
Optical Medieval Music
Recognition

vorgelegt von

Christoph Wick

Würzburg, 2020

Kumulative Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der
Bayerischen Julius-Maximilians-Universität Würzburg

Abstract
In recent years, great progress has been made in the area of Artificial Intelligence (AI) due to
the possibilities of Deep Learning which steadily yielded new state-of-the-art results especially
in many image recognition tasks. Currently, in some areas, human performance is achieved or
already exceeded. This great development already had an impact on the area of Optical Music
Recognition (OMR) as several novel methods relying on Deep Learning succeeded in specific tasks.
Musicologists are interested in large-scale musical analysis and in publishing digital transcriptions

in a collection enabling to develop tools for searching and data retrieving. The application of OMR
promises to simplify and thus speed-up the transcription process by either providing fully-automatic
or semi-automatic approaches. This thesis focuses on the automatic transcription of Medieval
music with a focus on square notation which poses a challenging task due to complex layouts, highly
varying handwritten notations, and degradation. However, since handwritten music notations are
quite complex to read, even for an experienced musicologist, it is to be expected that even with new
techniques of OMR manual corrections are required to obtain the transcriptions.
This thesis presents several new approaches and open source software solutions for layout analysis

andAutomatic Text Recognition (ATR) for early documents and forOMRofMedievalmanuscripts
providing state-of-the-art technology. Fully Convolutional Networks (FCNs) are applied for the
segmentation of historical manuscripts and early printed books, to detect staff lines, and to rec-
ognize neume notations. The ATR engine Calamari is presented which allows for ATR of early
prints and also the recognition of lyrics. Configurable CNN/LSTM-network architectures which
are trained with the segmentation-free CTC-loss are applied to the sequential recognition of text
but also monophonic music. Finally, a syllable-to-neume assignment algorithm is presented which
represents the final step to obtain a complete transcription of the music.
The evaluations show that the performances of any algorithm is highly depending on the material

at hand and the number of training instances. The presented staff line detection correctly identifies
staff lines and staves with an F1-score of above 99.5%. The symbol recognition yields a diplomatic
Symbol Accuracy Rate (dSAR) of above 90% by counting the number of correct predictions in
the symbols sequence normalized by its length. The ATR of lyrics achieved a Character Accuracy
Rate (CAR) (equivalently the number of correct predictions normalized by the sentence length)
of above 93% trained on 771 lyric lines of Medieval manuscripts and of 99.89% when training
on around 3.5 million lines of contemporary printed fonts. The assignment of syllables and their
corresponding neumes reached F1-scores of up to 99.2%. A direct comparison to previously pub-
lished performances is difficult due to different materials and metrics. However, estimations show
that the reported values of this thesis exceed the state-of-the-art in the area of square notation.
A further goal of this thesis is to enable musicologists without technical background to apply the

developed algorithms in a complete workflow by providing a user-friendly and comfortable Graph-
ical User Interface (GUI) encapsulating the technical details. For this purpose, this thesis presents
the web-application Optical Medieval Music Recognition For All (OMMR4all). Its fully-functional

i

workflow includes the proposed state-of-the-art machine-learning algorithms and optionally al-
lows for a manual intervention at any stage to correct the output preventing error propagation. To
simplify the manual (post-) correction, OMMR4all provides an overlay-editor that superimposes
the annotations with a scan of the original manuscripts so that errors can easily be spotted. The
workflow is designed to be iteratively improvable by training better models as soon as new Ground
Truth (GT) is available.

ii

Acknowledgements
Many people supported me in the long time it took to write this dissertation. First of all, I would
like to thank my supervisor Frank Puppe for his support and feedback, and for always taking time
even for extensive discussions. I also appreciate the trust he placed in me in research and teaching.
I would also like to thank my second assessor Ichiro Fujinaga for his helpfulness and constructive
feedback.
Furthermore, I would like to acknowledge Uwe Springmann who opened me the door to the

exciting research area of early printed books. This resulted in the great collaboration with Andreas
Haug and Tim Eipert in the research area of Medieval manuscripts. In this subject I was able to
combine and expand my skills in music and computer science.
This work would also not have been possible without the pleasant and supportive working atmo-

sphere which is why I would like to thank all of my colleagues. Special thanks go to Christian Reul,
who brought my research work forward significantly through constructive criticism and thorough
reviews of my publications, and who always endured me as a roommate.
Finally, I would like to thank my family, especially my parents Reinhold and Karola Wick, for

their support and encouragement during the recent years.

Würzburg, February 2020

iii

Contents

Abstract i

Acknowledgements iii

Contents v

List of Abbreviations vii

1 Introduction 1
1.1 Steps of a Typical OMR Workflow . 1
1.2 Motivation . 3
1.3 Challenges of Historical Music Document Processing 3
1.4 Challenges for the Users . 6
1.5 OMMR4all . 7
1.6 Contributions . 10
1.7 Nomenclature . 11

2 Problematic of the Evaluation of an End-To-End Workflow 13

3 Related Work with Regard to the Contributions 17
3.1 Layout Analysis . 17

3.1.1 Related Work . 18
3.1.2 Conclusion . 20

3.2 Staff Line Detection . 20
3.2.1 Related Work . 20

3.2.1.1 Staff Line Identification . 20
3.2.1.2 Staff Line Removal . 23

3.2.2 Conclusion . 25
3.3 Music Symbol Detection . 25

3.3.1 Related Work . 26
3.3.1.1 OMR on Contemporary Notation 28
3.3.1.2 OMR on Historical Notations 29

3.3.2 Conclusion . 30
3.3.3 Future Work . 30

3.4 Text and Lyrics Recognition . 31
3.4.1 Related Work . 31

3.4.1.1 Open-Source Software for Automatic Text Recognition 32

v

CONTENTS

3.4.1.2 Text Recognition on Music Documents 32
3.4.2 Conclusion . 33
3.4.3 Future Work . 33

3.5 OMMR4all . 34
3.5.1 Workflows and Projects for OMR on Historical Material 35

3.5.1.1 The Levy II Project . 35
3.5.1.2 The Gamera Framework . 35
3.5.1.3 Aruspix . 35
3.5.1.4 Allegro . 36
3.5.1.5 MuRET . 36
3.5.1.6 The NEUMES Project . 37
3.5.1.7 SIMSSA . 37

3.5.2 Comparison to the SIMSSA Workflow 38
3.5.3 Conclusion . 40
3.5.4 Future Work . 41

4 Conclusion 43

A Publications Related to OMMR 45
A.1 Fully Convolutional Neural Networks for Page Segmentation of Historical Docu-

ment Image . 45
A.2 Staff, Symbol and Melody Detection of Medieval Manuscripts Written in Square

Notation Using Deep Fully Convolutional Networks 52
A.3 Automatic Square Notation Transcription of Medieval Music Manuscripts using

CNN/LSTM-Networks and the segmentation-free CTC-Algorithm 80
A.4 Comparison of OCR Accuracy on Early Printed Books using the Open Source

Engines Calamari and OCRopus . 105
A.5 Calamari – A High-Performance Tensorflow-based Deep Learning Package for

Optical Character Recognition . 123
A.6 Lyrics Recognition and Syllable Assignment of Medieval Manuscripts 135
A.7 OMMR4all – a Semiautomatic Online Editor for Medieval Music Notations . . . 141

B Other Contributions 149
B.1 Deep Learning . 149
B.2 Leaf Identification Using a Deep Convolutional Neural Network 155

C Declaration of own Contributions 165

Bibliography 167

vi

List of Abbreviations
AABB Axis-Aligned Bounding Box

AI Artificial Intelligence

ATR Automatic Text Recognition

CC Connected Component

CAR Character Accuracy Rate

CER Character Error Rate

CNN Convolutional Neural Network

CRF Conditional Random Field

CTC Connectionist Temporal Classification

CWMN Common Western Music Notation

DNN Deep Neural Network

FgPA Foreground Pixel Accuracy

FCN Fully Convolutional Network

FN False Negative

FP False Positive

GAN Generative Adversarial Network

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

GT Ground Truth

GUI Graphical User Interface

HMM Hidden Markov Model

HTR Handwritten Text Recognition

vii

List of Abbreviations

ICDAR International Conference on Document Analysis and Recognition

IIIF International Image Interoperability Framework

IU intersection over union

JLCL Journal for Language Technology and Computational Linguistics

LSTM Long-Short-Term-Memory-cell

MEI Music Encoding Initiative

MuRET Music Recognition, Encoding, and Transcription tool

NAR Neume Accuracy Rate

NC Note Component

kNN k-Nearest-Neighbors

OCR Optical Character Recognition

OMMR4all Optical Medieval Music Recognition For All

OMR Optical Music Recognition

PrIMuS Printed Images of Music Staves

dSAR diplomatic Symbol Accuracy Rate

RLE Run Length Encoding

RNN Recurrent Neural Network

SIMSSA Single Interface for Music Score Searching and Analysis

SVG Support Vector Graphics

SVM Support Vector Machine

TP True Positive

TPA Total Pixel Accuracy

URL Universal Request Link

VGSL Variable-size Graph Specification Language

WAR Word Accuracy Rate

viii

1 Introduction
The digitization and encoding of historical music manuscripts is an ongoing area of research for
many scientists. The aim is to preserve the vast amount of cultural heritage but also to pro-
vide the musical information in machine-readable form (e.g., **kern [201], MEI [186], or Mu-
sicXML [92]). For one thing, this enables musicologists to apply large-scale musical analysis
such as detecting similarities of melodies (see e.g., [94, 95, 120]), creating musical grammars (see
e.g., [15, 104, 185]), or comparing different versions of the same piece of music (see e.g., [146,
182]). Furthermore, digital transcriptions published in a collection [108] enable to develop tools
for searching and data retrieving. The current Corpus Monodicum project [112] at the University
of Würzburg is dedicated to the exploration and edition of music-historically significant, editori-
ally untapped stocks of monophonic ecclesiastical and secular music of the European Middle Ages
with Latin text. Two volumes [113, 116] have already been published, however, the majority of
material of interest has not been converted into machine-actionable form, yet. It is highly desirable
to develop processes and software to speed up this process considerably.
This thesis focuses onMedieval monophonicmusic written in square notation, an ancient notation

which was developed and used from the 11th-12th century onwards [65]. Compared to even earlier
forms, this writing of music is already similar to Common Western Music Notation (CWMN) in
the sense that it uses four (or five) staff lines, clefs, accidentals, and neumes depicting discrete
pitches. However, unlike modern notation, notes are mostly connected to groups, the so-called
neumes which depict small segments of melodic motion. Currently, the digital acquisition heavily
relies on human effort because the ancient manuscripts suffer particularly from degradation and
non-standardized fonts, glyphs, or layouts. Therefore, to speed up the process, novel techniques in
the area of Artificial Intelligence (AI) targeting Optical Music Recognition (OMR) are required to
automatically capture the encoded data in a computer-readable form. These techniques and their
implementation are used to solve the different steps and their problems occurring in a productive
OMR workflow.
The next sections describe the steps of a generic OMR workflow which is required to provide an

insight into the motivation behind this thesis, and the challenges of historical document processing
and for the users. Afterwards, the contributions of the thesis are listed.

1.1 Steps of a Typical OMR Workflow
In contrast to Rebelo et al. [174] who define a typical OMR workflow without the recognition of
lyrics, a generic workflow for vocal music like Medieval chants comprises both music and lyrics
recognition (see Figure 1.1). The essential steps are briefly described in the following:

• The input is a digitized grayscale image of the music score. Usually, double pages are sepa-
rated and color images converted to gray beforehand.

1

1 Introduction

Figure 1.1:A generic OMRworkflow to capture both the music and the texts of a music document.
Documents serving as input or output are shown in gray, the individual steps of the workflow are
shown in blue.

• The preprocessing phase aims to enhance the input images by removing noise or dewarp-
ing. Thereto, a binarized version is generated and different algorithms apply morphological
operations such as opening or closing. Furthermore, the required reference lengths, which
are typically the staff line thickness and distance, are computed to obtain the scale of the
document. This number can be used to normalize the dimensions of the input, for example
by scaling the image to a fixed staff line distance.

• The layout analysis segments the page into regions containing music and text, optionally
including a fine-granular semantic distinction into, for example, lyrics or folio numbers.
Furthermore, the staff lines must be detected to compute the pitches of music symbols later
on.

• The next step is the music symbol recognition. This includes the detection of individual
symbols, such as notes, rests, accidentals, stems, dynamic notations, or bars, but also, for
instance in CWMN, the reconstruction of high-level symbols such as key signatures. After-
wards, the pitches can be computed based on the clefs, the key signatures, accidentals, and
the previously detected staff lines.

• In parallel to the music, the text is recognized. This step includes methods of either Au-
tomatic Text Recognition (ATR) in general for printed or Handwritten Text Recognition
(HTR).

• If both the lyrics and the music are present, the individual syllables of the text are computed
and finally connected to their respective notes.

• Based on this output, the music notation is finally transformed into a machine-readable sym-
bolic format, such as MEI. This final representation is then exported to common graphical
or music-publishing files.

As shown in Figure 1.1, the steps are highly dependent on each other which has a great impact on
the performance of an end-to-endworkflow and its evaluation. This problematic is further discussed

2

1.2 Motivation

in Chapter 2. The actual workflow of Optical Medieval Music Recognition For All (OMMR4all)
which is a concrete form of this generic workflow is presented in Section 1.5.

1.2 Motivation
The success of Deep Learning in image processing tasks led to a huge popularity and new state-
of-the-art algorithms in many areas of interest (see e.g., the surveys [137, 215]). Hereby, it opens
possibilities to develop novel approaches to tackle previously unfeasible machine reading of his-
torical music manuscripts. However, a crucial problem of any Deep Learning approach is the
availability of large high-quality datasets which are only rarely available in context of historical
documents. A lot of human effort is required to manually annotate data to train the models. It
is therefore mandatory to develop high performance algorithms that require only as few Ground
Truth (GT) as possible. Naturally, also the GT creation process must be simplified by software
support. The goal is to train book-specific models and finally mixed models which target any kind
of material.
Already proposed algorithms dealing with the individual steps of an OMR workflow that yield

almost flawless results on high-quality material must be reconsidered when targeting historical
manuscripts. For example, researchers proposed many different approaches for staff line detec-
tion (see e.g., [68]) which work reasonably well on many notations, however, only unsatisfactory on
historical manuscripts. Furthermore, novel algorithms to read neume notation must be developed.
Layout analysis and text recognition in OMR share many similarities with Optical Character

Recognition (OCR), which is why this thesis also presents several new developments regarding
document analysis of historical prints and ATR. These algorithms form the basis further algorithms
being integrated in the pipeline of the OMR workflow.
The assignment of syllables and notes is mainly disregarded in the literature, but to obtain a valid

transcript, this information is mandatory. In practice, preexisting lyric transcriptions are sometimes
already available and the identical ecclesial texts are often set to music using different melodies.
New algorithms must therefore be developed to include this extra information if available.

1.3 Challenges of Historical Music Document Processing
In general, fully automatic OMR is far from being a solved problem for almost any kind of mate-
rial or notation. While some subtasks such as OMR on single staffs of monophonic synthetically
rendered material in CWMN is close to perfect (see e.g., [21] or [36]), OMR on more complex,
handwritten, or older notations only provides first steps towards reliable recognition results (see
e.g., [171], [208], [40], or [43]). In contrast, OCR is clearly developed further, some researchers
even claim that OCR on contemporary printed material is a solved problem (see e.g., [72]). Com-
pared to OMR, this might be related to the easier alphabets of text but also to the greater interest
in research of OCR. Especially early printed or handwritten documents still pose researchers a
challenge, both in the area of OCR and OMR.
Calvo-Zaragoza et al. [44] dividemusic notations into four categories which correspond to overall

complexity in increasing order (the following enumeration is quoted from [44], an example for each

3

1 Introduction

(a)Monophonic

(b) Homophonic

(c) Polyphonic

(d) Pianoform

Figure 1.2: Examples of the four complexity categories of OMR (adopted from [44]).

category is shown in Figure 1.2):

(a) Monophonic: only one note (per staff) is played at a time.

(b) Homophonic: multiple notes can occur at the same time to build up a chord, but only as a single
voice.

(c) Polyphonic: multiple voices can appear in a single staff.

(d) Pianoform: scores with multiple staffs and multiple voices that exhibit significant structural
interactions. They can be much more complex than polyphonic scores and cannot be dis-
assembled into a series of monophonic scores, such as in polyphonic renaissance vocal part
books. This term was coined by Byrd and Simonsen [33].

While OCR is most similar to the monophonic case because only one character must be detected
at a certain point in time, OMR becomes quite complicated if the complexity increases. Early
Medieval notations are monophonic since only one tone is sung at the same point in time. However,
subsequent notes can be written on top of each other at the same temporal coordinate (see for
example the green box in Figure 1.3) which poses similar problems as homophonic CWMN.

4

1.3 Challenges of Historical Music Document Processing

Gothic (4 staff lines) Gothic (5 staff lines) Square notation (4 staff lines)

Figure 1.3: Example lines of different neume notations.

The main challenges of the processing of historical (music) manuscripts are the age which man-
ifests in bad conditions, high variations in handwriting, and also the absence of standards, for
example in terms of layout or notation. Historical documents are often heavily degraded and thus
show signs of faded ink, soiling, or bad contrast. Another severe problem poses the bleeding of
ink from the page on the back side. These problems are avoided by OMR systems that act on pure
rendered material which is why they show the highest performances (see e.g., [21], [36], or Section
3.3).
Furthermore, historical music is written in numerous different notations. The reason is that the

notation of the Medieval era was continuously under development. The earliest neume notations
did not yet use staff lines and only used single strokes to depict a small piece of music motion
without any absolute reference to pitches. The notation of actual pitches in a tonal system was
developed centuries later by introducing discrete locations of the neume relative to one single staff
line equipped with a clef. Several decades passed until more staff lines (usually four or five) were
drawn to define absolute intervals and pitches. Later, Mensural notations were developed to also
visualize the rhythm of the music. From these notations, the CWMN evolved which is basically
unchanged for many centuries. This thesis focuses solely on neume notations with four or five staff
lines. However, even if staff lines are available there are still different “typesets” of music notations.
While the square notation draws single Note Components (NCs) of neumes as square-like symbols,
Gothic (Hufnagel) notations use more vertically strokes to depict music. Three examples are given
in Figure 1.3.
Another challenge is the layout analysis which is required to separate and segment a page into

5

1 Introduction

meaningful regions for further processing. Individual music regions are, for example, fed into a
music symbol detector and classifier while text regions such as lyrics are further processed by an
ATR engine. Among different books but also pages, the distances or spaces between lines can vary
or a different number of columns can occur. Furthermore, a high number of ornaments or dropped
capitals are usually present.
A subtask of OMR is to recognize the written texts such as lyrics. When dealing with music

manuscripts, the occurring problems are of course similar to HTR in general: high variety of
writers with different styles and typesets, noise, or soiling. The training of state-of-the-art systems
requires a reasonably high amount of GT to obtain a general model which can be used for a reliable
prediction afterwards. However, since text makes up only a small part of the content of a music
page (typically 7-10 lines of lyrics), many pages must be transcribed in order to successfully train
models for ATR. Luckily, the writers of Medieval documents usually wrote in a very clean and
uniform way – almost print-like, which is why the recognition of text can be settled between ATR
on the earliest printed books and HTR. A diplomatic transcription (i.e., according to the document)
of the Latin text poses another challenge because many non-standardized abbreviations are used
and sometimes words are written differently compared to modern spelling which is why a dictionary
is of limited use only. Yet, even if the text is successfully captured, individual syllables must be
detected and finally assigned to their corresponding neumes. Even for musicologists this is a highly
non-trivial task especially if notes and text are written very narrowly. Occurring ambiguities are
often part of the critical apparatus if no consistent solution is possible.
Due to the high variability in notation related both to music and text, the training of individual

models for a book or a notation style is mandatory to obtain reasonably high recognition accuracies.
This enforces the creation of high-quality GT for any algorithm of an OMRworkflowwhich is how-
ever a tedious manual task. Consequently, researchers propose human guided or semi-automatic
workflows for OMR [57, 58, 89, 183, 212], but also OCR [63, 179]. These workflows also include
the idea to iteratively train better models during the transcription process if new GT becomes avail-
able.

1.4 Challenges for the Users
The transcription process of Medieval music is currently mainly done manually by musicologists
whereby their primary goal is to obtain a transcription of a book withminimal time expense. There-
fore, OMR algorithms will only be accepted if they reduce the amount of effort. However, if mu-
sicologists aim to introduce OMR algorithms into their current workflow, they will be confronted
with a lot of emerging challenges. One crucial point is that the application of technical algorithms
usually requires domain knowledge from a computer science point of view. On the other hand, do-
main knowledge of musicology is mandatory to be capable of performing the actual transcriptions
including editorial aspects. To simplify this interdisciplinary task, the focus lies on removing the
barrier of (at least) the technical part. First of all, the access to a reliable amount of GT, which is
the most crucial step towards an effective machine learning application, must be ensured. GT pro-
duction is a non-trivial task due to the requirement of interdisciplinary knowledge. Music domain
knowledge is enforced to read and more importantly understand the content, for example, if am-
biguities must be resolved. On the technical point of view, a basic knowledge about the capacities

6

1.5 OMMR4all

about the underlying machine learning systems helps to design guidelines for GT production. Even
if all of the upper aspects are covered, GT production is still a cumbersome and time-consuming
task, especially in the domain of historical music manuscripts due to the required annotations of
the difficult different layouts, exact positions of every note and all staff lines, texts, and semantic
connections of lyrics and notes. Another challenge is posed by the imperfect AI enforcing man-
ual corrections. There might be some cases in large scale analysis for which a musicologist might
accept some errors, but this is not the general case. Similar to the GT production, correction is a
laborious, time-consuming task depending on the quality of the automatically predicted content.
This work step must also be facilitated to save valuable time of musicologists.
In contrast to music domain knowledge, the technical aspects can be encapsulated and simpli-

fied. This requires a comfortable Graphical User Interface (GUI) that hides details of the technical
implementations and aspects, and also includes an editor for creating GT from scratch or by cor-
recting the erroneous output of existing models. Next, an end-to-end workflow for OMR must be
provided which is easily adaptable to any kind of material, for example, by training new models.
Finally, the encoded data must be exportable to common music formats, such as MEI, to allow for
an application of already existing analysis tools of music science.
Currently, focusing on Medieval music, there is no fully-functional tool available that covers

all of the upper aspects. A current approach embedded in the Single Interface for Music Score
Searching and Analysis (SIMSSA) project [89] targets Medieval and Renaissance music and is
currently under development (see [210–213] and Section 3.5.1.7). An available system targeting
Mensural notations is provided by MuRET [119] (see Section 3.5.1.5).

1.5 OMMR4all
In addition to novel algorithms for OMR, this thesis presents OMMR4all which comprises an auto-
matic OMR workflow for Medieval manuscripts with the possibility to manually correct the output
of any stage if necessary. The current focus lies on neume notations with four or more staff lines.
Earlier notations without or with only one staff line are considered, but not integrated, yet.
OMMR4all implements a concrete form of the previously presented generic OMR workflow

considering both music and text recognition. An overview of the steps and also the integration of
automatic algorithms and the user is shown in Figure 1.4:

• The input is a digitized color or grayscale image of the music score.

• The preprocessing phase generates deskewed grayscale and binary images. Moreover, the
staff line thickness and distance are computed to obtain the scale of the document. This
number is used to normalize the dimensions of the input by scaling the image to a fixed staff
line distance.

• Then, the layout of the page is analyzed. Thereto, it is sensible to first detect and isolate
the staff lines and staves serving as basis for a more accurate segmentation of background,
music, and text regions. The exact positions of staff lines are required later to determine the
pitches of the individual notes. In contrast to other typical workflows, the staff lines are not
erased. Furthermore, the reading order of the music or textual regions must be determined

7

1 Introduction

Figure 1.4: The proposed workflow of OMMR4all. Documents serving as input or output are
shown in gray, optional input is connected by dashed arrows. The individual steps of the workflow
are shown in blue. Human (inter)actions are drawn in yellow. The orange elements show the
storage for the annotated pages or the trained models. If this thesis provides separately published
contributions to parts of the workflow, they are marked with a dark blue outline.

8

1.5 OMMR4all

which is however in most cases straightforward to compute by sorting the regions from top
to bottom.

• The next step is the music symbol recognition. Traditional approaches for classification
isolate and then classify symbols. In this thesis, two different CNN-based algorithms are
proposed that directly act on the raw grayscale image. Afterwards, if all symbols are recog-
nized, the pitches of the notes can be determined based on the previously detected staff lines
and the clefs. It might be possible that, for some manuscripts, the written music was already
transcribed which is why it is sensible to include this information in the symbol recognition
to speed up the GT production.

• Afterwards, the segmented text of a page is recognized including both lyrics and also any
other text. Lyrics require a hyphenation of its words before individual syllables can be as-
signed to their corresponding notes.

• Based on this output, themusic notation is finally transcribed and transformed into amachine-
readable symbolic format. The annotated pages are then exported to common graphical or
music-publishing files (e.g., MEI).

OMMR4all is a client-server application which allows for a worldwide access on any computer
with internet access. Furthermore, the full application is build into a single Docker [143] container
to facilitate the deployment process on a custom server. The semi-automatic workflow fulfills all
requirements to obtain high quality transcriptions which can be exported into common formats that
allow for further research of musicologists. The workflow comprises state-of-the-art tools based on
Deep Neural Networks (DNNs) to solve various tasks. A user-friendly GUI allows to control the
workflow and a sophisticated but still comfortable overlay-editor facilitates manual corrections and
GT production. The editor allows to intervene at any step of the full pipeline to manually create
perfect inputs of an upcoming step which highly reduces consequential errors.
The GUI provides functionality to allow an user to easily train new models. This is useful if new

pages of GT are available to iteratively train improved models for a book to reduce the number
of manual corrections. Furthermore, this enables to apply OMMR4all to unseen data or books
after some pages of GT were manually annotated using the already existing but probably poorly
performing models. All trained models can be collected in a repository to provide a good starting
point if a new unknown manuscript is present that shares some similarities with already transcribed
notation styles.
In order to ensure that OMMR4all is expandable and also adaptable to completely different nota-

tions, existing algorithms can easily be exchanged or expanded by adding new ones. For example,
new staff line detection algorithms must be developed and integrated to handle notations with one
real and many virtual staff lines.
As soon as many different sources and notations were successfully transcribed, it is sensible to

train and provide a so-called mixed model based on all or a subset of the available data. This model
then serves as baseline for new data where no perfectly fitting model is available, yet. OMMR4all
currently allows to define default mixed models for each style, such as Gothic or square notation.
OMMR4all provides sophisticated and comfortable software for musicologists and implements a

fully automatic pipeline for OMR with the option of human interaction. Naturally, as stated, the

9

1 Introduction

results must be manually corrected which can however be used to iteratively new improved models.
If the benefits of reduction of manual effort in total and especially if the quality of the annotated
output outweighs a completely manual workflow, users are willing to put in some effort for the
correction and also in learning how to interact.

1.6 Contributions
The main, all-encompassing contribution of this thesis is OMMR4all which incorporates other con-
tributions in the field of general document analysis, OCR, and OMR. Most importantly, a sophis-
ticated workflow (see Figure 1.4) was developed to tackle all requirements of the peculiarities
of Medieval music processing and encoding. This thesis proposes several machine learning ap-
proaches for the layout analysis, the music symbol and text recognition.

1. The first contribution (see Section A.1, [219]) deals with the application of Fully Convo-
lutional Networks (FCNs) for page segmentation of historical books or manuscripts, which
posed a new state-of-the-art on this sort of material. This methodology can be directly
adopted to the layout analysis of Medieval manuscripts.

2. A new staff line detection based on FCNs is presented (see Section A.2, [224]). The algo-
rithm shows excellent performance but also generalization on unseen data or notations. If
necessary, a few lines of GT suffice to train a new robust model.

3. Two novel symbol detection algorithms which capture the peculiarities of neume notations
were developed: First, a FCN was proposed that identifies the locations of single notes and
their connection to each other, but also clefs and accidentals (see Section A.2, [224]). This
allows to reconstruct the neume notations in a bottom-up way. Here again, the advantage
is that training and therefore an application to yet unseen notations is easily possible. The
drawback of this method is that the GT requires positional information about each sym-
bol which is why its production is tedious. A further approach is presented in Section A.3
[221] that solely requires a segmentation-free transcription similar to ATR. Thereto, Cala-
mari (see next point) which originally provides hybrid networks of Convolutional Neural
Networks (CNNs) and Long-Short-Term-Memory-cells (LSTMs) for ATR was adapted for
OMR which is possible since, similar to text, monophonic music is a simple sequence of
symbols. Both approaches yield comparable results on the same datasets.

4. Calamari, a novel software for ATR is contributed which yields state-of-the-art results both
on historical printings and contemporary fonts (see Sections A.5 and A.4, [223, 226]). Cala-
mari includes several cutting-edge techniques to optimize the results even if only a few
lines of GT are available: CNN/LSTM-networks, a loss function based on the Connection-
ist Temporal Classification (CTC) algorithm, confidence-voting [178], data augmentation,
early stopping, usage of a GPU, or word decoding using a dictionary. Furthermore, Cala-
mari supports various kinds of common formats used in OCR to allow for an easy integration
in existing pipelines.

10

1.7 Nomenclature

5. Calamari is applied to detect Latin handwritten lyrics (see Section A.6, [222]). Furthermore,
in OMMR4all, if the actual lyrics are already available in textual form, a shortcut allows to
simply paste it. This is meaningful because a preceding text transcription is the current
standard workflow of musicologists.

6. An algorithm to assign the individual syllables to neumes is presented (see Section A.6,
[222]). This algorithm relies on the positional information of the lyrics prediction of Cala-
mari. A character-by-character alignment with the known syllables allows to use their aver-
age positions to find matching neumes. Possible conflicts, for example, if two syllables are
matched to the same neume, are resolved afterwards.

1.7 Nomenclature
Throughout this thesis, a consistent terminology is used:

• Staff line: A single horizontal line.

• Staff/Staves: A group of several staff lines (typically four or five) which can also contain
music symbols.

• Music symbol comprising amusic symbol type (occurring symbols or marks, such as notes,
stems, clefs, time signatures, slurs, or dynamics) and music symbol height (position of
symbols relative in a staff).

• Note (absolute note position) consisting of a note type (e.g., quarter or half note, or other
variations of the note head) and note height (position of a note relative to a staff). In terms
of neumes, a note is a synonym to a NC.

• Clef comprising a clef type (e.g., treble or bass), and a clef position (position of the clef
relative to the staff).

• Neume consisting of a neume type (e.g., torculus, punctum), and a neume height (position
of the neume or their components relative to a staff). Neumes mainly occur in historical
music. A neume is a stereotype combination of NCs and can be resolved into those.

• Note Components (NCs) define a single note of a neume. Each note has a note position
(position of the note relative to the staff) and a note type (e.g., oriscus or liquescents).

• Pitch: The pitch of a note is defined with regard to a musical scale (e.g., C, D, E, F, …).
Dissolving of note or neume heights into pitches requires a clef.

11

2 Problematic of the Evaluation of an
End-To-End Workflow

The final goal of any application of AI is a fully-automatic end-to-end workflow. In the context
of this thesis, this is achieved if an OMR workflow receives a scan of a Medieval manuscript
(written in square notation) and outputs the music symbols and their pitches (i.e., the melody),
the lyrics which are placed to the correct note, and also other text and its semantic label (e.g., folio
numbers). In contrast to the closely related task of OCR, these many different outputs that subsume
the outputs of OCR complicate OMR of Medieval manuscripts. Another fundamental problem is
that several steps of a generic OMR workflow are build on one another (see Figure 1.1). This leads
to consecutive errors when applying all steps fully-automatic end-to-end:

• If the layout analysis fails, the subsequent text and symbol recognition will be erroneous.

• If the detection of staff line or clefs fails, the pitches of the notes will be false.

• If the recognition of notes or text fails, the syllables will not be correctly assigned to their
respective neumes.

In the literature, there are many publications that target one single step of the workflow. Un-
fortunately, several differently computed metrics that often depend on the particular algorithm
itself are defined, and are thus difficult to compare. Furthermore, publications that target square
notation and even historical notations in general are rare. Also the used datasets vary among pub-
lications and the GT is not publicly available. Therefore, it is very difficult to compare outcomes
of this thesis to related work. The following paragraphs attempt to roughly compare the metrics
and the obtained performances of the related work to the outcomes of this thesis. More thorough
descriptions of the related publications are provided in the next chapter.
The literature reveals two typical metrics to evaluate the performance of the staff line recognition

(see Section 3.2). The first metrics (called FD
1 in this thesis) measures the precision and recall of

how many lines are detected. A line is matched if, for example, the prediction and the GT overlap
with at least 50% of the length or if their average distance is smaller than the line thickness. The
second metric (called F LF

1 in this thesis) computes the F1-score of how many pixels that belong
to a staff line are identified. The drawback of the first metric is that it does not take the actual
length or thickness of a line into account, whereas the second metric ignores the shape of a line
(i.e., whether the pixels are connected). In this thesis, both metrics are used. Depending on the
material, the best performing algorithms of the literature for staff line detection reach an FD

1 of
about 99.2% (see Section 3.2) whereby a pair of prediction and GT line is valid if the euclidean
distance between two lines is smaller than the staff line height. On Medieval square notation, the
algorithm of this thesis reaches about 99.6%, but instead of the Euclidean distance, at least 50%

13

2 Problematic of the Evaluation of an End-To-End Workflow

of the length must overlap. A direct comparison to the literature is possible thanks to the work of
Hartelt [111] who applied three different available staff line detection algorithms using the same
Medieval manuscripts and the same metric as in this thesis (see Section 3.2). Applying a manual
hyper-parameter optimization, the algorithm of Dalitz et al. [68] performed best with an FD

1 of
about 80% which is clearly inferior the result of this thesis with 99.6%.

The performance of the detection of a complete stave consisting of several staff lines is mea-
sured by another F1-score counting the number of missing, additional, and correct predictions. On
manuscripts written in square notation, Ramirez and Ohya [171] achieved an F1-score of about
95% whereby only the locations of the staffs using a pattern of straight lines are searched (see Sec-
tion 3.2). The proposed algorithm of this thesis reached an F1-score of above 99% on a different
dataset of the same epoch, whereby a staff is found if at least two out of four staff lines were cor-
rectly detected. In contrast to Ramirez and Ohya, the staff lines are allowed to be curved and thus
fit the actual lines.

In the literature, there are several different metrics to evaluate the performance of the symbol
recognition whereby the choice highly depends on the notation, its digital representation, and the
algorithm. Ramirez and Ohya [171] evaluated the recognition of a neume notation in two met-
rics: first, the presence of any neume; second, the accuracy of the type of a neume (e.g., pes or
climacus). This approach does not respect the positions or pitches of the individual NCs. In this
thesis, since neume notations are monophonic, the final representation of the music can be regarded
as a sequence of symbols, whereby a neume is always resolved into a list of individual NC each
comprising a graphical connection and a position. Therefore, the metric is defined by counting
the number of correct symbols within the sequence normalized by the length yielding the diplo-
matic Symbol Accuracy Rate (dSAR) which corresponds to the Character Accuracy Rate (CAR)
in an OCR task. Similarly, it is possible to define the Neume Accuracy Rate (NAR) counting the
number of correct neumes (i.e., each NCs of a neume is correct) which can be compared to the
Word Accuracy Rate (WAR) in OCR. The dSAR is used in several other publications that tar-
get monophonic music (see Section 3.3): [20, 36] for CWMN or [38, 40] for Mensural notation.
Unfortunately, to compare the results of this thesis with those of Ramirez and Ohya [171], both
targeting square notation, only an estimation is possible. Ramirez and Ohya detect 88% of the
neumes and correctly label 92% of the neumes which is why in total about 81% of the symbols
are correct. This result can be very roughly compared to the NAR which measures the amount of
neumes with all NCs being correct. This thesis obtained NAR of 83.5% (see Section A.3 or [221])
showing the same order of magnitude. Note however, that a mapping of the results of Ramirez
and Ohya disadvantages the NAR because it respects False Positives (FPs) and the actual correct
location (i.e., pitch) of each NC.

Furthermore, a rough comparison to manuscripts in Mensural notation can be drawn: the age
and the degradation of the material are similar, but naturally the layout and the notation itself are
different. In contrast to neumes, Mensural notation consists of single notes but also rests with a
position and duration, thus more classes in total. Clefs within a line do typically not occur. The
publications of Calvo-Zaragoza et al. [38, 40] (see also Section 3.3) do not exceed a dSAR of 59%
on Mensural notation. This confirms the difficulty of any historic handwritten material and that the
dSAR of 92.2% obtain in this thesis for square notation is competitive.

14

The performance of the ATR of lyrics is evaluated using the Character Error Rate (CER) which
counts the number of edits required to obtain the GT sequence normalized by the sequence length.
On the same Medieval manuscripts, this thesis achieves a CER of below 10% which clearly out-
performs the reported CER of de Reuse and Fujinaga [70] who use OCRopus (see Section 3.4).
An evaluation if a syllable is correctly assigned to a neume, has not been considered in the lit-

erature, yet. This thesis proposes to use an F1-score to count the correctly matched, missing and
additional connections. On a dataset of Medieval manuscripts in square notation, an F1-score of
about 99.2% was reached assuming that both the lyrics and the music is present (see Section 3.4).
In general, one metric to evaluate the full end-to-end workflow was, in all conscience, not yet

considered, possibly due to the difficulties related to the many different outputs (text, notes, and
syllable connections, semantic region labels) and because publications usually target only one single
step instead of the complete workflow. A very simple metric could be defined by averaging the
performances of each individual step. Since the focus of this metric is on the transcription, the
performance of the layout analysis or the preprocessing should be ignored. The problem of this
metric is that different errors receive a different weight and might also be more or less severe which
is why a statement of the actual number of errors is not possible. This could be solved by another
metric that is defined by the minimum number of changes to obtain the GT sequence. An actual
application is complicated because it can be difficult to find the best match of prediction and GT
and also the same corrections can be performed by actions with different efficiency. Nevertheless,
an estimation seems feasible as a first step. The application of these metrics is, however, out of the
scope of this thesis.

15

3 Related Work with Regard to the
Contributions

This section briefly summarizes the methods and the results of the accumulated scientific publica-
tions (see Table 3.1) which are extended by giving a more comprehensive overview of the related
work. The contributions are sorted according to their order in the workflow of OMMR4all: Layout
analysis including staff line detection, symbol detection, text recognition, and syllable assignment.
The last section presents the publications related to OMMR4all and the complete workflow.

Table 3.1: Overview of the accumulated publications of this thesis.
Step in the Workflow Section Page Publication
Layout Analysis A.1 45 [219]
Staff Line Detection A.2 52 [224]
Music Symbol Detection A.2, A.3 52, 80 [221, 224]
Text and Lyrics Recognition A.4, A.5, A.6 105, 123, 135 [222, 223, 226]
OMMR4all A.7 141 [220, 225]

3.1 Layout Analysis
The paper “Fully Convolutional Neural Networks for Page Segmentation of Historical Document
Image” (see Section A.1, [219]), published at the 13th IAPR International Workshop on Docu-
ment Analysis Systems (DAS) 2018 in Vienna, targets the page segmentation of historical printed
and handwritten documents. Thereto, an FCN was introduced inspired by the U-Net of Ron-
neberger et al. [187] to classify each pixel of the input image into several semantic regions: back-
ground/periphery, page, running text, marginala, headlines, images, and swash capitals. The eval-
uation was performed on three publicly available1 manuscripts (G. Washington [131], Parzival
[228], St. Gall [83]) and three early printed books (GW5060, GW5064, GW5066) scanned dur-
ing the Narragonien digital2 project. Since there were no strict rules of the GT production for the
shape and extends of a region, a metric called Foreground Pixel Accuracy (FgPA) was introduced
to more reliably compare the performances of the FCN on the different documents by only ac-
counting for foreground pixels. Furthermore, for a comparison with previously published results,
the traditional Total Pixel Accuracy (TPA) was included in the evaluation.
1http://www.fki.inf.unibe.ch/databases/iam-historical-document-database and http://diuf.

unifr.ch/main/hisdoc/divadia
2http://kallimachos.de/kallimachos/index.php/Narragonien

17

http://www.fki.inf.unibe.ch/databases/iam-historical-document-database
http://diuf.unifr.ch/main/hisdoc/divadia
http://diuf.unifr.ch/main/hisdoc/divadia
http://kallimachos.de/kallimachos/index.php/Narragonien

3 Related Work with Regard to the Contributions

3.1.1 Related Work
The semantic segmentation of a page into different regions is still actively researched because the
methods of researchers often show satisfactory results for only one specific task and dataset. The
reason is that documents show a high variance across genres and centuries. This interest manifests
in the many competitions of the International Conference on Document Analysis and Recognition
(ICDAR) on document analysis since 2009: analysis of historical books [5, 6] or newspapers [7],
complex layouts of modern documents [4, 8, 64], document analysis on smartphones [31], table
segmentation [99], or book structure (e.g., for navigation) [73, 74]. The latest conference in 2019
hosted in total 27 challenges related to document analysis which emphasizes the high interest in
this topic and the fact that this area of research is far from being resolved. Four competitions were
in the category of handwritten historical document layout recognition: historical book analysis,
digitized magazine article segmentation, German-Brazilian newspaper layout analysis, and baseline
detection and page segmentation. Another six competitions were related to document recognition in
terms of layout analysis and text recognition: table detection and recognition in archival documents,
table recognition, scanned receipts OCR and information extraction, form understanding in noisy
scanned documents, recognition of documents with complex layouts, competition on recognition
of early Indian printed documents.
The goal of document analysis is to split a scan into separate regions of interest and categorize

each. In the literature, this task is often divided into page segmentation which tries to identify text
and non-text regions such as figures, tables, or music, and logical structure analysis that attempts to
assign a meaningful role to regions such as headline or paragraph (see e.g. [142, 151]). Page seg-
mentation can further be split into bottom-up approaches which first detect words and group them
hierarchically, and top-down approaches which split a page successively into high-level columns,
then paragraphs, and text lines. Depending on the choice of the subsequent character recogni-
tion software, lines and words must further be split into single characters (see e.g., [200]). Many
bottom-up approaches such as [3, 100, 102, 191] rely on local information such as Connected
Components (CCs) to construct higher levels. The major advantage of these approaches is the in-
dependence of text spacing or block alignments. Early methods used polar coordinates [156], run
length [80, 189, 204, 227] and run length smoothing [123, 132]. Top-down algorithms try to de-
tect for instance black or mainly white stripes that split a document into rows and columns. A very
prominent approach uses recursive X − Y -cuts to decompose a document image into rectangular
regions of interest [101, 130, 149, 150]: in general, an iterative algorithm computes horizontal
and vertical pixel projections and divide its valleys into zones, which are stored in a tree. Other
algorithms combine smearing and CCs [163] or analyze white background [14, 118]. One major
problem of the proposed algorithms is that they only work on so-called Manhatten layouts which
requires that all columns and paragraphs can be separated by a set of strictly vertical or horizontal
lines that are drawn through white background.
The recent progress towards CNNs and in particular FCNs led to rapid improvements towards

combinations of segmentation and semantic analysis. FCNs are in some sense a combination of
a bottom-up and a top-down approach in one step because the networks have simultaneously ac-
cess to high-level and low-level information due to their encoder-decoder structure. Pioneering
work on FCNs for semantic segmentation was published by Long et al. [138] and Noh et al. [155]
who adapted classification networks into FCNs with skip connections to achieve state-of-the-art

18

3.1 Layout Analysis

Table 3.2: Pixel accuracy in percent on three different historical books for page segmentation
Dataset G. Washington Parzival St. Gall

Local MLP [55] 87 91 95
CRF [53] 91 93 97
CNN [56] 91 94 98

Weighted Loss [47] − − 98
Deep Features [122] 95 97 99

segmentation results on real world photographs. To reduce the expensive human effort for GT
production, other researchers propose semi and weakly supervised semantic segmentation using
various methods such as Generative Adversarial Networks (GANs) (e.g., [196]), a combination of
deep CNNs and Conditional Random Fields (CRFs) (e.g., [59, 135, 161]), or usage of CNNs with
dilation (see e.g., [216]). FCNs to extract semantic structure of contemporary documents, such as
scientific articles, were successfully applied by Yang et al. [229].

This thesis focuses on the processing of historical prints and manuscripts that date back to the
13th-15th century, which poses different challenges to layout analysis systems for example due to
degradation, bleeding ink, or non-standardized layouts. Table 3.2 lists recent segmentation results
on three historical handwritten books. In the field of historical document analysis, Chen and Seuret
[56] proposed a three layer neural net with only one convolutional layer. This network learned
to predict the label of superpixels (see e.g., [81]) and outperformed methods that were based on
Support Vector Machines (SVMs) [54, 55] or CRFs [53] and handcrafted features. More recent
approaches use CNNs and a weighted loss [47] or even deeper features [122].

Extracted lyric and music regions are usually processed independently by either an OCR or OMR
pipeline. Droettboom [75] proposed an approach that first removes all musical elements such as
staves based on OMR algorithms. The remaining page was processed by an OCR engine to detect
and extract lyrics. Chourdhury et al. [62] first removed the prominent staff lines and then used
heuristics of CCs to detect textual content such as lyrics or performance indicators. Burgoyne et
al. [30] detected the baseline segments of text on pages with removed staves. These short parts
were then merged. Potential FPs arising from notes could be distinguished based on their shape
which was usually less blurred. The next step estimated the height of the lyrics by reconstructing
the fragments based on the CCs of the baseline segments. Finally, the complete lyrics line could
be extracted. Campos et al. [45] computed a horizontal projection profile which acted as row-wise
features for a vertical layout analysis based on Hidden Markov Models (HMMs). A deterministic
finite-state automaton modeled the restrictions of the layout elements title line, staff lines, empty
staff line, lyrics line, or blank space. The best path was computed by the Viterbi algorithm [121]
after the HMMwas trained for each region type. Their approach is similar to a language processing
task, that concatenates predictions of low-level elements, such as characters, to high-level elements,
such as words or sentences, by respecting a language model. In general, by design, this algorithm
can only produce straight regions.

19

3 Related Work with Regard to the Contributions

3.1.2 Conclusion
Upon publication of the original paper in early 2018 (see Section A.1), its methodology yielded
both state-of-the-art results and a clearly reduced computation time with a factor of up to 10. The
recent publications of Capobianco et al. [47] and Jobin and Jawahar [122] significantly outperform
the method of this thesis which is not surprising since the segmentation of pages is a currently
highly relevant area of research. While the fundamental techniques based on CNNs and Deep
Learning remained the same, deeper network architectures, additional features, or variations of the
loss function led to significant improvements.
Even though the targetmaterial of the paper was text and notmusic, the techniques can directly be

adapted for the layout analysis of musical scores. A first step towards this was presented by Calvo-
Zaragoza et al. [43] who apply a simple CNN for this task. In the publication of the next section,
FCNs were applied to segment staff lines and to detect music symbols on Medieval manuscripts.

3.2 Staff Line Detection
The first contribution of the publication “Staff, Symbol and Melody Detection of Medieval Manu-
scripts Written in Square Notation Using Deep Fully Convolutional Networks” (see A.2, [224])
which was published in the journal Applied Sciences in 2019 dealt with the automatic detection
of staff lines. An FCN which is applied on a full scan identifies pixels that are either part of a
staff line or background. Then, a postprocessing pipeline extracts all staff line pixels as CCs and
creates polylines based on each component. Lines on the same height are joined to close small
gaps. Finally, the staff lines are grouped into staves based on their average distances. To evaluate
the method, a dataset comprising 49 pages, 2,040 staff lines, and 510 staves was manually created.
F1-scores of over 99% for both detecting lines and complete staves were obtained.

3.2.1 Related Work
Any OMR workflow requires a staff line detection algorithm to gain layout information and to
compute the pitch of notes. Traditional workflows remove these staff lines to obtain an image with
only music symbols that are separated and classified in a second step. More recent attempts aim to
recognize music scores without staff line removal. This section first deals with the detection and
afterwards with the removal of staff lines. Many papers in the literature deal with both problems,
which is why they occur in both sections.

3.2.1.1 Staff Line Identification

The complexity of staff line detection highly depends on the material at hand. Cleanly printed staff
lines are perfectly horizontal, while they are usually wavy or distorted in handwritten context. An
overview of selected publications that comprise a quantitative evaluation of the various proposed
algorithms is given in Table 3.3. The used corpora vary from ideally rendered scores to historical
plainchant manuscripts which are the target material of this thesis. The following section provides
insights of the historical development as well as the current state-of-the-art.

20

3.2 Staff Line Detection

Ta
bl
e3

.3
:O

ve
rv
iew

of
di
ffe
re
nt
ap
pr
oa
ch
es
of
th
es
taff

lin
ei
de
nt
ifi
ca
tio
n.
Th
ea
ut
ho
r,
tra
in
in
ga
nd

ev
alu
ati
on

co
rp
us
,t
he

us
ed

m
eth

od
,

th
e
ev
alu
ati
on

m
etr
ics
,a
nd

re
su
lts

ar
e
lis
ted

gr
ou
pe
d
in
to
pu
bl
ica
tio
ns
us
in
g
th
e
sa
m
e
m
ate
ria
l.
In
th
e
fir
st
se
cti
on
,t
he

re
nd
er
ed

sc
or
es

ar
ed
efo

rm
ed

fo
rt
he
ev
alu
ati
on

wh
ich

is
wh
yv
alu
es
fo
rn
o
de
fo
rm
ati
on
,c
ur
va
tu
re
de
fo
rm
ati
on
,a
nd

ty
pe
se
te
m
ula
tio
n
ar
eg
ive
n.
He
re
by
,

th
ew

or
st
va
lue
so
ft
he

alg
or
ith
m
sf
or
ea
ch
se
ve
rit
y
of
de
fo
rm
ati
on

ar
el
ist
ed
.T

he
alg
or
ith
m
so
fR

eb
elo

[1
73
]a
nd

Ca
rd
os
o
[4
9]
pe
rfo
rm

id
en
tic
al,
bu
td
iff
er
in
sp
ee
d.
Th
el
as
tt
wo

se
cti
on
sg
ive

re
su
lts
on

pl
ain
ch
an
tm

an
us
cr
ip
ts.

Au
th
or

Tr
ai
ni
ng

an
d
ev
al
ua
tio
n
co
rp
us

M
et
ho
d

Ev
al
ua
tio
n
m
et
ric
s

Re
su
lt

Da
lit
z[
68
]

32
pa
ge
so
fi
de
al
re
nd
er
ed
sc
or
es

wi
th
ar
tifi
cia
ld
efo

rm
ati
on
su
sin
g

m
od
er
n,
tab
ula
tu
re
,h
ist
or
ic
(c
ha
nt
,

m
en
su
ra
l)
no
tat
ion

s(
se
e[
68
])

Co
m
bi
na
tio
no

fs
ho
rt
lin
es
eg
m
en
ts

FP
,F
N
of
sta
ff
lin
e

No
de
fo
rm
.:
0%

,0
%

Cu
rv
.:
up

to
96
%
,1
00
%

Ty
pe
:u
p
to
59
%
,3
7%

Re
be
lo
[1
73
]/

Ca
rd
os
o[
49
]

Sh
or
tes
t/S
tab
le
Pa
th

No
de
fo
rm
.:
0.
6%

,0
.6
%

Cu
rv
.:
up

to
1.
2%

,1
.2
%

Ty
pe
:u
p
to
0.
7%

,0
.7
%

Da
liz
[6
8]

40
re
al
m
us
ic
sc
or
es
,

m
an
ua
lly

an
no
tat
ed

Co
m
bi
na
tio
no

fs
ho
rt
lin
es
eg
m
en
ts

FP
,F
N
of
sta
ff
lin
e

5.
2%

,5
.9
%

Re
be
lo
[1
73
]

Sh
or
tes
tP
ath

1.
4%

,2
.5
%

Ca
rd
os
o[
49
]

St
ab
le
Pa
th

1.
3%

,1
.4
%

Re
be
lo
[1
72
]

76
ha
nd
wr
itt
en
m
us
ic
sc
or
es
,

m
an
ua
lly

an
no
tat
ed

St
ab
le
Pa
th
su
sin
gb

in
ar
yf
ea
tu
re
s

FP
,F
N
of
sta
ff
lin
e

1.
0%

,1
.2
%

St
ab
leP

ath
so
ng

ra
ys
ca
le
us
in
gS

SP
s

0.
7%

,0
.8
%

Ca
lvo
-Z
ar
ag
oz
a

[4
2]

6,
00
0
sc
or
es

of
th
e
IC
DA

R/
GR

EC
20
13

Co
m
pe
tit
ion

[2
14
]

CN
N
to
cla
ssi
fy
sta
ff
lin
ep
ixe
ls

Pr
ec
isi
on

an
d
Re
ca
ll

of
co
rre
ct
St
aff

Li
ne

Pi
xe
ls

98
.2
%
,7
3.
4%

Ca
lvo
-Z
ar
ag
oz
a

[4
3]

10
pa
ge
so
fE

in
sie
de
ln
m
an
us
cr
ip
t

CN
N
to
cla
ssi
fy
sta
ff
lin
ep
ixe
ls

Pr
ec
isi
on

an
d
Re
ca
ll

of
co
rre
ct
St
aff

Li
ne

Pi
xe
ls

71
.3
%
,8
6.
7%

10
pa
ge
so
fS
alz
in
ne
sm

an
us
cr
ip
t

77
.4
%
,9
8.
8%

Ra
m
ire
z[
17
1]

13
6
pa
ge
so
fp
lai
nc
ha
nt
m
an
us
cr
ip
ts
av
ail
-

ab
le
at
[8
2]

Te
m
pl
ate

m
atc
hi
ng

of
sta
ve
s

Re
ca
ll
of
sta
ve
s

95
%

21

3 Related Work with Regard to the Contributions

The first approaches to detect staff lines only worked well if the staff lines were mostly straight
and horizontal. In this case, a simple horizontal projection whose maxima correspond to staff lines
sufficed [22, 188]. Later algorithms also dealt with more complicated scores for which the initial
approach was extended by a combination of several different projection techniques [13, 153, 230].
Other methods used vertical scan lines [50, 124, 175], Run Length Encoding (RLE) [88], line
tracing [165, 184], or morphological algorithms [2, 52, 145]. To tackle the detection of curvy
or distorted staff lines, various more sophisticated algorithms were developed. Miyao [144] or
Szwoch [199] tried to combine short line segments to staff lines which was extended by many
subsequent publications [68, 154, 194, 195]. In [173], Rebelo et al. introduced an iterative staff
line detection algorithm which could already handle curved staff lines: The shortest path through
the foreground pixels of the score from left to right is searched, the result is stored as staff line and
then erased. These steps are repeated until the shortest path does not fulfill a set of different rules.
This algorithm was extended in [46, 49] by utilizing stable paths which requires less iterations
because in one step multiple staff lines could be detected. Su et al. [197] aimed to model the
shapes of staff lines by estimating their orientations on an initial staff line image. The previously
mentioned algorithms require a binarized input image, which is why the binarization algorithm has
a great impact on the performance. The staff line detection algorithm in [172] extended their prior
works [48, 49] to the grayscale domain: the cost of a pixel to belong to a staff line is modeled by a
probability function which is based on different black runs created by variations of the threshold of
the binarization. Another extension to [49] was published by Bui et al. [28] who used boosted stable
paths which basically speeded up the run-time algorithm by estimating the staff line boundaries on
the page. More recent approaches use machine learning to discriminate between staff or symbol
pixels. In [39, 42], Calvo-Zaragoza et al. introduced CNNs for staff line detection of binary or
grayscale images.
In the area of historical musical manuscripts, several recent approaches were proposed for the

staff line and stave detection. Timofte et al. [203] or Ramirez et al. [171] roughly detected staves
by an optimization problem to fit predefined staff patterns in the page. While the symbol detection
algorithm of [171] did not require staff line removal, [203] performed an subsequent accurate staff
line detection algorithm. In [41, 43], Calvo-Zaragoza et al. defined the detection of staff line pixels
as part of a complete pixel-wise page segmentation problem which was solved using a CNN. Their
network learned to distinguish background, staff line, text, and symbol in one step, providing a
separate binary layer for each subsequent step.
A separate evaluation of the staff line detection on square notation which was assembled by

Hartelt [111] is given in Table 3.4. The algorithms of Miyao [144], Dalitz [68], and Cardoso [49]
were taken from the MusicStaves Toolkit [68] of Gamera [77] and the parameters were manually
optimized for each material. The results clearly show that the established algorithms work flaw-
less for printed material (here 100% of the lines were detected), however only perform poorly on
historical manuscripts. For example, the results of the Miyao-algorithm on the manuscripts of the
Nevers dataset mean that only around 40% of all staff lines were correctly hit with at least half of
the length. If 90% shall be hit, the value drops further to only around 20%. Ramirez and Ohya
[171] reached a staff detection of 95% on comparable material as shown in Table 3.3, however,
the used template for a staff only allows for straight and equidistant lines which does only roughly
match with the hand-drawn lines on the manuscripts. Depending on the actual use-case, this is not

22

3.2 Staff Line Detection

Table 3.4: Comparison of different algorithms on historical plainchant manuscript pages of the
Nevers dataset (see Section A.2) and on the Liber Usualis [51] (printed square notation). The
evaluation metric is the F1-score for identifying a staff line correctly, whereby a line is marked as
TP if the overlap between the GT and the predicted line is greater than 50%. These values are the
best values of the literature on the same material as used in this thesis.

Author/Method Nevers Liber Usualis
Miyao [144] 0.38 1.0
Stable Path [49] 0.59 1.0
Dalitz [68] 0.80 1.0

sufficient, for example, if the pitches of the symbols have to be extracted.

3.2.1.2 Staff Line Removal

The performances of the staff line removal algorithms were pushed due to two competitions held
by the ICDAR in 2011 and 2013 [84, 86, 214]. The dataset used throughout the competitions is
the CVC-MUSICMA [85] dataset which comprises 1,000 handwritten scores in pianoform by 50
different writers.
Table 3.5 lists the primary outcomes and the methodologies of the participants of the compe-

titions. A horizontal line separates the two years in which a different severity of degradation and
also optionally a grayscale version (“-gray”) of the data was used for the evaluation. Most ap-
proaches rely on the detection of the staff line thickness and staff line spaces using vertical RLE
[48, 68, 88, 197]. These values are used to define different heuristics to either remove foreground
pixels or construct graphs to isolate staff lines which are then erased. A robust approach in both
challenges is based on the removal of staff lines which were detected using stable paths [49]. Other
approaches directly try to erase staff lines by combining various mathematical operations, such as
pattern matching, dilation, or closing [78, 97].
After the training and testing sets of the challenges were made public, several further results were

reported. The staff line removal algorithm of Alirezazadeh and Ahmadzadeh [2] first removes all
pixels of their detected staff lines. In a second step, an algorithm tries to recover eliminated parts
of the music symbols. Thereto, a 2-D-Fourier transform and a subsequent low-pass filter is applied
to obtain a blurry version of the input image, whereby the thickest objects, mainly overlaps of
staff lines and symbols, are highlighted. An adaptive binarization algorithm segments these parts
which are the missing parts of the symbols due to the initial staff line removal. The total algorithm
including the staff line detection was evaluated on the CVC-MUSICMA dataset. To simulate the
effect of various distortions, they applied eleven models such as rotation, curvature, and speckles.
The F1-score yielded an error of 1.59% (see Table 3.5).
The previous methods for staff line removal show that machine learning approaches, such as

neural networks, were not yet considered in the community of OMR up to about 2013 since the
amount of available training data was restricted. In 2017, several machine learning approaches for
staff line removal emerged. Montagner et al. [147] proposed an image operator learning approach

23

3 Related Work with Regard to the Contributions

Table 3.5: Combined results of various staff line removal algorithms. The first section corresponds
to the results of the ICDAR 2011 challenge [84] whose metrics is a pixel-based accuracy. The
second section shows the averaged outcomes of the ICDAR 2013 challenge [214] which applied
different grades of degradation to the evaluation material which posed a greater challenge for the
algorithms. The last two sections show recent developments on the ICDAR 2011 and 2013 datasets,
respectively. Separate publications are denoted if available. The results can only be compared
within each dataset because, as stated, the evaluation material changed.

Participant F1 [%] Method
ISI01-Rob 98.07 Thinned image
ISI01-HA 98.11 Thinned image with adapted parameters
INP02-SP [49] 97.17 Stable paths
INP02-SPTrim [49] 97.16 Trimmed stable paths
NUS03 97.46 Histogram of vertical run length
NUG04-Fuji [88] 89.63 Deskewing and identification of long horizontal runs
NUF04-LTr [68] 95.71 Removal of short vertical runs, connected subgraphs
NUG04-Skel [68] 93.13 Graph with vertical and horizontal links
TAU-bin 83.0 Vertical scans and black RLE, based on [87]
NUS-bin [197] 75.2 Vertical RLE histogram
NUASi-bin-lin [68] 94.3 Skeleton of SL based on black vertical RLE
NUASi-bin-skel [68] 93.3 Segments of SLs based on split SL skeleton
LRDE-bin [97, 98] 97.1 Mathematical morphological operators
LRDE-gray [97, 98] 82.85 Mathematical morphological operators
INESC-bin 91.0 SSL thickness and distance [48], stable paths [49]
INEC-gray 42.09 Highlight SL with a sigmoid function, INESC-bin
Baseline [78] 90.9 Analysis of neighboring components

2D-FT [2] 98.4 2D-Fourier transform, low-pass filter, binarization
LAG-SL-bin [28] 97.4 Extension of stable paths [49]
OLA [147] 97.0 Operator learning approach
OLA-CNN [1] 98.0 Operator learning approach with CNN
NN-bin [37] 92.1 Nearest Neighbors
SVM-bin [37] 95.0 Support Vector Machine
RaF-bin [37] 94.6 Random forests
StaffNet-bin [42] 97.9 CNN
StaffNet-gray [42] 98.9 CNN
GANS-bin [129] 99.3 Generative Adversarial Networks
GANS-gray [129] 99.1 Generative Adversarial Networks

24

3.3 Music Symbol Detection

which showed robust results on the ICDAR 2013 dataset. On average, their algorithm achieved an
F1-score of 97.0% which ranks already with the best algorithms of the ICDAR 2013 challenge.
Aguilar and Hirata [1] coupled image operator learning with CNN-classification which yielded an
score of 98.0% and clearly outperformed any existing method. In [37], several supervised methods
for classifying pixels were examined: k-Nearest-Neighborss (kNNs), SVMs, and Random Forests
showed scores of 92.1%, 95.0%, and 94.6% on binary images, respectively. These learning meth-
ods resulted in poorer performances compared to the approach of [98] which used morphological
transformations. The StaffNet of Calvo-Zaragoza et al. [42] classified the center of small image
patches into the classes staff or symbol using a CNN and achieved a global average F1 of 97.9%
or 98.9% if either a binary or gray input was used. This shows, that in contrast to the earlier hand-
crafted features, machine learning approaches are clearly superior when using grayscale material.
Konwer et al. [129] proposed GANs (see e.g., [93]) that had shown a remarkable performance in
several image processing tasks [117, 133, 139]. This approach uses two competing networks: the
Generator network which is based on a U-Net [187] aims to produce images with removed staff
lines that shall fool the Discriminator. The Discriminator then again tries do identify if an input im-
age is a generated image or part of the GT. This constant interaction results in a Generator network
that is capable of removing staff lines. The results of this approach were far superior to any other
methods so far. On binary and gray level images, the GAN yielded the current state-of-the-art with
an F1-score 99.3% and 99.1%, respectively.
The typical errors of any staff line removal approach occur mainly at symbols that share similar-

ities with staff lines, or that lie on or intersect a staff line. Music symbols that contain more or less
horizontal parts are dynamic signs such as crescendo or decrescendo, slurs, accidentals, or beams.
To distinguish between staff lines and symbols, context is highly relevant, especially if beams are
within a staff. Neuronal networks possess the capability to learn what context is required for an
optimal removal which is why these approaches are superior and now the state-of-the-art.

3.2.2 Conclusion
Table 3.4 shows that traditional approaches for staff line detection work well on modern printed
material, however fail on Medieval manuscripts. On different material of the same epoch and no-
tation, Ramirez and Ohya [171] reached a staff detection of 95%, which however does not include
the detection of accurate individual staff lines. On the identical material, the method of this thesis
(see Section A.2) using FCNs achieves an F1-score above 99% clearly outperforming the meth-
ods of Miyao [144], Dalitz [68], and Cardoso [49] (see Table 3.4). In the proposed workflow of
OMMR4all, a separate staff line removal is not required because the symbol detection algorithms
directly act on the original manuscripts.

3.3 Music Symbol Detection
This thesis accumulates two publications that deal with the automatic detection of music sym-
bols in neume notations. The first publication “Staff, Symbol and Melody Detection of Medieval
Manuscripts Written in Square Notation Using Deep Fully Convolutional Networks” (see Section
A.2, [224]) was published in the journal Applied Sciences in 2019. A combination of an FCN

25

3 Related Work with Regard to the Contributions

and a CC analysis extracted the written NCs of each individual staff. To evaluate the method, the
dataset introduced for the staff line detection comprising 49 pages (see Section 3.2) was extended
by manually annotating over 16,000 symbols. A dSAR of about 87% was obtained.
The paper “Automatic Square Notation Transcription of Medieval Music Manuscripts using

CNN/LSTM-networks and the segmentation-free CTC-Algorithm” (submitted to the Journal of
New Music Research in 2020, see Section A.3, [221]) was the second publication dealing with the
detection of music symbols. Compared to the previous approach using FCNs presented in Sec-
tion A.2, hybrid CNN/LSTM-networks were introduced to transcribe square notation. The great
advantage of this approach is that it works segmentation-free, that is, only the complete sequence
must be annotated but not the actual positions of the symbols. This clearly simplifies the GT pro-
duction. Calamari which was originally designed for ATR (see Section A.5) was adopted for this
task.
On the same dataset as in the previous paper [224], the new approach achieved a similar dSAR

as the FCN approach (about 89%). Note that during the writing of this paper, the FCN approach
was further developed which resulted in slightly improved results when the experiments were re-
produced. Furthermore, a neume dictionary (similar to words) was created and used for decoding.
An improvement of about 5% was obtained when measuring the NAR which, similar to the WAR
in ATR, measures the amount of completely correct neumes.

3.3.1 Related Work

A summary of different current OMR approaches in the literature to recognize printed or handwrit-
ten music of various epochs is listed in Table 3.6 with a focus on monophonic scores. The column
“Training and evaluation corpus” denotes the used data for training the methods and for evaluat-
ing. It is striking, that in contrast to publications targeting historical manuscripts, those dealing
with contemporary music prints used larger corpora for training. The “properties of the corpus”
provide more information about its content. Then, the used “methods” are described, whereby the
column “input” states the input of the respective algorithm, and “output” defines the produced data
which was taken for evaluation. For each evaluation, the “metrics” is denoted which varies among
the different publications which is why Table 3.6 aims to normalize the metrics in a comparable
form. The table shows, that the recognition of monophonic music of printed notes of clean scans
yielded very good recognition rates up to 99%, whereas the recognition of historical manuscripts
written in mensural notation (16th-18th century) showed maximum values of around 60%, and of
those written in square notation (14th century) yielded around 80% (estimated).
The focus of this thesis lies on monophonic music, where the music forms a temporal sequence

and hence it is sufficient to only detect one symbol at a point in time. The following sections list
publications related to OMR on monophonic music detection and to music detection on historical
documents in general. With the recent overwhelming success of deep learning, CNNs acting on
raw input data instead of preprocessed images (e.g., staff line removal) became very popular and
yielded state-of-the-art performances. Since OMR is basically a sequence to sequence task, also
recurrent networks, such as LSTMs, are promising to use.

26

3.3 Music Symbol Detection

Ta
bl
e3

.6
:O

ve
rv
iew

of
di
ffe
re
nt
re
po
rts

on
re
co
gn
iti
on

of
m
us
ic
sy
m
bo
ls.
Se
et
he
tex
tf
or
af
ur
th
er
de
sc
rip
tio
n.

Au
th
or

Tr
ai
ni
ng

an
d
ev
al
ua
tio
n

co
rp
us

Ep
oc
h

Pr
op
er
tie
so

ft
he

Co
rp
us

In
pu
t

O
ut
pu
t

M
et
ho
d

Ev
al
ua
tio
n

m
et
ric
s

Re
su
lt

Printed

va
nd

er
W
el
et

al.
[2
07
]

17
,0
00

M
us
icX

M
L
do
cu
m
en
ts

of
th
eM

us
eS
co
re
Sh
ee
tM

us
ic

Ar
ch
ive

[2
02
]

21
st
Ce
nt
.

m
on
op
ho
ni
c,
us
er

ge
ne
ra
ted

,
re
nd
er
ed
no
tes

Pi
ctu
re
of
a

sta
ff

M
us
ic
sy
m
bo
lh
eig
ht

CN
N/
LS
TM

(E
nc
od
er
-

De
co
de
r)

≈
1
−
m
ea
n

ed
it-
di
sta
nc
e

≈
F
1

79
%

M
us
ic
sy
m
bo
lt
yp
e

92
%

M
us
ic
sy
m
bo
l

77
%

Ba
ró
-M

as
[2
1]

50
,0
00

sc
or
es
wi
th
va
ry
in
g

ty
po
gr
ap
hy
,c
or
re
sp
on
ds
to

in
cip

ts
of
th
eR

IS
M
da
tas
et
[1
25
]

21
st
Ce
nt
.

m
on
op
ho
ni
c,

re
nd
er
ed

Pi
ctu
re
of
a

sta
ff

M
us
ic
sy
m
bo
lh
eig
ht

CN
N/
LS
TM

1
−
m
ea
n

ed
it-
di
sta
nc
e

≈
F
1

98
.5
%

M
us
ic
sy
m
bo
lt
yp
e

98
.5
%

M
us
ic
sy
m
bo
l

97
.2
%

Ca
lvo
-Z
ar
ag
oz
a

an
d
Ri
zo
[3
6]

87
,7
89

in
cip

ts
of
re
al
m
us
ic

tak
en
fro
m
th
eP

rIM
us
da
tas
et

20
th
Ce
nt
.

m
on
op
ho
ni
c

re
nd
er
ed
sc
or
es

Pi
ctu
re
of
a

sta
ff

M
us
ic
sy
m
bo
l

CN
N/
LS
TM

wi
th

CT
C-
Lo
ss

1
−
m
ea
n

ed
it-
di
sta
nc
e

≈
F
1

99
%

Vi
gli
en
so
ni
et

al.
[2
08
]

20
pa
ge
so
ft
he
Li
be
rU

su
ali
s

[5
1]

20
th
Ce
nt
.

m
on
op
ho
ni
cp
rin
t

of
sq
ua
re
no
tat
ion

Sc
an
of
a

pa
ge

Pi
tch

Va
rio
us

Pr
ob
ab
ly
Re
ca
ll

(F
P
no
td
en
ot
ed
)

95
%

Handwritten

Pa
ch
ae
t

al.
[1
58
]

14
0
pa
ge
so
ft
he
M
US

IC
M
A+

+
da
tas
et
[1
03
]

21
st
Ce
nt
.

ha
nd
wr
itt
en
,

CW
M
N,

po
lyp
ho
ne
,n
o

ar
tif
ac
ts

Sc
an
of
a

pa
ge

M
us
ic
sy
m
bo
l

FC
N

Pr
ec
isi
on

=
T
P

T
P
+
F
P
,

Re
ca
ll
no
ts
tat
ed

>
8
0
%

Ba
ró
et
al.
[2
0]

20
pa
ge
so
ft
he

CV
C-
M
US

IC
M
A
da
tas
et

21
st
Ce
nt
.

ha
nd
wr
itt
en
,

CW
M
N,

m
on
op
ho
ni
c

Pi
ctu
re
of
a

sta
ff

M
us
ic
sy
m
bo
lh
eig
ht

CN
N/
LS
TM

1
−
m
ea
n

ed
it-
di
sta
nc
e

≈
F
1

53
%

M
us
ic
sy
m
bo
lt
yp
e

61
%

M
us
ic
sy
m
bo
l

46
%

Ca
lvo
-Z
ar
ag
oz
a

et
al.
[3
8]

Bo
ok

co
nt
ain
in
g9

0
pa
ge
so
ft
he

Ca
pt
ain

Ar
ch
ive
s

16
th
-1
8th

Ce
nt
.

wh
ite

m
en
su
ra
l

no
tat
ion

Pi
ctu
re
of
a

sta
ff

No
te

HM
M
wi
th

n
-g
ra
m
s

1
−
m
ea
n

ed
it-
di
sta
nc
e

≈
F
1

59
%

Ca
lvo
-Z
ar
ag
oz
a

et
al.
[4
0]

57
6
sta
ve
so
ft
he
M
iss
ao
ft
he

Ca
th
ed
ra
lo
fZ

ar
ag
oz
a(
Sp
ain
)

17
th
Ce
nt
.

m
en
su
ra
ln
ot
ati
on

Pi
ctu
re
of
a

sta
ff

No
te
po
sit
ion

HM
M
wi
th

n
-g
ra
m
s

1
−
m
ea
n

ed
it-
di
sta
nc
e

≈
F
1

70
%

No
te
ty
pe

64
%

No
te

59
%

Ra
m
ire
ze
t

al.
[1
71
]

13
6
sc
an
so
ft
he
Di
git
al

Sc
rip
to
riu
m
[1
15
]

14
th
Ce
nt
.

sq
ua
re
no
tat
ion

Pi
ctu
re
of
a

sta
ff

Ne
um

ee
xi
ste
nc
e

Pa
tte
rn
-m
atc
hi
ng

Re
ca
ll

=
T
P

T
P
+
F
N

88
%

Ne
um

et
yp
e

SV
N

Re
ca
ll
an
d

Pr
ec
isi
on

>
9
2
%

Ne
um

e
Co
m
bi
na
tio
n

Re
ca
ll

8
1
%
?

(n
ot

sta
ted

)

27

3 Related Work with Regard to the Contributions

3.3.1.1 OMR on Contemporary Notation

Baró-Mas et al. [21] used (bidirectional) LSTM networks to predict the pitch and rhythm of notes
and other musical symbols, for example rests and clefs, in images, each containing a single staff
of monophonic music. The output of the network consists of two sequences: the first one predicts
the pitch of notes or the type of other symbols like clefs (54 classes in total) while the second
one indicates the rhythm of notes or a no note label (26 classes). For training the network, they
implemented two different loss functions that considered both target sequences. One computed
the weighted Euclidean loss, the other implemented a multi-label soft margin loss. To evaluate
their algorithm, two different datasets were used which both consisted of monophonic music in
modern notation, however one was printed and one handwritten. Experiments on the first dataset
which comprised incipts from the RISM dataset [125] yielded a symbol/pitch error rate of 1.5%
and a rhythm error rate of 2.0%. The total error for both properties to be correct was 2.8%. As
second dataset, they used one page of the CVC-MUSICMA dataset [85]. After manually labeling
six staves, they extended the number of different staves by varying the order of bars within a single
staff. During training, data augmentation was used and all lines from the printed RISM dataset
were added. The error of the symbol/pitch and rhythm detection was 47% and 43%, respectively,
yielding a total error rate of 65%.
A similar attempt to learn music recognition onmodernmonophonic printedmusic was proposed

by van der Wel and Ullrich [207]. However, compared to Baró-Mas et al. [21], they used prelim-
inary CNN layers and an encoder/decoder structure for their neural network. The CNN/LSTM-
based encoder mapped a line image into one fixed-size state representation by processing the line
sequentially. The decoder consecutively decoded this state and predicted a sequence of pitches,
duration, and finally a stop mark. This overall procedure was based on and was very similar to
the sequence to sequence task used for machine translation [198]. In total, there were 108 pitch
and 48 duration categories in their dataset which was compiled from MusicXML [92] scores from
the MuseScore Sheet Music Archive [202]. In contrast to the normalized edit distance, a rather
strict metric was used that could not handle insertions or deletions. They aligned the prediction and
GT sequence label by label and counted the number of correct predictions. Thus, if a label was
deleted or inserted, all subsequent notes were usually false. Their final model which was trained
with data augmentation, yielded a pitch and duration accuracy of 81%, and 94%, respectively. The
total accuracy of notes was 80%.
Another very promising attempt to predict monophonic music was made by Calvo-Zaragoza and

Rizo [36]. They used CNN/LSTM hybrids combined with a CTC-loss-function [96] as model
architecture, a technique that already succeeded in handwritten and printed OCR [24, 223], or
speech recognition [193, 232], which are both sequence-to-sequence tasks. The advantage of this
loss function is that it does not require position-accurate labeling in the GT. Solely the target
sequence and input data is obligatory out of which the network automatically learns the alignment.
The drawback of this method is that each combination of pitch and rhythm semantically requires a
distinct label. Moreover, a key-signature can, for instance, either be a single symbol or be dissolved
in individual accidentals. The first so-called semantic representation required 1,781 classes in total,
while the second agnostic representation only used 758 classes. To perform experiments they
created the so-called Printed Images of Music Staves (PrIMuS) dataset containing 87,678 real-
music incipts which were rendered by Verovio [170], a web-based music engraver. The evaluation

28

3.3 Music Symbol Detection

yielded a sequence error rate of 17.9% and 12.5% in the agnostic and semantic representation,
respectively, which was explainable by the higher number of classes. However, the individual
symbol error rate was approximately 1% in both representations.
A similar approach was applied by Baró et al. [20] who proposed a network architecture based on

CNNs and LSTMs to obtain the rhythms and pitches in two separate output layers. In comparison
to Calvo-Zaragoza and Rizo [36] the GT was accurately segmented by providing the exact start
and end of a music symbol. To train the network, an L1-loss function measured if the network
yielded the correct prediction at a certain pixel position. 20 pages of the CVC-MUSCIMA dataset
[85] were selected to manually create the required GT. Using various network architectures, data
augmentation, and transfer learning, the lowest achieved error of the pitch and rhythm detection
was 38.7% and 47.6%, respectively, and a total error of 54.5%.
Compared to the previous described work, handwritten music recognition can also be regarded

as an object detection task. An approach that follows this idea was proposed by Pacha et al. [158].
Their pipeline used existing state-of-the-art DNNs for object detection, such as Faster R-CNN
[177] or R-FCN [66], with custom preprocessing and training. A cropped image of a single staff
without staff line removal served as input. They evaluated on the MUSCIMA++ dataset [103]
which contains over 90,000 symbol annotations of handwritten music distributed in 71 classes.
The object detection achieved a mean average precision of over 80%.

3.3.1.2 OMR on Historical Notations

In the area of historical OMR, Calvo-Zaragoza et al. [38, 40] applied HMMs and an n-gram lan-
guage model on line images written in mensural notation of the 17th century. This notation is
comparable to modern notation since it is already ruled by very similar symbols. Their handwrit-
ten corpus was comprised of 576 staves with 13,863 individual symbols representing, for instance,
notes, rests, or clefs. In total there were 16 different symbol shapes which were located on discrete
locations relative to the staff lines. Combination of the position and shape yielded around 200 dif-
ferent classes. As metrics they measured the glyph error rate (GER, symbol shape only) and height
error rate (HER, position relative to the staff lines) separately, but also computed the combined
symbol error rate (SER, shape and position). Their best model reached a GER of 35.2%, a HER
of 28.2%, and a SER of 40.4%.
Ramirez and Ohya [171] did notable work on the automatic recognition of square notation on

scans of manuscripts which is also the focus of this thesis. They built a dataset based on 136 pages
from the Digital Scriptorium repository (see e.g., [82, 115]) comprising 847 staves and over 5,000
neumes. A great challenge were the grayscale images of the 14th century which suffer from physi-
cal degradation, variability in notation styles, or non-standardized scan conditions. Their first task
detected and extracted staves. Thereto, they used a brute-force algorithm that matched the original
image with a staff template built up from four straight staff lines by varying line and staff dis-
tance, and orientation. The found optima indicated locations for staves, which were then extracted.
The advantage of this method is that there is no need to detect individual staff lines, however the
handwritten staff lines require to be equally distant and almost straight. In total, 802 of all 847
staves were correctly detected (95% recall). In a second task, they performed a symbol detection
and classification algorithm. A pattern matching algorithm fed with several different templates for
each neume first marked possible symbol locations and found approximately 88% of all symbols.

29

3 Related Work with Regard to the Contributions

Then, a SVM classified the symbols into different neume types with an accuracy no lower than 92%
across all classes. Compared to the approaches of this thesis, they did not resolve the individual
neumes into single NCs nor detect clefs or compute pitches, but likewise, accidentals were ignored
or did not occur.
Vigliensoni et al. [208] focused on the pitch detection of square notation documents of the Liber

Usualis [51] printed in 1961. Using the staff line detection of Miyao [144], the staff line removal
of Roach and Tatem (see e.g., [68]), and an automatic neume classification algorithm trained on
40 pages, they evaluated the pitch detection on 20 pages consisting of 2,219 neumes and 3,114
pitches. The pitch of the first component of a neume was correctly detected for 97% of all neumes,
while only 95% of all note components including single-tone neumes were found.
In [43], Calvo-Zaragoza et al. proposed an approach known from historical document analysis

[219] in the area ofOMR. A deepCNNwas trained to segment scans of twomanuscripts of the 14th
and 16th century pixel-wise by assigning each pixel a class selected from background, text, staff line,
or symbol. Approximately 80% of the pixels were background, 10% were text, 6% were staff lines
and 4% were symbols. The results showed that especially at the margin of changing label types,
the classification was incorrect, which however should only have a minor impact on proceeding
steps according to the authors. Furthermore, only a small number of GT instances, ten in this
case, had to be manually created to obtain the stated results. The evaluation measured the correct
label of pixels located particularly at the edge of different symbols and yielded an average F1-score
of around 90%. In general, this algorithm predicting a pixel-wise segmentation only solved one
step in an OMR pipeline. But the segmentation can be used as input for various classifiers which
are for instance trained to extract staff lines, staves, symbols, or text, to finally output the musical
information.

3.3.2 Conclusion
The automatic transcription of neume notations is a virtually unexplored area of research. On
Medieval manuscripts written in square notation, Ramirez and Ohya [171] detected 88% of all
symbols and correctly identified the neume type with no lower than 92% of all classes. As already
stated in Section 2, a direct comparison to the performance of symbol detection of this thesis is not
possible. The presented estimation however implies that the obtained NAR of 83.5% (see Section
A.3 or [221]) is an improvement to Ramirez and Ohya.

3.3.3 Future Work
First, the application of novel and popular trends in machine learning should be tested. Recent
developments of handwritten music recognition in CWMN suggest a two stage approach which
first detects primitive music symbols (e.g., stems, bars, or notes, see [159]) and then decides about
the semantic connection of each element,also called music graph construction (see e.g., [160]).
Applied to neume notations, first, the primitive elements clefs, accidentals, and note heads in various
shapes are located by a network designed for object detection in general. A second network then
decides on the semantic of the symbols by classifying each pair of elements which allows to extract
the NCs that form neumes. The drawback of this method is that the GT production is extremely
cumbersome because the surrounding Axis-Aligned Bounding Boxes (AABBs) for each primitive

30

3.4 Text and Lyrics Recognition

have to be manually annotated. Currently only the center point of an element is required to train
the neural net for the symbol detection.
Furthermore, a combination of both presented approaches is sensible since their errors are not

identical. A voting mechanism including the confidences of the predictions is promising.

3.4 Text and Lyrics Recognition
“Calamari – A High-Performance Tensorflow-based Deep Learning Package for Optical Char-
acter Recognition” (see Section A.5, [226]) was presented in a paper being published in Digital
Humanities Quarterly, 2020. Calamari is a novel software to tackle ATR by implementing deep
CNN/LSTM-networks which processes a full text line in one step. It comprises several techniques
to achieve state-of-the-art results on both contemporary and historical prints. Beside different
DNN architectures, confidence voting of different predictions and finetuning with codec adaption
are supported.
The paper “Comparison of OCR Accuracy on Early Printed Books using the Open Source En-

gines Calamari and OCRopus” (see Section A.4, [223]), published in the Special Issue on Auto-
matic Text and Layout Recognition in the Journal for Language Technology and Computational
Linguistics (JLCL), compared Calamari to the former state-of-the-art software OCRopus/OCRopy
[23] for ATR on early printed books. The proposed deep CNN/LSTM-networks considerably out-
performed OCRopy by up to 55% if both a few (60) and many (1,000) lines of GT were used.
Furthermore, the training times were dropped by a factor of at least four and prediction times by a
factor of more than six due to the usage of GPUs. The datasets consisted of three historical printed
books of the years 1476, 1488, and 1505, each comprising more than 3,000 lines of GT in total.
A more recent publication of Baierer et al. [10] compares the current versions of the ATR-engines
Calamari, OCRopy, Kraken, and Tesseract 4, however without quantitative results.
Lastly, the paper “Lyrics Recognition and Syllable Assignment of Medieval Manuscripts” (see

Section 3.4, [222]) which is submitted to the 17th International Conference on Frontiers of Hand-
writing Recognition 2020 applies Calamari on extracted lyrics lines using five different datasets.
Depending on the dataset, the number of training lines, and an accurate or approximated line ex-
traction, a CER of up to 6.7% was obtained. The paper also introduces a syllable assignment
algorithm: first, each syllable is assigned to the closest neume based on the positional information
of an ATR. Then, possible conflicts are resolved by shifting syllables to the left or right. An evalu-
ation of the syllable assignment yielded an F1-score of above 99% even if it has to rely on a flawed
ATR output with a CER exceeding 10%.

3.4.1 Related Work
The major challenge of the character recognition of lyrics compared to common text is that syl-
lables can be written separately with space between. Therefore, an ATR system that incorporates
languagemodeling can not be directly applied since syllables must be combined to words first which
however is a non-trivial task due to absent or inconsistent hyphens (“-”). In particular, historical
music notations do not use hyphens to mark grouped words, yet. Instead of words, one could rely
on syllable dictionaries for a language which are however more prone to error because fewer char-

31

3 Related Work with Regard to the Contributions

acters match. Also the hyphenation and spelling can vary between different, especially historic,
documents. A further problem poses the frequent usage of abbreviations that can be inconsistent
across books. Therefore, the hyphenation is handled as a separate step.
In the following, first, different open-source software systems for ATR are presented, then pub-

lications targeting the recognition of lyrics is described.

3.4.1.1 Open-Source Software for Automatic Text Recognition

This section provides a brief introduction to software systems for ATR. A thorough comparison of
the open-source OCR programs OCRopy, Kraken, Tesseract 4, and also Calamari is provided in
the recent publication of Baierer et al. [10]. Actual evaluations and a complete comparison to the
relevant OCR engines are provided in Sections A.4 and A.5.
Currently, there exist several versions of OCRopy which was originally published by Breuel

(see e.g. [23, 27]). OCRopy was the first software that allowed a user to train custom LSTM
based models incorporating the CTC-Loss function [96]. By default, it uses slow NumPy-based
models[206] which can be exchanged by a faster C++-based implementation (clstm) [26], however,
neither the GPU nor Deep CNN/LSTM models can be used. For training, OCRopy requires a list
of images and their GT, and outputs a model which then can be used to predict the written text of
other text lines.
Kraken [127, 128] was originally a fork of OCRopy, but has a different API and uses Py-

Torch as machine learning framework since version 2.0. The network configuration supports deep
CNN/LSTM models trainable on the GPU and several settings to configure the network. While
Kraken was successfully trained on different scripts (e.g., Latin, Arabic, Fraktur), a comparative
study on standard datasets is not available, yet.
Tesseract (see e.g., [192]) was initially released as open-source in 2005 and is still under develop-

ment. The newest version of Tesseract (v4) added support for DNNs such as LSTM/CNN-Hybrids,
however GPU support is not offered, yet. To prototype network structures, Tesseract proposes a
custom Variable-size Graph Specification Language (VGSL) which is similar to the network pro-
totype language of Calamari.
While OCRopy is still maintained, OCRopy 2 [25] does not seem to be developed anymore,

probably due to the introduction of OCRopy 3 [24] which changed all major OCR components to
DNNs using PyTorch [162]. OCRopy 3 supports variable network architectures including CNNs
and LSTMs, but also allows training and applying the models on the GPU. The resulting models
yield state-of-the-art results and can be trained with minimal expenditure of time.

3.4.1.2 Text Recognition on Music Documents

In 2004, Georges stated that “lyric recognition is often considered secondary to OMR”, however, it
“cannot be isolated from the music, especially in the final representation stage” [90]. Unfortunately,
Georges only “consider[ed] some solutions to the outstanding difficulties in lyrics recognition”. Still
today, ATR in OMR has been barely researched. There are a few works, that solely target the
extraction of lyrics using traditional methods: Dalitz et al. [69] detected the base line of text using
a vertical projection and then defined all CCs touching that line as lyrics. Burgoyne et al. [30] first
reconstructed staff lines and then removed staffs to obtain the lyrics as remainder. Dinh et al. [71]

32

3.4 Text and Lyrics Recognition

also used reconstructed staves to first obtain possible region candidates for lyric regions and then
extract actual lines based on block division and run-lengths. Calvo-Zaragoza et al. [43] extracted a
text layer of an image as part of their CNN-based approach that classifies each pixel into the classes
background, symbol, staff line, and text.
Several further works applied ATR to the extracted text, or transform the task to a text alignment

problem if the transcripts are already available: Hankinson et al. [109] included OCRopy and a
pretrained model in their workflow to handle the actual recognition of lyrics on the Liber Usualis
[51]. Even with a post-ATR correction, the erroneous results were sobering and could thus only
serve as a proof-of-concept. On Medieval manuscripts, a very recent work of de Reuse and Fu-
jinaga [70] aimed to align existing transcripts, which are often available, to the result of an ATR
system. To train OCRopy, two different datasets, one with 2,302 (Gothic), and one with 1,140
words (Carolingian), comprising lyric lines and their transcripts were manually annotated. The
achieved CERs were 12,7% and 12,5% respectively. The predicted text which was expected to
contain errors was then aligned to the correct transcript of the texts using the Needleman-Wunsch
algorithm [152]. Text that had no match in the prediction was dropped because it was likely that it
belongs to paratexts. Afterwards, the matching was split into syllables and their bounding box size
was computed based on the positional information of the ATR output. A syllable was correctly
matched if the bounding box matched with the GT with an intersection over union (IU) of at least
50%. The final accuracy ranged from 78.6% to 92.9% depending on the material.

3.4.2 Conclusion
The publications [223, 226] show that Calamari consistently and significantly outperformed Tesser-
act, OCRopy, and OCRopy 3 for ATR on various datasets comprising historical and modern fonts.
The reasons are the deeper neural networks, but also the additional techniques such as transfer-
learning, data augmentation, and (confidence-)voting. The publication [222] shows that the tech-
niques generalize on the HTR of lyrics that are clean and uniformly written. Furthermore, the
syllable assignment based on the positional output of the network for ATR yields very satisfactory
results.

3.4.3 Future Work
AlthoughCalamari supportsmany features such as voting and transfer-learning, plans for extensions
exist. First, a more sophisticated, material-specific data augmentation during training should lead to
significant drops in the CER especially if only a few lines of GT are present. Additionally, synthetic
data based on existing fonts can also be incorporated for data augmentation.
Moreover, training of an even deeper network using many different books sharing similarities

in typeface is expected to result in more generic models that have very low error rates on a large
variety of fonts. Such models must be trained but can be shared to potential users to enable a robust
default model which can then, if required, be trained on the actual material at hand.
Voting showed to be a very efficient way to improve the accuracy of OCR. To further improve

the voting results, distinct voters are required which could be created by variations of the network
architecture. The voting mechanism itself could also be learned directly in one network consisting
of several paths. Each individual path is trained optionally with a custom CTC-loss, however the

33

3 Related Work with Regard to the Contributions

probability maps are combined in an additional output layer, the voting. This main output layer is
fed into a CTC-loss and is used for decoding. To enforce that each path learns differently similar
to the implemented cross-fold-training a dropout-like filter enforces that an input line is only pre-
sented simultaneously to a subset of paths. All paths could share all convolutional layers for feature
extraction but have different weights in its LSTM and subsequent weight layers to enable a faster
and more stable training.
Tesseract’s language to define network topologies (VGSL) has a very simple and compact syntax.

The current syntax of Calamari should also support this language to define networks. Furthermore,
Calamari should provide additional layer types. Dilation in convolutional layers or its accompanying
dilated blocks increase the visual context while maintaining a small parameter size. The LSTM
layers could be replaced by Gated Recurrent Units (GRUs) which are an alternative recurrent layer.
Batch normalization could help to reduce overfitting.
A very important component of recurrent networks in the domain of language is attention which

basically multiplies the input vectors across time in the network with a weight matrix to filter and
emphasize relevant information. First approaches were already published (e.g., [134] or [231]),
inclusion in a framework, such as Calamari, are still pending.
Calamari has proven to successfully learn typography (e.g., normal, bold, or italics) by predicting

typographic labels for each glyph instead of the actual character (see [180]). Alignment of this and
the OCR sequence produces a rich text output which is required if typography is used to encode
semantic information (e.g., in a dictionary). Instead of training two independent networks, it is
sensible and feasible for a faster training to use the same network for both tasks up to the last layer
which produces two outputs, one for the typography, and one for the character sequence. Naturally,
this requires two CTC-loss functions during training which must be added and weighted.
Further plans tackle the application to handwritten text which is challenging due to the high

variances in writing style. OMMR4all will directly benefit from even small improvements in this
area since the handwritings involved are very clean and more similar across books. Exploring this
field also allows to target other alphabets such as ancient Greek, Hebrew, or Sanskrit.
The incorporation of dictionaries or language models such as n-grams provides another elegant

way to improve the character recognition. In a first step, a word could be matched with a dictionary,
a pursuing step could use a dictionary and a language model during the decoding of the sequence.
The advantage would be that the probability of alternative characters is taken into account. A real
implementation could follow the ideas of a speech-to-text algorithm that uses language models and
dictionaries to transcribe a phonetic sequence (the alphabet) into words. First steps in this direction
are currently integrated into Calamari.

3.5 OMMR4all
The toolOMMR4all and its comprised workflow for OMR onMedieval manuscripts were presented
at the 2nd InternationalWorkshop onReadingMusic Systems in Delft, 2019, and also at the German
conference “Digital Humanities im deutschsprachigen Raum” (DHd), 2020 (see Section A.7, [220,
225]). In these publications, an evaluation is provided that shows that even at the current early
stage of OMMR4all it is faster to correct the output of the automatic tools of OMMR4all instead
of Monodi+ [79], an editor specifically designed for manually entering neume notations. On two

34

3.5 OMMR4all

books, one written in Gothic and one in square notation, a speedup of 1.3 and 1.2 was measured,
respectively. The great benefit of OMMR4all is that its annotations yield positional information
about the detected music symbols which can be used for quality assessments or, if commented, a
critical apparatus.

3.5.1 Workflows and Projects for OMR on Historical Material
While, up to now, several well-working proprietary and free OCR software is available (see e.g.,
[9] for a recent comparison), only a few commercial OMR systems are present. Therefore, there
is a justified interest in research to develop end-to-end pipelines solving OMR targeting different
material and applications. The following sections select a few notable attempts targetting OMR on
historical material over the past 20 years.

3.5.1.1 The Levy II Project

Choudhury et al. [60–62] presented a workflow to capture the Lester S. Levy Collection of Sheet
Music [205]. A binary image was first preprocessed by removing staff lines using vertical runs.
In a next step, texts such as performance indications and lyrics were erased based on heuristics of
CCs and stored for later processing using OCR. Afterwards, other interfering components such
as stems or barlines were detected and removed using RLE and CCs (algorithm of [87]), and a
kNN-classifier identified the remaining symbols. The kNN-classifier had to be trained on human
corrected files and could thus be adapted to new styles. The relation of the detected symbols had
to be interpreted, temporally sorted, and grouped into staves. A postcorrection step detected and
corrected errors related to missing or additional beats in a bar. In a second pipeline, OCR was
applied to the extracted text, which was not assigned to notes. The final output was the music
notation and the text which could be used for music analysis such as searching.

3.5.1.2 The Gamera Framework

In [76, 77, 140], Droettboom et al. described the open-source and cross-platform framework Gam-
era which was designed to build arbitrary document recognition systems. Gamera provides prede-
fined algorithms for the various tasks of a workflow, such as preprocessing, layout analysis, symbol
segmentation and classification, and syntactical or structural analysis, which can be extended by a
plugin system. A user that aims to process one or more files of the same material, must first tie to-
gether different algorithms and adjust their parameters in order to get a satisfactory outcome. The
pattern matching engine which serves to detect known glyphs can be trained by providing new or
unknown examples. In [141], MacMillan et al. specifically focused on the application of Gamera
for OMR which they named Gamut but without providing evaluations. Dalitz and Karsten [67]
extended the framework to build a lute tabulature recognition system and Vigliensoni et al. [209]
created a system for OMR on CWMN.

3.5.1.3 Aruspix

The open-source and cross-platform software Aruspix [166] was created to recognize early mu-
sic prints (late 15th and early 16th century) which had been a challenge for traditional OMR ap-

35

3 Related Work with Regard to the Contributions

proaches [164]. It comprised preprocessing including deskewing and border removal, binarization,
a layout analysis to identify and classify text, music, and ornate letters, and a music recognition al-
gorithm based on HMMs [167, 168]. HMMs allowed to process a music region without staff
removal, and to predict the pitches in one step. In [169], Pugin et al. compared Aruspix to the
Gamrea framework using four books from the RISM dataset [181]. 40 pages were selected for
training and 30 for testing. Their main results were: First, OMR yielded an F1-score of 93%
for Aruspix and 80% for Gamera, and second, OMR on early music requires adaptive algorithms
which have to be improved for material that is highly degraded. A reason for the clearly different
results was that Aruspix was specifically designed for early music prints.

3.5.1.4 Allegro

A different approach for transcribing large masses of handwritten scores is crowd-sourcing. For
this purpose, Burghardt and Spanner presented their web-based tool Allegro in [29]. Their aim
is to transcribe a large corpus of 140,000 handwritten and monophonic German folk songs which
can currently not be captured fully automatically by an OMR approach. Allegro provides a user-
centered interface that allows even non-musicians to use the software for transcribing the provided
material. The transcription workflow starts with the segmentation of scores into single bars to allow
for a later alignment with the original score. Next, the user has to select the measure and the key of
the score. Afterwards, a transcription editor is presented which enables an user to enter the notes
for each bar individually. Furthermore, it is possible to mark notes, or add a text comment for an
editorial review. The melody can be played which simplifies the detection of smaller transcription
errors. Finally, Allegro supports an automatic double-keying check before producing the final
output. Hereby, after each score was transcribed by two different users, possible differences must
be resolved.

3.5.1.5 MuRET

Rizo et al. [119, 183] introduced aMusic Recognition, Encoding, and Transcription tool (MuRET)
which focuses on the transcription of white mensural notation written in Spain during the 16th to
18th century. MuRET provides state-of-the-art machine learning algorithms for OMR whose out-
puts can be manually corrected. Several workflows comprising different manual or semi-automatic
processing pipelines are allowed. First, symbols can be manually traced by depicting them with the
mouse or a pen. The resulting bounding-boxes are fed into different classifiers to obtain their types
and coordinates. The so-called holistic approach processes the image of a staff in an end-to-end
approach using HMMs [40] or Recurrent Neural Networks (RNNs) [35, 36] by directly producing
the output sequence in one step. This requires a staff segmentation in a preceding step. A third
approach uses neural nets that were originally designed for object detection (see e.g., [91, 136])
and can processes a complete page [157, 158]. These networks however require a large amount of
GT in order to operate reliably. Rizo et al. proposed to use their proposed user driven approach
requiring only some GT data to produce training data for the more sophisticated approaches. This
workflow reduces the amount of human effort for GT-production in general.

36

3.5 OMMR4all

3.5.1.6 The NEUMES Project

Possibly the first project aiming to “design a software infrastructure for digital transcription of
medieval chant manuscripts” [16], was the Neumed & Ekphonetic Universal Manuscript Encod-
ing Standard (NEUMES) project [16, 17] of the University of Oxford starting in 2002. In [18],
progress towards a distributed e-library was shown which also included the proposal of an encoding
that only stores the tonal movement instead of the actual glyph form which is similar to the devel-
opments in the MEI 4.0 neume standard. Caldwell [34] discusses various classification problems
and the attempts towards a classification of Western chant notations. The most recent publication
of this project [19] described and discussed the problems and approaches of the web-delivery of
the database. Publications targeting the actual tools for automatic OMR are unfortunately not listed
at [17].

3.5.1.7 SIMSSA

The SIMSSA project [89, 106] “targets digitized music scores to design a global infrastructure
for searching and analyzing music scores”. It aims to both create and analyze musical content
which also includes early music notations. For the creation of content, novel recognition tech-
nologies based on machine learning and computer vision are planned which are embedded into a
user-friendly workflow accessible on a web-based interface. Data-mining plays an important role
to analyze music, which enables musicologists for example to search for pitches, rhythms, or lyrics,
or to detect structures within and across music scores. The workflow is managed by Rodan [105]
which provides a web interface for an adaptive workflow management system by integrating dif-
ferent recognition systems and tasks that can be interactive or non-interactive. During the project,
librarians and information scientists will review the developed tools for usability and utility from a
non-technical view, which is important to provide a comfortable tool for musicians. All developed
tools and frameworks will be open-source and accessible to anyone who wants to participate. It
can be expected that the recent publication of de Reuse [70] will provide the interface for the lyric
analysis.
Several projects and their workflows, are located in or related to SIMSSA. Three of them are

presented in the following due to their relevance related to this theses.

Workflow for Medieval and Renaissance Music In [210–213], Vigliensoni et al. pre-
sented an OMR workflow embedded in the SIMSSA project which targets Medieval and Renais-
sance music. The main stages are the analysis of the document, the reconstruction and encoding of
its music, and finally the generation and correction of the score. Their document analysis relies on
pixel-wise labeling which is automatically generated by the CNN presented in [43] and can manu-
ally be corrected by Pixel.js [190]. After a succeeding symbol classification based on the resulting
layers, the music can be reconstructed by finding the pitch of neumes and the music is saved as
MEI. Finally, a superimposition of the original image and the OMR are shown in the web-based
overlay editor Neon2 [176], a successor of Neon.js [32], which allows for a manual postcorrec-
tion. Verovio [170] is included to directly manipulate, validate, and render the MEI content in the
browser. Neon2 supports the editing and rendering of various glyphs of the square notations: C
and F clefs, single tone neumes such as punctums, virgas and inclinatums, but also grouped neumes

37

3 Related Work with Regard to the Contributions

such as pes, clivis, torculus. Furthermore, staves can be merged and various MEI elements can be
highlighted to facilitate the correction process. Neon2 expects straight staff lines with a fixed line
distance for each staff, which is however rarely the case in actual manuscripts.
A focus lies on the integration of the user into the workflow. At any stage, a human annotator

can interfere in order to correct the automatic processing of a page. These correction are used to
train and improve the machine learning algorithms iteratively.

Workflow for the Liber Usualis Hankinson et al. [109] proposed a workflow to recognize
the musical content of the Liber Usualis [51] which is a “liturgical service book produced by the
Roman Catholic church and an important source for Gregorian chant. It uses square-note neume
notation derived from the earlier Franconian style but modernized by the monks at Solesmes,
France in the late 19th Century” [109]. The proposed semi-supervised workflow started with a
layout analysis of the printed page image. Afterwards, the square notation was recognized using
the algorithm of [208] which adapts Gamera [77]: Staff lines were detected and removed by us-
ing provided deterministic algorithms. To train the glyph classifier to detect neumes, GT based
on 40 pages was manually created. To find the pitches of the neumes and its individual NCs, an
algorithm based on a horizontal projection and a center of mass computation was developed. The
lyrics were processed by the OCR engine OCRopy [23]. The final output was encoded in MEI
and presented in an open-source viewer called Diva.js [107, 110] which provides an interface for
indexing, searching, and retrieval of the encoded Liber Usualis pages.

Optical Neume Recognition Project The Optical Neume Recognition Project (see e.g.,
[11, 12, 114]) which started in 2012 and ended in 2014 aimed to develop a tool to investigate early
staff-less neume notations. This notation is a predecessor to the square notation and only uses signs
to depict the motion of the melody without any information about an actual discrete pitch. “The
information gathered from this project can be used to speed up the time it takes researchers to
compare old and new notations, isolate differences in chant melodies, and compare adiastematic
(unheightened) neumes to early staff notation.” [11]. The project planned to use OMR techniques
to identify those neumes based on their unique shapes in scanned images and translate the encoded
melody direction into a machine readable form, however, no results can be found in their listed
publications. Even though, some progress was made towards availability of GT the web-based
neume-recognition was still under development according to [114].

3.5.2 Comparison to the SIMSSA Workflow
This section compares the proposed OMRworkflow to the SIMSSA workflow presented in Section
3.5.1.7. Figure 3.1 shows the SIMSSA workflow for OMR of Medieval and Renaissance music
presented in [212]. Both OMMR4all and SIMSSA enable a human interaction at almost any stage
of the workflow which is required due to the challenging targeted material. The first stage of
both workflows is basically a document analysis which tries to identify the various regions. While
OMMR4all applies subsequent algorithms for staff line, stave, and layout analysis, the document
analysis step of SIMSSA is one output which produces several layers of content corresponding to
staff line, text, lyrics, or music symbol. The splitting is performed by a CNN (see [43]) which

38

3.5 OMMR4all

Figure 3.1: The SIMSSA workflow for OMR of Medieval and Renaissance music (adopted from
[212]).

outputs several probability maps corresponding to each layer type. In principal, the classification
output is a color image where the color of each pixel corresponds to a type, for example white is
background, while black, blue, and red represent notes, staff lines, and text, respectively. This color
image can be manually corrected by Pixel.js [190] in the browser similar to a standard painting
program. A second step must then be performed to extract staff lines or symbols based on the
isolated components stored in their respective layers.
A fundamental advantage of a single algorithm that performs the layout analysis is that only one

network must be trained or adapted if new material is targeted. The drawback is, that specialized
algorithms for each step usually yield better results. Furthermore, a pixel-wise correction which
is mandatory for GT production is very cumbersome. However, the authors of SIMSSA “assume
that perfect performance cannot be achieved because, at pixel-level, even for humans it is hard to
discriminate to what layer a pixel belongs” [210, 211]. OMMR4all has the advantage that pixel-
accurate annotations are optional for any algorithm, instead, either the full image or a section of
the original (grayscale) input is presented to the algorithm. Each algorithm must individually learn
which pixels are important and which ones can be ignored, leading to optimized algorithms and
usually higher performances for a specific task. In particular, the CNN of SIMSSA tries to separate
staff lines and notes which is basically a staff line removal algorithm. Newer research however tends
to algorithms that detect symbols with kept staff lines.
The next important step of both workflows is the symbol detection and classification. The advan-

tage of SIMSSA is that the algorithm receives a preprocessed image on which potentially disturbing
elements such as staff lines, text, and of course noise are erased. OMMR4all instead uses a cropped
but unprocessed staff for the symbol detector and classifier which is a combination of an FCN and
a subsequent CC analysis. SIMSSA chooses a different approach by using a web-based version of
Gamera [77] (see Section 3.5.1.2) as interactive classifier. Gamera classifies grouped CCs based on
a trainable kNN algorithm. OMMR4all and SIMSSA provide two completely different approaches
to obtain a set of musical symbols and their type, a comparison of the performance is unfortunately
not available. Another difference lies in the accurate interpretation of neumes. While SIMSSA
allows to specify the exact types of neumes such as pes or climacus, OMMR4all only stores infor-
mation about the graphical connection. This information might be relevant in some cases, however,
for the transcription of the sung melody the approach of OMMR4all is sufficient and more efficient
since neume names can be ambiguous and tedious to correct. The “Neumify”-tool of Neon [32]
can automatically generate proposals for neume names based on the transcription equivalents.

39

3 Related Work with Regard to the Contributions

While, up to now, the workflow of SIMSSA does not provide a solution for the text recognition
and syllable assignment, OMMR4all currently supports training and recognition of lyric lines using
ATR models provided by Calamari, and an automatic syllable assignment algorithm. Furthermore,
if the lyrics are already transcribed, they can be pasted into a page.
The correction of the musical output in SIMSSA is performed by Neon2 [176] which, similar

to the editor of OMMR4all, provides an overlay of the image of the manuscript and the rendered
content. Since Neon2 directly relies on MEI as internal data format, it can straightforwardly in-
clude Verovio [170] to generate an Support Vector Graphics (SVG) which is rendered. OMMR4all
provides a custom rendering engine which also produces an SVG rendered by the browser. This
is required due to the different music symbol data structure, and also allows to present additional
information to the user, such as the reading order. The major drawback of Neon2 is that it only
renders straight staff lines that only very roughly approximate the actual data. Often the handwrit-
ten lines are wavy or bent which leads to drawings that can only hardly be interpreted. Especially
if the rendering has an offset with almost one complete staff line, a quick visual inspection to spot
errors is impossible. The authors of Neon2 are aware of this major drawback and plan to revise
this [176]. However, such a fundamental change requires a lot of effort if not considered initially.
Other differences lie in the interaction with the correction tool. Neon2 separates the selection and
insertion of symbols in two sections, OMMR4all unifies this in one tool. This leads to less clicks
when correcting the content of a music line involving insertions, deletions, or shifts due to wrong
positions. While Neon2 allows to scroll through the pages of a book which enables simultaneous
editing, while OMMR4all always displays only one page. If most of the content is correct, this
might lead to slightly faster but, compared to the annotation process itself, negligible correction
times. Neon2 directly uses MEI as standard data format instead of OMMR4all which generates a
custom one that can be exported to MEI. In general, it is always reasonable to use existing formats
that are expected to be future-proof. However, a custom format is almost essential for an editor
that offers a lot of functionality and therefore requires to store additional information that can be
dropped when exporting. Moreover, if the format is perfectly suited for an editor, the actual im-
plementation of several correction tools such as type changes is fundamentally easier and thus less
error-prone.

3.5.3 Conclusion
In conclusion, the overlay editor of OMMR4all is a serious competitor of Neon2 regarding ease of
use and features. Even though both editors provide an overlay of the transcription and the original
scan to spot errors, glancing is simplified in the overlay editor of OMMR4all due to the accurate
overlay of staff lines and neumes. OMMR4all does not allow to provide information of neume names
which are, however, in most cases irrelevant or can be reconstructed. The fundamental workflows
ofOMMR4all and SIMSSA are equivalent, however in detail, the workflow ofOMMR4all comprises
more divided steps especially for the layout analysis. OMMR4all provides steps and algorithms for
text recognition and syllable assignment which also manifests in editor support for correction and
insertion.
Furthermore, first quantitative evaluations of OMMR4all showed that working with the semi-

automatic workflow is faster than using the highly specialized software Monodi+. The speedup is
expected to significantly increase if the automatic tools become further developed and thus more

40

3.5 OMMR4all

accurate. Naturally, a transcription with OMMR4all yields additional relevant information such as
accurate symbol positions.

3.5.4 Future Work
Despite the many features of the OMMR4all framework there are many possible improvements or
extensions. Some pending tasks will be presented in this section.
A primary plan aims to extend OMMR4all to support further monophonic notation styles such

as the later mensural notations or even older neume notations up to notations without staff lines.
Hereby, the overlay editor requires several cosmetic changes while new algorithms must be inte-
grated or developed.
Motivation of users is a crucial step for an efficient work, especially if external assistance is

required. This problem is similar to crowdsourcing approaches which recommend gamification
(see e.g., [148]). Since nearly all crowdsourcing system use scores, a first step is to display the
progress of a book which values the users work. Further steps could include competitive aspects
such as a leaderboard listing the user with the most transcripts, the best transcriptions per day, or
the least time per page. However, it is most important to inhibit sloppiness to secure an error-free
transcription.
To improve the quality of the encodedmusic, a transcription using double-keying process may be

implemented. This requires that two independent users process and correct the same book, which
results in two possible different version of the same manuscript. Highlighting differences to an
expert could either erase errors or directly create editorial notes if the content is indeed ambiguous.
Naturally, the process requires more time, however with the great benefits of high-quality data and
the (automatic) generation of a critical apparatus.
A pending feature is a communication with Monodi+ which provides a list of known books and

their metadata. This list is presented to the user to enforce a valid link to Monodi+ for exporting
encoded music. Moreover, Monodi+ can request the progress in OMMR4all to enable a view for
the full progress of a book or project.
Furthermore, a IIIF3 client as already supported by Neon2 would allow OMMR4all to connect to

existing image data bases which simplifies the acquisition of new data. The IIIF specification allows
to request image information and an already formatted image via the URL. Several parameters of
the request affect the region that is cut out of the original image: size and angle allows to obtain
a scaled and rotated image, the quality level allows to receive a grayscale or binary version of
the image. With this syntax it is possible to easily load low-resolution images if only a limited
bandwidth is available and successively fetch images with a higher quality.
Common music editors allow for playing the typed music which facilitates to detect errors in a

melody. This feature should also be part of OMMR4all. By computing a MIDI representation of
the notation, it is possible to play the music using existing frameworks directly in the web interface.
For simplicity, in a first step, the music is played with one beat per note, which can however be
extended in a more sophisticated way by playing connected neumes faster to produce a more natural
sound. Naturally, a synthesized sound is created for each pitch that ignores the lyrics. Synthesized
chant is a current area of research, the commercial software Vocaloid [126] is one of the first that
3https://iiif.io/

41

https://iiif.io/

3 Related Work with Regard to the Contributions

provides an approach. Furthermore, the createdMIDI sequence can be exported which will support
another common music representation format.
Another viable feature that facilitates the error detection is a preview in CWMN. Because the

music can already be exported to MEI, it is sensible to include Verovio [170] which produces an
SVG. This graphic format can be rendered directly by the browser in a separate area. In particular,
outliers or wrong clefs that cause abnormal intervals can be easily spotted in a clean drawing.
Another project should push the building up of a database that collects all encoded content:

music and lyrics. This allows for an implementation for search engines that detect known melodies
or particularly recurring lyrics to improve the recognition results of OMR or OCR.

42

4 Conclusion
The main goal of this thesis was to enable large-scale transcriptions of Medieval music manuscripts
with the focus on square notation for which a semi-supervised workflow with the option of human
interference was presented. An overview of the proposed algorithms and their performances is
shown in Table 4.1 whereas the following list summarizes the main findings of the accumulated
publications of this thesis in the order of the workflow of OMMR4all.

• An FCN was introduced for the semantic segmentation of historical prints and manuscripts
in general (see Section A.1). This methodology can be directly adopted to replace the au-
tomatic layout analysis of OMMR4all if required by the material. Currently, the two pro-
vided algorithms based on traditional methods are sufficient to obtain a transcription of the
manuscripts.

• An important step for any automatic OMR pipeline is a reliable method to detect single staff
lines and staves which are required to determine the actual pitches of notes, and can also
provide useful information about the general layout. Due to their prominent shape, staff
lines can be spotted almost flawlessly by the proposed algorithm which comprises an FCN
and a subsequent postprocessing (see Section A.2).

• This thesis also presented two novel algorithms for the automatic symbol detection of music:
an FCN-based approach yielded highly promising results for the transcription of square no-
tation (see Section A.2). The GT requires positional information about each single symbol
which is quite tedious to produce. Additionally, a CNN/LSTM-network trained with a CTC-
loss function was introduced which simplifies the GT-production because the training data

Table 4.1: Summary of the evaluations of all algorithms. Note that the performances highly depend
on the material at hand.

Step Performance
Page Segmentation 94% < FgPA < 99%
ATR on Early printed books CAR = 98.4% for 60 lines of GT
ATR on Modern English CAR ≥ 99.89%
Staff line detection F1 > 99%
Staff detection F1 > 99%
Symbol detection dSAR ≈ 90%
Lyrics recognition CAR of up to 93.3%
Syllable assignment F1 > 99%

43

4 Conclusion

is a segmentation-free sequence of symbols (see Section A.3). The main problems of both
algorithms are caused by the semantic interpretations of detected NCs, that means whether a
NC is the start of a neume, or whether it is graphically or logically connected to the previous
one. Since this step yields the lowest performance with an dSAR of about 90%, the focus for
future developments is on developing new methods or extending existing methods tackling
the symbol detection.

• Calamari (see Section A.4 and A.5) represents a competitive engine for ATR on early printed
books but also for more modern fonts in general. The clean interfaces and supported formats
allow for an easy integration into existing OCR workflows, for example, it is already utilized
in OCR4all [179], a similar tool to OMMR4all designed to transcribe early printed books.
The purpose of Calamari within the workflow of OMMR4all is to automatically transcribe
the handwritten lyrics. As they are usually written very cleanly, the degree of difficulty of
the ATR is comparable to the one of early prints.

• The semantic connection of syllables to neumes was performed by an automatic algorithm
(see Section A.6 or [222]) that is based on the positional information of the ATR output of
Calamari which is allowed to be erroneous. In total, above 90% of the syllables were cor-
rectly assigned even though the the ATR with a CER of 42% was severely flawed. Training
a model with a CER of about 10% already yielded an F1-score of over 99%.

To enable even non-technical users to apply and even train the provided algorithms, the software
OMMR4all was presented (see publications in Section A.7). The fully platform-independent web-
based front-end provides an easy entry point without the need of installation. To facilitate the
tedious process of GT production and to correct the automatic outputs, a sophisticated overlay-
editor was introduced. Several features are provided, the most important ones are listed below:

• A view that superimposes the annotations as graphic with the original digital manuscript
which allows for an easy spotting of errors.

• Several comfortable tools to correct the automatic annotations of the various algorithms.

• Custom comments can be added to the annotations which can be used for a critical apparatus.

• An automatic anonymous tracking of actions and the transcription times to facilitate the
evaluation process of OMMR4all.

In summary, this thesis presented several contributions in the area of OCR and OMR that ex-
ceeded the state-of-the-art. By introducing OMMR4all, techniques for page segmentation, staff
and symbol detection, lyrics recognition, and syllable assignment were made available in a software
which enables musicologists to independently create transcriptions of their own research material
with efficient computer support. Future work comprises technical improvements, an incorpora-
tion of music background knowledge, a considerably higher amount of GT, and an adaption to
other historical music notations, such as Gothic. Nevertheless, this work is a big step towards an
automatic transcription of the enormous number of music manuscripts lined up on the numerous
shelves of libraries.

44

A Publications Related to OMMR

45

Fully Convolutional Neural Networks for Page Segmentation
of Historical Document Images

Christoph Wick and Frank Puppe

Chair of Informatics VI
Department of Informatics, University of Würzburg, Germany

Email: {firstname.lastname}@uni-wuerzburg.de

Abstract—We propose a high-performance fully convolu-
tional neural network (FCN) for historical document seg-
mentation that is designed to process a single page in one
step. The advantage of this model beside its speed is its
ability to directly learn from raw pixels instead of using
preprocessing steps e. g. feature computation or superpixel
generation. We show that this network yields better results
than existing methods on different public data sets. For
evaluation of this model we introduce a novel metric that is
independent of ambiguous ground truth called Foreground
Pixel Accuracy (FgPA). This pixel based measure only counts
foreground pixels in the binarized page, any background
pixel is omitted. The major advantage of this metric is,
that it enables researchers to compare different segmentation
methods on their ability to successfully segment text or
pictures and not on their ability to learn and possibly overfit
the peculiarities of an ambiguous hand-made ground truth
segmentation.

Keywords-page segmentation, historical document analysis,
fully convolutional network, foreground pixel accuracy

I. INTRODUCTION

In the digitalization pipeline of historical books the

segmentation of a page into different regions such as

pictures and texts is a crucial step for all further pro-

cessing including optical character recognition (OCR).

Errors in the text segmentation, e. g. cropped or forgotten

characters, directly affect the outcome of the OCR that

tries to translate written or printed text into digitized

characters. Especially the segmentation of historical docu-

ments is challenging, because these documents suffer from

degradation, different layouts or writing styles, and often

include ornaments or decoration.

A performant segmentation algorithm whose outcome

shall be used for OCR must be capable of separating

background, text, and possibly images. As improvement it

performs fine grained semantic distinctions to a text block,

such as headline, running text, page number, or marginalia,

which are common text types in historical documents.

The basic approach for a segmentation algorithm is to

assign a label to each pixel of the page. Pixel-by-pixel

semantic classifications based on convolutional nerual nets

(CNNs) have widely been used (see e. g. [1] or [2]). Novel

approaches [3] use fully convolutional networks (FCNs) to

learn and infer the whole image in one step. This method

does not require additional pre- or post-processing steps,

such as superpixels (see e. g. [1], [4], [5], [6]).

Our fully convolutional neural net is an adaptation of the

U-Net proposed by Ronneberger et al. [7]. It consists of

Figure 1. Different segmentations of the same text. The first line
segments almost each single character, the second line is segmented as
a rectangle, and the third example is an arbitrary segmentation.

several convolution, pooling and deconvolution operations,

but in contrary to the U-Net it does not use skip connec-

tions. The encoding and decoding structure ensures that

only information that encodes large regions in the page is

forwarded. The main advantage of the proposed network

architecture is the prediction of a full image in one step.

Hence, the network can utilize all available information

(e. g. the position of marginalia) to classify each pixel.

Therefore, the network is not only able to master the

comparatively easy task of distinguishing periphery, page

and text but can also successfully perform a fine-grained

semantic distinction between a large variety of very similar

classes.

For training and evaluating a segmentation algorithm,

human annotated ground truth is required. In those ground

truth masks a region is usually labeled as a whole block,

which contains fore- and background pixels (see middle

of Figure 1 and column 3 of Figure 6). For the purpose of

OCR as step of the digitization pipeline, this segmentation

is ambiguous. All three segmentation examples in Figure

1 are equal in the sense that a further OCR algorithm

gains all the required information for a successful recog-

nition. Obviously, the upper segmentation example loses

information about the connected block, but it is rather

simple for instance by a growing algorithm to join single

lines or characters. A standard Loss-Function as the goal

of training is optimal if the network predicts exactly

the provided ground truth, here the middle of Figure

1. The proposed learning algorithm ignores background

labels and predicts only labels of the foreground. For

this purpose, all background labels are ignored in the

loss function of the FCN. Thus, the network is explicitly

2018 13th IAPR International Workshop on Document Analysis Systems

978-1-5386-3346-5/18 $31.00 © 2018 IEEE

DOI 10.1109/DAS.2018.39

287

2018 13th IAPR International Workshop on Document Analysis Systems

978-1-5386-3346-5/18 $31.00 © 2018 IEEE

DOI 10.1109/DAS.2018.39

287

allowed to predict any label for a background pixel.

Obviously, the established metrics to evaluate such a

model that are mostly variations on pixel accuracy and

region intersection over union (IU) (see e. g. [3] or

[6]), can not be used. If the model predicts the upper

segmentation of Figure 1 but the ground truth is the middle

of Figure 1 the score would be very low, although the

segmentation would be perfect in the described sense of

OCR post-processing. For this purpose, we introduce a

novel pixel based measure, that only tracks foreground

pixels and ignores all background pixels. This metrics

predicts by construction the same value for all of the three

example segmentations of 1. The lower bound is 0 if not a

single pixels is labeled correctly and the maximum value

is 1 if all foreground pixels are assigned with the ground

truth. To compare our FCN with other models we also

evaluate the established pixel accuracy.

II. RELATED WORK

The field of document analysis of contemporary and

historical documents is a challenging problem and has

been addressed by many researchers. Recently, algorithms

based on CNNs that automatically learn features from

the pixels of a page show superior success in this area

compared to handcrafted features [6], [8].

FCNs are a new trend in general semantic segmentation

and were successfully trained by [9], [10], or [3]. The

decoding part of those networks usually consist of several

layers of unpooling [11] and deconvolutional (e. g. [10])

operations.

Yang et al. [8] try to extract semantic structure from

contemporary documents using a multimodal fully convo-

lutional neural networks (MFCN). They combine a simple

FCN with several extensions, including a text embedding

map that tries to input both the visual representation and

the true text. Moreover, they implement an additional un-

supervised consistency task that forces the neural network

to have similar activations in each individual rectangular

region of the ground truth.

An adaptation of a FCN is the so-called U-Net intro-

duced by Ronneberger et al. [7], which is applied to the

field of biomedical image segmentation and outperforms

existing methods for cell tracking by a large margin. This

network consists of several convolution and pooling layers,

but only uses deconvolutions as upsampling operations

instead of unpooling layers. Furthermore, it uses skip

connection from the encoder to the decoder part of the

network to preserve high-level information for the decoder.

In the field of historical document analysis Chen and

Seuret [6] proposed a three layer neural net with only

one convolutional layer. This network learns to predict the

label of superpixels (see e.g. [1]) and outperforms methods

that are based on Support Vector Machines [12], [4] or

Conditional Random Fields [5] and handcrafted features.

III. DATASETS

For all our experiments we use several historical books

(see Table I). GW5060, GW5064 and GW5066 are differ-

ent editions of ”The Ship of Fools”, that were scanned

Table I
DETAILS OF THE USED DATA SETS. THE RATIO IS GIVEN AS w/h.

Data set Image size (pixels) Ratio Pages Labels
GW5060 ≈ 1900× 2980 0.64 158 6
GW5064 ≈ 2030× 2940 0.69 351 6
GW5066 ≈ 1000× 1566 0.64 234 6
Parzival 2000× 3008 0.66 37 5
St. Gall 1664× 2496 0.67 60 5

G. Washington 2200× 3400 0.65 20 5

during the Narragonien digital1 project. Although these

data sets share the same content, they all have a different

layout, font, images or size. These books are already

deskewed and cropped to a page without periphery. The

three further publicly2 available sets Parzival [13], St.
Gall [14], and G. Washington [15] consist only of a few

annotated pages and are split in a fixed training size of

24, 21, and 10, respectively. Those books are skewed

and contain periphery that must be segmented, too. An

exemplary page of G. Washington and GW5060 is shown

in Figure 6.

The provided ground-truth segments a page into var-

ious regions: background, page, running text, marginal,

page number, running head, chapter heading, motto, and

signature mark. Each single book uses only a subset of all

available categories (see Table I).

IV. THE MODEL

A. Pre-processing

The training of the model requires the input image and

the target segmentation that is ground truth. Since not all

pages in a single book have the same dimensions, we fit

each single image in a white page with a fixed ratio of 2/3.

Afterwards the pages are scaled down for the experiments

to a size of 260 × 390 pixels, which reduces both the

computation time and the network size. Note, that the

model is evaluated on the full resolution images by scaling

the predicted mask to the original image size. We apply

ocropy’s3 binarization tool on each input image to provide

a binary image which is used as bit-mask to separate fore-

and background, that is black and white, respectively. The

target mask is chosen to be 0 at true background, that is

white color in the binarized images, and otherwise set to

the desired labels. As stated, the 0 label will be ignored

during the training, which allows the network to predict

any color at these pixel positions.

An example input, binarized and provided ground truth

page is shown in columns 1 to 3 of Figure 6, respectively.

B. FCN Architecture

Our proposed FCN network that is sketched in Figure

2 consists of an encoder and a decoder structure based

on convolution- and deconvolution-layers. Deconvolution

layers can basically be seen as an inverse convolution (see

1http://kallimachos.de/kallimachos/index.php/Narragonien
2http://www.fki.inf.unibe.ch/databases/

iam-historical-document-database and http://diuf.unifr.ch/main/hisdoc/
divadia

3https://github.com/tmbdev/ocropy

288288

Figure 2. Overview of the used FCN structure. The input image is a full page, the complete segmented image is produced as output in one step.

e. g. [16]). By setting the stride equal to the kernel size it

can be used to increase the image resolution by that factor.

The proposed network consists of pooling layers with a

kernel size and stride of 2, which is why the two middle

deconvolutional layers also have kernel size and stride of

2 to increase the image dimensions in accordance.
The encoding consists of more convolutional layers than

the decoder because the encoder has to process more

granular information. Each single convolutional layer has

a kernel size of 5 and uses padding at the margin to

keep the image resolution. The number of filters in the

convolution and deconvolution layers are 40, 60, 120,

160, 240 and 240, 120, 60, and 6, respectively. The last

deconvolution-layer is used to generate the prediction of

up to six different labels.
The utilized cross entropy loss ignores all background

labels, which is why the network is allowed to predict any

label where the mask is background.

C. Post-processing
Since the output of the neural network is a mask that

can predict arbitrary labels at the ignored background this

outcome must be multiplied with the binary image to get

the final segmentation result for computing the FgPA (see

last column in Figure 6).
A further post-processing step to improve the FgPA

computes all connected components in the result which are

mostly single letters, and assigns the mode that is the most

frequent label of all pixels in a component. Therefore, the

final outcome is a segmentation that predicts a consistent

label for each connected component. Obviously, regions

of different types that are connected, e. g. image and

text blocks, will introduce errors because only one label

will be assigned to the complete component by this post-

processing method.

V. EXPERIMENTS

The performed experiments are conducted on all six

available books. To compute average measures each ex-

periment is repeated ten times with randomly initialized

network weights and randomly divided test and train sets.

The hyperparameters of the network structure and the

solver are kept fixed during all experiments and across all

books, which is why we do not optimize the method for

each single book. The books St. Gall, G. Washington, and

Parzival provide a fixed testing and training split, which is

exclusively used to compute the accuracy for comparison

with other existing models.

The FCN is implemented in Caffe [17] and runs on a

Nvidia Titan X GPU. A single image takes about 0.5s to

process, which clearly improves the run time of the simple

CNN approach by a factor of 6 to 10 compared to [?].

The optional post-processing runs on a i7-5820K 3.30GHz

CPU and takes about 1-3s depending on the original image

size.

A. Metrics

The metrics for evaluating the quality of a page segmen-

tation are most commonly pixel-leveled, e. g. precision,

recall or accuracy. Other measures taking into account the

area of a class are, e. g. the mean intersection over union

(IU) or the frequency weighted IU (f.w. IU). But even

those more sophisticated measures yield different results

for the three segmentations in Figure 1. Our novel metric

overcomes this problem by taking only foreground pixels

of the original binarized image into account. Let δx = 1 if

the ground truth label at position x matches the predicted

label, else set δ = 0. Furthermore, define bx = 1 if x is

a foreground pixel else set bx = 0. Note that
∑

x 1 is the

total number of pixels and
∑

x bx is the total number of

foreground pixels. We then compute the

• Total Pixel Accuracy: TPA =

∑
x
δx∑

x
1

• Foreground Pixel Accuracy: FgPA =

∑
x
bx·δx∑
x
bx

• Foreground Pixel Error: FgPE = 1− FgPA

B. Evaluation

All predicted segmentation images are rescaled to the

full resolution of the original image before computing the

pixel valued metrics. The last column Figure 6 shows two

outcomes of the FCN after applying the bit mask (second

column) for the G. Washington and GW5060 data sets as

examples for the worst and best books, respectively.

1) Accuracy of the FCN: The established total pixel

accuracy (TPA) of our FCN on the fixed splits of Parzival,

St. Gall, and G. Washington are reported in Table II. On

Parzival and St. Gall the FCN yields comparable results to

a simple CNN approach [6] that is trained to predict the

label of superpixels. The FCN outperforms teh methods

reported in [4] and [5] on the three examined data sets

and the CNN approach on G. Washington. On GW5060,

GW5064 and GW5066 Table II reports the TPA with its

standard deviation on ten folds using a Monte Carlo cross-

validation approach.

289289

Table II
TOTAL PIXEL ACCURACY TPA AND FOREGROUND PIXEL ACCURACY FGPA IN PERCENT ON DIFFERENT METHODS WHERE AVAILABLE. WE USE

A 10-FOLD MONTE CARLO CROSS-VALIDATION TO OBTAIN THE RESULTS.

Data set G. Washington Parzival St. Gall
TPA FgPA TPA FgPA TPA FgPA

Local MLP [4] 87 - 91 - 95 -
CRF [5] 91 - 93 - 97 -
CNN [6] 91 - 94 - 98 -

FCN 92.1 93.53± 0.66 93.6 96.75± 0.47 98.4 96.39± 0.35
FCN (Post-processed) - 93.7± 1.1 - 97.33± 0.49 - 97.67± 0.39

Data set GW5060 GW5064 GW5066
TPA FgPA TPA FgPA TPA FgPA

FCN 95.54± 0.19 98.64± 0.12 95.28± 0.30 96.20± 0.70 95.55± 0.92 94.71± 0.61
FCN (Post-processed) - 98.99± 0.13 - 96.48± 0.69 - 95.54± 0.48

2) Foreground Pixel Error: The Foreground Pixel Error

(FgPE) and its standard deviation computed on ten folds is

listed in Table II. Although the total accuracy of the Parzi-

val data set of 93.6% is notably worse than the accuracy on

St. Gall (98.4%), the FgPA is comparable. Therefore, the

measure states that the segmentation result used for OCR

is of similar quality. A reason for this deviation in this

example is found in the layout of the two books and the

ground truth. St Gall is written in justified text and its text

masks are very similar to a simple rectangle. In contrast

Parzival’s text is left aligned with varying line lengths.

Therefore, its masks that follow these indentations have a

longer contour than a simple box. Since most of the errors

are located at the margin of a region, the longer contour is

expected to produce more errors. The FgPA ignores these

margins and instead respects only foreground pixels which

is why these different layouts do not affect this metric.

Similarly, the TPA on GW5060, GW5064, and GW5066

is comparable but the FgPA differs significantly, which is

also explained by the different layouts of the books. The

TPA is mostly affected by the baseline, that is the amount

of background pixels in a page. This baseline is almost the

same for GW5060 and GW5066. GW5064 has a higher

baseline but compared to the other two books its layout

is the most difficult layout. Text at the margin can be

classified as either marginalia, running text or headline,

depending on the context. This neglects the effect of the

higher baseline.

The FgPA is independent of the number of background

pixels, which is why the results of the books are different.

The baseline of this metrics is the most frequent label

of the foreground. GW5066 has by far the lowest FgPA

baseline and therefore reasonably has the worst FgPA

score. Both GW5060 and GW5064 have a similar baseline

but since GW5064 has a difficult layout its score is lower

than the one of GW5060.
3) Training set size: The number of pages in the train-

ing set that are required for a reliable segmentation result

is a crucial quantity for the application of an algorithm

because these are the pages that must be manually seg-

mented. We compute the performance of the FCN under

different training set sizes by using a specific amount of

all available pages in the training set and the rest in the test

set. Hereby we simulate a real world application scenario

where a subset of a book is manually segmented and the

Figure 3. The Foreground Pixel Error of the FCN on different absolute
training set sizes. Note that G. Washington and Parzival only consist of
20 and 37 instances, respectively, which is why data points are missing.

resulting ground truth is used to train a model in order to

process the remainder of the pages. In the first experiment

the number of pages N in the training is chosen as absolute

value N ∈ {1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 50}, in a second

run we chose N relatively to the complete data set size D
with N = r ·D and r ∈ [0.05, 0.80] with step size 0.05.

Figure 3 clearly shows that the accuracy of all data sets

is improved with an increasing amount of training data.

The slopes of GW5060, GW5064 and GW5066 are in

general steeper than those of G. Washington, Parzival, or

St. Gall, what might be related to the different data set

sizes or the different layouts. The G. Washington data set

has the smallest relative error decrease with increasing

training examples. The reason is that the ground truth of

this data set in comparison with the others contains more

errors, as can be seen in the first row of Figure 6: The

upper two horizontal lines in the ground truth are labeled

as text, whereas the bottom line is labeled as page. The

learning algorithm can not learn if a detected line shall be

classified as text or page.

Figure 4 shows similar results as Figure 3, but due to the

huge differences in the number of total images in the data

sets this chart shows the progression to very high amounts

of training examples. Since most of the curves in the log

plot are almost flat starting at 20%, additional pages in

290290

Figure 4. The Foreground Pixel Error of the FCN on different relative
training set sizes.

Figure 5. The minimum, average and maximum FgPE for ten folds of
the GW5060 data set on different relative training set sizes.

the training set do not improve the segmentation result.

Solely the GW5060 data set profits of a higher amount

of training examples of up to 40%, which interestingly is

also the data set with the by far lowest FgPE.

4) Manual selection of training images: If a user wants

to train a model for page segmentation he has the freedom

to choose which pages shall be used for training. To

estimate the effect of a useful and a poor selection we

show in Figure 5 the minimum, average and maximum

FgPE on the GW5060 data set for ten folds. For only

a few images in the training set, the difference between

maximum and minimum FgPE is clearly smaller than for a

larger training corpus. The reason is that at the small data

set size any ordinary page is useful for training, whereas

later in a larger data set special pages, e. g. the title page,

should be segmented by hand. Obviously in practice, pages

that have a unique layout or contain unique marks or style

must be segmented by hand. Excluding these pages from

the testing and even training data set will improve the

result clearly towards the maximum curve in Figure 5.

5) Post-processing: Figure 7 shows the effect of the

post-processing approach that chooses the most frequent

label for a single connected component. Obviously, the

post-processing improves the results for different splits.

Although, the post-processing can join components that

have different labels, e. g. an image and a character,

the overall effect is positive There the proposed post

processing is meaningful.

VI. CONCLUSION

We proposed a FCN for historical document segmenta-

tion. This network learns and predicts a complete page in

one step and does not require sophisticated preprocessing

steps such as superpixels. We achieved comparable or

improved results on open source data sets and reduce the

computation time by a factor of up to 10.

Furthermore, we introduced a novel meaningful metric

to compare different models and methods of document

segmentation by using the fact that only foreground infor-

mation (black ink) is relevant for further processing steps

in the pipeline of digitization of documents.

REFERENCES

[1] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learn-
ing hierarchical features for scene labeling,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 8, pp. 1915–1929, 2013.

[2] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell, “Decaf: A deep convolutional
activation feature for generic visual recognition,” in ICML.
JMLR, 2014, pp. 647–655.

[3] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39,
no. 4, pp. 640–651, 2017.

[4] K. Chen, C. L. Liu, M. Seuret, M. Liwicki, J. Hennebert,
and R. Ingold, “Page segmentation for historical document
images based on superpixel classification with unsupervised
feature learning,” in 2016 12th IAPR Workshop on Docu-
ment Analysis Systems (DAS), 2016, pp. 299–304.

[5] K. Chen, M. Seuret, M. Liwicki, J. Hennebert, C. L.
Liu, and R. Ingold, “Page segmentation for historical
handwritten document images using conditional random
fields,” in 2016 15th Int. Conf. on Frontiers in Handwriting
Recognition (ICFHR), 2016, pp. 90–95.

[6] K. Chen and M. Seuret, “Convolutional neural networks for
page segmentation of historical document images,” CoRR,
vol. abs/1704.01474, 2017.

[7] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Con-
volutional Networks for Biomedical Image Segmentation.
Cham: Springer Int. Publishing, 2015, pp. 234–241.

[8] X. Yang, M. E. Yümer, P. Asente, M. Kraley, D. Kifer, and
C. L. Giles, “Learning to extract semantic structure from
documents using multimodal fully convolutional neural
network,” CoRR, vol. abs/1706.02337, 2017.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in The IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2015.

291291

Figure 6. Different images of the model. The columns from left to right show: the original grayscale image, the binarized image, the provided
ground truth, the segmentation result. The first row is page 290 of the G. Washington data set using black as the ignored background, white as the
periphery, yellow as page, and red as text. The second row shows the results page 55 of GW5060, using black as the ignored background, red as text,
yellow as marginalia, blue as headlines, and green as images (best seen in color).

Figure 7. The Foreground Pixel Error of the FCN on different relative
training set sizes including post-processing. Only the results for GW5060
and Parzival are shown.

[10] H. Noh, S. Hong, and B. Han, “Learning deconvolution
network for semantic segmentation,” in 2015 IEEE Int.
Conf. on Computer Vision (ICCV), 2015, pp. 1520–1528.

[11] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive
deconvolutional networks for mid and high level feature
learning,” in 2011 Int. Conf. on Computer Vision, 2011,
pp. 2018–2025.

[12] K. Chen, M. Seuret, M. Liwicki, J. Hennebert, and R. In-
gold, “Page segmentation of historical document images
with convolutional autoencoders,” in 2015 13th Int. Conf.
on Document Analysis and Recognition (ICDAR), 2015, pp.
1011–1015.

[13] M. Wüthrich, M. Liwicki, A. Fischer, E. Indermühle,
H. Bunke, G. Viehhauser, and M. Stolz, “Language model
integration for the recognition of handwritten medieval
documents,” in 2009 10th Int. Conf. on Document Analysis
and Recognition, 2009, pp. 211–215.

[14] A. Fischer, V. Frinken, A. Fornés, and H. Bunke, “Tran-
scription alignment of latin manuscripts using hidden
markov models,” in Proc. of the 2011 Workshop on His-
torical Document Imaging and Processing, ser. HIP ’11.
New York, NY, USA: ACM, 2011, pp. 29–36.

[15] T. M. R. V. Lavrenko and R. Manmatha, “Holistic word
recognition for handwritten historical documents,” in Proc.
of the Int. Workshop on Document Image Analysis for
Libraries (DIAL), 2004, pp. 278–287.

[16] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus,
“Deconvolutional networks,” in 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recog-
nition, 2010, pp. 2528–2535.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convo-
lutional architecture for fast feature embedding,” in Proc.
of the 22Nd ACM Int. Conf. on Multimedia. ACM, 2014,
pp. 675–678.

292292

applied
sciences

Article

Staff, Symbol and Melody Detection of Medieval
Manuscripts Written in Square Notation Using Deep
Fully Convolutional Networks

Christoph Wick * , Alexander Hartelt and Frank Puppe
Chair for Artificial Intelligence and Applied Computer Science, University of Würzburg,
97074 Würzburg, Germany
* Correspondence: christoph.wick@informatik.uni-wuerzburg.de

Received: 16 May 2019; Accepted: 22 June 2019; Published: 29 June 2019
����������
�������

Abstract: Even today, the automatic digitisation of scanned documents in general, but especially
the automatic optical music recognition (OMR) of historical manuscripts, still remains an enormous
challenge, since both handwritten musical symbols and text have to be identified. This paper focuses
on the Medieval so-called square notation developed in the 11th–12th century, which is already
composed of staff lines, staves, clefs, accidentals, and neumes that are roughly spoken connected
single notes. The aim is to develop an algorithm that captures both the neumes, and in particular its
melody, which can be used to reconstruct the original writing. Our pipeline is similar to the standard
OMR approach and comprises a novel staff line and symbol detection algorithm based on deep
Fully Convolutional Networks (FCN), which perform pixel-based predictions for either staff lines
or symbols and their respective types. Then, the staff line detection combines the extracted lines to
staves and yields an F1-score of over 99% for both detecting lines and complete staves. For the music
symbol detection, we choose a novel approach that skips the step to identify neumes and instead
directly predicts note components (NCs) and their respective affiliation to a neume. Furthermore, the
algorithm detects clefs and accidentals. Our algorithm predicts the symbol sequence of a staff with a
diplomatic symbol accuracy rate (dSAR) of about 87%, which includes symbol type and location. If
only the NCs without their respective connection to a neume, all clefs and accidentals are of interest,
the algorithm reaches an harmonic symbol accuracy rate (hSAR) of approximately 90%. In general,
the algorithm recognises a symbol in the manuscript with an F1-score of over 96%.

Keywords: optical music recognition; historical document analysis; medieval manuscripts;
neume notation; fully convolutional neural networks

1. Introduction

The digitisation and encoding of historical music manuscripts is an ongoing area of research for
many scientists. The aim is to preserve the vast amount of cultural heritage but also to provide musical
information in a machine-readable form (e.g., **kern (http://www.humdrum.org/rep/kern/), MEI
(https://music-encoding.org/), or MusicXML [1]). For one thing, this enables music scientists to apply
large-scale musical analysis such as detecting similarities of melodies, creating musical grammars,
or comparing different versions of the same piece of music. Furthermore, the digital transcriptions
are published in a collection [2] that is searchable and provides tools for data retrieving. The current
Corpus Monodicum project at the University of Würzburg is dedicated to the exploration and edition
of historically significant music, editorially untapped stocks of unanimous ecclesiastical and secular
music of the European Middle Ages with Latin text. Two volumes [3,4] have already been published;
however, the majority of material of interest has not been converted into machine actionable form yet.
Our proposed Optical Music Recognition (OMR) aims to speed up this process considerably.

Appl. Sci. 2019, 9, 2646; doi:10.3390/app9132646 www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2646 2 of 28

If in the process of encoding, the data maintains positional information of symbols or regions
relative to original manuscript, ambiguities, corrections or other sources of manual interpretation can
be looked up and verified in the original document. In general, this should highly improve the quality
of research and reproducibility.

Currently, the digital acquisition heavily relies on human effort because the ancient manuscripts
particularly suffer from degradation and non-standardised fonts, glyphs or layouts. Therefore novel
techniques in the area of artificial intelligence are required to capture the encoded data in a computer
readable form. This paper focuses on the digitisation of medieval monophonic music written in square
notation, an ancient notation which was developed and used from the 11th–12th century onwards [5].
Compared to even earlier forms, this writing of music is already similar to Common Western Music
Notation in the sense that it uses four staff lines, clefs, accidentals and more or less discrete notes
that are drawn as squares (compare Figure 1). However, unlike modern notation, notes are mostly
connected to groups, the so-called neumes witch depict a small segment of melodic motion.

Figure 1. An example transcription equivalent in modern notation (bottom image) based on a neume
notation (upper image). A neume consisting of graphical connected note components (NCs) (a)
is visualised by a slur, each new neume starts with an increased space (b), logical connected NCs
are notated with small note space (c). The modern notation maintains the relevant information for
performing the historical neume notation. The example image is taken from our corpus introduced in
Section 3.

Historically, neumes arise from single solid or broken stroke drawings that visually followed the
pitch levels. Figure 1 also shows an actual transcription of the upper line taken from our data set in a
modernised form where each note component (NC) is a single note. The graphical connectivity of two
NCs, which is in most cases straightforward to decide, is marked by a slur (a). Example (b) shows two
notes that are two single tone neumes and are therefore notated with a larger space. Logical connected
NCs are visualised by a smaller space between two notes (c). This, however, is in some cases difficult
to decide because there is no difference between a neume consisting of multiple single NCs or multiple
neumes comprising one NC. In this example, the syllables each belonging to different neumes dissolve
this ambiguity.

The aim of this paper is, on the one hand, to detect the staff lines that form staves and on the
other hand, to locate all musical symbols including the discrete note position of the neumes, so that
the musical relevant information including the positions in the original document is fully recognised
and preserved. Both tasks are conducted separately by usage of two Fully Convolutional Networks
(FCNs), which predict pixel based locations of staff lines or music symbols, respectively. Further
post-processing steps extract the actual positions and symbol types.

In contrast to the works of other researchers [6,7] that first detect and classify neumes and then
resolve them into single NCs to gain the distinct pitches, our algorithm combines this step by directly
yielding the described transcription equivalent. However, the actual neumes in the original manuscript
can be reconstructed and thus no information is lost. The advantage of our approach is that we bypass
the ambiguities of neumes that are very similar to each other but yield the same pitches. Furthermore,
no subsequent faults can arise. Eventually, we conduct an evaluation that both ignores and includes

Appl. Sci. 2019, 9, 2646 3 of 28

the neume connectivity to measure either only the quality of the detected melody or the capability to
digitise the complete square notation.

To summarise, the main contributions of this work regarding an OMR of manuscripts written in
square notation are the following:

• Development of a very robust staff line detection algorithm based on FCNs, which identifies
almost all staves and their related staff lines.

• Proposal of a symbol detection algorithm which applies an FCN to the detected staves. The
algorithm locates clefs, accidentals and notes with their respective affiliation to neumes. Thereby,
it is possible to fully capture and reconstruct the melodic sequence.

• Evaluations of both new algorithms on 49 pages comprising 510 staves and 16,731 annotated
symbols. We consider, among other things, the effect of only a few training examples and the
generalisation to new manuscripts.

The remainder of this paper is structured as follows: First, related work is listed and discussed.
Afterwards, the algorithms for staff and symbol detection are described and we evaluate the algorithms
independently, including the experiments that measure the amount of required training data. We
conclude this paper by giving an outlook on our future work.

2. Related Work

The digitisation on manuscripts is an ongoing area of music research but also for textual
documents. The special focus of this paper is monophonic music, where the music forms a temporal
sequence and hence it is sufficient to only detect one symbol at a point in time. In the following,
we list work related to OMR on monophonic music detection and to music detection on historical
documents in general. With the recent overwhelming success of deep learning, CNNs acting on raw
input data instead of preprocessed images (e.g., staff line removal) became very popular and yielded
state-of-the-art performance. Since OMR is basically a sequence to sequence task, recurrent networks
such as LSTMs are also promising to use.

2.1. OMR on Contemporary Notation

Baró-Mas et al. [8] use (bidirectional) LSTM networks to predict the pitch and rhythm of notes
and other musical symbols for example rests and clefs in images, each containing a single line of
monophonic music. The outputs of the network are two sequences. The first one aims to predict the
pitch of notes or the type of other symbols like clefs (54 classes in total), while the second one indicates
the rhythm of notes or a no note label (26 classes). For training the network, they implement two
different loss functions that consider both target sequences. One computes the weighted euclidean loss,
the other implements a multi-label soft margin loss. To evaluate their algorithm, two different data
sets are used which both consist of monophonic music in modern notation, however one is printed
and one handwritten. Experiments on the first dataset which comprises incipts from the RISM data
set [9] yield a symbol/pitch error rate of 1.5% and a rhythm error rate of 2.0%. The total error for
both properties to be correct is 2.8%. As a second data set, they use one page of the CVC-MUSICMA
dataset [10]. After manually labelling six staves, they extend the number of different staves by varying
the order of bars within a single staff. During training, data augmentation is used and all lines from
the printed data set were added. The error of the symbol/pitch and rhythm detection is 47% and 43%,
respectively, yielding a total error rate of 65%.

A similar attempt to learn music recognition on modern monophonic printed music was proposed
by van der Wel and Ullrich [11]. However, compared to Reference [8], they use preliminary CNN
layers and an encoder/decoder structure for their neural network. The CNN/LSTM based encoder
maps a line image into one fixed size state representation by processing the line sequentially. The
decoder consecutively decodes this state and predicts a sequence of pitches, duration, and finally a
stop mark. This overall procedure is based on, and very similar to, the sequence to sequence task used

Appl. Sci. 2019, 9, 2646 4 of 28

for machine translation [12]. In total there are 108 pitch and 48 duration categories in their data set,
which is compiled from MusicXML [1] scores from the MuseScore (https://musescore.org/) sheet
music archive. In contrast to the normalised edit-distance, a rather strict metric is used that cannot
handle insertions or deletions. They align the prediction and ground truth (GT) sequence label by
label and count the number of correct predictions. Thus, if a label is deleted or inserted all subsequent
notes are usually false. Their final model which is trained with data augmentation, yields a pitch and
duration accuracy of 81%, and 94%, respectively. The total accuracy of notes is 80%.

A third very promising attempt to predict monophonic music was made by Calvo-Zaragoza
and Rizo [13]. They use CNN/LSTM hybrids combined with a CTC-loss-function [14] as model
architecture, a technique that already succeeded for handwritten and printed optical character
recognition (OCR) [15,16], or speech recognition [17,18], which are both sequence to sequence tasks.
The advantage of this loss function is that it does not require position accurate labelling in the GT. Only
the target sequence and input data are obligatory, out of which the network automatically learns the
alignment. The drawback of this method is that each combination of pitch and rhythm semantically
requires a distinct label. Moreover, a key-signature can, for instance, either be a single symbol or be
dissolved in individual accidentals. The first so-called semantic representation requires 1781 classes in
total, while the second agnostic representation only uses 758 classes. To perform experiments they
created the so-called PrIMuS (available at https://grfia.dlsi.ua.es/primus/) (Printed Images of Music
Staves) data set containing 87,678 real-music incipts which are rendered by Verivio [19], a web-based
music engraver. The evaluation yields a sequence error rate of 17.9% and 12.5% in the agnostic and
semantic representation, respectively, which is explainable by the higher number of classes. However,
the individual symbol error rate is approximately 1% in both representations.

Compared to the upper work, handwritten music recognition can also be regarded as an object
detection task. This approach was proposed by Pacha et al. [20]. Their pipeline uses existing
state-of-the-art deep neural networks for object detection such as Faster R-CNN [21] or R-FCN [22]
with custom pre-processing and training. A cropped image of a single staff without staff line removal
serves as input. They evaluated the MUSCIMA++ dataset [23] which contains over 90,000 symbol
annotations of handwritten music distributed in 71 classes. The object detection achieved a mean
average precision of over 80%.

2.2. OMR on Historical Notations

In the area of historical OMR, Calvo-Zaragoza et al. [24,25] applied Hidden Markov Models
(HMM) and an n-gram language model on line images written in mensural notation of the 17th century.
This notation is comparable to modern notation, since it is already ruled by very similar symbols.
Their handwritten corpus was comprised of 576 staves with 13,863 individual symbols representing
for instance notes, rests, or clefs. In total there were 16 different symbol shapes which are located on
discrete locations relative to the staff lines. The combination of the position and shape yielded around
200 different classes. As metrics they measured the glyph error rate (GER, symbol shape only) and
height error rate (HER, position relative to the staff lines) separately but also computed the combined
symbol error rate (SER, shape and position). Their best model reached a GER of 35.2%, a HER of 28.2%,
and a SER of 40.4%.

Ramirez and Ohya [7] did notable work on the automatic recognition of handwritten square
notation, which is also the focus of our paper. They built a dataset based on 136 pages from the Digital
Scriptorium repository (http://www.digital-scriptorium.org/) comprising 847 staves and over 5000
neumes. The greyscale images of the 14th century are a huge challenge, as they suffer from physical
degradation, variability in notation styles or non-standardised scan conditions. Their first task detected
and extracted staves. They used a brute-force algorithm that matches the original image with a staff
template built up from four straight staff lines by varying line and staff distance and orientation. The
found optima indicated locations for staves, which were then extracted. The advantage of this method
is that individual staff lines need not to be detected; however, the handwritten staff lines must be

Appl. Sci. 2019, 9, 2646 5 of 28

equally distant and almost straight. In total, 802 of all 847 staves were correctly detected (95% recall).
In a second task, they performed a symbol detection and classification algorithm. A pattern matching
algorithm fed with several different templates for each neume first marked possible symbol locations
and found approximately 88% of all symbols. Then, a SVM classified the symbols into different neume
types with an accuracy no lower than 92% across all classes. Compared to our approach, they did
not resolve the individual neumes into single NCs nor detected clefs. But likewise, accidentals were
ignored or did not occur.

Vigliensoni et al. [6] focused on pitch detection in their work; however, on documents of the Liber
Usualis (a digital version is available at https://archive.org/details/TheLiberUsualis1961) printed
in 1961. Using the staff line detection of Miyao [26], the staff line removal of Roach and Tatem
(compare e.g. Reference [27]), and an automatic neume classification algorithm trained on 40 pages,
they evaluated pitch detection on 20 pages consisting of 2219 neumes and 3114 pitches. The pitch of
the first component of a neume was correctly detected for 97% of all neumes, while only 95% of all
note components including single-tone neumes were found.

In Reference [28], Calvo-Zaragoza et al. propose an approach taken from historical document
analysis [29] in the area of OMR. A deep CNN was trained to segment scans of two manuscripts of the
14th and 16th century pixel-wise by assigning each pixel a class selected from background, text, staff
line, or symbol. Approximately 80% of the pixels were background, 10% were text, 6% were staff lines
and 4% were symbols. The results showed that, especially at the margin of changing label types, the
classification was incorrect, which however should only have a minor impact on the proceeding steps.
Furthermore, only a small number of GT instances must be manually created to obtain good results.
The evaluation measured the correct label of pixels, particularly those located at the edge of different
symbols and yields an average F1-score of around 90%. In general, this algorithm which predicts a
pixel-wise segmentation only solves one step in an OMR pipeline. The segmentation can be used as an
input to feed various classifiers which are, for instance, trained to encode staff lines, staves, symbols or
text, to finally output the musical information.

3. Dataset

As a dataset we used 49 pages of the manuscript “Graduel de Nevers” (accessible at the
Bibliothèque nationale de France (https://gallica.bnf.fr/ark:/12148/btv1b8432301z)) published in the
12th Century. The handwritten music comprises different neume notation styles, only a part is written
in square notation, which are folios 2-9 and 246-263. These pages were extracted and further split into
three parts that share a similar layout or difficulty based on our human intuition (compare Figure 2).

The first part contained pages with the best available notation quality with fading bleeding. Its
staff lines are mostly straight, possibly due to usage of a ruler, and all neumes were very clear and
distinct. The second part suffered from bleeding staff lines and was written very narrowly, yielding
the most difficult notation. The third part comprised to some extent very unclear neumes and very
wavy staff lines. In our experiments, we used these parts to estimate how well our trained algorithms
generalise onto unseen layouts by not using all parts for training.

The GT was manually annotated under the supervision of music scientists. For each stave, we
stored four staff lines each as a polyline whose coordinates were relative to the the image. The exact
start and end of a line was ambiguous due to occasional severe degradation. We further defined the
symbols clef, accidental, and neume as part of a staff. A clef consists of a type (C or F), its centre as
absolute position on the image and its location relative to the staff lines, which also marks the denoted
staff line. In the example line in Figure 1 the F-clef is located on the second line. Since all occurring
accidentals are a flat B, it is sufficient to store their absolute centre position and their staff line location.
Each neume is comprised of single NCs. For each NC, we took its absolute position, its location on the
staff lines, and whether it is graphically connected to the previous NC. For example the first neume
in Figure 1 consists of two NCs. The first one is located on the first staff line while the second one
is graphically connected and is positioned in the second space. The neume (c) in the example line

Appl. Sci. 2019, 9, 2646 6 of 28

comprises three NCs of which none is graphically connected; however, since they belong to the same
neume, their logical connection can be derived. Note that, in general, the symbol location in a staff line
can be computed using the positions of the staff lines and the global position of the symbol, however
there exist many ambiguities as to whether a NC is actually located on a line or in a space. For instance,
the first NC of the second last neume in Figure 1 might also be an G instead of an F. In this work,
we did not distinguish additional note types such as liquecents or oriscus. Furthermore, unlike the
approach in Reference [28], we did not label the images on a pixel-basis, since detecting the actual
shape and extent of neumes, clefs, or accidentals is out of the focus of this paper. We were solely
interested in transcribing historical neume notations in a digitised form that preserved all melodic
information, which is the desired output in almost all cases.

Figure 2. Each page represents parts 1, 2, and 3, respectively. The bottom images provide a zoomed
view on the upper pages. While the first page is very clean, both other pages suffer from bleeding and
fainter writing. The staff lines in the first and second part are very straight most certainly due to usage
of a ruler, whereas the staff lines of the third part are freehand drawn.

Using the described storage scheme, all required information for training and evaluation is preset
or can be computed. Table 1 gives an overview of each part’s properties by listing its number of pages,
the number of staves on these pages, each consisting of four staff lines, and the symbol counts. In total,
we annotated more than 16,000 symbols located in more than 500 staves. Compared to the number
of symbols, the 65 flat accidentals occur very rarely, which makes the learning of their detection very
challenging. Approximately 4% of the symbols are clefs, yet at least up to 600 clefs can be used as
training examples.

Appl. Sci. 2019, 9, 2646 7 of 28

Table 1. Overview of the data set statistics. The data set is split manually into three groups that share
similarities in layout or handwriting.

Part Pages Staves S.-Lines Symbols Notes Clefs Accid.

1 14 125 500 3911 3733 153 25
2 27 313 1252 10,794 10,394 361 39
3 8 72 288 1666 1581 84 1

Total 49 510 2040 16,371 15,708 598 65

4. Methodology

This section describes the general workflow of the staff line and symbol detection. Furthermore,
we provide an introduction to FCNs which are heavily used by the algorithms.

4.1. Workflow

The typical OMR pipeline usually breaks down in the following four stages as shown in [30]:

1. image pre-processing,
2. staff line detection and recognition of musical symbols,
3. reconstruction of the musical information, and
4. construction of a musical notation model.

Since the focus of this paper is to output an encoding of staves consisting of staff lines and music
symbols that fully captures the written neume notation of the original manuscripts, only the first three
steps are included in the proposed workflow. The omitted reconstruction of the output into a modern
notation is, however, straightforward (compare Figure 1). Therefore, our pipeline starts with a scanned
color image and ends with the reconstructed symbols that are recognised and positioned in a detected
staff as seen in Figure 3.

During the pre-processing, first, the raw image was deskewed and converted into grayscale by
using OCRopus (https://github.com/tmbdev/ocropy/blob/master/ocropus-nlbin). The deskewing
algorithm was initially designed for processing textual documents in an OCR-pipeline, however it
generalises flawlessly on our musical data. The algorithm first applied an array of small rotations on
the image. Afterwards, for each rotated image all rows were averaged pixel-wise and the variance
across the resulting vector was computed, which yielded a score for each initial rotation angle. Finally,
finding the maximum yielded the best rotation angle.

Next, our staff line detection algorithm was applied to the pre-processed image. The resulting
staff lines were represented as polylines and grouped into single staves. Each staff was then cut out
of the pre-processed image and the symbol detection was applied, which yielded a list of symbols
including their absolute pixel position. Finally, this pixel position was converted to a location relative
to the recognised staff lines to produce the final output. The last step for an actual transcription was a
straightforward mapping which decoded these positions based on the detected clefs to actual note
names, that is, the pitch. This step can induce subsequent faults if the clef was misclassified. The
melody of a line however, which is defined by the intervals that are relative to the NCs, is independent
of the clef which only defines the global pitch.

Both the staff line and symbol detection make use of FCNs, which we will introduce in the
following. Afterwards, the individual algorithms are described in greater detail.

Appl. Sci. 2019, 9, 2646 8 of 28

Image preprocessing

Reconstruction of
musical information

Recognition of musical symbols

Preprocessing
and dewarping

Scanned color
image

Staff line detection

FCN

Postprocessing
Extract staff lines

 and staves

Extracted Staff FCN Connected
components

Extract symbols

Normalization

Reconstruction
of staff and page

Figure 3. Schematic view of the workflow of the staff line and symbol detection. The small images
show the original image and the input and output of the respective Fully Convolutional Network
(FCN).

4.2. FCN Architecture

FCNs are a novel method for classifying an input image with variable size (H ×W) pixel-wise by
assigning a target class to each pixel in the input image. Especially the U-Net structure of [31] poses a
new state-of-the-art in several areas.

Our network architecture, which is shown in Figure 4, is a bit simpler than the original U-Net
since it has a reduced number of filters in the Convolution Layers and only down scales to a factor of 8.

In general, the U-Net comprises an encoder/decoder structure that down- and up-scales the input
image and thereby applies convolution and pooling operations. Skip-connections directly link the
outputs of each scale level of the encoder to the outputs of the decoder by concatenation. Thus, the
next higher layer of the decoder knows both the widespread information of the deeper levels and
the more fine-granular features of the higher levels of the encoder. The output of the network is a
probability distribution over all allowed labels for each input pixel.

Appl. Sci. 2019, 9, 2646 9 of 28

H x W x 1 (Input image as grayscale)

H x W x 20, ReLU

H x W x 30

H/2 x W/2 x 30

H/2 x W/2 x 40, ReLU

H/2 x W/2 x 40

H/4 x W/4 x 40

H/4 x W/4 x 60, ReLU

H/4 x W/4 x 60

H/8 x W/8 x 60

H/8 x W/8 x 80, ReLU H/8 x W/8 x 80, ReLU

H/4 x W/4 x 60, ReLU

H/4 x W/4 x 120

H/2 x W/2 x 40, ReLU

H/2 x W/2 x 80

H x W x 30, ReLU

H x W x 60

H x W x 20

H x W x L (Output, label probability for each pixel)

Skip connection

Skip connection

Skip connection

Encoder Decoder

Conv 5x5

Max-Pool 2x2

Deconv 2x2

Concatenate

Conv 1x1

Figure 4. FCN network architecture used for the staff line detection and symbol detection. Both the
type and the dimension of each layer is shown.

The network is trained by using a pair of input (e.g., greyscale) image I and a corresponding target
label matrix T as GT (compare Figure 5 for example input pairs). The neural network tries to predict
the desired label with a probability of one, while all other classes shall be zero. The corresponding loss
function is the negative-log-likelihood L which treats each individual pixel prediction independently:

L = −∑
x,y

log P(T|I)x,y, (1)

where the sum runs over all pixel positions x, y and the matrix P(T|I) denotes the probability of the
GT labels T given the input I.

Appl. Sci. 2019, 9, 2646 10 of 28

Input Target

Input

Target

Staff line detection

Symbol detection

Figure 5. GT pairs of input and target for training the FCN. The upper box shows an example for the
staff line detection where the FCN acts on the full page. The staff lines in the GT are drawn as black
lines in the target binary image. The symbol detection, instead, expects an image of a single line as
input. The different grey levels of the target represent the symbol classes, for example the darkest level
indicates a F-clef, while the brightest level marks a NC which is the start of a neume.

4.3. Staff Line Detection

Our staff line detection algorithm aims to extract staves and their respective staff lines as a group
of polylines from an input image. Each polyline is a list of points located in the original image.

Our algorithm (compare Figure 3) for the staff line detection acts on the deskewed greyscale
image of a full page as input and expects as parameters the number of staff lines per staves (four in
the case of this paper) and the average staff line distance dSL which is however approximated by the
algorithm of [32,33]. dSL is used to normalise the original input to an image where dSL is a fixed value
of 10px. The automatic staff line distance approximation algorithm of [33] acts on the binarised version
of the input image which is computed by the OCRopus binarisation tool. The idea of the algorithm is
based on run-length encoding (RLE) for each column of the binary image. RLE encodes an array of
binaray black and white pixels in sequence length, for example, the sequence {1110011111000111010}
is encoded as 3, 2, 5, 3, 3, 1, 1, 1. The most common black runs represent the height of a single staff line,
while the most common white runs denote the staff space, 1 and 3 in the upper example, respectively.
We adapted this algorithm by constraining the staff space to be at least twice the staff line height to
gain more robust results with noisy data. The actual dSL is finally approximated by the sum of the
staff line height and space. A preliminary experiment shows that on all available pages this algorithm

Appl. Sci. 2019, 9, 2646 11 of 28

correctly approximates dSL, hence all images can be normalised automatically. This normalisation step
is only required for the staff line detection but not for the later symbol detection.

The pre-processed and normalised image (a) is then fed into the FCN and postprocessing pipeline
(compare Figure 6). The FCN, which is trained to discriminate between staff line and background
pixels, predicts a probability map (b)—compare also Figure 5. A threshold of 50% corresponding to the
class with the highest probability classifies each pixel (c). To prune artefacts, we then apply a horizontal
RLE to drop row-wise pixel groups with a length shorter than 6 px (d). The remaining connected
components (e) are then used to determine preliminary polylines by computing the vertical centre at
each horizontal position for each component (f). Since the staff lines are sometimes interrupted, we
apply a postprocessing step that combines polylines which are on a similar height level (g). Finally, we
cluster all staff lines into staves by first computing the most common distance of staff lines d̄SL and then
group staff lines with a distance of smaller than 1.5 · d̄SL (h). We only keep staves with four lines, by
what staves that might be wrongly classified noise (e.g., bleeding), text or the page margin, are dropped.
The remaining grouped polylines represent the final result of the staff line detection algorithm.

(a) Input

(b) Output
(Probability)

(c) Threshold
(50%)

(d) Horizontal
runs
(Pruning)

(e) Connected
Components

(f) Polylines
(center of
Ccs)

(g) Combine line
sections

(h) Group into
staves

6px

d
SL

Figure 6. Staff line detection steps including the application of the FCN and the postprocessing. The
example images show the output of the respective step. In step (f–h) the resulting polylines indicating
staff lines are drawn, while in the other steps (a–e) the output is a matrix. The run-length encoding
(RLE) scale of 6 px relative to the output and the dimension of d̄SL is shown as reference in gray.

The FCN is trained on GT that solely contains the human annotated staff lines drawn with a
thickness of 3 px. During training, we optionally augment the data by randomly rotating the image up
to 2◦, flipping the image vertically or horizontally, and varying the contrast and brightness up to a

Appl. Sci. 2019, 9, 2646 12 of 28

factor of 2[−0.8,0.8] and value of 8%, respectively. Furthermore, the data is scaled with a factor of up to
2[−0.1,0.1] on each axis independently.

4.4. Symbol and Note Component Detection

The symbol detection algorithm acts on the image of a single staff (see Figure 3). To extract these
images, we determine the bounding boxes of each known staff which are extended to the top and
bottom by adding dSL, which is computed using the given staff lines. This line image is finally scaled
to a fixed height hstaff, which we choose as 80 px (see Section 5.3.2), so that the resolution of the input
data is normalised. An example line is shown in the first row of Figure 7.

Figure 7. The first line shows the cut off original input image. The next one is the target mask for the
FCN in which notes and clefs are marked. The next three lines show the dewarped, padded and an
augmented version of the original image.

Similar to the staff line detection, the symbol detector employs the proposed FCN-architecture to
classify the input image pixel-wise into seven different classes (see Figure 8): clef-c, clef-f, accidental-flat,
initial NC (start of a neume), logical connected NC, graphical connected NC and background. The
GT mask for each line is generated by drawing a small box of the respective label at the centre of
each symbol (compare Figure 5 and the second image in Figure 7). When training the FCN it aims to
predict the correct labels pixel wise, which is why actual symbols and their position and types must be
extracted in a proceeding step. For this purpose, we first assign the most probable class to each pixel
to receive a label map. Afterwards, connected components are detected on a binary image that either
denotes background or any symbol. Each component yields a single symbol whereby the centre of the
component equates the symbol position and the type defined by majority voting on the label map.

Appl. Sci. 2019, 9, 2646 13 of 28

C-Clef F-Clef ♭-Accid. Initial NC
(Neume
start)

Logical
connected
NC

Graphical
connected
NC

Background

Part 1

Part 2

Part 3

Figure 8. Each column shows cropped instances of the seven classes to be recognised by the symbol
detection, respectively for each data set part. The central pixel position defines the type.

Finally, the relative note position is computed based on the detected staff lines (see left image of
Figure 9), whereby the relative distance of the y-coordinate of each symbol in the staff determines the
closest space or staff line. It shows that notes are often “on the line” even though it is visually closer to
a space which is why spaces and lines are not distributed equidistant, instead the ratio is 2/3 (see the
left zoomed sub figure and for an example the right image of Figure 9).

0
2
1

4
3

6
5
7
8
10
9

40%
30%

30%

Figure 9. The left image shows the relative staff line positions shown on the right. The zoomed window
marks the area sizes that are assigned as line or space, while the dashed lines indicate ledger lines. The
right image is an example for a NC (green mark) that is visually closer to the space (dashed) however
actually a NC on a line (solid).

To improve the quality of a line, we implemented and tested several pre-processing steps applied
to the line image before being processed by the FCN (compare third to fifth image of Figure 7). First,
we dewarp the line by transforming the image so that the staff lines are straight. Furthermore, we pad
extra space to the left and right of a staff to ensure that all symbols especially clefs are fully contained.
We optionally use data augmentation that varies the contrast and brightness up to a factor of 2[−0.1,0.1]

and a value of 4%, respectively. Also, the data is scaled with a factor of up to 2[−0.1,0.1] independently
in x- and y-direction.

5. Experiments

In this section, we first introduce the data setup which defines how we chose parts for training and
testing the FCNs. Then, we evaluate and discuss the proposed staff line and symbol detection algorithm.
Finally, we measure the computation times required for training the deep models and prediction.

5.1. Data Setup

In general, we report the average value of a five cross-fold as generated by the scheme shown in
Figure 10.

Appl. Sci. 2019, 9, 2646 14 of 28

N
-train

Test Train

All

Test

Single (N
train

)

N
-train

Train

Cross (N
train

)

Train Test

(Pretraining)

Figure 10. Scheme of the used cross fold training. Each color represents a part that is split into a five
fold (smaller boxes). Depending on the experiment different sections are chosen for training and testing.
Optionally, a pretrained model on remaining data is used. For the cross-part scheme Ntrain can be set
to zero to only train on other parts.

The different experimental setups are:

1. In the All approach, each part is split into a five fold whereof one fold of each part is chosen for
testing, the remainder for training.

2. Only use a five fold of one single part. One fold is used for testing while Ntrain data of the
remainder serves for training. Optionally, a model pretrained on the two remaining parts can be
utilised as starting point for the training on the actual part.

3. Cross-Fold: The same as experiment 2, however all pages of the remaining two parts are added
to the training data. Setting Ntrain to zero yields experiments that only incorporates data of the
other parts and thus generate the models that are used for pretraining in the previous setup.

For both the staff line and symbol detection, setup 1 serves for a general evaluation of the proposed
algorithm. Then, we use setup 3 with Ntrain = 0 to test how a model generalised on unseen data with
a somewhat different layout. Finally, setup 2 with and without pretraining and setup 3 with Ntrain ≥ 1
conduce to test how the inclusion of actual data of the new part influences the accuracies.

5.2. Staff Line Detection

The staff line detection algorithm takes a pre-processed page image and outputs a list of staves
each containing four staff lines stored as polyline. To evaluate this algorithm, we first introduce the
used metrics and then present the results when training the FCN on different data sets. First, all
parts are joined, then the impact of training on two and testing on the remaining one is investigated
(compare Figure 10). Finally, we evaluate the effect of increasing the number of training examples.

5.2.1. Metrics

To evaluate the staff line detection algorithm we use two different pixel-based metrics. A true
positive (TP) pixel pair of GT and prediction is allowed to have a distance of maximal 3 px, any other
pixel of a line is treated as false positive (FP) or false negative (FN) (compare Figure 11).

Similar to an object detection task, we first measure the percentage of staff lines that are detected
(recall) and if too many lines were found (precision), which then yields the line detection FD

1 -score. A
staff line is marked as TP if the overlap of GT and prediction is greater than 0.5, that is more than 50%
of the line must be hit, but the detected line may not be twice as long. This threshold is fairly harsh,
since the detection of only a short section of a line causes both an FP and FN error.

The second metrics computes how many pixels of detected staff line are hit in length which
indicates whether the prediction was too long or too short (compare Figure 11). Thereto, we evaluate
the precision, recall and FLF

1 -score of all TP-lines in the upper measure. Finally, multiplication of both
individual metrics yields the total F1-score.

Appl. Sci. 2019, 9, 2646 15 of 28

Furthermore, we evaluate the detection rate of a complete staff consisting of four staff lines (FS
1). A

staff is marked as found if at least two staff lines (=50%) are correctly detected. This arbitrary threshold
is common for general object recognition tasks. For all detected staves we also count the relative
amount of how many of the four lines are correctly hit (FHL

1).

FN TP FP
FP

Predicted line

GT line

Both lines overlap

Metrics

3px

Figure 11. Visualisation of the metric used to evaluate the staff line detection. The blue and red solid
lines in the upper image denote the GT and prediction of a single staff line, respectively. The colored
area is the allowed space of 3 px where lines must overlap to be counted as a match. If at least one
vertical pixel is green it is counted as correct. The bottom line shows the intervals which are counted as
false negative (FN), true positive (TP) and false positive (FP). The deviation in the first part counts both
as FN and FP.

5.2.2. Results on All Data

The results of the staff line detection using a five cross-fold on all available data are shown in
Table 2.

Table 2. Staff line detection and length metrics with and without data augmentation. The last column
combines the two individual F1 measures by multiplication.

Line Detection Length Fit
Model Prec. Rec. FD

1 Prec. Rec. FLF
1 Total F1

Default 0.996 0.998 0.997 0.977 0.995 0.985 0.982
Data aug. 0.987 0.991 0.989 0.972 0.995 0.983 0.972

Clearly over 99% of all staff lines are found (recall) and over 99% of all predicted staff lines are
correct (precision). The resulting FD

1 -score is about 99.7%.
The length of the correctly detected staff lines has a FLF

1 -score of 98.5%; however, the recall that is
higher than the precision shows that lines mostly are too long.

Typical errors are shown in Figure 12. The green, red and blue colors indicate TP, FP and FN
pixels, respectively, though FN are rare. Most errors are either staff lines that are too long, for example
caused by falsely extending a staff or staff lines that are predicted on background. Both error types
are, among other things, caused by background noise such as bleeding staves or foreground text or
drop capitals. Naturally, other errors occur on damaged pages or very thin lines that must almost be
guessed. Furthermore, there are always small inaccuracies at the exact beginning and at the end of a
staff line which however are also a problem of the GT itself. The severity of the errors on the symbol
detection will be discussed in Section 5.3.5.

Appl. Sci. 2019, 9, 2646 16 of 28

Figure 12. The left image shows typical errors during the staff line detection. Green pixels indicate TPs,
red FPs, blue FNs. Either all lines in a staff are too long (third staff) or bled background is recognised
(last staff). The right image shows a page with weak bleeding. In this image all staff lines are detected
correctly. The zoomed sub images focus on the start and end of a staff.

Table 3 lists the recognition rate of complete staves. It is astonishing that the scores of the staff
detection are (almost) identical to the staff line detection; however, this shows that the staff line
detection only predicts wrong lines across a whole staff, for example all four lines are too long or a
whole staff is predicted on a blank page, as seen in Figure 12. This is also shown by a precision and
recall of 100% in the measure of hit lines. This states, that if a staff is detected all lines are correct. In
the following, we will only report the staff line detection accuracy because it is almost equivalent to
the staff accuracy but also includes the metric concerning the exact length of the lines.

Table 3. Staff detection and the number of recognised lines in a detected staff with and without data
augmentation. The last column combines the two individual F1 measures by multiplication.

Staff Detection Hit Lines
Model Prec. Rec. FS

1 Prec. Rec. FHL
1 Total F1

Default 0.996 0.998 0.997 1.000 1.000 1.000 0.997
Data aug. 0.988 0.992 0.990 0.999 0.999 0.999 0.989

Applying data augmentation yields no improvements in both metrics, instead the results clearly
worsen. However, especially the precision drops compared to the recall. This is justified by errors that
are mostly confusions if a staff is bleeding or real, which is possibly caused by the strong augmentations
in contrast and brightness levels.

5.2.3. Results of Cross-Part Training

The results of cross-part training with and without data augmentation are shown in Table 4.

Appl. Sci. 2019, 9, 2646 17 of 28

Table 4. Comparing staff line detection using cross data set training: Two parts are chosen for training
while the remainder is chosen as the test data set. The training data is split into five cross folds (four
folds training, one for validation) of which the average scores are shown. The total score is computed
as the product of the individual F1-scores. The lower half of the table shows the results when using
data augmentation.

Detection Length Fit
Train Test Prec. Rec. FD

1 Prec. Rec. FLF
1 Total F1

D
ef.

2, 3 1 1.000 1.000 1.000 0.977 0.990 0.983 0.983
1, 3 2 0.986 0.993 0.990 0.982 0.995 0.988 0.978
1, 2 3 1.000 0.978 0.988 0.990 0.990 0.990 0.978

Mean 0.993 0.987 0.980

A
ug.

2, 3 1 1.000 1.000 1.000 0.976 0.993 0.984 0.984
1, 3 2 0.959 0.978 0.968 0.968 0.997 0.982 0.951
1, 2 3 0.989 0.967 0.977 0.988 0.995 0.991 0.969

Mean 0.982 0.986 0.968

In general, it can be observed that on any split our algorithm obtains an FD
1 -score of 98.8% or

higher in the staff line detection. On part 1 even 100% are reached, thus all staff lines are found with an
overlap of at least 50%. This shows that the staff line detection algorithm is very robust to new layouts.
It is significant that part 2 suffers from data augmentation more clearly than part 3, while on part 1 still
a score of 100% is reached. The prediction of the line length is untouched. This can be explained by
the different kind of quality of the parts. While part 3 suffers very weakly from bleeding staves and
its lines are drawn very clearly, part 2 consists of pages where bleeding lines are present and some
staff lines are barely visible and thus are more similar to background noise. Data augmentation creates,
among other things, pages where the contrast of data is adjusted, which can explain why it is harder
to distinguish actual staff lines, background and bleeding in part 2. In general, part 2 also yields the
lowest FD

1 -score of 96.8%, which also shows that this part is the most complicated one.
The staff line lengths are detected very similar across the parts with a mean FLF

1 -value of 98.6%
and 98.7% (with and without data augmentation), which is almost identical to FLF

1 when training and
evaluation on all data of 98.5% (compare Table 2). Hence, we conclude that the crucial component of
the algorithm is to detect where staff lines are located and not to find the correct length of staff lines.

Note that the accuracies of these experiments are averaged over the parts while the results in the
previous Table 3 are the mean of all pages, which is why the values should not be directly compared
since part 2 consists of more instances than the other parts.

5.2.4. Data Amount

In this section, the effect of increasing the amount of training examples is investigated. The results
are summarised in Table 5. Each value is computed by first averaging all cross-folds of a single part
and then taking the mean of all three respective experiments for all parts.

As expected, if no additional data is available, an increasing number of training examples yields
a higher F1 score. The model trained on only one page already detects staves with FD

1 = 98.3% and
the length of a detected line matches with FLF

1 = 96.9%. Applying data augmentation on this data
improves the results significantly, resulting in a FD

1 of over 99% and a FLF
1 of 98.0% if one page is used.

Using more pages slightly increases the total F1-score up to 97.9%.
Of course using a pretrained model on the remaining data (PT) or including the remaining data

into the data set (Inc.) clearly outperforms the standard training without data augmentation. However,
it shows that including the data is in general better than just using a pretrained model if only one or
two pages are available, which makes this approach more robust for few pages. If more data is used
the error differences are caused by the training process itself for instance by choosing the random
seed for initialisation of the model. But it is to be expected that if many GT pages are available PT

Appl. Sci. 2019, 9, 2646 18 of 28

is superior since the model can fit directly on the respective data. Data augmentation improves the
results when PT is used, however not if the data is added to the dataset.

In general, it is remarkable that using Ntrain = 0, that is, only using data of the other parts
for training, yields very competitive results compared to any other experiment. Similar results are
achieved if only training on one page of a single part but using data augmentation. Therefore, in
practice it can be expected that the staff detection algorithm generalised well on unseen layouts.

Table 5. Evaluation how the number of training instances influence the accuracy of pages with an
unknown layout. All results are the averages of a five fold of each data set part. Only Ntrain pages are
chosen for actual training. The major row grouping shows if pages of the remaining parts are included
during training: Either no data is used (Default), a pretrained model on the data is used (PT), a large
data set comprising all other data which is extended by Ntrain is used (Inc.) The first row shows the
cross-training (CT.) results of Table 4 without any data of the target layout. The two major column
sections show the results with and without data augmentation on the training data. The best values for
each Ntrain are marked bold.

No Data Augmentation Data Augmentation
Ntrain FD

1 FLF
1 Tot. F1 FD

1 FLF
1 Tot. F1

CT. 0 0.993 0.987 0.980 0.982 0.986 0.968

Default

1 0.983 0.969 0.953 0.991 0.980 0.971
2 0.986 0.976 0.962 0.990 0.985 0.975
4 0.994 0.979 0.973 0.994 0.984 0.978

All 0.989 0.984 0.974 0.994 0.986 0.979

PT

1 0.992 0.980 0.972 0.988 0.985 0.973
2 0.992 0.981 0.973 0.993 0.984 0.977
4 0.999 0.983 0.982 0.993 0.987 0.980

All 0.995 0.984 0.980 0.998 0.986 0.984

Inc.

1 0.992 0.988 0.980 0.985 0.988 0.973
2 0.992 0.987 0.979 0.985 0.984 0.969
4 0.994 0.986 0.980 0.986 0.986 0.972

All 0.994 0.988 0.982 0.988 0.986 0.974

5.3. Symbol and Note Component Detection

The symbol detection algorithm acts on extracted images that contain a single staff. To extract
these images as described in Section 4.4, we generally used the GT staff lines to gain scores that are
independent of the staff line accuracy, however in Section 5.3.5, we will also evaluate on predicted
staff lines to investigate the impact of staff lines that are too short or too long. Similar to the staff line
detection, we first present the used metrics. Afterwards, we determine different hyperparameters and
settings for the algorithm. Finally, the outcomes of training on different parts and varying the number
of training examples are shown.

5.3.1. Metrics

We use several metrics for the symbol detection evaluation. First, we measure both the detection
rates of symbols in general (Fall

1) and also the subgroups of notes (Fnote
1) and clefs (Fclef

1). Thereto, we
compare all GT and prediction symbols and match a pair as TP if two symbols are closer than 5px, all
other symbols in the prediction and GT are treated as FP and FN, respectively. In the subgroups, we
only account for symbols that match a note or clef in the GT or prediction. In the following, accidentals
are not evaluated separately because no accidental is predicated at all.

Moreover, we measure how well types and staff locations of the note or clef subgroups are
predicted. For each subgroup, our measure only takes TPs into account and counts the number of
correctly predicted types (Accnote

type and Accclef
type), that is the neume start and graphical connection for

notes and the clef type (C or F) for clefs, or the staff positions (Accnote
pos and Accclef

pos).

Appl. Sci. 2019, 9, 2646 19 of 28

Our last measure evaluates either the diplomatic or the harmonic transcription. We compare the
produced sequence with the GT and count the number of insertions, deletions or substitutes in the
sequence, which is similar to OCR tasks. As diplomatic transcription, we compare staff position and
types of notes and clefs and their order; however, the actual horizontal position is ignored. Thus, only
the resulting transcription is evaluated. The harmonic transcription is similar to the diplomatic one but
ignores the type of notes, which is why only the harmonic information that is the melody is captured.
We represent these two sequence accuracy rates by dSAR and hSAR.

5.3.2. Preliminary Experiments

The first experiments listed in Table 6 test variations of the hyperparameters. Thereto, we use
the setup of Figure 10 where a cross-fold on all available data is taken. We list all scores, however the
main focus lies on the general symbol detection, hSAR and dSAR, since these metrics do not act on
subgroups but on the whole prediction.

Table 6. Metrics of various hyperparameter settings for the symbol detection. All experiments were
conducted using a cross-fold of size five using all available data. The best values for each metric
are highlighted.

Detection Type Position in Staff Sequence
Fall

1 Fnote
1 Fclef

1 Accnote
type Accclef

type Accnote
pos Accclef

pos hSAR dSAR

hstaff = 40 0.926 0.936 0.523 0.929 0.925 0.963 0.992 0.834 0.792
hstaff = 60 0.953 0.961 0.655 0.944 0.911 0.968 0.994 0.877 0.844
hstaff = 80 0.956 0.964 0.693 0.949 0.897 0.970 0.990 0.885 0.856
hstaff = 100 0.956 0.965 0.673 0.950 0.911 0.970 0.995 0.884 0.856

Pad 0.962 0.966 0.829 0.949 0.982 0.967 0.990 0.893 0.866
Dewarp 0.952 0.959 0.708 0.946 0.873 0.969 0.987 0.877 0.845
Aug. 0.959 0.968 0.671 0.953 0.912 0.970 0.992 0.889 0.862
Pad, Aug. 0.964 0.969 0.818 0.952 0.982 0.971 0.992 0.898 0.871

The upper block shows the results when the resolution of the input line is varied. The bold
numbers highlighting the best value for each score indicate that the accuracies seem to stagnate, which
is why in the following we use a line height of 80 px.

Using this hyperparameter, we evaluated the outcome of using padding, dewarping and data
augmentation. Since padding is designed to add space to the left of a staff particularly where clefs
are located, the highest score of clef type detection are achieved. As a result, the overall accuracies
improve as well. Dewarping yields slightly worse results in any metric, which is why in the following,
it was omitted in each experiment. We explain this unexpected behavior with the induced distortions
which complicates the detection of notes and especially their connection. Data augmentation slightly
improved the results compared to the default model. Since 80% of all data is used for training it is to be
expected, that data augmentation improves the results more clearly if less data is used for training. We
show this behavior in Section 5.3.4. The last row shows the best overall result reached when combining
data augmentation, padding, and choosing a line height of 80 px.

5.3.3. Results of Cross-Part Training

Table 7 show the result of cross-part training, that is testing on one of the three parts and training
on the two remaining ones. In general, as expected, data augmentation improves the results. The
ranking of accuracies follow the quality of the data: in summary, the highest values in Fall

1 , hSAR, and
dSAR are achieved on part 1, followed closely by part 3, and finally part 2. The similar accuracies
reached on part 1 and 3 in almost all metrics show the greater similarities of these two parts and in
general a clearer notation compared to part 2.

Appl. Sci. 2019, 9, 2646 20 of 28

Table 7. Symbol detection scores when testing on one and training on the remaining parts. The upper
and lower rows show the results without and with data augmentation, respectively. Padding and a
line height of 80px are used for all experiments.

Detection Type Position in Staff Sequence
Test Train Fall

1 Fnote
1 Fclef

1 Accnote
type Accclef

type Accnote
pos Accclef

pos hSAR dSAR

Def.

1 2, 3 0.956 0.965 0.782 0.914 1.000 0.981 0.993 0.906 0.860
2 1, 3 0.912 0.916 0.638 0.928 0.975 0.955 0.990 0.797 0.757
3 1, 2 0.950 0.952 0.907 0.958 0.968 0.981 1.000 0.895 0.867

Mean 0.939 0.944 0.776 0.933 0.981 0.972 0.994 0.866 0.828

Aug.

1 2, 3 0.958 0.964 0.822 0.914 1.000 0.980 0.990 0.907 0.862
2 1, 3 0.939 0.945 0.699 0.947 0.975 0.965 0.990 0.848 0.817
3 1, 2 0.943 0.945 0.901 0.959 0.956 0.981 1.000 0.886 0.859

Mean 0.946 0.951 0.807 0.940 0.977 0.976 0.993 0.881 0.846

The dSAR of any part is considerably lower than the value of 86.6% and 87.1% yielded when
training on all data (compare Table 6) with and without data augmentation, respectively. Also the ratio
of detected symbols Fall

1 is significantly lower, due to the variations in style across the parts. Accnote
pos

and Accclef
pos are similar to training on all data which shows that if a symbol is correctly detected, its

position on the staff lines is usually correct. This behavior is expected because these errors are almost
always intrinsic ambiguities which are independent of the layout. Furthermore, the average clef type
accuracy Accclef

type of 97.7% in average is also very high. Therefore the network is mostly certain if a
C- or F-clef is written even though they share similarities. The decision whether a NC is graphically
or logically connected is correct in only 94.0% of all detected notes and slightly lower than the 95.2%
reported in Table 6. This shows that the FCN can transfer information about the arrangement of NCs
that build typical neumes.

5.3.4. Varying the Number of Training Examples

In this section, we also train on two parts and test on the remaining part, however actual data of
the target part is included. Table 8 lists the results when using 0, 1, 2, 4, or finally all pages.

Table 8. Symbol detection scores when varying the number of training examples. The first line is the
average of the cross-part training (CT.) experiment of Table 7 where no pages of the target part are used.
The next rows (Default) only use Ntrain of the target data set for training. Afterwards, a pretrained
model is used (PT.) or the additional part data is included (Inc.).

Detection Type Position in Staff Sequence
Ntrain Fall

1 Fnote
1 Fclef

1 Accnote
type Accclef

type Accnote
pos Accclef

pos hSAR dSAR

CT. 0 0.946 0.951 0.807 0.940 0.977 0.976 0.993 0.881 0.846

Default

1 0.846 0.854 0.533 0.862 0.963 0.954 0.986 0.730 0.661
2 0.899 0.905 0.706 0.901 0.989 0.962 0.998 0.806 0.749
4 0.926 0.930 0.775 0.927 0.982 0.970 0.990 0.846 0.804

All 0.954 0.958 0.861 0.945 0.987 0.977 0.998 0.897 0.867

PT.

1 0.925 0.929 0.760 0.907 0.978 0.956 0.992 0.834 0.777
2 0.939 0.942 0.796 0.928 0.981 0.966 0.999 0.862 0.821
4 0.953 0.956 0.871 0.944 0.987 0.972 0.996 0.890 0.858

All 0.969 0.971 0.910 0.950 0.989 0.975 0.997 0.916 0.888

Inc.

1 0.948 0.953 0.808 0.936 0.982 0.977 0.997 0.882 0.846
2 0.952 0.958 0.793 0.939 0.978 0.976 0.997 0.887 0.854
4 0.959 0.964 0.817 0.948 0.980 0.976 0.996 0.900 0.870

All 0.961 0.966 0.846 0.950 0.979 0.977 0.996 0.905 0.878

Appl. Sci. 2019, 9, 2646 21 of 28

As expected, an increasing number of training examples leads in general to improve recognition
rates and thus higher scores in any experiment. However, it is remarkable that the model which only
comprises one page without any other techniques already yields an dSAR of 66.1% and a hSAR of
73.0%. Nevertheless, the scores significantly improve if other data are incorporated even if no page of
the target part is included at all (Ntrain = 0), yielding a dSAR of 84.6% and a hSAR of 88.1%. Only if all
available pages are used for training (dSAR = 86.7%), the default model is slightly better than training
on the other parts only (dSAR = 84.6%).

However, there are huge differences when to use pretraining or data inclusion. If only few data
of the target set are available (1, 2, 4) including the data yields better results but if many examples
are used during training, PT is superior. The reason is that the PT model yields a good starting point
which is then optimised for one specific part if enough target data is used. Whereas, if all data is
included, the model is forced to generalise on any part and not on a specific one.

Furthermore, the experiments show that the accuracy of the position in staff increase with a higher
number of training instances in the default model or when using PT but are almost constant if zero or
all instances are added to the training set. Obviously, having more data available it is easier to find
and remember good rules that state how to resolve incertitudes.

On the whole, the model training if no data of the target part already yields a very robust Fall
1 -

and dSAR-score. Even if PT and all data is used the dSAR increases only from 88.1% to 91.5%, which
is a relative improvement of about 4%. However, we highly expect that if the differences between
training and testing data are even more clear, the effect will increase.

5.3.5. Symbol Detection on Predicted Staves

Finally, we test the combination of both algorithms. Thus, in this experiment, the impact of
shortened or too long staff lines of the predicted staves can be investigated. Thereto, we only evaluated
on staves that are marked as TPs which is why for an combined result the amount of detected staves
must be included but which is almost 1. We evaluate the model which is trained on a cross-fold of all
pages combined.

The experiment yields a hSAR of 88.9% and a dSAR of 86.2%, which is slightly worse than the
results obtained if predicted on the corrected lines (89.8% and 87.1% respectively). The sole new errors
that can occur are FPs if the staves are expanded into other content such as drop capitals or text, or
FNs if the staves are too short.

In conclusion, the dSAR decreases by only 1% on detected staves due to wrong staff lengths.
The score is further reduced by approximately 1% when accounting for FPs and FNs during the
staff prediction.

Figure 13 shows the full output of the symbol detection acting on recognised staves. Hereby,
all symbol positions are mapped relative to the page by transforming the prediction of the symbol
detection to global space. The various error sources are discussed in Section 5.3.6.

Appl. Sci. 2019, 9, 2646 22 of 28

Figure 13. The page visualises the full prediction of the staff line and symbol detection. Encoded staff
lines are drawn as blue lines on top of the red staff lines of the original manuscript, the green dashed
lines mark the bounding boxes of single staves. The vertical dashed lines separate neumes whose NCs
are drawn as yellow boxes. Graphical connection withing a neume are indicated by a black stroke
between two NCs. The reading order is represented by a thin dotted line that connects all NCs withing
a staff. Small crosses inside of the yellow box of a NCs mark the discrete location of the symbol relative
to the staff lines. The cyan symbols mark clefs.

Appl. Sci. 2019, 9, 2646 23 of 28

5.3.6. Error Analysis

Regarding the error analysis, we compare the predicted and GT sequences and count how many
deletions or insertions of a specific type are required to gain the GT. We use the model, when training
and evaluating a cross fold comprising all data, which yields a dSAR of 87.1% (compare Table 6). Note
that in this section replacements are treated as two errors: one insertion and one deletion. Table 9 lists
eight groups of errors and their relative impact on the total dSAR whereas Figure 14 shows examples
for the errors.

Table 9. Error analysis: The relative amount of errors of the output sequence is categorised.

Group Error

False Negatives 51.7%
1. Missing Note 21.2%
2. Wrong Connection 10.8%
3. Wrong Location 14.3%
4. Missing Clef 3.5%
5. Missing Accidental 1.9%

False Positives 48.3%
6. Additional Note 20.6%
2. Wrong Connection 10.8%
3. Wrong Location 14.3%
7. Additional Clef 2.6%
8. Additional Accidental 0.0%

Total 100%

Figure 14. The three lines exemplarily show typical errors of the symbol detection algorithm. Refer to
Table 9 for the definition of the numbers indicating different groups. The yellow boxes mark single NCs,
solid lines between two NCs indicate that the second note is graphically connected to the previous.
The dashed vertical lines separate single neumes and therefore represent logical connections. The cyan
symbols denote clefs. The connecting thin dotted line represents the reading order of the symbols.

The first result is that the combined amount of FPs and FNs are balanced (48% vs. 52%). Notes are
missed (1) most often if the contrast between notes and background is too low or if neumes are written
very dense, which also significantly affects the prediction accuracy of connection types (2). Wrong
note positions (3) occur only at locations where even for a human it is difficult to decide whether the
NC is located on a line or in a space. Mainly neumes with stacked NCs, such as a so-called pes (first
neume in Figure 1) or scandicus, suffer from these errors. These neumes also induce errors in reading

Appl. Sci. 2019, 9, 2646 24 of 28

order which is only captured by SAR metrics. Since the NCs are ordered left to right based on their
prediction position, it happens that the upper note, which should be sung later, is predicted a little to
far to the left compared to the lower note. Observations show that the first clef in a staff was almost
always detected, whereas a clef in a line was very often missed (4) and sometimes misrecognised
as two notes. Accidentals are not detected at all (5) possibly due to their underrepresentation in the
available data set.

Additional notes (6) mostly occur if clefs or accidentals are labeled as two notes or if noise or
bleeding is falsely detected as symbols. Wrong connections and locations count also as FP which is
why their ratio is the same. The amount of FPs that are clefs (7) is very low and since no accidentals
are predicted at all no FPs (8) can occur.

In conclusion, it can be observed that the majority of errors are, as expected, note related; however,
missing (21.2%), additional (20.6%), wrong connection (21.6%) and wrong location (28.6%) errors are
roughly balanced.

5.4. Timing

Finally, we measured the times required for predicting staff lines or the symbols of a staff line
including data loading and pre- and postprocessing steps (see Table 10). The time for loading the
model which is only required once is included. All times were measured on a Nvidia Titan X GPU
and an Intel Core i7-5820K processor, while the FCN was implemented in Tensorflow. Moreover, we
obtained the results only when using the CPU or a GPU if available.

Table 10. Prediction and training times in seconds. For the staff line detection the numbers denote the
time to process a whole page, while for the symbol detection the reference is a single staff. Prediction
includes pre- and postprocessing; however, training only refers to a single iteration.

Staff Line Symbols
GPU CPU GPU CPU

Predict 3.5 3.7 0.15 0.12
Train 0.12 3.6 0.04 0.42

To process a full page the staff line detection requires 3.7 (CPU) and 3.5 (GPU) seconds, therefore
about 3 min for the full dataset. The pre-processing step, which normalises the input image, takes
about half of the time. The application of the FCN follows with about 40%, however the difference
between CPU and GPU is minor. This can be explained by the shorter model loading time when
using the CPU and the faster computation time but a required data transfer when using the GPU. The
remaining time is consumed by the postprocessing which generates the final output.

The symbol detection requires about 0.12 (CPU) and 0.15 (GPU) seconds for the prediction of a
single staff, thus the complete dataset takes one minute to predict. Because no pre-processing besides
cutting the image is required and the postprocessing step only consists of a connected component
analysis, it is clearly faster than the pre- and postprocessing of the staff line detection, yet it is the most
time consuming step. Compared to the staff detection, the CPU is even a bit faster due to the smaller
input line image. In total about 4 minutes are required to predict both the staves and symbols on all 49
pages.

Especially for training, GPU usage is almost indispensable to enable a fast back-propagation
which computes the weight differences required for training the network. Compared to the CPU, the
staff line training on the GPU that acts on the full page yields a speed-up of 30, which is justified with
the convolution and pooling operations of the FCN that are highly optimised and perfectly suited for
the GPU. Note that training a single instance is faster than prediction because pre- and postprocessing
steps are not required.

Appl. Sci. 2019, 9, 2646 25 of 28

6. Conclusion and Future Work

This paper introduces a new system for automatic staff line and symbol detection on historical
medieval notations based on deep neural networks. The main results on our data set are (compare
Table 11):

Table 11. Overview of the main results of this paper.

Task Score

F1-scores of staff line & staff detection >99%
F1-score of detected Symbols >96%
Diplomatic sequence accuracy (dSAR) ≈87%

• Staff lines and staves are recognised with an F1-score greater than 99%. The major error sources
are staves that are detected on a bled background or which are extended into other foregrounds
(e.g., text).

• A trained staff line model generalises flawlessly to different layout types and thus needs
no retraining.

• Our best model finds symbols with an F1-score of above 96% and yields a dSAR of about 87%.
• Pretraining is helpful but not mandatory for the symbol detection, since the dSAR only increases

about 4%.
• The full transcription (compare Figure 13) comprises staves consisting of four staff lines stored as

polylines, the position and type of clefs, the position of accidentals, the position and graphical
connection of NCs which comprise neumes.

To further improve the staff detection, which is close to perfect, more experiments must be
conducted to evaluate the effect of data augmentation which is unclear in the proposed manner.
Augmentations in brightness and contrast must especially be reconsidered to allow for more robust
models. Furthermore, staves that are detected on background can be dropped by introducing a
threshold of minimum symbols per staff because the symbol detection only occasionally detects
symbols on background. Another problem are staves that extend into text or drop capitals. However
a symbol detection which is explicitly trained to ignore text could help to determine the boundaries
between staff and text because no symbols should be detected there.

However, the primary goal of our future work is to further reduce the errors of the symbol
detection. First, the error analysis shows that false notes are the main source of symbol errors. The
connection and location of notes induces many errors, which however are also difficult tasks for
humans. We proposed to evaluate a two stage approach similar to Reference [7] that first predict
neumes as combined components and then separates them into individual NCs; however, with
incorporation of deep neural networks for object detection. Furthermore, to improve the quality of clef
or accidental prediction more data must be gathered or over-sampled in the training data either by
data augmentation or by presenting these lines more often.

A completely different approach, which is based on the state-of-the-art networks in OCR, is to
directly use sequence-to-sequence networks as already proposed in Reference [28] on contemporary
OMR. A CNN/LSTM hybrid network with a combination of a CTC-loss function directly predicts an
NC sequence. The main advantage is that GT production is easier since only the sequence has to be
transcribed but not the actual position of each single NC. However, it is to be expected that more GT is
required since it has to learn autonomously both the shape of all music symbols and the staff lines
to infer the location of the symbols. It is still an open issue whether this CTC-approach in fact yields
improved results. Furthermore, because this approach directly predicts a symbol sequence and no
actual note positions relative to the image, it cannot be used if this information is mandatory.

Appl. Sci. 2019, 9, 2646 26 of 28

Author Contributions: C.W. conceived and performed the experiments and created the GT data. C.W. and
A.H. contributed the staff line detection algorithm. C.W. designed the symbol detection algorithm. C.W. and F.P.
analysed the results. C.W. wrote the paper with substantial contributions of F.P.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Tim Eipert for helping to resolve ambiguities in the data set.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
CPU Central Processing Unit
CTC Connectionist Temporal Classification
dSAR Diplomatic Sequence Accuracy Rate
FCN Fully Convolutional Network
FN False Negative
FP False Positive
hSAR harmonic Sequence Accuracy Rate
LSTM Long Short-Term Memory
GPU Graphical Processing Unit
GT Ground Truth
NC Note Component
OCR Optical Character Recognition
OMR Optical Music Recognition
PT Pretraining
RLE Run Length Encoding
TP True Positive

References

1. Good, M. MusicXML for notation and analysis. In The Virtual Score: Representation, Retrieval, Restoration;
MIT Press: Cambridge, MA, USA, 2001; Volume 12, pp. 113–124.

2. Hankinson, A.; Burgoyne, J.A.; Vigliensoni, G.; Fujinaga, I. Creating a large-scale searchable digital collection
from printed music materials. In Proceedings of the 21st International Conference on World Wide Web,
Lyon, France, 16–20 April 2012; pp. 903–908.

3. Hild, E.S. Tropen zu den Antiphonen der Messe aus Quellen französischer Herkunft; Corpus Monodicum. Die
einstimmige Musik des lateinischen Mittelalters, Schwabe Verlag: Basel, Switzerland, 2016.

4. Haug, A.; Kraft, I.; Zühlke, H. Tropen zu den Antiphonen der Messe aus Quellen deutscher Herkunft; Corpus
Monodicum. Die einstimmige Musik des lateinischen Mittelalters, Schwabe Verlag: Basel, Switzerland, 2019.

5. Corbin, S.; Institut, B.M. Die Neumen; Palaeographie der Musik. Bd. 1, Fasz. 3; Arno Volk-Verlag: Köln,
Germany, 1977.

6. Vigliensoni, G.; Burgoyne, J.A.; Hankinson, A.; Fujinaga, I. Automatic pitch recognition in printed
square-note notation. In Proceedings of the ISMIR, Miami, FL, USA, 24–28 October 2011.

7. Ramirez, C.; Ohya, J. Automatic recognition of square notation symbols in western plainchant manuscripts.
J. New Music Res. 2014, 43, 390–399. [CrossRef]

8. Baró, A.; Riba, P.; Calvo-Zaragoza, J.; Fornés, A. Optical Music Recognition by Long Short-Term Memory
Networks. In Graphics Recognition. Current Trends and Evolutions; Springer International Publishing: Cham,
Switzerland, 2018; pp. 81–95.

9. Keil, K.; Ward, J.A. Applications of RISM data in digital libraries and digital musicology. Int. J. Digit. Libr.
2019, 20, 3–12. [CrossRef]

10. Fornés, A.; Dutta, A.; Gordo, A.; Lladós, J. CVC-MUSCIMA: A ground truth of handwritten music score
images for writer identification and staff removal. Int. J. Doc. Anal. Recognit. 2012, 15, 243–251. [CrossRef]

Appl. Sci. 2019, 9, 2646 27 of 28

11. Van der Wel, E.; Ullrich, K. Optical Music Recognition with Convolutional Sequence-to-Sequence Models.
In Proceedings of the 18th International Society for Music Information Retrieval Conference, ISMIR 2017,
Suzhou, China, 23–27 October 2017; Cunningham, S.J., Duan, Z., Hu, X., Turnbull, D., Eds.; 2017; pp. 731–737.

12. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of
the 27th International Conference on Neural Information Processing Systems—Volume 2, Montreal, QC,
Canada, 8–13 December 2014; pp. 3104–3112.

13. Calvo-Zaragoza, J.; Rizo, D. End-to-end neural optical music recognition of monophonic scores. Appl. Sci.
2018, 8, 606. [CrossRef]

14. Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 369–376.

15. Breuel, T.M. High Performance Text Recognition Using a Hybrid Convolutional-LSTM Implementation. In
Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition, ICDAR
2017, Kyoto, Japan, 9–15 November 2017; pp. 11–16. [CrossRef]

16. Wick, C.; Reul, C.; Puppe, F. Comparison of OCR Accuracy on Early Printed Books using the Open Source
Engines Calamari and OCRopus. JLCL 2018, 33, 79–96.

17. Song, W.; Cai, J. End-to-end Deep Neural Network for Automatic Speech Recognition; Standford CS224D Reports;
Stanford University: Stanford, CA, USA, 2015.

18. Zhang, Y.; Chan, W.; Jaitly, N. Very deep convolutional networks for end-to-end speech recognition. In
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
New Orleans, LA, USA, 5–9 March 2017; pp. 4845–4849.

19. Pugin, L.; Zitellini, R.; Roland, P. Verovio: A library for Engraving MEI Music Notation into SVG. In
Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR 2014, Taipei,
Taiwan, 27–31 October 2014; Wang, H., Yang, Y., Lee, J.H., Eds., 2014; pp. 107–112.

20. Pacha, A.; Choi, K.Y.; Coüasnon, B.; Ricquebourg, Y.; Zanibbi, R.; Eidenberger, H. Handwritten music object
detection: Open issues and baseline results. In Proceedings of the 2018 13th IAPR International Workshop
on Document Analysis Systems (DAS), Vienna, Austria, 24–27 April 2018; pp. 163–168.

21. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

22. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 379–387.

23. Hajič, J.; Pecina, P. The MUSCIMA++ dataset for handwritten optical music recognition. In Proceedings
of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto,
Japan, 9–15 November 2017; Volume 1, pp. 39–46.

24. Calvo-Zaragoza, J.; Toselli, A.H.; Vidal, E. Early handwritten music recognition with hidden markov models.
In Proceedings of the 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR),
Shenzhen, China, 23–26 October 2016; pp. 319–324.

25. Calvo-Zaragoza, J.; Toselli, A.H.; Vidal, E. Handwritten music recognition for mensural notation: formulation,
data and baseline results. In Proceedings of the 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November 2017; Volume 1, pp. 1081–1086.

26. Miyao, H. Stave extraction for printed music scores using DP matching. J. Adv. Comput. Intell. Intell. Inform.
2004, 8, 208–215. [CrossRef]

27. Dalitz, C.; Droettboom, M.; Pranzas, B.; Fujinaga, I. A comparative study of staff removal algorithms.
IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 753–766. [CrossRef] [PubMed]

28. Calvo-Zaragoza, J.; Castellanos, F.; Vigliensoni, G.; Fujinaga, I. Deep neural networks for document
processing of music score images. Appl. Sci. 2018, 8, 654. [CrossRef]

29. Wick, C.; Puppe, F. Fully Convolutional Neural Networks for Page Segmentation of Historical Document
Images. In Proceedings of the 13th IAPR International Workshop on Document Analysis Systems, DAS 2018,
Vienna, Austria, 24–27 April 2018; pp. 287–292. [CrossRef]

30. Rebelo, A.; Fujinaga, I.; Paszkiewicz, F.; Marcal, A.R.S.; Guedes, C.; Cardoso, J.S. Optical music recognition:
state-of-the-art and open issues. Int. J. Multimed. Inf. Retr. 2012, 1, 173–190. [CrossRef]

Appl. Sci. 2019, 9, 2646 28 of 28

31. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the MICCAI 2015—18th International Conference on Medical Image Computing and
Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M.,
Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351,
pp. 234–241.

32. Fujinaga, I. Staff detection and removal. In Visual Perception of Music Notation: On-Line and Off Line Recognition;
IGI Global: Hershey, PA, USA, 2004; pp. 1–39.

33. Cardoso, J.S.; Rebelo, A. Robust Staffline Thickness and Distance Estimation in Binary and Gray-Level Music
Scores. In Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul,
Turkey, 23–26 August 2010; pp. 1856–1859. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Automatic Square Notation Transcription of Medieval Music

Manuscripts using CNN/LSTM-Networks and the segmentation-free

CTC-Algorithm

C. Wick and F. Puppe

Chair for Artificial Intelligence and Knowledge Systems, University of Würzburg, 97074
Würzburg, Germany;

ARTICLE HISTORY

Compiled May 28, 2020

ABSTRACT
The automatic recognition of scanned Medieval manuscripts still represents a chal-
lenge due to degradation, non-standard layouts, or notations. This paper focuses
on the Medieval square notation developed around the 11th century which is com-
posed of staff lines, clefs, accidentals, and neumes which are basically connected
single notes. We present a novel approach to tackle the automatic transcription by
applying CNN/LSTM networks that are trained using the segmentation-free CTC-
loss-function which considerably facilitates the Ground Truth (GT)-production. For
evaluation, we use three different manuscripts and achieve a diplomatic Symbol Ac-
curacy Rate (dSAR) of 86.0% on the most difficult book and 92.2% on the cleanest
one. To further improve the results, we apply a neume dictionary during decoding
which yields a relative improvement of about 5%.

KEYWORDS
Optical Music Recognition; Historical Document Analysis; Medieval manuscripts;
neume notation; CNN, LSTM, CTC

1. Introduction

Musicology still relies heavily on manual processes to transcribe manuscripts, espe-
cially when examining historic notations like the Medieval square notation. To reduce
the time expenditure required to obtain the transcripts, an application of novel auto-
matic approaches using state-of-the-art methodology of artificial intelligence is promis-
ing. An applicable automatic transcription would allow to produce great amounts of
annotated data which can then be used for large-scale data analysis, such as musical
grammars (see e.g., Baroni, Maguire, & Drabkin, 1983; Hamanaka, Hirata, & Tojo,
2016) or the comparison of melodies (see e.g., Grachten, Arcos, & Lopez de Mantaras,
2004; Janssen, Kranenburg, & Volk, 2017). The examined Medieval square notations
are special because they are similar to modern monophonic Common Western Music
Notation (CWMN) in the sense that they already use staff lines (here four) and clefs to
define the pitch of notes. Notes are always part of larger components called “neumes”
which historically originate from a stroke which depicts a short movement of music.
Furthermore, in contrast to even earlier notations, the square notation uses discrete
square-shaped Note Components (NCs). An example line is shown in Figure 1 which

Figure 1. An original line (first image) and its transcription equivalent (second line) rendered in a modern
notation. Looped NCs are visualised by a slur (a), the start of a new neume is indicated by a wider space (b),

gapped NCs are notated with a small space (c). The last line shows the label sequence of the input line which
is the Ground Truth (GT) for the proposed method. A single token consists of the symbol type (note, clef,

or accidental), its subtype (c- or f-clef for clefs; looped, gapped, or note start for notes; flat or sharp for the
accidentals), and the position on the staff lines (see position labelling). Based on the clef and the positions of
the notes it is possible to obtain the melody of the transcription equivalent.

also includes a modern transcription equivalent (second line): each NC corresponds to
a note, notes within a neume that are graphically connected are drawn with a slur;
NCs that belong to the same note, but are not connected are rendered with a smaller
space. The lyrics of the line, whose syllables can help to differentiate between two
neumes or a single neume with two gapped NCs, is also shown.

In this paper, we propose a methodology that is well-established in the field of
Automatic Text Recognition (ATR): we tackle the transcription of a music staff as
sequence-to-sequence problem where the image of a staff is the input and the se-
quence of music symbols represents the output (bottom of Figure 1). The method of
choice is a combination of a Convolutional Neural Network (CNN) and a bidirectional
LSTM (Hochreiter & Schmidhuber, 1997) architecture which is trained using the so-
called Connectionist Temporal Classification (CTC)-loss (Graves, Fernández, Gomez,
& Schmidhuber, 2006). This setup is well-known from the application in ATR (see e.g.,
Breuel, 2017; Wick, Reul, & Puppe, 2018), but also automatic speech recognition (see
e.g., Das, Li, Zhao, & Gong, 2018; Salazar, Kirchhoff, & Huang, 2019). In contrast to
the previous approach of (Wick, Hartelt, & Puppe, 2019) using an Fully Convolutional
Networks (FCNs) which was trained using a traditional cross-entropy-loss, the advan-
tage is that the GT is allowed to be segmentation-free, that is, the sequence of music
symbols is sufficient while the accurate pixel-positions are not required. This leads to a
simplification of the cumbersome process of GT-production because the actual pixels
positions of the notes are irrelevant for further processing steps. Similar to the ATR,
it is now sufficient to provide a sequence of labels instead of meticulously marking
the positions of the characters manually. It is even possible to include existing tran-
scriptions that only accounted for the music symbols to obtain a modern transcription
equivalent.

Currently, a fully automatic transcription demanding mixed models that both are

2

highly performant and generalise across different books with a high variety of nota-
tions (even within the area of square notations) is not possible, yet. Instead, book-
specific models must be trained each requiring its own GT. Furthermore, no auto-
matic model is error-free which is why the transcription process must be considered as
semi-automatic. To simplify the GT-production and the actual training, the proposed
methodology can be integrated in existing semi-automatic Optical Music Recogni-
tion (OMR)-frameworks such as OMMR4all (Wick & Puppe, 2019) which provides an
overlay-editor for error correction and a Graphical User Interface (GUI) to train the
models iteratively.

In this paper, we claim the following contributions:

• We are the first to apply a segmentation free CNN/LSTM-hybrid network trained
using the CTC-algorithm to transcribe Medieval square notation.
• We compare the proposed approach to a previous one based on FCNs (see Wick,

Hartelt, & Puppe, 2019) and obtained equivalent results on the same dataset.
• We improve the prediction by about 5% using three different CTC-decoders

which incorporate a dictionary of neumes.
• We evaluate the proposed method on three datasets with more than 21,000

symbols in total and achieve a dSAR of 86.0% on the most difficult book and
92.2% on the cleanest one.
• We examine the performance of training mixed models and the effect of the

number of training instances.
• We provide a thorough error analysis.

The remainder of this paper is structured as follows: first, we present publications
related to OMR on historical manuscripts and those that apply similar methods on
CWMN. Afterwards, the used datasets are introduced before our proposed method is
described. Finally, we present and discuss our results and conclude the paper by giving
an overview of future work.

2. Related Work

In this section, we present recent publications related to the application of
CNN/LSTM-hybrids for OMR and those that focus on historical notations. For a
more thorough survey of the past developments of OMR refer to the publication of
Rebelo et al. (2012).

A combination of CNNs with LSTMs in an encoder/decoder approach known from
the sequence-to-sequence task of machine translation was proposed by van der Wel
and Ullrich (2017): the CNN/LSTM-based encoder processes the image of a staff
to obtain a vector as digital representation of the score. Then, the decoder which
is only based on LSTMs to predict a sequence of pitches, durations, and finally a
stop mark. The evaluation dataset consisted of perfectly rendered scores from the
MuseScore Sheet Music Archive1 and provided 108 pitch and 48 duration categories.
Using data augmentation, a pitch and duration accuracy of 81% and 94% was achieved,
respectively. Therefore, the total accuracy of notes was 80%.

Calvo-Zaragoza, Valero-Mas, and Pertusa (2017) proposed a CNN/LSTM-hybrid ar-
chitecture combined with the CTC-loss function to tackle the automatic recognition of
printed monophonic scores in CWMN which is equivalent to our proposed approach for

1https://musescore.com

3

Medieval manuscripts. For evaluation, they published their so-called PrIMuS (Printed
Images of Music Staves) dataset which comprises 87,678 real-music incipts rendered
by Verovio (Pugin, Zitellini, & Roland, 2014), a web-based music engraver. Their ap-
proach required a distinct label for each combination of pitch and rhythm, which is
why in total up to 1,781 different classes were required. The evaluation yielded a diplo-
matic Symbol Error Rate (dSER), that is, the number of mistakes normalised by the
length of the GT, of approximately 1%. In contrast, even though our fundamental
approach is equivalent, we propose a considerably different network architecture spe-
cialised to square notations which also includes an adapted data representation (see
Section 4.2.1). In general, our task is clearly more difficult because compared to the
ideally rendered CWMN music, our documents are both handwritten and historical
which induce further challenges such as non-uniform writings, degradation, or noise,
such as bleeding through. Furthermore, in contrast to monophonic CWMN, notes can
be written on top of each other which is why the network has to learn to predict two
subsequent labels for the same symbol.

To process single lines of handwritten or rendered music, Baró, Riba, Calvo-
Zaragoza, and Fornés (2019) also combine‘d CNNs and LSTMs to predict the pitch
and rhythm of notes and other musical symbols (e.g., rests or clefs). Their approach
was able to not only recognise monophonic, but homophonic music (see e.g., Calvo-
Zaragoza, Hajič jr., & Pacha, 2019), that is, multiple notes can occur at the same time
with the same duration. Thereto, they predicted two probability maps, one for symbols
and one for pitches with 80 and 28 classes, respectively. In contrast to a CTC-based
approach, training required segmented symbols, not just the plain sequence. Data
in such form was available in the rendered PrIMuS and handwritten MUSCIMA++
(Hajič jr. & Pecina, 2017) datasets, both written in CWMN. They achieved a total
dSER (both rhythm and pitch must be correct) of 0.3% and 54.5% when evaluating
on PrIMuS and MUSCIMA++, respectively. The differences indicate the huge gap
between the recognition accuracy of handwritten and engraved music even in the case
of mono- or homophonic music.

In the context of an automatic transcription of historical notations of monophonic
music only a few recent attempts have been published. Vigliensoni, Burgoyne, Han-
kinson, and Fujinaga (2011) focused on the pitch detection of square notation docu-
ments of the Liber Usualis (Catholic Church, 1963) printed in 1961. Using the staff
line detection of Miyao (2004), the staff line removal of Roach and Tatem (see e.g.,
Dalitz, Droettboom, Pranzas, & Fujinaga, 2008), and an automatic neume classifica-
tion algorithm based on a pattern matching algorithm which was trained on 40 pages,
they evaluated the pitch detection on 20 pages consisting of 2,219 neumes and 3,114
pitches. The pitch of the first component of a neume was correctly detected for 97% of
all neumes, while only 95% of all note components including single-tone neumes were
found.

Ramirez and Ohya (2014) proposed a pipeline to automatically transcribe square
notation on manuscripts of the 14th to 16th century. Their dataset comprised 136
pages of the Digital Scriptorium repository2 and contained 847 staves and over 5,000
neumes. First, a brute-force algorithm detected staves by matching a staff template of
four staff lines with varying positions, scale, and orientation. In total, 802 staves could
be correctly detected (recall of 95%). Next, a pattern matching algorithm detected
possible symbol locations with an accuracy of 88%. Finally, a Support Vector Machine
was applied to classify the symbols into different neume types whereby an accuracy

2https://digital-scriptorium.org

4

no lower than 92% was achieved. A further splitting of the neumes into NCs was not
performed.

Calvo-Zaragoza, Toselli, and Vidal (2017) applied a Hidden Markov Model (HMM)
with a constructed n-gram language model to transcribe line images of mensural no-
tation of the 17th century. They built up a corpus of 576 staves and 13,863 individual
symbols comprising notes, rests, or clefs. There were 16 different symbols shapes which
could occur on the different discrete vertical locations relative to the staff lines. Com-
bining the shape and the positional information resulted in about 200 different classes.
Their best model used a 3-gram language model and achieved an dSER of 40.4%.

The recent development of OMR on handwritten notation shows, that machine
learning approaches, such as neural networks, HMMs, or pattern matching are the
mean of choice which however presupposes the availability of GT. Especially CNNs
which also learn the features on the raw image yielded new state-of-the-art perfor-
mances on many different tasks in computer vision. Their drawback is however that
it is more difficult to understand the sources of errors which is why a thorough error
analysis is mandatory (see Section 5.4).

3. Datasets

To evaluate our proposed method, we use three different manuscripts written in square
notation which are available (including the GT) at the OMMR4all dataset repository3.
An overview of the dataset statistics is given in Table 1, example images are shown
in Figure 2. The largest dataset which was introduced in Wick, Hartelt, and Puppe
(2019) consists of 49 pages of the manuscript “Graduel de Nevers” from the year 1235
(reedited version of the original manuscript from the 11th century in square notation;
accessible at the Bibliothèque nationale de France4). The pages were manually split
into three parts that share a similar layout: Part 1 has the best notation quality that
hardly suffers from bleeding through, has straight staff lines, and its neumes are clear
and distinct. The notation of the second part is very dense, suffers from bleeding,
which is why it is the most difficult notation in the Nevers dataset. The third part
contains some unclear neumes and very wavy staff lines.

The Assisi dataset is comparatively small and comprises only five annotated pages
of the full manuscript. The scans are available at the Italian Digital Library5 and have
large white margin which we did not crop in our experiments. In general, the notation
is equal to the second part of the Nevers dataset, but with a considerably higher
quality. The Cambrai dataset available at the Catalogue of illuminated manuscripts6

comprises 15 double pages (29 single pages containing music in total) of the 15th and
16th century. The scans are only available in greyscale due to a reproduction using a
microfilm and show a very poor quality. The notation is clean, but pages clearly suffer
from degradation, artefacts, bleed through, and distortions which is why this material
is the most complicated one compared to our other datasets.

Based on all pages, we created a dictionary of available neumes. While in total there
are 20,288 NCs which are part of 12,852 neumes, only about 518 unique neumes with
respect to the location of the first NC are present. If the initial pitch is ignored and
therefore only the relative motion of the neume is taken into account, only about 231

3https://github.com/OMMR4all/datasets
4https://gallica.bnf.fr/ark:/12148/btv1b8432301z
5http://www.internetculturale.it
6http://initiale.irht.cnrs.fr/codex/9353

5

Figure 2. Example pages and a zoomed line of the used datasets. One page for each of the three parts of the
Nevers dataset, one of Assisi, and a double page of Cambrai is shown. Note that the white periphery of the
Assisi page was manually cropped.

6

Table 1. Overview of the dataset statistics. The bigger Nevers dataset is split manually into three parts that
share similarities in layout or handwriting. Only five pages are available in the Assisi dataset whereas 15 double

pages are available in Cambrai.

Dataset Pages Staves S.-Lines Symbols Notes Clefs Accid.

Nevers 1 14 125 500 3,911 3,733 153 25

Nevers 2 27 313 1,252 10,794 10,394 361 39

Nevers 3 8 72 288 1,666 1,581 84 1

Nevers Total 49 510 2,040 16,371 15,708 598 65

Assisi 5 50 200 1,333 1,276 53 4

Cambrai 29 176 704 3,500 3,304 185 11

neumes are present whereby the longest neume comprises nine NCs.

4. Methodology

In this section, we first describe a general workflow in which the proposed symbol
detection algorithm can be embedded. Then, we introduce the algorithm including
the network architecture and decoders in detail.

4.1. OMR Workflow

The proposed symbol detection algorithm can be easily integrated into an OMR work-
flow for transcribing Medieval notations (see Wick & Puppe, 2019). First, the raw scans
are preprocessed which produces a deskewed and normalised version of the image.
During the normalisation, the average staff line distance dSL is either automatically
computed or manually defined to obtain images with a known scale. The images are
then processed by a staff line and stave detection algorithm based on FCNs. Based
on the bounds of the single staff lines, a complete staff can be extracted to obtain
the input for the symbol detection. The next steps are the application ATR on the
extracted lyric lines and to finally assign the transcribed syllables to each neume. This
paper solely focuses on the symbol detection and thus uses the given staff lines of the
datasets, encoded as polylines, and naturally the original scans of the manuscript.

4.2. Symbol Detection Algorithm

The input of the network is an image of a single staff which we extract based on the
already encoded staff lines. First, the whole page is dewarped by computing an image
in which all staff lines are horizontally straight (see Figure 3). Then, the bounding

7

Figure 3. The image shows the pipeline of the line extraction: First the complete page (left) is dewarped

based on the staff lines (right), then each single line is cut out (bottom). The overlay of green and orange staff
lines emphasise the process. Note that only the right page of a double page of the Cambrai data set is shown.
The bottom line shows the input of the neural net which is cut out of the original manuscript based on the

staff lines.

boxes of all staves are determined and extended by adding a margin of one dSL. Since
clefs are often written in the left exterior of the actual lines, we extend the bounds to
the left by an additional 3dSL. Finally, the line image is extracted and centred in a
separate image. Dewarping and centring are important steps for our algorithm because
the vertical pixel position then roughly corresponds to the vertical position of a note.
An example of an extracted line is shown at the bottom of Figure 3.

An image is then processed sequentially by a CNN/LSTM-hybrid network in hor-
izontal direction. The output is a probability map which concatenates a distribution
of all possible labels at each point in time. The labels are defined by the alphabet
which are the letters in the case of ATR. In our case, the construction of valid labels
is extended because both the type of a music symbol and its vertical position must be
encoded. Therefore, we first define six basic types of music symbols (see Figure 4): C-
clef, F-clef, Flat-accidental, and the three different types of NCs being either a neume
start, gapped, or looped. Each of the two clefs can be located on one of the four staff
lines, which is why in total 2 · 4 = 8 labels are required to define a clef. Accidentals
(theoretically) and NCs can occur at any discrete location in a staff, sometimes even
on the first lower or upper ledger line. Therefore, in total there are eleven possible
vertical positions, and (1 + 3) · 11 + 8 = 52 possible labels in total. For an example

8

Figure 4. Examples of the six classes to be recognised by the symbol detection.

Figure 5. The proposed network architecture. The numbers above each intermediate output denotes the
number of channels and therefore the number of kernels in the previous convolutional layer.

labelling, see the bottom line of Figure 1.
The implementation of the neural network, and its training and decoding is provided

by the open-source ATR-engine Calamari (see Wick, Reul, & Puppe, 2019) which we
extended for our task. Only the preprocessing to obtain the deskewed image and thus
straight staves, and the evaluation had to be separately written.

4.2.1. CNN/LSTM Network

Figure 5 shows the chosen network architecture based on several preliminary experi-
ments (see Section 5.3.1). First a convolutional layer with 40 kernels with a size of 3×3
is applied to the input image, an image of a staff, to extract the most basic features.
The following pooling layer aims to reduce the resolution by only selecting the most
prominent features in a 1×2 area. Another two sets of convolution (60 and 80 kernels)
and max-pooling layers are appended. The last pooling layer uses a filter size of 2× 2,
though. Traditional architectures usually solely perform 2 × 2 pooling halving both
axes, we, instead, apply two pooling-layers that only halve the height by the pooling,
not the width. The reason is that the maximum number of labels that can be predicted
is at most the dimension of the temporal axis of the last layer, which is the width in
our case. Since the NCs are sometimes written very dense and also on top of each
other, we only inserted one 2 × 2 pooling-layer. After the last pooling layer, a forth
convolutional layer is added with a kernel size of 80, and a bidirectional LSTM-layer
with 100 hidden nodes. Finally, a dense layer with a softmax activation converts the
100 output nodes at each position into the 53 (52 + blank) target probabilities at each

9

horizontal position.

4.2.2. CTC-Algorithm and Decoders

The CTC-algorithm allows the network to make “no” prediction at a horizontal po-
sition which is enabled by extending the actual alphabet by a so-called blank label
(in this paper denoted by a “−”). The network is trained by providing a loss-function
that aims to maximise the probability of the target GT-sequence. The advantage of
this algorithm is that the GT-sequence is not segmented, that is, the actual position
of a letter, here a music symbol, is not required to be annotated. Instead, the network
learns the concept of a symbol and automatically learns to internally segment the
input itself. Therefore, the production of GT has a high speed-up because in the case
of ATR only the plain text must be typed. In our case of OMR, GT production is still
more tedious because the keyboard is not designed to input neume notation. However
using keybindings and a sophisticated editor, for example similar to Monodi+ (Eipert,
Herrman, Wick, Puppe, & Haug, 2019), the transcription process can be simplified.

To decode the output of the neural network, we use several algorithms which are
directly provided by Calamari: The greedy decoder is the simplest one that first takes
the label with the maximum value at each point in time. Then, repeated labels are
joined and finally all blanks are erased. For example, if the most probable labels are
−−AA−−AB each character denotes a distinct NC, the resulting decoded sequence
is AAB. This decoder has the disadvantage, that any possible sequence is allowed as
output. However, as seen in the datasets, the number of different neumes is highly
restricted which is why it is sensible to force the decoder to only produce “valid”
neumes. This is similar to speech decoding, where only words of a predefined dictionary
are permitted.

Therefore, besides the greedy decoder, we apply two different approaches for find-
ing the most probable label sequence given a dictionary. The CTC-Token-Passing
(CTC-TP)-algorithm is adopted from Graves (2012) and uses the implementation of
Scheidl, Fiel, and Sablatnig (2018)7 which we integrated into Calamari. The funda-
mental idea of the CTC-TP-algorithm is to decode the Recurrent Neural Net (RNN)
output combined with dictionary words (in our context neumes) by searching the most
likely sequence of dictionary words. Thereto, the characters of each word are modelled
as a state machine with intermediate blanks. At each time step (horizontal axis), so-
called tokens successively store the probabilities for each state of a word. Equally,
transitions to new words are allowed by adding the initial state of word and choos-
ing the current most probable word sequence as history. The time complexity of this
algorithm is O(T ·W 2), where W is the dictionary size and T the sequence length.

The second algorithm is the CTC-Beam-Search (CTC-BS)-algorithm (based on
Hwang & Sung, 2016) which is most commonly applied for CTC-decoding if a lan-
guage model shall be integrated. In Calamari, we implement the algorithm according
to Scheidl et al. (2018)8 which was extended to allow for word transitions without a
space. The beam search stores a list of paths called beams that are extended at each
time step by all possible further labels (including the blank) according to the language
model. This forms a very deep tree which is pruned by only keeping the nbm most
likely beams (nbm is also called beam width). The time complexity of this algorithm is
O (nbm · C · log (nbm · C)), where C are the number of characters by which the beams
are extended.

7https://github.com/githubharald/CTCDecoder
8https://github.com/githubharald/CTCWordBeamSearch

10

Figure 6. The two schemes used for the training on the different parts of the Nevers dataset. Each colour
represents one part which is again split into five folds (smaller boxes). In the experiments, either a slice of all
parts are chosen for evaluation and the remainder for training, one part is taken for evaluation and training
and both other parts for creating a pretrained model.

5. Experiments

In this section, we first introduce the data setup defining the splitting of training
and testing data. Then, we evaluate and discuss the proposed symbol detection algo-
rithm by using the different datasets, comparing it with an FCN-based approach, and
incorporating a dictionary.

5.1. Data Setup

Figure 6 shows the setup when training on the three different parts of the Nevers
dataset. In any experiment, we apply a cross-fold scheme which splits each part ran-
domly into five smaller slices. In the so-called “All” case, we choose one slice of each
part to build the evaluation set, any other part is chosen for training. In the second
scenario, we pretrain a model on two complete parts and take one slice of the remain-
ing part for evaluation. The remaining four parts serve as pool of training material,
whereby the number of training examples Ntrain is varied to evaluate its impact on
the accuracy. If setting Ntrain = 0, we evaluate the performance of the pure pretrained
model based on different but somewhat similar material. The overall setup is used to
evaluate the proposed approach with the one presented in Wick, Hartelt, and Puppe
(2019).

The two other books (Assisi and Cambrai) are taken to evaluate how well a pre-
trained model (on the Nevers dataset) performs on other books with a considerably
different layout, but which are also written in square notation. Thereto, we also vary
Ntrain to measure the impact of the number of training instances. This setup equates
to the pretraining scenario in Figure 6.

11

5.2. Metrics

To evaluate the performance of the proposed algorithm, we use three sequence-based
metrics. The dSER computes the edit-distance of the predicted label sequence and the
GT and normalises the result by the maximum length of the two sequences. Missing,
additional, and replaced (e.g., with a wrong type) symbols therefore count as one error.
The dSAR is the corresponding accuracy rate computed by 1− dSER. The harmonic
Symbol Accuracy Rate (hSAR) only evaluates the correctness of the harmonic proper-
ties, that is the melody, by ignoring the graphical connections (looped or gapped, see
Figure 1) of all NCs. Finally, we introduce the Neume Accuracy Rate (NAR) which
only takes complete neumes into account and ignores all clefs and accidentals. The
metric is rather strict, because if a single NC is wrong for example due to position or
graphical connection, the complete neume is counted as one error. In context of ATR
this metric can be compared to a Word Accuracy Rate (WAR) which is then used to
evaluate the language model, here a dictionary.

5.3. Evaluations

All experiments were conducted on an NVIDIA 1080Ti GPU and an Intel E5-2690
processor. We did not apply the early stopping support of Calamari since the num-
ber of training instances is rather limited. Instead, training was stopped after 20,000
iterations whereby the best performing model on the training data so far was chosen
for evaluation. Following further hyperparameters were set: 0.001 as learning rate, the
Adam solver (Kingma & Ba, 2014) for the gradient descent, and a dropout (Srivastava,
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) of 0.5 after the LSTM layer.
Furthermore, we used the provided data augmentation of Calamari with a factor of
50, that is, each line is multiplied 50 times in addition to the original one.

5.3.1. Preliminary Experiments

This section presents and discusses the results obtained when varying the network
architecture. For the experiments, we took all three parts of Nevers as dataset which
we split into five cross-folds to train networks, each on four folds and evaluated on
the remaining one (“All” schemata in Figure 6). The obtained average values of the
hSAR, dSAR, and NAR metrics are listed in Table 2.

We focused on varying the kernel size and thus stride of the pooling layer because, in
contrast to the ATR, NCs can be located very densely, even above of each other. It is
important to maintain an output that is long enough to predict each neume: without
a pooling layer, a symbol can be predicted at each pixel position, a 2 × 2 pooling
layer halves the dimension of the output which is why relative to the input image
only on every second pixel a symbol can be predicted. Unfortunately, max-pooling
layers whose aim is to reduce the dimensions are a obligatory component of a CNN
architecture because they keep only the important features of the previous layers and
also introduce a rotation, scale, and translation invariance of the features by a certain
amount. Therefore, the different tested network architectures introduce max-pooling
layers with a traditional 2 × 2 shape, but also a 1 × 2 shape which only affects the
vertical resolution but not the horizontal which is why it has no effect on the number
of symbols that can theoretically be predicted by the network.

The network with the best results (NA4 in Table 2) showed that using a deep
network architecture is superior to a network with only two convolutional layers, using

12

Table 2. Preliminary experiments for the symbol detection using different network architectures: The number
of kernels with a fixed size of 3× 3 of convolutional layers (C), the kernel and filter size for max-pooling layers

(Mp), and the number of hidden notes for a LSTM layer are stated. The results of the harmonic Symbol
Accuracy Rate (hSAR), diplomatic Symbol Accuracy Rate (dSAR), and Neume Accuracy Rate (NAR) given
in percent are computed using all tree parts of the Nevers dataset.

ID Network architecture hSAR dSAR NAR

NA1 C(40), Mp(2x2), C(60), Mp(2x2), C(80),
LSTM(100)

89.8 86.2 79.9

NA2 C(40), Mp(2x2), C(60), Mp(1x2), C(80),
LSTM(100)

90.6 86.8 80.4

NA3 C(40), Mp(1x2), C(60), Mp(1x2), C(80),
LSTM(100)

90.9 87.1 80.4

NA4 C(40), Mp(1x2), C(60), Mp(1x2), C(80),
Mp(2x2), C(80), LSTM(100)

91.7 88.3 82.3

NA5 C(40), Mp(1x2), C(60), Mp(1x2), C(80),
Mp(1x2), C(80), LSTM(200)

91.5 87.9 81.6

1×2 max-pooling layers. Furthermore, we conclude that an increased number of hidden
nodes in the LSTM-layer leads to overfitting which is why the accuracy shrinks. Also,
the usage of at least one 2 × 2 shape max-pooling layer is sensible. In all further
experiments, we applied the network architecture of NA4 since it performs best.

5.3.2. Varying the Number of Training Examples

The number of freely available datasets of the target material to train the proposed
neural network for the symbol detection is rather limited. Therefore, it is impossible
to train and share a so-called mixed model that fits a variety of different books which
is why book-specific models must be trained. Since the manual creation of GT is
very tedious, it is mandatory to evaluate how many training instances are required on
average to train a model of a certain accuracy. Naturally, the actual amount of GT
highly depends on the material at hand.

In this section, we trained and evaluated the network using a fixed number of
training instances (0, 1, 2, 4, and All) of one part and applying a pretrained model on
the remaining ones (second setup in Figure 6). Using 0 pages for the actual training
equates to only using the model that was pretrained on the remaining parts. Table 3
shows the results of the hSAR and dSAR for each part and each Ntrain and also the
average across all parts. For comparison, we first added the results obtained when
applying the FCN-based algorithm which was proposed by Wick, Hartelt, and Puppe
(2019), then the results of the CNN/LSTM-based approach are listed.

For the CNN/LSTM-based approach, as expected the number of training instances
increased the accuracies: adding one page increased the average dSAR from 74.6% to
78.6%, a second one further improved the results to 84.3%. Finally, using all available
training pages yielded a dSAR of 89.1%. The overall accuracies of part 2 were worse
than of both other parts, which was expected since this part is the most difficult one.
Similarly, the results of part 1 comprising the pages with the highest quality were a
bit better than part 3. Interestingly, however, the pretrained CNN/LSTM (Ntrain = 0)
performed best on the 2nd part and the worst on part 1.

Compared to the FCN-approach, the novel approach using CNN/LSTMs yielded

13

Table 3. Results (lower half) when training the proposed CNN/LSTM network on the three parts of the
Nevers dataset using the “pretraining” schemata of Figure 6. For comparison, the FCN results of the upper half
are obtained by using the methodology of Wick, Hartelt, and Puppe (2019). All values are given in percent.

hSAR dSAR
Ntrain 1 2 3 Mean 1 2 3 Mean

F
C

N

0 93.6 85.2 90.7 89.8 86.7 80.5 87.5 84.9
1 89.9 82.3 90.6 87.6 78.3 76.8 84.5 79.9
2 90.5 84.8 89.3 88.2 83.9 79.8 86.0 83.2
4 92.8 86.4 90.9 90.0 86.5 81.5 88.5 85.5

All 93.6 91.4 93.4 92.8 88.6 87.9 90.7 89.0

C
N

N
/
L

S
T

M

0 74.5 82.0 79.9 78.8 69.0 78.1 76.7 74.6
1 84.2 84.0 83.6 84.0 75.7 80.4 79.7 78.6
2 91.4 84.5 90.2 88.8 83.6 80.9 88.4 84.3
4 92.1 85.5 92.5 90.0 85.3 80.9 90.6 85.6

All 93.4 91.7 92.6 92.6 87.5 88.8 90.9 89.1

equivalent results of the dSAR if at least two pages of GT were available. The effect
that one page of training data reduces the accuracy of the pretrained net possibly
due to overfitting did not emerge in our new approach. We think the reason is that
the CNN/LSTM-network has to learn a more general representation compared to the
FCN: whereas the exact locations of notes are presented to the FCN, the novel network
architecture has to learn by itself the concept of a note. This is also the reason why the
approach was significantly worse if only a few lines of GT were available for training.

5.3.3. Incorporating a Neume Dictionary

To further improve the sequential prediction which requires a decoding of the proba-
bility matrix produced by the neural net, it is sensible to only allow for valid neumes.
Thereto, we created a dictionary of all occurring neumes (see Section 3) and applied
the presented decoding algorithms (see Section 4.2.2) which restricted the prediction
to clefs, accidentals, and known neumes.

Table 4 shows the results of the dSAR and NAR when applying no dictionary, the
CTC-TP, CTC-BS with nbw = 25, and nbw = 100, respectively. Hereby, we used the
previous cross-fold-scheme when training with Ntrain images of one part and took the
pretrained model of the remaining ones (second setup in Figure 6). Only the average
values of all three parts are listed. Note, that the difference between the dSAR and
NAR is considerably smaller compared to the analogous WAR in ATR because neumes
are on average composed of considerably fewer symbols than words, some neumes even
comprise a single note only. The reason is that it is more probable that a short neume
containing an error matches with another one in the dictionary and can therefore not
be corrected. Furthermore, the required decoding times for a single staff line are listed
for each decoding approach.

As expected, the accuracies increased if incorporating a neume dictionary, however
only by a very small amount (about 5%). When using only the pretrained models
(0 lines), the NAR improved from 67.5% to 68.7% if the token passing decoder was
chosen. The beam search decoder with nbw = 25 yielded a sightly higher NAR of

14

Table 4. Incorporation of a dictionary for decoding. All values were obtained by training with Ntrain pages
on one part and using a pretrained model trained on the remaining ones. All values are the result of a five

cross-fold and given in percent. The last row lists the duration required to decode a single staff.

LM None Token Beam Search 25 Beam Search 100
Ntrain dSAR NAR dSAR NAR dSAR NAR dSAR NAR

0 74.6 67.5 75.0 68.7 75.1 69.0 75.3 69.3
1 78.6 72.1 78.9 73.1 78.8 73.2 79.0 73.2
2 84.3 77.0 84.5 77.9 84.5 78.0 84.6 78.1
4 85.6 78.4 85.9 79.3 85.8 79.3 85.8 79.3

All 89.1 82.7 89.2 83.5 89.1 83.5 89.1 83.5

Time 0.23 s 2.83 s 1.66 s 8.59 s

69.0% and using 100 beams results, as expected, in the best value of 69.3%. If four or
all training pages were used, all tree decoders with dictionary yielded approximately
the same value of NAR = 79.3% and NAR = 83.5%, respectively, which was higher
than using no dictionary (78.4% and 82.7%).

A crucial difference of all examined decoding approaches was the duration required
to process a single line which is listed in the last row of Table 4. Even the beam search
algorithm with nbw = 25 (1.66 s) was more than six times slower than using the default
greedy decoder (0.23 s). The token passing decoder was even slower (2.83 s), and, as
expected, the beam search decoder using 100 lines (9 s) was the slowest one. These
observations are in accordance with the time complexity of the different decoders as
shown in Section 4.2.2. The overall duration could be clearly reduced using a C++
implementation instead of the Python version of the algorithms, however, it is still up
for debate if the cost-benefit ratio of the beam search algorithm with nbw = 100 is
sensible. Instead, the evaluation leads to the conclusion that using a beam search with
only 25 beams (or even less) is completely sufficient and also acceptable in terms of
duration.

5.3.4. Cross-Dataset Training

In this section, we evaluate how well a model pretrained on the Nevers dataset performs
on different books. Thereto, we first trained default models for the Assisi and Cambrai
datasets without using any information from the Nevers dataset, then we repeated the
experiments using the pretrained model on Nevers. Table 5 shows the obtained results.

If no pretrained model was used (default), the model trained on the Nevers dataset
performed best with an dSAR of 88.3%. Even though only four pages could be used for
training the Assisi dataset, its performance of dSAR = 83.5% was higher than training
Cambrai with dSAR = 81.5%. This confirms that Assisi is a very clean dataset while
Cambrai suffers from high degradation and bleeding through the paper.

Using the pretrained model without training on the actual dataset (Ntrain = 0)
shows that the notation style of Assisi is extremely close to the Nevers dataset because
even without training a remarkable dSAR of 92.0% was reached which is even better
than the result on the Nevers dataset itself (88.3%). The Cambrai dataset showed the
opposite behaviour since the Nevers dataset only achieved a dSAR of 39.2%. Training
on actual data for Cambrai was therefore important, however, all training instances

15

Table 5. Evaluation of using the pretrained model on the Nevers dataset for the two other books Assisi and
Cambrai. Since the Assisi dataset only comprises five pages, training on all pages equates to training on the

four pages in the cross-fold.

Default Pretrained
Dataset Ntrain hSAR dSAR hSAR dSAR

Nevers Best 91.7 88.3 − −

Assisi 0 − − 94.6 92.0
1 63.2 54.9 93.5 90.7
2 83.3 76.7 94.0 91.0

4/All 87.9 83.5 95.0 92.7

Cambrai 0 − − 47.8 39.2
1 33.0 26.8 60.3 53.8
2 53.2 43.6 70.2 63.9
4 69.7 61.8 82.4 77.4

All 87.0 81.5 90.3 86.0

of the cross-fold were required in order to obtain a model with a hSAR greater than
90.3%. In contrast, if training with one page of Assisi, the results worsened because the
network overfitted on the one page and forgets the primary generalising weights. This
is also caused by the training setup itself because we did not apply early stopping and
chose the best model based on the training data. Four pages (All) were then required
to actually benefit from the training data. All observations emphasised our initial
observation of the poor quality of the Cambrai dataset. Naturally, the notation itself
could be the reason for the lower accuracy, but the notation (see Figure 2) appears to
be uniform.

5.3.5. Qualitative Evaluation of the Horizontal Note Position

Figure 7 shows the prediction of a page of the Assisi dataset using the best model
which was trained on the four remaining pages with a pretrained model from the
Nevers dataset. The centres of symbols are drawn at their predicted horizontal position,
whereas the vertical position is computed based on the label of a symbol which is
relative to the staff lines (for example the first red note in the first line is located in
the 3rd space). A qualitative evaluation showed that the position of the notes (red
boxes) was very accurate, however, with a small offset to the left. This confirms that
the neural net correctly learned the semantic concept of a NC on its own, but produced
the output as soon as a note starts and not in the centre of a NC. In contrast to the
notes, all clefs that are the first symbol of a line had a large offset to their actual
position even though the network seemed to learn their shape because, in most cases,
the prediction whether a C or F clef is present was correctly distinguished (see e.g.,
the C-clefs in lines 2 to 5 and the F-clefs in the last two lines). A closer look at the
predicted probability matrix shows that the network predicted the first clef always at
the first possible location which is the start of the staff lines minus the padding. We
think that the reason is, that the first symbol in a line is always a clef. Therefore, the
network first learned to predict the most frequently occurring clef independent of the

16

Table 6. Categorisation of the different errors and their relative amount. See Figure 7 for examples.

Group Error

False Negatives 53.5%
1. Missing Note 12.3%
2. Wrong Connection 18.6%
3. Wrong Location 12.6%
4. Missing Clef 8.5%
5. Missing Accidental 1.5%

False Positives 46.5%
6. Additional Note 8.5%
2. Wrong Connection 18.6%
3. Wrong Location 12.6%
7. Additional Clef 6.8%
8. Additional Accidental 0.0%

Total 100%

actual data. Later then, the actual concept of a clef and its type was learned, however,
the location which was irrelevant in the loss-function stays the same. This is possible
because the bidirectional LSTM allows to memorise the clef from the actual position
the start of the line.

In general, apart from the initial clefs, the position of the symbols is close enough
to the actual symbols in order to easily spot errors in an overlay view such as shown
in Figure 7. Therefore, the algorithm can be integrated in existing semi-automatic
OMR-frameworks such as OMMR4all (Wick & Puppe, 2019) which already provides
an overlay-editor for error correction.

5.4. Error Analysis

For a quantitative error analysis, we exemplarily took the best performing model (As-
sisi) and counted the number of insertions and deletions that were required to obtain
the GT sequence. This approach counts replacements as two errors, one insertion and
one deletion, which is why a wrong connection or a wrong vertical location was treated
as one False Negative (FN) and one False Positive (FP). Table 6 lists the errors and
their relative impact on the dSAR grouped in eight categories. Examples for the er-
rors are shown in Figure 7, rare errors concerning accidentals are not present in the
example.

First, as to be expected, there were clearly more missing notes than additional
notes (12.3% vs 8.5%). The intrinsic reason is that the CTC-loss-function is rather
restrictive in its prediction which is why blanks, that is no symbol, usually have a very
high probability. The most probable errors were the prediction of a wrong connection
with a relative amount of 37.2% in total (FP and FN). This is reasonable, because
the decision if a note is, for example, the start of a neume or gapped can often only
be decided based on context which in some occasions also includes the positions of
syllables. Similarly, with a total relative error of 25.2%, the decision whether a note

17

Figure 7. The full prediction of a page of the Assisi manuscript including the positional information: cyan
symbols mark clefs, vertical dashed lines separate single neumes, NCs are rendered as red box, a looped
graphical connection is indicated by a black stroke between to NCs. Arrows and the assigned numbers indicate
the error type of the prediction (see Table 6). Note that the periphery of the page was manually cropped.

18

is located in a space or on a staff line also requires context, which is why it is not
surprising that these kinds of errors occurred (see examples for the error type 3 “Wrong
Location” in Figure 7). Even though, clefs usually occur only once or twice per line,
they accounted for an error of 15.3% (error type 4 and 7), whereby missing clefs were
more probable (8.5%, error type 4). Note, that the wrong offset of a clef at the start of
a line did not count as an error. A qualitative evaluation showed that clefs were almost
never predicted if they occur within a line, instead, they were often misinterpreted as
notes. Accidentals are very rare which is why the network needed a very high confidence
to predict at least some them. This explains why the amount of FPs-accidentals was
0.0%, and why missing accidentals were more likely. However, the relative error of 1.5%
caused by this type of errors is negligible if the lines are manually corrected anyway.

Next, we broke down the error causes for clefs into four categories (see Table 7): the
first group which amounts for 27% of all clef-related errors counts all errors that are
due to clefs that are located within the line (none of those were detected at all). All
other three groups always refer to clefs that are the first symbol of a line: clefs where
both the location and type are wrong amount for 46% of the errors, clefs where only
the location is wrong amount for 18%, and clefs with a wrong type amount for 9%.
Positional errors (in total 46%+18% = 64%) indicate that the network was not able to
identify the clef at all, instead the network guessed using the background information
that the first symbol is always a clef and that the C-clef location at the top line is the
most probable one. This is supported by the fact that no clef was detected within a
line at all. The least common error (wrong type only) shows that if the network was
able to detect the correct location, its type is mainly correct. In conclusion, the error
analysis shows, that the detection of clefs is still a challenging problem, presumably
because they are underrepresented compared to notes. It is reasonable to incorporate
the background information that the first symbol must be a clef to design a specialised
algorithm to detect at least the first clef correctly. Potentially, this solves 73% of the
clef-related errors, which would result in a relative improvement of the dSAR of about
10%.

Furthermore, we examined the FPs and FNs of the note detection to understand
which sources could cause these kinds or errors (see Table 8). One third of all FPs
are due to clefs or accidentals that look similar to notes and that were falsely inter-
preted as clefs. One forth of the errors is caused by repeated notes, where the network
predicted two NCs with a different location directly one after the other. This is an
intrinsic problem of the CTC-algorithm, but can be solved in a postprocessing step
that combines all notes that are very close (smaller than a typical note size) and are
on the same location by choosing the most probable one. Another source of errors
that can hardly be suppressed is noise, which amounts for 25% of the FPs. 17% of the
errors occur at locations where NCs are written very densely, especially if the actual
neume is a “stacked” one (e.g., pes or clivis). We expect that a postprocessing step
can only reduce errors caused by repeated NCs, whereas any other source requires
sophistication, such as additional context or more training material. Thus, potentially,
about 25% of the FPs could be resolved which results in a relative improvement of the
dSAR of about 2%.

The main source of FNs (79%) are NCs that lie close the top or bottom of a line.
There, the NCs are very narrow to the lyrics which is an additional challenge for the
network because it must also separate text and actual notes. We do not think that
these kinds of errors can be easily postprocessed without additional training material
that focuses the separation of text and music. For the other three types of errors,
we have no explanation, why the network misses the NCs. It seems that there is an

19

Table 7. Break down of the errors caused by clefs which amount for 15.3% of the total errors.

Error Type Rel. Error Examples

Within line
Missing clefs that are not the first symbol of a staff
line.

27%

Beginning, location, and type
Detected clefs at the beginning that have a wrong
(vertical) location and type.

46%

Beginning and location
Detected clefs at the beginning that have a wrong
(vertical) location, but a correct type

18%

Beginning and type
Detected clefs at the beginning that have a wrong
type, but a correct (vertical) position.

9%

accumulation of errors if the NC is the first one in a line, though. Postprocessing
algorithms to tackle some of the FN errors may be difficult to design.

Next, we examine the origin of NCs with a correct location, but with a wrong
connection which amount for 37.2% of the total dSAR error (see Table 9). The first
category (41%) comprises errors that are related to two or more NCs that are stacked or
very close in horizontal direction (e.g., pes or clivis). These situations may sometimes
be difficult to decide for the network because it has to recognise if notes are graphically
connected, which can sometimes be very thin. Although, we suspect that the errors
are caused mostly because the network uses only positional information to decide
about the connection which is in most cases valid. This explains why the examples are
wrongly classified, however a postprocessing step does not seem to solve these kinds
of errors. The second category (59%) comprises errors that occur in gapped neumes
(e.g., a climacus). Here, the network must decide whether a note is the start of a new
neume or part of the same previous neume. There are some cases where the lyric is
required to decide about the connection which is why it is reasonable that the network
makes these kinds of errors. In the first category, the incorporation of background
knowledge to solve these kind of errors is difficult because it requires the detection
of the actual connecting line. The incorporation of syllables is feasible, however only
if the syllables and their positions are known. Therefore, for an actual realisation of
both postprocessing steps, a second challenging problem must be solved first.

The last error source are positional errors of notes which amount for 25.2% of the
errors (see Table 10). The errors are caused because notes that lie on the same vertical
pixel position can be differently interpreted relative to the staff lines depending on the
context. Therefore, we broke down the errors into the causes: stacked neumes (65%),
close to lyrics (12%), and other (e.g., middle of the line, 23%). The error examples

20

Table 8. Break down of FP and FN errors into several causes which amout for 8.5% and 12.3% of the errors,
respectively.

Error Type FP Examples FN Examples

Close to Lyrics (Bottom/Top)
NCs that are likely to be misinterpreted
as part of text.

0% 79%

Stacked Neumes
Errors caused related to NCs that are
stacked or horizontally close to one an-
other (e.g., pes, clivis).

17% 5%

Repeated NCs
The same notes are repeated.

25% 5%

Clef/Accid
A clef or an accidental is misinterpreted
as notes.

33% 0%

Noise
Noise is falsely detected as NC.

25% 0%

Other
Other error sources that can not be di-
rectly explained.

0% 11%

Table 9. Break down of the errors caused by wrong connections (start, looped, or gapped) which amount for
37.2% of the total errors.

Error Type Rel. Error Examples

Stacked Neumes
Errors caused related to NCs that are
stacked or horizontally close to one an-
other (e.g., pes, clivis).

41%

Gapped Neumes
Errors caused related to neumes with
gapped NCs (e.g., climacus).

59%

21

Table 10. Break down of the errors caused by a wrong (vertical) location which amount for 25.2% of the
total errors.

Error Type Rel. Error Examples

Stacked Neumes
Errors caused related to NCs that are stacked
or horizontally close to one another (e.g., pes,
clivis).

65%

Close to Lyrics (Bottom/Top)
NCs that are likely to be misinterpreted as part
of text.

12%

Other
Error causes without a specific category (e.g.,
single tone neumes in the middle of a line).

23%

show, that a NC that touches a staff line is usually “on the line” if it is part of a
stacked neume (e.g., pes or clivis), but in the space if it is a single tone neume. We
think that these errors could be resolved by combining this approach either with the
FCN approach (if valid GT is available) or with a note detection based on connected
components in the area of interest. If the actual (vertical and horizontal) position of
a NC is known, a set of rules could resolve the errors: in a stacked neumes, a position
close to a staff line is interpreted as “on the line”, else it is interpreted as “space”.
The threshold could be derived based on majority voting of all present notes. Ideally,
this could reduce the dSAR by 25.2%, relatively.

Concluding, the error analysis showed that there are two major error categories:
errors that require external knowledge (e.g., lyrics) and errors where the local infor-
mation presented to the network should be sufficient (e.g., positional errors, or clefs).
We expect that errors of the last group could be (mostly) corrected by specialised
postprocessing steps which could potentially reduce the dSAR by up to 37.2%.

6. Conclusion and Future Work

In this paper, we presented the application of CNN/LSTM-hybrids to tackle the au-
tomatic transcription of Medieval square notation. The approach reached a best value
with a dSAR of 89.1% when training on the three parts of the Nevers dataset and is
thus comparable to the previous value of 89.0% achieved by an FCN. For only a few
pages of GT (zero to two), the FCN was clearly better, though. Concluding, if the tar-
get material consists of many pages, it is meaningful to apply the CNN/LSTM-based
approach because it yields competitive results and allows for an easier GT-production.
Using a neume dictionary for decoding increased the NAR of the best model from
82.7% to 83.5%. It shows that for many pages the fast beam search algorithm using
nbw = 25 was sufficient.

Astonishingly, the pretrained model on the Nevers dataset yielded better results on

22

Assisi with a dSAR of 92.0% than on the actual training data. Finetuning on Assisi
increased the performance to 92.7%. In contrast, the pretrained model but also actual
training performed worse on the difficult Cambrai dataset with a dSAR up to 86%.
We conclude that in principal models can generalise because the model trained on
Nevers flawlessly extends to Assisi. However, book-specific training is still obligatory
to tackle even difficult books, but the number of training data to obtain a performant
model highly depends on the material at hand (e.g., for the Cambrai dataset).

While the overall accuracy of the prediction of the horizontal position was com-
pletely sufficient, the error analysis showed that the first clef of each line is off because
it was predicted directly as the first output of the network. We expect that data aug-
mentation by prepending a section of another line might prevent this. This approach
is only possible if positional information such as in the Nevers dataset is available,
though.

The error analysis showed that the main sources of errors were NCs with a wrong
connection or a wrong vertical location. This requires either more context or external
knowledge, for example, about more or less probable melodies, which could be directly
incorporated in the language model for neumes or NCs based on n-grams. However,
to obtain reliable transition probabilities, several large datasets are required. Another
problem to solve with the current CTC-TP- and CTC-BS-decoders is that they do
not provide positional information required for the OMMR4all overlay-editor for post-
correction. We plan to add support to both algorithms in order to allow for an actual
productive inclusion of the language model.

We expect that the approach of CNN/LSTM networks for square notation can be
generalised to other neume notations. In a first step, we will focus Gothic or Hufnagel
notations that consist of neumes with a different shape, but also have four or five staff
lines. Afterwards, we attempt to transcribe neume notations with only one staff line
and neumes without a distinct shape of NCs. These notations are far more challenging
because the individual NCs are more difficult to detect, and their pitches must be
extrapolated based on virtual staff lines. Furthermore, we expect that if the amount
of available GT extracted from a variety of books and notations increases, training
of several mixed models each targeting a group of similar notation styles becomes
feasible.

References

Baroni, M., Maguire, S., & Drabkin, W. (1983). The concept of musical grammar. Music
Analysis, 2 (2), 175–208.

Baró, A., Riba, P., Calvo-Zaragoza, J., & Fornés, A. (2019). From Optical Music
Recognition to Handwritten Music Recognition: A baseline. Pattern Recognition Let-
ters, 123 , 1–8. Retrieved from http://www.sciencedirect.com/science/article/pii/

S0167865518303386

Breuel, T. (2017). High Performance Text Recognition Using a Hybrid Convolutional-LSTM
Implementation. In 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR) (pp. 11–16). IEEE.

Calvo-Zaragoza, J., Hajič jr., J., & Pacha, A. (2019). Understanding Optical Music Recogni-
tion. Computing Research Repository .

Calvo-Zaragoza, J., Toselli, A., & Vidal, E. (2017). Handwritten Music Recognition for Men-
sural Notation: Formulation, Data and Baseline Results. In 14th International Conference
on Document Analysis and Recognition (pp. 1081–1086).

Calvo-Zaragoza, J., Valero-Mas, J. J., & Pertusa, A. (2017). End-to-end Optical Music Recog-

23

nition using Neural Networks. In 18th International Society for Music Information Retrieval
Conference (pp. 472–477). Retrieved from https://ismir2017.smcnus.org/wp-content/

uploads/2017/10/34 Paper.pdf

Catholic Church. (1963). The Liber Usualis with introduction and rubrics in English. Tournai,
Belgium: Desclée.

Dalitz, C., Droettboom, M., Pranzas, B., & Fujinaga, I. (2008). A Comparative Study of Staff
Removal Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30 (5), 753–766.

Das, A., Li, J., Zhao, R., & Gong, Y. (2018). Advancing Connectionist Temporal Classification
with Attention Modeling. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 4769–4773).

Eipert, T., Herrman, F., Wick, C., Puppe, F., & Haug, A. (2019). Editor Support for Digital
Editions of Medieval Monophonic Music. In 2nd International Workshop on Reading Music
Systems (pp. 4–7).

Grachten, M., Arcos, J. L., & Lopez de Mantaras, R. (2004). Melodic similarity: Looking for
a good abstraction level. In 5th International Conference on Music Information Retrieval.

Graves, A. (2012). Supervised sequence labelling. In Supervised sequence labelling with recur-
rent neural networks (pp. 5–13). Springer.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Machine learning (pp. 369–376). ACM.

Hajič jr., J., & Pecina, P. (2017). The MUSCIMA++ Dataset for Handwritten Optical Music
Recognition. In 14th International Conference on Document Analysis and Recognition (pp.
39–46).

Hamanaka, M., Hirata, K., & Tojo, S. (2016). Implementing Methods for Analysing Music
Based on Lerdahl and Jackendoff’s Generative Theory of Tonal Music. In D. Meredith (Ed.),
Computational Music Analysis (pp. 221–249). Springer International Publishing. Retrieved
2020-01-29, from https://doi.org/10.1007/978-3-319-25931-4 9

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9 (8), 1735–1780.

Hwang, K., & Sung, W. (2016, Mar). Character-level incremental speech recognition with
recurrent neural networks. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (p. 5335–5339).

Janssen, B., Kranenburg, P. v., & Volk, A. (2017). Finding Occurrences of Melodic Segments
in Folk Songs Employing Symbolic Similarity Measures. Journal of New Music Research,
46 (2), 118–134. Retrieved 2020-01-29, from https://doi.org/10.1080/09298215.2017

.1316292

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. Computing
Research Repository , abs/1412.6980 . Retrieved from http://arxiv.org/abs/1412.6980

Miyao, H. (2004). Stave extraction for printed music scores using DP matching. Journal of
Advanced Computational Intelligence and Intelligent Informatics, 8 (2), 208–215.

Pugin, L., Zitellini, R., & Roland, P. (2014). Verovio: A library for Engraving MEI Music
Notation into SVG. In ISMIR (pp. 107–112).

Ramirez, C., & Ohya, J. (2014). Automatic Recognition of Square Notation Symbols in
Western Plainchant Manuscripts. Journal of New Music Research, 43 (4), 390–399.

Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R., Guedes, C., & Cardoso, J. d. S.
(2012). Optical music recognition: state-of-the-art and open issues. International Journal
of Multimedia Information Retrieval , 1 (3), 173–190.

Salazar, J., Kirchhoff, K., & Huang, Z. (2019). Self-attention Networks for Connectionist
Temporal Classification in Speech Recognition. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7115–7119).

Scheidl, H., Fiel, S., & Sablatnig, R. (2018). Word Beam Search: A Connectionist Tempo-
ral Classification Decoding Algorithm. In 16th International Conference on Frontiers in
Handwriting Recognition (pp. 253–258). IEEE.

24

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning
Research, 15 , 1929–1958. Retrieved from http://jmlr.org/papers/v15/srivastava14a

.html

van der Wel, E., & Ullrich, K. (2017). Optical Music Recognition with Convolutional Sequence-
to-Sequence Models. In 18th International Society for Music Information Retrieval Con-
ference (pp. 731–737). Retrieved from https://archives.ismir.net/ismir2017/paper/

000069.pdf

Vigliensoni, G., Burgoyne, J. A., Hankinson, A., & Fujinaga, I. (2011). Automatic pitch
recognition in printed square-note notation. In Proc. ISMIR.

Wick, C., Hartelt, A., & Puppe, F. (2019). Staff, Symbol and Melody Detection of Medieval
Manuscripts Written in Square Notation Using Deep Fully Convolutional Networks. Applied
Sciences, 9 (13), 2646.

Wick, C., & Puppe, F. (2019). OMMR4all — a Semiautomatic Online Editor for Medieval
Music Notations. In 2nd International Workshop on Reading Music Systems (pp. 31–34).
Retrieved from https://sites.google.com/view/worms2019/proceedings

Wick, C., Reul, C., & Puppe, F. (2018). Comparison of OCR Accuracy on Early Printed Books
using the Open Source Engines Calamari and OCRopus. JLCL: Special Issue on Automatic
Text and Layout Recognition, 33 (1), 79–96. Retrieved from https://jlcl.org/content/

2-allissues/1-heft1-2018/jlcl 2018-1 4.pdf

Wick, C., Reul, C., & Puppe, F. (2019). Calamari - A High-Performance Tensorflow-based
Deep Learning Package for Optical Character Recognition. Digital Humanities Quarterly
(forthcoming).

25

Christoph Wick, Christian Reul, Frank Puppe

Comparison of OCR Accuracy on Early Printed Books using the
Open Source Engines Calamari and OCRopus

Abstract

This paper proposes a combination of a convolutional and an LSTM network to improve
the accuracy of OCR on early printed books. While the default approach of line based
OCR is to use a single LSTM layer as provided by the well-established OCR software
OCRopus (OCRopy), we utilize a CNN- and Pooling-Layer combination in advance of
an LSTM layer as implemented by the novel OCR software Calamari. Since historical
prints often require book specific models trained on manually labeled ground truth
(GT) the goal is to maximize the recognition accuracy of a trained model while keeping
the needed manual effort to a minimum.

We show, that the deep model significantly outperforms the shallow LSTM network
when using both many and only a few training examples, although the deep network has
a higher amount of trainable parameters. Hereby, the error rate is reduced by a factor
of up to 55%, yielding character error rates (CER) of 1% and below for 1,000 lines
of training. To further improve the results, we apply a confidence voting mechanism
to achieve CERs below 0.5%. A simple data augmentation scheme and the usage of
pretrained models reduces the CER further by up to 62% if only few training data is
available. Thus, we require only 100 lines of GT to reach an average CER of 1.2%. The
runtime of the deep model for training and prediction of a book behaves very similar to
a shallow network when trained on a CPU. However, the usage of a GPU, as supported
by Calamari, reduces the prediction time by a factor of at least four and the training
time by more than six.

1 Introduction

The best OCR engines on early printed books like Tesseract (4.0 beta)1 or OCRopus2

currently use Long Short Term Memory (LSTM) based models, which are a special kind
of recurrent neural networks. In order to achieve low CERs below e.g. 1% or 2% on early
printed books these models must be trained individually for a specific book due to a high
variability among different typefaces used (see Springmann et al. 2016 or Springmann
and Lüdeling 2017). Thereto, a certain amount of GT, in the case of OCRopus that is
a pair of text line image and transcribed text, must be manually labeled. The primary
goal is to reduce the number of labeled text lines to achieve a certain error rate. A

1https://github.com/tesseract-ocr
2https://github.com/tmbdev/ocropy

JLCL 2018 – Band 33 (1) – 79-96

Wick, Reul, Puppe

secondary goal is to continuously retrain the model, if more GT becomes available
because e.g. all lines of a book are reviewed and corrected to achieve a final error rate of
near 0%. The default OCRopus implementation uses a shallow one layer bidirectional
LSTM network combined with the CTC-Loss to predict a text sequence from the line
image. Since convolutional neural networks (CNN) showed an outstanding performance
on many image processing tasks, see e.g. Mane and Kulkarni (2017), our aim is to train
a mixed CNN-LSTM network to increase the overall performance of OCR. Therefore,
we compare the default OCRopus implementation with the deep network architectures
provided by the novel OCR engine Calamari3 which is based on TensorFlow4. It is
well known that voting the outputs of several different models improves the accuracy
by a significant margin, which is why we use Calamari’s cross fold training approach
proposed by Reul et al. (2018). This approach trains five different models whose outputs
are combined by a voting mechanism that considers the confidence values of each output.
Moreover, Calamari offers data augmentation and pretrained models to increase the
accuracy especially on small datasets.

The rest of the paper is structured as follows: Section 2 introduces and discusses
related work regarding OCR on early printed books including deep models and voting.
The used data and the applied methods are described in detail in Section 3. In Section
4, we evaluate and discuss the results achieved on three early printed books. After
summing up the results and insights in Section 5 we conclude the paper with some
ideas regarding future work.

2 Related Work

This section lists related work concerning the application of CNN-LSTM hybrids in
the areas of speech, vision, and text processing. Furthermore, related work covering
improvements on OCR using different voting algorithms are itemized.

2.1 Combinations of CNN-LSTM

Currently CNN-LSTM hybrids are used in a high diversity of fields to achieve state-
of-the-art results. The combination of those diverse network structures is promising
because CNNs are suited for hierarchical but location invariant tasks, whereas LSTMs
are perfect at modelling temporal sequences.

For example, in the domain of speech processing Sainath et al. (2015) use a combina-
tion of LSTMs, CNNs and Fully Connected Layer for an automatic speech recognition
task, or else Trigeorgis et al. (2016) train a CNN-LSTM for speech emotion recognition.
Another excellently suited area for CNN-LSTM networks is video processing, since
CNNs are perfect for handling images and the video itself is a sequence of images. For
instance, in this area Donahue et al. (2015) propose a CNN-LSTM as basic structure

3https://github.com/Calamari-OCR/calamari
4https://www.tensorflow.org/

80 JLCL

Comparison of OCR Accuracy on Early Printed Books

to automatically generate video descriptions or Fan et al. (2016) use this structure for
recognizing emotions in videos.

In the field of text recognition, a combination of CNNs and LSTM was most recently
proposed by Breuel (2017). The deep models yield superior results on the University of
Washington Database III5, which consists of modern English prints with more than
95,000 text lines for training. However, the effect of deep networks on historical books
and using only a few dozens of training lines for training book individual models has
not been considered, yet.

A very similar task to OCR is handwriting recognition, e.g. by Graves and Schmid-
huber (2009) or Bluche (2015) or scene text recognition, e.g. by Shi et al. (2017). These
applications usually act on contemporary data, which is why it is meaningful to include
a language model or a dictionary to achieve a higher accuracy. However, for early
printed books, e.g. medieval books, general language models are less effective mostly
due to variability in spelling.

2.2 Voting

Using voting methods to improve the OCR results of different models was investigated
by many different researchers, an overview is given by Handley (1998). Here, we list
only a subset of the most important and the most recent work in the field of OCR and
focus mostly on historical documents.

Rice et al. (1996) showed that voting the outputs of a variety of commercial OCR
engines reduces the CER from values between 9.90% and 1.17% to 0.85%. The voting
algorithm first aligns the outputs by using a Longest Common Substring algorithm
(Rice et al., 1994) and afterwards applies a majority voting to determine the best
character including a heuristic to break ties.

Al Azawi et al. (2015) trained an LSTM network as voter of the aligned output of
two different OCR engines. A comparison using printings with German Fraktur and the
University of Washington Database III the LSTM approach led to CERs around 0.40%,
while the ISRI voting tool achieved CERs around 2%. A major reason for this high
improvement is that the LSTM-based voting algorithm learns some sort of dictionary.
Thus, the voter was able to predict a correct result even in cases where each individual
voter failed. However, this behaviour might not be desired since the method not only
corrects OCR errors but also normalizes historical spellings.

Most recently, in Reul et al. (2018) we showed that a cross-fold training procedure
with subsequent confidence voting reduces the CER on several early printed books
by a high amount of up to and over 50%. This voting procedure not only takes the
actual predictions of a single voter into account, but also their confidence about each
individual character. Therefore, instead of a majority voting for the top-1 output class
the best character is chosen for the top-N outputs. This led to improvements by another
5% to 10% compared to the standard ISRI sequence voting approach.

5http://isis-data.science.uva.nl/events/dlia/datasets/uwash3.html

JLCL 2018 – Band 33 (1) 81

Wick, Reul, Puppe

2.3 Data Augmentation and Pretraining

A crucial point for the performance of DNNs is the availability of huge labeled datasets.
However, if only a few data points are available or if the GT has to be labeled manually
the GT can be augmented to generate new examples. The applied operations must be
label preserving, e.g. a line image must still show the same content after augmentation.
The augmentations used in Calamari are provided by OCRodeg6 and consist of padding,
distortions, blobs, and multiscale noise.

Furthermore, in Reul et al. (2017b), we successfully applied transfer learning on early
printed books using OCRopy: Instead of training a network from scratch with random
weights, the weights can be copied from a network that was trained on different GT.
Thus, the new network starts its training already with knowledge about the task, i.e.
the transferred features are meaningful on the new data as-well. The network only has
to adapt for the new typeface and possibly some new characters in the codec. Therefore,
in general, the network requires less lines of GT to reach the CER of a network trained
from scratch.

3 Material and Methods

The OCR pipeline of Calamari is based on the OCRopus workflow, whose fundamental
idea is to use a full text line as input and train an LSTM network to predict the GT
character sequence of that line. This is achieved by the usage of the CTC-Loss during
training and a CTC-Decoder for prediction. For a deeper insight in this pipeline, in
this section, we first introduce the used datasets. Afterwards, we explain our training
and evaluation procedure. Finally, the differences of OCRopy and Calamari concerning
implementation, hyperparameters, and network architectures are listed.

3.1 Datasets

For our experiments we employ three different early printed books (see Table 1). Only
lines from running text are used, whereas headings, marginalia, page numbers etc. are
excluded, because these elements vary in line length, font size or their characters e.g.
numbers are underrepresented. Thus, the actual data is not affected by unwanted side
effects resulting from these elements. 1505 represents an exception to that rule as we
chose the extensive commentary lines instead, as they presented a bigger challenge due
to very small inter character distances and a higher degree of degradation. Figure 1
shows one line per book as an example.

1505 is an edition of the Ship of Fools (Narrenschiff by Sebastian Brant) and was
digitized as part of an effort to support the Narragonien digital project at the University
of Würzburg7. 1488 was gathered during a case study of highly automated layout

6https://github.com/NVlabs/ocrodeg
7http://kallimachos.de/kallimachos/index.php/Narragonien

82 JLCL

Comparison of OCR Accuracy on Early Printed Books

Figure 1: An example line from each of the used books. From top to bottom: 1476, 1488, 1505.

Table 1: Books used for evaluation and their respective number of ground truth lines available for
training and validation.

Year Language GT Train GT Validation
1476 German 2,000 1,000
1488 German 3,178 1,000
1505 Latin 2,289 1,000

analysis Reul et al. (2017a) and 1476 is part of the Early New High German Reference
Corpus8. The GT data of all three books was published9 by Springmann et al. (2018).

3.2 Training and Evaluation

To train the essential book specific models the human effort to annotate GT should
be minimized. Therefore, we examine the effect of adding only a few dozen lines of
GT on the CER of an individual book. The aim of a real world application is to train
incrementally improved models when more GT becomes available to support the human
annotator with increasingly better models.

As setup, each book in the dataset is first split into an evaluation and a training set.
While the evaluation set is fixed, the training set size is chosen as 60, 100, 150, 250, 500,
and 1,000 lines, with each set subsuming the smaller sets entirely. Then, each training
set is divided into a 5-fold, where four parts are used for the actual training and one
part for validation. For example, if 100 lines are chosen randomly from the full set,
each fold uses 80 lines for training and the remaining 20 lines for validation. These 20
validation lines are distinct from each of the five folds resulting in five diverse models.
Based on the validation set the best performing model for each fold is determined.

In summary, for three books and six different numbers of lines in the training set, we
train five models, respectively. For each run, we compute the CER on the validation
set every 1,000 iterations to determine the best model of this fold. This model is then
evaluated on the initial evaluation dataset to obtain the final CER. Since the results
of each of the five folds vary, we compute the average to compare the outcomes of
the different network architectures, books, and number of lines. Furthermore the five

8http://www.ruhr-uni-bochum.de/wegera/ref/index.htm
9https://zenodo.org/record/1344132/

JLCL 2018 – Band 33 (1) 83

Wick, Reul, Puppe

A

� n(0.6) u(0.1)
n(0.2) u(0.3)
n(0.4) u(0.5)

�
example sentence

Figure 2: An example for the improvement by using the confidence voting mechanism. Here only
three voters are considered. Although the character "u" is the best character twice the
"n" is chosen for the final output because of its higher average confidence.

predictions are used to compute a voted result using the voting mechanism described
in Section 3.3.

At each iteration during training one line is randomly chosen out of the data fold to
compute the gradient update. The number of iterations during training is chosen as
10,000, 12,000, 15,000, 20,000, 25,000, and 30,000 for the training set size of 60, 100,
150, 250, 500, and 1,000, respectively. These values are fixed for both OCRopus and
Calamari.

3.3 Voting

In order to further improve the predictions, we implement the confidence voting scheme
as proposed by Reul et al. (2018) to vote on the label sequences that are produced by
the CTC-Greedy-Decoder for each fold considering the confidence of each predicted
character. An example for only three voters is shown in Figure 2.

In a first step, all sentences are aligned as far as possible. Afterwards, all differences
are resolved by averaging the confidence of all equal options and keeping the character
with the highest value. Naturally, this procedure cannot guarantee a flawless output,
but it significantly improves the overall result.

An important prerequisite for the models that are used to vote is that they are
similarly performant, but diverse in their predictions. Errors that occur randomly in
one or another sentence can easily be corrected, whereas errors that appear in every
output cannot be identified. The above Cross-Fold-Training as proposed by Reul et al.
(2018) yields different models that can be used for voting although a high amount of
training data is shared among each pair of models.

The number of models that are used for voting in our experiments is set to five. Those
are the individual models produced by the 5-fold Cross-Validation on each training
set. A higher number of voters is expected to yield better results with the drawback to
require a higher effort in training and prediction. Experiments showed that a fold size
of five is reasonable trade-off.

3.4 Comparison of Calamari and OCRopy

While both Calamari and OCRopy are written in Python and their interfaces are
identical (both require images of lines and their respective GT) there are many distinct

84 JLCL

Comparison of OCR Accuracy on Early Printed Books

differences regarding the implementation, supported features and default settings.
To fasten up the computations of the neural network, OCRopy supports usage of

CLSTM10 which is a C++ implementation of the fixed LSTM network architectures
and only runs on the CPU. Calamari however uses Googles TensorFlow library that
both allows to design custom network architectures and to utilize a GPU.

Calamari supports the described Cross-Fold-Training mechanism and confidence
voting as well as integrated data augmentation. To choose the best model based on the
validation data set as provided by the Cross-Folds, Calamari implements early stopping
so that an upper limit for the number of training iterations is optional. Thereto, after
a certain number of iterations the early stopping algorithms tests whether the current
model improves the accuracy on the validation data. If the accuracy has not improved
for a given number of models (default 10), the training is stopped. Data augmentation
of the training data is provided by a variable factor naug, i.e. each line is replicated naug
times. Other features are the support of bidirectional text, and an automatic codec
adaption if a pretrained model is loaded that shares only a subset of characters.

Calamari employs by default an Adam solver with an initial learning rate of 0.001,
whereas OCRopy utilizes a learning rate of 0.0001 and a Momentum solver with a
momentum of 0.9. The batch size of Calamari can be chosen arbitrarily, and is 1 by
default. OCRopus does not allow to train or predict batchwise. Moreover, Calamari
implements an automatic gradient clipping to tackle the exploding gradient problem of
LSTMs as proposed by Pascanu et al. (2013).

The standard OCRopus network uses a single hidden LSTM layer with 100 nodes.
Calamari extends this shallow structure by introducing two pairs of convolutional (40
and 60 kernels) and pooling layers before the default LSTM-Layer with 200 nodes.
Calamari uses a convolutional kernel of size 3 × 3 with a stride of 1 and equal padding.
The network uses max pooling layers with a kernel size and stride of 2 × 2. A stride or
a kernel size of 2 in the first dimension, that is the time dimension, halves the width
of the intermediate picture and therefore the number of LSTM operations. On the
one hand, this makes the network faster but on the other hand repeated characters
might not get resolved, because the CTC-Decoder requires an intermediate blank label.
Finally, Calamari adds dropout with a factor of 0.5 to the last layer.

Even though the network architecture of Calamari can be adapted, preliminary
experiments showed that Calamari’s default network yields competitive results in both
accuracy and speed, hence it will be used as the deep network in the following. The
shallow network architecture is the default OCRopus network.

An overview of the differences and default values is listed in Table 2.

4 Experiments

In the following, we present our findings regarding the improvements of the deeper
architecture, and the usage of voting. Additionally, we compare the time required for
10https://github.com/tmbdev/clstm

JLCL 2018 – Band 33 (1) 85

Wick, Reul, Puppe

Table 2: Comparison and default values of OCRopy and Calamari regarding various aspects.
OCRopy Calamari

Language Python 2 Python 3
Network Backend Native/CLSTM Tensorflow

GPU Support No Yes
Default Network

Architecture
LSTM 100 CNN 40, Pool, CNN 60, Pool,

LSTM 200
CNN Kernel Size − 3 × 3

Pool Size − 2 × 2
Dropout No Yes
Solver Momentum (0.9) Adam

Default Learning Rate 0.0001 0.001
Voting No Yes

Pretrained Models Yes (identic codec) Yes
Data Augmentation No Yes

training and prediction of the different architectures, and extend the training corpus
to a size of up to 3,000 lines to investigate the behaviour of the deep models on many
lines. Finally, we use data augmentation or pretraining to minimize the CER with the
focus on only a few lines of GT. All experiments are conducted by using the default
hyperparameters and network architectures of Calamari and OCRopy as described in
Sec. 3.4.

4.1 Results of the Deep Network

Table 3 shows exemplarily the CER for each of the five folds on the three books for 60,
100 and 1,000 lines. The average of these five models is used to compute the average
improvement of the deep network. Note, that in practice the individual results of the
model for each fold must be combined e.g. by voting (see Section 3.3) in order to obtain
a usable result. Without voting, only one fold could be used to predict a sequence.

The results of the individual folds show no obvious correlation between CERs on
the same fold, that is the same training data, and its CERs on different network
architectures. For example, the worst fold of the shallow network on book 1488 using
100 lines is the forth fold with a CER of 4.79%. However, the same fold results in the
second best model for the deep network. The same can be observed for book 1505 for
the second fold: The best outcome of the deep network with CER of 3.02% is the worst
fold for the shallow network.

The relative improvements that are shown in Table 3 are listed for all the different
number of lines in Table 4. In the left section the relative improvements of the average

86 JLCL

Comparison of OCR Accuracy on Early Printed Books

Table 3: This table shows exemplarily the improvements of a deep CNN-LSTM compared to the
default shallow architecture for 60, 100, and 1,000 lines in the training dataset. Both
the individual results of each Cross-Fold plus their average, and the voting improvements
are entirely listed. The last columns of the fold average and the voting average state the
relative improvements of the deep network architecture. All numbers are given in percent.

60 Lines
CERs per Fold Avg. Conf. Voted

Book Network 1 2 3 4 5 CER Imp. CER Imp.
1476 Shallow 8.19 8.62 9.23 6.64 7.91 8.12 4.72

Deep 6.71 5.48 7.63 5.74 6.28 6.37 21.5 4.63 1.92
1488 Shallow 8.86 6.25 5.87 8.61 6.79 7.28 4.38

Deep 5.34 4.63 4.75 4.48 5.31 4.90 32.6 3.84 12.4
1505 Shallow 8.86 6.25 5.87 8.61 6.79 7.28 4.58

Deep 4.96 5.21 4.60 4.77 4.56 4.81 33.8 4.02 12.3
Avg. 29.3 8.9

100 Lines
CERs per Fold Avg. Conf. Voted

Book Network 1 2 3 4 5 CER Imp. CER Imp.
1476 Shallow 8.19 4.96 5.30 8.02 7.64 6.82 3.49

Deep 3.94 3.33 3.33 3.03 4.23 3.57 47.6 2.68 23.2
1488 Shallow 4.30 3.72 3.79 4.79 4.38 4.20 2.73

Deep 2.79 3.15 3.20 2.97 3.21 3.06 27.0 2.38 12.7
1505 Shallow 4.74 4.67 4.32 4.59 4.40 4.54 3.16

Deep 3.13 3.02 3.23 3.22 3.29 3.18 30.0 2.49 21.3
Avg. 34.9 19.1

1,000 Lines
CERs per Fold Avg. Conf. Voted

Book Network 1 2 3 4 5 CER Imp. CER Imp.
1476 Shallow 1.46 1.52 1.52 1.56 1.68 1.55 0.97

Deep 0.74 0.91 0.68 0.71 0.85 0.78 49.7 0.56 42.1
1488 Shallow 1.15 1.20 1.08 1.03 1.38 1.17 0.71

Deep 0.54 0.59 0.63 0.60 0.57 0.59 49.7 0.42 40.7
1505 Shallow 1.96 1.87 1.77 1.85 1.77 1.84 1.35

Deep 1.34 1.31 1.32 1.31 1.32 1.32 28.4 1.12 17.2
Avg. 43.6 33.3

JLCL 2018 – Band 33 (1) 87

Wick, Reul, Puppe

of the folds is shown, on the right hand side, the improvement when using voting (see
Section 4.2). A single deep network architecture yield an increasingly better average
CER. For only 60 lines the average improvement is 29%, while for 1,000 lines the best
improvement on a single book is 50% and the average over all books is increased by
43%.

A plot of the relative increase dependent on the number of lines is shown in Figure 3
(solid points). The increasing slope is flattening which indicates that more lines used
for training a deep model will still yield a better model compared to the default model,
but its relative improvement is eventually constant. An even deeper network might
increase the relative improvement if more lines are available.

In general, as to expected, the shallow and the deep network yield better results with
an increasing number of training data. Surprisingly, although the deep network has a
higher amount of trainable parameters which increases the vulnerability for overfitting,
it outperforms the shallow net even for a very small amount of training data.

4.2 Evaluation of Voting

The average error rates based on applying the confidence voting algorithm are shown in
Table 3. As expected, voting improves the accuracy on all experiments by a significant
amount and even reaches a optimum value of 0.42% CER on book 1488. The shallow
network benefits by a higher margin compared to the deep network, especially when using
only a few training examples. Yet, the deep network of Calamari always outperforms
the shallow network of OCRopy before and after voting. The relative improvements
shown in Table 4 and Figure 3 clarify this behaviour.

When training on just 60 lines the deep network architecture performs only slightly
better than the default network, yielding an average improvement factor of 9%. However,
if 1,000 lines are used an average improvement of 33% is obtained. Considering the
slopes of Figure 3 it is observed that the improvement gap between voting and non-
voting is narrowed from 29% − 9% = 20% to 42% − 33% = 9% for 60 and 1,000 lines,
respectively. Furthermore, it is to be expected that the relative improvement approaches
a limit value. Hence, the used deep model is expected to still perform better than the
default model by absolute values, but the relative gap appears to be constant. The limit
value, i.e. the performance for infinite data, is influenced by the network architecture.
Thus, if more lines are available for training more complex models must be considered.

As shown, voting has a higher impact on the default OCRopus network than on
the used deep network, especially if only a few lines are used for training. Thus, the
individual models must be more diverse to allow for a more effective voting. The
evaluation of errors (see Table 5 in Section 4.3) shows that, apart from insertion and
deletions of spaces, the errors of deep networks are mostly missing characters, while the
errors of the default network are mostly confusions, e.g. e↔c or n↔r in both directions
Therefore, voting of deep models that all omit single character predictions (compare
Table 5) and thus suffer from similar errors can not benefit by such a high amount
compared to the default models whose errors are more random.

88 JLCL

Comparison of OCR Accuracy on Early Printed Books

Table 4: Relative improvement of the deep CNN compared to default OCRopus listed for all three
books and the six variations of the amount of training data. The left and right halves
show the relative improvements without and with voting, respectively. All numbers are
given in percent.

Improvement over Folds Improvement over Voting
Book Book

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg.
60 21.5 32.7 33.8 29.3 1.9 12.4 12.3 8.9

100 47.6 27.0 30.0 34.9 23.2 12.7 21.3 19.8
150 38.4 40.1 32.9 37.1 19.7 30.7 19.7 23.4
250 49.7 54.6 30.9 45.0 27.0 34.2 23.5 28.2
500 50.4 49.6 32.1 44.1 35.2 43.7 21.3 33.3

1,000 49.7 49.7 28.4 42.6 42.1 40.7 17.2 33.3

Figure 3: Relative averaged improvements of the deep network versus the default OCRopus network.
The solid points indicate the relative improvements based on the averages of the individual
Cross-Fold results. The crosses mark the relative improvements when using confidence
voting.

JLCL 2018 – Band 33 (1) 89

Wick, Reul, Puppe

Table 5: The 10 most common errors made by the deep network after voting on the evaluation
dataset of book 1476. The left and right halves lists the results for 150 and 1,000
training lines, respectively. Both the count (Cnt.) of occurrences and their relative (Rel.)
contribution to the total CER are shown. An underscore represents deletions or insertions
of characters.

150 Lines 1000 Lines
Cnt. Rel. True Predicted Cnt. Rel. True Predicted

56 8.9% SPACE _ 32 18.0% SPACE _
54 8.6% _ SPACE 26 14.6% _ SPACE
47 7.5% i _ 11 6.2% i _
18 2.9% l _ 6 3.8% n _
12 1.9% G E 3 1.7% r t
12 1.9% n _ 2 1.1% r v
10 1.6% r _ 2 1.1% S _
9 1.4% r t 2 1.1% r _
8 1.3% d _ 2 1.1% ſ f
7 1.1% o _ 2 1.1% _ i

4.3 Error Analysis

Table 5 lists the ten most common errors of the deep network after voting when
predicting the evaluation dataset of 1476. The results are shown for 150 lines and 1,000
lines on the left and right columns, respectively. For both networks the most common
errors consist of insertions or deletions of spaces. Their relative contribution account
for one fifth for 150 lines, but almost one third for 1,000 lines, which underlines the
difficulty of the task of inserting correct spaces between narrowly printed text if no
language model or dictionary is used.

The model trained with 150 lines then mostly misses the prediction of characters
which shows the expected behaviour for CTC-trained networks that are only trained
with few data: To minimize the CTC-Loss it is more profitable to predict a blank rather
than an actual uncertain character. The confusion of G and E vanished because the G
occurred rarely in the dataset with only a few lines, but it was successfully learned if
more examples were available. The deep network trained with 1,000 lines shows errors
among the top ten that are expected, e.g. confusions of f and ſ (long s).

4.4 Training and Prediction Times

In this section we compare the time required for training and for the prediction of an
entire book of the default OCRopus network and our deep network. All times were
measured on an Intel Core i7-5820K processor using 1, 2, 4, or 8 threads for each
experiment. A NVIDIA Titan X is utilized to gauge the GPU times. During training
the parallelism is internally used in Numpy for the default OCRopus implementation
and in the TensorFlow-Backend for our deep networks. TensorFlow supports cuDNN

90 JLCL

Comparison of OCR Accuracy on Early Printed Books

Table 6: Average times for training and prediction of a single line for all three books. Note that
during prediction each line has to be processed five times due to the voting of the five
folds. The timing procedure was conducted for a various number of threads.

Training in seconds Prediction in seconds
Threads 1 2 4 8 GPU 1 2 4 8 GPU
Shallow 0.28 0.27 0.30 0.40 − 0.89 0.48 0.25 0.16 −

Deep 0.57 0.40 0.32 0.33 0.05 0.29 0.21 0.16 0.12 0.03

when using the GPU. For predicting, the default OCRopus implementation copies the
individual model for each thread and uses only one thread in the internal operations of
Numpy. Calamari instead creates only one model and predicts one batch consisting of
20 lines in our setup using all desired threads.

Note that each line has to be processed five times during the prediction due to the
voting algorithm. Table 6 reports our findings for the averages across the three used
books.

First of all, the results for the training time show that, despite the deeper network
consists of way more parameters and more operations, the optimized TensorFlow
implementation is only slightly slower than the default implementation based on Numpy,
when only one thread is used. However, the shallow default LSTM net cannot benefit
from a higher number of threads, instead it even suffers from a too high count. The
reason is, that the underlying matrix multiplications are too low dimensional in order
to be relevant for multiprocessing. As expected, the deep network benefits from up to 4
threads, as the training time is decreased by an average factor of approximately 40%.
The reason is, that the convolution operations that are carried out on each pixel on the
full image profit from a parallel computation. As a result, the deep network is faster
than the default implementation when allowing several cores during the training. Our
results show, that a number of 4 is sufficient.

The average time required to predict one line for the three books shows that the
deep network requires less than half the time compared to the default OCRopus
implementation, whereby the time for voting can be neglected. Using a higher number
of threads, the required time for prediction almost shrinks linearly for the default
implementation, since each thread computes a single independent model by construction.
The TensorFlow implementation of Calamari still benefits from a higher thread count,
but by a reduced factor due to the core sharing of batch versus convolutional operation.
Yet, for all the tested thread counts the TensorFlow implementation is a bit faster than
default OCRopus.

Usage of a GPU reduces the training and prediction times further by a factor of at
least six and four, respectively. These times can easily be reduced when processing a
whole batch of lines instead of a single line.

JLCL 2018 – Band 33 (1) 91

Wick, Reul, Puppe

Table 7: Decrease of the CER for using more than 1,000 lines for training the deep network. All
values are given in percent.

Averaged CER of folds CER using voting
Book Book

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg.
1,000 0.78 0.59 1.3 0.90 0.56 0.42 1.1 0.70
1,500 0.69 0.50 1.3 0.82 0.48 0.35 1.0 0.62
2,000 0.62 0.49 1.2 0.76 0.45 0.35 1.0 0.60
3,000 − 0.43 − 0.43 − 0.34 − 0.34

4.5 Increasing the Training Data above 1,000 Lines

The available amount of data for the three books allows us to increase the training set
size up to 2,000, 3,000, and 2,000 lines for the books 1476, 1488, and 1505, respectively
(compare Table 1). The averaged CER of the folds and after voting is shown in Table 7
by usage of the deep network. As expected, even more lines for training reduces the
CER even durther in all experiments with and without voting by a significant amount.
Thus, we reached an average CER of 0.6% after voting.

4.6 Data Augmentation

In this section we examine the effect of data augmentation with a factor of naug = 10
on the performances of deep network. In a first step, the training data consists of both
the augmentations and the original data. A second step uses the resulting model of the
first step as starting point and continues the training on solely the original data.

The results using confidence voting of five different voters each with its own augmen-
tations are shown in Table 8. As expected, especially for only a few lines in the training
data set data augmentation has a huge impact of up to 55%. Increasing the number
of lines decreases the benefit of augmentations to a point where it even worsens the
result (up to -19% on book 1488). This can be explained by the fact that the mixture
of real lines and augmented lines forces the network to focus on both types of data
which is why it loses its specific training on just the real lines. Thus, when continuing
the training on only the real lines (step 2) the results clearly improve for many lines,
but even for a few lines. On average, data augmentations in combination with the
deep network leads to a CER of below 2% and approximately 1% when using only 60
and 150 lines for training, respectively. The shallow network as provided by OCRopus
requires more than 1,000 lines to reach this level of accuracy (compare Table 3).

In summary, the experiments show the expected behaviour that the data augmentation
as implemented in Calamari yields slightly improved results for a large data set and
very high improvements of up to 55% for only a few lines.

92 JLCL

Comparison of OCR Accuracy on Early Printed Books

Table 8: Relative improvements of data augmentation with naug = 10. The first step trains on
both the real and augmented data, the second step continues the training only on the real
data. The last column shows the absolute CER of the final model (step 2) averaged over
all three books.

Improvement after Step 1 Improvement after Step 2
Book Book Avg.

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg. CER.
60 56.2 60.4 40.2 52.3 61.4 62.1 41.2 54.9 1.87

100 43.8 46.8 28.0 39.5 46.6 52.0 29.6 42.7 1.43
150 43.4 44.6 21.5 36.5 44.8 48.1 26.4 39.7 1.04
250 32.0 22.3 19.7 24.6 37.9 31.4 25.4 31.5 0.83
500 25.9 6.7 14.2 15.6 34.7 23.6 17.1 25.1 0.64

1,000 21.5 9.7 8.7 13.3 22.0 14.6 16.2 17.6 0.58
1,500 12.6 -6.5 9.5 5.2 15.2 3.9 13.9 11.0 0.54
2,000 4.3 -5.8 5.2 1.2 17.0 11.6 11.6 13.4 0.52
3,000 − -18.5 − -18.5 − 7.3 − 7.3 0.32

Table 9: Improvement of using both pretraining (PT) and data augmentation (AUG). All values are
voted and shown as percentage.

Improvement after PT Improvement after PT and AUG
Book Book Avg.

Lines 1476 1488 1505 Avg. 1476 1488 1505 Avg. CER.
60 51.1 46.8 30.0 42.7 70.5 68.8 48.0 62.4 1.6

100 37.9 41.9 22.7 34.2 63.6 55.8 39.8 53.1 1.2

4.7 Incorporating Pretrained Models

To evaluate the effect of pretraining, we use three different pretrained Calamari models11

designed for Fraktur (FRK), historical Latin (LH), and Modern English (EN). Two
models of the five voters are trained with FRK, two more with LH and only one with
EN since the trained typefaces of FRK and LH are closer to the target font. These
outcomes are voted by the confidence voter to obtain the final CER. Furthermore, we
combine pretraining with a data augmentation of 10. Both setups are only trained for
60 and 100 lines of GT, because here on the one hand the effect of pretraining and data
augmentation is expected to be the largest and on the other hand we want to simulate
the lack of manual annotated GT to train a book specific model.

As shown in Table 9, the CER for both 60 and 100 lines benefits from pretraining
(left) and the combination with data augmentation (right). We reach an improvement
of over 62% for 60 lines of GT compared to the model without pretraining or data

11https://github.com/Calamari-OCR/calamari_models

JLCL 2018 – Band 33 (1) 93

Wick, Reul, Puppe

Table 10: Improvements of voting, data augmentation, and pretraining (PT) for 60 and 100 lines
comparing Calamari to OCRopy. All values are given in percent.

60 Lines
Books Averages

Model 1476 1488 1505 CER Imp.
Shallow (OCRopy) 8.1 7.3 7.3 7.6 −
Deep (Calamari) 6.4 4.9 4.8 5.4 28.9
Deep + Voting 4.6 3.8 4.0 4.2 44.7
Deep + Voting + Data aug. 2.0 1.5 2.4 2.0 73.7
Deep + Voting + Data aug. + PT 1.4 1.2 2.1 1.6 78.9

100 Lines
Books Averages

Model 1476 1488 1505 CER Imp.
Shallow (OCRopy) 6.8 4.2 4.5 5.2 −
Deep (Calamari) 4.7 4.4 4.6 4.6 11.5
Deep + Voting 2.7 2.4 2.5 2.5 51.9
Deep + Voting + Data aug. 1.5 1.3 1.8 1.5 71.2
Deep + Voting + Data aug. + PT 1.0 1.1 1.5 1.2 76.9

augmentation, with a final CER of 1.6%. An increase to only 100 lines drops the CER
to 1.2%.

Comparing pretraining (Table 9) to the results of only data augmentation (Table 8)
shows that data augmentation has a higher impact on the performance (e.g. 55% vs
43% using 60 lines). However, data augmentation requires more training time than
using pretrained models, because the initial random weights must be trained from
scratch.

5 Conclusion and future work

In this paper, we compared the combinations of CNN- and LSTM-Networks as im-
plemented by Calamari to the default LSTM network of OCRopy achieving optimum
values considerably below 1% CER and a relative improvement of above 50% compared
to standard models. The enhancements are increased by a larger amount of available
training data and the introduction of voting mechanisms, data augmentation, and
pretrained models. Thus, to train a book specific model, only 60 or 100 lines of GT are
sufficient to achieve an average CER of below 2% or about 1%, respectively, as shown
in Table 10.

Although the proposed deeper network has a higher number of parameters the
absolute training and prediction time is in the same order of magnitude compared to
the standard model. However, the usage of a GPU quickens these times by a factor of
at least four depending on the lines processed in parallel.

94 JLCL

Comparison of OCR Accuracy on Early Printed Books

To further improve the voted results, distinct voters are required. These voters could
be created by variations of the network architectures and the usage by several different
datasets for pretraining.

Moreover, training of an even deeper network using many different books sharing
similarities in typeface, is expected to result in a generic model that has very low error
rates on a high variety of fonts. To reduce its training time, a GPU combined with
batch-wise training should be considered to achieve a high throughput of lines per
second.

Recently, the popular OCR engine Tesseract12 published a new version that imple-
ments Deep Neural Networks. We expect similar improvements compared to shallow
networks, however voting, data augmentation, and pretraining in the form of Calamari
are not supported, yet. Moreover, GPUs can not be used to speed up the training time.

In summary, it can be stated that the application of Calamari implementing deep
CNN-LSTM-networks, Cross-Fold-Voting, data augmentation, and pretraining opens
the door to a very promising approach to establish a new benchmark for OCR both
on early printed books and despite the historical focus of this paper also on any other
print.

References

Al Azawi, M., Liwicki, M., and Breuel, T. M. (2015). Combination of multiple aligned recognition
outputs using WFST and LSTM. In Document Analysis and Recognition (ICDAR), 2015
13th Int. Conf. on, pages 31–35. IEEE.

Bluche, T. (2015). Deep Neural Networks for Large Vocabulary Handwritten Text Recogni-
tion. (Réseaux de Neurones Profonds pour la Reconnaissance de Texte Manucrit à Large
Vocabulaire). PhD thesis, University of Paris-Sud, Orsay, France.

Breuel, T. M. (2017). High performance text recognition using a hybrid convolutional-lstm
implementation. In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), pages 11–16. IEEE.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.,
and Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition
and description. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2625–2634.

Fan, Y., Lu, X., Li, D., and Liu, Y. (2016). Video-based emotion recognition using cnn-rnn
and c3d hybrid networks. In Proceedings of the 18th ACM International Conference on
Multimodal Interaction, ICMI 2016, pages 445–450, New York, NY, USA. ACM.

Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional
recurrent neural networks. In Advances in neural information processing systems, pages
545–552.

Handley, J. C. (1998). Improving OCR accuracy through combination: A survey. In Systems,
Man, and Cybernetics, 1998. 1998 IEEE Int. Conf. on, volume 5, pages 4330–4333. IEEE.

12https://github.com/tesseract-ocr/tesseract

JLCL 2018 – Band 33 (1) 95

Wick, Reul, Puppe

Mane, D. T. and Kulkarni, U. V. (2017). A survey on supervised convolutional neural network
and its major applications. IJRSDA, 4(3):71–82.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference
Proceedings, pages 1310–1318. JMLR.org.

Reul, C., Dittrich, M., and Gruner, M. (2017a). Case study of a highly automated layout
analysis and ocr of an incunabulum: ’der heiligen leben’ (1488). In Proceedings of the 2Nd
Int. Conf. on Digital Access to Textual Cultural Heritage, DATeCH2017, pages 155–160,
New York, NY, USA. ACM.

Reul, C., Springmann, U., Wick, C., and Puppe, F. (2018). Improving OCR accuracy on
early printed books by utilizing cross fold training and voting. In 13th IAPR International
Workshop on Document Analysis Systems, DAS 2018, Vienna, Austria, April 24-27, 2018,
pages 423–428. IEEE Computer Society.

Reul, C., Wick, C., Springmann, U., and Puppe, F. (2017b). Transfer learning for OCRopus
model training on early printed books. 027.7 Zeitschrift für Bibliothekskultur / Journal for
Library Culture, 5(1):38–51.

Rice, S. V., Jenkins, F. R., and Nartker, T. A. (1996). The fifth annual test of OCR accuracy.
Information Science Research Institute.

Rice, S. V., Kanai, J., and Nartker, T. A. (1994). An algorithm for matching OCR-generated text
strings. International Journal of Pattern Recognition and Artificial Intelligence, 8(05):1259–
1268.

Sainath, T. N., Vinyals, O., Senior, A., and Sak, H. (2015). Convolutional, long short-term
memory, fully connected deep neural networks. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4580–4584.

Shi, B., Bai, X., and Yao, C. (2017). An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(11):2298–2304.

Springmann, U., Fink, F., and Schulz, K. U. (2016). Automatic quality evaluation and (semi-)
automatic improvement of mixed models for ocr on historical documents. CoRR.

Springmann, U. and Lüdeling, A. (2017). OCR of historical printings with an application
to building diachronic corpora: A case study using the RIDGES herbal corpus. Digital
Humanities Quarterly, 11(2).

Springmann, U., Reul, C., Dipper, S., and Baiter, J. (2018). GT4HistOCR: Ground Truth for
training OCR engines on historical documents in German Fraktur and Early Modern Latin.

Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B., and
Zafeiriou, S. (2016). Adieu features? end-to-end speech emotion recognition using a deep
convolutional recurrent network. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5200–5204.

96 JLCL

1

Calamari − A High-Performance Tensorflow-based Deep
Learning Package for Optical Character Recognition

Christoph Wick, Christian Reul, and Frank Puppe
Universität Würzburg, Chair of Computer Science VI

{prename.surname}@uni-wuerzburg.de

Abstract

Optical Character Recognition (OCR) on contemporary and historical data is still in the focus of many

researchers. Especially historical prints require book specific trained OCR models to achieve applica-

ble results (Springmann and Lüdeling, 2017, Reul et al., 2017a). To reduce the human effort for man-

ually annotating ground truth (GT) various techniques such as voting and pretraining have shown

to be very efficient (Reul et al., 2018a, Reul et al., 2018b). Calamari is a new open source OCR line

recognition software that both uses state-of-the art Deep Neural Networks (DNNs) implemented in

Tensorflow and giving native support for techniques such as pretraining and voting. The customiza-

ble network architectures constructed of Convolutional Neural Networks (CNNS) and Long-Short-

Term-Memory (LSTM) layers are trained by the so-called Connectionist Temporal Classification

(CTC) algorithm of Graves et al. (2006). Optional usage of a GPU drastically reduces the computation

times for both training and prediction. We use two different datasets to compare the performance of

Calamari to OCRopy, OCRopus3, and Tesseract 4. Calamari reaches a Character Error Rate (CER) of

0.11% on the UW3 dataset written in modern English and 0.18% on the DTA19 dataset written in

German Fraktur, which considerably outperforms the results of the existing softwares.

1 Introduction
Optical Character Recognition (OCR) of contemporary printed fonts is widely considered as a

solved problem for which many commercial and open source software products exist. However,

the task of text recognition on early printed books is still a challenging task due to a high variability

in typeset, additional characters, or low scan quality. To master OCR on early printed books, a

book or font specific model must be trained to achieve CERs below 2% (Reul et al., 2017a,

Springmann and Lüdeling, 2017). For this purpose, highly performant individual models must be

trained in a short period of time using as less manually annotated GT files as possible. Currently,

there exist several Free Open Source Software (FOSS) attempts for such programs: OCRopy,

OCRopus 3, Kraken, or Tesseract 4, each with its own advantages or drawbacks.

Calamari1 is a novel software for training and applying OCR models in order to predict2 text lines

including several up-to-date techniques to highly optimize the computation time and the perfor-

mance of the models. The usage of Tensorflow allows to design arbitrary DNNs including CNN and

LSTM structures that are proven to yield improved results compared to shallow network struc-

tures (Breuel, 2017, Wick et al., 2018). These networks can optionally use CUDA and cuDNN (on

a supported GPU) which results in a highly reduced computation time. Compared to other FOSS

Calamari supports various techniques that minimize the CER including voting and pretraining

(see Reul et al., 2018a, Wick et al., 2018). The software is not designed as a full OCR pipeline which

includes tasks such as layout analysis, or line segmentation, but is the topic of a separate publica-

tion (in preparation), instead it focuses solely on the OCR step that transcribes line images to text.

However, Calamari as Python-Package3 can easily be integrated in existing pipelines to manage

1 https://github.com/Calamari-OCR
2 Throughout this paper, the term “predict” is used whenever machine-readable text is automatically tran-
scribed from a line image.
3 https://pypi.org/project/calamari_ocr/

2

the OCR part. Thus, by design without any changes it can directly replace the OCR-Engine of

OCRopy.

2 Related Work
In the following, we give a short list of the existing open source OCR programs OCRopy, OCRopus

3, Tesseract 4, and Kraken. All of these systems are designed to support the full pipeline from plain

page to text. Since the intention of Calamari is solely to handle the OCR of line images, only this

functionality of the other programs will be described and compared.

Currently, there exist several versions of OCRopy which was originally published by Breuel (2008)

(see also Breuel et al., 2013), that are still maintained. OCRopy4 is the first software that allowed

a user to train custom LSTM based models incorporating the CTC-Loss function (Graves et al.,

2006). By default, it uses a slow numpy based implementation of the computation, which can be

exchanged by a faster C-based clstm one. However, neither the GPU nor Deep CNN-LSTM models

can be used. For training it requires a list of images and their GT and outputs a model, which then

can be used to automatically transcribe the written text of other text lines.

Kraken5 is a fork of OCRopy, which has a different API, uses clstm as default, and adds support for

bidirectional and top to bottom text. Currently, the usage of PyTorch6 as Deep Learning engine

supporting GPU training is under development.

While OCRopy is still maintained OCRopy 27 seems not to be developed anymore, probably due to

the introduction of OCRopus 38 which changed all major OCR components to Deep Models using

PyTorch. OCRopus 3 supports variable network architectures including CNNs and LSTMs and al-

lows training and applying of the models on the GPU. The resulting models yield state-of-the-art

results and can be trained with minimal effort in time.

Tesseract9 was initially released as open source in 2005 and is still under development. The new-

est version 4 of Tesseract adds support for deep network architectures such as LSTM-CNN-Hy-

brids, however GPU support is not offered. To prototype network structures Tesseract proposes

a Variable-size Graph Specification Language (VGSL) which is similar to the network prototype

language of Calamari.

3 Methods
Calamari comprises several techniques to achieve state-of-the art results on both contemporary

prints and historical prints. Beside different DNN architectures (see Appendix Appendix A.), it

supports confidence voting of different predictions and finetuning with codec adaption. These

methods will be presented in the following.

3.1 Finetuning and Codec Resizing
A general approach to improve the accuracy of a model on a specific dataset is not to train from

scratch but instead to start from an existing robust model and to finetune for the specific task (see

e.g. Reul et al., 2017b). Usually, the alphabet of the base model differs from the desired labels

which is why the output layer is usually fully replaced. However, in the task of OCR many letters,

4 https://github.com/tmbdev/ocropy
5 http://kraken.re/
6 https://pytorch.org/
7 https://github.com/tmbdev/ocropy2
8 https://github.com/NVlabs/ocropus3
9 https://github.com/tesseract-ocr/tesseract

3

digits, or punctuations are shared across the base model and the target task, and only a few new

letters might be added e.g. German umlauts when starting from an English model, or erased e.g.

the character "@" which does not exist in historical texts. It is rational to keep those weights as is

and add or remove new or unneeded labels instead of training the output layer from scratch.

In the area of historical printed books an individual model for each book must be trained to

achieve reasonable results for OCR. To reduce the human effort required for manually transcrib-

ing GT lines the OCR model should be trained using as few lines as possible. However, if using only

a few lines some characters might not be present yet, e.g. capital letters or digits. Hence, a whitelist

is useful to define characters that should not be erased from the base model. Thus, the resulting

model has still a chance to predict those letters, even if they have never been seen during finetun-

ing.

Another benefit of using a pretrained model is the reduced computation time to train a model.

Since the initial weights are not randomly chosen but set to meaningful features that are expected

to generalize on the new data only small variations are required to optimize on the new data.

3.2 Voting
Another technique to obtain more robust results is to vote the outcomes of different models (see

e.g. Reul et al., 2018b). Hereby, several models are individually applied to the same data, each

generating one result called a vote. The final output can be inferred by majority voting. Further

refinement is obtained by weighting each vote: the higher the confidence of the model in general,

or the actual prediction in particular, the higher the weight (“confidence voting”). The benefit of

voting depends highly on the variance of the individual voters. If the voters predict very similar

results, errors are less probable of being removed, as if more diverse models are used.

In case of OCR, confidence voting showed the best results so far. This voting mechanism does not

only include the most likely predicted character but also alternatives with its probabilities into

account. Figure 1 shows a simple example of confidence voting. Three different voters predict the

possible characters with an individual confidence. If a single voter chooses the character with the

highest confidence, the capital letter "I" is winning in a majority vote. However, if one adds up

each individual confidence values the correct letter "l" is chosen as the final output.

To obtain different voters based on a dataset several approaches are meaningful, e.g. using differ-

ent training data, network architectures, base models for finetuning. Recently, we showed that

variable voters can be generated by a simple but robust approach called cross-fold-training (Reul

et al., 2018b).

4 The Calamari OCR-System
Calamari supports easy instructions to use any of the listed methods to train various models, and

to apply them on existing lines. The software is implemented in Python3 and uses Tensorflow for

Deep Learning of the neural net. In doing so, Calamari supports usage of the GPU including the

highly optimized cuDNN kernels provided by NVIDIA for a rapid training and an automatic tran-

scription of multiple lines (batches) simultaneously.

Figure 1: An example for the confidence voting algorithm. Each row shows a part of the
output of three different voters. When choosing the most frequent top result of each voter
(bold) an "I" would be predicted. However, when adding the confidences of each voter, the
letter "l" is predicted.

4

4.1 Preprocessing
Both the lines and the text are preprocessed by Calamari for all conducted experiments. The line

images are converted to grayscale and are rescaled proportionally to a standard height of 48 pix-

els. Optionally, the lines are dewarped using OCRopy's dewarping algorithm. Crucial problems of

the bidirectional LSTM are the predictions of the first and last few pixels of a line which can be

seen as transient behaviour of the internal LSTM state. Therefore, a padding of 16 white pixels is

added to each side of the line.

The textual preprocessing allows to resolve several visual ambiguities such as converting Roman

unicode digits to Latin letters or joining repeated white space. Furthermore, Calamari adds sup-

port for mixed left-to-right and right-to-left text. This solves a challenging task: mirrored symbols

e.g. opening or closing brackets depend on the reading order which can change within a line.

4.2 Training
Calamari can easily be trained on new material if an appropriate model is not available yet. As

input for training, Calamari expects just as OCRopy a list of line images and the corresponding text

files. For efficiency, the full data is loaded and kept in memory for the complete training task in-

stead of repeatedly reading only the current training example. The actual hyperparameters of Cal-

amari are described in Appendix Appendix B. .

4.3 Prediction
To apply a trained model on new line images Calamari expects one or more models for automatic

transcription. If several models are used, Calamari votes the results of each individual model to

generate the output sentence.

Sometimes, it might be useful to access additional information of the prediction. Therefore, Cala-

mari allows to generate information about the position and its confidence of each individual char-

acter, as well as the full probability distribution of the input.

5 Experiments
To compare the performance of Calamari to OCRopy, OCRopus 3, and Tesseract 4 we use the da-

tasets UW3 and DTA19. All final results of Calamari were achieved by using early stopping. Hereby

we check every 20,000 iterations for a smaller CER on 20% of the training data (hence 80% are

used for actual training), after ten checks without a better model, we interrupt the training. Simi-

larly, we chose the best OCRopy or OCRopus 3 model based on the same 20% of training data.

Tesseract 4 itself chooses its best model on the provided test data set. For Calamari and OCRopus

3 we use a batch size of 5, the OCRopy and Tesseract 4 do not support batching.

5.1 Datasets
For evaluating Calamari, we use two datasets with several millions of characters in the training

set and three historical printed books.

The smaller University of Washington Database III10 (UW3) consists of extracted lines images from

different English scientific and technical journal reports which are printed in a modern Antiqua

font. In total, more than 70,000 lines for training and almost 10,000 lines for evaluation are avail-

able. Breuel (2017) uses a different version of this dataset (UW3α) with 95,190 text lines for train-

ing and 1,253 text lines for evaluation. Unfortunately, this split is not publicly available.

10 http://www.tmbdev.net/ocrdata-split/

5

The other large dataset German Text Archive of the 19th Century11 (DTA19) extracted from the

German Text Archive (see Wiegand et al., 2018) consists of 39 German Fraktur novels (mostly)

printed during the 19th century (1797-1898). Eight novels consisting of 50,968 text lines are used

for evaluation the remaining books with 192,974 lines for training. Thus, the evaluation measures

the capability of the models to generalize for unseen fonts.

The three historical printed books12 of the years 1476, 1478, and 1499 are written in broken script

(Fraktur in a wider sense) and only consist of 3,100, 2,695, and 1,578 lines respectively. We use

only 50 lines for training to simulate a human annotator that has to manually transcribe GT data,

yet wants to achieve the best possible results.

An example line for each dataset is shown in Figure 2 and an overview of the datasets and their

statistics are shown in Table 1. The codec size lists the number of characters in the alphabet. The

average line width is computed after preprocessing (see Sec. 4.1) which forces a line height of 48

pixels

5.2 Evaluation Measure
To measure the performance of each OCR system we use the CER which is defined as the edit

distance (ed) of two sequences 𝑠1 and 𝑠2 normalized by the maximum length:

CER =
ed(𝑠1, 𝑠2)

max(|𝑠1|, |𝑠2|)

This measure is 0 if all characters and 1 if no character match.

11 To be published
12 To be published

Table 1: Overview of the used datasets. The Codec size lists the number of possible characters in the alphabet. The
GT lines, the number of total characters, and the average line width in pixels are both shown for the training and
the evaluation data sets. The average width of the evaluation set of UW3α is unknown.

 Training Evaluation
ID Lang. Code GT Lines Chars Width GT Lines Chars Width

UW3 English 87 72,807 3,493,308 973 9,729 469,171 977
UW3α English 87 95,190 4.5 Mio 854 1,253 60 K −
DTA19 German 159 192,974 8,711,800 912 50,968 2,304,242 905
1476 German 64 50 1,528 489 3,110 102,137 508
1478 German 69 50 2,054 731 2,695 118,437 755
1499 German 73 50 4,139 1117 1,578 126,445 1031

Figure 2: Example lines of the used UW3, DTA19, 1476, 1478, and 1499 datasets. Note
that the last line is cropped.

6

5.3 Accuracy
Table 2 lists all results for the different datasets, software and used network architectures. First,

it is notable that OCRopy yields the worst results both on the UW3 and the DTA19 dataset due to

the shallow network structure of only one hidden LSTM-layer.

This network is not capable of learning and generalizing the variations of fonts in the datasets.

Introduction of Convolution- and Pooling-Layers highly increases the accuracy of all software and

on both datasets. Hereby, the same network structure C, Mp(2x2), C, Mp(2x2), LSTM(200) yields

different results on the various frameworks: 0.155% on Calamari, 0.397% on Tesseract 4 and

0.502% on OCRopus3 for the UW3 dataset. This difference must be caused by a different training

setup or varying hyperparameters, e.g. using an Adam-Solver or a Momentum-Solver, differences

in the learning-rate, or usage of dropout. However, the evaluation of hyperparameters is out of

the scope of this paper. Note, that the overall setup is the same: All frameworks use the same da-

taset split for training, choosing the best trained model and evaluation.

The CER on UW3α published by Breuel (2017) that is evaluated on a different evaluation split are

in the same order of magnitude as the computed CER on the UW3 split used in this paper. Our

trained model on OCRopus3 is comparable to the Tesseract 4 model.

On both models the best performance is achieved by Calamari and further improved by the voting

mechanism. On the UW3 dataset it achieves impressive error rates of 0.11% without a language

model such as a dictionary. Calamari with voting yields 0.18% CER on German Fraktur. This task

is far more difficult because this dataset has a larger alphabet with very similar characters (e.g. a,

Figure 3: Three of the worst recognized lines during the evaluation of Calamari
using voting on the UW3 dataset. The upper two lines suffer from impurities of
segmentation or font. The text of the bottom line is cropped.

Table 2: CER using different software on the UW3 (20th cent. reports) and the DTA19 (19th cent. novels) dataset.
The convolutions C each have a kernel size of 3 × 3 with zero padding and a filter count of 64 in the first and 128
in the second layer. Max-Pooling Mp is used either with a kernel size and stride of 2 × 2 or1 × 2. Note that when
using 2 × 2 both the height and length of the line is halved while when used 1 × 2 only the height is halved. The last
hidden layer is always a LSTM with 200 nodes. Calamari results are the average of five models that are then used
to apply confidence voting. The CERs on UW3α were published by Breuel (2017).

Model Voted Software Dataset CER
C, Mp(2x2), C, Mp(2x2), LSTM(200) No Calamari UW3 0.155%
C, Mp(2x2), C, Mp(2x2), LSTM(200) Yes Calamari UW3 0.114%

LSTM(200) No OCRopy UW3 0.870%
C, Mp(2x2), C, Mp(2x2), LSTM(200) No Tesseract 4 UW3 0.397%
C, Mp(2x2), C, Mp(2x2), LSTM(200) No OCRopus3 UW3 0.502%
C, Mp(1x2), C, Mp(1x2), LSTM(200) No OCRopus3 UW3 0.436%
C, Mp(1x2), C, Mp(1x2), LSTM(100) No OCropus3 UW3α 0.25%

C, Mp(1x2), C, Mp(1x2), C, Mp(1x2), LSTM(200) No OCropus3 UW3α 0.25%
C, Mp(2x2), C, Mp(2x2), LSTM(200) No Calamari DTA19 0.221%
C, Mp(2x2), C, Mp(2x2), LSTM(200) Yes Calamari DTA19 0.184%

LSTM(200) No OCRopy DTA19 1.59%
C, Mp(1x2), C, Mp(1x2), LSTM(200) No OCropus3 DTA19 0.907%

7

à, á, â, or ä) or different fonts especially for capital letters. Yet, most errors are due to corrupt lines

or GT inconsistencies (e.g. upper and lower quotation marks).

The evaluation on the UW3 dataset shows that 97% of all lines are recognized without any error,

however the worst 0.1% lines contribute to 20% of the remaining error. Those lines are either

wrongly segmented, rotated or highly degraded. Figure 3 shows three of the worst recognized

examples. The first impurely segmented line contains the upper part of the following line. There-

fore, the postprocessing step failed by bending the middle of the line and the line could not recog-

nized anymore.

The second example has a degraded font, that is also larger than the other lines. For example,

“waters” is misclassified as “wators” because the middle horizontal line in the “e” is missing. This

error could surely be fixed by a dictionary.

The last line is falsely cropped at the beginning, thus it is impossible to recognize “Energy Vol. 9”.

Any other character is correctly recognized.

Table 3 lists the 20 most common errors of Calamari with and without voting on the UW3 dataset.

The GT and PRED columns list the GT expectation and the automatic transcription. The third col-

umn counts the number of errors in the test data set (≈0.47 million characters in total) and the

last column the relative percentage to all errors made by the respective model. The last row adds

the relative percentage of all errors that are not among the 20 most common. Note, that even

though the missing '' occurred four times in the voted model the relative percentage is doubled,

because the double quote is interpreted as two single quotes.

Table 3: Most common errors of Calamari on the UW3 evaluation set. The left side shows the errors of a single voter,
the right side after voting. The first two columns show the GT and the predicted character, the third column the
number of occurrences, and the forth column the relative percentage compared to the total CER, respectively. The
last row sums the relative error remaining mistakes. Note that '' is interpreted as two single quotes, which is why
the relative error is doubled if those two characters are missing.

Single model Conf. Voted model
GT PRED CNT PCT GT PRED CNT PCT

, . 35 5.12% , . 35 6.68%
␣ 35 5.12% ␣ 33 6.30%

 ␣ 25 3.66% ‘ 10 1.91%

. , 20 2.93% ␣ 9 1.72%
‘ 11 1.61% . , 9 1.72%
, 10 1.46% y v 7 1.34%
. 9 1.32% , 7 1.34%
i l 8 1.17% i l 7 1.34%
y v 7 1.02% . 6 1.15%
e c 7 1.02% I l 6 1.15%
n 6 0.88% e 4 0.76%
 i 6 0.88% '' 4 1.53%
s 5 0.73% . 4 0.76%
i I 4 0.73% r 3 0.57%
r 4 0.59% n 3 0.57%
 . 4 0.59% - 3 0.57%
- . 4 0.59% e c 3 0.57%
e 4 0.59% e 3 0.57%
 e 4 0.59% i 3 0.57%
l i 4 0.59% s 3 0.57%

Remaining 68.81% Remaining 68.32%

8

As expected the most common errors in both models are confusions of similar characters such as

“.” and “,”, “v” and “y”, or “I” and “l”, but also missing or inserted spaces. Most significantly, the

voting mechanism reduces the error of missing spaces (25 vs 9 occurrences), but also the number

of confusions of "e" and "c" dropped (7 to 3).

A common postprocessing step on OCR is to apply a dictionary on the recognized words. It is to

be expected that errors on letters are highly reduced but punctuation errors are not decreased.

Even in this case the voting mechanism is very useful since is reduces also whitespace and punc-

tuation errors. However, note that in the field of OCR on historical pages a dictionary might not be

present or even not desired if differences in spelling are of interest. In this field of research, the

voting mechanism of Calamari is very useful to reduce the CER.

5.4 Recognition Speed
Another crucial measure besides its accuracy for a good OCR system is its speed. The runtimes of

all softwares for training and prediction excluding preprocessing of a single line is listed in Table

4. The processing time of a single line highly depends on the network architecture, the line width,

and the used hardware. All the time experiments were measured on a NVIDIA GTX 1080Ti GPU if

the software supports GPU usage and an Intel Xeon E5-2690 CPU. Preprocessing requires ca. 50

ms per line with a single process and drops to 6 ms when processing eight lines in parallel.

Obviously, both OCRopus 3 and Calamari are faster than Tesseract or OCRopy by a factor of almost

100 since they support batched GPU training and prediction. Incorporation of a GPU therefore

allows to recognize more than 100 lines per second.

The time for voting scales linearly with the number of models used as voters. Thus, the prediction

time per line in the voting experiments is approximately five times higher than the results shown

in Table 4. The time required for the aggregating the voting can be neglected.

5.5 Finetuning
Using the models trained on the UW3 or the DTA19 dataset to directly transcribe the books 1476,

1488, and 1499 yields discardable results with up to 50% CER. Thus, it is mandatory to train in-

dividual models requiring manually labelled GT data. In the following, we use 50 lines of the three

historical printed datasets for training different models with and without using the pretrained

models of UW3 and DTA19 from section 5.3. This amount of lines is very low, but shows that even

a small amount of GT can drastically decrease the CER even though the trained model might not

have seen all possible characters of the alphabet yet (e.g. capital letters). The CERs are shown in

Table 5, whereby both the average of the five folds and their voting results are shown.

The 1476 and 1478 datasets behave similar. Both sets yield about 10% error when using an indi-

vidual model and a lower CER when voting five different models. Using the pretrained UW3 and

DTA19 models instead of training from scratch both the individual model CER and the voted CER

Table 4: Average time for training or prediction of a single line of the UW3 dataset. Note that the times measured
for OCRopy and Tesseract 4 are on the CPU while Calamari and OCRopus3 run on the GPU. The prediction of OCRopy
and Tesseract 4 is evaluated using a single process, using multiple multithreading highly reduces their computation
time. The last row was published by Breuel (2017).

Model Software Training Prediction
C, Mp(2x2), C, Mp(2x2), LSTM(200) Calamari 8 ms 3 ms

LSTM(200) OCRopy 850 ms 330 ms
C, Mp(2x2), C, Mp(2x2), LSTM(200) Tesseract 4 1200 ms 550 ms
C, Mp(2x2), C, Mp(2x2), LSTM(200) OCRopus3 10 ms 7 ms
C, Mp(1x2), C, Mp(1x2), LSTM(100) OCRopus3 − 10 ms

9

drop significantly. Hereby, using DTA19 as pretrained model results in better models because the

font and the German alphabet of DTA19 is closer to the historical prints than the modern English

fonts of UW3.

Interestingly, pretraining on UW3 yields worse results on the 1499 dataset compared to the mod-

els without pretraining, but the voted results are similar. However, the model using DTA19 as

initial values clearly predicts better values than the default model.

Reul et al. (2018a) showed that using the same pretrained model to train different voters yields

worse voted results than using different pretraining models. Thus, it is to be expected that the

overall results get further improved if one mixes the pretrained models of UW3 and DTA19. Of

course, increasing the number of available lines of GT for training the respective book significantly

improves the accuracies of the models, however this results in a higher amount of human effort

to annotate GT.

6 Conclusion
The main focus of this paper was the presentation of Calamari as new line based OCR engine to

replace OCRopy or Tesseract due to its low CER and fast computation times.

The conducted experiments clearly demonstrate the capabilities of Calamari on both contempo-

rary and historical OCR tasks. Not only does Calamari yield outstanding performances compared

to other OpenSource OCR software but also requires a minimum of time for training and predic-

tion due to the usage of Tensorflow as Deep Learning framework including cuDNN. As already

shown by Breuel (2017) and Wick et al. (2018), Deep Hybrid Convolutional-LSTM architectures

increase the accuracies both on contemporary and historical prints. Our results have revealed sig-

nificant differences of Tesseract 4, OCRopus 3 and Calamari due to variations of the network ar-

chitectures and different sets of hyperparameters. It is to be expected that an optimization of these

hyperparameters might further improve the accuracies of the OCR models. However, a very high

amount of the remaining errors on UW3 and DTA19 are GT inconsistencies or impure lines, which

are nearly impossible to predict correctly.

Voting and pretraining are two important mechanisms to increase the performance of newly

trained models, especially if only few data is available. Voting has shown improved results on all

conducted experiments, however on the cost of a higher prediction and training time, since sev-

eral different models are independently used. Pretraining is most useful if the original model is

similar to the new data and reduced both the CER and the training time. Especially, when training

Table 5: Results on the historical printed books using Calamari trained with 50 lines of GT and a batch size of 5.
Both the results of using a pretrained model based on either the UW3 (20th cent. reports) or the DTA19 (19th cent.
novels) datasets, or training from scratch are indicated by second column. The CER lists the average of the five
trained folds and the last column the voted result as CER.

Dataset Pretraining CER Voted
1476 − 9.1% 7.1%
1476 UW3 7.4% 5.5%
1476 DTA19 5.5% 4.0%
1478 − 10.8% 9.3%
1478 UW3 8.8% 7.3%
1478 DTA19 8.6% 6.6%
1499 − 7.5% 6.4%
1499 UW3 8.4% 6.5%
1499 DTA19 6.6% 4.7%

10

new individual models as required for OCR on historical prints pretraining should be used to re-

ceive the best possible results if only a few manually annotated lines are available. In general, the

best OCR results are to be expected if the targeted fonts of a pretrained model are similar to the

material at hand. This of course correlates with the period of publication of the various books lies

in the same epoch.

Although Calamari supports many features such as voting, or pretraining, plans for extensions

exist. A first major work is data augmentation during training which is expected to significantly

drop the CER especially if only a few lines are present. The augmentations basically are different

types of noise, degradation, or generated background. Obviously, synthetic data based on existing

fonts can also be incorporated for data augmentation.

Tesseract's language to define network topologies (VGSL) has a very simple and compact syntax.

The current syntax of Calamari should also support this language to define networks.

Finally, since Calamari is designed very modular, it shall be extended to support other sequence-

to-sequence tasks, such as monophonic Optical Music Recognition (e.g. Gregorian chants) or

Speech-To-Text. All these tasks fundamentally share the tasks of processing two dimensional se-

quential data and output a sequence of classes. Only the data preprocessing e.g. of audio files and

postprocessing is different. Calamari is designed to easily exchange these steps but keeping a ge-

neric structure for training, evaluation, and application.

Literature
BREUEL, T. M. (2008) The OCRopus open source OCR system. In: Document Recognition

and Retrieval XV. International Society for Optics and Photonics, Vol. 6815, p.
68150F.

BREUEL, T. M. (2017) High performance text recognition using a hybrid convolutional-
lstm implementation. In: Document Analysis and Recognition (ICDAR), 2017 14th
IAPR International Conference on. IEEE, Vol. 1, pp. 11-16.

BREUEL, T. M., et al. (2013) High-performance OCR for printed English and Fraktur using
LSTM networks. In: Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on. IEEE, pp. 683-687.

GRAVES, A., et al. (2006) Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In: Proceedings of the 23rd
international conference on Machine learning. ACM, pp. 369-376.

KINGMA, D. P. and BA, J. (2014) Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

PASCANU, R., et al. (2013) On the difficulty of training recurrent neural networks. In:
International Conference on Machine Learning. pp. 1310-1318.

REUL, C., et al. (2017a) Case Study of a highly automated Layout Analysis and OCR of an
incunabulum:'Der Heiligen Leben'(1488). In: Proceedings of the 2nd International
Conference on Digital Access to Textual Cultural Heritage. ACM, pp. 155-160.

REUL, C., et al. (2018a) Improving OCR Accuracy on Early Printed Books by combining
Pretraining, Voting, and Active Learning. JLCL: Special Issue on Automatic Text and
Layout Recognition, 33 (1), 3-24.

REUL, C., et al. (2018b) Improving OCR Accuracy on Early Printed Books by utilizing Cross
Fold Training and Voting. In: 2018 13th IAPR International Workshop on Document
Analysis Systems (DAS). IEEE, pp. 423-428.

REUL, C., et al. (2017b) Transfer Learning for OCRopus Model Training on Early Printed
Books. Journal for Library Culture, 5 (1), 38-51.

11

SPRINGMANN, U. and LÜDELING, A. (2017) OCR of historical printings with an application
to building diachronic corpora: A case study using the RIDGES herbal corpus.
Digital Humanities Quarterly, 11 (2).

SRIVASTAVA, N., et al. (2014) Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15 (1), 1929-1958.

WICK, C., et al. (2018) Comparison of OCR Accuracy on Early Printed Books using the Open
Source Engines Calamari and OCRopus. JLCL: Special Issue on Automatic Text and
Layout Recognition, 33 (1), 79-96.

WIEGAND, F., et al. (2018) Recherchieren, Arbeiten und Publizieren im Deutschen
Textarchiv: ein Praxisbericht. Zeitschrift für germanistische Linguistik, 46 (1), 147-
161.

Appendix A. Network Architecture Building Blocks
The task of the DNN and its decoder is to process the image of a segmented text line and to output

simple text. This sequence to sequence task is trained by the CTC algorithm published by Graves

et al. (2006) that allows to predict shorter but arbitrary label sequences out of an input sequence

that is the line image regarded as sequence. Hereby, the network outputs a probability distribu-

tion for each possible character in the alphabet for each horizontal pixel position of the line. Thus,

an image with size ℎ × 𝑤 with a given alphabet size of |𝐿| will result in a matrix of shape 𝑃(𝑥, 𝑙) ∈

ℝ𝑤×|𝐿| with 𝑃(𝑥, 𝑙) being a probability distribution for all 𝑥. Since the network needs to see several

slices in width to be certain about a single character, most of the time it does not yet know what

to predict. Hence, the CTC-algorithm adds a blank label to the alphabet that is ignored by the de-

coder but allows the network to make empty or uncertain predictions with a high probability. In

fact, the used greedy decoder that chooses the character with the highest probability at each po-

sition 𝑥 mostly predicts blank labels, and only with one or two pixel widths the actual character is

recognized. Afterwards, the final decoding result is received by unifying neighbouring predictions

of the same characters and removing all blank labels. For example the sentence 𝐴𝐴 − −𝐵 − −𝐶𝐴 −

−𝐴 − of length 𝑤 is reduced to 𝐴𝐵𝐶𝐴𝐴.

The network is trained by the CTC-Loss-Function that basically computes the probability of the

GT label sequence given the probability output of the network. This probability is computed by

summing up all possible paths through the probability matrix P that yield the GT using an efficient

forward backward algorithm. Fortunately, this computation can be derived to receive the gradient

that is required for the learning algorithm.

The supported network architectures of Calamari are CNN-LSTM-Hybrids that act on a full line in

one step. CNNs are widely used in image processing because they are designed to detect meaning-

ful features (e.g. curves, circles, lines, or corners) that can be located anywhere in an image. These

features are processed afterwards by a (bidirectional) LSTM based recurrent network to compute

the probability matrix 𝑃. Max-Pooling is a common technique in CNNs to reduce the computation

effort and keep only the most important features. In general image processing settings pooling is

applied both in vertical and horizontal direction. This means that the processed lines get short-

ened. Thus, it is important that the final layer of the CNN in the full network has an image width,

that is long enough to produce the full label sequence. For example, if the GT has a length of 40

characters, a minimum of 80 predictions are required to allow for a blank prediction between any

pair of adjacent characters. Thus, if two 2 × 2 pooling layers are used in the CNN the width of the

image lines should be at least 𝑤 = 2 ⋅ 2 ⋅ 80px = 320px.

12

Appendix B. Training hyperparameters
The default network consists of two pairs of convolution and pooling layers with a ReLU-Activa-

tion function, a following bidirectional LSTM layer, and an output layer which predicts probabili-

ties for the alphabet. Both convolution layers have a kernel size of 3 × 3 with zero padding of one

pixel. The first layer has 64 filters, the second layer 128 filters. The pooling layers implement Max-

Pooling with a kernel size and stride of 2 × 2. Each LSTM layer (forwards and backwards) has 200

hidden states that are concatenated to serve as input for the final output layer. During training we

apply dropout (Srivastava et al., 2014) with a rate of 0.5 to the concatenated LSTM output to pre-

vent overfitting. The loss is computed by the CTC-Algorithm given the output layer’s predictions

and the GT label sequence.

Calamari uses Adam (Kingma and Ba, 2014) as standard solver with a learning rate of 0.001. To

tackle the exploding gradient problem of the LSTMs we implement gradient clipping on the global

norm of all gradients as recommended by Pascanu et al. (2013).

Lyrics Recognition and Syllable Assignment
of Medieval Manuscripts

Christoph Wick
Chair for AI and Applied Computer Science

University of Würzburg
Würzburg, Germany

christoph.wick@informatik.uni-wuerzburg.de

Frank Puppe
Chair for AI and Applied Computer Science

University of Würzburg
Würzburg, Germany

frank.puppe@uni-wuerzburg.de

Abstract—This paper examines the automatic transcription
of lyrics of Medieval manuscripts by applying recent develop-
ments in the area of Automatic Text Recognition (ATR). We
evaluate the performance of a CNN/LSTM-network on five
different manuscripts dating from the 12th to 16th century
and examine the impact of two different line segmentation
approaches: Using an accurate manual segmentation yielded
an Character Error Rate (CER) of up to 6.7% whereas 8.2%
were reached on a fully automatic one. Furthermore, we propose
an algorithm for the assignments of syllables to their respective
neume by finding valid matches based on the positional output
of the ATR. Depending on the ATR accuracy, an F1-score of
over 99% was obtained.

Index Terms—lyrics recognition, Medieval manuscripts, syl-
lable assignment.

I. Introduction
In 2004, George stated that “lyric recognition is of-

ten considered secondary to Optical Music Recognition
(OMR)”, however, it “cannot be isolated from the music,
especially in the final representation stage” [8]. Unfortu-
nately, Georges only “consider[ed] some solutions to the
outstanding difficulties in lyrics recognition”. Still today,
ATR in OMR has been barely researched (see Section
II), but the overwhelming success of Deep Learning also
in the area of printed or Handwritten Text Recognition
(HTR) promises highly performant solutions. This paper
focuses on the automatic transcription of lyrics of Medieval
music manuscripts written in the 13th to 16th century (see
Figure 1 for an exemplary page) which is an important
step of the complete transcription of the notated music.
The music in this epoch is written in neume notations
which are predecessors of our currently used Common
Western Music Notation (CWMN). A neume originally
arises from a single stroke that depicts a small piece of
melodic motion. Figure 2 shows exemplarily the target
transcription of a staff into CWMN including the syllables
of the lyrics.

For the transcription of lyrics, we apply the open-source
engine Calamari [17], originally developed for ATR of early
printed books. Calamari applies a line-based recogniser
based on a CNN/LSTM-network trained with the CTC-
Loss-function. While the variance of handwritings is in
general large, the handwritings of the manuscripts in

Fig. 1. Example page of the Pa 14819 dataset written in so-called
square notation.

Fig. 2. The upper image shows the stave with its corresponding
lyrics. The lower image visualises the full transcription of the music.
This paper only focuses the lyrics recognition and the assignments
of syllables and neumes of a line. Syllables of the same word are
separated by a hyphen “-”. Each syllable is centered below the first
note of its respective neume.

our datasets are very clean and uniform which is why
a comparison to early prints is sensible. A fundamental
problem for any ATR is the accurate segmentation of
lines. In music manuscripts, a mayor problem is text
that is written very narrowly to or even overlapping with
staves. This paper evaluates two different segmentation
approaches and their impact on the CER: First, an
accurate segmentation which cleanly cuts out the lyrics
lines which must be performed manually. Second, an
approximated algorithm which extracts the space between
two priorly detected staves. Furthermore, we propose a
simple algorithm to match syllables to their respective
neumes based on the positional information of the ATR.

The remainder of the paper is structured as follows:
First, we present related work dealing with lyrics seg-
mentation and ATR of lyrics. Next, we introduce the
five different datasets used for evaluation. Then, after
describing the ATR and syllable assignment algorithms
in more detail, we evaluate and discuss the results. We
conclude with a discussion of the overall results and by
giving an outlook of future work.

II. Related Work
There are a few works, that solely target the extraction

of lyrics using traditional methods: Dalitz et al. [5] detect
the baseline of text using a vertical projection and then
define all Connected Components (CCs) touching that line
as lyrics. Burgoyne et al. [2] first reconstruct staff lines
and then remove staffs to obtain the lyrics as remainder.
Dinh et al. [7] also use reconstructed staves to first
obtain possible region candidates for lyric regions and
then extract actual lines based on block division and run-
lengths. Calvo-Zaragoza et al. [3] extract a text layer of an
image as part of their CNN-based approach that classifies
each pixel into the classes background, symbol, staff line,
and text.

Several further works apply ATR to the extracted text,
or transform the task to a text alignment problem if
the transcripts are already available: Hankinson et al. [9]
include OCRropy [1] and a pretrained model in their
workflow to handle the actual recognition of lyrics on the
Liber Usualis [4]. Even with a post-ATR correction, the
erroneous results were sobering and could thus only serve
as a proof-of-concept. On Medieval manuscripts, a very
recent work of de Reuse and Fujinaga [6] aims to align
existing transcripts, which are often available, with the
result of an ATR system. To train OCRopy, two different
datasets, one with 2,302 (Salzinnes, Gothic), and one with
1,140 words (St. Gallen, Carolingian), which comprise lyric
lines and their transcripts were manually annotated. The
achieved an CERs of 12,7% and 12,5% respectively. The
predicted (erroneous) text is then aligned to the correct
transcript of the texts using the Needleman-Wunsch al-
gorithm [11]. Text that has no match in the prediction is
dropped because it likely belongs to paratexts. Afterwards,
the matching is split into syllables and their bounding box

Fig. 3. Example lines for the five used datasets (see Table I,
same order). Blue boxes mark abbreviations that are diplomatically
transcribed in Salzinnes and St. Gallen. The green box shows an
extreme case where a whole “word” is an abbreviation. The orange
box highlights editorial changes such as the replacement of “ſ” to
“s”. The two images lines of Pa 15819 show the same line which was
segmented accurately or automatically, respectively, which is the last
line is truncated. Below each line, the GT is given.

size is computed based on the positional information of
the ATR output. A syllable is correctly matched if the
bounding box overlaps with the Ground Truth (GT) with
an Intersection over Union (IU) of at least 50%. The final
accuracy ranges from 78.6% to 92.9% depending on the
material. This approach highly differs from the aim of our
proposed syllable assignment algorithm, because we are
not interested in the correct position of a syllable related
to the manuscript, but instead in the correct semantic
relation to a neume by utilising the positional information.

III. Datasets
To evaluate the lyrics recognition, we collected five

datasets dating from the 12th to the 16th century. The
Salzinnes1 (42 pages) and St. Gallen (five pages of 3882

and two pages of 3903) datasets are available at the Cantus
manuscript database [10]. The prepared GT was kindly
shared by de Reuse and Fujinaga [6]. The Assisi dataset
accessible at the Italian Digital Library4 which dates in
the 13th to 14th century comprises five pages of GT. The
New York dataset comprises 5 pages from the so-called
“Gänsebuch” which is available at the Pierpont Morgan
Library5 and was created in the early 16th century. The
largest dataset consists of 90 pages of the manuscript
Pa 15819 available at the Bibliothèque nationale de
France6 and originates in the 12th-13th century.

Table I provides an overview of the five datasets, exam-
ple text lines are shown in Figure 3. The three datasets
Assisi, New York, and Pa 15819 are fully annotated, that
is, they comprise information about staff lines, layout-
segmentation, music symbols, lyrics, and connections of

1https://cantus.simssa.ca/manuscript/133
2www.e-codices.unifr.ch/en/csg/0388
3www.e-codices.unifr.ch/en/csg/0390
4http://www.internetculturale.it/
5http://geesebook.ab-c.nl/
6https://gallica.bnf.fr/ark:/12148/btv1b84229841/

TABLE I
Overview and properties of the five available datasets. Example lines are shown in Figure 3.

Book Cent. Pages Lines Line Segmentation Transcription Syllables Staff lines & Symbols

Salzinnes 16th 42 706 Accurate Diplomatic No No
St. Gallen 14th 8 173 Accurate Diplomatic No No
Assisi 13th to 14th 5 50 Rough Editorial Yes Yes
New York 16th 5 45 Rough Editorial Yes Yes
Pa 15819 12th to 13th 90 964 Accurate and Rough Editorial Yes Yes

syllables and neumes. Pa 15619 as largest dataset will
be used to evaluate the proposed syllable assignment
algorithm.

The extraction of text lines of the manuscripts Assisi,
New York, and Pa 15819 relies on two different methods:
The accurate segmentation includes a manual postprocess-
ing to cleanly cut off all non text such as music symbols.
The rough segmentation is computed fully automatically
. The area between two detected and corrected staff lines
grouped in to staves (see [16]) define the bounds of a
lyrics line which is then extracted. The height of last line
is computed based on the average of all other ones. This
segmentation is faster, but sometimes produces cropped
lines containing noise. In both cases, the text lines are
dewarped based on the surrounding staff lines. The dataset
Pa 14815 is available with an accurate and a coarse
segmentation (see Figure 3) which is why this book will
be used to measure the impact of the segmentation on the
performance (see Section V-C).

Furthermore, the transcription rules for the GT-
production varies among the datasets. Salzinnes and
St. Gallen are transcribed diplomatically, that is, for
example, abbreviations are not resolved, such as “dns”
and “dominus” or “Xpo” and “Christo”. In contrast,
abbreviations are resolved in the other three datasets
which we refer to as editorial transcription. An editorial
transcription is expected to have a negative impact on the
performance because, instead of one character for a glyph,
two or even more characters must be predicted. However,
resolving abbreviations is required to obtain all syllables
for the subsequent step of the syllable assignment.

IV. Methods
For the HTR of lyrics, we rely on Calamari7 [17] which

we, as already stated, expect to extend flawlessly to
HTR on our kind of material since the handwritings are
very clean and uniform. Calamari provides a configurable
CNN/LSTM-network architecture trained with the CTC-
Loss-Function. An internal training mechanism allows to
automatically train several (the default is five) models in
parallel whose results are then combined by a confidence
voter (see [12]). We used the default parameters, but
applied data augmentation with a factor of 10. To speed
up training and to obtain robust voters, we selected five

7https://github.com/Calamari-OCR/calamari

Fig. 4. Steps of the syllable assignment algorithm. The first line
shows the staff containing the text line (green box) which serves as
input for an HTR whose result is rendered below the known lyrics.
The next line highlights the differences of prediction and its true text
(missing characters in green, additional ones in red, substitutions in
blue), and the alignment of syllables and predicted characters based
on the changes. The last line puts the syllables containing the true
text to the positions based on the locations of the aligned predicted
characters. The orange arrows indicate the centre and the closest
neume. Conflicts are resolved afterwards (dashed green arrow).

different pretrained models8 as initial weights for each
of five models: Two trained on historical Antiqua, two on
historical Fraktur, and one on 19th century Fraktur. Note,
that these models were trained on printed books which is
why their default performances on our material are poor.
Experiments showed a CER of 60% and higher.

The steps of the proposed syllable assignment algorithm
are shown in Figure 4. The input is the corrected editorial
text including hyphenation9 (step 2) and the ATR output
including positional information (step 3). An alignment
(step 4) of prediction and GT yields proposals for each
syllable by using the predicted location of the middle letter
of a syllable. Syllables without a match are interpolated.
Each syllable is then assigned to the closest neume. Con-
flicts are resolved by attempting shifts of the connections
to the next or previous neume (step 5).

8https://github.com/Calamari-OCR/calamari_models
9Hyphenation can be performed automatically using a Latin

spelling and hyphenation dictionary

TABLE II
CER of book-specific (same) and cross-book (cross) models. We
compare our proposed method using Calamari to the results of

de Reuse and Fujinaga [6] who rely on OCRopus.

Book Ntrain proposed de Reuse
Same Cross Same

Salzinnes 564 9.6% 27.8% 12.7%
St. Gallen 138 9.0% 49.0% 12.5%
Assisi 40 29.7% 34.9% −
New York 36 18.3% 24.9% −
Pa 15819 771 6.7% 27.0% −

V. Evaluation of the Text Recognition
In this section, we present our evaluation results of the

lyrics recognition and the syllable assignment. 20% of the
available data were extracted randomly for evaluation, the
remaining instances serve as training material.

A. HTR Accuracy on Different Datasets
In our first experiments, we evaluated the performance

of Calamari on the extracted text lines of the datasets
(see Table II) whereby all available training lines and
the exact line segmentation were used, where possible.
First of all, we trained and evaluated each model on the
same book. As expected, the number of training instances
have a high impact on the performance which we will
show in more detail in Section V-C: The two books
with fewer than 50 lines in total performed worst with
a CER of up to 30%. The performance on Assisi was
significantly worse even though the number of training
lines was higher compared to New York most likely due to
the more denser and uncleaner writing. Compared to the
results of de Reuse and Fujinaga [6], Calamari performed
strictly better on both the Salzinnes and the St. Gallen
datasets. This was expected because the improvements
of Calamari over OCRopy had already been shown in
[15]. Note, however, that the dataset splitting of de Reuse
and Fujinaga is unknown which is why the values are
only partially comparable. As expected, Pa 15819 which
comprises the highest number of Ntrain yielded the best
results with a CER of 6.7%.

Since it is very tedious to create book-specific GT
it is sensible to evaluate the CER of a model that is
trained on all training data, but the target book. The
results in Table II (cross) clearly show that at the current
early stage of lyrics recognition on Medieval manuscripts
with only very few lines of GT, it is impossible to train
mixed-models that apply for many different books and
handwritings, in particular since the amount of GT is
too small, yet. Aggravating circumstances were that the
lines were cropped using different methods having a strong
impact on the performance.

B. Error Analysis
Table III lists the ten most common errors on the

Pa 14819 dataset when training on all available lines.

TABLE III
The ten most common errors on the Pa 14819 dataset. Both the

count (Cnt.) of occurrences and their relative (Rel.) contribution to
the total CER are shown.

True Pred. Cnt. Rel.
i 28 5.69%
␣ 24 4.88%
s ſ 23 4.67%
u 17 3.46%

␣ 9 1.83%
c t 7 1.42%

i 7 1.42%
m 6 1.22%

u 5 1.02%
n m 5 1.02%

TABLE IV
Impact of a precise or an automatic line segmentation on the CER
using the dataset Pa 15819 and a varying number of training lines

Ntrain.

Regions
Ntrain Exact Simple

50 13.5% 14.0%
100 10.2% 12.4%
200 8.5% 10.3%
400 7.1% 8.9%
771 6.7% 8.2%

Missing letters, especially “i”, white spaces “␣”, but also
“u” or “n” amounted for the the largest part of the most
common errors (above 15% in total). A high number
of errors related to spaces are in general expected in
lyrics recognition because words can be written very close
and syllables might be written with a space between.
Confusions of “s” and the Latin long “s” (“ſ”) indicate
inconsistencies or editorial adjustments of the GT. Nat-
urally, another source of errors are confusions of similar
looking characters such as “c” and “t” or “n” and “m”.
Incorporation of a dictionary should reduce the number
of errors not only due to the correction of insertions,
deletions, or confusions of characters, but also because
missing or additional spaces can be corrected.

C. Impact of the Line Segmentation
In this section, we compare the automatic to the manual

line segmentation. Table IV lists the results obtained
when training on a different number of instances Ntrain.
As expected, the precisely cut out lines yielded a lower
CER than using the simple automatically extracted lyric
lines. To achieve a comparable performance, roughly about
twice the number of Ntrain were required. The CER on
simple text lines was strictly higher because sometimes
letters at the beginning or end of a line are missing and
capital letters are often cropped. In practice, the manual
segmentation of a text line can be extremely cumbersome
especially if they touch the music region or a swash capital.
Therefore, instead, it might be faster to correct the slightly
worse ATR output by saving the complete segmentation

TABLE V
F1-score of the syllable assignment using the dataset Pa 15819.
Positional information was obtained by models with a different

CER on the evaluation data. The value obtained with Ntrain = 0
only uses the pretrained models without further training.

Ntrain Baseline 0 50 100 200 All
CER − 41.5% 13.5% 10.2% 8.5% 6.7%
F1 87.5% 90.7% 98.8% 99.0% 99.2% 99.2%

time. Furthermore, if a large collection of ecclesial texts
are already present, the performance might be already
sufficient to search for the corresponding lyrics which then
can be directly adpoted.

VI. Evaluation of the Syllable Assignment
In this section, we evaluate the proposed syllable assign-

ment algorithm which we compare to a baseline algorithm
that assigns a syllable one after the other to the next
neume in a line. Thus, if the first connection of syllable
fails, all subsequent ones are also wrong. Note, that this
simple baseline is valid in many manuscripts that comprise
music with exactly one neume per syllable. To measure the
performance, we counted the number of correct, missing,
or additional connections yielding a precision, recall, and
finally an F1-score. For evaluation, we chose the Pa 15819
dataset because it is the largest. Table V lists the results
of the baseline, using pretrained models (Ntrain = 0) only,
and taking the trained ATR models with an increasing
performance. Even without book-specific training, the
positional information of the pretrained models with a
rather high CER of 41.5% is sufficient to outperform the
rather high baseline model. The results can be significantly
improved if the models perform better. A model with a
CER of about 10% was already sufficient to obtain an F1-
score of 99.0%. An even better accuracy (CER ≤ 8.5%)
led to a stagnation of the performance. The recall was
slightly higher than the precision (e.g., 99.2% vs 98.4% for
50 lines), because the algorithm enforces that all available
syllables must be assigned. However, for example, there
are some syllables in the GT that are not linked with a
neume at all, such as the word “amen”. The algorithm
does currently not allow for these special cases which is
why false positives are generated.

Figure 5 shows the histogram of the offset of all
wrongly placed syllables to their correct neume within
a line. Note that errors related to syllables that were
not assigned in the GT (e.g., the word “amen”) were
not considered here. The errors of the baseline model are
biased to negative values because by construction syllables
can only be predicted too early. The pretrained models
(Ntrain = 0) nicely show a Gaussian scatter with the
centre at zero, which is the expected error distribution
of the algorithm. The model with Ntrain = 50 mostly has
errors with a distance of ±1. If using the best model,
errors occurred only due to syllables that are shifted to

Fig. 5. Histogram of the offset of syllables to their correct neume.
Correctly connected syllables with a distance of zero are omitted.
The bar for Ntrain = All and Ntrain = 50 is drawn above the one for
Ntrain = 0.

the right with a maximum distance of +1. This shows, that
the network which was trained segmentation-free reliably
learned positional information about the characters also
if only a few lines of GT were available.

VII. Conclusion
Due to the evaluation of the syllable assignment algo-

rithm, it seems sensible to apply the simpler automatic
layout analysis since there is only a minor impact on
the ATR performance, but almost none on the syllable
assignment. Thus, it is beneficial to save time during
the line segmentation. Furthermore, many Medieval music
scores set the same piece of lyrics to music. Therefore, it
is sensible to build up a database comprising all ecclesial
texts. A text matching algorithm can then search for the
lyrics of the material at hand. Using the automatic layout
should also be sufficient in this case.

If the text is unknown, the ATR accuracy can be
improved by incorporating a dictionary and possibly a
language model such as n-grams which can be constructed
based on the database. A possible problem of the line-
based approach will occur if one word is hyphenated
into two lines. To solve this, the decoding applying a
CTC-Beam-Search-Decoder (see e.g. [13]) could act on
the continuous prediction of a whole paragraph, whereby
the positional information is then used to determine the
actual line of a syllable.

Nevertheless, an automatic HTR of Medieval lyrics is
expected to require manual corrections in the near future.
This correction and thus the production of GT must
be very comfortable to quickly obtain highly performant
models which can be iteratively improved. Currently the
overlay-editor of our framework OMMR4all [14] which tar-
gets the full pipeline of the transcription of Medieval music
provides a fundamental component for text correction.
We plan to improve this by creating a view specifically
designed for the GT-production which highlights letters

with a low confidence and provides proposals for correc-
tions.

References
[1] Thomas Breuel. The OCRopus open source OCR

system. In Document Recognition and Retrieval XV,
volume 6815, page 68150F. International Society for
Optics and Photonics, 2008.

[2] John Ashley Burgoyne, Yue Ouyang, Tristan Himmel-
man, Johanna Devaney, Laurent Pugin, and Ichiro
Fujinaga. Lyric Extraction and Recognition on
Digital Images of Early Music Sources. In 10th
International Society for Music Information Retrieval
Conference, pages 723–727, Kobe, Japan, 2009.

[3] Jorge Calvo-Zaragoza, Francisco J. Castellanos,
Gabriel Vigliensoni, and Ichiro Fujinaga. Deep Neural
Networks for Document Processing of Music Score
Images. Applied Sciences, 8(5), 2018.

[4] Catholic Church. The Liber Usualis with introduction
and rubrics in English. Desclée, Tournai, Belgium,
1963.

[5] Christoph Dalitz, Georgios K. Michalakis, and Chris-
tine Pranzas. Optical recognition of psaltic Byzantine
chant notation. International Journal of Document
Analysis and Recognition, 11(3):143–158, 2008.

[6] Timothy de Reuse and Ichiro Fujinaga. Robust Tran-
script Alignment on Medieval Chant Manuscripts.
In 2nd International Workshop on Reading Music
Systems, pages 21–26, Delft, The Netherlands, 2019.

[7] Cong Minh Dinh, Hyung-Jeong Yang, Guee-Sang
Lee, and Soo-Hyung Kim. Fast lyric area extraction
from images of printed Korean music scores. IEICE
Transactions on Information and Systems, E99D(6):
1576–1584, 2016.

[8] Susan E. George. Lyric Recognition and Christian
Music. In Visual Perception of Music Notation: On-
Line and Off Line Recognition, pages 198–226. IRM
Press, Hershey, PA, 2004.

[9] Andrew Hankinson, John Ashley Burgoyne, Gabriel
Vigliensoni, Alastair Porter, Jessica Thompson,
Wendy Liu, Remi Chiu, and Ichiro Fujinaga. Dig-
ital Document Image Retrieval Using Optical Music
Recognition. In 13th International Society for Music
Information Retrieval Conference, pages 577–582,
2012.

[10] Debra Lacoste, J Kolácek, and KE Helsen. Cantus:
A database for latin ecclesiastical chant, 2011. URL
http://cantus.uwaterloo.ca/.

[11] Saul B. Needleman and Christian D. Wunsch. A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal
of molecular biology, 48(3):443–453, 1970.

[12] Christian Reul, Uwe Springmann, Christoph Wick,
and Frank Puppe. Improving OCR Accuracy on Early
Printed Books by utilizing Cross Fold Training and
Voting. In 2018 13th IAPR International Workshop

on Document Analysis Systems (DAS), pages 423–
428. IEEE, 2018.

[13] H. Scheidl, S. Fiel, and R. Sablatnig. Word Beam
Search: A Connectionist Temporal Classification De-
coding Algorithm. In 16th International Conference
on Frontiers in Handwriting Recognition, pages 253–
258. IEEE, 2018.

[14] Christoph Wick and Frank Puppe. OMMR4all —
a Semiautomatic Online Editor for Medieval Music
Notations. In Jorge Calvo-Zaragoza and Alexan-
der Pacha, editors, 2nd International Workshop on
Reading Music Systems, pages 31–34, Delft, The
Netherlands, 2019. URL https://sites.google.com/
view/worms2019/proceedings.

[15] Christoph Wick, Christian Reul, and Frank Puppe.
Comparison of OCR Accuracy on Early Printed
Books using the Open Source Engines Calamari and
OCRopus. JLCL: Special Issue on Automatic Text
and Layout Recognition, 33(1):79–96, 2018.

[16] Christoph Wick, Alexander Hartelt, and Frank
Puppe. Staff, Symbol and Melody Detection of
Medieval Manuscripts Written in Square Notation
Using Deep Fully Convolutional Networks. Applied
Sciences, 9(13):2646, 2019.

[17] Christoph Wick, Christian Reul, and Frank Puppe.
Calamari - A High-Performance Tensorflow-based
Deep Learning Package for Optical Character Recog-
nition. Digital Humanities Quarterly (forthcoming),
2019.

OMMR4all – a Semiautomatic Online Editor
for Medieval Music Notations

Christoph Wick
Chair for AI and Applied Computer Science

University of Würzburg
Würzburg, Germany

christoph.wick@uni-wuerzburg.de

Frank Puppe
Chair for AI and Applied Computer Science

University of Würzburg
Würzburg, Germany

frank.puppe@uni-wuerzburg.de

Abstract—This paper presents OMMR4all, an online optical
music recognition (OMR) and correction framework for Medieval
neume notations. On the one hand it provides OMR algorithms
to automatically capture staff lines, layout, and music symbols
which use state-of-the-art Deep Learning models. On the other
hand it provides a web application including an overlay editor
to correct errors at any stage during the automatic processing.
Since the notation styles between books can show a high variance,
the default models provided by OMMR4all might not be well-
suited for the actual material at hand. Therefore, new models
can be trained based on manually corrected material to improve
the automatic recognition of further pages. Experiments show,
that only a few pages (about 5-10) are required to obtain a
robust model, however an iterative training approach steadily
improves the models by adding newly annotated scores. The goal
of OMMR4all is to provide an easy to use tool targeting music
scientists that aim to build up large-scale collections of encoded
historical material by minimising the human effort.

Index Terms—optical music recognition, web app, medieval
manuscripts, neume notation, user interface

I. INTRODUCTION

A still present desideratum for music research especially
regarding historical manuscripts is a library storing machine-
readable information, for example MEI, of the vast amount of
available material. This digital form of music can then be used
for large-scale music research such as similarity detection of
melodies or comparisons of different version of the same piece
of music. However, the encoding of the historical manuscripts
is quite cumbersome because a lot of human effort is required.
The current rise of artificial intelligence is a new hope to
solve this task automatically, however, the current algorithms
for optical music recognition (OMR) are not perfect which
is why human knowledge and work is yet required for the
transcription process. Therefore, the main goal of OMR is to
minimise to human effort.

This paper presents our novel software Optical Medieval
Music Recognition For All1 (OMMR4all) which tackles the
transcription of Medieval manuscripts that are written in dif-
ferent neume notations such as the square notation. OMMR4all
implements a semi-automatic workflow starting from a single
scanned page and outputs the encoded music for example
as MEI. To process the music, we embed existing tools for

1https://ommr4all.informatik.uni-wuerzburg.de

Fig. 1. Rendered example transcription which is encoded in MEI. A neume
consisting of looped note components (NC) is visualised by a slur (a), each
new neume starts with a large space (b), gapped NCs are notated with a small
space (c).

OMR combined with an overlay editor to correct errors.
Neumes are represented according to the current MEI standard
(4.0.1) which stores syllables with their corresponding neumes
that are denoted as single note components (NCs). Each NC
stores its connection, gapped or looped, to its predecessor. An
example transcript of a single line can be seen in Figure 1
which is manually rendered in a modern style. The aim of our
software is to capture all information about the melody and
its corresponding lyrics. Additionally, we store all positional
information of each single symbol which can be used for a
lookup in the original manuscript. This also allows to train
new models for notation styles that are not known yet. The
required ground truth can be created by utilising the overlay
editor.

II. RELATED WORK

In [5] Vigliensoni et al. present an OMR workflow em-
bedded in the SIMSSA project [2] which targets Medieval
and Renaissance music. The main stages are the analysis of
the document, the reconstruction and encoding of its music,
and finally the generation and correction of the score. Their
document analysis relies on pixel-wise labelling which is
automatically generated by the convolutional neuronal network
presented in [1] and can manually be corrected by Pixel.js
[4]. After a succeeding symbol classification based on the
resulting layers, the music can be reconstructed by finding
the pitch of neumes and the music is saved as MEI. Finally, a

Proceedings of the 2nd International Workshop on Reading Music Systems, Delft, 2019

31

superimposition of the original image and the OMR are shown
in the overlay editor Neon2 [3] which allows for a manual
post-correction. Their workflow presents a promising approach
of a semi-supervised OMR task on historical manuscripts.
It shares many similarities with OMMR4all but also has its
limitations. OMMR4all does not rely on a pixel-wise labelling
of the original document which can be quite cumbersome
in many cases if it is manually corrected. Also it cannot be
guaranteed that a perfect labelling yields substantially better
results in proceeding steps. In contrast, the output of our
OMR approaches are polygons (e.g. staff lines) or individual
symbols which can be easily corrected in the provided overlay
editor. The idea of Neon.js is an overlay editor that allows
humans to easily inspect differences of the OMR results and
the underlied original image. Our editor picks up this idea
but solves a fundamental shortcoming of the current version2:
Neon.js expects straight staff lines with a fixed line distance
for each staff, which is rarely the case in actual manuscripts.
The major problem is that in various staves the overlayed staff
lines mismatch partially more than one line which introduces
high problems for an easy readability and comparison. The
staff line detection algorithm of OMMR4all allows to draw
exact staves whereby the staff lines and all of its symbols can
be drawn at its actual positions in the manuscript.

III. OMMR4ALL

A. Workflow

The proposed workflow of OMMR4all is shown in Figure
2. The expected input is a high-resolution scan of a single
page and the prepared lyrics. The lyrics must be written in a
text file (e.g. in Word or a simple text editor) and use a “-” to
separate syllables and “—” to denote staff breaks. Line breaks
“\n” or multiple white-spaces can be used at will to enable a
better readability of the lyrics in plain text.

The image processing starts with an image deskewing and
binarisation, afterwards staff lines and staves are detected. The
staves help to define and detect the layout in the next step.
Then, the symbol detection to identify neumes or clefs is
applied. Finally, the syllables of the prepared text are assigned
to neumes and the encoding can be exported as MEI.

At each step of the workflow a human can interfere to
guarantee a correct input for the subsequent steps. But also,
after an application of the complete workflow all elements can
be changed. This is enabled by the integrated overlay editor
which will be briefly introduced in the next sections among a
specification of the individual steps of the workflow.

1) Preprocessing: The expected input of the OMMR4all-
workflow is a single sheet of music, a double page must
be manually split. The preprocessing step applies OCRopus’3

binarisation and deskewing algorithms to obtain an image
with on average horizontally oriented staff lines and creates a
gray-scale and binarised version of the deskewed page. These
images serve as input for the automatic algorithms.

2https://ddmal.music.mcgill.ca/Neon/ (accessed August 2019)
3https://github.com/tmbdev/ocropy

2) Staff line detection: The next step is to identify staff lines
and their corresponding staves. Here, we apply our algorithm
presented in [6] which uses a Fully Convolutional Network
(FCN) to identify pixels belonging to a staff line The pixels
are then combined to a polyline which represents a single staff
line. Based on their relative distances the detected staff lines
are combined into staves and pruned by taking only staves
that match the allowed number of staff lines per staff in the
material at hand (e.g. four). In [6], we show that the algorithm
detects approximately 99% of all staves on manuscripts written
in square notation and is robust to new layouts.

3) Layout analysis: A further step is the layout analysis
aiming to segment the input image into regions representing
different types of text such as lyrics, or denoting the actual
boundaries of a staff including all adjacent notes or clefs. For
the current workflow, that targets solely the transcription of
the music and its lyrics, an accurate layout analysis is optional
since no algorithm currently expects exact boundaries of the
respective elements. Instead, OMMR4all assumes bounding
boxes each containing all staff lines of each respective single
staff. The area between two staves defines the rough location
for bounding boxes for lyrics. Despite the fact that an accurate
layout analysis is optional, OMMR4all offers an automatic
algorithm that can detect text (for example lyrics or page-
numbers), music, or drop capital regions based on the relative
coordinates of connected components to the detected staves.
Depending on the material at hand this simple algorithm yields
reliable results.

4) Symbol detection: The symbol detection which is based
on another FCN (see [6]) acts on a single staff, and locates and
identifies individual NCs and their connections, accidentals,
or clefs. The FCN produces a pixel-wise label map for
each symbol whose connected components represent single
symbols. Our symbol detection presented in [6] shows that
the transcription of a line yields an accuracy of about 87%
on manuscripts written in square notation with most common
errors being missing or additional notes. The current algorithm
does not detect rare symbols (compared to notes or clefs) such
as accidentals or liquescents which hence must be manually
inserted.

5) Syllable assignment: The last step is to assign the
prepared text to individual neumes. The automatic syllable
assignment algorithm matches neumes and syllables one after
the other in reading direction. Therefore, the algorithm is only
successful if there is one neume per syllable. A completely
new algorithm which includes Calamari [7] for an Optical
Character Recognition (OCR) of the actual depicted text is
currently in progress (see section V).

6) Iterative training approach: OMMR4all allows to train
individual models used in the staff line and symbol detection
to tackle a specific still unknown notation style of a book.
Training requires a few pages of ground truth which has to be
created based on similar models.

In general, the staff line models are expected to generalise
well among different notation styles since lines are very
similar across many notations. The symbol notations show a

Proceedings of the 2nd International Workshop on Reading Music Systems, Delft, 2019

32

Fig. 2. The proposed workflow of OMMR4all. Documents serving as input or output are shown in gray. The steps of our workflow are shown in blue.
Human (inter)actions are drawn in green. The orange elements show the storage for the annotated pages or the trained models. Dashed arrows indicate that
these algorithm do currently not rely on a model from the repository, however they can be extended to use them in the future.

higher variance, for instance when comparing Gothic or square
notations.

B. Software Architecture

OMMR4all4 is an open source software which implements
a client-server-model based on a REST API including user
authentication. This allows for a low barrier for musicologists
to our software in their research, because no installation is
required, and the web app is fully platform independent.
Furthermore, the heavy computational loads for training of
new models are outsourced to a server that can host expensive
GPUs for a reduction of processing time. Thus, a simple laptop
or desktop PC is sufficient as an access-point to OMMR4all.
Finally, the data is stored centralised which allows a word-
wide access from any internet-ready working place.

1) Server: The backend server of OMMR4all is imple-
mented in Python 3 running Django5. By default the server
provides algorithms for the staff line, layout, symbol and text
analysis as shown in section III-A. To extend existing or to
add new algorithms the server allows an easy extension to
other algorithms for these specific tasks. New algorithms can
be written in Python using an existing algorithm API, but also
an integration of tools or frameworks implemented in different
languages is feasible.

2) Client: The client application is implemented in Type-
Script using Angular6. The web-app is split into several views
allowing to work and process a full book or a single page.
The editor of a single page is an overlay editor providing
tools to manually correct or create annotations. This tool is
presented separately in the next section. The book view allows
to run all algorithms in a fully automatic way for a complete
book which is applicable if appropriate models are already
available. Naturally, the client provides interfaces to create and
upload new books, to download or export the annotations, or
to manage user permissions if several users are working with
the same material.

4https://github.com/ommr4all
5https://www.djangoproject.com/
6https://angular.io/

TABLE I
EVALUATION OF THE TRANSCRIPTION TIMES IN MINUTES. WE LIST THE

NUMBER OF SYMBOLS, THE REQUIRED TIMES FOR CORRECTING THE
STAFF LINES (SL.), SYMBOLS, SYLLABES, AND THE TOTAL TIME WHEN

USING OMMR4all AND COMPUTE THE SPEED-UP (SU) COMPARED TO
MONODI+. ALL VALUES ARE AVERAGES AND RELATIVE TO A PAGE.

Notation #Symb. OMMR4all Monodi SU
SL. Symb. Syll. Tot.

Gothic 158 0.3 2.3 1.8 4.5 5.6 1.3
Square 267 0.6 3.3 2.9 6.9 8.5 1.2

3) Overlay-Editor: Since the automatic tools provided by
OMMR4all are not expected to be perfect, their results must
be manually corrected in an elegant and user friendly way.
The integrated overlay editor tackles this task by providing
a view that superimposes the annotations on the page image.
The editor uses the exact positions of the staff lines or symbols
to enable an easy-to-read way to detect and correct mistakes.
Furthermore, the editor allows to move and edit the pasted
syllables to the correct neumes.

The editor allows to create individual comments regarding
for example disambiguities during the annotation process.
These comments can then be integrated in a critical apparatus.

OMMR4all is designed to be easy to use without a steep
learning curve because the ergonomic editor mainly relies
on mouse interactions for selection, moving, dragging, or
inserting musical symbols. More experienced users can use
short cuts to speed-up the editing process.

IV. EVALUATION

To evaluate the transcription time, we compare OMMR4all
to Monodi+7 which is a sophisticated tool specifically designed
to input plain chant via the keyboard. We chose five pages
written in Gothic or square notation (a page is edited in Figure
3), respectively, and measured and averaged the times to obtain
the transcript consisting of syllables and neumes. The models
used for square notation were trained on 49 pages of ground

7Submitted to this workshop: Eipert et al., Editor Support for Digital
Editions of Medieval Monophonic Music

Proceedings of the 2nd International Workshop on Reading Music Systems, Delft, 2019

33

Fig. 3. Screen-shot of the overlay editor. In this example an simple layout is used: Staves (green), lyrics (red). Individual note components are rendered
as yellow boxes, graphical connections of neumes are drawn as a solid line connecting two notes, while the dashed vertical lines indicate the start of a new
neume. Clefs are drawn in cyan. The syllables of the lyrics are aligned below the corresponding neume within the respective text region. The various buttons
of the tool bar define tools to correct the annotations or to launch the automated tools. Not shown are the reading order and comments.

truth chosen from a different book. To train the Gothic model,
we selected another four pages of the same book. Both tools
allowed to paste the prepared lyrics, therefore, only the NCs
must be corrected or written. Table I shows that we achieved a
speed-up of 1.3 and 1.2. The transcription time using Monodi+
in these experiments is already at its limit because every
NC must be manually created. However, since the achieved
accuracies of the symbol detection are still less than 90%,
it can be expected that if more ground truth of the book at
hand is available, working with OMMR4all will further reduce
the transcription time. Furthermore, an automatic algorithm to
minimise the effort to assign syllables (41% time, syll. / Tot.
in Table I) is missing. Naturally, if the models can achieve
human accuracy, books can be processed fully automatically.
A principal difference of OMMR4all is, that its annotations
yield an inherent explanation component for the origin of each
symbol, which is very useful for example in a critical apparatus
for borderline cases that need to be commented.

V. FUTURE WORK

Despite the many features of the OMMR4all framework
there are many possible improvements or extensions. Some
pending tasks will be presented in this section.

First, several tools and algorithms are planned to tackle the
acquisition and encoding of text. The main problem is that cur-
rently no OCR engine can reliably deal with handwritten text
of the targeted material without specific training. Therefore, in
a first stage, we still rely on prepared text but we try to improve
the automatic mapping of syllables to neumes by inclusion of
the erroneous results of Calamari. Preliminary results showed
that even if the OCR result of a lyrics line contains many
mismatches of characters, the predicted character positions are

mainly correct. Therefore, by aligning the actual syllables of
the pasted text line with the OCR result, a rough estimation
of the actual syllable position is feasible.

Other plans tackle further monophonic notation styles such
as the later mensural notations or even older neume notations
without staff lines. Hereby, the overlay editor requires only
smaller cosmetic changes to store and display the directional
notation, while new algorithms must be integrated or devel-
oped to capture the actual content automatically.

REFERENCES

[1] Jorge Calvo-Zaragoza, Francisco Castellanos, Gabriel Vigliensoni, and
Ichiro Fujinaga. Deep neural networks for document processing of music
score images. Applied Sciences, 8(5):654, 2018.

[2] Ichiro Fujinaga, Andrew Hankinson, and Julie E. Cumming. Introduction
to SIMSSA (Single Interface for Music Score Searching and Analysis).
In Proceedings of the 1st International Workshop on Digital Libraries for
Musicology, DLfM ’14, pages 1–3, New York, NY, USA, 2014. ACM.

[3] Juliette Regimbal, Zoé McLennan, Gabriel Vigliensoni, Andrew Tran,
and Ichiro Fujinaga. Neon2: A Verovio-based square-notation editor. In
Music Encoding Conference, 2019.

[4] Zeyad Saleh, Ké Zhang, Jorge Calvo-Zaragoza, Gabriel Vigliensoni,
and Ichiro Fujinaga. Pixel.js: Web-based pixel classification correction
platform for ground truth creation. In 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), volume 2,
pages 39–40. IEEE, 2017.

[5] Gabriel Vigliensoni, Alex Daigle, Eric Lui, Jorge Calvo-Zaragoza, Juliette
Regimbal, Minh Anh Nguyen, Noah Baxter, Zoe McLennan, and Ichiro
Fujinaga. Overcoming the challenges of optical music recognition of
early music with machine learning. DH 2019, 2019.

[6] Christoph Wick, Alexander Hartelt, and Frank Puppe. Staff, symbol and
melody detection of medieval manuscripts written in square notation using
deep fully convolutional networks. Applied Sciences, 9(13), 2019.

[7] Christoph Wick, Christian Reul, and Frank Puppe. Comparison of OCR
accuracy on early printed books using the open source engines Calamari
and OCRopus. JLCL: Special Issue on Automatic Text and Layout
Recognition, 33(1):79–96, 2018.

Proceedings of the 2nd International Workshop on Reading Music Systems, Delft, 2019

34

Digital Humanities im deutschsprachigen Raum 2020

OMMR4all - ein
semiautomatischer
Online-Editor für
mittelalterliche
Musiknotationen

Wick, Christoph
christoph.wick@uni-wuerzburg.de
Universität Würzburg, Deutschland

Hartelt, Alexander
alexander.hartelt@uni-wuerzburg.de
Universität Würzburg, Deutschland

Puppe, Frank
frank.puppe@uni-wuerzburg.de
Universität Würzburg, Deutschland

Einleitung

Insbesondere für Musikwissenschaftler im Bereich von his-
torischen Manuskripten besteht der Wunsch nach digitalen
Bibliotheken, die die gewaltigen Mengen an Material in ma-
schinenlesbare Form (z. B. MEI) speichern. Die Kodierung der
alten Werke ist jedoch oft sehr mühselig, da großer mensch-
licher Einsatz erforderlich ist. Das Aufkommen von künstli-
cher Intelligenz offenbart hier neue Ansätze, um die Arbeits-
prozesse größtmöglich zu automatisieren, indem Algorithmen
aus dem Bereich der optischen Musikerkennung (OMR) einge-
setzt werden.

Die im Folgenden vorgestellte Software OMMR4all (Optical
Medieval Music Recognition For All) realisiert diesen Ansatz
für mittelalterliche Manuskripte, die in verschiedenen Neu-
mennotationen, z. B. Quadratnotation, geschrieben sind. Der
semi-automatische Workflow erwartet eine einzelne einge-
scannte Seite als Eingabe und erzeugt als Ausgabe die ko-
dierte Musik z. B. als MEI oder in einer graphischen Anzeige.
Hierbei werden verschiedene existierende OMR-Werkzeuge
zur Notenlinien-, Notensystem- und Symbolerkennung einge-
setzt, die mit einem Overlay-Editor zur Korrektur kombiniert
werden. Neumen werden gemäß dem aktuellen MEI-Standard
(4.0.1) repräsentiert. Eine manuell in einem modernen Stil ge-
renderte Beispieltranskription zeigt Abbildung 1.

Abbildung 1: Beispieltranskription. Eine oder mehrere Neumen werden zu
Silben zugeordnet. Eine Neume besteht wiederum aus einzelnen Notenkom-
ponenten, die entweder graphisch (Bindebogen in a) oder logischen (kleiner
Abstand in b) zur vorherigen Komponente verbunden sind. Mehrere Neu-
men, die zu einer Silbe gehören, werden mit einem größeren Abstand darge-
stellt (c).

Vigliensoni et al. (2019) stellten bereits einen vergleichba-
ren OMR-Workflow, der im SIMSSA-Projekt (Fujinaga 2014)
eingebettet ist, für Musik des Mittelalters und der Renais-
sance vor. Hierbei arbeitet die OMR mittels eines Neurona-
len Netzes (Calvo-Zaragoza 2018), das jeden Pixel des Ori-
ginalmanuskripts in verschiedene Klassen wie z. B. Note,
Notenzeile, Hintergrund oder Text einteilt. Die automatische
Ausgabe kann durch das Webtool Pixel.js korrigiert werden
(Zeyad 2017). Für die Weiterverarbeitung werden die klassi-
fizierten Bilden in Ebenen gleichen Typs separiert, sodass ein
nachfolgender Algorithmus nicht mehr das Originalbild, son-
dern ein Binärbild, das z. B. nur noch Notenlinienpixel oder
Musiksymbolpixel umfasst. Ein weiterer Algorithmus kann

171

Digital Humanities im deutschsprachigen Raum 2020

so die Musiksymbole separat erkennen, welche anschließend
im Overlay-Editor Neon.js (Regimbal 2019) korrigiert wer-
den können. Der Workflow teilt mehrere Gemeinsamkeiten
mit OMMR4all, dessen Umsetzung zeigt jedoch auch Grenzen
auf. So entfällt in OMMR4all die erforderliche, teils mühsame
pixelgenaue Korrektur zum Erzeugen der separaten Typebe-
nen, da die in OMMR4all verwendeten OMR-Algorithmen di-
rekt auf dem Originalmanuskript arbeiten. Auch arbeitet der
von uns vorgestellte neue Overlay-Editor näher am Original,
da Notensysteme und Musiksymbole akkurat an die Positio-
nen im Manuskript gezeichnet werden, was einen sehr schnel-
len Abgleich von Vorlage und Vorhersage ermöglicht.

OMMR4all

Workflow

Abbildung 2: Der Workflow von OMMR4all.

Der Workflow von OMMR4all ist in Abbildung 2 gezeigt. Der
hochauflösende Scan einer Seite dient neben dem vorberei-
teten Liedtext (z. B. in einer Textdatei) als Eingabe. Das Bild
wird zunächst durch eine automatische Vorverarbeitung gera-
degestellt und binarisiert. Anschließend werden Notenlinien
und Notensysteme mittels eines Fully-Convolutional Neuro-
nalen Netzes (FCN) erkannt. Darauf aufbauend werden Mu-
sik- oder Textregionen separiert, wobei im Standardfall keine
exakten Regionen erforderlich sind und so die Layoutanalyse
vollständig automatisch abläuft. Basierend auf den Notensys-
temen werden nun durch ein weiteres FCN Neumen, Noten-
schlüssel und Vorzeichen erkannt. Abschließend werden die
Silben des vorgefertigten Liedtextes an die passenden Neu-
men gesetzt. Die Algorithmen zu Notenlinien, Notensystem-
und Symbolerkennung wurden hierbei direkt von Wick et al.
(2019) übernommen.

Iterativer Trainingsansatz

OMMR4all ermöglicht das Training von individuellen Model-
len für die Notenlinien- und Symboldetektion, um die auto-
matische Erkennung auf einen spezifischen, aber noch unbe-
kannten Stil eines Buches anzupassen. Das Training erfordert
wenige Seiten an manuell ausgezeichneten Material. Auch die-
ser Schritt kann durch Verwendung existenter ähnlicher Mo-
delle semiautomatisch erfolgen.

Im Allgemeinen ist zu erwarten, dass die Notenzeilenerken-
nungsmodelle sehr gut auf verschiedene Notationsstile gene-
ralisieren, da Linien in allen Notationen sehr ähnlich sind. Die
Symbolnotationen weisen hingegen eine größere Varianz auf,
wie beispielsweise an Gotischer- oder Quadrat-Notation zu se-
hen ist.

Softwarearchitektur

OMMR4all1 ist eine quelloffene Software2, die ein auf ei-
ner REST API basierendes Client-Server-Modell implemen-
tiert und eine Benutzerverwaltung umfasst. Dies ermöglicht
eine niedrige Einstiegshürde für den Einsatz der Software in
der Forschung von Musikwissenschaftlern, da keine Installa-
tion nötig und die Web-Applikation plattformunabhängig ist.
Zusätzlich wird die Last des Rechnersystems zum Trainieren
neuer Modell auf den Server ausgelagert. Dieser kann hierbei
mit high-end GPUs ausgestattet werden, um die Rechenzeiten
weiter zu reduzieren. Auch werden die Daten zentralisiert ge-
speichert, was einen weltweiten Zugang von jedem internet-
fähigen Arbeitsplatz ermöglicht. Demnach ist jeder einfache
Laptop oder Desktop PC als Zugriffspunkt zu OMMR4all voll-
kommen ausreichend und sofort einsetzbar.

Overlay-Editor

Da nicht zu erwarten ist, dass die automatischen Tools von
OMMR4all perfekt arbeiten, müssen die Ergebnisse in ele-
ganter und benutzerfreundlicher Art korrigiert werden. Dies
ermöglicht der integrierte Overlay-Editor, der eine Überla-
gerung der Annotationen und der Originalseite anzeigt. Un-
terschiede von Musiksymbolen können so leicht und mit ei-
nem Blick festgestellt und anschließend korrigiert werden.
Außerdem können Kommentare hinzufügt werden, um kriti-
sche oder unklare Stelle zu markieren, die dann auch in den
kritischen Apparat aufgenommen werden können oder die zur
Kommunikation zwischen dem Editor und einem Reviewer,
der die Nachkorrektur durchführt, dienen können.

Abbildung 3: Benutzeroberfläche des Editors. Grüne Regionen definieren
Notensysteme, rote Regionen Liedtext. Individuelle Notenkomponenten
werden als gelbe Boxen dargestellt, grafische Verbindungen von Neumen
werden als durchgezogene schwarze Linien, die zwei Noten verbinden ge-
zeichnet, wohingegen die gestrichelten vertikalen Linien den Start einer
neuen Neume angeben. Notenschlüssel sind türkis markiert. Die Silben des
Liedtextes sind unter der zugehörigen Neume in der jeweiligen Textregion
ausgerichtet. Die verschiedenen Knöpfe der Werkzeugleiste dienen zur Kor-
rektur der Annotationen oder um die automatischen Algorithmen zu star-
ten. Nicht gezeigt sind Lesereihenfolge oder Kommentare des Korrektors.

Abbildung 3 zeigt die Benutzeroberfläche des Editors. Der
Editor ist konzipiert, damit er ohne steile Lernkurve leicht be-
dient werden kann: Die Interaktionen zur Selektion, zur Be-
wegung, zum Ziehen oder zum Einfügen von Elementen er-
folgen mit der Maus. Erfahrene Nutzer können jedoch auf
Tastaturkürzel zurückgreifen, um den Bearbeitungsprozess zu
beschleunigen.

172

Digital Humanities im deutschsprachigen Raum 2020

Evaluation

Zur Evaluation der Transkriptionszeit verglichen wir OMM-
R4all mit Monodi+ (Eipert 2019), einem Tool, das unter ande-
rem einen hochentwickelten Editor für eine tastaturbasierte
Eingabe von Cantus Planus (monophone Musik der Westli-
chen Kirche) anbietet. Die Bedienung der beiden Softwaresys-
teme erfolgte stets durch Experten des jeweiligen Programms.
Als Material wählten wir jeweils fünf Seiten in gotischer und
Quadratnotation (eine Beispielseite wird in Abbildung 3 be-
arbeitet). Wir maßen und verglichen die mittleren Zeiten, die
bei Vorlage des Liedtextes nötig waren, um eine korrekte Tran-
skription der Manuskripte zu erzielen. Somit wurden nur die
Zeiten zur Korrektur oder Eingabe von Notenlinien und Mu-
siksymbole gemessen. Die Modelle für die Quadratnotation
waren auf 49 Seiten trainiert, die aus einem weiteren Buch
stammen. Die gotischen Modelle basieren auf vier weiteren
Seiten aus dem identischen Buch. Tabelle 1 fasst die Ergeb-
nisse zusammen.

Tabelle 1: Evaluation der Transkriptionszeiten in Minuten. Wir listen die
Anzahl der Symbole, die erforderlichen Zeiten für die Korrektur der Noten-
linien, der Symbole, der Silbenzuordnung, und die Gesamtzeit. Alle Werte
sind gemittelt und relativ zu einer Seite angegeben.

Notation #Symbole OMMR4all Monodi+ Speed-up

Notenlinien Symbole Silben Gesamt

Gotisch 158 0,3 2,3 1,8 4,5 5,6 1,3

Quadrat 267 0,6 3,3 2,9 6,9 8,5 1,2

OMMR4all zeigt einen Speed-Up von 1,3 und 1,2. Hierbei
ist zu beachten, dass die Bearbeitungszeit mittels Monodi+
bereits am Limit ist, da jedes Symbol manuell eingegeben
werden muss, worauf das Interface perfekt zugeschnitten ist.
OMMR4all hingegen kann sich stets weiterentwickeln und
selbständig genauere Modelle lernen. Insbesondere wenn die
verwendeten Modelle ausgehend von der aktuellen Fehlerrate
von 10% genauer arbeiten, ist mit einer deutlichen Reduktion
der Bearbeitungszeit für die Symboleingabe zu rechnen. Wei-
terhin verspricht die Entwicklung einer automatischen Sil-
benerkennung und -zuweisung eine weitere Beschleunigung.
Natürlich können, falls die Modelle menschliche Genauigkeit
erreichen, alle Seiten vollständig automatisch verarbeitet wer-
den. Im Allgemeinen liefert OMMR4all im Vergleich zu ei-
ner manuellen Eingabe des Notentextes eine inhärente Erklä-
rungskomponente für den Ursprung eines jeden Symbols, was
insbesondere für einen kritischen Apparat relevant ist.

Geplante Erweiterungen

Trotz der vielen Funktionen von OMMR4all, existieren et-
liche weitere mögliche Verbesserungen oder Erweiterungen.
Einige anstehenden Aufgaben werden im Folgenden vorge-
stellt.

Zunächst planen wir verschiedene Werkzeuge und Algorith-
men, um den Liedtext automatisch zu erfassen. Das Hauptpro-
blem hierbei ist, dass derzeit keine OCR-Engine verlässlich mit
handgeschriebenen Text ohne spezielles Training umgehen
kann. Deswegen soll in einem ersten Schritt zunächst die auto-
matische Silbenzuordnung gelöst werden, wobei immer noch
der vorgefertigte Liedtext vorliegen muss. Hierzu werden
die fehlerhaften Ergebnisse der OCR-Engine Calamari (Wick
2018) als Vorschläge für die Position verwendet indem die

bestmögliche Übereinstimmung von erkanntem und korrek-
tem Text gefunden wird. Vorläufige Ergebnisse sind vielver-
sprechend, selbst wenn ein großer Prozentsatz der erkannten
OCR-Zeichen falsch ist. Die eigentliche automatische Erfas-
sung des handgeschriebenen Textes stellt eine große Heraus-
forderung dar, da eine Seite meist nur wenige Zeilen umfasst,
jedoch viele manuell transkribierte Zeilen für ein Training er-
forderlich sind. Alle modernen Ansätze verwenden hierfür ein
Sprachmodell mit n-Grammen oder zumindest einem Wörter-
buch sowie tiefe Neuronale Netze, meist bidirektionale LSTMs,
die mit CNNs gekoppelt werden. Chammas et al. (2018) ver-
wendeten mehrere tausend Seiten mit reinem Text von be-
liebiger Handschrift und erhielten eine Wortgenauigkeit von
etwa 80%. Auf sauberer geschriebenen mittelalterlichen Ma-
nuskripten erzielten Fischer et al. (2014) eine Wortgenauig-
keit von etwa 93% mit etwa 11.000 Wörtern im Trainingsda-
tensatz und einem eingeschränkten Vokabular von etwa 5.000
Wörtern. In einem Szenario, in dem nur die Wörter des Trai-
ningsdatensatzes bekannt waren, wurde eine Wortgenauig-
keit von unter 78% erreicht, da etwa 15% der Wörter un-
bekannt waren. Eine Umsetzung der Techniken für Liedtexte
steht noch aus, denn hier besteht ein zusätzliches Problem,
dass viele Worte in Silben aufgeteilt sind, was den Einsatz von
Wörterbüchern erschwert.

Andere Pläne umfassen weitere monophone Notationsstile
zu unterstützen. Hierunter fallen sowohl ältere Neumennota-
tionen, sowohl solche ohne Notenlinien, als auch spätere Men-
surnotationen. Hierzu bedarf es nur kleinere kosmetischer
Änderungen am Editor, jedoch ist größerer Aufwand beim Ent-
wickeln neuer Algorithmen nötig. Polyphone Notationen, auch
solche bei denen die Stimmen jeweils in separaten Notensys-
temen vorliegen, stellen semantische bzw. hierarchische Än-
derungen der Musiknotation dar, da z. B. zwei oder mehrere
gleichzeitig klingende Notenzeilen zu einer Akkolade zusam-
mengefasst werden müssen, was Änderungen am Datenfor-
mat und somit auch am Editor erfordert.

In der Praxis wird OMMR4all im Corpus Monodicum Pro-
jekt3 der Universität Würzburg eingesetzt, um den Prozess
der Transkription der Bestände von einstimmiger Musik des
lateinischen Mittelalters zu beschleunigen. Der Overlay-Edi-
tor, der mit einem Blick erlaubt Fehler zu erkennen, hebt den
Transkriptionsprozess bereits auf ein hohes Qualitätsniveau.
Trotzdem ist zur Qualitätssicherung ein zweistufiger Prozess
notwendig, indem ein musikwissenschaftlicher Reviewer das
Ergebnis des Transkriptionsprozesses überprüft, das in Zu-
sammenarbeit von OMMR4all und einem menschlichen Editor
erzeugt wurde. Technisch wird dies durch die Möglichkeit un-
terstützt, pro Seite eine Freigabe zu dokumentieren oder, wie
oben erwähnt, Kommentare zur Nachbearbeitung anzugeben.

Fußnoten

1. Eine Demo-Anwendung, die das testweise Bearbeiten
zweier unterschiedlicher Bücher erlaubt ist unter https://
ommr4all.informatik.uni-wuerzburg.de/ verfügbar.
2. Der Quellcode kann auf https://github.com/OMMR4all/
eingesehen werden.
3. http://www.musikwissenschaft.uni-wuerzburg.de/for-
schung/corpus-monodicum/

173

Digital Humanities im deutschsprachigen Raum 2020

Bibliographie

Calvo-Zaragoza, Jorge / Castellanos, Francisco / Viglien-
soni, Gabriel / Fujinaga, Ichiro (2018): "Deep neural net-
works for document processing of music score images", in: Ap-
plied Sciences 8: 654.

Chammas, Edgard / Mokbel, Chafic / Likforman-Sulem,
Laurence (2018): "Handwriting Recognition of Historical Do-
cuments with Few Labeled Data", in: 13th IAPR International
Workshop on Document Analysis Systems (DAS), Vienna:. 43-48.

Eipert, Tim / Herrmann, Felix / Wick, Christoph / Puppe,
Frank / Haug, Andreas (2019): "Editor Support for Digital
Editions of Medieval Monophonic Music", in: Proceedings of
the 2 nd International Workshop on Reading Music Systems
(submitted to).

Fischer, Andreas / Baechler Michael / Garz, Angelika /
Liwicki, Marcus / Ingold, Rolf (2014): “A Combined System
for Text Line Extraction and Handwriting Recognition in His-
torical Documents", in: 11th IAPR International Workshop on
Document Analysis Systems, Tours, 2014: 71-75.

Fujinaga, Ichiro / Hankinson, Andrew / Cumming, Julie
E. (2014): "Introduction to SIMSSA (single interface for music
score searching and analysis)", in: Proceedings of the 1st Inter-
national Workshop on Digital Libraries for Musicology: 1-3.

Saleh, Zeyad / Zhang, Ké / Calvo-Zaragoza, Jorge / Vigli-
ensoni, Gabriel / Fujinaga, Ichiro (2017): "Pixel. js: Web-ba-
sed pixel classification correction platform for ground truth
creation.", in: 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR): 39-40.

Regimbal, Juliette / McLennan, Zoé / Vigliensoni, Ga-
briel / Tran, Andrew / Fujinaga, Ichiro (2019): "Neon2:
A verovio-based square-notation editor", in: Music Encoding
Conference 2019.

Saleh, Zeyad / Zhang, Ké / Calvo-Zaragoza, Jorge / Vigli-
ensoni, Gabriel / Fujinaga, Ichiro (2017): "Pixel.js: Web-ba-
sed pixel classification correction platform for ground truth
creation.", in: 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR): 39-40.

Vigliensoni, Gabriel / Daigle, Alex / Lui, Eric / Calvo-Za-
ragoza, Jorge / Regimbal, Juliette / Nguyen, Minh Anh /
Baxter, Noah / McLennan, Zoe / Fujinaga, Ichiro (2019): "O
vercoming the challenges of optical music recognition of early
music with machine learning", in: DH2019 .

Wick, Christoph / Hartelt, Alexander / Puppe, Frank
(2019): "Staff, Symbol and Melody Detection of Medieval Ma-
nuscripts written in Square Notation using Deep Fully Convo-
lutional Networks", in: Applied Sciences 9 .

Wick, Christoph / Reul, Christian / Puppe, Frank (2018):
"Comparison of OCR Accuracy on Early Printed Books using
the Open Source Engines Calamari and OCRopus", in: JLCL:
Special Issue on Automatic Text and Layout Recognition: 79-96.

174

B Other Contributions
The following two papers were written during this thesis, but are not peer-reviewed and not directly
related to it. The articleDeep Learning [217] published in the journal Informatik Spektrum (2017)
as part of the section Aktuelles Schlagwort (en. current buzzword) presents a brief introduction and
different applications of Deep Learning.
The paper Leaf Identification Using a Deep Convolutional Neural Network [218] applies CNNs

to the classification of leafs including data augmentation and transfer learning. On two publicly
available datasets (Flavia, Foliage) with a specified splitting for training and testing, the presented
method outperformed several existing methods, such as traditional image operations, and yielded
the state-of-the-art upon publication.

149

AKTUELLES SCHLAGWORT* / DEEP LEARNING }

Deep Learning
ChristophWick

Jährlich veröffentlichen Forscher neue Zahlen
und Bestwerte ihrer Lernverfahren in verschie-
densten Bereichen, mit welchen sie sich den
menschlichen Fähigkeiten nähern oder diese so-
gar bereits übertreffen. Hierbei ist Deep Learning
als Schlagwort prominent vertreten. Das be-
kannteste Beispiel darunter ist sicherlich der von
Googles DeepMind-Gruppe entwickelte AlphaGo-
Computer, der erstmals professionelle menschliche
Spieler im Go-Spiel, das weitaus komplexer als
Schach ist, bezwang (vgl. [8]). Insbesondere
die Mainstreammedien griffen das Thema auf
und postulierten eine neue Ära von Künstlicher
Intelligenz.

Trotz wachsender Popularität des Deep Learning
löst dieser Ansatz nicht pauschal jedes ungelöste
oder nur unzufrieden gelöste Problem des maschi-
nellen Lernens. Vielmehr ist es als eines von vielen
Werkzeugen zu verstehen, das zum überwachten
oder unüberwachten Lernen von insbesondere
sehr großen Datensätzen verwendet werden kann.
Deep Learning kann hierbei den geschichteten Auf-
bau hierarchischer Features automatisch sehr gut
abbilden, weshalb es vor allem in der Bild- und
Sprachverarbeitung eine wichtige Rolle spielt. Wei-
tere Bereiche des maschinellen Lernens wie iML [5]
und OCR [9], in denen Deep Learning eingesetzt
wird, wurden bereits in Artikeln des aktuellen
Schlagworts tituliert.

Struktur eines tiefen Neuronalen
Netzwerks

Der Grundbaustein eines jeden Deep-Learning-
Ansatzes ist das 1958 von Frank Rosenblatt [7]
vorgestellte Perzeptron. Dieses ist eine Konstruktion

von mehreren sogenannten künstlichen Neuronen,
die mit gewichteten Verknüpfungen und einem
Schwellwert miteinander gekoppelt sind. Bei ei-
nem einschichtigen Perzeptron sind dabei mehrere
Eingabeneuronen mit einem oder mehreren Ausga-
beknoten voll verknüpft, d. h. jede Eingabe mit jeder
Ausgabe. Die gewichteten Verbindungen sind hier-
bei die lernbaren Parameter des Verfahrens, welche
ursprünglich mit einer sehr einfachen Regel gelernt
wurden.

Der Grundbaustein des Perzeptrons ist leicht
erweiterbar, indem man mehrere Schichten ein-
zelner Perzeptronen mittels einer nichtlinearen
Aktivierungsfunktion koppelt. Eine solche Struktur
wird aufgrund ihrer Vielschichtigkeit Multi-Layer-
Perzeptron (MLP) genannt.

Darauf aufbauend gibt es eine Vielzahl weite-
rer spezieller Netzstrukturen, z. B. Convolutional
Neuronale Netze, bei denen teilweise ein Neuron
einer Schicht mit nur wenigen Neuronen der Vor-
gängerschicht verbunden ist, um lokale Muster zu
erkennen, was u. a. bei der Bildverarbeitung und
Mustererkennung sehr erfolgreich eingesetzt wird
(s. Abschn. ,,Deep Learning in der Praxis“).

DOI 10.1007/s00287-016-1013-2
© Springer-Verlag Berlin Heidelberg 2016

Christoph Wick
Julius-Maximilians-Universität Würzburg,
Lehrstuhl für Künstliche Intelligenz
und angewandte Informatik,
Am Hubland, 97074 Würzburg
E-Mail: christoph.wick@uni-wuerzburg.de

*Vorschläge an Prof. Dr. Frank Puppe
<puppe@informatik.uni-wuerzburg.de>
oder an Dr. Brigitte Bartsch-Spörl
<brigitte@bsr-consulting.de>

Alle „Aktuellen Schlagwörter“ seit 1988 finden Sie unter:
http://www.is.informatik.uni-wuerzburg.de/as

Informatik_Spektrum_40_1_2017 103

{ DEEP LEARNING

Trainieren eines Neuronalen Netzwerks
Ein Neuronales Netz mit vielen Schichten wird
standardmäßig mittels eines Gradientenabstiegs,
beispielsweise SGD (Stochastic Gradient Descent)
oder dessen Abwandlungen wie AdaGrad oder
Nesterov, trainiert. Dazu wird eine Loss-Funktion
L definiert, die bei fehlerfreiem Lernen des Trai-
ningsdatensatzes minimal ist. Die Anwendung
des Gradientenabstiegs auf L durch Änderung
der trainierbaren Gewichte W wird durch die
Formel

W ← W – η∇WL

beschrieben, wobei η der Lernrate und ∇W der Ab-
leitung nach den Gewichten W entsprechen. Diese
sucht und findet ein lokales Minimum von L, welches
jedoch nicht global sein muss, da der Trainings-
datensatz nicht zwangsweise auch perfekt gelernt
werden kann. Häufig wird als Loss-Funktion die
über alle Trainingsbeispiele summierte euklidi-
sche Distanz gewählt. Stimmen alle Vorhersagen
überein, sind sowohl die Einzelabstände der Bei-
spiele als auch deren Summe gleich Null. Je stärker
jedoch die Abweichung eines Beispiels, desto grö-
ßer (hier quadratisch) geht dieser Fehler in die
Loss-Funktion ein.

Als Bild für diese mathematische Formel stellt
man sich beispielsweise eine Kugel in einer Ge-
birgslandschaft L mit allen Gipfeln, Tälern und
Gebirgsseen vor. Diese Kugel rollt aufgrund der
Schwerkraft in ein Tal als lokales Minimum und zwar
dem geringsten Widerstand, d. h. dem steilsten Ab-
stieg, also dem Gradienten ∇W , folgend. In diesem
Bild wird bereits eine modifizierte Version des Gra-
dientenabstiegs verwendet, in welchem der aktuelle
Impuls und die Trägheit berücksichtigt werden. Die
Kugel kann so aufgrund ihrer Geschwindigkeit aus
einem flachen lokalen Minimum entkommen, um
ein besseres zu finden.

Die Lernrate η hat in diesem Bild die Bedeutung
der Schrittweite in einer physikalischen Simulation.
Dieser Parameter hat starke Auswirkungen auf das
Ergebnis und ist abhängig von der Landschaftsbe-
schaffenheit L, denn ein zu kleiner Wert erfordert
viele winzige Berechnungsschritte und birgt die
Gefahr, in einem sehr flachen lokalen Minimum
stecken zu bleiben, wohingegen ein zu großer Wert
zu wilden Sprüngen in der Landschaft führen kann
und das Verfahren nicht konvergiert. Ein geeigneter

Wert sollte deshalb zunächst groß genug sein, um
eine grobe Orientierung zu finden und um klei-
nere Minima zu überspringen, jedoch im Laufe
der Simulation gesenkt werden, um zu einem lo-
kalen Minimum zu konvergieren. In der Anwendung
wird deshalb die Lernrate η während des Trainings
gesenkt.

Zwar ist nun ersichtlich, wie das Lernverfah-
ren funktioniert, jedoch fehlt zur Implementierung
des Algorithmus die Berechnung des Gradienten
∇WL(N). Dazu soll ein einfaches MLP mit drei
lernbaren Schichten und deren Gewichtsmatrizen
Wi betrachtet werden. Dies wird in einer verein-
fachten mathematischen Schreibweise notiert, da
dadurch sowohl das Vanishing-Gradient-Problem,
als auch der Backpropagation-Algorithmus leicht
erklärt werden können. Als Aktivierungsfunktion
wird der Platzhalter σ(x) verwendet, beispielsweise
tanh(x).

N(x)=W1 ·σ(
N2

︷ ︸︸ ︷

W2 ·σ(W3 · x
︸ ︷︷ ︸

N3

))

Gut erkennbar ist die Verkettung der einzelnen
Schichten, indem die Gewichtsmatrix der i-ten
Ebene auf die Ausgabe der Aktivierungsfunktion der
darüber liegenden angewandt wird, hier notiert als
N2 bzw.N3.N(x)bezeichnet hier nur die Ausgabe des
Netzwerks ohne eine Loss-Funktion, welcheN(x) als
Argument erhält L(N(x)).

Da L deshalb eine Verkettung von mehreren
Funktionen ist, findet die Ableitungsregel df (g(x))

dx =
dg(x)
dx

df (g)
dg mehrmals Anwendung:

dL

dW1
= σ(N2) · dL

dN
dL

dW2
= σ(N3)

dσ(N2)

dN2
·W1 · dL

dN
dL

dW3
= x · dσ(N3)

dN3
·W2 · dσ(N2)

dN2
·W1 · dL

dN

Man erkennt, dass viele Terme wiederkehren, je
tiefer man in das Netz vordringt. Hier beispiels-
weise die Ableitung der Loss-Funktion dL

dN und
die der ersten Schicht dσ(N2)

dN2
. Der sogenannte

Backpropagation-Algorithmus speichert nun die
wiederkehrenden Faktoren zur Berechnung der
Ableitungen in tieferen Ebenen und ist somit eine
effiziente Implementierung der Kettenregel nach

104 Informatik_Spektrum_40_1_2017

den einzelnen Lernparametern. So wird beispiels-
weise ab der zweiten Schicht jedes Mal der Faktor
dσ(N2)
dN2

·W1 · dL
dN benötigt, sodass dieser nach unten

weitergereicht werden kann. Lehrbücher schreiben
vereinfacht, dass der Fehler gemäß den Gewichten
aufgeteilt und zurück propagiert wird, woher der
Algorithmus seinen Namen trägt.

Zwar können mit dem SGD, welcher in dieser
Form noch heute verwendet wird, effizient Neu-
ronale Netze trainiert werden, jedoch zeigen sich
Probleme, die das Trainieren von tiefen Struktu-
ren aufgrund eines verschwindenden Gradienten
erschwert.

Vanishing-Gradient-Problem
Das von Sepp Hochreiter im Jahre 1991 [4] in seiner
Diplomarbeit erstmals beschriebene Problem des
verschwindenden Gradienten ist eine der Haupt-
ursachen, warum es anfänglich unmöglich war,
tiefe Netze zu trainieren. Dies lässt sich leicht bei
näherer Betrachtung der oben berechneten ver-
ketteten Ableitungen verstehen. Je tiefer das Netz
wird, desto mehr partielle Ableitungen der Aktivie-
rungsfunktion, d. h. Faktoren, müssen miteinander
multipliziert werden (z. B. dσ(N2)

dN2
). Sind diese wäh-

rend des Trainings < 1, dann multiplizieren sich
mehrere Faktoren zu einer Zahl, die schnell gegen
Null strebt, weswegen die Gewichtsänderungen in
tiefen Schichten deutlich langsamer sind als die
in höheren. Da ursprünglich zumeist der tanh(x)
als Aktivierungsfunktion verwendet wurde, führte
dies unausweichlich zu diesem Problem, denn
alle Funktionswerte und auch die Ableitungen an
allen Stellen sind stets betragsmäßig < 1. Beson-
ders relevant ist das Problem auch bei rekurrenten
Netzen, die als zweite Dimension die Zeit besit-
zen, weshalb der Gradient ebenso in Zeitrichtung
verschwindet.

Bei Verwendung von Aktivierungsfunktionen
mit Gradienten > 1 kann stattdessen das Exploding-
Gradient-Problem auftreten. Dort werden Zahlen
> 1 multipliziert, wodurch der Wert des Gradienten
in tiefen Schichten explodiert und das Netz nicht
konvergiert.

Heutzutage gibt es mehrere Ansätze, die Pro-
bleme des Vanishing Gradient zu bekämpfen. Der
einfachste ist die Verwendung von purer Rechen-
kapazität, insbesondere von Grafikkarten, die die
Anzahl an Flops seit dem Jahr 1991 bis heute (2016)
vermillionenfacht haben. So ist es möglich, durch

enormen Rechenaufwand selbst kleine Gradienten
zur Optimierung eines Netzes zu verwenden. Wei-
terhin wird in modernen Netzarchitekturen meist
zusätzlich eine ReLU-Aktivierungsfunktion verwen-
det, die als σ(x)=max(0, x) definiert ist. Da die
Ableitung dieser nichtlinearen Funktion für x > 0
exakt 1 ist, wird sowohl ein Explodieren als auch
ein Verschwinden des Gradienten verhindert. So
erkennt man im obigen Formalismus, dass die Ab-
leitungen der Aktivierungsfunktionen, falls deren
Argument > 0 ist, auf 1 gesetzt wird und nur noch
die Gewichtsmatrizen Einfluss auf die Gewichtsän-
derungen haben. Nicht zu vergessen ist hierbei, dass
die Gewichtsänderung 0 ist, sobald ein Argument
der Aktivierungsfunktion < 0 ist, jedoch trifft dies
nur auf einen Teil der lernbaren Gewichte in den
Gewichtsmatrizen zu.

Die übrigen Parameter erhalten nun aber
eine Gewichtsänderung, die nicht dem Vanishing-
Gradient-Problem unterliegen, sondern ausschließ-
lich von den Gewichtsmatrizen und Netzausgaben
der höheren und tieferen Schichten Wi, bzw. σ(Ni)
und der Ableitung der Loss-Funktion dL

dN abhängen.
Die Größenordnung eines Gradienten liegt deshalb
stets in der des zugehörigen Gewichts, multipliziert
mit der Ableitung der Loss-Funktion, d. h. die Ge-
wichtsänderung ist proportional zum Fehler und
aktuellen Gewicht, weshalb ein Nichtverschwinden
garantiert ist, solange ein Fehler existiert.

Andere Ansätze, wie der von Geoffrey Hin-
ton im Jahr 2006 [2] vorgestellte, trainieren das
Netzwerk zunächst schichtenweise unüberwacht,
woraufhin diese in einem Feintuning auf den eigent-
lichen Datensatz trainiert werden. Tiefe rekurrente
Netze können beispielsweise durch Verwendung
sogenannter LSTM-Zellen, die auf Hochreiter und
Schmidhuber [3] zurückgehen, trainiert werden.
Diese fügen dem Netzwerk ein lernbares Gedächtnis
hinzu, weshalb Gradienten so über mehrere Zeit-
schritte gespeichert werden können, ohne dass diese
verschwinden.

Durch diese und weitere moderne Techniken
ist es seit einigen Jahren nun möglich, effizient sehr
tiefe Neuronale Netze mit mehreren Millionen Pa-
rametern zu trainieren. Eine weitere wichtige Rolle
spielen hierbei die riesigen Datensätze, die aufgrund
von BigData nun verfügbar sind und einer Über-
anpassung der Gewichte entgegenwirken. Auf das
Problem des Overfittings wird in diesem Artikel
jedoch nicht weiter eingegangen.

Informatik_Spektrum_40_1_2017 105

{ DEEP LEARNING

Für eine vertiefte Auseinandersetzung mit
Deep Learning sei hier auf einen Artikel über
Deep Learning von LeCun et al. [6] und auf ein
neu erschienenes Buch von Goodfellow et al. [1]
verwiesen.

Deep Learning in der Praxis
Aufgrund der Popularität des Deep Learning
existieren bereits mehrere mächtige freie Open-
Source-Frameworks zum Trainieren tiefer
Netzstrukturen. Zu nennen sind hier Caffe1, CNTK2,
Tensorflow3 und Torch4 (in alphabetischer Rei-
henfolge), wobei bemerkenswert ist, dass die
Softwaregiganten Google und Microsoft ihre intern
entwickelten Frameworks Tensorflow und CNTK
frei zur Verfügung stellen. Alle Frameworks bieten
eine Schnittstelle zu NVIDIAs Cuda und CUDNN
zum effizienten Training auf Grafikkarten. Die von
AMD entwickelte Alternative OpenCL zu NVIDIAs
Cuda wird beispielsweise von Caffe experimentell
unterstützt. Die Einrichtung der Frameworks setzt
standardmäßig einen Linux-basierten Computer
oder Grafikkartenserver voraus, wobei verschiedene
inoffizielle Portierungen auf Windows existieren.

Die einzelnen Frameworks haben neben der
nativen C/C++-Schnittstelle entweder eine Python-
oder Lua-Anbindung, die es erlaubt, mit wenigen
Zeilen Code Netzwerkstrukturen zu erstellen und zu
trainieren. Das Training ist aufgrund der verschiede-
nen Hyperparameter, darunter die Lernrate η oder
die Netzstruktur N(x), nicht trivial und erfordert
einige Erfahrung, die man jedoch beispielsweise
durch Ausprobieren der Beispiele der einzelnen
Frameworks erlangen kann.

Anwendung finden die genannten Frameworks
in den verschiedensten Bereichen des Deep Lear-
nings. Ein Hauptgebiet ist dabei die Bildverarbeitung
zur Klassifikation (z. B. Schildererkennung oder
Gesichtserkennung) oder Segmentierung (z. B.
Lokalisieren von Objekten). Insbesondere die spe-
ziellen Convolutional Neuronalen Netze (CNN),
siehe dazu z. B. [6], spielen hier eine wichtige Rolle,
da diese aufgrund ihrer speziellen Struktur spe-
zifische lokale Eigenschaften hierarchisch finden
können. So können in der ersten Ebene des Netzes

1 http://caffe.berkeleyvision.org/
2 https://www.microsoft.com/en-us/research/product/cognitive-toolkit/
3 https://www.tensorflow.org/
4 http://torch.ch/

Konturen, Linien oder Bögen gefunden werden, die
in tieferen Ebenen komplexere Strukturen bilden,
um schließlich das gewünschte Zielobjekt zu erken-
nen. Moderne Netzstrukturen, wie das bekannte
GoogleNet, das zur Klassifikation von Bildern einge-
setzt werden kann, besitzen dabei bereits mehr als
20 Schichten.

Eine Benchmark auf diesem Bereich ist der
MNIST-Datensatz5 von handgeschriebenen Zif-
fern, auf welchem CNNs Genauigkeiten von über
99,7 % erzielen. Die falsch klassifizierten Ziffern
sind hierbei auch für den Menschen nicht ein-
deutig zuordenbar, da diese sehr unsauber und
dadurch mehrdeutig geschrieben sind. Faszinie-
rend ist dennoch, dass Deep Learning, das keinerlei
Vorwissen über die Aufgabe besitzt, selbstständig
durch das Lernverfahren die Gewichte so opti-
miert und dadurch eigene Features ausbildet,
die klassische Ansätze des maschinellen Lernens
übertreffen.

Ein weiteres wichtiges Gebiet ist die Ver-
arbeitung von zeitlichen Sequenzen wie z. B.
Spracherkennung oder OCR von geschriebenem
Text. Letzteres wurde bereits im aktuellen Schlag-
wort von Uwe Springmann [9] vorgestellt. Dazu
werden tiefe rekurrente Netze (RNN), beispiels-
weise LSTM-Modelle, genutzt, um eine Eingabe-
auf eine Ausgabesequenz abzubilden, mithilfe derer
beispielsweise gesprochener Text transkribiert oder
geschriebener Text erkannt werden kann. Bei einer
Überlappung von Bild- und Sequenzverarbeitung,
z. B. um in Videos Bewegungen oder Abläufe zu er-
kennen, können bereits RNNs und CNNs kombiniert
und gemeinsam trainiert werden.

Da riesige Netze aus vielen frei lernbaren Para-
metern im Millionenbereich bestehen, wächst die
Gefahr einer Überanpassung auf den Trainingsda-
tensatz. Um dem entgegenzuwirken, werden teils
riesige Datensätze verwendet, die zusätzlich durch
Generierung neuer Beispiele aus den existieren-
den augmentiert werden. Dies ist beispielsweise
durch Addieren von Rauschen oder Anwendung
von Transformationen zu erreichen. Das Training
eines tiefen Netzwerkes dauert trotz Grafikkarten-
beschleunigung und effizienten Implementierungen
teils mehrere Tage, weshalb verständlich ist, dass vor
allem der technische Fortschritt den Boom des Deep
Learning in den vergangenen Jahren ermöglicht hat.

5 http://yann.lecun.com/exdb/mnist/

106 Informatik_Spektrum_40_1_2017

Spannend hierbei bleibt, wann die nächsten
größeren Durchbrüche in der Künstlichen In-
telligenz durch den Einsatz von Deep Learning
eintreten.

Literatur
1. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. The MIT Press
2. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief

nets. Neural Comput 18:1527–1554

3. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput
9(8):1735–1780

4. Hochreiter S (1991) Untersuchungen zu dynamischen neuronalen netzen. Diplom-
arbeit, TU München

5. Holzinger A (2016) Interactive machine learning (iml). Informatik-Spektrum
39(1):164–168

6. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
7. Rosenblatt F (1957) The Perceptron – A Perceiving and Recognizing Automaton.

Cornell Aeronautical Laboratory, 85-460-1
8. Silver D, Huang A, Maddison CJ et al. (2016) Mastering the game of go with deep

neural networks and tree search. Nature 529:484–503
9. Springmann U (2016) OCR für alte drucke. Informatik-Spektrum 39(6):459–462

Informatik_Spektrum_40_1_2017 107

Leaf Identification Using a Deep Convolutional Neural
Network

Christoph Wick and Frank Puppe

University of Würzburg, Am Hubland, 97074 Würzburg, Germany,
christoph.wick@uni-wuerzburg.de

Abstract. Convolutional neural networks (CNNs) have become popular espe-
cially in computer vision in the last few years because they achieved outstanding
performance on different tasks, such as image classifications. We propose a nine-
layer CNN for leaf identification using the famous Flavia and Foliage datasets.
Usually the supervised learning of deep CNNs requires huge datasets for train-
ing. However, the used datasets contain only a few examples per plant species.
Therefore, we apply data augmentation and transfer learning to prevent our net-
work from overfitting. The trained CNNs achieve recognition rates above 99% on
the Flavia and Foliage datasets, and slightly outperform current methods for leaf
classification.

1 Introduction

Currently, supervised learning of convolutional neural networks (CNNs) for classifica-
tion tasks achieve state-of-the-art performances on a wide range of datasets, e.g. MNIST
[13] and ImageNet [5]. Even though these datasets are usually huge in the amount of ex-
amples per class optimum values are mostly achieved by using data augmentations. The
Flavia [22] and Foliage [9] datasets used in this paper include approximately 60 images
per class in Flavia and 120 in Foliage, which is why data augmentation is extremely im-
portant to obtain a reliable generalization of the trained networks. Moreover, we apply
further techniques that help prevent overfitting of the network. Those are dropout [20]
and transfer learning which provides an initial guess for the weights of the network,
e.g. [6]. As a result, the trained 9-layer CNNs achieve outstanding recognition rates
above 99% that also outperform slightly the current state-of-the-art published by Sulc
and Matas [21], who utilize a texture-based leaf identification based on local feature
histograms.

The following paper is structured as follows. At first, we introduce similar work
which is also used to compare our results. Next, we present the model we used. This
includes preprocessing, the network structure, batch generation, data augmentation, pre-
training, and the execution parameters of our experiments. Finally, we demonstrate the
influence of augmentations, pretraining, and dropout on the accuracy and compare our
results to other published values.

ar
X

iv
:1

71
2.

00
96

7v
1

 [
cs

.C
V

]
 4

 D
ec

 2
01

7

2 Related Work

One of the first important datasets for leaf classification is the Flavia dataset that was
introduced by Wu et al. [22]. The applied probabilistic neural networks obtained accu-
racies around 90% using 12 simple geometric features.

Kadir et al. [9] applied several different features on the task of image classification
on the Flavia dataset, but also on their initially published Foliage dataset. Their best
methods are based on probabilistic neuronal networks which use features derived from
a leaf’s shape, vein, color, and texture. These models achieve accuracies of about 95%
on the Flavia and 95.75% on the Foliage dataset [10].

A recent publication of Sulc and Matas [21] use a rotation and scale invariant ver-
sion of local binary patterns applied to the leaf interior and to the leaf margin. A Sup-
port Vector Machine classification yields impressive state-of-the art recognition values
of above 99.5% on the Flavia dataset and 99.0% on the Foliage dataset.

Reul et al. [18] use a 1-nearest-neighbor classifier based on contour, curvature,
color, Hu, HOCS, and binary pattern features. They achieve accuracies of about 99.37%
on the Flavia dataset and 95.83% on the Foliage dataset.

A similar approach to our work that is also based on deep CNNs was published
by Zhang et al. [23] who use a 7-layer CNN and a comparable data augmentation for
leaf classification and achieved results of approximately 95% on the Flavia dataset.
Our work differs mainly by usage of arbitrary rotations, of a larger 9-layer CNN and
of a pretrained model that initializes the network weights. Moreover we generate new
augmentations during the training which will result in so to say infinite different images,
while Zhang et al. augment the dataset by a given factor before training. This procedure
will be explained in Sects. 3.3 and 3.4.

Transfer learning across datasets by learning features on large-scale data and then
transferring them to a different tasks has proven to be successful e.g. in [6] or [14]. We
implement a “supervised pretraining” approach, i.e. we train a network on the Caltech-
256 dataset [7] and use the resulting network weights as initial conditions for all further
trainings. Therefore each following training task does not start with randomly initialized
weights but instead with ones that already represent probably useful features.

Dataset augmentation is one of the key concepts for learning deep convolutional
neural networks due to the power of those deep networks to generalize on large datasets.
For example all of the state-of-the-art accuracies [2][3][15] on the famous MNIST
dataset [13] make use of random distortions to augment the dataset. We make use of
linear label-preserving transformations that are presented in Sect. 3.4.

3 Models

In the following we will introduce the preprocessing of each dataset, the network struc-
ture, the generation of batches, the data augmentation, the pretraining, and finally the
parameters during the training.

3.1 Preprocessing

Each of the images in the used datasets is preprocessed in order to generate standardized
input data for the training process of the network. A segmentation step is not required
because all leaves in the Foliage or Flavia dataset are already photographed on a white
background and had their petioles removed.

For preprocessing we first compute the bounding box of a leaf to determine the
relevant data, extract the enclosed image, and resize it to 344×344 pixels. By adding a
white margin of 3 pixels on each side we finally end up with a 350× 350 pixels sized
image.

Before training a single network we split the complete dataset D containing C
classes and N images into a training set ST R and a testing set ST E according to the
ratio NT E(C)/NT R(C), where N(C) defines the number of images per class. For exam-
ple the notation 10×40 states that 10 images out of N are randomly moved to the testing
set and 40 images out of the remaining ones are randomly inserted in the training set.
Therefore the total number of instances in the testing set is 10×C and the total num-
ber of instances in the training set is 40×C. Note that in this example possibly not all
examples of D are used. The notation 10×ALL means that 10 instances per class are
moved to the training set and the rest is used for testing.

Note that the splitting of the Foliage dataset into ST R and ST E is prescribed, which
we will denote as FIXED. Therefore, we apply the random distribution only to Flavia.

3.2 Network structure

We use a deep CNN structure shown in Fig. 1 that consists of four convolutional layers
(see e.g. [12]), each one is followed by a max-pooling layer, a ReLU (see e.g. [11])
fully-connected layers, and a softmax layer indicating the class of the input image.
The size of the input layer is 300× 300× 3 pixels, whereby 3 is the number of color
channels. Note that the size is smaller than the one used in the preprocessing to allow
cropping as data augmentation, see Sect. 3.4. The number of nodes in the output layer
matches the count of classes C of the used dataset.

3.3 Batch generation

Training is performed by utilizing batches of size 32 that are renewed before each iter-
ation consisting of a forward and backward pass. A single element of a batch is created
by choosing a random class c ∈C and afterwards a corresponding image i ∈ N(c) out
of the images in the training dataset. Even if N(c) is different for distinct c, e.g. in a
10×ALL splitting, we thereby achieve a uniform class distribution in our training set.

3.4 Dataset augmentation

Each randomly generated batch is altered by label-preserving transformations (e.g.
[19]) to reduce overfitting. A single transformation T is performed by applying the
following elementary operations on a single image in the batch:

Fig. 1. The used CNN structure. The two numbers at the small block indicate the kernel sizes in
convolutional or max-pooling layers. The digit below a convolutional layer specifies the number
of kernels. The stride of convolutional and max-pooling layers it is 1 and 2, respectively. The first
fully connected layer consists of 500 output nodes.

– Rotation: Rotating the image by an arbitrary angle.
– Scaling: Scaling the image by a factor in the range of 2[−0.1,0.1].
– Cropping: Selection of a window with a size of 300×300 pixels out of the (trans-

formed) image.
– Contrast: Multiplication of the color values by a factor of 2[−1,1].
– Brightness: Adding a value in the range of [−20,20] to the image colors.
– Flip: Mirroring the image window.

Note that changing the contrast and brightness also changes the white background
of the images.

During training we use uniformly random distributed transformations TR. For testing
we use TR, the original image (no transformation) T0 and a transformation TF that simply
generates rotations of an original image by a fixed angle offset.

3.5 Pretraining

We use a “supervised pretraining” method also known as “transfer learning” similar to
the one applied in [6]. The main idea is to use a large-scale dataset that differs substan-
tially from the actual smaller dataset for a supervised pretraining phase. The trained
weights of all layers except the softmax-layer are then used as initial conditions for
training the actual dataset. Thus the filters of the convolutional layers are not initialized
randomly but instead set to pretrained values that already learned useful generalizing
features.

For that purpose we use the Caltech-256 dataset [7] which consists of classes of
images that are entirely different from leaf classifications, e.g. various animals, tools,
objects, vehicles or even fictional characters. This training is performed by using the
same preprocessing as described in Sect. 3.1 and the same dataset augmentation as
introduced in Sect. 3.4.

The increase of performance of the trained network on the Flavia and Foliage dataset
shall be studied deeper in Sect. 4.1. In our experiment we only trained once on the
Caltech dataset and used these results as initial network weights.

3.6 Experiments

The CNNs implementation is based on the caffe framework [8] running on a single
NVIDIA Titan X GPU. The calculation of new training batches is performed simultan-
iously on a i7-5820K CPU using OpenCV [1] and OpenMP [4].

Each network is trained with a batch size of 32 using a Nesterov solver [16] and a
momentum of 0.95. The training lasts for exactly 50000 iterations. During the process
we multiply the initial learning rate of 0.001 by 0.1 each 20000 iterations. Moreover,
we use a L2 regularization with a weight decay of 0.0005. Training the network on the
Caltech dataset to generate the pretrained weights takes approximately 8.5 hours, but
using 100000 iterations. Training of a single network afterwards took approximately
4.2 hours.

For each model we train 10 networks that use different random seeds for splitting
the dataset into testing and training, generating the random batches and performing the
data transformation. Since the testing and training parts are prescribed in the Foliage
dataset, a single run only changes the seed for generating a random batch and data
transformations.

All stated accuracies and their errors are obtained by averaging the results of the 10
networks and computing the standard deviation.

4 Results

First, we will study the effect of the presented methods on the accuracy of the models.
Afterwards, we show the final evaluation of the best models and discuss the occurring
errors. During the classification, the predicted leaf class is chosen to be the one with the
highest probability in the output softmax layer.

4.1 Data augmentation

In the following we study the effect of a single method shown in Sect. 3 on the accuracy
or error. Therefore, we compare the result of a model that uses all augmentation methods
to one that leaves out a single one. The seeds in all of these modes are identical, i.e. the
images in the testing and training sets are the same. We use the Flavia dataset and a
10× 40 splitting for evaluation. A data point in the following plots is computed every
500 iterations by predicting 3200 augmented examples that are chosen randomly, using
TR on the test dataset. For smoothing the graph we average over 5 data points. Note that
the jump at iteration 20000 occurs due to a change of the learning rate at this point.

The effect of pretraining and data augmentation is shown in Fig. 2. The solid line
indicates a typical learning process including all of the presented methods. It is clearly
visible that the usage of pretraining leads to a lower classification error, because a model
learned without a pretraining (dotted line) shows a constant higher error. The absence
of data augmentation (dashed curve) leads to a initial fast learning followed by a con-
stant plateau. This behavior can be explained by the absence of data augmentations
as rotation or color changes that drastically increase the number of different examples
that have to be learned. Moreover, in the dashed curve the effect of overfitting becomes

Fig. 2. The error on test examples is computed by a model with or without the use of pretraining.

visible. The accuracy reaches a maximum at approximately 10000 iterations and then
decreases due to overfitting the training data. Usage of a model without a pretrained
model or any data augmentation lead to a even worse result (dash dotted line). In addi-
tion removing dropout that helps prevent overfitting deteriorates (dashed line with big
dots).

The dash dotted line with big dots shows the results when training a model that is
very similar to the settings of Zhang et. al [23]. For that we applied clipping with a
maximum offset of 0.1 of the allowed range, a scaling factor between 0.9 and 1.1, rota-
tions by an angle up to 10 degrees, and a contrast factor between 0.8 and 1.2. Changes
in contrast are neglected. It is clearly visible that the accuracy is coincidentally very
similar to the model without any data augmentation. The value of approximately 97%
is slightly higher than the reported one of 94%. This difference can be explained by
the larger overall structure of the network, as well as by the usage of a training set that
repeatedly generates new random batches instead of using a fixed extended dataset as
used by [23]. Furthermore, our result of about 89% by usage of a conventional structure
(dashed line with big dots) is very similar to 87% reported by Zhang et al. [23].

Table 1. Evaluation of the trained networks using the single image and augmentation of each
image based on TR and TF . All numbers are given as a percentage. The best values are marked
bold.

Flavia Flavia Flavia Foliage
10×ALL 10×40 1/2×1/2 FIXED

Single image T0 99.38±0.55 99.41±0.43 99.39±0.40 98.77±0.39
Av. TR 99.72±0.31 99.75±0.29 99.67±0.20 99.28±0.11
Av. TF 99.81±0.26 99.69±0.33 99.66±0.19 99.40±0.09
Sulc and Matas [21] − 99.7±0.3 99.4±0.2 99.0
Reul et al. [18] − 99.37±0.08 − 95.83
Kadir et al. [10] − 95.0 − 95.75
Zhang et al. [23] 94.69 − − −

4.2 Final results

For evaluating the networks we use the testing set ST E . Since every step during the
learning process is probabilistic, reliable results require averaging of different mod-
els. For this purpose, we take the mode (most occurring prediction) of an augmented
version of each single image in the testing set, which is also called “oversampling”.
For this purpose we generate 64 augmentations based on random operations TR and on
fixed rotations TF with an offset of 64/360 degrees. As comparative value we denote
the prediction of all testing images without any augmentation by T0 . To overcome ran-
domness of the seeds for splitting the dataset or generating random numbers for data
augmentation we average 10 runs.

Table 1 shows the classification results of our CNNs on the Flavia and Foliage
dataset averaged over 10 runs compared to the results of similar publications.

As expected the number of examples in the training set have an impact on the result-
ing accuracies. Usage of the largest training set 10×ALL is more accurate than usage
of the smallest set 1/2×1/2. In the 10×ALL dataset the amount of examples per class
in the training set vary between 40 and 67 which is why a splitting of 10× 40 is only
slightly worse, even though the errors of each results are too large to allow a significant
statement.

Since our optimums and the ones of Sulc and Matas [21] coincide within their errors
we can not state that our results are significantly better on the Flavia dataset, but we
appreciably outperform the state-of-the-art value on the Foliage dataset. However, we
definitely achieve significantly improved classification accuracies of CNNs on these
datasets compared to the proposed settings by Zhang et al. [23].

4.3 Error discussion

To examine the errors of the model we show the misclassifications on the Flavia dataset
in Fig. 3. Therefor we sum up all wrong predictions of all models (T0, TR, TF) of a single
splitting in a matrix whose rows indicate the correct labels and whose columns show the
misclassifications. Each single plot is normalized to its maximum that is drawn black.

At first, the distribution of the black boxes attract attention. They are not randomly
distributed but instead ordered in rows or columns, i.e. if there exists a box at a certain

Fig. 3. This figure shows the misclassifications on the Flavia dataset for the 10×40 and 1/2×1/2
validation methods. The blacker a matrix entry the more often occurred an error of the notion: “a
member of class y was misclassified as class x”.

Fig. 4. The left leaf is a member of the species Chimonanthus (wintersweet) whereas the right
leaf is Cinnamomum camphora (camphor tree).

position it is likely that there is another box in the same row or column. Moreover,
the shape is not symmetrical. There are only some examples where pairs of connected
misclassifications exist, e.g. (6,8) and (10,6) in Flavia 10×ALL. The interpretation is
that two classes are most commonly not similar to each other, but that similarity of one
leaf to one or more other leaves is a unidirectional quantity.

If one looks deeper into single nodes a noticeable commonality is the matrix en-
try (13,12) i.e. 12 was misclassified as 13, that is dominant in all three plots. Some
exemplary members of these species are shown in Fig. 4. Interestingly this error is not
symmetrical, i.e. members of class 13 are identified correctly whereas members of class
12 are more likely to be misclassified.

Furthermore, there are several other classes that are tough for our network to iden-
tify. On the one hand these are (2,8) and (6,8) that means that members of class 8 are
more likely to be misclassified as 2 or 6, and on the other hand (30,17), (12,25), and
(14,28).

5 Conclusions

Our proposed CNN was trained by applying the presented variety of improvements to
overcome the small amount of training examples in the Flavia and Foliage dataset. It
yields results with state-of-the-art performance of above 99% for leaf identification on
the Flavia and Foliage dataset. The presented method is in our best knowledge cur-
rently the best CNN approach on this task, mainly by using transfer learning and data
augmentation. Thereby we combine data augmentation and training into one step to
create a model that can be adopted easily to other applications. Even compared to meth-
ods based on handcrafted features we showed that supervised training of CNNs yield
slightly better results.

As a next step we will apply the presented methods on the larger MEW dataset [17]
that contains 153 species and at least 50 per class. We expect competitive accuracies
that are definitively worse than the results on the Flavia dataset, because the number of
instances per class is approximately the same but the total number of classes is almost
five times as big.

However, our main goal is to apply the described methods to cross dataset val-
idation. Comparable to [18] we want to study how a trained CNN applies to a real
world scenario, i.e. classifying leaves that were collected completely independent of
the test set and therefore differ quite a lot due influences of the temperature, rainfall,
solar irradiation or seasons. Similar to [18] we expect that the applications of convolu-
tional neural networks that are highly optimized on the trained dataset will fail on cross
dataset validations especially due to the usage of colors, which is why experiments uti-
lizing gray-scale images are required to achieve improved results. Another approach
would be to generate augmentations allowing color changes in a defined way so that the
network learns possible different colors of leaves.

References

1. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
2. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets

for handwritten digit recognition. Neural Computation 22(12), 3207–3220 (2010)
3. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Convolutional neural network

committees for handwritten character classification. In: ICDAR. pp. 1250–1254 (2011)
4. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory programming.

Computational Science & Engineering, IEEE 5(1), 46–55 (1998)
5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hier-

archical Image Database. In: CVPR09 (2009)
6. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A

deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531
(2013)

7. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Tech. Rep. CNS-
TR-2007-001, California Institute of Technology (2007)

8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093 (2014)

9. Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Foliage plant retrieval using polar fourier
transform, color moments and vein features. Signal & Image Processing: An International
Journal (SIPIJ Journal) 2(3) (September 2011)

10. Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Performance improvement of leaf iden-
tification system using principal component analysis. International Journal of Advanced Sci-
ence and Technology 44 (July 2012)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Ad-
vances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates,
Inc. (2012)

12. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. In: Proceedings of the IEEE. pp. 2278–2324 (1998)

13. Lecun, Y., Cortes, C.: The MNIST database of handwritten digits
14. jia Li, L., Su, H., Fei-fei, L., Xing, E.P.: Object bank: A high-level image representation for

scene classification & semantic feature sparsification. In: Advances in Neural Informa-
tion Processing Systems 23, pp. 1378–1386. Curran Associates, Inc. (2010)

15. Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better digit recognition with
a committee of simple neural nets. In: ICDAR. pp. 1135–1139 (2011)

16. Nesterov, Y.: A method of solving a convex programming problem with convergence rate
O(1/

√
k). Soviet Mathematics Doklady (1983)

17. Petr Novotný and Tomáš Suk: Leaf recognition of woody species in central europe. Biosys-
tems Engineering 115(4), 444 – 452 (2013)

18. Reul, C., Toepfer, M., Puppe, F.: Cross dataset evaluation of feature extraction techniques for
leaf classification. Internatial Journal of Artificial Intelligence & Applications (IJAIA) 7(2)
(March 2016)

19. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks
applied to visual document analysis. In: Proceedings of the Seventh International Conference
on Document Analysis and Recognition - Volume 2. IEEE Computer Society (August 2003)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A sim-
ple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958
(Jan 2014)

21. Sulc, M., Matas, J.: Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland,
September 6-7 and 12, 2014, Proceedings, Part IV, chap. Texture-Based Leaf Identification,
pp. 185–200. Springer International Publishing, Cham (2015)

22. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F., Xiang, Q.L.: A leaf recognition algo-
rithm for plant classification using probabilistic neural network. In: 2007 IEEE International
Symposium on Signal Processing and Information Technology. pp. 11–16 (Dec 2007)

23. Zhang, C., Zhou, P., Li, C., Liu, L.: A convolutional neural network for leaves recognition
using data augmentation. In: Computer and Information Technology; Ubiquitous Comput-
ing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelli-
gence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.
pp. 2143–2150 (Oct 2015)

C Declaration of own Contributions
1. Christoph Wick. Deep Learning. Informatik-Spektrum, 40(1):103-107, 2017

Own contribution.

2. Christoph Wick and Frank Puppe. Leaf Identification Using a Deep Convolutional Neural
Network. arXiv preprint arXiv:1712.00967, 2017

C.W. conceived the methodology and the experiments, and carried them out. C.W. ana-
lyzed and discussed the results. C.W. wrote the publication with contributions of F.P.

3. Christoph Wick, Christian Reul, and Frank Puppe. Comparison of OCR Accuracy on Early
Printed Books using the Open Source Engines Calamari and OCRopus. JLCL: Special Issue
on Automatic Text and Layout Recognition, 33(1):79-96, 2018

C.W. conceived the methodology and the experiments, and carried them out. C.W. de-
veloped the presented software “Calamari”. C.W., C.R. and F.P. analyzed the results. C.W.
wrote the publication with contributions of C.R. and F.P.

4. Christoph Wick and Frank Puppe. Fully Convolutional Neural Networks for Page Segmen-
tation of Historical Document Images. In 13th IAPR International Workshop on Document
Analysis Systems (DAS), pages 287–292, Vienna, 2018.

C.W. conceived and carried out the experiments. C.W. designed and implemented the al-
gorithm. C.W. and F.P. analyzed the results. C.W. wrote the publication with contributions
of F.P.

5. ChristophWick, Christian Reul, and Frank Puppe. Calamari – AHigh-Performance Tensor-
flow-based Deep Learning Package for Optical Character Recognition. Digital Humanities
Quarterly (forthcoming), 2019

C.W. conceived the methodology and the experiments, and carried them out. C.W. de-
veloped the presented software “Calamari”. C.W., C.R. and F.P. analyzed the results. C.W.
wrote the publication with contributions of C.R. and F.P.

6. Christoph Wick and Frank Puppe. OMMR4all — a Semiautomatic Online Editor for Me-
dieval Music Notations. In 2nd International Workshop on Reading Music Systems, pages
31-34, Delft, The Netherlands, 2019

165

C Declaration of own Contributions

C.W. conceived and developed the tool. C.W. wrote the publication with contributions of
F.P.

7. Christoph Wick, Alexander Hartelt, and Frank Puppe. Staff, Symbol and Melody Detection
of Medieval Manuscripts Written in Square Notation Using Deep Fully Convolutional Net-
works. Applied Sciences, 9(13):2646, 2019

C.W. conceived and performed the experiments and created theGT data. C.W. andA.H. con-
tributed the staff line detection algorithm. C.W. designed the symbol detection algorithm.
C.W. and F.P. analyzed the results. C.W. wrote the paper with substantial contributions of
F.P.

8. Christoph Wick, Alexander Hartelt, and Frank Puppe. OMMR4all – ein semiautomatischer
Online-Editor fürmittelalterlicheMusiknotationen. InDigital Humanities im deutschsprachi-
gen Raum, 2020

C.W. conceived and developed the tool including contributions of A.H. C.W. wrote the
publication with contributions of F.P. and A.H.

9. Christoph Wick and Frank Puppe. Automatic Neume Transcription of Medieval Music
Manuscripts using CNN/LSTM-Networks and the segmentation-free CTC-Algorithm. Ap-
plied Sciences, 2020. submitted to.

C.W. conceived the methodology and the experiments, and carried them out. C.W. ana-
lyzed and discussed the results. C.W. wrote the publication with contributions of F.P.

10. Christoph Wick and Frank Puppe. Lyrics Recognition and Syllable Assignment of Me-
dieval Manuscripts. In 20th International Conference on Frontiers in Handwriting Recogni-
tion, Dortmund, 2020. submitted to.

C.W. conceived the methodology and the experiments, and carried them out. C.W. ana-
lyzed and discussed the results. C.W. wrote the publication with contributions of F.P.

166

Bibliography
[1] Frank Dennis Julca Aguilar and Nina ST Hirata. Image operator learning coupled with

CNN classification and its application to staff line removal. In 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), volume 1, pages 53–58. IEEE,
2017.

[2] Fatemeh Alirezazadeh and Mohammad Reza Ahmadzadeh. Effective staff line detection,
restoration and removal approach for different quality of scanned handwritten music sheets.
Journal of Advanced Computer Science & Technology, 3(2):136–142, 2014. doi: 10.14419/
jacst.v3i2.3196.

[3] Adnan Amin and Ricky Shiu. Page segmentation and classification utilizing bottom-up
approach. International Journal of Image and Graphics, 1(02):345–361, 2001.

[4] Apostolos Antonacopoulos, Stefan Pletschacher, David Bridson, and Christos Papadopou-
los. ICDAR 2009 page segmentation competition. In 2009 10th International Conference
on Document Analysis and Recognition, pages 1370–1374. IEEE, 2009.

[5] Apostolos Antonacopoulos, Christian Clausner, Christos Papadopoulos, and Stefan
Pletschacher. Historical document layout analysis competition. In 2011 International Con-
ference on Document Analysis and Recognition, pages 1516–1520. IEEE, 2011.

[6] Apostolos Antonacopoulos, Christian Clausner, Christos Papadopoulos, and Stefan
Pletschacher. ICDAR 2013 competition on historical book recognition (HBR 2013). In
2013 12th International Conference on Document Analysis and Recognition, pages 1459–
1463. IEEE, 2013.

[7] Apostolos Antonacopoulos, Christian Clausner, Christos Papadopoulos, and Stefan
Pletschacher. ICDAR 2013 competition on historical newspaper layout analysis (HLNA
2013). In 2013 12th International Conference on Document Analysis and Recognition, pages
1454–1458. IEEE, 2013.

[8] Apostolos Antonacopoulos, Christian Clausner, Christos Papadopoulos, and Stefan
Pletschacher. ICDAR2015 competition on recognition of documents with complex layouts-
RDCL2015. In 2015 13th International Conference on Document Analysis and Recognition
(ICDAR), pages 1151–1155. IEEE, 2015.

[9] Mehdi Assefi. OCR as a Service: An Experimental Evaluation of Google Docs OCR,
Tesseract, ABBYY FineReader, and Transym. ISCV, December 2016.

167

BIBLIOGRAPHY

[10] Konstantin Baierer, Rui Dong, and Clemens Neudecker. okralact - a multi-engine Open
Source OCR training system. In Proceedings of the 5th International Workshop on Histor-
ical Document Imaging and Processing, HIP ’19, pages 25–30, Sydney, NSW, Australia,
September 2019. Association for Computing Machinery. ISBN 978-1-4503-7668-6. doi:
10.1145/3352631.3352638. URL https://doi.org/10.1145/3352631.3352638.

[11] Jennifer Bain, Inga Behrendt, Kate Helsen, Alan P. Sexton, and Ichiro Fujinaga. The Op-
tical Neume Recognition Project, 2012. URL https://opticalneumerecognition.
wordpress.com.

[12] Jennifer Bain, Inga Behrendt, and Kate Helsen. Linienlose Neumen, Neumentrennung und
Repräsentation von Neumen mit MEI Schema – Herausforderungen in der Arbeit im Op-
tical Neume Recognition Project (ONRP). In Digitale Rekonstruktionen mittelalterlicher
Bibliotheken, pages 119–132, Wiesbaden, 2014.

[13] David Bainbridge. Extensible optical music recognition. PhD Thesis, University of Canter-
bury, 1997. URL http://hdl.handle.net/10092/9420.

[14] Henry S. Baird, Susan E. Jones, and Steven J. Fortune. Image segmentation by shape-
directed covers. In [1990] Proceedings. 10th International Conference on Pattern Recogni-
tion, volume 1, pages 820–825. IEEE, 1990.

[15] Mario Baroni, Simon Maguire, and William Drabkin. The concept of musical grammar.
Music Analysis, 2(2):175–208, 1983.

[16] Louis W. G. Barton. The NEUMES Project: digital transcription of medieval chant
manuscripts. In 2nd International Conference on Web Delivering of Music, pages 211–218,
2002. doi: 10.1109/WDM.2002.1176213.

[17] Louis W. G. Barton. The NEUMES Project, 2007. URL http://www.scribeserver.
com/NEUMES/index.html?lang=en&level=2&opened=yes&page=.

[18] Louis W. G. Barton, John A. Caldwell, and Peter G. Jeavons. E-library of Medieval Chant
Manuscript Transcriptions. In 5th ACM/IEEE-CS Joint Conference on Digital Libraries, pages
320–329, Denver, CO, USA, 2005. ACM. ISBN 1-58113-876-8. doi: 10.1145/1065385.
1065458.

[19] Louis WG Barton, Peter G. Jeavons, John A. Caldwell, and Koon Shan Barry Ng. First
class objects and indexes for chant manuscripts. In Proceedings of the 7th ACM/IEEE-CS
joint conference on Digital libraries, pages 415–416. ACM, 2007.

[20] Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza, and Alicia Fornés. From Optical Music
Recognition to Handwritten Music Recognition: A baseline. Pattern Recognition Letters,
123:1–8, May 2019. ISSN 0167-8655. doi: 10.1016/j.patrec.2019.02.029. URL http:
//www.sciencedirect.com/science/article/pii/S0167865518303386.

168

https://doi.org/10.1145/3352631.3352638
https://opticalneumerecognition.wordpress.com
https://opticalneumerecognition.wordpress.com
http://hdl.handle.net/10092/9420
http://www.scribeserver.com/NEUMES/index.html?lang=en&level=2&opened=yes&page=
http://www.scribeserver.com/NEUMES/index.html?lang=en&level=2&opened=yes&page=
http://www.sciencedirect.com/science/article/pii/S0167865518303386
http://www.sciencedirect.com/science/article/pii/S0167865518303386

BIBLIOGRAPHY

[21] Arnau Baró-Mas. Optical Music Recognition by Long Short-Term Memory Recurrent
Neural Networks. Master’s thesis, Universitat Autònoma de Barcelona, 2017. URL
http://www.cvc.uab.es/people/afornes/students/Master_ABaro2017.pdf.

[22] Dorothea Blostein and Henry S. Baird. A Critical Survey of Music Image Analysis. In
Structured Document Image Analysis, pages 405–434. Springer Berlin Heidelberg, 1992.
ISBN 978-3-642-77281-8. doi: 10.1007/978-3-642-77281-8_19.

[23] Thomas Breuel. The OCRopus open source OCR system. In Document Recognition and
Retrieval XV, volume 6815, page 68150F. International Society for Optics and Photonics,
2008.

[24] Thomas Breuel. High Performance Text Recognition Using a Hybrid Convolutional-LSTM
Implementation. In 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR), pages 11–16. IEEE, 2017.

[25] Thomas Breuel. OCRopy 2, 2018. URL https://github.com/tmbdev/ocropy2/.

[26] Thomas Breuel. CLSTM - A small C++ implementation of LSTM networks, focused on
OCR, 2019. URL https://github.com/tmbdev/clstm.

[27] Thomas Breuel, Adnan Ul-Hasan, Mayce Ibrahim Ali Al Azawi, and Faisal Shafait. High-
Performance OCR for Printed English and Fraktur Using LSTM Networks. In 12th Inter-
national Conference on Document Analysis and Recognition, ICDAR 2013, Washington, DC,
USA, August 25-28, 2013, pages 683–687, 2013. doi: 10.1109/ICDAR.2013.140. URL
https://doi.org/10.1109/ICDAR.2013.140.

[28] Hoang-Nam Bui, Iin-Seop Na, and Soo-Hyung Kim. Staff Line Removal Using Line
Adjacency Graph and Staff Line Skeleton for Camera-Based Printed Music Scores. In
22nd International Conference on Pattern Recognition, pages 2787–2789, 2014. doi:
10.1109/ICPR.2014.480.

[29] Manuel Burghardt and Sebastian Spanner. Allegro: User-centered Design of a Tool for the
Crowdsourced Transcription of Handwritten Music Scores. In Proceedings of the 2Nd In-
ternational Conference on Digital Access to Textual Cultural Heritage, DATeCH2017, pages
15–20, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5265-9. doi: 10.1145/
3078081.3078101. URL http://doi.acm.org/10.1145/3078081.3078101. Göttin-
gen, Germany.

[30] John Ashley Burgoyne, Yue Ouyang, Tristan Himmelman, Johanna Devaney, Laurent Pu-
gin, and Ichiro Fujinaga. Lyric Extraction and Recognition on Digital Images of Early Mu-
sic Sources. In 10th International Society for Music Information Retrieval Conference, pages
723–727, Kobe, Japan, 2009. URL http://ismir2009.ismir.net/proceedings/
OS8-3.pdf.

[31] Jean-Christophe Burie, Joseph Chazalon, Mickaël Coustaty, Sébastien Eskenazi, Muham-
mad Muzzamil Luqman, Maroua Mehri, Nibal Nayef, Jean-Marc Ogier, Sophea Prum,

169

http://www.cvc.uab.es/people/afornes/students/Master_ABaro2017.pdf
https://github.com/tmbdev/ocropy2/
https://github.com/tmbdev/clstm
https://doi.org/10.1109/ICDAR.2013.140
http://doi.acm.org/10.1145/3078081.3078101
http://ismir2009.ismir.net/proceedings/OS8-3.pdf
http://ismir2009.ismir.net/proceedings/OS8-3.pdf

BIBLIOGRAPHY

and Marçal Rusiñol. ICDAR2015 competition on smartphone document capture and OCR
(SmartDoc). In 2015 13th International Conference on Document Analysis and Recognition
(ICDAR), pages 1161–1165. IEEE, 2015.

[32] Gregory Burlet, Alastair Porter, Andrew Hankinson, and Ichiro Fujinaga. Neon.js: Neume
Editor Online. In 13th International Society for Music Information Retrieval Conference,
pages 121–126, Porto, Portugal, 2012. URL http://ismir2012.ismir.net/event/
papers/121_ISMIR_2012.pdf.

[33] Donald Byrd and Jakob Grue Simonsen. Towards a Standard Testbed for Optical Music
Recognition: Definitions, Metrics, and Page Images. Journal of New Music Research, 44
(3):169–195, 2015. ISSN 0929-8215. doi: 10.1080/09298215.2015.1045424.

[34] John A. Caldwell. Towards a Classification of Western Chant Notations. In
NEUMES 2006 Oxford Conference on Computerised Transcription of Medieval
Chant Manuscripts, pages 27–28, St Anne’s College, Oxford, June 2006. URL
http://www.scribeserver.com/NEUMES/conference2006/proceedings/
Caldwell_Classification-of-Notations.pdf.

[35] Jorge Calvo-Zaragoza and David Rizo. Camera-PrIMuS: Neural End-to-End Optical Music
Recognition on Realistic Monophonic Scores. In 19th International Society for Music Infor-
mation Retrieval Conference, pages 248–255, Paris, France, 2018. ISBN 978-2-9540351-
2-3. URL http://ismir2018.ircam.fr/doc/pdfs/33_Paper.pdf.

[36] Jorge Calvo-Zaragoza and David Rizo. End-to-End Neural Optical Music Recognition
of Monophonic Scores. Applied Sciences, 8(4), 2018. ISSN 2076-3417. doi: 10.3390/
app8040606. URL http://www.mdpi.com/2076-3417/8/4/606.

[37] Jorge Calvo-Zaragoza, Luisa Micó, and Jose Oncina. Music staff removal with supervised
pixel classification. International Journal on Document Analysis and Recognition, 19(3):
211–219, 2016. doi: 10.1007/s10032-016-0266-2.

[38] Jorge Calvo-Zaragoza, Alejandro Héctor Toselli, and Enrique Vidal. Early Handwritten
Music Recognition with Hidden Markov Models. In 15th International Conference on Fron-
tiers in Handwriting Recognition, ICFHR 2016, Shenzhen, China, October 23-26, 2016, pages
319–324, 2016. doi: 10.1109/ICFHR.2016.0067. URL https://doi.org/10.1109/
ICFHR.2016.0067.

[39] Jorge Calvo-Zaragoza, Antonio Pertusa, and Jose Oncina. Staff-line detection and removal
using a convolutional neural network. Machine Vision and Applications, 28(5-6):665–674,
2017.

[40] Jorge Calvo-Zaragoza, Alejandro Toselli, and Enrique Vidal. Handwritten Music Recogni-
tion for Mensural Notation: Formulation, Data and Baseline Results. In 14th International
Conference on Document Analysis and Recognition, pages 1081–1086, Kyoto, Japan, 2017.
doi: 10.1109/ICDAR.2017.179.

170

http://ismir2012.ismir.net/event/papers/121_ISMIR_2012.pdf
http://ismir2012.ismir.net/event/papers/121_ISMIR_2012.pdf
http://www.scribeserver.com/NEUMES/conference2006/proceedings/Caldwell_Classification-of-Notations.pdf
http://www.scribeserver.com/NEUMES/conference2006/proceedings/Caldwell_Classification-of-Notations.pdf
http://ismir2018.ircam.fr/doc/pdfs/33_Paper.pdf
http://www.mdpi.com/2076-3417/8/4/606
https://doi.org/10.1109/ICFHR.2016.0067
https://doi.org/10.1109/ICFHR.2016.0067

BIBLIOGRAPHY

[41] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. A machine learning frame-
work for the categorization of elements in images of musical documents. In 3rd Interna-
tional Conference on Technologies for Music Notation and Representation, A Coruña, Spain,
2017. University of A Coruña. URL http://www.udc.es/grupos/ln/tenor2017/
sections/node/5-unified_categorization.pdf.

[42] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Staff-Line Detection on
Grayscale Images with Pixel Classification. In Luís A. Alexandre, José Salvador Sánchez,
and João M. F. Rodrigues, editors, Pattern Recognition and Image Analysis, pages 279–
286, Cham, 2017. Springer International Publishing. ISBN 978-3-319-58838-4. URL
https://link.springer.com/chapter/10.1007%2F978-3-319-58838-4_31.

[43] Jorge Calvo-Zaragoza, Francisco J. Castellanos, Gabriel Vigliensoni, and Ichiro Fujinaga.
Deep Neural Networks for Document Processing of Music Score Images. Applied Sciences,
8(5), 2018. ISSN 2076-3417. doi: 10.3390/app8050654. URL http://www.mdpi.com/
2076-3417/8/5/654.

[44] Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha. Understanding Optical Music
Recognition. Computing Research Repository, 2019. URL https://arxiv.org/abs/
1908.03608.

[45] Vicente Bosch Campos, Jorge Calvo-Zaragoza, Alejandro H. Toselli, and Enrique Vidal
Ruiz. Sheet Music Statistical Layout Analysis. In 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pages 313–318, October 2016. doi: 10.1109/
ICFHR.2016.0066. ISSN: 2167-6445.

[46] Artur Capela, Ana Rebelo, Jamie dos Santos Cardoso, and Carlos Guedes. Staff Line
Detection and Removal with Stable Paths. In International Conference on Signal Process-
ing and Multimedia Applications, 2008. URL http://www.inescporto.pt/arebelo/
publications/2008ACapelaSIGMAP.pdf.

[47] Samuele Capobianco, Leonardo Scommegna, and Simone Marinai. Historical Handwrit-
ten Document Segmentation by Using a Weighted Loss. In Luca Pancioni, Friedhelm
Schwenker, and Edmondo Trentin, editors, Artificial Neural Networks in Pattern Recogni-
tion, Lecture Notes in Computer Science, pages 395–406. Springer International Publishing,
2018. ISBN 978-3-319-99978-4.

[48] Jaime S. Cardoso and Ana Rebelo. Robust staffline thickness and distance estimation
in binary and gray-level music scores. In 2010 20th International Conference on Pattern
Recognition, pages 1856–1859. IEEE, 2010. URL https://ieeexplore.ieee.org/
document/5597199.

[49] Jamie dos Santos Cardoso, Artur Capela, Ana Rebelo, Carlos Guedes, and Joaquim Pinto da
Costa. StaffDetectionwith Stable Paths. IEEETransactions on Pattern Analysis andMachine
Intelligence, 31(6):1134–1139, 2009. ISSN 0162-8828. doi: 10.1109/TPAMI.2009.34.

171

http://www.udc.es/grupos/ln/tenor2017/sections/node/5-unified_categorization.pdf
http://www.udc.es/grupos/ln/tenor2017/sections/node/5-unified_categorization.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-58838-4_31
http://www.mdpi.com/2076-3417/8/5/654
http://www.mdpi.com/2076-3417/8/5/654
https://arxiv.org/abs/1908.03608
https://arxiv.org/abs/1908.03608
http://www.inescporto.pt/ arebelo/publications/2008ACapelaSIGMAP.pdf
http://www.inescporto.pt/ arebelo/publications/2008ACapelaSIGMAP.pdf
https://ieeexplore.ieee.org/document/5597199
https://ieeexplore.ieee.org/document/5597199

BIBLIOGRAPHY

[50] Nicholas Paul Carter and Richard A. Bacon. Automatic Recognition of Printed Music. In
Structured Document Image Analysis, pages 456–465. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1992. ISBN 978-3-642-77281-8. doi: 10.1007/978-3-642-77281-8_21. URL
https://doi.org/10.1007/978-3-642-77281-8_21.

[51] Catholic Church. The Liber Usualis with introduction and rubrics in English. Desclée, Tour-
nai, Belgium, 1963.

[52] G. Chen, L. Zhang, W. Zhang, and Q. Wang. Detecting the Staff-Lines of Musical Score
with Hough Transform andMathematical Morphology. In 2010 International Conference on
Multimedia Technology, pages 1–4, October 2010. doi: 10.1109/ICMULT.2010.5631269.

[53] K. Chen, M. Seuret, M. Liwicki, J. Hennebert, C. L. Liu, and R. Ingold. Page Segmentation
for Historical Handwritten Document Images Using Conditional Random Fields. In 2016
15th Int. Conf. on Frontiers in Handwriting Recognition (ICFHR), pages 90–95, 2016. doi:
10.1109/ICFHR.2016.0029.

[54] Kai Chen, Mathias Seuret, Marcus Liwicki, Jean Hennebert, and Rolf Ingold. Page seg-
mentation of historical document images with convolutional autoencoders. In 2015 13th In-
ternational Conference on Document Analysis and Recognition (ICDAR), pages 1011–1015.
IEEE, 2015.

[55] Kai Chen, Cheng-Lin Liu, Mathias Seuret, Marcus Liwicki, Jean Hennebert, and Rolf In-
gold. Page segmentation for historical document images based on superpixel classification
with unsupervised feature learning. In 2016 12th IAPR Workshop on Document Analysis
Systems (DAS), pages 299–304. IEEE, 2016.

[56] Kai Chen, Mathias Seuret, Jean Hennebert, and Rolf Ingold. Convolutional neural networks
for page segmentation of historical document images. In 2017 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR), volume 1, pages 965–970. IEEE,
2017.

[57] Liang Chen and Christopher Raphael. Human-Directed Optical Music Recognition. Elec-
tronic Imaging, 2016(17):1–9, 2016. doi: 10.2352/ISSN.2470-1173.2016.17.DRR-053.

[58] Liang Chen, Rong Jin, and Christopher Raphael. Human-Guided Recognition of Music
Score Images. In 4th International Workshop on Digital Libraries for Musicology. ACM
Press, 2017. doi: 10.1145/3144749.3144752.

[59] Liang-Chieh Chen, George Papandreou, Kevin Murphy, and Alan L. Yuille. Weakly-and
semi-supervised learning of a deep convolutional network for semantic image segmentation.
In ICCV, volume 1, page 2. Citeseer, 2015.

[60] G. Sayeed Choudhury, M. Droetboom, Tim DiLauro, Ichiro Fujinaga, and Brian Har-
rington. Optical Music Recognition System within a Large-Scale Digitization Project. In
1st International Symposium on Music Information Retrieval, 2000. URL http://jhir.
library.jhu.edu/handle/1774.2/32794.

172

https://doi.org/10.1007/978-3-642-77281-8_21
http://jhir.library.jhu.edu/handle/1774.2/32794
http://jhir.library.jhu.edu/handle/1774.2/32794

BIBLIOGRAPHY

[61] G. Sayeed Choudhury, Cynthia Requardt, Ichiro Fujinaga, Tim DiLauro, Elisabeth W.
Brown, James W. Warner, and Brian Harrington. Digital workflow management: The
Lester S. Levy digitized collection of sheet music. First Monday, 5(6), 2000. doi:
10.5210/fm.v5i6.756.

[62] G. Sayeed Choudhury, Tim DiLauro, Michael Droettboom, Ichiro Fujinaga, and Karl
MacMillan. Strike Up the Score: Deriving searchable and playable digital formats
from sheet music. D-Lib Magazine, 7(2), 2001. ISSN 1082-9873. doi: 10.
1045/february2001-choudhury. URL http://www.dlib.org/dlib/february01/
choudhury/02choudhury.html.

[63] Matthew Christy, Anshul Gupta, Elizabeth Grumbach, Laura Mandell, Richard Fu-
ruta, and Ricardo Gutierrez-Osuna. Mass digitization of early modern texts with op-
tical character recognition. Journal on Computing and Cultural Heritage (JOCCH), 11
(1):6, 2018. URL https://psi.engr.tamu.edu/wp-content/uploads/2018/01/
christy2017jcch.pdf.

[64] Christian Clausner, Apostolos Antonacopoulos, and Stefan Pletschacher. Icdar2017 com-
petition on recognition of documents with complex layouts-rdcl2017. In 2017 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), volume 1, pages
1404–1410. IEEE, 2017.

[65] Solange Corbin and Basel Musikwissenschaftliches Institut. Die Neumen. Palaeographie der
Musik. Bd. 1, Fasz. 3. Volk, Köln, 1977.

[66] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object detection via region-based
fully convolutional networks. In Advances in Neural Information Processing Systems, pages
379–387, 2016.

[67] Christoph Dalitz and Thomas Karsten. Using the Gamera framework for building a lute
tablature recognition system. In 6th International Conference on Music Information Re-
trieval, pages 478–481, London, UK, 2005. URL http://ismir2005.ismir.net/
proceedings/2012.pdf.

[68] Christoph Dalitz, Michael Droettboom, Bastian Pranzas, and Ichiro Fujinaga. A Compara-
tive Study of Staff Removal Algorithms. IEEE Transactions on Pattern Analysis andMachine
Intelligence, 30(5):753–766, 2008. ISSN 0162-8828. doi: 10.1109/tpami.2007.70749.

[69] Christoph Dalitz, Georgios K. Michalakis, and Christine Pranzas. Optical recognition of
psaltic Byzantine chant notation. International Journal of Document Analysis and Recog-
nition, 11(3):143–158, 2008. ISSN 1433-2825. doi: 10.1007/s10032-008-0074-4. URL
https://doi.org/10.1007/s10032-008-0074-4.

[70] Timothy de Reuse and Ichiro Fujinaga. Robust Transcript Alignment on Medieval Chant
Manuscripts. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International
Workshop on Reading Music Systems, pages 21–26, Delft, The Netherlands, 2019. URL
https://sites.google.com/view/worms2019/proceedings.

173

http://www.dlib.org/dlib/february01/choudhury/02choudhury.html
http://www.dlib.org/dlib/february01/choudhury/02choudhury.html
https://psi.engr.tamu.edu/wp-content/uploads/2018/01/christy2017jcch.pdf
https://psi.engr.tamu.edu/wp-content/uploads/2018/01/christy2017jcch.pdf
http://ismir2005.ismir.net/proceedings/2012.pdf
http://ismir2005.ismir.net/proceedings/2012.pdf
https://doi.org/10.1007/s10032-008-0074-4
https://sites.google.com/view/worms2019/proceedings

BIBLIOGRAPHY

[71] Cong Minh Dinh, Hyung-Jeong Yang, Guee-Sang Lee, and Soo-Hyung Kim. Fast lyric
area extraction from images of printed Korean music scores. IEICE Transactions on Infor-
mation and Systems, E99D(6):1576–1584, 2016. ISSN 0916-8532. doi: 10.1587/transinf.
2015EDP7296.

[72] David Doermann and Karl Tombre, editors. Handbook of Document Image Processing and
Recognition. Springer Reference. Springer, London, 2014. ISBN 978-0-85729-858-4. doi:
10.1007/978-0-85729-859-1.

[73] Antoine Doucet, Gabriella Kazai, and Jean-Luc Meunier. ICDAR 2011 book structure ex-
traction competition. In 2011 International Conference on Document Analysis and Recog-
nition, pages 1501–1505. IEEE, 2011.

[74] Antoine Doucet, Gabriella Kazai, Sebastian Colutto, and Günter Mühlberger. ICDAR 2013
Competition on Book Structure Extraction. In 2013 12th International Conference on Doc-
ument Analysis and Recognition, pages 1438–1443. IEEE, 2013.

[75] Michael Droettboom. Beyond transcription: Case studies in special document analysis re-
quirements. In The International Workshop on Document Image Analysis for Libraries. Cite-
seer, 2004.

[76] Michael Droettboom, Ichiro Fujinaga, KarlMacMillan, G. Sayeed Chouhury, TimDiLauro,
Mark Patton, and Teal Anderson. Using the Gamera framework for the recognition of
cultural heritage materials. In Joint Conference on Digital Libraries, pages 12–17, London,
UK, 2002. URL http://droettboom.com/papers/p74-droettboom.pdf.

[77] Michael Droettboom, Karl MacMillan, and Ichiro Fujinaga. The Gamera framework for
building custom recognition systems. In Symposium on Document Image Understanding
Technologies, Greenbelt, MD, 2003.

[78] Anjan Dutta, Umapada Pal, Alicia Fornés, and Josep Llados. An Efficient Staff Removal
Approach from Printed Musical Documents. In 20th International Conference on Pattern
Recognition, pages 1965–1968, 2010. doi: 10.1109/ICPR.2010.484.

[79] Tim Eipert, Felix Herrman, Christoph Wick, Frank Puppe, and Andreas Haug. Editor
Support for Digital Editions of Medieval Monophonic Music. In Jorge Calvo-Zaragoza and
Alexander Pacha, editors, 2nd InternationalWorkshop on ReadingMusic Systems, pages 4–7,
Delft, The Netherlands, 2019. URL https://sites.google.com/view/worms2019/
proceedings.

[80] Kuo-Chin Fan, Chi-Hwa Liu, and Yuan-Kai Wang. Segmentation and classification of
mixed text/graphics/image documents. Pattern Recognition Letters, 15(12):1201–1209,
1994.

[81] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning Hierarchical Features for
Scene Labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):
1915–1929, 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.231.

174

http://droettboom.com/papers/p74-droettboom.pdf
https://sites.google.com/view/worms2019/proceedings
https://sites.google.com/view/worms2019/proceedings

BIBLIOGRAPHY

[82] Charles B. Faulhaber. The Digital Scriptorium: A New Way to Study Medieval Iberian
Manuscripts. Research Series-Institute of International Studies University of California
Berkeley, pages 9–21, 1999.

[83] Andreas Fischer, Volkmar Frinken, Alicia Fornés, and Horst Bunke. Transcription Align-
ment of LatinManuscripts Using HiddenMarkovModels. In Proceedings of the 2011Work-
shop on Historical Document Imaging and Processing, HIP ’11, pages 29–36, NewYork, NY,
USA, 2011. ACM. ISBN 978-1-4503-0916-5. doi: 10.1145/2037342.203734. Beijing,
China.

[84] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Llados. The ICDAR 2011 Music
Scores Competition: Staff Removal and Writer Identification. In International Conference
on Document Analysis and Recognition, pages 1511–1515, 2011. doi: 10.1109/ICDAR.
2011.300.

[85] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Lladós. CVC-MUSCIMA: a ground
truth of handwritten music score images for writer identification and staff removal. Interna-
tional Journal on Document Analysis and Recognition (IJDAR), 15(3):243–251, September
2012. ISSN 1433-2825. doi: 10.1007/s10032-011-0168-2. URL https://doi.org/
10.1007/s10032-011-0168-2.

[86] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Lladós. The 2012 Music Scores
Competitions: Staff Removal and Writer Identification. In Young-Bin Kwon and Jean-
Marc Ogier, editors, Graphics Recognition. New Trends and Challenges, pages 173–186,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-36824-0. doi:
10.1007/978-3-642-36824-0_17.

[87] Ichiro Fujinaga. Adaptive optical music recognition. PhD Thesis, McGill University, 1996.
URL http://www.music.mcgill.ca/ich/research/diss/FujinagaDiss.pdf.

[88] Ichiro Fujinaga. Staff detection and removal. In Visual Perception of Music Nota-
tion: On-Line and Off Line Recognition, pages 1–39. IGI Global, 2004. doi: 10.4018/
978-1-59140-298-5.ch001.

[89] Ichiro Fujinaga and Andrew Hankinson. SIMSSA: Single Interface for Music Score Search-
ing and Analysis. Journal of the Japanese Society for Sonic Arts, 6(3):25–30, 2014. URL
http://data.jssa.info/paper/2014v06n03/7.Fujinaga.pdf.

[90] Susan E. George. Lyric Recognition and Christian Music. In S. George, editor, Visual
Perception ofMusic Notation: On-Line and OffLine Recognition, pages 198–226. IRMPress,
Hershey, PA, 2004. doi: 10.4018/978-1-59140-298-5.ch007.

[91] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 580–587, 2014.

[92] Michael Good. MusicXML for notation and analysis. The virtual score: representation,
retrieval, restoration, 12:113–124, 2001.

175

https://doi.org/10.1007/s10032-011-0168-2
https://doi.org/10.1007/s10032-011-0168-2
http://www.music.mcgill.ca/ ich/research/diss/FujinagaDiss.pdf
http://data.jssa.info/paper/2014v06n03/7.Fujinaga.pdf

BIBLIOGRAPHY

[93] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[94] Maarten Grachten, Josep Lluıs Arcos, and Ramon López deMántaras. A comparison of dif-
ferent approaches to melodic similarity. In Proceedigns of the 2nd International Conference
on Music and Artificial Intelligence, pages 43–56, 2002.

[95] Maarten Grachten, Josep Ll Arcos, and Ramon Lopez de Mantaras. Melodic similarity:
Looking for a good abstraction level. In 5th International Conference on Music Information
Retrieval, Barcelona, Spain, 2004.

[96] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connec-
tionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international conference on Machine learning, pages
369–376. ACM, 2006.

[97] Thierry Géraud. Olena/Icdar2013Score, 2013. URL https://www.lrde.epita.fr/
wiki/Olena/Icdar2013Score.

[98] Thierry Géraud. A morphological method for music score staff removal. In International
Conference on Image Processing, pages 2599–2603. Institute of Electrical and Electronics
Engineers Inc., 2014. ISBN 978-1-4799-5751-4. doi: 10.1109/ICIP.2014.7025526.

[99] Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. ICDAR 2013 table compe-
tition. In 2013 12th International Conference on Document Analysis and Recognition, pages
1449–1453. IEEE, 2013.

[100] Jaekyu Ha, Robert M. Haralick, and Ihsin T. Phillips. Document page decomposition by the
bounding-box project. In Proceedings of 3rd International Conference on Document Analysis
and Recognition, volume 2, pages 1119–1122. IEEE, 1995.

[101] Jaekyu Ha, Robert M. Haralick, and Ihsin T. Phillips. Recursive XY cut using bounding
boxes of connected components. In Proceedings of 3rd International Conference on Docu-
ment Analysis and Recognition, volume 2, pages 952–955. IEEE, 1995.

[102] Jaekyu Ha, Ihsin T. Phillips, and Robert M. Haralick. Document page decomposition using
bounding boxes of connected components of black pixels. In Document Recognition II,
volume 2422, pages 140–151. International Society for Optics and Photonics, 1995.

[103] Jan Hajič jr. and Pavel Pecina. The MUSCIMA++ Dataset for Handwritten Optical Music
Recognition. In 14th International Conference on Document Analysis and Recognition, pages
39–46, Kyoto, Japan, 2017. doi: 10.1109/ICDAR.2017.16.

[104] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Implementing Methods for Analysing
Music Based on Lerdahl and Jackendoff’s Generative Theory of Tonal Music. In David
Meredith, editor, Computational Music Analysis, pages 221–249. Springer International

176

https://www.lrde.epita.fr/wiki/Olena/Icdar2013Score
https://www.lrde.epita.fr/wiki/Olena/Icdar2013Score

BIBLIOGRAPHY

Publishing, Cham, 2016. ISBN 978-3-319-25931-4. doi: 10.1007/978-3-319-25931-4_9.
URL https://doi.org/10.1007/978-3-319-25931-4_9.

[105] Andrew Hankinson. Optical music recognition infrastructure for large-scale music docu-
ment analysis. PhD Thesis, McGill University, 2014. URL http://digitool.library.
mcgill.ca/webclient/DeliveryManager?pid=130291.

[106] Andrew Hankinson and Ichiro Fujinaga. SIMSSA: Single Interface for Music Score
Searching and Analysis. In Conference of the International Association of Music Libraries,
Montréal, QC, 2012. URL https://www.iaml.info/sites/default/files/pdf/
20120711a_montreal_programme.pdf.

[107] Andrew Hankinson, Wendy Liu, Laurent Pugin, and Ichiro Fujinaga. Diva. js: A continuous
document viewing interface. Code4Lib Journal, (14), 2011.

[108] Andrew Hankinson, John Ashley Burgoyne, Gabriel Vigliensoni, and Ichiro Fujinaga. Cre-
ating a Large-scale Searchable Digital Collection from Printed Music Materials. In 21st
International Conference on World Wide Web, pages 903–908, Lyon, France, 2012. ACM.
ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2188221.

[109] Andrew Hankinson, John Ashley Burgoyne, Gabriel Vigliensoni, Alastair Porter, Jessica
Thompson, Wendy Liu, Remi Chiu, and Ichiro Fujinaga. Digital Document Image Re-
trieval Using Optical Music Recognition. In Fabien Gouyon, Perfecto Herrera, Luis Gus-
tavo Martins, and Meinard Müller, editors, 13th International Society for Music Informa-
tion Retrieval Conference, pages 577–582, 2012. URL http://ismir2012.ismir.net/
event/papers/577-ismir-2012.pdf.

[110] Andrew Hankinson, Wendy Liu, Laurent Pugin, and Ichiro Fujinaga. Diva: a web-based
high-resolution digital document viewer. In International Conference on Theory and Practice
of Digital Libraries, pages 455–460. Springer, 2012.

[111] Alexander Hartelt. Segmentierung von Notenlinien auf historischen Dokumenten. Master’s
thesis, University of Würzburg, Würzburg, April 2019.

[112] Andreas Haug and Frank Puppe. Corpus monodicum, December 2019. URL http://
www.musikwissenschaft.uni-wuerzburg.de/forschung/corpus-monodicum/.

[113] Andreas Haug, Isabel Kraft, and Hanna Zühlke. Tropen zu den Antiphonen der Messe aus
Quellen deutscher Herkunft. Corpus Monodicum. Die einstimmige Musik des lateinischen
Mittelalters. Schwabe Verlag, Basel, 2019.

[114] Kate Helsen, Jennifer Bain, Ichiro Fujinaga, Andrew Hankinson, and Debra Lacoste. Op-
tical music recognition and manuscript chant sources. Early Music, 42(4):555–558, 2014.
doi: 10.1093/em/cau092.

[115] Steven L. Hensen. Primary sources, research, and the Internet: The digital scriptorium at
Duke. First Monday, 2(9), 1997.

177

https://doi.org/10.1007/978-3-319-25931-4_9
http://digitool.library.mcgill.ca/webclient/DeliveryManager?pid=130291
http://digitool.library.mcgill.ca/webclient/DeliveryManager?pid=130291
https://www.iaml.info/sites/default/files/pdf/20120711a_montreal_programme.pdf
https://www.iaml.info/sites/default/files/pdf/20120711a_montreal_programme.pdf
http://ismir2012.ismir.net/event/papers/577-ismir-2012.pdf
http://ismir2012.ismir.net/event/papers/577-ismir-2012.pdf
http://www.musikwissenschaft.uni-wuerzburg.de/forschung/corpus-monodicum/
http://www.musikwissenschaft.uni-wuerzburg.de/forschung/corpus-monodicum/

BIBLIOGRAPHY

[116] Elaine Stratton Hild. Tropen zu den Antiphonen der Messe aus Quellen französischer
Herkunft. Corpus Monodicum. Die einstimmige Musik des lateinischen Mittelalters.
Schwabe Verlag, Basel, 2016.

[117] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1125–1134, 2017.

[118] David J. Ittner and Henry S. Baird. Language-free layout analysis. In Proceedings of 2nd
International Conference on Document Analysis and Recognition (ICDAR’93), pages 336–
340. IEEE, 1993.

[119] José M. Iñesta, David Rizo, and Jorge Calvo-Zaragoza. MuRET as a software for the tran-
scription of historical archives. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd
International Workshop on Reading Music Systems, pages 12–15, Delft, The Netherlands,
2019. URL https://sites.google.com/view/worms2019/proceedings.

[120] Berit Janssen, Peter van Kranenburg, and Anja Volk. Finding Occurrences of Melodic
Segments in Folk Songs Employing Symbolic Similarity Measures. Journal of New Music
Research, 46(2):118–134, April 2017. ISSN 0929-8215. doi: 10.1080/09298215.2017.
1316292. URL https://doi.org/10.1080/09298215.2017.1316292.

[121] Frederick Jelinek. Statistical methods for speech recognition. MIT press, 1997.

[122] K. V. Jobin and C. V. Jawahar. Document Image Segmentation Using Deep Features. In
Renu Rameshan, Chetan Arora, and Sumantra Dutta Roy, editors, Computer Vision, Pattern
Recognition, Image Processing, and Graphics, pages 372–382, Singapore, 2018. Springer
Singapore. ISBN 978-981-13-0020-2.

[123] Emily G. Johnston. Printed Text Discrimination. Computer Graphics and Image Processing,
3(1):83–89, March 1974. ISSN 0146-664X. doi: 10.1016/0146-664X(74)90012-4. URL
http://www.sciencedirect.com/science/article/pii/0146664X74900124.

[124] Hirokazu Kato and Seiji Inokuchi. A Recognition System for Printed Piano Music
Using Musical Knowledge and Constraints. In Structured Document Image Analysis,
pages 435–455. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-642-
77281-8. doi: 10.1007/978-3-642-77281-8_20. URL https://doi.org/10.1007/
978-3-642-77281-8_20.

[125] Klaus Keil and Jennifer A. Ward. Applications of RISM data in digital libraries and digital
musicology. International Journal on Digital Libraries, 20(1):3–12, 2019.

[126] Hideki Kenmochi and Hayato Ohshita. Vocaloid-commercial singing synthesizer based on
sample concatenation. In Eighth Annual Conference of the International Speech Communi-
cation Association, 2007.

[127] Benjamin Kiessling. Kraken - an Universal Text Recognizer for the Humanities. DH 2019
Digital Humanities, 2019.

178

https://sites.google.com/view/worms2019/proceedings
https://doi.org/10.1080/09298215.2017.1316292
http://www.sciencedirect.com/science/article/pii/0146664X74900124
https://doi.org/10.1007/978-3-642-77281-8_20
https://doi.org/10.1007/978-3-642-77281-8_20

BIBLIOGRAPHY

[128] Benjamin Kiessling, Matthew Thomas Miller, G. Maxim, Sarah Bowen Savant, and others.
Important New Developments in Arabographic Optical Character Recognition (OCR). Al-
ʿUṣūr al-Wusṭā, 25:1–13, 2017.

[129] Aishik Konwer, Ayan Kumar Bhunia, Abir Bhowmick, Ankan Kumar Bhunia, Prithaj
Banerjee, Partha Pratim Roy, and Umapada Pal. Staff line removal using generative ad-
versarial networks. In 2018 24th International Conference on Pattern Recognition (ICPR),
pages 1103–1108. IEEE, 2018.

[130] Mukkai Krishnamoorthy, George Nagy, Sharad Seth, and Mahesh Viswanathan. Syntactic
segmentation and labeling of digitized pages from technical journals. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15(7):737–747, 1993.

[131] Victor Lavrenko, Toni M. Rath, and Raghavan Manmatha. Holistic Word Recognition for
Handwritten Historical Documents. In Proceedings of the International Workshop on Doc-
ument Image Analysis for Libraries (DIAL), pages 278–287, 2004.

[132] Frank Lebourgeois, Z. Bublinski, and H. Emptoz. A fast and efficient method for extract-
ing text paragraphs and graphics from unconstrained documents. In Proceedings of the 11th
IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recog-
nition Methodology and Systems, pages 272–276. IEEE, 1992.

[133] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Ale-
jandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, and Zehan Wang. Photo-
realistic single image super-resolution using a generative adversarial network. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4681–4690,
2017.

[134] Chen-Yu Lee and Simon Osindero. Recursive Recurrent Nets With Atten-
tion Modeling for OCR in the Wild. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2231–2239, 2016. URL
http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Recursive_
Recurrent_Nets_CVPR_2016_paper.html.

[135] Qizhu Li, Anurag Arnab, and Philip HS Torr. Weakly-and semi-supervised panoptic seg-
mentation. In Proceedings of the European Conference on Computer Vision (ECCV), pages
102–118, 2018.

[136] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C. Berg. SSD: Single shot multibox detector. In European Conference
on Computer Vision, pages 21–37. Springer, 2016.

[137] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi.
A survey of deep neural network architectures and their applications. Neurocomputing, 234:
11–26, April 2017. ISSN 0925-2312. doi: 10.1016/j.neucom.2016.12.038. URL http:
//www.sciencedirect.com/science/article/pii/S0925231216315533.

179

http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Recursive_Recurrent_Nets_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Recursive_Recurrent_Nets_CVPR_2016_paper.html
http://www.sciencedirect.com/science/article/pii/S0925231216315533
http://www.sciencedirect.com/science/article/pii/S0925231216315533

BIBLIOGRAPHY

[138] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks
for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2015. URL https://www.cv-foundation.
org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_
Networks_2015_CVPR_paper.html.

[139] Pauline Luc, Camille Couprie, Soumith Chintala, and Jakob Verbeek. Semantic segmenta-
tion using adversarial networks. arXiv preprint arXiv:1611.08408, 2016.

[140] Karl MacMillan, Michael Droettboom, and Ichiro Fujinaga. Gamera: A structured doc-
ument recognition application development environment. In 2nd International Sympo-
sium on Music Information Retrieval, pages 15–16, Bloomington, IN, 2001. URL https:
//jscholarship.library.jhu.edu/handle/1774.2/44376.

[141] Karl MacMillan, Michael Droettboom, and Ichiro Fujinaga. Gamera: Optical music recog-
nition in a new shell. In International Computer Music Conference, pages 482–485, 2002.
URL http://www.music.mcgill.ca/ich/research/icmc02/icmc2002.gamera.
pdf.

[142] Song Mao, Azriel Rosenfeld, and Tapas Kanungo. Document structure analysis algorithms:
a literature survey. In Document Recognition and Retrieval X, volume 5010, pages 197–207.
International Society for Optics and Photonics, 2003.

[143] Dirk Merkel. Docker: lightweight linux containers for consistent development and deploy-
ment. Linux Journal, 2014(239):2, 2014.

[144] Hidetoshi Miyao. Stave extraction for printed music scores using DP matching. Journal of
Advanced Computational Intelligence and Intelligent Informatics, 8(2):208–215, 2004.

[145] Bharath R. Modayur, Visvanathan Ramesh, Robert M. Haralick, and Linda G. Shapiro.
MUSER: A prototype musical score recognition system using mathematical morphology.
Machine Vision and Applications, 6(2):140–150, 1993. ISSN 1432-1769. doi: 10.1007/
BF01211937.

[146] Marcel Mongeau and David Sankoff. Comparison of musical sequences. Computers and the
Humanities, 24(3):161–175, 1990.

[147] Igor dos Santos Montagner, Nina S.T. Hirata, and Roberto Jr. Hirata. Staff removal using
image operator learning. Pattern Recognition, 63:310–320, 2017. ISSN 0031-3203. doi:
10.1016/j.patcog.2016.10.002.

[148] Benedikt Morschheuser, Juho Hamari, and Jonna Koivisto. Gamification in Crowdsourcing:
A Review. In 2016 49th Hawaii International Conference on System Sciences (HICSS), pages
4375–4384, January 2016. doi: 10.1109/HICSS.2016.543. ISSN: 1530-1605.

[149] George Nagy and Sharad C. Seth. Hierarchical representation of optically scanned docu-
ments. In Proceedings of the IEEE 7th ICPR, Montreal, Canada, 1984.

180

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://jscholarship.library.jhu.edu/handle/1774.2/44376
https://jscholarship.library.jhu.edu/handle/1774.2/44376
http://www.music.mcgill.ca/ ich/research/icmc02/icmc2002.gamera.pdf
http://www.music.mcgill.ca/ ich/research/icmc02/icmc2002.gamera.pdf

BIBLIOGRAPHY

[150] George Nagy, Sharad Seth, andMahesh Viswanathan. A prototype document image analysis
system for technical journals. Computer, 25(7):10–22, 1992.

[151] Anoop M. Namboodiri and Anil K. Jain. Document structure and layout analysis. In Digital
Document Processing, pages 29–48. Springer, 2007.

[152] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

[153] Diego Nehab. Staff Line Detection by Skewed Projection. Techni-
cal report, 2003. URL https://pdfs.semanticscholar.org/142c/
dc7231a7a8093fd2da6f293a36862e592733.pdf.

[154] VoQuangNhat andGueeSang Lee. Adaptive Line Fitting for StaffDetection in Handwritten
Music Score Images. In 8th International Conference onUbiquitous InformationManagement
and Communication, pages 991–996, Siem Reap, Cambodia, 2014. ACM. ISBN 978-1-
4503-2644-5. doi: 10.1145/2557977.2558057.

[155] H. Noh, S. Hong, and B. Han. Learning DeconvolutionNetwork for Semantic Segmentation.
In 2015 IEEE Int. Conf. on Computer Vision (ICCV), pages 1520–1528, 2015. doi: 10.1109/
ICCV.2015.178.

[156] Lawrence O’Gorman. The document spectrum for page layout analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(11):1162–1173, 1993.

[157] Alexander Pacha and Jorge Calvo-Zaragoza. Optical Music Recognition in Mensural No-
tation with Region-Based Convolutional Neural Networks. In 19th International Society
for Music Information Retrieval Conference, pages 240–247, Paris, France, 2018. ISBN
978-2-9540351-2-3. URL http://ismir2018.ircam.fr/doc/pdfs/32_Paper.pdf.

[158] Alexander Pacha, Kwon-Young Choi, Bertrand Coüasnon, Yann Ricquebourg, Richard
Zanibbi, and Horst Eidenberger. Handwritten Music Object Detection: Open Issues and
Baseline Results. In 13th International Workshop on Document Analysis Systems, pages
163–168, 2018. doi: 10.1109/DAS.2018.51.

[159] Alexander Pacha, Jan Hajič jr., and Jorge Calvo-Zaragoza. A Baseline for General Music
Object Detection with Deep Learning. Applied Sciences, 8(9):1488–1508, 2018. ISSN
2076-3417. doi: 10.3390/app8091488. URL http://www.mdpi.com/2076-3417/8/
9/1488.

[160] Alexander Pacha, Jorge Calvo-Zaragoza, and Jan Hajič jr. Learning Notation Graph Con-
struction for Full-Pipeline Optical Music Recognition. In 20th International Society for
Music Information Retrieval Conference (in press), 2019.

[161] George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, and Alan L. Yuille. Weakly- and
semi-supervised learning of a deep convolutional network for semantic image segmentation.

181

https://pdfs.semanticscholar.org/142c/dc7231a7a8093fd2da6f293a36862e592733.pdf
https://pdfs.semanticscholar.org/142c/dc7231a7a8093fd2da6f293a36862e592733.pdf
http://ismir2018.ircam.fr/doc/pdfs/32_Paper.pdf
http://www.mdpi.com/2076-3417/8/9/1488
http://www.mdpi.com/2076-3417/8/9/1488

BIBLIOGRAPHY

In Proceedings of the IEEE International Conference on Computer Vision, pages 1742–1750,
2015.

[162] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in PyTorch. In 31st Conference on Neural Information Processing Systems, Long
Beach, CA, USA, 2017. URL https://openreview.net/pdf?id=BJJsrmfCZ.

[163] Theo Pavlidis and Jiangying Zhou. Page segmentation and classification. CVGIP: Graphical
Models and Image Processing, 54(6):484–496, 1992.

[164] João Caldas Pinto, Pedro Vieira, M. Ramalho, M.Mengucci, P. Pina, and F. Muge. Ancient
Music Recovery for Digital Libraries. In José Borbinha and Thomas Baker, editors, Research
and Advanced Technology for Digital Libraries, pages 24–34, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg. ISBN 978-3-540-45268-3. doi: 10.1007/3-540-45268-0_3.

[165] David S. Prerau. Computer pattern recognition of standard engraved music notation. PhD
Thesis, Massachusetts Institute of Technology, 1970.

[166] Laurent Pugin. Aruspix: an Automatic Source-Comparison System. Computing in Mu-
sicology, 14:49–59, 2006. ISSN 1057-9478. URL https://dialnet.unirioja.es/
servlet/articulo?codigo=3476563.

[167] Laurent Pugin. Optical Music Recognitoin of Early Typographic Prints using Hid-
den Markov Models. In 7th International Conference on Music Information Retrieval,
pages 53–56, Victoria, Canada, 2006. URL http://ismir2006.ismir.net/PAPERS/
ISMIR06152_Paper.pdf.

[168] Laurent Pugin, John Ashley Burgoyne, and Ichiro Fujinaga. Goal-directed Evaluation for
the Improvement of Optical Music Recognition on Early Music Prints. In 7th ACM/IEEE-
CS Joint Conference on Digital Libraries, pages 303–304, Vancouver, Canada, 2007. ACM.
ISBN 978-1-59593-644-8. doi: 10.1145/1255175.1255233.

[169] Laurent Pugin, Jason Hockman, John Ashley Burgoyne, and Ichiro Fujinaga. Gamera versus
Aruspix – Two Optical Music Recognition Approaches. In 9th International Conference
on Music Information Retrieval, 2008. URL http://ismir2008.ismir.net/papers/
ISMIR2008_247.pdf.

[170] Laurent Pugin, Rodolfo Zitellini, and Perry Roland. Verovio: A library for Engraving MEI
Music Notation into SVG. In Proceedings of the 15th International Society for Music Infor-
mation Retrieval Conference, pages 107–112, 2014.

[171] Carolina Ramirez and Jun Ohya. Automatic Recognition of Square Notation Symbols in
Western Plainchant Manuscripts. Journal of New Music Research, 43(4):390–399, 2014.
ISSN 0929-8215. doi: 10.1080/09298215.2014.931438.

182

https://openreview.net/pdf?id=BJJsrmfCZ
https://dialnet.unirioja.es/servlet/articulo?codigo=3476563
https://dialnet.unirioja.es/servlet/articulo?codigo=3476563
http://ismir2006.ismir.net/PAPERS/ISMIR06152_Paper.pdf
http://ismir2006.ismir.net/PAPERS/ISMIR06152_Paper.pdf
http://ismir2008.ismir.net/papers/ISMIR2008_247.pdf
http://ismir2008.ismir.net/papers/ISMIR2008_247.pdf

BIBLIOGRAPHY

[172] Ana Rebelo and Jamie dos Santos Cardoso. Staff Line Detection and Removal in the
Grayscale Domain. In 12th International Conference on Document Analysis and Recog-
nition, pages 57–61, 2013. doi: 10.1109/ICDAR.2013.20.

[173] Ana Rebelo, Artur Capela, Joaquim F. Pinto da Costa, Carlos Guedes, Eurico Carrapatoso,
and Jamie dos Santos Cardoso. A Shortest Path Approach for Staff Line Detection. In 3rd
International Conference on Automated Production of CrossMedia Content forMulti-Channel
Distribution, pages 79–85, 2007. doi: 10.1109/AXMEDIS.2007.16.

[174] Ana Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, Andre R. S. Marcal, Carlos Guedes, and
Jamie dos Santos Cardoso. Optical music recognition: state-of-the-art and open issues.
International Journal of Multimedia Information Retrieval, 1(3):173–190, 2012. doi: 10.
1007/s13735-012-0004-6.

[175] K. Todd Reed and J. R. Parker. Automatic Computer Recognition of Printed Music. In
13th International Conference on Pattern Recognition, pages 803–807, 1996. ISBN 0-8186-
7282-X. doi: 10.1109/ICPR.1996.547279.

[176] Juliette Regimbal, Zoé McLennan, Gabriel Vigliensoni, Andrew Tran, and Ichiro Fujinaga.
Neon2: A Verovio-based square-notation editor. In Music Encoding Conference, 2019.

[177] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in Neural Information
Processing Systems, pages 91–99, 2015.

[178] Christian Reul, Uwe Springmann, Christoph Wick, and Frank Puppe. Improving OCR
Accuracy on Early Printed Books by utilizing Cross Fold Training and Voting. In 2018 13th
IAPR International Workshop on Document Analysis Systems (DAS), pages 423–428. IEEE,
2018.

[179] Christian Reul, Dennis Christ, Alexander Hartelt, Nico Balbach, Maximilian Wehner, Uwe
Springmann, Christoph Wick, Christine Grundig, Andreas Büttner, and Frank Puppe.
OCR4all—An Open-Source Tool Providing a (Semi-)Automatic OCR Workflow for His-
torical Printings. Applied Sciences, 9(22):4853, January 2019. doi: 10.3390/app9224853.
URL https://www.mdpi.com/2076-3417/9/22/4853.

[180] Christian Reul, Sebastian Göttel, Uwe Springmann, Christoph Wick, Kay-Michael
Würzner, and Frank Puppe. Automatic Semantic Text Tagging on Historical Lexica by
Combining OCR and Typography Classification. Proceedings of the 3rd International Con-
ference on Digital Access to Textual Cultural Heritage, 2019.

[181] RISM. Répertoire international des sources musicales (RISM). Single Prints Before 1800.
Series A/I. Bärenreiter, Kassel, 1971.

[182] David Rizo. Symbolic music comparison with tree data structures. PhD Thesis, Universidad
de Alicante, 2010. URL http://rua.ua.es/dspace/bitstream/10045/18331/1/
Tesis_Rizo.pdf.

183

https://www.mdpi.com/2076-3417/9/22/4853
http://rua.ua.es/dspace/bitstream/10045/18331/1/Tesis_Rizo.pdf
http://rua.ua.es/dspace/bitstream/10045/18331/1/Tesis_Rizo.pdf

BIBLIOGRAPHY

[183] David Rizo, Jorge Calvo-Zaragoza, and José M. Iñesta. MuRET: A Music Recognition,
Encoding, and Transcription Tool. In 5th International Conference on Digital Libraries for
Musicology, pages 52–56, Paris, France, 2018. ACM. ISBN 978-1-4503-6522-2. doi: 10.
1145/3273024.3273029. URL http://doi.acm.org/10.1145/3273024.3273029.

[184] John W. Roach and Joseph E. Tatem. Using domain knowledge in low-level visual pro-
cessing to interpret handwritten music: an experiment. Pattern Recognition, 21(1):33–
44, 1988. ISSN 0031-3203. doi: 10.1016/0031-3203(88)90069-6. URL http://www.
sciencedirect.com/science/article/pii/0031320388900696.

[185] Curtis Roads and Paul Wieneke. Grammars as representations for music. Computer Music
Journal, 3(1):48–55, 1979.

[186] Perry Roland. The music encoding initiative (MEI). In 1st International Confer-
ence on Musical Applications Using XML, pages 55–59, 2002. URL https://pdfs.
semanticscholar.org/7fc4/16754b0508837dde8b505b3fd4dc517c7292.pdf.

[187] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells,
and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015: 18th Int. Conf., Munich, Germany, October 5-9, 2015, Proceedings,
Part III, pages 234–241. Springer Int. Publishing, Cham, 2015. ISBN 978-3-319-24574-4.
doi: 10.1007/978-3-319-24574-4_28.

[188] Martin Roth. An approach to recognition of printed music. Technical report, Swiss Federal
Institute of Technology, 1994.

[189] Takashi Saitoh, Toshifumi Yamaai, and Michiyoshi Tachikawa. Document image segmen-
tation and layout analysis. IEICE transactions on information and systems, 77(7):778–784,
1994.

[190] Zeyad Saleh, Ke Zhang, Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga.
Pixel.js: Web-Based Pixel Classification Correction Platform for Ground Truth Creation. In
14th International Conference on Document Analysis and Recognition, pages 39–40, Kyoto,
Japan, 2017. doi: 10.1109/ICDAR.2017.267.

[191] Anikó Simon, J.-C. Pret, and A. Peter Johnson. A fast algorithm for bottom-up document
layout analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3):273–
277, 1997.

[192] Ray Smith. An overview of the Tesseract OCR engine. In Ninth International Conference on
Document Analysis and Recognition (ICDAR 2007), volume 2, pages 629–633. IEEE, 2007.

[193] William Song and Jim Cai. End-to-end deep neural network for automatic speech recogni-
tion. Standford CS224D Reports, 2015.

184

http://doi.acm.org/10.1145/3273024.3273029
http://www.sciencedirect.com/science/article/pii/0031320388900696
http://www.sciencedirect.com/science/article/pii/0031320388900696
https://pdfs.semanticscholar.org/7fc4/16754b0508837dde8b505b3fd4dc517c7292.pdf
https://pdfs.semanticscholar.org/7fc4/16754b0508837dde8b505b3fd4dc517c7292.pdf

BIBLIOGRAPHY

[194] K. I. M. Soo-Hyung, S. O. N. Hwa-Jeong, O. H. Sung-Ryul, L. E. E. Chil-Woo, and O. H.
Il-Seok. Staff-Line Detection and Removal Algorithm for a Camera-Based Recognition
of Music Score Images. IEICE technical report, 107(281):141–147, October 2007. ISSN
09135685. URL https://ci.nii.ac.jp/naid/110006453453/.

[195] M. Sotoodeh and F. Tajeripour. Staff detection and removal using derivation and con-
nected component analysis. In The 16th CSI International Symposium on Artificial Intelli-
gence and Signal Processing (AISP 2012), pages 054–057, May 2012. doi: 10.1109/AISP.
2012.6313717.

[196] Nasim Souly, Concetto Spampinato, and Mubarak Shah. Semi and weakly super-
vised semantic segmentation using generative adversarial network. arXiv preprint
arXiv:1703.09695, 2017.

[197] Bolan Su, Shijian Lu, Umapada Pal, and Chew Lim Tan. An effective staff detection and
removal technique for musical documents. In 10th International Workshop on Document
Analysis Systems, pages 160–164. IEEE, 2012. ISBN 978-0-7695-4661-2. doi: 10.1109/
DAS.2012.16.

[198] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[199] Mariusz Szwoch. A Robust Detector for Distorted Music Staves. In André Gagalowicz and
Wilfried Philips, editors, Computer Analysis of Images and Patterns, pages 701–708, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-32011-1. doi: 10.1007/
11556121_86.

[200] Yuan Yan Tang, Chang De Yan, and Ching Y. Suen. Document processing for automatic
knowledge acquisition. IEEE Transactions on Knowledge & Data Engineering, (1):3–21,
1994.

[201] The Humdrum Toolkit. **kern. URL https://www.humdrum.org/rep/kern/.

[202] TheMuseScore developer community. MuseScore sheet music archive, 2019. URL https:
//musescore.org/en.

[203] Radu Timofte and Luc Van Gool. Automatic Stave Discovery for Musical Facsimiles. In
Kyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, and Zhanyi Hu, editors, Computer
Vision – ACCV 2012, pages 510–523, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
ISBN 978-3-642-37447-0. doi: 10.1007/978-3-642-37447-0_39.

[204] Shuichi Tsujimoto and Haruo Asada. Major components of a complete text reading system.
Proceedings of the IEEE, 80(7):1133–1149, 1992.

[205] John Hopkins University. The Lester S. Levy Music Collection, 2018. URL http://
levysheetmusic.mse.jhu.edu/.

185

https://ci.nii.ac.jp/naid/110006453453/
https://www.humdrum.org/rep/kern/
https://musescore.org/en
https://musescore.org/en
http://levysheetmusic.mse.jhu.edu/
http://levysheetmusic.mse.jhu.edu/

BIBLIOGRAPHY

[206] Stefan Van Der Walt, S. Chris Colbert, and Gael Varoquaux. The NumPy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

[207] Eelco van der Wel and Karen Ullrich. Optical Music Recognition with Convolutional
Sequence-to-Sequence Models. In 18th International Society for Music Information Re-
trieval Conference, pages 731–737, Suzhou, China, 2017. ISBN 978-981-11-5179-8. URL
https://archives.ismir.net/ismir2017/paper/000069.pdf.

[208] Gabriel Vigliensoni, John Ashley Burgoyne, Andrew Hankinson, and Ichiro Fujinaga. Au-
tomatic pitch recognition in printed square-note notation. In Proceedings of the 12th Inter-
national Society for Music Information Retrieval Conference, 2011.

[209] Gabriel Vigliensoni, Gregory Burlet, and Ichiro Fujinaga. Optical measure recognition in
common music notation. In 14th International Society for Music Information Retrieval Con-
ference, Curitiba, Brazil, 2013. URL http://ismir2013.ismir.net/wp-content/
uploads/2013/09/207_Paper.pdf.

[210] Gabriel Vigliensoni, Jorge Calvo-Zaragoza, and Ichiro Fujinaga. Developing an environment
for teaching computers to read music. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander
Pacha, editors, 1st International Workshop on Reading Music Systems, pages 27–28, Paris,
France, 2018. URL https://sites.google.com/view/worms2018/proceedings.

[211] Gabriel Vigliensoni, Jorge Calvo-Zaragoza, and Ichiro Fujinaga. An Environment for Ma-
chine Pedagogy: Learning How to Teach Computers to Read Music. In IUI Workshops,
2018.

[212] Gabriel Vigliensoni, Alex Daigle, Eric Liu, Jorge Calvo-Zaragoza, Juliette Regimbal,
Minh Anh Nguyen, Noah Baxter, Zoé McLennan, and Ichiro Fujinaga. From image to
encoding: Full optical music recognition of Medieval and Renaissance music. InMusic En-
coding Conference, 2019. URL https://music-encoding.org/conference/2019/
abstracts_mec2019/vigliensoni19from%20camera%20ready.pdf.

[213] Gabriel Vigliensoni, Alex Daigle, Eric Lui, Jorge Calvo-Zaragoza, Juliette Regimbal,
Minh Anh Nguyen, Noah Baxter, Zoe McLennan, and Ichiro Fujinaga. Overcoming
the Challenges of Optical Music Recognition of Early Music with Machine Learning. In
DH2019, 2019.

[214] Muriel Visaniy, V. C. Kieu, Alicia Fornés, and Nicholas Journet. The ICDAR 2013 Music
Scores Competition: Staff Removal. In 12th International Conference on Document Analysis
and Recognition, pages 1407–1411, 2013. doi: 10.1109/ICDAR.2013.284.

[215] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopa-
padakis. Deep Learning for Computer Vision: A Brief Review, 2018. URL https:
//www.hindawi.com/journals/cin/2018/7068349/.

[216] Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi Feng, and Thomas S.
Huang. Revisiting Dilated Convolution: A Simple Approach for Weakly- and

186

https://archives.ismir.net/ismir2017/paper/000069.pdf
http://ismir2013.ismir.net/wp-content/uploads/2013/09/207_Paper.pdf
http://ismir2013.ismir.net/wp-content/uploads/2013/09/207_Paper.pdf
https://sites.google.com/view/worms2018/proceedings
https://music-encoding.org/conference/2019/abstracts_mec2019/vigliensoni19from%20camera%20ready.pdf
https://music-encoding.org/conference/2019/abstracts_mec2019/vigliensoni19from%20camera%20ready.pdf
https://www.hindawi.com/journals/cin/2018/7068349/
https://www.hindawi.com/journals/cin/2018/7068349/

BIBLIOGRAPHY

Semi-Supervised Semantic Segmentation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 7268–7277, 2018. URL
http://openaccess.thecvf.com/content_cvpr_2018/html/Wei_Revisiting_
Dilated_Convolution_CVPR_2018_paper.html.

[217] Christoph Wick. Deep learning. Informatik-Spektrum, 40(1):103–107, 2017.

[218] Christoph Wick and Frank Puppe. Leaf Identification Using a Deep Convolutional Neu-
ral Network. arXiv preprint arXiv:1712.00967, 2017. URL https://arxiv.org/abs/
1712.00967.

[219] Christoph Wick and Frank Puppe. Fully Convolutional Neural Networks for Page Segmen-
tation of Historical Document Images. In 2018 13th IAPR International Workshop on Doc-
ument Analysis Systems (DAS), pages 287–292, Vienna, 2018. doi: 10.1109/DAS.2018.39.
URL https://ieeexplore.ieee.org/document/8395210.

[220] Christoph Wick and Frank Puppe. OMMR4all — a Semiautomatic Online Editor for
Medieval Music Notations. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Pro-
ceedings of the 2nd International Workshop on Reading Music Systems, pages 31–34,
Delft, The Netherlands, 2019. URL https://sites.google.com/view/worms2019/
proceedings.

[221] Christoph Wick and Frank Puppe. Automatic Neume Transcription of Medieval Mu-
sic Manuscripts using CNN/LSTM-Networks and the segmentation-free CTC-Algorithm.
Journal of New Music Research, 2020. submitted to.

[222] ChristophWick and Frank Puppe. Lyrics Recognition and Syllable Assignment ofMedieval
Manuscripts. In 20th International Conference on Frontiers in Handwriting Recognition,
Dortmund, 2020. submitted to.

[223] ChristophWick, Christian Reul, and Frank Puppe. Comparison of OCR Accuracy on Early
Printed Books using the Open Source Engines Calamari and OCRopus. JLCL: Special Issue
on Automatic Text and Layout Recognition, 33(1):79–96, 2018. URL https://jlcl.org/
content/2-allissues/1-heft1-2018/jlcl_2018-1_4.pdf.

[224] Christoph Wick, Alexander Hartelt, and Frank Puppe. Staff, Symbol and Melody Detec-
tion of Medieval Manuscripts Written in Square Notation Using Deep Fully Convolutional
Networks. Applied Sciences, 9(13):2646, 2019.

[225] Christoph Wick, Alexander Hartelt, and Frank Puppe. OMMR4all - ein semiau-
tomatischer Online-Editor für mittelalterliche Musiknotationen. In Digital Humanities
im deutschsprachigen Raum, 2020. URL https://zenodo.org/record/3666690#
.XlAmeWhKhPY.

[226] Christoph Wick, Christian Reul, and Frank Puppe. Calamari - A High-Performance
Tensorflow-based Deep Learning Package for Optical Character Recognition. Digital Hu-
manities Quarterly, 14(1), 2020.

187

http://openaccess.thecvf.com/content_cvpr_2018/html/Wei_Revisiting_Dilated_Convolution_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Wei_Revisiting_Dilated_Convolution_CVPR_2018_paper.html
https://arxiv.org/abs/1712.00967
https://arxiv.org/abs/1712.00967
https://ieeexplore.ieee.org/document/8395210
https://sites.google.com/view/worms2019/proceedings
https://sites.google.com/view/worms2019/proceedings
https://jlcl.org/content/2-allissues/1-heft1-2018/jlcl_2018-1_4.pdf
https://jlcl.org/content/2-allissues/1-heft1-2018/jlcl_2018-1_4.pdf
https://zenodo.org/record/3666690#.XlAmeWhKhPY
https://zenodo.org/record/3666690#.XlAmeWhKhPY

BIBLIOGRAPHY

[227] Kwan Y.Wong, Richard G. Casey, and Friedrich M.Wahl. Document analysis system. IBM
Journal of Research and Development, 26(6):647–656, 1982.

[228] M. Wüthrich, M. Liwicki, A. Fischer, E. Indermühle, H. Bunke, G. Viehhauser, and
M. Stolz. Language Model Integration for the Recognition of Handwritten Medieval Docu-
ments. In 2009 10th International Conference on Document Analysis and Recognition, pages
211–215, 2009. doi: 10.1109/ICDAR.2009.17.

[229] Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C. Lee Giles. Learn-
ing to Extract Semantic Structure from Documents Using Multimodal Fully Convolutional
Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5315–5324, 2017.

[230] Yin-xian Yang and Ding-li Yang. Staff line detection and revision algorithm based on
subsection projection and correlation algorithm. In Fifth International Conference on Ma-
chine Vision (ICMV 2012): Algorithms, Pattern Recognition, and Basic Technologies, vol-
ume 8784, page 87842P. International Society for Optics and Photonics, March 2013. doi:
10.1117/12.2021234.

[231] Hui Zhang, Hongxi Wei, Feilong Bao, and Guanglai Gao. Segmentation-Free Printed Tra-
ditional Mongolian OCR Using Sequence to Sequence with Attention Model. In 2017 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR), volume 01,
pages 585–590, November 2017. doi: 10.1109/ICDAR.2017.101. ISSN: 2379-2140.

[232] Yu Zhang, William Chan, and Navdeep Jaitly. Very deep convolutional networks for end-
to-end speech recognition. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4845–4849. IEEE, 2017.

188

	Abstract
	Acknowledgements
	Contents
	List of Abbreviations
	Introduction
	Steps of a Typical OMR Workflow
	Motivation
	Challenges of Historical Music Document Processing
	Challenges for the Users
	OMMR4all
	Contributions
	Nomenclature

	Problematic of the Evaluation of an End-To-End Workflow
	Related Work with Regard to the Contributions
	Layout Analysis
	Related Work
	Conclusion

	Staff Line Detection
	Related Work
	Staff Line Identification
	Staff Line Removal

	Conclusion

	Music Symbol Detection
	Related Work
	OMR on Contemporary Notation
	OMR on Historical Notations

	Conclusion
	Future Work

	Text and Lyrics Recognition
	Related Work
	Open-Source Software for Automatic Text Recognition
	Text Recognition on Music Documents

	Conclusion
	Future Work

	OMMR4all
	Workflows and Projects for OMR on Historical Material
	The Levy II Project
	The Gamera Framework
	Aruspix
	Allegro
	MuRET
	The NEUMES Project
	SIMSSA

	Comparison to the SIMSSA Workflow
	Conclusion
	Future Work

	Conclusion
	Publications Related to OMMR
	Fully Convolutional Neural Networks for Page Segmentation of Historical Document Image
	Staff, Symbol and Melody Detection of Medieval Manuscripts Written in Square Notation Using Deep Fully Convolutional Networks
	Automatic Square Notation Transcription of Medieval Music Manuscripts using CNN/LSTM-Networks and the segmentation-free CTC-Algorithm
	Comparison of OCR Accuracy on Early Printed Books using the Open Source Engines Calamari and OCRopus
	Calamari – A High-Performance Tensorflow-based Deep Learning Package for Optical Character Recognition
	Lyrics Recognition and Syllable Assignment of Medieval Manuscripts
	OMMR4all – a Semiautomatic Online Editor for Medieval Music Notations

	Other Contributions
	Deep Learning
	Leaf Identification Using a Deep Convolutional Neural Network

	Declaration of own Contributions
	Bibliography

