
Johannes Schauer Marin Rodrigues

B
a
n

d
  2

0
Würzburger Forschungsberichte
in Robotik und Telematik

Institut für Informatik
Lehrstuhl für Robotik und Telematik

Prof. Dr. K. Schilling
Prof. Dr. A. Nüchter

Detecting Changes 
and Finding Collisions 
in 3D Point Clouds

Uni Wuerzburg Research Notes
in Robotics and Telematics

Data Structures and 
Algorithms for Post-Processing
Large Datasets



Julius-Maximilians-Universität Würzburg

Chair of Computer Science VII
Robotics and Telematics

Dissertation

Detecting Changes and Finding Collisions

in 3D Point Clouds

Data Structures and Algorithms

for Post-Processing Large Datasets

submitted to the Faculty of

Mathematics/Computer Science

of the University of Würzburg

in fulfillment of the requirements for the degree of

Doctor Rerum Naturalium (Dr. rer. nat.)

by

Johannes Schauer Marin Rodrigues

2020-05-22

Supervisor and first reviewer: Prof. Dr. Andreas Nüchter

Second reviewer: Prof. Dr. Alexander Reiterer





Contents

Abstract 13

1 Introduction 15

1.1 Contribution 16

1.2 About this book 17

1.3 Outline 18

2 Data structures for point cloud processing 19

2.1 k-d tree 19

2.1.1 Introduction 19

2.1.2 Related work 21

2.1.3 Tree data structure 21

2.1.4 Building the k-d tree 22

2.1.5 k-d tree layout 24

2.1.6 Searching the k-d tree 25

2.1.7 _fixedRangeSearch 26

2.1.8 Quick check whether to abort 28

2.1.9 Subclassing the k-d tree 30

2.1.10 An indexing k-d tree 31

2.2 Sphere Quadtree 32

2.2.1 Introduction 32

2.2.2 Related work 32

2.2.3 Implementation 33

2.2.4 Search tree 37

2.2.5 Point reduction 40



4

2.3 Voxel Grid 42

2.3.1 Introduction 42

2.3.2 Related work 42

2.3.3 Implementation 43

2.4 Summary 47

3 Datasets 49

3.1 Bremen, Randersacker, Würzburg, campus, lecturehall 49

3.2 Underwood (sim, lab, carpark) 50

3.3 KITTI 51

3.4 El Teniente, Hannover, Wolfsburg, Traintunnel 53

3.4.1 El Teniente 54

3.4.2 Hannover and Wolfsburg 54

3.4.3 Traintunnel and Trainwagon 55

4 Change detection 57

4.1 Introduction 57

4.1.1 Our approach 58

4.2 Related work 59

4.3 General design 61

4.4 Fast voxel traversal 63

4.4.1 Approach by Amanatides and Woo 64

4.4.2 Definition of line-voxel intersection 64

4.4.3 Avoiding accumulation of floating point errors 65

4.4.4 Rays starting exactly at a voxel boundary 67

4.4.5 Implementation 67

4.4.6 Reusing already computed paths 70

4.5 Scan slices from Mobile mapping 73

4.6 Panorama scans from Terrestrial mapping 74

4.6.1 Implementation 76

4.7 Clustering for noise removal 79

4.8 Sub-voxel accuracy 80

4.9 Working on a reduced pointcloud 82

4.10 Results 84

4.10.1 Quantitative Assessment 84



5

4.10.2 F1 score by voxel size 88

4.10.3 F1 score by rotation and translation 89

4.10.4 Qualitative Assessment 91

4.10.5 Performance 95

4.11 Limitations 100

4.12 Summary 102

5 Collision detection 103

5.1 Introduction and problem formulation 104

5.2 Related Work 106

5.3 Collision detection 107

5.3.1 kd-CD-simple 108

5.3.2 kd-CD 108

5.4 Depth of penetration calculation 109

5.4.1 kd-PD-fast 109

5.4.2 kd-PD 110

5.5 Design and Implementation 111

5.5.1 3dtk k-d tree 111

5.5.2 regular grid decomposition (RGD) 112

5.6 Experiments and results 113

5.6.1 CPU tests 118

5.6.2 GPU tests 119

5.6.3 CPU specific benchmarks 119

5.6.4 GPU specific benchmarks 120

5.6.5 CPU versus GPU benchmarks 120

5.7 Summary 123

6 Future Work 125

7 Conclusions 127

Bibliography 129





List of Tables

2.1 Minimum and maximum triangle areas for different recursion depths 41

3.1 Overview of the datasets obtained using the Riegl VZ-400 49

3.2 Overview of the datasets by Underwood et al. and their proper-

ties 51

3.3 Properties of the KITTI dataset 52

3.4 Overview of the used datasets and their properties 54

4.1 Test parameters 85

4.2 Test results for sim, lab, carpark and lecturehall 86

4.3 Test results for 11 scenes from the KITTI dataset for which the Un-

derwood method was optimized 86

4.4 F1 scores for all KITTI scenes 87

4.5 Overview of the datasets used for qualitative assessment 91

4.6 Test parameters 96

4.7 Runtimes of our method versus the method by Underwood et al. 96

5.1 Overview of test setup parameters 114

5.2 Number of colliding points for each dataset 122





List of Figures

1 The same car multiple times from the KITTI dataset due to the same

car being present in multiple scans at different positions in a mo-

bile mapping scenario 13

2 A "stretched" van from the Würzburg dataset due to the vehicle mov-

ing in the direction of the scanner rotation in a terrestrial mapping

scenario 13

3 Non-static points are identified (magenta).. 13

4 ...and removed without artifacts 13

2.1 (mostly) UML diagram illustrating the relationship between dif-

ferent C++ classes in our k-d tree implementation 20

2.2 Example of creating a 2D k-d tree 25

2.3 Two-dimensional overview of all possible locations a circular search

radius (green) can have relative to the axis aligned bounding rect-

angle (yellow) 29

2.4 Close-up of cell b2 in Figure 2.3 29

2.5 Example spherical quad tree using a scan of the Würzburg dataset 36

2.6 Final spherical quad tree of a scan from the Würzburg dataset 37

2.7 The scan from Figure 2.6 as reflectance image on a perfect sphere

surface in the same orientation. 37

2.8 The minimum and maximum ratio between triangle area and its

circumcircle area on a octahedron, subdivided up to a certain depth 38

2.9 Subdivided octahedron in four different depths with colors indi-

cating the ratio between each triangle area and its circumcircle area 39

2.10 Subdivided octahedron in four different depths with colors indi-

cating the triangle area 41

2.11 div function based on truncation for b > 0 45

2.12 div function based on euclidean division for b > 0 45

3.1 Würzburg City Dataset 50

3.2 Würzburg City Dataset 50

3.3 Bremen City Dataset 50

3.4 Randersacker Dataset 50

3.5 Dataset campus 50

3.6 Dataset lecturehall without people in it 50

3.7 Dataset sim 51

3.8 Dataset lab seen from above 51

3.9 Dataset lab showing noise 51

3.10 Dataset carpark 51



10

3.11 KITTI setup by Geiger et al 51

3.12 Point cloud of a front loader colored by surface normal 54

3.13 Husky A200 robot with Riegl VZ-400 inside the mine by Leung et

al 54

3.14 The Optech Lynx Mobile Mapper on the back of a train wagon 55

3.15 A photo of the scanned train wagon with a bogie distance of 20 m 55

3.16 The Riegl VZ-400 laser scanner set up next to the train wagon 55

3.17 Aligned train wagon (yellow) inside the tunnel environment (gray)

and trajectory (red) 56

4.1 Non-static points are identified (magenta).. 59

4.2 ...and removed without artifacts 59

4.3 The scene as scanned from a center position (ray origin not part

of the Figure) 62

4.4 The scene as scanned from a position to the right 62

4.5 Two-dimensional example of the voxel traversal problem 65

4.6 A line is traversed from (1.5,0.5) to (0.5,1.5) 66

4.7 A line is traversed from (0.5,1.5) to (1.5,0.5) 66

4.8 Visualization of which part of a sphere surface falls into which voxel 71

4.9 Visualization of the unique paths through a regular axis-aligned

voxel grid 71

4.10 Number of voxels in a regular voxel grid intersecting the surface

of a sphere per sphere surface area 71

4.11 number of possible unique paths through a voxel grid 72

4.12 The scene as scanned from a center position (ray origin not part

of the Figure) 73

4.13 Artifacts of false positives on the ground using a naive approach 74

4.14 False positives variant 1 74

4.15 False positives variant 2 74

4.16 Synthetic dataset "sim" from Unterwood et al 75

4.17 lecturehall dataset in perspective projection 75

4.18 sim dataset in perspective projection 76

4.19 lecturehall dataset panorama 76

4.20 Step 1 78

4.21 Step 2 78

4.22 Step 3 79

4.23 Initial situation 80

4.24 See-through voxels cleared 80

4.25 Adjacent voxels cleared of points from scan that was removed 81

4.26 No subvoxel accuracy with dynamic points in magenta 81

4.27 No subvoxel accuracy with leftover false negatives on the ground 81

4.28 With subvoxel accuracy and dynamic points in magenta 82

4.29 With subvoxel accuracy no false negatives remain on the ground 82

4.30 Lecturehall with all rays traversed for 22.3 million rays per scan 83

4.31 Lecturehall with only 10 rays traversed per 2.86° angle for 12k rays

per scan 83

4.32 F1 score by number of shot rays with a logarithmic x-axis 83

4.33 time for ray traversal by number of shot rays with regression line

and 95% confidence interval 84



11

4.34 Dataset lab showing noise 86

4.35 Points from reflections under the street surface 87

4.36 Examples of wrong classifications of binary masks from FuseMOD-

Net from KITTI scene 9, frame 385 87

4.37 F1 score per voxel size for different methods to acquire the points

for normal computation in the sim dataset 88

4.38 Overall F1 score for the KITTI dataset with different voxel sizes 90

4.39 Histogram of F1 scores for 1000 permutations of rotations of the

input data around all three coordinate axes 90

4.40 F1 scores achieved by translating the input along the axis perpen-

dicular to the plane on which the moving cubes are placed 91

4.41 Bremen scene 1 93

4.42 Bremen scene 2 93

4.43 Bremen scene 3 94

4.44 Würzburg scene 1 94

4.45 Würzburg scene 2 94

4.46 Würzburg scene 3 94

4.47 Randersacker dataset 95

4.48 The x-axis shows the number of points passed to the algorithm 95

4.49 Graph of the 146 scans from the "campus" dataset with edges con-

necting the scans with more than 1000 voxel overlap 97

4.50 Runtime of our algorithm in seconds (y-axis) depending on the used

number of threads (x-axis) 98

4.51 Runtime of our algorithm in seconds (y-axis) depending on the voxel

size (x-axis) 99

4.52 Slight registration errors at the church towers lead to incorrectly

aligned surfaces 100

4.53 Examples for false positives 100

4.54 The high reflectivity of surfaces commonly found in factory envi-

ronments poses a great challenge 101

5.1 Top view of the train wagon 105

5.2 kd-cd-simple for a model with three points on three different po-

sitions along its trajectory 107

5.3 kd-cd for a model with three points on three different positions along

its trajectory 108

5.4 top view of the train wagon 109

5.5 Top view of train wagon in tunnel 110

5.6 Penetration depth as calculated by kd-PD-fast 110

5.7 Penetration depth as calculated by kd-PD 110

5.8 Five point models of the train wagon with different sampling den-

sities 113

5.9 A frame from http://youtu.be/ylp4mD5XZaQ 115

5.10 Computation time of both collision detection variants 116

5.11 Computation time with different distances between points on the

trajectory 116

5.12 Computation time with different search radii and corresponding

sampling rates of the model and trajectory 117

http://youtu.be/ylp4mD5XZaQ


12

5.13 Computation time of both penetration depth variants, kd-PD-fast

and kd-PD, with different search radii 118

5.14 Box plot of 3DTK runtime on the Hannover dataset by number of

threads 119

5.15 Performance of the GPU method by grid resolution 120

5.16 Runtime in seconds on each platform for different datasets 121

5.17 Performance with varying numbers of points 122



Figure 1: The same car multiple times
from the KITTI dataset due to the
same car being present in multiple
scans at different positions in a mobile
mapping scenario

Figure 2: A "stretched" van from the
Würzburg dataset due to the vehicle
moving in the direction of the scanner
rotation in a terrestrial mapping
scenario

Figure 3: Non-static points are identi-
fied (magenta)...

Figure 4: ...and removed without
artifacts

Abstract

Affordable prices for 3D laser range finders and mature software

solutions for registering multiple point clouds in a common coor-

dinate system paved the way for new areas of application for 3D

point clouds. Nowadays we see 3D laser scanners being used not

only by digital surveying experts but also by law enforcement offi-

cials, construction workers or archaeologists. Whether the purpose

is digitizing factory production lines, preserving historic sites as

digital heritage or recording environments for gaming or virtual

reality applications – it is hard to imagine a scenario in which the

final point cloud must also contain the points of “moving” objects

like factory workers, pedestrians, cars or flocks of birds. For most

post-processing tasks, moving objects are undesirable not least

because moving objects will appear in scans multiple times (see

Figure 1) or are distorted due to their motion relative to the scanner

rotation (see Figure 2).

The main contributions of this work are two postprocessing

steps for already registered 3D point clouds. The first method is

a new change detection approach based on a voxel grid which

allows partitioning the input points into static and dynamic points

using explicit change detection (see Figure 3) and subsequently

remove the latter for a “cleaned” point cloud (see Figure 4). The

second method uses this cleaned point cloud as input for detecting

collisions between points of the environment point cloud and a

point cloud of a model that is moved through the scene.

Our approach on explicit change detection is compared to the

state of the art using multiple datasets including the popular KITTI

dataset. We show how our solution achieves similar or better F1

scores than an existing solution while at the same time being faster.

To detect collisions we do not produce a mesh but approxi-

mate the raw point cloud data by spheres or cylindrical volumes.

We show how our data structures allow efficient nearest neigh-

bor queries that make our CPU-only approach comparable to a

massively-parallel algorithm running on a GPU.

The utilized algorithms and data structures are discussed in

detail. All our software is freely available for download under the

terms of the GNU General Public license. Most of the datasets used

in this thesis are freely available as well. We provide shell scripts

that allow one to directly reproduce the quantitative results shown

in this thesis for easy verification of our findings.



14

“Remember kids, the only difference between screwing around and

science is writing it down.”

— Alexander Jason



1

Introduction

The work presented in this thesis started when we visited one

of the leading automakers in Europe and were given a simple

task: “We want to produce a new car model but we do not know

whether the body will fit through our existing factory. Can you

help us figure that out?”

We were surprised to learn that high tech companies like the one

we visited do not possess digital models of their factories. Instead,

production plants grow organically over the decades and figuring

out whether a factory is compatible with a given new car model in-

volves cardboard cutouts, styrofoam and lots of measurement tape.

Needless to say, production needs to be halted while measurements

are being taken manually by the workers, so money is lost during

that downtime.

Automotive manufacturing lines proved to be a complex play-

ground. While most of the time the car body moves along a straight

line on a series of rails, it also gets turned upside down, rotated,

gets put into elevator shafts and through narrow tunnels. Especially

within turns or in the constricted environment of an elevator, a 2D

stencil is not sufficient to adequately check whether the car body

will indeed fit and whether there is enough safety distance around

it.

Our solution was to create a three dimensional map of the pro-

duction line and clearing it of moving objects like employees work-

ing along the production line. We then send a virtual model of the

car body through that map along the same trajectory that the real

car body would take and compute whether there are any collisions

or whether safety margins are satisfied.

In this thesis we describe two important building blocks for this

approach:

• removing dynamic objects from point clouds and

• computing collisions and penetration depths between two 3D

point clouds.

Removing non-static (or dynamic) parts of a point cloud by itself

has multiple applications:

• in indoor offices for intrusion detection or workspace planning,



16

1 Amanatides, J., Woo, A., et al. (1987).
A fast voxel traversal algorithm for ray
tracing. In Eurographics, volume 87,
pages 3–10

2 http://threedtk.de

3 https://sourceforge.net/projects/

slam6d/
4 https://github.com/3DTK/3DTK

• inside a factory or at industrial sites for industry 4.0 applications,

• at a mining site to monitor progress and watch for hazards,

• for city master planning and documentation purposes,

• at historical sites for archaeology and digital preservation pur-

poses,

• and for gaming and virtual reality applications.

Likewise, computing collisions is important part

• of mobile robotics,

• planning of factory production lines,

• robotic manipulation tasks, as well as for

• logistical planning, like transportation of large goods along high-

ways or railways.

All of this work is done with raw point clouds as input and

without any surface approximation or model extraction or tracking

of individual objects over time. Working with the raw point clouds

as they are acquired by 3D laser range finders has the advantage

that we do not take into account the inaccuracies of methods that

turn the point cloud into a mesh or any other representation that

tries to approximate surfaces or classify and fit objects. We show

that using raw point clouds for dynamic object removal and colli-

sion detection can be done in a fast and reliable way.

1.1 Contribution

Our main contributions are:

• an algorithm that is able to identify and remove dynamic points

in 3D point clouds

• an improved and extended version of the voxel traversel algo-

rithm by Amanatides and Woo1

• an approach that doesn’t classify whole voxels as dynamic but

only subsets of points in a voxel, achieving sub-voxel accuracy

• a spherical quadtree data structure for nearest neighbor search

and point cloud reduction

• two collision detection methods (kd-CD and kd-CD-simple) to

find collisions of a single arbitrary (and deformable) point cloud

(the model) with a static environment

• two methods to calculate penetration depth of the model with

the environment (kd-PD and kd-PD-fast)

• a highly optimized k-d tree implementation and query functions

to perform collision detection

All contributions of this thesis are released as part of 3DTK –

The 3D Toolkit2. 3DTK is released as free software under the terms

of the GNU General Public License and can be downloaded either

from sourceforge.net3 or from a git mirror on github.com4. The

tools build and run on Linux, Windows as well as on MacOS.

http://threedtk.de
https://sourceforge.net/projects/slam6d/
https://sourceforge.net/projects/slam6d/
https://github.com/3DTK/3DTK


introduction 17

5 Schauer, J. and Nüchter, A. (2018a).
Removing non-static objects from
3d laser scan data. ISPRS Journal of
Photogrammetry and Remote Sensing
(JPRS), 143:15–38

6 Tufte, E. R. (2006). Beautiful evidence.
Graphis Press

7 Schauer, J. and Nüchter, A. (2018a).
Removing non-static objects from
3d laser scan data. ISPRS Journal of
Photogrammetry and Remote Sensing
(JPRS), 143:15–38
8 Schauer, J. and Nüchter, A. (2018b).
The Peopleremover — Removing
Dynamic Objects From 3-D Point
Cloud Data by Traversing a Voxel
Occupancy Grid. IEEE Robotics and
Automation Letters (RAL), 3(3):1679–
1686

Together with this thesis we release two shell scripts that can

be run on a GNU/Linux machine to fully reproduce the F1 scores

we present in the quantitative results in section 4.10.1. The first

script was already released together with our publication in the

ISPRS Journal of Photogrammetry and Remote Sensing5 while

the other script extends upon the first with an evaluation of the

KITTI dataset. The scripts can be retrieved via the following links,

respectively:

• For datasets sim, lab, carpark, lecturehall: https://robotik.

informatik.uni-wuerzburg.de/telematics/download/isprs2018/

• For KITTI datasets: https://robotik.informatik.uni-wuerzburg.

de/telematics/download/kitti2020/

The scripts will download and compile our software as well

as a competing solution, download the necessary datasets and fi-

nally run both approaches on each dataset, producing the F1 scores

found in the tables later in this thesis. Our datasets are published

in the Robotic 3D Scan Repository at http://kos.informatik.

uni-osnabrueck.de/3Dscans/.

1.2 About this book

This thesis was prepared using the LaTeX Tufte style. The Tufte

style is named after Edward Tufte and used in his books6. The style

is known for its extensive use of sidenotes and tight integration of

graphics with text. Usually, looking up a citation would require

to find the citation reference in the bibliography at the end of the

work and finding figures and footnotes would require moving

the eye away from the current paragraph of text to the top or the

bottom of the page, respectively. We chose this style so that the

reader is able to read through the main text of this thesis while at

the same time be able to inspect the accompanying information

without loosing the current visual focus. Since figures will usually

be found directly next to the text referencing it, they will neither

break the text flow nor will the reader get distracted by having to

search for the right figure number.

This work is heavily based on and extends on previous publi-

cations from the author of this thesis. Previous work on change

detection was published in the ISPRS Journal of Photogrammetry

and Remote Sensing7 and a summary of the work appeared in the

IEEE Robotics and Automation Letters8. We expand on the these

two publications with more in-depth explanations of the utilized

algorithms and data structures like the spherical quadtree, a more

thorough evaluation of the proposed approach by also running it

on the KITTI dataset, as well as with a method to reduce the run-

time of the voxel traversal for explicit change detection by several

orders of magnitude without a significant change in the final F1

score. The first publication on the topic of change detection was in

https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2018/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2018/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/kitti2020/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/kitti2020/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/


18

9 Schauer, J. and Nüchter, A. (2017).
Digitizing automotive production
lines without interrupting assembly
operations through an automatic
voxel-based removal of moving objects.
In Control & Automation (ICCA), 2017
13th IEEE International Conference on,
pages 701–706. IEEE

10 Schauer, J. and Nüchter, A. (2014).
Efficient point cloud collision detection
and analysis in a tunnel environment
using kinematic laser scanning and kd
tree search. The International Archives
of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 40(3):289

11 Schauer, J. and Nüchter, A. (2015).
Collision detection between point
clouds using an efficient k-d tree
implementation. Journal Advanced Engi-
neering Informatics (JAdvEI), 29(3):440–
458

12 Schauer, J., Bedkowski, J., Majek, K.,
and Nüchter, A. (2016). Performance
comparison between state-of-the-art
point-cloud based collision detection
approaches on the CPU and GPU. In
Proceedings of the 4th IFAC Symposium
on Telematics Applications (TA ’13),
volume 49, pages 54–59, Porto Alegre,
Brazil

the proceedings of the 13th IEEE International Conference on Con-

trol and Automation 20179. While later work focused on input from

terrestrial scans, this publication evaluated the change detection

method on data from mobile mapping in an automotive production

line environment.

Our work on collision detection started with a publication from

the proceedings of the Photogrammetric Computer Vision con-

ference in 201410 and focused on a dataset of a train tunnel and

a train wagon moving through it. That work was further refined

for a longer publication in the journal of Advanced Engineering

Informatics in 201511. That work also expanded on the underlying

k-d tree data structure as the backbone for efficient collision com-

putations on 3D point cloud data. Finally, we compared our work

on collision detection with an implementation that relied on mas-

sively parallel computations on the GPU in a collaboration with

colleagues from the Institute of Mathematical Machines in Warsaw

in a publication that appeared in the proceedings of the 4th IFAC

Symposium on Telematics Applications in 201612.

Unless otherwise specified, all runtime results in this thesis were

carried out on a desktop PC with an Intel Xeon e5-2630 v3 proces-

sor with 8 physical cores with 2.4 GHz each and 32 GB of RAM.

The operating system was Debian 10 Buster with Linux kernel

4.19.0 and GCC 8.3.0.

Unless otherwise specified, a left-handed coordinate system is

used throughout this thesis with the y-axis pointing upwards, the

z-axis pointing foward and the x-axis pointing to the right.

1.3 Outline

The remainder of this work is split into five parts. In the part that

follows we discuss general data structures and algorithms for work-

ing with 3D point clouds. Specifically we outline how our k-d tree

works and what techniques are used to improve its performance.

We use a sphere quadtree as a search tree which is used to search

a 3D point cloud for nearest angular neighbors. Lastly, we explain

what data structure we chose to bin 3D points into a voxel grid

without using memory for unoccupied volumes. The following part

then explains the datasets that were used throughout the remainder

of the thesis. We acquired some datasets specifically with change

detection and collision detection in mind while others were taken

from existing research. The largest part of the thesis handles our

novel change detection algorithm, its performance improvements

and techniques for avoiding false positives and generate qualita-

tively and quantitatively satisfying results. The next part shows our

approach to collision detection and penetration depth computation

and compares its runtime to a massively parallel implementation

running on a GPU. In the last part we draw our conclusions and

give an outlook on future developments.



1 see datasets El Teniente, Wolfsburg or
campus in later sections for examples

2 Nüchter, A., Elseberg, J., Schneider,
P., and Paulus, D. (2010). Study of
parameterizations for the rigid body
transformations of the scan registration
problem. Computer Vision and Image
Understanding, 114(8):963 – 980

2

Data structures for point cloud processing

In this section we describe the data structures that lay the foun-

dation for the change detection and collision detection algorithms

explained in later part of this thesis. Managing 3D point clouds is

a challenging task due to the sheer number of points in common

datasets which easily exceed several hundred million or billions

of points1. Without the use of specialized data structures finding

points sharing similar properties, easily becomes an O(n2) opera-

tion on a dataset with n points.

In the following sections we present our implementation of

two different tree data structures: the k-d tree and the spherical

quadtree as well as a voxel grid implementation as a spatial hash-

ing data structure. In general, we use tree data structures to quickly

find spatial neighbors and a voxel grid as a representation of an

occupancy grid.

2.1 k-d tree

2.1.1 Introduction

In this section our highly-optimized k-d tree implementation is pre-

sented. It is implemented in 3DTK2 in C++. It currently implements

multiple search functions, can be parameterized to be used with 3D

point data of different precision and container type, allows one to

present search results as pointers, array indices or as 3D coordinate

data and allows parallel execution through OpenMP. Its correctness

has been verified by a test suite which combines brute force imple-

mentations of the search functions (test all points for satisfaction of

the search criterea) against the result of a search in the k-d tree.

The general operation of the search functions will be presented

by using the function fixedRangeSearch as an example. The func-

tion is implemented in the class KDTreeIndexed. It sets up the

KDParams structure with the search parameters and then calls the re-

cursive function _FixedRangeSearch (notice the leading underscore)

implemented in KDTreeImpl. The function _FixedRangeSearch in

turn implements the actual search operations.

For an overview, consider Figure 2.1. Boxes are in UML, relation-

ships (arrows) are not. KDTreeImpl is templated by KDtreeIndexed



20

Figure 2.1: (mostly) UML diagram
illustrating the relationship between
different C++ classes in our k-d tree
implementation



data structures for point cloud processing 21

3 short for k-dimensional tree

4 Sellis, T., Roussopoulos, N., and
Faloutsos, C. (1987). The r+-tree: A
dynamic index for multi-dimensional
objects
5 Elseberg, J., Magnenat, S., Siegwart,
R., and Nüchter, A. (2012). Com-
parison of nearest-neighbor-search
strategies and implementations for
efficient shape registration. Journal
of Software Engineering for Robotics,
3(1):2–12
6 Mount, D. M. and Arya, S. (2010).
Ann: a library for approximate nearest
neighbor searching, 2005

7 Magnenat, S. (2014). libnabo
8 Muja, M. and Lowe, D. G. (2012).
Flann - fast library for approximate
nearest neighbors

with the parameters listed in the comment. The node and leaf

structure are a C++ union. The params member of KDTreeImpl is

static. UML packages are used to indicate file membership and

to group for readability. Only the fixedRangeSearch search func-

tion and its recursive counterpart _FixedRangeSearch are listed for

brevity.

The template class KDTreeImpl provides the implementation of

search functions and at the same time represents an inner node or

a leaf node of the k-d tree. Multiple classes instantiate KDTreeImpl,

one of them being KDtreeIndexed which is of particular use for the

collision detection method in this thesis. The classes and functions

seen in Figure 2.1 will be explained in more detail in the following

sub-sections.

2.1.2 Related work

k-d trees3 are a special kind of binary space partitioning trees. To

construct a k-d tree, a set of points is recursively divided into two

child nodes with their associated bounding boxes. In contrast to

tree structures with a regular spatial partitioning like octrees, the

repeated computation of bounding boxes adjusts the spatial search

volumes to the underlying point cloud.

The k-d tree implementation in this work bears similarities to

R+-trees4 insofar it recalculates a new bounding box for each child

node. In contrast to R+-trees, the k-d tree implementation pre-

sented here does not make efforts to create a balanced tree. In a

publication by Elseberg et al.5 our k-d tree implementation was

benchmarked against three nearest-neighbor search libraries based

on the k-d tree data structure: ANN6, libnabo7 and FLANN8 and

came out amongst the fastest implementations.

2.1.3 Tree data structure

Below listing shows an excerpt from the template class KDtreeImpl.

Each instance of the class represents an inner or leaf node in the k-d

tree.

1 template<class PointData, class AccessorData, class AccessorFunc,

2 class PointType, class ParamFunc> class KDtreeImpl {

3 public:

4 void create(PointData, AccessorData *, int);

5 protected:

6 static KDParams<PointType> params[MAX_OPENMP_NUM_THREADS];

7 int npts; // equal zero for inner nodes, otherwise leaf

8 union {

9 struct {

10 double center[3];

11 double dx, dy, dz;

12 int splitaxis;

13 KDtree* child1, *child2;



22

14 } node;

15 struct { AccessorData* p; } leaf ;

16 };

17 void _FixedRangeSearch(const PointData&, int);

18 };

19 template<class T> class KDParams {

20 public:

21 double maxdist_d2;

22 double *p;

23 vector<T> range_neighbors;

24 }

The public create function in line 4 recursively creates a k-d tree

by splitting the points it received as an argument into two, creating

two new instances of KDtreeImpl and calling their create function

with one of the new point sets, respectively. The inner working of

the create function is explained in section 2.1.4.

The static member params in line 6 is set once for every new

search in the k-d tree. It avoids having to pass the search param-

eters for each recursive function call and thus reduces the size of

required operations on the stack. As it is a static member, it will

only be stored in memory once, i.e., hardware cache friendly. The

KDParams class in this shortened excerpt stores the point around

which to search p, the squared search radius maxdist_d2 and

the search result vector range_neighbors. Since it is possible to

carry out searches in the same k-d tree in parallel, an array of size

MAX_OPENMP_NUM_THREADS exists.

The member npts in line 7 stores the number of points this node

contains. If this value is non-zero, the node is a leaf node. Other-

wise, the node is an inner node.

Depending on the node type, a union structure in line 8 stores

data about the node. Inner nodes store their center coordinate (line

10), the node size (line 11), the coordinate axis by which the node is

split (line 12) and pointers to the two children the node is split into

(line 13). Leaf nodes store a pointer p to an array representing the

contained points (line 15).

2.1.4 Building the k-d tree

A k-d tree is created by instantiating KDtreeImpl and calling its

create method with the points one wants to fill the k-d tree with.

The create method will then recursively instantiate new KDtreeImpl

child nodes until all points are distributed into leaf nodes. The

create method is shown as an abbreviated excerpt in the following

listing and is explained in more detail further below.

1 KDtreeImpl::create(PointData pts, AccessorData *indices, int n) {

2 if (n > 0 && n <= 10) { // Leaf nodes, copy data

3 npts = n;

4 leaf.p = new AccessorData[n];



data structures for point cloud processing 23

9 Nuchter, A., Surmann, H., Linge-
mann, K., Hertzberg, J., and Thrun, S.
(2004). 6d slam with an application
in autonomous mine mapping. In
Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International
Conference on, volume 2, pages 1998–
2003. IEEE

5 for (int i = 0; i < n; ++i) leaf.p[i] = indices[i];

6 return;

7 }

8 npts = 0; // inner node

9 // finding bounding box

10 // node.center, node.dx, node.dy, node.dz

11 [...]

12 // calculate longest axis

13 if (node.dx > node.dy)

14 if (node.dx > node.dz) node.splitaxis = 0;

15 else node.splitaxis = 2;

16 else

17 if (node.dy > node.dz) node.splitaxis = 1;

18 else node.splitaxis = 2;

19 // distributing data to fields left and right for the

20 // following nodes according to splitval

21 double splitval = node.center[node.splitaxis];

22 AccessorData *left;

23 [...]

24 // creation of subtrees

25 node.child1 = new KDtreeImpl();

26 node.child1.create(pts, indices, left-indices);

27 node.child2 = new KDtreeImpl();

28 node.child2.create(pts, left, n-(left-indices));

29 }

The first check in line 2 decides whether the current node is an

intermediate node or a leaf node. If the number of points passed

to the create function is less than or equal to 10 then this node

will become a leaf node storing all points it is given and recursion

stops. Otherwise the node is an inner node. This is recorded in the

npts member in line 8. The number 10 is chosen as the bucket size

because of run-time evaluations done by Nüchter et al9 (see Figure

5 in that paper).

The clipped lines 9-11 calculate an axis aligned bounding box for

the points the function is given. The bounding box is represented

as its center point and its half length, width and height. Thus, the

values node.dx, node.dy and node.dz store the distance from the

center to the sides of the bounding box.

The axis by which to split the bounding box into two is found

in lines 12-18. The split is done by determining the longest axis

and splitting the bounding box in half by that axis. The choice

of splitting along the longest axis over any other axis is made to

create bounding boxes with volumes that more closely resemble

a cube than thin slices. This is because during range search, less

neighbor nodes will be intersecting a search radius if bounding, the

higher the ratio between the bounding box volume and the sum of

bounding box sides.

Instead of splitting the box by half its size, other choices are



24

possible. By investing more computational resources, the mean or

the median coordinate values of the points inside the bounding box

along the split axis can be computed. The median is the best choice

for creating a balanced tree, as it will split each node such that

the same number of points (plus-minus one) is contained in each

child node. But computing the median is most computationally

expensive as it requires to sort the coordinate values in O(n log n).

Splitting by the mean can result in child nodes for which better-

fitting bounding boxes can be computed because the node gets split

by a value which halves the points by their spatial values. Tests

with real-life data have shown that the theoretical advantages of

more computationally expensive choices of the splitting axis show

little benefit over just splitting the bounding box by half its size. An

explanation is that re-computing the axis aligned bounding box is

already sufficient for adjusting the tree geometry to the underlying

data.

Lines 19-23 partition the points the create function is given. To

reduce the amount of required copies, the original array with points

is reused and split into half. Only points which happened to be on

the wrong side are swapped with wrong points on the other side.

On average this halves the amount of required copy operations. In

the end, indices will point to the left hand side half of the original

array while left will point to the right hand side half of the array.

The last lines 24-28 instantiate two new KDtreeImpl objects and call

their create function with the respective, sorted half of the original

input data.

2.1.5 k-d tree layout

The create function explained in section 2.1.4 will result in a par-

titioning of the input points as shown in Figure 2.2 which shows a

simplified two-dimensional representation of the input points and

the resulting tree structure in memory.

In each sub-figure, 23 points are represented by black circles and

the bounding boxes by solid colored lines. Crosses and dotted lines

represent the bounding box centers and signify the split-axis of the

2-dimensional k-d tree. The letters identify the created groups of

points per leaf node. The tree representation of the created 2D k-d

tree can be seen on the right of each Figure. The color of the solid

boxes corresponds to the bounding boxes in the left Figure. Boxes

with dotted outlines are leaf nodes. The names of the leaf nodes

correspond to the letters in the left Figure.

In contrast to a classical k-d tree, the search volume of child

nodes is reduced by recalculating a bounding box for the enclosed

points. This technique is similar to how R-trees operate and helps

to create a tighter boundary for the enclosed points which in turn

results in performance improvements during look-ups. This is

because restricting the bounding volume of child nodes to a new

bounding rectangle allows the algorithm to abort a search quickly



data structures for point cloud processing 25

Root

(a) Bounding box around all points (red)

Inner Node Inner Node

Root

(b) Two bounding boxes around the partitioned points (blue)

A

B

C

Inner Node Inner Node

Root

Leaf C Inner NodeLeaf BLeaf A

(c) One the right node has more than 10 points and gets divided
again (green).

A

B

C

D
E

Inner Node Inner Node

Root

Leaf C Inner NodeLeaf BLeaf A

Leaf D Leaf E

(d) Last division creating leaf nodes D and E.

Figure 2.2: Example of creating a 2D
k-d tree

instead of having to search the k-d tree until leaf nodes are reached

and inspected.

Considering Figure 2.2, the create function is first called with

all 23 points as an argument. Since 23 > 10, a new inner node will

be created by calculating the node center and its bounding box (in

red). The bounding box is wider than it is tall so that the points

will be partitioned by a vertical axis across the bounding box center.

Two new KDtreeImpl instances are created for each side and get

passed 11 and 12 points, respectively. Since both values are greater

than 10 again, new inner nodes will be created with their bounding

boxes shown in blue. The following iteration will then result in two

leaf nodes on the left hand side (6 points in the upper region and

5 points in the lower region) and one leaf node on the right hand

side with one point. One last iteration over the remaining 11 points

on the right hand side will create two last child nodes. Leaf nodes

do not require a bounding box because when they are encountered

during a k-d tree search, all the points they contain are checked and

no further recursion has to be done.

2.1.6 Searching the k-d tree

Spacial searches in point clouds are parameterized by two proper-

ties: the location (where to search for results) and the subject (what

to return). The following five search areas are implemented by

3DTK:

a. radius r around a point P1

b. radius r around an infinite line defined by a point P1 and a

direction vector v

c. radius r around an infinite ray defined by P1 and v

d. radius r along a finite line segment defined by points P1 and P2



26

and

e. inside an axis aligned bounding box defined by P1 and P2 as

the corners with minimum and maximum coordinate values,

respectively

Additional search volumes that can be added in the future

would be oriented bounding boxes, cylinders or general polytopes.

In most volumes, it is possible to perform searches for the following

result types:

1. the point closest to P1

2. the k points closest to P1

3. all points within the search volume

4. the point closest to the given line, ray or line segment

5. the k closest points to the given line, ray or line segment

After eliminating the inapplicable combinations, one ends up

with 19 meaningful search functions. A full list is omitted for

brevity. For example, the common nearest neighbor search is

searching for the closest point to P1 (1) in a radius r around a point

P1 (a). For the collision detection method presented in this thesis,

the following four functions are needed:

• FindClosest: closest point to a coordinate: (a) and (1)

• fixedRangeSearch all points around a coordinate: (a) and (3)

• segmentSearch_1NearestPoint closest point to P1 in a line seg-

ment: (d) and (1)

• segmentSearch_all all points around a line segment: (d) and (3)

2.1.7 _fixedRangeSearch

All recursive search functions are divided into the following three

functional parts. Firstly, the node is checked whether it is an inner

node or a leaf node. If it is a leaf node, then all points the node

contains are checked for satisfiability of the search criteria and the

function returns. The second part is reached if the node is an inner

node and thus the first part did not cause the function to return. In

that case, a check is done whether the node can possibly contain

parts of the result. If not, then the function returns. Otherwise,

thirdly, the search recurses into one or both child nodes.

1 void KDtreeImpl::_FixedRangeSearch(const PointData& pts,

2 int threadNum) {

3 AccessorFunc point; ParamFunc pointparam;

4 if (npts) { // node is leaf

5 for (int i = 0; i < npts; i++) {

6 double myd2 = Dist2(params[threadNum].p,

7 point(pts, leaf.p[i]));

8 if (myd2 < params[threadNum].maxdist_d2)

9 params[threadNum].range_neighbors.push_back(

10 pointparam(pts, leaf.p[i]));



data structures for point cloud processing 27

10 Throughout its codebase 3DTK
stores and compares squared distances
where possible, to avoid expensive
computation of the square root. The
Dist2 function starts computing the
euclidean distance between two points,
but then does not compute the square
root, resulting in the squared distance
between two points.

11 }

12 return;

13 }

14 // quick test whether subtree has to be searched

15 double approx_dist_bbox =

16 max(max(fabs(params[threadNum].p[0]-node.center[0])-node.dx,

17 fabs(params[threadNum].p[1]-node.center[1])-node.dy),

18 fabs(params[threadNum].p[2]-node.center[2])-node.dz);

19 if (approx_dist_bbox >= 0 && sqr(approx_dist_bbox)

20 >= params[threadNum].maxdist_d2) return;

21 // recursive case

22 double myd = node.center[node.splitaxis]

23 - params[threadNum].p[node.splitaxis];

24 if (myd >= 0.0f) {

25 node.child1->_FixedRangeSearch(pts, threadNum);

26 if (sqr(myd) < params[threadNum].maxdist_d2)

27 node.child2->_FixedRangeSearch(pts, threadNum);

28 } else {

29 node.child2->_FixedRangeSearch(pts, threadNum);

30 if (sqr(myd) < params[threadNum].maxdist_d2)

31 node.child1->_FixedRangeSearch(pts, threadNum);

32 }

33 }

Above listing shows the function _FixedRangeSearch as im-

plemented in the KDtreeImpl class. It fills the result vector in the

KDParams static member with all points in the k-d tree which lie

around a certain squared radius maxdist_d2 around a point p.

The parameterized functions of type IndexAccessor and ParamAccessor

in line 3 are used to return coordinate data or data of the type

stored in the results vector for each point in the leaf node, respec-

tively. They do not pose a performance overhead as they are inlined

by the compiler.

In case the node is found to be a leaf in line 4, all points in the

leaf are checked whether their squared distance myd2 to P is less

than r.10 If they do, then they are appended to the result vector.

After all points in the leaf node have been checked, the function

returns. If the node is not a leaf node but an inner node, then the

next part from line 15-20 checks whether further recursion into the

child nodes of this node is required. The check whether to abort

will be outlined in the next subsection 2.1.8.

The last part of each search function in lines 22-32 recurses into

the child nodes. First, a check for the point’s position relative to

the split axis of the current node (as calculated in line 22) decides

which child node to recurse first. Whether or not the other child

node is recursed into as well depends on whether the bounding

cube of the search radius around P can possibly extend into the

other child as well or not.



28

2.1.8 Quick check whether to abort

A heuristic was developed that allows a quick check whether or

not to continue searching further down the current branch of the

k-d tree. Lines 15-18 in the last listing implement this check in C++.

This code compiles to only 16 SSE2 instructions and requires no

branching operations like a trivial check otherwise would.

The algorithm works by calculating a value dP which is then

compared to the search radius to decide whether or not to abort

the search in the k-d tree. In the following formula, P is the three

dimensional coordinate of the point around which the search is to

be done. The current node of the k-d tree is parameterized by its

center coordinate C and its axis aligned bounding box size 2dx, 2dy

and 2dz.

dP = max(|Px − Cx| − dx,
∣

∣Py − Cy

∣

∣− dy, |Pz − Cz| − dz)

Suppose the six sides of the node’s axis aligned bounding box

form six axis aligned planes: each plane being the infinite extension

of the six sides of the node’s bounding box, respectively. Oppos-

ing sides of the node’s bounding box form pairs of parallel planes.

Three of these plane pairs are created, one pair along each dimen-

sion. Then the distance of P to the closest plane of each pair of

planes is found. If P is between a pair of planes, then its distance is

represented as a negative value. Then the maximum distance of the

resulting three distance values is taken (one for each dimension). If

the maximum value dP is negative, then all three coordinate values

of P must lie inside the current node’s bounding box and the search

has to recurse into one or both child nodes. If the maximum value

is positive and larger than the search distance, then the current

node cannot contain any results and the function returns without

recursing deeper into the tree.

Figure 2.3 shows a two-dimensional overview of all possible lo-

cations a circular search radius (green) can have relative to the axis

aligned bounding rectangle (yellow) of a two-dimensional k-d tree,

ignoring rotations and mirroring. Each column represents a differ-

ent horizontal position of the search radius relative to the bounding

rectangle while each row represents a different vertical position.

The lower-right triangle is faded out because it mirrors the upper

left triangle along the diagonal. The black and red lines represent

the positive and negative, respectively, distance from the search

radius to the linear extension of the closest side of the bounding

rectangle. The dark and light blue cells mark those positions in

which parts of the search radius are found to lie in the bounding

rectangle. In these cases, the search is not aborted as the search re-

sults might lie within the bounding box. In the other cases (cells

with a white background) the search is aborted. The dark blue cell

(b2) marks the case where this conclusion might lead to a false

positive.



data structures for point cloud processing 29

a b c d

1

2

3

4

a
ll 

in
P

 i
n
 b

u
t 
s
e
a
rc

h

s
p
a
c
e
 p

a
rt

ly
 o

u
t

P
 o

u
t 
b
u
t 
s
e
a
rc

h

s
p
a
c
e
 p

a
rt

ly
 i
n

a
ll 

o
u
t

all inP in but search

space partly out

P out but search

space partly in

all out

in
 y

-d
ir

e
c
ti
o
n

in x-direction

same as

c4

same as

b3

same as

b4

same as

a2

same as

a3

same as

a4

 

Figure 2.3: Two-dimensional overview
of all possible locations a circular
search radius (green) can have relative
to the axis aligned bounding rectangle
(yellow).

dx

dy

r

Y2

Y1

X1 X2

ey

ex

C

P

Figure 2.4: Close-up of cell b2 in
Figure 2.3
11 Larsson, T., Akenine-Möller, T., and
Lengyel, E. (2007). On faster sphere-
box overlap testing. journal of graphics,
gpu, and game tools, 12(1):3–8

Figure 2.4 also visualizes the point where this check is not pre-

cise and generates a false positive. This is a close-up of cell b2

with a dark blue background in Figure 2.3). It shows the search

radius (green) in a position which visualizes the false positive

which will find the search radius to be intersecting with the axis

aligned bounding rectangle (yellow) while there is no intersec-

tion in practice. Furthermore it shows the center of the bounding

rectangle C, its size dx and dy, the center of the search radius P

and its radius r as well as the linear extensions of the sides of the

bounding rectangle X1, X2, Y1 and Y2. The distance ex calculates as

|Px − Cx| − dx − r. Since the result is negative, the line is colored in

red. Similarly, ey is calculated as
∣

∣Py − Cy

∣

∣− dy − r.

Since only the bounding cube of the search radius r around P is

concerned, it can happen that both bounding cubes intersect while

the actual search sphere does not intersect. In this case, the check

will not abort the recursion even though no result can possibly be

found in the current node in this situation. This inexactness is not

a problem for values of r which are of similar order of magnitude

as leaf node sizes in the search area. In that case, the overhead

of searching for matching points in the few leaf nodes that are

wrongly classified is far less than the overhead that is created by

a more expensive but exact check which requires branching. A

similar enhancement to sphere/box intersection checks by replacing

branching with the max operator is shown in 11.

A slower but exact check would be of the form (in 2D):



30

1 def doesCubeIntersectSphere(c1x, c2x, c1y, c2y, sx, sy, r):

2 ds = sqr(r)

3 if sx < c1x:

4 ds -= sqr(sx - c1x)

5 elif sx > c2x:

6 ds -= sqr(sx - c2x)

7 if sy < c1y:

8 ds -= sqr(sy - c1y)

9 elif sy > c2y:

10 ds -= sqr(sy - c2y)

11 return ds > 0

If the search radius r grows bigger, then it might be worth to add

a second, more exact check after the quick inexact check. This is

done for our k-d tree search functions around line segments. While

inexact, checking whether parts of a node’s bounding sphere in-

tersect with the line segment’s bounding sphere first, before doing

an exact check, increased the runtime by two to three orders of

magnitude. It is up to further research whether it is worthwhile to

develop a more clever method which is able to decide for the best

check to abort in each situation.

2.1.9 Subclassing the k-d tree

While the class KDtreeImpl contains the algorithms to build and

search a k-d tree, it needs to be subclassed by a class that specifies

the parameters of KDtreeImpl, provides a frontend for the search

functions and which fills the parameter container KDParams with the

correct values.

Parametrization of the KDTreeImpl class allows one to access co-

ordinate data of different precision and container type through the

PointData parameter. AccessorData allows different ways to access

this data (through indices or pointers) while the AccessorFunc

allows different ways of retrieving coordinate data with dou-

ble precision from an array of PointData elements through an

index given by the AccessorData type. The PointType parame-

ter also governs how point data is stored in the shared parame-

ter container KDParams. The ParamAccessor returns data of type

PointType from the PointData type data array, given an index of

type AccessorData.

This type of parameterization allows different use cases for the

k-d tree. Originally, coordinate data was stored as pointers to three-

tuple double arrays. This variant stores the data in the indices ar-

ray, therefore using the identity function for AccessorFunc and

ParamFunc and using Void as the PointData parameter. Later, sup-

port for the DataXYZ type was added which stores point data and

attributes in a struct.



data structures for point cloud processing 31

2.1.10 An indexing k-d tree

1 struct IndexAccessor {

2 inline double *operator() (double** data, size_t index) {

3 return data[index];

4 }

5 };

6 struct ParamAccessor {

7 inline size_t operator() (double** data, size_t index) {

8 return index;

9 }

10 };

11 class KDtreeIndexed : private KDTreeImpl<double**,

12 size_t, IndexAccessor, size_t, ParamAccessor> {

13 public: vector<size_t> fixedRangeSearch(double *, double);

14 private: double **m_data;

15 }

For collision detection as explained in chapter 5, we make use

of the indexing functionality of KDtreeImpl. Data and indices are

passed to the k-d tree during creation and the search functions

return individual indices or vectors of indices. This is useful to

quickly calculate a partitioning of the points into colliding and

non-colliding points without having to perform pointer arithmetic

and relying on a certain layout of the point data in memory. Re-

turning the indices of a range search allows one to quickly update

boolean collision values in a second vector. As IndexAccessor and

ParamAccessor are inlined by the compiler, they do not lead to a

performance degradation.

1 KDtreeIndexed::KDtreeIndexed(double **pts, size_t n) {

2 m_data = pts;

3 create(pts, prepareTempIndices(n), n);

4 }

5 vector<size_t> KDtreeIndexed::FixedRangeSearch(double *p,

6 double maxdist2, int threadNum) {

7 params[threadNum].maxdist_d2 = maxdist2;

8 params[threadNum].p = p;

9 _FixedRangeSearch(m_data, threadNum);

10 vector<size_t> result;

11 for (auto it : params[threadNum].range_neighbors) {

12 ##pragma omp critical

13 result.push_back(*it);

14 }

15 return result;

16 }

The constructor of KDtreeIndexed (line 1) simply creates the

underlying k-d tree by supplying it with the given point values and

an indexing array (line 3). The function FixedRangeSearch fills the

KDParams structure with info about the desired point P and search



32

12 The number of vertices V plus the
number of faces F minus the number
of edges E of polyhedra is equal to 2

for a sphere: V − E + F = 2

radius r in lines 7 and 8 and then calls the recursive search function

that is implemented by KDtreeImpl in line 9. The search function

saves its result in the KDParams structure, so they are copied to the

final result vector in lines 10-14.

2.2 Sphere Quadtree

2.2.1 Introduction

As will be discussed in chapter 4, our voxel based change detection

approach requires looking up all angular neighbors of a given

query point to compute point shadows. Angular neighbors are

those points which are seen within a maximum angular distance

away from the initial query point. This means that even points that

are far away in euclidean space can become angular neighbors. Or

in other words: when all points of a single scan are projected on

a unit sphere, then the angular neighbors of a given point are all

points that lie on the sphere cap with a given angle and the query

point at the apex of the cap.

A spherical quadtree is similar to a 3D octree. It produces a

(nearly) regular partitioning of the input points and provides a data

structure that can be efficiently traversed in O(n log n) to find angu-

lar range neighbors. In contrast to an octree, a spherical quadtree is

two-dimensional and – as the name implies – is a tree where each

node has four children and not eight. Similar to an octree, we use

the spherical quadtree to search for neighbors and to perform point

reduction – but both in terms of the points as projected on a unit

sphere surface and not in euclidean space.

To create a spherical quadtree, we project all points of a single

scan onto the surface of a unit sphere. This operation is done by

computing the normalized vector of each point and thus, points

in the data structure are stored in Euclidean coordinates of nor-

mal vectors. Storing points with their length normalized avoids to

repeatedly normalize them for angle computations when search-

ing the data structure. Since sphere quad tree queries only require

the angular position, discarding the distance information of the

inserted points does not pose any disadvantage.

2.2.2 Related work

An alternative to using a tree data structure for angular neighbor

lookup are binning approaches. One method that is also used for

efficient point cloud reduction is to project all points into rectan-

gular range images using common projections like mercator, conic,

pannini or equirectangular. The downside of these projections is

their behaviour at the poles where all pixels of the bottommost

and topmost row are angular neighbors. It would be ideal, if it

were possible to find a regular partitioning of a sphere surface with

shapes of equal size and number of neighbors. Unfortunately the

Euler characteristic of the sphere12 makes it impossible to have



data structures for point cloud processing 33

13 Szalay, A. S., Gray, J., Fekete, G.,
Kunszt, P. Z., Kukol, P., and Thakar,
A. (2007). Indexing the sphere with
the hierarchical triangular mesh. arXiv
preprint cs/0701164
14 Fekete, G. (1990). Rendering and
managing spherical data with sphere
quadtrees. In Proceedings of the 1st
Conference on Visualization’90, pages
176–186. IEEE Computer Society Press
15 Goodchild, M. F. and Shiren, Y.
(1992). A hierarchical spatial data
structure for global geographic infor-
mation systems. CVGIP: Graphical
Models and Image Processing, 54(1):31–44

16 Budavári, T., Szalay, A. S., and
Fekete, G. (2010). Searchable sky
coverage of astronomical observations:
Footprints and exposures. Publications
of the Astronomical Society of the Pacific,
122(897):1375

17 The triple product between three
vectors a, b and c is computed as
a · (b × c). If a and b are triangle
vertices, then the sign of the triple
product can be used to determine
whether a point c lies inside or outside
the triangle.

more than five such partitionings: the five platonic solids.

To partition a sphere surface into more than the 20 sides of an

icosahedron, approaches use a cube, a tetrahedron, an octahedron

or an icosahedron as a base and continue subdividing their sides in

a regular manner. The triangular faces of a tetrahedron, octahedron

and icosahedron are projected to the surface of the unit sphere,

each of its three edges get halved and the three new vertices create

four new triangles. Similarly, the faces of a cube are projected to the

sphere surface and divided into four new faces with half the side-

length each. Subdivisions of the pentagon faces of a dodecahedron

are not known to the author.

Using the octahedron and icosahedron as a starting polyhedron

seems to be the most popular choice in literature. The result of ap-

plying these recursive subdivisions of the unit sphere surface is also

known as hierarchical triangular meshes13 or sphere quadtrees14.

That data structure has so far mostly been used for Geographic In-

formation Systems to model features on top of the earth surface15

or in astronomy to map objects in the sky16. For our purposes we

use it as a search tree to find all points in a certain angular neigh-

borhood in a terrestrial panorama scan with an average lookup

complexity of O(log n) or as means to perform point reduction in

angular space. We create one sphere quadtree per scan with its

center at the origin of the scanner-local coordinate system.

2.2.3 Implementation

The data structure consists of eight quadtrees. Each quad tree re-

cursively subdivides an eighth of a sphere surface into triangles

where each triangle is subdivided into four more triangles until leaf

nodes in the graph contain no more than a certain maximum num-

ber of points. We chose the eight sides of an octahedron as the top-

level structure providing the base triangles for the sphere quadtrees

because by aligning the octahedron with the coordinate axis, it is

very efficient to decide for every new point p into which quadtree

to insert it. We achieve this by arranging the eight quadtrees in

an array of length eight in an ordering such that the index of the

quadtree into which each new point has to go is computed using

only 13 instructions in assembly and without any branching:

idx = (p.x > 0)≪ 2‖(p.y > 0)≪ 1‖(p.z > 0)

Using an icosahedron as the base structure results in a more

uniform distribution of triangles over the sphere surface but at

the expense of more costly geometric computations when a new

point is inserted or when the data structure is queried for angular

neighbors. Specifically, for an icosahedron, multiple triple product17

computations have to be carried out to determine into which of the

20 sides of the icosahedron a given point is projected to.

A given triangle is subdivided into four new triangles by taking

the center points of its three edges for three new vertices. These



34

three new vertices together with the three existing vertices then

form the four new triangles and thus the four new quadtree nodes.

Because of the normalization step, all vertices of all triangles remain

on the surface of the unit sphere.

Since the same point on the unit sphere will be shared by multi-

ple triangles, either adjacent or on multiple depths of the tree, sur-

face coordinates are not stored directly in the tree nodes. Instead,

two mappings are maintained by the algorithm in form of a hash

table. One hash table maps vertex indices to normalized locations

on the surface of the unit sphere. The other hash table maps pairs

of indices to the index of the normalized average between these two

vertices (their middle). The former mapping allows the algorithm

to re-use vertex position and saves memory by only storing their

index instead of the full vertex coordinate for every triangle. The

latter mapping allows the algorithm to skip repeated computation

of edge centers for adjacent triangles.

The initial mapping of vertex indices to normalized vertex coor-

dinates is filled with the six vertices that make up an octahedron.

To allow trivial binning of new points into the right sub-tree start-

ing at each side of the octahedron, the octahedron is aligned with

the coordinate axis with the following six vertices: (-1,0,0), (1,0,0),

(0,-1,0), (0,1,0), (0,0,-1) and (0,0,1). Indices 0 to 5 of the vertex map-

ping will map to these initial vertices, respectively. Any further

entry of this hash table is added by the function computing new

middle points between two vertices. That function will retrieve the

middle point from the second hash table, if present or compute

a new middle point and add a new mapping to each of the hash

tables.

The order of the initial six vertices in the last paragraph was

chosen that way, because it allows for a simple computation of

the vertices that make up the triangles on the eight sides of the

octahedron:

1 std::vector<std::array<size_t, 3>> mainvertices;

2 for (int x : {-1, 1}) {

3 for (int y : {-1, 1}) {

4 for (int z : {-1, 1}) {

5 size_t v1 = x < 0 ? 0 : 1;

6 size_t v2 = y < 0 ? 2 : 3;

7 size_t v3 = z < 0 ? 4 : 5;

8 if (((x > 0) ˆ (y > 0) ˆ (z > 0)) == false) {

9 std::swap(v1, v3);

10 }

11 mainvertices.push_back({v1, v2, v3});

12 }

13 }

14 }

As a result, the vector mainvertices will contain eight entries.

Each entry is a three-tuple of indices 0 to 5. With the ordering of



data structures for point cloud processing 35

the initial six vertices that was specified, each index will refer to the

right vertex such that eight triangles of an octahedron are formed.

The std::swap instruction makes sure that the vertices of the cur-

rent triangle are given in the same order (clockwise). This is neces-

sary to make the normal vector always point away from the center

of the unit sphere into which the octahedron is inscribed.

Each of the sides of the octahedron starts a new search tree. The

search tree consists of nodes which are either intermediate nodes

or leaf nodes. Creating a new node requires the three vertices that

make up the new triangle as well as the list of points that fall into

that triangle on the unit sphere. The vertices are only used to create

new child nodes and sort the given points into each, accordingly.

The vertices that were used to create a node are not permanently

stored. Instead, each node stores the center as well as the radius of

the circumcircle of the triangle formed by its three vertices. These

two values can then later be used when searching the tree to effi-

ciently decide whether a given point can possibly lie inside a node

or not.

A node is made a leaf node without any further children if either

less than a certain maximum number of points per node are to be

sorted in it or if the circumcircle of the triangle is below a certain

minimum threshold. The second criteria makes sure not to recurse

infinitely in case the input data contains the exact same point more

often than the maximum number of points per node.

If a node is not a leaf node, then four child nodes are created by

computing (or re-using from the precomputed hash mapping) the

three middle points of the three edges of the triangle formed by the

three vertices that were given to the node. The three new vertices

together with the three original vertices form four new triangles.

Naively, figuring out into which of the four new triangle any

given point belongs would require up to twelve computations of

the triple product between two vertices making up one of the new

edges and the new point. By determining for which triangle the

triple product is greater or equal to zero for all three sides, the right

child node to sort the given point in can be found.

The number of necessary computations can be reduced to at

most three computations of the triple product by exploiting the

fact that the points that are to be sorted must already lie inside

the original outer triangle that forms the current node. With that

knowledge, only the triple product of the given point and the three

new edges has to be checked. If the result is positive for the triple

product with any of the three edges, then the point belongs to the

triangle sharing that edge and one of the original outer vertices,

respectively. If the result is not positive for any of the edges, then

the point must lie in the new center triangle. Thus, on average, 1.5

computations of the triple product are required on each level of

the triangle quadtree to reach the right leaf node to insert the new

point into.



36

(a) Original octahedron (8 faces) (b) First subdivision (32 faces) (c) Second subdivision (104

faces)
(d) Third subdivision (311 faces)

(e) Fourth subdivision (944 faces) (f) Fifth subdivision (2651 faces) (g) Sixth subdivision (6449 faces) (h) Seventh subdivision (12020

faces)

Figure 2.5: Example spherical quad
tree using a scan of the Würzburg
dataset.



data structures for point cloud processing 37

Figure 2.6: Final spherical quad tree of
a scan from the Würzburg dataset

Figure 2.7: The scan from Figure 2.6 as
reflectance image on a perfect sphere
surface in the same orientation.

A visualization of how the points from a terrestrial scan are

inserted into the data structure is shown in Figures 2.5. Each sub-

figure shows one additional recursion step. Starting from an octa-

hedron, triangles are recursively subdivided into four new triangles

(with vertices on the surface of a unit sphere) until less than a given

number of points recorded by the scanner (maximum leaf-node size

was 100) falls into each triangle.

Figure 2.6 shows a visualization of the nodes of a sphere quadtree

from a terrestrial scan with 13769 faces. The reflectance values of

that scan are mapped as a texture on a perfect sphere in the same

orientation in Figure 2.7. The final data structure contains 580,000

points. Figure 2.7 shows the reflectance values of the recorded

points of the original input scan projected on a perfect sphere in

the same orientation as the sphere quadtrees are displayed. Partic-

ularly Figure 2.6 allows one to clearly recognize the shape of the

scanned buildings shown in Figure 2.7. The density of subdivisions

per sphere surface stems from the structure of the underlying data.

The unmodified input data from the laser range finder results in a

very homogeneous subdivision of the sphere quad trees because

of the regular angular resolution of the laser beam sweeps. Thus,

for visualization purposes we reduced the input data to 10 random

points per 30 cm voxel before inserting it into the quadtrees. Due

to this reduction step, more points are seen under the same angle if

the points are further away from the scanner location. This leads to

a higher triangle subdivision in regions of far-away points.

2.2.4 Search tree

Similar to the k-d tree, the spherical quad tree is used for range

searches. While the k-d tree is used for nearest neighbor searches

around a given coordinate in 3D, the spherical quad tree is used to

find all neighbors within a certain angular radius around a given

coordinate in 2D on a unit sphere surface. In section 2.1.8 we dis-

cussed how our k-d tree implementation uses a heuristic with only

few false positives to perform quick intersection tests between the

axis aligned bounding box around the node contents and the search

radius. Performing an accurate intersection test between a non-

euclidean triangle on a sphere surface and a search radius (a sphere

cap) involves comparing the center of the search radius with the

planes through the sphere center and all sides of the triangle, re-

spectively, and then comparing their angular distances. To avoid

the necessary computations to carry out this precise check, we ap-

proximate each spherical quad tree node by the circumcircle of the

triangle from which the node was created. As a result, only the an-

gular difference between the center of that circumsphere and the

center of the search radius has to be checked against the sum of

circumcircle radius and search radius. This heuristic also allows us

to discard the triangle that was used to create a spherical quad tree



38

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10

depth

ra
ti
o

kind maxval minval

Figure 2.8: The minimum and maxi-
mum ratio between triangle area and
its circumcircle area on a octahedron,
subdivided up to a certain depth.

node because we will only use its circumcircle for angular range

searches.

In case of the spherical quad tree, node boundaries are non-

euclidean triangles on a sphere surface and the search volume is

the area of a sphere cap. In the worst case, the triangle is “flat”

or close to being flat, so either a degenerate triangle, an obtuse

triangle with one very large angle or an acute triangle with one

very short and two very long sides. The area of all of these triangles

is small compared to the area of their circumcircles. The best case

on a sphere surface is a triangle whose vertices lie exactly on a

plane intersecting with the sphere center. In that case the triangle

area is equal to the area of its circumcircle. In two dimensions, the

best triangle is an equilateral triangle. The two dimensional case is

important here, because as we subdivide triangles into smaller and

smaller triangles, they also more and more approximate triangles

on a plane in the same way as small distances on the earth’s surface

can be approximated using euclidean geometry instead of using

great-circle distances.

In Figure 2.8 an octahedron was recursively subdivided, building

a complete spherical quad tree up to a depth of 10, which results in

8 · 410 = 8388608 child nodes. In each depth of the subdivision, the

ratio between triangle area on the unit sphere surface and circum-

circle area (or sphere cap area) was computed and the minimum

and maximum values for this ratio can be seen in the Figure.

The values can be understood as follows. For a depth of zero, the

triangles of the original octahedron are projected on the unit sphere

surface. Thus, their area is equal to one eighth of the unit sphere

(r = 1.0) surface area.

Atriangle0 =
4πr2

8
=

1

2
π (2.1)

Its circumcircle area is the area of the sphere cap created by a

plane cutting the unit sphere at all three vertices of the triangle. The

sphere cap surface area can be computed from the sphere radius

r = 1.0 and the angle θ between the the rays from the center of the

sphere to the apex of the cap and the edge of the disk forming the

base of the cap.

Acap0 = 2πr2 (1− cos θ) (2.2)

The angle θ can be obtained by computing the circumradius of

the equilateral triangles with side length s =
√

12 + 12 =
√

2 that

form the octahedron:

rtri =
s√
3
=

√

2

3
(2.3)

The angle theta is the angle of the right triangle formed by the

center of the circumcircle, one of the edges of the triangle and the

center of the unit sphere. The angle θ is thus asin (rtri), plugging



data structures for point cloud processing 39

all of this into equation 2.2 with unit sphere radius r = 1.0 and by

using the identity cos asinx =
√

1− x2 we get:

Acap0 = 2π

(

1− cos asin

√

2

3

)

(2.4)

= 2π

(

1−
√

1− 2

3

)

(2.5)

= 2π

(

1− 1√
3

)

(2.6)

Finally, computing the ratio between Atriangle0 and Acap0 yields:

Aratio0 =
1
2 π

2π

(

1− 1√
3

) (2.7)

=
1

4− 4√
3

(2.8)

= 0.5915063509461096 . . . (2.9)

The value of Aratio0 is precisely the value at depth zero in Figure

2.8.

As depth increases, one can see that the minimum and maxi-

mum values seem to converge towords 0.318310 and 0.413497, re-

spectively. These values can be explained by looking at a rendering

of the subdivided unit sphere.

(a) depth 1 (32 faces) (b) depth 2 (128 faces) (c) depth 3 (512 faces) (d) depth 4 (2048 faces)

Figure 2.9: Subdivided octahedron
in four different depths with colors
indicating the ratio between each
triangle area and its circumcircle
area. The color scales are different
because the respective minimum and
maximum areas differ too much. Blue
indicates a low ratio (bad) and red a
high ratio (good).

Figure 2.9 shows the original octahedron subdivided up to depth

1, 2, 3 and 4. Each triangle is colored to indicate its ratio with its

circumcircle area. Blue colors indicate low ratios and red high ra-

tios. As one can see, the blue triangles center around the six vertices

that created the original octahedron and approximate right trian-

gles with two equal length sides. Red triangles surround the center

of the sides of the original octahedron and approximate equilat-

eral triangles. As triangles become smaller and smaller relative to



40

the sphere itself, euclidean geometry can be used to approximate

their properties. The circumcircle of right triangles has its midpoint

at the center of the hypotenuse. The ratio between its area (with

two of its sides a and b being of equal length) and the area of its

circumcircle (through its hypotenuse c) can be computed as:

ArectTri

AcirumRectTri
=

1
2 ab

1
4 πc2

(2.10)

=
1
2 a2

1
4 π
√

a2 + b2
2

(2.11)

=
1
2 a2

1
2 πa2

=
1

π
(2.12)

= 0.3183098861837907 · · · (2.13)

Similarly, for a equilateral triangle with sides of length a, the

ratio computes as:

AeqTri

AcirumEqTri
=

√
3

4 a2

π

(

a√
3

)2
(2.14)

=

√
3a2

4π
a2

3

(2.15)

=
3
√

3

4π
(2.16)

= 0.41349667156634407 · · · (2.17)

The resulting values from equations 2.13 and 2.17 are the same

values to which the minimum value and the maximum value in

Figure 2.8 converge to. Since the triangle subdivision as proposed

here produces four similar triangles in every step of the iteration,

it can be concluded that the minimum and maximum ratios for the

spherical quadtree subdivision will indeed remain those shown

even for higher recursion depths.

2.2.5 Point reduction

The spherical quad tree can also be used as a method for reducing

the number of points in a point cloud. This operation has a sim-

ilar effect as point cloud reduction using range images with the

advantage, that points will end up evenly distributed across the

unit sphere surface. Range image reduction on the other end suffers

from differing point densities toward the poles depending on the

projection method that was used to project the points to the range

image rectangle. Point reduction using the spherical quad tree

works similarly to point reduction using the octree. The parameters

of octree reduction are the final octree node size and the points per

node. The octree is then traversed up to the given threshold and

points are randomly returned to fulfill the requested density cri-

teria. Similarly, for point reduction using a spherical quadtree, the



data structures for point cloud processing 41

parameters are the surface area of a spherical cap Acap given by its

angular diameter and the maximum number of points k that shall

be on that surface area. The tree is then recursively traversed either

down to the child nodes or to the node whose circumcircle area is

smaller than the area of the requested sphere cap. The number of

points n that the node actually will return are computed using the

area covered by the current node on the unit sphere surface Atri:

n = k
Acap

Atri
(2.18)

The n points will then be randomly selected from N and re-

turned. If N contains less than n points, all points in N are re-

turned. The area Atri could be computed on-the-fly from the cir-

cumcircle radius but is stored in each node to save computation

time.

(a) depth 1 (32 faces) (b) depth 2 (128 faces) (c) depth 3 (512 faces) (d) depth 4 (2048 faces)

Figure 2.10: Subdivided octahedron
in four different depths with colors
indicating the triangle area. The color
scales are different because the respec-
tive minimum and maximum areas
differ too much. Blue indicates the
minimum area and red the maximum
area.

Figure 2.10 shows the differences in triangle area across the

subdivided sphere for different subdivision depths. As explained

in section 2.2.4, the triangles towards the vertices of the original

octahedron approximate right triangles while those in the center of

the original faces approximate equilateral triangles. Since the range

of minimum and maximum area of triangles across the subdivided

sphere differs greatly for each subsequent subdivision step, the

color scales are different for each sub-figure in Figure 2.10.

Table 2.1: Minimum and maximum triangle areas for different

recursion depths

Depth #faces minimum area maximum area

1 32 0.861700 1.152986

2 128 0.222379 0.359341

3 512 0.056059 0.095932

4 2048 0.014044 0.024401



42

18 Moravec, H. and Elfes, A. (1985).
High resolution maps from wide
angle sonar. In Proceedings. 1985 IEEE
international conference on robotics and
automation, volume 2, pages 116–121.
IEEE
19 Oriolo, G., Ulivi, G., and Vendittelli,
M. (1997). Fuzzy maps: a new tool for
mobile robot perception and planning.
Journal of Robotic Systems, 14(3):179–197

20 Guadarrama, S. and Ruiz-Mayor, A.
(2010). Approximate robotic mapping
from sonar data by modeling per-
ceptions with antonyms. Information
Sciences, 180(21):4164–4188
21 Curless, B. and Levoy, M. (1996).
A volumetric method for building
complex models from range images. In
Proceedings of the 23rd annual conference
on Computer graphics and interactive
techniques, pages 303–312

Depth #faces minimum area maximum area

5 8192 0.003513 0.006127

As shown by table 2.1 the minimum and maximum area per

triangle can be nearly twice each other’s value. Nevertheless, the

overall point density across the whole unit sphere surface will be

equal after point reduction because the size of each triangle is taken

into account when computing the number of points n that remain

per node.

2.3 Voxel Grid

2.3.1 Introduction

Regular grid data structures like voxel grids possess several de-

sirable properties in contrast to irregular space partitioning data

structures such as k-d trees. Their regular nature allows efficient

access of each voxel in O(1) instead of having to search a tree data

structure in O(n log(n)). Similarly, inserting new data into an ex-

isting grid, can be achieved in O(1) simply because adjacent grid

cells do not have to be changed at all. Inserting data into a tree

requires expensive rebalancing operations. The disadvantage of reg-

ular grids over k-d trees is, that they need the grid size as an input

parameter where k-d trees find their optimal partitioning by finding

minimal bounding boxes as needed.

This section first gives a short overview of several different grid

data structures that are used in literature to represent geometries

from point clouds. We then detail our approach which is a regular

occupancy grid with metadata information.

2.3.2 Related work

The concept of occupancy grids for map building my autonomous

mobile robots was first introduced by Hans Moravec and Alberto

Elfes in their much cited publications between 1985 and 1992.18

The authors equipped a mobile robot with a sonar ring and build a

2D occupancy grid map. Each grid cell contains the probability for

it being occupied and the probability for it being empty. Another

type of occupancy grid map are fuzzy maps which do not store the

probability mass function but the possibility degree as a fuzzy set.

This concept was first shown in a paper by Oriolo et al.19 and has

been extended by Guadarrama et al. who build fuzzy grid maps

modeled by rules from linguistics. In contrast to probability maps

or fuzzy maps, their solution does not require a sensor model and

is still able to generate robust maps of the environment.20

Another popular, voxel-based approach for robotic mapping ist

he cumulative weighed signed distance function, or SDF, which

was proposed in by Curless and Levoy21 as a method to recon-

struct a 3D mesh from range images. At its core, the SDF method



data structures for point cloud processing 43

22 Newcombe, R. A., Izadi, S., Hilliges,
O., Molyneaux, D., Kim, D., Davison,
A. J., Kohi, P., Shotton, J., Hodges, S.,
and Fitzgibbon, A. (2011). Kinectfu-
sion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE In-
ternational Symposium on Mixed and
Augmented Reality, pages 127–136. IEEE

23 http://www.cplusplus.com/

reference/stl/
24 https://www.boost.org/
25 Testing showed that an std::tuple

would be just as fast and require the
same amount of system memory. The
author decided against its use due to
the long-winded form of accessing
members via std::get<T>(v)

uses a voxel grid where each voxel essentially stores the distance

between the voxel center and the closes measured surface. These

distances together then allow to compute an implicit surface of the

measured object. The method allows one to encode measurement

uncertainties by using weights and provides an update function for

incremental and independent integration of additional measure-

ments. While Curless and Levoy take measurements using a sensor

triangulating between a line laser and a CCD camera, the method

became popular 15 years later when Newcombe et al.22 used the

method together with Microsoft’s low-cost RGB-D camera Kinect,

providing excellent real-time 3D reconstruction and tracking func-

tionality using commodity hardware. Their approach is known as

KinectFusion.

The approach we use for our occupancy grid, also does not re-

quire a sensor model and does not compute or store probabilities.

Instead, we store a binary map where each voxel either contains

points or not and where later, via voxel traversel, voxels are either

see-through or not.

2.3.3 Implementation

Our own implementation of a voxel occupancy grid heavily relies

on C++ Standard Template Library (STL) containers23 and Boost24.

At the heart of it, is the definition of the voxel itself as a container

holding its three signed coordinates25.

1 struct voxel{

2 mutable ssize_t x;

3 mutable ssize_t y;

4 mutable ssize_t z;

5

6 voxel(const ssize_t X, const ssize_t Y, const ssize_t Z)

7 : x(X), y(Y), z(Z) {}

8

9 voxel(const struct voxel &other)

10 : x(other.x), y(other.y), z(other.z) {}

11

12 bool operator<(const struct voxel& rhs) const

13 {

14 if (x != rhs.x) {

15 return x < rhs.x;

16 }

17 if (y != rhs.y) {

18 return y < rhs.y;

19 }

20 return z < rhs.z;

21 }

22

23 bool operator==(const struct voxel& rhs) const

24 {

http://www.cplusplus.com/reference/stl/
http://www.cplusplus.com/reference/stl/
https://www.boost.org/


44

26 The truncation of a positive num-
ber is ⌊x⌋ while the truncation of a
negative number is ⌈x⌉

25 return x == rhs.x && y == rhs.y && z == rhs.z;

26 }

27

28 bool operator!=(const struct voxel& rhs) const

29 {

30 return x != rhs.x || y != rhs.y || z != rhs.z;

31 }

32 };

Two constructors allow instantiating new voxels from an existing

voxel or from three voxel coordinates. Operator implementations

allow sorting and testing for equality. The vertices of each voxel

together form a cubic lattice where the voxel coordinate (X, Y, Z)

is derived from the cartesian coordinate (x, y, z) of the vertex with

the lowest coordinate value, i.e. the vertex in negative direction. The

final voxel coordinate is computed by dividing the vector (x, y, z)

value by the voxel size V and round down to the nearest integer

towards minus infinity:

X = ⌊x/V⌋ (2.19)

Y = ⌊y/V⌋ (2.20)

Z = ⌊z/V⌋ (2.21)

The same relationship is used to associate input points (p1, py, pz)

into their corresponding voxels:

X = ⌊px/V⌋ (2.22)

Y = ⌊py/V⌋ (2.23)

Z = ⌊pz/V⌋ (2.24)

While this relationship between cartesian coordinate and voxel

coordinate is certainly trivial to express in math, doing the same in

a computer language like C++ proves to be tricky because integer

rounding will round towards zero and not towards minus infinity.

This is because languages like C don’t “round” but just truncate the

result of the division to the integer part26. More formally, comput-

ing q = a
b with remainder r using integer division (q ∈ Z) in nearly

all languages satisfies the following conditions:

a = qb + r (2.25)

|r| = |b| (2.26)

In C/C++ where the quotient is defined by truncation, the re-

mainder r would have the same sign as the dividend a and the

quotient q gets truncated towards zero:

a = btrunc
( a

b

)

+ r (2.27)



data structures for point cloud processing 45

a div b

a

1

2

b 2b

Figure 2.11: div function based on
truncation for b > 0
27 Knuth, D. E. (2011). The Art of
Computer Programming. Addison-
Wesley Professional
28 Boute, R. T. (1992). The euclidean
definition of the functions div and
mod. ACM Transactions on Programming
Languages and Systems (TOPLAS),
14(2):127–144

a div b

a

1

2

b 2b

Figure 2.12: div function based on
euclidean division for b > 0

The result of this can be seen in Figure 2.11. One can see, that the

values from −b until b all get truncated towards zero. This effect is

undesirable as it would map all cartesian coordinate values from

−V to V to the voxel with coordinate (X, Y, Z) = (0, 0, 0).

To solve this problem, Donald Knuth defines floored division in

Art of Computer Programming27:

a = b
⌊ a

b

⌋

+ r (2.28)

The downside of this definition is, that the remainder will be

negative if b is negative which has undesirable consequences for the

voxel traversal method. Instead, what we want is Euclidean integer

division as formulated by Boute et al.28 like this:

q = sgn (n)

⌊

a

|b|

⌋

(2.29)

where sgn is the sign function

sgn(x) :=















−1 if x < 0,

0 if x = 0,

1 if x > 0.

(2.30)

Equation 2.27 will then look like this for euclidean integer divi-

sion:

a = |b|
⌊

a

|b|

⌋

+ r (2.31)

A graphical representation of what this yields can be seen in

Figure 2.12.

Since C++ implements integer division by truncation towards

zero, a division function was created that implements euclidean

division. From Figure 2.11 and 2.12 it can be observed, that to turn

the former into the latter, the quotient has to be decremented by

one for b < 0.

1 ssize_t div(double a, double b)

2 {

3 ssize_t q = a/b;

4 double r = fmod(a,b);

5 if ((r != 0) && ((r < 0) != (b < 0))) {

6 q -= 1;

7 }

8 return q;

9 }



46

29 In contrast to popular believe the %

operator in C does not compute the
modulo but the remainder

30 Teschner, M., Heidelberger, B.,
Müller, M., Pomerantes, D., and Gross,
M. H. (2003b). Optimized spatial
hashing for collision detection of
deformable objects. In VMV, volume 3,
pages 47–54

The function fmod(a, b) is defined in POSIX.1-2001 and the

more recent POSIX.1-2008 and computes the floating point remain-

der of dividing a by b. Specifically, the return value is a− qb where

q is the truncated integer division quotion of a/b, truncated to the

next full integer toward zero. It is the floating point function for the

integer-only % operand29.

Since fmod also truncates toward zero, we also have to adjust its

output in cases where the output is negative due to a sign differ-

ence between a and b. The following modulo function is not needed

for addressing voxels but for efficient voxel traversal as shown in

section 4.4.5. We present it here due to its similarity to the integer

division function above.

double mod(double a, double b)

{

double r = fmod(a, b);

if ((r != 0) && ((r < 0) != (b < 0))) {

r += b;

}

return r;

}

We store the voxel grid inside an std::unordered_map, using the

struct voxel as the key. To allow this, the voxel type needs to be

hashable. Since performance is not our prime concern, standard

boost facilities are used to map the three dimensional vector of the

voxel coordinate to a one-dimensional hash value.

namespace std

{

std::size_t hash<struct voxel>::operator()(struct voxel const& t) const

{

std::size_t seed = 0;

boost::hash_combine(seed, t.x);

boost::hash_combine(seed, t.y);

boost::hash_combine(seed, t.z);

return seed;

}

};

Since the result proved to be fast enough for our purposes, no

performance evaluation was carried out. Yet, the implementation

of the boost hash_combine function is similar to the spatial hashing

function presented by Teschner et al.30. Specifically, at its core,

hash_combine computes on 32 bit platforms:

seed ˆ= value + 0x9e3779b9 + (seed << 6) + (seed >> 2);

Whereas the solution proposed by Teschner et al. computes:

hash(x, y, z) = (73856093x⊕ 19349663y⊕ 83492791z) mod n

(2.32)



data structures for point cloud processing 47

With ⊕ being the xor operator, n the hash table size and 73856093,

19349663 and 83492791 some large prime numbers. Despite their

disadvantages (e.g. zeroes hash to zeroes), the hash function seems

to be good enough for practical applications.

2.4 Summary

This section presented three data structures for working with

large 3D point clouds: a k-d tree, a sphere quadtree and a voxel

grid. Each of the three data structures address a different prob-

lem domain. While k-d trees excel at finding nearest neighbors in

euclidean space, the sphere quad tree does the same for angular

neighbors. Lastly, a hash-based voxel grid provides a space-efficient

representation for an occupancy grid and will later be used for

efficient ray traversal.





3

Datasets

Throughout this work a number of datasets will be used. In this

section we present the datasets, how they were acquired and list

their properties. Many of our datasets are made publicly availble

in the Robotic 3D Scan Repository at http://kos.informatik.

uni-osnabrueck.de/3Dscans/. Some datasets are provided else-

where and will be indicated as such.

3.1 Bremen, Randersacker, Würzburg, campus, lecturehall

These five datasets were collected by our research group using a

Riegl VZ-400 laser scanner and registered using slam6d. All but

the lecturehall dataset are used for qualitative analysis and runtime

benchmarks for our approach to change detection. The lecturehall

dataset was specially created to serve as input for a quantitative

assessment of our change detection algorithm. All datasets were

collected using terrestrial scanning, that is, in a stop-and-go fashion

with the Riegl scanner mounted on a tripod.

The field of view of the scanner is 360° horizontally and 100°

vertically. The scans have an angular resolution of 0.04° for a na-

tive scan resolution of 9000 times 2500 points, for a maximum of

22.5 million points per scan. Since all five datasets, except for the

lecturehall dataset are outdoor datasets, the sky takes up a large

part of the scan without any measured points and thus typically

the datasets contain between 14 to 17 million points per scan. The

exception is the indoor dataset lecturehall with 22.3 million points

per scan.

Table 3.1: Overview of the datasets obtained using the Riegl

VZ-400

name #points #scans

Bremen city 215652387 13

Randersacker 194754633 11

Würzburg city 86585411 6

campus 2227455077 146

lecturehall 44574647 1

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/


50

Figure 3.1: Würzburg City Dataset

Figure 3.2: Würzburg City Dataset

Figure 3.3: Bremen City Dataset

Figure 3.4: Randersacker Dataset

Figure 3.5: Dataset campus

Figure 3.6: Dataset lecturehall without
people in it

1 Underwood, J. P., Gillsjö, D., Bailey,
T., and Vlaskine, V. (2013). Explicit
3d change detection using ray-tracing
in spherical coordinates. In Robotics
and Automation (ICRA), 2013 IEEE
International Conference on, pages
4735–4741. IEEE

We collected the “Würzburg city” dataset specifically for qualita-

tive evaluation of our change detection algorithm. Thus, we chose a

time of day where the market place was moderately crowded such

that enough change is present. Since the quality of our approach is

highly sensitive to the quality with which the dataset is registered,

we took care to choose very small epsilon and high iteration num-

bers to achieve the best registration possible for the dataset. Figure

3.1 shows the dataset with points colored by reflectance using the

“Jet” color map. Figure 3.2 shows a bird-eye view with reflectivity

coloring in a gray scale.

The “Bremen city” dataset is presented to show how our algo-

rithm can be directly applied on datasets that were recorded with-

out our approach in mind. The dataset was recorded in February

2010, seven years before work on our change detection approach

started. Furthermore, the dataset shows some small registration

errors which we will use to show how they effect the result of our

approach in section 4.11. The dataset was acquired on a Sunday

morning with only few people outside. Markers were used to regis-

ter the dataset.

The “Randersacker” dataset was included because it mainly

consists of foliage and other greenery while our other datasets

show urban environments with a lot of clear flat surfaces. While

normal vectors are easily computed on most surfaces in an urban

environment like “Würzburg city” and “Bremen city”, we wanted

to include a dataset with only few flat surfaces to show how our

method performs in them.

The “campus” dataset was acquired on the campus area of Ja-

cobs University Bremen. Since the dataset covers nearly the whole

campus, it is the largest dataset with more than 2 billion points in

it. Similarly to the “Bremen city” dataset, the “campus” dataset was

registered using reflective markers.

The final dataset lecturehall is shown in Figure 3.6 and is a small

lecture hall at the Physics department of Würzburg university,

scanned from two vantage points by a Riegl VZ-400 laser scanner.

One of the scans has two people in it, holding a blanket, while the

other does not. The points in this dataset were manually labeled as

dynamic or static to provide a ground truth for the change detec-

tion algorithm.

3.2 Underwood (sim, lab, carpark)

To quantify their approach to change detection, Underwood et al.1

provide three datasets2 with ground truth annotations, indicating

whether each point is dynamic or static.



datasets 51

2 http://www.acfr.

usyd.edu.au/papers/

icra13-underwood-changedetection.

shtml

Figure 3.7: Dataset sim

Figure 3.8: Dataset lab seen from above

Figure 3.9: Dataset lab showing noise

Figure 3.10: Dataset carpark

Figure 3.11: KITTI setup by Geiger et
al.
3 Geiger, A., Lenz, P., Stiller, C., and
Urtasun, R. (2013). Vision meets
robotics: The kitti dataset. International
Journal of Robotics Research (IJRR)

Table 3.2: Overview of the datasets by Underwood et al. and

their properties

name #points #scans

sim 387838 8

lab 5815910 12

carpark 1965017 4

Table 3.2 shows the total number of points and the number of

scans in each dataset. The sim dataset in Figure 3.7 is a synthetic

dataset where virtual laser range finders measure a cube in one of

two positions from four different vantage points.

The lab dataset in Figure 3.8 and Figure 3.9 is from a robot

moving through a cluttered lab environment with small boxes

(14× 17× 40 cm) being present or not at multiple locations. The

dataset was recorded using a Velodyne HDL64ES2 laser scanner at

the Australian Centre for FieldRobotics (ACFR).

The third dataset carpark from Figure 3.10 consists of four sta-

tionary scans in a carpark environment where a car was moved

into different positions for each scan. Like the lab dataset, it was

recorded with a Velodyne laser scanner and ground truth informa-

tion was added manually and reflected points were removed. The

dataset was wrongly aligned, so we registered the scans again using

the ICP implementation from slam6D before passing the points to

each algorithm.

3.3 KITTI

The KITTI dataset3 is a popular dataset for computer vision bench-

marks from the Karlsruhe Institute of Technology. They equip a

standard station wagon (see Figure 3.11) with two high-resolution

color and grayscale video cameras, a Velodyne laser scanner and

a GPS localization system with an IMU. The focus of the dataset

lies on object recognition, object tracking and visual odometry or

laser-based SLAM. For these purposes, the dataset comes with ex-

tensive ground truth annotations in form of 2D and 3D bounding

boxes for the 2D camera images and the 3D point cloud from the

laser scanner, respectively. But while objects like cars, vans, trucks,

pedestrians, trams and cyclists are correctly annotated, this does

not yet supply a fitting ground truth for the evaluation of our ap-

proach to change detection because many of these objects can also

be stationary, like parked cars or sitting people.

http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml
http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml
http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml
http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml


52

4 Siam, M., Mahgoub, H., Zahran,
M., Yogamani, S., Jagersand, M., and
El-Sallab, A. (2017). Modnet: Moving
object detection network with motion
and appearance for autonomous
driving. arXiv preprint arXiv:1709.04821
5 Rashed, H., Ramzy, M., Vaquero, V.,
El Sallab, A., Sistu, G., and Yogamani,
S. (2019). Fusemodnet: Real-time
camera and lidar based moving
object detection for robust low-light
autonomous driving. In The IEEE
International Conference on Computer
Vision (ICCV) Workshops

6 Karlsruhe is situated at a latitude
of 49.00921°. The next 32 bit floating
point number that represents that
value is 49.0092086792. The next 32 bit
floating point number afterwards is
49.0092124939, making a difference of
0.0000038147° between the two. At this
latitude, each degree corresponds to
111210 m. This means that the distance
between two representable poses in
32 bit floating point is 42 cm at that
latitude.

To still use the KITTI dataset for evaluation, we make use of the

third party annotations provided by the authors of MODNet4 in

form of the MoSeg-KITTI Motion Segmentation or KITTI MoSeg

dataset. That dataset provides binary masks for 1300 images from

different scenes from the KITTI dataset. This data was further ex-

panded by the authors of FuseMODNet5 to binary masks for 12919

images. The masks apply to the images captured by the left cam-

era on the KITTI measurement setup. White pixels signify mov-

ing objects and black pixels mark static objects in the captured

image. The data was collected for datasets from the “city”, “res-

idential” and “road” categories as they can be downloaded from

http://www.cvlibs.net/datasets/kitti/raw_data.php.

Since change detection approaches are highly sensitive to regis-

tration errors, the KITTI scans were registered using slam6d. For

this purpose, the scan locations were transformed from WGS-84

coordinates into ECEF coordinates, centered at position of the first

scan. This transformation is not only useful because most software

requires cartesian coordinates as input but also because the 32 bit

floating point datatype is not precise enough to store large values

as they are common in WGS-84 coordinates to a precision necessary

for change detection. Attempting to handle WGS-84 positions as 32

bit floats will commonly result in a loss of precision in the range of

several decimeters.6

As the provided binary masks only apply to the image recorded

by the left camera and not to the point cloud itself, we use the

calibration information between camera and velodyne scanner to

segment the point cloud into points that are static, points that are

not static and points that lie outside the field of view of the camera.

The dataset properties can be seen in table 3.3. The first column

shows the ID of the scene in the nomenclature used by the KITTI

website. The second column shows the number of scans in that

scene. Each scan consists of a 3D point cloud as captured by the

Velodyne laser scanner, 2D images from the cameras and GPS and

IMU information. Measurements were taken at a rate of 10 Hz.

The third column shows the total number of points in the scene.

On average each scan consts of 120.000 points. The fourth column

shows the remaining number of points in the scene after the 2D

masks have been applied. On average, 15.9% of the recorded points

remain from the original point cloud. The fifth column shows how

many points in the dataset were marked as dynamic. The sixth and

last column shows how much percent of the points in column four

were marked as dynamic.

Table 3.3: Properties of the KITTI dataset

ID #scans #points #in view #dynamic %dynamic

1 108 13178862 2061966 0 0

2 77 9385524 1460458 509 0.03

5 154 18746749 3024753 71914 2.37

http://www.cvlibs.net/datasets/kitti/raw_data.php


datasets 53

ID #scans #points #in view #dynamic %dynamic

9 443 51397378 8324420 122534 1.47

11 233 26224153 4227742 137310 3.24

13 144 17347579 2671305 88580 3.31

14 314 37846323 5834016 145539 2.49

15 297 35610272 5432985 125708 2.31

17 114 13327230 2156064 64739 3.00

18 270 31955563 5108984 185341 3.62

19 481 59808295 9545508 122182 1.27

20 86 10543977 1696864 1836 0.10

22 800 97010620 15486296 91027 0.58

23 474 55250697 8873180 2175 0.02

27 188 23071194 3632449 25949 0.71

28 430 52927931 8365825 41805 0.49

29 430 50903961 8377487 140199 1.67

32 390 46049509 7108348 128066 1.80

35 131 15296575 2532189 526 0.02

36 803 94239228 14857440 257062 1.73

39 395 47036670 7438221 45823 0.61

46 125 15247051 2449682 52303 2.13

48 22 2603914 412239 26381 6.39

51 438 50608329 7873791 444033 5.63

52 78 8749723 1298085 0 0

56 294 35967724 5657548 91119 1.61

57 361 41745641 6131022 207255 3.38

59 373 43835683 6911311 206065 2.98

60 78 8414744 1514989 4081 0.26

61 703 86608211 13849465 0 0

64 570 69835646 11094105 8758 0.07

70 420 52455735 8333931 35235 0.42

79 100 12520385 2033490 0 0

84 383 45327855 7271586 58012 0.79

86 706 88547628 14158549 296 0

87 729 91361891 14542479 0 0

91 340 41662792 6681938 544 0

93 433 50949973 8130679 0 0

3.4 El Teniente, Hannover, Wolfsburg, Traintunnel

The datasets “El Teniente”, “Hannover”, “Wolfsburg”, “Traintun-

nel” and “Trainwagon” were used for collision detection. Each

dataset is comprised of the pointcloud of the model, the pointcloud

of the environment and the 6 DOF trajectory that the model takes

through the environment. The trajectory is a sequence of transfor-

mation matrices describing the rotation and translation (but not

scaling or shearing) of the model at each step.

The first column in table 3.4 shows the name of the dataset, the

second column shows the number of points in the environment, the



54

Figure 3.12: Point cloud of a front
loader colored by surface normal

Figure 3.13: Husky A200 robot with
Riegl VZ-400 inside the mine by Leung
et al.
7 Leung, K., Lühr, D., Houshiar, H.,
Inostroza, F., Borrmann, D., Adams,
M., Nüchter, A., and Ruiz del Solar,
J. (2017). Chilean underground mine
dataset. The International Journal of
Robotics Research, 36(1):16–23
8 A fly-through video can be found
on YouTube: https://youtu.be/
ZjxKzYmhlP4
9 Borrmann, D., Elseberg, J., Linge-
mann, K., Nüchter, A., and Hertzberg,
J. (2008). Globally consistent 3d map-
ping with scan matching. Robotics and
Autonomous Systems, 56(2):130–142

10 Elseberg, J., Borrmann, D., Schauer,
J., Nüchter, A., Koriath, D., and Raut-
enberg, U. (2014a). A sensor skid for
precise 3d modeling of production
lines. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial
Information Sciences, 2(5):117

third column the number of points in the model, the fourth column

the number of discrete positions along the trajectory and the fifth

and sixth column the number of colliding points on the CPU and

GPU, respectively.

Table 3.4: Overview of the used datasets and their properties

Name #Environment #Model #Trajectory

El Teniente 806183400 100000 17795

Hannover 55872714 214489 17234

Wolfsburg 350109065 434700 398999

Train Tunnel 18919000 28622 19392

3.4.1 El Teniente

The “El Teniente” dataset was collected by Leung et al.7 in a stop-

and-go fashion in the El Teniente underground copper mine in

Chile with the Riegl VZ-400.8 The trajectory follows the path along

which the scanner was moved in a closed loop. Due to the stop-

and-go scanning method, the point density is highest around the

44 positions where a scan was carried out. The individual ter-

restrial scans were registered using markers and the batch opti-

mization method by Borrmann et al.9 A synthetic point cloud of a

3D model of a front loader was moved through this dataset. The

point cloud of the front loader was acquired by sampling the sur-

face of a CAD model such that the final point cloud contained

100000 points. The trajectory was produced by fitting a B-Spline

through the 44 scanning positions. The model was rotated as if

it was driving along the trajectory. Due to the synthetic nature of

the model as well as the trajectory, more collisions are produced

than in a real-world scenario. The dataset can be downloaded from

http://dataset.amtc.cl/.

3.4.2 Hannover and Wolfsburg

The “Hannover” and “Wolfsburg” datasets were collected in pro-

duction facilities of the automotive company Volkswagen in their

factories in Hannover and Wolfsburg, respectively. Both datasets

were collected using continuous laser scanning with a FARO Fo-

cus3D sensor on a mobile platform which was moved on the pro-

duction conveyor10. The characteristics of these two point clouds

are very similar because of the similar environment and the similar

scanning methods. The main difference is, that the “Wolfsburg”

dataset is much larger and produced the longest run times in our

test due to its size, the high sampling rate along its trajectory as

well as using a model with twice the amount of points compared to

https://youtu.be/ZjxKzYmhlP4
https://youtu.be/ZjxKzYmhlP4
http://dataset.amtc.cl/


datasets 55

11 Schauer, J. and Nüchter, A. (2014).
Efficient point cloud collision detection
and analysis in a tunnel environment
using kinematic laser scanning and kd
tree search. The International Archives
of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 40(3):289

Figure 3.14: The Optech Lynx Mobile
Mapper on the back of a train wagon.
12 Elseberg, J., Borrmann, D., Schauer,
J., Nüchter, A., Koriath, D., and Raut-
enberg, U. (2014b). A sensor skid for
precise 3d modeling of production
lines. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information
Sciences, II-5:117–122

Figure 3.15: A photo of the scanned
train wagon with a bogie distance of
20 m.

Figure 3.16: The Riegl VZ-400 laser
scanner set up next to the train wagon.

the “Hannover” dataset. We used pointclouds extracted from actual

CAD models of the Volkswagen Crafter and Tiguan car bodies for

the “Hannover” and “Wolfsburg” datasets, respectively. The trajec-

tory was retrieved from the scanner positions and transformed such

that a realistic simulation of the movement of the car body along

the production line is achieved.

3.4.3 Traintunnel and Trainwagon

The dataset called “Train Tunnel” was recorded by the company

TopScan GmbH using mobile mapping from an Optech Lynx Mo-

bile Mapper laser scanner mounted on a van on a train wagon11.

Figure 3.14 shows the setup.

TopScan also provided the trajectory data to us which is com-

prised of 23274 positions over a distance of 1144 m. The dataset

contains a tunnel environment as well as an open outdoor environ-

ment before and after the tunnel. Datasets of this kind can also be

acquired using the sensor skid system presented by Elseberg et al.12

The model moved through the environment was a manually

scanned train wagon which we moved along a trajectory that al-

lowed us to simulate a bogie size of 20 m of that train wagon, lead-

ing to collisions that could not have been detected with a structure

gauge based method.

To retrieve a point cloud of a suitable model to move through the

environment, the train wagon that is seen in Figure 3.15 was manu-

ally scanned using a RIEGL VZ-400 laser scanner (see Figure 3.16).

Seven scans were taken from all sides of the wagon and registered

using 3DTK’s SLAM implementation .

The train wagon is manually extracted from the resulting regis-

tered point cloud by using 3DTK’s show application . As the train

wheels are still part of the wagon, they will always result in an

expected collision with the rails themselves.

As calibration data of the precise location of the scanner relative

to the environment is missing, our results can only serve a demon-

stration purpose of our methods (see Figure 3.17). The final point

cloud of the wagon contained 2.5 million points.

The trajectory provided to the authors included orientation in-

formation in three degrees of freedom as well. Since a train wagon

is mounted on two bogies and since the origin of the coordinate

system of the train is located in its center, using this trajectory di-

rectly would mean that the wagon would rotate around its own

center along the trajectory. This produces wrong results since in-

stead, the bogies of the train have to remain on the tracks while the

center follows accordingly. A new trajectory is calculated from the



56

Figure 3.17: Aligned train wagon
(yellow) inside the tunnel environment
(gray) and trajectory (red).
13 Dierckx, P. (1993). Curve and surface
fitting with splines. Oxford University
Press, Inc

original trajectory by assuming a bogie distance of 20 m and mov-

ing the train wagon such that the center of both bogies is always

on the original trajectory. Since this operation requires the original

trajectory to be a continuous function and not a sampled trajectory,

a spline is fitted across all points of the trajectory with a sum of

squared residuals over all the spline’s control points of 10 m. This

amounts to the spline only a few millimeter away on average from

the original trajectory. The FITPACK library13 is used to calculate

the spline. The result of this computation also adjusted the yaw and

pitch of the trajectory.



4

Change detection

For the purpose of visualization and further post-processing of 3D

point cloud data, it is desirable to remove moving objects from a

given data set. Common examples for these moving objects are

pedestrians, bicycles and motor vehicles in outdoor scans or man-

ufactured goods and employees in indoor scans of factories. We

present a new change detection method which is able to partition

the points of multiple registered 3D scans into two sets: points

belonging to stationary (static) objects and points belonging to mov-

ing (dynamic) objects. Our approach does not require any object

detection or tracking the movement of objects over time. Instead,

we traverse a voxel grid to find differences in volumetric occupancy

for “explicit” change detection. Our main contribution is the intro-

duction of the concept of “point shadows” and how to efficiently

compute them. Without them, using voxel grids for explicit change

detection is known to suffer from a high number of false positives

when applied to terrestrial scan data. Our solution achieves simi-

lar quantitative results in terms of F1 score as competing methods

while at the same time being faster.

4.1 Introduction

When 3D laser scanners are used to create digital maps and mod-

els, it is hard to imagine scenarios where non-static or moving

objects are supposed to be part of the final point cloud. Examples

for point cloud data that is supposed to be free of moving objects

are:

• an indoor office for intrusion detection or workspace planning,

• a factory or industrial sites for industry 4.0 applications,

• a mining site to monitor progress and watch for hazards,

• an urban environment for city planning and documentation

purposes,

• a historical site for archaeology and digital preservation pur-

poses,

• and environments for gaming and virtual reality applications.

In all these examples, it is undesirable to have moving objects

be part of the final point cloud. The easiest approach to achieve a



58

1 http://kos.informatik.

uni-osnabrueck.de/3Dscans/

point cloud free of moving clutter is to scan an environment that is

completely static. Unfortunately, in realistically-scaled real world

scenarios this is hard or even impossible to achieve. Factories and

mining sites would have to suspend work for the duration of the

scan, thereby causing production losses and making it infeasible

to carry out scans regularly. Closing off large sections of an urban

environment and freeing it of pedestrians, moving and parked cars

and bicycles comes with great bureaucratic challenges and heavily

inconveniences the local residents.

One way to solve this dilemma is to take multiple scans from

the exact same location and then only keep those points in volumes

found to be occupied by most scans. But this solution comes with

several disadvantages. Not only does this method take considerably

more time than just taking a single scan, it is also unclear how

many scans one has to take or how to find a good heuristic to select

the right threshold that classifies a volume as static. If the threshold

is too high, then static points only seen a few times will not be

recorded. The lower the threshold the more dynamic points will

wrongly be classified as static. The method we propose solves all of

these issues. We successfully applied our method to various point

clouds from our scan repository1. These scans were not recorded

with our algorithm in mind, proving that our method will probably

apply to many existing regular terrestrial scan datasets.

4.1.1 Our approach

The input to our algorithm is registered 3D range data, typically

acquired by a 3D laser range finder from multiple vantage points.

While we only test our approach with LIDAR scans, it is in prin-

ciple also compatible with scans obtained from sonar, RADAR

or RGB-D systems or point clouds from stereo vision. Any input

which allows associating every measured point with the line of

sight from which it was measured is theoretically suitable for our

method. In terms of terrestrial laser scan data, a suitable format

are multiple point clouds, each in the scanner’s own local coordi-

nate system together with registered 6DOF positions of the laser

scanner for each point cloud. It would make the data unsuitable

for our approach if all scans were merged into a single point cloud

and transformed into a global coordinate system, thus loosing the

association between measured points and the vantage points from

which they were each measured.

Retaining that information is imperative to our approach because

we identify dynamic points by traversing the lines of sight under

which each point in the dataset was measured through a voxel

occupancy grid. Essentially: all points in voxels that intersect with

a line of sight are then classified as dynamic because if they were

static, points behind the voxel shouldn’t have been visible. This

implies, that our approach is only able to detect change in volumes

where two or more scans overlap and suppresses apparent changes

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/


change detection 59

Figure 4.1: Non-static points are
identified (magenta)...

Figure 4.2: ...and removed without
artifacts
2 Qin, R., Tian, J., and Reinartz,
P. (2016). 3d change detection–
approaches and applications. ISPRS
Journal of Photogrammetry and Remote
Sensing, 122:41–56

3 Vieira, A. W., Drews, P. L., and
Campos, M. F. (2014). Spatial density
patterns for efficient change detection
in 3d environment for autonomous
surveillance robots. IEEE Transactions
on Automation Science and Engineering,
11(3):766–774
4 Liu, K., Boehm, J., and Alis, C. (2016).
Change detection of mobile lidar data
using cloud computing. In International
Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences-
ISPRS Archives, volume 41, pages
309–313. International Society of
Photogrammetry and Remote Sensing
(ISPRS)

created by occlusion. This makes our method an “explicit” change

detection algorithm.

Our algorithm makes very few requirements on the underlying

geometry of the scanned data, vantage points and the temporal sep-

aration between individual scans. The vantage points together with

the geometry of the scene must be chosen such that the volumes

of interest are not occluded from the sensor. Instead, the volumes

that one wants to remove moving objects from must have been ob-

served at least by two different scans. Furthermore, the temporal

difference between these two scans must be large enough such that

any object that one considers “dynamic” in the observed volume

was moved to a different location. But if a given voxel volume was

observed more than twice, then it is sufficient that the voxel was

seen as “free” by only a single scan.

Our method performs best in environments with clear surface

normals but in their absence, false positives are easily removed

by a fast clustering algorithm. To avoid artifacts due to the voxel

discretization we also show an algorithm that reliably removes

them without reducing the quality of the remaining point cloud.

An example of the output of our algorithm is shown in Figure 4.1

where pedestrians in the foreground and cars in the background

are classified as non-static and subsequently removed in Figure 4.2.

4.2 Related work

Our solution falls into the realm of change detection2 but only

few publications deal with classifying points as either dynamic or

static. Even fewer approaches compute the free volume between

a measured point and the sensor itself. Most solutions for change

detection compare incoming geometries or point clouds in a way

that results in “change” merely due to occlusion or incomplete sen-

sor coverage. One example for such an approach is the method by

Vieira et al which uses spatial density patterns3. Or the solution

shown in by Liu et al.4 which just computes the difference in voxel

occupation between two input scans. But for our purpose of “clean-

ing” scans, it is undesirable to remove these parts from the dataset.

Doing so would mean to remove potentially useful data from the

input. Instead, we designed our algorithm to be conservative. It

only removes volumes which it is able to confidently determine to

be dynamic. Volumes which it cannot make a decision upon, for

example because they were only measured by a single scan, are left

untouched. Meeting this requirement is only possible by computing

unoccupied volumes and detecting change explicitly. The changes

we are interested in can only be detected if a given point falls into

the volume that another measurement observed as free.

The work most similar to ours is the seminal work by Under-



60

5 Underwood, J. P., Gillsjö, D., Bailey,
T., and Vlaskine, V. (2013). Explicit
3d change detection using ray-tracing
in spherical coordinates. In Robotics
and Automation (ICRA), 2013 IEEE
International Conference on, pages
4735–4741. IEEE

6 Gálai, B. and Benedek, C. (2017).
Change detection in urban streets by
a real time lidar scanner and mls ref-
erence data. In International Conference
Image Analysis and Recognition, pages
210–220. Springer
7 Xiao, W., Vallet, B., and Paparoditis,
N. (2013). Change detection in 3d
point clouds acquired by a mobile
mapping system. ISPRS Annals of
Photogrammetry, Remote Sensing and
Spatial Information Sciences, 1(2):331–
336; and Xiao, W., Vallet, B., Brédif,
M., and Paparoditis, N. (2015). Street
environment change detection from
mobile laser scanning point clouds.
ISPRS Journal of Photogrammetry and
Remote Sensing, 107:38–49

8 Asvadi, A., Peixoto, P., and Nunes,
U. (2016a). Two-stage static/dynamic
environment modeling using voxel
representation. In Robot 2015: Second
Iberian Robotics Conference, pages
465–476. Springer; and Asvadi, A.,
Premebida, C., Peixoto, P., and Nunes,
U. (2016b). 3d lidar-based static and
moving obstacle detection in driving
environments: An approach based
on voxels and multi-region ground
planes. Robotics and Autonomous
Systems, 83:299–311

9 Hornung, A., Wurm, K. M., Ben-
newitz, M., Stachniss, C., and Burgard,
W. (2013). Octomap: An efficient
probabilistic 3d mapping framework
based on octrees. Autonomous Robots,
34(3):189–206
10 Amanatides, J., Woo, A., et al. (1987).
A fast voxel traversal algorithm for ray
tracing. In Eurographics, volume 87,
pages 3–10

11 Ruixu Liu, V. K. A. (2017). 3d indoor
scene reconstruction and change
detection for robotic sensing and
navigation
12 Herbert, M., Caillas, C., Krotkov, E.,
Kweon, I. S., and Kanade, T. (1989).
Terrain mapping for a roving planetary
explorer. In Robotics and Automation,
1989. Proceedings., 1989 IEEE Interna-
tional Conference on, pages 997–1002.
IEEE; and Pfaff, P., Triebel, R., and
Burgard, W. (2007). An efficient ex-
tension to elevation maps for outdoor
terrain mapping and loop closing. The
International Journal of Robotics Research,
26(2):217–230

wood et al.5 It is able to detect changes between two scans by ray

tracing points in a spherical coordinate system. But since their al-

gorithm is limited to comparing no more than two scans at a time it

is not directly applicable to our use case without either additional

heuristics or quadratic runtime with respect to the number of scans.

Given N input scans and without additional processing to find

scan pairs with a “meaningful” overlap in their observed volume,

the only way to find all changed points is to compare all possible

pairs of scans. With N scans this results in a worst case scenario of
N(N−1)

2 comparisons and thus quadratic runtime. Our approach is

of linear complexity relative to the input size because all compar-

isons are made against a global occupancy grid and not directly

against point data from other scans. The authors publicly provide

their code and their datasets which we thus use to benchmark our

own method against theirs.

Similar to the approach by Underwood et al., the solution by

Gálai et al. 6 finds changes by comparing range images. One range

image is obtained directly from a live laser scanner while the other

is the projection of a known-static point cloud of the environment

into the current position of the laser scanner. Differences in the

range image data is then classified as change and projected back

into the 3D space.

Another approach close to ours is the method by Xiao et al. 7

Similar to our method and the method by Underwood et al. their

algorithm also considers the volume by laser rays and fuses mul-

tiple rays into a larger volume using the Dempster-Shafer theory

for intra-data evidence fusion and inter-data consistency assess-

ment. Similar to our method, they rely on surface normals but

unlike ours, the method detects changes at the point-level without

voxelization.

Asvadi et al.8 also use a voxel data structure to partition the

input point cloud into static and dynamic points but instead of

recording free voxels, they count how often a voxel is occupied.

Due to varying occlusion they have to make a number of assump-

tions about their environment and employ several heuristics that

are not necessary with our algorithm. Furthermore, their approach

requires a ground surface estimation — in contrast to our approach

which does not require any such planar features to be present.

The creators of OctoMap9 also use the same algorithm as we

do by Amanatides and Woo10 to cast rays. But instead of voxels

they use an octree data structure to find free volumes. They also

employ a similar approach to avoid marking volumes as free in

situations where rays meet a surface at a very shallow angle by

grouping multiple scan slices together. We improve on their work

by generalizing their approach for scan slices to terrestrial scans.

The OctoMap approach is also used by other implementations like

the one by Ruixu et al.11

Besides voxels and octrees other data structures to store occu-

pation information in are elevation maps12, multi-level surface



change detection 61

13 Triebel, R., Pfaff, P., and Burgard,
W. (2006). Multi-level surface maps
for outdoor terrain mapping and loop
closing. In 2006 IEEE/RSJ international
conference on intelligent robots and
systems, pages 2276–2282. IEEE
14 Andreasson, H., Magnusson, M., and
Lilienthal, A. (2007). Has somethong
changed here? autonomous difference
detection for security patrol robots.
In Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International
Conference on, pages 3429–3435. IEEE;
Núñez, P., Drews, P., Bandera, A.,
Rocha, R., Campos, M., and Dias,
J. (2010). Change detection in 3d
environments based on gaussian
mixture model and robust structural
matching for autonomous robotic
applications. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages
2633–2638. IEEE; and Drews-Jr, P.,
Núñez, P., Rocha, R. P., Campos, M.,
and Dias, J. (2013). Novelty detection
and segmentation based on gaussian
mixture models: A case study in 3d
robotic laser mapping. Robotics and
Autonomous Systems, 61(12):1696–1709

15 Hermann, A., Drews, F., Bauer, J.,
Klemm, S., Roennau, A., and Dill-
mann, R. (2014a). Unified gpu voxel
collision detection for mobile manip-
ulation planning. In 2014 IEEE/RSJ
International Conference on Intelligent
Robots and Systems, pages 4154–4160.
IEEE
16 Roettger, S., Guthe, S., Weiskopf,
D., Ertl, T., and Strasser, W. (2003).
Smart hardware-accelerated volume
rendering. In VisSym, volume 3, pages
231–238. Citeseer
17 Kruger, J. and Westermann, R.
(2003). Acceleration techniques for
gpu-based volume rendering. In
Proceedings of the 14th IEEE Visualization
2003 (VIS’03), page 38. IEEE Computer
Society
18 Weinlich, A., Keck, B., Scherl, H.,
Kowarschik, M., and Hornegger, J.
(2008). Comparison of high-speed
ray casting on gpu using cuda and
opengl. In Proceedings of the First
International Workshop on New Frontiers
in High-performance and Hardware-aware
Computing, volume 1, pages 25–30

maps13, and Gaussian Mixture Models14. Existing methods that

require computation of free volume for robotic path planning are

known to use a 3D Bresenham ray casting kernel15 carrying out

the ray casting in many parallel threads on the GPU. GPU-based

ray casting techniques were first shown by Roettger et al.16 and

Kruger et al.17 and are today often implemented using OpenGL

and CUDA18.

4.3 General design

Our initial approaches were inspired by how humans tend to dis-

tinguish between static and dynamic objects: If an object is seen as

immobile for long enough, then we will classify it as static. While

this approach would probably work well for a scanner with a static

position relative to the environment that we consider static, it seems

to be an unfeasible approach in the mobile mapping scenario. Due

to the scanner moving and the resulting variable occlusion of ob-

jects, it is hard to calculate how long an object should be visible and

not vanish because of an occlusion. Furthermore, without prior

knowledge about whether the occluding object is actually static a

chicken-and-egg problem is created. We need to know about which

objects are static before they are considered for occlusion testing.

But to reliably test for occlusion we need to know which objects are

static.

Thus, instead of counting how long or how often an object is

seen as static, our algorithm does the opposite and instead tests

whether any seen object was at any point in time see-through. Since

we want to avoid any higher-level processing like object recogni-

tion, our “objects” here are the voxels of a regular voxel grid. This

spacial approximation of the sensor data has the advantage, that it

is computationally easy to enumerate all voxels along a ray with the

scanner at its origin. The ray is forming a line of sight. To generate

the regular voxel grid from a set of input points, we define:

Definition 1 (voxel). The voxel address of a given 3D point is a

three-tuple computed from the Cartesian coordinate of the point,

each divided by the voxel size and rounded to the next smallest

integer.

Thus, our voxel grid forms a cubic lattice with each point in R
3

belonging to exactly one grid cell. Since the Cartesian coordinates

may be negative, negative voxel addresses exist as well. The grid

implicitly forms an occupancy map where voxels with one or more

points in them are occupied and those with zero points in them are

unoccupied.

To determine the set of see-through voxels, we model the laser

beam as a ray and enumerate all voxels intersecting with that ray.

Voxels that are see-through and contain points must be dynamic.

An additional advantage of this approach is, that it will automat-

ically not remove points that were only measured very seldom or



62

A B C

1

2

3

4

D
Figure 4.3: The scene as scanned from
a center position (ray origin not part of
the Figure). The scanner measures the
green points.

A B C

1

2

3

4

D
Figure 4.4: The scene as scanned from
a position to the right. The circular
object in areas C1 and C2 moved away
and its former position is marked with
dotted lines. The scanner measures the
red points.

even only once. No heuristic about object movement is required.

Figure 4.3 displays the general idea of our algorithm in a two-

dimensional scenario. The gray raster marks the 2D voxel (pixel)

boundaries. Blue lines mark the scanner lines of sight. Dark lines

are object boundaries. Gray areas mark solid space while white

areas mark free space. The circular object in areas C1 and C2 is

dynamic and only seen by the first scan (Figure 4.3). Since the

second scan (Figure 4.4) measures the red points in A2 and B2

with a line of sight that crosses area C1, the three points that were

measured in C1 in the first scan are dynamic.

Figure 4.4 also shows how the algorithm does not remove points

from areas that were only visible in a single scan. For example the

green points in areas A3 and A4 are only seen from the scanner

position in Figure 4.3. Still, they are not removed because these

areas are never marked as see-through by other scans (for example

the second scan in Figure 4.4). The same holds for the red points

in area C2. They are only seen by the second scan in Figure 4.4

because the circular moving object in C1 and C2 occludes the points

during the first scan in Figure 4.3. Still, the points remain classified

as static because their containing areas are never marked as see-

through.

Our algorithm goes through the following stages:

1. Loading point cloud data from input files in scanner-local coor-

dinate system together with the registered 6DOF scanner posi-

tion

2. Creation of voxel occupancy grid. Each voxel stores the set of

scan indices that have a point in that voxel

3. Computation of maximum traversal distances through the voxel

grid for each point by using “point shadows”

4. Optionally, computing a reduced set of rays to traverse through

the voxel grid

5. Traversing lines of sight through the voxel grid for each scanner

location to each measured point by that scan, identifying see-

through voxels

6. Clustering for false positive noise removal

7. Removal of false negatives through our approach to sub-voxel

accuracy

8. Writing out results

The main component of our method is a global occupancy grid

which we store as a voxel data structure. Each voxel holds a set of

scan identifiers. A scan identifier is added to a given voxel if any

point of that scan falls into the voxel. Thus, precise point coordi-

nates are not stored in the grid. Instead, the data structure repre-

sents the union of all voxels that the input scans measured points

in. For example in Figure 4.4, voxel B2 stores the information that



change detection 63

19 Amanatides, J., Woo, A., et al. (1987).
A fast voxel traversal algorithm for ray
tracing. In Eurographics, volume 87,
pages 3–10

20 Hornung, A., Wurm, K. M., Ben-
newitz, M., Stachniss, C., and Burgard,
W. (2013). Octomap: An efficient
probabilistic 3d mapping framework
based on octrees. Autonomous Robots,
34(3):189–206
21 Blanco-Claraco, J. (2014). Mobile
robot programming toolkit (mrpt)
22 Rusu, R. B. and Cousins, S. (2011).
3d is here: Point cloud library (pcl). In
Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages
1–4. IEEE
23 Turk, M. J., Smith, B. D., Oishi,
J. S., Skory, S., Skillman, S. W., Abel,
T., and Norman, M. L. (2011). yt:
A Multi-code Analysis Toolkit for
Astrophysical Simulation Data. The
Astrophysical Journal Supplement Series,
192:9

it contains points from the green as well as from the red scan but

neither their number nor the coordinates of these points is stored in

the voxel grid. Thus, the global occupancy grid typically requires

several orders of magnitude less memory than the sum of the input

data.

By traversing the occupancy grid from each sensor origin to the

coordinates of each measured point, we find voxels that intersect

with the line of sight of the sensor but contain a non-empty set of

scan identifiers. These voxels are then classified as “see-through” or

“dynamic”. At the end of the algorithm, this information serves as

a binary classifier determining whether a given input point should

be removed or not. A point is removed if it falls into a voxel that

was marked as “see-through”.

The reason why we store a set of scan identifiers in each voxel

instead of just storing a binary occupied/unoccupied property is

to be able to abort traversal early and avoid self-intersections. The

point measured in voxel A4 in Figure 4.3 has a line of sight inter-

secting with at least three voxels that must not be marked as free:

A3, B3, and B2. To avoid wrongly marking these voxels as free,

traversal is aborted once a voxel is encountered containing the same

scan identifier as the scan the current target point belongs to. This

means that the ray toward voxel A4 aborts before marking voxel

B2 as free. Another application for storing sets of scan identifiers

in each voxel is our solution to achieve sub-voxel accuracy as ex-

plained in section 4.8.

4.4 Fast voxel traversal

To enumerate all see-through voxels from the laser origin until

the measured point, we used an approach based on the algorithm

proposed by Amanatides and Woo.19 We improve the algorithm by

making it adhere to a stricter definition of what it means for a ray

to intersect with a voxel, by eliminating accumulation of floating

point errors and by adding support for rays starting exactly at a

voxel boundary. None of the existing open-source implementations

(Octomap20, MRPT21, PCL22, yt23) supports any of these properties

and thus we detail our approach here.

We empirically verified the correctness of our algorithm by com-

paring it with a brute-force implementation which enumerates all

voxels intersecting with a given line by simply checking all vox-

els in the grid for a possible intersection. We generate a synthetic

corpus of line segments to check against by going through all per-

mutations of x, y and z coordinates for the start and endpoint of the

line segment from a fixed list of input coordinate values. We arbi-

trarily chose the values -5, -1, 0, 1, and 5 as well as the next smaller

and next bigger floating point number around each of them. We

then test all these line segments against voxel grids with voxel sizes

of 0.1, 1, 2, 5 and 10. All of this together results in more than 24

million different test cases that we check our algorithm against.



64

Even though our additions to Amanatides and Woo’s original

algorithm increase the number of possible instructions per loop

cycle we were unable to measure a difference in runtime of the

algorithms on an Intel Core i5 platform. We assume that this is

because the bottleneck of the algorithm is the required non-local

memory access and not the raw instructions per traversed voxel.

4.4.1 Approach by Amanatides and Woo

The original approach by Amanatides and Woo for fast voxel

traversal is also often called “3D Bresenham algorithm” because

it is very similar in nature. The core of the algorithm in two dimen-

sions is displayed in algorithm 1 will traverse a ray ~u + t~v for t ≥ 0.

Extending it into three dimensions just adds an additional set of Z

variables and finds the minimum of all three tMax values in each

loop iteration.

Algorithm 1: Fast Voxel Traversal
Algorithm by Amanatides and Woo1: while true do

2: if tMaxX < tMaxY then

3: tMaxX ← tMaxX + tDeltaX

4: X = X + stepX

5: else

6: tMaxY ← tMaxY + tDeltaY

7: Y = Y + stepY

8: NextVoxel(X, Y)

The variables used in the algorithm are initialized as follows:

• X, Y are the starting voxel coordinates, i.e. the voxel in which the

ray origin ~u is found.

• stepX, stepY are set to 1 or -1 depending on whether X and Y are

incremented or decremented, respectively, when traversing the

grid. This is the sign of the x and y components of ~v.

• tMaxX, tMaxY are set to the value of t in which the ray crosses

the first voxel boundary in x and y direction, respectively.

• tDeltaX, tDeltaY store how far along the ray one must move

in units of t to traverse exactly one voxel in x and y direction,

respectively.

To the best of our knowledge, neither the original publication

nor any other publication since then explains in more detail how

these variables are set up exactly. We found though, that many

of the current limitations of existing implementations suffer from

wrongly handled corner-cases in how these variables are set up.

Thus, in this section we also describe how to initialize the variables

in detail.

4.4.2 Definition of line-voxel intersection

The original algorithm is ambiguous in situation where the ray in-

tersects with the voxel edges or corners. Existing implementations



change detection 65

all handle this situation in different ways, so to eliminate ambiguity

and to be able to verify the correctness of our approach we define

what it means for a voxel to intersect with a line.

Definition 2 (line). A line intersects with a given voxel if and only

if any point on the line falls into the given voxel according to defini-

tion 1.

0 1 2

1

2

(0.5,0.5)

(1.5,1.5)

(a) If the traversal algorithm checks the
vertical dimension first, then voxel (0,1) is
added to the result.

0 1 2

1

2

(0.5,0.5)

(1.5,1.5)

(b) If the traversal algorithm checks the
horizontal dimension first, then voxel (1,0)
is added to the result.

0 1 2

1

2

(0.5,0.5)

(1.5,1.5)

(c) Our algorithm only traverses voxel (0,0)
and voxel (1,1).

Figure 4.5: Two-dimensional example
of the voxel traversal problem

Figure 4.5 shows a two-dimensional example visualizing the

problem of existing implementations of the voxel traversal algo-

rithm by Amanatides and Woo with a voxel size of 1. Traversed

voxels are marked in red. A line segment from (0.5, 0.5) to (1.5,

1.5) includes the coordinate (1,1) which belongs to voxel (1,1) and

neither voxel (0,1) nor voxel (1,0) should be included in the result.

By only being able to step into one voxel grid dimension at a

time, existing implementations fail definition 2 in cases where the

traversed ray enters or exits a voxel through its corners or edges.

Two-dimensional examples of these situations are shown in Figures

4.5, 4.6 and 4.7. The original algorithm by Amanatides and Woo

forces the implementation to arbitrarily pick a dimension to step

into first but no matter which dimension is picked, the result will

contain wrong voxels and miss others that should be included.

4.4.3 Avoiding accumulation of floating point errors

The original algorithm by Amanatides and Woo increments the

tMax variables by the corresponding tDelta value in each loop

iteration. Since both variables are floating point values, this accu-

mulates an error over time, especially once tMax becomes several



66

0 1 2

1

2

(1.5,0.5)

(0.5,1.5)

(a) If the traversal algorithm checks the
horizontal dimension first, then voxel (0,0)
is added to the result even though point
(1,1) on the line belongs to voxel (1,1)

0 1 2

1

2

(1.5,0.5)

(0.5,1.5)

(b) Our algorithm correctly identifies voxel
(1,1) as part of the solution.

Figure 4.6: A line is traversed from
(1.5,0.5) to (0.5,1.5). The arrow indi-
cates the direction.

0 1 2

1

2

(1.5,0.5)

(0.5,1.5)

(a) If the traversal algorithm checks the
vertical dimension first, then voxel (0,0) is
added to the result even though point (1,1)
on the line belongs to voxel (1,1)

0 1 2

1

2

(1.5,0.5)

(0.5,1.5)

(b) Our algorithm correctly identifies voxel
(1,1) as part of the solution.

Figure 4.7: A line is traversed from
(0.5,1.5) to (1.5,0.5). The arrow indi-
cates the direction.



change detection 67

orders of magnitude larger than tDelta. Additionally, when the ray

is nearly parallel to the coordinate axis, small floating point errors

will lead to incorrectly traversed voxels when the ray is about to

cross the voxel boundary along the dimension the ray is nearly par-

allel to. To avoid these effects, we introduce new counter variables

for each dimension. These variables are of integer type and count

how much the loop has so far stepped into each direction. This

allows the algorithm to compute the new tMax values in each iter-

ation by adding floating point values of similar magnitude which

reduces errors. Additionally, the integer counter variables allow a

more precise way to abort the algorithm by not having to rely on

the potentially faulty tMax floating point values. In our adapted

solution, the tMax values are only used to decide in which direction

to step next.

4.4.4 Rays starting exactly at a voxel boundary

The setup phase of the algorithm by Amanatides and Woo is of par-

ticular importance but neither completely explained in the original

paper nor in the papers citing it. An important corner case which

is not handled by the existing implementations is the case when a

ray starts exactly on a voxel boundary and then continues into neg-

ative direction. To illustrate the problem, we use a one-dimensional

example with a “voxel”-size of 1. Suppose the ray starts at coordi-

nate 1 and goes into negative direction. The starting voxel is voxel

1. In this situation, we compute tMax as the value of t needed to go

from 1 to 0, thus tMax equals tDelta. In the loop, we step one voxel

into negative direction and increment tMax by tDelta. As a result

we are now in voxel 0. But that conflicts with the current value of

tMax which is now twice the value of tDelta and thus indicates

that we already stepped two voxels instead the single step that was

just carried out. It is also wrong to reset the value of tMax to zero

before starting the loop because in the more-dimensional case that

means that the first step in the loop is not made in the direction of

the voxel sharing the voxel boundary the starting point lies on. The

correct solution is to add an additional step after the initial setup

but before the loop starts. In this step one additional voxel into neg-

ative direction has to be added. Since existing implementations are

not taking care of this special case, they will skip one voxel at the

beginning and thus compute a result that will always be off-by-one.

4.4.5 Implementation

Since the required additions to the original algorithm by Ama-

natides and Woo are complex, we present in this subsection the

complete pseudo code of the fixed voxel traversal algorithm. We

split the function walkvoxels into two parts. Algorithm 2 shows

the setup phase while algorithm 3 the loop walking through the

voxel grid. The algorithm makes use of three additional functions.

voxelofpoint returns the voxel coordinate of a given cartesian co-



68

ordinate according to definition 1. Care has to be taken in a C/C++

implementation because simple integer division will always round

toward zero. A function showing a possible implementation in

C/C++ is shown in section 2.3.3.

The visitor callback handles the current voxel, for example

by adding it to a list of traversed voxels. But the behaviour of this

function is up to the requirements of the user of walkvoxels. Fi-

nally the function min returns the smallest value of the arguments

it is given. Many variables represent 3-tuples where elements are

accessed using the [] operator with a zero-based index.

Algorithm 2: Extended voxel traversal
algorithm (part 1)1: function walkvoxels(startpos, endpos, voxelsize)

2: startvoxel ← voxelofpoint(startpos, voxelsize)

3: visitor(startvoxel)

4: endvoxel ← voxelofpoint(endpos, voxelsize)

5: if startvoxel = endvoxel then

6: return

7: direction← endpos− startpos

8: if direction = (0, 0, 0) then

9: return

10: curvoxel ← startvoxel

11: for i← 0, 2 do

12: if direction[i] = 0 then

13: tMax[i]← ∞

14: maxMult[i]← ∞

15: else

16: if direction[i] > 0 then

17: step[i]← 1

18: else

19: step[i]← −1

20: tDelta[i]← step[i]·voxelsize
direction[i]

21: tMax[i]← tDelta[i]
(

1− step[i]·startpos[i]
voxelsize mod 1

)

22: maxMult[i]← step[i] · (endvoxel[i]− startvoxel[i])

23: if step[i] = −1 ∧ tMax[i] = tDelta[i] ∧ startvoxel[i] 6=
endvoxel[i] then

24: curvoxel[i]← curvoxel[i]− 1

25: maxMult[i]← maxMult[i]− 1

26: if curvoxel 6= startvoxel then

27: visitor(curvoxel)

28: startvoxel ← curvoxel

29: if curvoxel = endvoxel then

30: return

Algorithm 2 mostly implements the standard setup from the

algorithm by Amanatides and Woo. Again, if implementing the

algorithm in C/C++, care has to be taken to carry out the modulo

operation correctly (line 21), as the native % operator only operates

on integers and the fmod function from math.h only computes the



change detection 69

remainder of two floating point numbers despite its name. An

example implementation of floating point modulo operation in

C/C++ is given in section 2.3.3.

The additions start in line 22 which sets up the 3-tuple maxMult

containing the voxel difference between the start and end voxel.

Line 23 then checks whether the special condition explained in

section 4.4.4 is met: if a step has to be done into negative direction

and the ray starts at the voxel boundary along that dimension, then

that step is already carried out before the main loop starts. This

results in a second call to visitor if necessary in line 27.

Algorithm 3: Extended voxel traversal
algorithm (part 2)31: mult← (0, 0, 0)

32: tMaxStart← tMax

33: loop

34: stepped← ( f alse, f alse, f alse)

35: minVal ← min(tMax)

36: for i← 0, 2 do

37: if minVal = tMax[i] then

38: mult[i]← mult[i] + 1

39: curvoxel[i]← startvoxel[i] + mult[i] · step[i]

40: tMax[i]← tMaxStart[i] + mult[i] · tDelta[i]

41: stepped[i]← true

42: if ((stepped[0] ∧ stepped[1])

∨ (stepped[0] ∧ stepped[2])

∨ (stepped[1] ∧ stepped[2]))

∧ (step[0] = 1∨ step[1] = 1∨ step[2] = 1)

∧ (step[0] = −1∨ step[1] = −1∨ step[2] = −1)

then

43: addvoxel ← curvoxel

44: for i← 0, 2 do

45: if stepped[i] then

46: if step[i] < 0 then

47: if mult[i] > maxMult[i] + 1 then

48: return

49: addvoxel[i]← addvovel[i] + 1

50: else if mult[i] > maxMult[i] then

51: return

52: if addvoxel 6= curvoxel then

53: visitor(addvoxel)

54: for i← 0, 2 do

55: if stepped[i] ∧mult[i] > maxMult[i] then

56: return

57: visitor(curvoxel)

Algorithm 3 executes the voxel traversal. The difference to the

original algorithm is twofold. Firstly, as explained in section 4.4.3,

our version increments tMax not by directly adding tDelta but

by adding a multiple of it to the initial tMax value (line 40). This

makes it necessary that the additional counter mult is kept updated



70

for each dimension (line 38). As a side-effect the algorithm also

uses the value of mult to decide when the target voxel is reached

(lines 47, 50, and 55). Secondly, our version is able to step into

more than one direction at once. This is achieved by stepping into

every direction that shares the minimum tMax value minVal. As

explained in section 4.4.2, additional checks need to be carried

out if a step was done into more than one direction at the same

iteration step to also consider potentially “graced” voxels. These

checks are done in lines 42 to 53 and lead to the visitor callback

being executed one additional time within a given loop iteration if

necessary.

4.4.6 Reusing already computed paths

After having shown how the list of voxels intersecting with a line

segment is computed, we evaluated the possibility of re-using that

list for all target points that share the same path through the voxel

grid. We were looking at two approaches. Either partition the input

points in a way such that each set of points shares the same path

through the voxel grid and thus the path only has to be computed

once. Or create a hash which allows one to look up the path toward

the current query point from a cache. For any such approach to

succeed the following conditions have to be fulfilled:

• There must be significantly more points per voxel than there are

unique paths from the ray origin to that voxel. Only then can

enough points share the same path and thus avoid recomputa-

tion of the path such that the additional memory requirement for

storing any computed path is justified.

• Memory requirements must stay within practical limits

• (optional) The cached results from one ray origin (scanner loca-

tions) should be reusable for different origins

Unfortunately one has to abandon this idea because none of the

requirements was met:

• The number of unique paths to a target voxel increases with its

distance from the ray origin, thus making it less and less likely

that two target points share the same voxel path

• Memory requirements grow with cubic complexity with increas-

ing distance of the target point from the ray origin

• Stored paths from one ray origin cannot be re-used for other ray

origins

Until we find theoretical groundwork that lets us come to these

conclusions, we motivate it by using an empirical approach in-

stead. The following variables influence the path that a ray tra-

verses through a regular axis-aligned voxel grid:

• The ray origin relative to the voxel grid boundaries

• The ray direction



change detection 71

Figure 4.8: Visualization of which part
of a sphere surface falls into which
voxel

Figure 4.9: Visualization of the unique
paths through a regular axis-aligned
voxel grid

0

5000

10000

0 250000 500000 750000

surface area

n
u
m
b
e
r
o
f
v
o
x
e
l
in
t
e
r
s
e
c
t
io
n
s

Figure 4.10: Number of voxels in a
regular voxel grid intersecting the
surface of a sphere per sphere surface
area

• The radius up to which the ray is traversed through the voxel

grid

• The voxel grid size

Since we have no reason to suspect to observe fundamentally

different results for different ray origins, we arbitrarily chose the

coordinate center as the ray origin in our experiments. As far as

unique traversed paths through the voxel grid go, the traversal

radius and voxel grid size are dependent variables. We thus fix the

voxel grid size to a value of 10. The remaining free variables in our

experiment are search radius along the ray and the ray direction.

To show empirical evidence for our conclusions, we focus on the

relationship between the number of unique voxel paths per search

radius. To compute this number, we iterate through radii from 1

to 270 and for each search radius, traverse the voxel grid in over

20 million directions. We record for each search radius how many

unique paths were found. The 20 million directions were chosen by

recursively subdividing the faces of an icosahedron up to a depth of

10 and using the unit vector to the resulting vertices as direction for

the samples.

The two illustrations in Figure 4.8 and 4.9 show the result of this

algorithm with a radius of 50 and an aforementioned voxel size

of 10. Since the ray origin is at the coordinate origin and thus at a

voxel vertex, the result is symmetric in each octant of the resulting

sphere. Thus, the figure only shows one of these octants. The others

are symmetric to the one shown.

Figure 4.8 visualizes the unique voxels that intersect the sphere

surface. Each unique voxel intersection of the surface is represented

by a unique color. Voxel paths are only unique if they share the

same list of voxels. From this definition we conclude that points

falling into different surface voxels cannot share the same path.

Thus, for a given radius, there exist at least as many voxel paths

as there are surface voxels. The pattern is symmetric for each axis-

aligned sphere octant and thus only one of the octants with 52

colored patches is displayed.

Figure 4.9 then further subdivides the patches from the surface

voxels seen in Figure 4.8. Each unique color signifies a unique path

through the voxel grid. One can observe surprising symmetries

along multiple axis on the sphere surface. One can also observe

how surface voxels get split by differing amounts depending on

their location. The pattern is symmetric for each axis-aligned sphere

octant and thus only one of the octants with 285 colored patches is

displayed.

Figures 4.10 and 4.11 extend the results from Figures 4.8 and 4.9

to 270 different radii. Figure 4.10 shows the number of voxels in a

regular voxel grid intersecting the surface of a sphere per sphere



72

0

250000

500000

750000

1000000

0 250000 500000 750000

surface area

n
u
m
b
er

o
f
p
a
th
s

Figure 4.11: number of possible unique
paths through a voxel grid

surface area.270 data points were calculated for every integer radius

from 1 to 270 (resulting in a decreasing density of data points with

increasing surface area). A linear dependency is apparent between

the two values.

Figure 4.11 shows the number of possible unique paths through

a voxel grid of size 10 from the sphere center to the sphere surface

per sphere surface area. 270 data points were calculated for every

integer radius from 1 to 270 (resulting in a decreasing density of

data points with increasing surface area). Since the number of sur-

face voxels is linear dependent on the sphere surface area, we con-

clude that the number of unique paths to a target voxel increases

with its distance from the ray origin.

Put into practical terms: if one repeats the computation for a

larger radius, then one finds that with a voxel size of 10 cm there

exist more than 6 million unique paths to the 46 thousand surface

voxels that are at least 5 m away. This leads to an average of 140

unique paths per surface voxel. This in turn means that to increase

the probability of two points with a distance from the scanner of

5 m or more to share a path through the voxel grid, the scan must

contain significantly more than 6 million points. While a voxel size

of 10 cm might already be a big voxel size, the situation worsens

with smaller voxel sizes. At the same time, one usually is interested

in targets further away than 5 m. With common high quality terres-

trial laser scans containing in the order of magnitude of 10 million

points, it is easy for a scan to contain less points per voxel than

there are possible unique paths to that voxel on average.

We thus conclude, that even if there existed a way to precompute

the points with a common path through the voxel grid at zero

cost, there is little point in doing so because in real world scenarios

with voxel sizes of 10 cm or less and distances of 5 m or more, it

becomes increasingly unlikely for two points to share a common

path through the voxel grid and thus being able to benefit from

such a computation.

We conclude this section with also briefly touching upon the

other two reasons why this approach does not fulfill the aforemen-

tioned conditions:

• We have shown that the number of paths per radius grows faster

than the associated surface area. We know that the surface area

of a sphere grows with the square of the radius. The memory

requirements to store a path grow linearly with the radius. Thus,

the space requirements for storing all required paths grow cubic

with the search radius.

• We conducted our results with a fixed ray origin at the coor-

dinate center. The voxel walk is similar to the Bresenham line-

drawing algorithm in that its result depends on the sub-voxel

starting point of the ray. Thus, the computations made for one

ray origin cannot be re-used for others as it is unlikely for two



change detection 73

A B C

1

2

3

4

D
Figure 4.12: The scene as scanned from
a center position (ray origin not part of
the Figure). The scanner measures the
green points.

24 Hornung, A., Wurm, K. M., Ben-
newitz, M., Stachniss, C., and Burgard,
W. (2013). Octomap: An efficient
probabilistic 3d mapping framework
based on octrees. Autonomous Robots,
34(3):189–206

25 Schauer, J. and Nüchter, A. (2017).
Digitizing automotive production
lines without interrupting assembly
operations through an automatic
voxel-based removal of moving objects.
In Control & Automation (ICCA), 2017
13th IEEE International Conference on,
pages 701–706. IEEE

scanner positions to share the same position relative to the voxel

grid boundaries.

4.5 Scan slices from Mobile mapping

Before one can apply the voxel walk algorithm to find free voxels

for the mobile mapping scenario one problem remains. The scan

slice that resulted in measurement of the green point in area A4

of Figure 4.12 illustrates this. Clearly, the line of sight from the

scanner towards this point (in blue) passes through area B2. Still,

that area should not be marked as free. We solve the problem that

partly occupied voxels impose by looking at the neighbor slices of

the current scan slice. If the line of sight passes through voxels that

also contain points from scan slices adjacent to the scan slice of the

current target point, then these voxels are not marked as free and

the voxel-walk aborts early without marking the any further voxels

as free.

The idea here is, that while we are tracing lines of sight towards

individual points, we also always take a sliding window of their

neighborhood into account. This technique is similar to the one

presented by Hornung et al. 24 to avoid removal of points when

scanning surfaces with a small incident angle of the laser beam.

The size of the window must be large enough such that the central

slice does not share any voxels that we are interested in with the

most outer slices. The starting voxel of most rays will be shared

by many slices, but having marked the starting voxel as free poses

no problem as the space that the scanner was moved through was

free to begin with. At the same time, the window size must not be

too large. The window must not contain slices that record points of

the same object from two completely different scanner rotations. To

satisfy both constraints, one input to our algorithm is the number of

slices that the scanner records in one full rotation. The window size

is then chosen as half that size. This ensures that the “field of view”

is large enough to consider adjacent partly occupied voxels and that

it is not so large as to have the same object twice in a single “field

of view”. An additional assumption here is also that the scanner

is never turned quickly enough against its own orientation such

that this constraint is violated. In current practical setups in factory

environments, this is not likely to happen.

We presented the results of this approach in a publication that

was accepted at ICCA 201725. In this thesis we present a gener-

alized algorithm which does not require subsequent scans to be

spatially close to each other and is free of the constraint of scans

to be processed in their temporal order and also does not impose

any restrictions on knowing sensor configuration settings like the

number of slices per rotation. It is thus capable of processing scans

coming from terrestrial mapping.



74

Figure 4.13: Artifacts of false positives
on the ground using a naive approach

A B C

1

2

3

4

D
Figure 4.14: False positives variant 1

A B C

1

2

3

4

D
Figure 4.15: False positives variant 2

4.6 Panorama scans from Terrestrial mapping

Attempting to apply the same technique from mobile mapping to

terrestrial scans will result in unexpected false-positives as they

are visualized in Figure 4.13. The figure shows the result of a naive

approach to detecting free voxels by directly using the method from

mobile mapping. Dynamic points are marked in magenta. There

are several “stripes” of false positives on the ground. This section

explains where this effect comes from and how we prevent it by

computing “point shadows”.

The effect shown in Figure 4.13 is created from the alignment of

the ground relative to the voxel grid together with an effect shown

in Figure 4.14. The raster represents the 2D voxel boundaries. Blue

lines mark the scanner lines of sight. Dark lines are object bound-

aries. Gray areas mark solid space while white areas mark free

space. Round dots represent the measured scan points of two scans

in red and green, respectively. The figure shows a scene where, due

to the surface being scanned at a shallow angle, the scan measuring

the red points will wrongly mark voxel B2 as free when traversing

the line of sight up to the red point in A2.

From that Figures 4.13 and 4.14 it seems apparent that the prob-

lem is only due to the small incident angle but as Figure 4.15

shows, similar problems also occur at a high incident angle. The

underlying problem is that 3D point cloud data only samples the

underlying continuous objects. And it is doing so at different sam-

pling rates per volume depending on the distance from the scanner

and the incident angle on a surface. Figure 4.15 shows a scene

where, due to the tip of the structure in D3 only measured by the

green scan, it will be wrongly marked as free when traversing the

line of sight up to the red point in A3.

A solution implies not traversing the lines of sight towards the

red points in A2 and A3 in Figure 4.14 and 4.15 until the last voxel

but stopping early enough such that actually static voxels are not

marked as free. But where to stop traversing the voxel grid toward

a given point must not be a function of the point toward which

the traversal is done but a function of the points “in front” of it

as seen from the scanner position. For example, the problem is

not solved by computing the surface normal at a given point and

only traversing the line of sight toward that point up to one voxel

diagonal away from that surface. This approach solves the problem

in Figure 4.14 but not the problem shown in Figure 4.15. Instead,

the offset in Figure 4.15 is determined by the green point in D3.

To calculate this offset or “clipping distance”, we create the

concept of points closer to the scanner “shadowing” points fur-

ther away from the scanner. For each point in a scan, we compute



change detection 75

Figure 4.16: Synthetic dataset "sim"
from Unterwood et al.
26 Underwood, J. P., Gillsjö, D., Bailey,
T., and Vlaskine, V. (2013). Explicit
3d change detection using ray-tracing
in spherical coordinates. In Robotics
and Automation (ICRA), 2013 IEEE
International Conference on, pages
4735–4741. IEEE

whether it’s in the “shadow” of a point closer to the scanner and

if yes, stop the traversal through the voxel grid at the point that

is casting the shadow. Like with real shadows, the “shadow” a

point casts is the larger the closer it is to the scanner. Since points

by themselves do not have a volume, we choose a sphere with the

radius of one voxel diagonal and the casting point in its center as

the object casting the shadow. To also cater for situations as shown

in Figure 4.14 and 4.15 we do not simply clip the rays toward the

shadowed points by the distance of the point casting the shadow

from the scanner but instead compute the surface normal at the

point casting the shadow and clip the traversal distance of all points

in the shadow to be at least one voxel diagonal away from that

surface.

Figure 4.16 visualizes the idea of shadows clipping the traversal

distance to points behind them. The figure comes from the syn-

thetic dataset “sim” from Underwood et al.26 and magenta points

represent the scene: a small cube on the floor of a bigger cube.

The scanner location is in the upper left of the image. Each of the

magenta points of the scene has an associated yellow point which

represents up to where the line of sight from the scanner toward it

will be traversed. The corner of the cube in the center of the image

shows a disk of yellow points. The disk is created because we let a

sphere cast the shadow and the orientation of the disk results from

the value of the normal vector at the corner of the cube. Further to

the right, two more disks are visible, shadowing more points. The

shadow is explicitly visible in the background to the right. The ef-

fect of creating disk-shaped shadows is only present at the corner

points closest to the scanner. For the rest of the scene, the flat sur-

faces of the environment are shadowed by flat surfaces as well. The

surface of the scene is quasi “eroded” into the empty space to cre-

ate the traversal offset for each point while at the same time taking

surface normals into account.

(a) colored by reflectance (b) colored by point shadow

Figure 4.17: lecturehall dataset in
perspective projection



76

(a) colored by distance (b) colored by point shadow

Figure 4.18: sim dataset in perspective
projection

Figures 4.17 and 4.18 visualize which points shadow other points

in a real scene and a synthetic dataset, respectively. Every point

with the same color is shadowed by a common point. The col-

ored shapes are elliptical disks representing cuts of a cone. The

cone shape is the volume that is shadowed by a given point. Points

closer to the scanner shadow a larger volume and thus create bigger

blobs of color in these Figures. For visualization purposes, a very

large voxel size of 20 cm was chosen for the “lecturehall” dataset.

(a) colored by distance (b) colored by point shadow

Figure 4.19: lecturehall dataset
panorama

The dependency of the shadow size on its distance is best vis-

ible from the panorama images in Figure 4.19. Bright areas in the

panorama image on the left represent points close to the scanner.

These areas create big shadows as is shown in the right-hand-side

panorama image. Darker points are further away and create smaller

shadows.

4.6.1 Implementation

It is very costly to iterate over all points in a scan and for each

one find the point which potentially shadows them, especially

because no such point may exist and also because the shadow size

of each point varies by its distance from the scanner. Thus, instead

of determining which point shadows a given point, we sort all

points by distance from the scanner and then find all points falling

into each of their shadows. By not processing points which already

fell into the shadow of another point, only very few computations

are required even for large scans because usually few points in the

“foreground” shadow many points in the “background”.



change detection 77

Algorithm 4: Compute maximum
search ranges for every point in a scan1: for p← SortPointsByDistance(points) do

2: if maxrange[p] then

3: continue ⊲ Point was already processed

4: if |p| < voxeldiagonal then

5: error ⊲ Point is too close to the scanner

6: angle← 2 · arcsin
(

voxeldiagonal
|p|−voxeldiagonal

)

7: neighbors← AngularRangeSearch(points, p, angle)

8: normal ← CalcNorm(neighbors)

9: anglecos← normal · ‖p‖
10: if anglecos >= 0 then

11: normal ← −1 · normal ⊲ Normal vector toward scanner

12: pbase← p + voxeldiagonal · normal ⊲ plane base

13: dividend← pbase · normal

14: divisor ← normal · ‖p‖
15: if divisor = 0 then ⊲ Parallel case

16: maxrange[p] = 0

17: continue

18: maxrange[p] = dividend/divisor

19: if maxrange[p] < 0 then ⊲ Scanner behind plane

20: maxrange[p] = 0

21: for q← neighbors do

22: if p = q then ⊲ Skip the current point

23: continue

24: divisor ← normal · ‖q‖
25: if divisor = 0 then ⊲ Parallel case

26: continue

27: d← dividend
divisor

28: if d > |q| then ⊲ Don’t lengthen

29: continue

30: if d < 0 then ⊲ Scanner behind plane

31: d← 0

32: if maxrange[q] < d then ⊲ Already shadowed by a closer

one

33: continue

34: maxrange[q]← d



78

p

neighbors

scanner

voxeldiagonal

Figure 4.20: Step 1: compute point
shadow

plane

maxra
nge

[p]

p

scanner

Figure 4.21: Step 2: compute normal

Algorithm 4 computes for each input point in the array points

the distance up to which the line of sight from the scanner toward

that point will be traversed. All members of the array points are

given in the local scanner coordinate system and the results are

stored in the associative array maxrange. The algorithm uses three

additional functions. SortPointsByDistance sorts the input

points by their distance from the scanner. Since the points are given

in the local scanner coordinate system, this amounts to comparing

vector lengths. The function AngularRangeSearch returns all

points which are seen under a given angular radius around a given

point from the perspective of the scanner. The range search utilizes

the spherical quadtree for fast lookups. The function CalcNorm

computes a normal vector of the given input points via singular

value decomposition of the covariance matrix of the input points.

The loop iterates over all the points of a single scan. The traver-

sal has to be done in ascending order of their distance from the

scanner. By doing so and by skipping points that were already han-

dled (line 3) the procedure finishes very quickly as only a small

subset of points actually has to go beyond line 3. As will be shown

in the qualitative assessments in section 4.10.4, fewer than half a

percent of the points meet that criteria in our datasets.

Figure 4.20 visualizes lines 6 and 7 from algorithm 4. A scanner

on the right measured the points in blue and magenta on the left.

All distances equal to one voxel diagonal are highlighted in green.

The closest point to the scanner p gets processed. Points falling

into the shadow of p created by the sphere in front of it are marked

in magenta. Remaining points are marked in blue. Point p is pro-

cessed first by computing the angle under which the scanner sees

a sphere with its center one voxel diagonal in front of p and with

the radius of one voxel diagonal (line 6). The function Angular-

RangeSearch then finds the magenta points as neighbors of p in

line 7.

The neighbors are then used by CalcNorm to compute their

normal vector (line 8) which is ensured to point toward the scanner

(line 11). The base of a plane is then computed in line 12 and visu-

alized in Figure 4.21. A plane is added, orthogonal to the normal

vector of the magenta points and one voxel diagonal away from

them in scanner direction. That plane is then used to clip the search

distance through the voxel grid towards p (shown in orange). This

visualizes lines 8 to 20 from algorithm 4. That base lies one voxel

diagonal away from p in the direction of the computed normal

vector of the neighbor points. Lines 13 to 20 then compute the dis-

tance up to which the voxel grid will be traversed towards p and

stored in the associative array maxrange[p]. As given in Figure 4.21,

the search distance is clipped to the intersection of the computed

plane with the line connecting the scanner and p. Lines 13 and 14



change detection 79

q1

q2

q3

maxrange[q1
,q2,q3]

plane scanner

Figure 4.22: Step 3: capping the search
distance at the computed plane

compute the intersection using the algebraic method of computing

line/plane intersections. Line 15 and 19 cater for two rare cases.

Should the plane either be parallel to the scanner or should the

scanner be located behind the plane, then the distance from the

scanner up to p will not be traversed through the voxel grid and

thus maxrange[p] is set to zero.

Figure 4.22 visualizes lines 21 to 34 from algorithm 4. The plane

is also used to cap the search distance up to the angular range

neighbors of p. The neighbors of p are q1, q2 and q3 marked in

magenta and the maximum search distance marked in orange.

The loop iterates over all points q in the angular neighborhood of

p except p itself. For each point q, the intersection with the plane

is computed. For that intersection test, only the divisor has to be

updated for each q as the dividend contains the plane properties

and stays the same. The same tests for parallelism and the distance

being negative are done for q as they were for p. Additional checks

include to not lengthen the traversal distance (line 28) and to take

care not to update a maxrange with a larger value than what might

have been computed in an earlier iteration (line 32).

4.7 Clustering for noise removal

In certain situations the voxel traversal algorithm will result in false

positives: voxels marked as free even though they contain static

points. These situations arise if no good normal vector could be

computed from the underlying point cloud data. False positives

usually manifest themselves in only one or two adjacent voxels

being marked as free. Most true positives are groups of connected

voxels of much larger number. Thus, to reduce the number of false

positives we cluster the set of voxels that were marked as dynamic

and then remove those clusters with a number of voxels below a

certain threshold from that set. The method introduces new false

negatives in situations where moving objects in a scene occupy less

volume than the given threshold.

We define clusters through the neighborhood relationship be-

tween voxels. We consider the neighbors of a voxel as all voxel

adjacent to it or more precisely:

Definition 3 (neighbors). A voxel A is a neighbor of another voxel

B if each coordinate component of A does not differ from the re-

spective coordinate component of B by more than 1.

This means that every voxel has 26 neighbors: six adjacent to

its sides, twelve adjacent to its edges and eight adjacent to its cor-

ners. We then assign the same cluster identifier to all groups of

voxels that share a transitive neighborhood relationship. Or in other

words: different clusters are separated by at least one free voxel

between them.



80

A B C

1

2

3

4

D
Figure 4.23: Initial situation

A B C

1

2

3

4

D
Figure 4.24: See-through voxels cleared

Due to the voxel data structure, computing the cluster identifier

that each dynamic voxel belongs to is straight forward: We iterate

through all voxels that were marked as free and then for each voxel,

identify the clusters its neighbors belong to. If no neighbor belongs

to a cluster, the current voxel will start a new cluster. If only one

cluster was found in the neighborhood, then the current voxel is

added to it. If more than one cluster was found in the neighbor-

hood, then all these clusters are merged into a single cluster and the

current voxel is added to it.

This clustering technique is very fast not only because of its lin-

ear computational complexity but also because typical scenes only

contain comparatively few dynamic voxels. Finally, clustering by

voxels allows quick clustering of the underlying points which may

be an order of magnitude more in number while taking advantage

of the already existing voxel data structure. Solutions working on

the raw point data for clustering are understandably slower.

4.8 Sub-voxel accuracy

In this section we present an algorithm that addresses a specific

kind of false negatives our algorithm produces. In the common

case where a dynamic object is seen directly adjacent to a static

object, false negatives are introduced because the voxel grid is only

traversed up to the maximum traversal range computed from the

point shadows. For example, for a person standing on the ground,

the person might be removed but their feet remain.

To avoid these false negatives we introduce an algorithm that is

able to produce a result with sub-voxel accuracy: instead of mark-

ing a full voxel as dynamic and removing all points from it, we just

remove a subset of points from a voxel. That subset will include the

dynamic points that were not marked before and thus reduce the

amount of false negatives.

We use Figure 4.23, 4.24 and 4.25 to illustrate our approach to

achieve subvoxel accuracy and reduce the number of false negative

classifications. The three figures show two scans as red and green

points of a horizontal surface and dynamic points only seen in the

red scan.

The original input with both scans and nothing removed is

shown in Figure 4.23. The green scan only measures the static

horizontal surface while the red scan measures parts of the static

surface and a vertical dynamic structure.

After walking the voxel grid to find voxels seen as free by the

scan resulting in the green points we end up with the situation

displayed in Figure 4.24. Voxels B3, B4, C3 and C4 got correctly

classified as “see-through” and points in them were removed. What

remains are false negative artifacts in voxel B2 and C2. Classifying



change detection 81

A B C

1

2

3

4

D
Figure 4.25: Adjacent voxels cleared of
points from scan that was removed

Figure 4.26: No subvoxel accuracy
with dynamic points in magenta.

Figure 4.27: No subvoxel accuracy
with leftover false negatives on the
ground

these voxels as dynamic is wrong because that would also remove

points that were correctly measured by the green scan as part of the

static horizontal surface.

The algorithm we use to remove these false negatives from vox-

els B2 and C2 will compute a situation as is seen in Figure 4.25:

all red points are removed from voxels B2 and C2. This removes

the false negatives while at the same time introducing some false

positives because some of the red points in voxels B2 and C2 were

correctly classified as static.

Thus, our approach to achieve subvoxel accuracy implements

a trade-off. We remove remaining false negatives at the cost of

more false positives. We accept this trade-off because qualitatively

speaking the result shown in Figure 4.25 is superior to the result

in Figure 4.24. Even though we now classified too many points

as dynamic, after removing them from the scene, there are still

enough static (green) points left in the respective voxels to not

create any “holes” in the scene. Thus, our approach to achieve

subvoxel accuracy is particularly interesting for situations where

our algorithm is used to acquire a scan that only contains the static

environment. Another possible use case are situations in which

one is interested in extracting point clouds of individual moving

objects for later processing. In that case, extracting too few points

would result in an incomplete pointcloud model. Quantitatively

speaking the algorithm worsens the result. When comparing the

raw F1 scores of the results before and after applying the algorithm

for subvoxel accuracy, the F1 score is typically worse afterwards due

to the introduction of more false positives.

The algorithm works as follows: similarly to the clustering al-

gorithm, we iterate over all voxels that were marked as free. For

each of these free voxels we record which scan identifier it con-

tains. For voxel B3 in Figure 4.23 that is just a single scan identifier:

“red”. First, we gather the neighbor voxels according to definition

3. Secondly, we iterate over all neighbor voxels that were classified

as static. Thirdly, for each of the static neighbor voxels we remove

all the points coming from scan identifiers marked as free in the

original voxel. For Figure 4.23 this removes the red points from

voxel B2. In summary, the algorithm deletes points belonging to a

scan that was found in an adjacent dynamic voxel from each static

voxel. To completely prevent that “holes” in the scan are created by

this method, we never remove points from voxels which would not

contain any points anymore after the removal.

Figures 4.26 and 4.27 show the result of the change detection

algorithm without the algorithm for subvoxel accuracy applied.

Dynamic points are colored magenta while static points are yellow.

Both figures show, how some false negatives remain on the ground



82

Figure 4.28: With subvoxel accuracy
and dynamic points in magenta.

Figure 4.29: With subvoxel accuracy no
false negatives remain on the ground.

27 Due to the scanning pattern, point
density is greatest at the poles and
changes with azimuth angle. At the
equator, the point density is lowest
and the distance between two rays
with angle θ between them at distance
h from the origin can be computed as
2h tan θ

2 . With an angular resolution of
0.04° and at a distance h = 140 m this
yields a distance of 9.77 cm

28 like in an assembly line environ-
ment, see datasets Hannover and
Wolfsburg

as artifacts because they are part of voxels which intersect with

the ground plane. Marking these voxels as free would be wrong

because it would cause all points (including those from the ground)

to be removed and thus introduce false positives.

Figures 4.28 and 4.29 show the same scene, but this time with the

algorithm of subvoxel accuracy applied. The artifacts that remained

on the ground as false negatives in Figures 4.26 and 4.27 are now

removed. Points from the ground are also missing (false positives)

but no noticeable holes are created because the respective voxels

still contain points from all the other scans which also measured

that volume close to the ground.

4.9 Working on a reduced pointcloud

This section evaluates a variant of the change detection algorithm

where rays are not shot to all measured points but only to a spe-

cially chosen subset of them. We show that depending on the sce-

nario, it’s possible to shoot up to two orders of magnitude less rays

through the scene without significantly affecting the F1 score. Since

the runtime of voxel-grid traversal linearly depends on the number

of traversed rays, the runtime of the voxel traversal can similarly

be reduced by up to two orders of magnitude without affecting the

quality of the output.

The central idea is, that our approach to change detection marks

voxels as free, even if they are traversed only once. A Riegl scan

with an angular resolution of 0.04° will produce point clouds with

up to 22.5 million points per scan. This means, that for each scan,

up to 22.5 rays will be traversed through the voxel grid. Or in other

terms: even at over 140 m distance, rays will not be further apart

than a typical voxel size of 10 cm27 thus allowing reliable change

detection of a volume of a sphere with 280 m in diameter.

For many applications, like indoor environments, the input

data will be far below that magnitude. Even in outdoor environ-

ments, like urban settings, such distances are rare. For example our

Würzburg city dataset measured the Würzburg marketplace which

is only 60 m across. Since voxels are marked as free even if they

are traversed only once, in many settings it does not make sense

to shoot the maximum number of rays as this will mean that the

same voxel is traversed multiple times and the closer a voxel is to

the origin, the more often it will be (uselessly) traversed.

For these kind of situations, when the scanned point cloud is

very dense or if only the volume close to the scanner is of interest28

it is sufficient to only traverse a subset of all possible rays towards

the measured points. Since common scanner geometries result in an

uneven angular density of the measured points (most dense around

the primary rotation axis) a simple random sampling would again



change detection 83

Figure 4.30: Lecturehall with all rays
traversed for 22.3 million rays per scan.

Figure 4.31: Lecturehall with only 10

rays traversed per 2.86° angle for 12k
rays per scan.

0.00

0.25

0.50

0.75

1.00

1e+03 1e+05 1e+07

number of rays

F
1
sc
o
re

Figure 4.32: F1 score by number of shot
rays with a logarithmic x-axis

result in an uneven angular density. To achieve an even angular

distribution of the traversed subset of rays, it would be possible to

bin the points by their azimuth angle and then choose a random

sample from each bin such that the overall number of points per

unit sphere surface area stays equal across the whole surface. But

such a method would only work if the scanner geometry is known

upfront.

As outlined in section 2.2.5, the spherical quadtree can be used

to obtain an even angular subsampling of the complete point cloud.

Using the spherical quadtree reduction has the advantage, that the

tree itself has already been computed to compute the point shad-

ows and can be re-used for the purpose of point cloud reduction di-

rectly. For the lecturehall dataset with 22.3 million points per scan,

acquiring the reduced point cloud took less than a second for all

evaluated sample sizes and thus did not add significant overhead.

Figure 4.30 shows the result of detecting changes in the lecture-

hall dataset with the original algorithm and overall 44.6 million

traversed rays for an F1 score of 0.955. The result is nearly indis-

tinguishable from using only 334712 rays which resulted in an F1

score of 0.952 at while the required runtime the voxel traversal step

is reduced by two orders of magnitude (0.71 seconds instead of

72 seconds). This improvement in runtime is not much changed

by taken into account the time it took to reduce the point cloud

because the reduction step is carried out in less than a second.

Figure 4.31 shows the result of choosing an insufficient num-

ber of rays for the given dataset. In contrast to Figure 4.30, which

shows a near-perfect result, Figure 4.31 illustrates how voxels which

were not intersected by the reduced set of rays were not found to be

empty and show up as false negatives. This result is not surprising,

because the object shown in Figures 4.30 and 4.31 is about 3 meters

away from the laser scanner. A sphere with that radius has a sur-

face area of over 113 m2. This leaves an average of about 94 cm2 for

each ray, which is about the same size as the intersection of a voxel

of 10 cm with that sphere surface. Since the ray selection is done

at random, some voxel at that distance will not get traversed at all

(resulting in the false negatives seen in Figure 4.31) while others

will get traversed once or more.

In Figure 4.32 we evaluated this method for the lecturehall

dataset and plotted the resulting F1 score by number of rays that

were traversed. The original point cloud of 44.6 million points was

reduced using the spherical quadtree. The reduction options were

set such that 10 randomly chosen points would be selected per an-

gular neighborhood. The angle size θ was chosen with

√

10−6
√

2
i

with i in whole integer steps from 1 to 40. The figure shows how

close to optimal F1 scores are achieved for all subsamplings above



84

1e-02

1e+00

1e+02

1e+03 1e+05 1e+07

number of rays

ti
m
e
in

se
co
n
d
s

Figure 4.33: time for ray traversal by
number of shot rays with regression
line and 95% confidence interval

29 The F1 score is the harmonic mean
of precision p and recall r: F1 = 2pr

p+r .

Precision is a measure of how many
of the selected items (true positives
plus false positives) are relevant (true
positives). Recall is a measure of
how many of the relevant items (true
positives plus false negatives) are
selected (true positives).

100000 points.

Lastly, Figure 4.33 shows empirical proof to our claim that the

runtime of the ray traversal linearly depends on the number of rays.

The x-axis is identical to the one in Figure 4.32 and both axes are

scaled with a logarithm with base 10.

4.10 Results

In this section we present how our algorithm performs in quan-

titative and qualitative terms as well as in terms of runtime on

commodity hardware. We do this by showing the results of running

the algorithm by itself as well as by comparing it with the method

by Underwood et al. in terms of runtime and solution quality.

4.10.1 Quantitative Assessment

To perform quantitative analysis of our method, we compute the F1

score29 of our method on the datasets sim, lab, carpark, lecturehall

and KITTI, all of which come with ground truth annotations. To

establish that our method is an improvement over the state of the

art, we compare our method to the one by Underwood et al in

terms of their respective F1 scores in different scenarios.

The quantitative results in this section can be reproduced by

executing two shell scripts that we provide for download:

• For datasets sim, lab, carpark, lecturehall: https://robotik.

informatik.uni-wuerzburg.de/telematics/download/isprs2018/

• For KITTI datasets: https://robotik.informatik.uni-wuerzburg.

de/telematics/download/kitti2020/

The scripts will download and compile our software as well as

the software by Underwood et al., download the necessary datasets

and finally run both solutions on each dataset, producing the F1

scores found in the tables below.

We computed the results without running clustering for noise

removal in the end. Since the clustering algorithms are in principle

independent of the method that was used to partition the input

point cloud into static and dynamic points, it would not allow to

make any meaningful statements about the respective underlying

change detection algorithms anymore. Furthermore, by choosing

the correct cluster size for true positives, it is possible to achieve

nearly ideal results with any algorithm that produces only few false

negatives which is the case for both compared algorithms for the

datasets sim, lab, carpark and lecturehall.

The algorithm by Underwood et al. was executed in the variant

that compares individual pairs of scans. This choice was made be-

cause the results in the respective paper suggest better F1 scores in

the non-clustering case when working on pairs compared to com-

bining multiple scans. Pairs were chosen such that the measured

https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2018/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2018/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/kitti2020/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/kitti2020/


change detection 85

30 the number of edges in a complete
graph i.e. comparing each scan with
all other scans

scene is always different between the two scans. To achieve optimal

results, we ran their algorithm on a discrete set of parameters Ta

and Tr(m) to find the combination yielding optimal results. In con-

trast to the results shown in the paper by Underwood et al. we pass

all points of the three Underwood datasets into each algorithm and

not only a subset of them.

We ran our algorithm multiple times as well, each time with

different voxel sizes to find the optimal voxel size for each dataset.

We didn’t apply our approach of achieving sub-voxel accuracy

because it can lower the F1 score.

Table 4.1: Test parameters

dataset Ta Tr(m) #cmp voxel size (m)

sim 1.4 0.1 28 0.6

lab 1.2 0.2 66 0.175

carpark 1.0 0.35 6 0.125

lecturehall 0.8 0.3 1 0.1

KITTI 1.3 0.74 128547 0.39

The final test parameters can be seen in table 4.1. Columns Ta

and Tr(m) show the best parameters found for the method by Un-

derwood et al. while the last column shows the best parameter

found for our method. For the sim, lab, carpark, and lecturehall

dataset, all scans were used to pick the best parameters. Due to the

size of the KITTI dataset, only a subset of all scenarios was used to

find the best parameters. The subset was chosen by first evaluating

the KITTI datasets with the parameters from the carpark dataset

and then picking the 11 scenarios where the Underwood method

performed best. The final choice of KITTI scenarios can be seen in

table 4.3. The fourth column shows the number of comparisons

for each dataset. For the sim, lab, carpark and lecturehall dataset,

that number is equal to
N(N−1)

2
30 with N being the total number

of scans in the dataset. If the same strategy would’ve been used

for the KITTI dataset, then a total number of 6125127 comparisons

would be needed. Since that would require more than a month of

computation time on our hardware, we evaluated different strate-

gies. In the chosen strategy, 10 random different scans are picked

from all scans with a position that lies within 10 m of the current

scan. That strategy produced better F1 scores than other approaches

like picking 5 scans immediately before and after the current scan.

A possible explanation for this effect is, that the latter approach

does not account for situations in which the vehicle is stationary,

because picking scans from different vantage points improves the

result.



86

Figure 4.34: Dataset lab showing noise

Table 4.2: Test results for sim, lab, carpark and lecturehall

dataset Underwood 3DTK

sim 0.98 0.98

lab 0.71 0.42

carpark 0.78 0.83

lecturehall 0.96 0.96

The results for the sim, lab, carpark and lecturehall datasets are

shown in Table 4.2. We achieve similar F1 scores on the synthetic

“sim” dataset. False negatives are introduced in our method due to

the alignment of the floor with the voxel grid, preventing a perfect

score.

Our method is outperformed in the “lab” dataset. The dataset

is challenging because of its very noisy nature (see Figure 4.34)

and because the dynamic objects are very small. Our algorithm

correctly identifies the moving boxes in the “lab” dataset and does

not introduce false negatives. But it generates comparatively large

number of false positives on corners and edges of the environment.

Since only 0.19% of all points in the dataset are labeled as dynamic,

it only requires few voxels marked as false positives to produce

a bad F1 score. Our method slightly outperforms the approach

by Underwood et al. in the “carpark” dataset. The best F1 score

we achieved for the carpark dataset with the Underwood method

differs from the value they present in their paper because we used

their full dataset including the last scan as well as all scan lines.

Both methods result in equal scores on the “lecturehall” dataset.

Table 4.3: Test results for 11 scenes from the KITTI dataset for

which the Underwood method was optimized

# Underwood 3DTK

9 0.3005 0.3658

11 0.4385 0.5544

13 0.2610 0.5684

15 0.4906 0.6331

17 0.7122 0.6285

18 0.4409 0.4975

39 0.2994 0.2739

46 0.2373 0.6562

48 0.2051 0.5656

51 0.2161 0.6529

59 0.4090 0.4449

overall 0.3269 0.5290

Table 4.3 show the results both methods achieve for the KITTI



change detection 87

Table 4.4: F1 scores for all KITTI scenes

# Underwood 3DTK

1 0 0

2 0.0019 0.0047

5 0.2633 0.4279

9 0.3005 0.3658

11 0.4385 0.5544

13 0.2610 0.5684

14 0.1311 0.2582

15 0.4906 0.6331

17 0.7122 0.6285

18 0.4409 0.4975

19 0.2287 0.4534

20 0.0055 0.0281

22 0.1035 0.2295

23 0.0004 0.0005

27 0.3008 0.4856

28 0.0373 0.4312

29 0.1426 0.3943

32 0.0270 0.4960

35 0 0.0021

36 0.0879 0.4845

39 0.2994 0.2739

46 0.2373 0.6562

48 0.2051 0.5656

51 0.2161 0.6529

52 0 0

56 0.1141 0.4341

57 0.2125 0.2708

59 0.4090 0.4449

60 0.1634 0.3380

61 0 0

64 0.0229 0.0520

70 0.0462 0.3831

79 0 0

84 0.1249 0.2260

86 0 0

87 0 0

91 0 0.0005

93 0 0

Figure 4.35: Points from reflections
under the street surface

Figure 4.36: Examples of wrong
classifications of binary masks from
FuseMODNet from KITTI scene 9,
frame 385.

dataset. The first column shows the scenes from the KITTI dataset

that achieved the highest F1 scores with the parameters from the

carpark dataset. The parameters were then optimized to achieve an

optimal overall score which can be found in the last line. Since we

only used a subset of the whole dataset to optimize the parameters,

this table represents the final result for this analysis. For reference,

the result for all KITTI scenes with the chosen parameters is listed

in table 4.4.

Both, the Underwood method and our method fare considerably

worse on the KITTI dataset than on the other datasets. Numerous

reasons are responsible for this. First and foremost, on average,

only 1.2% of the points were marked as dynamic. The lower the

relative amount of true positives, the harder it is to get good F1

scores because only few false positives considerably lower the score.

Furthermore, the dataset itself is not cleaned of reflections.

Figure 4.35 shows “impossible” points situated under the street

surface which are a result of various reflections in the scene. Com-

mon sources for these reflections are parked cars and window

fronts besides the street. Such points also exist in other locations

but those below the street are easiest to visualize to demonstrate

this problem. Since the algorithm assumes that the line-of-sight

between the laser range finder and all points is “empty”, reflected

points will introduce false positives.

Another problem source are the masks from the FuseMODNet

project themselves. The masks often misclassify points as can be

seen in Figure 4.36. The figure shows the left camera frame number

385 from the KITTI scene 9 and is overlayed with the corresponding

mask from the FuseMODNet project. Pixels belonging to dynamic

objects are marked white. On the left-hand-side of the camera im-

age, one can see that large parts of the traffic sign were marked as

dynamic even though the traffic sign is static. In the center of the

image, it can be seen, that the front of the car was not marked as

dynamic even though it belongs to a dynamic object. Thus, imper-

fections of the underlying ground truth introduce false positives as

well as false negatives into our results.

Our algorithm produces false positives in situations where scans

are either not correctly registered or due to sensor noise. An ex-

ample is a flat surface where not all points lie on the surface. The

points “in front” of the surface in scanner direction will then be

marked as “see through” even though they belong to a static object.

Another source of false positives arises when surface normals are

wrongly computed and thus point shadows are not determined cor-

rectly. This in turn will lead to false positives as they were shown

in Figure 4.14 and 4.15. Due to the very noisy nature of the “lab”

dataset there were many sources of both of these issues, leading to

a high number of false positives. Another source of false positives



88

are mirrors and transparent objects. Lastly – if enabled – some false

positives are introduced by our approach to subvoxel accuracy.

False negatives are created either in situations where a volume

was only seen by a single laser scan or in volumes that were “shad-

owed” by closer points. We observed the latter problem in a dataset

where we placed the scanner directly on the ground instead of on

a tripod to take a scan. This resulted in points from the ground

directly adjacent to the scanner to shadow most of the lower part

of the scan and thus make it impossible for our algorithm to clas-

sify any points close to the ground as dynamic. Additionally, false

negatives are introduced if the chosen voxel size is so small, that

rays are able to penetrate objects without intersecting a voxel with

points in it. Since the point density typically decreases with their

distance from the sensor, this effect also occurs at very far distances.

Applying a clustering filter can also introduce false negatives if the

dynamic object is smaller than the chosen minimum cluster size.

We also observe how the optimal input parameters to the algo-

rithms Ta, Tr and the voxel size are different for each dataset de-

spite the lab and the carpark dataset being recorded with the same

sensor. More research is needed to determine if the input parame-

ters may be predicted upfront without requiring manual labelling

of a training dataset.

4.10.2 F1 score by voxel size

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

voxel size

F
1
sc
o
re

angle

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

voxel size

F
1
sc
o
re

knearest global

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

voxel size

F
1
sc
o
re

range global

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

voxel size

F
1
sc
o
re

knearest

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

voxel size

F
1
sc
o
re

range

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

voxel size

F
1
sc
o
re

1nearest

Figure 4.37: F1 score per voxel size
for different methods to acquire the
points for normal computation in the
sim dataset. Voxel sizes differ by 0.1
from each other and measurements are
connected with a line for visual clarity.



change detection 89

The only variable of our algorithm is the voxel size. We display

the dependency of the F1 score on the voxel size in Figure 4.37

using the “sim” dataset as an example. For each voxel size, we

shifted the dataset by eight different equally spaced values from

zero to the voxel size. This is done because the F1 score for the

“sim” dataset heavily relies on how the “floor” with the boxes on

it alignes relative to the voxel grid. Since the computation of voxel

shadows and ray traversal ranges is essential for our approach, the

figure also shows the F1 scores yielded from different methods to

acquire the point set for computation of the normal vector. Since

our main method described in section 4.6 uses all points seen un-

der a certain angle for normal computation we call that method

“angle” in Figure 4.37. This method consistently achieved the best

quantitative results on all datasets we tested our method on. Ad-

ditionally, it is also the fastest method which is explained by it

being the only method that doesn’t require an additional search

tree to be computed. All the other methods execute searches in

a k-d tree which stores and queries points by their cartesian co-

ordinates and not their angular coordinates. The “knearest” and

“range” methods compute the points neighbors for normal compu-

tation by finding the k nearest points around the query point or by

retrieving all points in a radius of one voxel diagonal, respectively.

The “knearest-global” and “range-global” methods do the same but

using a k-d tree that was computed for the global point cloud in-

stead of operating on the point cloud for each individual scan. The

“1nearest” method completely bypasses normal computation and

in contrast to all the other methods does not utilize the algorithm

displayed in section 4.6 for computing the maximum traversal dis-

tances toward each point at all. Instead, it operates by finding all

points within a radius of one voxel diagonal of the line of sight to-

ward each point and storing as the maximum traversal distance the

distance of the closest point from the scanner inside this volume.

Since this method requires a k-d tree query for every single point in

the dataset it is the slowest of all the methods.

Figure 4.38 shows the influence of the voxel size on the KITTI

dataset. The graph shows that acceptable results are produced for a

relatively large range of voxel sizes between 25 and 50 cm.

4.10.3 F1 score by rotation and translation

Due to discretizing the measured volume by a voxel grid we expect

the quality of our solution to heavily depend on how the data is

aligned relative to the voxel grid. Thus, we compute the F1 scores of

various rotations and translations for the “sim” dataset. We chose

the dataset because all its implicit surfaces are orthogonal to each

other and should thus yield the most meaningful results.

To compare the influence of rotation on the results we compute

overall 1000 rotations of the “sim” dataset around all three coor-



90

0.2

0.3

0.4

0.5

0 25 50 75 100

voxelsize (cm)

F
1
sc
or
e

Figure 4.38: Overall F1 score for the
KITTI dataset with different voxel sizes

dinate axes with a voxel size of 1.0. Specifically we compute all

permutations of rotations between 0 and 45 degrees in five degree

steps around all three coordinate axes for 10× 10× 10 = 1000 per-

mutations. We do not check beyond 45 degrees as the results are

symmetric due to the orthogonal nature of the voxel grid and the

resulting symmetry.

0

20

40

60

0.91 0.92 0.93 0.94 0.95

F1 scores

Figure 4.39: Histogram of F1 scores
for 1000 permutations of rotations
of the input data around all three
coordinate axes. The x-axis shows
the F1 scores. The y-axis shows the
number of values falling into bins of
0.001 in width. A gaussian is fitted
through the measurements.

We visualize our results using the histogram seen in Figure

4.39. The figure displays the frequency of the achieved F1 scores

in bins of 0.001 in width. The shape of the histogram suggests a

gaussian distribution. Fitting a gaussian function through our data

reveals a standard deviation of 0.006. The position of the gaussian

at 0.93 aligns with the results we achieve for the voxel size of 1.0

and no rotation. The low standard deviation of our results suggests

a negligible influence of the alignment of flat surfaces relative to the

voxel grid.



change detection 91

Similarly, we translated the “sim” dataset along all three coor-

dinate axes to evaluate the relationship between the F1 score and

the positional offset of the data relative to the voxel grid. To this

end, we computed all permutations of translating the dataset along

all three coordinate axes by distances ranging from 0.0 to 1.0 in

steps of 0.05. Larger shifts were not investigated because the results

repeat themselves due to the chosen voxel size of 1.0.

0.90

0.92

0.94

0.96

0.98

0.00 0.25 0.50 0.75 1.00

shift along y-axis

F
1
sc
o
re voxelsize

0.5

1

Figure 4.40: F1 scores achieved by
translating the input along the axis
perpendicular to the plane on which
the moving cubes are placed. The
x-axis shows the offset along the axis.
The y-axis the achieved F1 score.
Measurements are connected with a
line for visual clarity.

Evaluating the results for shifts along all three coordinate axes

revealed that only translation along one coordinate axis had a con-

siderable effect on the F1 scores. That axis was the one perpendic-

ular to the ground that the moving boxes are placed upon. This

makes sense because false negatives are introduced depending on

how much of the volume where each box touches the ground in-

tersects with the voxel that is still part of the ground. We show the

F1 scores for shifts along that axis in Figure 4.40. Each displayed

measurement represents the accumulated F1 scores for all shifts

along all three coordinate axis with only the chosen axis fixed. The

measurements “wrap around” for all displayed voxel sizes as the

value achieved for an offset of 0 are equal to the ones achieved for

an offset of 1.0.

4.10.4 Qualitative Assessment

Table 4.5: Overview of the datasets used for qualitative assess-

ment

name #points #scans normals(%) t(s)

Bremen city 215652387 13 0.222 2939

Würzburg city 86585411 6 0.21 4967

Randersacker 194754633 11 0.010 1344



92

31 http://threedtk.de

For qualitative analysis we are using the datasets Bremen city,

Würzburg city and Randersacker that are shown in table 4.5. The

column “normals” displays the percentage of points for which sur-

face normal computation as part of finding the shadowed points

was required. As detailed in section 4.6, the computations have to

be carried out for only a very small fraction of all input points.

In contrasts to the datasets we used for quantitative analysis,

these datasets do not come with any ground truth labeling of

points, classifying them whether they are indeed static or dynamic.

Thus, without being able to identify false positives and false nega-

tives, F1 scores cannot be computed.

All datasets were measured using a Riegl VZ-400 laser scanner.

The grayscale values represent the measured reflectance. We pro-

cessed them using a voxel size of 10 cm, a minimum cluster size of

40 voxels and with sub-voxel accuracy enabled. All datasets were

registered using slam6D from 3DTK – The 3D Toolkit31.

http://threedtk.de


change detection 93

(a) static and dynamic (b) cleaned

Figure 4.41: Bremen scene 1

(a) static and dynamic (b) cleaned

Figure 4.42: Bremen scene 2

Figures 4.41 until Figure 4.46 display the results for the “Bremen

city” and “Würzburg city” datasets, respectively. The left-hand-side

column shows the original scan partitioned into static (yellow) and

dynamic (magenta) points. The right-hand-side column shows the

dataset without the points that were identified as dynamic. Since

the “Bremen city” dataset was recorded without our algorithm in

mind, it was measured very early on a Sunday morning to include

as few pedestrians as possible. Thus, it includes considerably less

moving objects compared to the “Würzburg city” dataset where

we took care to pick a time where the scan area was moderately

crowded. Our approach reliably identifies pedestrians, cars, trams

and an opened door. Due to our approach to subvoxel-accuracy, no

false negatives remain on the ground. After removal of the dynamic

objects, no holes are created on the ground.



94

(a) static and dynamic (b) cleaned

Figure 4.43: Bremen scene 3

(a) static and dynamic (b) cleaned

Figure 4.44: Würzburg scene 1

(a) static and dynamic (b) cleaned

Figure 4.45: Würzburg scene 2

(a) static and dynamic (b) cleaned

Figure 4.46: Würzburg scene 3



change detection 95

(a) Randersacker Dataset with trees (b) Randersacker Dataset with segways

Figure 4.47: Randersacker dataset

56000

58000

60000

62000

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

input size

n
u
m
b
er

o
f
p
o
in
ts

p
er

se
co
n
d

Figure 4.48: The x-axis shows the num-
ber of points passed to the algorithm.
The y-axis shows the number of points
that the algorithm is able to process
per second.

The results from the “Randersacker” dataset are shown in Figure

4.47. The dataset contains a lot of foliage but despite not offering

a clear surface, the foliage is not removed. Since only few moving

objects were present at the time when the dataset was taken, we

only present the partitioned rendering with static points in yellow

and dynamic points in magenta. Similarly to the urban datasets,

moving objects were correctly classified. Both images show how

foliage is not classified as dynamic even though in both renderings,

the trees were measured by multiple scans. Thus, our algorithm is

not only appropriate for urban environments but also for scenes

with few flat surfaces.

4.10.5 Performance

To find the dependency of the algorithm runtime from the number

of input points. We randomly sampled the first scan of the “lecture-

hall” dataset to obtain input point clouds ranging from 1 million up

to 22 million points and then executed our method on each of the

resulting point clouds. Figure 4.48 shows the number of points the

algorithm is able to process per second and as was already shown

in Figure 4.33 indicates a linear relationship. This makes sense be-

cause for the voxel traversal we access voxels in the grid using O(1)

operations on a hash map.

For a fair comparison we run everything single threaded even

though the method by Underwood et al. has a slight advantage be-

cause processes are run connected by a UNIX pipe and thus they

are partly executed in parallel. The inputs to both approaches are

pointclouds in ASCII text format. Since the algorithms by Under-

wood require multiple executions of points-detect-change, we

convert the input into binary format for faster load times.



96

Table 4.6: Test parameters

dataset Ta Tr(m) #cmp voxel size (m)

sim 1.4 0.1 28 0.6

lab 1.2 0.2 66 0.175

carpark 1.0 0.35 6 0.125

lecturehall 0.8 0.3 1 0.1

campus 0.8 0.3 3456 0.1

würzburg 0.8 0.3 15 0.1

bremen n.a. n.a. n.a. 0.1

randersacker n.a. n.a. n.a. 0.1

Table 4.6 gives an overview of the parameters that were used for

the benchmarks. The third column lists the number of comparisons

that we carried out when running the algorithm by Underwood et

al. on the datasets. The number is usually equal to
N(N−1)

2 because

all scans overlap. The only exception is the campus dataset where

we selected only the scan pairs that shared a significant overlap.

Overlap was determined by computing which scans measured

points in the same voxels.

Table 4.7: Runtimes of our method versus the method by Under-

wood et al.

dataset t(s) normals(%) t(s)

sim 25 8.03 6

lab 405 0.02 29

carpark 34 0.23 23

lecturehall 837 0.003 687

campus 12.8 days 0.16 13.1 hours

würzburg 7961 0.21 4967

bremen n.a. 0.222 2939

randersacker n.a. 0.010 1344

The runtime measurements shown in Table 4.7 were obtained

by timing the full execution pipeline. To speed up the approach

by Underwood et al. we converted the original ASCII point cloud

data files into their binary format upfront. This conversion step

was not part of the benchmark. As the method by Underwood et

al. is only able to compare pairs of scans, the runtime results for

the “sim”, “lab” and “carpark” datasets are not very meaningful.

Our method easily outperforms theirs in terms of runtime because

we apply their method on all possible combination of scan pairs,

leading to
N(N−1)

2 comparisons for N scans. For a fairer comparison

we recorded the “lecturehall” dataset. It only consists of two scans

and thus allows one to directly compare one run of the Underwood

et al. method with one run of our approach. As listed in table 4.7,

both approaches require a similar amount of time.



change detection 97

To also give evidence for our claim that the method by Under-

wood et al. performs slower for the purpose of “scan cleaning”

on datasets with many scans, we used the “campus” dataset. That

dataset consists of 146 scans with 15 million points per scan on

average for a total of 2.2 Billion points for the whole dataset. Com-

paring all possible scan pairs of this dataset would lead to 10585

comparisons. But since it doesn’t make sense to compare scans that

do not overlap in their observed volume we used a heuristic to dis-

card all scan pairs that do not share a sufficiently large observed

volume. Our heuristic uses the voxel data structure that was al-

ready generated by previous steps to find those scans pairs. This

heuristic under-approximates because ideally we are not only in-

terested in the scans that measure points in a shared volume but

also in the scan pairs where the free volume observed by one scan

intersects with the measured points by the other. But even with this

conservative heuristic, there exist 8372 scan pairs (79% of all pos-

sible scan pairs) in this dataset that share at least one 10 cm voxel

with each other. This is explained by the large open spaces in the

dataset. To further reduce the number of scan pairs that we choose

for comparison with the algorithm by Underwood et al. we also

discard all pairs that share less than 1000 voxel with each other.

26

27

28

29

30

31

32

33

34
35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

575859

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

85

86

87
88

89

90

91

92

93

94

95

96

97

98 99

100

101

102 103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 125
126

127

128

129

130

131 132 133 134

135

136

137

138

139

140

141

142143

144
145

146

147

148

149

150

151

152

153

154

155
156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Figure 4.49: Graph of the 146 scans
from the "campus" dataset with edges
connecting the scans with more than
1000 voxel overlap.

This leaves 3456 scan pairs to compare. Figure 4.49 visualizes

the scan pairs as edges in a graph. Nodes are positioned to roughly

correspond with their scan coordinates. One can see that due to a

lot of open spaces, even scans that were taken far away from each

other show sufficient overlap. Since the “campus” dataset does not

contain any labels of dynamic objects, we re-used the parameters

that worked best for the “lecturehall” dataset. The results shown

for the “campus” dataset in Table 4.7 indicate, that the algorithm



98

by Underwood et al. performs an order of magnitude slower in this

task compared to our solution. The number of compared scan pairs

could be further reduced but for the purpose of “scan cleaning”,

the fewer comparisons are made, the more false negatives will be

introduced in situations where a volume is seen as occupied by

most scans and only seen as free by a few.

Our approach allows trading solution quality for runtime. For

example, if the “lecturehall” dataset were processed with a voxel

size of 17.5 cm instead of 10 cm as shown in Table 4.7, then the F1

score would only slightly decrease from 0.96 to 0.95 but computa-

tion time would be cut by 18% down to 567 seconds. As discussed

in section 4.9 even greater speedups while keeping a high F1 score

are possible when only traversing the lines of sight for a subset

of all measured points by up to two orders of magnitude for the

“lecturehall” dataset.

The voxel traversal algorithm is very well suited for multithread-

ing. Not only the voxel traversal can be run concurrently but also

other parts of the execution pipeline can be run concurrently. While

it is possible to introduce even more parallelism, our current im-

plementation is able to handle scans in parallel for computing the

maximum traversal ranges through the occupancy grid as well as

during the voxel traversal phase. We didn’t introduce parallelism

in the other parts as they only require very little runtime in practice

(filling the occupancy grid, clustering and sub-voxel accuracy) or

are heavily I/O bound (loading input from files and storing the

results).

As our benchmark system has eight physical cores we tested

with one to eight threads in parallel and recorded the runtimes

of each part of the algorithm. We used the first eight scans of the

“Bremen city” dataset as input, with a voxel size of 10, a minimum

cluster size of 40 and with subvoxel accuracy enabled.

0

2000

4000

6000

8000

1 2 3 4 5 6 7 8

number of threads

ru
n
ti
m
e
in

se
co
n
d
s

loading

occupancy

maxranges

traversal

clustering

sub-voxel

writing

Figure 4.50: Runtime of our algorithm
in seconds (y-axis) depending on the
used number of threads (x-axis)

The results are shown in Figure 4.50. The phases of the algo-



change detection 99

rithm for which runtimes have separately been timed coincide with

the enumeration from section 4.3. The runtimes for “maxranges”

and “voxel traversal” do not scale completely linearly with the

number of threads because of overhead in critical sections when

the results are joined and because different scans take a different

amount of time, leading to situations where only one CPU is still

active near the end of each phase. Using data structures that mini-

mize the time spent in critical sections as well as adding paralleliza-

tion to other parts of the algorithm is future work. The runtimes of

“clustering” and “sub-voxel” are not visible in the barchart as each

of them takes less than 3 seconds on the given dataset.

0

500

1000

1500

2000

5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

voxel size in cm

ru
n
ti
m
e
in

se
co
n
d
s

loading

occupancy

maxranges

traversal

clustering

sub-voxel

writing

Figure 4.51: Runtime of our algorithm
in seconds (y-axis) depending on the
voxel size (x-axis)

Since it’s the main variable of our algorithm, we show the de-

pendency of the runtime on the chosen voxel size. We used the first

scan of the “Bremen city” dataset and executed our algorithm on

it with varying voxel size, a minimum cluster size of 40 and with

subvoxel accuracy enabled. Since only a single scan was processed,

only one thread was used. The results are shown in Figure 4.51. As

expected, a larger voxel size results in faster execution as less voxels

have to be traversed. The only part of the algorithm with a runtime

dependent on the voxel size is the voxel traversal itself. It can be

seen how the runtime scales inverse proportional to the voxel size.

Lastly, we also investigated whether our approach can be lever-

aged for achieving better point cloud registration results. Our idea

was, that dynamic objects may have a negative impact on how well

two scans can be matched. To evaluate our hypothesis, we used

the Würzburg city dataset as it contained the highest number of

dynamic points (2.65% of all occupied voxels are marked dynamic).

We executed our algorithm with a voxel size of 10, a minimum

cluster size of 40 and with subvoxel accuracy. We then registered

the resulting cleaned scans again using slam6D from 3DTK using

the same parameters as we used for the initial registration of the

dataset. The results we achieved indicate no significant change in



100

the scan registration. The differences in translation were not larger

than 0.01 mm in any direction and the differences in angular orien-

tation generally below 0.001◦ but never larger than 0.05◦.

4.11 Limitations

(a) Towers of Bremen Cathedral (St. Petri Dom zu Bremen) (b) Tower of Church of Our Lady (Kirche Unser Lieben Frauen)

Figure 4.52: Slight registration errors
at the church towers lead to incorrectly
aligned surfaces. The outer surface is
thus marked as dynamic.

(a) False positives due to wrongly computed normal vectors along
the boom of a crane

(b) False positives on a facade due to transparent windows

Figure 4.53: Examples for false posi-
tives

Our approach suffers from some limitations. False positives are

introduced in the following situations:

• Incorrectly computed normal vectors lead to wrong shadowing

information and thus to some lines of sight traversed through the

voxel grid longer than they should’ve been traversed, resulting

in voxels marked as see-through which are actually not. This

situation easily occurs in either very noisy scans or for parts of a

point cloud that doesn’t have any clear normal vector like fences,

wires, meshes and foliage. An example is shown in Figure 4.53.

• Solid objects that the laser beam can pass through due to their

optical properties like glass will be marked as dynamic because



change detection 101

(a) "Holes" in the wall created by points (in red) recorded behind
the wall. The points are not exactly aligned with the holes due to
parallax.

(b) Top-view of the scene, showing the same points behind the
wall (in red)

Figure 4.54: The high reflectivity of
surfaces commonly found in factory
environments poses a great challenge.
The wall in the top figure has holes
because of reflected points "behind"
the wall (in red). These points are false
as the wall is solid and the area on the
right in the bottom figure should be
empty.

32 Koch, R., May, S., Murmann, P., and
Nüchter, A. (2017). Identification of
transparent and specular reflective
material in laser scans to discriminate
affected measurements for faultless
robotic slam. Robotics and Autonomous
Systems, 87:296–312

they are seen as see-through. An example is shown in Figure

4.53.

• Surfaces with high reflectivity will result in points being seen

in places “behind” the mirror and thus result in voxels being

marked as see-through that lie in a direct line of sight between

them and the sensor. An example is shown in Figure 4.54. Work

as by Koch et al.32 can mitigate this effect.

• If our approach to subvoxel-accuracy is used, some false posi-

tives will be introduced as was shown in section 4.8.

• If scans are not precisely aligned “double walls” or similar ef-

fects are created where there should only be a single wall. In

these situations the wall in front of the other will wrongly be

marked as “see through”. An example is shown in Figure 4.52.

In turn, false negatives occur during the following circumstances:

• At the boundaries between static and dynamic parts of the scan,

some artifacts will be left depending on the voxel size and

alignment. This effect can be reduced using our algorithm for

subvoxel-accuracy which was explained in section 4.8.

• Incorrectly computed normal vectors leading to wrong shad-

owing information can result in a traversal distance toward a

point being cut off too early and thus miss traversing voxels that

should be seen as free.

• If the line of sight from a second scan never intersects with a

voxel that the former scan measured, then that voxel will never

be marked as dynamic. This situation occurs through occlusion

by otherwise dynamic points, by the scanner placements or in

volumes where the point density is very low, as it typically is the

case the further objects are away from the sensor.

In summary, apart from these properties, the quality of our re-

sults has similar limitations as competing methods and is highest

in situations where the measurement noise is low, scans can be cor-

rectly registered and there are no transparent or reflecting objects in

the scene.



102

4.12 Summary

We presented an approach specifically tailored to remove dy-

namic portions of 3D point cloud data. Our solution is suitable

for scan slices from mobile mapping as well as for terrestrial scan

data. We show experimental evidence that our approach compares

favourably in quality to an existing solution for scan pairs. In terms

of runtime our method is superior as it compares arbitrarily many

scans with linear complexity. By allowing to optionally work on a

reduced set of rays, the runtime can be further improved. Using the

concept of “point shadows” false positives that other voxel-based

solutions generate are avoided.



5

Collision detection

An important task in civil engineering is the detection of colli-

sions of a 3D model with an environment representation. Existing

methods using the structure gauge provide an insufficient mea-

sure because the model either rotates or because the trajectory

makes tight turns through narrow passages. This is the case in ei-

ther automotive assembly lines, in narrow train tunnels or in urban

environments.

In this part of this thesis we present an algorithm which, given

two point clouds, one of the environment and one of a model and

a trajectory with six degrees of freedom along which the model

moves through the environment, finds all colliding points of the

environment with the model within a certain clearance radius.

We present two collision detection (CD) methods called kd-CD

and kd-CD-simple and two penetration depth (PD) calculation meth-

ods called kd-PD and kd-PD-fast. All four methods are based on

searches in a k-d tree representation of the environment. The cre-

ation of the k-d tree, its search methods and other features that we

use for our approach to collision detection was described in section

2.1.

The algorithms are benchmarked by moving the point cloud of

a train wagon with 2.5 million points along the point cloud of a

1144 m long train track through a narrow tunnel with overall 18.92

million points. Points where the wagon collides with the tunnel

wall are visually highlighted with their penetration depth. With a

safety margin of 5 cm kd-PD-simple finds all colliding points on

its trajectory which is sampled into 19392 positions in 77 s on a

standard desktop machine of 1.6 GHz.

Furthermore, we benchmark our approach against a solution

that computes collisions on the GPU. While our approach utilizes

the main CPU with a k-d tree data structure to efficiently carry out

fixed range searches around points in 3D, the other mainly executes

on a GPU using a regular grid decomposition technique imple-

mented in the CUDA framework. We will show how massively

parallel 3D range searches on a grid based data structure on a GPU

performs similarly well as a tree based approach on the CPU with

orders of magnitude less parallelization. We also show how each

method scales with varying input sizes and how they perform dif-



104

1 Elseberg, J., Borrmann, D., Schauer,
J., Nüchter, A., Koriath, D., and Raut-
enberg, U. (2014b). A sensor skid for
precise 3d modeling of production
lines. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information
Sciences, II-5:117–122

2 Assuming that the moving object
is three-dimensional and not a two-
dimensional slice

3 Elseberg, J., Borrmann, D., Schauer,
J., Nüchter, A., Koriath, D., and Raut-
enberg, U. (2014b). A sensor skid for
precise 3d modeling of production
lines. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information
Sciences, II-5:117–122

ferently well depending on the spatial structure of the input data.

5.1 Introduction and problem formulation

The minimum clearance outline or structure gauge has an impor-

tant place in the planning of rail and automotive infrastructure as

well as for factory assembly lines1. It is the swept volume of the

minimum cross section that must be kept free of any obstacles.

Measuring the structure gauge of railroad and motorway tunnels,

bridges and production lines is a simple way to calculate whether

vehicles, their cargo or arbitrary objects can pass through them. The

structure gauge is an exact measure as long as the moving object

travels along a straight line and does not rotate. But if the trajectory

is not straight or rotation is involved, then the structure gauge can

only serve as a rough estimation which becomes more imprecise

the shorter the turn radius or the larger the rotation of the mov-

ing object.2 Normal railroads and rural motorways usually are

constructed with long turn radii and large safety margins, so the

structure gauge is a sufficient measure to determine whether a ve-

hicle can pass along a route. But there exist many examples where

the structure gauge is an insufficient measure:

• transportation of exceptionally long, rigid cargo along motor-

ways and railroads

• turns in very narrow tunnels, bridges or other passages

• street turns with a very small turn radius (for example in urban

environments)

• rotating objects and sharp turns in tunnels along production

lines

The collision detection method presented in this chapter solves

this problem but can also be applied to general collision detection

tasks. The difference to most other collision detection algorithms

is that this method is purely point based and does not require to

calculate a solid 3D mesh representation.

This method was first applied by the authors to find collisions

in an automotive production line which involved sharp turns and

rotations of the car body but the respective paper focuses on the

techniques to register the environment3. In the following, the same

method with some further improvements will be applied to a train

moving through a very narrow tunnel where a structure gauge

based approach does not suffice to find collisions but where there

will be collisions in reality because of the relatively sharp turn the

tunnel makes.

A similar measure to the structure gauge is the loading gauge

which is the swept volume of the cross section of a train wagon

moved along a track. The difference between the two is the engi-

neering tolerance or clearance. The structure gauges along a track

together with the maximum loading gauge determine whether or

not a train with certain cargo can go along a given route or how



collision detection 105

4 Siegmann, J. (2011). Lichtraumprofil
und Fahrzeugbegrenzung im europäis-
chen Schienenverkehr. http://www.

forschungsinformationssystem.de/

servlet/is/325031/. [Online; accessed
2014-07-14]
5 Lueger, O. (1904). Krümmungsver-
hältnisse. In Lexikon der gesamten
Technik und ihrer Hilfswissenschaften,
pages 718–724. Stuttgart / Leipzig:
DVA

Figure 5.1: Top view of the train
wagon

6 EBO (1967). Eisenbahn-Bau-
und Betriebsordnung. http:

//www.gesetze-im-internet.de/

ebo/anlage_1_67.html. [Online;
accessed 2014-07-14]

7 Nüchter, A., Elseberg, J., Schneider,
P., and Paulus, D. (2010). Study of
parameterizations for the rigid body
transformations of the scan registration
problem. Computer Vision and Image
Understanding, 114(8):963 – 980

much space around new tracks has to be kept clear and is subject to

a number of decades old standards and regulations4.

If the “track transition curve” at the start and the end of most

turns is ignored, then turns of train tracks always represent circle

segments (i.e. circular arcs).5 Since the rotation centers of the two

bogies of a train wagon both stay in the exact center between the

train tracks, the part of the train wagon connecting the bogies will

form the line segment of a secant cutting the circle segment of the

track. Thus, the parts of the wagon between the bogies in the in-

side of the turn will take more space of the structure gauge within

a turn compared to when the train wagon travels along straight

tracks. Similarly, the parts of the train wagon on both ends outside

of the bogies will take additional space as well.

Figure 5.1 visualizes the problem. It shows a top view of the

train wagon (in dark and light gray) and its curved loading gauge

as it passes through a turn. The dark gray areas mark the volumes

of the train wagon outside of its loading gauge. The striped volume

indicates the volume of the train wagon between its two bogies.

The dotted line indicates the wagon’s trajectory. The amount of

needed additional space is depending on the turn radius. To ad-

dress the problem, there exist different regulations for structure

gauge sizes depending on the turn radius.6

The algorithms that will be presented in the following requires

three objects as input: The first input is the pointcloud of the envi-

ronment. In the example presented throughout this part of the thesis

we will be using the traintunnel dataset which was described in

section 3.4.

The second input is a point cloud of the model. Here, it was ac-

quired by taking seven terrestrial 3D scans of a real train wagon

with a Riegl VZ-400 laser scanner and then registering them using

3DTK – The 3D Toolkit7. The third input is the trajectory of the train

tracks.

The goal is to determine which points of the environment col-

lide with the model on its path, given a certain safety margin (the

minimal allowed clearance) and how deep any colliding points of

the environment penetrate the model. To this end a k-d tree of the

environment is created, the model is moved through it along its

trajectory and a k-d tree search is performed around the points of

the model to find colliding points and their penetration distance.

The problem is highly parallelizable, as all points can be treated

in parallel. The later part of this chapter compares algorithms using

a search tree, namely a k-d tree, running on a CPU with OpenMP

with a GPU implementation that exploits a regular grid decomposi-

tion.

http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html


106

8 Klein, J. and Zachmann, G. (2004).
Point cloud collision detection. In
Computer Graphics Forum, volume 23,
pages 567–576. Wiley Online Library
9 Hermann, A., Drews, F., Bauer, J.,
Klemm, S., Roennau, A., and Dill-
mann, R. (2014b). Unified gpu voxel
collision detection for mobile manip-
ulation planning. In Intelligent Robots
and Systems (IROS), 2014
10 Hubbard, P. M. (1996). Approx-
imating polyhedra with spheres
for time-critical collision detection.
ACM Transactions on Graphics (TOG),
15(3):179–210
11 Sulaiman, H. A., Othman, M. A.,
Ismail, M. M., Said, M., Alice, M.,
Ramlee, A., Misran, M. H., Bade, A.,
and Abdullah, M. H. (2013). Dis-
tance computation using axis aligned
bounding box (aabb) parallel distri-
bution of dynamic origin point. In
Emerging Research Areas and 2013 Inter-
national Conference on Microelectronics,
Communications and Renewable Energy
(AICERA/ICMiCR), 2013 Annual In-
ternational Conference on, pages 1–6.
IEEE
12 Gottschalk, S., Lin, M. C., and
Manocha, D. (1996). Obbtree: A hierar-
chical structure for rapid interference
detection. In Proceedings of the 23rd an-
nual conference on Computer graphics and
interactive techniques, pages 171–180.
ACM
13 Klosowski, J. T., Held, M., Mitchell,
J. S., Sowizral, H., and Zikan, K.
(1998). Efficient collision detection
using bounding volume hierarchies
of k-dops. Visualization and Computer
Graphics, IEEE Transactions on, 4(1):21–
36
14 Teschner, M., Heidelberger, B.,
Müller, M., Pomeranets, D., and Gross,
M. (2003a). Optimized spatial hashing
for collision detection of deformable
objects. Technical report, Technical
report, Computer Graphics Laboratory,
ETH Zurich, Switzerland
15 Cohen, J. D., Lin, M. C., Manocha,
D., and Ponamgi, M. (1995). I-collide:
An interactive and exact collision
detection system for large-scale envi-
ronments. In Proceedings of the 1995
symposium on Interactive 3D graphics,
pages 189–ff. ACM
16 Luque, R. G., Comba, J. L., and
Freitas, C. M. (2005). Broad-phase col-
lision detection using semi-adjusting
bsp-trees. In Proceedings of the 2005
symposium on Interactive 3D graphics and
games, pages 179–186. ACM

5.2 Related Work

Collision detection, which is also called interference detection or

intersection searching, is a well studied topic in computer graphics

because of its importance for dynamic computer animation and vir-

tual reality applications. On the other hand, the work in that field is

limited to collision detection between geometric shapes and polyg-

onal meshes whereas most sensor data is acquired as point clouds.

While collision detection is also relevant for motion planning in the

field of robotics, it is a less studied problem there. Collision detec-

tion between point clouds was for example researched by Klein and

Zachmann8 who use the implicit surface created by a point cloud

to calculate intersections. Another example is the recent work by

Hermann et al.9 who use voxels to check for spatial occupancy for

robot motion planning.

Existing techniques make use of very similar approaches. One

method is to apply a spatial hierarchical partitioning of the input

geometry using octrees, AABB-trees, BSP-trees or k-d trees. Other

solutions apply regular partitioning using voxels. The goal of any

partitioning is to be able to quickly search and check only the rel-

evant geometries in the same or neighboring cells. The method

presented in this paper will make use of a hierarchical k-d tree for

the environment in combination with a regular partitioning of the

model into a grid of bounding spheres.

Another method is to use hierarchies of bounding volumes

like spheres10, axis aligned bounding boxes11, oriented bounding

boxes12 or discrete oriented polytopes13. Optimizing the regular

grid that was generated for the model into a hierarchical structure

will be left for future work.

Collision detection methods can be divided in those for static

and deformable objects14. While the method presented in this thesis

does not easily allow changes in the environment because that does

require a recalculation of its k-d tree (for the CPU based method) or

the regular grid decomposition (for the GPU based mothod), arbi-

trary changes in the point cloud of the model are possible without

any performance impacts.

Another classification is whether the algorithm easily allows

multiple moving objects. Using a brute-force approach such algo-

rithms have a runtime of O(n2) for n objects because every possible

pair of objects is checked for collisions. Modern approaches like the

I-COLLIDE system15 use a “sweep and prune” approach to mini-

mize the amount of necessary checks. Another approach is to dy-

namically adjust the search tree to account for object movements16.

The method in this thesis does not handle multiple moving models.

Calculating the penetration depth of one object into another

is important to calculate the force of collisions and respond ac-

cordingly in virtual reality applications17. It is also important for

visualization purposes, to differently highlight objects reaching into

a safety margin with an indication of how much they violate the



collision detection 107

17 Tzafestas, C. and Coiffet, P. (1996).
Real-time collision detection us-
ing spherical octrees: virtual reality
application. In Robot and Human Com-
munication, 1996., 5th IEEE International
Workshop on, pages 500–506

18 Elseberg, J., Borrmann, D., Schauer,
J., Nüchter, A., Koriath, D., and Raut-
enberg, U. (2014b). A sensor skid for
precise 3d modeling of production
lines. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information
Sciences, II-5:117–122
19 Purcell, T. J., Buck, I., Mark, W. R.,
and Hanrahan, P. (2002). Ray tracing
on programmable graphics hardware.
In ACM Transactions on Graphics (TOG),
volume 21, pages 703–712. ACM
20 Zhou, K., Hou, Q., Wang, R., and
Guo, B. (2008). Real-time kd-tree
construction on graphics hardware.
ACM Transactions on Graphics (TOG),
27(5):126
21 Bittner, J., Hapala, M., and Havran,
V. (2015). Incremental bvh construction
for ray tracing. Computers & Graphics,
47:135–144
22 Qiu, D., May, S., and Nüchter, A.
(2009). Gpu-accelerated nearest
neighbor search for 3d registration.
In Computer Vision Systems, pages
194–203. Springer
23 Bedkowski, J., Maslowski, A., and
De Cubber, G. (2012). Real time 3d
localization and mapping for usar
robotic application. Industrial Robot: An
International Journal, 39(5):464–474
24 Bedkowski, J., Majek, K., and
Nüchter, A. (2013). General purpose
computing on graphics processing
units for robotic applications. Journal
of Software Engineering for Robotics,
4(1):23–33

search areas (at pos. 1)

search areas (at pos. 2)

search areas (at pos. 3)

1 2 3

Figure 5.2: kd-cd-simple for a model
with three points on three different
positions along its trajectory

constraint. This application was shown in prior work on this topic

by the authors of this thesis18.

GPU enabled collision detection algorithms are mainly used in

computer graphics for ray tracing. The algorithms utilize GPUs

using shader language programming, OpenCL or Nvidia CUDA.

The first GPU ray tracer was using a uniform grid for acceleration

and was implemented in shader language19. Zhou et al.20 show an

algorithm of constructing k-d trees using CUDA enabled GPUs is

shown. To cope with large datasets a method for incremental con-

struction of Bounding Volume Hierarchies (BVH) that incrementally

constructs a BVH with quality comparable to the best surface area

heuristic (SAH) builders was introduced by Bittner et al. 21.

In the context of nearest-neighbor search in 3D point datasets,

Qiu et al22 use k-d trees while Bedkowski et al.23 make use of

regular grid decomposition. The latter authors also compare the

performance between these two data structures24.

5.3 Collision detection

Our two variants of collision detection are implemented using the

k-d tree. One variant, called kd-CD-simple, is based on a range

search around each point of the model using FixedRangeSearch

and the other, called kd-CD, is based on a segment search be-

tween two subsequent points of the model on its trajectory using

segmentSearch_all. Refer to section 2.1.6 for an explanation of the

functions. In both variants, the model is moved along its trajectory

and a range or segment k-d tree search with radius r is performed

at each position.

When points are found to be colliding, then this information

is saved in a separate boolean vector which stores for each point

in the environment whether it ever collided with the model on its

trajectory or not. The search radius r determines the precision of

both algorithms. The smaller the search radius, the more precise the

collision detection is. For smaller search radii, the model has to be

sampled densely enough to not leave any unoccupied volume. The

search radius r is the required “safety distance” between the model

and the environment within which no point of the environment

must lie. At the end, the collision information from the boolean

vector is used to partition the environment into colliding and non-

colliding points.

Figures 5.2 and 5.3 show the two collision detection variants in

two dimensions with T = 3 points on the trajectory and M = 3

points of the model. A model consisting of three co-linear points

is moved through the environment along a trajectory (dashed line)

with three positions (indicated by numbers at the top). The first

position of the three points of the model is marked with red dots,



108

1 2 3

search areas (1st step)

search areas (2nd step)

Figure 5.3: kd-cd for a model with
three points on three different posi-
tions along its trajectory

the second position of the model with green and the third position

with blue dots. The area that is searched for collisions with the

environment is indicated by the transparent colored areas. For

kd-cd-simple, M × T = 9 FixedRangeSearch operations have to

be carried out. For kd-cd, M × (T − 1) = 6 segmentSearch_all

operations have to be carried out.

5.3.1 kd-CD-simple

In this variant, on each position of the model on its trajectory, a

fixed range search using FixedRangeSearch is done around each

point of the model. All points of the environment that are found to

be within range r of any point of the model at any position on its

trajectory are updated to be colliding. The performance of kd-CD-

simple is improved by sampling the model in a way such that the

search radii around its points overlap in the desired amount.

Figure 5.2 shows a simplified, two-dimensional visualization

of the algorithm. A model consisting of three co-linear point is

moved along a trajectory with three positions. At each position, a

FixedRangeSearch is carried out around each point of the model.

The figure shows a disadvantage of this approach: if the trajectory

is not sampled densely enough, then some volumes along the path

will not be checked for collisions as can be seen at the upper points

in the graphic.

For a linear, non-parallel execution the time complexity of the

algorithm is O(MT log n) where M is the number of points in the

model, T is the number of sampled positions on the trajectory and

n the number of points in the environment. For parallel execu-

tion, the time complexity is O(MT
p log n) where p is the number of

worker processes. The complexity is as such because M times T

searches in the k-d tree of the environment have to be done, where

each search is of complexity O(log n). The complexity in the paral-

lel case highlights that all M times T searches in the k-d tree can be

carried out in parallel.

5.3.2 kd-CD

Instead of searching a fixed radius around every point of the model

at each position on its trajectory like kd-CD-simple, this variant

linearly connects the same point of the model at two consecutive

positions on its trajectory and searches a fixed radius around all the

line segments that are created in this manner.

Figure 5.3 shows a simplified, two-dimensional visualization

of the algorithm. The model of three co-linear points is moved

along a trajectory with three positions just as for the kd-CD-simple

example. But instead of executing a FixedRangeSearch around

each point of the model, a search is done around the line segments

connecting the same point at two consecutive positions on the tra-

jectory. The area that is searched this way is highlighted in orange

and dark-green in the figure for the first and second search-pass,



collision detection 109

25 Elseberg, J., Borrmann, D., Schauer,
J., Nüchter, A., Koriath, D., and Raut-
enberg, U. (2014b). A sensor skid for
precise 3d modeling of production
lines. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information
Sciences, II-5:117–122

ce
n
tr

al
 a

x
is

tr
ai

n
 w

ag
o
n

tu
n
n
el

 w
al

l

 
An

Pn

Cn

central axis

tunnel wall

train wagon

Figure 5.4: top view of the train wagon

respectively.

This means that with T positions on the trajectory, this method

will execute M(T − 1) k-d tree searches using segmentSearch_all.

Thus, the time complexity of this algorithm is very similar to the

one of kd-CD-simple O(M(T − 1) log n) and becomes close to the

one of kd-CD-simple for large numbers of T.

Since the trajectory can be less densely sampled than would be

required for kd-CD-simple, kd-CD can thus require less search

operations while maintaining a similar result quality. It also has

the advantage that in contrast to the kd-CD-simple, the volumes

of the environment that are searched for collisions are not spheres

but cylinders with half spheres on both ends. This “smoothes”

the found colliding points along the direction of movement of the

model.

5.4 Depth of penetration calculation

Two variants to calculate depth of penetration will be presented:

kd-PD-fast and kd-PD. They perform differently depending on the

kind of input data and yield different results depending on the

sampling rate of the model trajectory. kd-PD-fast is generally faster

but produces only good results for objects protruding the path of

the model through the environment. It does not produce correct

results when the model moves alongside a wall and collides with it.

kd-PD-fast is an embarrassingly parallel operation just as the

collision detection methods. The other variant, kd-PD, is easy

to parallelize as well and the only part of kd-PD that has to be

synchronized between workers is the updating of the penetration

depth because it requires reading and checking the already stored

depth of penetration per colliding point.

5.4.1 kd-PD-fast

This variant is a good heuristic for protruding sharp objects into

the work space. At each position along the trajectory, it iterates

through all points of the environment that are found to be colliding

and finds the closest non-colliding point using FindClosest. The

distance between the two points is then recorded as the depth of

penetration. Thus, the time complexity of this algorithm is the same

as for the collision detection algorithms and can be completely

parallelized.

This variant works well for objects that “stick” into the path of

the model because the penetration depth of the tip of that object

will be about as deep as its distance to the closest non-colliding

point. This method is shown to work well for automotive assembly

lines as shown in prior work of the authors25.



110

Figure 5.5: Top view of train wagon in
tunnel

Figure 5.6: Penetration depth as
calculated by kd-PD-fast. The colors
indicate the distance to the closest
non-colliding point of the tunnel wall.

Figure 5.7: Penetration depth as
calculated by kd-PD. The colors
indicate the maximum penetration
depth of the tunnel wall into the
moving train wagon on any point of its
trajectory.

5.4.2 kd-PD

Figure 5.4 shows on the left a top view of the train wagon (blue)

at a position through the tunnel (green). On the right it shows a

magnified and rotated part of the left figure with point names. The

gray area represents the segment search volume between point Pn

of the train wagon and point An on the wagon’s central axis (red).

The dotted black line is the distance between Pn and Cn which is

the point that is found to be closest to Pn within the search area.

The dotted circle shows the search radius around Cn. All points of

the tunnel wall within this radius are updated with the same dis-

tance that Cn has to Pn if that distance is greater than the previously

stored one.

kd-PD represents a general penetration depth method. Con-

sider Figure 5.4 which illustrates this method. Figure 5.4 shows

a top view of the train wagon model at one point of its trajectory

inside the tunnel. It is shown colliding with the right hand side

tunnel wall. The algorithm iterates over every point of the model

Pn and finds its projection to the wagon center An. Since the cen-

tral axis is the y-axis in the coordinate system of the train wagon ,

this projection is simply done by setting the x and z coordinates to

zero. Then a segment search using segmentSearch_1NearestPoint

on the line segment from Pn to An is performed for every point

of the model: for each point Pn the closest point Cn of the col-

liding environment within the search radius is found. A fixed

range search using FixedRangeSearch of radius r around Cn is

performed and all points within that search radius including Cn

are collected. This collecting of points has to be performed be-

cause otherwise, many points of the environment are missed by

segmentSearch_1NearestPoint. The distance between Cn and Pn is

calculated and that distance is assigned to all points that are found

by FixedRangeSearch if the new distance value is greater than the

old one. This set of calculations is done for each point of the model

on each position of its trajectory. In the end, every colliding point

of the environment has attached to it the greatest distance found by

this method over the whole trajectory. As is seen from Figure 5.4,

the maximum error of the calculated penetration distance is the size

of the search radius.

Figure 5.5 visualizes how, as the wagon (dark gray) moves along

the tunnel (light gray), each point of the tunnel wall is updated

with its maximum distance to the wagon exterior (stripes) on any

point along the trajectory. The figure shows the calculated distances

between each point of the model and each set of points in the col-

liding environment.



collision detection 111

26 Schauer, J. and Nüchter, A. (2015).
Collision detection between point
clouds using an efficient k-d tree
implementation. Advanced Engineering
Informatics, 29(3):440–458

Figures 5.6 and 5.7 shows a comparison of the penetration depth

as calculated by kd-PD-fast (left) and kd-PD (right). Both figures

show a narrow piece of tunnel from the outside with the calculated

penetration depth indicated by the point color. Non-colliding points

are shown in dark red.

This method requires that the individual points of the trajectory

are not further apart than the search radius. While this is also one

of the reasons why this method is more computationally expensive

than the first heuristic, it also yields better results when applied to

a collision with the tunnel wall. Figures 5.6 and 5.7 illustrate the

difference.

The time complexity in the non-linear case is the same as for

kd-PD-fast and for the collision detection algorithms. In parallel

execution, some time has to be spent synchronizing the access

to the data structure that stores the currently closest penetration

distance before updating it.

5.5 Design and Implementation

In the following section we describe the design and implementation

of the two methods we present in this chapter. The first method

is based on a k-d tree search which runs entirely on the CPU. The

second method is based on a regular grid decomposition and runs

on the GPU. Both methods take the following inputs:

• a set of points making the environment E

• a set of points making the model M

• a set of 6DOF transformations making a trajectory T and

• a search radius r

Both methods will find all points in the environment E which

fall within a certain radius r around any point of the model M at

any point on its trajectory T. The CPU method works with double

precision (eight bytes) while the GPU based method is limited to

floating point precision (four bytes).

5.5.1 3dtk k-d tree

The collision detection method using a k-d tree was described in

detail in one of our earlier papers that was published in the Journal

of Advanced Engineering Informatics.26 We are using the method

called kd-CD-simple from that publication in these benchmarks.

Using the nomenclature for E, M, T and r from above, the basic

algorithm is as follows:

K ← create_kd_tree(E)

c← [ f alse∀p ∈ E]

for all t ∈ T do

for all m ∈ M do

m′ ← trans f orm(m, t)

s← rangesearch(K, m′, r)



112

update_colliding(s, c)

In other words: Create a k-d tree K from the environment and

create an array c which stores for each point in the environment

whether it collides with the model at any point on the trajectory

or not. Then do the following: For each 6 DOF transformation t

on the trajectory and for each point m of the model, apply t to m,

producing m′ and find all points s in K that lie within radius r

around m′ and update c to set these colliding points to true. Since

searches in the k-d tree are a read-only operation and since even

updating the same point in c from different threads does not lead

to any race conditions (because values are set to true irrespective

of their former value), the algorithm is embarrassingly parallel. In

other words, if one could run |T| ∗ |M| threads in parallel, then the

whole algorithm would only take as long as the longest search in

the k-d tree would take.

5.5.2 regular grid decomposition (RGD)

The GPU accelerated implementation of collision detection is based

on regular grid decomposition and GPGPU accelerated nearest-

neighbor search. The collision detection algorithm, using the

nomenclature from above with E as the environment, M as the

model, T as the trajectory and r as the search radius is is follows:

Re ← create_RGD(E)

S = ∅

c← [ f alse∀p ∈ E]

for all t ∈ T do

M′ ← trans f orm_in_parallel(M, t)

S′ = f ind_corresponding_cells_in_RGD(M′, E)

if S′ 6= S then

sync_data_with_GPU_memory(S′)
R′e ← create_RGD(S′)
S = S′

for all m ∈ M do ⊲ In parallel

s← rangesearch(R′e, m′, r)

update_colliding(s, c)

The core concept of the algorithm is to use regular grid decom-

position Re to split large environment point cloud E into smaller

cells and then use only the cells which intersect with the bounding

box of the transformed model for collision detection at each point

of the trajectory T. For each point of the trajectory, all points of the

model M are transformed (in parallel) using t, producing M′. The

axis aligned bounding box of M′ is compared to Re to find all cells

S′ containing possibly colliding points, ie. all points in S′ must be

more than r away from the boundary of the axis aligned bound-

ing box defined by S′. If there are new cells in S′ compared to S,

or some are no longer relevant, points are copied to or removed

from GPU memory respectively. If the data in GPU memory was



collision detection 113

updated, for all points in S′ a regular grid decomposition R′e is car-

ried out. After the data on the GPU has been made current, for all

points m in M the range search is performed with radius r in R′e.
Finally the array c is updated and copied back to host memory. In

this approach parallelism is limited by two factors, device memory

and number of cores. All transformations are done theoretically in

parallel, the serialization process is low level and provided by the

device driver and depends on used device.

5.6 Experiments and results

(a) Minimum point distance
dm = 0.058 m for a search radius of
r = 0.05 m makes a model with 28622

points.

(b) Minimum point distance
dm = 0.115 m for a search radius of
r = 0.1 m makes a model with 7546

points.

(c) Minimum point distance
dm = 0.231 m for a search radius of
r = 0.2 m makes a model with 2041

points.

(d) Minimum point distance
dm = 0.462 m for a search radius of
r = 0.4 m makes a model with 461

points.

(e) Minimum point distance
dm = 0.924 m for a search radius of
r = 0.8 m makes a model with 93 points.

Figure 5.8: Five point models of the
train wagon with different sampling
densities. In all reductions, points are
aligned in a 3D square lattice.To benchmark the developed algorithms, the train wagon model

as well as the trajectory are sampled with several different point

distances. For the train wagon, the original amount of 2.5 million

points is reduced using 3DTK’s scan_red program which allows

an octree based reduction of a point cloud with a given voxel size.

As the search volume for collision detection must not contain any

holes, a model of equidistant points is created by saving the center

of each occupied octree voxel as point of the reduced model. This

creates a 3D square lattice of points. Five different reductions of

the train wagon point cloud are created to run benchmarks on

them and are visualized in Figure 5.8. Due to the structure of the



114

underlying octree, the voxel size dm is repeatedly halved starting

from a maximum voxel size of 0.924 m and down to a voxel size of

5.8 cm. For each of the five reductions, the search radius is chosen

to create a bounding sphere of an octree voxel of the respective

size. That way, all space occupied by the model is searched for

collisions without leaving any holes. This means that the voxel

size dm computes from the bounding sphere and search radius r

as dm = 2
3

√
3r. Similarly, the trajectory is sampled such that the

individual positions are between 5.8 cm and 14.78 m apart.

Table 5.1: Overview of test setup parameters

r in m dm = dt =
2
3

√
3r #model #trajectory

0.05 0.058 28622 19392

0.1 0.115 7546 9780

0.2 0.231 2041 4869

0.4 0.462 461 2434

0.8 0.924 93 1217

1.848 609

3.695 304

7.390 152

14.780 76

Table 5.1 gives an overview of the chosen search radii, the ac-

cording voxel size and trajectory position distances and the result-

ing number of points in the model and on the trajectory. The first

column shows the choice of collision detection search radius r. The

second column shows the resulting distance between the points of

the wagon dm and the points on the trajectory dt. The third column

shows the resulting number of points in the model. The fourth col-

umn shows the resulting number of points on the trajectory. The

second and fourth column are extended as the results in Figure 5.11

are calculated for higher distance values as well.

The benchmarks omit runtime results that only modify either the

amount of points in the model or the amounts of positions in the

trajectory. Both collision detections algorithms, kd-CD-simple and

kd-CD, scale completely linearly and is completely parallelized by

splitting the workload over different sets of points in the model or

positions in the environment.

To test the claim that the structure gauge is an insufficient mea-

sure, given the provided environment and trajectory, a slice of the

train wagon is moved through the tunnel. The slice is created by

collapsing the y-coordinate of the train wagon model. The tra-

jectory is created using the method described in section 3.4.3 but

assuming a bogie length of zero. This effectively lets the slice travel

exactly along the trajectory with the correct orientation perpendicu-

lar to the trajectory.



collision detection 115

Figure 5.9: A frame from http://

youtu.be/ylp4mD5XZaQ
27 http://youtu.be/ylp4mD5XZaQ

A video27 was created to visually illustrate the difference be-

tween a structure gauge based method and kd-CD-simple. The

video shows the train moving along its trajectory through the

tunnel environment from the perspective of an observer who fol-

lows closely behind the train wagon. The view is split into three

frames arranged next to each other. A single frame from the video

is shown in Figure 5.9. The leftmost frame shows the model of the

train wagon in yellow moving through the environment in ma-

genta. The center and right frame do not show the train wagon

model for better visibility. The center frame shows the colliding

points according to the structure gauge method in yellow. The

rightmost frame shows the colliding points and their penetration

depth as calculated by kd-CD-simple and kd-PD-fast. At multiple

points during the video one observes that the center frame does

not highlight points as colliding which are highlighted by the right-

most frames. Those points are most often found on the right tunnel

wall as the train tracks make a turn to the right. This shows how

the structure gauge based method is not able to find some of the

collisions that are found by kd-CD-simple.

Figure 5.10 shows the influence of the search radius r on the

runtime of both collision detection variants, kd-CD-simple and

kd-CD. The distance between individual points on the trajectory

dt and the distance between points in the model dm is chosen to be

dt = dm = 0.231 m. While all other variables are kept constant, the

algorithm is benchmarked with different search radii. The figure

shows the runtime of both collision detection variants as well as

the number of points that are found to be colliding in each variant.

One can observe that the segment based variant finds more col-

liding points but that it is also slower than the fixed range search

based method. Both variants increase exponentially in runtime with

higher search radii. With small radii in the centimeter scale, which

is desirable for precise results, the runtime of both variants stays

below 10 seconds.

http://youtu.be/ylp4mD5XZaQ
http://youtu.be/ylp4mD5XZaQ
http://youtu.be/ylp4mD5XZaQ


116

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0.2 0.4 0.6 0.8

search radius (m)

co
ll
id
in
g
p
oi
n
ts

0

50

100

150

0.2 0.4 0.6 0.8

search radius (m)

co
m
p
u
ta
ti
on

ti
m
e
(s
)

kd-CD simple kd-CD

Figure 5.10: Computation time of both
collision detection variants

0

500000

1000000

1500000

2000000

0 5 10 15

trajectory position distance (m)

co
ll
id
in
g
p
oi
n
ts

0

10

20

30

0 5 10 15

trajectory position distance (m)

co
m
p
u
ta
ti
on

ti
m
e
(s
)

Figure 5.11: Computation time with
different distances between points on
the trajectory.



collision detection 117

In Figure 5.11 the search radius is kept constant and the sam-

pling rate of the trajectory is modified to investigate the depen-

dency of the segment based collision detection method on the seg-

ment size. The model was sampled with dm = 0.231 m and a search

radius of 0.2 m. One can observe that as the segment size grows

larger, the computation time quickly converges to a constant value

of under 10 seconds. The amount of found colliding points slightly

increases with larger segment sizes as more colliding points will be

found inside the curvature of the tunnel wall.

1200000

1500000

1800000

2100000

0.2 0.4 0.6 0.8

search radius (m)

co
ll
id
in
g
p
oi
n
ts

0

100

200

0.2 0.4 0.6 0.8

search radius (m)

co
m
p
u
ta
ti
on

ti
m
e
(s
)

kd-CD simple kd-CD

Figure 5.12: Computation time with
different search radii and correspond-
ing sampling rates of the model and
trajectory.

Figure 5.12 shows a more realistic setup in the sense that not

only the search radius is modified like in figure 5.10 but also the

sampling rate of the trajectory and train wagon model. If the search

radius grows, lower sampling rates are possible because more

volume is covered. For each value of search radius the sampling

rates have been chosen such that no points of the environment

are skipped as the model moves along its trajectory. The distance

between individual points on the trajectory dt and the distance be-

tween points in the model dm is chosen such that dt = dm = 2
3

√
3r.

The graph in Figure 5.12 shows that the both algorithms, kd-CD-

simple and kd-CD, quickly approaches runtimes below five seconds

as the amount of required k-d tree searches decreases with higher

search radii and thus lower sampling rates. On the other hand, the

graph also shows, that with the lowest and thus most precise search

radius of 5 cm which searches on a trajectory of 19, 392 positions

a model of 28, 622 points, our k-d tree is able to make all required

19, 392× 28, 622 = 555, 037, 824 k-d tree searches in only 77 s. This

means that the average k-d tree search in a dataset of 18.92 mill

points takes 139 ns. This in turn means that collision detections of

even complex models with up to 287000 points can be done in real



118

time speed of 25.0 frames per second with the presented k-d search

tree implementation.

1250000

1500000

1750000

2000000

2250000

0.2 0.4 0.6 0.8

search radius (m)

co
ll
id
in
g
p
oi
n
ts

0

100

200

300

400

0.2 0.4 0.6 0.8

search radius (m)
co
m
p
u
ta
ti
on

ti
m
e
(s
)

kd-PD fast kd-PD

Figure 5.13: Computation time of both
penetration depth variants, kd-PD-fast
and kd-PD, with different search radii

Figure 5.13 shows the computation time of both penetration

depth variants, kd-PD-fast and kd-PD, with different search radii

r. The distance between individual points on the trajectory dt and

the distance between points in the model dm is chosen such that

dt = dm = 2
3

√
3r. Colliding points are computed using kd-CD. One

can see that kd-PD-fast stays below 20 s of computation time. This

is expected as the performance of kd-PD-fast only depends on the

amount of colliding points found. We can observe that kd-PD-fast

increases in runtime slightly as the mount of colliding points rises

with increased search radius. kd-PD performs badly for very small

search radii for which a large number of k-d tree searches have to

be performed but quickly approaches runtime values below one

minute as the search radius grows larger than 10 cm.

5.6.1 CPU tests

The tests of the 3dtk k-d tree implementation have been carried out

on two systems. We call the first system “e5-2630 v3” which is a

modern desktop system with a 2.4 GHz 8 core processor and 32 GB

of RAM. The second test system is dual CPU server system with

two 2.8 GHz 10 core CPUs (for a total of 20 cores) and 256 GB of

RAM. We call the second system “e5-2680 v2”. Both systems are

based on Intel Xeon processors and support Hyper-Threading with

16 and 40 threads, respectively. The operating system in both cases

was Debian unstable with GCC 5.3.1 and Linux 4.3.5 on the amd64

architecture.



collision detection 119

28 Schauer, J. and Nüchter, A. (2015).
Collision detection between point
clouds using an efficient k-d tree
implementation. Advanced Engineering
Informatics, 29(3):440–458

5.6.2 GPU tests

To test the GPU accelerated implementation 3 different Nvidia

graphic cards were used. The first GPU is a Geforce Titan X with

3072 CUDA cores (base clock: 1000 MHz, boost: 1075 MHz) and 12

GB GDDR5 384-bit memory. The second one is a Geforce GTX980

with 2048 CUDA cores (base clock: 1126 MHz, boost: 1216 MHz)

and 4 GB GDDR5 256-bit memory. The third one is Tesla K40 with

2880 CUDA cores (base clock: 745 MHz, boost: 810/875 MHz) and

12 GB GDDR5 384-bit memory. The GPU performance is tested

with the first system “e5-2630 v3”.

5.6.3 CPU specific benchmarks

0.25

0.50

0.75

1.00

10 20 30 40 50 60

number of threads

re
la
ti
v
e
co
m
p
u
ta
ti
o
n
ti
m
e

Figure 5.14: Box plot of 3DTK runtime
on the Hannover dataset by number of
threads

In an earlier publication28 we claimed that our k-d tree collision

detection algorithm would scale completely linearly with increasing

number of threads. In Figure 5.14 we show proof of this claim.

The figure shows a box-and-whisker plot of 3dtk runtime on the

Hannover dataset by number of threads on the “e5-2680 v2” setup

(20 cores). The x-axis shows the number of threads from 1 to 60.

The y-axis is scaled to show relative runtime compared to using

20 threads. Five benchmarks were carried out for each indicated

number of threads. Values indicate the multiple of the runtime per

number of threads compared to 20 threads. Higher values mean

faster computation. The runtime at 40 threads is close to 1.2 times

the runtime with 20 threads. As the test system had 20 individual

CPU cores, performance increases with the same slope until that

number of threads. After that, performance increases with a less

steep slope until 40 threads which can be explained by Intel Hyper-

Threading which is able to boost performance by an additional

17.3 % compared to the 20 thread case. No further performance

improvement is gained after 40 threads, which lets us conclude

that the best CPU utilization is achieved by using the exact same



120

amount of threads as virtual cores are available.

5.6.4 GPU specific benchmarks

0

250

500

750

40 60 80 100

grid resolution (cm)

ru
n
ti
m
e
in

se
co
n
d
s RGD construction for environment

sync data, create local environment RGD

nearest-neighbor search

transform model and bounding box

update collisions

Figure 5.15: Performance of the GPU
method by grid resolution

Figure 5.15 shows the performance of the GPU method by grid

resolution on the Hannover dataset. The x-axis shows the grid size.

The right-hand-side x-axis belongs to the line plot and marks the

resulting number of cells. The left-hand-side x-axis belongs to the

stacked bar chart and indicates the computation time in seconds for

each step of the GPU computation.

For high number of cells the construction time of regular grid is

increased, but is still below 5% of the total computation time. The

most time is spent during nearest-neighbor search. The computa-

tion time increases with the grid cell size but also heavily fluctuates.

These fluctuations can be explained by slight variations in the de-

compositioning resulting in different number of cells being needed

on the GPU for collision detection. These fluctuations in run-time

are thus deterministic and depend on the input model and trajec-

tory.

5.6.5 CPU versus GPU benchmarks

The shown timings are for the collision search only and do not

include the fixed times per dataset that is needed to create the

necessary initial data structures like the k-d tree for the CPU based

method or the regular grid decomposition of the environment for



collision detection 121

the GPU based method. In all experiments we used a search radius

of 10 cm.

0

500

1000

ru
n
ti
m
e
in

se
co
n
d
s

Hannover

0

50000

100000

150000

200000

250000

ru
n
ti
m
e
in

se
co
n
d
s

Wolfsburg

0

100

200

300

ru
n
ti
m
e
in

se
co
n
d
s

El Teniente

0

50

100

ru
n
ti
m
e
in

se
co
n
d
s

Traintunnel

e5-2630 v3 e5-2680 v2 titan X gtx 980 Tesla

Figure 5.16: Runtime in seconds on
each platform for different datasets.

Figure 5.16 shows four graphs comparing the run-time of the

CPU and GPU implementations on our four datasets. The CPU

approach using the 3dtk k-d tree implementation uses as many

threads as the respective machines have virtual CPU cores. The

GPU approach using regular grid decomposition uses 50 as the grid

size. It can be seen that the CPU and GPU based methods perform

differently well, depending on the dataset. The GPU based method

on the “titan X” platform is the fastest on the “Wolfsburg” dataset

but the CPU based “e5-2680 v2” platform vastly outperforms the

GPU based methods on the Train Tunnel dataset. We attribute the

spatial differences between the datasets to this effect. The “El Te-

niente” and “Train Tunnel” datasets are similar in that the bound-

ing box of the environment is mostly empty space in both cases,

but more so for the “Train Tunnel” dataset which does not contain

a loop like the “El Teniente” dataset. Thus, the regular grid decom-

position for these datasets will yield a high number of empty cells

which will never be queried and the cells with points which end up

getting needed comparatively large and overapproximate the actual

space to check for collisions. The Hannover and Wolfsburg datasets

on the other hand are indoor datasets where the points are more or

less evenly distributed over the constructed grid cells.

The last comparison we carried out was to evaluate the two ap-

proaches by how they behave depending on the number of points

of the environment. For this purpose we created 111 random sam-

plings of the environment point cloud of the “Hannover” dataset

in from 500000 points up to 55500000 points in steps of 500000. We

then executed our algorithms on the “e5-2680 v2” as well as on the



122

“titan X” platform for each of the resulting 111 datasets, each with

the original model and trajectory.

200

400

600

0e+00 2e+07 4e+07

number of points

ru
n
ti
m
e
in

se
co
n
d
s

CPU (e5-2680 v2) GPU (Titan X)

Figure 5.17: Performance with varying
numbers of points

The resulting runtimes can be seen in Figure 5.17. The x-axis

shows the number of points in the environment while the y-axis

shows the runtime in seconds. The graphs indicate a nearly linear

behaviour, but we suspect that a very shallow logarithmic function

underneath. More research is needed to properly attribute the

behaviour seen in the graph.

Table 5.2: Number of colliding points for each dataset

Name #colliding CPU #colliding GPU

El Teniente 35225149 35225399

Hannover 2495803 2495804

Wolfsburg 26089196 26089208

Train Tunnel 1627225 1627233

The last two columns of table 5.2 show a difference between

the number of colliding points that were found with each method.

An analysis showed that both methods produce at least 99.999

% common points given our datasets. The differing points were

found to lie on the give search radius. The number of common

points is higher for datasets where the input points are given with

low precision values. This lets us conclude that the differences

stem from floating point errors due to our differing algorithms as

well as from the CPU method using double precision while the

GPU method uses float precision. Both methods reliably produce

the same set of points between different runs and are thus fully

deterministic.



collision detection 123

5.7 Summary

This chapter presented a highly efficient k-d tree implementation

which is used to perform collision detection of a sampled arbi-

trary point cloud against an environment of several million points.

It is shown that even though this is a partly brute-force method

as it checks all sampled points of the model, both, kd-CD-simple

and kd-CD perform well enough such that real queries of densely

sampled trajectories are completed in a matter of seconds. Two

heuristics for calculating penetration depth, kd-PD-fast and kd-PD

have been presented which work for different scenarios and have

different precision and runtime properties.

Both variants, kd-CD-simple and kd-CD, are embarrassingly

parallel operations. All k-d tree searches can be run in parallel

and even updating of the boolean collision vector can be done in

parallel as its values are only ever written but not read during

collision detection. Thus, it should easily be possible to run the

algorithm which is currently executed in series, in parallel instead.

Verifying the possible performance improvements of this measure is

up to further research.

Additionally this chapter has presented a comparison of CPU

and GPU implementations for the collision detection problem. With

clever implementations, the run time is lowered to an acceptable

level for telematics applications.





1 Hornung, A., Wurm, K. M., Ben-
newitz, M., Stachniss, C., and Burgard,
W. (2013). Octomap: An efficient
probabilistic 3d mapping framework
based on octrees. Autonomous Robots,
34(3):189–206
2 Elseberg, J., Borrmann, D., and
Nüchter, A. (2013). One billion points
in the cloud–an octree for efficient
processing of 3d laser scans. ISPRS
Journal of Photogrammetry and Remote
Sensing, 76:76–88

3 Kämpe, V., Sintorn, E., and Assars-
son, U. (2013). High resolution sparse
voxel dags. ACM Transactions on
Graphics (TOG), 32(4):101

4 Elseberg, J., Borrmann, D., and
Nüchter, A. (2011). Full wave anal-
ysis in 3d laser scans for vegetation
detection in urban environments. In
Information, Communication and Au-
tomation Technologies (ICAT), 2011 XXIII
International Symposium on, pages 1–7.
IEEE

6

Future Work

Needless to say a lot of work remains to be done. Throughout this

work we already pointed out many of the remaining unsolved

challenges ahead of us.

So far we use the C++ standard library functionality like std::set

and std::unorderded_map to build the voxel grid. We started with

this simple approach to be able to show that good results can be

achieved even when discretizing the input data with a regular oc-

cupancy grid. The bottleneck of our algorithm is the walk through

the voxel grid and most time during its traversal is spent look-

ing up grid cell information from the occupancy grid. Using an

std::unordered_map already gives us better runtimes than compet-

ing approaches but we assume that we can further increase perfor-

mance by using data structures which are directly designed for fast

traversal through an occupancy grid. Examples for such implemen-

tations are Octomap1 as well as our own Octree implementation2

which both offer an octree data structures which implement ray

tracing capabilities. Another approach would be to replace the

voxel grid by a sparse voxel DAG3 which is specifically optimized

to facilitate fast ray tracing through it.

Since the only data structure that must remain in memory is

the occupancy grid, and since the memory requirement of that

grid is several orders of magnitude less than the raw point cloud

data, especially when using techniques like sparse voxel DAGs, it

becomes feasible to process point clouds which would otherwise

not fit into memory by loading scans on demand. For each step of

the algorithm, only the points of a single scan are required and thus

it becomes possible to immediately remove data from memory after

it has been processed.

Lastly, many laser scanners are able to return more than one

echo. Typically, structures that result in multiple laser echos are

edges, fences, power lines or vegetation4. These are also all the

structures which typically do not provide good normal vectors.

Information about multiple echos could be used to make our al-

gorithm more robust against situations in which normal vectors

cannot be computed.

More work has to be done to research which checks to abort the

k-d tree traversal for different search geometries and input data



126

5 Tzafestas, C. and Coiffet, P. (1996).
Real-time collision detection us-
ing spherical octrees: virtual reality
application. In Robot and Human Com-
munication, 1996., 5th IEEE International
Workshop on, pages 500–506

6 Schauer, J. and Nüchter, A. (2015).
Collision detection between point
clouds using an efficient k-d tree
implementation. Advanced Engineering
Informatics, 29(3):440–458

7 Houshiar, H., Elseberg, J., Borrmann,
D., and Nüchter, A. (2013). Panorama
Based Point Cloud Reduction and
Registration. In Proceedings of the
16th IEEE International Conference on
Advanced Robotics (ICAR ’13), pages
1–8, Montevideo, Uruguay
8 Seufert, M., Kargl, J., Schauer, J.,
Nüchter, A., and Hoßfeld, T. (2020).
Different points of view: Impact of
3d point cloud reduction on qoe of
rendered images. In Proceedings of
the Twelfth International Conference
on Quality of Multimedia Experience
(QoMEX)

perform best. Another easy way to increase the performance could

be to change the sampling of the model from bounding spheres to

different geometries like axis aligned bounding boxes which are

similarly quick to check for collisions. Lastly, instead of checking

every point of the model, a hierarchy of bounding spheres or other

geometries could be used5 but that would destroy the property of

the current algorithm that the input model is allowed to arbitrarily

deform.

While we have now presented flexible CPU and GPU implemen-

tations, we further aim at improving run time. To this end, we will

look into the issue of regular resampling of the trajectories through

B-Spline approximation, support of double precision calculations

for the GPU method as well as enhancing the GPU method with

more collision detection methods from 3dtk (see 6). Another use-

ful feature would be a heuristic which is able to pick a good cell

size for the regular grid decomposition or a way to work around

the limitations of the GPU methods for very sparse environments.

Lastly, more experiments are needed to verify the actual depen-

dence of our algorithms on the input pointcloud.

The spherical quadtree data structure could be applied in the

context of the work of Houshiar et al.7 since panorama projections

typically fail at the poles while the spherical quadtree does not

have such singularities. Similarly in the context of point reduction,

our work on compressing point clouds8 could be extended to use

the sphere quadtree as a reduction method without differing point

densities towards the poles.



7

Conclusions

The field of 3D point cloud processing poses great demands on

algorithms and data structures. Modern laser scanners return

point clouds with millions of points per scan. When multiple scans

get registered, datasets can easily contain many hundred million

points.

In this thesis we showed multiple algorithms to process large

spatial datasets using various tree data structures as well as regular

grid data structures. We showed that even very large datasets can

be processed in a fast and efficient way.

We presented an approach specifically tailored to remove dy-

namic portions of 3D point cloud data. Our solution is suitable for

scan slices from mobile mapping as well as for terrestrial scan data.

We show experimental evidence that our approach achieves similar

quality as an existing solution for scan pairs. In terms of runtime

our method is superior for the purpose of cleaning scans from dy-

namic objects as it compares arbitrarily many scans with a linear

increase of the runtime.

Additionally, this thesis has presented a comparison of CPU and

GPU implementations for the collision detection problem. With

clever implementations, the run time is lowered to an acceptable

level for telematics applications and compares favourably to mas-

sively parallel operations on a GPU.

Lastly, this thesis presented a highly efficient k-d tree implemen-

tation which is used to perform collision detection of a sampled

arbitrary point cloud against an environment of several million

points. It is shown that even though this is a partly brute-force

method as it checks all sampled points of the model, both, kd-CD-

simple and kd-CD perform well enough such that real queries of

densely sampled trajectories are completed in a matter of seconds.

Two heuristics for calculating penetration depth, kd-PD-fast and

kd-PD have been presented which work for different scenarios and

have different precision and runtime properties.





Bibliography

Amanatides, J., Woo, A., et al. (1987). A fast voxel traversal algo-

rithm for ray tracing. In Eurographics, volume 87, pages 3–10.

Andreasson, H., Magnusson, M., and Lilienthal, A. (2007). Has

somethong changed here? autonomous difference detection for

security patrol robots. In Intelligent Robots and Systems, 2007. IROS

2007. IEEE/RSJ International Conference on, pages 3429–3435. IEEE.

Asvadi, A., Peixoto, P., and Nunes, U. (2016a). Two-stage

static/dynamic environment modeling using voxel represen-

tation. In Robot 2015: Second Iberian Robotics Conference, pages

465–476. Springer.

Asvadi, A., Premebida, C., Peixoto, P., and Nunes, U. (2016b). 3d

lidar-based static and moving obstacle detection in driving envi-

ronments: An approach based on voxels and multi-region ground

planes. Robotics and Autonomous Systems, 83:299–311.

Bedkowski, J., Majek, K., and Nüchter, A. (2013). General purpose

computing on graphics processing units for robotic applications.

Journal of Software Engineering for Robotics, 4(1):23–33.

Bedkowski, J., Maslowski, A., and De Cubber, G. (2012). Real time

3d localization and mapping for usar robotic application. Indus-

trial Robot: An International Journal, 39(5):464–474.

Bittner, J., Hapala, M., and Havran, V. (2015). Incremental bvh

construction for ray tracing. Computers & Graphics, 47:135–144.

Blanco-Claraco, J. (2014). Mobile robot programming toolkit (mrpt).

Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., and

Hertzberg, J. (2008). Globally consistent 3d mapping with scan

matching. Robotics and Autonomous Systems, 56(2):130–142.

Boute, R. T. (1992). The euclidean definition of the functions div

and mod. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 14(2):127–144.

Budavári, T., Szalay, A. S., and Fekete, G. (2010). Searchable sky

coverage of astronomical observations: Footprints and exposures.

Publications of the Astronomical Society of the Pacific, 122(897):1375.



130

Cohen, J. D., Lin, M. C., Manocha, D., and Ponamgi, M. (1995). I-

collide: An interactive and exact collision detection system for

large-scale environments. In Proceedings of the 1995 symposium on

Interactive 3D graphics, pages 189–ff. ACM.

Curless, B. and Levoy, M. (1996). A volumetric method for building

complex models from range images. In Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques,

pages 303–312.

Dierckx, P. (1993). Curve and surface fitting with splines. Oxford

University Press, Inc.

Drews-Jr, P., Núñez, P., Rocha, R. P., Campos, M., and Dias, J.

(2013). Novelty detection and segmentation based on gaus-

sian mixture models: A case study in 3d robotic laser mapping.

Robotics and Autonomous Systems, 61(12):1696–1709.

EBO (1967). Eisenbahn-Bau- und Betriebsordnung. http://www.

gesetze-im-internet.de/ebo/anlage_1_67.html. [Online;

accessed 2014-07-14].

Elseberg, J., Borrmann, D., and Nüchter, A. (2011). Full wave anal-

ysis in 3d laser scans for vegetation detection in urban environ-

ments. In Information, Communication and Automation Technologies

(ICAT), 2011 XXIII International Symposium on, pages 1–7. IEEE.

Elseberg, J., Borrmann, D., and Nüchter, A. (2013). One billion

points in the cloud–an octree for efficient processing of 3d laser

scans. ISPRS Journal of Photogrammetry and Remote Sensing, 76:76–

88.

Elseberg, J., Borrmann, D., Schauer, J., Nüchter, A., Koriath, D., and

Rautenberg, U. (2014a). A sensor skid for precise 3d modeling

of production lines. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, 2(5):117.

Elseberg, J., Borrmann, D., Schauer, J., Nüchter, A., Koriath, D., and

Rautenberg, U. (2014b). A sensor skid for precise 3d modeling of

production lines. ISPRS Annals of Photogrammetry, Remote Sensing

and Spatial Information Sciences, II-5:117–122.

Elseberg, J., Magnenat, S., Siegwart, R., and Nüchter, A. (2012).

Comparison of nearest-neighbor-search strategies and imple-

mentations for efficient shape registration. Journal of Software

Engineering for Robotics, 3(1):2–12.

Fekete, G. (1990). Rendering and managing spherical data with

sphere quadtrees. In Proceedings of the 1st Conference on Visualiza-

tion’90, pages 176–186. IEEE Computer Society Press.

Gálai, B. and Benedek, C. (2017). Change detection in urban streets

by a real time lidar scanner and mls reference data. In Interna-

tional Conference Image Analysis and Recognition, pages 210–220.

Springer.

http://www.gesetze-im-internet.de/ebo/anlage_1_67.html
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html


bibliography 131

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets

robotics: The kitti dataset. International Journal of Robotics Research

(IJRR).

Goodchild, M. F. and Shiren, Y. (1992). A hierarchical spatial data

structure for global geographic information systems. CVGIP:

Graphical Models and Image Processing, 54(1):31–44.

Gottschalk, S., Lin, M. C., and Manocha, D. (1996). Obbtree: A hier-

archical structure for rapid interference detection. In Proceedings

of the 23rd annual conference on Computer graphics and interactive

techniques, pages 171–180. ACM.

Guadarrama, S. and Ruiz-Mayor, A. (2010). Approximate robotic

mapping from sonar data by modeling perceptions with

antonyms. Information Sciences, 180(21):4164–4188.

Herbert, M., Caillas, C., Krotkov, E., Kweon, I. S., and Kanade, T.

(1989). Terrain mapping for a roving planetary explorer. In

Robotics and Automation, 1989. Proceedings., 1989 IEEE International

Conference on, pages 997–1002. IEEE.

Hermann, A., Drews, F., Bauer, J., Klemm, S., Roennau, A., and

Dillmann, R. (2014a). Unified gpu voxel collision detection for

mobile manipulation planning. In 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4154–4160.

IEEE.

Hermann, A., Drews, F., Bauer, J., Klemm, S., Roennau, A., and

Dillmann, R. (2014b). Unified gpu voxel collision detection for

mobile manipulation planning. In Intelligent Robots and Systems

(IROS), 2014.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Bur-

gard, W. (2013). Octomap: An efficient probabilistic 3d mapping

framework based on octrees. Autonomous Robots, 34(3):189–206.

Houshiar, H., Elseberg, J., Borrmann, D., and Nüchter, A. (2013).

Panorama Based Point Cloud Reduction and Registration. In

Proceedings of the 16th IEEE International Conference on Advanced

Robotics (ICAR ’13), pages 1–8, Montevideo, Uruguay.

Hubbard, P. M. (1996). Approximating polyhedra with spheres for

time-critical collision detection. ACM Transactions on Graphics

(TOG), 15(3):179–210.

Kämpe, V., Sintorn, E., and Assarsson, U. (2013). High resolution

sparse voxel dags. ACM Transactions on Graphics (TOG), 32(4):101.

Klein, J. and Zachmann, G. (2004). Point cloud collision detection.

In Computer Graphics Forum, volume 23, pages 567–576. Wiley

Online Library.



132

Klosowski, J. T., Held, M., Mitchell, J. S., Sowizral, H., and Zikan,

K. (1998). Efficient collision detection using bounding volume

hierarchies of k-dops. Visualization and Computer Graphics, IEEE

Transactions on, 4(1):21–36.

Knuth, D. E. (2011). The Art of Computer Programming. Addison-

Wesley Professional.

Koch, R., May, S., Murmann, P., and Nüchter, A. (2017). Identifica-

tion of transparent and specular reflective material in laser scans

to discriminate affected measurements for faultless robotic slam.

Robotics and Autonomous Systems, 87:296–312.

Kruger, J. and Westermann, R. (2003). Acceleration techniques

for gpu-based volume rendering. In Proceedings of the 14th IEEE

Visualization 2003 (VIS’03), page 38. IEEE Computer Society.

Larsson, T., Akenine-Möller, T., and Lengyel, E. (2007). On faster

sphere-box overlap testing. journal of graphics, gpu, and game tools,

12(1):3–8.

Leung, K., Lühr, D., Houshiar, H., Inostroza, F., Borrmann, D.,

Adams, M., Nüchter, A., and Ruiz del Solar, J. (2017). Chilean

underground mine dataset. The International Journal of Robotics

Research, 36(1):16–23.

Liu, K., Boehm, J., and Alis, C. (2016). Change detection of mobile

lidar data using cloud computing. In International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences-

ISPRS Archives, volume 41, pages 309–313. International Society

of Photogrammetry and Remote Sensing (ISPRS).

Lueger, O. (1904). Krümmungsverhältnisse. In Lexikon der gesamten

Technik und ihrer Hilfswissenschaften, pages 718–724. Stuttgart /

Leipzig: DVA.

Luque, R. G., Comba, J. L., and Freitas, C. M. (2005). Broad-phase

collision detection using semi-adjusting bsp-trees. In Proceedings

of the 2005 symposium on Interactive 3D graphics and games, pages

179–186. ACM.

Magnenat, S. (2014). libnabo.

Moravec, H. and Elfes, A. (1985). High resolution maps from wide

angle sonar. In Proceedings. 1985 IEEE international conference on

robotics and automation, volume 2, pages 116–121. IEEE.

Mount, D. M. and Arya, S. (2010). Ann: a library for approximate

nearest neighbor searching, 2005.

Muja, M. and Lowe, D. G. (2012). Flann - fast library for approxi-

mate nearest neighbors.



bibliography 133

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,

Davison, A. J., Kohi, P., Shotton, J., Hodges, S., and Fitzgibbon,

A. (2011). Kinectfusion: Real-time dense surface mapping and

tracking. In 2011 10th IEEE International Symposium on Mixed and

Augmented Reality, pages 127–136. IEEE.

Nüchter, A., Elseberg, J., Schneider, P., and Paulus, D. (2010). Study

of parameterizations for the rigid body transformations of the

scan registration problem. Computer Vision and Image Understand-

ing, 114(8):963 – 980.

Nuchter, A., Surmann, H., Lingemann, K., Hertzberg, J., and Thrun,

S. (2004). 6d slam with an application in autonomous mine

mapping. In Robotics and Automation, 2004. Proceedings. ICRA’04.

2004 IEEE International Conference on, volume 2, pages 1998–2003.

IEEE.

Núñez, P., Drews, P., Bandera, A., Rocha, R., Campos, M., and Dias,

J. (2010). Change detection in 3d environments based on gaussian

mixture model and robust structural matching for autonomous

robotic applications. In Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pages 2633–2638. IEEE.

Oriolo, G., Ulivi, G., and Vendittelli, M. (1997). Fuzzy maps: a new

tool for mobile robot perception and planning. Journal of Robotic

Systems, 14(3):179–197.

Pfaff, P., Triebel, R., and Burgard, W. (2007). An efficient extension

to elevation maps for outdoor terrain mapping and loop closing.

The International Journal of Robotics Research, 26(2):217–230.

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. (2002). Ray

tracing on programmable graphics hardware. In ACM Transac-

tions on Graphics (TOG), volume 21, pages 703–712. ACM.

Qin, R., Tian, J., and Reinartz, P. (2016). 3d change detection–

approaches and applications. ISPRS Journal of Photogrammetry

and Remote Sensing, 122:41–56.

Qiu, D., May, S., and Nüchter, A. (2009). Gpu-accelerated nearest

neighbor search for 3d registration. In Computer Vision Systems,

pages 194–203. Springer.

Rashed, H., Ramzy, M., Vaquero, V., El Sallab, A., Sistu, G., and

Yogamani, S. (2019). Fusemodnet: Real-time camera and lidar

based moving object detection for robust low-light autonomous

driving. In The IEEE International Conference on Computer Vision

(ICCV) Workshops.

Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., and Strasser, W. (2003).

Smart hardware-accelerated volume rendering. In VisSym, vol-

ume 3, pages 231–238. Citeseer.



134

Ruixu Liu, V. K. A. (2017). 3d indoor scene reconstruction and

change detection for robotic sensing and navigation.

Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library

(pcl). In Robotics and Automation (ICRA), 2011 IEEE International

Conference on, pages 1–4. IEEE.

Schauer, J., Bedkowski, J., Majek, K., and Nüchter, A. (2016). Per-

formance comparison between state-of-the-art point-cloud based

collision detection approaches on the CPU and GPU. In Proceed-

ings of the 4th IFAC Symposium on Telematics Applications (TA ’13),

volume 49, pages 54–59, Porto Alegre, Brazil.

Schauer, J. and Nüchter, A. (2014). Efficient point cloud collision

detection and analysis in a tunnel environment using kinematic

laser scanning and kd tree search. The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences,

40(3):289.

Schauer, J. and Nüchter, A. (2015). Collision detection between

point clouds using an efficient k-d tree implementation. Advanced

Engineering Informatics, 29(3):440–458.

Schauer, J. and Nüchter, A. (2017). Digitizing automotive produc-

tion lines without interrupting assembly operations through an

automatic voxel-based removal of moving objects. In Control

& Automation (ICCA), 2017 13th IEEE International Conference on,

pages 701–706. IEEE.

Schauer, J. and Nüchter, A. (2015). Collision detection between

point clouds using an efficient k-d tree implementation. Journal

Advanced Engineering Informatics (JAdvEI), 29(3):440–458.

Schauer, J. and Nüchter, A. (2018a). Removing non-static objects

from 3d laser scan data. ISPRS Journal of Photogrammetry and

Remote Sensing (JPRS), 143:15–38.

Schauer, J. and Nüchter, A. (2018b). The Peopleremover — Remov-

ing Dynamic Objects From 3-D Point Cloud Data by Traversing

a Voxel Occupancy Grid. IEEE Robotics and Automation Letters

(RAL), 3(3):1679–1686.

Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The r+-tree: A

dynamic index for multi-dimensional objects.

Seufert, M., Kargl, J., Schauer, J., Nüchter, A., and Hoßfeld, T.

(2020). Different points of view: Impact of 3d point cloud reduc-

tion on qoe of rendered images. In Proceedings of the Twelfth Inter-

national Conference on Quality of Multimedia Experience (QoMEX).

Siam, M., Mahgoub, H., Zahran, M., Yogamani, S., Jagersand, M.,

and El-Sallab, A. (2017). Modnet: Moving object detection net-

work with motion and appearance for autonomous driving. arXiv

preprint arXiv:1709.04821.



bibliography 135

Siegmann, J. (2011). Lichtraumprofil und Fahrzeugbegren-

zung im europäischen Schienenverkehr. http://www.

forschungsinformationssystem.de/servlet/is/325031/. [On-

line; accessed 2014-07-14].

Sulaiman, H. A., Othman, M. A., Ismail, M. M., Said, M., Alice,

M., Ramlee, A., Misran, M. H., Bade, A., and Abdullah, M. H.

(2013). Distance computation using axis aligned bounding box

(aabb) parallel distribution of dynamic origin point. In Emerging

Research Areas and 2013 International Conference on Microelectronics,

Communications and Renewable Energy (AICERA/ICMiCR), 2013

Annual International Conference on, pages 1–6. IEEE.

Szalay, A. S., Gray, J., Fekete, G., Kunszt, P. Z., Kukol, P., and

Thakar, A. (2007). Indexing the sphere with the hierarchical

triangular mesh. arXiv preprint cs/0701164.

Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., and

Gross, M. (2003a). Optimized spatial hashing for collision de-

tection of deformable objects. Technical report, Technical report,

Computer Graphics Laboratory, ETH Zurich, Switzerland.

Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., and

Gross, M. H. (2003b). Optimized spatial hashing for collision

detection of deformable objects. In VMV, volume 3, pages 47–54.

Triebel, R., Pfaff, P., and Burgard, W. (2006). Multi-level surface

maps for outdoor terrain mapping and loop closing. In 2006

IEEE/RSJ international conference on intelligent robots and systems,

pages 2276–2282. IEEE.

Tufte, E. R. (2006). Beautiful evidence. Graphis Press.

Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel,

T., and Norman, M. L. (2011). yt: A Multi-code Analysis Toolkit

for Astrophysical Simulation Data. The Astrophysical Journal

Supplement Series, 192:9.

Tzafestas, C. and Coiffet, P. (1996). Real-time collision detection

using spherical octrees: virtual reality application. In Robot and

Human Communication, 1996., 5th IEEE International Workshop on,

pages 500–506.

Underwood, J. P., Gillsjö, D., Bailey, T., and Vlaskine, V. (2013).

Explicit 3d change detection using ray-tracing in spherical coordi-

nates. In Robotics and Automation (ICRA), 2013 IEEE International

Conference on, pages 4735–4741. IEEE.

Vieira, A. W., Drews, P. L., and Campos, M. F. (2014). Spatial den-

sity patterns for efficient change detection in 3d environment for

autonomous surveillance robots. IEEE Transactions on Automation

Science and Engineering, 11(3):766–774.

http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/


136

Weinlich, A., Keck, B., Scherl, H., Kowarschik, M., and Hornegger, J.

(2008). Comparison of high-speed ray casting on gpu using cuda

and opengl. In Proceedings of the First International Workshop on

New Frontiers in High-performance and Hardware-aware Computing,

volume 1, pages 25–30.

Xiao, W., Vallet, B., Brédif, M., and Paparoditis, N. (2015). Street

environment change detection from mobile laser scanning point

clouds. ISPRS Journal of Photogrammetry and Remote Sensing,

107:38–49.

Xiao, W., Vallet, B., and Paparoditis, N. (2013). Change detection

in 3d point clouds acquired by a mobile mapping system. ISPRS

Annals of Photogrammetry, Remote Sensing and Spatial Information

Sciences, 1(2):331–336.

Zhou, K., Hou, Q., Wang, R., and Guo, B. (2008). Real-time kd-tree

construction on graphics hardware. ACM Transactions on Graphics

(TOG), 27(5):126.



Zitation dieser Publikation

Die Schriftenreihe

Anwendungsschwerpunkte sind u.a. mobile Roboter, Tele-
Robotik, Raumfahrtsysteme und Medizin-Robotik.

Die Kombination fortgeschrittener Informationsverar-
beitungsmethoden mit Verfahren der Regelungstechnik 
eröffnet hier interessante Forschungs- und Anwendungs-
perspektiven. Es werden dabei folgende interdisziplinäre 
Aufgabenschwerpunkte bearbeitet:

wird vom Lehrstuhl für Informatik VII: Robotik und 
Telematik der Universität Würzburg herausgegeben und 
präsentiert innovative Forschung aus den Bereichen der 
Robotik und der Telematik.

Ÿ Robotik und Mechatronik: Kombination von Infor-
matik, Elektronik, Mechanik, Sensorik, Regelungs- 
und Steuerungstechnik, um Roboter adaptiv und 
flexibel ihrer Arbeitsumgebung anzupassen.

Ÿ Telematik: Integration von Telekommunikation, Infor-
matik und  Steuerungstechnik, um Dienstleistungen 
an entfernten Standorten zu erbringen.

Würzburg: Universität Würzburg.
DOI: 10.25972/OPUS-21428

SCHAUER MARIN RODRIGUES, J. (2020). Detecting 
Changes and Finding Collisions in 3D Point Clouds - 
Data Structures and Algorithms for Post-Processing 
Large Datasets. Schriftenreihe Würzburger 
Forschungsberichte in Robotik und Telematik, Band 20.

Am Hubland
D-97074 Wuerzburg

Tel.:  +49 (0) 931 - 31 - 86678

Lehrstuhl Informatik VII

Fax:  +49 (0) 931 - 31 - 86679

Robotik und Telematik

ISSN: 1868-7474 (online)
ISSN: 1868-7466 (print)
ISBN: 978-3-945459-32-4 (online)

http://www7.informatik.uni-wuerzburg.de
schi@informatik.uni-wuerzburg.de

Universitätsbibliothek Würzburg

D-97074 Würzburg

Tel.:  +49 (0) 931 - 31 - 85906

opus@bibliothek.uni-wuerzburg.de

Am Hubland

https://opus.bibliothek.uni-wuerzburg.de

Dieses Dokument wird bereitgestellt 
durch den Online-Publikationsservice 
der Universität Würzburg.




