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Abstract

The work in this thesis contains three main topics. These are the passage from discrete to continuous
models by means of Γ -convergence, random as well as periodic homogenization and fracture
enabled by non-convex Lennard-Jones type interaction potentials. Each of them is discussed in the
following.

We consider a discrete model given by a one-dimensional chain of particles with randomly
distributed interaction potentials. Our interest lies in the continuum limit, which yields the effective
behaviour of the system. This limit is achieved as the number of atoms tends to infinity, which
corresponds to a vanishing distance between the particles. The starting point of our analysis is an
energy functional in a discrete system; its continuum limit is obtained by variational Γ -convergence.

The Γ -convergence methods are combined with a homogenization process in the framework
of ergodic theory, which allows to focus on heterogeneous systems. On the one hand, composite
materials or materials with impurities are modelled by a stochastic or periodic distribution of
particles or interaction potentials. On the other hand, systems of one species of particles can be
considered as random in cases when the orientation of particles matters. Nanomaterials, like chains
of atoms, molecules or polymers, are an application of the heterogeneous chains in experimental
sciences.

A special interest is in fracture in such heterogeneous systems. We consider interaction po-
tentials of Lennard-Jones type. The non-standard growth conditions and the convex-concave
structure of the Lennard-Jones type interactions yield mathematical difficulties, but allow for
fracture. The interaction potentials are long-range in the sense that their modulus decays slower
than exponential. Further, we allow for interactions beyond nearest neighbours, which is also
referred to as long-range.

The main mathematical issue is to bring together the Lennard-Jones type interactions with
ergodic theorems in the limiting process as the number of particles tends to infinity. The blow
up at zero of the potentials prevents from using standard extensions of the Akcoglu-Krengel
subadditive ergodic theorem. We overcome this difficulty by an approximation of the interaction
potentials which shows suitable Lipschitz and Hölder regularity. Beyond that, allowing for
continuous probability distributions instead of only finitely many different potentials leads to a
further challenge.

The limiting integral functional of the energy by means of Γ -convergence involves a homoge-
nized energy density and allows for fracture, but without a fracture contribution in the energy. In
order to refine this result, we rescale our model and consider its Γ -limit, which is of Griffith’s type
consisting of an elastic part and a jump contribution.

In a further approach we study fracture at the level of the discrete energies. With an appropriate
definition of fracture in the discrete setting, we define a fracture threshold separating the region of
elasticity from that of fracture and consider the pointwise convergence of this threshold. This limit
turns out to coincide with the one obtained in the variational Γ -convergence approach.
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Zusammenfassung

Diese Arbeit vereinigt im Wesentlichen drei Themen: Den Übergang von diskreten zu kontinuierli-
chen Modellen mittels Γ -Konvergenz, stochastische sowie periodische Homogenisierung, sowie
Bruchmechanik, die durch nicht-konvexe Wechselwirkungspotentiale vom Lennard-Jones-Typ
ermöglicht wird. Jedes dieser drei Themen wird im Folgenden diskutiert.

Wir betrachten ein diskretes Modell, bestehend aus einer eindimensionale Kette von Teilchen
mit zufällig verteilten Wechselwirkungspotentialen. Wir sind am Kontinuumsgrenzwert inter-
essiert, welcher das effektive Verhalten des Systems widerspiegelt. In diesem Grenzwert läuft
die Anzahl der Atome gegen unendlich, was einem verschwindenden Abstand zwischen den
Teilchen entspricht. Ausgehend von einer Energie eines diskreten Systems erhalten wir den Konti-
nuumsgrenzwert durch die variationelle Methode der Γ -Konvergenz, welche den Übergang zum
kontinuierlichen System liefert.

Die Γ -Konvergenzmethoden werden im Rahmen der Ergodentheorie mit einem Homogenisie-
rungsprozess kombiniert, wodurch die Betrachtung heterogener Systeme möglich wird. Einerseits
werden Verbundwerkstoffe oder Materialien mit Verunreinigungen durch eine stochastische oder
periodische Verteilung der Teilchen oder der Wechselwirkungspotentiale modelliert. Anderer-
seits können Systeme einer Teilchenart als zufällig angesehen werden, wenn die Orientierung
der Teilchen von Bedeutung ist. Nanomaterialien wie Ketten von Atomen, Molekülen oder Po-
lymeren bieten eine Anwendung des Modells der heterogenen Ketten in den experimentellen
Wissenschaften.

Von besonderem Interesse ist das Auftreten von Brüchen in diesen heterogenen Systemen.
Wir betrachten Wechselwirkungspotentiale vom Lennard-Jones Typ. Die nicht-standardisierten
Wachstumsbedingungen und die konvex-konkave Struktur der Lennard-Jones Potentiale werfen
mathematische Schwierigkeiten auf, ermöglichen jedoch das Auftreten von Brüchen. Die Wech-
selwirkungen gelten als langreichweitig in dem Sinne, dass ihr Betrag langsamer als exponentiell
abfällt. Darüber hinaus betrachten wir Wechselwirkungen jenseits der nächsten Nachbarn, was
ebenfalls als langreichweitig bezeichnet wird.

Eine der größten mathematischen Schwierigkeiten besteht darin, die Wechselwirkungen vom
Lennard-Jones Typ mit den Ergodensätzen zusammenzuführen. Die Singularität der Potentiale
bei Null erlaubt keine Verwendung der Standardtechniken zur Erweiterung des subadditiven
Ergodensatzes von Akcoglu-Krengel. Die Lösung dieses Problems ist eine Approximation der
Wechselwirkungspotentiale, welche eine geeignete Lipschitz- und Hölder-Regularität besitzt.
Darüber hinaus stellt die Verwendung von kontinuierlichen Wahrscheinlichkeitsverteilungen,
anstelle von nur endlich vielen verschiedenen Potentialen, eine weitere Herausforderung dar.

Das Integralfunktional im Grenzwert besteht aus einer homogenisierten Energiedichte und
ermöglicht Brüche, jedoch ohne einen Beitrag dieser Brüche zur Energie. Um dieses Ergebnis zu
verfeinern, skalieren wir unser Modell neu und betrachten dessen Γ -Grenzwert, der in Form einer
Energie vom Griffith-Typ gegeben ist und aus einem elastischen Teil und einem Sprungbeitrag
besteht.

In einem weiteren Ansatz untersuchen wir Brüche auf Ebene der diskreten Energien. Mit einer
geeigneten Definition des Bruchpunktes im diskreten System definieren wir eine Bruchschwelle,
die den Elastizitätsbereich von dem Gebiet mit Brüchen trennt. Von diesem Schwellwert berechnen
wir anschließend den punktweisen Grenzwert. Es stellt sich heraus, dass dieser Grenzwert mit
dem durch die variationelle Γ -Konvergenz errechneten übereinstimmt.
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1 Introduction

Calculus of variations is a branch in the field of mathematical analysis. Its main subject is finding
minima and maxima of functionals. Thereby, a variation is a small change in the argument near an
extremal point of the functional under consideration. A basic example is the problem of finding
a connection of two points with shortest length, while fulfilling given constraints like boundary
conditions. Solutions to that problem are known as geodesics. Another prominent example is
Fermat’s principle from 1662, according to which light takes the path that needs the least time.

A first mathematical theory of the calculus of variations was written in 1756 and published in
1766 in Leonhard Euler’s Elementa Calculi Variationum, cf. [51], inspired by the work of Lagrange.
The first problems in this field are even older. Probably the oldest one is the previously mentioned
Fermat’s principle from 1662 in Analysis ad refractiones, followed by Newton’s minimal resistance
problem from 1687, published in Philosophiae Naturalis Principia Mathematica, see [95], and the
brachistochrone curve problem of Johann Bernoulli in 1696, cf. [13]. For a historical overview, we
refer to [67].

Continuum mechanics and variational models date back at least to the 19th century and the work
in elasticity by Augustin-Louis Cauchy, see [43]. In this framework, models are often based on
minimization problems. This is the starting point of this thesis. We consider a minimum problem
of a discrete energy functional of n particles and are interested in its continuous counterpart in
the limit when the number n of particles tends to infinity. In the continuous limiting functional
fracture can be studied by means of discontinuity points of the deformation.

Energy minimization, as already mentioned, is one of the key elements in variational models.
Since the minimum problem increases the number of variables with the size n of the system,
it is difficult to handle for large particle numbers n, even numerically. On the other hand, the
limiting system involves just a few continuous variables and is therefore easier to handle. One
variational approach in the passage from discrete to continuum is Γ -convergence, since it focusses
on minimizers of the energy and thus fits well to the energy minimization problems. This technique
of deriving a macroscopic limit out of a microscopic energy functional yields the main property,
i.e. that it preserves minimizers, as explained in Chapter 2 in detail.

In particular, we consider discrete one-dimensional chains of particles and minimum problems
like

min
u∈An(0,1)

(bc)

K

∑
j=1

n− j

∑
i=0
λn J j

(
ui+ j − ui

jλn

)
,

and their asymptotic behaviour in the passage from discrete to continuous systems. Here, u is the
deformation of the chain and An(0, 1) is the space of piecewise affine functions interpolating the
discrete values of the deformation. The reference configuration of the chain is equidistributed in
the interval [0, 1] with lattice spacing λn and subjected to given boundary conditions (bc). The
interaction potentials J j take into account neighbour interactions up to order K. Especially the case
K ≥ 2 is captured in this thesis. In comparison to the case of only nearest neighbour interactions,
referring to K = 1, higher order interactions are more involved, see [34, 103].
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1 Introduction

The main focus of this thesis lies on fracture in heterogeneous media. We consider the question
under which conditions the minimizers of the given minimum problem show discontinuities
of the deformation which are interpreted as fracture of the material. Fracture in heterogeneous
media or composite materials is a topic of ongoing interest and importance for mechanical and
technological applications and has resulted in several mathematical contributions, e.g., [10, 11, 48,
54, 77]. Fracture models can be derived inter alia by considering Lennard-Jones type interaction
potentials J. Due to their asymptotic decay to zero for large positive values, they allow for fracture.
Further, their blow-up at zero, i.e. J(z) → +∞ as z → 0+, serves as a non-interpenetration
assumption. There is a wide range of applications of Lennard-Jones type potentials in physics
and chemistry, see, e.g., the Gay-Berne potential in [116] or the Girifalco interaction of fullerene
molecules in [64].

The Lennard-Jones type structure can be considered as long-range interactions in a twofold
way. First, the potentials J(z) shows a decay to zero for large values of z slower than exponential.
Secondly, the notion of long-range interaction refers to interactions beyond nearest neighbours,
i.e. up to order K ≥ 2. Both notions are referred to as long-range character, cf. [57].

A further feature of our model is its heterogeneous structure and the related homogenization
problem. Heterogeneities of the considered material can arise in different ways, for instance
due to fault atoms or different bonds between the same kind of elements, e.g. carbon chains
as · · ·C≡C=C≡C=C≡C· · · in [80]. The heterogeneous structure is included in our model by
a stochastic or periodic distribution of the interaction potentials. The process of deriving a
homogeneous limit of the heterogeneous system is called homogenization. The distribution of the
potentials is assumed to be stationary and ergodic. Roughly speaking, ergodicity ensures that the
limit of a sample average converges to the expectation value and therefore that the limit of the
discrete heterogeneous system is given as a continuous homogeneous formula. Ergodicity allows
to use results from ergodic theory, e.g., Birkhoff’s ergodic theorem and the subadditive ergodic
theorem of Akcoglu and Krengel.

Stochastic and periodic homogenization in the discrete to continuum analysis can be found, e.g.,
in [3, 4, 94], where the authors consider interaction potentials with polynomial growth. These
conditions rule out fracture, i.e. jump discontinuities in the limit. An approach allowing for
fracture was published in [30, 73], closely related to our setting; we compare our results to those
ones in detail in Section 1.2.3. A main difference to our setting is that neither of those works
includes the Lennard-Jones potential and a continuous probability distribution of this potentials.
The differences in the setting of this thesis compared to the those ones are also discussed in detail
in Section 1.2.3. The extension to potentials of fully non-convex Lennard-Jones type, allowing for
cracks, is the main contribution of this thesis. We combine the passage from discrete to continuous
systems with homogenization of heterogeneous systems in the framework of fracture mechanics
involving non-convex interaction potentials.

We give here some motivation for the one-dimensional setting of our problem. There are two
perspectives. First, one-dimensional chains of particles serve as a toy model, see [44, 74], and
pave the path to higher dimensions. One of the main mathematical advantages is the monotone
ordering of particles and thus a simpler mathematical modelling, see [28, 35]. Secondly, there are
indeed one-dimensional real world nanomaterials as applications, like carbon atom wires, cf. [41,
93, 117], silicon, cf. [85], chains of gold atoms on the surface of semiconductors, cf. [112], fullerene
nanochain lattices, cf. [114] and fullerenes in carbon nanotubes, cf. [113].

In the following we outline the results of this thesis and give an overview of existing related
literature.

2



1.1 Discussion of the main results

1.1 Discussion of the main results

In the following, we outline the main results of this thesis. The contents of Chapter 4 and Chapter 6,
as well as the underlying model in Chapter 3 are already published by myself together with
S. Neukamm, M. Schäffner and A. Schlömerkemper in [81, 82]. In this thesis, the proofs and
discussions are presented in more detail, compared to the published papers.

The outline of this section is as follows: We start with describing the model which we consider
throughout this thesis, together with its energy. A main focus lies on the interaction potentials that
are of Lennard-Jones type. This modelling is the content of Chapter 3. Moreover, we summarize
the results of the variational limit (Chapter 4), the rescaled model (Chapter 5), the special case of a
periodic setting (Chapter 6) and the ansatz of fracture in the discrete scale (Chapter 7).

Modelling.

The model under consideration is a one-dimensional chain of n + 1 particles, which is illustrated
in Figure 3.1. In the reference configuration they occupy the continuous interval [0, 1] and are
equidistributed with lattice spacing λn := 1

n . The particles interact via random potentials of
Lennard-Jones type and the distribution of these non-convex potentials is assumed to be stationary
and ergodic. We consider interactions up to K nearest-neighbours, i.e. two particles with reference
positions i and j interact if |i− j| ≤ K, with K ∈ N. Thus for K large, the interaction potentials
show a long-range character, as described above.

The energy of the chain depends on the deformed configuration, i.e. on the deformation of the
particles, which we call u : λnZ ∩ [0, 1] → R. This corresponds to the actual/current position of
the particles. Even if some of the theorems are proven below for arbitrary K, we give here the
simplified version of some of the result for K = 1 for illustration purpose. The energy of the chain
of particles is given by the sum of all interaction potentials and reads

Hn(ω, u) = λn

n−1

∑
i=0

J
(
ω, i,

ui+1 − ui

λn

)
. (1.1)

The extension to K interacting neighbours is given in (3.13). The parameterω ∈ Ω represents the
random distribution according to a probability space (Ω,F ,P). The assumptions of stationarity
and ergodicity are formulated by means of a stationary and ergodic group action (τi)i∈Z of
measurable mappings τi : Ω→ Ω that couple the random and the space variables by

J(ω, i, z) := J̃(τiω, z),

with J̃ being a Lennard-Jones type potential.

We impose Dirichlet boundary conditions on the deformation u(0) = 0 and u(1) = ` with ` > 0.
Typically the reference configuration does not minimize the energy with the boundary constraints.
In the homogeneous case the minimizing state is given by equidistributed particles. In heteroge-
neous systems, minimizers of the energy are typically non-trivial in the sense that they are neither
given by the reference configuration nor equidistributed. For an illustration, see Figures 1.1 and 1.2.

Variational limit.

The first main result is Γ -convergence of the energy of the discrete chain to a continuous integral
functional as the number n of particles tends to ∞, which is asserted in Theorem 4.14. The limiting

3



1 Introduction

u(x)

`

0

N = 11

1
x

Figure 1.1 | Minimizer in the homogeneous
case.

u(x)

`

0

N = 11

1
x

Figure 1.2 | Minimizer in the heterogeneous
case.

energy consists of a deterministic, spatially homogeneous and convex integrand, given by an
asymptotic homogenization formula. The limit is the result of a passage from the discrete to the
continuous system combined with a homogenization procedure. In what follows, we give a brief
and simplified overview of the setting and the main results, starting with the interactions potentials
that we use.

Again, we consider here only nearest neighbour interactions leaving the more general case
for the sections to follow. Additionally, instead of giving the general assumptions of the class
of Lennard-Jones type, we focus on the classical Lennard-Jones potential. This is defined by the
two-parameter family JLJ(z) := A/z12 − B/z6 with A, B > 0 and can be given in the equivalent
form

JLJ(z) = ε
(
δ

z

)6
[(
δ

z

)6
− 2

]

where δ > 0 is the minimizer and −ε < 0 is the minimum of the potential, cf. Figure 2.1. The
stochastic setting can be interpreted as a random choice of the parameters. Let the set Ω be defined
as Ω = {(δ,ε), δ ∈ [1, 2], ε ∈ [3, 4]}. That is, all potentials that are available in this example have
a minimizer in the interval [1, 2] and a minimum in the interval [−4,−3], randomly chosen by the
random variable J̃(ω, ·) for every particle of the chain.

In Theorem 4.14 it is shown that the Γ -limit of the discrete energy (1.1), subjected to the Dirichlet
boundary conditions from above, is finite in the space BV(0, 1) of functions of bounded variation
with the additional constraint on the singular part of the measure Dsu ≥ 0 and is given by

Hhom(u) =
∫ 1

0
Jhom(u′(x)) dx (1.2)

with the homogenized energy density

Jhom(z) = lim
N→∞ 1

N
inf

{
N−1

∑
i=0

J
(
ω, i, z +φi+1 −φi

)
: φi ∈ R, φ0 = φN = 0

}
, z ∈ R.

We highlight that Jhom is deterministic, convex and spatially homogeneous as shown in Proposi-
tion 4.12. Since the energy is finite on the space BV, the system can show cracks, i.e. jump disconti-
nuities of the deformation u. The additional condition Dsu ≥ 0 ensures non-interpenetration of the
chain. In contrast to the non-trivial and non-affine minimizers of the discrete problem, minimizers

4



1.1 Discussion of the main results

z
432δ1

JLJ(i, ·)

J(z)

−1
−2
−3

−4
−ε

Ω1

Figure 1.3 | A prototypical potential JLJ(i, ·)
in the setting (Ω1 ,F1 ,P1).

z
4321

J(z)

−1
−2
−3

−4 Ω1

Jhom, different P

E[δ]

−E[ε]

Figure 1.4 | Two different functions Jhom
related to different probability distribu-
tions with identical expectation values
E[δ] and E[ε].

of the limiting energy are affine under compressive boundary constraints. In detail, it holds true
that

Jhom(z)

> −E[ε] for z < E[δ] (compressive case),

= −E[ε] for z ≥ E[δ] (tensile case),
(1.3)

with the expectation value E, according to Propositions 4.12 and 4.13. For an illustration, see
Figure 1.4. The structure of the limit (1.2), together with the convexity of Jhom, shows that for
` ≤ E[δ] the affine function x 7→ `x is the unique global minimizer for the Γ -limit in (1.2). No
jumps are possible in this regime. On the other hand, the result (1.3) shows that for ` > E[δ] the
minimizer of the limiting energy is not unique, allows for jumps and gives no information about
the number or location of possible cracks. In particular, this justifies the value E[δ] as the threshold
of the boundary constraint ` separating the elastic from the fracture regime.

The exact shape of the energy density Jhom for z < E[δ] depends on the given distribution of
the parameters (δ,ε). We clarify this by two examples. The first one, see Figure 1.3, assumes
(δ,ε) to be uniformly distributed in Ω1 := [1, 2]× [3, 4]. The second one supposes that δi and εi

are independent and two-valued with P(δi = 1) = 0.9, P(δi = 6) = 0.1, P(εi = 3) = 0.9, and
P(εi = 8) = 0.1. In both examples it holds true that E[δ] = 1.5 and E[ε] = 3.5. Therefore, while
Jhom coincides for z ≥ E[δ] in both cases, they differ for z < E[δ], see Figure 1.4.

The homogenized energy density Jhom is given as an asymptotic cell formula, which is typical
in homogenization problems. This is also related to homogenization problems for non-convex
integral functionals, see [22, 92]. The limit is in general not obtained for finite N. However, in
the periodic case, we prove the existence of a cell problem formula for the homogenized energy
density. This essentially relies on the fact that we restricted our analysis to only nearest neighbour
interactions in the periodic case. The energy density reduces to a minimization problem on the
periodicity cell.

The proof of Theorem 4.14 brings together the passage from the discrete to the continuous system
and homogenization methods by ergodic theory. It requires extensions of known Γ -convergence
methods and homogenization results since the Lennard-Jones potentials blow up at zero, are
non-convex and do not satisfy polynomial growth conditions neither from below nor from above.
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1 Introduction

The basic feature of stochastic homogenization in an ergodic setting are ergodic theorems, in our
case mainly the subadditive ergodic theorem by Akcoglu and Krengel as well as Birkhoff’s ergodic
theorem. Applied to a function not only depending on the probability parameterω ∈ Ω but also
on another variable z ∈ R, the existence of the limit in the ergodic theorems has to be extended
to an uncountable set of functions in order to get existence for all z ∈ R. In the case of Lipschitz
continuity, this can be easily done. The demonstration of this fact for Lennard-Jones potentials is
one of the main challenges in the proofs.

The non-convex Lennard-Jones potentials do not fulfil any polynomial growth condition due to
the blow up at zero. We circumvent this issue by a linear approximation of the interaction potentials,
indexed by L. In the setting with the approximating potentials, we can apply the subadditive
ergodic theorem by Akcoglu and Krengel [2] and prove the existence of a corresponding infinite
cell-formula JL

hom. Afterwards, we remove the approximation by showing that Jhom is given as the
monotone limit of JL

hom as L → ∞ and hence exists. Then, the assumption of uncountability on
the set of interaction potentials is difficult to handle in the limit L→ ∞ and therefore needs some
technical lemmas preparing the result.

In the proof of the Γ -convergence result, an intermediate scale η is introduced, complementing
the macroscopic scale [0, 1] and the microscopic scale λn. The stochastic setting has no natural
intrinsic coarser scale, unlike the periodic case where the periodicity length serves as the coarser
scale. Therefore, this intermediate scale has to be introduced artificially. To remove this scale
afterwards in the limit, the Attouch-Lemma 2.23 provides the necessary results.

Rescaled model.

The continuum limit in (1.2) is finite on the space of BV and therefore allows for cracks. However,
there is no contribution in the energy accounting for these jumps. This is not reasonable from a
physical perspective, since the creation of new surfaces is supposed to cost energy. Mathematically
speaking, the limit shows a separation of scales between bulk and jump part. In order to overcome
this problem, we introduce a suitable rescaling of the energy, since jumps are obtained for rescaled
energies in the limit, cf. [34, 101, 103]. This rescaling yields a bulk and a surface contribution of the
same order, which both are present in the limiting energy. More precisely, we use the

√
λn-scaling,

i.e.

vi :=
ui − ∑

i−1
k=0 λnδ(τkω)
√
λn

for all i ∈ {0, ..., n},

and obtain the rescaled energy

En(ω, v) :=
n−1

∑
i=0

(
J
(
τiω,

vi+1 − vi
√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)
. (1.4)

We also need to rescale the boundary condition u(1) = `. Moreover, we consider values ` of the
boundary condition u(1) = ` close to the threshold between the elastic and the fracture regime.
Due to (1.3), this threshold is given by ` = E[δ]. Following the ideas of [101], adjusted to our
stochastic setting, we focus on some sequence (`n) ⊂ R with `n → E[δ], satisfying `n > E[δ] for
every n ∈ N and

γn :=
`n − ∑

n−1
k=0 λnδ(τkω)
√
λn

→ γ,

6



1.1 Discussion of the main results

for some γ ∈ R. This new boundary value yields the new Dirichlet boundary condition v(0) = 0
and v(1) = γn.

In Theorem 5.8 it is shown that the rescaled energy (1.4) Γ -converges to a deterministic en-
ergy that is finite on the space SBV(0, 1) of special functions of bounded variation, with certain
additional constraints, and reads

E(v) = α
∫ 1

0

∣∣v′(x)
∣∣2 dx +β#Sv, (1.5)

where α :=
(
E[ 1
α ]
)−1

and β := inf{−J(ω, δ(ω)) : ω ∈ Ω} with α(ω) := 1
2

∂2 J(ω,z)
∂z2

∣∣∣
z=δ(ω)

. The

jump set of v ∈ SBV(0, 1) is denoted by Sv. This limiting energy is an energy of Griffith type
and consists of a bulk contribution due to elastic deformations and a surface term due to cracks.
While the elastic constant is an expectation value, the parameter in the jump part is the minimal
height that has to be overcome for a jump and can be interpreted as a jump at the weakest bond.
Compared to the Γ -limit of the original energy, where jumps occur without any contribution to the
energy, in the rescaled setting each jump costs energy.

The proof of the rescaled case, Theorem 5.8, also uses ergodic theory, in particular the Birkhoff
ergodic theorem. This results in a homogenized elastic constant α in front of the integral of the
elastic part of the energy. The underlying idea is a harmonic approximation of the potentials
at their minimum. This leads to a quadratic energy with well known solutions for minimum
problems due to the method of Lagrange multipliers.

The structure of the energy (1.5) is similar to that of the limiting energy in [30], where truncated
parabolas are considered instead of Lennard-Jones potentials. Due to the periodicity in that setting,
the elastic constantα is given as a harmonic mean instead of the expectation value and the infimum
in the constant β becomes a minimum. Having the stochastic results at hand as well as the limiting
energy for the truncated parabolas, we continue with the periodic case and the question to which
extent the constants in the limit of the energy are comparable or even a simplification of the
stochastic setting. This is outlined in the following.

Periodic setting.

The Γ -limit of zeroth order as well as the rescaled limit are additionally considered in a periodic
setting in Theorem 6.3 and 6.4. More precisely, we assume a fixed periodicity length M ∈ N and
interaction potentials Ji of Lennard-Jones type satisfying the periodicity assumption Ji = Ji+M,
i ∈ Z. As mentioned above, the main difference to the stochastic setting is the representation
formula of the homogenized energy density, considered in Lemma 6.2. In the periodic case, the
asymptotic homogenization formula Jhom reduces to a cell problem formula fhom : R→ (−∞, ∞]

given by

fhom(z) := min

{
1
M

M−1

∑
i=0

J∗∗i (zi) :
M−1

∑
i=0

zi = Mz

}
.

The threshold E[δ] of the stochastic setting is replaced by the arithmetic mean δ̄ of the global
minimizer for Ji over a periodicity cell. In the rescaled setting, the expectation value of the elastic
modulus α is represented by a harmonic mean over the periodicity cell and the infimum in the
jump constant β becomes a minimum.
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1 Introduction

Fracture on the discrete scale.

The third main part of the thesis is devoted to a completely different approach to the topic of
fracture. So far, fracture occurs in the limit functionals in the sense that the admissible functions
are in the space BV(0, 1). In this space, a jump is well-defined by means of the measure. Phrased
differently, discontinuities of the deformation are interpreted as cracks of the material. In the
discrete system, the functions are piecewise affine and therefore continuous by definition. Hence,
the definition of a fracture point cannot be kept.

The idea is to define a jump, or fracture, respectively, of a discrete function by the steepness of
the slope of the affine interpolation. In particular, we say that the chain has a jump at position
i if and only if the discrete gradient ui+1−ui

λn
at this position is larger than the jump point zfrac.

The value zfrac is given as the inflection point of the Lennard-Jones potential, generalized to an
appropriate definition in the case of Lennard-Jones type potentials.

With the definition of this jump point zfrac, we define the jump threshold `∗n separating the
regimes where the energy is minimized with and without a jump. The analogue of this value
`∗n in the previous approach is the threshold E[δ]. The asymptotics of the jump threshold `∗n are
considered by means of a pointwise convergence in Theorem 7.12. Further, a rescaled version of
`∗n in the

√
λn rescaling is considered regarding its convergence in Theorem 7.11. The results of

both methods are in well accordance with those of the Γ -limits. In detail, the limiting thresholds
separating the elastic and the fracture regime are identical in both cases.

The analysis is mainly based on a subtle choice of properties of the Lennard-Jones type potentials
and well chosen definitions for the jump point and the jump threshold together with the minimal
energies in the elastic and fracture case.

1.2 Overview of related literature

The work in this thesis contains three main concepts. The first one is the passage from a discrete
model problem to the continuum picture by means of Γ -convergence. The discrete aspect is
incorporated in the description of the main model as a discrete chain of particles. The second main
topic is fracture, which enters the system through the choice of the interaction potentials being of
Lennard-Jones type. The convex-concave structure allows for jumps of the deformation, referring
to cracks of the chain, in the limiting energies. The third essential concept is the heterogeneous
structure. Different species of atoms as well as impurities or oriented ellipsoidal particles are
covered by the choice of a periodic or stochastic setting of the model. The following sections
provide an overview of the literature related to this work.

1.2.1 Γ-convergence in the passage from discrete to continuous systems

Naturally, there are two different ways of describing a model problem, the continuous and the
discrete one. Continuum theories have the great advantage of involving just a few continuous
variables, while discrete systems increase the number of variables with the size of the system. Thus,
continuous equations are easier to handle. Especially in fracture mechanics, the continuous system
has the further advantage that discontinuities of the deformation can be interpreted as cracks in
the material, while in the discrete system there is at first no intuitive analogue. On the other side,
the discrete system is the natural representation of an atomic or molecular system within classical
mechanics. Therefore, it is of interest to connect both theories and combine the advantages of each
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1.2 Overview of related literature

description, which can be done by passing to a suitable limit. Thus, a question that is addressed by
discrete to continuum analysis is the derivation of a continuum model starting from the discrete
system by keeping its main features. This passage from discrete to continuous systems is well
established in literature, see e.g. [16, 37]. Seen from another point of view, the passage from discrete
to continuous systems justifies and establishes the macroscopic model as a good description of the
system, since it is derived by an underlying microscopic one.

The feature that is of interest is energy minimization. Since it focusses on minimizers of the
energy, Γ -convergence is a suitable tool for deriving a continuous model from a discrete one. This
notion of convergence preserves minimizers of the energy, as explained in Chapter 2 in detail. For
an introduction, see e.g. [30] and [46], and for an overview [15].

A fundamental step towards elasticity theory was made in [29–32], where the authors consider
discrete problems and their limits by Γ -convergence under varying conditions on the interaction
potentials. In [3], the authors prove a general integral representation result for continuum limits of
discrete energies. This work was extended in [38] for more general interaction potentials and full
finite-range multi-body interactions. Further, [36] provides a continuous linear elasticity energy
from a discrete energy functional for a specific class of pair interactions. In [104], the author
extends the latter work by considering full next-to-nearest neighbour interactions, more general
cell energies and more general non-affine boundary conditions.

Especially in the one-dimensional case, there exists ample literature dealing with the passage
from discrete to continuum via Γ -convergence. In [26], the authors derived, to the best of our
knowledge, for the first time fracture by Γ -convergence techniques in the passage from discrete to
continuous systems. Their discrete chain of atoms was subjected to nearest neighbour interactions.
Further models allowing for fracture are considered in [24, 29, 35] beyond nearest neighbours. In
[33], the polynomial growth conditions prevent the limiting energy from showing fracture and a
homogenization formula for the limiting energy density can be shown, as it was done in [24] in
the fracture model. Further, in [71] second neighbour interactions and point defects also allowing
for fracture are considered. Finally in [29, 32], the authors deal with a setting similar to that in
this thesis, but in the homogeneous case. Our heterogeneous model in the periodic setting and its
homogenization results are considered in [30]. Both works, the homogeneous one and the periodic
heterogeneous one do not include random heterogeneous systems as in this thesis. One of the main
challenges of our model is to combine the methods from the stochastic and ergodic homogenization
with the passage from discrete to continuous systems by methods of Γ -convergence.

Another widely explored related research area is that of crystallization, see, e.g., [19] for an
overview. It is investigated from the viewpoint of molecular mechanics and includes two- and
three-body interactions. In particular when considering graphene models, new and interesting
structural features can occur, e.g., so-called armchair and zigzag topologies, cf. [49, 87–89]. Also
finite one-dimensional models are considered, cf. [14, 61], where the first one features Lennard-
Jones type interactions. In [58, 59], the authors extend the crystallization problem by different
species of particles and two-body short-range interaction in order to model ionic dimers, which is
connected to the work in this thesis by the one-dimensional discrete ansatz and Lennard-Jones
type interactions.

Γ -convergence methods are not only used for the passage from discrete to continuous systems.
They are also a well established tool when small parameters are involved in the modelling of
integral energy functionals. These parameters may arise, e.g., due to periodic structures, see [50, 75],
or a dimension reduction, cf., e.g., [8, 83]. Besides Γ -convergence, there are also other approaches
for passages from discrete to continuum systems. Thermodynamic limits are considered in [16, 42]
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1 Introduction

and the asymptotics of gradient flows in [110]. Further, [74] deals with the zero-temperature limit
in atomistic models of elasticity involving non-zero pressure.

1.2.2 Fracture and Lennard-Jones type potentials

A main feature of our model is the occurrence of fracture. In continuum models allowing for
fracture the energy often involves two terms, a bulk contribution due to elastic deformations
and a surface contribution due to crack growth, see e.g. [56]. In the framework of Γ -convergence,
fracture is obtained in the continuum limit when using interaction potentials in the discrete model
satisfying suitable growth conditions, cf. [26, 29, 32], for nearest neighbour interactions and beyond
nearest neighbours, respectively. These conditions are fulfilled by the class of Lennard-Jones type
potentials. Among others, this is a class of potentials allowing for fracture in the limiting energy.
Lennard-Jones type potentials are widely used in physical literature (cf. Section 2.1); moreover,
they are of interest in mathematics. The authors in [62, 111], e.g., consider finite chains of particles
in one dimension with Lennard-Jones interaction potentials. Also in the discrete to continuum
setting, many authors implemented the Lennard-Jones potential, see [24, 29, 32, 35, 71] which are
already discussed above, and additionally [100, 101, 103] including extended boundary conditions
and boundary layer energies.

In the last two decades, many authors worked on fracture models by deriving continuous
theories starting from an underlying discrete model. One of the first contributions to fracture
derived from a discrete to continuum analysis can be found in [109], where nonlinear elasticity
containing fracture was discussed by methods of asymptotic analysis. Further, the method of
Γ -convergence was used, starting with [26, 29–32], to derive fracture in the passage from discrete
to continuum systems.

In [109], the author discussed the importance of keeping the microscopic lattice parameter in
the macroscopic limit. This property is not fulfilled in [26, 29, 32]. Therefore, further methods on
dealing with fracture were carried out. One is deriving the Γ -limit of first order instead of the zero
order limit, see [24, 37, 100]. The other one uses a rescaled version of the functional, e.g. [34, 37,
101, 103]. In this thesis both approaches are considered. There are also different ways of dealing
with fracture. We name here the method of minimal movements. For the Lennard-Jones case, this
can be found in [27]. Another ansatz uses discrete differential geometry, cf. [49].

The Γ -convergence result in our case of the rescaled functional is a Griffith type energy. Models
using other growth conditions, instead of the Lennard-Jones type, achieve comparable results, e.g.
[30, 35], which is consistent with our findings. In [30], truncated parabolas are used with the same
structure of the limit. Therefore, the Lennard-Jones case also gives a justification for using a model
with linearised Lennard-Jones potentials.

Even in the research on crystallization Lennard-Jones type potentials are used. In [60], the
authors consider the Γ -convergence of a two-dimensional triangular lattice model with nearest
neighbour interactions of Lennard-Jones type. The limit then is a continuum Griffith energy
functional in the small displacement regime. Further, the contribution [115] uses short-range
pair potentials similar to Lennard-Jones type again in the Γ -convergence framework. Short-range
in their work means that the potentials J(z) are set to zero for all z > β and a given constant
β > 0. Fracture in higher dimensions in the discrete to continuum approach can be found, e.g., in
[78]. Further approaches to fracture models and surface energies in the passage from discrete to
continuum can be found in [71, 73, 74]. The first one focusses on point defects in a one-dimensional
homogeneous Lennard-Jones systems with next-to-nearest neighbour interactions by means of
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Γ -convergence. The work in [74] deals with the zero-temperature limit and the thermodynamic
limit instead of variational methods. In their model, pressure and positive temperature are allowed.
The model and the methods in [73] are closer related to this thesis and will be discussed in detail
in Section 1.2.3. Further, [44, 45] considers linear elasticity without the use of Γ -convergence.
That work is not directly related to this thesis, since it uses harmonic interactions and, especially
the second one, deals with quasicontinuum methods. It is mentioned here because it is also
settled in the one-dimensional discrete setting and can be seen as a harmonic approximation of the
Lennard-Jones case.

1.2.3 Periodic and stochastic homogenization

The last feature of our model is homogenization. This automatically enters the model when com-
posite materials are under consideration, whether in a periodic or stochastic setting. An overview
of homogenization results in the calculus of variations can be found in [90]. Homogenization
of integral functions, with growth conditions not allowing for jumps, are considered in [22, 75,
92] in the periodic case and in [1, 47] in the stochastic case. Fracture in heterogeneous media is
discussed in [54] by means of periodically perforated domains, in [11, 48] dealing with materials
reinforced by periodic elastic fibers and in [10] considering a brittle composite with soft periodic in-
clusions. Those works all fall in the framework of continuum theories. In the discrete to continuum
setting, homogenization results are, e.g., derived in [3, 4] where superlinear growth conditions
in a periodic or, respectively, stochastic setting are considered. Further, [52, 53, 94] deal with
degenerate growth conditions in the stochastic setting and [25] with ferromagnetic spin systems.
Moreover, related results can be found in [4, 38]. There, the authors work in higher dimensions
and in the framework of stochastic homogenization of discrete energies. They however involve
different growth and coercivity conditions, that rule out the Lennard-Jones type potentials. In
all of these models, jumps do not occur because the growth conditions do not allow for them.
Instead of stochastically distributed potentials, some authors work with stochastic lattices, see
[4, 99], or stochastic diffeomorphisms, e.g. [17, 66]. Finally, different approaches without the use
of Γ -convergence techniques can be found in literature. In [72], stochastic homogenization is
considered using two-scale convergence as introduced in [20]. The authors of [18] derive limiting
energies for stochastic lattices by application of a thermodynamic limit process. Last, also energies
defined by integral functionals are considered in the framework of homogenization, see, e.g., [40].

Homogenization in the passage from microscopic to macroscopic scales allowing for jumps, that
we are interested in here, can be found in [73]. There, the authors consider a similar discrete energy
density as in our model, with random interaction potentials. The limiting energy is obtained by
means of Γ -convergence and has a structure similar to our rescaled case, consisting of an integral
term with a homogenized energy density and a jump part. The homogenized energy is given by
an infinite cell formula, as usual in non-convex homogenization and in accordance with our results.
The main difference of our work compared to their contribution is given threefold. First, the
interaction potentials in [73] are convex and satisfy a linear growth condition from below, which
rules out the Lennard-Jones potentials. Second, we additionally include finite-range interactions
up to order K in the Γ -limit of zeroth order, whereas [73] considers nearest-neighbour interactions.
Third, in [73] a discrete probability density is considered, while in this thesis, we allow for an
infinite set of interaction potentials, which actually can be uncountable. Although some arguments
of the proofs in this work and in [73] are similar, we have to introduce several new ideas in order
to deal with the differences in the setting described before. One of these are the approximation
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of the interaction potentials by Lipschitz-continuous functions in order to use the subadditive
ergodic theorem, a refined treatment of the competitors for the minimization problem and a proper
adaption to the case of K interacting neighbours.

Another setting allowing for jumps is considered in [30], where a periodic homogenization of
truncated quadratic interaction potentials is discussed. In this case, the Γ -limit, cf. [30, Theorem 18],
coincides with the Γ -limit of the rescaled fully nonlinear Lennard-Jones setting, in consideration
of suitably chosen constants. A periodic setting with superlinear growth of the potentials can be
found, e.g., in [3]. For an introduction to that topic, we refer to [21].
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2 Mathematical background

In this chapter, we give a brief introduction to some topics which of this thesis is based on. In
particular, we consider Lennard-Jones type potentials, define functions of bounded variation, state
some ergodic theorems and recall the concept of Γ -convergence. In every section, we give the basic
definitions which are needed to understand the main ideas and results used in this thesis.

2.1 Lennard-Jones type potentials

The interaction potentials of our model are called Lennard-Jones type. Here, we want to give an
idea of that class of potentials as well as some examples that fall into this setting and are used
in the physics literature. There is plenty of literature in mathematics referring to the class of
Lennard-Jones type potentials, which is discussed in Chapter 1.

In view of the upcoming mathematical analysis, we emphasize that the potentials of Lennard-
Jones type are neither convex nor do they fulfil a standard polynomial growth condition. Therefore,
the analysis becomes more advanced and a lot of preliminary results one usually refers to are
ruled out because they assume standard growth conditions or convexity. Further, the potentials are
long-range interactions. As discussed in the introduction, this is due to their decay of the modulus
being slower than exponential.

The classical Lennard-Jones potential is a prototypical example of a function in this class and
therefore was chosen for giving its name. In the subsequent chapters, the basic assumptions
(LJ1)–(LJ3), see Section 3.1, are extended by (LJ4) and (LJ5) in Section 5.2 and by (LJ6)–(LJ9) in
Section 7.2, in a way that is necessary for the proofs. A summation of the assumptions on the
Lennard-Jones type potentials can be found on page 153 and onwards.

A function is called a Lennard-Jones type potential if it fulfils the following properties:

• Suitable regularity conditions, e.g. continuity.

• Asymptotic decay:
lim

z→+∞ J(z) = 0.

• Convex lower and upper bound: There exists a convex function Ψ : R → [0,+∞] and
constants d1, d2 > 0 with

lim
z→−∞ Ψ(z)

|z| = +∞
such that

d1(Ψ(z)− 1) ≤ J(z) ≤ d2 max{Ψ(z), |z|} for all z ∈ R.

• Minimum and minimizer: J has a unique minimum point δ with J(δ) < 0 and it is strictly
convex in (−∞, δ) on its domain.
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Lennard-Jones
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Figure 2.1 | Lennard-Jones and double Yukawa potential.

The decay to zero as z → ∞ does not admit the potential to have a polynomial bound from
below and the superlinear growth at z→ −∞ rules out a polynomial growth from above. These
conditions are designed to cover a wide range of potentials with convex-concave structure. Some
examples are discussed below.

It is of interest to keep the assumptions as general as possible instead of giving a precise formula
for the potential, because the special choice of the potential depends on the field of application.
Atomistic and molecular interactions, e.g., are treated differently. Further, even the classical
Lennard-Jones potential is just an approximation and not an exact measured or mathematically
derived formula, therefore it is useful to have assumptions keeping the main features of the
potential without fixing it in detail.

The following formulas show two examples of functionals fulfilling the properties of the class of
Lennard-Jones type potentials. Let ε, δ,α,β, CDY > 0, then the classical Lennard-Jones potentials
and double Yukawa potentials for z > 0 are given by

JLJ(z) = ε

((
δ

z

)12
− 2

(
δ

z

)6
)

,

JDY(z) =
CDY

z
(exp (−α(z− δ))− exp (−β(z− δ))) ,

respectively, cf. [55, 84, 86]. Fig. 2.1 shows the two mentioned potentials for a suitable choice of
parameters. It can be easily proven that these potentials fulfil the properties of the Lennard-Jones
type setting. Another way of representing the classical Lennard-Jones potential is given by

JLJ(z) :=
A

z12 −
B
z6 with A, B > 0.

This classical Lennard-Jones type potential, especially in the first representation, is a special case,
referring to n = 12 and m = 6, of the Mie-(n, m)-potential

JMIE(z) :=
(

n
n−m

)( n
m

)m/(n−m)
ε
[(σ

z

)n
−
(σ

z

)m]
,

with σ = δ n−m
√

m/n being the value of z for with the potential is zero, i.e. JMIE(σ) = 0. Those
potentials consist of a repulsive short-range and an attractive long-range term, which is a standard
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0

J(z)

z

Figure 2.2 | Gay-Berne potential for three different orientations.

way of modelling particle interactions in physics and chemistry, see, e.g., [65, 69, 108].

A further example is the so called hard-core potential. Here, the potential J(z) is set to +∞ for
z ≤ zhc, with zhc > 0. As long as the potential satisfies

lim
z→z+hc

J(z) = ∞,

our class of Lennard-Jones type potentials includes hard-core potentials.

It is also possible to truncate and shift the potential such that J(z) = 0 for z ≥ ztr, with ztr > 0.
These potentials are also captured by our general assumptions on the interaction potentials, and
are used, e.g., in [9, 105, 107].

Further, we mention the Gay-Berne potentials, see, e.g., [12], which is a generalization of
a Lennard-Jones potential between two particles. Those particles are assumed to be, e.g., of
ellipsoidal shape. Therefore, the orientation of the axis relative to each other affects the interaction
potential. Even in a one-dimensional chain of particles, there are uncountably many possible
interaction potentials that have to be taken into account, represented by the continuous variable
angel of the orientation. An illustration can be found in Figure 2.2. Applications of the Gay-Berne
potential are shown, e.g., in [91, 96–98, 116], dealing with fullerenes, and nanoparticles in liquid
crystals. Another application of Lennard-Jones type potentials is the Girifalco potential [64], which
is used to model interaction of fullerene molecules.

2.2 Functions of bounded variation

We give here a short introduction to the functions of bounded variation, following the overview of
[5], where further details and proofs can be found. Generally speaking, the space BV of functions of
bounded variation is a potential candidate to work with when one considers problems in fracture
mechanics. As it will be derived in the following, functions in the space BV allow for jumps. When
considering deformations of a certain material, the jumps are interpreted as cracks in the material.

In the following, let I = (a, b) ⊂ R be an open and bounded interval and let Cc(I) denote the
space of continuous functions with compact support on I. We start with the definition of the total
variation and of functions of bounded variation
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Definition 2.1 ([5, Def. 1.4]). Let (X, E) be a measure space and let µ be a signed measure with respect to
(X, E). We define the total variation |µ| for every E ∈ E as follows:

|µ|(E) := sup

{ ∞
∑

h=0
|µ(Eh)| : Eh ∈ E pairwise disjoint, E =

∞⋃
h=0

Eh

}
.

Definition 2.2 ([5, Def. 3.1]). Let u ∈ L1(I). We say that u is a function of bounded variation in I if the
distributional derivative of u is representable by a finite Radon measure in I, i.e. if∫

I
uφ′ dx = −

∫
I
φ dDu ∀φ ∈ C∞

c (I),

for some R-valued measure Du in I. The vector space of all functions of bounded variation in I is denoted
by BV(I).

The Sobolev space W1,1(I) is contained in BV(I), since for any u ∈ W1,1(I) the distributional
derivative is given by ∇uL. This inclusion is strict, which can be seen by considering the function
χ(c,b) ∈ BV(I) \W1,1(I), with c ∈ I and a < c < b.

The space BV(I), equipped with the norm

‖u‖BV(I) :=
∫

I
|u| dx + |Du|(I),

is a Banach space. This norm-topology is too narrow for many applications. Continuously differ-
entiable functions, e.g., are not dense in BV(I). However, BV(I) functions can be approximated,
in the L1(I) topology, by smooth functions whose gradients are bounded in L1(I).

In comparison to the strong convergence, a different notion turns out to be useful, the so called
weak∗ convergence. It is useful for compactness properties of the space BV, which we will see
later on.

Definition 2.3 ([5, Def. 3.11]). Let u, uh ∈ BV(I). We say that (uh) weakly∗ converges in BV(I) to u if
(uh) converges to u in L1(I) and (Duh) weakly∗ converges to Du in I, i.e.

lim
h→∞

∫
I
φ dDuh =

∫
I
φ dDu ∀φ ∈ C0(I),

where C0(I) is the space of continuous functions I → R vanishing at the boundary.

The next proposition gives a simple criterion for weak∗ convergence.

Proposition 2.4 ([5, Prop. 3.13]). Let (uh) ⊂ BV(I). Then (uh) weakly∗ converges to u in BV(I) if and
only if (uh) is bounded in BV(I) and converges to u in L1(I).

This leads to the compactness result in BV.

Theorem 2.5 ([5, Thm. 3.23]). Every sequence (uh) ⊂ BVloc(I) satisfying

sup
{∫

A
|uh| dx + |Duh|(A) : h ∈ N

}
< ∞ ∀A ⊂⊂ I open

admits a subsequence (uh(k)) converging in L1
loc(I) to some u ∈ BVloc(I). If the sequence is bounded in

BV(I) we can say that u ∈ BV(I) and that the subsequence weakly∗ converges to u.
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2.2 Functions of bounded variation

2.2.1 BV functions of one variable

The previous definitions and results were all stated in one dimension, even though they are also
valid in higher dimensions. It follows a characterisation of functions of bounded variation that
holds only true in the one-dimensional case. Again, let I = (a, b) ⊂ R be an interval. We highlight
some statements which are used in the proofs of this thesis. Further details can be found in [5].

First, we fix some notation. The right-hand side and left-hand side limits

u(x+) := lim
h→0+

1
h

∫ x+h

x
u(s) ds, u(x−) := lim

h→0+

1
h

∫ x

x−h
u(s) ds

exist for all x ∈ [0, 1) and for all x ∈ (0, 1], respectively. In the following theorem, a definition of a
good representative is given. We denote by A = {t ∈ I : Du({t}) 6= 0} the set of atoms of the
measure Du.

Theorem 2.6 ([5, Thm. 3.28]). Let u ∈ BV(I). Then, the following statements hold:

a) There exists a unique c ∈ R such that

ul(t) := c + Du((a, t)), ur(t) := c + Du((a, t]) t ∈ I

are good representatives of u, the left continuous one and the right continuous one. Any other function
ū : I → R is called a good representative of u if and only if

ū(t) ∈
{
θul(t) + (1−θ)ur(t) : θ ∈ [0, 1]

}
∀t ∈ I.

b) Any good representative ū is continuous in I \ A and has a jump discontinuity at any point of A:

ū(t−) = ul(t) = ur(t−), ū(t+) = ul(t+) = ur(t) ∀t ∈ A.

c) Any good representative ū is differentiable at L1-a.e. point of I, denoted by ū′, which coincides with
the density of Du with respect to L1.

The measure Du is a Radon measure and therefore the set A is at most countable. By the
Radon-Nikodým theorem, we can split Du into the absolutely continuous part Dau with respect to
L1(0, 1) and the singular part Dsu. Further, we define the jump part D ju = DsuxA and the Cantor
part Dcu = Dsux(I \ A). In this way, we obtain

Du = Dau + Dsu = Dau + D ju + Dcu.

The decomposition is unique. According to this, we call u ∈ BV(I) a jump function if Du = D ju,
i.e. Du is a purely atomic measure, and we call u a Cantor function if Du = Dcu, i.e. Du is a
singular measure without atoms. This leads us to a decomposition theorem of BV functions.

Corollary 2.7 ([5, Cor. 3.33]). Let I = (a, b) ⊂ R be a bounded interval. Then, any u ∈ BV(I) can be
represented by ua + u j + uc, where ua ∈W1,1(I), u j is a jump function and uc is a Cantor function. The
three functions are uniquely determined up to additive constants and

|Du|(I) = |Dua|(I) + |Du j|(I) + |Duc|(I) =
∫ b

a
|ū′| dt + ∑

t∈A
|ū(t+)− ū(t−)|+ |Duc|(I),

where ū is any good representative of u.
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2 Mathematical background

This decomposition only works for BV functions of one variable and not for BV functions of
two or more variables. As an abbreviation, we set

[u](x) := u(x+)− u(x−)

and define the jump set

Su = {x ∈ (0, 1) : [u](x) 6= 0}

for u ∈ BV(0, 1), as well as for u ∈ SBV(0, 1) (introduced below). This jump set Su coincides with
the set of atoms A of the measure Du. According to the previous results and definitions, we get for
the absolute continuous part

Dau = u′L1,

and for the jump part

D ju = ∑
x∈Su

(u+(x)− u−(x))δx = ∑
x∈Su

[u](x)δx,

since the set Su is at most countable.

The next proposition is a relaxation result of a special kind of BV functionals in one dimension
which we will often make use of. The proposition is deduced from [63, Thm. 1.62] and proven in
[102].

Proposition 2.8. Let f : R→ R∪ {+∞} be convex, lower semicontinuous, monotone decreasing with

lim
z→−∞ f (z)

|z| = +∞ and lim
z→+∞ f (z) = c ∈ R.

Let F : BV(a, b)→ R∪ {+∞} be defined as

F(u) :=


∫ b

a
f (u′) dx if u ∈W1,1(0, 1),

+∞ else.

Let the functional F : BV(a, b)→ R∪ {+∞} be defined as

F (u) :=


∫ b

a
f (u′) dx if u ∈ BV(a, b), Dsu ≥ 0,

+∞ else.

Let F denote the lower semicontinuous envelope of F with respect to the weak∗ convergence in BV(a, b).
Then it holds F ≡ F.

2.2.2 Special functions of bounded variation

The set of special functions of bounded variation has been singled out by E. De Giorgi and
L. Ambrosio as a good space for variational problems where both volume and surface energies are
involved. This overview again follows [5].
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2.2 Functions of bounded variation

We say that u ∈ BV(I) is a special function of bounded variation, and write u ∈ SBV(I), if the
Cantor part of its derivative Dcu is zero. We obtain

Du = Dau + D ju = u′L1 + ∑
x∈Su

(
u+(x)− u−(x)

)
δx ∀u ∈ SBV(I).

The Sobolev space W1,1(I) is contained in SBV(I) and this inclusion is strict. For instance if
u = χ(a,b/2) for I = (a, b), then u ∈ SBV(I) but u is not a Sobolev function. We state a useful result
about the space SBV(I).

Proposition 2.9 ([5, Prop. 4.2]). Any u ∈ BV(I) belongs to SBV(I) if and only if Dsu is concentrated
on a Borel set σ-finite with respect toH0.

The following two theorems are a closure and a compactness theorem for SBV(I).

Theorem 2.10 (Closure of SBV , [5, Thm. 4.7]). Let ϕ : [0, ∞) → [0, ∞], θ : (0, ∞) → (0, ∞] be
lower semicontinuous increasing functions and assume that

lim
t→∞ ϕ(t)t

= ∞, lim
t→0

θ(t)
t

= ∞.

Let I ⊂ R be open and bounded, and let (uh) ⊂ SBV(I) be such that

sup
h


∫

I
ϕ(|u′h|) dx + ∑

Suh

θ(|u+
h − u−h |)

 < ∞. (2.1)

If (uh) weakly∗ converges in BV(I) to u, then u ∈ SBV(I), the approximate gradients u′h weakly converge
to u′ in L1(I), D juh weakly∗ converges to D ju in I and∫

I
ϕ(|u′|) dx ≤ lim inf

h→∞
∫

I
ϕ(|u′h|) dx ifϕ is convex,

∑
Su

θ(|u+ − u−|) ≤ lim inf
h→∞ ∑

Su

θ(|u+
h − u−h |) if θ is convex.

Theorem 2.11 (Compactness of SBV , [5, Thm. 4.8]). Letϕ, θ, I be as in Theorem 2.10. Let (uh) ⊂
SBV(I) satisfy (2.1) and assume, in addition, that ‖uh‖∞ is uniformly bounded in h. Then, there exists a
subsequence (uh(k)) weakly∗ converging in BV(I) to u ∈ SBV(I).

2.2.3 Boundary values in BV and SBV

In this thesis, we often work with Dirichlet boundary values. In order to include boundary values
in the context of BV and SBV functions, an appropriate function space has to be defined. This is
done in compliance with previous works, see, e.g., [26, 100].

For ` > 0, the space BV`(0, 1) is defined as the space of functions of bounded variation in (0, 1)
satisfying u(0−) = 0 and u(1+) = `. Note that BV`(0, 1) is not weakly closed. However, in order
to give some meaning to the boundary values, we will extend functions in BV`(0, 1) outside of
(0, 1). The space of special functions of bounded variation in (0, 1) is extended in the same fashion
to SBV`(0, 1). As a remark, note that BV`(0, 1) or SBV`(0, 1) can be identified with the space of
functions u ∈ BVloc(R) or u ∈ SBVloc(R), respectively, fulfilling u = 0 on (−∞, 0) and u = ` on
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(1, ∞). Further, we extend Dsu to [0, 1] by

Dsu := ∑
x∈Su

[u](x)δx + Dcu,

and the jump set by

Su = {x ∈ [0, 1] | [u](x) 6= 0},

for every u ∈ BV`(0, 1) as well as u ∈ SBV`(0, 1), respectively.

2.3 Ergodic theorems

We deal with random structures in our model by considering stochastically distributed interaction
potentials. The interaction potentials are defined and discussed in Chapter 3. The underlying
stochastic setting is given here, defined in a way that is common in the theory of stochastic
homogenization, see, e.g., [4]. Further, the main theorems of ergodic theory, which we are going to
use in the proofs, are presented. Of course, this is just a brief excerpt of the full theory, but enough
to follow the rest of the thesis.

Let (Ω,F ,P) be a probability space and let (τi)i∈Z be a family of measurable mappings τi : Ω→
Ω which is an additive group action, i.e.

• (group property) τ0ω =ω for allω ∈ Ω and τi1+i2 = τi1τi2 for all i1, i2 ∈ Z.

Additionally, the group action is assumed to be stationary and ergodic, i.e.

• (stationarity) the group action is measure preserving, i.e. P(τiB) = P(B) for every B ∈ F ,
i ∈ Z

• (ergodicity) for all B ∈ F , the following holds true: If τi(B) = B for all i ∈ Z then it is
P(B) = 0 or P(B) = 1.

First of all, we state the classical Birkhoff’s ergodic theorem, which of the proof can be found in
[79, §1.2, Thm. 2.3].

Theorem 2.12 (Birkhoff’s ergodic theorem). Let {τz}z∈Z be a measure preserving ergodic group action.
For all f ∈ L1(Ω) there exists a set of full measure Ω f ⊂ Ω such that

lim
n→∞ 1

n

n−1

∑
i=0

f (τiω) = E[ f ] for allω ∈ Ω f

holds true.

Birkhoff’s theorem can be generalized in different ways. For this, we have to introduce the
definition of regular families of sets. Let I = {[a, b[ : a, b ∈ Z, a 6= b}.

Definition 2.13. Let {Ik}k∈N be a family of sets in I . Then {Ik} is called regular if there exist a constant
C > 0 and another family {I′k}k∈N of sets in I such that

(i) Ik ⊂ I′k for all k,

(ii) I′k ⊂ I′h whenever k < h,

(iii) 0 < |I′k| ≤ C|Ik| for all k.

Furthermore, if {I′k} can be chosen in such a way that R =
⋃

k I′k then we write lim
k→∞ Ik = R.
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2.3 Ergodic theorems

The first generalization of Birkhoff’s theorem is Tempel’man’s ergodic theorem, see [106] or [79,
§6.2, Thm. 2.8] for a proof. It broadens the allowed range of summation.

Theorem 2.14 (Tempel’man’s ergodic theorem). Let {Ik}k∈N be a regular family of sets in I with
lim

k→∞ Ik = R and let {τz}z∈Z be a measure preserving ergodic group action. Then for P-almost everyω

lim
k→∞ 1

|Ik| ∑
i∈Ik∩Z

f (τiω) = E[ f ], for all f ∈ Lp(Ω), 1 ≤ p < ∞.

The second generalisation of Birkhoff’ theorem is the subadditive ergodic theorem due to
Akcoglu and Krengel. It allows also for subadditive processes, while Birkhoff’s theorem includes
only additive ones. First, we give the definition of a subadditive process.

Definition 2.15. We say that F : I → L1(Ω) is a subadditive stochastic process if P-almost surely the
following two properties hold:

(i) For every I ∈ I and for every finite family (Im)m∈M in I , with M ⊂ N, such that

Ik ∩ Im = ∅ ∀k, m ∈ M, k 6= m, I =
⋃

m∈M
Im,

it holds that

F(I;ω) ≤ ∑
m∈M

F(Im;ω).

(ii) inf
{

1
|I|

∫
Ω

F(I;ω) dP(ω) : I ∈ I
}

> −∞
Now, we can state the subadditive ergodic theorem, see [2] or [79, §6.2, Thm. 2.9] for a proof.

Theorem 2.16 (Akcoglu and Krengel, subadditive ergodic theorem). Let F : I → L1(Ω) be a
subadditive stochastic process and let {Ik}k∈N be a regular family of sets in I with lim

k→∞ Ik = R. If F is

stationary w.r.t. a measure preserving group action {τz}z∈Z, i.e. for all I ∈ I and all z ∈ Z

F(I + z;ω) = F(I; τzω) almost surely,

then there existsφ : Ω→ R such that for P-almost everyω

lim
k→∞ F(Ik;ω)

|Ik|
= φ(ω).

Further, if {τz}z∈Z is ergodic, thenφ is constant.

Although it is not an ergodic theorem, we recall a result from the theory of subadditive functions.
It can be found in [70, Thm. 7.6.1].

Theorem 2.17. If f (t) is subadditive and finite in (a, ∞), a ≥ 0, then

lim
t→∞ f (t)

t
= inf

t>a

f (t)
t

< ∞.
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2 Mathematical background

2.4 Γ-convergence

In the 1970’s, De Giorgi introduced a new kind of variational convergence, the so called Γ -
convergence. Here, we give a brief introduction and summarize the main results, following
the overview given in [21]. For further details, see also [46].

The starting point of many mathematical or physical models is an energy functional depending
on a small parameter. This parameter may arise from an approximation process or a discretization
argument, e.g., and can represent the periodicity length of a lamination or the thickness of a plate.
The smaller this parameter gets the more complex the problem can be. In the vanishing parameter
limit, it may even be degenerate. Therefore, the aim is to replace the problem by a simplified
version.

Γ -convergence addresses this issue by providing a limiting functional, which substitutes the
original problem while keeping minimizers. This will be explained later in this section in detail.
First, we give the definition of Γ -convergence.

Definition 2.18 ([21, Def. 1.5]). Let X be a metric space equipped with distance d. We say that a sequence
of functions f j : X → R Γ -converges in X to f∞ : X → R if for all x ∈ X we have

(i) (liminf-inequality) for every sequence (x j) converging to x

f∞(x) ≤ lim inf
j

f j(x j),

(ii) (limsup-inequality) there exists a sequence, which we call recovery sequence, (x j) converging to x
such that

f∞(x) ≥ lim sup
j

f j(x j).

The function f∞ is called the Γ -limit of ( f j), and we write f∞ = Γ -lim j f j.

Clearly, the existence of the Γ -limit depends on the metric d, since the set of converging sequences
for different metrics can be different.

For Γ -convergence, there also exist upper and lower Γ -limits, which we want to define in the
following.

Definition 2.19 ([21, Def. 1.24]). Let f j : X → R, j ∈ N and let x ∈ X. The quantity

Γ - lim inf
j

f j(x) = inf
{

lim inf
j

f j(x j) : x j → x
}

is called the Γ -lower limit of the sequence ( f j) at x. The quantity

Γ - lim sup
j

f j(x) = inf

{
lim sup

j
f j(x j) : x j → x

}

is called the Γ -upper limit of the sequence ( f j) at x. If we have the equality

Γ - lim inf
j

f j(x) = λ = Γ - lim sup
j

f j(x)
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2.5 Miscellaneous

for some λ ∈ [−∞,+∞], then we write

λ = Γ - lim
j

f j(x),

and we say that λ is the Γ -limit of the sequence ( f j) at x.

A useful observation is phrased in the following remark.

Remark 2.20 ([21, Rem. 1.7]). An important property of Γ -convergence is its stability under continuous
perturbations: if ( f j) Γ -converges to f∞ and g : X → [−∞,+∞] is a d-continuous function then ( f j + g)
Γ -converges to f∞ + g. This is an immediate consequence of the definition.

Next, we introduce the coerciveness conditions, that will be used in the main theorem of Γ -
convergence.

Definition 2.21 ([21, Def. 1.19]). A function f : X → R is coercive if for all t ∈ R the set { f ≤ t}
is precompact. A function f : X → R is mildly coercive if there exists a non-empty compact set K ⊂ X
such that infX f = infK f . A sequence ( f j) is equi-mildly coercive if there exists a non-empty compact set
K ⊂ X such that infX f j = infK f j for all j.

If f is coercive then it is mildly coercive. The reverse implication is not true, which can be seen
by considering any periodic function f : Rn → R.

Now, we state the main theorem of Γ -convergence.

Theorem 2.22 ([21, Thm. 1.21]). Let (X, d) be a metric space, let ( f j) be a sequence of equi-mildly coercive
functions on X, and let f∞ = Γ -lim

j
f j. Then

∃min
X

f∞ = lim
j

inf
X

f j.

Moreover, if (x j) is a precompact sequence such that lim j f j(x j) = lim j infX f j, then every limit of a
subsequence of (x j) is a minimum point for f∞.

This theorem shows that under suitable coercivity conditions, minimizers of the original problem
converge to minimizers of the limiting problem. Since energy minimization is one of the main
tasks in physical problems, Γ -convergence is a suitable convergence tool to replace the original
sequence of functionals by its Γ -limit without loosing the essential information. The advantage is
that the limiting functional often uses only a few variables and is easier to handle. A drawback is
that Γ -convergence only provides information about the global minimizers and not about local
ones, see [23] for further discussion.

2.5 Miscellaneous

We state the Attouch-Lemma and refer to [7, Cor. 1.16] for its proof. We will use this several times
in the construction of the recovery sequence for merging two parameters.

Lemma 2.23. Let (an,m)n∈N,m∈N be a doubly indexed sequence in R. Then, there exists a mapping
n 7→ m(n), increasing to +∞, such that

lim sup
n→∞ an,m(n) ≤ lim sup

m→∞
(

lim sup
n→∞ an,m

)
.
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2 Mathematical background

Finally, we state and prove a lemma on quadratic minimum problems, which we will make use
of in this thesis at various occasions.

Lemma 2.24. Let z ∈ R and a, b ∈ N with a < b. Furthere, let 0 < ρi ∈ R for all i ∈ Z. Then it holds
true that

min

{
(b− a)

b−1

∑
i=a
ρiz2

i :
b−1

∑
i=a

zi = z

}
= (b− a)

(
b−1

∑
i=a

1
ρi

)−1

z2. (2.2)

Proof. Step 1: We show

min

{
(b− a)

b−1

∑
i=a
ρiz2

i :
b−1

∑
i=a

zi = z

}
≥ (b− a)

(
b−1

∑
i=a

1
ρi

)−1

z2. (2.3)

For this, we calculate by using the Cauchy inequality

|z| =
∣∣∣∣∣b−1

∑
i=a

zi

∣∣∣∣∣ =
∣∣∣∣∣∣
b−1

∑
i=a

(
ρ

1
2
i zi

)
1

ρ
1
2
i

∣∣∣∣∣∣ ≤
b−1

∑
i=a

∣∣∣∣ρ 1
2
i zi

∣∣∣∣
∣∣∣∣∣∣ 1

ρ
1
2
i

∣∣∣∣∣∣ ≤
(

b−1

∑
i=a
ρiz2

i

) 1
2
(

b−1

∑
i=a

1
ρi

) 1
2

.

Since all terms are positive, we can square both sides and get

z2 ≤
(

b−1

∑
i=a
ρiz2

i

)(
b−1

∑
i=a

1
ρi

)
.

This means that we have

b−1

∑
i=a
ρiz2

i ≥ z2

(
b−1

∑
i=a

1
ρi

)−1

for all ∑
b−1
i=a zi = z and this proves (2.3).

Step 2: We apply the method of Lagrange multipliers. Let

L(za, ..., zi , ...zb, λ) = (b− a)
b−1

∑
i=a
ρiz2

i + λ

(
z−

b−1

∑
i=a

zi

)
,

then we calculate

dL
dzi

= 2(b− a)ρizi − λ = 0 ⇔ 2(b− a)ρizi = λ, (2.4)

dL
dλ

= z−
b−1

∑
i=a

zi = 0 ⇔ z =
b−1

∑
i=a

zi . (2.5)

From (2.4) we get zi =
1
2λ(b− a)−1ρ−1

i , which can be inserted into (2.5) to get

λ = 2(b− a)z

(
b−1

∑
i=a

1
ρi

)−1

.
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Again together with (2.4) this yields

zi =

(
b−1

∑
i=a

1
ρi

)−1

z
1
ρi

.

With this candidate for the extremal value, we get

(b− a)
b−1

∑
i=a
ρiz2

i = (b− a)
b−1

∑
i=a
ρi

(
b−1

∑
i=a

1
ρi

)−2

z2 1
ρ2

i
= (b− a)z2

(
b−1

∑
i=a

1
ρi

)−2 b−1

∑
i=a

1
ρi

= (b− a)z2

(
b−1

∑
i=a

1
ρi

)−1

,

which is a global minimum due to Step 1. Hence, (2.2) follows.
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3 The discrete model: microscopic scale

We describe the main model of this thesis, which is a one-dimensional chain of particles. This is the
same model as in the article in [81], that I published jointly with S. Neukamm, M. Schäffner and
A. Schlömerkemper. For the reference configuration, consider a lattice given by λnZ∩ [0, 1], where
n ∈ N and λn = 1

n . Each of the n + 1 particles is assigned to one of these lattice points. Therefore,
the reference position of the i-th atom is referred to as xi

n := iλn. A sketch of the chain can be found
in Figure 3.1, including the interaction potentials J described in the following.

The deformation of the atoms, and therefore the deformed configuration, is defined by u :
λnZ∩ [0, 1]→ R and we write u(xi

n) = ui for a better readability. In order to deal with the passage
from discrete systems to their continuous counterparts, we identify the discrete functions with
their piecewise affine interpolations. So we define

An(0, 1) := {u ∈ C([0, 1]) : u is affine on (i, i + 1)λn, i ∈ {0, 1, ..., n− 1}} (3.1)

as the set of all piecewise affine functions which are continuous.

3.1 Lennard-Jones type potentials: (LJ1)–(LJ3)

The interaction potentials we deal with are of a special class J (α, b, d, Ψ) of functions, which are
called Lennard-Jones type potentials and include the classical Lennard-Jones potential.

Definition 3.1. Fixα ∈ (0, 1], b > 0, d ∈ (1,+∞) and a convex function Ψ : R→ [0,+∞] satisfying

lim
z→0+

Ψ(z) = +∞. (3.2)

We denote by J = J (α, b, d, Ψ) the class of functions J : R→ R∪ {+∞} which satisfies the following
properties:

(LJ1) (Regularity and asymptotic decay) The function J is lower semicontinuous, J ∈ C0,α
loc (0, ∞) and

lim
z→0+

J(z) = ∞ as well as J(z) = ∞ for z ≤ 0.

(LJ2) (Convex bound, minimum and minimizer) J has a unique minimizer δ with δ ∈ ( 1
d , d) and J(δ) < 0,

and J is strictly convex on (0, δ). Moreover, ‖J‖L∞(δ,∞) < b and it holds

1
dΨ(z)− d ≤ J(z) ≤ d max{Ψ(z), |z|} for all z ∈ (0,+∞). (3.3)

(LJ3) (Asymptotic behaviour) It holds

lim
z→∞ J(z) = 0.

27



3 The discrete model: microscopic scale

J2(ω, 0, ·) J2(ω, n− 2, ·)

J1(ω, 0, ·) J1(ω, 1, ·) J1(ω, n− 1, ·)

0 1

0 1 2 nn− 2 n− 1
[0, 1]

λn

Figure 3.1 | Chain of n + 1 atoms with reference position xi
n = iλn. The potentials J j(ω, i, ·) describe the

interaction between atom i and i + j. The characteristic length scale is λn = 1
n and the macroscopic interval

is [0, 1].

Remark 3.2. (i) The choice of the assumptions allows inter alia for the classical Lennard-Jones potential as
well as for a potential with a hard core, described in Section 2. The hard core is achieved by a shift of the
domain from (0,+∞) to (z0,+∞), with z0 > 0. This can be easily done by shifting the Lennard-Jones
potentials as J(z− z0), which does not affect the Γ -convergence result. More generally, the result holds true
for any shift of the domain from (0,+∞) to (z0,+∞), with z0 ∈ R.

(ii) If one uses domJ = [0,+∞) instead of domJ = (0,+∞), the proofs become much easier, because
then we have J(ω, ·) ∈ C0,α(0,+∞), 0 < α ≤ 1, on its domain, in particular J is bounded on [0,+∞).
This simplifies the handling of the ergodic theorems and the approximation (introduced below) is not
necessary. Therefore, Jhom can be derived from the ergodic theorems and the Γ -convergence result remains
the same.

(iii) Since we deal with a countable or even uncountable set of functions, the condition (LJ2) gives common
bounds for the minimizers and the decay at +∞, respectively.

By defining the class of Lennard-Jones type potentials not only the classical Lennard-Jones
potentials, but a wide range of potentials is covered. Further examples include the double Yukawa
potentials, Mie potentials and Gay-Berne potentials. For a more detailed discussion we refer to
Section 2.1. As discussed in the introduction, the Lennard-Jones type potentials describe long-range
interactions, since their modulus decays more slowly than exponential.

3.2 Random interaction potentials

Our system is allowed to be heterogeneous, i.e. the different particles in the chain need not to
be identical. With this, composite materials can be modelled, where two or more different kinds
of particles are involved, see, e.g., Figure 3.2. Further, this can be used to model particles with
ellipsoidal shape, where the interaction potential between two particles depends on the orientation
they have to each other, no matter if the single particles are different or all of the same type. For a
more detailed description, see the discussion about Gay-Berne potentials in Section 2.1.

There are different kinds of heterogeneous systems. Here, we on the one hand assume a periodic
structure and on the other hand we consider a random distribution of particles. The periodic
setting is discussed as a special case in Chapter 6. In general, we discuss the fully random case in
this thesis.
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3.2 Random interaction potentials

Ja JaJb Jb Jb

Jc Jc Jc Jc Jc Jc Jc

Ja

Figure 3.2 | Randomly arranged chain of atoms. The nearest neighbour interaction potential of two grey
atoms is labelled by Ja, that of two white atoms by Jb and that between a white and a grey one by Jc. Since
the atoms are randomly distributed, this holds for the potentials as well.

The heterogeneity, and therefore the randomness, enters our model through the interaction
potentials. On the chain of atoms described above, we consider random interactions up to order K,
with K ∈ N. This is one way of modelling random systems, while other authors use approaches by
random lattices or random diffeomorphisms, e.g. [4, 17].

The random interaction potentials are given by {J j(ω, i, ·)}i∈Z, j=1,...,K, with J j(ω, i, ·) : R →
(−∞,+∞], for a lattice site i and for neighbouring particles from j = 1 up to j = K. Again,
we refer to Figure 3.1 for an illustration. The potentials are of Lennard-Jones type, specified in
Section 3.1. They are assumed to be statistically homogeneous and ergodic. This is a standard way
in the theory of stochastic homogenization, see, e.g., [4].

This assumptions are phrased as follows, cf. Section 2.3: Let (Ω,F ,P) be a probability space. We
emphasize that this space can be discrete or continuous with uncountably many different elements
in the set Ω. This is one of the main differences between our setting and the work in [73]. We
assume that the family (τi)i∈Z of measurable mappings τi : Ω→ Ω is an additive group action, i.e.

• (group property) τ0ω = ω for allω ∈ Ω and τi1+i2 = τi1τi2 for all i1, i2 ∈ Z.

Additionally, the group action is assumed to be stationary and ergodic, which reads:

• (stationarity) The group action is measure preserving, i.e. P(τiB) = P(B) for every B ∈ F ,
i ∈ Z.

• (ergodicity) For all B ∈ F , the following holds true: If τi(B) = B for all i ∈ Z then it is
P(B) = 0 or P(B) = 1.

For each j = 1, ..., K we define the random variable J̃ j : Ω → J (α, b, d, Ψ), ω 7→ J̃ j(ω)(·) =:
J̃ j(ω, ·), measurable inω. This maps the sample space into the set of Lennard-Jones potentials.
Then, we define

J j(ω, i, ·) := J̃ j(τiω, ·) for all i ∈ Z, ω ∈ Ω, j = 1, ..., K. (3.4)

This means that every mapping τi : Ω→ Ω of the group action is assigned to an atom of the chain
and is used to relate the different atoms to different elements of the sample space and therefore to
different interaction potentials. In the following, we denote J̃ j simply by J j, for better readability.
This is not precise, but the two functions can be easily distinguished by their variables. We fix the
following notation for the minimizers. For eachω ∈ Ω we set

δ j(ω) := argminz∈R
{

J̃ j(ω, z)
}

, for all j = 1, ..., K.
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3 The discrete model: microscopic scale

J(z)

z

1

2

3

4

5 6−1 1 2 3 4

−1

Figure 3.3 | Lennard-Jones potential JLJ , with δ = 2 and ε = 1.

As mentioned above, a potential which satisfies the assumptions of the Lennard-Jones type class
is, e.g., the classical Lennard-Jones potential

JLJ(z) = ε
(
δ

z

)6
[(
δ

z

)6
− 2

]
,

where δ > 0 is the minimizer and −ε < 0 is the minimum of the potential. A representation is
shown in Figure 3.3. In order to illustrate the stochastic setting, we recall the example shown in
the introduction. Let the set Ω be defined as Ω = {(δ,ε), δ ∈ [1, 2], ε ∈ [3, 4]}. Accordingly,ω is
related to the parameters δ and ε of the minimizer and the minimum of the potential. This means
that all potentials in this example have a minimizer in the interval [1, 2] and a minimum in the
interval [−4,−3], randomly chosen by the random variable J j(ω, ·) for every particle of the chain.

The potentials have to fulfil some more properties, coming along with the stochastic setting. To
be precise, the assumptions are not on the potentials themselves, but on the random variable J j. In
Theorem 4.14 and all related propositions, only one additional assumption is needed. For Theo-
rem 5.8, we use a second additional assumption, which will be formulated in the corresponding
chapter. Before we can phrase first assumptions, we need to define some notation. Let [ f ]C0,α(A) be
the Hölder semi-norm of f ∈ C0,α(A). Now, the assumption is:

(H1) (Hölder coefficient) For every j = 1, ..., K it holds true that E
[[

J j
]

C0,α(δ j ,+∞)

]
< ∞.

This condition occurs with respect to the infinite set of potentials. When dealing with finitely
many different potentials, this property is fulfilled automatically. Especially, (H1) is fulfilled if the
Hölder coefficients on (δ,+∞) of all functions J ∈ J are uniformly bounded.

The stochastic setting of the chain with Lennard-Jones type interaction potentials is collected in
the following assumption.

Assumption 3.3. Fix K ∈ N, α ∈ (0, 1], b > 0, d ∈ (1, ∞) and a convex function Ψ : R → [0, ∞]

satisfying (3.2). Let (Ω,F ,P) be a probability space and (τi)i∈Z be a family of stationary and ergodic group
actions in the sense of the definitions on page 29. For every j ∈ {1, . . . , K}, we suppose that the random
variable J j : Ω → J (a, b, d, Ψ) from (3.4), is measurable and (H1) is satisfied, with J(a, b, d, Ψ) as in
Definition 3.1.
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3.2 Random interaction potentials

Remark 3.4. (LJ2) provides a uniform bound of δ j(ω) and of J j(ω, δ j(ω)). Therefore, the random variables
δ j(ω) and J j(ω, δ j(ω)) are integrable. By definition of integrability, the expectation value exists for both
random variables, which we denote by E[δ j] and E[J j(δ j)]. Regarding the expectation value as an ensemble
mean, we can also say something about the sample average. This connection is strongly related to ergodicity
and is explained in the next proposition.

Define, for better readability, the random variable

CH
j (ω) :=

[
J j(ω, ·)

]
C0,α(δ j(ω),+∞)

,

that is the Hölder semi-norm of the function J j(ω, ·) on (δ j(ω), ∞). We define some functions,
which represent sample averages of the quantities δ j, J j(δ j),α−1

j and CH
j , since in the convergence

theorem, we have to deal with this sample averages and their limits. Therefore, the next proposition
shows the limiting behaviour of the sample averages. We define for an arbitrary N ∈ N

δ
(N)
j (ω, A) :=

1
|NA ∩Z| ∑

i∈NA∩Z
δ j(τiω),

J j(δ j)
(N)(ω, A) :=

1
|NA ∩Z| ∑

i∈NA∩Z
J j(ω, i, δ j(τiω)),

CH,(N)
j (ω, A) :=

1
|NA ∩Z| ∑

i∈NA∩Z
CH

j (τiω).

(3.5)

Proposition 3.5. Let Assumption 3.3 be satisfied. Then there exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that
for allω ∈ Ω′, all j = 1, ..., K and for all A = [a, b] with a, b ∈ R the limits

E[δ j] = lim
N→∞ δ(N)

j (ω, A),

E[J j(δ j)] = lim
N→∞ J j(δ j)

(N)(ω, A),

E[CH
j ] = lim

N→∞ CH,(N)
j (ω, A)

exist in R and are independent ofω and the interval A.

Proof. For notational simplicity we omit the j-dependence in the whole proof. We prove the claim
of the proposition first for δ(N)(ω, A) and explain the adaptations of the proof for the other random
variables in the last step.

Step 1. Intervals A = [a, b) with a, b ∈ Z.

Due to the Birkhoff ergodic theorem (see Thm. 2.12), integrability of the random variables (see
Remark 3.4 and (H1)) and ergodicity of the group action provide the existence of Ωδ,A ⊂ Ω with
P(Ωδ,A) = 1 for a fixed A with a, b ∈ Z, such that for everyω ∈ Ωδ,A it holds true that

E[δ] = lim
N→∞ δ(N)(ω, A). (3.6)

By defining Ωδ :=
⋂

a,b∈Z Ωδ,A, we get (3.6) for allω ∈ Ωδ and for all A with a, b ∈ Z, while it still
holds true that P(Ωδ) = 1.
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3 The discrete model: microscopic scale

Step 2. Technical interlude.

We will prove in this step the following claim: Let T ∈ R, T > 0 and A be an interval. Assume
that lim

t→∞ δ(t)(ω, TA) exists, where we extend the definition of δ(N)(ω, A) in (3.5) from the integers

to the real line, with t ∈ R. Then it holds true that

lim
t→∞ δ(t)(ω, TA) = lim

N→∞ δ(N)(ω, A). (3.7)

Proof of this claim: By definition of δ(N)(ω, A) and its extension to the real line, it holds true that

δ(N)(ω, A) =
1

|NA ∩Z| ∑
i∈NA∩Z

δ(τiω) = δ(N/T)(ω, TA) (3.8)

for all N ∈ N. By definition of the limit inferior, it exists a subsequence (Nk) with

lim inf
N→∞ δ(N)(ω, A) = lim

k→∞ δ(Nk)(ω, A)
(3.8)
= lim

k→∞ δ(Nk/T)(ω, TA) ≥ lim inf
t→∞ δ(t)(ω, TA). (3.9)

Further by definition of the limit superior, it exists a subsequence (Nk) with

lim sup
N→∞ δ(N)(ω, A) = lim

k→∞ δ(Nk)(ω, A)
(3.8)
= lim

k→∞ δ(Nk/T)(ω, TA) ≤ lim sup
t→∞ δ(t)(ω, TA). (3.10)

Together with the assertion that lim
t→∞ δ(t)(ω, TA) exists, (3.9) and (3.10) yield

lim
t→∞ δ(t)(ω, TA) = lim

N→∞ δ(N)(ω, A),

which proofs the claim.

Step 3. Intervals A = [a, b) with a, b ∈ R.

To pass to general intervals with a, b ∈ R, we argue as in [47, Proposition 1]. For every ε > 0,
there exists T big enough and intervals A−ε := [a−ε , b−ε ] and A+

ε :=
[
a+ε , b+ε

]
with a−ε , b−ε , a+ε , b+ε ∈ Z

such that it holds true

A−ε ⊂ TA ⊂ A+
ε ,

|A−ε |
|TA| ≥ 1−ε,

|TA|
|A+
ε |
≥ 1−ε. (3.11)

Since δ(ω) ≤ C due to (LJ3), we get for all intervals B ⊂ A the inequality

δ(N)(ω, A) ≤ δ(N)(ω, B) +
|N(A \ B) ∩Z|
|N(A) ∩Z| C, (3.12)

which can be seen by the calculation

δ(N)(ω, A) =
1

|NA ∩Z| ∑
i∈NA∩Z

δ(τiω) ≤ 1
|NA ∩Z| ∑

i∈NB∩Z
δ(τiω) +

1
|NA ∩Z| ∑

i∈N(A\B)∩Z
C

≤ 1
|NB ∩Z| ∑

i∈NB∩Z
δ(τiω) +

|N(A \ B) ∩Z|
|N(A) ∩Z| C.
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3.3 Energy of the system

Now, we get from Step 1

E[δ] = lim
N→∞ δ(N)(ω, A+

ε )
(3.12)
≤ lim inf

N→∞ δ(N)(ω, TA) + lim inf
N→∞ |N(A+

ε \ TA) ∩Z|
|N(A+

ε ) ∩Z|
C

= lim inf
N→∞ δ(N)(ω, TA) +

|(A+
ε \ TA)|
|(A+

ε )|
C

(3.11)
≤ lim sup

N→∞ δ(N)(ω, TA) +εC

(3.12)
≤ lim

N→∞ δ(N)(ω, A−ε ) +
(
ε+
|(TA \ A−ε )|
|(TA)|

)
C

(3.11)
= E[δ] + 2εC.

This shows that

E[δ] = lim
N→∞ δ(N)(ω, TA)

for A = [a, b) with a, b ∈ R, since ε > 0 was chosen arbitrarily. With the result (3.7) from Step 2 we
get

E[δ] = lim
N→∞ δ(N)(ω, TA) = lim

N→∞ δ(N)(ω, A),

for every T > 0, which concludes Step 3.

Step 4. Adaptation to the other random variables.

The proof for J(δ)(N)(ω, A) is exactly the same, replacing Ωδ by ΩJ(δ), since it also holds true
that J(δ)(N)(ω, A) is bounded due to (LJ2). This was important for the analogue of (3.12).

The proof for CH,(N)(ω, A) can be done analogously with the set ΩCH instead of Ωδ and with a
different estimate replacing (3.12). The new estimate can be derived, using CH(ω) > 0, as follows:

CH,(N)(ω, A) =
1

|NA ∩Z| ∑
i∈NA∩Z

CH(τiω) ≥ 1
|NA ∩Z| ∑

i∈NB∩Z
CH(τiω)

=
|NB ∪Z|
|NA ∪Z|C

H,(N)(ω, B).

In the end, we define Ω′ := Ωδ ∩ΩJ(δ) ∩ΩCH , which yields the assertion of the proposition.

3.3 Energy of the system

So far, we defined the one-dimensional chain of particles, the class of interaction potentials and
the random setting. Next, we consider the energy of this model. Let u ∈ An(0, 1) be a given
deformation with n ∈ N. Then we define the energy of interactions up to order K for a given
deformation u ∈ An(0, 1) as

Hn(ω, u) :=
K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ui+ j − ui

jλn

)
. (3.13)
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3 The discrete model: microscopic scale

As discussed in the introduction, using interactions beyond nearest neighbours is one possible
notion of long-range potentials. For a given ` > 0, we take Dirichlet boundary conditions into
account by considering the functional H`

n : Ω× L1(0, 1)→ (−∞,+∞] defined by

H`
n(ω, u) :=

Hn(ω, u) if u ∈ An(0, 1) and u(0) = 0, u(1) = `,

+∞ else.

In the Γ -limit of zeroth order, fixing not only the first and last atom, but also the first K and the
last K atoms would not change the result for the limiting energy. This becomes interesting as a
modelling aspect when considering the Γ -limit of first or higher order. Then, the limiting energy
contains the additional boundary constraints as additional degrees of freedom. This is discussed,
e.g., in [24, 103].

In the following, we are interested in the Γ -limit of the energy in (3.13). To this end, we introduce
the function Jhom : R→ (−∞,+∞], which will play an important role in the Γ -convergence result.
It is defined by

Jhom(z) := inf
N∈N

E
[

J(N)
hom(·, z)

]
, (3.14)

with N ∈ N and

J(N)
hom(ω, z) :=

1
N

inf

{
K

∑
j=1

N− j

∑
i=0

J j

(
ω, i, z +

φi+ j −φi

j

)
, φi ∈ R, φs = φN−s = 0

for s = 0, ..., K− 1

}
.

One of the main results on the way to the limiting energy in Theorem 4.14 is that

Jhom(z) = lim
N→∞ J(N)

hom(ω, z). (3.15)

Before we address the Γ -convergence of the energy, we first provide a characterization of
J(N)
hom(ω, z), which we frequently use in the following proofs.

Lemma 3.6. For z ∈ R and N ∈ N, it holds true that

J(N)
hom(ω, z) =

inf

{
K

∑
j=1

N− j

∑
i=0

J j

(
ω, i,

1
j

i+ j−1

∑
k=i

zk

)
: zi ∈ R,

N−1

∑
i=0

zi = Nz, zs = zN−s−1 = z for s = 0, ..., K− 2

}
.

Proof. For fixed N ∈ N andω ∈ Ω, we define for the term on the right-hand side

p(z) := inf

{
K

∑
j=1

N− j

∑
i=0

J j

(
ω, i,

1
j

i+ j−1

∑
k=i

pk

)
: pi ∈ R,

N−1

∑
i=0

pi = Nz, ps = pN−s−1 = z

for s = 0, ..., K− 2

}
,
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3.3 Energy of the system

and for the right-hand side we have by definition

q(z) := inf

{
K

∑
j=1

N− j

∑
i=0

J j

(
ω, i, z +

qi+ j − qi

j

)
: qi ∈ R, qs = qN−s = 0 for s = 0, ..., K− 1

}
= J(N)

hom(ω, z).

Given a minimizer p = (p0, ..., pN−1) of p(z), we set

qi :=
i−1

∑
k=0

pk − iz

for i = 0, ..., N. Then for s = 0, ..., K− 1, it holds true that

qs =
s−1

∑
k=0

pk − sz = sz− sz = 0

and

qN−s =
N−s−1

∑
k=0

pk − (N − s)z =
N−1

∑
k=0

pk −
N−1

∑
k=N−s

pk − (N − s)z = Nz− sz− (N − s)z = 0.

Thus, q = (q0, ..., qN) is a candidate for the minimum problem related to q(z). Further, we have

qi+ j − qi

j
+ z =

1
j

(
i+ j−1

∑
k=0

pk − (i + j)z−
i−1

∑
k=0

pk + iz

)
+ z =

1
j

i+ j−1

∑
k=i

pk

for i = 0, ..., N − j. This yields

J j

(
ω, i,

1
j

i+ j−1

∑
k=i

pk

)
= J j

(
ω, i, z +

qi+ j − qi

j

)
,

which shows p(z) ≥ q(z).

On the other hand, given a minimizer q = (q0, ..., qN) of q(z), we define

pi := qi+1 − qi + z

for i = 0, ..., N − 1. Then, it holds true that

N−1

∑
k=0

pk =
N−1

∑
k=0

(qk+1 − qk + z) = qN − q0 + Nz = Nz,

and for s = 0, ..., K − 2, that ps = qs+1 − qs + z = z and pN−s = qN−s+1 − qN−s + z = z. Thus,
p = (p0, ..., pN−1) is a candidate for the minimum problem of p(z). Further, it holds true that

1
j

i+ j−1

∑
k=i

pk =
1
j

i+ j−1

∑
k=i

(qk+1 − qk + z) =
1
j
(qi+ j − qi) + z.
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3 The discrete model: microscopic scale

Therefore, we get

J j

(
ω, i,

1
j

i+ j−1

∑
k=i

pk

)
= J j

(
ω, i, z +

qi+ j − qi

j

)
,

which yields p(z) ≤ q(z). This proves p(z) = q(z).
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4 Variational limit: macroscopic scale

In the previous chapter, we have set up the model under consideration. In essence, the discrete
model is a one-dimensional chain of atoms or particles, equi-distributed on the continuous interval
[0, 1]. The elements of the chain are linked by randomly distributed interactions potentials of
Lennard-Jones type, up to order K. The latter means that we consider not only nearest and
next-to-nearest neighbour interactions, referring to K = 1 and K = 2, but up to K-interacting
neighbours.

We now let the number n of particles in this chain go to infinity. This corresponds to the passage
from the discrete system to its continuous counterpart. The limiting procedure is performed in
the sense of Γ -convergence. As we are interested in minimizers of the energy, this variational
convergence is the method of choice. As pointed out in Section 2.4, Γ -convergence together with
proper coercivity yields not only a limiting energy but also a convergence of minimizers.

This chapter is dealing with the Γ -limit of the energy of our model. Section 4.1 starts with an
approximation procedure of the interaction potential. The approximated potentials are Lipschitz
continuous and allow therefore for an application of the ergodic theorems. The homogenized en-
ergy density is a first derived in the case of the approximated potentials. Then, the homogenization
formula with the original potentials are recovered by a limiting analysis for the approximation.
In the end, Section 4.2 shows existence and properties of the homogenized energy density. This
homogenization formula turns out to be the density in the limiting energy functional, which is
stated and proven in Section 4.3.

The results of this chapter have been already published by myself in [81], together with
S. Neukamm, M. Schäffner and A. Schlömerkemper. Here, the proofs and the discussions are given
in more detail.

4.1 Lipschitz approximation of the interaction potentials

The first main issue in the proof of the main Theorem 4.14 is the existence of the limit function
Jhom = lim

N→∞ J(N)
hom(ω, ·) for every ω ∈ Ω′ with P(Ω′) = 1. A key ingredient of the proof is the

ergodic theorem 2.16 due to Akcoglu and Krengel. By applying it to J(N)
hom(ω, z), we get that for

every z ∈ R there exists Ωz ⊂ Ω with P(Ωz) = 1 such that for everyω ∈ Ωz the limit

lim
N→∞ J(N)

hom(ω, z)

exists and is independent ofω. This already seems to be the proof of the existence of the limit Jhom,
however it is not. The problem is the dependence of the set Ωz on the variable z. Since we want
to have the result proven for all z ∈ R, we have to consider the intersection Ω′ =

⋂
z∈R Ωz of all

these sets, which is an intersection of uncountably many sets, and hence does not conserve the
property P(Ω′) = 1.
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4 Variational limit: macroscopic scale

J(z)

z
zL

JJL

Figure 4.1 | The fuction J is a typical representant of a Lennard-Jones type potential and JL its zL-
approximation function.

If we had a polynomial growth from above on the interaction potentials, this problem could
be solved by a continuity argument, see e.g. [47, 94]. However, polynomial growth does not
hold true due to the blow up at zero. The blow-up combined with the non-convexity of the
potentials prevents to use well-established homogenization methods. Therefore, our approach is
an approximation of the Lennard-Jones type potentials by functions that exhibit a linear growth at
z→ −∞. This approximation allows the application of the ergodic theorem. A drawback is that
removing this approximation in order to get back to the original potentials will bring up certain
challenges.

The following definition provides the approximation, as described above, with linear growth
at z → −∞, and is used as a technical tool. Especially in Proposition 4.6, the advantage of the
approximation in contrast to the original function, takes effect, which is summarized in Remark 4.7
in detail.

Definition 4.1. Fix a decreasing sequence (zL)L∈N ⊂ R satisfying zL → 0 as L → ∞ and zL < 1
d for

every L ∈ N (see (LJ2)). The zL-approximation JL
j (ω, ·) of J j(ω, ·) is defined as

JL
j (ω, z) :=


mL

j (ω)(z− zL) + J j(ω, zL) for z < zL,

J j(ω, z) for z ≥ zL,

where mL
j (ω) ∈ R is the smallest element of the subdifferential ∂J j(ω, zL).

Since J j(ω, ·) is convex in (0, δ j(ω)) and 1
d ≤ δ j(ω), the subdifferential ∂J j(ω, zL) is a nonempty

compact interval. By definition, the approximating function JL
j (ω) : R→ R is continuous. More

precisely it is Hölder-continuous on (zL,+∞) and Lipschitz-continuous on (−∞, zL). A sketch
of a Lennard-Jones type potential, together with one of its approximating functions is shown in
Figure 4.1.

Remark 4.2. (i) By Definition 4.1, it holds true that JL
j (ω, z) ≤ J j(ω, z) for every z ∈ R and every

L ∈ N.

(ii) For the approximation JL
j , a corresponding condition as in (3.3) in (LJ2) does not hold true any more.

However, we have

−d ≤ JL
j (ω, z) ≤ d max{Ψ(z), |z|} for all z ∈ R, j = 1, ..., K, ω ∈ Ω, (4.1)

by construction.
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4.1 Lipschitz approximation of the interaction potentials

Whenever we use the approximation JL
j (ω, i, z) instead of each J j(ω, i, z) we indicate this with a

superscript of the letter L, that means

JL
hom(z) := inf

N∈N
E
[

JL,(N)
hom (·, z)

]
,

with N ∈ N and

JL,(N)
hom (ω, z) :=

1
N

inf

{
K

∑
j=1

N− j

∑
i=0

JL
j

(
ω, i, z +

φi+ j −φi

j

)
: φi ∈ R,

φs = φN−s = 0 for s = 0, ..., K− 1

}
.

While using the approximation, we are able to prove the counterpart to (3.15), which reads

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z).

Before we prove the existence of the above limit in the next section, we have to work out special
properties of the Lennard-Jones type potentials and their approximating functions. This is done in
the following propositions. The first one shows that J is (locally) Lipschitz continuous in (0, δ),
by a combination of the convexity and monotonicity of J ∈ J on (0, δ) together with the growth
condition (3.3). The second one deals with an upper bound on the slopes in the approximation
regime and the third one combines the Lipschitz and the Hölder continuity together in one estimate.

Proposition 4.3. Fix α ∈ (0, 1], b > 0, d ∈ (1, ∞) and a convex function Ψ : R → [0, ∞] satisfying
(3.2). Let the approximating function be defined as above. Let A = [a, b), a, b ∈ R, be an interval, and
AN := NA ∩Z with N ∈ N.

(i) There exists a function CLip : (0, d)→ [0, ∞) depending only on d and Ψ such that the following is
true. Let J ∈ J (α, b, d, Ψ) be given and let δ be its unique minimizer. Then it holds

‖J‖Lip(ρ,δ) := sup
x,y∈(ρ,δ)

x 6=y

∣∣∣∣ J(y)− J(x)
y− x

∣∣∣∣ ≤ CLip(ρ).

(ii) There exists L∗ such that for all L > L∗ it holds true that

mL
j (ω) ≤ −ML,

with a constant ML > 0 independent of j andω. Further, we have that

ML → ∞ as L→ ∞. (4.2)

(iii) There exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that for allω ∈ Ω′, all j = 1, ..., K, it holds true that

1
|AN |

K

∑
j=1

∑
i∈AN

∣∣∣JL
j (ω, i, x)− JL

j (ω, i, y)
∣∣∣ ≤ CL,H,(N)(ω)max {|x− y|α , |x− y|} , (4.3)

for every x, y ∈ R and independent of the choice of A, and some constant 0 < CL,H,(N)(ω)→ CL,H

as N → ∞.
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4 Variational limit: macroscopic scale

Proof. Step 1. Proof of (i).

Since J is decreasing on (0, δ) we obviously have

J(y)− J(x)
y− x

≤ 0 (4.4)

for every 0 < x < y ≤ δ. Further, for everyα,β,γ ∈ (0, δ) withα < β < γ it holds true that

J(β)− J(α)
β−α ≤ J(γ)− J(α)

γ −α ≤ J(γ)− J(β)
γ −β , (4.5)

which can be seen as follows: Choose t ∈ (0, 1) such thatβ = tα+(1− t)γ, i.e. t = γ−β
γ−α . Convexity

yields J(β) ≤ tJ(α) + (1− t)J(γ) and thus the two equations

J(β)− J(α) ≤ (1− t)(J(γ)− J(α)) =
β−α
γ −α (J(γ)− J(α)),

J(γ)− J(β) ≥ J(γ)− tJ(α)− (1− t)J(γ) ≥ t(J(γ)− J(α)) =
γ −β
γ −α (J(γ)− J(α))

hold true, and imply (4.5).

Next we apply (4.5) toα = 1
2R , β = 1

R , γ = y as well as toα = 1
R , β = x, γ = y and get

J
(

1
R

)
− J

(
1

2R

)
1

2R
≤

J(y)− J
(

1
2R

)
y− 1

2R
≤

J(y)− J
(

1
R

)
y− 1

R
,

J(x)− J
(

1
R

)
x− 1

R
≤

J(y)− J
(

1
R

)
y− 1

R
≤ J(y)− J(x)

y− x
.

A combination of the obtained chains of inequalities yields

J
(

1
R

)
− J

(
1

2R

)
1

2R
≤

J(y)− J
(

1
R

)
y− 1

R
≤ J(y)− J(x)

y− x
≤ 0,

where boundedness from above is due to (4.4). By (LJ2),

J
(

1
R

)
− J

(
1

2R

)
1

2R
≥ −2Rd

(
1 +

(
Ψ

(
1

2R

)
+

1
2R

))
.

Hence, for every 1
R < x < y < δ it holds∣∣∣∣ J(y)− J(x)

y− x

∣∣∣∣ ≤ 2Rd
(

1 +

(
Ψ

(
1

2R

)
+

1
2R

))
,

which implies the assertion.

Step 2. Proof of (ii).

By definition of the subdifferential, it holds true that

J j(ω, y) ≥ J j(ω, x) + mL
j (ω)(y− x),
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4.1 Lipschitz approximation of the interaction potentials

for every x, y ∈ (0, 1
d ]. Setting y = 1

d and x = zL, we get

mL
j (ω) ≤

J j

(
ω, 1

d

)
− J j(ω, zL)

1
d − zL

≤
d max

{
Ψ
(

1
d

)
,
∣∣∣ 1

d

∣∣∣}− ( 1
dΨ(zL)− d

)
1
d − zL

.

The denominator is always positive and Ψ(zL)→ ∞ as L→ ∞. Note that mL
j is always negative,

by definition. The right hand side gets smaller and negative as L→ ∞. Therefore, there exists L∗

such that for all L > L∗ it holds true that mL
j (ω) ≤ −ML,, with a constant ML > 0 independent of

j andω. Further, by (LJ2), we have that ML → ∞ as L→ ∞, which proves (ii).

Step 3. Proof of (iii).

It holds true for every x, y ∈ R that

1
|AN |

K

∑
j=1

∑
i∈AN

∣∣∣JL
j (ω, i, x)− JL

j (ω, i, y)
∣∣∣

≤ 2 max

{
KCLip(zL) ,

K

∑
j=1

1
|AN | ∑

i∈AN

CH
j (τiω)

}
max{|x− y|α , |x− y|}.

This estimate can be derived as follows: recall that for a fixed L, the Lipschitz constant of JL
j (ω, i, ·)

on (zL, δ) is bounded by CLip(zL) due to Lemma 4.3 (i). By monotonicity and convexity of J j(ω, i, ·),
the Lipschitz constant of JL

j (ω, i, ·) on (−∞, zL) is also bounded by CLip(zL), by construction of the

approximating function. Further, CH
j (τiω) is the Hölder constant of JL

j (ω, i, ·) on [δ j(τiω),+∞),
by definition (see Proposition 3.5 and the related definitions). Now, we have to distinguish between
three cases: (a) x and y are both greater than δ j(τiω), (b) both are less than δ j(τiω) and (c) one is
less and one is greater than δ j(τiω). In the first case (a) the Hölder estimate holds, in the second
one (b) we can use the Lipschitz estimate and in the third one (c) we can insert ±JL

j (ω, i, δ j(τiω))

and use the triangle inequality, which results in the factor 2. Since the constants CLip(zL) and CH
j

are all positive, we still increase the estimate, if we sums over the whole set AN .

Due to (H1) and Proposition 3.5, there exists a set Ω′ ⊂ Ω with P(Ω′) = 1 such that for all
ω ∈ Ω′, all j = 1, ..., K, the sum on the right hand side is convergent. Therefore, we finally obtain

1
|AN |

K

∑
j=1

∑
i∈AN

∣∣∣JL
j (ω, i, x)− JL

j (ω, i, y)
∣∣∣ ≤ CL,H,(N)(ω)max{|x− y|α , |x− y|},

for every x, y ∈ R and independent of the choice of A, with CL,H,(N)(ω) → CL,H almost every-
where as N → ∞. This proves (iii).

4.1.1 Approximated homogenized energy density

The approximation introduced in Section 4.1 was said to be a suitable approach with respect to
an application of the ergodic theorem by Akcoglu and Krengel and accordingly to the existence
of the limit JL

hom. This will be specified and worked out now, in Section 4.1.1. Further, we derive
some properties of this limit JL

hom. These results will be used as technical tools in subsequent
propositions and theorems.
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4 Variational limit: macroscopic scale

We start with establishing the existence of the function JL
hom. This is done by proving that the

limit N → ∞ of JL,(N)
hom (ω, z) exists and is indeed independent ofω. The assertion is formulated in

a more general way, because we need the convergence result in this general form in subsequent
proofs. Let A = [a, b), a, b ∈ R be an interval. Throughout the entire thesis, the notation

iA
min := min{i : i ∈ NA ∩Z} and iA

max := max{i : i ∈ NA ∩Z},

as N ∈ N, is frequently used. We define a localized version of JL,(N)
hom (ω, z) by

JL,(N)
hom (ω, z, A) :=

1
|NA ∩Z| inf


K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

JL
j

(
ω, i, z +

φi+ j −φi

j

)
: φ ∈ A0

N,K(A)

 ,

as well as a localized version of J(N)
hom(ω, z) by

J(N)
hom(ω, z, A) :=

1
|NA ∩Z| inf


K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

J j

(
ω, i, z +

φi+ j −φi

j

)
: φ ∈ A0

N,K(A)

 ,

where

A0
N,K(A) :=

{
φ : Z→ R : φi = 0 for

∣∣∣∣ min
j∈AN∩Z

{ j} − i
∣∣∣∣ < K or

∣∣∣∣ max
j∈AN∩Z

{ j}+ 1− i
∣∣∣∣ < K

}
. (4.6)

Note that JL,(N)
hom (ω, z) and J(N)

hom(ω, z) are obtained when taking A = [0, 1).

In view of an application of the ergodic theorem by Akcoglu and Krengel, we prove that
JL,(N)
hom (ω, z, A) as well as J(N)

hom(ω, z, A) are indeed, in a slightly modified version, subadditive.

Proposition 4.4. Let Assumption 3.3 be satisfied. Set I := {[a, b) : a, b,∈ Z} and denote by L1 the class
of integrable functions on the probability space (Ω,F ,P). Then,

f L
z (ω) : I → L1, A 7→ |NA ∩Z|JL,(N)

hom (·, z, A) + K2d max{Ψ(z), |z|},

as well as

fz(ω) : I → L1, A 7→ |NA ∩Z|J(N)
hom(·, z, A) + K2d max{Ψ(z), |z|},

define subadditive processes, cf. Definition 2.15.

Proof. We give the proof for fz(ω) and highlight the differences in proving the corresponding
result for f L

z (ω).

Step 1. fz(ω) defines a set function from I to L1.

By the deterministic upper bound due to (LJ2), or due to (4.1) for the approximation, respectively,
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4.1 Lipschitz approximation of the interaction potentials

and withφi = 0 for all i = 0, ..., n− 1 being a competitor for the infimum problem, we get

0 ≤ E [ fz(ω)(A)] ≤ E

 K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

J j (ω, i, z) + K2d max{Ψ(z), |z|}


≤ |NA ∩Z|Kd max {Ψ(z), |z|}+ K2d max{Ψ(z), |z|} < +∞.

Step 2. Bound from below.

By the deterministic lower bound due to (LJ2), or due to (4.1) for the approximation, respectively,
we obtain

inf
A∈I

{
1

|NA ∩Z|E
[

fz(ω)(A) + K2d max{Ψ(z), |z|}
]}
≥ −Kd + K2d max{Ψ(z), |z|} > −∞.

Step 3. fz(ω) is subadditive.

Let A1, ..., AM ⊂ I be such that Ah ∩ Am = ∅ for all h, m ∈ {1, ..., M} with h 6= m and
with

⋃M
m=1 Am =: A ∈ I . Then, for every Am there exists a minimizer φm ∈ A0

N,K(Am) of

J(N)
hom(ω, i, Am), that is

J(N)
hom(ω, i, Am) =

1
|NAm ∩Z|

K

∑
j=1

∑
i∈NAm∩Z

i+ j−1∈NAm

J j

(
ω, i, z +

φ
i+ j
m −φi

m
j

)
.

We set φA := ∑
M
m=1φm ∈ A0

N,K(A). Due to the zero boundary constraint in the definition of
A0

N,K(A) it holds true that φA = φm on Am for all m = 1, ..., M. Since φA is a competitor of

J(N)
hom(ω, z, A) and due to the zero boundary condition ofφm, we obtain

fz(ω)(A) ≤
K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

J j

(
ω, i, z +

φ
i+ j
A −φi

A
j

)
+ K2d max{Ψ(z), |z|}

=
M

∑
m=1

K

∑
j=1

∑
i∈NAm∩Z

i+ j−1∈NAm

J j

(
ω, i, z +

φ
i+ j
m −φi

m
j

)
+

M−1

∑
m=1

K

∑
j=2

j−2

∑
s=0

J j

(
ω, iAm

max− s, z
)
+ K2d max{Ψ(z), |z|}

(∗)
≤

M

∑
m=1

K

∑
j=1

∑
i∈NAm∩Z

i+ j−1∈NAm

J j

(
ω, i, z +

φ
i+ j
m −φi

m
j

)
+

M

∑
m=1

K2d max{Ψ(z), |z|} =
M

∑
m=1

fz(ω)(Am),

where inequality (∗) holds true due to (LJ2), or due to (4.1) for the approximation, respectively,
and since Ψ(z) ≥ 0 for all z ∈ R. Thus, subadditivity is proven.

Remark 4.5. We show in the following the existence of of the function JL
hom. One ingredient of the proof is

the subadditive ergodic theorem by Akcoglu and Krengel. Since JL
hom itself is not subadditive, the ergodic

theorem can only be applied to f L
z (ω), or fz(ω), respectively, and we obtain

f L
z (ω)(A)

|NAm ∩Z|
→ f (z)
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4 Variational limit: macroscopic scale

pointwise almost everywhere in Ω as N → ∞ to a limit independent ofω and A. Further, it holds true that

JL
hom(ω, z, A) =

f L
z (ω)(A)

|NAm ∩Z|
− 1

N
K2d max{Ψ(z), |z|} → f (z)− 0

as N → ∞. Therefore, f L
z (ω) and JL

hom yield the same limit. In order to simplify the proofs, we consider
JL
hom instead of the modified function f L

z (ω) and call it subadditive, although we have only proven that
f L
z (ω) is subadditive. We proceed in the case of Jhom in the same way.

The existence of the function JL
hom, that we show in the next proposition, is mainly based on the

subadditivity, shown in the previous proposition, because it allows to use the subadditive ergodic
theorem by Akcoglu and Krengel.

Proposition 4.6. Let Assumption 3.3 be satisfied. There exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that the
following is true: For allω ∈ Ω′, z ∈ R and A := [a, b) with a, b ∈ R it holds

JL
hom(z) = lim

N→∞E
[

JL,(N)
hom (·, z, [0, 1))

]
= lim

N→∞ JL,(N)
hom (ω, z, A). (4.7)

Proof. In the following Steps 1–3, we will prove that JL,(N)
hom (·, z, A) converges pointwise almost

everywhere on Ω′ to a function f (z) independent ofω and A. Given this result, the upper bound
from (LJ2) together with the dominated convergence theorem then yields

lim
N→∞E

[
JL,(N)
hom (·, z, [0, 1))

]
= E[ f (z)] = f (z),

where the last equality holds true since f (z) is independent ofω. This shows the second equality
in (4.7).

Further, NJL,(N)
hom (·, z, [0, 1)) is subadditive in view of Proposition 4.4 and Remark 4.5. Because of

linearity and monotonicity of the expectation value, it also holds true that E
[

NJL,(N)
hom (·, z, [0, 1))

]
is subadditive. Thus, we can apply Theorem 2.17, a result from the theory of subadditive functions,
to get (again with linearity of the expectation value)

JL
hom(z) = inf

N∈N
E
[

JL,(N)
hom (·, z, [0, 1))

]
= inf

N∈N

E
[

NJL,(N)
hom (·, z, [0, 1))

]
N

= lim
N→∞

E
[

NJL,(N)
hom (·, z, [0, 1))

]
N

= lim
N→∞E

[
JL,(N)
hom (·, z, [0, 1))

]
.

This shows the first equality in (4.7) and justifies f (z) = JL
hom(z).

At this point, it is left to show the existence of the limit lim
N→∞ JL,(N)

hom (ω, z, A) pointwise almost

everywhere, which is done in the following three steps. As indicated at the beginning of Section 4.1,
the ergodic theorem 2.16 due to Akcoglu and Krengel yields, for every z ∈ R and for every A, the
existence of Ωz,A ⊂ Ω with P(Ωz,A) = 1 such that for everyω ∈ Ωz,A the limit

lim
N→∞ JL,(N)

hom (ω, z, A)

exists and is independent ofω and A. This already seems to be the proof of the theorem, however
it is not. The difference to the assertion we need to prove is hidden in the type and order of the
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4.1 Lipschitz approximation of the interaction potentials

quantifiers for z, A and Ω. The ergodic theorem provides the assertion with a different type and
order of quantifiers. Therefore, we have to do some work to correct and rearrange.

Step 1. The case of a fixed z ∈ R and intervals A = [a, b) with a, b ∈ Z.

We prove pointwise convergence almost everywhere for a fixed z ∈ R. As |NA∩Z|JL,(N)
hom (ω, z, ·)

is subadditive in view of Proposition 4.4 and Remark 4.5, and JL,(N)
hom is stationary and ergodic due

to the stationarity and ergodicity of the group action, the ergodic theorem 2.16 by Akcoglu and
Krengel can be applied. Thus, there exists Ωz ⊂ Ω with P(Ωz) = 1 such that for everyω ∈ Ωz

and for every A = [a, b) with a, b ∈ Z, the limit

lim
N→∞ JL,(N)

hom (ω, z, A)

exists and is independent of ω and A. Note that this holds true because of the countability of
the intervals, since we only demand for a, b ∈ Z. Otherwise, the property P(Ωz) = 1 cannot be
ensured. More precisely, it holds true that Ωz =

⋂
a,b∈Z ΩA, with ΩA ⊂ Ω being the set on which

the ergodic theorem holds true for a fixed A. Considering A = [0, N), we get

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z, A).

Step 2. The case of a fixed z ∈ R and intervals A = [a, b) with a, b ∈ R.

In order to pass to general intervals with a, b ∈ R, we argue as in Proposition 3.5, Step 2 and in
[47, Proposition 1]. For every ε > 0, there exists T > 0 large enough and intervals A−ε := [a−ε , b−ε ],
A+
ε :=:=

[
a+ε , b+ε

]
with a−ε , b−ε , a+ε , b+ε ∈ Z such that

A−ε ⊂ TA ⊂ A+
ε ,

|A−ε |
|TA| ≥ 1−ε,

|TA|
|A+
ε |
≥ 1−ε. (4.8)

From (LJ2), we get for all intervals B ⊂ A and N large enough the inequality

JL,(N)
hom (ω, z, A) ≤ JL,(N)

hom (ω, z, B) +
|N(A \ B) ∩Z|
|N(A) ∩Z| C max{Ψ(z) , |z|}, (4.9)

which can be seen as follows. Taking a minimizerφ of the minimum problem related to B, one has

JL,(N)
hom (ω, z, A)

≤ 1
|NB ∩Z|

K

∑
j=1

iB
max+1− j

∑
i=iB

min

JL
j

(
ω, i, z +

φi+ j −φi

j

)
+

1
|NA ∩Z|

K

∑
j=1

iA\B
max+1− j

∑
i=iA\Bmin

i∈N(A\B)∩Z

JL
j (ω, i, z)

+
1

|NA ∩Z|
K

∑
j=2

iB
max

∑
i=iB

max+2− j
JL

j (ω, i, z)

(LJ2)
≤ JL,(N)

hom (ω, z, B) +
1

|NA ∩Z|
K

∑
j=1

iA\B
max+1− j

∑
i=iA\Bmin

i∈N(A\B)∩Z

d max{Ψ(z) , |z|}
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+
1

|NA ∩Z|
K

∑
j=2

iB
max

∑
i=iB

max+2− j
d max{Ψ(z) , |z|}

≤ JL,(N)
hom (ω, z, B) +

1
|NA ∩Z|d max{Ψ(z) , |z|}

(
K|N(A \ B) ∩Z|+ 1

2
(K + 1)K

)

≤ JL,(N)
hom (ω, z, B) +

1
|NA ∩Z|d max{Ψ(z) , |z|}

((
K +

1
2
(K + 1)K

)
|N(A \ B) ∩Z|

)
,

where the last inequality holds true for N large enough. Now, we get from Step 1

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z, A+

ε )

(4.9)
≤ lim inf

N→∞ JL,(N)
hom (ω, z, TA) + lim inf

N→∞ |N(A+
ε \ TA) ∩Z|

|N(A+
ε ) ∩Z|

C max{Ψ(z) , |z|}

= lim inf
N→∞ JL,(N)

hom (ω, z, TA) +
|(A+

ε \ TA)|
|(A+

ε )|
C max{Ψ(z) , |z|}

(4.8)
≤ lim sup

N→∞ JL,(N)
hom (ω, z, TA) +εC max{Ψ(z) , |z|}

(4.9)
≤ lim

N→∞ JL,(N)
hom (ω, z, A−ε ) +

(
ε+
|(TA \ A−ε )|
|(TA)|

)
C max{Ψ(z) , |z|}

(4.8)
= JL

hom(z) + 2Cεmax{Ψ(z) , |z|}.

This shows

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z, TA),

for A = [a, b) with a, b ∈ R, since we can pass to the limit ε→ 0. With the result (3.7) from Step 2
of Proposition 3.5 we get

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z, TA) = lim

N→∞ JL,(N)
hom (ω, z, A),

for every T > 0, which concludes Step 2.

Step 3. The case of arbitrary z ∈ R and intervals A = [a, b) with a, b ∈ R.

With the definition of Ωz from the previous steps, we define Ω′ :=
⋂

z∈Q Ωz. It holds true that
P(Ω′) = 1 and that we have for everyω ∈ Ω′

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z, A), (4.10)

for arbitrary A and all z ∈ Q. This was shown in the previous steps.

Next, we derive the existence of the limit of JL,(N)
hom (ω, z, A) also for z ∈ R \Q andω ∈ Ω′. Note,

that the ergodic theorem provides existence of that limit only for ω ∈ Ωz and not for ω ∈ Ω′.
For this, let z ∈ R \Q and (zk)k∈N ⊂ Q be a sequence with zk → z. Strictly speaking, we can
also assume z ∈ R, but it is not necessary, because we have already dealt with the case z ∈ Q. By
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4.1 Lipschitz approximation of the interaction potentials

contrast, the assumption (zk)k∈N ⊂ Q is essential, because it allows us to use the result (4.10) for
zn in what follows, since (4.10) was only proven for z ∈ Q.

We denote the minimizer related to the minimum problem of JL,(N)
hom (ω, z, A) byφN,z : (NA ∩Z)∪{

iA
max + 1

}
→ R withφiA

min
N,z = 0 = φ

iA
max+1

N,z (we drop the index A for the minimizer for better read-
ability), which means that

JL,(N)
hom (ω, z, A) =

1
|NA ∩Z|

K

∑
j=1

iA
max+1− j

∑
i=iA

min

JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j

 . (4.11)

Consequently, we have

JL,(N)
hom (ω, z, A) =

1
|NA ∩Z|

K

∑
j=1

iA
max+1− j

∑
i=iA

min

JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j



=
1

|NA ∩Z|
K

∑
j=1

iA
max+1− j

∑
i=iA

min

JL
j

ω, i, zk +
φ

i+ j
N,z −φi

N,z

j



+
1

|NA ∩Z|
K

∑
j=1

iA
max+1− j

∑
i=iA

min

JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j

− JL
j

ω, i, zk +
φ

i+ j
N,z −φi

N,z

j

 ,

which can be estimated by

JL,(N)
hom (ω, z, A) ≥ JL,(N)

hom (ω, zk, A)

− 1
|NA ∩Z|

K

∑
j=1

iA
max+1− j

∑
i=iA

min

∣∣∣∣∣∣JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j

− JL
j

ω, i, zk +
φ

i+ j
N,z −φi

N,z

j

∣∣∣∣∣∣ .

Since |z− zk| ≤ |z− zk|α for k large enough, we continue with this estimate by using (4.3) and get

JL,(N)
hom (ω, z, A) ≥ JL,(N)

hom (ω, zk, A)− CL,H,(N)(ω)|z− zk|α . (4.12)

Next we take the limit lim infN→∞ of (4.12). Recalling that CL,H,(N)(ω) → CL,H in the limit
N → ∞ by (4.3), we obtain

lim inf
N→∞ JL,(N)

hom (ω, z, A) ≥ lim inf
N→∞ JL,(N)

hom (ω, zk , A)− lim
N→∞ CL,H,(N)(ω)|z− zk|α

= JL
hom(zk)− CL,H |z− zk|α ,

where the last equality holds true due to (4.10), by using the assumption (zk)k∈N ⊂ Q. Subsequently
we take the limit lim supk→∞, which yields, by the assumption zk → z as k→ ∞,

lim inf
N→∞ JL,(N)

hom (ω, z, A) ≥ lim sup
k→∞ JL

hom(zk).

Now, we can repeat the whole calculation, from (4.11) onwards, by changing the roles of z and zk.
Hence, the limits which have to be taken are first lim supN→∞ and subsequently lim infk→∞. By
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4 Variational limit: macroscopic scale

this, we get analogously

lim inf
k→∞ JL

hom(zk) ≥ lim sup
N→∞ JL,(N)

hom (ω, z, A).

Together, the two inequalities yield

JL
hom(z) = lim

N→∞ JL,(N)
hom (ω, z, A)

= lim
k→∞ JL

hom(zk), for all z ∈ R \Q and all (zk)k ⊂ Q.
(4.13)

This shows that for ω ∈ Ω′ the limit of JL,(N)
hom (ω, z, A) exists and is independent of ω and A

for all z ∈ R \Q. Altogether, we have that the limit of JL,(N)
hom (ω, z, A) exists for every z ∈ R, is

independent ofω and A, and equals JL
hom(z). This finally proves (4.7).

Remark 4.7. The basic difficulty of the proof of Proposition 4.6 is to extend the result, after applying the
ergodic theorem, in such way that we obtain the limit of JL,(N)

hom (ω, z, A) for all z ∈ R and an arbitrary
interval A. A main ingredient used in the proofs is the Lipschitz-continuity of the approximating functions,
which yields estimate (4.12). Without this regularity, it is not readily apparent whether the line of arguments
can be adopted. Herein lies the reason of considering the approximation functions JL

j (ω, i, z) instead of the
original functions J j(ω, i, z) as a technical tool. Likewise, the Lipschitz-continuity is useful in Proposition
4.8. Estimate (4.12) also shows the importance of the Hölder-regularity.

After proving the existence of the limit JL
hom, we now want to shed some light on the shape and

properties of this function. The following proposition gives some useful technical properties of the
limiting function JL

hom, in particular continuity and convexity of JL
hom, as well as its Γ -limit.

Note that equation (4.13) does not show continuity yet, because it is only valid for sequences
(zn) ⊂ Q and z ∈ R \Q. As already mentioned in the proof, z ∈ R \Q is not a necessary restriction.
The result holds true also for z ∈ R. The only real limitation is (zn) ⊂ Q and this is not enough to
obtain continuity.

Proposition 4.8. Let Assumption 3.3 be satisfied. The map z 7→ JL
hom(z) is continuous and convex.

Moreover, there exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that the following is true: For allω ∈ Ω′ and
every A = [a, b), a, b ∈ R it holds

Γ - lim
N→∞ JL,(N)

hom (ω, ·, A) = JL
hom.

Proof. We prove the three assertions of the proposition, namely continuity, convexity and the
Γ -limit result, separately in the following three steps.

Step 1. Continuity.

Let (zk)k∈N ⊂ R be a sequence converging to z ∈ R. Let φN,z be a minimizing sequence such
that it holds trueφN

N,z = φ
0
N,z = 0 and

lim
N→∞ 1

N

K

∑
j=1

N− j

∑
i=0

JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j

 = JL
hom(z) (4.14)

forω ∈ Ω′ defined in Proposition 4.6. We estimate the term on the left-hand side of this equation
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4.1 Lipschitz approximation of the interaction potentials

and obtain

1
N

K

∑
j=1

N− j

∑
i=0

JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j

 =
1
N

K

∑
j=1

N− j

∑
i=0

JL
j

ω, i, zk +
φ

i+ j
N,z −φi

N,z

j



+
1
N

K

∑
j=1

N− j

∑
i=0

JL
j

ω, i, z +
φ

i+ j
N,z −φi

N,z

j

− JL
j

ω, i, zk +
φ

i+ j
N,z −φi

N,z

j


With this equality, we can estimate (4.14) by

JL
hom(z) ≥ JL,(N)

hom (ω, zk)− CL,H,(N)(ω)|z− zk|α , (4.15)

due to (4.3) and since |z− zk| ≤ |z− zk|α for k large enough. Next we take the limit N → ∞ of
(4.15). Recalling that CL,H,(N)(ω)→ CL,H in the limit N → ∞ by (4.3), we obtain

JL
hom(z) ≥ JL

hom(zk)− CL,H,|z− zk|α ,

by the result of Proposition 4.6. Subsequently we take the limit lim supk→∞, which yields, by the
assumption zk → z as k→ ∞,

JL
hom(z) ≥ lim sup

k→∞ JL
hom(zk).

Restarting the whole calculation, from (4.14) onwards, by changing the roles of z and zk, we get
analogously by first taking the limit N → ∞ and subsequently lim infk→∞

JL
hom(z) ≤ lim inf

k→∞ JL
hom(zk).

Together, this shows JL
hom(z) = lim

k→∞ JL
hom(zk) and therefore JL

hom is continuous.

Step 2. Convexity.

We need to show

JL
hom (tz1 + (1− t)z2) ≤ tJL

hom(z1) + (1− t)JL
hom(z2)

for every t ∈ [0, 1] and every z1, z2 ∈ (0,+∞). Otherwise, the proof of the inequality is trivial.
Fix t ∈ [0, 1]. LetφN,z1 : N[0, t + 1

N ) ∩Z→ R be a minimizer related to the minimum problem of

JL,(N)
hom (ω, z1, [0, t)), i.e.φs

N,z1
= 0 = φi[0,t)

max+1−s
N,z1

for s = 0, ..., K− 1 and

JL,(N)
hom (ω, z1, [0, t)) =

1
|N[0, t) ∩Z|

K

∑
j=1

i[0,t)
max+1− j

∑
i=0

JL
j

ω, i, z1 +
φ

i+ j
N,z1
−φi

N,z1

j

 .

Further, letφN,z2 : N[t, N]∩Z→ R be a minimizer of the minimum problem of JL,(N)
hom (ω, z2, [t, 1)),
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i.e.φ
i[t,1)min+s
N,z2

= 0 = φN−s
N,z2

for s = 0, ..., K− 1 and

JL,(N)
hom (ω, z2, [t, 1)) =

1
|N[t, 1) ∩Z|

K

∑
j=1

N− j

∑
i=i[t,1)min

JL
j

ω, i, z2 +
φ

i+ j
N,z2
−φi

N,z2

j

 .

This given, we define a new competitor

φ̃i
N :=



φi
N,z1

= 0 for 0 ≤ i ≤ K− 1,

φi
N,z1

+ (i− K)(z1 − z2)(1− t) for K ≤ i ≤ i[0,t)
max + 1− K,

i[0,t)
max(z1 − z2)(1− t) for i[0,t)

max + 2− K ≤ i ≤ i[t,1)min − 1 + K,

φi
N,z2

+ (N − i)(z1 − z2)t for i[t,1)min + K ≤ i ≤ N − K,

φi
N,z2

= 0 for N + 1− K ≤ i ≤ N.

Indeed, φ̃N fulfils the constraints of the infimum problem of JL,(N)
hom , because φ̃i

N = 0 for i =

0, ..., K− 1 and i = N + 1− K, ..., N by definition. In addition, the second and fourth line in the
definition of φ̃N is chosen in such a way that in these regimes

tz1 + (1− t)z2 +
φ̃

i+ j
N − φ̃i

N
j

= z1 +
φ

i+ j
N,z1
−φi

N,z1

j
,

tz1 + (1− t)z2 +
φ̃

i+ j
N − φ̃i

N
j

= z2 +
φ

i+ j
N,z2
−φi

N,z2

j
,

(4.16)

respectively. Since φ̃N is a competitor, it can be used to estimate

JL,(N)
hom (ω, tz1 + (1− t)z2) ≤

1
N

K

∑
j=1

N− j

∑
i=0

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

=
1
N

K

∑
j=1

i[0,t)
max+1− j

∑
i=0

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

+
1
N

K

∑
j=1

N− j

∑
i=i[t,1)min

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

+
1
N

K

∑
j=2

j−2

∑
s=0

JL
j

ω, i[0,t)
max − s, tz1 + (1− t)z2 +

φ̃
i[0,t)
max−s+ j

N − φ̃i[0,t)
max−s

N
j

 .

(4.17)

We consider all three terms of the right-hand side of (4.17) individually in Step A-C and bring it
together in Step D.
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4.1 Lipschitz approximation of the interaction potentials

Step A: First term of (4.17).

Using (4.16), we start with the first term of (4.17), that is

1
N

K

∑
j=1

i[0,t)
max+1− j

∑
i=0

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

=
1
N

K

∑
j=1

i[0,t)
max+1− j

∑
i=0

JL
j

ω, i, z1 +
φ

i+ j
N,z1
−φi

N,z1

j



+
1
N

K

∑
j=1

K−1

∑
i=0

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)
− JL

j

ω, i, z1 +
φ

i+ j
N,z1
−φi

N,z1

j



+
1
N

K

∑
j=1

i[0,t)
max+1− j

∑
i=

i[0,t)
max+2−K− j

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)
− JL

j

ω, i, z1 +
φ

i+ j
N,z1
−φi

N,z1

j

 .

(4.18)

The second and third term on the right-hand side take into account all contributions that have at
least one φ̃k

N , k = i or k = i + j, in the first or third line in the definition of φ̃N . For 0 ≤ i ≤ K− 1, it
holds true thatφi

N,z1
= φ̃i

N = 0 andφi+ j
N,z1

and φ̃i+ j
N are either both equal to zero or φ̃i+ j

N −φi+ j
N,z1

=

(i− K + j)(z1 − z2)(1− t). This yields∣∣∣∣∣∣φ̃
i+ j
N − φ̃i

N
j

−
φ

i+ j
N,z1
−φi

N,z1

j

∣∣∣∣∣∣ ≤
∣∣∣∣ (i− K + j)(z1 − z2)(1− t)

j

∣∣∣∣
≤ (K + 1) |(z1 − z2)(1− t)| =: C1.

For i[0,t)
max + 2− K− j ≤ i ≤ i[0,t)

max + 1− j, it holds true that φ̃i+ j
N = i[0,t)

max(z1 − z2)(1− t), φi+ j
N,z1

= 0

and φ̃i
N andφi

N,z1
are either also i[0,t)

max(z1− z2)(1− t) and 0 or φ̃i
N −φi

N,z1
= (i−K)(z1− z2)(1− t).

This yields ∣∣∣∣∣∣φ̃
i+ j
N − φ̃i

N
j

−
φ

i+ j
N,z1
−φi

N,z1

j

∣∣∣∣∣∣ ≤
∣∣∣∣∣ (K− i + i[0,t)

max)(z1 − z2)(1− t)
j

∣∣∣∣∣
≤ (3K− 2) |(z1 − z2)(1− t)| =: C2.

Thus, we can estimate (4.18) with ε > 0 and Iε(x) := [x−ε, x +ε) ∩ [0, 1] for N large enough by

1
N

K

∑
j=1

i[0,t)
max+1− j

∑
i=0

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

≤
(

t +
2
N

)
JL,(N)
hom (ω, z1, [0, t)) +

|NIε(0) ∩Z|
N

C1CL,H,(N)(ω) +
|NIε(t) ∩Z|

N
C2CL,H,(N)(ω),

(4.19)

where the last two steps are due to (4.3).
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Step B: Second term of (4.17).

The second term of (4.17) can be estimated, using (4.16), as

1
N

K

∑
j=1

N− j

∑
i=i[t,1)min

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

=
1
N

K

∑
j=1

N− j

∑
i=i[t,1)min

JL
j

ω, i, z2 +
φ

i+ j
N,z2
−φi

N,z2

j



+
1
N

K

∑
j=1

i[t,1)min−1+K

∑
i=i[t,1)min

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)
− JL

j

ω, i, z2 +
φ

i+ j
N,z2
−φi

N,z2

j



+
1
N

K

∑
j=1

N− j

∑
i=

N+1−K− j

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)
− JL

j

ω, i, z2 +
φ

i+ j
N,z2
−φi

N,z2

j

 .

(4.20)

The second and third term on the right-hand side take into account all contributions that have at
least one φ̃k

N , k = i or k = i + j, in the third or fifth line in the definition of φ̃N . For i = i[t,1)min ≤ i ≤
i[t,1)min − 1 + K, it holds true that φ̃i

N = i[0,t)
max(z1 − z2)(1− t),φi

N,z1
= 0 and φ̃i+ j

N andφi+ j
N,z1

are either

also i[0,t)
max(z1 − z2)(1− t) and 0 or φ̃i+ j

N −φi+ j
N,z1

= (i− i[0,t)
max + j)(z2 − z1)t + (N − i[0,t)

max)(z1 − z2)t.
This yields∣∣∣∣∣∣φ̃

i+ j
N − φ̃i

N
j

−
φ

i+ j
N,z1
−φi

N,z1

j

∣∣∣∣∣∣ ≤
∣∣∣∣∣ (i− i[0,t)

max + j)(z2 − z1)t + (z2 − z1)(i
[0,t)
max − tN)

j

∣∣∣∣∣
≤ (2K + 1) |(z2 − z1)t|+

∣∣∣∣∣ ((z2 − z1)(i
[0,t)
maxλN − t)

jλN

∣∣∣∣∣ ≤ (2K + 1) |(z2 − z1)t|+
∣∣∣∣(z2 − z1)

λN
jλN

∣∣∣∣
≤ (2K + 1) |(z2 − z1)t|+ |(z2 − z1)| =: C3.

For N − K + 1− j ≤ i ≤ N − j, it holds true that φ̃i+ j
N = φ

i+ j
N,z1

= 0 and φi
N,z1

and φ̃i
N are either

both equal to zero or φ̃i
N −φi

N,z1
= (i− N)(z2 − z1)t. This yields∣∣∣∣∣∣φ̃

i+ j
N − φ̃i

N
j

−
φ

i+ j
N,z1
−φi

N,z1

j

∣∣∣∣∣∣ ≤
∣∣∣∣ (N − i)(z2 − z1)t

j

∣∣∣∣ ≤ (2K− 1) |(z2 − z1)t| =: C4.

This result can be used to estimate (4.20) with ε > 0 and Iε(x) := [x−ε, x +ε) ∩ [0, 1] for N large
enough and together with (4.3), by

1
N

K

∑
j=1

N− j

∑
i=i[t,1)min

JL
j

(
ω, i, tz1 + (1− t)z2 +

φ̃
i+ j
N − φ̃i

N
j

)

≤
(

1− t +
2
N

)
JL,(N)
hom (ω, z2, [t, 1)) +

|NIε(t) ∩Z|
N

C3CL,H,(N)(ω) +
|NIε(1) ∩Z|

N
C4CL,H,(N)(ω).

(4.21)
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4.1 Lipschitz approximation of the interaction potentials

Step C: Third term of (4.17).

The third term of (4.17) is

1
N

K

∑
j=2

j−2

∑
s=0

JL
j

ω, i[0,t)
max − s, tz1 + (1− t)z2 +

φ̃
i[0,t)
max−s+ j

N − φ̃i[0,t)
max−s

N
j

 .

For the given values of s and j, it holds true that φ̃i+ j
N − φ̃i

N = 0 because of i[0,t)
max + 2− K ≤ i ≤

i[0,t)
max + K. This yields

1
N

K

∑
j=2

j−2

∑
s=0

JL
j

ω, i[0,t)
max − s, tz1 + (1− t)z2 +

φ̃
i[0,t)
max−s+ j

N − φ̃i[0,t)
max−s

N
j


≤ 1

N

K

∑
j=2

j−2

∑
s=0

d max {Ψ (tz1 + (1− t)z2) , |tz1 + (1− t)z2|}

≤ 1
N

1
2
(K + 1)KC→ 0 as N → ∞.

(4.22)

Step D: Conclusion of (4.17).

Bringing together all previous estimates (4.19), (4.21) and (4.22), we perform the limit N → ∞
in (4.17) and get, with the convergence of the constant CL,H,(N)(ω)→ CL,H from (4.3),

JL
hom (tz1 + (1− t)z2) ≤ tJL

hom(z1) + (1− t)JL
hom(z2) +ε (C1 + 2C2 + 2C3 + C4)CL,H ,

where Proposition 4.6 yields the existence of Ω′ ⊂ Ω with P(Ω′) = 1 such that the above calculated
limit exists for allω ∈ Ω′ and all z1, z2 ∈ R. Finally, we can perform the limit ε→ 0 and get

JL
hom (tz1 + (1− t)z2) ≤ tJL

hom(z1) + (1− t)JL
hom(z2),

which shows convexity.

Step 3. Γ -limit.

Let (zN)N∈N be a sequence converging to z. Then, for every N ∈ N we denote a minimizer
related to the minimum problem of JL,(N)

hom (ω, zN , A) byφN,zN : (NA ∩Z)→ R, i.e.

JL,(N)
hom (ω, zN , A) =

1
|NA ∩Z|

K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

JL
j

ω, i, zN +
φ

i+ j
N,zN
−φi

N,zN

j

 .

Now, we have

JL,(N)
hom (ω, zN , A) =

1
|NA ∩Z|

K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

JL
j

ω, i, z +
φ

i+ j
N,zN
−φi

N,zN

j



+
1

|NA ∩Z|
K

∑
j=1

∑
i∈NA∩Z

i+ j−1∈NA

JL
j

ω, i, zN +
φ

i+ j
N,zN
−φi

N,zN

j

− JL
j

ω, i, z +
φ

i+ j
N,zN
−φi

N,zN

j


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4 Variational limit: macroscopic scale

≥ JL,(N)
hom (ω, z, A)− CL,H,(N)(ω)|z− zN |α ,

where the last step is due to (4.3) and since |z− zN | ≤ |z− zN |α for N large enough. Recalling that
zN → z and CL,H,(N)(ω)→ CL,H in the limit N → ∞ by (4.3) and with Proposition 4.6, we get for
ω ∈ Ω′, by taking the limit lim infN→∞,

lim inf
N→∞ JL,(N)

hom (ω, zN , A) ≥ lim inf
N→∞ JL,(N)

hom (ω, z, A)− lim sup
N→∞

(
CL,H,(N)(ω)|z− zN |α

)
= JL

hom(z),

which shows the liminf-inequality. We can take for every z ∈ R the constant recovery sequence
zN := z and get

lim sup
N→∞ JL,(N)

hom (ω, zN , A) = lim sup
N→∞ JL,(N)

hom (ω, z, A) = JL
hom(z),

due to Proposition 4.6. This shows the limsup-inequality and completes the proof of the Γ -limit.

4.1.2 Limiting functional of the approximation

So far, we have established the limit JL
hom and have worked out properties of this function. Now,

we want to recover the homogenization formula for the original Lennard-Jones type potentials.
This means that we have to pass to the limit L → ∞ in the approximation functions, with the
limit being Jhom. The rest of this section is devoted to the proof of the approximation limit, which
establishes Jhom as the limit of the homogenization formula of the approximation.

We start with a technical lemma, preparing the proof of the limit as L→ ∞. Even though it is
only a technical tool, it is the crucial step towards removing the approximation.

Lemma 4.9. Let Assumption 3.3 be satisfied. There exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that for every
z ∈ (0,+∞) andω ∈ Ω′ it holds true that

lim inf
L→∞ JL

hom(z) ≥ lim sup
N→∞ J(N)

hom(ω, z, A). (4.23)

Proof. We present the proof for A = [0, 1); the proof for a general interval is essentially the same.
First, note that the assumption z ∈ (0,+∞) implies finite values of the energy. To show (4.23), we
start for a given z with a minimizer related to the minimum problem of JL,(N)

hom (ω, z), which we call
z̄L,N = (z̄0

L,N , ..., z̄N−1
L,N ), i.e.

JL,(N)
hom (ω, z, [0, 1)) =

1
N

K

∑
j=1

N− j

∑
i=0

JL
j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
L,N

)
.

We define the set of all indices i with z̄i
L,N being in the regime where J j and its approximation JL

j
differ by

IL,N := {i : z̄i
L,N < zL}, for all L, N ∈ N.
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4.1 Lipschitz approximation of the interaction potentials

Step 1. We claim that

lim
L→∞ lim

N→∞ 1
N ∑

i∈IL,N

(
zL − z̄i

L,N

)
= 0. (4.24)

By definition of IL,N , every term in the sum in (4.24) is non-negative. Suppose that for some ε > 0
it holds

lim sup
L→∞ lim sup

N→∞
1
N ∑

i∈IL,N

(
zL − z̄i

L,N

)
≥ ε. (4.25)

We recall that mL
j (ω) is the slope of JL

j in the regime z ≤ zL due to Definition 4.1. Using Proposi-
tion 4.6 and (LJ2), we obtain

JL
hom(z) = lim

N→∞ 1
N

K

∑
j=1

N− j

∑
i=0

J j

(
τiω,

1
j

i+ j−1

∑
k=i

z̃k
L,N

)

= lim sup
N→∞

1
N

K

∑
j=2

N− j

∑
i=0

J j

(
τiω,

1
j

i+ j−1

∑
k=i

z̃k
L,N

)
+ lim sup

N→∞
1
N ∑

i/∈IL,N

J1

(
τiω, z̃i

L,N

)
+ lim sup

N→∞
1
N ∑

i∈IL,N

J1 (τiω, zL) + lim sup
N→∞

1
N ∑

i∈IL,N

mL
1 (τiω)(z̃i

L,N − zL)

≥ −Kd + lim sup
N→∞

1
N ∑

i∈IL,N

mL
1 (τiω)(z̃i

L,N − zL) ≥ −Kd + ML lim sup
N→∞

1
N ∑

i∈IL,N

(zL − z̃i
L,N),

where the last inequality is due to Proposition 4.3 (ii). Hence, a combination of (4.2) and the
assumption (4.25) yields

lim sup
L→∞ JL

hom(z) = ∞.

This is absurd in view of the estimate

JL
hom(z) ≤ Kd max{Ψ(z) , |z|} < ∞,

valid for every L ∈ N. Thus the claim is proven.

Step 2. Conclusion

We provide a new sequence of competitors (ẑL,N) for the minimization problem in JL,(N)
hom (ω, z)

satisfying ẑi
L,N ≥ zL for all i ∈ {0, . . . , N − 1} and

lim
L→∞ lim

N→∞ 1
N

K

∑
j=1

N− j

∑
i=0

(
JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

z̃k
L,N

)
− JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

ẑk
L,N

))
≥ 0. (4.26)

Obviously (4.26) and ẑi
L,N ≥ zL for all i ∈ {0, . . . , N − 1} imply the claim (4.23), due to

0 ≤ lim
L→∞ lim

N→∞ 1
N

K

∑
j=1

N− j

∑
i=0

(
JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

z̃k
L,N

)
− JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

ẑk
L,N

))

= lim inf
L→∞ lim inf

N→∞ 1
N

K

∑
j=1

N− j

∑
i=0

(
JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

z̃k
L,N

)
− J j

(
τiω,

1
j

i+ j−1

∑
k=i

ẑk
L,N

))
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4 Variational limit: macroscopic scale

(∗)
= lim inf

L→∞
(

JL
hom(z)− lim sup

N→∞
1
N

K

∑
j=1

N− j

∑
i=0

J j

(
τiω,

1
j

i+ j−1

∑
k=i

ẑk
L,N

))

≤ lim inf
L→∞

(
JL
hom(z)− lim sup

N→∞ J(N)
hom(ω, z)

)
(∗∗)
≤ lim inf

L→∞ JL
hom(z)− lim sup

N→∞
1
N

K

∑
j=1

N− j

∑
i=0

J(N)
hom(ω, z),

where the last step (∗∗) holds because J(N)
hom(ω, z) is independent of L, and in (∗) Proposition

4.6, together with lim infk→∞(ak + bk) = a + lim inf bk if ak → a, was used. Indeed, it holds true
that −a + lim inf(ak + bk) = lim inf(−ak) + lim inf(ak + bk) ≤ lim inf(bk) and thus lim inf(ak +

bk) ≤ a + lim inf(bk). The reverse inequality is trivial, since lim inf(ak + bk) ≥ lim inf(ak) +

lim inf(bk) = a + lim inf(bk).

Since zL → 0 as L → ∞, it holds true that zL < z for L big enough. Especially the constraint
z̄s

N = z̄N−s−1
N = z for s = 0, ..., K− 2 creates no conflict regarding the purpose of constructing a

minimizer with ẑi
N > zL for every i ∈ {0, ..., N}.

In what follows we suppose that there exists i ∈ {0, . . . , N − 1} such that ẑi
L,N < zL (the other

case is trivial). The constraint ∑
N−1
i=0 (z̄i

N − z) = 0, implies IL,N,z := {i : z < z̄i
L,N} 6= ∅ and we

obtain

0 =
N−1

∑
i=0

(z̄i
L,N − z) ≤ ∑

i∈IL,N,z

(z̄i
L,N − z) + ∑

i∈IL,N

(z̄i
L,N − z)

⇔ ∑
i∈IL,N

(z− z̄i
L,N) ≤ ∑

i∈IL,N,z

(z̄i
L,N − z).

(4.27)

Combining (4.27) and the assumption zL < z, we find vi
N for i = 0, ..., N − 1 with 0 ≤ vi

N ≤
max{z̄i

N − z, 0} and

∑
i∈IL,N

(
zL − z̄i

L,N

)
=

N−1

∑
i=0

vi
N . (4.28)

Notice that by construction vi
N = 0 whenever i /∈ IL,N,z. Next, we define ẑL,N by

ẑi
L,N =


zL for i ∈ IL,N ,

z̄i
L,N − vi

N for i /∈ IL,N .

By definition it holds ẑi
L,N ≥ zL for every i and ẑL,N is a competitor for the minimization problem in

the definition of JL,(N)
hom . Indeed, ẑi

L,N = z̃i
L,N = z for all i ∈ {0, . . . , K− 1} ∪ {N−K + 1, . . . , N− 1}

and this competitor also fulfils the boundary constraint, which can be seen by

N−1

∑
i=0

(ẑi
N − z) = ∑

i∈IL

(zL − z) + ∑
i/∈IL

(z̄i
N − vi

N − z)

= ∑
i∈IL

(zL − z)− ∑
i∈IL

(z̄i
N − z) +

N−1

∑
i=0

(z̄i
N − z)−

N−1

∑
i=0

vi
n = ∑

i∈IL

(zL − z̄i
N)−

N−1

∑
i=0

vi
N

(4.28)
= 0
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4.1 Lipschitz approximation of the interaction potentials

Fix ρ̂ = ρ̂(b, d, Ψ) ∈ (0, 1
d ] such that

1
d
Ψ(z)− d ≥ b for all z ≤ ρ̂, (4.29)

where b, d and Ψ are the constants and the convex function from the definition of J , respectively.
Further, we define ρz := min{ z

K , 1
d , ρ̂}. We consider for all L sufficiently large such that zL < ρz

DiffL,N
i, j := JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

z̃k
L,N

)
− JL

j

(
τiω,

1
j

i+ j−1

∑
k=i

ẑk
L,N

)
.

To show (4.26), we distinguish three cases:

• Case (i): 1
j ∑

i+ j−1
k=i z̃k

L,N ≤
1
j ∑

i+ j−1
k=i ẑk

L,N ≤ δ j(τiω). Since JL
j (τiω, ·) is monotonically decreas-

ing on (0, δ j(τiω)] (see (LJ2)) it follows DiffL,N
i j ≥ 0.

• Case (ii): 1
j ∑

i+ j−1
k=i ẑk

L,N ≥ δ j(τiω). It is DiffL,N
i, j ≥

1
dΨ
(

1
j ∑

i+ j−1
k=i z̃k

L,N

)
− d− b. By the defini-

tion of ρ̂ (see (4.29)), we have either DiffL,N
i j ≥ 0 or 1

j ∑
i+ j−1
k=i z̃k

L,N ≥ ρ̂ ≥ zL.

• Case (iii): 1
j ∑

i+ j−1
k=i ẑk

L,N ≤ δ j(τiω) and 1
j ∑

i+ j−1
k=i ẑk

L,N ≤
1
j ∑

i+ j−1
k=i z̃k

L,N . By the definition of

ẑ, there exists k̂ ∈ {i, . . . , i + j− 1} such that z̃k̂
L,N ≥ z and thus 1

j ∑
i+ j−1
k=i ẑk

L,N ≥
1
K z, since

ẑk
L,N ≥ 0 due to the finite value of the energy.

Those indices i where DiffL,N
i j ≥ 0 holds true, do not cause a problem regarding the proof of (4.26).

In order to conclude the proof of (4.26), we have to further consider Case (iii) and the part of Case
(ii) where 1

j ∑
i+ j−1
k=i z̃k

L,N ≥ ρ̂. As an abbreviation, we name the set of those remaining indices Irem.
For this, we need a finer estimation and define sets of small and big shifts. Let µ > 0, then we get

IL,N; j := {i ∈ {0, ..., N − j} : {i, ..., i + j− 1} ∩ IL 6= ∅} ,

Is
L,N; j := {i ∈ {0, ..., N − j} \ IL,N; j : vk

N < µ for all k = i, ..., i + j− 1},

Ib
L,N; j := {0, ..., N − j} \

(
IL,N; j ∪ Is

L,N; j

)
,

Ĩs
L,N; j := {i ∈ IL,N; j : |z̄k

N − ẑk
N | < µ for all k = i, ..., i + j− 1},

Ĩb
L,N; j := IL,N; j \ Ĩs

L,N; j,

We claim that for every µ > 0 and for every j = 1, ..., K it holds true that

lim
L→∞ lim

N→∞ |Ib
L,N; j|/N = 0 and lim

L→∞ lim
N→∞ | Ĩb

L,N; j|/N = 0. (4.30)

Indeed by definition, we have

0 ≤ 1
N ∑

i∈IL,N,z

vi
N =

1
N ∑

i∈Is
L,N;1

vi
N +

1
N ∑

i∈Ib
L,N;1

vi
N

(4.28)
=

1
N ∑

i∈IL,N

(
zL − z̄i

L,N

)
,
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4 Variational limit: macroscopic scale

and the asymptotic result limL→∞ limN→∞ 1
N ∑i∈IL,N

(
zL − z̄i

L,N

)
= 0 from (4.24). Therefore, we

have limL→∞ limN→∞ 1
N ∑i∈I1

s
vi

N = 0 as well as limL→∞ limN→∞ 1
N ∑i∈Ib

L,N;1
vi

N = 0, because of

vi
n ≥ 0. In particular, since we have

0 ≤
|Ib

L,N;1|
N

µ ≤ 1
N ∑

i∈Ib
L,N;1

vi
N ,

it follows that for every µ > 0 it holds true that limL→∞ limN→∞ |Ib
L,N;1|/N = 0. Since |Ib

L,N; j| ≤
K|Ib

L,N;1|, we also get limL→∞ limN→∞ |Ib
L,N; j|/N = 0 for every j = 1, ..., K. In an analogous way,

we have

0 ≤ 1
N ∑

i∈ Ĩs
L,N;1

(
zL − z̄i

N

)
+

1
N ∑

i∈ Ĩb
L,N;1

(
zL − z̄i

N

)
=

1
N ∑

i∈IL,N

(
zL − z̄i

N

)
,

and the asymptotic decay limL→∞ limN→∞ 1
N ∑i∈IL,N

(
zL − z̄i

L,N

)
= 0 from (4.24), which yields

limL→∞ limN→∞ 1
N ∑i∈ Ĩb

L,N;1

(
zL − z̄i

L,N

)
= 0. Together with

0 ≤
| Ĩb

L,N;1|
N

µ ≤ 1
N ∑

i∈ Ĩb
L,N;1

(
zL − z̄i

L,N

)
,

this yields limL→∞ limN→∞ | Ĩb
L,N;1|/N = 0. Since | Ĩb

L,N; j| ≤ K| Ĩb
L,N;1| + K|Ib

L,N;1|, we also get

limL→∞ limN→∞ | Ĩb
L,N; j|/N = 0, for every j = 1, ..., K. This concludes the proof of claim (4.30).

Now, we consider (4.26) for the remaining indices Irem, separately for the previously defined
small and big shift sets. We start with the big ones. By definition of Case (ii) and (iii) we get ẑi

N ≥ ρz

for all i ∈ Irem and using (LJ2) yields

DiffL,N
i, j = JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
N

)
− JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

ẑk
N

)
≥ −d− d max {Ψ(ρz), |ρz|, b} =: −Cz

and therefore for (4.26)

1
N

K

∑
j=1

∑
i∈
(

Ib
L,N; j∪ Ĩb

L,N; j

)
∩Irem

(
JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
N

)
− JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

ẑk
N

))

≥ 1
N

K

∑
j=1

∑
i∈
(

Ib
L,N; j∪ Ĩb

L,N; j

)
∩Irem

−Cz ≥ −
|Ib

L,N; j|+ | Ĩb
L,N; j|

N
K(−Cz).

Together with (4.30) this shows (4.26) for the big shift sets. The small shift sets yield by definition
ẑi

N ≥ ρz and z̄i
N ≥ ρz and allow for the following calculation: with (4.3) and for µ < 1 we get

1
N

K

∑
j=1

∑
i∈
(

Is
L,N; j∪ Ĩs

L,N; j

)
∩Irem

(
JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
N

)
− JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

ẑk
N

))
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4.1 Lipschitz approximation of the interaction potentials

≥ − 1
N

K

∑
j=1

∑
i∈
(

Is
L,N; j∪ Ĩs

L,N; j

)
∩Irem

∣∣∣∣∣JL
j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
N

)
− JL

j

(
ω, i,

1
j

i+ j−1

∑
k=i

ẑk
N

)∣∣∣∣∣
≥ − 1

N

K

∑
j=1

∑
i∈
(

Is
L,N; j∪ Ĩs

L,N; j

)
∩Irem

[
J j(τiω)

]
C0,α(ρz ,∞)

µα ≥ − 1
N

K

∑
j=1

N−1

∑
i=0

[
J j(τiω)

]
C0,α(ρz ,∞)

µα ,

because |z̄k
N − ẑk

N | = vk
N < µ or |z̄k

N − ẑk
N | = |z̄k

N − zL| < µ, by the definition of the small shift set.
Here, [·]C0,α(ρz ,∞) is the Hölder seminorm. Now, (H1), Proposition 3.5 and Proposition 4.3 (i) yield
for fixed µ > 0

lim
L→∞ lim

N→∞ 1
N

K

∑
j=1

N−1

∑
i=0

[
J j(τiω)

]
C0,α(ρz ,∞)

µα = lim
L→∞µαC(ρz) = µαC(ρz),

with a constant C(ρz) independent of L. As this holds for every µ > 0, we can take afterwards the
limit µ → 0, which shows (4.26) for the small shift sets and concludes the proof.

Finally, we can state the result that the homogenization formula for the approximation converges
to the original homogenization formula Jhom in the limit L→ ∞.

Proposition 4.10. Let Assumption 3.3 be satisfied. There exists an Ω′ ⊂ Ω with P(Ω′) = 1 such
that the following is true: For all ω ∈ Ω′, z ∈ R and A := [a, b) with a, b ∈ R it holds true that
lim

N→∞ J(N)
hom(ω, z, A) exists in R and is independent ofω and A. Moreover, it is

lim
N→∞ J(N)

hom(ω, z, A) = lim
L→∞ JL

hom(z).

Proof. For z /∈ (0,+∞), we have lim
N→∞ J(N)

hom(ω, z, A) = ∞ and lim
L→∞ JL

hom(z) = ∞, because of (LJ1)

and the definition of the regularization. Hence, the assertion is proven in this case.

Fix ω ∈ Ω′, z ∈ (0,+∞) and A = [a, b), a, b ∈ R. We prove two inequalities. The first
one is simple to show. By the definition of the regularization JL

j it obviously holds true that

JL,(N)
hom (ω, z, A) ≤ J(N)

hom(ω, z, A) and thus by Proposition 4.6

JL
hom(z) ≤ lim inf

N→∞ J(N)
hom(ω, z, A). (4.31)

Lemma 4.9 yields for every z ∈ R the second inequality

lim inf
L→∞ JL

hom(z) ≥ lim sup
N→∞ J(N)

hom(ω, z, A). (4.32)

The inequalities (4.31) and (4.32) together yield

lim
L→∞ JL

hom(z) = lim
N→∞ J(N)

hom(ω, z, A),

which has a left-hand side independent ofω and A and therefore shows that lim
N→∞ J(N)

hom(ω, z, A)

exists and is independent ofω and A. Altogether, this shows the assertions of the proposition.
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4 Variational limit: macroscopic scale

Remark 4.11. In [73], the authors deal with a situation similar to ours. Apart from the growth conditions
ruling out e.g. the classical Lennard-Jones potential, the main difference is the number of potentials considered.
In [73] a discrete probability density is considered, while in our case the set J (α, b, d, Ψ) can be infinite,
even uncountable, which refers to a continuous probability density. This continuous density requires the
technical result of Lemma 4.9 as a main ingredient of our proof of Proposition 4.10.

4.2 Homogenized energy density

In the previous section, we have established the limit of J(N)
hom being equal to the limit of the

homogenized energy density with respect to the approximations of the interaction potentials as
L→ ∞. We are now in the position to prove the existence of the homogenization formula Jhom,
which uses the unapproximated, original interaction potentials. Further, we derive a number
of properties of Jhom. In particular, we prove in the following proposition convexity, lower
semicontinuity, monotonicity and a blow up at zero, as well as a Γ -convergence result. The section
is closed by a proposition showing special results for the case of nearest neighbour interactions.

Jhom will be an important ingredient of the Γ -limit. In Remark 4.15, some further observations
about the homogenization formula are highlighted, additional to the following proposition.

Proposition 4.12. Let Assumption 3.3 be satisfied. There exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that
the following is true: For allω ∈ Ω′, z ∈ R and A := [a, b) with a, b ∈ R it holds

Jhom(z) = lim
N→∞E

[
J(N)
hom(·, z, [0, 1))

]
= lim

N→∞ J(N)
hom(ω, z, A). (4.33)

The map z 7→ Jhom(z) is convex, lower semicontinuous, monotonically decreasing and satisfies

lim
z→0+

Jhom(z) = +∞. (4.34)

Moreover, it holds for everyω ∈ Ω′ and A := [a, b), a, b ∈ R

Γ - lim
N→∞ J(N)

hom(ω, ·, A) = Jhom. (4.35)

Proof. We prove the different claims separately in the next steps.

Step 1. Equation (4.33)

By Proposition 4.10 J(N)
hom(·, z, A) converges pointwise almost everywhere on Ω in R to a func-

tion f (z) independent of ω and A. The upper bound from (LJ2) together with the dominated
convergence theorem then yields

lim
N→∞E

[
J(N)
hom(·, z, [0, 1))

]
= E[ f (z)] = f (z),

where the last equality holds true since f (z) is independent ofω. This shows the second equality
in (4.33).

Further in view of an application of the subadditive ergodic theorem of Akcoglu and Krengel,
we note that NJ(N)

hom(·, z, [0, 1)) is subadditive in view of Proposition 4.4 and Remark 4.5. Because

of linearity and monotonicity of the expectation value, it also holds true that E
[

NJ(N)
hom(·, z, [0, 1))

]
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4.2 Homogenized energy density

is subadditive. Thus, we can apply Theorem 2.17, a result from the theory of subadditive functions,
to get (again with linearity of the expectation value)

Jhom(z) = inf
N∈N

E
[

J(N)
hom(·, z, [0, 1))

]
= inf

N∈N

E
[

NJ(N)
hom(·, z, [0, 1))

]
N

= lim
N→∞

E
[

NJ(N)
hom(·, z, [0, 1))

]
N

= lim
N→∞E

[
J(N)
hom(·, z, [0, 1))

]
.

This shows the first equality in (4.33) and justifies f (z) = Jhom(z).

Step 2. This step deals with the properties of the map z 7→ Jhom(z), namely convexity, lower
semicontinuity, monotonicity and the blow up at zero.

Convexity.

By Proposition 4.10, Jhom(z) = lim
L→∞ JL

hom(z) holds true, and JL
hom(z) is convex due to Proposi-

tion 4.8. Therefore, we get the convexity of Jhom(z), because it is the pointwise limit of a sequence
of convex functions and therefore convex itself.

Lower semicontinuity.

Due to convexity, Jhom(z) is continuous on its domain, i.e. on (0,+∞). Further, we get from
(3.2) the estimate

lim
z→0+

Jhom(z)
(4.38)
≥ lim

z→0+

(
1
d

KΨ(z)− Kd
)

(3.2)
= ∞. (4.36)

This shows lower semicontinuity.

Monotonicity.

The map Jhom is bounded from below, which can be seen from (4.38) and Ψ ≥ 0.

Next, we prove that Jhom is monotone decreasing. For this we fix 0 < γ < z < ∞ and show
Jhom(γ) ≥ Jhom(z). Let zN : {0, ..., N − 1} → R be a minimizer related to the minimum problem
of J(N)

hom(ω,γ), i.e. zs
N = zN−s−1

N = γ for s = 0, ..., K− 2, ∑
N−1
i=0 zi

N = Nγ and

J(N)
hom(ω,γ) =

1
N

K

∑
j=1

N− j

∑
i=0

J j

(
ω, i,

1
j

i+ j−1

∑
k=i

zk
N

)
.

Next, we manipulate zN in order to construct a competitor for the minimum problem related to
J(N)
hom(ω, z). We set

z̄i
N =



z for i = 0, ..., K− 2 and i = N − K + 1, ..., N − 1,

(z−γ)(N/2− K + 1) + zK−1
N for i = K− 1,

(z−γ)(N/2− K + 1) + zN−K
N for i = N − K,

zi
N otherwise.
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4 Variational limit: macroscopic scale

Indeed, z̄N fulfils the constraints ∑
N−1
i=0 z̄i

N = Nz and z̄s
N = z̄N−s−1

N = z for s = 0, ..., K− 2. Hence,
we can estimate

J(N)
hom(ω, z) ≤ 1

N

K

∑
j=1

N− j

∑
i=0

J j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
N

)

= J(N)
hom(ω,γ) +

1
N

K

∑
j=1

∑
i∈{0,...,K−1}∪

{N−K− j+1,...,N−1}

(
J j

(
ω, i,

1
j

i+ j−1

∑
k=i

z̄k
N

)
− J j

(
ω, i,

1
j

i+ j−1

∑
k=i

zk
N

))
.

(4.37)

We now argue that the remainder converges to 0 as N → ∞. The second part of the sum can
be estimated by −J j

(
ω, i, 1

j ∑
i+ j−1
k=i zk

N

)
≤ d, due to (LJ2). Since each sum contains at most K

elements, the prefactor 1
N ensures the convergence to zero.

The first part of the sum needs a finer argument. Due to supN J(N)
hom(ω,γ) < ∞, we have zi

N > 0

for every i = 0, ..., N − 1. With this, we consider the first part of the sum J j

(
ω, i, 1

j ∑
i+ j−1
k=i z̄k

N

)
.

Now it holds true that z̄k
N = z for i ≤ K− 2 and i ≥ N − K + 1, and z̄k

N ≥ (z− γ)(N/2− K + 1)
for i = K− 1 and i = N − K, and z̄k

N ≥ 0 otherwise. This yields ∑
i+ j−1
k=i z̄k

N ≥ z as N large enough.

Therefore, J j

(
ω, i, 1

j ∑
i+ j−1
k=i z̄k

N

)
is bounded, due to (3.3) from (LJ2). Since both sums contain at

most K elements, the prefactor 1
N ensures the convergence to 0.

As the remainders in (4.37) vanish as N → ∞, we get, using Proposition 4.10,

Jhom(z) = lim
N→∞ J(N)

hom(ω, z) ≤ lim
N→∞ J(N)

hom(ω,γ) = Jhom(γ),

which is the desired result and finally shows that Jhom(z) = Jhom(γ) for all z ≥ γ. Together with
(4.36), this shows that Jhom is monotonically decreasing.

Blow up at zero, proof of (4.34).

From the condition (LJ2) we have

J(N)
hom(ω, z, [0, 1)) = inf

φ∈A0
N,K([0,1))

{
1
N

K

∑
j=1

N− j

∑
i=0

J j

(
ω, i, z +

φi+ j −φi

j

)}

≥ 1
d

inf
φ∈A0

N,K([0,1))

{
K

∑
j=1

1
N

N− j

∑
i=0

Ψ

(
z +

φi+ j −φi

j

)}
− Kd ≥ 1

d

K

∑
j=1

N − j + 1
N

Ψ (z)− Kd,

where we used in the last estimate Jensen’s inequality andφ ∈ A0
N,K([0, 1)), see (4.6). By taking

the limit and since we know from Proposition 4.10 that Jhom(z) exists in R, we get

Jhom(z) = lim
N→∞ J(N)

hom(ω, z) ≥ 1
d

KΨ(z)− Kd. (4.38)

Clearly, (3.2) and (4.38) imply (4.34).

Step 3. Γ -limit, equation (4.35).

For z ∈ R, let (zN) be a sequence with zN → z. Then, the definition of the approximation and
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4.3 Γ -limit of the energy

Proposition 4.8 yield

lim inf
N→∞ J(N)

hom(ω, zN , A) ≥ lim inf
N→∞ JL,(N)

hom (ω, zN , A) ≥ JL
hom(z).

Further, taking the limit L→ ∞ we get with Proposition 4.10 that lim infN→∞ J(N)
hom(ω, zN , A) ≥

Jhom(z), which proves the liminf-inequality.

For z ∈ Z, take the constant recovery sequence (zN)N∈N with zN := z. Then it holds true that

lim sup
N→∞ J(N)

hom(ω, zN , A) = lim sup
N→∞ J(N)

hom(ω, z, A) = Jhom(z),

which proves the limsup-inequality and completes the proof of the Γ -limit.

If we restrict ourselves to the case of only nearest neighbour interactions, i.e. K = 1, we can
refine the previous proposition. This is the subject of the next proposition, cf. also Figure 4.2.

Proposition 4.13. Suppose that Assumption 3.3 is satisfied and set K = 1. Then, Jhom given in (3.14)
satisfies

min
z∈R

Jhom(z) = E[J1(δ1)] and Jhom(z) = E[J1(δ1)] for all z ≥ E[δ1].

Proof. We claim
min
z∈R

Jhom(z) = Jhom(E[δ1]) = E[J1(δ1)]. (4.39)

By (LJ2), we have minz∈R J1(ω, z) = J1(ω, δ1(ω)). Hence, for every z ∈ R andω ∈ Ω it holds

J(N)
hom(ω, z, [0, 1)) ≥ 1

N

N−1

∑
i=0

J1(τiω, δ1(τiω))

and thus by Propositions 4.12 and 3.5

Jhom(z) ≥ E[J1(δ1)] for every z ∈ R.

Combining Proposition 3.5 in the form limN→∞ 1
N ∑

N−1
i=0 δ1(τiω) = E[δ1] for P-a.e. ω with the

Γ -convergence statement (4.35) of Proposition 4.12, we obtain for P-a.e.ω

lim sup
N→∞

1
N

N−1

∑
i=0

J1(τiω, δ1(τiω)) ≥ lim inf
N→∞ J(N)

hom

(
ω,

1
N

N−1

∑
i=0

δ1(τiω)

)
≥ Jhom(E[δ1])

and thus (4.39) follows, which proves the proposition.

With all the previous results, we gathered enough information about the properties of the
function Jhom. A sketch can be found in Figure 4.2. Next we state the convergence result.

4.3 Γ-limit of the energy

In this section, we finally prove the Γ -convergence result for the sequence (H`
n(ω, ·)) of our energy.

The limit n → ∞ refers to an increasing number n of particles in the chain and therefore is the
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4 Variational limit: macroscopic scale

z

J(z) Jhom

J Ĵ

δ δ̂

E[δ1]

E[J1(δ1)]
J(δ)
Ĵ(δ̂)

Figure 4.2 | The function Jhom for K = 1 in the case of two different potentials J and Ĵ, which are equidis-
tributed. Therefore the expectation values lies within the middle of both.

passage from the discrete to the continuous system. The density of the limiting energy functional
turns out to be the homogenization formula Jhom which we established in the previous sections.
Note that in the literature also the notion Γ -limit of zeroth order is used.

Theorem 4.14. Let Assumption 3.3 be satisfied. Let ` > 0. Then, there exists an Ω′ ⊂ Ω with
P(Ω′) = 1 such that for all ω ∈ Ω′ the Γ -limit of H`

n(ω, ·) with respect to the L1(0, 1)-topology is
H`

hom : L1(0, 1)→ (−∞,+∞], given by

H`
hom(u) =


∫ 1

0
Jhom(u′(x)) dx if u ∈ BV`(0, 1), Dsu ≥ 0,

+∞ otherwise.

with

Jhom(z) = lim
N→∞ 1

N
inf

{
K

∑
j=1

N− j

∑
i=0

J j

(
ω, i, z +

φi+ j −φi

j

)
: φi ∈ R,

φs = φN−s = 0 for s = 0, ..., K− 1

}
.

Moreover, the minimum values of H`
n(ω, ·) and H`

hom satisfy

lim
n→∞ inf

u
H`

n(ω, u) = min
u

H`
hom(u) = Jhom(`).

Remark 4.15. Some remarks on the homogenization formula.

(i) We emphasize that the function Jhom is deterministic, i.e. it depends only on the variable z and not
any more on the stochastic variableω.

(ii) We use Lennard-Jones type potentials because they allow for fracture in general. Indeed, the limit
functional includes jumps since the energy is finite for deformations u in the space BV`(0, 1).
Consequently, jumps are allowed.

(iii) The limiting energy is only finite for Dsu ≥ 0. This refers to positive jumps and guarantees that the
chain shows no self interpenetration.

(iv) The homogenized energy density is given by an asymptotic cell formula. This is a typical result in
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4.3 Γ -limit of the energy

stochastic homogenization, see, e.g., [4, 47, 94]. In Chapter 6, we consider the periodic case with
nearest-neighbour interactions. There, the asymptotic cell formula reduces to a minimization problem
on the periodicity cell.

(v) The limiting energy reveals a major disadvantage. The jumps, which are allowed to occur, do not cost
any energy, because the integrand Jhom only takes into account the absolute continuous part of the
measure u′. Therefore, the chain can have arbitrarily many jumps without an increase of energy due
to cracks. This problem will be overcome in Chapter 5 via a rescaling approach.

(vi) In the case of only nearest neighbour interactions, i.e. K = 1, we can elaborate on the regime where
jumps can occur. Due to Proposition 4.13, it holds true that Jhom(`) = Jhom(E[δ1]) for ` > E[δ1].
Therefore, a minimizer of H`

hom can have a jump for ` > E[δ1]. Indeed, the limiting energy of
u1(x) := `x and u2(x) := E[δ1]x for x ∈ [0, 1) and u2(1) := ` is the same, while u2 has a jump
and u1 has not.

In contrast, for l ≤ E[δ1] no jump is possible, because here the function Jhom is monotonically
decreasing, c.f. Proposition 4.12. Therefore, we call the regions of the boundary value ` separated by
the value E[δ1] elastic and jump regime, respectively.

Proof. The existence of Jhom and some properties of that function were shown before in Proposition
4.12.

Step 1. Compactness.

Let (un) ⊂ L1(0, 1) be a sequence with supn H`
n(ω, un) < ∞. Then, we have un ∈ An(0, 1) (cf.

Definition 3.1) and un(0) = 0, un(1) = ` for every n ∈ N, by definition. Since Ψ(z) ≥ 0 for all
z ∈ R, we can estimate the energy from below by

C ≥
K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)
(LJ2)
≥ 1

d

K

∑
j=1

n− j

∑
i=0
λnΨ

(
ui+ j

n − ui
n

jλn

)
− d

K

∑
j=1

n− j

∑
i=0
λn

≥ 1
d

n−1

∑
i=0

λnΨ

(
ui+1

n − ui
n

λn

)
− dK.

(4.40)

By using the Jensen inequality, we obtain from (4.40)

Ĉ ≥ 1
d
Ψ

(
n−1

∑
i=0

λn

(
ui+1

n − ui
n

λn

))
=

1
d
Ψ

(∫ 1

0
u′n(x) dx

)
. (4.41)

We know from (3.2) that Ψ(z) → ∞ as z → 0+. Since (4.41) shows that Ψ
(∫ 1

0 u′n(x) dx
)

is

bounded, (3.2) tells us that
∫ 1

0 u′n(x) dx has to be bounded from below by zero, which reads

0 <
∫ 1

0
u′n(x) dx.

In addition, the boundary conditions yield

0 <
∫ 1

0
u′n dx = un(1)− un(0) = `.

This shows ‖u′n‖L1(0,1) < `. Since un(0) = 0, we get by the Poincaré inequality [21, Thm. A12]
‖un‖W1,1(0,1) < C̃. Since ‖un‖W1,1(0,1) is equibounded, we can extract a subsequence (not relabelled)
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4 Variational limit: macroscopic scale

(un) which weakly∗ converges in BV(0, 1) to u ∈ BV(0, 1) [5, Thm. 3.23]. By definition, we also
have u ∈ BV`(0, 1). This can be seen by defining the extension ũn ∈ BVloc(R) of un as

ũi
n =


0 if i ≤ 0,

ui
n if 0 < i < n,

` if i ≥ n,

(4.42)

which is in W1,∞(R) because it holds un(0) = 0 and un(1) = ` for every n ∈ N. Then, ũn converges
weakly∗ in BVloc(R) to the extension ũ of u. Therefore, we have

u(0−) = lim
t→0−

ũ(t) = 0 and u(1+) = lim
t→1+

ũ(t) = `.

Since we need it in the following, we again go back to (4.40). The same calculation holds true
if we consider a given partition Ik = [c, d], k = 0, 1, ..., m and c, d ∈ [0, 1], of [0, 1], assuming
(nI j ∩Z) ∩ (nIk ∩Z) = ∅ for j 6= k and for all n ∈ N. Inequality (4.40) then becomes

Ĉ ≥ 1
d

n−1

∑
i=0

λnΨ

(
ui+1

n − ui
n

λn

)
=

1
d

m

∑
k=0

∑
i∈nIk∩Z

λnΨ

(
ui+1

n − ui
n

λn

)
.

Since all terms in the sum are positive due to Ψ(z) ≥ 0 for all z ∈ R, they all have to be bounded
separately. That is, for every k = 0, ..., m and with the Jensen inequality, it holds true that

Ĉ ≥ 1
d ∑

i∈nIk∩Z
λnΨ

(
ui+1

n − ui
n

λn

)
≥ 1

d

(
∑

i∈nIk∩Z
λn

)
Ψ


∑i∈nIk∩Z λn

(
ui+1

n − ui
n

λn

)
∑i∈nIk∩Z λn


=

1
d
(|nIk ∩Z|λn)Ψ

( ∫
I+k

u′n(x) dx

|nIk ∩Z|λn

)
,

with I+k := λn
[

min{i : i ∈ nIk ∩Z}, max{i : i ∈ nIk ∩Z}+ 1
)
. Since we know that Ψ(z)→ ∞ for

z→ 0+ and with a := min{x : x ∈ Ik ∩ 1
nZ} and b := max{x : x ∈ Ik ∩ 1

nZ} we obtain

0 <
∫

I+k
u′n(x) dx = un(b)− un(a).

With the same line of arguments as above, we then obtain

‖(u′n)‖L1(I−k ) ≤ un(b)− un(a). (4.43)

The results will be applied in the proof of the limsup-inequality below.

Step 2. Liminf inequality.

Let (un) ⊂ L1(0, 1) be a sequence with un → u in L1(0, 1) and with supn H`
n(ω, un) < ∞. From

the compactness result, we know that un ⇀∗ u in BV(0, 1), ‖u′n‖L1(0,1) < C and u fulfils the
boundary conditions. We regard u as a good representative (cf. [5, Thm. 3.28] or Definition 2.6).
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4.3 Γ -limit of the energy

The aim is to show the liminf-inequality

lim inf
n→∞ H`

n(ω, un) ≥
∫ 1

0
Jhom(u′(x)) dx. (4.44)

We replace un with ûn, which is the sequence (ûn) of piecewise constant functions defined by
ûn(i/n) = un(i/n) with ûn being constant on [i, i + 1) 1

n , i ∈ {0, 1, ..., n− 1}. It is first shown that
ûn also weakly∗ converges to u in BV(0, 1). For this, (i) ‖ûn‖BV(0,1) < ∞ and (ii) ûn → u in L1(0, 1)
has to be proven.

For (i), we get with the Poincaré inequality in BV(0, 1), see [5, p.152],

‖ûn‖BV(0,1) =
∫ 1

0
|ûn| dx + |Dû|(0, 1) ≤ C|Dû|(0, 1) + |Dû|(0, 1)

= C̃
n−1

∑
i=0

∣∣∣∣ûn

(
i + 1

n

)
− ûn

(
i
n

)∣∣∣∣
= C̃

n−1

∑
i=0

∣∣∣∣∣
∫ i+1

n

i
n

u′n(x) dx

∣∣∣∣∣ ≤ C̃
n−1

∑
i=0

∫ i+1
n

i
n

|u′n(x)| dx = C̃‖u′n‖L1(0,1).

This term is bounded, which proves (i), because we assumed the norm to be equi-bounded.

For (ii), we have ‖ûn − u‖L1(0,1) ≤ ‖ûn − un‖L1(0,1) + ‖un − u‖L1(0,1) due to the triangle inequal-
ity. Since un ⇀∗ u in BV(0, 1), the second term converges to zero. Thus, we only have to consider
the first one. It holds

‖ûn − un‖L1(0,1) =
∫ 1

0
|ûn − un| dx =

n

∑
i=1

∫ i
n

i−1
n

|ûn − un| dx

=
n

∑
i=1

∫ i
n

i−1
n

∣∣∣∣ûn(x)− un

(
i− 1

n

)
−
∫ x

i−1
n

u′n(y) dy
∣∣∣∣ dx

=
n

∑
i=1

∫ i
n

i−1
n

∣∣∣∣(x− i− 1
n

)
u′n(x)

∣∣∣∣ dx ≤ 1
n

n

∑
i=1

∫ i
n

i−1
n

∣∣u′n(x)
∣∣ dx =

1
n
‖u′n‖L1(0,1).

As the norm of u′n is equi-bounded, the right hand side converges to zero as n→ ∞. Altogether,
this shows (ii).

The reason, why we can easily switch to ûn instead of un is that it has the same discrete difference
quotient as un, and therefore it holds true that

H`
n(ω, un) =

K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)
=

K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)
.

With this, we pass to a subsequence (ûnk ) with

lim inf
n→∞ H`

n(ω, un) = lim
k→∞

K

∑
j=1

nk− j

∑
i=0

λnk J j

(
ω, i,

ûi+ j
nk − ûi

nk

jλnk

)

Since it holds ûnk → u in L1(0, 1), we can pass to a further subsequence (ûnkl
) such that ûnkl

→ u
pointwise almost everywhere. From now on, we relabel the subsequence (ûnkl

) and call it just (ûn).
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M = 4
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min i1
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min i3

min

Figure 4.3 | Illustration of the definitions im
min and im

max for M = 4.

Step A: Introduction of the first additional and artificial scale.

As it is common in homogenization theory, we introduce an artificial coarser length scale δ
and provide a liminf inequality of the form (4.44), where u on the right-hand side is replaced by
a suitable piecewise affine interpolation uδ of u. The claimed inequality (4.44) then follows by
sending δ → 0 and a suitable relaxation result.

We define the coarser grid as follows: For a fixed δ > 0, small enough, there always exists M ∈ N
and t0, ..., tM ∈ [0, 1] such that t0 = 0, tM = 1, δ < tm+1 − tm < 2δ, tm is not in the jump set of u
and ûn(tm)→ û(tm) pointwise as n→ ∞ and for every m = 0, 1, ..., M. With the definition

im
min := min {i : i ∈ n[tm, tm+1)} ,

im
max := max {i : i ∈ n[tm, tm+1)} ,

illustrated in Figure 4.3, we can estimate

H`
n(ω, un) =

K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)

=
K

∑
j=1

M−1

∑
m=0

λn

immax+1− j

∑
i=immin

J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)
+

M−2

∑
m=0

K

∑
j=2

j−2

∑
s=0

λn J j

(
ω, im

max − s,
ûimmax−s+ j

n − ûimmax−s
n

jλn

)
.

(4.45)

The second term of (4.45) vanishes as n→ ∞, which can be seen as follows:

M−2

∑
m=0

K

∑
j=2

j−2

∑
s=0

λn J j

(
ω, im

max − s,
ûimmax−s+ j

n − ûimmax−s
n

jλn

)

(4.1)
≥

M−2

∑
m=0

K

∑
j=2

j−2

∑
s=0

λn(−d) ≥ −λndK2 M→ 0 as n→ ∞.

(4.46)

Step B: Introduction of the second additional and artificial scale.

We want to continue with the first term of the right hand side of (4.45). In order to deal with
the non-locality of the energy (due to the interaction beyond nearest neighbours) we introduce
a second small scale 0 < ε � δ and manipulate un in a small boundary layer of size ∼ ε at the
boundary of the intervals (tm, tm+1), see Figure 4.4 for illustration. This additional scale simplifies
the calculation of the upcoming remainders.
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4.3 Γ -limit of the energy

The scale is defined as follows: Let ε > 0 with ε << δ (therefore it is reasonable to consider in
the following first the limit ε→ 0 and then δ → 0). Because of the pointwise convergence almost
everywhere of ûn, we can find for every m = 0, ..., M values am ∈ R and bm ∈ R (explicitly, am

and bm depend also on M, n and ε, but we do not denote this for better readability) which are not
in the jump set of u such that tm < am < bm < tm+1, ε < am − tm < 2ε, ε < tm+1 − bm < 2ε and
ûn(am) → u(am) and ûn(bm) → u(bm) pointwise in R as n → ∞. With that, we define ham

n ∈ N
and hbm

n ∈ N, with 0 ≤ ham
n ≤ hbm

n ≤ n such that am ∈ λn[ham
n , ham

n + 1) and bm ∈ λn[hbm
n , hbm

n + 1).
Note that for n large enough it always holds true that im

min + K << ham
n and hbm

n << im
max − K.

We further need a modified version ũn of the function ûn, because ûn does not fulfil the boundary
constraint of the infimum problem of JL,(n)

hom . Therefore we perform a minor modification, such that
ũn becomes a competitor for the infimum problem. Recall that the discrete difference quotients of
un and ûn are the same, by construction, and can therefore be used equivalently. Now set

zεn,m :=
uhbm

n
n − uham

n
n + 2ε

λn(hbm
n − ham

n + 2)
,

which will be the average slope of ũn on the interval λn[im
min, im

max + 1]. Since (ûn) is piecewise
constant and by the definition of am and bm, we get as n→ ∞

zεn,m =
uhbm

n
n − uham

n
n + 2ε

λn(hbm
n − ham

n + 2)
=

ûn(bm)− ûn(am) + 2ε

λn(hbm
n − ham

n + 2)

→ u(bm)− u(am) + 2ε
bm − am

.

(4.47)

With this, we define ũn as the continuous and piecewise affine function with

ũ0
n = 0,

ũi+1
n − ũi

n
λn

= zεn,m for im
min ≤ i ≤ ham

n − 2 and hbm
n + 1 ≤ i ≤ im

max,

ũi
n = ũi−1

n +ε for i = ham
n and i = hbm

n + 1,

ũi+1
n − ũi

n
λn

=
ui+1

n − ui
n

λn
for ham

n ≤ i ≤ hbm
n − 1.

A sketch of this construction can be found in Figure 4.4. Note that the boundary constraints of
the infimum problem of J(n)hom are fulfilled, by definition. Further, note that the slopes of un and
ũn are the same on the interval ham

n ≤ i ≤ hbm
n − 1. The two parts where the slope is set equal to

the value ε by definition of ũn are of technical reasons. They are designed in such a way that the
remainders, which show up in the following, can easily be estimated. This can be seen in (4.50),
where the presence of the jump ensures that the discrete gradients can be bounded from below by
a positive value converging to +∞.
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4 Variational limit: macroscopic scale

im
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max + 1ham
n hbm
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ũn
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x
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Figure 4.4 | Illustration of the definition of ũn.

Given this, and by definition of J(n)hom, we estimate the first term of the right-hand side of (4.45):

K

∑
j=1

M−1

∑
m=0

λn

immax+1− j

∑
i=immin

J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)

≥
M−1

∑
m=0

λn |im
max − im

min + 1| J(n)hom

(
ω, zεn,m, [tm, tm+1)

)
+

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

λn

(
J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)
− J j

(
ω, i,

ũi+ j
n − ũi

n
jλn

))

+
M−1

∑
m=0

K

∑
j=1

immax+1− j

∑
i=hbn

n − j+1

λn

(
J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)
− J j

(
ω, i,

ũi+ j
n − ũi

n
jλn

))
.

(4.48)

Step C: Vanishing remainders.

Later on, we will continue with the first term of (4.48) in (4.51). Before, the second and third
terms of (4.48) are considered in the limit n → ∞. As the calculation and the arguments are the
same, we only show them for the second one and leave out the analogous considerations for the
third one. We show in the following that

lim inf
n→∞

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

λn

(
J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)
− J j

(
ω, i,

ũi+ j
n − ũi

n
jλn

))
≥ −Cε, (4.49)

for a constant C > 0. The first part of (4.49) can be estimated by using (4.1) as

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

λn J j

(
ω, i,

ûi+ j
n − ûi

n
jλn

)
≥

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

λn(−d)

≥ −MK (ham
n − im

min) λnd n→∞−→ −MKd(am − tm) ≥ −2εMKd = −C1ε,
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4.3 Γ -limit of the energy

with C1 > 0. The second part of (4.49) reads

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λn J j

(
ω, i,

ũi+ j
n − ũi

n
jλn

)
.

By construction of ũn and since we consider im
min ≤ i ≤ ham

n − 1, it holds true that

ũi+ j
n − ũi

n
jλn

=

(
ũi+ j

n − ũi+ j−1
n

jλn
+ ... +

ũi+1
n − ũi

n
jλn

)
=

1
j

(
xzεn,m +

q

∑
k=p

uk+1
n − uk

n
λn

+ y
ε

λn

)
,

where x ∈ {0, ..., j}, p ≥ ham
n , q ≤ ham

n − 1 + j, q − p + 1 ≤ j, y ∈ {0, 1} and from y = 0
follows q < p. Further, we know from (4.47) that zεn,m converges and is therefore bounded by a

constant Ĉ > 0. Due to supn H`
n(ω, un) < ∞, we have

uk+1
n − uk

n
λn

≥ 0 for every k = 0, ..., n− 1.

Consequently, one of the following two cases holds true, namely either Case 1

ũi+ j
n − ũi

n
jλn

=
1
j
(

jzεn,m
)
= zεn,m

or Case 2

ũi+ j
n − ũi

n
jλn

≥ 1
j

(
− jĈ +

ε

λn

)
=
−λnĈ +ε/ j

λn
≥ C̃
λn

, (4.50)

for n large enough. In Case 1, we get

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λn J j

(
ω, i,

ũi+ j
n − ũi

n
jλn

)
≥

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λnd max
{
Ψ
(
zεn,m

)
,
∣∣zεn,m

∣∣}

≥
M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λnd max

{
max
|z|≤Ĉ

Ψ (z) , max
|z|≤Ĉ

|z|
}

=
M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λnCz

≥ −MKCzλn (ham
n − im

min)
n→∞−→ −MKCz(am − tm) ≥ −2εMKCz = −C2ε,

with Cz, C2 > 0. In this calculation, we assume that zεn,m lies in the domain of Ψ. This is indeed the
case, as can be made clear by (LJ2), from which we get (recall Ψ(z) ≥ 0 for all z ∈ R)

∞ > sup
n

H`
n(ω, un) = sup

n

K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)

≥ sup
n

K

∑
j=1

n− j

∑
i=0
λn

(
1
d
Ψ

(
ui+ j

n − ui
n

jλn

)
− d

)
≥ sup

n

n−1

∑
i=0

λn
1
d
Ψ

(
ui+1

n − ui
n

λn

)
− dK,

which shows that
ui+1

n − ui
n

λn
for every i = 0, ..., n− 1 lies within the domain of Ψ. Then,

zεn,m =
hbm

n − ham
n

hbm
n − ham

n + 2

1

hbm
n − ham

n

hbm
n −1

∑
i=ham

n

ui+1
n − ui

n
λn

+
2ε

λn

(
hbm

n − ham
n + 2

) ,
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where

hbm
n − ham

n

hbm
n − ham

n + 2
=

1
1− 2

hbm
n −ham

n

→ 1,

2ε
2δ
≤ lim

n→∞
∣∣∣∣∣∣ 2ε

λn

(
hbm

n − ham
n + 2

)
∣∣∣∣∣∣ ≤ 2ε

δ
,

min
i=0,...,n−1

ui+1
n − ui

n
λn

≤ 1

hbm
n − ham

n

hbm
n −1

∑
i=ham

n

ui+1
n − ui

n
λn

≤ max
i=0,...,n−1

ui+1
n − ui

n
λn

.

For ε small enough and n large enough, zεn,m therefore also lies in the domain of Ψ, which proves
the assumption.

In Case 2, we have
ũi+ j

n − ũi
n

jλn
≥ d for n large enough, with d from (LJ2). This yields, for n large

enough, with (LJ2)

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λn J j

(
ω, i,

ũi+ j
n − ũi

n
jλn

)
≥

M−1

∑
m=0

K

∑
j=1

ham
n −1

∑
i=immin

−λnb

≥ −MKbλn (ham
n − im

min)
n→∞−→ −MKb(am − tm) ≥ −2MKbε = −C3ε,

with C3 > 0. Together this shows (4.49), by choosing C := C1 + C2 + C3.

Step D: Conclusion and removal of the two artificial scales.

Now, we combine the previous results. By passing to the limit lim infn→∞ in (4.45) and with
Proposition 4.12 (i.e. (4.35)), (4.46), (4.47), (4.48) and (4.49), we obtain

lim inf
n→∞ H`

n(ω, un) ≥ lim inf
n→∞

M−1

∑
m=0

λn |im
max − im

min + 1| J(n)hom

(
ω, zεn,m, [tm, tm+1)

)
− 2Cε

≥
M−1

∑
m=0
|tm+1 − tm| Jhom

(
u (bm)− u (am) + 2ε

bm − am

)
− 2Cε.

(4.51)

For lim infε→0, we then get

lim inf
ε→0

u (bm)− u (am) + 2ε
bm − am

=
u(tm+1)− u(tm)

tm+1 − tm
,

as there is no jump in am, bm and tm and therefore u is absolutely continuous. Hence we can
continue with (4.51) by

lim inf
n→∞ H`

n(ω, un) ≥ lim inf
ε→0

M−1

∑
m=0
|tm+1 − tm| Jhom

(
u (bm)− u (am) + 2ε

bm − am

)

≥
M−1

∑
m=0
|tm+1 − tm| Jhom

(
u (tm+1)− u (tm)

tm+1 − tm

)
,

(4.52)

since Jhom is lower semicontinuous due to Proposition 4.12. We now define (wM) as the piecewise
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4.3 Γ -limit of the energy

affine interpolation of u with grid points tm, with wM(0) = 0 and wM(1) = ` for all M. We
continue by estimating (4.52) as follows:

lim inf
n→∞ H`

n(ω, un) ≥
M

∑
m=0
|tm+1 − tm| Jhom

(
wM (tm+1)− wM (tm)

tm+1 − tm

)

=
∫ 1

0
Jhom

(
w′M(x)

)
dx.

(4.53)

Note that Jhom fulfils all assumptions of Proposition 2.8 (see Proposition 4.12) and wM ⇀∗ u in
BV(0, 1), which is discussed below. Therefore, we finally get, by taking the limit lim infM→∞
(which corresponds to δ → 0) on both sides in (4.53),

lim inf
n→∞ H`

n(ω, un) ≥ lim inf
M→∞

∫ 1

0
Jhom

(
w′M(x)

)
dx ≥

∫ 1

0
Jhom(u′(x)) dx.

Due to ∞ > lim infn→∞ H`
n(ω, un), Proposition 2.8 yields Dsu ≥ 0 on (0, 1).

Step E: Proof of wM ⇀∗ u in BV(0, 1).

Finally, we sketch the argument for wM
∗
⇀ u in BV(0, 1). Clearly it suffices to show that (i)

supM ‖wM‖W1,1(0,1) < ∞ and (ii) wM → u in L1(0, 1). Regarding (i), we observe

‖w′M‖L1(0,1) =
∫ 1

0
|w′M(x)| dx =

M

∑
i=1

∫ ti

ti−1

|w′M(x)| dx

=
M

∑
i=1

∫ ti

ti−1

∣∣∣∣u(ti)− u(ti−1)

ti − ti−1

∣∣∣∣ dx = (ti − ti−1)
M

∑
i=1

∣∣∣∣u(ti)− u(ti−1)

ti − ti−1

∣∣∣∣
=

M

∑
i=1
|u(ti)− u(ti−1)| ≤ ‖ũ‖BV(−1,2),

where ũ denotes the extension of u ∈ BV`(0, 1) satisfying ũ = 0 on (−∞, 0) and ũ = ` on (1, ∞).
Since u ∈ BV`(0, 1) implies ‖ũ‖BV(−1,2) < ∞, we obtain (i) by an application of the Poincaré
inequality, together with wM(0) = 0 for every M. It is left to provide the argument for (ii). The
definition of wM and the fundamental theorem of calculus yield

‖wM − u‖L1(0,1) =
M

∑
i=1

∫ ti

ti−1

|wM(x)− u(x)| dx

≤
M

∑
i=1

(ti − ti−1)

(∫ ti

ti−1

|w′M(y)| dy + |Du|([ti−1, ti])

)
≤ 2δ(‖w′M‖L1(0,1) + 2|Du|([0, 1]|)),

where we used ti − ti−1 ≤ 2δ in the last step. Thus, (ii) follows from (i) and the fact that
|Du|([0, 1]|) < ∞, since u ∈ BV`(0, 1).

Remark on the two scales.

The two remainders showing up in (4.48) are the reason for introducing the second artificial
scale ε. In the case of next-to-nearest neighbours, these remainders do not appear in the first place.
Therefore, the second scale is not necessary in that case. It is only useful for the case K ≥ 2.
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4 Variational limit: macroscopic scale

Step F: Additional constraint Dsu ≥ 0.

It is left to show Dsu ≥ 0 on [0, 1]. For this, we argue as in [26, Thm. 4.2]. Set I = (−1, 2) and
extend the definition of An(0, 1) (cf. Definition 3.1) to An(I) as the space of continuous piecewise
affine functions on the interval I = (−1, 2). Further, define Fn : L1(I)→ (−∞,+∞] as

Fn(u) =


2n−1

∑
i=−n

λnΨ

(
ui+1

n − ui
n

λn

)
if u ∈ An(I),

+∞ otherwise,

with Ψ from (LJ2). From [29, Thm. 3.7] we get that the Γ -limit of Fn with respect to the convergence
in L1

loc(−1, 2) is given by

F(u) =


∫ 2

−1
Ψ∗∗(u′(x)) dx if u ∈ BVloc(−1, 2), [u] > 0 on S(u),

+∞ otherwise in L1(−1, 2).

Now, for a sequence (un) ⊂ L1(0, 1) satisfying supn H`
n(ω, un) < +∞ and un → u in L1(0, 1), we

define vn as a continuous and piecewise affine extension of un as follows: Let vn(x) = un(x) for
x ∈ [0, 1], and for any x ∈ R \ (0, 1) we set v′n(x) = d, with d from (LJ2) . With

v(x) =


xd for x < 0,

u(x) for x ∈ [0, 1],

`+ (x− 1)d for x > 1,

we have vn → v in L1
loc(R). With the definitions above and (LJ2), we find

C > lim inf
n→∞ H`

n(ω, un)

= lim inf
n→∞

(
n−1

∑
i=0

λn J1

(
ω, i,

ui+1
n − ui

n
λn

)
+

K

∑
j=2

n− j

∑
i=0
λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

))

≥ lim inf
n→∞

(
n−1

∑
i=0

λn J1

(
ω, i,

ui+1
n − ui

n
λn

)
+

K

∑
j=2

n− j

∑
i=0
λn(−d)

)

≥ lim inf
n→∞

(
2n−1

∑
i=−n

λn J1

(
ω, i,

vi+1
n − vi

n
λn

)
−
−1

∑
i=−n

λn J1 (ω, i, d)−
2n−1

∑
i=n

λn J1 (ω, i, d)− Kd

)
.

Since it holds true that |J1(ω, i, d)| ≤ b by (LJ2), we can continue the above estimate by using (3.3)
from (LJ2) and get

C > lim inf
n→∞ H`

n(ω, un) ≥ lim inf
n→∞

2n−1

∑
i=−n

λn J1

(
ω, i,

vi+1
n − vi

n
λn

)
− 2b− Kd

≥ 1
d

lim inf
n→∞ Fn(vn)− 3d− 2b− Kd ≥ 1

d
F(v)− (K + 3)d− 2b,

where the last inequality is the liminf-inequality due to the Γ -convergence of Fn to F.

Thus, F(v) is bounded and therefore the definition of F(v) tells us Dsv ≥ 0 in I = (−1, 2). Note
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4.3 Γ -limit of the energy

that the restriction of Dsv to [0, 1] equals Dsu. Hence, we get that Dsu ≥ 0 in [0, 1]. This concludes
the proof of the liminf-inequality.

Step 3. Limsup inequality.

We need to show that for every u ∈ BV`(0, 1) with Dsu ≥ 0 there exists a sequence (un) such
that

lim sup
n→∞ H`

n(ω, un) ≤ H`
hom(u). (4.54)

By Proposition 2.8, it is sufficient to show (4.54) for u ∈ W1,1(0, 1), instead of u ∈ BV(0, 1). This
can be made clear as follows: From Proposition 2.8 it is known that the lower semicontinuous
envelope of

E(u) :=


∫ 1

0
Jhom(u′(x)) dx for u ∈W1,1(0, 1),

+∞ else,

is H`
hom(u), i.e. sc E ≡ H`

hom with respect to the weak∗ convergence in BV(0, 1). Further, we know
that the lower semicontinuous envelope with respect to the strong convergence in L1(0, 1) can be
even smaller, i.e. scL1(0,1)E ≤ scBV(0,1)E ≡ H`

hom. Consequently, if we show (4.54) for E , which
means that we have

Γ - lim sup
n→∞ H`

n(ω, u) ≤ E(u),

then, with the definition of the lower semicontinuous envelope as sc f (x) := sup{ g(x) : g l.s.c, g ≤
f }, we get

Γ - lim sup
n→∞ H`

n(ω, u) ≤ scL1(0,1)E(u) ≤ scBV(0,1)E(u) = H`
hom(u).

This result holds true since the Γ -lim sup is always lower semicontinuous (see, e.g., [21, Prop. 1.28]).
Therefore, (4.54) has to be shown only for u ∈W1,1(0, 1). At first, we do not take boundary values
into account in Steps A-C. They will be included and discussed in Step D. In order to indicate
omitted boundary values, we drop the superscript `.

Step A: Affine functions.

We start with constructing a recovery sequence for an affine function u(x) := zx for z ∈ R, that
is u′(x) = z. We just consider z ∈ (0,+∞), since for z /∈ (0,+∞), the limsup-inequality is trivial
because then we have Hhom(u) = ∞, for u(x) = zx. With Proposition 4.10 and 4.13, we get the
existence of an Ω′ ⊂ Ω with P(Ω′) = 1 such that for all z ∈ R and all A = [a, b), a, b ∈ R it holds
true that

lim
n→∞ 1

|nA ∩Z| inf

 K

∑
j=1

iA
max+1− j

∑
i=iA

min

J j

(
ω, i, z +

φi+ j −φi

j

)
, φiA

min+s = φiA
max+1−s = 0

for s = 0, ..., K− 1

}
= Jhom(z),

(4.55)
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0 1[0, 1] λn

η

Figure 4.5 | The two length scales λn and η, involved in the proof of the limsup-inequality.

where, as before,

iA
min := min{i, i ∈ nA ∩Z} and iA

max := max{i, i ∈ nA ∩Z}.

Let η > 0 represent a coarser scale than λn. For simplicity, we assume 1/η ∈ N, such that
the interval [0, 1] can be split equidistantly. The partition of the interval is labelled by Iηk :=
[kη, (k + 1)η) with k = 0, ..., 1

η − 1. An illustration of the two length scales, the finer one referring
to λn and the coarser one referring to η, is shown in Figure 4.5.

Now, let η be fixed. Then, for every n ∈ N there exists a minimizer φn,Iηk
: {i : i ∈ nIηk ∩Z} →

(−∞,+∞] of the minimum problem in (4.55) with A = Iηk for every k = 0, ..., 1
η − 1, which is

interpolated to a piecewise affine function. Further, we defineϕn,Iηk
(x) := λnφn,Iηk

(
x
λn

)
and

un,η(x) := zx +

1
η−1

∑
k=0

ϕn,Iηk
(x)χIηk

(x),

where χI is the characteristic function of the interval I. This is not yet the recovery sequence. By
definition, it holds un,η(0) = 0 and un,η(1) = z := ` for every n ∈ N. First, we show

lim sup
n→∞ Hn(ω, un,η) ≤ Jhom(z). (4.56)

By the definition Hn(ω, u, I) := ∑
K
j=1 ∑

iI
max+1− j

i=iI
min

λn J j

(
ω, i, ui+ j−ui

jλn

)
for shorthand, we obtain

Hn(ω, un,η, Iηk ) = λn

K

∑
j=1

i
Iηk
max+1− j

∑

i=i
Iηk
min

J j

(
ω, i, z +

ϕn,Iηk
((i + j)λn)−ϕn,Iηk

(iλn)

jλn

)

= λn

K

∑
j=1

i
Iηk
max+1− j

∑

i=i
Iηk
min

J j

(
ω, i, z +

φn,Iηk
(i + j)−φn,Iηk

(i)

j

)

→ |Iηk |Jhom(z) as n→ ∞,

by (4.55). Since

Hn(ω, un,η) =

1
η−1

∑
k=0

Hn(ω, un,η, Iηk ) +

1
η−2

∑
k=0

K

∑
j=2

j−2

∑
s=0

λn J j

ω, i
Iηk
max − s,

ui
Iηk
max−s+ j

n,η − ui
Iηk
max−s

n,η

jλn

 ,
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4.3 Γ -limit of the energy

by construction, we have for the first term

lim
n→∞

1
η−1

∑
k=0

Hn(ω, un,η, Iηk ) =

1
η−1

∑
k=0
|Iηk |Jhom(z) =

1
η−1

∑
k=0

ηJhom(z) = Jhom(z).

The second term yields, noting that −s + j ≤ K and s ≤ K− 1,

1
η−2

∑
k=0

K

∑
j=2

j−2

∑
s=0

λn J j

ω, i
Iηk
max − s,

ui
Iηk
max−s+ j

n,η − ui
Iηk
max−s

n,η

jλn

 =

1
η−2

∑
k=0

K

∑
j=2

j−2

∑
s=0

λn J j

(
ω, i

Iηk
max − s, z

)

(LJ2)
≤

1
η−2

∑
k=0

K

∑
j=2

j−2

∑
s=0

λnd max{Ψ(z), |z|} ≤ λnd max{Ψ(z), |z|}
(

1
η
− 1
)

1
2
(K + 1)K → 0 as n→ ∞.

Together, this shows (4.56). For later references, notice that this result is independent of η.

Next, we show

lim
η→0

lim
n→∞‖un,η − u‖L1(0,1)= 0. (4.57)

Since we know that the energy of (un,η) has to be equi-bounded, we get from the compactness
result (4.43) for all k ∈ {0, ..., 1

η − 1}

‖u′n,η‖L1(Iηk )
≤ |z||Iηk |, (4.58)

because we have un,η(b)− un,η(a) = z|Iηk |+ϕn,Iηk
(b)−ϕn,Iηk

(a) = z|Iηk |+ 0, where a := inf{x :

x ∈ Iηk } and b := sup{x : x ∈ Iηk }. It follows

‖ϕ′n,Iηk
‖L1(Iηk )

≤ C̃η,

because of ∫
Iηk
|ϕ′n,Iηk

(x)| dx =
∫

Iηk
|ϕ′n,Iηk

(x) + z− z| dx

≤
∫

Iηk
|u′n,η(x)| dx +

∫
Iηk
|z| dx ≤ 2|z||Iηk | = C̃|Iηk | = C̃η.

Recall that |Iηk | = η by definition, which yields

∫
Iηk
|ϕn,Iηk

(x)| dx =
∫

Iηk

∣∣∣∣∫ x

kη
ϕ′n,Iηk

(s) ds
∣∣∣∣ dx ≤

∫
Iηk

∫ x

kη

∣∣∣ϕ′n,Iηk
(s)
∣∣∣ ds dx

≤
∫

Iηk

∫
Iηk

∣∣∣ϕ′n,Iηk
(s)
∣∣∣ ds dx = |Iηk |

∫
Iηk

∣∣∣ϕ′n,Iηk
(s)
∣∣∣ ds ≤ C̃η2.

This leads us to

‖un,η − u‖L1(0,1) =
∫ 1

0

∣∣∣∣∣∣
1
η−1

∑
k=0

ϕn,Iηk
(x)χIηk

(x)

∣∣∣∣∣∣ dx ≤
1
η−1

∑
k=0

∫
Iηk

∣∣∣ϕn,Iηk
(x)
∣∣∣ dx ≤

1
η−1

∑
k=0

C̃η2 =
1
η

C̃η2 = C̃η,
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4 Variational limit: macroscopic scale

which proves (4.57) to be true. Since our aim is to construct a recovery sequence, which is only
dependent on n, we have to pass to an appropriate subsequence. This is done with the help of the
Attouch Lemma. Combined, the liminf-inequality, (4.56) and (4.57) yield that

lim sup
η→0

lim sup
n→∞

(
|Hn(ω, un,η)− Jhom(z)|+ ‖un,η − u‖L1(0,1)

)
= 0.

Using this result with the Attouch Lemma (Theorem 2.23), we therefore get the existence of a
subsequence ηn with ηn → 0 as n→ ∞ and

0 ≤ lim sup
n→∞

(
|Hn(ω, un,ηn)− Jhom(z)|+ ‖un,ηn − u‖L1(0,1)

)
≤ lim sup

η→0
lim sup

n→∞
(
|Hn(ω, un,η)− Jhom(z)|+ ‖un,η − u‖L1(0,1)

)
= 0.

Finally, this shows that Hn(ω, un,ηn) → Jhom(z) and un,ηn → u in L1(0, 1) as n → ∞. Therefore
(un,ηn) is the recovery sequence for the affine function u(x) = zx with z ∈ R.

Moreover, we also have un,ηn → u weakly∗ in BV(0, 1), since (4.58) yields the boundedness of
lim supn→∞ ‖u′n,ηn‖L1(0,1) < ∞.

Note that the same construction can be applied on any interval (a, b) instead of [0, 1]. This allows
us to pass to the next step, namely the construction of a recovery sequence for piecewise affine
functions.

Step B: Piecewise affine functions.

With this construction of a recovery sequence for affine functions, we can construct a recovery
sequence for piecewise affine functions by dividing the interval [0, 1] into parts where the function
is affine and repeating the above construction. The difficulty lies in gluing the different parts
together. We show this by considering a function u with

u(x) :=


z1x for x ∈ [0, a),

z1a + z2(x− a) for x ∈ [a, 1],

for 0 < a < 1. This function is piecewise affine with u′(x) = z1 on (0, a) and u′(x) = z2 on (a, 1).
Let (u1

n) be the recovery sequence for u(x) = z1x on (0, a) and (u2
n) the recovery sequence for

u(x) = z2x on (a, 1) constructed in Step A. Without relabelling it, we extend u1
n continuously

with constant slope z1 on (i[0,a)
max , a), because it is not defined there yet. The same we do for u2

n on
(a, i[a,1)

max) with slope z2. Then, we claim that

un(x) := u1
n(x)χ[0,a) +

(
z1a + u2

n(x− a)
)
χ[a,1]

is a recovery sequence for u. Indeed, it holds true that

un(x) = u1
n(x)χ[0,a) +

(
z1a + u2

n(x− a)
)
χ[a,1]

→ z1xχ[0,a) + (z1a + z2(x− a)) χ[a,1] = u(x)
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4.3 Γ -limit of the energy

in L1(0, 1) as n→ ∞, since both sequences are recovery sequences. Further, we get

Hn(ω, un) = Hn(ω, u1
n, [0, a)) + Hn(ω, u2

n, [a, 1))

+
K

∑
j=2

j−2

∑
s=0

λn J j

ω, i[0,a)
max − s,

ui[0,a)
max−s+ j

n − ui[0,a)
max−s

n
jλn

 .

By construction, we have that

lim
n→∞

(
Hn(ω, u1

n, [0, a)) + Hn(ω, u2
n, [a, 1))

)
=
∫ a

0
Jhom(z1) dx +

∫ 1

a
Jhom(z2) dx

=
∫ 1

0
Jhom(u′(x)) dx.

For the given values of s and j, we get

ui[0,a)
max−s+ j

n − ui[0,a)
max−s

n
jλn

=
z1a + z2

((
i[0,a)
max − s + j

)
λn − a

)
− z1

(
i[0,a)
max − s)

)
λn

jλn

= (z1 − z2)
a− λn

(
i[0,a)
max − s

)
jλn

+ z2 =: zn.

Since λni[0,a)
max → a, we obtain

a− λn

(
i[0,a)
max − s

)
jλn

→ s
j
≤ 1 as n → ∞, and therefore it holds true

that zn is a convex combination of z1 and z2 for n large enough. This yields

K

∑
j=2

j−2

∑
s=0

λn J j

ω, i[0,a)
max − s,

ui[0,a)
max−s+ j − ui[0,a)

max−s

jλn

 =
K

∑
j=2

j−2

∑
s=0

λn J j

(
ω, i[0,a)

max − s, zn

)
(LJ2)
≤

K

∑
j=2

j−2

∑
s=0

λnd max{Ψ (zn) , |zn|} ≤ λndC
1
2
(K + 1)K → 0 as n→ ∞.

Altogether, this shows the limsup inequality

lim sup
n→∞ Hn(ω, un) ≤

∫ 1

0
Jhom(u′(x)) dx.

Step C: W1,1-functions.

Now, we provide arguments to pass to functions u ∈ W1,1: For u ∈ W1,1(0, 1), consider the
piecewise affine interpolation uN of u with grid points t j

N , which means uN ∈ C(0, 1) is affine on

[t j−1
N , t j

N) and it holds uN(t
j
N) = u(t j

N) for all j = 0, ..., N. This is well defined because we can
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4 Variational limit: macroscopic scale

consider u as its absolute continuous representative. By the Jensen inequality, it holds true that

Hhom(u) =
∫ 1

0
Jhom(u′(x)) dx =

N

∑
j=1

∫ t j
N

t j−1
N

Jhom(u′(x)) dx

≥
N

∑
j=1

(
t j−1

N − t j
N

)
Jhom

(
1

t j−1
N − t j

N

∫ t j
N

t j−1
N

u′(x) dx

)

=
N

∑
j=1

(
t j−1

N − t j
N

)
Jhom

(
1

t j−1
N − t j

N

(
u
(

t j
N

)
− u

(
t j−1

N

)))

=
N

∑
j=1

(
ti−1

N − ti
N

)
Jhom

(
1

t j−1
N − t j

N

(
uN

(
t j

N

)
− uN

(
t j−1

N

)))
=
∫ 1

0
Jhom(u′N(x)).

(4.59)

The Γ -lim sup is known to be lower semicontinuous. With the same line of arguments as in
Step E of the liminf inequality, we get that uN ⇀∗ u in BV(0, 1). The Γ -lim sup of piecewise affine
functions was already constructed in the previous steps. Thus we have

Γ - lim sup
n→∞ Hn(ω, u)

l.s.c
≤ lim inf

N→∞
{
Γ - lim sup

n→∞ Hn(ω, uN)

}

≤ lim sup
N→∞

∫ 1

0
Jhom(u′N(x)) dx

(4.59)
≤ lim sup

N→∞
∫ 1

0
Jhom(u′(x)) dx = Hhom(u),

which yields the limsup-inequality for W1,1(0, 1). As argued in the beginning of the proof, this
shows the limsup-inequality for the functional without boundary constraints.

Step D: Boundary values.

As a last step, we take boundary values into account. Following [26, Thm. 4.2], let u ∈ BV`(0, 1)
be such that Hhom(u) < +∞, 0 < u(0+) and u(1−) < `. We have shown in the previous steps
that there exists a sequence (un) such that un → u in L1(0, 1) and

lim sup
n→∞

K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)
≤
∫ 1

0
Jhom(u′(x)) dx. (4.60)

Note that the left-hand side does not equal lim supn→∞ H`
n(ω, un), because un possibly has not

the correct boundary values, as well as that the right-hand side is not equal to Hhom(u) for the
same reason. The result above also holds true, if we pass to a subsequence of (un) which converges
pointwise almost everywhere in (0, 1). We fix two pointsα and β such that 0 < α < β < `,α /∈ Su,
β /∈ Su, un(α) → u(α) and un(β) → u(β). Further, let the sequences (hαn) ⊂ N and (hβn ) ⊂ N be
such thatα ∈ [hαn , hαn + 1)λn and β ∈ [hβn , hβn + 1)λn. First, we argue that it also holds true that

lim sup
n→∞

K

∑
j=1

hβn− j−1

∑
i=hαn+1

λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)
≤
∫ β
α

Jhom(u′(x)) dx, (4.61)

which is the same as (4.60) but on the interval (α,β). Note that the liminf-inequality also holds
true for the interval (α,β) instead of (0, 1) since J j is uniformly bounded from below by d due to
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(LJ2). Thus, this yields

lim sup
n→∞

K

∑
j=1

hβn− j−1

∑
i=hαn+1

λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)

(4.60)
≤

∫ 1

0
Jhom(u′(x)) dx− lim inf

n→∞
K

∑
j=1

hαn

∑
i=0
λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)

− lim inf
n→∞

K

∑
j=1

n− j

∑
i=hβn− j

λn J j

(
ω, i,

ui+ j
n − ui

n
jλn

)

≤
∫ 1

0
Jhom(u′(x)) dx−

∫ α
0

Jhom(u′(x)) dx−
∫ 1

β
Jhom(u′(x)) dx =

∫ β
α

Jhom(u′(x)) dx,

which proves (4.61).

With the definitions from above and with d from (LJ2), we define vn ∈ An(0, 1) by

vi
n =



λnid if 0 ≤ i < hαn ,

un(α)− 1
2α if i = hαn ,

ui
n if hαn < i < hβn ,

un(β) +
1
2 (1−β) if i = hβn ,

`− λn(n− i)d if hβn < i ≤ n.

Note that vn satisfies the boundary conditions vn(0) = 0 and vn(1) = ` by definition, and it
holds true that vn → uα,β := ūχ(0,α) + uχ(α,β) + (ū + ` − d)χ(β,1) in L1(0, 1) with ū(x) = dx,
where uα,β also satisfies the boundary conditions. That convergence holds true because of the
pointwise convergence of un to u almost everywhere and the Vitali convergence theorem, where
the equiintegrability holds true due to the boundedness of (vn) in L∞(0, 1). We want to show

lim sup
n→∞ H`

n(ω, vn) ≤
∫ β
α

Jhom(u′(x)) dx + (α + 1−β)Kb, (4.62)

with b from (LJ2). For this, we first discuss different terms showing up in the energy H`
n(ω, vn)

separately, and combine all results in the end. First of all, we consider the terms containing i = hαn .
Since we have u(0+) > 0 we get forα small enough u(0+)/2 < u(α) due to Dsu ≥ 0, and because
of un(α)→ u(α) it also holds true that u(0+)/2 < un(α) for n large enough. Therefore, we obtain
forα small enough and n large enough

vhαn
n − vhαn−1

n
λn

=
un(α)− 1

2α − λn(hαn − 1)d
λn

>
u(0+)/2− 1

2α − λn(hαn − 1)d
λn

≥ C
λn
→ ∞ as n→ ∞,

(4.63)

where we used that λnhαn → α as n→ ∞. Further, with un(α) = uhαn
n + α−λnhαn

λn

(
uhαn+1

n − uhαn
n

)
, we
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have

vhαn+1
n − vhαn

n
λn

=
uhαn+1

n − un(α) +
1
2α

λn
=

(
uhαn+1

n − uhαn
n

)(
1− α − λnhαn

λn

)
+ 1

2α

λn
≥

1
2α

λn
. (4.64)

The last inequality can be explained as follows: Since it holds true that λnhαn ≤ α and α −
λnhαn ≤ λn, the second term in the second bracket is bounded by 1 and positive. Further, due to
supn Hn(ω, un) < ∞, it holds true that ui+1

n − ui
n ≥ 0 for every i = 0, ..., n− 1.

For the corresponding terms with hβn , the arguments are the same.

Now, we use the results (4.63) and (4.64) to consider the following terms of the energy

lim sup
n→∞

K

∑
j=1

hαn

∑
i=hαn− j

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
and lim sup

n→∞
K

∑
j=1

hβn

∑
i=hβn− j

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
.

Again, we show the calculations for hαn and skip them for hβn , because the arguments are similar. In
the given interval it holds true that, with i = hαn − j, ..., hαn ,

vi+ j
n − vi

n =
j−1

∑
k=0

(
vi+k+1

n − vi+k
n

)
.

At least one of the terms from (4.63) and (4.64) is always part of this telescopic sum. The other
discrete differences from the telescopic sum are either d > 0 or ui+1

n − ui
n. Due to supn H`

n(ω, un) <∞, we have ui+1
n −ui

n
λn

≥ 0 for every i = 0, ..., n− 1. Therefore, the remaining terms of the telescopic

sum can be estimated from below by zero. Altogether, it holds true that vi+ j
n − vi

n ≥ Ĉ for some
Ĉ > 0, which yields (vi+ j

n − vi
n)/( jλn) ≥ nĈ/ j = nC̃ ≥ d for n large enough (with d from (LJ2)).

With that and (LJ2), we get for n large enough

K

∑
j=1

hαn

∑
i=hαn− j

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
≤

K

∑
j=1

hαn

∑
i=hαn− j

λnb ≤ λnK(K + 1)b,

K

∑
j=1

hβn

∑
i=hβn− j

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
≤

K

∑
j=1

hβn

∑
i=hβn− j

λnb ≤ λnK(K + 1)b.

(4.65)

The last remaining terms of the energy are

K

∑
j=1

hαn− j−1

∑
i=0

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
=

K

∑
j=1

hαn− j−1

∑
i=0

λn J j (ω, i, d)
(LJ2)
≤

K

∑
j=1

hαn− j−1

∑
i=0

λnb

= K(hαn − j)λnb,

(4.66)

as well as

K

∑
j=1

n− j

∑
i=hβn+1

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
=

K

∑
j=1

n− j

∑
i=hβn+1

λn J j (ω, i, d)
(LJ2)
≤

K

∑
j=1

n− j

∑
i=hβn+1

λnb

= K(n− j− hβn )λnb.

(4.67)
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4.3 Γ -limit of the energy

Now, we combine the previous estimates and consider the energy. Using (4.65), (4.66), (4.67), we
find

lim sup
n→∞ H`

n(ω, vn) = lim sup
n→∞

K

∑
j=1

n− j

∑
i=0
λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)

≤ lim sup
n→∞

K

∑
j=1

hβn− j−1

∑
i=hαn+1

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)
+ lim sup

n→∞
K

∑
j=1

hαn

∑
i=0
λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)

+ lim sup
n→∞

K

∑
j=1

n− j

∑
i=hβn− j

λn J j

(
ω, i,

vi+ j
n − vi

n
jλn

)

(4.61)
≤

∫ β
α

Jhom(u′(x)) dx + lim sup
n→∞ K(hαn − j)λnb + lim sup

n→∞ λnK(K + 1)b

+ lim sup
n→∞ λnK(K + 1)b + lim sup

n→∞ K(n− j− hβn )λnb

→
∫ β
α

Jhom(u′(x)) dx + Kαb + K(1−β)b,

as n→ ∞. This proves (4.62).

The argument above can be applied to every sequence (αk) ⊂ (0, 1) and (βk) ⊂ (0, 1) fulfilling
αk → 0 and βk → 1 as k→ ∞. The lower semicontinuity of the Γ -lim sup, (4.62), and uαk ,βk → u
in L1(0, 1) as k→ ∞ provides

Γ - lim sup
n→∞ H`

n(ω, u) ≤ lim inf
k→∞

(
Γ - lim sup

n→∞ H`
n(ω, uαk ,βk )

)

≤ lim sup
k→∞

(∫ βk

αk

Jhom(u′(x)) dx + (αk + 1−βk)Kb
)
=
∫ 1

0
Jhom(u′(x)) dx = H`

hom(u).

This proves the limsup inequality for u ∈ BV`(0, 1) with 0 < u(0+) and u(1−) < `.

The last step is to consider u ∈ BV`(0, 1) with H`
hom(u) < +∞ and u(0+) = 0 and u(1−) = `.

Since ` > 0, there exists a sequence (uN) fulfilling uN → u weakly∗ in BV(0, 1) with

∫ 1

0
Jhom(u′N(x)) dx→

∫ 1

0
Jhom(u′(x)) dx, 0 < uN(0+), uN(1−) < `, DsuN ≥ 0, (4.68)

which can be easily constructed by some cut-off argument near the boundary, cf. [26, Thm 4.1].

With this construction of the recovery sequence, it holds true that Γ -lim supn→∞ H`
n(ω, uN) ≤

H`
hom(uN) for every N. Together with the lower semicontinuity of the Γ -lim sup, (4.68), and

uN → u in L1(0, 1) as N → ∞, this provides

Γ - lim sup
n→∞ H`

n(ω, u) ≤ lim inf
N→∞

(
Γ - lim sup

n→∞ H`
n(ω, uN)

)
≤ lim sup

N→∞ H`
hom(uN) ≤ H`

hom(u).

This proves the limsup inequality with boundary constraints.
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4 Variational limit: macroscopic scale

Step 4. Convergence of minimum problems.

The convergence of minimum problems follows from the coercivity of H`
n(ω, ·) and the fun-

damental theorem of Γ -convergence (see e.g. [21, Thm.1.21] and Theorem 2.22). Since Jhom is
decreasing, we get from the Jensen inequality and from Dsu ≥ 0

min
u

H`
hom(u) ≥ Jhom

(∫ 1

0
u′(x) dx

)
≥ Jhom(Du[0, 1]) = Jhom(`).

Finally, we get the reverse inequality from testing with u(x) = `x.
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5 Surface energies: rescaled model

In the previous chapter, we worked out the Γ -limit of our discrete model. Theorem 4.14 shows
that this limit is finite for deformations u ∈ BV`(0, 1) with only positive jumps, i.e. Dsu ≥ 0. In
particular, u is allowed to have jump points. The limiting energy reads

∫ 1

0
Jhom(u′(x)),

which depends only on the absolute continuous part of the derivative and not on the discontinuity
at all. Therefore, jumps do not cost any energy. It is energetically equivalent if the chain has a crack
or not, and in particular the amount of cracks does not matter.

This observation is clearly not consistent with physical considerations. A jump, which corre-
sponds to a crack in the chain, produces a surface on both sides of the broken material, and thus is
expected to cost energy. In the limiting energy of Theorem 4.14, only the bulk part of the energy
is present. Mathematically, this refers to a separation of scales between the bulk and the surface
contribution of the energy, and was already discussed in, e.g., [109].

We are interested in obtaining information about jumps in the limit, the cost of energy that
emerges together with a jump and the related minimizers of the limiting energy. Thus, we discuss
here two approaches to overcome the separation of scales in the energy, which are both well
established in the literature (see Chapter 1 for references). The first approach is to consider suitable
rescaled energies, and the second one is the Γ -limit of first order.

The idea behind rescaling is to scale the energy in such a way that bulk and surface contributions
are of the same order of magnitude. The limiting energy then consists of both contributions, bulk
and surface, as none of them is subordinated. It turns out that in our case the so-called

√
λn-scaling

is the proper one for the energy (3.13). Establishing this rescaling and considering the Γ -limit of
this rescaled energy are the main topics of this chapter and the content of Sections 5.1–5.4.

The Γ -limit of first order also contains surface contributions, cf., e.g., [24, 100]. It is part of the
Γ -development of a function, which is an asymptotic expansion in terms of λn, introduced in
[6]. The Γ -limit of zeroth order, i.e. the one of Theorem 4.14, is the first term of such a (formal)
expansion, and the Γ -limit of first order is the second one, and therefore the term of order λn.
The expansion also works for the minimizers, that is, minimizers of the first-order Γ -limit are the
term of order λn in an asymptotic expansion of the minimizers of the functional. In Section 5.5
of this chapter we will show that the Γ -limit of first order neither exists in the periodic nor in the
stochastic setting. Hence considering the rescaled energy is the method of choice for heterogeneous
materials.

5.1 Rescaled energy

As discussed above, the problem of the energy of the system is the separation of scales, which
becomes visible in the limiting energy of Theorem 4.14. There, the jumps of the deformation u
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5 Surface energies: rescaled model

do not contribute to the energy. Thus, our method of choice consists in starting from a rescaled
version of our energy functional, in which the bulk and the surface contributions are of the same
order and can both contribute in the limit.

The rescaling involves two main steps. First, the deformation u is transferred into the displace-
ment w, which means one does not consider the absolute position of the particles, but instead
their deviation from the minimizer of the unconstrained problem. Second, the displacement w
is rescaled properly into a new variable v. This was already established in [34]. Inspired by this
preliminary work, and properly modified for our stochastic setting, we define a new piecewise
affine function w : λnZ∩ [0, 1]→ R, being the displacement, as

wi := ui − ui
min = ui −

i−1

∑
k=0

λnδ(τkω),

with the global minimizer umin : λnZ∩ [0, 1]→ R of the energy (3.13), which is given by ui
min =

λn ∑
i−1
k=0 δ(τkω). This definition implies (ui+1 − ui)/λn − δ(τiω) = (wi+1 − wi)/λn. Next, the

proper change of variables, for which one gets a non-trivial limit, was already identified in [34]
and [37] as w =

√
λnv. It is called

√
λn-scaling and provides our final rescaled variable

vi :=
ui − ∑

i−1
k=0 λnδ(τkω)
√
λn

for all i ∈ {0, ..., n}. (5.1)

In particular, note that

ui+1 − ui

λn
=

vi+1 − vi
√
λn

+ δ(τiω).

So far, the rescaling shifts the minimizer of the potential J(ω, ·) to the position v′ = 0. The last step
towards the final rescaled energy is adding a term independent of v to the potential. Note that
the addition of a constant does not affect minimizers. This is done in such a way that it shifts the
minimum of the resulting effective potential to the value 0. More precisely, the final energy in the
surface scaling reads

En(ω, v) :=
n−1

∑
i=0

(
J
(
τiω,

vi+1 − vi
√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)
. (5.2)

We consider here the case of nearest-neighbour interactions, which is K = 1. Therefore, the index j
of the potentials, which refers to the considered neighbour, is suppressed. We expect that analogous
results hold true in the case K ≥ 2, although the proofs would become more technical and would
involve more cumbersome notation.

The Dirichlet boundary conditions of the energy in (3.13) read u(0) = 0 and u(1) = `. We
consider a boundary value ` close to the threshold between the elastic and the fracture regime,
where we expect the occurrence of fracture, i.e. ` = E[δ] due to Remark 4.15. Following the ideas
of [101], adjusted to our stochastic setting, we focus on some sequence (`n) ⊂ R with `n → E[δ],
satisfying `n > E[δ] for every n ∈ N and

γn :=
`n − ∑

n−1
k=0 λnδ(τkω)
√
λn

→ γ, (5.3)
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5.2 Lennard-Jones type potentials: (LJ4) and (LJ5)

for some γ ∈ R. This new boundary value γn which is a rescaled version of `n, is rescaled in the
same way as the deformation u to the displacement v, and yields the new Dirichlet boundary
condition v(0) = 0 and v(1) = γn. For simplification, we assume

`n >
1
n

n−1

∑
i=0
δ(τiω) for every n ∈ N.

By definition, it holds true that γ ≥ 0 as well as γn > 0 for all n ∈ N. For every n, we set γn as the
new boundary value for the displacement. If u ∈ An(0, 1), then the new variable v belongs to the
space

Âγn
n (0, 1) := {v ∈ An(0, 1) : v(0) = 0, v(1) = γn}.

Altogether, we get the rescaled energy functional Eγn
n : Ω× L1(0, 1)→ (−∞,+∞] with

Eγn
n (ω, v) =

En(ω, v) for v ∈ Âγn
n (0, 1),

+∞ else.

In what follows, we derive the Γ -limit of this energy.

5.2 Lennard-Jones type potentials: (LJ4) and (LJ5)

First we present additional assumptions on the interaction potentials needed in the derivation of
the Γ -limit of the rescaled energy. These assure more regularity of the Lennard-Jones type potential
than (LJ1)–(LJ3). The new assumptions are collected in the definition of Jreg(α, b, c, d, Ψ, η) ⊂
J (α, b, d, Ψ) of Lennard-Jones type potentials. A list of all assumptions from the different chapters
can be found at the end of the thesis.

Definition 5.1. Fix α ∈ (0, 1], b > 0, d ∈ (1,+∞) and a convex function Ψ : R → [0,+∞] as in
Definition (3.1). Further, fix η > 0 and c > 0. We denote by Jreg = Jreg(α, b, c, d, Ψ, η) the class of
functions J : R→ R∪ {+∞} which satisfy the properties (LJ1)–(LJ3) from Definition 3.1 and additionally
the following properties:

(LJ4) (Regularity) It is J ∈ C3 on its domain.

(LJ5) (Harmonic approximation near ground state) For |z− δ| < η, it holds true that

J(z)− J(δ) ≥ 1
c
(z− δ)2.

Remark 5.2. This remark gives some comments on the new properties (LJ4) and (LJ5).

(i) The regularity condition in (LJ4) is not sharp. In principle, it would suffice to demand J ∈ C2. Due to
the C3 regularity, it is possible to use the Lagrange form of the remainder in a Taylor-expansion. This
will be used in the proof of Theorem 5.8. Without a continuous third derivative, it is still possible to
formulate the Taylor-expansion and use it in the proof. However, Hypothesis (H2) (see below) would
be much more difficult to formulate, which is the reason for choosing J ∈ C3.

(ii) A harmonic approximation, like in (LJ5), of a function f ∈ C2 at the minimum point x0 is always
possible as long as it holds true that f ′′(x0) > 0. This can be seen as follows. Without loss of
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5 Surface energies: rescaled model

generality, we set x0 = 0 and consider the Taylor-expansion of f (x), which reads

f (x) = f (0) + f ′(0)x +
1
2

f ′′(0)x2 + o
(

x2
)
= f (0) +

1
2

f ′′(0)x2 + o
(

x2
)

,

since 0 is a minimizer and therefore we get f ′(0) = 0. Now, the question is under which assumptions
one can find constants c > 0 and η > 0 such that

f (x)− f (0) =
1
2

f ′′(0)x2 + o
(

x2
)
≥ 1

c
x2

⇔
(

1
2

f ′′(0)− 1
c

)
x2 + o

(
x2
)
≥ 0

(5.4)

on ]− η, η[, c.f. (LJ5). First of all, recall that 0 is a minimizer, from which we get f ′′(0) ≥ 0. To show
the initial assertion, we need to prove (a) that for f ′′(0) = 0 the estimate (5.4) can not be true, and
(b) that for f ′′(0) > 0 one can always find c > 0 and η > 0 to fulfil (5.4). We start with (a). For
f ′′(0) = 0, (5.4) reads

−1
c

x2 + o
(

x2
)
= x2

(
−1

c
+ x−2o(x2)

)
≥ 0 ⇔ x−2o(x2) ≥ 1

c
,

which is a contradiction to the definition of the Landau-symbol. This shows (a). Now we discuss (b).
With the definition C̃ := 1

2 f ′′(0)− 1
c , there always exists a c > 0 such that C̃ > 0. With this specific

c > 0, (5.4) reads

C̃x2 + o
(

x2
)
≥ 0 ⇔ C̃ + x−2o

(
x2
)
≥ 0.

This inequality holds true for x small enough because of the convergence x−2o
(
x2)→ 0 for x→ 0

due to the definition of the Landau-symbol. This defines η > 0 and the assertion is proven.

(iii) With the definition

α :=
1
2

∂2 J(z)
∂z2

∣∣∣∣
z=δ

,

it follows from (LJ5) and (ii) thatα > Cα for a constant Cα > 0 uniformly for all potentials in the
class Jreg(α, b, c, d, Ψ, η).

(iv) The assumption in (LJ5) contains a uniform bound to handle the situation of infinitely many potentials
and is needed for the stochastic setting. For finitely many different potentials, (LJ5) is fulfilled
automatically.

We consider the stochastic setting introduced in Section 3.2, with the random variable J : Ω→
Jreg(α, b, c, d, Ψ, η). We define some notation concerning the assumptions introduced above. We
set for allω ∈ Ω

α(ω) :=
1
2

∂2 J(ω, z)
∂z2

∣∣∣∣
z=δ(ω)

,

and for 0 < κ < 1
d

Cκ(ω) := sup
{∣∣∣∣ ∂3 J

∂z3 (ω, z)
∣∣∣∣ : z ∈ [δ(ω)−κ, δ(ω) +κ]

}
.
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5.2 Lennard-Jones type potentials: (LJ4) and (LJ5)

Since ∂3 J
∂z3 (ω, ·) is continuous due to (LJ4), Cκ(ω) < ∞ holds true for every ω ∈ Ω and every

0 < κ < 1
d .

As in Section 3.2, we need further properties, coming along with the stochastic setting and
the uncountability of the probability space. This new assumptions again are not phrased on the
potentials themselves, but on the random variable J. They read:

(H2) (Third derivative near ground state) There exists 0 < κ∗ < 1
d such that E[Cκ∗ ] < ∞. As a

direct consequence, it also holds true that E[Cκ ] < ∞ for every κ < κ∗, by definition of Cκ .

(H3) (Uniform convergence of the asymptotic decay) It holds true that

lim
z→∞ max

ω∈Ω
|J(ω, z)| = 0.

As already said, these conditions occur with respect to the infinite set of potentials. When dealing
with finitely many different potentials, (H2) and (H3) are fulfilled automatically.

The stochastic setting of the chain with Lennard-Jones type interaction potentials in the rescaled
setting is collected in the following assumption.

Assumption 5.3. Fixα ∈ (0, 1], b > 0, c > 0, d ∈ (1, ∞), η > 0 and a convex function Ψ : R→ [0, ∞]

satisfying (3.2). Let (Ω,F ,P) be a probability space and (τi)i∈Z be a family of stationary and ergodic group
actions in the sense of Section 3.2. We suppose that the random variable J : Ω → Jreg(α, b, c, d, Ψ, η)
given as in Section 3.2 is measurable and (H2) as well as (H3) are satisfied, with Jreg(α, b, c, d, Ψ, η) as in
Definition 5.1.

Remark 5.4. Due to Remark 5.2 (iii), it holds true that 0 < (α(ω))−1 < C and this implies integrability
of the random variable (α(ω))−1. By definition of integrability, the expectation value of (α(ω))−1 exists
and is denote by E[α−1]. Regarding the expectation value as an ensemble mean, we can also say something
about the sample average. This connection is strongly related to ergodicity and is explained in the next
proposition.

We define now functions, which represent sample averages ofα−1 and Cκ and consider their
limits in the next proposition. For arbitrary N ∈ N we set

α−1,(N)(ω, A) :=
1

|NA ∩Z| ∑
i∈NA∩Z

1
α(τiω)

,

Cκ,(N)(ω, A) :=
1

|NA ∩Z| ∑
i∈NA∩Z

Cκ(τiω).

Proposition 5.5. Let Assumption 5.3 be satisfied. Then there exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that
for allω ∈ Ω′, all j = 1, ..., K, all κ < κ∗ and for all A = [a, b] with a, b ∈ R the limits

E[α−1] = lim
N→∞α−1,(N)(ω, A),

E[Cκ ] = lim
N→∞ Cκ,(N)(ω, A)

exist in R and are independent ofω and the interval A.

Proof. The proof is fully analogous to the proof of Proposition 3.5, but with the following adapta-
tions.
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5 Surface energies: rescaled model

Integrability of the random variables is now guaranteed by Remark 5.4 and (H2).

The proof forα−1,(N)(ω, A) is done with the set Ωα−1 . Note thatα−1,(N)(ω, A) is bounded due
to Remark 5.2 (iii), which is important for (3.12).

The proof for Cκ,(N)(ω, A) can be done analogously, with the set ΩCκ , but with a different
estimate instead of (3.12)). The new estimate can be derived, using Cκ(ω) > 0, as follows:

Cκ,(N)(ω, A) =
1

|NA ∩Z| ∑
i∈NA∩Z

Cκ(τiω) ≥ 1
|NA ∩Z| ∑

i∈NB∩Z
Cκ(τiω)

=
|NB ∪Z|
|NA ∪Z|C

κ,(N)(ω, B).

Defining Ω′ := Ωα−1 ∩ΩCκ yields the assertion of the proposition.

5.3 Compactness

In the previous section, the new assumptions on the interaction potentials and the random variable
were stated and discussed. With this, the Γ -limit of the rescaled energy and preliminary results
can be considered. First, we want to state a compactness result for functions with equibounded
energy, which will ensure the convergence of minimizers in the sense of the main theorem of
Γ -convergence, Theorem 2.22.

Theorem 5.6. Let Assumption 5.3 be satisfied. Let γn be such that (5.3) holds true. Let (vn) be a sequence
of functions such that

sup
n

Eγn
n (ω, vn) < +∞,

for everyω ∈ Ω. Then, there exist a subsequence (vnk ) and v ∈ SBVγ(0, 1) such that vnk → v in L1(0, 1)
holds true and

v′ ∈ L2(0, 1), #Sv < +∞, [v] ≥ 0 in [0, 1].

Moreover, there exists a finite set S ⊂ [0, 1] such that vnk ⇀ v locally weakly in H1((0, 1) \ S).

The following proof is inspired by [34, 101]. Our assumptions of the Lennard-Jones type
potentials are particularly developed in such a way that the proof of [34, 101] can be adopted easily.
This mainly relies on the uniform harmonic approximation in (LJ5), that holds true for allω ∈ Ω.

Proof. Let (vn) be a sequence with supn Eγn
n (ω, vn) < +∞. Then, we have vn ∈ Âγn

n (0, 1). By
(LJ5), there exist constants K1, K2 > 0 such that

Eγn
n (ω, vn) =

n−1

∑
i=0

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

≥
n−1

∑
i=0

(
K1

(
vi+1

n − vi
n√

λn

)2

∧ K2

)
=

n−1

∑
i=0

(
λnK1

(
vi+1

n − vi
n

λn

)2

∧ K2

)
.

(5.5)

We frequently make use of this inequality in the following. First of all, one can extract from (5.5) a
bound for the gradients. The energy is equibounded and all terms in the sum are positive. Together
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with the superlinear growth at zero due to (LJ1) this yields

δ(τiω) +
vi+1

n − vi
n√

λn
≥ 0,

for all i ∈ {0, ..., n− 1} and for all n ∈ N. Since we have δ(τiω) ≤ d for all i ∈ {0, ..., n− 1} due to
(LJ2), we have

vi+1
n − vi

n
λn

≥ − d√
λn

. (5.6)

Step 1: We are going to show supn‖vn‖W1,1(0,1) < +∞ and the existence of a subsequence vnk and
v ∈ BVγ(0, 1) such that vnk ⇀

∗ v in BV(0, 1).

We define

I−n :=
{

i ∈ {0, ..., n− 1} : vi+1
n < vi

n

}
,

I−−n :=

{
i ∈ I−n : λnK1

(
vi+1

n − vi
n

λn

)2

≥ K2

}
.

Since all addends of the rescaled energy are positive, we have

Eγn
n (ω, vn) ≥ ∑

i∈I−n

(
λnK1

(
vi+1

n − vi
n

λn

)2

∧ K2

)
= ∑

i∈I−n \I−−n

(
λnK1

(
vi+1

n − vi
n

λn

)2)
+ K2#I−−n

As the energy is equibounded and K2 > 0 this shows I−− := supn #I−−n < +∞. Defining
(v′n)− := −(v′n ∧ 0), we get with the Hölder inequality

‖(v′n)−‖L1(0,1) = ∑
i∈I−n

λn

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣ (5.6)
≤ ∑

i∈I−n \I−−n

λn

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣+ #I−−n λn

∣∣∣∣ d√
λn

∣∣∣∣
≤

 ∑
i∈I−n \I−−n

λn

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣2
 1

2

·

 ∑
i∈I−n \I−−n

λn

 1
2

+ #I−−n
√
λnd

≤
(

1
K1

Eγn
n (ω, vn)

) 1
2
+ I−−d

Therefore, we have ‖(v′n)−‖L1(0,1) < C for all n ∈ N and for a constant C > 0, because it was shown
before that I−− < ∞ holds true. Together with the boundary data vn(0) = 0 and vn(1) = γn, this
leads to ∫

{v′n≥0}
v′n(x) dx = γn −

∫
{v′n<0}

v′n(x) dx ≤ γn + C.

From this, we get

‖v′n‖L1(0,1) =
∫ 1

0

∣∣v′n(x)
∣∣ dx ≤ γn + 2C ≤ C̃,
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as γn is converging and therefore bounded due to assumption (5.3). Since we have vn(0) = 0, the
Poincaré inequality (cf. [21, Thm. A.12]) now provides supn‖vn‖W1,1(0,1) < +∞. The equibound-
edness of the W1,1-norm then again yields the existence of a subsequence vnk and v ∈ BV(0, 1)
such that vnk ⇀∗ v in BV(0, 1). By defining an extension of vnk as in (4.42) with an analogous
argumentation, it also holds true that v ∈ BVγ(0, 1).

Step 2: We show v ∈ SBVγ(0, 1), v′ ∈ L2(0, 1) and #Sv < +∞.

We define the set

In :=

{
i ∈ {0, ..., n− 1} : λnK1

(
vi+1

n − vi
n

λn

)2

≥ K2

}
,

and (ṽn) ⊂ SBV(0, 1) by ṽn(1) := γn and

ṽn(x) :=


vn(x) if x ∈ λn[i, i + 1), i /∈ In,

vn(iλn) if x ∈ λn[i, i + 1), i ∈ In, |vn(iλn)| < |vn((i + 1)λn)|,

vn((i + 1)λn) if x ∈ λn[i, i + 1), i ∈ In, |vn(iλn)| ≥ |vn((i + 1)λn)|.

The construction of ṽn is done in such a way that we can show (i) lim
n→∞‖ṽn − vn‖L1(0,1) = 0 and (ii)

‖ṽn‖BV(0,1) ≤ C‖vn‖W1,1(0,1) and therefore ṽn ⇀∗ v in BV(0, 1) holds true up to the subsequence
vnk , cf. Step 1 (not relabelled). We start with (i) and observe

‖ṽn − vn‖L1(0,1) = ∑
i∈In

∫ (i+1)λn

iλn
|ṽn(x)− vn(x)| dx

= ∑
i∈In

∫ (i+1)λn

iλn

∣∣∣∣ṽn(iλn)− vn(iλn) +
∫ x

iλn
ṽ′n(y)− v′n(y) dy

∣∣∣∣ dx.

(5.7)

We have to distinguish two cases, namely |vn(iλn)| < |vn((i + 1)λn)| and |vn(iλn)| ≥ |vn((i +
1)λn)|. For the first one, ṽn(iλn) = vn(iλn) holds true as well as ṽ′n(y) ≡ 0 and therefore∣∣∣∣ṽn(iλn)− vn(iλn) +

∫ x

iλn
ṽ′n(y)− v′n(y) dy

∣∣∣∣ = ∣∣∣∣∫ x

iλn
−v′n(y) dy

∣∣∣∣
≤
∫ x

iλn

∣∣v′n(y)
∣∣ dy ≤

∫ (i+1)λn

iλn

∣∣v′n(y)
∣∣ dy.

For the second case |vn(iλn)| ≥ |vn((i + 1)λn)|, it holds true that ṽn(iλn) = vn((i + 1)λn) and
ṽ′n(y) ≡ 0, thus we get∣∣∣∣ṽn(iλn)− vn(iλn) +

∫ x

iλn
ṽ′n(y)− v′n(y) dy

∣∣∣∣ = ∣∣∣∣vn((i + 1)λn)− vn(iλn)−
∫ x

iλn
v′n(y) dy

∣∣∣∣
=

∣∣∣∣∫ (i+1)λn

iλn
v′n(y) dy−

∫ x

iλn
v′n(y) dy

∣∣∣∣ = ∣∣∣∣∫ (i+1)λn

x
v′n(y) dy

∣∣∣∣
≤
∫ (i+1)λn

x

∣∣v′n(y)
∣∣ dy ≤

∫ (i+1)λn

iλn

∣∣v′n(y)
∣∣ dy,
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5.3 Compactness

which is the same result as for the first case. Therefore, we continue with (5.7) as

‖ṽn − vn‖L1(0,1) ≤ ∑
i∈In

∫ (i+1)λn

iλn

∫ (i+1)λn

iλn

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣ dy dx

= λn

∫ 1

0

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣ dx = λn‖v′n‖L1(0,1) ≤ λnC̃,

which shows (i) lim
n→∞‖ṽn − vn‖L1(0,1) = 0. Next, we show (ii). It holds true that

‖ṽn‖BV(0,1) =
∫ 1

0
|ṽn(x)| dx +

∫ 1

0

∣∣ṽ′n(x)
∣∣ dx + ∑

i∈In

|vn((i + 1)λn)− vn(iλn)|

(∗)
≤ 2

∫ 1

0
|vn(x)| dx + ∑

i/∈In

λn

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣+ ∑
i∈In

λn

∣∣∣∣vi+1
n − vi

n
λn

∣∣∣∣ ≤ C‖vn‖W1,1(0,1).

The estimate (∗) can be seen as follows. For i /∈ In, it holds true that ṽn(x) = vn(x) and the
estimate is obviously true. For i ∈ In, we have to distinguish between two cases, (a) vn(iλn) and
vn((i + 1)λn) have the same sign and (b) vn(iλn) and vn((i + 1)λn) have different signs. For (a),
it holds true |ṽn(x)| ≤ |vn(x)|, by construction. For (b),

∫ (i+1)λn
iλn

|ṽn(x)| ≤ 2
∫ (i+1)λn

iλn
|vn(x)| holds

true, recalling that vn is affine on the given interval. Altogether, this shows (ii) ‖ṽn‖BV(0,1) ≤
C‖vn‖W1,1(0,1).

Moreover, #Sṽn = #In holds true, by definition of ṽn. From (5.5) and with C > 0, we get

C > Eγn
n (ω, vn) ≥ ∑

i/∈In

(
λnK1

(
vi+1

n − vi
n

λn

)2)
+ K2#In ≥ min{K1, K2}

(∫ 1

0

∣∣ṽ′n(x)
∣∣2 dx + #Sṽn

)
,

which yields supn‖ṽ′n‖L2(0,1) < +∞ and supn #Sṽn < +∞. Therefore, the closure theorem for
SBV, see Theorem 2.10, provides v ∈ SBV(0, 1), ṽ′n ⇀ v′ in L1(0, 1), up to the subsequence
vnk , cf. Step 1 (not relabelled), D jṽn ⇀∗ D jv in (0, 1) and #Sv ≤ lim infn→∞ #Sṽn < ∞. Fur-
ther, supn‖ṽ′n‖L2(0,1) < +∞ yields ṽ′n ⇀ v′ in L2(0, 1) with v′ ∈ L2(0, 1). By Step 1, we have
v ∈ BVγ(0, 1), which also provides v ∈ SBVγ(0, 1). This completes Step 2.

Step 3: We show that there exists a finite set S ⊂ [0, 1] such that vnk ⇀ v locally weakly in
H1((0, 1) \ S).

In order to simplify notation, we omit the index k of the subsequence. Since supn #Sṽn < ∞,
there exist m ∈ N and xn

1 , ..., xn
m ∈ [0, 1] such that Sṽn ⊂ {xn

i : i ∈ {1, ..., m}}. From D jṽn ⇀∗

D jv we get that xn
i → xi ∈ [0, 1] for all i ∈ {1, ..., m} up to a subsequence. For a fixed η >

0, we define S := {x1, ..., xm} and Sη :=
⋃m

i=1(xi − η, xi + η). Due to the convergence of xn
i ,

there exists N ∈ N such that Sṽn ⊂ Sη and therefore vn ≡ ṽn on (0, 1) \ Sη for n ≥ N and
supn≥N‖v′n‖L2((0,1)\Sη) < +∞. Then, the Poincaré inequality on every connected subset A of
(0, 1) \ Sη yields supn‖vn‖L2((0,1)\Sη) < ∞, which can be shown as follows:

∫
A
|vn|2 dx ≤

∫
A

(
(vn − v̄n)

2 + 2vnv̄n

)
dx ≤ C‖v′n‖L2(0,1) + 2

∫
A

vn dx · v̄n

≤ C‖v′n‖L2(0,1) +
2
|A| ‖vn‖2

L1(0,1),
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5 Surface energies: rescaled model

where v̄n := 1
|A|
∫

A vn(x) dx. The right hand side is uniformly bounded, which was shown in Step

1 and Step 2. Altogether, we have vn ⇀ v in H1((0, 1) \ Sη). Since η was chosen arbitrary, we get
our final result by passing to the limit as η→ 0.

Step 4: We show [v] ≥ 0 in [0, 1], i.e. [v](x) > 0 for x ∈ Sv.

Inspired by [34, 101], there exist constants D1, D2, D3 > 0, such that

Eγn
n (ω, vn) =

n−1

∑
i=0

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J(τiω, δ(τiω))

)
≥

n−1

∑
i=0
ϕ

(
vi+1

n − vi
n√

λn

)
(5.8)

with

ϕ(x) :=

D1x2 ∧ D2 for x > 0,

D1x2 ∧ D3 for x ≤ 0.

It is not restrictive to assume

D3 > D1d2, (5.9)

because of the superlinear growth at z→ 0+ of the potentials J(ω, z) and the asymptotic behaviour
limz→+∞ J(ω, z) = 0 > J(ω, δ(ω)). We define

Ĩ+n :=

{
i ∈ {0, ..., n− 1} : vi+1

n > vi
n and D1

(
vi+1

n − vi
n√

λn

)2

> D2

}
,

Ĩ−n :=

{
i ∈ {0, ..., n− 1} : vi+1

n < vi
n and D1

(
vi+1

n − vi
n√

λn

)2

> D3

}
.

First of all, Ĩ−n = ∅ is valid, because

(vi+1
n − vi

n)
2 ∈ Ĩ−n
>

D3

D1
λn

(5.9)
>

D1d2

D1
λn = d2λn

∈ Ĩ−n and (5.6)
≥ (vi+1

n − vi
n)

2

is a contradiction. Since all summands in (5.8) are positive, we get

Eγn
n (ω, vn) ≥ ∑

i/∈ Ĩ±n

ϕ

(
vi+1

n − vi
n√

λn

)
+ # Ĩ+n D2.

Thus, the equiboundedness of the energy implies supn # Ĩ+n < ∞. We define (v̂n) ⊂ SBV(0, 1) as

v̂n(x) :=

vn(x) for x ∈ λn[i, i + 1), i /∈ Ĩ+n ,

vn(iλn) for x ∈ λn[i, i + 1), i ∈ Ĩ+n .

Similarly as in Step 2, we have v̂n ⇀∗ v in BV(0, 1), up to a subsequence. By definition, v̂n(x) has
only positive jumps, i.e. D jv̂n ≥ 0 in (0, 1). Now, we define the following auxiliary functions in
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5.4 Γ -limit of the rescaled energy

SBV(a, b) for any a < 0 and b > 1.

w(x) :=


0 for x ≤ 0,

v(x) for 0 < x < 1,

γ for 1 ≤ x,

wn(x) :=


0 for x ≤ 0,

v̂n(x) for 0 < x < 1,

γn for 1 ≤ x,

to capture also possible jumps at the boundary. With v̂n ⇀∗ v in BV(0, 1), this also yields wn ⇀∗ w
in BV(a, b) for any a < 0 and 1 < b.

Eγn
n (ω, vn) ≥

n−1

∑
i=0
ϕ

(
vi+1

n − vi
n√

λn

)
= ∑

i/∈ Ĩ±n

λnD1

(
v̂i+1

n − v̂i
n

λn

)2

+ D2#Sv̂n

≥ D1

∫ 1

0

∣∣v̂′n(x)
∣∣2 dx + D2#Sv̂n = D1

∫ 1

0

∣∣w′n(x)
∣∣2 dx + D2#Swn .

Again due to Theorem 2.10, this provides D jwn ⇀∗ D jw in (a, b). By construction of wn and by
D jv̂n ≥ 0 in (0, 1), we get D jwn ≥ 0 in (a, b). Altogether, this yields D jw ≥ 0 in (a, b). And since
D jv is the restriction of D jw to [0, 1], we finally get D jv ≥ 0 in [0, 1].

5.4 Γ-limit of the rescaled energy

Before we consider the Γ -limit itself, we first state a technical result which we need in the proof of
this Γ -limit theorem. It shows an extension of the Birkhoff ergodic theorem (Theorem 2.12).

Proposition 5.7. Let (Ω,F ,P) be a probability space and let (τi)i∈Z be the additive, stationary and ergodic
group action introduced in Section 3.2. For ε > 0 and x ∈ R, let Iεx =]x − ε, x + ε[ and let f be an
integrable random variable. Then there exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that for every x ∈ R and
every k ∈ Q we have

lim
n→∞ 1

2εn ∑
i∈Z∩nIεx

χ( f (τiω)≤k) = E
[
χ f≤k

]
.

Proof. From the Birkhoff ergodic theorem (Theorem 2.12), we get the existence of Ωx,k,ε ⊂ Ω with
P(Ωx,k,ε) = 1 such that

lim
n→∞ 1

2εn ∑
i∈Z∩nIεx

χ( f (τiω)≤k) = E
[
χ f≤k

]
for a fixed x ∈ Q, fixed k ∈ Q and a fixed ε ∈ Q. Since for Ω̃ :=

⋂
x∈Q,k∈Q,ε∈Q Ωx,k,ε, we have

P(Ω̃) = 1, the assertion of the theorem is already shown for every x ∈ Q, k ∈ Q and ε ∈ Q. It is
left to expand it to ε ∈ R and x ∈ R, which is done in two steps.

Step 1: We prove the assertion for ε ∈ R \Q. For this, notice that for every ε ∈ R \Q there exist
sequences

(
ε1

N
)
⊂ Q and

(
ε2

N
)
⊂ Q with ε1

N → ε, ε2
N → ε and ε1

N ≤ ε ≤ ε2
N for every N ∈ N. The
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definition implies Iε
1
N

x ⊂ Iεx ⊂ Iε
2
N

x . Therefore, it holds true that

2ε1
Nn

2εn
1

2ε1
Nn ∑

i∈Z∩nI
ε1

N
x

χ( f (τiω)≤k) ≤
1

2εn ∑
i∈Z∩nIεx

χ( f (τiω)≤k) ≤
2ε2

Nn
2εn

1
2ε2

Nn ∑

i∈Z∩nI
ε2

N
x

χ( f (τiω)≤k).

Taking lim supn→∞, and recalling x, k,ε1
N ,ε2

N ∈ Q , we get

ε1
N
ε
E[χ f≤k] ≤ lim sup

n→∞
1

2εn ∑
i∈Z∩nIεx

χ( f (τiω)≤k) ≤
ε2

N
ε
E[χ f≤k].

Passing subsequently to the limit as N → ∞, we get the assertion by ε1,2
N
ε → 1.

Step 2: We prove the assertion for x ∈ R \Q. For this, notice that for every x0 ∈ R \Q there
exist sequences (xN) ⊂ Q and (εN) ⊂ R with xN → x0 and εN = ε+ |xN − x0| for every N. The
definition implies Iεx0

⊂ IεN
xN . Therefore, we get

1
2εn ∑

i∈Z∩nIεx0

χ( f (τiω)≤k) ≤
2εNn
2εn

1
2εNn ∑

i∈Z∩nI
εN
xN

χ( f (τiω)≤k).

Taking lim supn→∞, we get

lim sup
n→∞

1
2εn ∑

i∈Z∩nIεx0

χ( f (τiω)≤k) ≤
εN
ε
E
[
χ f≤k

]
,

because xN ∈ Q. Subsequently, we take the limit as N tends to infinity and get

lim sup
n→∞

1
2εn ∑

i∈Z∩nIεx0

χ( f (τiω)≤k) ≤ E
[
χ f≤k

]
. (5.10)

Analogously, we prove

lim inf
n→∞ 1

2εn ∑
i∈Z∩nIεx0

χ( f (τiω)≤k) ≥ E
[
χ f≤k

]
, (5.11)

if we replace the requirement Iεx0
⊂ IεN

xN by IεN
xN ⊂ Iεx0

andεN = ε+ |xN − x0| byεN = ε− |xN − x0|.
Then, (5.10) and (5.11) together yield

lim
n→∞ 1

2εn ∑
i∈Z∩nIεx0

χ( f (τiω)≥k) = E
[
χ f≤k

]

for x0 ∈ R \Q, which completes the proof.

In Theorem 5.6 we have stated and proven a compactness result preparing the upcoming Γ -
convergence theorem. This compactness result shows properties of the limit v of a sequence of
displacements vn with equibounded energy. These properties are collected in the definition

SBVγc (0, 1) :=
{

v ∈ SBVγ(0, 1) : v′ ∈ L2(0, 1), #Sv < +∞, [v] ≥ 0 in [0, 1]
}

,
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5.4 Γ -limit of the rescaled energy

Figure 5.1 | Chain with a crack in the middle. The dotted line is the broken bond due to the crack and matches
the term β in the energy functional, cf. Theorem 5.8.

which is used to simplify notation. Now, the theorem will be given. Remark 5.9 compares our
result to previous work, for a more detailed overview, we refer to the introduction.

Theorem 5.8. Let Assumption 5.3 be satisfied. Let γn be such that (5.3) holds true. Then, there exists an
Ω′ ⊂ Ω with P(Ω′) = 1 such that for all ω ∈ Ω′ the sequence (Eγn

n ) Γ -converges with respect to the
L1(0, 1)-topology to the functional Eγ given by

Eγ(v) :=

α
∫ 1

0

∣∣v′(x)
∣∣2 dx +β#Sv if v ∈ SBVγc (0, 1),

+∞ otherwise,

whereα :=
(
E[ 1
α ]
)−1

and β := inf{−J(ω, δ(ω)) : ω ∈ Ω}, withα(ω) := 1
2

∂2 J(ω,z)
∂z2

∣∣∣
z=δ(ω)

.

Moreover, for γ > 0 it holds true that

lim
n→∞ inf

v
Eγn

n (ω, v) = min
v

Eγ(v) = min{αγ2,β}.

Remark 5.9. (i) In our limiting energy,α is the constant of the elastic part of the energy. This constantα
is the inverse of the expectation value of the inverted second term of the Taylor expansion of J(ω, ·). In the
periodic setting, cf. Chapter 6,α is given as the harmonic mean ofαi := 1

2 J′′i (δi), i.e. the quadratic term in
the Taylor expansion. In [30], where a periodic setting with truncated parabolas is considered, the prefactor
of the quadratic energy replaces the coefficientαi of the Taylor series. The elastic constantα thus is also its
harmonic mean. Therefore, our result, especially regarding the elastic constant, extends the periodic setting
to the stochastic one in a natural way.

(ii) The constant β of the fracture part of the energy is not an expectation value, in contrast toα. Here,
the infimum over all potentials is considered. This can be interpreted as the fact that if the chain breaks, it
does so at its weakest point. The defining term of β can be seen as a boundary layer energy. The quantity
which is infimized in the definition of β is −J(ω, δ(ω)), which is exactly the bond of the chain which is
broken or missing due to the crack, see Figure 5.1. In the case of more interacting neighbours, this term
would take into account all bonds which are broken at the site of the crack. It is referred to as boundary layer
term of the energy.

In the periodic setting, cf. Chapter 6, the infimum is replaced by a minimium. This is again in accordance
with [30], where the constant of the fracture part of the limiting energy is the minimum over the truncation
heights. This is the natural analogy to the value −J(ω, δ(ω)), since both quantities represent the increase
of energy from the minimum of the potential to +∞.

Proof. First of all, the expectation value of α−1 exists due to Remark 5.4 and therefore α is well
defined. In the following, we use a Taylor expansion of J(τiω, x) several times, which reads

J(τiω, δ(τiω) + x) = J(τiω, δ(τiω)) +α(τiω)x2 + η(τiω, x), (5.12)
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withα(τiω) := 1
2 J′′(τiω, δ(τiω)) and

η(τiω, x)
|x|2 → 0 as |x| → 0.

Since J ∈ C3 by (LJ4), we can use the Lagrange form of the remainder and get

η(τiω, x) =
1
6

∂3 J(τiω, y)
∂y3

∣∣∣∣
y=ξ

x3 for some ξ between δ(τiω) and δ(τiω) + x. (5.13)

Step 1. Liminf inequality.

Let v ∈ L1(0, 1) and let (vn) ⊂ L1(0, 1) be a sequence with vn → v in L1(0, 1). We have to show

lim inf
n→∞ Eγn

n (ω, vn) ≥ α
∫ 1

0

∣∣v′(x)
∣∣2 dx +β#Sv. (5.14)

It is sufficient to have a look at (sub-)sequences with equibounded energy, that means that it holds
true supn Eγn

n (ω, vn) < ∞, because the other case is trivial. For such a sequence, the compactness
result from Theorem 5.6 provides v ∈ SBVγc (0, 1) and the existence of a finite set S = {x1, ..., xN}
such that vn ⇀ v locally weakly in H1((0, 1) \ S). Now, let ρ > 0 be such that |xi − x j| > 2ρ for all
xi , x j ∈ S, i 6= j. We define

Sρ :=
N⋃

i=1

(xi − ρ, xi + ρ),

Qn(ρ) := {i ∈ {0, ..., n− 1} : (i, i + 1)λn ⊂ (0, 1) \ Sρ} ,

Sn(ρ) := {i ∈ {0, ..., n− 1} : i /∈ Qn(ρ)} .

The sets Sn(ρ) and Qn(ρ) separate indices close to a jump of v from those away from a jump.
According to this, the energy can also be separated into

Eγn
n (ω, vn) = ∑

i∈Qn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

+ ∑
i∈Sn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)
.

We now show that

lim inf
n→∞ ∑

i∈Qn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)
≥ α

∫
(0,1)\Sρ

|v′(x)|2 dx (5.15)

and

lim inf
n→∞ ∑

i∈Sn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)
≥ β#Sv, (5.16)

which provides (5.14) as ρ→ 0 and by using v′ ∈ L2(0, 1).
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5.4 Γ -limit of the rescaled energy

Step A: Proof of the elastic part of the energy (5.15).

For M ∈ N, which represents a coarser scale, we define

In :=
{

i ∈ {0, ..., n− 1} :
∣∣∣∣vi+1

n − vi
n

λn

∣∣∣∣ > λ
− 1

8
n

}
,

In,M := { j ∈ {0, ..., n− 1} ∩MZ : { j, ..., j + M− 1} ∩ In 6= ∅} ,

χn(x) :=

1 if x ∈ [i, i + 1)λn and i ∈ Z \ In,

0 if x ∈ [i, i + 1)λn and i ∈ In,

χn,M(x) :=

1 if x ∈ [ j, j + M)λn and j ∈ MZ \ In,M,

0 if x ∈ [ j, j + M)λn and j ∈ In,M.

The sets In and In,M and the associated functions χn and χn,M are used in what follows. The choice
of the exponent −1/8 is also of technical nature, fitting to the estimates in the following liminf and
limsup estimates. First, we derive some properties of these functions. Since all summands are
positive and with the help of (5.5), we can estimate for n large enough

Eγn
n (ω, vn) ≥

n−1

∑
i=0

(
λnK1

(
vi+1

n − vi
n

λn

)2

∧ K2

)
≥ ∑

i∈In

(
λnK1

(
vi+1

n − vi
n

λn

)2

∧ K2

)

≥ #InλnK1

(
λ
− 1

8
n

)2
= #InK1λ

3
4
n ,

which shows #In = O(λ−
3
4

n ) due to the equiboundedness of the energy. Furthermore, we have

|{x ∈ (0, 1) : χn(x) 6= 1}| ≤ |{x ∈ (0, 1) : χn,M(x) 6= 1}| ≤ M#In · λn,

i.e. χn → 1 and χn,M → 1 bounded in measure in (0, 1) as n→ ∞.

We set χi
n := χn(iλn) and likewise for χn,M. The energy then reads, with the help of the Taylor

expansion (5.12),

∑
i∈Qn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

= ∑
i∈Qn(ρ)

(
α(τiω)

(
vi+1

n − vi
n√

λn

)2

+ η

(
τiω,

vi+1
n − vi

n√
λn

))

≥ ∑
i∈Qn(ρ)

(
χi

nα(τiω)λn

(
vi+1

n − vi
n

λn

)2

+ χi
nη

(
τiω,

vi+1
n − vi

n√
λn

))
.

(5.17)

We consider both terms of the sum separately in the next two steps. This is possible, because the
second term vanishes as n → ∞ and we can use lim infn→∞(an + bn) = lim infn→∞(an) + b for
bn → b.
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[0, 1]0 1λn

t0 t1 t2 t3 t4 = tM
i3
maxi0

max i1
max i2

max

i0
min i1

min i2
min i3

min

Figure 5.2 | The definitions of im
min and im

max for M = 4.

Step B: Proof of the elastic part of the energy (5.15) - Second addend of (5.17).

In order to show convergence to zero of the second term on the right-hand side of (5.17),
we use the Lagrange form of the remainder from (5.13) and get, with ξi between δ(τiω) and

δ(τiω) + vi+1
n −vi

n√
λn

,

∑
i∈Qn(ρ)

χi
nη

(
τiω,

vi+1
n − vi

n√
λn

)
= ∑

i∈Qn(ρ)

χi
n

1
6

∂3 J(τiω, y)
∂y3

∣∣∣∣
y=ξi

(
vi+1

n − vi
n√

λn

)3

.

For all i ∈ Qn(ρ) with χi
n(x) 6= 0 we have

∣∣∣ vi+1
n −vi

n
λn

∣∣∣ ≤ λ
− 1

8
n and equivalently it holds true that∣∣∣ vi+1

n −vi
n√

λn

∣∣∣ = √λn

∣∣∣ vi+1
n −vi

n
λn

∣∣∣ ≤ λ 3
8
n . Therefore, ξi ∈ [δ(τiω), δ(τiω) +κ] ⊂ [δ(τiω)−κ, δ(τiω) +κ]

for n large enough with κ < κ∗ from (H2). Thus, we can estimate for n large enough

∑
i∈Qn(ρ)

∣∣∣∣χi
nη

(
τiω,

vi+1
n − vi

n√
λn

)∣∣∣∣ ≤ ∑
i∈Qn(ρ)

1
6

∣∣∣∣∣ ∂3 J(τiω, y)
∂y3

∣∣∣∣
y=ξi

∣∣∣∣∣
(
λ

3
8
n

)3

≤ 1
6
λ

1
8
n λn

n−1

∑
i=0

sup
x∈[δ(τiω)−κ,δ(τiω)+κ]

∣∣∣∣∣ ∂3 J(τiω, y)
∂y3

∣∣∣∣
y=x

∣∣∣∣∣ ≤ Cλ
1
8
n ,

where the last estimate is due to the convergence of the random variable Cκ to its expectation
value, see Proposition 5.5. Therefore, the whole expression converges to zero as n → ∞, which
proves the assertion of convergence to zero of the second term to be correct.

Step C: Proof of the elastic part of the energy (5.15) - First addend of (5.17).

We continue with the first part of the sum in (5.17) and rearrange it. Following the construction
in the proof of the liminf-inequality of Theorem 4.14, we define for δ > 0 and M ∈ N the coarse
grained grid t0, ..., tM ∈ [0, 1] with t0 = 0, tM = 1 and δ < tm+1 − tm < 2δ in such a way that
it holds true that vn(tm) → v(tm) pointwise as n → ∞ and for every m = 0, ..., N. For better
readability, we define Im := [tm, tm+1) for m = 0, ..., M. Further, we set (pictured in Figure 5.2)

im
min := min {i : i ∈ Z∩ nIm} ,

im
max := max {i : i ∈ Z∩ nIm} ,

for which it holds true by definition

λnim
min → tm and λnim

max → tm+1 as n→ ∞.
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5.4 Γ -limit of the rescaled energy

The energy can be written as

∑
i∈Qn(ρ)

λnχ
i
nα(τiω)

(
vi+1

n − vi
n

λn

)2

≥ ∑
i∈Qn(ρ)

λnχ
i
n,Mα(τiω)

(
vi+1

n − vi
n

λn

)2

≥
M

∑
m=0

(nIm∩Z)⊂Qn(ρ)

χm
n,M ∑

i∈Z∩nIm

λnα(τiω)

(
vi+1

n − vi
n

λn

)2

≥
M

∑
m=0

(nIm∩Z)⊂Qn(ρ)

χm
n,M min

{
∑

i∈Z∩nIm

λnα(τiω)

(
vi+1

n − vi
n

λn

)2

: ∑
i∈Z∩nIm

vi+1
n − vi

n
λn

= n
(

vimmax+1
n − vimmin

n

)}

(∗)
=

M

∑
m=0

(nIm∩Z)⊂Qn(ρ)

χm
n,Mλn (im

max − im
min + 1)

(
1

im
max − im

min + 1 ∑
i∈Z∩nIm

1
α(τiω)

)−1 (
vimmax+1

n − vimmin
n

λn
(
im
max − im

min + 1
))2

,

where (∗) holds true due to Lemma 2.24. Now, we pass to the limit lim inf
n→∞ . Therefore, note that it

holds true that

lim inf
n→∞

(
1

im
max − im

min + 1 ∑
i∈Z∩nIm

1
α(τiω)

)−1

=
(
E[α−1]

)−1
.

This follows from Proposition 5.5, since im
max − im

min + 1 = |Z ∩ nIm|. As a result, we get with
lim infn(anbn) ≥ lim infn(an) · lim infn(bn)

lim inf
n→∞ ∑

i∈Qn(ρ)

λnχ
i
nα(τiω)

(
vi+1

n − vi
n

λn

)2

≥
(
E
[
α−1

])−1
lim inf

n→∞
M

∑
m=0

(nIm∩Z)⊂Qn(ρ)

χm
n,Mλn (im

max − im
min + 1)

(
vimmax+1

n − vimmin
n

λn
(
im
max − im

min + 1
))2

.

For the next term, since by construction it holds true that λn
(
im
max − im

min + 1
)
→ (tm+1 − tm),

we can again follow the proof of the liminf-inequality of Theorem 4.14 and obtain pointwise
convergence of

vimmax+1
n − vimmin

n

λn
(
im
max − im

min + 1
) → vM(tm+1)− vM(tm)

tm+1 − tm
, (5.18)

since it holds true that im
max + 1 = im+1

min and vM is defined as the piecewise affine interpolation of v
with grid points tm. For writing the sum as an integral, we define

Sρ,M,n :=
M⋃

m=0
Im∩Sn(ρ) 6=∅

Im =
M⋃

m=0
Im∩Sn(ρ) 6=∅

[tm, tm+1) ,

Sρ,M :=
M⋃

m=0
Im∩Sρ 6=∅

Im =
M⋃

m=0
Im∩Sρ 6=∅

[tm, tm+1) ,

where, by definition, Sρ,M,n = Sρ,M holds true as n large enough. Therefore, with the definition of
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vn,M as the piecewise affine interpolation of vn with respect to im
min, we get

lim inf
n→∞ ∑

i∈Qn(ρ)

λnχ
i
nα(τiω)

(
vi+1

n − vi
n

λn

)2

≥
(
E
[
α−1

])−1
lim inf

n→∞
∫
(0,1)\Sρ,M,n

χn,M|v′n,M|2 dx

≥
(
E[α−1]

)−1 ∫
(0,1)\Sρ,M

∣∣v′M(x)
∣∣2 dx,

(5.19)

where the last inequality follows from the weak lower semicontinuity of the L2 norm and because
we have χn,M → 1 bounded in measure, v′n,M → v′M in L2 (because of 5.18) and thus χn,Mv′n,M ⇀

v′M in L2.

It remains to perform the limit lim inf
M→∞ . Since the left hand side of (5.19) is independent of M we

only have to consider

lim inf
M→∞

∫
(0,1)\Sρ,M

∣∣v′M(x)
∣∣2 dx

≥ lim inf
M→∞

∫
(0,1)\Sρ

∣∣v′M(x)
∣∣2 dx− lim sup

M→∞
∫

Sρ,M\Sρ

∣∣v′M(x)
∣∣2 dx.

(5.20)

Step E of the liminf-inequality in the proof of Theorem 4.14 shows that vM ⇀∗ v in BV, and
therefore vM → v in L1(0, 1). The compactness result in Theorem 5.6 further yields v′ ∈ L2(0, 1).
For an interval (a, b) ⊂ (0, 1) \ Sρ we define the coarser grid points as before, with t0 = a and
tM = b. Using the Hölder inequality, which is possible due to v′ = ∇v on (a, b), we get the uniform
bound

‖v′M‖2
L2(a,b) =

∫ b

a
|v′M(x)|2 dx =

M

∑
m=0

(tm+1 − tm)

∣∣∣∣v(tm+1)− v(tm)

tm+1 − tm

∣∣∣∣2

=
M

∑
m=0

1
tm+1 − tm

∣∣∣∣∫ tm+1

tm
v′(x) dx

∣∣∣∣2 ≤ M

∑
m=0

∫ tm+1

tm

∣∣v′(x)
∣∣2 dx = ‖v′‖2

L2(a,b),

which yields v′M → v′ in L2(a, b) as M → ∞. This result can be applied to (0, 1) \ Sρ and reads
v′M → v′ in L2((0, 1) \ Sρ) as M→ ∞. Since the integral functional is lower semicontinuous, we
can estimate the first term of the right hand side of (5.20) by

lim inf
M→∞

∫
(0,1)\Sρ

∣∣v′M(x)
∣∣2 dx ≥

∫
(0,1)\Sρ

∣∣v′(x)
∣∣2 dx.

The second part of (5.20) fulfils

lim sup
M→∞

∫
Sρ,M\Sρ

∣∣v′M(x)
∣∣2 dx = 0,

which can be seen as follows: We assume that Sρ consists only of one interval (which corresponds
to S = {x1}) and note that the proof for finitely many intervals is analogous. By construction,
there exist sequences kM and `M such that

Sρ,M \ Sρ ⊂
([

tkM , tkM+1
]
∪
[
t`M , t`M+1

])
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5.4 Γ -limit of the rescaled energy

and

tkM → xi − ρ, tkM+1 → xi − ρ,

t`M → xi + ρ, t`M+1 → xi + ρ as M→ ∞.
(5.21)

Therefore, it holds true that∫
Sρ,M\Sρ

∣∣v′M(x)
∣∣2 dx ≤

∫ tkM+1

tkM

∣∣v′M(x)
∣∣2 dx +

∫ t`M+1

t`M

∣∣v′M(x)
∣∣2 dx.

We are going to consider only one of these two terms, because they have basically the same
structure, and show that it converges to zero. Observing that the integration area is contained
in (0, 1) \ S for M � ρ (in fact, for 2δ < ρ) and therefore v can be assumed as the absolutely
continuous representative, we get with the Hölder inequality

∫ tkM+1

tkM

∣∣v′M(x)
∣∣2 dx =

(
tkM+1 − tkM

) ∣∣∣∣∣v
(
tkM+1

)
− v

(
tkM

)
tkM+1 − tkM

∣∣∣∣∣
2

=

∣∣v (tkM+1
)
− v

(
tkM

)∣∣2
tkM+1 − tkM

=
1

tkM+1 − tkM

∣∣∣∣∣
∫ tkM+1

tkM

v′(x) dx

∣∣∣∣∣
2

≤ 1
tkM+1 − tkM

(∫ tkM+1

tkM

∣∣v′(x)
∣∣ dx

)2

≤ 1
tkM+1 − tkM

(∫ tkM+1

tkM

∣∣v′(x)
∣∣2 dx

) 1
2 (

tkM+1 − tkM

) 1
2

2

=
∫ tkM+1

tkM

∣∣v′(x)
∣∣2 dx.

Since v is absolutely continuous, the integral functional is continuous with respect to its integral
bounds due to the fundamental theorem of calculus. Together with (5.21), this shows

lim sup
M→∞

∫ tkM+1

tkM

∣∣v′(x)
∣∣2 dx = lim

M→∞
∫ tkM+1

tkM

∣∣v′(x)
∣∣2 dx = 0.

Together, Step A–C show (5.15).

Step D: Proof of the jump part of the energy (5.16).

It is left to show

lim inf
n→∞ ∑

i∈Sn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)
≥ β#Sv.

According to [34, (117)], one can find a sequence (ht
n) ⊂ N for every t ∈ Sv with λnht

n → t as
n→ ∞ such that

lim
n→∞ vht

n+1
n − vht

n
n√

λn
= +∞. (5.22)

Especially, ht
n /∈ Qn(ρ) holds true for n large enough. The existence of such a sequence can

be seen by a contradiction argument: If this did not exist, we would get v′n < C/
√
λn in a

neighbourhood (t − ξ , t + ξ) of t. Following Step 1 of the proof of Theorem 5.6, this would
imply

∫ t+ξ
t−ξ |v′n|2 dt ≤ CEγn

n (ω, vn), and therefore vn would be equibounded in H1(0, 1) in a
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neighbourhood of t. Therefore, we get

∑
i∈Sn(ρ)

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

≥ ∑
t∈Sv

(
J

(
τht

n
ω,

vht
n+1

n − vht
n

n√
λn

+ δ
(
τht

n
ω
))
− J

(
τht

n
ω, δ

(
τht

n
ω
)))

≥ ∑
t∈Sv

J

(
τht

n
ω,

vht
n+1

n − vht
n

n√
λn

+ δ
(
τht

n
ω
))

+ ∑
t∈Sv

inf{−J (ω, δ(ω)) : ω ∈ Ω}

= ∑
t∈Sv

J

(
τht

n
ω,

vht
n+1

n − vht
n

n√
λn

+ δ
(
τht

n
ω
))

+β#Sv.

By taking lim infn→∞, the first term vanishes because of (5.22) and (H3) which says that every
Lennard-Jones type potential uniformly converges to 0 as z→ ∞.

Step 2. Limsup inequality.

We have to show that for every v ∈ SBVγc there exists a sequence vn with vn → v in L1(0, 1)
such that

lim sup
n→∞ Eγn

n (ω, vn) ≤ Eγ(v).

Without loss of generality, we consider #Sv = 1 to keep the notation simple. The extension to the
case #Sv > 1 can easily be proven since we construct the recovery sequence step by step, starting
from affine functions and glueing them together to a piecewise affine function. The case #Sv = 0 is
included by setting the jump height to zero which simplifies the subsequent calculations.

We already know from the compactness result in Theorem 5.6 that v is piecewise H1(0, 1). There-
fore, we can write v = vc + v j, where vc ∈ H1(0, 1) and v j is a piecewise constant function. By a
density argument, see [21, Rem. 1.29], we can assume vc ∈ C2[0, 1]. Note that this approximation
can be chosen in such a way, that it keeps the boundary values, see e.g. [39, Section 2.4, Cor. 3].
We construct explicitly a recovery sequence for affine functions with a single jump and extend it
afterwards to the general case.

Step A: Affine function.

We construct a recovery sequence for an affine function v with slope z, a jump in 0 and constant
near the jump. That is, for z ∈ domJ j and a small ρ > 0, we have

v(x) =


0 for x = 0,

v(0+) for x ∈ (0,ρ),

v(0+) + (x− ρ)z for x ∈ [ρ, 1],

with v(0+) > 0 defined such that

v(1) = v(0+) + (1− ρ)z = γ, (5.23)
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5.4 Γ -limit of the rescaled energy

in order to fulfil the boundary constraint as well as the assumption #Sv = 1 and [v] ≥ 0 from the
compactness result in Theorem 5.6. Without loss of generality, the jump is at 0. A jump at 1 can be
constructed analogously, with small changes. Wherever in the proof it is important where exactly
the jump lies (which will be in (5.29)), we highlight it and proof it in a general way.

There exists a unique sequence Tn such that ρ ∈ [Tn, Tn + 1)λn. First, we consider ε > 0 fixed
such that ε < ρ and ε < Tnλn and define

hεn := argmin0≤i≤n−1 {−J(τiω, δ(τiω)) : |iλn − 0| < ε} .

Let (µk)k∈N > 0 be a sequence in R with µk = 1−ρ
k for all k ∈ N. We define a partition of the

interval (ρ, 1] by Iµk
j := (ρ+ jµk,ρ+ ( j + 1)µk] with j = 0, ..., 1−ρ

µk
− 1. Hence, the set{

Iµk
j : µk =

1− ρ
k

, j = 0, ..., k− 1, k ∈ N
}

is a countable set of sets. Thus, for all I = Iµk
j with µk =

1
k , k ∈ N and j = 0, ..., k− 1, we can pass

to the limit in the sense of Tempel’man’s ergodic theorem, cf. Theorem 2.14. Thereby, the set Ω′, for
which the ergodic result holds true, is the intersection of countably many sets ΩI . In the following,
we leave out the index k and just refer to the sequence µk by µ.

From now on, let µ be fixed. We define for j = 0, ..., (1− ρ)/µ − 1 =: jmax

Iµj := (ρ+ jµ,ρ+ ( j + 1)µ],

Iµj,n := Z∩ nIµj ,

i j,n
min := min{i : i ∈ Z∩ nIµj },

i j,n
max := max{i : i ∈ Z∩ nIµj },

Iµ∗j,n := Iµj,n ∪ {i
j,n
min − 1} \ {i j,n

max}.

Note that ∪ jmax
j=0 Iµ∗j,n = {Tn, ..., n− 1} holds true. With this notation, we define two sequences of

piecewise affine functions, (ϕn) and (φn), which together (almost) form the recovery sequence
(vn), defined by

vn :=ϕn +φn.

To be precise, the sequence vn has to be a sequence vn,µ , depending on µ. Since this does not
affect most of the calculations, we drop the subscript µ whenever it is not relevant. In the last step
of the proof, we get from the Attouch-Lemma, see Theorem 2.23, the existence of a sequence µn,
such that (vn,µn) finally is the recovery sequence. We first define (ϕn), which accounts for the jump
and the boundary conditions, by

ϕi
n :=

v(0−) = 0 for 0 ≤ i ≤ hεn,

v(0+) + γn −γ for hεn < i ≤ n.

Since later we extend this construction to piecewise affine functions, we have to take care of the
boundary values γn and γ. They have to be understood as the boundary data of the considered
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interval. That is, for an interval which does not contain x = 0 or x = 1, it holds true that γn = γ

and therefore the term γn −γ cancels out.

The sequence (φn) optimizes the elastic energy and is given by

φi
n :=



0 for 0 ≤ i ≤ hεn,

z (Tnλn − ρ) for hεn < i ≤ Tn,

z
(
(i j,n

min − 1)λn − ρ
)
+

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

λnz
i−1

∑
k=i j,n

min−1

1
α(τkω)

for i ∈ Iµj,n.

Note that the definition provides for every j = 0, ..., (1− ρ)/µ − 1

vi j,n
max

n =ϕi j,n
max

n +φi j,n
max

n

= v(0+) + γn −γ + z
(
(i j,n

min − 1)λn − ρ
)
+

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

λnz
i j,n
max−1

∑
k=i j,n

min−1

1
α(τkω)

= v(0+) + γn −γ + z
(
(i j,n

min − 1)λn − ρ
)
+ λnz|Iµ∗j,n|

= v(0+) + γn −γ + z
(
(i j,n

min − 1)λn − ρ
)
+ λnz

(
i j,n
max − i j,n

min + 1
)

= v(0+) + γn −γ + z
(
(i j,n

max)λn − ρ
)
= vi j,n

max +γn −γ.

(5.24)

Therefore, vn and v coincide at the value i j,n
max up to their boundary conditions. Together, the

sequence (vn,µn) of piecewise affine functions vn ∈ Âγn
n (0, 1), with vn :=ϕn +φn, is the recovery

sequence for a well-chosen µn. To prove this, we have to show that (a) vn fulfils the boundary
conditions, (b) the limsup inequality is fulfilled and (c) vn → v in L1(0, 1).

(a) We consider the point i = n because v(1) = vn
n. Since n = i jmax ,n

max , by (5.24) we get vn
n = vi jmax,n

max
n =

v(0+) + z(nλn − ρ) + γn −γ
(5.23)
= γn. Thus, the boundary condition is fulfilled.

(b) We have

Eγn
n (ω, vn) =

n−1

∑
i=0

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

=
hεn−1

∑
i=0

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

+
Tn−1

∑
i=hεn+1

(
J
(
τiω,

vi+1
n − vi

n√
λn

+ δ(τiω)

)
− J (τiω, δ(τiω))

)

+
n−1

∑
i=Tn

(
λnα(τiω)

(
vi+1

n − vi
n

λn

)2

+ η

(
τiω,

vi+1
n − vi

n√
λn

))

+ J

(
τhεnω,

vhεn+1
n − vhεn

n√
λn

+ δ
(
τhεnω

))
− J(τhεnω, δ

(
τhεnω

)
).
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5.4 Γ -limit of the rescaled energy

This energy has four parts. The first two parts (from zero to hεn − 1 and from hεn + 1 to Tn − 1)
are identically zero by definition of vn. To get the limsup-inequality, we have to show the two
inequalities

lim sup
n→∞

n−1

∑
i=Tn

(
λnα(τiω)

(
vi+1

n − vi
n

λn

)2

+ η

(
τiω,

vi+1
n − vi

n√
λn

))
≤ α

∫ 1

0
|v′(x)|2, (5.25)

and

lim sup
n→∞

(
J

(
τhεnω,

vhεn+1
n − vhεn

n√
λn

+ δ
(
τhεnω

))
− J(τhεnω, δ

(
τhεnω

)
)

)
≤ β, (5.26)

where the first one is the elastic part and the second one is the jump part of the limiting energy.

Proof of Equation (5.25), elastic part.

We start with rearranging the sum, i.e.

n−1

∑
i=Tn

(
λnα(τiω)

(
vi+1

n − vi
n

λn

)2

+ η

(
τiω,

vi+1
n − vi

n√
λn

))

=
jmax

∑
j=0

∑
i∈Iµ∗j,n

λnα(τiω)

(
vi+1

n − vi
n

λn

)2

+
jmax

∑
j=0

∑
i∈Iµ∗j,n

η

(
τiω,

vi+1
n − vi

n√
λn

)
.

By the definition of vn, we get

∑
i∈Iµ∗j,n

λnα(τiω)

(
vi+1

n − vi
n

λn

)2

= ∑
i∈Iµ∗j,n

λn
1

α(τiω)

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−2

z2

= λn|Iµ∗j,n|z
2

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

.

Plugging this in, we obtain

n−1

∑
i=Tn

(
λnα(τiω)

(
vi+1

n − vi
n

λn

)2

+ η

(
τiω,

vi+1
n − vi

n√
λn

))

=
jmax

∑
j=0

λn|Iµ∗j,n|z
2

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

+
jmax

∑
j=0

∑
i∈Iµ∗j,n

η

τiω,
√
λn

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

z
1

α(τiω)

 .

(5.27)

Now we consider lim supn→∞ of (5.27). The two parts of the sum are discussed separately in (i)
and (ii) below. The first one becomes the elastic part of the energy and the second one vanishes.
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(i) The first part of (5.27) is

jmax

∑
j=0

λn|Iµ∗j,n|z
2

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

.

We take lim sup
n→∞ of this equation, and with Proposition 5.5 and λn|Iµ∗j,n| → µ we obtain

lim sup
n→∞

jmax

∑
j=0

λn|Iµ∗j,n|z
2

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

≤
jmax

∑
j=0

(
lim sup

n→∞ λn|Iµ∗j,n|
)

z2 lim sup
n→∞

 1
|Iµ∗j,n|

∑
k∈Iµ∗j,n

1
α(τkω)


−1

=
1− ρ
µ

µz2
(
E
[
α−1

])−1
= (1− ρ)z2

(
E
[
α−1

])−1
= α

∫ 1

ρ
z2 dx = α

∫ 1

0
|v′(x)|2 dx,

P-almost everywhere. This is exactly the result we expected in order to get (5.25). We now show
that the remaining part of (5.27) vanishes, which will conclude the proof of (5.25).

(ii) The second part of (5.27) is

jmax

∑
j=0

∑
i∈Iµ∗j,n

η

τiω,
√
λn

 1
|Iµ∗j,n|

∑
i∈Iµ∗j,n

1
α(τkω)


−1

z
1

α(τiω)

 .

Before continuing with the estimate, we have a closer look at the argument of η(τiω). Sinceα(ω)

is bounded from below due to Remark 5.2 (iii), we get

√
λn

 1
|Iµ∗j,n|

∑
i∈Iµ∗j,n

1
α(τkω)


−1

|z| 1
α(τiω)

≤
√
λnC,

because of the convergence of the sum to E
[
α−1], due to Proposition 5.5. As before, we use the

Lagrange form of the remainder from (5.13) and get with ξi ∈ [δ(τiω)−
√
λnC, δ(τiω) +

√
λnC]

jmax

∑
j=0

∑
i∈Iµ∗j,n

η

τiω,
√
λn

 1
|Iµ∗j,n|

∑
i∈Iµ∗j,n

1
α(τkω)


−1

z
1

α(τiω)



=
jmax

∑
j=0

∑
i∈Iµ∗j,n

1
6

∂3 J(τiω, y)
∂y3

∣∣∣∣
y=ξi

√λn

 1
|Iµ∗j,n|

∑
i∈Iµ∗j,n

1
α(τkω)


−1

z
1

α(τiω)


3

.
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We can again use the estimate from above and get with κ < κ∗ from (H2) for n large enough

jmax

∑
j=0

∑
i∈Iµ∗j,n

1
6

∣∣∣∣∣ ∂3 J(τiω, y)
∂y3

∣∣∣∣
y=ξi

∣∣∣∣∣
√λn

 1
|Iµ∗j,n|

∑
i∈Iµ∗j,n

1
α(τkω)


−1

|z| 1
α(τiω)


3

≤
n−1

∑
i=0

1
6

∣∣∣∣∣ ∂3 J(τiω, y)
∂y3

∣∣∣∣
y=ξi

∣∣∣∣∣ (√λnC
)3

≤ 1
6

C3λ
1
2
n λn

n−1

∑
i=0

sup
x∈[δ(τiω)−κ,δ(τiω)+κ]

∣∣∣∣∣ ∂3 J(τiω, y)
∂y3

∣∣∣∣
y=x

∣∣∣∣∣ ≤ Ĉλ
1
2
n ,

where the last estimate is due to the convergence of the random variable Cκ to its expectation
value, see Proposition 5.5. Therefore, the whole expression converges to zero, which concludes the
proof of Equation (5.25).

Proof of Equation (5.26), jump part.

The last remaining part of the energy is the limsup of

J

(
τhεnω,

vhεn+1
n − vhεn

n√
λn

+ δ
(
τhεnω

))
− J(τhεnω, δ

(
τhεnω

)
).

We get

vhεn+1
n − vhεn

n√
λn

=
v(0+) + γn −γ + z (Tnλn − ρ)√

λn
→ ∞

as n→ ∞ since γn −γ → 0, Tnλn → ρ and v(0+) > 0. Therefore, we obtain

J

(
τhεnω,

vhεn+1
n − vhεn

n√
λn

+ δ
(
τhεnω

))
→ 0

due to (H3). By definition of hεn it holds true that

−J(τhεnω, δ
(
τhεnω

)
) = inf

0≤i≤n−1
{−J(τiω, δ(τiω)) : |iλn − 0| < ε} .

For further reference in the proof of Theorem 7.11, Step 1, we define

βn(ω, x,ε) := inf
0≤i≤n−1

{−J(τiω, δ(τiω)) : |iλn − x| < ε} . (5.28)

In our case, the jump is at x = 0. Since we are going to extend this construction to piecewise
affine functions, the jump needs also to be allowed to be placed at any point in the interval [0, 1].
Therefore, we have to show that the results also work for an arbitrary x.

For the result of equation (5.26), it is now left to show that for everyω ∈ Ω′ and every x ∈ [0, 1]
and every ε > 0 it holds true that

lim
n→∞βn(ω, x,ε) = lim

n→∞ inf
0≤i≤n−1

{−J(τiω, δ(τiω)) : |iλn − 0| < ε} = β.
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Since βn(ω, x,ε) ≥ β holds true for everyω, n, x and ε by definition, we only need to prove

lim
n→∞βn(ω, x,ε) = lim

n→∞ inf
0≤i≤n−1

{−J(τiω, δ(τiω)) : |iλn − 0| < ε} ≤ β. (5.29)

First, notice that βn(ω, x,ε) is bounded, because of the boundedness of J by Ψ due to (LJ2). Let
βn(ω, x,ε) be an arbitrary subsequence (not relabelled). Then, there exists a further subsequence
(again not relabelled) which is convergent due to Bolzano-Weierstraß. If we can show, that every
subsequence of that type converges to the same limit independent ofω and x, we get convergence
of the whole sequence, since then every subsequence has a further subsequence with the same
limit. This is what we are going to prove in the following. It holds true, with Iεx :=]x−ε, x +ε[

and k ∈ R, that

inf
0≤i≤n−1

{−J(τiω, δ(τiω)) : |iλn − x| < ε} · 1
2εn ∑

i∈Z∩nIεx

χ(−J(τiω,δ(τiω))≤k)

≤ 1
2εn ∑

i∈Z∩nIεx

(−J(τiω, δ(τiω)))χ(−J(τiω,δ(τiω))≤k)

≤ k · 1
2εn ∑

i∈Z∩nIεx

χ(−J(τiω,δ(τiω))≤k).

(5.30)

From Proposition 5.7, we get for k ∈ Q and all x ∈ R

1
2εn ∑

i∈Z∩nIεx

χ(−J(τiω,δ(τiω))≤k) → E
[
χ(−J(δ)≤k)

]
as n→ ∞,

independent of x andω, where J(δ) represents the random variableω 7→ J(ω, δ(ω)). Since we
consider a convergent subsequence of βn(ω, x,ε), passing to the limit n→ ∞ in (5.30) yields for
k ∈ Q

lim
n→∞ inf

0≤i≤n−1
{−J(τiω, δ(τiω)) : |iλn − x| < ε} ·E

[
χ(−J(δ)≤k)

]
≤ k ·E

[
χ(−J(δ)≤k)

]
. (5.31)

For k > inf {−J(ω, δ(ω)) : ω ∈ Ω} = β, it holds true that

E
[
χ(−J(δ)≤k)

]
= P ({−J(δ) ≤ k}) > 0.

Therefore, we divide by the expectation value in (5.31) and obtain for k > β, k ∈ Q

lim
n→∞βn(ω, x,ε) = lim

n→∞ inf
0≤i≤n−1

{−J(τiω, δ(τiω)) : |iλn − x| < ε} ≤ k.

Further, we get for k ∈ Q

lim
n→∞βn(ω, x,ε) = lim

n→∞ inf
0≤i≤n−1

{−J(τiω, δ(τiω)) : |iλn − x| < ε}

= lim inf
k↘β

lim
n→∞ inf

0≤i≤n−1
{−J(τiω, δ(τiω)) : |iλn − x| < ε} ≤ lim

k↘β
k = β,

which finishes the prove of (5.29) and therefore the proof of (5.26).
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Altogether, we have shown (b), namely

lim sup
n→∞ Eγn

n (ω, vn) ≤ α
∫ 1

0
|v′(x)|2 dx +β = Eγ(v). (5.32)

(c) It is left to show vn → v in L1(0, 1). For this, we split the integral as

‖vn − v‖L1(0,1) =
∫ 1

0
|vn(x)− v(x)| dx

=
∫ hεnλn

0
|vn(x)− v(x)| dx +

∫ Tnλn

hεnλn
|vn(x)− v(x)| dx +

∫ 1

Tnλn
|vn(x)− v(x)| dx

(5.33)

and consider each interval separately, in Part (i) to (iii) below. Later, in Part (iv), we combine the
results from (i) to (iii) with the Attouch-Lemma, see Lemma 2.23.

(i) For the first integral in (5.33), we get

∫ hεnλn

0
|vn(x)− v(x)| dx =

∫ hεnλn

0
|v(0−)− v(0+)| dx

= |v(0−)− v(0+)|hεnλn ≤ |v(0−)− v(0+)|ε.

(ii) For the second integral in (5.33), we get

∫ Tnλn

hεnλn
|vn(x)− v(x)| dx

=
∫ Tnλn

(hεn+1)λn

∣∣v(0+) + γn −γ + z (Tnλn − ρ)− v(0+)
∣∣ dx

+
∫ (hεn+1)λn

hεnλn

∣∣∣∣v(0+) + γn −γ + z (Tnλn − ρ)
λn

(x− hεnλn)− v(0+)
∣∣∣∣ dx

= |γn −γ + z (Tnλn − ρ)| (Tn − hεn − 1) λn

+
∣∣v(0+) + γn −γ + z (Tnλn − ρ)

∣∣ (2λnhεn +
1
2
λn

)
− λnv(0+)

≤ |γn −γ + z (Tnλn − ρ)| (Tn − hεn − 1) λn

+
∣∣v(0+) + γn −γ + z (Tnλn − ρ)

∣∣ (2ε+
1
2
λn

)
− λnv(0+)

→ 2v(0+)ε as n→ ∞,

since hεnλn is bounded by ε, γn → γ and Tnλn → ρ.

(iii) The last integral in (5.33),

∫ 1

Tnλn
|vn(x)− v(x)| dx,
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is the most interesting one. With ε j,0 = 1 for j = 0 and ε j,0 = 0 for j > 0, we get

∫ 1

Tnλn
|vn(x)− v(x)| dx =

jmax

∑
j=0

∫ i j,n
maxλn

(i j,n
min−1)λn

|vn(x)− v(x)| dx

=
jmax

∑
j=0

∫ i j,n
maxλn

(i j,n
min−1)λn

∣∣∣∣γn −γ + z (Tnλn − ρ)ε j,0 +
∫ x

(i j,n
min−1)λn

v′n(y)− v′(y) dy
∣∣∣∣ dx

≤
jmax

∑
j=0

∫ i j,n
maxλn

(i j,n
min−1)λn

∫ i j,n
maxλn

(i j,n
min−1)λn

|v′n(y)− v′(y)| dy dx +
jmax

∑
j=0

∫ i j,n
maxλn

(i j,n
min−1)λn

∣∣γn −γ + z (Tnλn − ρ)ε j,0
∣∣ dx

≤
jmax

∑
j=0

(
i j,n
max − i j,n

min + 1
)
λn

∫ i j,n
maxλn

(i j,n
min−1)λn

|v′n(x)− v′(x)| dx +
1− ρ
µ

(µ + λn) (|γn −γ|+ zλn)

≤
jmax

∑
j=0

(µ + λn)
∫ i j,n

maxλn

(i j,n
min−1)λn

|v′n(x)− v′(x)| dx +
1− ρ
µ

(|γn −γ|+ zλn) ,

(5.34)

because we have ρ− Tnλn ≤ λn and λn

(
i j,n
max − i j,n

min + 1
)
≤ µ + λn. The integral in the last row of

(5.34) has to be considered separately. For j > 0, it is v′(x) = z and therefore we get

∫ i j,n
maxλn

(i j,n
min−1)λn

|v′n(x)− v′(x)| dx

= ∑
i∈Iµ∗j,n

∫ (i+1)λn

iλn
|v′n(x)− v′(x)| dx = ∑

i∈Iµ∗j,n

λn

∣∣∣∣∣∣∣
 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

z
1

α(τiω)
− z

∣∣∣∣∣∣∣
≤ λn|z| ∑

i∈Iµ∗j,n


 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

1
α(τiω)

+ 1



≤ λn|z|


 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

·

 ∑
i∈Iµ∗j,n

1
α(τiω)

+ ∑
i∈Iµ∗j,n

1


= 2|z|λn

∣∣∣Iµ∗j,n

∣∣∣ ≤ C · (µ + λn) ,

(5.35)

since it holds true that λn

∣∣∣Iµ∗j,n

∣∣∣ = λn

(
i j,n
max − i j,n

min + 1
)
≤ µ + λn. Now that we have determined

the integral in the last row of (5.34) for j > 0, we calculate it for j = 0 by

∫ i0,n
maxλn

Tnλn
|v′n(x)− v′(x)| dx

=
∫ ρ

Tnλn
|v′n(x)− v′(x)| dx +

∫ (Tn+1)λn

ρ
|v′n(x)− v′(x)| dx +

∫ i0,n
maxλn

(Tn+1)λn
|v′n(x)− v′(x)| dx.

(5.36)
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5.4 Γ -limit of the rescaled energy

The first addend of (5.36) is

∫ ρ
Tnλn
|v′n(x)− v′(x)| dx =

∫ ρ
Tnλn

∣∣∣∣∣∣∣
 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

z
1

α (τTnω)
− 0

∣∣∣∣∣∣∣ dx

= (ρ− Tnλn)

 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

|z| 1
α (τTnω)

,

which converges to zero as n→ ∞ because of the convergence Tnλn → ρ, Proposition 5.5 and the
boundedness ofα−1(ω) due to Remark 5.4. The second addend of (5.36) is

∫ (Tn+1)λn

ρ
|v′n(x)− v′(x)| dx =

∫ (Tn+1)λn

ρ

∣∣∣∣∣∣∣
 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

z
1

α (τTnω)
− z

∣∣∣∣∣∣∣ dx

= ((Tn + 1)λn − ρ) |z|

∣∣∣∣∣∣∣
 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

1
α (τTnω)

− 1

∣∣∣∣∣∣∣ ,

which again converges to zero as n → ∞ because of the convergence (Tn + 1)λn → ρ, Proposi-
tion 5.5 and the boundedness ofα−1(ω) due to Remark 5.4. For the last addend of (5.36), we reuse
the calculations from (5.35) and get

∫ i0,n
maxλn

(Tn+1)λn
|v′n(x)− v′(x)| dx = ∑

i∈Iµ∗j,n\{Tn}

∫ (i+1)λn

iλn
|v′n(x)− v′(x)| dx

= ∑
i∈Iµ∗j,n

λn

∣∣∣∣∣∣∣
 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

z
1

α(τiω)
− z

∣∣∣∣∣∣∣− λn

∣∣∣∣∣∣∣
 1∣∣∣Iµ∗j,n

∣∣∣ ∑
k∈Iµ∗j,n

1
α(τkω)


−1

z
1

α (τTnω)
− z

∣∣∣∣∣∣∣
≤ 2|z|λn

∣∣∣Iµ∗j,n

∣∣∣+ Ĉλn ≤ C (µ + λn) ,

where the bound Ĉ is due to the boundedness ofα−1(ω) by Remark 5.4 and the convergence of
the sum according to Proposition 5.5. Altogether, this yields, for (5.36) and for n large enough,

∫ i0,n
maxλn

Tnλn
|v′n(x)− v′(x)| dx ≤ C (µ + λn) . (5.37)

Combined, (5.34), (5.35) and (5.37) lead to

∫ 1

Tnλn
|vn(x)− v(x)| dx ≤

jmax

∑
j=0

(µ + λn)C(µ + λn) +
1− ρ
µ

(|γn −γ|+ zλn)

=
1− ρ
µ

(µ + λn)C(µ + λn) +
1− ρ
µ

(|γn −γ|+ zλn)

≤ C̃
(
µ + 2λn +

λ2
n
µ

)
+

1− ρ
µ

(|γn −γ|+ zλn)→ C̃µ as n→ ∞.

113
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(iv) Altogether, we have shown in the steps i)-iii), that

lim sup
n→∞ ‖vn − v‖L1(0,1) ≤ Ĉε+ C̃µ. (5.38)

Now, by setting ε = µ, we combine the results from (5.32) and (5.38) and get (recall that vn strictly
accurate is vn,µ)

lim sup
µ→0

lim sup
n→∞

(
|Eγn

n (ω, vn,µ)− Eγ(v)|+ ‖vn,µ − v‖L1(0,1)

)
= 0.

From the Attouch-Lemma in Theorem 2.23, we therefore get the existence of a subsequence µn

with µn → 0 as n→ ∞ and

0 ≤ lim sup
n→∞

(
|Eγn

n (ω, vn,µn)− Eγ(v)|+ ‖vn,µn − v‖L1(0,1)

)
≤ lim sup

µ→0
lim sup

n→∞
(
|Eγn

n (ω, vn,µ)− Eγ(v)|+ ‖vn,µ − v‖L1(0,1)

)
= 0.

Finally, this proves ‖vn,µn − v‖L1(0,1) → 0 as n → ∞, which concludes (c). Altogether, (vn,µn) is
the recovery sequence for the affine function v(x) = zx, which was the goal of Step A.

This construction of a recovery sequence for affine functions with a jump can easily be extended
to piecewise affine functions with jumps by dividing the interval [0, 1] into parts where the function
is affine.

Step B: Smooth functions, constant near the jump.

We have constructed a recovery sequence for piecewise affine functions with jumps. With
this result, we get a recovery sequence for every v ∈ C2([0, 1] \ Sv) where v is constant on
x ∈ [x0 − η, x0 + η] with Sv = {x0} and η > 0 small enough. The justification is as follows:
on x ∈ [x0 − η, x0 + η], v is already affine. On [0, x0 − η] and [x0 + η, 1], we take, for δ > 0, the
piecewise affine interpolation vN of v with grid points (tN

j ) j=0,...,aN ,bN ,..., jN with t0 = 0, taN = x0− η,

tbN = x0 + η, t jN = 1 and δ < tN
j+1 − tN

j < 2δ for j = 0, ..., aN − 1, bN , ... jN . Note that for δ → 0
we also get N → ∞, which is the reason why we use both equivalently. Then, we get by using the
Jensen inequality

Eγ(v) = α
∫ 1

0
|v′(x)|2 dx +β

= α
N

∑
j=0

(
tN

j − tN
j−1

) 1
tN

j − tN
j−1

∫ tN
j

tN
j−1

|v′(x)|2 dx +β

≥ α
N

∑
j=0

(
tN

j − tN
j−1

) ∣∣∣∣∣ 1
tN

j − tN
j−1

∫ tN
j

tN
j−1

v′(x) dx

∣∣∣∣∣
2

+β

= α
N

∑
j=0

(
tN

j − tN
j−1

) ∣∣∣∣∣v(t
N
j )− v(tN

j−1)

tN
j − tN

j−1

∣∣∣∣∣
2

+β

= α
N

∑
j=0

∫ tN
j

tN
j−1

|v′N(x)|2 dx +β = α
∫ 1

0
|v′N(x)|2 dx +β = Eγ(vN).

(5.39)
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5.4 Γ -limit of the rescaled energy

We argue as in Step E of the proof of the liminf inequality from Theorem 4.14 to get vN → v in
L1(0, 1). Further, the Γ -lim sup is lower semicontinuous. Therefore, we get

Γ - lim sup
n→∞ Eγn

n (ω, v)
l.s.c.
≤ lim inf

N→∞
(
Γ - lim sup

n→∞ Eγn
n (ω, vN)

)
(∗)
≤ lim inf

N→∞ Eγ(vN)
(5.39)
≤ Eγ(v),

where (∗) follows from the construction of the recovery sequence for piecewise affine functions in
Step A, which keeps the boundary values, see [39, Section 2.4, Corollary 3].

Step C: Smooth functions.

Now that we have a recovery sequence for v ∈ C2([0, 1] \ Sv) where v is constant on x ∈
[x0 − η, x0 + η], we can extend it to functions v = vc + v j with vc ∈ C2[0, 1] and v j is piecewise
constant, which concludes the limsup-inequality. Without loss of generality, we set Sv = {x0}.
Now, we define, for η > 0 small enough, an approximation vηc with

vηc (x) :=


vc(x) for x < x0 − η,

vc(x0 − η) for x ∈ [x0 − η, x0 + η],

vc(x)− vc(x0 + η) + vc(x0 − η) for x > x0 + η.

Then, vη = vηc + v j has two properties, namely (a) vη → v in L1(0, 1) for η → 0 and (b)∫ 1
0 |v

η
c
′
(x)|2 dx→

∫ 1
0 |v′c(x)|2 dx for η→ 0, which can be seen as follows.

(a) We prove vη → v in L1(0, 1) for η→ 0:

∫ 1

0
|vη(x)− v(x)| dx =

∫ x0+η

x0−η
|vc(x0 − η)− vc(x)| dx +

∫ 1

x0+η
|vc(x0 − η)− vc(x0 + η)| dx

≤ 2η|vc(x0 − η)|+
∫ x0+η

x0−η
|vc(x)| dx + (1− x0 − η)|vc(x0 − η)− vc(x0 + η)|

→ 2 · 0 · |vc(x0)|+ 0 + (1− x0) · |vc(x0)− vc(x0)| = 0 for η→ 0.

Recall that we have vc ∈ C2[0, 1].

(b) We prove
∫ 1

0 |v
η
c
′
(x)|2 dx→

∫ 1
0 |v′c(x)|2 dx for η→ 0:

∫ 1

0
|vηc
′
(x)|2 dx =

∫ x0−η

0
|v′c(x)|2 dx +

∫ 1

x0+η
|v′c(x)|2 dx→

∫ 1

0
|v′c(x)|2 dx for η→ 0.

Similarly to the density argument of [21], we get with the properties (a) and (b)

Γ - lim sup
n→∞ Eγn

n (ω, v)
(a)+l.s.c.
≤ lim inf

η→0

(
Γ - lim sup

n→∞ Eγn
n (ω, vη)

)
(∗)
≤ lim inf

η→0
Eγ(vη)

(b)
≤ Eγ(v),

where (∗) follows from the construction of the recovery sequence from Step B. Note that this
construction also keeps the boundary values. Since the conclusion to an arbitrary v ∈ SBVγc was
already discussed in the beginning of the limsup-part, the construction of the recovery sequence is
completed.
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5 Surface energies: rescaled model

Step 3. Convergence of minimum problems.

The convergence of minimum problems follows form the coerciveness of Eγn
n and the Γ -convergence

result due to the main theorem of Γ -convergence, cf. Theorem 2.22. It is left to show

min
v

Eγ(v) = min{αγ2,β}. (5.40)

This is done analogously to [101]. For γ > 0 fixed and v with boundary conditions v(0) = 0 and
v(1) = γ and fulfilling [v] > 0 on Sv we have to distinguish two cases: First, let Sv = ∅, then we
have v ∈W1,1(0, 1) and with the Jensen-inequality we get

α

∫ 1

0
|v′(x)|2 dx ≥ α

∣∣∣∣∫ 1

0
v′(x)

∣∣∣∣2 = αγ2

and therefore with the minimizer v(x) = γx

min
v

Eγ(v) = min
v

{
α

∫ 1

0
|v′(x)|2 dx

}
= αγ2.

Second, for Sv 6= ∅, we get because ofα > 0

min
v

Eγ(v) = min
v

{
α

∫ 1

0
|v′(x)|2 dx +β#Sv

}
= β

where the minimizer has one jump point Sv = {t} and is given by

v(x) =

0 if x ∈ [0, t),

γ if x ∈ [t, 1).

This shows (5.40).

5.5 Comment on the Γ-limit of first order

The Γ -limit of first order of a functional En is defined as the Γ -limit of the rescaled functional

E1,n(u) :=
En(u)− infu E(u)

λn
,

where E(u) = Γ - lim En(u).

In the heterogeneous, periodic setting, this first order Γ -limit does not exist. We show this in the
following. This is in line with [37], where the authors consider a periodic integral energy functional
and its homogenized limit and conclude that the Γ -limit of first order does not exist.

In our case, the Γ -limit E`
hom of E`

n(ω, u) is derived in Theorem 4.14, as well as minu E`
hom(u) =
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Jhom(`). Therefore, the Γ -limit of first order is the Γ -limit of

E`
1,n(ω, u) =

n−1

∑
i=0

λn J
(
τiω,

ui+1 − ui

λn

)
−min

u
E`(u)

λn

=
n−1

∑
i=0

(
J
(
τiω,

ui+1 − ui

λn

)
− J(τiω, δ(τiω))

)
+

n−1

∑
i=0

(J(τiω, δ(τiω))− Jhom(`)) .

(5.41)

The first term is exactly the rescaled energy (5.2) of Section 5.1. From Theorem 5.8, we know that
its Γ -limit exists. The second term

n−1

∑
i=0

(J(τiω, δ(τiω))− Jhom(`)) (5.42)

is independent of u. If its limit n → ∞ existed, it could be treated as a continuous perturbation,
see Remark 2.20. Then, the Γ -limit of (5.41) would be the sum of the rescaled Γ -limit and the limit
of (5.42).

However, we now show for the periodic case that the sum in (5.42) is not convergent. For this,
Ji(z) is used for the interaction potential between atom i and i + 1 and the expectation value is
replaced by the arithmetic mean. For details on the special case of periodicity and the related
definitions and results, we refer to Chapter 6. For simplicity, assume δi = δ for all i ∈ Z and ` = δ.
Then, Proposition 4.13 yields

Jhom(`) = Jhom(δ) = Jhom(δ) = J(δ).

We can assume to have at least two different potentials (otherwise we are in the homogeneous
case), and without loss of generality we set J0(δ) 6= J(δ). With M ∈ N being the periodicity length,
(5.42) reads

n−1

∑
i=0

(
Ji(δ)− J(δ)

)
=

0 if n = kM for some k ∈ N,

J0(δ)− J(δ) 6= 0 if n = kM + 1 for some k ∈ N.

This shows that in the periodic case, (5.42) has at least two different accumulations points. For
every accumulation point, (5.42) is a continuous perturbation to the already known Γ -limit of the
rescaled energy, and leads to a different Γ -limit of first order in each case. Thus, the Γ -limit of first
order depends on the subsequence chosen and therefore does not exist.

In the stochastic case, the (non-)convergence of (5.42) is difficult to handle. We note that (5.42)
can be reformulated as

n

(
1
n

n−1

∑
i=0

J(τiω, δ(τiω))− Jhom(`)

)
,

and is thus related to the topic of convergence rates in the field of ergodic theorems, with
1
n ∑

n−1
i=0 J(τiω, δ(τiω)) → Jhom(`). This is addressed in various papers. For an overview, see,

e.g., [79, p.14–15]. In [76], the author states that it is not possible to obtain an estimate on the
convergence rate that only depends on J. A fundamental step towards this statement is the work
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5 Surface energies: rescaled model

in [68] and [79]. There, the authors prove theorems stating that for any given ergodic group action,
one can choose indicator functions with arbitrarily high and arbitrarily low rate of convergence in
the ergodic theorem. Especially, this indicates that (5.42) does not converge in our general setting,
and thus is a strong hint that the Γ -limit does not exist. It remains an open problem whether
convergence of (5.42) can be obtained in some special cases.
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6 Periodic setting

This chapter is devoted to the periodic setting, i.e., compared to the previous model, we replace
the stochastic dependence of the Lennard-Jones interaction potentials by a periodic dependence.
This is in some sense a simplification or specification of the stochastic setting, since the proofs of
the Γ -convergence theorems are mainly the same but much simpler. However, the results show
interesting new features, especially regarding the homogenization formula.

The theorems of this chapter are chronologically the first results of the doctoral thesis. The
stochastic case was then built on the periodic case, which served as a foundation. I published the
results of the periodic setting, that are presented in this chapter, in [82], jointly with M. Schäffner
and A. Schlömerkemper.

The motivation and the approach is completely analogous to that of Chapter 3–5. Therefore, we
here highlight only the differences in setting and assumptions to the stochastic case and state the
corresponding results for the theorems and propositions. The proofs are only given in that cases
where they differ considerably or show new and interesting features. We refer for the remaining
proofs and further details to [82].

6.1 Discrete model and Lennard-Jones type assumptions

The discrete model of the one-dimensional chain of atoms with reference configuration equidis-
tributed in [0, 1] is the same as in Chapter 3. As in [82], we consider the case of nearest neighbour
interactions, i.e. K = 1. Instead of the random distribution of the interaction potentials, we assume
a periodic setting with periodicity length M ∈ N. Therefore, we redefine the interaction potential
of particle i and i + 1 by

J(i, z) := Ji(z) for every i ∈ Z,

where the variableω is not needed any more because there is no random variable. Periodicity now
means that we have

Ji = Ji+M for every i ∈ Z.

Fig. 6.1 shows an example of a periodic chain with periodicity length M = 3 and two different
types of atoms, grey and white, where the interaction potential of two atoms of the same type is
assumed to be different from the interaction between different types of atoms.

In the following, we frequently make use of the abbreviations for the averages

δ̄ :=
1
M

M−1

∑
i=0

δi and J(δ) :=
1
M

M−1

∑
i=0

Ji(δi). (6.1)

These mean values substitute the expectation values from the stochastic setting. Since they
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Ja

Jb

M = 3
Ja Ja

Jb JbJb Jb

Figure 6.1 | Chain of atoms with periodicity M = 3 and two different types of atoms (grey and white). The
interaction potential Ja between two grey atoms is different to the interaction Jb between a white and a
grey atom.

can simply be computed without any limiting process, we do not need results like those in
Propositions 3.5 or 5.5.

Next, we introduce the Lennard-Jones type potentials that are allowed in the periodic case. We
first state the assumptions and then discuss the differences to the earlier class of Lennard-Jones
type potentials. They are slightly modified compared to [82]. We say that the interaction potentials
Ji are of Lennard-Jones type if they fulfil the following conditions:

(LJ1*) For any i ∈ {0, ..., M− 1}, the function Ji : R→ (−∞,+∞] is lower semicontinuous and in
C0,α

loc , 0 < α ≤ 1 on its domain domJi = {z ∈ R : Ji(z) < +∞}. Further, we assume that
the domain is an open set and independent of i, i.e. domJi = (zdom,+∞) =: domJ, with
zdom ≤ 0, and that

lim
z→+∞ Ji(z) = 0.

(LJ2*) There exists a convex function Ψ : R→ [0,+∞] and constants d1, d2 such that

lim
z→−∞ Ψ(z)

|z| = +∞ and

d1(Ψ(z)− 1) ≤ Ji(z) ≤ d2 max{Ψ(z), |z|} for all z ∈ R, i ∈ {0, ..., M− 1}.

Further, Ji has a unique minimum point δi with Ji(δi) < 0 and it is strictly convex in (−∞, δi)

on its domain.

(LJ3*) The functions Ji, i ∈ {0, ..., M− 1} are C2 on their domain.

(LJ4*) There exist µ > 0 and C > 0 such that for all i ∈ {0, ..., M− 1}

Ji(x)− Ji(δi) ≥ C(x− δi)
2

for |x− δi| < µ.

The assumptions (LJ1*)–(LJ2*) are applied in the proof of Theorem 6.3 regarding the Γ -limit of
the energy Hn, defined in (6.2). Theorem 6.4 deals with the rescaled version of that energy and is
based on the assumptions (LJ1*)–(LJ4*).

The main difference of (LJ1*)–(LJ4*) to the original Lennard-Jones type assumptions (LJ1)–(LJ5)
together with (H1)–(H3) is that most assumptions that deal with common lower or upper bounds
are not needed any more. This is due to the fact that in the periodic case we only consider
M different functions as interaction potentials, while in the stochastic case uncountably many
potentials are allowed. Therefore, the assumptions with common bounds are fulfilled automatically.
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6.1 Discrete model and Lennard-Jones type assumptions

−1

1 2 4 5 6

1

2

3

J(z)

z
3

Ji

J∗∗i

Figure 6.2 | A potential Ji and its convex, lower semicontinuous envelope J∗∗i .

In contrast, the bounds in (LJ2*) and (LJ4*) are retained, since those estimates deal not only with
common bounds by constants but instead with a common bound by a convex function or a
quadratic estimate, respectively. These bounds are also required in the homogeneous case, cf. [24,
100, 101]. In particular, the following assumptions are not needed any more:

• The bound on the minimizers from (LJ2), i.e. δ ∈ ( 1
d , d).

• The bound for large values of z from (LJ2), i.e. ‖J‖L∞(δ,∞) < b.

• The regularity in (LJ3*) is of the type C2, instead of C3 in (LJ4), which also refers to a common
bound of the remainder in the Taylor approximation, which is formulated in (H2).

• The expectation value of the Hölder coefficient in (H1) and the uniform convergence in (H3).

A further difference concerns the domain of the function J. In the periodic case, the domain can
even be (−∞,+∞). This is ruled out by (LJ1) in the stochastic setting, where we assume (0, ∞) to
be the domain and allow for shifting it. That is the reason for the slight changes in the definition of
the blow up of the function Ψ at −∞ or 0+ respectively, and of the function J at 0+.

Remark 6.1. Notice that a consequence of (LJ1*) and (LJ2*) is that the convex, lower semicontinuous
envelope J∗∗i of Ji is given for each i ∈ {0, . . . , M− 1} by

J∗∗i (z) =

Ji(z) if z ≤ δi,

Ji(δi) else.

An illustration of the convex, lower semicontinuous envelope J∗∗i can be found in Figure 6.2.
With the deformation of the particles denoted by u : λnZ ∩ [0, 1] → R and the abbreviation
u(xi

n) = ui, as before, we can again identify the discrete deformations u with their piecewise affine
interpolations, i.e. u ∈ An with

An := {u ∈ C([0, 1]) : u is affine on (i, i + 1)λn, i ∈ {0, 1, ..., n− 1}} .

The energy in the periodic case reads

Hn(u) :=
n

∑
i=1
λn Ji

(
ui+1 − ui

λn

)
, (6.2)

and we impose the same Dirichlet boundary conditions u(0) = 0 and u(1) = ` for some given
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` > 0 as before. Altogether, this yields the functional H`
n : L1(0, 1)→ (−∞,+∞] defined by

H`
n(u) :=

Hn(u) if u ∈ An and u(0) = 0, u(1) = `,

+∞ else.

The rescaling here is similar to that of Section 5.1 and reads

vi :=
ui − ∑

i−1
k=0 λnδk√
λn

for all i ∈ {0, ..., n},

cf. (5.1). Since this definition yields

ui+1 − ui

λn
= δi +

vi+1 − vi
√
λn

,

we get the following rescaled energy

En(v) :=
Hn(umin +

√
λnv)−minu Hn(u)
λn

=
n−1

∑
i=0

(
Ji

(
vi+1 − vi
√
λn

+ δi

)
− Ji (δi)

)
.

We also have to rescale the boundary data. Theorem 6.3 and Lemma 6.2, which we state below,
show that the threshold between the regime of elasticity and that of fracture is given by ` = δ. In
the stochastic setting, this threshold is the expectation value of the minimizers. Now, it is the mean
value. As in [82], we follow again the ideas of [101] and consider the energy En for some sequence
(`n) ⊂ R with `n → δ, satisfying

ηn :=
`n − ∑

n−1
k=0 λnδk√
λn

→ η (6.3)

and `n > δ for every n ∈ N. For simplicity, we assume

`n >
1
n

n−1

∑
k=0

δk for every n ∈ N.

By definition, it holds η ≥ 0 as well as ηn > 0 for all n ∈ N. They serve as boundary values of the
new variable v, and therefore, for u ∈ An(0, 1), the new variables v belong to the space

Âηn
n := {v ∈ An(0, 1) : v0 = 0, vn = ηn}.

Altogether, we get the rescaled functional Eηn
n : L1(0, 1)→ (−∞,+∞] with

Eηn
n (v) =

En(v) if v ∈ Âηn
n (0, 1),

+∞ else.

6.2 Homogenization formula and Γ-convergence results

The biggest difference between the stochastic and the periodic case is the representation of the
homogenized energy density. In the stochastic case, Jhom was given by an asymptotic homog-
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z

J(z) Jper
hom

J1 J2

δ1 δ2
δ

J(δ)
J1(δ1)

J2(δ2)

Figure 6.3 | The function Jper
hom together with the two interaction potentials J1 and J2 in the case M = 2.

enization formula. In the periodic case, it reduces to a cell-problem formula. It is defined as
Jper
hom : R→ (−∞, ∞] and given by

Jper
hom(z) := min

{
1
M

M−1

∑
i=0

J∗∗i (zi) :
M−1

∑
i=0

zi = Mz

}
, (6.4)

which is well-defined since the minimum exists. The validity of the cell-problem formula (6.4)
crucially relies on the fact that we use only nearest-neighbour interactions. Indeed, even in the
case of homogeneous interactions and a setting beyond nearest neighbours with K ≥ 3, the
effective energy density is in general given by an asymptotic cell formula, see, e.g., [32]. Further,
for K ≥ 2, it was recently shown in [103] that in the case of homogeneous Lennard-Jones type
interactions with finite range the effective energy density can be computed explicitly, due to the
specific convex-concave shape of the interaction potentials.

We now state a lemma, which is the counterpart to the results in Proposition 4.12. In order to
highlight the main differences between the stochastic and the periodic setting, we present the proof,
which has already been published in [82]. It is essentially copied from the published version in [82].
A sketch of Jper

hom, relying on the results of the next Lemma and in particular on the cell-problem
formula, is shown in Figure 6.3.

Lemma 6.2. Suppose that the hypotheses (LJ1*) and (LJ2*) hold true. Then, the function Jper
hom, defined in

(6.4), is convex, monotone decreasing, and it holds

Jper
hom(z) =


f (z) if z ≤ δ̄

J(δ) if z ≥ δ̄,
(6.5)

where

f (z) := min

{
1
M

M−1

∑
i=0

Ji(zi) :
M−1

∑
i=0

zi = Mz

}

and J(δ) is defined in (6.1). Moreover, it holds

lim
z→−∞ Jper

hom(z)
|z| = +∞. (6.6)
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6 Periodic setting

Proof. Step 1. Convexity.

Let z(1), z(2) ∈ R and t ∈ [0, 1] be given and consider z = tz(1) + (1− t)z(2). According to the
definition of Jper

hom in (6.4), there exist Z(1), Z(2) ∈ RM satisfying 1
M ∑

M−1
i=0 Z( j)

i = z( j) for j = 1, 2
such that

Jper
hom

(
z( j)
)
=

1
M

M−1

∑
i=0

J∗∗i

(
Z( j)

i

)
, j = 1, 2.

Note that 1
M ∑

M−1
i=0

(
tZ(1)

i + (1− t)Z(2)
i

)
= z and thus

tJper
hom

(
z(1)
)
+ (1− t) Jper

hom

(
z(2)
)
=

1
M

M−1

∑
i=0

(
tJ∗∗i

(
Z(1)

i

)
+ (1− t)J∗∗i

(
Z(2)

i

))

≥ 1
M

M−1

∑
i=0

J∗∗i

(
tZ(1)

i + (1− t)Z(2)
i

)
≥ Jper

hom(z),

which proves the claim.

Step 2. Monotonicity.

Since J∗∗i is monotone decreasing for i = 0, . . . , M − 1, cf. (LJ1*), (LJ2*) and Remark 6.1, we
obtain the monotonicity of Jper

hom.

Step 3. The identity (6.5).

First, we notice that (LJ1*) and (LJ2*) imply that

J(δ) ≤ Jper
hom(z) ≤ f (z) for all z ∈ R.

For given z ≥ δ̄, we find Z ∈ RM satisfying 1
M ∑

M−1
i=0 Zi = z and Zi ≥ δi and thus the definition of

Jper
hom in (6.4) and Remark 6.1 yield Jper

hom(z) = J(δ).

Hence, it is left to show (6.5) for z ≤ δ̄. Let z ≤ δ̄ be given and let Z ∈ RM be such that

Jper
hom(z) =

1
M

M−1

∑
i=0

J∗∗i (Zi) and
1
M

M−1

∑
i=0

Zi = z. (6.7)

We claim that Zi ≤ δi for every i ∈ {0, . . . , M − 1}. Indeed, assume that there exists i′ ∈
{0, . . . , M − 1} such that Zi′ > δi′ . By (6.7), z ≤ δ̄ and the definition of δ̄ (cf. (6.1)), we find
i′′ ∈ {0, . . . , M − 1} such that Zi′′ < δi′′ . Set q = min{Zi′ − δi′ , δi′′ − Zi′′} > 0 and consider
Z̃ ∈ RM given by Z̃i = Zi if i ∈ {0, . . . , M− 1} \ {i′, i′′} and Z̃i′ = Zi′ − q, Z̃i′′ = Zi′′ + q. The
construction of Z̃ implies 1

M ∑
M−1
i=0 Z̃i = z, δi′ ≤ Z̃i′ ≤ Zi′ and Zi′′ < Z̃i′′ ≤ δi′′ . From Assump-

tion (LJ2*) and Remark 6.1 it follows that J∗∗i is strictly decreasing on dom Ji ∩ (−∞, δi) and
J∗∗i (z) = J∗∗i (δi) for z > δi for every i = 0, . . . M− 1. Hence, we obtain

Jper
hom(z) ≤ 1

M

M−1

∑
i=0

J∗∗i (Z̃i) <
1
M

M−1

∑
i=0

J∗∗i (Zi) = Jper
hom(z),

which is absurd.

The existence of Z ∈ RM satisfying (6.7) is straightforward and it holds J∗∗i (z) = Ji(z) for z ≤ δi,
cf. Remark 6.1. Thus, we obtain f (z) ≤ Jper

hom(z) ≤ f (z) and thus f (z) = Jper
hom(z) for all z ≤ δ̄.
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6.2 Homogenization formula and Γ -convergence results

Step 4. The limit (6.6).

A combination of the lower bound in (LJ2*) and Jensen’s inequality yields for every z ∈ Rd

Jper
hom(z) ≥ min

{
d1

1
M

M

∑
i=1

Ψ(zi)− d1 :
M

∑
i=1

zi = Mz

}
≥ d1Ψ(z)− d1.

Thus, the superlinear growth of Jper
hom at −∞, i.e. (6.6), is a direct consequence of the superlinear

growth of Ψ at −∞, cf. (LJ2*).

In the limit n→ ∞, which means that the number of lattice points tends to infinity, we get the
following Γ -convergence results in the periodic setting. The first theorem gives the Γ -limit of zeroth
order, similar to that of Chapter 4, and uses the homogenization formula Jper

hom, which we have
discussed in Lemma 6.2.

Theorem 6.3. Let ` > 0 and let (LJ1*)–(LJ2*) hold true. Then, the Γ -limit of H`
n with respect to the

L1(0, 1)-topology is H` : L1(0, 1)→ (−∞,+∞], given by

H`(u) =


∫ 1

0
Jper
hom(u′(x)) dx if u ∈ BV`(0, 1), Dsu ≥ 0 on [0, 1],

+∞ else.

Moreover, the minimum values of H`
n and H` satisfy

lim
n→∞ inf

u
H`

n(u) = min
u

H`(u) = fhom(`).

The second theorem states the Γ -limit of the rescaled functional, corresponding to the stochastic
results in Chapter 5.

Theorem 6.4. Let ηn → η be such that (6.3) holds. Let (LJ1*)–(LJ4*) hold true. Then, the sequence (Eηn
n )

Γ -converges with respect to the L1(0, 1)-topology to the functional Eη given by

Eη(v) :=

α
∫ 1

0
|v′(x)|2 dx +β#Sv if v ∈ SBVη(0, 1),

+∞ else,

where α :=

(
1
M

M

∑
i=1

1
αi

)−1

and β := min
i∈{1,...,M}

(−Ji(δi)), with αi :=
1
2

J′′i (δi).

Moreover, for η > 0 it holds true that

lim
n→∞ inf

v
Eηn

n (v) = min
u

Eη(v) = min{αη2,β}.

The proofs of both theorems are similar to the corresponding ones from the stochastic setting
but simpler. One of the main differences is that the mesoscale, introduced in the proofs, is not
needed because the periodicity length M operates as a mesoscale. Further, no ergodic theorems
are needed. Instead, the calculation of mean values and an approximation of the remainder is
sufficient. We refer for details and for the proofs to [82].
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7 Fracture on the discrete scale

In the previous chapters, we investigated the discrete model by means of Γ -convergence. We
obtained that the chain of atoms, subjected to the boundary conditions u(0) = 0 and u(1) = `, can
show fracture in the limit. The threshold where the elastic behaviour of the chain changes into
fracture is given by a certain value of the boundary constraint `. The continuum limit is given in
the framework of BV functions. There, a jump is defined as the discontinuity point of the good
representative of u.

The discrete model only provides the values of the deformation for the lattice points. The defor-
mation on the whole interval [0, 1] is considered as a piecewise affine function, by interpolation.
Thus, by definition, the deformation is continuous and does not show jumps at all. The aim of this
chapter is to provide a suitable definition for a jump point in the discrete setting, and according to
this, a definition of a threshold separating the elastic and jump regime. Section 7.1 contains these
new definitions as well as a number of preliminary results. The new definitions come along with
further properties on the class of Lennard-Jones type potentials. They are phrased and discussed
in Section 7.2.

In Section 7.3, we consider the limiting behaviour of the newly established jump threshold as
n→ ∞. This is done first for the special case of a fixed minimizer of the random potentials. This
restriction allows to consider also the rescaled version of the jump threshold. Later, the assumption
on the minimizer is dropped and the non-rescaled version of the theorem can be proved. The
chapter is completed by Section 7.4, where the results are compared to those of Chapter 4 and
Chapter 5 employing Γ -convergence analysis.

7.1 Jump threshold

A jump in the continuum regime is defined as a discontinuity point in the setting of BV-functions.
Since in the discrete setting the deformation is given as a piecewise affine function, there are no
discontinuity points, by definition. Therefore, we need a new definition for a jump in the discrete
picture. This is done by defining a threshold zfrac for a given potential. We then say that the chain
has a jump at a given site, if the slope at this site is larger than the threshold.

Definition 7.1. For a Lennard-Jones type potential J ∈ Jreg(α, b, c, d, Ψ, η), cf. Definition 5.1, we define
a jump or fracture point by

zfrac := sup
{

a :
∂2 J(z)

∂z2 > 0 on [δ, a]
}

.

Then, we say that a jump occurs at position i∗ of the chain of particles if and only if the discrete gradient
fulfils zi∗ := ui∗+1−ui∗

λn
> zfrac.

Especially for the classical Lennard-Jones potential, zfrac is the inflection point, see Figure 7.1.
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7 Fracture on the discrete scale

J(z)

z

J

δ zfrac

Figure 7.1 | Jump threshold. For a classical Lennard-Jones potential J, where zfrac is the inflection point.

Similar definitions and constructions are well known, e.g., from image processing or numerical
simulations, where an edge or a shock, respectively, is characterized as a given quantity being larger
than a presumed value. The new idea here is to take the (generalized version of the) inflection
point of the Lennard-Jones type potential as the threshold for the jump regime.

The threshold from Definition 7.1 is well defined. Indeed, by (LJ5) and Remark 5.2 (iii), we know

that
∂2 J(z)

∂z2

∣∣∣∣
z=δ

> C for some constant C > 0. Together with (LJ4), which ensures that J ∈ C3, we

know that for all Lennard-Jones type potentials there exists an a > 0 with
∂2 J(z)

∂z2 > 0 on [δ, a].

Before we continue with further definitions concerning the threshold of fracture we highlight
some technical properties of the Lennard-Jones type potentials, corresponding to the newly defined
jump point. These properties follow from (LJ1)–(LJ5).

Proposition 7.2. Let Assumption 5.3 be satisfied. Then the following statements hold true for all J ∈
Jreg(α, b, c, d, Ψ, η):

(i) J is strictly convex on (0, zfrac), i.e.
∂2 J(z)

∂z2 > 0 for z ∈ (0, zfrac).

(ii)
∂J
∂z

is increasing and positive on (δ, zfrac).

(iii) There exists zsup
frac ∈ R with sup{zfrac : J ∈ Jreg(α, b, c, d, Ψ, η)} = zsup

frac.

Proof. Step 1. Proof of (i) and (ii).

Since we know from (LJ2) that J is strictly convex on (0, δ), we get
∂2 J(z)

∂z2 > 0 on (0, δ]. To-

gether with Definition 7.1, this yields
∂2 J(z)

∂z2 > 0 on (0, zfrac) or rather that J is strictly convex on

(−∞, zfrac), which proves (i). Therefore, it also holds true that
∂J
∂z

is increasing on (δ, zfrac), which

proves the first part of claim (ii).

A Taylor expansion yields

∂J
∂z

(z) =
∂J
∂z

(δ) +
∂2 J
∂z2 (ξ)(z− δ) for some ξ ∈ [δ, z].

Together with
∂J
∂z

being increasing and δ being the minimizer of J, i.e.
∂J
∂z

(δ) = 0 due to (LJ2), we
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7.1 Jump threshold

get for z ∈ (δ, zfrac)

∂J
∂z

(z) =
∂2 J
∂z2 (ξ)(z− δ) > 0,

which proves the second claim of (ii).

Step 2. Proof of (iii).

By claim (i), it holds true that ∂J
∂z is increasing on (δ, zfrac). Convexity further yields, for all ε ≤ η,

J(δ+ε)− J(δ) ≤ ∂J
∂z

(δ+ε)ε.

Using (LJ5), we then get

1
c
ε2

(LJ5)
≤ J(δ+ε)− J(δ) ≤ ∂J

∂z
(δ+ε)ε,

which yields

1
c
ε ≤ ∂J

∂z
(δ+ε). (7.1)

Further with (LJ4), we can calculate

J(zfrac) = J(δ+ε) +
∫ zfrac

δ+ε

∂J
∂z

(x) dx

(∗)
≥ −d +

1
c
ε(zfrac − δ−ε) ≥ −d +

1
c
ε(zfrac − d−ε),

(7.2)

where in (∗) we used (LJ2), (7.1) and claim (ii) (the first derivative is increasing and therefore
minimal at δ+ε on the integration area).

Assume, as a contradiction argument, that for one J we have zfrac > max
{

d , (b+d)c
ε + d +ε

}
=

(b+d)c
ε + d +ε. We then get

J(zfrac)
(7.2)
≥ −d +

1
c
ε(zfrac − d−ε) > b and zfrac > d,

which is a contradiction to (LJ2). Therefore, it holds true that zfrac ≤ Ĉ, and we can define
zsup

frac := sup{zfrac : J ∈ Jreg(α, b, c, d, Ψ, η)}.

Recall the stochastic setting of our model of Chapter 3. For the fracture point, we set forω ∈ Ω

zfrac(ω) := sup
{

a :
∂2 J(ω, z)

∂z2 > 0 on [δ(ω), a]
}

.

After the definition of the jump point for the interaction potentials, we now define the threshold
of fracture, separating the elastic and the jump regime. This is done by means of the energy. First,
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7 Fracture on the discrete scale

the minimal energy of our chain of atoms is defined as

Mn(ω, z) = min

{
n−1

∑
i=0

λn J
(
τiω,

ui+1 − ui

λn

)
: u ∈ An(0, 1), u(0) = 0, u(1) = z

}
.

In the following, we switch to a different notation for better readability. That is, we use the change
of variables zi

n := ui+1−ui

λn
and accordingly the adapted boundary condition ∑

n−1
i=0 zi

n = nz.

We are interested in energy minimization together with the question whether a jump occurs or
not. The jump is only preferable if the energy of the chain with jump is smaller than any energy
without a jump. Therefore we define a minimal elastic energy

Mel
n (ω, z) :=



min

{
n−1

∑
i=0

λn J
(
τiω, zi

n

)
:

n−1

∑
i=0

zi
n = nz, zi

n ≤ zfrac(τiω) ∀i ∈ {0, ..., n− 1}
}

if z ≤ λn

n−1

∑
i=0

zfrac(τiω),

+∞ otherwise.

The definition of Mel
n takes into account the fact that, for large values of z, it is not possible to fulfil

∑
n−1
i=0 zi

n = nz and zi
n ≤ zfrac(τiω) for all i ∈ {0, ..., n− 1} simultaneously. Further, we define a

minimal fracture energy

Mfrac
n (ω, z) := inf

{
n−1

∑
i=0

λn J(τiω, zi
n) :

n−1

∑
i=0

zi
n = nz, ∃ î ∈ {0, ..., n− 1} with zî

n ≥ zfrac
(
τîω

)}
.

Note that if the minimizer of Mn(ω, z) fulfils zi
n ≤ zfrac(τiω) for all i ∈ {0, ..., n− 1}, then we get

Mel
n (w, z) = Mn(ω, z). On the other hand, if the minimizer of Mn(ω, z) consists at least of one

î ∈ {0, ..., n− 1} such that zî
n ≥ zfrac(τîω), then Mfrac

n (ω, z) = Mn(ω, z) holds true.

With the definitions of the minimal elastic and fracture energy, we define the threshold for a
jump in the discrete picture as

`∗n(ω) := sup
{
` ∈ R : Mel

n (ω, `) ≤ Mfrac
n (ω, `)

}
.

The limiting behaviour and the convergence rate of this variable is the topic of the next sections.
For preparing the convergence analysis, we first prove that `∗n is bounded.

Proposition 7.3. Let Assumption 5.3 be fulfilled. Then, it holds true that 1
d ≤ `∗n(ω) ≤ zsup

frac for every
n ∈ N and for everyω ∈ Ω, with the constant d from (LJ2).

Proof. Step 1. Upper bound.

The upper bound is given by zsup
frac from Proposition 7.2 (iii). This follows from the definition of

Mel
n and `∗n(ω), since we have `∗n(ω) ≤ λn ∑

n−1
i=0 zfrac(τiω) ≤ λn ∑

n−1
i=0 zsup

frac = zsup
frac.

Step 2. Lower bound.

To prove that `∗n(ω) ≥ 1
d , we have to show that Mel

n (ω, z) ≤ Mfrac
n (ω, z) for all z ≤ 1

d . We
drop for a moment ω in the formulae for better readability. Thus, assume zi

n to be a min-
imizer of Mfrac

n (z) for z ≤ 1
d , i.e. to fulfill the constraint ∑

n−1
i=0 zi

n = nz and define the set
În :=

{
i ∈ {0, ..., n− 1}, zi

n ≥ zfrac(τiω)
}

. În is not empty, by definition of Mfrac
n .
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7.1 Jump threshold

Now, we introduce γi ≥ 0 such that the following conditions are satisfied:

(i) zi
n +γi ≤ δi if zi

n ≤ δi,

(ii) γi = 0 if zi
n > δi,

(iii) ∑
n−1
i=0 γi = ∑i∈ În

(
zi

n − δi
)
.

Especially, this definition yields γi = 0 for i ∈ În. The well-posedness of the conditions for γi can
be proven by showing that (ii) and (iii) allow for (i). Set Ǐn :=

{
i ∈ {0, ..., n− 1} : zi

n ≤ δi
}

. By
definition, we get

1
n

n−1

∑
i=0
δi ≥

1
d
≥ z =

1
n

n−1

∑
i=0

zi
n.

and with this

∑
i∈ Ǐn

(
δi − zi

n

)
≥ ∑

i∈ În

(
zi

n − δi

)
+ ∑

i/∈( În∪ Ǐn)

(
zi

n − δi

)
≥ ∑

i∈ În

(
zi

n − δi

)
(iii)
=

n−1

∑
i=0
γi

(ii)
≥ ∑

i∈ Ǐn

γi ,

since zi
n − δi > 0 for i /∈

(
În ∪ Ǐn

)
. This shows (i) and therefore γi with the required properties

exist. With this, we now define

z̄i
n :=

δi for i ∈ În,

zi
n +γi else.

The constraint is still fulfilled, since γi = 0 for i ∈ În by definition and thus

1
n

n−1

∑
i=0

z̄i
n =

1
n

∑
i∈ În

δi + ∑
i/∈ În

(
zi

n +γi

) =
1
n ∑

i∈ În

δi +
1
n

n−1

∑
i=0

(
zi

n +γi

)
− 1

n ∑
i∈ În

zi
n

=
1
n ∑

i∈ În

(
δi − zi

n

)
+

1
n

n−1

∑
i=0
γi + z = z,

and it holds true that

λn

n−1

∑
i=0

Ji

(
zi

n

)
> λn

n−1

∑
i=0

Ji

(
z̄i

n

)
,

since Ji is strictly decreasing on (0, δi] due to (LJ2). By construction, it holds true that z̄i
n ≤ zfrac(τiω)

for all i = 0, ..., n− 1 and therefore we have

Mfrac
n (z) = λn

n−1

∑
i=0

Ji

(
zi

n

)
> λn

n−1

∑
i=0

Ji

(
z̄i

n

)
≥ Mel

n (z).

This shows

Mfrac
n (z)−Mel

n (z) > 0,

which proves the assertion.
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7 Fracture on the discrete scale

7.2 Lennard-Jones type potentials: (LJ6)–(LJ9)

We list the assumptions which we need for the following proofs and theorems. They deal with the
jump threshold and, related to this, with the second derivative and the curvature. For notational
convenience, we introduce for all J ∈ Jreg(α, b, c, d, Ψ, η)

mfrac := min {J(z) : z ∈ [zfrac,+∞)} ,

and the related definition for the stochastic setting for allω ∈ Ω

mfrac(ω) := min {J(ω, z) : z ∈ [zfrac(ω),+∞)} ,

which is the minimum value of J or J(ω, z), respectively, in the regime beyond the jump threshold.
Indeed, this is well defined because of (LJ2) and (LJ3) together with the continuity of J due to (LJ1).
The next two definitions introduce the class of Lennard-Jones type potentials J̄curv(α, b, c, d, Ψ, η)
and Jcurv(α, b, c, d, Ψ, η), respectively. They are subclasses of Jreg(α, b, c, d, Ψ, η) and are used for
the results in this section. A list of all assumptions from the different chapters can be found at the
end of the thesis.

Definition 7.4. Fix α ∈ (0, 1], b > 0, c > 0, d ∈ (1,+∞), η > 0, and a convex function Ψ : R →
[0,+∞] satisfying (3.2), as in Definition 5.1. We denote by J̄curv = J̄curv(α, b, c, d, Ψ, η) the class of
functions J : R→ R∪ {+∞} which satisfy the properties (LJ1)–(LJ5) from Definitions 3.1 and 5.1, and
additionally the following properties:

(LJ6) It holds true that zfrac − δ ≥ 1
b .

(LJ7) It holds true that mfrac − J(δ) ≥ 1
b .

(LJ8) It holds true that

inf
{

∂2 J(z)
∂z2 : z ∈ [δ, δ+ η]

}
≥ 1

c
.

(LJ9) It holds true that

sup
{

∂2 J(z)
∂z2 : z ∈ [δ, δ+ η]

}
≤ c.

Remark 7.5. (i) In the case of finitely many potentials, (LJ6)–(LJ9) are trivially fulfilled.

(ii) Due to the uniqueness of the minimum, cf. (LJ2), it holds true that mfrac > J(δ) for all J ∈
J (α, b, d, Ψ). (LJ7) additionally asks for a common lower bound of the difference between the unique
minimum and the other local minima.

(iii) (LJ9) can be replaced by a weaker assumption:

(H4) Fix 0 ≤ θ < 1
6 . Then it holds true that

sup
{

∂2 J
∂z2 (τiω, z) : z ∈ [δ(τiω), δ(τiω) + η] , ω ∈ Ω, i ∈ {0, ..., n− 1}

}
≤ cnθ .

This is no longer a property of the class of Lennard-Jones type potentials, but instead an assumption on the
random variable J(ω, ·). Consequently, we phrase this in an additional hypothesis (H4). We will give all of
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the following proofs with this weaker assumption (H4) instead of (LJ9). Indeed,

sup
{

∂2 J
∂z2 (τiω, z) : z ∈ [δ(τiω), δ(τiω) + η] , ω ∈ Ω, i ∈ {0, ..., n− 1}

}
≤ sup

J∈J̄curv

sup
{

∂2 J(z)
∂z2 : z ∈ [δ, δ+ η]

}
(LJ9)
≤ c ≤ cnθ .

(iv) In the case δ(ω) = 1 for allω ∈ Ω, (LJ6) reduces to inf{zfrac(ω) : ω ∈ Ω} > 1.

Since we want to replace assumption (LJ9) by (H4), we need a modified definition of the
Lennard-Jones type potentials J̄curv(α, b, c, d, Ψ, η), without assumption (LJ9).

Definition 7.6. Fix α ∈ (0, 1], b > 0, c > 0, d ∈ (1,+∞), η > 0 and a convex function Ψ : R →
[0,+∞] satisfying (3.2), as in Definition 5.1. We denote by Jcurv = Jcurv(α, b, c, d, Ψ, η) the class of
functions J : R→ R∪ {+∞} which satisfy the properties (LJ1)–(LJ8) from Definitions 3.1, 5.1 and 7.4.

The stochastic setting of the chain with Lennard-Jones type interaction potentials in the discrete
fracture setting is collected in the following assumption.

Assumption 7.7. Fix α ∈ (0, 1], b > 0, c > 0, d ∈ (1, ∞), η > 0, 0 ≤ θ < 1
6 and a convex

function Ψ : R → [0, ∞] satisfying (3.2). Let (Ω,F ,P) be a probability space and (τi)i∈Z be a family
of stationary and ergodic group actions in the sense of Section 3.2. We suppose that the random variable
J : Ω → Jcurv(a, b, c, d, Ψ, η) given as in Section 3.2 is measurable and (H2), (H3) as well as (H4) are
satisfied, with Jcurv(a, b, c, d, Ψ, η) as in Definition 7.6.

7.3 Convergence results

We are now in the position to consider convergence of the quantity `∗n in the limit n → ∞. This
is separated in two subsections. The difference between Section 7.3.1 and Section 7.3.2 is that in
the first one additionally δ(ω) = 1 for allω ∈ Ω is assumed, while in the second one, the fully
random potentials are considered. The additional assumption allows to consider also the limit of
the rescaled threshold γ∗n, arising from `∗n by the

√
λn-rescaling, as in Chapter 5.

7.3.1 Random potentials with fixed minimizers

In this section, we set δ(ω) = 1 for allω ∈ Ω.

First, we give preliminary results. The next proposition is dealing with minimizers of the
minimal elastic and fracture energies.

Proposition 7.8. Let Assumption 7.7 be satisfied. Let C > 0 be such that C2 > cb, with b, c being the
constants from the class of Lennard-Jones type potentials. Then, the following statements hold true for all
ω ∈ Ω.

(i) Any minimizer z̄n ∈ Rn of Mel
n
(
ω, 1 +

√
λnC

)
or Mfrac

n
(
ω, 1 +

√
λnC

)
, respectively, satisfies, for

n large enough,

0 ≤ ∂J
∂z

(
ω, z̄i

n

)
≤ cCnθ−

1
2 for all i ∈ {0, ..., n− 1}. (7.3)
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(ii) For a minimizer z̄n ∈ Rn of Mel
n
(
ω, 1 +

√
λnC

)
it holds true that, for n large enough,

1 ≤ z̄i
n ≤ 1 + c2Cnθ−

1
2 , (7.4)

for all i ∈ {0, ..., n− 1}, which especially yields z̄i
n → 1 uniformly as n→ ∞.

(iii) Any minimizer z̄n ∈ Rn of Mfrac
n

(
ω, 1 +

√
λnC

)
satisfies: If the subsequence (z̄nk ) fulfils z̄i

nk
≤

zfrac(τiω) for all i = 0, ..., n− 1, we have

1 ≤ z̄i
nk
≤ 1 + c2Cnθ−

1
2

k , (7.5)

for k large enough, which especially yields z̄i
nk
→ 1 uniformly as k→ ∞.

Further, there exists at least one subsequence (z̄nk ) and for every nk a corresponding index ink with

z̄
ink
nk → ∞ as k→ ∞.

Remark 7.9. When using (LJ9) instead of (H4), the corresponding inequalities read

(7.3) : 0 ≤ ∂J
∂z

(
ω, z̄i

n

)
≤ cCn−

1
2 ,

(7.4) : 1 ≤ z̄i
n ≤ 1 + c2Cn−

1
2 ,

(7.5) : 1 ≤ z̄i
nk
≤ 1 + c2Cn−

1
2

k .

Proof. We drop here the dependence ofω for a better readability and define zi
frac := zfrac(τiω),

Ji(z) := J(τiω, z) and mi
frac := mfrac(τiω). Then, we can use the short form J′i and J′′i for the first

and second derivative of J with respect to z.

Step 1. Proof of (i).

Let z̄n be a minimizer of Mel
n
(
1 +
√
λnC

)
or Mfrac

n
(
1 +
√
λnC

)
, respectively. Then, there exists

i1 such that z̄i1
n ≥ 1 +

√
λnC and i2 such that z̄i2

n ≤ 1 +
√
λnC. By (LJ6), we have zfrac − 1 ≥ 1

b and
hence

1 ≤ 1 +
√
λnC ≤ z̄i1

n , (7.6)

z̄i2
n ≤ 1 +

√
λnC < zi

frac, (7.7)

for sufficiently large n. Due to the method of Lagrange multipliers, it holds true that, for i =

0, ..., n− 1 and for n large enough such that
√
λnC < η,

0
(7.6)
≤ J′i1(z̄i1

n ) = J′i (z̄i
n) = J′i2(z̄i2

n )
(7.7)
≤ J′i2

(
1 +

√
λnC

)
= J′i2(1) + J′′i2(ξ)

√
λnC

(H4)
≤ Ccnθ

√
λn = cCnθ−

1
2 with ξ ∈

[
1, 1 +

√
λnC

]
,

where we used that for every i the function J′i is increasing for z ≤ zi
frac (Proposition 7.2 (i)) and

positive for z ≥ 1 (Proposition 7.2 (ii)). This proves for all i ∈ {0, ..., n− 1}

0 ≤ J′i (z̄i
n) ≤ cCnθ−

1
2 .
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Step 2. Proof of (ii) and the first part of (iii).

We can now use (7.1) and (7.3) for all ε ≤ η and n large enough (0 ≤ θ < 1
6 by definition), and

get

J′i (1) = 0 ≤ J′i (z̄i
n)

(7.3)
≤ cCnθ−

1
2 <

1
c
ε

(7.1)
≤ J′(1 +ε).

Therefore, for a minimizer of Mel
n
(
1 +
√
λnC

)
the following holds true, due to (LJ6): by definition,

we have z̄i
n ≤ zi

frac for all i = 0, ..., n− 1. Further, for all ε < 1
b ≤ zi

frac − 1 and since J′i is strictly
increasing on (−∞, zi

frac] due to Proposition 7.2 (i) and (ii), this yields 1 ≤ z̄i
n < 1 + ε. This

especially holds true for allε < min
{

1
b , η
}

. Thus, withξi ∈ [1, z̄i
n] ⊂ [1, 1 +ε] and n large enough,

we can use the mean value theorem to obtain

cCnθ−
1
2

(7.3)
≥ J′i

(
z̄i

n

)
= J′′i (ξi)(z̄i

n − 1)
(LJ8)
≥ 1

c
(z̄i

n − 1),

which yields

1 ≤ z̄i
n ≤ 1 + c2Cnθ−

1
2 ,

and hence a uniform convergence z̄i
n → 1 as n→ ∞, since 0 ≤ θ < 1

6 by assumption.

The corresponding estimate holds true for every subsequence (z̄nk ) with z̄i
nk
≤ zi

frac of a mini-
mizer of the minimal fracture energy Mfrac

n
(
1 +
√
λnC

)
.

Step 3. Technical interlude.

In order to prepare the proof of (iii), we first study the following assertion: Let z̄n be a minimizer
of Mfrac

n
(
1 +
√
λnC

)
and define

Iw
n :=

{
i ∈ {0, ..., n− 1} : z̄i

n ≥ zi
frac

}
.

Then, it holds true that

|Iw
n |√
n
→ 0 as n→ ∞. (7.8)

The proof of this assertion is given in the following. Assume that |I
w
n |√
n does not converge to zero.

Then, there exists an ε > 0 such that for a subsequence (not relabelled) it holds true that

|Iw
n |√
n
≥ ε (7.9)

We want to compare the minimizer z̄n with another competitor ẑn fulfilling also the boundary
constraints of Mfrac

n
(
1 +
√
λnC

)
. We set iw

min := min{i : i ∈ Iw
n } and set

ẑi
n :=


√

nC + 1 for i = iw
min,

1 otherwise.
(7.10)

which is well defined, since |Iw
n | ≥ 1 holds true due to the definition of Mfrac

n . Consequently, we
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get with the minimizer z̄n

Mfrac
n

(
1 +

√
λnC

)
= λn

n−1

∑
i=0

Ji(z̄i
n) = λn ∑

i 6=iwmin

Ji

(
z̄i

n

)
+ λn Jiwmin

(
z̄iwmin

n

)
, (7.11)

and with the new competitor ẑn

Mfrac
n

(
1 +

√
λnC

)
≤ λn

n−1

∑
i=0

Ji(ẑi
n) = λn ∑

i 6=iwmin

Ji (1) + λn Jiwmin

(
C
√

n + 1
)

. (7.12)

We now calculate the difference of (7.11) and (7.12) and show that this difference is strictly positive,
which is a contradiction to the minimality of z̄n. Indeed for n large enough, it holds true that

λn ∑
i 6=iwmin

(
Ji

(
z̄i

n

)
− Ji(1)

)
+ λn

(
Jiwmin

(
z̄iwmin

n

)
− Jiwmin

(
C
√

n + 1
))

(LJ2)
≥ λn ∑

i∈Iw
n

i 6=iwmin

(
Ji

(
z̄i

n

)
− Ji(1)

)
+ λn

(
−b− Jiwmin

(
C
√

n + 1
))

≥ λn ∑
i∈Iw

n
i 6=iwmin

(
mi

frac − Ji(1)
)
+ λn

(
−b− Jiwmin

(
C
√

n + 1
))

(LJ7)
≥ |Iw

n | − 1
n

1
b
+

1
n

(
−b− Jiwmin

(
C
√

n + 1
))

(7.9)
≥ 1

n

(
(
√

nε− 1)
1
b
− b− Jiwmin

(
C
√

n + 1
))

> 0.

The lower bound by zero follows from (H3) for n large enough. Thus, this is the desired contradic-
tion and therefore (7.9) is wrong and (7.8) is proven.

Step 4. Proof of the second part of (iii).

Assume z̄n to be a minimizer of Mfrac
n

(
1 +
√
λnC

)
which is uniformly bounded, i.e. z̄i

n ≤ A
holds true for all n and for all i = 0, ..., n− 1.

With the boundary condition of Mfrac
n

(
1 +
√
λnC

)
, we get by the uniform bound of the mini-

mizer √
λnC =

1
n ∑

i/∈Iw
n

(z̄i
n − 1) +

1
n ∑

i∈Iw
n

(z̄i
n − 1) ≤ 1

n ∑
i/∈Iw

n

(z̄i
n − 1) +

|Iw
n |
n

(A− 1),

thus

0 ≤
√
λn

(
C− |I

w
n |√
n
(A− 1)

)
≤ 1

n ∑
i/∈Iw

n

(z̄i
n − 1), (7.13)

for n large enough. The lower bound by zero follows from (7.8).

We use once again ẑn from (7.10) as a competitor for the minimum problem of the minimal
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fracture energy Mfrac
n

(
1 +
√
λnC

)
, fulfilling also the boundary constraint. Thus, the difference of

(7.11) to (7.12) is calculated and it is shown that this difference is strictly positive. Therefore, this is
a contradiction to the minimality of z̄n. Indeed, it holds true for n large enough that

λn ∑
i 6=iwmin

Ji

(
z̄i

n

)
+ λn Jiwmin

(
z̄iwmin

n

)
− λn ∑

i 6=iwmin

Ji (1)− λn Jiwmin

(
C
√

n + 1
)

(LJ2)
≥ λn ∑

i/∈Iw
n

(
Ji

(
z̄i

n

)
− Ji (1)

)
+ λn

(
−b− Jiwmin

(
C
√

n + 1
))

(LJ5)
≥ λn

1
c ∑

i/∈Iw
n

(
z̄i

n − 1
)2

+ λn

(
−b− Jiwmin

(
C
√

n + 1
))

,

and continuing with the Hölder-inequality

≥ 1
c

n
n− |Iw

n |

(
1
n ∑

i/∈Iw
n

(
z̄i

n − 1
))2

+
1
n

(
−b− Jiwmin

(
C
√

n + 1
))

(7.13)
≥ 1

c

(√
1
n

(
C− |I

w
n |√
n
(A− 1)

))2

+
1
n

(
−b− Jiwmin

(
C
√

n + 1
))

=
1
n

(
1
c

(
C− |I

w
n |√
n
(A− 1)

)2
− b− Jiwmin

(
C
√

n + 1
))

> 0,

for n large enough. The last inequality, i.e. the strict lower bound by zero, is due to (H3) and (7.8),
from which we have Jiwmin

(
C
√

n + 1
)
→ 0 and |Iw

n |/
√

n→ 0, and from the assumption C2 > cb of
the proposition.

Thus, this is the desired contradiction and therefore the claim of the uniform bound of the
minimizer z̄n is wrong. This shows assertion (iii).

The next proposition is a refinement of Proposition 7.3, that asserts boundedness of `∗n. Now, we
derive a sharper upper bound.

Proposition 7.10. Let Assumption 7.7 be fulfilled. Let C > 0 be such that C2 > cb, with b, c being the
constants of the class of Lennard-Jones type potentials. Then, it holds true that `∗n(ω) ≤ 1 +

√
λnC for all

ω ∈ Ω and for n ∈ N large enough.

Proof. We drop here the dependence ofω for better readability and define Ji(z) := J(τiω, z). We
show in the following that for a fixed C > 0 with C2 > cb there exists n0 ∈ N such that for all
x ∈

[
1 +
√
λnC,+∞) and n ≥ n0 it holds true that Mel

n (x) > Mfrac
n (x), which then yields the

assertion.

Step 1: Proof of Mfrac
n

(
1 +
√
λnC

)
< Mel

n
(
1 +
√
λnC

)
for large n.

Fix C > 0 with C2 > cb. Let zn be a minimizer of Mel
n
(
1 +
√
λnC

)
. Since (7.4) shows that zi

n → 1
uniformly for all i, we get from (LJ5), because zi

n ≤ 1 + η for all n > n1 with n1 ∈ N, and together
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with Jensen’s inequality

Mel
n

(
1 +

√
λnC

)
≥ λn

n−1

∑
i=0

(
Ji(1) +

1
c
(zi

n − 1)2
)

≥ λn

n−1

∑
i=0

Ji(1) +
1
c

(
λn

n−1

∑
i=0

(zi
n − 1)

)2

= λn

n−1

∑
i=0

Ji(1) +
1
c

C2λn.

(7.14)

On the other hand, for n large enough, the competitor zi
n := 1 for i ≥ 1 and z0

n :=
√

nC + 1 > zfrac

satisfies the boundary constraint ∑
n−1
i=0 zi

n = n(1 +
√
λnC) and thus we have

Mfrac
n

(
1 +

√
λnC

)
≤ λn

n−1

∑
i=1

Ji(1) + λn J0(
√

nC + 1)

= λn

n−1

∑
i=0

Ji(1) + λn
(

J0(
√

nC + 1)− J0(1)
)

.

(7.15)

Since C2 > cb by assumption, there exists ε > 0 with C2 = cb +ε. Due to (H3), there also exists
n2 ∈ N such that

∣∣J0(
√

nC + 1)
∣∣ ≤ ε

2c for all n ≥ n2. Thus, we define n0 = max{n1, n2} and get
for all n > n0 by (7.14) and (7.15)

Mel
n

(
1 +

√
λnC

)
−Mfrac

n

(
1 +

√
λnC

)
≥ λn

(
1
c

C2 − J0(
√

nC + 1) + J0(1)
)

(LJ2)
> λn

(
b +

ε

c
− J0(

√
nC + 1)− b

)
= λn

(ε
c
− J0(

√
nC + 1)

)
≥ λn

ε

2c
> 0.

(7.16)

This yields for all n > n0

Mfrac
n

(
1 +

√
λnC

)
< Mel

n

(
1 +

√
λnC

)
,

which concludes Step 1.

Step 2: Proof of Mfrac
n

(
1 +
√
λnC∗

)
< Mel

n
(
1 +
√
λnC

)
for large n.

Now, consider C∗ > C. Analogously to (7.15) we obtain

Mfrac
n

(
1 +

√
λnC∗

)
≤ λn

n−1

∑
i=0

Ji(1) + λn
(

J0(
√

nC∗ + 1)− J0(1)
)

.

Due to (H3), it holds true that
∣∣J0(
√

nC∗ + 1)
∣∣ ≤ ε

2c for all n ≥ n2 with the same index n2 as before,
since

√
nC + 1 <

√
nC∗ + 1. Thus, with an analogous calculation as in (7.16) we get for all n > n0

Mel
n

(
1 +

√
λnC

)
−Mfrac

n

(
1 +

√
λnC∗

)
> λn

ε

2c
> 0,

which yields

Mfrac
n

(
1 +

√
λnC∗

)
< Mel

n

(
1 +

√
λnC

)
,

which concludes Step 2.
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Step 3: Proof of Mel
n
(
1 +
√
λnC

)
< Mel

n
(
1 +
√
λnC∗

)
for large n.

Let zn be a minimizer of Mel
n
(
1 +
√
λnC∗

)
. Due to the boundary constraint, which reads

∑
n−1
i=0 zi

n = n
(
1 +
√
λnC∗

)
, it holds true

n−1

∑
i=0

(zi
n − 1) =

√
nC∗ >

√
n(C∗ − C).

Thus, there exists βi
n ≥ 0 with ∑

n−1
i=0 β

i
n =

√
n(C∗ − C) such that zi

n − βi
n ≥ 1. We define a

competitor z̄n for the minimum problem of Mel
n
(
1 +
√
λnC

)
by

z̄i
n := zi

n −βi
n

for all i ∈ {0, ..., n− 1}. Indeed, z̄n fulfils the boundary constraint, since

n−1

∑
i=0

z̄i
n =

n−1

∑
i=0

zi
n −

n−1

∑
i=0
βi

n = n
(

1 +
√
λnC∗

)
−
√

n(C∗ − C) = n
(

1 +
√
λnC

)
.

For all i = 0, ..., n− 1, it holds true that zi
n ≤ zi

frac by definition of the minimal elastic energy, and
due to Proposition 7.8 it is zi

n ≥ 1. The definition of βn further yields z̄i
n ≤ zi

frac and z̄i
n ≥ 1 and

z̄i
n ≤ zi

n. Since Proposition 7.2 shows that J′i is positive on (1, zi
frac), we get Ji(z̄i

n) ≤ J(zi
n), which

gives

Mel
n

(
1 +

√
λnC

)
≤ Mel

n

(
1 +

√
λnC∗

)
. (7.17)

This includes also the trivial case of C∗ being large, where Mel
n
(
1 +
√
λnC∗

)
= +∞. Thus, Step 3

is proven.

Step 4: Conclusion.

The result of Step 2, together with (7.17), yields

Mfrac
n

(
1 +

√
λnC∗

)
< Mel

n

(
1 +

√
λnC∗

)
,

for every C∗ ≥ C. Since C∗ can be chosen arbitrarily large, this yields for all n > n0

Mfrac
n (x) < Mel

n (x)

for all x ∈
[
1 +
√
λnC,+∞). Therefore, by definition of `∗n, we get `∗n ≤ 1 +

√
λnC, which proves

the assertion of the proposition.

As announced earlier, we consider here not only the threshold `∗n but also its rescaled version γ∗n.
The rescaling is done in the same way as in Chapter 5, i.e. we switch from the boundary data `∗n of
the deformation to the boundary value γ∗n of the displacement and additionally scale it with

√
λn.

Together, this reads

γ∗n(ω) :=
`∗n(ω)− 1√

λn
.
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The following theorem gives the limiting behaviour of both, the threshold `∗n and its rescaled
version γ∗n.

Theorem 7.11. Let Assumption 7.7 be satisfied. Then, there exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that
for allω ∈ Ω′ it holds true that

lim
n→∞γ∗n(ω) = lim

n→∞ `∗n(ω)− 1√
λn

=

√
β

α
,

where α :=
(
E[ 1
α ]
)−1

and β := inf{−J(ω, δ(ω)) : ω ∈ Ω} = inf{−J(ω, 1) : ω ∈ Ω}, with

α(ω) := 1
2

∂2 J(ω,z)
(∂z)2

∣∣∣
z=δ(ω)

. Particularly, this yields

lim
n→∞ `∗n(ω) = 1.

Proof. We drop here the dependence onω for better readability and define zi
frac := zfrac(τiω) and

Ji(z) := J(τiω, z). Then, the first, second and third derivative with respect to z are written J′i , J′′i
and J′′′i in short.

From Propositions 7.3 and 7.10, we get

1
d
− 1 ≤ γ∗n =

`∗n − 1√
λn
≤ C,

with C2 > cb. This shows that every subsequence of γ∗n has a convergent subsequence. We define

A as its limit and prove the limit to be equal to
√
β
α and thus independent of the subsequence.

Step 1. Proof of A ≤
√
β

α
.

We prove this by a contradiction argument. Assume that A >

√
β

α
. Then, for every ε > 0 (small

enough) there exists N ∈ N such that

γ∗n >

√
β

α
+ε for n > N. (7.18)

Let σn ≥ 0 be such that σn < λn

√
β
α <
√
λn

√
β
α <
√
λn

√
β
α +ε <

√
λnγ

∗
n. Then, we obtain

√
λnγ

∗
n −σn >

√
λn

(√
β

α
+ε−

√
β

α

)
=
√
λn

ε√
β
α +ε+

√
β
α

≥
√
λn

ε

2
√
β
α +ε

≥
√
λnεCε,

(7.19)

with Cε > 0. Together with Proposition 7.10, this yields

1 +
√
λnεCε ≤ `∗n −σn ≤ 1 +

√
λnC, (7.20)

with a fixed constant C > 0 fulfilling C2
> cb. Let zn be a minimizer of Mel

n (`∗n−σn), i.e. ∑
n−1
i=0 zi

n =

n (`∗n −σn). Further, we define z̄i
n := zi

n−1√
λn

, or equivalently zi
n = 1 +

√
λn z̄i

n. Note that this
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definition yields λn ∑
n−1
i=0 z̄i

n = 1√
λn

(`∗n −σn − 1) = γ∗n −
√

nσn. Now, we get

Mel
n (`∗n −σn) = λn

n−1

∑
i=0

Ji

(
1 +

√
1
n

z̄i
n

)

= λn

n−1

∑
i=0

Ji(1) + λn

n−1

∑
i=0

1
2

J′′i (1)λn

(
z̄i

n

)2
+ λn

n−1

∑
i=0

1
6

J′′′i (ξi)
1

n3/2

(
z̄i

n

)3

(∗)
≥ λn

n−1

∑
i=0

Ji(1) + λn

(
λn

n−1

∑
i=0

1
αi

)−1 (
γ∗n −

√
nσn

)2
+ λn

n−1

∑
i=0

1
6

J′′′i (ξi)
1

n3/2

(
z̄i

n

)3
,

(7.21)

with ξi ∈
[
1, 1 +

√
λn z̄i

n
]

and (∗) from Lemma 2.24.

Since (7.20) holds true, we can apply Proposition 7.8 (i) with C = C(n) and εCε ≤ C(n) ≤ C. We
can derive from (7.3) with ξi ∈

[
1, 1 +

√
λn z̄i

n
]

cCnθ−
1
2 ≥ J′i

(
1 +

√
λn z̄i

n

) (7.1)
≥ 1

c

√
λn z̄i

n,

since
√
λn z̄i

n ≤ η for n large enough because of the uniform convergence 1 +
√
λn z̄i

n → 1 due to
(7.4) in Proposition 7.8 (ii). It follows that

z̄i
n ≤ c2Cnθ

holds true and therefore, with κM := c2CMθ− 1
2 and M < n,

λn

n−1

∑
i=0

1
6

J′′′i (ξi)
1

n3/2

(
z̄i

n

)3
≤ 1

n3/2
1
6

(
c2C
)3

n3θλn

n−1

∑
i=0

J′′′i (ξi)

≤ n3θ− 3
2

1
6

(
c2C
)3
λn

n−1

∑
i=0

sup
{ ∣∣J′′′i (x)

∣∣ , x ∈ [1−κM, 1 +κM]
}
= n3θ− 3

2
1
6

(
c2C
)3
λn

n−1

∑
i=0

CκM
i ,

with CκM
i from (H2). From Proposition 5.5 and (H2), we get, for n large enough, the existence of

an M∗ such that λn ∑
n−1
i=0 CκM∗

i → E[CκM∗ ] < ∞ as n→ ∞, and thus the sum is also bounded by a
constant C̃ > 0. Altogether, (7.21) yields, for n large enough,

Mel
n (`∗n −σn) ≥ λn

n−1

∑
i=0

Ji(1) + λn

(
λn

n−1

∑
i=0

1
αi

)−1 (
γ∗n −

√
nσn

)2 − n3θ− 3
2

1
6

(
c2C
)3

C̃. (7.22)

On the other hand, for n large enough, the competitor zi
n := 1 for i ≥ 1 and z0

n := n
(√
λnγ

∗
n −σn

)
+

1 > zfrac satisfies the boundary constraint ∑
n−1
i=0 zi

n = n(`∗n −σn) and thus we have

Mfrac
n (`∗n −σn) ≤ λn

n−1

∑
i=1

Ji(1) + λn JÎn

(
n
(√

λnγ
∗
n −σn

)
+ 1
)

= λn

n−1

∑
i=0

Ji(1) + λn

(
JÎn

(
n
(√

λnγ
∗
n −σn

)
+ 1
)
− JÎn

(1)
)

≤ λn

n−1

∑
i=0

Ji(1) + λn

(
max

i∈{0,...,n−1}
|Ji (xn)| − JÎn

(1)
)

,

(7.23)
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with xn := n
(√
λnγ

∗
n −σn

)
+ 1 ≥

√
nCεε due to (7.19) and with În := argmin{−Ji(1) : 0 ≤ i ≤

n− 1}.

We combine the results of (7.18), (7.22), (7.23) and 0 < σn < λn

√
β
α with the fact that γ∗n is

bounded by C f > 0, since it is convergent. This yields for n large enough, together with the

definitionsαn :=
(
λn ∑

n−1
i=0

1
αi

)−1
and βn := min{−Ji(1) : 0 ≤ i ≤ n− 1},

Mel
n (`∗n −σn)−Mfrac

n (`∗n −σn)

≥ λn

(
αn

(
(γ∗n)

2 − 2
√

nσnγ
∗
n + nσ2

n

)
− 1

6
n3θ− 1

2

(
c2C
)3

C̃−
(

max
i∈{0,...,n−1}

|Ji (xn)| − JÎn
(1)
))

≥ λn

(
αn

(
β

α
+ε

)
−αn2

√
nλn

√
β

α
C f −

1
6

n3θ− 1
2

(
c2C
)3

C̃−βn − max
i∈{0,...,n−1}

|Ji (xn)|
)

≥ λn

((
αn

α
− 1
)
β+ (β−βn) +αnε−

2αn√
n

√
β

α
C f −

n3θ− 1
2

6

(
c2C
)3

C̃− max
i∈{0,...,n−1}

|Ji (xn)|
)

.

(7.24)

The definition implies βn(ω) ≤ βn(ω, x,ε), with βn(ω, x,ε) from (5.28), for every x ∈ [0, 1]. In
(5.29), we proved forω ∈ Ω′ that we have lim

n→∞βn(ω, x,ε) ≤ β. Further, βn ≥ β also holds true by

definition. Together, this yields βn → β as n→ ∞. Since (H3) yields maxi∈{0,...,n−1} |Ji (xn)| → 0,
and it holds true that 3θ− 1

2 < 0 andαn → α by Proposition 5.5 as N → ∞, we get from (7.24) for
n large enough

Mel
n (`∗n −σn)−Mfrac

n (`∗n −σn) > 0,

because αn → α > 0 and ε > 0. This holds true for every 0 ≤ σn < λn

√
β
α , and therefore we

get Mel
n (x) > Mfrac

n (x) for all x ∈
(
`∗n − λn

√
β
α , `∗n

]
. This is a contradiction to the definition of `∗n.

Therefore, the claim is wrong and we obtain A ≤
√
β

α
.

Step 2. Proof of A ≥
√
β

α
.

We proof this by a contradiction argument. Assume that A <

√
β

α
. Then, for every ε > 0 (small

enough) there exists an N ∈ N such that

γ∗n <

√
β

α
−ε for n > N,

and therefore

`∗n <
√
λn

√
β

α
−ε+ 1 =: kn for n > N. (7.25)

Since ẑi
n :=

√
β
α −ε

(
λn ∑

n−1
i=0

1
αi

)−1 1
αi

fulfils the boundary condition ∑
n−1
i=0 ẑi

n = n
√
β
α −ε, we get
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with ξi ∈
[
1, 1 +

√
λn ẑi

n
]

Mel
n (kn) ≤ λn

n−1

∑
i=0

Ji

(
1 +

√
λn ẑi

n

)

= λn

n−1

∑
i=0

Ji(1) + λn

n−1

∑
i=0

1
2

J′′i (1)λn

(
ẑi

n

)2
+ λn

n−1

∑
i=0

1
6

J′′′i (ξi)
1

n3/2

(
ẑi

n

)3

= λn

n−1

∑
i=0

Ji(1) + λn

(
β

α
−ε
)
αn + λn

√(
β
α −ε

)3
α3

n

6
1

n3/2

n−1

∑
i=0

J′′′i (ξi)
1
α3

i
.

We already know that αn → α as n → ∞ forω ∈ Ω′, which yields that αn is bounded. Further,

α−1
i ≤ Ĉα for all i by Remark 5.2 (iii). Thus, ẑi

n =
√
β
α −εαn

1
αi

is also bounded and therefore

ξi ∈
[
1, 1 +

√
λnC

]
. Using these results, we get, with κM :=

√
1
M C and M < n, that

λn

√(
β
α −ε

)3
α3

n

6
1

n3/2

n−1

∑
i=0

J′′′i (ξi)
1
α3

i
≤ 1

n3/2
Ĉλn

n−1

∑
i=0

J′′′i (ξi)

≤ 1
n3/2

Ĉλn

n−1

∑
i=0

sup
{∣∣J′′′i (x)

∣∣ : x ∈ [1−κM, 1 +κM]
}
=

1
n3/2

Ĉλn

n−1

∑
i=0

CκM
i .

with CκM
i from (H2). Again from (H2), we get the existence of an M∗ for which it holds true that,

together with Proposition 5.5, λn ∑
n−1
i=0 CκM∗

i → E[CκM∗ ] < ∞. Therefore the sum is also bounded
by a constant Č > 0. Altogether, this yields for n large enough

Mel
n (kn) ≤ λn

n−1

∑
i=0

Ji(1) + λn

(
β

α
−ε
)
αn +

1
n3/2

C̃. (7.26)

On the other hand, we take a minimizer z̄i
n of Mfrac

n (kn). From Proposition 7.8 (iii), we get the
existence of a subsequence (not relabelled) and for every n a corresponding index in with

z̄in
n → ∞ as n→ ∞. (7.27)

We define În as the index iN for which z̄ În
n > zi

frac. Then, we get

Mfrac
n (kn) = λn

n−1

∑
i=0

Ji

(
z̄i

n

)
= λn

n−1

∑
i=0

i 6= În

Ji

(
z̄i

n

)
+ λn JÎn

(z̄ În
n )

≥ λn

n−1

∑
i=0

i 6= În

Ji (1) + λn JÎn
(z̄ În

n ) = λn

n−1

∑
i=0

Ji (1) + λn

(
JÎn

(z̄ În
n )− JÎn

(1)
)

.

(7.28)
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Altogether, (7.26) and (7.28) yield

Mfrac
n (kn)−Mel

n (kn) ≥ λn

(
JÎn

(z̄ În
n )− JÎn

(1)−
(
β

α
−ε
)
αn −

1
n1/2

C̃
)

≥ λn

(
JÎn

(z̄ În
n ) +βn −

(
β

α
−ε
)
αn −

1
n1/2

C̃
)

= λn

(
JÎn

(z̄ În
n ) + (βn −β) +

(
1− αn

α

)
β+εαn −

1
n1/2

C̃
)

.

(7.29)

Assumption (H3) together with (7.27) yields JÎn
(z̄ În

n ) → 0. Since αn → α > 0 and βn → β as
n→ ∞ forω ∈ Ω′ (c.f. Step 1), we get from (7.29) for n large enough

Mfrac
n (kn)−Mel

n (kn) > 0.

This is a contradiction to the definition of `∗n, because we know from (7.25) that kn > `∗n and

therefore `∗n is not the supremum. Therefore, the claim is wrong and we obtain A ≥
√
β

α
.

Step 3. Conclusion.

All in all, we have shown that for each subsequence there is a convergent subsequence (not
relabelled) such that

γ∗n :=
`∗n − 1√
λn
→

√
β

α
as n→ ∞.

Since the limit is independent of the chosen subsequence, the hole sequence converges. This
especially yields

`∗n → 1 as n→ ∞.

7.3.2 Fully random potentials

From now on, we drop the assumption δ(ω) = 1 for allω ∈ Ω and allow for arbitrary values of
δ(ω). In this case, we cannot recover the full Theorem 7.11, but part of it. The next theorems shows
us the limiting behaviour of the jump threshold `∗n.

Theorem 7.12. Let Assumption 7.7 be fulfilled. Then, there exists an Ω′ ⊂ Ω with P(Ω′) = 1 such that
for allω ∈ Ω′ it holds true that

lim
n→∞ `∗n(ω) = E[δ].

Proof. We drop here the dependence onω for a better readability and define zi
frac := zfrac(τiω)

and Ji(z) := J(τiω, z). Then, we can use the short form J′i , J′′i and J′′′i for the first, second and third
derivative with respect to z.

Due to Proposition 7.3, `∗n is bounded and therefore every subsequence of `∗n has a convergent
subsequence (not relabelled). We define A as its limit and prove the limit to be equal to E[δ] and
thus independent of the subsequence.
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Step 1. Proof of A ≤ E[δ].
We proof this by a contradiction argument. Assume that A > E[δ]. Then, for every ε > 0 (small

enough) there exists N̂ ∈ N such that

`∗n > E[δ] + 2ε for n > N̂.

Further, we know that λn ∑
n−1
i=0 δi → E[δ] and therefore there exists for every ε > 0 (small enough)

an Ñ ∈ N such that ∣∣∣∣∣λn

n−1

∑
i=0
δi −E[δ]

∣∣∣∣∣ < ε for n > Ñ.

Together, this yields for N := max{N̂, Ñ}

`∗n > λn

n−1

∑
i=0
δi +ε for n > N. (7.30)

Let σ ≥ 0 with σ < ε. Let zn be a minimizer of Mel
n (`∗n −σ). We set

In :=
{

i ∈ {0, ..., n− 1} : zi
n > δi +ε

}
.

It is 0 ≤ #In ≤ n and therefore 0 ≤ #In/n ≤ 1. Further, it holds true that #In/n→ Λ as n→ ∞, for
some Λ > 0. This can be seen by a contradiction argument. Assume #In/n→ 0. Then the upper
bound of the fracture points by zsup

frac from Proposition 7.2 (iii) yields

E[δ] + 2ε−σ < `∗n −σ =
1
n

n−1

∑
i=0

zi
n =

1
n ∑

i∈In

zi
n +

1
n ∑

i/∈In

zi
n

≤ 1
n

#Inzsup
frac +

1
n ∑

i/∈In

(δi +ε) =
1
n

#Inzsup
frac +

1
n ∑

i/∈In

δi +

(
1− #In

n

)
ε.

(7.31)

We further have

1
n ∑

i/∈In

δi =
1
n

n−1

∑
i=0
δi −

1
n ∑

i∈In

δi → E[δ] + 0,

because of the boundedness of δi and the assertion #In/n → 0. With this, we get from (7.31), as
n→ ∞,

E[δ] + 2ε−σ ≤ 0 +E[δ] +ε,

which is a contradiction to σ < ε, and therefore #In/n→ Λ > 0 as N → ∞ holds true.

Now, we can estimate, with J′i being positive on [δi , zi
frac] (see Proposition 7.2 (ii)) and with

ξi ∈ [δi , δi +ε],

Mel
n (`∗n −σ) = λn ∑

i∈In

Ji(zi
n) + λn ∑

i/∈In

Ji(zi
n) ≥ λn ∑

i∈In

Ji(δi +ε) + λn ∑
i/∈In

Ji(δi)
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= λn ∑
i∈In

(
Ji(δi) +αiε

2 +
J′′′i (ξi)

6
ε3
)
+ λn ∑

i/∈In

Ji(δi)

(∗)
≥ λn

n−1

∑
i=0

Ji(δi) + ĈCαε2 − λn

n−1

∑
i=0

∣∣J′′′i (ξi)
∣∣

6
ε3

(H2)
≥ λn

n−1

∑
i=0

Ji(δi) + ĈCαε2 − λn

n−1

∑
i=0

Cεi
6
ε3,

where in (∗) we used αi ≥ Cα from Remark 5.2 (iii) and #In/n ≥ Ĉ > 0, for n large enough and
with Ĉ < Λ, because of #In/n→ Λ > 0. Due to (H2), we have λn ∑

n−1
i=0 Cεi → E[Cε∗ ] ≤ C̃ for some

ε∗ small enough. This yields, for allω ∈ Ω′,

Mel
n (`∗n −σ) ≥ λn

n−1

∑
i=0

Ji(δi) + ĈCαε2 − λn

n−1

∑
i=0

Cεi
6
ε3

→ E[J(δ)] + ĈCαε2 − C̃
6
ε3 = E[J(δ)] +ε2

(
ĈCα −

C̃
6
ε

)
≥ E[J(δ)] +ε2C,

for C > 0 and ε small enough.

On the other hand, for n large enough, the competitor zi
n := δi for i ≥ 1 and z0

n := n (`∗n −σ)−(
∑

n−1
i=0 δi

)
+ δ0 satisfies the boundary constraint ∑

n−1
i=0 zi

n = n(`∗n −σ) and thus we have

Mfrac
n (`∗n −σ) ≤ λn

n−1

∑
i=1

Ji(δi) + λn J0

(
n (`∗n −σ)−

(
n−1

∑
i=0
δi

)
+ δ0

)

= λn

n−1

∑
i=0

Ji(δi) + λn

(
J0

(
n (`∗n −σ)−

(
n−1

∑
i=0
δi

)
+ δ0

)
− J0(δ0)

)

→ E[J(δ)] + 0,

since we have n
(
`∗n −σ − λn ∑

n−1
i=0 δi

)
≥ n(ε−σ) for n sufficiently large, due to (7.30), combined

with (LJ3). Together, this shows that for n large enough,

Mfrac
n (`∗n −σ) < Mel

n (`∗n −σ),

for every 0 ≤ σ < ε, and therefore we obtain Mel
n (x) > Mfrac

n (x) for all x ∈ (`∗n −ε, `∗n]. This is a
contradiction to the definition of `∗n. Therefore, the claim is wrong and the assertion A ≤ E[δ] is
proven.

Step 2. Proof of A ≥ E[δ].
We prove this by a contradiction argument. Assume that A < E[δ]. Then, for every ε > 0 (small

enough) there exists an N̂ ∈ N such that for all n > N̂

`∗n < λn

n−1

∑
i=0
δi −ε =: kn. (7.32)

Assume zi
n to be a minimizer of Mfrac

n (kn) fulfilling the constraint ∑
n−1
i=0 zi

n = nkn and define the
set În :=

{
i ∈ {0, ..., n− 1} : zi

n > zi
frac

}
. By definition of Mfrac

n , the set În is not empty. Now, we
introduce γi ≥ 0 such that the following conditions are satisfied:

(i) zi
n +γi ≤ δi if zi

n ≤ δi,
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(ii) γi = 0 if zi
n > δi,

(iii) ∑
n−1
i=0 γi = ∑i∈ În

(
zi

n − δi
)
.

Especially, this definition yields γi = 0 for i ∈ În. The well-posedness of the conditions for γi can
be proven by showing that (ii) and (iii) allow for (i). Set Ǐn :=

{
i ∈ {0, ..., n− 1} : zi

n ≤ δi
}

. From
(7.32), we get

1
n

n−1

∑
i=0
δi −ε = kn =

1
n

n−1

∑
i=0

zi
n ⇔ 1

n

n−1

∑
i=0

(
δi − zi

n

)
= ε,

and with this

1
n ∑

i∈ Ǐn

(
δi − zi

n

)
=

1
n ∑

i∈ În

(
zi

n − δi

)
+

1
n ∑

i/∈( În∪ Ǐn)

(
zi

n − δi

)
+ε ≥ 1

n ∑
i∈ În

(
zi

n − δi

)
(iii)
=

1
n

n−1

∑
i=0
γi

(ii)
≥ 1

n ∑
i∈ Ǐn

γi ,

since ε > 0 and zi
n − δi > 0 for i /∈

(
În ∪ Ǐn

)
. This shows (i) and therefore γi with the required

properties exist. With this, we now define

z̄i
n :=

δi for i ∈ În,

zi
n +γi else.

The constraint is still fulfilled, since

1
n

n−1

∑
i=0

z̄i
n =

1
n

∑
i∈ În

δi + ∑
i/∈ În

(
zi

n +γi

) =
1
n ∑

i∈ În

δi +
1
n

n−1

∑
i=0

(
zi

n +γi

)
− 1

n ∑
i∈ În

zi
n

=
1
n ∑

i∈ În

(
δi − zi

n

)
+

1
n

n−1

∑
i=0
γi + kn = kn,

and it holds true that

λn

n−1

∑
i=0

Ji

(
zi

n

)
> λn

n−1

∑
i=0

Ji

(
z̄i

n

)
,

since Ji is strictly decreasing on (zdom, δi] due to (LJ2). By construction, it holds true that z̄i
n ≤ zi

frac
for all i = 0, ..., n− 1 and therefore we have

Mfrac
n (kn) = λn

n−1

∑
i=0

Ji

(
zi

n

)
> λn

n−1

∑
i=0

Ji

(
z̄i

n

)
≥ Mel

n (kn).

This shows

Mfrac
n (kn)−Mel

n (kn) > 0,

which is a contradiction to the definition of `∗n, because we know from (7.32) that kn > `∗n holds
true and therefore `∗n is not the supremum. Therefore, the claim is wrong and we have A ≥ E[δ].
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7 Fracture on the discrete scale

Step 3. Conclusion.

All in all, we have shown that for each subsequence there is a convergent subsequence (not
relabelled) such that

`∗n → E[δ] as n→ ∞.

Since the limit is independent of the chosen subsequence, the hole sequence converges to E[δ].

7.4 Comparison to Γ-convergence results

In the previous sections, we have established the limit of the jump threshold in Theorem 7.12 and
7.11. The results are only valid under stricter assumptions than those imposed for the Γ -limit in
Theorem 4.14 and 5.8. In particular, the stronger assumptions are (LJ6)–(LJ9), and in Theorem 7.11
the additional assumption is δ(ω) = 1 for allω ∈ Ω. Nevertheless, we compare here the results
of the discrete fracture jump threshold with the results of the Γ -limits of zeroth order and of the
rescaled case.

The Γ -limit of zeroth order, Theorem 4.14, is finite for u ∈ BV`(0, 1) with Dsu ≥ 0 and reads

E`
hom(u) =

∫ 1

0
Jhom(u′(x)) dx.

Moreover, the theorem yields us information about the minimum values. They can be calculated as

min
u

E`
hom(u) = Jhom(`) =

Jhom(`) for ` < E[δ],

Jhom(E[δ]) for ` ≥ E[δ].

According to this, the threshold where the elastic and the jump regimes are separated is E[δ].
This exactly corresponds to the result of Theorem 7.12, which says that the fracture threshold `∗n
converges to the same value, i.e.

`∗n(ω)→ E[δ] as n→ ∞.

Even in the rescaled case, the results are in good compliance. The Γ -limit of the rescaled energy
in the

√
λn-scaling is given in Theorem 5.8. The energy is finite for v ∈ SBVγc (0, 1) and reads

Eγ(v) = α
∫ 1

0

∣∣v′(x)
∣∣2 dx +β#Sv.

Again, the theorem gives the minima of the energy. For γ > 0, they are given by

min
v

Eγ(v) = min{αγ2,β} =


αγ2 if γ <

√
β
α ,

β if γ ≥
√
β
α .

This shows us the threshold between elasticity and fracture in the rescaled case. In fact, the value√
β
α divides the region into elastic behaviour and the regime where cracks occur. The rescaled
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7.4 Comparison to Γ -convergence results

fracture threshold γ∗n, which arises from `∗n by the same
√
λn-rescaling in the same way than the

rescaled energy, provides the same information. Theorem 7.11 shows that

γ∗n(ω) =
`∗n(ω)− 1√

λn
→

√
β

α
as n→ ∞.

The techniques, by which the results for the threshold are calculated, are completely different.
While the Γ -limits from Chapter 4 and Chapter 5 are derived within the variational framework of
Γ -convergence, the theorems in this chapter are based only on convergence in the real numbers.
Nevertheless, they yield the same threshold that divides the elastic and the fracture regime of the
chain.

The Γ -limit of course specifies the limiting energy functional and gives information about the
minimizers. None of this is so far achieved in the framework of this chapter. It remains an open
problem whether it is possible to recover the same results as those of the Γ -limits.
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8 Outlook

As closing remarks we outline some ideas of possible extensions of the results of this thesis. The
most obvious generalisation is to consider higher dimensions. All results in this thesis are stated
and proven in the one-dimensional setting. Difficulties in dimensions higher than one are a proper
definition of K interacting particles and even more technical estimates. Most likely the properties
of the interaction potentials have to be adjusted in order to achieve compactness, cf. [35, page 3].

Furthermore, one can think of extending the K-interacting neighbours to interactions where each
particle interacts with each other particle. This could be done by an additional limiting procedure,
where K tends to infinity, which is an open problem even in the homogeneous case. Another
possible reformulation would be considering other approaches to the random setting, like working
with stochastic lattices, cf. [4], instead of the stochastic interaction potentials that we have chosen.
It would be interesting to analyse whether the results in the continuum limit coincide.

In the variational limit of the energy in Chapter 4, the energy density of the limiting functional
is given by the asymptotic homogenization formula Jhom. In Proposition 4.13, some additional
properties of this function have been worked out, but only in the case K = 1. It would be interesting
to study, whether one can derive similar results in the case K > 1. This will make the proof even
more technical and would supposedly be only possible by imposing further assumptions on the
Lennard-Jones type potentials.

In Chapter 5, the rescaled energy is discussed in the case of only nearest neighbour interactions,
i.e. K = 1. In the case of K > 1, surface terms are a part of the limiting energy. To this end one
has to choose carefully the right amount of boundary data of the discrete energy, because this
influences the exact representation of the jump and the boundary layer energies in the limit, see,
e.g., [34, 101] for corresponding work in the homogeneous setting. Further, it would be of interest
to search for special cases which yield existence of the first order Γ -limit and would allow to
understand its limitations in more detail, cf. the end of Chapter 5.

Chapter 7 deals with the new ansatz for fracture in the discrete setting, where the fracture point
zfrac of a potential is defined in such a way that values of the discrete gradient of the deformation
above zfrac are considered as jumps. The limiting analysis of the fracture threshold `∗n as well
as of the rescaled fracture threshold γ∗n is so far restricted to the case K = 1. An extension to K
interacting neighbours, with K > 1, would be desirable. Moreover, the rescaled fracture threshold
was only derived under the assumption that all potentials have the same minimizer. It would be
interesting to see, whether the same result holds true without this condition. We established the
fracture point zfrac by means of the second derivative and showed that, with this choice, `∗n leads
to a threshold between the elastic and fracture regime in the continuum that is identical to the one
obtained by Γ -convergence. An immediate question would be if also other definitions and choices
of such a fracture point yield comparable or even identical results. In the stochastic setting, another
task is to derive convergence rates and fluctuation of the fracture threshold, especially regarding
probabilities for fracture in the discrete problem. Furthermore, it is also of interest, to consider
pointwise convergence of the energy minimization problems, involving the fracture point, and to
see whether the outcome is related to the Γ -limit results.
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List of assumptions

Assumptions for the variational limit.

Assumption on the Lennard-Jones type potentials, page 27.

Fixα ∈ (0, 1], b > 0, d ∈ [1,+∞) and a convex function Ψ : R→ [0,+∞] satisfying

lim
z→0+

Ψ(z) = +∞.

We denote by J = J (α, b, d, Ψ) the class of functions J : R → R ∪ {+∞} which satisfies the
following properties:

(LJ1) (Regularity and asymptotic decay) The function J is lower semicontinuous, J ∈ C0,α
loc (0, ∞)

and

lim
z→0+

J(z) = ∞ as well as J(z) = ∞ for z ≤ 0.

(LJ2) (Convex bound, minimum and minimizer) J has a unique minimizer δ with δ ∈ ( 1
d , d) and

J(δ) < 0, and J is strictly convex on (0, δ). Moreover, ‖J‖L∞(δ,∞) < b and it holds

1
dΨ(z)− d ≤ J(z) ≤ d max{Ψ(z), |z|} for all z ∈ (0,+∞).

(LJ3) (Asymptotic behaviour) It holds

lim
z→∞ J(z) = 0.

Assumption on the random variable, page 30.

(H1) (Hölder coefficient) For every j = 1, ..., K it holds true that E
[[

J j
]

C0,α(δ j ,+∞)

]
< ∞.

Assumptions for the rescaled model.

Assumption on the Lennard-Jones type potentials, page 87.

Fixα ∈ (0, 1], b > 0, d ∈ [1,+∞) and a convex function Ψ : R→ [0,+∞] as above. Further, fix
η > 0 and c > 0. We denote byJreg = Jreg(α, b, c, d, Ψ, η) the class of functions J : R→ R∪{+∞}
which satisfy the properties (LJ1)–(LJ3) and additionally the following properties:

(LJ4) (Regularity) It is J ∈ C3 on its domain.
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List of assumptions

(LJ5) (Harmonic approximation near ground state) For |z− δ| < η, it holds true that

J(z)− J(δ) ≥ 1
c
(z− δ)2.

Assumption on the random variable, page 89.

(H2) (Third derivative near ground state) It exists 0 < κ∗ < 1
d − zdom such that E[Cκ∗ ] < ∞. As a

direct consequence, it also holds true that E[Cκ ] < ∞ for every κ < κ∗, by definition of Cκ .

(H3) (Uniform convergence of the asymptotic decay) It holds true that

lim
z→∞ max

ω∈Ω
|J(ω, z)| = 0.

Assumptions for fracture in the discrete.

Assumption on the Lennard-Jones type potentials, page 132.

Fix α ∈ (0, 1], b > 0, c > 0, d ∈ [1,+∞), η > 0, and a convex function Ψ : R → [0,+∞] as
above. We denote by J̄curv = J̄curv(α, b, c, d, Ψ, η) the class of functions J : R→ R∪ {+∞} which
satisfy the properties (LJ1)–(LJ5), and additionally the following properties:

(LJ6) It holds true that zfrac − δ ≥ 1
b .

(LJ7) It holds true that mfrac − J(δ) ≥ 1
b .

(LJ8) It holds true that

inf
{

∂2 J(z)
∂z2 : z ∈ [δ, δ+ η]

}
≥ 1

c
.

(LJ9) It holds true that

sup
{

∂2 J(z)
∂z2 : z ∈ [δ, δ+ η]

}
≤ c.

The class Jcurv = Jcurv(α, b, c, d, Ψ, η) is defined in the same way as J̄curv(α, b, c, d, Ψ, η), but
without assumption (LJ9).

Assumption on the random variable, page 132.

(H4) Fix 0 ≤ θ < 1
6 . Then it holds true that

sup
{

∂2 J
(∂z)2 (τiω, z) : z ∈ [δ(τiω), δ(τiω) + η] , ω ∈ Ω, i ∈ {0, ..., n− 1}

}
≤ cnθ .
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random lattices”. In: Journal de mathématiques pures et appliquées 88 (2007), pp. 34–63.

[18] Xavier Blanc, Claude Le Bris, and Pierre-Louis Lions. “The energy of some microscopic
stochastic lattices”. In: Archive for rational mechanics and analysis 184 (2007), pp. 303–339.

[19] Xavier Blanc and Mathieu Lewin. “The Crystallization Conjecture: A Review”. In: EMS
Surveys in Mathematical Sciences 2 (2015).

[20] Alain Bourgeat, Andro Mikelic, and Steve Wright. “Stochastic two-scale convergence in the
mean and applications”. In: J. reine angew. Math 456 (1994), pp. 19–51.

[21] Andrea Braides. Gamma-convergence for Beginners. Vol. 22. Clarendon Press, 2002.

[22] Andrea Braides. “Homogenization of some almost periodic coercive functional”. In: Rend.
Accad. Naz. Sci. XL 103 (1985), pp. 313–322.

[23] Andrea Braides. Local minimization, variational evolution and Γ -convergence. Vol. 2094. Springer,
2014.

[24] Andrea Braides and Marco Cicalese. “Surface energies in nonconvex discrete systems”. In:
Mathematical Models and Methods in Applied Sciences 17 (2007), pp. 985–1037.

[25] Andrea Braides, Marco Cicalese, and Matthias Ruf. “Continuum limit and stochastic ho-
mogenization of discrete ferromagnetic thin films”. In: Analysis & PDE 11 (2017), pp. 499–
553.

[26] Andrea Braides, Gianni Dal Maso, and Adriana Garroni. “Variational formulation of soften-
ing phenomena in fracture mechanics: The one-dimensional case”. In: Archive for Rational
Mechanics and Analysis 146 (1999), pp. 23–58.

[27] Andrea Braides, Anneliese Defranceschi, and Enrico Vitali. “Variational evolution of one-
Lennard-Jones systems.” In: NHM 9 (2014), pp. 217–238.

[28] Andrea Braides and Maria Stella Gelli. “Analytical treatment for the asymptotic analysis of
microscopic impenetrability constraints for atomistic systems”. In: ESAIM: Mathematical
Modelling and Numerical Analysis 51 (2017), pp. 1903–1929.

[29] Andrea Braides and Maria Stella Gelli. “Continuum limits of discrete systems without
convexity hypotheses”. In: Mathematics and Mechanics of Solids 7 (2002), pp. 41–66.

[30] Andrea Braides and Maria Stella Gelli. “From discrete systems to continuous variational
problems: an introduction”. In: Topics on concentration phenomena and problems with multiple
scales. Springer, 2006, pp. 3–77.

[31] Andrea Braides and Maria Stella Gelli. “Limits of discrete systems with long-range interac-
tions”. In: Journal of Convex Analysis 9 (2002), pp. 363–400.

[32] Andrea Braides and Maria Stella Gelli. “The passage from discrete to continuous varia-
tional problems: a nonlinear homogenization process”. In: Nonlinear homogenization and its
applications to composites, polycrystals and smart materials. Springer, 2004, pp. 45–63.

156



[33] Andrea Braides, Maria Stella Gelli, and Mario Sigalotti. “The passage from nonconvex
discrete systems to variational problems in Sobolev spaces: the one-dimensional case”. In:
Trudy Matematicheskogo instituta im. V. A. Steklova RAN 236 (2002), pp. 408–427.

[34] Andrea Braides, Adrian J Lew, and Michael Ortiz. “Effective cohesive behavior of layers of
interatomic planes”. In: Archive for rational Mechanics and analysis 180 (2006), pp. 151–182.

[35] Andrea Braides and Margherita Solci. “Asymptotic analysis of Lennard-Jones systems
beyond the nearest-neighbour setting: a one-dimensional prototypical case”. In: Mathematics
and Mechanics of Solids 21 (2016), pp. 915–930.

[36] Andrea Braides, Margherita Solci, and Enrico Vitali. “A derivation of linear elastic energies
from pair-interaction atomistic systems”. In: Networks & Heterogeneous Media 2 (2007), p. 551.

[37] Andrea Braides and Lev Truskinovsky. “Asymptotic expansions by Γ -convergence”. In:
Continuum Mechanics and Thermodynamics 20 (2008), pp. 21–62.

[38] Julian Braun and Bernd Schmidt. “On the passage from atomistic systems to nonlinear elas-
ticity theory for general multi-body potentials with p-growth”. In: Networks & Heterogeneous
Media 8 (2013), p. 879.

[39] Victor I Burenkov. Sobolev spaces on domains. Vol. 137. Springer, 1998.

[40] Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia, and Caterina Ida Zeppieri. “Stochastic
homogenisation of free-discontinuity problems”. In: Archive for Rational Mechanics and
Analysis 233 (2019), pp. 935–974.

[41] Carlo S Casari, Matteo Tommasini, Rik R Tykwinski, and Alberto Milani. “Carbon-atom
wires: 1-D systems with tunable properties”. In: Nanoscale 8 (2016), pp. 4414–4435.

[42] Isabelle Catto, Claude Le Bris, and Pierre-Louis Lions. The mathematical theory of thermody-
namic limits: Thomas-Fermi type models. Oxford University Press, 1998.

[43] Augustin-Louis Cauchy. “De la pression ou tension dans un systeme de points matériels”.
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Università di Pisa. Dipartimento di Matematica, 1985.

[48] Gianni Dal Maso and Caterina Ida Zeppieri. “Homogenization of fiber reinforced brittle
materials: the intermediate case”. In: Adv. Calc. Var 3 (2010), pp. 345–370.

[49] Lucia De Luca and Gero Friesecke. “Crystallization in two dimensions and a discrete
Gauss–Bonnet theorem”. In: Journal of Nonlinear Science 28 (2018), pp. 69–90.

[50] Lucia De Luca, Adriana Garroni, and Marcello Ponsiglione. “Γ -convergence analysis of
systems of edge dislocations: the self energy regime”. In: Archive for Rational Mechanics and
Analysis 206 (2012), pp. 885–910.

[51] Leonhard Euler. “Elementa calculi variationum”. In: Novi commentarii academiae scientiarum
Petropolitanae (1766), pp. 51–93.

157



Bibliography

[52] Franziska Flegel and Martin Heida. “The fractional p-Laplacian emerging from homogeniza-
tion of the random conductance model with degenerate ergodic weights and unbounded-
range jumps”. In: Calculus of Variations and Partial Differential Equations 59 (2020), p. 8.

[53] Franziska Flegel, Martin Heida, and Martin Slowik. “Homogenization theory for the ran-
dom conductance model with degenerate ergodic weights and unbounded-range jumps”.
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chanical behaviour of heterogeneous nanochains in the Γ -limit of stochastic particle sys-
tems”. In: arXiv preprint arXiv:1909.06607 (2019).
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