
. Further, we have

ȳ(r) := − 1
2πα

χr≤1

(
r2

4
(log r− 2) +

r3

4
+

1
4

)
, ū(r) :=

1
2πα

χr≤1(log r + r2 − r3),

p̄(r) := −αū(r), µ̄(r) := δ0(r).

It can be checked easily that ȳ and p̄ satisfy the Neumann boundary. We consider the auxiliary
functions

ỹd(r) := ȳ(r)− 1
2π

χr≤1(4− 9r), f̃ (r) := − 1
8π

χr≤1(4− 9r + 4r2 − 4r3)

and set

yd(r) := ỹd(r)− 5ȳ4 p̄, f (r) := f̃ (r)− ȳ5.

We start the algorithm with α := 1.0, ρ0 := 0.5 and τ := 0.3. The computed results can be seen
in Figure 5.5 for the choice of constant τ := 0.3 and a degree of freedom of 104.
Concerning the performance of the algorithm, all methods behave very similarly, see Table 5.3.
While the Moreau-Yosida method holds an advantage concerning iteration numbers, the aug-
mented Lagrangian method requires a smaller value of the penalty parameter at the expense of
higher iteration numbers. In this example, the multiplier µ̄ is only a function inM(Ω), i.e., com-
pared to Example 1 and Example 2 it is the most challenging example. This becomes apparent in
the larger values of the final penalty parameter ρ as well as the higher iteration numbers that are
needed to solve the problem numerically. Moreover, it is surprising that Figure 5.6 indicates the
boundedness of the penalty parameter, which we would not expect in general from Theorem 5.28.

MY AL I AL II
dof Outer Inner Final ρ Outer Inner Final ρ Outer Inner Final ρ

102 6 12 106 9 17 104 12 20 103

103 7 22 107 10 26 105 21 37 104

104 8 32 108 12 37 107 37 62 105

105 9 38 109 14 45 108 84 116 106

Table 5.3: (Example 3) Iteration numbers and final value of the penalty parameter ρ with the
parameters θ = 10.0, τ := 0.3 for AL I and τ0 := 0.4 for AL II.
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Opt. state ȳh (transparent) with constraint ψ Optimal multiplier µ̄h

Optimal control ūh Optimal adjoint state p̄h

Figure 5.5: (Example 3) Computed results for approximately 104 degrees of freedom.

10 20 30 40 50 60 70 80100

105

it

ρk AL I
ρk AL II

Figure 5.6: (Example 3) L1(Ω)-norm of discrete multipliers µk, penalty parameters ρk vs. iteration
number for a degree of freedom of 105.
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Generalized Nash Equilibrium
Problems
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CHAPTER 6

JOINTLY CONVEX MULTI-PLAYER OPTIMAL
CONTROL PROBLEMS

This chapter is dedicated to the investigation of an N-player generalized Nash equilibrium prob-
lem. Let Ω ⊂ Rd, d ∈ {1, 2, 3} denote a bounded Lipschitz domain with boundary Γ. Let
Y := H1

0(Ω) ∩ C(Ω) and U := U1 × · · · ×UN := L2(Ω)N . Each player aims at solving the
following optimal control problem

minimize
yν∈Y,uν∈Uν

Jν(yν, uν) :=
1
2
‖yν − yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω) (6.1)

subject to

Ay = Bu in Ω,
y = 0 on Γ,

uν ∈ Uν
ad a.e. in Ω,

y ≤ ψ in Ω,

where A denotes a second-order elliptic operator and B ∈ L(L2(Ω)N , L2(Ω)) a linear and con-
tinuous mapping. Each player’s control uν affects the state y via the right hand side of a given
linear elliptic partial differential equation. The state y is forced to satisfy the constraint y ≤ ψ,
where ψ ∈ C(Ω). The controls uν ∈ L2(Ω) have to be located in a closed and convex but not
necessarily bounded set Uν

ad ∈ L2(Ω). In particular, we can choose Uν
ad = L2(Ω).

The outline of this chapter is as follows. We will collect results about the jointly convex GNEP
(6.1) in Section 6.1. The augmented Lagrangian subproblem is introduced in Section 6.2. We
continue by presenting our solution method, the augmented Lagrangian method, in Section 6.3.
This section is also dedicated to the corresponding convergence analysis. Finally, a numerical
example is given in Section 6.4.

6.1 The Multi-Player Control Problem

Throughout this chapter we will work with the following standing assumptions.

Assumption 6.1. For all ν the given data satisfy yν
d ∈ L2(Ω), αν > 0, uν

a , uν
b ∈ L2(Ω) with uν

a ≤
uν

b , ψ ∈ C(Ω). The differential operator A satisfies Assumption 2.19. The linear and continuous
operator B : L2(Ω)N → L2(Ω) is given by B := ∑N

ν=1 Bνuν, where Bν ∈ L(L2(Ω), L2(Ω)).

At the first glance, (6.1) does not reveal the structure of a generalized Nash equilibrium problem.
In order to fit the corresponding setting for this type of problems we have to consider the reduced

103
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formulation of each player’s optimal control problem. Let G : L2(Ω) → H1
0(Ω) ∩ C(Ω) denote

the solution mapping of Ay = f with f ∈ L2(Ω) and define

Sν : L2(Ω)→ H1
0(Ω) ∩ C(Ω), Sνuν := GBνuν,

S : L2(Ω)N → H1
0(Ω) ∩ C(Ω), Su := GBu =

N

∑
ν=1

GBνuν =
N

∑
ν=1

Sνuν.

Due to Assumption 6.1, we can deduce by [29, Theorem 2.1] that the operators Sν and S are linear,
continuous and compact. The reduced formulation of (6.1) is now given by

minimize
uν∈L2(Ω)

f ν(u) :=
1
2
‖Su− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad

Su(x) ≤ ψ(x) in Ω.

(PJC)

This formulation exposes the structure of a jointly convex generalized Nash equilibrium as in-
troduced in Section 2.8.2. This class of problems admits two different solution concepts. First,
problem (PJC) can be treated as generalized Nash equilibrium as presented in Section 2.8.1. We
will investigate this approach in Chapter 7. Moreover, (PJC) admits the more restrictive solution
concept of normalized Nash equilibria. In particular, normalized Nash equilibria of (PJC) are
unique, which is a great advantage for numerical computations.

For further use, we define the admissible and feasible sets

Uad := U1
ad × · · · ×UN

ad,

Fad := {u ∈ L2(Ω)N | u ∈ Uad, Su(x) ≤ ψ(x) in Ω}.

A point u ∈ L2(Ω)N is called feasible if u ∈ Fad. Let us recall the definition of a normalized
Nash equilibrium.

Definition 6.2 (Normalized equilibrium). Let ū be a feasible point. Then ū is called a normalized
solution or variational equilibrium of (PJC) if

N

∑
ν=1

f ν(ūν, ū−ν) ≤
N

∑
ν=1

f ν(vν, ū−ν) ∀v ∈ Fad. (6.2)

From Section 2.8.2 we know that a normalized Nash equilibrium ū can equivalently be character-
ized as a point ū ∈ Fad that solves the following variational inequality:

(F(ū), v− ū) ≥ 0 ∀v ∈ Fad, where F(u) :=
(

Du1 f 1(u), ..., DuN f N(u)
)

. (6.3)

Theorem 6.3 (Existence of solution). The generalized Nash equilibrium problem (PJC) admits a
unique normalized solution.

Proof. Like in [69] it can be shown that the operator F is strongly monotone in Fad and we obtain
the existence of a unique solution of (PJC) from Theorem 2.63.

For bounded sets Uν
ad, it is also possible to prove existence of solutions by applying the Kakutani-

Fan-Glicksberg-Theorem (Theorem 2.59), see [60, Theorem 3.4]. However, this proof does not
imply uniqueness of normalized solutions. Similarly to Chapter 3, we require the existence of a
Slater point in order to obtain first-order optimality conditions.
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Assumption 6.4 (Slater condition). We assume that there exists a σ > 0 and û ∈ Uad such that

S(û)(x) ≤ ψ(x)− σ in Ω.

The Slater condition from Assumption 6.4 implies the following first-order necessary optimality
conditions, see [60, Theorem 3.7], which are also sufficient.

Lemma 6.5 (First-order necessary optimality conditions). Let Assumption 6.4 be satisfied. Let
ū ∈ L2(Ω)N denote a normalized solution of (PJC) with corresponding state ȳ ∈ H1

0(Ω) ∩
C(Ω). Then there exist adjoint states p̄ν ∈ W1,s

0 (Ω), s ∈ [1, d/(d− 1)) and a multiplier µ̄ ∈
M(Ω) such that for all ν the following system is satisfied.

Aȳ = Bū in Ω,
ȳ = 0 on Γ,

(6.4a)

A∗ p̄ν = ȳ− yν
d + µ̄ in Ω,

p̄ν = 0 on Γ,
(6.4b)

(B∗ν p̄ν + ανūν, vν − ūν) ≥ 0 ∀vν ∈ Uν
ad, (6.4c)

〈µ̄, ȳ− ψ〉M(Ω),C(Ω) = 0, ȳ ≤ ψ, µ̄ ≥ 0. (6.4d)

6.2 The Augmented Nash Equilibrium Problem

In a similar way to the single-player optimal control problem from Chapter 3, we augment the
pointwise constraints on the state variable y and obtain the following class of parameter dependent
Nash equilibrium problems

minimize
uν

ρ∈L2(Ω)
f ν
AL(uρ, µ, ρ) := f ν(uρ) +

1
2ρ

∥∥(µ + ρ(Suρ − ψ))+
∥∥2

L2(Ω)
(PJC

AL)

subject to uν
ρ ∈ Uν

ad.

We refer to (PJC
AL) as the augmented NEP. Note that the constraints do no more depend on the

other players’ strategies. The problem under consideration now turned into a more simple Nash
equilibrium problem. We will refer to this kind of problem as the augmented NEP. Moreover, uρ

is called admissible for the augmented NEP (PJC
AL) if uρ ∈ Uad.

Definition 6.6 (Nash equilibrium). Let ūρ ∈ L2(Ω)N be admissible for (PJC
AL). Then ūρ is a

Nash equilibrium (NE) or a solution of the augmented NEP if and only if for every ν it holds

f ν
AL(ū

ν
ρ, ū−ν

ρ , µ, ρ) ≤ f ν
AL(v

ν, ū−ν
ρ , µ, ρ) ∀vν ∈ Uν

ad.

For bounded sets Uν
ad, existence, but not uniqueness, of solutions can be shown applying the

Kakutani-Fan-Glicksberg-Theorem, see [59, Theorem 2.3]. For unbounded sets we investigate
existence of solutions of the corresponding variational inequality.

Lemma 6.7 (Existence of solution). The augmented NEP (PJC
AL) admits a unique Nash equilib-

rium.
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Proof. Concatenating each players optimality conditions, we see that solutions of the NEP (PJC
AL)

can be characterized via the solution u of the variational inequality

(FAL(u), v− u) ≥ 0 ∀v ∈ Uad, where FAL(u) := (Du1 f 1
AL(u, µ, ρ), . . . DuN f N

AL(u, µ, ρ)).

The operator can be split in FAL = F + M where F is given as in (6.3) and M is defined by

M(u) := (S∗1(µ + ρ(Su− ψ))+, . . . , S∗N(µ + ρ(Su− ψ))+).

Since M is the gradient of the convex penalty function u 7→ 1
2ρ ‖(µ + ρ(Su− ψ))+‖2

L2(Ω) , we
know that M is monotone in u. Since F is strongly monotone and M is monotone, FAL is strongly
monotone. Thus, the claim follows from Theorem 2.66.

Moreover, first-order necessary optimality conditions of (PJC
AL) can be established without any

further regularity assumptions, see [59, Proposition 2.8]. Due to convexity these conditions are
also sufficient.

Theorem 6.8 (First-order necessary optimality conditions). Let ūρ ∈ L2(Ω)N denote a solu-
tion of the augmented NEP (PJC

AL) and ȳρ ∈ H1
0(Ω) ∩ C(Ω) the corresponding state. Then there

exist unique adjoint states p̄ν
ρ ∈ H1

0(Ω) such that for all ν the following system is satisfied:

Aȳρ = Būν
ρ in Ω,

ȳρ = 0 on Γ,
(6.5a)

A∗ p̄ν
ρ = ȳρ − yν

d + µ̄ρ in Ω,

p̄ν
ρ = 0 on Γ,

(6.5b)

(B∗ν p̄ν
ρ + ανūν

ρ, vν − ūν
ρ) ≥ 0 ∀vν ∈ Uν

ad, (6.5c)

µ̄ρ =
(
µ + ρ(ȳρ − ψ)

)
+

. (6.5d)

6.3 Convergence Analysis

In the following let (PJC
AL)k denote the augmented NEP for given ρ := ρk and µ := µk. Its

solution will be denoted by ūk with corresponding state ȳk and adjoint states p̄k. The augmented
Lagrangian algorithm is given in Algorithm 6.1.

Algorithm 6.1 Augmented Lagrangian Algorithm for (PJC)

Let (ȳ0, ū0, p̄0) ∈ (H1(Ω) ∩ C(Ω))× L2(Ω)N ×W1,s(Ω)N , ρ1 > 0 and 0 ≤ µ1 ∈ L2(Ω) be
given. Choose θ > 1, τ ∈ (0, 1), ε ≥ 0, R+

0 � 1. Set k := 1 and n := 1.

1: Solve the KKT system (6.5) corresponding to (PJC
AL)k and obtain (ȳk, ūk, p̄k).

2: Set µ̄k := (µk + ρk(ȳk − ψ))+.
3: Compute Rk := ‖(ȳk − ψ)+‖C(Ω) + (µ̄k, ψ− ȳk)+.
4: If Rk ≤ τR+

n−1 then the step k is successful. Set

µk+1 := µ̄k, ρk+1 := ρk

and define for all ν:

(y+n , uν,+
n , pν,+

n ) := (ȳk, ūν
k , p̄ν

k), µ+
n := µ̄k, R+

n := Rk.

Set n := n + 1.
5: Otherwise the step k is not successful. Set µk+1 := µk, ρk+1 := θρk.
6: If R+

n−1 ≤ ε then stop, otherwise set k := k + 1 and go to step 1.
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The convergence analysis for jointly convex GNEPs can in wide parts be done almost identically
like for a standard optimal control problem, see Chapter 3, which is basically a single-player prob-
lem. Several players can be easily incorporated by summing up the related inequalities. Following
Lemma 3.8, it is in this way straight forward to obtain the following essential estimate.

Lemma 6.9. Let (ȳk, ūk, p̄k, µ̄k) solve (6.5) and (ȳ, ū, p̄, µ̄) solve (6.4). Then we have the follow-
ing estimate

‖ȳ− ȳk‖2
L2(Ω) +

N

∑
ν=1

αν ‖ūν − ūν
k‖

2
L2(Ω) ≤ (µ̄k − µ̄, ȳ− ȳk)

≤ (µ̄k, ψ− ȳk) + 〈µ̄, ȳk − ψ〉M(Ω),C(Ω). (6.6)

Proof. The proof can be done in a similar way to Lemma 3.8. Testing (6.4c) with ūν
k and (6.5c)

with ūν, adding both variational inequalites and applying the definition of the adjoint states p̄ν, p̄ν
k ,

p̄ν := G∗(Sū− yν
d + µ̄), p̄ν

k := G∗(Sūk − yν
d + µ̄k),

we obtain for each ν

0 ≤ (B∗ν( p̄ν − p̄ν
k) + αν(ūν − ūν

k), ūν
k − ūν)

= (S∗ν(Sū− Sūk + µ̄− µ̄k), ūν
k − ūν)− αν ‖ūν − ūν

k‖
2
L2(Ω)

= (Sū− Sūk + µ̄− µ̄k, Sν(ūν
k − ūν))− αν ‖ūν − ūν

k‖
2
L2(Ω) .

Adding this inequality for all ν implies

N

∑
ν=1

αν ‖ūν − ūν
k‖

2
L2(Ω) ≤

N

∑
ν=1

(Sū− Sūk + µ̄− µ̄k, Sν(ūν
k − ūν))

= (S(ū− ūk) + µ̄− µ̄k, S(ūk − ū))

= −‖ȳ− ȳk‖2
L2(Ω) + (µ̄k − µ̄, ȳ− ȳk). (6.7)

The second term of (6.7) can be simplified and estimated by

(µ̄k − µ̄, ȳ− ȳk) ≤ (µ̄k, ψ− ȳk) + 〈µ̄, ȳk − ψ〉M(Ω),C(Ω).

Adapting Lemma 3.10, the proof of Theorem 5.9 and Lemma 3.12 to the jointly convex setting,
Lemma 6.9 is the essential estimate to arrive at the following result.

Theorem 6.10. Algorithm 6.1 makes infinitely many successful steps.

Proof. Suppose the Lagrange multiplier estimate µ is fixed. Then, following Lemma 3.10, it is
easy to see that the generated sequence of states (ȳk)k converges strongly to ȳ in H1

0(Ω)∩ C(Ω).
Thus, in particular, the limit is feasible. Moreover, following the proof of Theorem 5.9 we obtain

(µ̄k, ψ− ȳk)+ ≤
1

2ρk
‖µ‖2

L2(Ω) .

Combining these two results, the same proof strategy as in Lemma 3.12 yields that the algorithm
makes infinitely many successful step.

Recall that (y+n , u+
n , p+n , µ+

n ) denotes the solution of the n-th successful iteration. We can now
prove L1(Ω)-boundedness of the multiplier. Let us emphasize that this result yields boundedness
of (u+

n )n even if Uν
ad is unbounded.
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Lemma 6.11. Let û ∈ Uad denote the Slater point from Assumption 6.4 with corresponding
σ > 0. Let ŷ := S(û). Then the following estimate is satisfied with a constant C > 0 independent
of n

∥∥µ+
n
∥∥

L1(Ω)
+

1
σ

∥∥ŷ− y+n
∥∥2

L2(Ω)
+

N

∑
ν=1

αν

2σ

∥∥ûν − uν,+
n
∥∥2

L2(Ω)
≤ C.

Proof. Like in the proof of Lemma 3.14 we arrive with the Slater condition from Assumption 6.4
at

σ
∥∥µ+

n
∥∥

L1(Ω)
≤ (µ+

n , ψ− y+n )+ + (µ+
n , y+n − ŷ). (6.8)

Since the solution operators Sν are the same for each player we obtain for all ν the estimate∥∥Sν(uν,+
n − ûν)

∥∥
L2(Ω)

≤ c
∥∥Sν(uν,+

n − ûν)
∥∥

H1
0 (Ω)
≤ c

∥∥uν,+
n − ûν

∥∥
L2(Ω)

,

where c > 0 is a constant independent of uν,+
n and ûν. Estimating the second term of (6.8) via

(µ+
n , y+n − ŷ) =(µ+

n ,
N

∑
ν=1

Sν(uν,+
n − ûν)) =

N

∑
ν=1

(
B∗ν pν,+

n − S∗ν(Su+
n − yν

d), uν,+
n − ûν

)
≤

N

∑
ν=1

αν(uν,+
n , ûν − uν,+

n ) +
N

∑
ν=1

(yν
d − Su+

n , Sν(uν,+
n − ûν))

≤−
∥∥ŷ− y+n

∥∥2
L2(Ω)

+
N

∑
ν=1

c2

αν
‖yν

d − ŷ‖2
L2(Ω)

+
N

∑
ν=1

(
αν(uν,+

n , ûν − uν,+
n ) +

αν

4

∥∥uν,+
n − ûν

∥∥2
L2(Ω)

)
≤−

∥∥ŷ− y+n
∥∥2

L2(Ω)
+

N

∑
ν=1
−αν

2

∥∥ûν − uν,+
n
∥∥2

L2(Ω)

+
N

∑
ν=1

(
αν ‖ûν‖2

L2(Ω) +
c2

αν
‖yν

d − ŷ‖2
L2(Ω)

)
,

we obtain the desired result directly with a similar result like Lemma 3.13.

Theorem 6.12 (Convergence of solutions). Let ū denote the unique normalized solution of (PJC)
with associated state ȳ. The sequence (y+n , u+

n )n that is generated by Algorithm 6.1 satisfies the
following convergence properties:

u+
n → ū in L2(Ω)N , y+n → ȳ in H1

0(Ω) ∩ C(Ω).

Proof. This is due to inequality (6.6) and the update rule from Algorithm 6.1.

By Lemma 6.11, we obtain L1(Ω)-boundedness of the sequence of multipliers (µ+
n )n . As we

know from [26, Theorem 4] that∥∥pν,+
n
∥∥

W1,s
0 (Ω)

≤ c
(∥∥yν,+

n
∥∥

L2(Ω)
+ ‖yν

d‖L2(Ω) +
∥∥µν,+

n
∥∥
M(Ω)

)
,

is satisfied, Lemma 6.11 yields a suitable upper bound and the sequence (pν,+
n )n is bounded in

W1,s
0 (Ω), s ∈ [1, d/(d− 1)). Thus, we can extract weak-* and weakly convergent subsequences

of (µ+
n )n inM(Ω), (pν,+

n )n in W1,s
0 (Ω), respectively. The corresponding weak limits are indeed

multipliers for the original jointly convex GNEP. The proof follows Lemma 3.16 and is omitted
here.
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Theorem 6.13 (Convergence of dual variables). Let subsequences (pν,+
n′ , µ+

n′)n′ of (pν,+
n , µ+

n )

be given such that µ+
n′ ⇀

∗ µ̄ in M(Ω) and pν,+
n′ ⇀ p̄ in W1,s

0 (Ω), s ∈ [1, d/(d − 1)). Then
(ȳ, ū, p̄, µ̄) satisfy the optimality system (6.4) of the original problem (PJC).

6.4 Numerical Example

Let us present a numerical example. All implementations have been done in Fenics [86] using the
DOLFIN Python interface [87].

6.4.1 Solution of the Subproblem

Let us briefly comment on the solution of the arising augmented Lagrangian subproblems. These
problems are solved by applying a semi-smooth Newton or active set method, respectively. In a
similar way to single player optimal control problems, we define for each player the sets

Aν,a
k :=

{
x ∈ Ω : − 1

αν
B∗ν pν(uk) ≤ uν

a

}
, Aν,b

k :=
{

x ∈ Ω : − 1
αν

B∗ν pν(uk) ≥ uν
b

}
,

(6.9)

Iν
k :=

{
x ∈ Ω : − 1

αν
B∗ν pν(uk) ∈ (uν

a , uν
b)

}
,Yk := {x ∈ Ω : (µ + ρ(yk − ψ))(x) > 0} .

The inner loop of Algorithm 6.1 is given in Algorithm 6.2. If the regularization parameters αν

coincide for all players, one can show that the active set method is equivalent to a semi-smooth
Newton method, which converges locally superlinear. Moreover, the stopping criterion yields
(ȳk, ūk, p̄k) such that the residual of (6.5) is equal zero, see Chapter 8. Consequently, R+

n ≤ ε is a
suitable choice for a stopping criterion for the outer loop of the algorithm.

Algorithm 6.2 Algorithm for solving the subproblem of (PJC,k
AL )

1: Set k := 0, choose (y0, u0, p0) ∈ Y× L2(Ω)N × L2(Ω)N .
2: repeat
3: Set Aν,a

k ,Aν,b
k , Iν

k and Yk as defined in (6.9).

4: Solve for (yk+1, uk+1, pk+1) ∈ YN × L2(Ω)
N × L2(Ω)N by solving

Ayk+1 = Buk+1 in Ω,

A∗pν
k+1 = yk+1 − yν

d + χYk(µ + ρ(yk+1 − ψ)) in Ω,

uν
k+1 + χIν

k

(
1
α

B∗ν pν
k+1

)
= χAν,a

k kuν
a + χAν,b

k
uν

b .

5: Set k := k + 1
6: until Aν,b

k−1 = Aν,b
k−2,Aν,a

k−1 = Aν,a
k−2, Iν

k−1 = Iν
k−2 and Yk−1 = Yk−2.
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6.4.2 Example 1 - Four Player Problem with Known Exact Solution

We adapt a single-player example which has been presented in [93] to the jointly convex setting.
Let Ω := (0, 1)2 and N := 4. Each player’s optimization problem is given by

minimize
y∈Y,uν∈L2(Ω)

Jν(y, uν) :=
1
2
||y− yν

d||2L2(Ω) +
αν

2
‖uν‖2

L2(Ω)

subject to − ∆y + y =
N

∑
ν=1

uν in Ω and ∂y = 0 on Γ,

y(x) ≥ ψ(x) in Ω.

This setting differs slightly from the setting given in (PJC). First, we have to deal with an elliptic
partial differential equation with homogeneous Neumann boundary conditions. Hence, we obtain
Y := H1(Ω) ∩ C(Ω). Second, the state constraints are given in the form y(x) ≥ ψ(x). Last, no
control constraints are given. However, all results from this chapter can be transferred to this kind
of problem. Due to Theorem 6.3 the normalized solution of the jointly convex GNEP is unique.
Hence, we are able to construct a numerical example with a known exact and unique solution. We
set ȳ := c and p̄ = (α1b1, α2b2, α3b3, α4b4), where c, b1, b2, b3, b4 are constant functions. Since
this example does not include control constraints, we obtain directly ūν = −α−1

ν p̄ν. Then, we
know that c and bν have to satisfy

c = −∆ȳ + ȳ =
N

∑
ν=1

ūν = −
N

∑
ν=1

bν. (6.11)

Defining
ψ(x1, x2) := min(c,−20(x1 − 0.5)2 − 20(x2 − 0.5)2 + 1 + c)

we know that the Lagrange multiplier has to satisfy

µ̄(x1, x2) = max(−20(x1 − 0.5)2 − 20(x2 − 0.5)2 + 1, 0).

The desired states can now be constructed via the adjoint equation

yν
d := ∆ p̄ν − p̄ν + ȳ− µ̄ = −ανbν + c− µ̄.

For our numerical test we have chosen c := 2, b := (−0.2,−0.4,−0.6,−0.8) and αν := 1.0 for
all ν. Hence, (6.11) is satisfied and the exact solution is given by

ȳ = 2, ū := (0.2, 0.4, 0.6, 0.8), p̄ := (−0.2,−0.4,−0.6,−0.8).

The algorithm has been initialized with (y0, u0, p0, µ1) equal to zero. Further, we choose the
parameters ρ0 := 1.0, θ := 10, and τ := 0.1. We set ε̃ := 10−6 and stop the algorithm as soon as

R+
n :=

∥∥(ψ− y+n )+
∥∥

C(Ω)
+ (µ+

n , y+n − ψ)+ ≤ 10−6

is satisfied. Some iteration numbers are given in Table 6.1. The iteration numbers indicate that
the augmented Lagrangian algorithm behaves nicely for this type of problem. Independent of
the different mesh sizes, we obtain nearly constant iteration numbers and a consistent value of
the maximal value of the penalization parameter ρ. Figure 6.1 shows the computed results for
n = 256.
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Figure 6.1: (Example 1) Left: State constraint ψ and computed state ȳh (transparent), Right:
Computed multiplier µ̄h.

n 8 16 32 64 128 256
outer it 11 11 11 11 11 11
inner it 13 14 17 17 19 20
ρmax 105 105 105 105 105 105

Table 6.1: (Example 1) Iteration numbers.





CHAPTER 7

GENERALIZED MULTI-PLAYER OPTIMAL
CONTROL PROBLEMS

This chapter aims at extending the results of the previous chapter to the larger class of generalized
Nash equilibrium problems. In particular, existence of solutions is not trivial for this type of
problems. Under a Slater-type constraint qualification, which will be shown to imply weak Mosco-
continuity of the feasible set, we prove an existence result. Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a
bounded Lipschitz domain with boundary Γ. We consider an N-player game. Let Y := H1

0(Ω) ∩
C(Ω) and U := U1 × · · · × UN := L2(Ω)N . Throughout this chapter each player aims at
solving the optimal control problem

minimize
yν∈Y,uν∈Uν

Jν(yν, uν) :=
1
2
‖yν − yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω) (7.1)

subject to

Aνyν = Bνu in Ω, (7.2)

yν = 0 on ∂Ω,
uν ∈ Uν

ad a.e. in Ω,

yν ≤ ψν in Ω,

where Aν denotes a second-order elliptic operator and Bν ∈ L(L2(Ω)N , L2(Ω)) a linear and
continuous mapping. The precise setting is given in Section 6.1 below. Let us emphasize that each
player’s control affects the other players’ states yν via the right hand side of a given linear elliptic
partial differential, i.e., yν = yν(uν, u−ν). Note that this dependence also influences each player’s
inequality constraints yν ≤ ψν.
The outline of this chapter is as follows. In Section 7.1 we introduce the GNEP to be solved and
specify the problem setting. We state an existence result and establish optimality conditions un-
der a Slater type condition. We connect this condition to the notion of weak Mosco-continuity in
Section 7.2. After collecting results about the augmented NEP in Section 7.3, we introduce the
augmented Lagrangian algorithm in Section 7.4. In the same section we state our main conver-
gence result (Theorem 7.24). To finish, we illustrate our theoretical findings by some numerical
experiments in Section 7.5.

7.1 The Generalized Nash Equilibrium Problem

Throughout this chapter, we will work with the following set of standing assumptions.

Assumption 7.1. a) For all ν the given data satisfy yν
d ∈ L2(Ω), αν > 0, uν

a , uν
b ∈ L2(Ω) with

uν
a ≤ uν

b , ψν ∈ C(Ω).

113



114 7. Generalized Multi-Player Optimal Control Problems

b) The differential operator Aν satisfies Assumption 2.19.
c) The linear and continuous operator Bν : L2(Ω)N → L2(Ω) is given by Bνu := B1

νuν +
B2

νu−ν, where

B1
νuν ∈ L(L2(Ω), L2(Ω))

B2
νu−ν :=

N

∑
j=1,j 6=ν

B2
ν,ju

j with B2
ν,j ∈ L(L2(Ω), L2(Ω)).

Due to the standing assumptions on Aν, it is well known that the PDE Aνy = f admits a unique
weak solution y ∈ H1

0(Ω) ∩ C(Ω) for every f ∈ L2(Ω). We use the linear and continuous
solution operator

Gν : L2(Ω)→ H1
0(Ω) ∩ C(Ω), f 7→ y

to define

S1
ν : L2(Ω)→ H1

0(Ω) ∩ C(Ω), S1
νuν := GνB1

νuν,

S2
ν : L2(Ω)N−1 → H1

0(Ω) ∩ C(Ω), S2
νu−ν := GνB2

νu−ν

and set

Sν : L2(Ω)N → H1
0(Ω) ∩ C(Ω),

Sνu := S1
νuν + S2

νu−ν = GνBνu.
(7.3)

Lemma 7.2. Let Assumption 7.1 be satisfied. Then the state equation (7.2) admits a unique weak
solution. The control-to-state mapping Sν from (7.3) is linear, continuous, and compact. Thus,
there exists a constant c > 0 independent of u such that

‖yν‖H1
0 (Ω) + ‖y

ν‖C(Ω) ≤ c
(
‖uν‖L2(Ω) +

∥∥u−ν
∥∥

L2(Ω)N−1

)
. (7.4)

Proof. It is well known that the solution operator Gν is linear and continuous [26]. Since B1
ν, B2

ν are
linear and continuous as well, we arrive at (7.4). Since Gν is completely continuous [29, Theorem
2.1] and continuity of B1

ν, B2
ν implies their weak continuity, we conclude complete continuity of

Sν.

Inserting the mapping Sν in (7.1) we obtain the reduced formulation of the optimal control problem

minimize
uν∈L2(Ω)

f ν(u) :=
1
2
‖Sνu− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω)

subject to uν
a(x) ≤ uν(x) ≤ uν

b(x) a.e. in Ω,

Sν(uν, u−ν)(x) ≤ ψν(x) in Ω.

(P)

We define the admissible and the feasible sets

Uad := U1
ad × · · · ×UN

ad,

Fad(u) := F1
ad(u

−1)× · · · × FN
ad(u

−N),
(7.5)

where

Uν
ad := {uν ∈ L2(Ω) | uν

a(x) ≤ uν(x) ≤ uν
b(x) a.e. in Ω},

Fν
ad(u

−ν) := {uν ∈ L2(Ω) | uν ∈ Uν
ad, Sν(uν, u−ν)(x) ≤ ψν(x) in Ω}.

A point ū ∈ L2(Ω)N is called feasible, if ū ∈ Fad(ū). Let us recall the definition of a solution of
a generalized Nash equilibrium problem.
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Definition 7.3 (Generalized Nash equilibrium). Let ū ∈ L2(Ω)N be feasible. We say that ū is a
generalized Nash equilibrium (GNE) or a solution of the GNEP (P) if and only if for all ν it holds

fν(ūν, ū−ν) ≤ fν(vν, ū−ν) ∀vν ∈ Fν
ad(ū

−ν).

In order to derive first-order optimality conditions a constraint qualification is needed. Throughout
this chapter we will assume that a solution ū of the GNEP satisfies the following Slater condition.

Definition 7.4 (Slater condition). We say that a point u∗ ∈ Uad satisfies the Slater condition if
for every ν there exists a point ûν ∈ Uν

ad and a σν > 0 such

Sν(ûν, u∗−ν)(x) ≤ ψν(x)− σν in Ω. (7.6)

Assumption 7.5. We assume that a solution ū ∈ L2(Ω)N of the GNEP (P) satisfies the Slater
condition from Definition 7.4.

A similar constraint qualification has already been presented in [60] for providing optimality con-
ditions of the therein treated GNEP. Incorporating the varying solution operators Sν, the proof of
[60, Theorem 2.5] can easily be adapted to our setting.

Lemma 7.6 (First-order necessary optimality conditions). Let ū ∈ L2(Ω)N be a solution of
the GNEP (P) that satisfies Assumption 7.5 and ȳ ∈ (H1

0(Ω) ∩ C(Ω))N the corresponding state.
Then there exist adjoint states p̄ν ∈ W1,s

0 (Ω), s ∈ [1, d/(d− 1)) and multipliers µ̄ν ∈ M(Ω)
such that for all ν the system

Aνȳν = Bū in Ω,
ȳν = 0 on Γ,

(7.7a)

A∗ν p̄ν = ȳν − yν
d + µ̄ν in Ω,

p̄ν = 0 on Γ,
(7.7b)

(B1
ν
∗

p̄ν + ανūν, vν − ūν) ≥ 0 ∀vν ∈ Uν
ad, (7.7c)

〈µ̄ν, ȳν − ψν〉M(Ω),C(Ω) = 0, ȳν ≤ ψν, µ̄ν ≥ 0 (7.7d)

is satisfied. Here, µ̄ν ≥ 0 means that µ̄ν lies in the dual of the nonnegative cone of C(Ω).

Due to the convexity of the reduced cost functional and of the sets Fν
ad(ū

−ν) the first-order nec-
essary optimality conditions of each player’s problem are also sufficient. Hence, every tuple
(ȳ, ū, p̄, µ̄) that satisfies the optimality system (7.7) is a generalized Nash equilibrium. The Slater
condition from Definition 7.4 requires a Slater point ûν dependent of u∗−ν for each player’s opti-
mization problem. However, for proving existence of a generalized Nash equilibrium problem it is
not enough to claim this property in one single point u∗. In fact, one needs the following stronger
uniform Slater condition.

Assumption 7.7 (Uniform Slater condition). We assume that for every ν there exists a σν > 0
such that for all u−ν ∈ U−ν

ad there exists a point ûν ∈ Uν
ad satisfying

Sν(ûν, u−ν)(x) ≤ ψν(x)− σν in Ω.

An assumption of this type is not completely new. In [59] it has been used for proving existence
of a normalized equilibrium of a jointly convex GNEP and showing convergence of the therein
applied Moreau-Yosida penalty method. Note that this is a much stronger assumption than the
Slater condition from Assumption 7.5. Obviously, the uniform Slater condition implies the Slater
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condition.

For each tuple u−ν ∈ U−ν
ad let Mν(u−ν) denote the optimal solution set of the ν-th player’s

optimization problem. Thus, a GNE ū has to satisfy ūν ∈ Mν(ū−ν) for all ν. Based on [98],
which deals with finite dimensional generalized Nash equilibrium problems, we postulate for every
player ν the following constraint qualification in order to establish an existence result.

Definition 7.8 (Weak Convergence Constraint Qualification). Let (uk)k in Uad denote an arbi-
trary weakly convergent sequence such that uν

k ∈ Mν(u−ν
k ) for every k. We say that (uk)k satisfies

the weak convergence constraint qualification (WCCQ) if there exist sequences (µν
k)k inM(Ω)

with weak-* convergent subsequences (µν
k′)k′ such that (yν

k′ , uν
k′ , pν

k′ , µν
k′) satisfies the ν-th player’s

optimality system (7.7), where yν
k′ = Sν(uν

k′ , u−ν
k′ ) and pν

k′ = G∗ν(yν
k′ − yd + µν

k′).

The WCCQ is naturally satisfied by the uniform Slater condition.

Lemma 7.9. The uniform Slater condition from Assumption 7.7 implies the WCCQ from Definition
7.8.

Proof. We choose an arbitrary sequence uk ⇀ u∗ ∈ Uad such that for every k the control uν
k

solves the optimization problem (P) for given u−ν
k , i.e., uν

k ∈ Mν(u−ν
k ). Due to Assumption

7.7, we obtain existence of a sequence of adjoint states (pν
k)k and multipliers (µν

k)k such that
(yν

k , uν
k , pν

k , µν
k) satisfies the KKT system (7.7) for every k. It remains to show that a subsequence

of (µν
k)k converges weak-* inM(Ω). We use the uniform Slater condition from Assumption 7.7

to show L1(Ω)-boundedness of the corresponding sequence of the multipliers. Since uk ⇀ u∗ in
L2(Ω)N , we can conclude boundedness of (uk)k, (yk)k in L2(Ω)N . Now, recall that the definition
of the adjoint state yields the identity

S1
ν
∗
µν

k = B1
ν
∗
G∗ν µν

k = B1
ν
∗
G∗ν(y

ν
d − Sνuk) + B1

ν
∗

pν
k = S1

ν
∗
(yν

d − Sνuk) + B1
ν
∗

pν
k .

Further, the uniform Slater condition yields existence of a constant σν > 0 such that for every u−ν
k

of the sequence (uk)k there exists a corresponding Slater point ûν
k ∈ Uν

ad satisfying

Sν(ûν
k , u−ν

k )(x) ≤ ψν(x)− σν in Ω.

Hence, we obtain

σν‖µν
k‖L1(Ω) =

∫
Ω

σνµν
k dx ≤

∫
Ω

µν
k(ψ− Sν(ûν

k , u−ν
k ))dx

= 〈µν
k , ψ− yν

k〉M(Ω),C(Ω)︸ ︷︷ ︸
=0

+〈µν
k , Sν(uν

k , u−ν
k )− Sν(ûν

k , u−ν
k )〉M(Ω),C(Ω)

= (S1
ν
∗
µν

k , uν
k − ûν

k) = (S1
ν
∗
(yν

d − Sνuk) + B1
ν
∗

pν
k , uν

k − ûν
k)

≤ (S1
ν
∗
(yν

d − yν
k), uν

k − ûν
k) + αν(uν

k , ûν
k − uν

k)

≤ ‖uν
k − ûν

k‖L2(Ω)(c‖yν
d − yν

k‖L2(Ω) + αν‖uν
k‖L2(Ω)).

Dividing the above inequality by σν > 0 and exploiting boundedness of uk, yk as well as ûν
k ∈

Uν
ad, we obtain boundedness of (µν

k)k in L1(Ω). Hence, we can extract a weak-* convergent
subsequence µν

k′ ⇀
∗ µν∗ inM(Ω).

Existence of solutions of the reduced GNEP (P) can be shown by applying the Kakutani-Fan-
Glicksberg Theorem (Theorem 2.59). Defining

Φ : Uad ⇒ Uad, Φ(u) =
N

∏
ν=1

Mν(u−ν) (7.8)
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and following the argumentation from Section 2.8.1 we know that it is enough to check if graph(Φ)
is weakly sequentially closed.

Theorem 7.10 (Existence of solutions of the GNEP). Let the uniform Slater condition from
Assumption 7.7 be satisfied. Then the GNEP (P) admits a solution.

Proof. Let Φ be given as in (7.8). Due to the uniform Slater condition from Assumption 7.7 the set
Mν(u−ν) is nonempty for all u−ν ∈ U−ν

ad . Due to strong convexity for given u−ν the solution sets
Mν(u−ν) are single-valued. Hence, we know that Φ(u) is nonempty and convex. Let uk ⇀ u∗ in
Uad, wk ⇀ w∗ in Uad with wν

k ∈ Mν(u−ν
k ) for all ν. Hence, wk ∈ Φ(uk). We have to show that

these conditions imply w∗ ∈ Φ(u∗).

Let us fix an arbitrary ν. For each k we define L2(Ω)N 3 zk =
(

zν′
k

)N

ν′=1
via

zν′
k :=

{
wν

k if ν′ = ν,
uν′

k else.

Since uν′
k ⇀ u∗ν′ and wν

k ⇀ w∗ν in Uν
ad, zk is weakly convergent, i.e., zk ⇀ z∗ in Uad with

z∗ν′ :=

{
w∗ν if ν′ = ν,
u∗ν′ else.

By Lemma 7.9 the uniform Slater condition from Assumption 7.7 implies the WCCQ from Def-
inition 7.8. We consider the weakly convergent sequence (zk)k. Due to construction of this se-
quence we have zk := (wν

k , u−ν
k ) with wν

k ∈ Mν(u−ν
k ). Hence, zν

k ∈ Mν(z−ν
k ). Thus, by the

WCCQ we find sequences (µν
k)k in M(Ω) with weak-* convergent subsequences (µν

k′)k′ such
that (Sν(wν

k′ , u−ν
k′ ), wν

k′ , G∗ν(Sν(wν
k′ , u−ν

k′ ) − yν
d + µν

k′), µν
k′) satisfies the ν-th player’s optimality

system (7.7) for every k′

(S1
ν
∗
(Sν(wν

k′ , u−ν
k′ )− yν

d + µν
k′) + ανwν

k′ , v− wν
k′) ≥ 0 ∀v ∈ Uν

ad,
〈µν

k′ , Sν(wν
k′ , u−ν

k′ )− ψν〉M(Ω),C(Ω) = 0, Sν(wν
k′ , u−ν

k′ ) ≤ ψν, µν
k′ ≥ 0.

Due to Lemma 7.2 we have Sν(wν
k′ , u−ν

k′ )→ Sν(w∗ν, u∗−ν) in H1
0(Ω)∩C(Ω). Further, we know

S1
ν(wν

k′)→ S1
ν(w∗

ν) in H1
0(Ω) ∩ C(Ω). Exploiting the weak-* convergence µν

k′
∗
⇀ µ∗ν of (µν

k)k

inM(Ω) and the weak lower semicontinuity of αν(wν
k′ , wν

k′ − v), we can conclude that the limit
k′ → ∞ satisfies

(S1
ν
∗
(Sν(w∗

ν, u∗−ν)− yν
d + µ∗ν) + ανw∗ν, v− w∗ν) ≥ 0 ∀v ∈ Uν

ad,

〈µ∗ν, Sν(w∗
ν, u∗−ν)− ψν〉M(Ω),C(Ω) = 0, Sν(w∗

ν, u∗−ν) ≤ ψν, µ∗ν ≥ 0.

Hence, w∗ν ∈ Mν(u∗−ν). Thus, w∗ ∈ Φ(u∗) and we obtain existence of a solution of the
GNEP.

7.2 Connection to Weak Mosco-Continuity

Besides the WCCQ condition the uniform Slater condition implies the weak Mosco-continuity of
the feasible set Fad. Introduced by Mosco [96], the weak Mosco-continuity is until now the most
common assumption for showing existence of solutions or convergence of algorithms concerning
QVIs, see for instance [72,83,85]. In this section, we will illustrate the connection of the uniform
Slater condition from Assumption 7.7 and the weak Mosco-continuity of the feasible set Fad. This
shows even more that the uniform Slater condition is a reasonable assumption.
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Definition 7.11 (Mosco-convergence and weak Mosco-continuity). Let Q and Qk, k ∈ N be
subsets of a Banach space X. We say that (Qk)k Mosco-converges to Q, and write Qk

M→ Q, if
a) for every v ∈ Q, there is a sequence vk ∈ Qk such that vk → v in X, and
b) whenever vk ∈ Qk for all k and v is a weak limit point of vk, then v ∈ Q.

Let further Υ : X ⇒ X denote a set-valued mapping and let u ∈ X. We say that Υ is weakly

Mosco-continuous in u if uk ⇀ u implies Υ(uk)
M→ Υ(u). If this holds for every u ∈ X, we say

that Υ is weakly Mosco-continuous.

Besides the WCCQ condition, the uniform Slater condition also implies weak Mosco-continuity
of the set-valued mapping Fad in Uad, which strengthens the motivation to apply this condition. It
is straight forward to adapt the proof of [62, Thm. 1.55] in order to show that the uniform Slater
condition implies Robinson’s regularity condition.

Lemma 7.12. Let U, Y denote Banach spaces. Let C ⊂ U be a closed, convex set, K ⊂ Y be a
closed convex cone. If G : U2 → Y is differentiable and convex w.r.t. K in the first argument and
there exists û ∈ C such that

G(û, u) ∈ int(K) ∀u ∈ C

is satisfied, then Robinson’s regularity condition holds at all points v ∈ C such that G(v, u) ∈ K
with respect to the mapping G(·, u), i.e.,

0 ∈ int (G(v, u) + DvG(v, u)(C− v)− K) ∀v, u ∈ C with G(v, u) ∈ K. (7.9)

Based on Robinson’s condition it is possible to state weak Mosco-continuity of the feasible set in
the admissible set. The following result is based on [72, Cor. 3.5], where weak Mosco-continuity
in a feasible point has been investigated under the assumption that

0 ∈ int (G(ū, ū) + DvG(ū, ū)(C− ū)− K) (7.10)

is satisfied, i.e., Robinson’s condition is satisfied in a feasible point ū. The proof exploits that
(7.10) implies that (7.9) is satisfied [114, Prop. 3.21]. Thus, we arrive directly at the following
theorem.

Theorem 7.13. Let U, Y denote Banach spaces. Let C ⊂ U denote a closed, convex set and
K ⊂ Y a closed, convex cone. Let G : U2 → Y denote an operator that is linear, completely
continuous in X × U, and convex w.r.t. K in the first variable. Further, let there exist û ∈ C
such that for all u ∈ C the condition G(û, u) ∈ int(K) is satisfied. Then the set valued mapping
Υ : U ⇒ U

Υ(u) = {v ∈ C | G(v, u) ∈ K}
is weakly Mosco-continuous in C.

We can now apply Theorem 7.13 to the set-valued mapping Fad from (7.5).

Corollary 7.14. Let the uniform Slater condition from Assumption 7.7 be satisfied. Then the set-
valued mapping Fad : L2(Ω)N ⇒ L2(Ω)N from (7.5) is weakly Mosco-continous in all u ∈ Uad.

Proof. We set U := L2(Ω)N , Y := (H1
0(Ω) ∩ C(Ω))N and define the operator G via

G : U2 → Y, G(v, u) =


S1(v1, u−1)− ψ1

S2(v2, u−2)− ψ2
...

SN(vN , u−N)− ψN

 .
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Using this representation we can rewrite Fad as Fad(u) = {v ∈ Uad | G(v, u) ∈ K}, where K
denotes the cone of non-positive continuous functions which is closed and convex. Thus, convexity
with respect to K is the standard definition of convexity. Further, the set Uad ⊂ L2(Ω)N is
a closed convex set. From Lemma 7.2 we know that operator G is linear, hence convex, and
compact. Last, the uniform Slater condition requires û ∈ Uad such that for all u ∈ Uad the
condition G(û, u) ∈ int(K) is satisfied. Thus, all assumptions of Lemma 7.13 are satisfied and
we immediately obtain the weak Mosco-continuity of Fad in all u ∈ Uad.

7.3 The Augmented NEP

We define a class of parameter dependent Nash equilibrium problems (NEPs) by augmenting the
pointwise constraint on the state variable yν. For every player ν this leads to a component problem
given by

minimize
uν

ρ∈L2(Ω)
f ν
AL(uρ, µν, ρν) := f ν(uρ) +

1
2ρν

∥∥(µν + ρν(Sνuρ − ψν))+
∥∥2

L2(Ω)
(PAL)

subject to uν
ρ ∈ Uν

ad,

which is a Nash equilibrium problem. We will refer to this kind of problem as the augmented
NEP and call ū admissible if ūρ ∈ Uad. Solutions of the augmented NEP (PAL) are characterized
as for the jointly convex case, see Definition 6.6. The existence of solutions follows from the
Kakutani-Fan-Glicksberg Theorem.

Theorem 7.15 (Existence of solutions of the augmented NEP). The augmented NEP (PAL)
admits a Nash equilibrium for all ρ := (ρ1, . . . , ρN) and for all µ ∈ L2(Ω)N .

Proof. Taking into account the different solution operators Sν the proof follows exactly [59, The-
orem 2.3].

Since Uν
ad is convex, one can easily derive first-order necessary optimality conditions for the ν-th

problem for any fixed ū−ν
ρ ∈ L2(Ω)N−1. Note, that these optimality conditions do not require the

fulfillment of any constraint qualification.

Lemma 7.16. Let ūρ ∈ L2(Ω)N denote a solution of the augmented NEP (PAL) and ȳρ ∈
(H1

0(Ω) ∩ C(Ω))N the corresponding state. Then there exist unique adjoint states p̄ν
ρ ∈ H1

0(Ω)
such that for all ν the following system is satisfied

Aνȳν
ρ = Bū in Ω,

ȳν
ρ = 0 on Γ,

(7.11a)

A∗ν p̄ν
ρ = ȳν

ρ − yν
d + µ̄ν

ρ in Ω,

p̄ν
ρ = 0 on Γ,

(7.11b)

(B1
ν
∗

p̄ν
ρ + ανūν

ρ, vν − ūν
ρ) ≥ 0 ∀vν ∈ Uν

ad, (7.11c)

µ̄ν
ρ =

(
µν + ρν(ȳν

ρ − ψν)
)
+

. (7.11d)

Due to the convexity of each player’s problem these optimality conditions are also sufficient.

7.4 Convergence Analysis

From now on let (PAL)k denote the augmented NEP (PAL) for given penalty parameters ρν := ρν,k
and µν := µν

k . Its solution are given by ūν
k with corresponding states ȳk and adjoint states p̄ν

k .
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7.4.1 The Augmented Lagrangian Method

We introduce a modified version of the augmented Lagrangian method that has been presented in
Chapter 5. The algorithm differs from the classical augmented Lagrangian method, by updating
the Lagrange multipliers only if the quantity

∑N
ν=1 Rν

k , Rν
k :=

∥∥(ȳν
k − ψν)+

∥∥
C(Ω)

+ (µ̄ν
k , ψν − ȳν

k)+

shows sufficient decrease. This term measure the maximal constraint violation and the fulfilment
of the complementarity condition. The augmented Lagrangian algorithm is given in Algorithm
7.1.

Algorithm 7.1 Augmented Lagrangian Algorithm for (P)

Let (ȳ0, ū0, p̄0) ∈ (H1
0(Ω) ∩ C(Ω))N × L2(Ω)N ×W1,s

0 (Ω)N , ρν,1 > 0 and 0 ≤ µν
1 ∈ L2(Ω)

be given. Choose θ > 1, τ ∈ (0, 1), ε ≥ 0, Rν,+
0 � 1. Set k := 1 and n := 1.

1: Solve the KKT system (7.11) corresponding to (PAL)k and obtain (ȳk, ūk, p̄k).
2: For all ν set µ̄ν

k :=
(
µν

k + ρν,k(ȳν
k − ψν)

)
+

.
3: For all ν compute Rν

k :=
∥∥(ȳν

k − ψν)+
∥∥

C(Ω̄)
+ (µ̄ν

k , ψν − ȳν
k)+.

4: If
N

∑
ν=1

Rν
k ≤ τ

N

∑
ν=1

Rν,+
n−1,

then the step k is successful. For all ν set µν
k+1 := µ̄ν

k , ρν,k+1 := ρν,k and define for all ν

(yν,+
n , uν,+

n , pν,+
n ) := (ȳν

k , ūν
k , p̄ν

k), µν,+
n := µν

k+1, Rν,+
n := Rν

k .

Set n := n + 1.
5: Otherwise the step k is not successful. Set for all ν

µν
k+1 := µν

k , ρν,k+1 := θρν,k.

6: If max
ν

Rν,+
n−1 ≤ ε then stop, otherwise set k := k + 1 and go to step 1.

7.4.2 Successful Steps and Feasibility of Limit Points

We have already faced in Chapter 5 that the question of convergence of the algorithm is tightly
linked to the question of feasibility of limit points of the iterates (ūk)k and the occurrence of
infinitely many successful steps.

Theorem 7.17. Let (ūk)k denote the sequence that is generated by Algorithm 7.1. Then (ūk)k has
a feasible weak limit point if and only if infinitely many steps in the execution of Algorithm 7.1
were successful.

Proof. The proof is inspired from Theorem 5.9. First, suppose that infinitely many steps were suc-
cessful. Let (y+n , u+

n , p+n , µ+
n )n denote the sequence of successful iterates generated by Algorithm

7.1. By the boundedness of (u+
n )n ∈ Uad we get existence of a subsequence uν,+

n′ ⇀ u∗ν in Uad.
The compactness of the solution operator (Lemma 7.2) yields yν,+

n′ → y∗ν in H1
0(Ω)∩C(Ω). Due

to the definition of successful steps, we have that ∑N
ν=1
∥∥(yν,+

n − ψν)+
∥∥

C(Ω)
≤ ∑N

ν=1 Rν,+
n → 0

and u∗ is a feasible strategy of (P).
Suppose now that only finitely many steps were successful. Let m be the largest index of a suc-
cessful step. Hence, all steps k with k > m are not successful. According to Algorithm 7.1 it
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holds µν
k = µν

m for all ν and all k > m. Like in the proof of Theorem 5.9 we obtain for all ν

lim sup
k→∞

(µ̄ν
k , ψν − ȳν

k)+ ≤ 0.

The algorithm only makes l ≥ 0 successful steps, which implies ∑N
ν=1 Rν

k > τ ∑N
ν=1 Rν,+

l for all
k > m. This proves

N

∑
ν=1

lim inf
k→∞

‖(ȳν
k − ψν)+‖C(Ω) =

N

∑
ν=1

lim inf
k→∞

(
Rν

k − (µ̄ν
k , ψν − ȳν

k)+
)

≥ τ
N

∑
ν=1

Rν,+
l −

N

∑
ν=1

lim sup
k→∞

(µ̄ν
k , ψν − ȳν

k)+ ≥
N

∑
ν=1

τRν,+
l > 0.

Let u∗ be the weak limit of the subsequence (ūk′)k′ with associated states y∗ν. Then, arguing as
in the first part of the proof, we have

N

∑
ν=1

∥∥(y∗ν − ψν)+
∥∥

C(Ω)
=

N

∑
ν=1

lim
k′→∞

‖(ȳν
k′ − ψν)+‖C(Ω) ≥ τ

N

∑
ν=1

Rν,+
l > 0,

and u∗ is not feasible.

The proof of the previous theorem shows that if the algorithm performs infinitely many successful
steps then every limit point of (u+

n )n is a feasible strategy for the original problem. In case that
only finitely many steps are successful, we have the following result.

Theorem 7.18. Let us assume that Algorithm 7.1 does a finite number of successful steps only.
Let (ūk)k denote the sequence that is generated by the algorithm and let u∗ be a weak limit point
of (ūk)k. Then u∗ is infeasible for (P) and u∗ν is a solution to the minimization problem

min
uν∈Uν

ad

∥∥∥(Sν(uν, u∗−ν)− ψν)+
∥∥∥2

L2(Ω)
. (7.12)

Proof. The infeasibility of u∗ is a consequence of Theorem 7.17. Let m be the index of the
last successful step. Dividing each player’s first-order optimality condition of the augmented
Lagrangian NEP by ρν,k and concatenating all inequalities yields

N

∑
ν=1

(
S1

ν(ū
ν
k)
∗
(

Sν(ūν
k , ū−ν

k )− yν
d

ρν,k
+

(
µm

ρν,k
+ Sν(ūν

k , ū−ν
k )− ψν

)
+

)
+ αν

ūν
k

ρν,k
, vν − ūν

k

)
≥ 0

for all vν ∈ Uν
ad. Taking the limit k→ ∞ we obtain

N

∑
ν=1

(S1
ν(u
∗ν)∗(S(u∗)− ψ)+), vν − u∗ν) ≥ 0 ∀vν ∈ Uν

ad.

Exploiting Lemma 2.16 we obtain

N

∑
ν=1

∥∥∥(Sν(vν, u∗−ν)− ψν)+
∥∥∥2

L2(Ω)
−
∥∥∥(Sν(u∗

ν, u∗−ν)− ψν)+
∥∥∥2

L2(Ω)

≥
N

∑
ν=1

(S1
ν(u
∗ν)∗(S(u∗)− ψ)+), vν − u∗ν) ≥ 0 ∀vν ∈ Uν

ad.

Inserting the points v := (vν, u∗−ν), where vν ∈ Uν
ad into the inequality above yields∥∥∥(Sν(u∗

ν, u∗−ν)− ψν)+
∥∥∥2

L2(Ω)
≤
∥∥∥(Sν(vν, u∗−ν)− ψν)+

∥∥∥2

L2(Ω)
∀vν ∈ Uν

ad.

Thus, u∗ν is the solution of the minimization problem (7.12).
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The remaining part of this section is devoted to the verification that the uniform Slater condition
from Assumption 7.7 guarantees an infinite number of successful steps of Algorithm 7.1. We need
the following auxiliary result that ensures that the Slater condition from Assumption 7.5 transfers
to the elements of a weakly convergent sequence (uk)k provided that k is sufficiently large.

Lemma 7.19. Let uk ⇀ u∗ in L2(Ω)N and let the weak limit u∗ satisfy the Slater condition (7.6).
Then there exists N0 ∈N such that for all k > N0, uk satisfies the Slater condition, i.e.,

Sν(ûν, u−ν
k )(x) ≤ ψν(x)− σν

2
in Ω,

where ûν denotes the Slater point from Assumption 7.5 with corresponding σν.

Proof. By Assumption we know that u−ν
k ⇀ u∗−ν in L2(Ω)

N−1. Hence, with Lemma 7.2 we
have S2

ν(u
−ν
k )→ S2

ν(u∗
−ν) in C(Ω) and the Slater condition implies

Sν(ûν, u−ν
k ) = S1

ν(û
ν) + S2

ν(u
∗−ν) + S2

ν(u
−ν
k )− S2

ν(u
∗−ν)

≤ Sν(ûν, u∗−ν) +
σν

2

≤ ψν −
σν

2
,

provided k is large enough.

Lemma 7.20. Let the uniform Slater condition from Assumption 7.7 be satisfied. Let 0 ≤ µν ∈
L2(Ω) be given as a fixed function and let ρν,k → ∞. Let (ūk)k denote the corresponding sequence
of solutions of the KKT system (7.11) with a weak convergent subsequence uk′ ⇀ u∗. Then

1
ρν,k′
‖µ̄ν

k′‖
2
L2(Ω) = ρν,k′

∥∥∥∥( µν

ρν,k′
+ Sν(ūk′)− ψν)+

∥∥∥∥2

L2(Ω)

is for all ν uniformly bounded.

Proof. The uniform Slater condition obviously yields that the weak limit u∗ satisfies (7.6). By the
definition of a solution of the augmented NEP, we obtain

0 ≤ 1
2ρν,k′

‖µ̄ν
k′‖

2 ≤ f ν
AL(ūk′ , µν, ρν) ≤ f ν

AL(û
ν, ū−ν

k′ , µν, ρν)

= f ν(ûν, ū−ν
k′ ) +

1
2ρν,k′

∥∥(µν + ρν,k′(Sν(ûν, ū−ν
k′ )− ψν))+

∥∥2
L2(Ω)

. (7.13)

From Lemma 7.19 we obtain for all k′ sufficiently large Sν(ûν, ū−ν
k′ )− ψν ≤ − σν

2 . Hence, for all
k′ sufficiently large we can estimate

1
2ρν,k′

∥∥(µν + ρν,k′(Sν(ûν, ū−ν
k′ )− ψν))+

∥∥2
L2(Ω)

≤ 1
2ρν,k′

‖µν‖2
L2(Ω) .

Taking the limit in (7.13) we arrive at

0 ≤ lim
k′→∞

1
2ρν,k′

‖µ̄ν
k′‖

2 ≤ f ν(ûν, u∗−ν).

Since uν, u∗−ν in Uad, U−ν
ad , respectively, the claim follows.

We are now ready to prove that the uniform Slater condition implies that Algorithm 7.1 does an
infinite number of successful steps.
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Theorem 7.21. Assume that Assumption 7.7 is satisfied. Then the sequence (ūk)k has a feasible
weak limit point and Algorithm 7.1 makes infinitely many successful steps.

Proof. First, let (ρk)k be bounded. This results in a finite number of not successful steps, which
lets the tails of sequences (ūk)k and (u+

n )n coincide. By Theorem 7.17 we obtain that all weak
limit points of (u+

n )n and thus of (ūk)k are feasible. Suppose now that ρk → ∞. According to
the construction of Algorithm 7.1 it is in this scenario not possible to determine if an infinite or
finite number of steps are successful. However, if an infinite number of steps is successful, we can
conclude that the sequence (u+

n )n and thus (ūk)k admits a feasible weak limit point by Theorem
7.17. Let us now assume that only a finite number of steps is successful. Then, we find an index
m that denotes the last successful step and we know that for all k > m it holds µν

k = µν
m. Further,

we can extract a subsequence ūk′ ⇀ u∗. By Lemma 7.20, for all k′ > m the identity

1
ρν,k′
‖µ̄ν

k′‖
2
L2(Ω) = ρν,k′

∥∥∥∥∥
(

µν
m

ρν,k′
+ ȳν

k′ − ψν

)
+

∥∥∥∥∥
2

L2(Ω)

is bounded. Dividing by ρν,k′ and taking the limit k′ → ∞ we can argue that u∗ is feasible.
However, by Theorem 7.17 this yields a contradiction. Thus an infinite number of successful steps
is done and we can argue as before that (ūk)k admits a feasible weak limit point.

7.4.3 Convergence to a Generalized Nash Equilibrium

From now on, we will always assume that Assumption 7.7 is satisfied. Thus, the algorithm makes
infinitely many successful steps and every weak limit point of (u+

n )n is feasible. We recall an
estimate for the second term of the update rule, see Lemma 3.13, which simply results from the
structure of the update rule.

Lemma 7.22. Let yν,+
n , µν,+

n , ν = 1, ..., N be given as defined in Algorithm 7.1. Then it holds

(µν,+
n , ψν − yν,+

n )+ ≤ τn−1
(∥∥(yν,+

1 − ψν)+
∥∥

C(Ω)
+
∥∥µν,+

1

∥∥
L2(Ω)

∥∥(ψν − yν,+
1 )+

∥∥
L2(Ω)

)
.

With the help of Lemma 7.22, L1(Ω)-boundedness of the multipliers can now be proven.

Lemma 7.23 (Boundedness of multipliers). Let (y+n , u+
n , p+n , µ+

n )n denote the sequence that is
generated by Algorithm 7.1. Let (u+

n′)n′ denote a subsequence of (u+
n )n that converges weakly

to u∗. If u∗ satisfies the Slater condition (7.6), then there exists a constant C > 0, which is
independent of n, such that the corresponding sequences of multipliers (µν,+

n′ )n′ satisfy∥∥µν,+
n′
∥∥

L1(Ω)
≤ C.

Proof. Consider the subsequence u+
n′ ⇀ u∗ in L2(Ω)N with corresponding multiplier µ+

n′ . Due
to the Slater condition (7.6) and Lemma 7.19, we obtain for all n′ sufficiently large

σν

2

∥∥µν,+
n′
∥∥

L1(Ω)
=
∫

Ω

σν

2
µν,+

n′ dx ≤
∫

Ω
µν,+

n′ (ψν − Sν(ûν, u−ν,+
n′ ))dx

=
∫

Ω
µν,+

n′ (ψν − yν,+
n′ )dx +

∫
Ω

µν,+
n′ (yν,+

n′ − Sν(ûν, u−ν,+
n′ ))dx

≤ (µν,+
n′ , ψν − yν,+

n′ )+ + (µν,+
n′ , yν,+

n′ − Sν(ûν, u−ν,+
n′ )).

The first term can be estimated via Lemma 7.22. Exploiting the linearity of Sν and substituting
the definition of the adjoint state

B1
ν
∗

pν,+
n′ = S1

ν
∗
(yν,+

n′ − yν
d + µν,+

n′ ),
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the second term simplifies to(
µν,+

n′ , yν,+
n′ − Sν(ûν, u−ν,+

n′ )
)
=
(
µν,+

n′ , Sν

[
(uν,+

n′ , u−ν,+
n )− (ûν, u−ν,+

n′ )
])

=
(

µν,+
n′ , S1

ν(u
ν,+
n′ − ûν)

)
=
(

S1
ν
∗
µν,+

n′ , uν,+
n′ − ûν

)
=
(

B1
ν
∗

pν,+
n − S1

ν
∗
(yν,+

n − yν
d), uν,+

n′ − ûν
)

≤
(
αuν,+

n′ , ûν − uν,+
n′
)
−
(

y+n − yν
d, S1

ν(u
ν,+
n′ − ûν)

)
.

All together, we obtain∥∥µν,+
n′
∥∥

L1(Ω)
≤ 2

σν

(
(µν,+

n′ , ψν − yν,+
n′ )+ +

(
αuν,+

n′ , ûν − uν,+
n′
)
−
(

y+n − yν
d, S1

ν(u
ν,+
n′ − ûν)

))
,

which is bounded due to Lemma 7.22, ûν, uν,+
n′ ∈ Uν

ad and Lemma 7.2.

This immediately leads us to our final convergence result.

Theorem 7.24 (Convergence of the algorithm). Let ū denote a generalized Nash equilibrium of
the GNEP (P) with corresponding state ȳ, adjoint state p̄ and multiplier µ̄. Let

(y+n , u+
n , p+n , µ+

n )n ∈ (H1
0(Ω) ∩ C(Ω))N × L2(Ω)N ×W1,s

0 (Ω)N ×M(Ω)
N

,

s ∈ [1, d/(d − 1)) denote the sequence that is generated by Algorithm 7.1 under Assumption
7.7. Then every weak limit point of (u+

n )n is a solution of the GNEP and there exist subsequences
(y+n′ , u+

n′ , p+n′ , µ+
n′)n′ of (y+n , u+

n , p+n , µ+
n )n such that

u+
n′ → ū in L2(Ω)N , y+n′ → ȳ in (H1

0(Ω) ∩ C(Ω))N ,

p+n′ ⇀ p̄ in W1,s
0 (Ω)N , µ+

n′ ⇀
∗ µ̄ inM(Ω)

N
.

Proof. With the boundedness of Uad we obtain u+
n′ ⇀ u∗ in L2(Ω)N and y+n′ → y∗ in H1

0(Ω) ∩
C(Ω)

N
. Hence, (7.7a) is satisfied. Since the uniform Slater condition implies that the Slater

condition (7.6) is satisfied in u∗, we obtain L1(Ω)-boundedness of (µν,+
n′ )n′ by Lemma 7.23.

Hence, we can extract weak-* convergent subsequences inM(Ω) denoted w.l.o.g. by µν,+
n′ ⇀∗

µ∗ν. As we know from [26, Theorem 4] that∥∥pν,+
n
∥∥

W1,s
0 (Ω)

≤ c
(∥∥yν,+

n
∥∥

L2(Ω)
+ ‖yν

d‖L2(Ω) +
∥∥µν,+

n
∥∥
M(Ω)

)
is satisfied, Lemma 7.23 yields a suitable upper bound and the sequence (pν,+

n′ )n′ is bounded in
W1,s

0 (Ω), s ∈ [1, d/(d− 1)) and we obtain w.l.o.g. a weakly convergent subsequence p+n′ ⇀ p∗

in W1,s
0 (Ω)N . By the Rellich-Kondrachov embedding theorem we get strong convergence p+n′ →

p∗ in L2(Ω)N . It can be shown as in [61, Lemma 2.6] that p∗ν satisfies the respective adjoint
equations (7.7b). Furthermore, for every ν we get with v ∈ Uν

ad

0 ≤ lim inf
n→∞

(B1
ν
∗

pν,+
n′ + ανuν,+

n′ , v− uν,+
n′ ) ≤ (B1

ν
∗

p∗ν, v− u∗ν)− lim inf
k→∞

(ανuν,+
n′ , uν,+

n′ − v)

≤ (B1
ν
∗

p∗ν + ανu∗ν, v− u∗ν),

where we exploited the strong convergence pν,+
n′ → p∗ν in L2(Ω) and the weak lower semiconti-

nuity of (ανuν,+
n′ , v− uν,+

n′ ), v ∈ L2(Ω). Hence, the variational inequality (7.7c) is satisfied. By
construction of the update of the Lagrange multiplier it is easy to show that the positivity property
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〈µ∗ν, ϕ〉 ≥ 0 ∀ϕ ∈ C(Ω) with ϕ ≥ 0 is satisfied for all ν, see Lemma 3.16. Due to the structure
of the update rule we have

lim
n′→∞

N

∑
ν=1

Rν,+
n′ = lim

n′→∞

N

∑
ν=1

(∥∥(yν,+
n′ − ψν)+

∥∥
C(Ω)

+ (µν,+
n′ , ψν − yν,+

n′ )+
)
= 0.

Hence, y∗ν ≤ ψν and consequently 〈µ∗ν, ψν − y∗ν〉M(Ω),C(Ω) ≥ 0. Since (µ∗ν, ψν − y∗ν)+ = 0
we obtain 〈µ∗ν, ψν − y∗ν〉M(Ω),C(Ω) = 0. Thus, (7.7d) is satisfied and (y∗, u∗, p∗, µ∗) solves
the optimality system (7.7). Due to convexity and differentiability properties of each player’s cost
functional (y∗, u∗, p∗, µ∗) is also a solution (ȳ, ū, p̄, µ̄) of the GNEP (P). Adding the variational
inequalities (7.7c) and (6.5c) and applying the definition of the adjoint states p̄ν, pν,+

n′ , we obtain
for all ν

αν

∥∥ūν − uν,+
n′
∥∥2

L2(Ω)
≤ (B1

ν
∗
( p̄ν − pν,+

n′ ), uν,+
n′ − ūν).

Due to the strong convergence of pν,+
n′ → p̄ν in L2(Ω) and the weak convergence uν,+

n′ ⇀ ūν in
L2(Ω), we finally obtain strong convergence of u+

n′ → ū in L2(Ω)N .

7.5 Numerical Examples

7.5.1 Solution of the Subproblem

Let us briefly comment on the solution of the arising augmented Lagrangian subproblems. These
problems are solved by a semi-smooth Newton. We define the sets

Aν,a
k :=

{
x ∈ Ω : − 1

αν
B1

ν
∗

pν(uk) ≤ uν
a

}
, Aν,b

k :=
{

x ∈ Ω : − 1
αν

B1
ν
∗

pν(uk) ≥ uν
b

}
,

(7.14)

Iν
k :=

{
x ∈ Ω : − 1

αν
B1

ν
∗

pν(uk) ∈ (uν
a , uν

b)

}
,Yν

k := {x ∈ Ω : (µν + ρν(yν
k − ψν))(x) > 0} .

Thus, solving the KKT system (7.11) in step 1 of the outer loop of Algorithm 7.1 results in Al-
gorithm 7.2. Here, Y denotes the state space which corresponds to the underlying PDE, i.e.,
Y := H1

0(Ω) ∩ C(Ω) for a linear elliptic PDE with homogeneous Dirichlet boundary conditions.
Let us justify the applied stopping criterion.

Lemma 7.25. The stopping criterion from Algorithm 7.2 yields a point (yk−1, uk−1, pk−1) that
solves the KKT system (7.11) for given µν ∈ L2(Ω) and penalty parameters ρν up to the precision
ε̃.

Proof. The first equation of the system (7.15) coincides with the state equation (7.11a) and can
be solved exactly. Further, the equation uν

k−1 − PUν
ad

(
− 1

αν
B1

ν
∗pν

k−1

)
= 0 is a rewritten form of

the variational inequality (7.11c). Moreover, we know that (yk−1, uk−1, pk−1) solves the second
equation of (7.15) for χYν

k−2
. Hence, we obtain with µν

k := µν + ρν(yν
k − ψν)

||A∗ν pν
k−1 − yν

k−1 + yν
d − χYν

k−1
µν

k−1||L2(Ω)

≤
∥∥∥A∗ν pν

k−1 − yν
k−1 + yν

d − χYν
k−2

µν
k−1

∥∥∥
L2(Ω)︸ ︷︷ ︸

=0

+
∥∥∥χYν

k−2
µν

k−1 − χYν
k−1

µν
k−1

∥∥∥
L2(Ω)

≤ ε̃.

Thanks to Lemma 7.25 it is reasonable to choose max
ν

Rν,+
n ≤ ε, ε ≥ ε̃, as a stopping criterion

for the outer loop of our algorithm. The implementation has been done in Fenics [86] using the
DOLFIN Python interface [87].
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Algorithm 7.2 Algorithm for solving the subproblem of (Pk
AL)

1: Set k := 0, choose (y0, u0, p0) ∈ YN × L2(Ω)N × L2(Ω)N .
2: repeat
3: Set Aν,a

k ,Aν,b
k , Iν

k and Yν
k as defined in (7.14).

4: Solve for (yk+1, uk+1, pk+1) ∈ YN × L2(Ω)
N × L2(Ω)N by solving

Aνyν
k+1 = Buk+1 in Ω,

A∗ν pν
k+1 = yν

k+1 − yν
d + χYν

k
(µν + ρν(yν

k+1 − ψν)) in Ω,

uν
k+1 + χIν

k

(
1
αν

B1
ν
∗

pν
k+1

)
= χAν,a

k
uν

a + χAν,b
k

uν
b .

(7.15)

5: Set k := k + 1
6: until max

ν

∥∥∥uν
k−1 − PUν

ad

(
− 1

αν
B1

ν
∗pν

k−1

)∥∥∥
L2(Ω)

≤ ε̃

and max
ν

∥∥∥χYν
k−2
− χYν

k−1
(µν + ρν(yν

k−1 − ψν))
∥∥∥

L2(Ω)
≤ ε̃.

7.5.2 Example 1 - Four Player Problem

We start with a generalized Nash equilibrium problem with four players. Let Ω := (0, 1)2 with
the subsets Ων ⊂ Ω

Ω1 := (0, 0.5)× (0, 0.5), Ω2 := (0.5, 1)× (0, 0.5),
Ω3 := (0, 0.5)× (0.5, 1), Ω4 := (0.5, 1)× (0.5, 1).

The state equation is given by

−∆yν = uν +
N

∑
j=1,j 6=ν

χΩν
uj in Ω, yν = 0 on Γ.

Thus, B1
ν := Id for all ν and B2

ν,j := χΩν
. We define z1 := (0.25, 0.75, 0.25, 0.75) and z2 :=

(0.25, 0.25, 0.75, 0.75). Further, we set

ξν(x1, x2) := 500 max(0, 4(0.25−max(|x1 − z1
ν|, |x2 − z2

ν|))),
y1

d := ξ1 − ξ4, y2
d := ξ2 − ξ3, y3

d := ξ3 − ξ2, y4
d := ξ4 − ξ1.

The state constraints ψν are given by

ψν := −max(0,−(5(x1 − z1
ν))

2 − 5(x2 − z2
ν))

2 + 0.4 + 0.1ν).

We set the control constraints equal for all players, namely uν
a := −40 and uν

b := 40. For
all ν the Tikhonov parameters are given by αν := 1.0. The algorithm has been initialized with
(y0, u0, p0, µ1) equal to zero. Further, we chose the following parameters ρν

0 := 1.0, τ := 0.1,
and γ := 10. We choose ε̃ := 10−6 and stop the algorithm as soon as the following stopping
criterion is satisfied

max
ν

Rν,+
n := max

ν

(∥∥(yν,+
n − ψν)+

∥∥
C(Ω)

+ (µν,+
n , ψν − yν,+

n )+
)
≤ 10−6.

We divide each axis of the the unit square in n intervals. The Figures 7.1-7.3 depict the computed
results for n = 256 which corresponds to a mesh size h ≈ 5.5 · 10−3 and to an approximate
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number of 6.6 · 104 degrees of freedom. Table 7.1 denotes some iteration numbers for the outer
and inner loop as well as the maximal value of the penalty parameter ρν for given n. Note, that
the number of inner iterations has been accumulated over all outer iterations.

Figure 7.1: (Example 1) Computed optimal controls ū1
h, ū2

h, ū3
h, ū4

h.

Figure 7.2: (Example 1) Sum of state constraints ψν and sum of computed multipliers µ̄ν
h.

n 8 16 32 64 128 256
outer it 12 13 13 17 17 18
inner it 17 24 29 43 46 59
ρmax 106 107 108 1010 1011 1012

Table 7.1: (Example 1) Iteration numbers.
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Figure 7.3: (Example 1) Computed states ȳ1
h, ȳ2

h, ȳ3
h, ȳ4

h.



CHAPTER 8

NON-REDUCIBLE MULTI-PLAYER OPTIMAL
CONTROL PROBLEMS

This chapter considers a special class of Nash equilibrium problems that can not be reduced to
a single-player control problem. Let Ω ⊆ Rd, d ∈ {1, 2, 3} denote an open bounded domain.
We investigate the generalized Nash equilibrium, where each player wants to solve the following
optimal control problem

minimize
uν∈L2(Ω)

1
2
‖CνSu− yν

d‖
2
L2(Ω) +

α

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad, g(u) ∈ K,

(8.1)

where the operator S : L2(Ω) → Y denotes the solution operator of an underlying linear elliptic
partial differential equation with a suitable Banach space Y. Further, Cν ∈ L(Y, L2(Ω)) and
g ∈ L(L2(Ω)N , Y) are given linear and continuous mappings, yν

d ∈ L2(Ω) and α a non-negative
regularization parameter. Moreover, the set Uν

ad ⊂ L2(Ω) is bounded, closed, convex and K ⊆ Y
is a closed, convex cone. The joint constraint g(u) ∈ K coincides for each player, which makes
the problem a so-called jointly convex GNEP.
The investigation of multi-player control problems in the function space setting often considers the
case Cν := C ∈ L(Y, L2(Ω)). In this setting existence and uniqueness of solution is well-known
and can be derived by fixed point theorems [49], the theory of strongly monotone variational
inequalities [78, Chap. III], or, by reducing the problem to a single convex PDE constrained
optimization problem, by standard arguments from optimization theory [60, Prop. 3.10]. However,
for varying Cν ∈ L(Y, L2(Ω)), problem (8.1) cannot be reduced to a single control problem and it
can not expected in general that the resulting first-order optimality system is a (strongly) monotone
VI. Thus, uniqueness of solutions is not clear. The main aim of this chapter is to find a sufficient
condition on the regularization parameter α, that proves the uniqueness of solutions.
Assuming K to be the cone of non-positive continuous functions, solving the GNEP (8.1) via an
augmented Lagrangian method requires in each iteration the solution of the following augmented
Nash equilibrium problem

minimize
uν∈L2(Ω)

1
2
‖CνSu− yν

d‖
2
L2(Ω) +

α

2
‖uν‖2

L2(Ω) +
1

2ρ
‖(µ + ρg(u))+‖2

L2(Ω)

subject to uν ∈ Uν
ad.

(8.2)

Nash equilibrium problems of this type can be solved by applying a semi-smooth Newton method.
Applying the same condition on α as needed for the uniqueness of solutions, we derive superlinear
convergence for the associated Newton method and the equivalent active-set method.
The outline of this chapter is as follows: In Section 8.1, we give a precise formulation of the

129
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problem setting and collect some results about reducible problems. Further, we introduce the
reader to non-reducible NEPs. Here, our main results state existence and uniqueness of solutions,
see Theorem 8.4 and Theorem 8.7. In Section 8.2, we introduce the semi-smooth Newton method
and contribute Lemma 8.9 that proves semi-smoothness of u 7→ max(a, u) from Lq(Ω) to Lp(Ω)
even if a ∈ Lr(Ω), with 1 ≤ p ≤ r < q ≤ ∞. In Section 8.3, we apply the semi-smooth Newton
method to the augmented NEP (8.2), state a convergence result and give a detailed description of
the implementation applying a finite element discretization. The equivalence of the semi-smooth
Newton method and the active-set method is treated in Section 8.4. To illustrate our theoretical
findings and to compare the two presented methods we study numerical examples in detail. All
results of this chapter can be found in the publication [76].

8.1 Uniqueness of Variational Equlibria

In this section, we will introduce the reader to the non-reducible GNEP. Moreover, we will derive
a sufficient condition that allows us to prove existence and uniqueness of solutions.

8.1.1 Problem Setting

Throughout this chapter let Ω ⊂ Rn, n ∈ {1, 2, 3} denote an open bounded domain with bound-
ary ∂Ω. We assume that either (i) Ω is a convex polyhedron or (ii) ∂Ω is a C1,1-boundary. The
operator A is given as in Assumption 2.19. We consider the the linear partial differential equation

Ay =
N

∑
ν=1

uν in Ω,

y = 0 on ∂Ω,

(8.3)

where uν ∈ L2(Ω). By well known regularity results [50, Thm. 2.2.2.5, Thm. 3.2.1.2], we know
that for each u ∈ L2(Ω)N the weak solution y of (8.3) satisfies y ∈ H2(Ω) ∩ H1

0(Ω). The
Sobolev embedding theorem [1, Thm. 5.4] yields the continuous embedding H2(Ω) ↪→ C(Ω).
We introduce the solution operator

S : u 7→ y = A−1
N

∑
ν=1

uν, S : H−1(Ω)N → H1
0(Ω)

and set Y := H1
0(Ω). Since for n = 1 we have the embedding H1

0(Ω) ↪→ C(Ω), for n = 2 it
holds H1(Ω) ↪→ Lq(Ω) with 1 ≤ q < ∞ and for n = 3 we obtain H1(Ω) ↪→ L6(Ω), we can
consider S as an operator that maps into Lq(Ω), q > 2. Due to the linearity of A−1 we have

Su =
N

∑
ν=1

A−1uν :=
N

∑
ν=1

Sνuν, Sν : H−1(Ω)→ H1
0(Ω) ↪→ Lq(Ω), Sνuν := A−1uν.

8.1.2 The Reducible Case

We start with the generalized Nash equilibrium problem: Here, each player aims at solving the
optimal control problem

minimize
uν∈L2(Ω)

f ν(u) :=
1
2
‖CSu− yν

d‖
2
L2(Ω) +

αν

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad, g(uν, u−ν) ∈ K,

(8.4)
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We define the feasible set Fad := {u ∈ Uad, g(u) ∈ K}, where Uad := U1
ad × . . . UN

ad. Clearly,
the set Fad is closed, bounded and convex, hence weakly compact. Problems of this type can be
reduced to a single convex minimization problem.

Lemma 8.1. The GNEP (8.4) admits a unique variational equilibrium, which is the unique solu-
tion of the single PDE constrained convex optimization problem

minimize
u∈L2(Ω)N

f̂ (u) :=
1
2
‖CSu‖2

L2(Ω) +
N

∑
ν=1

(
−(uν, S∗νC∗yν

d) +
αν

2
‖uν‖2

L2(Ω)

)
subject to u ∈ Fad.

(8.5)

Proof. This can be proven analogously to [60, Prop. 3.10]. Since Fad is convex, we know that ū
is a minimizer of (8.5) if and only if ( f̂ ′(ū), v− ū) ≥ 0 ∀v ∈ Fad. Each component of f̂ ′(ū) is
given by (

f̂ ′(ū)
)

ν
= S∗νC∗(CSu− yν

d) + ανuν

and coincides with the corresponding component of F(ū) = (Du1 f 1(ū), ..., DuN f N(ū)). Thus, ū
is a minimizer of (8.5) if and only if ū is a variational equilibrium of (8.4).

The corresponding augmented NEP can be treated in the same way. We adapt the definition of
Monderer [95, p. 128] to the infinite dimensional case.

Definition 8.2 (Exact potential game). We say that the GNEP (8.4) is an exact potential game if
there exists a potential function P : L2(Ω)N → R, such that for every ν it holds

f ν(u)− f ν(v, u−ν) = P(u)− P(v, u−ν) ∀u, (v, u−ν) ∈ Fad.

Let us now check if the GNEP (8.4) is an exact potential game. For given (uν, u−ν), (v, u−ν) ∈
Fad it holds that

f ν(u)− f ν(v, u−ν) =
1
2
‖CSu‖2

L2(Ω) − (uν, S∗νC∗yν
d) +

αν

2
‖uν‖2

L2(Ω)

− 1
2

∥∥CS(v, u−ν)
∥∥2

L2(Ω)
+ (v, S∗νC∗yν

d)−
αν

2
‖v‖2

L2(Ω)

= f̂ (u)− f̂ (v, u−ν).

Thus, f̂ satisfies the definition of an exact potential.

8.1.3 The Non-Reducible Case

Let us now investigate problems, where for each player the following infinite dimensional PDE
constrained optimization problem is considered:

minimize
uν∈L2(Ω)

f ν(u) :=
1
2
‖CνSu− yν

d‖
2
L2(Ω) +

α

2
‖uν‖2

L2(Ω)

subject to uν ∈ Uν
ad, g(u) ∈ K.

(Pν)

In this case, due to the distinct operators Cν ∈ L(Y, L2(Ω)), the reduction to a single control
problem is not possible and we will refer to this type of problem as a non-reducible GNEP. More-
over, it is in general not clear if the resulting first-order optimality system is a (strongly) monotone
VI. Problems of this type are included in the rather general setting from [69], see also [60]. The
authors proved existence of a variational equilibrium by using a fixed point-argument ([69, Thm.
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2.3] and [60, Thm. 3.4]). However, they do not deal with the uniqueness these solutions. Our aim
is to study under which conditions (Pν) admits a unique variational equilibrium. In Theorem 8.4
we will prove existence and uniqueness of solution, provided that the regularization parameter α
is sufficiently large. For further use we define U := L2(Ω)N and the operator

F : U → U∗, Fν(u) := Duν f ν(u) = S∗νC∗ν(CνSu− yν
d) + αuν, (8.6)

where Duν denotes the partial Gâteaux derivative with respect uν. Due to the convexity of the
objective functional, variational equilibria of the GNEP (Pν) can be characterized via controls
ū ∈ U that solve the variational inequality

(F(ū), v− ū)U ≥ 0 ∀v ∈ Fad

⇔
N

∑
ν=1

(
S∗νC∗ν(CνSū− yν

d) + αūν, vν − ūν
)
≥ 0 ∀v ∈ Fad. (8.7)

We will exploit this relation to prove uniqueness of solutions of problem (Pν).

8.1.3.1 Existence and Uniqueness of Solutions

If the variational inequality (8.7) is uniquely solvable, then the GNEP (Pν) admits a unique solu-
tion. It is well known that this is the case if F is strongly monotone [78, Thm III.1.4]. The next
theorem states that it is enough to choose the regularization parameter α large enough, depending
on the operator Cν. We need the following assumption.

Assumption 8.3. Assume that the regularization parameter α satisfies the inequality

α >
1
4

N

∑
ν=1
‖(Sν − C∗ν CνSν)‖2

L2(Ω)→L2(Ω). (8.8)

Let us now start to exploit Assumption 8.3.

Theorem 8.4 (Uniqueness of solutions). Let Assumption 8.3 be satisfied. Then there exists a
unique variational equilibrium of the non-reducible GNEP (Pν).

Proof. It is enough to show that the operator F as defined in (8.6) is strongly monotone. A calcu-
lation reveals for arbitrary u, v ∈ U

(F(u)− F(v), u− v)U

=
N

∑
ν=1

(S∗νC∗ν(CνSu− yν
d) + αuν − S∗νC∗ν(CνSv− yν

d)− αvν, uν − vν)L2(Ω)

=
N

∑
ν=1

(Su− Sv, C∗ν CνSν(uν − vν))L2(Ω) + α‖u− v‖2
U . (8.9)

We now use the decomposition

N

∑
ν=1

C∗ν CνSν =
N

∑
ν=1

Sν −
N

∑
ν=1

(Sν − C∗ν CνSν)
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and Young’s inequality to obtain the following estimate(
F(u)− F(v), u− v

)
U

= ‖Su− Sv‖2
L2(Ω) −

(
Su− Sv,

N

∑
ν=1

(Sν − C∗ν CνSν) (uν − vν)

)
L2(Ω)

+ α‖u− v‖2
U

≥ −1
4

∥∥∥∥∥ N

∑
ν=1

(Sν − C∗ν CνSν) (uν − vν)

∥∥∥∥∥
2

L2(Ω)

+ α‖u− v‖2
U

≥ −1
4

(
N

∑
ν=1
‖Sν − C∗ν CνSν‖2

L2(Ω)→L2(Ω)

)(
N

∑
ν=1
‖uν − vν‖2

L2(Ω)

)
+ α‖u− v‖2

U

=

(
α− 1

4

N

∑
ν=1
‖Sν − C∗ν CνSν‖2

L2(Ω)→L2(Ω)

)
‖u− v‖2

U .

Due to our assumption on α we now conclude that the operator F is strongly monotone.

Let us commit ourselves to the special structure of (8.9). Rewriting this equation yields

(F(u)− F(v), u− v)U =
N

∑
ν=1

(Su− Sv, C∗ν CνSν(uν − vν))L2(Ω) + α‖u− v‖2
U

=
N

∑
j=1

N

∑
i=1

(
Sj(uj − vj), C∗i CiSi(ui − vi)

)
L2(Ω)

+ α‖u− v‖2
U

=
∫

Ω
(u− v)T(D + R)(u− v) dx,

where

D =


R11 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 RNN

 , R =



α R12 R13 . . . R1N

R21 α R23 . . . R2N

R31 R32 α
. . .

...
...

. . . . . . RN−1,N

RN1 RN2 . . . RN,N−1 α


and Rij := S∗i C∗j CjSj. Adapting our setting to Rosen’s notion of strict diagonal convexity, it would
be sufficient to check if D + R is positive definite. Clearly, D is positive definite. However, since
R is not symmetric, it is hard to determine if R is positive definite as well.
The condition on the regularization parameter α is needed to guarantee the existence of a unique
solution of (Pν). If α is chosen too small the resulting operator F might not be strongly monotone.
Let us briefly investigate the special case that all Cν coincide. In this situation, the GNEP (Pν)
turns into a reducible GNEP. Thus, existence and uniqueness of solutions follow from Lemma 8.1.
Moreover, it is easy to check that the corresponding VI is strongly monotone.

Corollary 8.5. Let Cν := C ∈ L(Y, L2(Ω)) for all ν. Then, F is strongly monotone and the
GNEP (Pν) admits a unique variational equilibrium for all α > 0.

Proof. By an easy calculation

(F(u)− F(v), u− v)U =

(
C(Su− Sv), C

N

∑
ν=1

Sν(uν − vν)

)
L2(Ω)

+ α‖u− v‖2
U

= ‖CS(u− v)‖2
L2(Ω) + α‖u− v‖2

U > 0,
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we see that F is strongly monotone for α > 0. Hence, the claim follows with [78, Thm. III.1.4].

Let us now consider subsets Ων ⊂ Ω. We define the characteristic function

χν : Ω→ R, x 7→
{

1, if x ∈ Ω,
0, else

and the set

Z :=
N⋃

ν=1

Ων

with associated characteristic function χZ. Let us now assume that all Cν are given as characteristic
functions χν of subsets Ων ⊂ Ω. Note, that this setting would include GNEPs with an objective
functional of the type

f ν(u) :=
1
2
‖Su− yν

d‖
2
L2(Ων)

+
αν

2
‖uν‖2

L2(Ω) .

Here, we have the following result:

Lemma 8.6. Let Cν := χν for all ν. Let

α >
1
4

N

∑
ν=1
‖χZ(Sν − χνSν)‖2

L2(Ω)→L2(Ω). (8.10)

be satisfied. Then the GNEP (Pν) admits a unique variational equilibrium.

Proof. The proof basically follows the one from Theorem 8.4. Let u, v ∈ U be arbitrary.

(F(u)− F(v), u− v)U =
N

∑
ν=1

(Su− Sv, χνSν(uν − vν))L2(Z) + α‖u− v‖2
U

= ‖Su− Sv‖2
L2(Z) −

(
Su− Sv,

N

∑
ν=1

(Sν − χνSν) (uν − vν)

)
L2(Z)

+ α‖u− v‖2
U

≥ −1
4

∥∥∥∥∥ N

∑
ν=1

χZ (Sν − χνSν) (uν − vν)

∥∥∥∥∥
2

L2(Ω)

+ α‖u− v‖2
U

=

(
α− 1

4

N

∑
ν=1
‖χZ(Sν − χνSν)‖2

L2(Ω)→L2(Ω)

)
‖u− v‖2

U .

Thus, our assumption on α implies that the operator F is strongly monotone.

8.1.3.2 Estimate of the Parameter α

Let us analyze the right hand side of (8.10). Let w denote an arbitrary function in L2(Ω). Due to
the definition of the operator norm we obtain

‖χZ(Sν − χνSν)‖L2(Ω)→L2(Ω) = sup
‖w‖L2(Ω)=1

‖χZ(Sν − χνSν)w‖L2(Ω)

= sup
‖w‖L2(Ω)=1

(∫
Z
(1− χν)

2(Sνw)2 dx
) 1

2

(8.11)
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Due to the continuous embedding H2(Ω) ↪→ C(Ω), the solution operator Sν is continuous from
L2(Ω) to C(Ω) and we know that

cL∞ := max
ν=1,...,N

sup
‖w‖L2(Ω)=1

‖Sνw‖L∞(Ω) < ∞

exists. Hence, we obtain that

‖χZ(Sν − χνSν)‖L2(Ω)→L2(Ω) ≤ sup
‖w‖L2(Ω)=1

‖Sνw‖L∞(Ω)

(∫
Z
(1− χν)

2 dx
) 1

2

,

≤ cL∞

(∫
Z
(1− χν)

2 dx
) 1

2

= cL∞

√
meas(Z\Ων).

Thus,

1
4

N

∑
ν=1
‖χZ(Sν − χνSν)‖2

L2(Ω)→L2(Ω) ≤
c2

L∞

4

N

∑
ν=1

meas(Z\Ων). (8.12)

Hence, we can interpret the right-hand side of (8.10) as the maximum difference of the set Z
and the sets Ων. Again, if Ων := Ω for all ν this value is obviously zero and we are in the
setting of a reducible GNEP. However, if the right-hand side of (8.10) is too large, the existence
of minimizers can not be guaranteed by our theory for all α > 0. For the special case A := −∆,
the constant cL∞ , which is dependent on the domain Ω , can be computed [106] and is given by
cL∞ ≈ 1.3596(meas(Ω))1/6. Thus, we can conclude that

α > 0.4621(meas(Ω))1/3
N

∑
ν=1

meas(Z\Ων)

satisfies (8.10) and, hence, Assumption 8.3 in the case that Cν := χν. Moreover, for the special
case A := −∆ we know by the Lax Milgram Theorem, that

‖Sνw‖H1
0 (Ω) ≤ (1 + cP) ‖w‖L2(Ω) ,

where cP denotes the Poincaré constant. The Poincaré-Friedrich inequality yields the basic esti-
mate

‖Sνw‖L2(Ω) ≤
√

cP ‖Sνw‖H1
0 (Ω) ≤

√
cP(1 + cP) ‖w‖L2(Ω) .

Thus,

‖χZ(Sν − χνSν)‖L2(Ω)→L2(Ω) = sup
‖w‖L2(Ω)=1

‖χZ(Sν − χνSν)w‖L2(Ω)

= sup
‖w‖L2(Ω)=1

(∫
Z
(1− χν)

2(Sνw)2 dx
) 1

2

≤ sup
‖w‖L2(Ω)=1

‖Sνw‖L2(Ω)

≤
√

cP(1 + cP).

Hence, for A := −∆ we arrive at

1
4

N

∑
ν=1
‖χZ(Sν − χνSν)‖2

L2(Ω)→L2(Ω) ≤
N
4

cP(1 + cP)
2. (8.13)
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Since the Poincaré constant cP is only dependent on the domain Ω, we can use (8.13) to check
if Assumption 8.3 is satisfied. For instance, for a rectangular domain Ω = (a, b) × (c, d) the
Poincaré constant is given by

cP =

(
2

(b− a)2 +
2

(d− c)2

)−1

.

Note that (8.12) depends on the difference between Z and Ων. Consequently, this quantity yields
a better approximation for α if the subsets Ων are large compared to Z. The second estimate does
not depend on that difference. Hence, this estimate is probably more appropriate if Ων is relatively
small. Moreover, (8.12) depends crucially on meas(Ω). Thus, this estimate may in practice only
be suitable for special domains like Ω = (0, 1)2.

8.1.3.3 The Augmented NEP

minimize
uν∈L2(Ω)

f ν
AL(u, µ, ρ) := f ν(u) +

1
2ρ
‖(µ + ρg(u))+‖2

L2(Ω)

subject to uν ∈ Uν
ad,

(Pν
AL)

We refer to problems of this type as augmented NEP. These NEPs are arising during the process
of solving (Pν), if K is the cone of non-positive continuous functions, by applying a penalty or
augmented Lagrangian method. For the sake of simplicity we assume that g(u) := Su − ψ,
where ψ ∈ C(Ω). Defining

FAL(u) :=
(

Du1 f 1
AL(u, µ, ρ), . . . , DuN f N

AL(u, µ, ρ)
)

it is again the convexity of the objective functional that allows us to characterize the solution of
the augmented NEP via controls ū ∈ U that solve the variational inequality

(FAL(ū), v− ū)U ≥ 0 ∀v ∈ Uad

⇔
N

∑
ν=1

(S∗ν(C
∗
ν(CνSū− yν

d) + (µ + ρ(Su− ψ))+) + αūν, vν − ūν) ≥ 0 ∀vν ∈ Uν
ad. (8.14)

From Theorem 8.4 we know that the mapping

u 7→
(

Du1 f 1(u1), . . . , DuN f N(uN)
)

is strongly monotone if Assumption 8.3 is satisfied. Furthermore, we know that the function

u 7→ 1
2ρ
‖(µ + ρ(Su− ψ))+‖2

L2(Ω)

is convex and its derivative is monotone. Hence, FAL is strongly monotone and Theorem 8.4 can
easily be adapted to that case.

Theorem 8.7. Let Assumption 8.3 be satisfied. Then there exists an unique solution of problem
(Pν

AL). Further, if Cν := C ∈ L(Y, L2(Ω)) for all ν, then the NEP (Pν
AL) is uniquely solvable for

all α > 0.

Note, that the strong monotonicity of F does not only imply uniqueness of variational equilib-
ria. Moreover, it is directly related to the convergence analysis of solving the GNEP (Pν) with
a Lagrange multiplier method, where the subproblems are given by the augmented NEPs (Pν

AL).
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In particular, the strong monotonicity of F implies strong convergence of the primal iterates and
weak-* convergence of the corresponding multiplier on a subsequence, provided a suitable con-
straint qualification is satisfied [69, Section 5.1].

We will deepen our studies of problem (Pν
AL) in Section 8.3. Here, we will among others derive the

corresponding Newton iteration that allows us to solve the problem numerically with superlinear
convergence.

8.2 Semi-Smoothness of the Projection Operator

This section aims at proving semi-smoothness of u 7→ max(a, u) from Lq(Ω) to Lp(Ω) even
if a ∈ Lr(Ω), with 1 ≤ p ≤ r < q ≤ ∞. This property is crucial for obtaining superlinear
convergence of the semi-smooth Newton method applied to (Pν

AL).

For our later application we will need semi-smoothness of the mapping

u 7→ (µ + ρ(Su− ψ))+,

see Section 8.3.1. Since µ is only an L2(Ω) function we cannot expect from the known result
[117, Thm. 4.4] that the mapping

max(0, µ + ρ(Su− ψ)) = µ− ρψ + max(−µ + ρψ, Su)

is semi-smooth from Lq(Ω) to L2(Ω). In [66, Ex. 8.12] Ito and Kunisch investigated the semi-
smoothness of superposition operators

F : Lq(Ω)→ Lp(Ω), F(u)(x) = f (u(x)) for a.e. x ∈ Ω,

where 1 ≤ p < q ≤ ∞ and f : R → R is semi-smooth and globally Lipschitz continuous.
However, due to the dependence of a and b on the x-variable the mapping u 7→ max(a, min(u, b))
cannot be built via superposition. Nevertheless, since the regularity of the functions a and b isn’t
needed in the proof one can apply similar arguments.

Theorem 8.8. Let a, b ∈ Lr(Ω) with a ≤ b and 1 ≤ p ≤ r < q ≤ ∞. The mapping
m : Lq(Ω)→ Lp(Ω), u 7→ max(a, min(u, b)) is semi-smooth with Newton derivative

Ls(Ω) 3 h(u)(x) =


0 if u(x) ≥ b(x),
1 if u(x) ∈ (a(x), b(x)),
0 if u(x) ≤ a(x),

(8.15)

where s is chosen such that 1
p = 1

s +
1
q holds.

Proof. A similar proof can be found in the PhD-Thesis [114]. Let u ∈ Lq(Ω) be arbitrary and
(sk)k ⊂ Lq(Ω) be a (strong) nullsequence. Furthermore, define uk := u + sk and dk := h(uk).
We have to check the condition

‖m(uk)−m(u)− DNm(uk)sk‖Lp(Ω) = o(‖sk‖Lq(Ω)).

First we extract a subsequence (sk)k∈I with an index set I such that sk(x) →I 0 for almost all
x ∈ Ω. To shorten the notation we furthermore define v := m(u) and vk := m(uk). It is
known [62, Ex. 2.5] that the mapping m̃ : R → R, x 7→ max(a, min(x, b)) with a, b ∈ R is
semi-smooth. Hence, we obtain

sk(x)−1(vk(x)− v(x)− dk(x)sk(x))→I 0
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for almost all x ∈ Ω. The quotient on the left side is understood to be zero whenever sk(x) = 0.
Now we use that the projection m is nonexpansive and obtain

|vk(x)− v(x)− dk(x)sk(x)| ≤ |vk(x)− v(x)|+ |dk(x)sk(x)|
≤ |u(x) + sk(x)− u(x)|+ |sk(x)|
≤ 2|sk(x)|.

By applying Lebesgue’s dominated convergence theorem we obtain

s−1
k (vk − v− dksk)→I 0

in Lr(Ω) for all r ∈ [1, ∞). Hence, by applying Hölder’s inequality we get with 1
p = 1

s +
1
q

‖vk − v− dksk‖Lp(Ω)

‖sk‖Lq(Ω)
≤ ‖s−1

k (vk − v− dksk)‖Ls(Ω) →I 0. (8.16)

Since this argumentation can be repeated for any subsequence of (sk)k the limit in (8.16) holds in
fact for the whole sequence.

In the same manner we obtain the following result.

Lemma 8.9. Let a ∈ Lr(Ω) and 1 ≤ p ≤ r < q ≤ ∞. The mapping m : Lq(Ω)→ Lp(Ω), u 7→
max(a, u) is semi-smooth with Newton derivative

Ls(Ω) 3 h(u)(x) =

{
1 if u(x) > a(x),
0 if u(x) ≤ a(x),

(8.17)

where s is chosen such that 1
p = 1

s +
1
q holds.

Note that the norm gap p < q is indispensable for Newton differentiability of the projection op-
erator, see for instance [66, Ex. 8.14]. Hence, the functions defined in (8.15) and (8.17) can
in general not serve as a Newton derivative for m : L2(Ω) → L2(Ω), see [54, Prop. 4.1]. To
bridge this norm gap, one needs additional structure. For problems that involve partial differen-
tial equations this structure is often given by smoothing properties of the corresponding solution
operators. To finish, let us briefly comment on the semi-smoothness of the projection operator
PUad : Lq(Ω)N → L2(Ω)N . The mapping

Πν : Lq(Ω)N → Lq(Ω), u 7→ uν.

is linear and continuously Fréchet differentiable, hence semi-smooth. Applying the chain rule
[62, Thm. 2.10 c)], we now obtain that

Pν
Uad

(u) = min(max(aν, Πν(u)), bν)

is a composition of semi-smooth functions, hence semi-smooth from Lq(Ω)N → L2(Ω), see
Lemma 8.8. Using [62, Thm. 2.10 a)], we obtain that PUad is semi-smooth from Lq(Ω)N →
L2(Ω)N .

8.3 Newton Iteration for the Non-Reducible NEP

We now want to study the semi-smooth Newton method applied to problem (Pν
AL). This investi-

gation basically reduces to the application of the semi-smooth Newton method to strongly mono-
tone VIs. To simplify our notation let us introduce d ∈ U with components dν ∈ L2(Ω) and
M ∈ L(U, U). We define the product d ·M = dM ∈ L(U, U) in a component-wise manner

(d ·M(u))ν := dν Mν(u) ∈ L2(Ω). (8.18)

Hence, d ·M : U → U. In a similar way we define d · u ∈ U for some u ∈ U.
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8.3.1 Newton Iteration and Convergence Result

It is well known, that (8.14) can be equivalently formulated using the projection operator P onto
the set Uad. A solution ū ∈ Uad of (Pν

AL) can be characterized by the equation

G(u) := u− PUad

(
−1

α
p(u)

)
= 0, (8.19)

where p : U → Lq(Ω), q > 2 and the ν-th component is given as the adjoint state

p(u)ν = S∗ν (C
∗
ν(CνSu− yν

d) + (µ + ρ(Su− ψ))+) .

We aim at solving (8.19) with the semi-smooth Newton method, which is given in the following
algorithm

Algorithm 8.1 Semi-smooth Newton method
Choose x0 ∈ X
For k = 0, 1, 2, ... repeat:

1: Choose a Newton derivative DNG(xk).
2: Compute δk by solving DNG(xk)δk = −G(xk).
3: Set xk+1 := xk + δk.

Due to the chain rule [62, Thm. 2.10 c)], Example [62, Ex. 2.5] and Lemma 8.9 it is clear, that a
suitable Newton derivative of G from (8.19) at uk in direction h ∈ U is given by

(DNG(uk)h)ν = hν +
1
α

χIν
k
(S∗ν(C

∗
ν CνS + χYk ρS)h) ,

where the components of χI (uk) are given as

(χI (uk))
ν(x) :=


0 if − 1

α p(uk)
ν(x) ≥ bν(x),

1 if − 1
α p(uk)

ν(x) ∈ (aν(x), bν(x)),
0 if − 1

α p(uk)
ν(x) ≤ aν(x),

(8.20)

for almost all x ∈ Ω. In the further, we will use the notation: χIk := χI (uk) and χν
Ik

= χI (uk)
ν.

We denote by uk+1 := uk + δk the next iterate of the semi-smooth Newton method from Algorithm
8.1 and define M := S∗ν(C∗ν CνS + χYk ρS). A Newton step is given by

DNG(uk)δk = −G(uk) ⇔
(

Id +
1
α

χIν
k
M
)

δk = −uk + PUad

(
−1

α
p(uk)

)
⇔

(
Id +

1
α

χIν
k
M
)

uk+1 = PUad

(
−1

α
p(uk)

)
+

1
α

χIν
k
Muk.

Using this representation we see that

uν
k+1(x) =


uν

a(x) if x ∈ Aν,a
k ,

− 1
α

(
S∗ν(C∗ν(CνSuk+1 − yν

d) + χYk(µ + ρ(Suk+1 − ψ))
)
(x) if x ∈ Iν

k ,
uν

b(x) if x ∈ Aν,b
k .
(8.21)

where the sets Aν,a
k ,Aν,b

k , Iν
k and Yk are defined by

Aν,a
k :=

{
x ∈ Ω : − 1

α
p(uk)

ν ≤ uν
a

}
, Aν,b

k :=
{

x ∈ Ω : − 1
α

p(uk)
ν ≥ uν

b

}
,

Iν
k :=

{
x ∈ Ω : − 1

α
p(uk)

ν ∈ (uν
a , uν

b)

}
, Yk := {x ∈ Ω : (µ + ρ(Suk − ψ)) > 0} .

(8.22)
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Thus, on the set Iν
k we obtain

χIν
k

(
uν

k+1 +
1
α
(S∗ν(C

∗
ν(CνSuk+1 − yν

d) + χYk(µ + ρ(Suk+1 − ψ)))

)
= 0. (8.23)

Let us introduce the function uIk+1 ∈ U with components uν,I
k+1 := χIν

k
uν

k+1 for ν = 1, ..., N.
Hence, we can write uIk+1 = χIk uk+1. In a similar way we define χAa

k
and χAb

k
. Using this

definitions we can now write (8.23) as a linear equation for the ν-th component of uIk+1 and we
obtain

uν,I
k+1 +

1
α

χIν
k

(
S∗ν(C

∗
ν CνS + χYk ρS)uIk+1

)
= −1

α
χIν

k

(
S∗ν((C

∗
ν CνS + χYk ρS)(χAa

k
ua + χAb

k
ub)− C∗ν yν

d + χYk(µ− ρψ))
)

.

The Newton step can now be written in the following compact form.

Lemma 8.10. The solution uk+1 of one step of the semi-smooth Newton method is given by

uk+1 = uIk+1 + χAa
k
ua + χAb

k
ub,

where uIk+1 is given as the solution of the linear system(
Id + χIk Tk

)
uIk+1 = χIk gk, (8.24)

with the operator Tk : U → U and function gk ∈ U given by

(Tkh)ν :=
1
α

S∗ν(C
∗
ν CνS + χYk ρS)h,

(gk)
ν := −1

α
χIν

k

(
S∗ν((C

∗
ν CνS + χYk ρS)(χAa

k
ua + χAb

k
ub)− C∗ν yν

d + χYk(µ− ρψ))
)

.

Here Id : U → U denotes the identity mapping.

The complete semi-smooth Newton method is given in the following algorithm.

Algorithm 8.2 Semi-smooth Newton method for problem (Pν
AL)

1: Set k = 0, choose u0 in L2(Ω)N

2: repeat
3: Set Aν,a

k ,Aν,b
k , Iν

k and Yk as defined in (8.22)
4: Solve for uIk+1 ∈ L2(Ω)N by solving (8.24)
5: Set uk+1 := uIk+1 + χAa

k
ua + χAb

k
ub

6: Set k := k + 1
7: until Aν,a

k = Aν,a
k−1,Aν,b

k = Aν,b
k−1, Iν

k = Iν
k−1 and Yk = Yk−1.

Theorem 8.11 (Convergence of the semi-smooth Newton method). Let Assumption 8.3 hold
and let ū denote the normalized solution of (Pν

AL). Then the semi-smooth Newton method from
Algorithm 8.2 has the following properties

a) Let ‖u0 − ū‖L2(Ω)N be sufficiently small. Then the iterates uk converge for k→ ∞ superlinearly
to ū which is the normalized solution of (Pν

AL).
b) Let uk be generated by Algorithm 8.2 such that the stopping criterion from step 7 is satisfied.

Then uk is a solution of (8.19).
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Proof. a) Since G is semi-smooth from L2(Ω)N to L2(Ω)N , it suffices to show that (DNG)−1

is uniformly bounded. Applying standard arguments for semi-smooth Newton methods the
characterization (8.21) can be reformulated in(

Id +
1
α

χIk MχIk

)
uk+1 =χIk

(
−1

α
p(uk)

)
+

1
α

χIk Muk

− 1
α

χIk M
(

χAa
k
ua + χAb

k
ub

)
+ χAa

k
ua + χAb

k
ub,

where (Mw)ν = S∗ν(C∗ν CνS + ρχYk S)w. Defining the bilinear form

a(w, v) =
((

Id +
1
α

χIk MχIk

)
w, v

)
U

,

we obtain

a(w, v) = (w, v)U +
1
α
(χIk MχIk w, v)U ≤ c ‖w‖U ‖v‖U .

Using the decomposition from the proof of Theorem 8.4 we arrive at

a(w,w) =

((
Id +

1
α

χIk MχIk

)
w, w

)
U

=
N

∑
ν=1

(
wν +

1
α

χIk S∗ν(C
∗
ν CνS + ρχYk S)χIk w, wν

)
L2(Ω)

= ‖w‖2
U +

1
α

N

∑
ν=1

(SχIk w, C∗ν CνSνχIk wν)L2(Ω) +
ρ

α

N

∑
ν=1

(χYk SχIk w, SνχIk wν)L2(Ω)

= ‖w‖2
U +

1
α

(
SχIk w,

N

∑
ν=1

C∗ν CνSνχIk wν

)
L2(Ω)

+
ρ

α

∥∥χYk SχIk w
∥∥2

U

≥ ‖w‖2
U +

1
α

∥∥SχIk w
∥∥2

L2(Ω)
− 1

α

(
SχIk w,

N

∑
ν=1

(Sν − C∗ν CνSν)χIk wν

)
L2(Ω)

≥ ‖w‖2
U −

1
4α

∥∥∥∥∥ N

∑
ν=1

(Sν − C∗ν CνSν) χIk wν

∥∥∥∥∥
2

L2(Ω)

≥ ‖w‖2
U −

1
4α

(
N

∑
ν=1
‖Sν − C∗ν CνSν‖2

L2(Ω)→L2(Ω)

)(
N

∑
ν=1

∥∥χIk wν
∥∥2

L2(Ω)

)

≥
(

1− 1
4α

N

∑
ν=1
‖Sν − C∗ν CνSν‖2

L2(Ω)→L2(Ω)

)
‖w‖2

U .

Choosing α as in Assumption 8.3 implies that a(w, v) is coercive and satisfies the conditions
of the Lax-Milgram Theorem, which yields boundedness of

∥∥DNG(uk)
−1
∥∥

U→U .

b) We know that the solution of (8.24) is unique for fixed sets Aν,a
k ,Aν,b

k , Iν
k and Yk.

We set Aν,a
k := Aν,a

k+1,Aν,b
k := Aν,b

k+1, Iν
k := Iν

k+1 and Yk := Yk+1 in (8.24) and get

uν,I
k+1 +

χIν
k+1

α

(
S∗ν(C

∗
ν CνS + χYk+1 ρS)uIk+1

)
=

−
χIν

k+1

α

(
S∗ν(C

∗
ν CνS + χYk+1 ρS)(χAa

k+1
ua + χAb

k+1
ub)− S∗ν(C

∗
ν yν

d + χYk+1(−µ + ρψ))
)

.
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Which is equivalent to

uν,I
k+1 +

χIν
k+1

α

(
S∗ν(C

∗
ν(CνSuk+1 − yν

d) + χYk+1 (µ + ρ(Suk+1 − ψ))
)
= 0

⇔ uν,I
k+1 +

χIν
k+1

α
pν(uk+1) = 0.

Together with uk+1 = ua on Aa
k+1 and uk+1 = ub on Ab

k+1 we get

uν
k+1 − P[uν

a ,uν
b ]

(
−1

α
pν(uk+1)

)
= 0.

Hence, uk+1 is a solution of (8.19).

Again, we can drop the assumption on α if the operators Cν coincide for all ν.

Corollary 8.12. Let Cν := C ∈ L(Y, L2(Ω)) for all ν and let α > 0. Then the Newton method
associated to the NEP (Pν

AL) converges superlinear.

It is obvious, that the convergence result from Theorem 8.11 is still valid for NEPs, where each
player’s cost functional is given by

f ν(u) :=
1
2
‖CνSu− yν

d‖
2
L2(Ω) +

α

2
‖uν‖2

L2(Ω) .

In this situation M := S∗νC∗ν CνS and the only change in the proof is that the additional augmenta-
tion term has to be neglected.

8.3.2 Implementation

Let us now focus on the details of an implementation using finite elements. To illustrate the
implementation we focus on problem (Pν

AL), where S denotes the solution operator of (8.3) with
A := −∆. Using standard methods the corresponding optimality system is given by

− ∆ȳ =
N

∑
ν=1

ūν in Ω, (8.25a)

−∆ p̄ν = C∗ν(Cνȳ− yν
d) + (µ + ρ(Su− ψ))+ in Ω, (8.25b)

( p̄ν + αūν, vν − ūν) ≥ 0 ∀vν ∈ Uν
ad, (8.25c)

where the state and adjoint equation satisfy suitable boundary conditions. We are interested in
a finite element discretization. Let Th be a regular mesh which consists of closed cells T. For
T ∈ Th we define hT := diam(T). Furthermore, we set h := maxT∈Th hT. We assume that
there exists a constant R > 0 such that hT

RT
≤ R for all T ∈ T . Here, we define RT to be the

diameter of the largest ball contained in T. In the further, we use a regular triangulation of the
domain Ω with mesh size h. For this mesh T we define an associated finite dimensional space
Vh := span{φ1, ..., φm} with basis functions φj, such that the restriction of a function v ∈ Vh
to a cell T ∈ T is a linear polynomial. Let us now consider a discretized version of (8.25). We
define the bilinear form

a(w, v) :=
∫

Ω
∇w∇v dx.
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Then, the discretized version of (8.25) is given by the solution (yh, uh, ph) of the system

a(yh, vh) =

(
N

∑
ν=1

uν
h, vh

)
∀vh ∈ Vh,

a(pν
h, vh) = (C∗ν(Cνyh − yν

d) + (µ + ρ(yh − ψ))+, vh) ∀vh ∈ Vh,

uν
h = P[uν

a ,uν
b ]

(
−1

α
pν

h

)
.

(8.26)

Since for a given uh there exists a unique yh(uh) and unique adjoint states pν
h(uh), system (8.26)

can be reduced to the single equation

uν
h = P[uν

a ,uν
b ]

(
−1

α
pν

h(uh)

)
∀vh ∈ Vh.

Again we define the active and inactive sets for the discrete function uk,h:

Aν,a
k :=

{
x ∈ Ω : − 1

α
pν

h(uk,h) ≤ uν
a

}
, Aν,b

k :=
{

x ∈ Ω : − 1
α

pν
h(uk,h) ≥ uν

b

}
,

Iν
k :=

{
x ∈ Ω : − 1

α
pν

h(uk,h) ∈ (uν
a , uν

b)

}
, Yk := {x ∈ Ω : (µ + ρ(Suk,h − ψ)) > 0} .

We now define the functions uIk+1,h := χIk uk+1,h, where χIk := χI (uk). Following the lines of
the proof of Section 8.3.1 we can establish a linear equation for the components of uIk+1,h:

uν,I
k+1,h +

1
α

χIν
k

(
S∗ν(C

∗
ν CνS + χYk ρS)uIk+1,h

)
= −1

α
χIν

k

(
S∗ν((C

∗
ν CνS + χYk ρS)(χAa

k
ua + χAb

k
ub)− C∗ν yν

d + χYk(µ− ρψ))
)

.

We want to solve this system by testing it with a function vh ∈ Vh. Note that we have uν,I
k+1,h 6∈ Vh

in general, but it can be calculated as a projection uν,I
k+1,h = χIν

k
ũν

k+1,h of a function ũν
k+1,h ∈ Vh,

see (8.26). In the following denote uh ∈ Rm the coefficient vector of a function uh ∈ Vh, where
m denotes the dimension of the space Vh. Furthermore, we assume that uν

a , uν
b ∈ Vh. We can

reformulate the Newton step as a linear system in the coefficient vectors of ũν
k+1,h.

Lemma 8.13. The coefficient vectors ũν
k+1,h for 1 ≤ ν ≤ N satisfy the linear system

E1,1 E1,2 . . . . . . E1,N

E2,1 E2,2 E2,3 . . . E2,N
...

. . . . . .
...

...
. . . . . . EN−1,N

EN,1 . . . . . . EN,N−1 EN,N




ũ1

k+1,h

ũ2
k+1,h

...
ũN

k+1,h

 =


R1

R2
...

RN−1

RN

 , (8.27)

where Ei,j ∈ Rm×m, with

Ei,j :=

MI i
k
+ 1

α MI i
k
K−1MC∗i MCi K

−1MI j
k
+ ρ

α MI i
k
K−1MYk K−1MI j

k
if i = j

1
α MI i

k
K−1MC∗i MCi K

−1MI j
k
+ ρ

α MI i
k
K−1MYk K−1MI j

k
else

 ,
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as well as

Ri := −1
α

MI i
k
K−1

[
MY k(µ− ρψ)−MC∗i yi

d

+ (MC∗i MCi + ρMY k)K−1
N

∑
i=1

(
MAi,a

k
ui

a + MAi,b
k

ui
b

) ]
∈ Rm,

and matrices K, Cν, MIν
k
, MAν,a

k
, MAν,b

k
and MYk of the size Rm×m with

Kij :=
[∫

Ω
∇φi · ∇φj

]
ij

, (MCν
)ij :=

[∫
Ω

C(φi)φj

]
ij

,
(

MIν
k

)
ij

:=
[∫
Iν

k

φiφj

]
ij

,

(
MAν,a

k

)
ij

:=
[∫
Aν,a

k

φiφj

]
ij

,
(

MAν,b
k

)
ij

:=
[∫
Aν,b

k

φiφj

]
ij

, (MYk)ij :=
[∫
Yk

φiφj

]
ij

,

where φi, φj denote the finite element basis functions of Vh.

We can reconstruct the state and the adjoint states using the coefficient vectors ũν
k+1,h.

Corollary 8.14. The coefficient vector of the state yk+1,h satisfies

yk+1,h = K−1
N

∑
ν=1

(
MIν

k
ũν

k+1,h + MAν,a
k

uν
a + MAν,b

k
uν

b

)
and the coefficient vector of the adjoint state pν

k+1,h can be computed by

pν
k+1,h = K−1

(
MC∗ν (MCν

yk+1,h − yν
d) + MYk(µ + ρ(yk+1,h − ψ))

)
.

The control uν
k+1,h can be computed by

uν
k+1,h = χIν

k
ũν

k+1,h + χAν,a
k

uν
a + χAν,b

k
uν

b .

We only need the adjoint states to update our active sets, hence kinks and discontinuities in the
control will not be accumulated during the algorithm. This is an advantage over the discrete
version of the active-set method. However, the expressions arising in the Newton method are
more complicated than the expressions in the active-set method.

8.4 Active-Set Method

In this section we want to introduce an active-set method which is equivalent to the semi-smooth
Newton method. For additional information regarding active-set methods, we want to refer to
[16, 54, 64, 65, 113] and the references therein.

Let us establish the relation between the semi-smooth Newton method and the active-set method.
We consider the problem’s first-order optimality conditions (8.25). Reformulating (8.25c) by ap-
plying the projection formula one has to solve systems of this type in the active-set method which
is defined below.
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Algorithm 8.3 Active-set method for problem (Pν
AL)

1: Set k = 0, choose (y0, u0, p0) ∈ Y× L2(Ω)N × L2(Ω)N

2: repeat
3: Set Aν,a

k ,Aν,b
k , Iν

k and Yk as defined in (8.22)
4: Solve for (yk+1, uk+1, pk+1) ∈ Y× L2(Ω)N × L2(Ω)N by solving

−∆yk+1 =
N

∑
ν=1

uν
k+1 in Ω, (8.28a)

−∆pν
k+1 = C∗ν (Cνyk+1 − yν

d) + χYk(µ + ρ(yk+1 − ψ)) in Ω, (8.28b)

uν
k+1 + χIν

k

(
1
α

pν
k+1

)
= χAν,a

k kuν
a + χAν,b

k
uν

b (8.28c)

5: Set k = k + 1
6: until Aν,b

k = Aν,b
k−1,Aν,a

k = Aν,a
k−1, Iν

k = Iν
k−1 and Yk = Yk−1.

First realized in [54], it is easy to see, that the semi-smooth Newton method from Algorithm 8.2
and the active set method from Algorithm 8.3 are equivalent. Let us also present a numerical
implementation of the active-set method.

Lemma 8.15. One step of the active-set method from Algorithm 8.3 can be computed by solving
the system K E1 0

E2 0 E3

0 E4 E5


 y

u
p

 =

 0
l1
l2

 (8.29)

where E1 :=
(
−M · · · −M

)
∈ Rm×Nm and

E2 :=

−MC∗1 MC1 − ρMYk
...

−MC∗N MCN − ρMYk

 ∈ RNm×m, E3 :=

K
. . .

K

 ∈ RNm×Nm,

E4 :=

M
. . .

M

 ∈ RNm×Nm, E5 :=


α−1MI1

k
. . .

α−1MIN
k

 ∈ RNm×Nm,

as well as

u :=


u1

k+1,h
...

uN
k+1,h

 ∈ RNm, y := yk+1,h ∈ Rm, p :=


p1

k+1,h
...

pN
k+1,h

 ∈ RNm,

and right hand side

l1 :=


−MC∗1 y1

d + MYk(µ− ρψ)
...

−MC∗N yN
d + MYk(µ− ρψ)

 , l2 :=


MA1,a

k
u1

a + MA1,b
k

u1
b

...
MAN,a

k
uN

a + MAN,b
k

uN
b

 , 0 ∈ Rm

with the notation used in Lemma 8.13 and M ∈ Rm×m, (M)ij :=
[∫

Ω φiφj
]

ij.
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Let us now compare the discrete Newton step (8.27) and the discrete active-set method (8.29). The
entries on the diagonal of the matrix on the left hand side of (8.27) Eν,ν are symmetric. However,
for N > 1 the resulting system is not symmetric. Note that the matrix in (8.27) should not be
computed explicitly due to the appearance of K−1. Still it is possible to compute its matrix-vector
multiplication. This makes it impossible to apply a direct solver or a preconditioner which is
based on decomposition, i.e., LU-factorisation. However, it can be solved by iterative methods,
i.e., GMRES or BiCGSTAB. The resulting system for the active-set method (8.29) is not even for
N = 1 symmetric, but it can be solved by a direct solver with a preconditioner, i.e. incomplete
LU-factorisation.

8.5 Numerical Examples

The matrices are computed using the DOLFIN [87,88] Python interface, which is part of the open-
source computing platform FEniCS [4,86]. The arising linear systems are solved with NumPy and
SciPy. We used an 8× Intel® Core™i7-2600 CPU @ 3.40 Ghz and 7,7 GiB RAM.

8.5.1 Example 1 - Four Player Game

We consider a four player game like (Pν
AL) on the domain Ω = (0, 1)2 with observation domains

Ω1 :=
(

0,
1
2

)
×
(

0,
1
2

)
, Ω2 :=

(
1
2

, 1
)
×
(

0,
1
2

)
,

Ω3 :=
(

1
2

, 1
)
×
(

1
2

, 1
)

, Ω4 :=
(

0,
1
2

)
×
(

1
2

, 1
)

.

In this example Cν := χν and S is the solution mapping of the state equation−∆y = ∑N
ν=1 uν with

homogeneous Dirichlet boundary conditions. The desired states are given by constant functions

y1
d := 0, y2

d := 1, y3
d := 2, y4

d := 3

and we choose ψ(x1, x2) := −2x1 + 2x2 + 2, where (x1, x2) ∈ Ω. For the approximation of the
multiplier we set y0, u0, p0 and µ equal zero as well as α := 10−5, and ρ := 100. Let us introduce
the quantity

κ(uk) := log
(
‖uk+1 − uk‖U

‖uk − uk−1‖U

)(
log
(
‖uk − uk−1‖U

‖uk−1 − uk−2‖U

))−1

,

which is an approximation for the numerical order of convergence. If the sequence (uk)k ⊂ U
converges superlinear we expect κ(uk) ∈ (1, 2) for k large enough. Note that we do not have
an exact solution available to compute the order of convergence, but in practice κ(uk) will give
a good approximation. We use a regular triangulation with different mesh sizes h. We applied
both, the semi-smooth Newton method and the active-set method to this type of problem. The
system that arises if the active-set method is applied has been solved directly by using the spsolve
method from the scipy.sparse.linalg library. The Newton equation instead has to be solved
by an iterative method. Here we make use of the gmres method from the same library and use a
tolerance of 10−12. Applying our estimates on α we obtain from (8.12) that α > 1.3863 satisfies
Assumption 8.3. Moreover, we have cP = 1/4 and we obtain from (8.13) that is enough to choose
α > 25/64 ≈ 0.4. However, the algorithm still works nice for α = 10−5. This could happen
because 0.4 is just an approximation from above and Assumption 8.3 is just a sufficient condition.
Hence, there might be much smaller α such that the problem is still uniquely solvable and the
Newton method converges superlinear. Since both methods are equivalent it is not surprising
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that the approximated order of convergence κ and the change of the active sets coincide for both
methods. Table 8.1 shows the computed results dependent on h for the active-set and the semi-
smooth Newton method, respectively. Clearly, the computed orders of convergence support the
superlinear convergence.
We are using linear finite elements for the controls, adjoints and state variable. Let us quickly
comment on our stopping criterion from step 7 of Algorithm 8.2 or step 6 of Algorithm 8.3. Both
algorithms stop when the active and inactive sets coincide. Due to the use of linear finite elements
we compare the values on the nodes to check this condition. Let us illustrate this on the example
of the set Aν,a

k , which is defined by the inequality α−1 pν
h(uk,h) ≤ uν

a . We now count all the nodes
which lie in the symmetric difference of Aν,a

k+1 and Aν,a
k . If this returns zero, we conclude that

Aν,a
k+1 ≈ A

ν,a
k holds good enough. We count these nodes for all the active and inactive sets in each

iteration and sum them up. This calculation can be found in the row labeled "nodes".

Figure 8.1: (Example 1) Computed state and state constraint (transparent).

h ≈ 0.02, dof ≈ 4.2 · 103 h ≈ 0.01, dof ≈ 1.6 · 104

CPUAS= 90.0s CPUN = 807.6s CPUAS = 803.4s CPUN =4149.0s
k κ(uk) nodes opt AS opt N gmres κ(uk) nodes opt AS opt N gmres
1 1254 3.5e-14 6.0e-09 38 5042 3.5e-14 9.1e-09 36
2 307 5.1e-14 1.5e-06 93 1125 5.2e-14 1.4e-06 93
3 263 5.0e-14 1.3e-07 86 918 5.3e-14 1.2e-06 86
4 0.2037 177 5.3e-14 1.0e-06 79 0.1884 667 5.3e-14 1.1e-06 79
5 1.2962 124 5.2e-14 9.4e-07 72 1.3861 473 5.4e-14 7.5e-07 73
6 1.4221 75 5.1e-14 9.4e-07 66 1.2810 266 5.5e-14 7.2e-07 67
7 1.3647 27 5.4e-14 6.2e-07 62 1.4401 111 5.5e-14 6.1e-07 62
8 1.3660 7 5.3e-14 8.2e-07 57 1.5216 29 5.5e-14 8.2e-07 57
9 1.6705 2 5.5e-14 7.0e-06 52 1.6333 6 5.5e-14 8.2e-07 51

10 1.4939 0 5.2e-14 6.5e-07 44 1.6965 0 5.5e-14 7.8e-07 40

Table 8.1: (Example 1) Computed order of convergence κ(uk), change of nodes of the respective
active sets, optimality of the problem, i.e.,

∥∥uk − PUad(− 1
α pk)

∥∥
L2(Ω)

for the Newton method (opt
N) and the active-set method (opt AS) and number of GMRES iterations for solving the Newton
system.



148 8. Non-Reducible Multi-Player Optimal Control Problems

8.5.2 Example 2 - Four Player Game with Known Exact Solution

Next, we aim at solving (Pν
AL) where S denotes the solution operator of

−∆y =
N

∑
ν=1

uν + f in Ω, y = 0 on ∂Ω,

where f denotes a function in L2(Ω). This setting differs slightly from the one presented above.
However, it is easy to see that this does not have any impact on our convergence analysis. We
investigate a four player game on the domain Ω = (−1, 1)2. We set Cν := χν, where

Ω1 := (−1, 0)× (−1, 0) , Ω2 := (0, 1)× (−1, 0) ,
Ω3 := (−1, 0)× (0, 1) , Ω4 := (0, 1)× (0, 1) .

With (x1, x2) ∈ Ω, we set the optimal state

ȳ(x1, x2) :=


0 if |x| < 0.2,
−192(|x| − 0.2)5 + 240(|x| − 0.2)4 − 80(|x| − 0.2)3 if 0.2 < |x| < 0.7,
1 if |x| > 0.7.

With ξ1 := (0.5,−0.5, 0.5,−0.5) and ξ2 := (0.5, 0.5,−0.5,−0.5) we set

rν := rν(x1, x2) :=
√
(x1 + ξ1

ν)
2 + (x2 + ξ2

ν)
2

and define for ν = 1, ..., N the optimal adjoint states via

p̄ν := (−1)(−r2
ν + 0.25)(16r4

ν − 8r2
ν + 1).

Choosing a regularization parameter α, we construct the optimal control via ūν := −(1/α) p̄ν.
Due to the construction of the adjoint states we obtain ūν = 0 in Ω\Ων We set f := −∆ȳ −
∑N

ν=1 ūν such that ȳ and ūν satisfy the state equation. It remains to construct yν
d. Due to the

adjoint equation we obtain

yν
d :=

{
ȳ + ∆ p̄ν + (µ + ρ(ȳ− ψ))+ in Ων,
0 else.

For our numerical experiments we use ρ := 100.0, µ := 0 and ψ := 1.0. In order to solve this
problem we apply the active-set method using the initial values (y0, u0, p0) := (1, 0, 0). Due to
the knowledge of the exact solution the rate R and order of convergence κ can be estimated via

lim
k→∞

‖uk+1 − ū‖U
‖uk − ū‖U

= R, κex(uk) =

(
log
‖uk+1 − ū‖U
‖uk − ū‖U

)(
log

‖uk − ū‖U
‖uk−1 − ū‖U

)−1

.

We solved the problems for h ≈ 0.02 which corresponds to approximately 4.2 · 103 degrees
of freedom and used a tolerance of 10−8 for the gmres method. For determining the rate of
convergence we compute in each iteration R(uk) := ‖uk+1−ū‖U

‖uk−ū‖U
and denote the corresponding

value of the active-set method by RAS(uk) and the one of the semi-smooth Newton method by
RN(uk). Let us check on the convergence properties corresponding to different regularization
parameters α. Due to the discussion from Section 8.1.3.2 we know that α > 8.8025 satisfies
Assumption (8.3). However, also in this example (8.13) yields the better estimate. In this situation
it is enough to choose α > 4. The convergence rates from Table 8.2 confirm our theoretical
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finding. For α < 4 we see that the the semi-smooth Newton method still behaves nicely for
α = 1.0. However, we do not obtain superlinear convergence for α = 0.1 and α = 0.01. This
indicates that α = 1.0 may still satisfy Assumption 8.3, while the other values of α may be too
small. Finally, Figure 8.2 depicts the sum of the computed controls and the computed state for
α = 5.

Figure 8.2: (Example 2) Computed sum of controls (left), computed state (right).

α = 10.0 α = 5.0
k RAS(uk) κex

AS(uk) nodes AS RAS(uk) κex
AS(uk) nodes N

1 641 717
2 0.0941 348 0.1256 368
3 0.0523 130 0.0930 156
4 0.1026 0.7718 163 0.0935 0.9980 193
5 0.1298 0.8968 0 0.0850 1.0401 0

α = 1.0 α = 0.1
k RAS(uk) κex

AS(uk) nodes AS RAS(uk) κex
AS(uk) nodes N

1 845 1380
2 0.1466 408 0.5747 844
3 0.1441 176 0.2075 305
4 0.1289 1.05748 80 0.2165 0.9731 140
5 0.2469 0.68273 116 0.1454 1.2599 80
6 0.5354 0.4466 65 0.2464 0.7266 48
7 0.5285 1.0210 0 0.8596 0.1080 89
8 0.9832 0.1123 48
9 0.9728 1.6223 4

10 1.0 0. 0 0
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α = 0.01
k RAS(uk) κex

AS(uk) nodes AS
1 2044
2 0.5663 1008
3 0.7962 544
4 0.7469 1.28073 378
5 0.2210 5.17141 230
6 0.3985 0.60945 88
7 0.2734 1.40977 92
8 0.4582 0.60164 44
9 0.8973 0.13883 62

10 0.998 0.0185 42
11 1.002 -1.099 24
12 1.012 4.8085 4
13 1.0 0 0

Table 8.2: (Example 2) Computed rates RAS(uk), order of convergence κex
AS(uk) and change of

nodes of the respective active sets for different values of α.



CHAPTER 9

CONCLUSION AND OUTLOOK

In this thesis we investigated an augmented Lagrangian method in order to solve state constrained
optimal control problems governed by linear and semilinear partial differential equations. Let us
summarize the main results of this thesis and discuss some possible topics for future research.

Optimal Control Problems

In the first part of this thesis an augmented Lagrangian algorithm has been applied to optimal
control problems, where the objective function is given by

f (u) =
1
2
‖Su− yd‖2

L2(Ω) + j(u).

Additional constraints consist of box constraints for the control and pointwise inequality con-
straints for the state.
While augmented Lagrangian methods are well-known in optimization, only a limited number of
publications is devoted to the application of such methods to state constrained optimal control
problems. We first focused on the convex case, i.e., S is a linear and continuous operator. To deal
with problems of this type naturally requires that the Slater condition is satisfied.

In Chapter 3 we considered the case j(u) := (α/2) ‖u‖2
L2(Ω) and provided a full convergence

analysis of the corresponding augmented Lagrangian algorithm, which relied on the Slater con-
dition only, see Theorem 3.15. While augmented Lagrangian methods in the finite-dimensional
setting do not require that the penalty parameter tends to infinity, we proved that the penalty pa-
rameters are in the infinite dimensional setting bounded only if there is a multiplier to the state
constraint in L2(Ω), which is not the case in general, see Theorem 3.18.

In Chapter 4, we chose j(u) := ‖u‖L1(Ω), which made the problem under consideration ill-posed.
We combined a Tikhonov regularization approach with the augmented Lagrangian method an cou-
pled the corresponding regularization and penalization parameters in order to derive a convergence
result, see Theorem 4.17 and Theorem 4.20. Let us emphasize that also for this class of problems
the Slater condition has been the only assumption needed for carrying out our convergence analy-
sis.

While convex optimal control problems have been studied extensively in the last years, the situ-
ation changes considerably for non-convex state constrained optimal control problems, i.e., S is
a nonlinear operator. Since the convergence analysis of solution algorithms of non-convex opti-
mization problems suffers significantly from non-uniqueness of local and global solutions, only
few contributions can be found in the literature. In Chapter 5 we presented a detailed elaboration
of the augmented Lagrangian method applied to state constrained optimal control problems gov-
erned by semilinear partial differential equations. It turned out that the crucial point here was to
prove feasibility of weak limit points of the sequence that is generated by the algorithm, which
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can not be expected in general for augmented Lagrangian methods. However, we were able to
argue that this property is obtained in different scenarios: Either the algorithm chooses the global
solution of the augmented Lagrangian subproblem, or some kind of auxiliary problem that allows
solutions that are located in an arbitrary small neighbourhood of a local solution of the original
problem, or some kind of boundedness property of the Lagrange multiplier sequence is satisfied
(Theorem 5.11). Moreover, the choice of global solutions of the auxiliary problem as iterates
of the algorithm allowed us to prove that the sequence of multipliers is bounded, supposed the
penalty parameter is bounded in L2(Ω), see Theorem 5.28.

Multi-Player Control Problems

The second part of this thesis extended the results from the first part to multi-player optimal control
problems.
As a start Chapter 6 investigated the augmented Lagrangian method applied to jointly convex
multi-player optimal control problems. We benefited from the advantageous structure of this type
of problem by elaborating a comparatively simple convergence analysis (Theorem 6.12 and The-
orem 6.13), which included feasibility of weak limit points without any additional assumption
besides the Slater condition.

The generalized Nash equilibrium problem that has been investigated in Chapter 7 can be refor-
mulated as a QVI. Until now only few existence results can be found for QVIs. We contributed
an existence result (Theorem 7.10) under a Slater-type constraint qualification, which also implied
Mosco-continuity (Theorem 7.13). This constraint qualification has also been the main ingredient
for the corresponding convergence analysis. To be more precise, the uniform Slater condition im-
plies the same kind of boundedness condition on the Lagrange multiplier as needed in Chapter 5,
see Lemma 7.20.

Chapter 8 has been devoted to the investigation of the uniqueness of normalized solutions of jointly
convex generalized Nash equilibrium problems, which can not be expected in general. We con-
tributed a new condition on the regularization parameter α, which ensured uniqueness of this type
of equilibria, see Theorem 8.4. Moreover, we proved that the same condition implies superlin-
ear convergence of the semi-smooth Newton applied to the augmented Lagrangian subproblem
(Theorem 8.11), which is crucial for the numerical solution of GNEPs.

Outlook

Finally, let us report on some ideas concerning possible extensions and open questions of the
augmented Lagrangian method that has been introduced in this thesis. First, in order to bridge
the gap between finite and infinite dimensions, it would be favourable to modify the presented
augmented Lagrangian scheme in such a way that we obtain a method where the penalization pa-
rameter does not need to go to infinity. This would in particular be advantageous for numerical
computations, since numerical experiments often suffer from too large penalization parameters.
Moreover, it would be interesting to investigate the non-differentiable optimal control problem
with sparse controls from Chapter 4 for a nonlinear solution operator S. Combining the strategies
that have been elaborated for semilinear state constrained optimal control problems in Chapter 5
with a Tikhonov regularization as in the spirit of Chapter 4, we would expect that the correspond-
ing convergence analysis can readily be transferred to ill-posed state constrained optimal control
problems. The extension to the nonlinear case would also be a challenging task for multi-player
control problems. Last, it would be appealing to establish convergence rates for the augmented
Lagrangian method presented in this thesis.
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