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Abstract

Time-triggered communication is widely used throughout several industry do-

mains, primarily for reliable and real-time capable data transfers. However,

existing time-triggered technologies are designed for terrestrial usage and not

directly applicable to space applications due to the harsh environment. In-

stead, specific hardware must be developed to deal with thermal, mechanical,

and especially radiation effects.

SpaceWire, as an event-triggered communication technology, has been used

for years in a large number of space missions. Its moderate complexity, her-

itage, and transmission rates up to 400 MBits/s are one of the main ad-

vantages and often without alternatives for on-board computing systems of

spacecraft. At present, real-time data transfers are either achieved by prior-

itization inside SpaceWire routers or by applying a simplified time-triggered

approach. These solutions either imply problems if they are used inside dis-

tributed on-board computing systems or in case of networks with more than

a single router are required.

This work provides a solution for the real-time problem by developing

a novel clock synchronization approach. This approach is focused on being

compatible with distributed system structures and allows time-triggered data

transfers. A significant difference to existing technologies is the remote clock

estimation by the use of pulses. They are transferred over the network and

remove the need for latency accumulation, which allows the incorporation of

standardized SpaceWire equipment. Additionally, local clocks are controlled

decentralized and provide different correction capabilities in order to handle

oscillator induced uncertainties. All these functionalities are provided by a
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developed Network Controller (NC), able to isolate the attached network and

to control accesses.
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Chapter 1

Introduction

1.1 Motivation and Background

Communication technologies in spacecraft are essential as they connect all

subsystems like On-Board Computer (OBC) or payload instruments together.

In contrast to terrestrial systems, spacecraft engineers are limited in their se-

lection of communication technologies. This limitation is mainly caused by

radiation effects in space environments, which can lead to different undesir-

able impacts inside the selected hardware [KCR06]. These effects can range

from Single Event Upset (SEU) were bit changes occur up to hardware dis-

ruptive events like Single Event Gate Rupture (SEGR). A special design and

manufacturing process is often necessary to obtain the required resilience.

However, the whole process of creating radiation hardened hardware can be-

come very expensive and need to be reasonable from the economic point of

view. Additionally, the space industry is quite small and far away from con-

suming as many electronic parts as commercial industries.

SpaceWire, as a communication technology for serial data transfers, was

initially defined by the European Space Agency (ESA) in 2003. Since then,

SpaceWire has been used in multiple projects throughout the whole space

domain. One of its main advantages is the moderate complexity. This leads

to a low utilization if used on a Field Programmable Gate Array (FPGA) or

Application-Specific Integrated Circuit (ASIC) and also allows rapid develop-
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ment of SpaceWire components like interfaces or routers. The physical layer

only requires Low Voltage Differential Signaling (LVDS) driver and receiver,

whereas FPGAs and LVDS parts are both available as radiation hardened

devices.

Recent projects that utilized SpaceWire are Eu:Cropis [Kot+18] and MAS-

COT [Hab+13]. Both projects consist of a traditional spacecraft system

structure with instruments centered around an OBC without real-time re-

quirements. In contrast to these projects, the decentralized system Scal-

able On-Board Computing for Space Avionics (ScOSA) is developed inside

the German Aerospace Center (DLR) [Tre+18]. It is based on a meshed

SpaceWire network with different kinds of computing nodes and targets high

performance, reliability, and scalability. These nodes can handle several tasks

throughout different mission phases by the use of dynamic system reconfigu-

ration. However, this reconfiguration property has a temporal boundary. As

a consequence, real-time data transfers are required, which are not directly

supported by SpaceWire.

Besides ScOSA, which is one reason for the research activities reflected in

this work, we don’t see a full replacement of SpaceWire within the next years.

1.1.1 SpaceWire Issues

The SpaceWire standard does not support true real-time capabilities. One

reason for this is the applied wormhole routing scheme [ESA08, p. 97]. This

kind of routing allows message forwarding inside routers as soon as logical or

path addresses are received. Wormhole routing will drastically reduce buffer

sizes inside SpaceWire interfaces or routers but leads to messages that are

spread throughout the whole network with the ability to block other data or

creating deadlock situations.

Priority based arbitration is proposed to establish at least basic Quality of

Service (QoS) [ESA08, p. 99]. For this, logical addresses can be forwarded in-

side routers prioritized. However, cascading multiple routers can lead to situa-

tions where prioritized message forwarding doesn’t work any longer [Bor+18].

Additionally, messages are allowed to have arbitrary lengths, which leads to
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undefined periods of network resource utilization.

1.1.2 Event and Time-Triggered Networks

In general, communication networks can be classified in time-triggered and

event-triggered. Communication inside event-triggered networks is estab-

lished as soon as data is available. The inputs of the network can be con-

sidered as a trigger event. In contrast to that, time-triggered networks can

only be accessed at specific points in time. These accesses are controlled by a

static schedule, which is defined before time-triggered networks start their op-

eration. This static schedule definition reduces the complexity of evaluating

the network regarding performance and reliability.

Additionally, the schedule has a direct relation to the real-time capabilities

of the network because all data transfers are controlled of it. This prevents

conflicts of data transmissions between all participating units connected to

the network and guarantees data delivery in time. Real-time capabilities can

also be established in event-triggered networks by using a rate constrained

approach. For this, the data bandwidth is limited by applying minimal idle

times between consecutive data packets and by defining a maximum packet

length [Boy+16].

1.2 Contribution

This work addresses the SpaceWire real-time problem by developing a time-

triggered approach for decentralized system structures. For this, a system-

wide clock synchronization can be considered as a precondition. Existing

clock synchronization approaches for meshed network topologies can’t be

applied directly without a non-standard modification of existing SpaceWire

components. The problem is solved by a transfer of bus-based clock synchro-

nization approaches into the SpaceWire networks as outlined more detailed

in the following.

The first research contribution of this work is the development and imple-

mentation of new methods to handle start-up phase and clock synchronization
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in order to support distributed system structures for SpaceWire networks.

Both methods rely on the broadcast code feature of SpaceWire without

the need to modify existing routers beyond the currently revised SpaceWire

standard [ESA19]. These broadcast codes can be considered as system-wide

interrupts, whereas its latency and jitter characteristics are directly correlated

to the alignment of all local clocks which need to be synchronized.

A start-up phase is required to establish initially a system-wide or global

time, which is a precondition for any kind of time-triggered data transfer. The

implementation is based on a majority determination between multiple start-

up involved nodes. The process is designed to tolerate n failing nodes, whereas

n depends on the number of start-up nodes. The node, which is elected to

finish a start-up phase, uses a broadcast code to align the initial set of local

clocks. However, the quality of initial alignment requires an application of

correction value, which depends on network structure and communication

links.

An already established global time needs to be synchronized throughout

schedule based operation. Otherwise, schedules would drift apart, which leads

to a complete loss of communication. The synchronization process requires

knowledge about the values of all other clocks that are part of the clock ensem-

ble. These values are often derived in bus-based communication technologies

by comparison between expected and actual reception of messages. However,

this is only possible because of constant latencies, which is an implication of

the network structure. Latencies can vary drastically in switched networks,

which makes the bus-based approach impracticable. Instead, packets contain

the accumulated delay throughout the whole path from source to destination

node. Based on this accumulated value, the destination node can derive the

required information of the source node clock. However, the accumulation

requires that each unit, which is traversed by a packet, can determine these

delays.

SpaceWire, with its switched network topology, would require a non-

standard redesign of its components if latency accumulations are selected

to apply existing synchronization approaches. Instead, the bus-based ap-

proach is transferred into SpaceWire networks by utilizing broadcast codes
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to keep variations of latencies in a tolerable range. This allows the usage of

existing SpaceWire components to create systems that can synchronize their

clocks. The developed approach provides the ability of decentralized clock

synchronization, which is a significant difference to the existing extension

SpaceWire-D.

Additionally, a potential non-standard modification was applied to the

used SpaceWire interface in order to change its broadcast code handling.

The modification leads to a transfer of jitter into a larger but more constant

latency with the intent of improving the clock synchronization quality.

The second research contribution covers the broadcast code evaluation con-

cerning its latency range. The latency range defines the jitter, which is vital to

get a proper clock synchronization. Hence, a Universal Verification Method-

ology (UVM) verification environment is created to transfer large numbers of

broadcast codes in order to track all encountered latencies. These test runs

are applied to standard and modified SpaceWire interfaces. Additionally,

formal property verification is applied to get a confirmation of the functional

simulation results provided by the UVM environment. However, the applica-

tion of this formal approach leads to specific issues and limitations that are

discussed in the related chapter.

The last research contribution focuses on the evaluation of the developed

methods. For this, a complete time-triggered network with different structural

configurations and several schedules were created as Very High Speed Inte-

grated Circuit Hardware Description Language (VHDL) design. All relevant

statistics were monitored and extracted by a UVM verification environment

during multiple test runs. The results show that each applied start-up phase

finished successfully with a neglectable number of logical collisions and within

an acceptable time. The evaluation of clock synchronization shows that oscil-

lator drifts were compensated, and local clock deviations don’t exceed 1.2 µs.

However, the maximum clock deviation depends on multiple system param-

eters. Thus, the monitored maximum value of 1.2 µs can’t be treated as an

overall upper boundary. An advantage of the modified SpaceWire interface

with respect to synchronization quality was observed throughout all executed

tests.
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1.3 Publications

This work contains parts, extensions, or ideas of previously published mate-

rial of the author1. A complete list of all publications is given in the Appen-

dices IV. However, the following peer-reviewed papers are mainly considered

for this thesis:

• The concept of the pulse-based and decentralized clock synchronization

approach was introduced in [Bor+18].

• The prototype and first evaluation results were published in [Bor+19].

It contains the investigation of different system characteristics (e.g.

start-up behavior or clock synchronization quality) and utilization re-

sults.

• The system evaluation was mainly done by functional simulation with

the support of SystemVerilog Assertions. An alternative use case of

SystemVerilog Assertions in order to handle volatile registers was dis-

cussed in [BMD19].

1.4 Thesis Structure

The thesis is separated into four main parts. Part I provides a motivation and

background information about the theses subject. Part II gives an overview

of existing technologies and approaches which are applied inside this work.

Chapter 2 covers the basic concepts and operational modes used in current

time-triggered technologies. An overview of FPGAs regarding its structure

and design flow is given in Chapter 3. Additionally, several FPGA verifica-

tion aspects and methodologies are introduced. The foundation part closes

with Chapter 4 by providing an overview of the communication technology

SpaceWire. Its unique broadcast code capabilities are the backbone for the

prototype developed in this work.

1The author’s birth name is Stohlmann.
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The main contribution of this work is given in Part III. An introduction

of the general clock synchronization approach is given in Chapter 5. It illus-

trates how remote clock estimates are gathered based on pulses and shows

the architecture of the developed prototype. A modified SpaceWire interface

is discussed as well to achieve an improved clock synchronization.

SpaceWire broadcast codes are evaluated separately in Chapter 6. They

are the foundation of the introduced clock synchronization approach, whereas

they are characterized in two different ways. Functional simulation with a

constrained random approach is used on one side. On the other hand, formal

property verification is applied in order to confirm or disproof the simulation-

based results. Additionally, formal property verification specific problems

(e.g. complexity handling) are discussed.

The overall system evaluation of the developed prototype is given in Chap-

ter 7. It starts with an introduction of the UVM verification environment and

its main components like metric analyzer and design checking parts. The sys-

tem evaluation is divided into start-up and distributed clock analysis followed

by an overview of synthesis results for different FPGA targets. Possible im-

provements and further work are discussed in Chapter 8. Finally, all used

references and some notations are given in Part IV.
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Part II

Foundation
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Chapter 2

Time-triggered Communication

2.1 Introduction

Accesses to communication mediums need to be managed in some way. A

well-known access method is Carrier Sense Multiple Access/Collision Detec-

tion (CSMA/CD), used by the Ethernet protocol. It provides the ability to

detect collisions in case two or more parallel messages are transmitted. Ad-

ditionally, it resolves collisions by applying timeouts before retransmission

of collided data. Time-triggered communication applies the Time Division

Multiple Access (TDMA) access method to achieve a controlled, decentral-

ized, and collision-free access to the communication medium. This kind of

communication relies on the progression of a global time. Each node, re-

quired to transmit data, is allowed to access the network at specific points

in time. These access points are defined by static schedules, stored locally at

every node, and computed before the network starts operation. This kind of

network access is considered as decentralized. In contrast to that, a network

controlled by a single arbiter or master has a centralized access.

The executed clock synchronization approach is a major characteristic of

each time-triggered technology. A distributed approach is present if multiple

nodes exchange their clock values in order to derive a converged clock correc-

tion value. A centralized clock synchronization is applied if a single source is

used to adjust all clocks inside the system. However, this represents a single
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point of failure, capable of causing a full loss of communication. This prob-

lem is unacceptable for most time-triggered technologies which are designed

to provide high reliability or even being used in safety-critical systems. An

example of this kind of technology is Time-Triggered Protocol SAE Class

C (TTP/C). It was developed to fulfill requirements for distributed safety-

critical systems in various domains like automotive or aerospace [TTT02,

p. 11].

However, the distributed clock synchronization approach substantially in-

creases system complexity. It requires an initial clock synchronization after

system resets or power cycles to switch from an asynchronous to synchronous

operation. Throughout synchronous operation, all local clocks need to be syn-

chronized periodically to compensate drifts that occur over time. Finally, late

powered or reset nodes require a re-integration into the existing synchronous

operation.

The typical structure of a time-triggered communication system is given in

Figure 2.1. It consists of multiple nodes connected to a network for exchanging

Network

... Node nNode 1

Host: 
Utilizes the network controller
for accessing the network

Network controller: 
Manages time-triggered 
communication and provides 
access to the network

Figure 2.1: Typical structure of time-triggered systems.

information. This network must be considered as a shared resource between

all connected nodes. It’s in the responsibility of the network controller to

ensure all accesses are performed according to the schedule to prevent con-

flicts. A specific interface, often implemented as a descriptor table, allows the

host to provide data for transmission to the network controller. A direct con-

nection between host and network doesn’t exist. Additionally, the network
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controller handles the start-up, clock synchronization, and integration tasks.

The network itself can consist of arbitrary structures and topologies. The

structure has a direct impact on the schedule and how the network is accessed.

Figure 2.2 shows two example schedules for bus and switched network topolo-

Single bus topology t

Switched network 
topology

Node 1 Node 4 Node 3 Node 2... ...

t
Node 1 Node 4 Node 3 Node 2... ...

Node 4...

Node 2...

Figure 2.2: Network access depending on its topology.

gies. Each schedule consists of four slots utilized by one or more nodes. The

bus topology allows only single access at the same time, indicated by an ex-

clusive utilization of each slot. A multicast transmission with one source and

n destinations is implicitly given. Several bus-based technologies like TTP/C

[TTT02, p. 37], SAFEbus [HD92] or FlexRay [Rau07, p. 127] are available.

All of them can be used with dual redundant channels to increase either data

throughput or reliability.

Switched networks can be set up in a way that multiple accesses at the same

time are possible. This multiple write property is given as soon as several

data paths throughout the network are available. An example technology,

that relies on the IEEE 802.3 Ethernet standard, is Time-Triggered Ethernet

(TTEthernet) [TTT11, p. 6]. TTEthernet defines traffic classes to distinguish

between different communication modes, whereas Time-Triggered (TT) has

the highest priority. Additionally, Best-Effort (BE) and Rate-Constrained

(RC) traffic classes for less or even none critical timing requirements are

defined [Ste+09]. All these traffic classes share the same network throughout

system operation.
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Additional time-triggered communication aspects are discussed in the re-

mainder of this chapter, which is structured as follows. Initially, the concept

of digital clocks is introduced in Section 2.2 followed by a discussion of clock

uncertainties in Section 2.3. A differentiation between clock accuracy and

precision is given in Section 2.4 because of its importance to determine the

quality of clock synchronization. The notion of global time with respect to

distributed systems is given in Section 2.5. Finally, the main operational

states are explained that most time-triggered technologies have to execute.

An overview of start-up processes and how they are used to establish a global

time is introduced in Section 2.6. Possible node integration strategies are

shown in Section 2.7 followed by an introduction of different clock synchro-

nization approaches in Section 2.8.

2.2 Digital Clocks

Clocks generally need periodic events and a mechanism to count them. A

number of periodic events must be recognized depending on the duration

that needs to be measured. Microwave based atomic clocks have been used

to define a second since 1976 because of their superior performance. With the

occurrence of optical-based atomic clocks, even higher accuracies are achiev-

able [McG+19]. Optical clocks are also subject to research activities regarding

synchronization within the femtosecond area [Ber+19]. However, generally

electronic oscillators1 are used for embedded systems in order to create pe-

riodic events. They fit in size and reliability with the disadvantage of being

less accurate compared to atomic clocks.

For time-triggered systems, these periodic events are also called microticks,

whereas the distance between two consecutive microticks is called granule.

The granule can also be considered as the period T of an oscillator, which is

defined as the reciprocal of its frequency f . To describe clocks and properties

throughout definitions, the following notation propertyki is applied, whereas

k indicates the number of a clock and i represents a specific microtick or

1Also indicated by term clk for the remainder of this work.
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macrotick/tick2.

The granularity of a clock can only be measured with a clock that pro-

vides a finer granularity. However, each measurement by use of an electronic

oscillator leads to digitalization errors, as shown in Figure 2.3.

gn
t...

Event

t1 t2

Figure 2.3: Digitalization error as a function of oscillator granularity.

A signal value is sampled continuously by clock n to observe events. The

event, indicated by an increase of signal value, takes place between t1 and t2.

A temporal deviation between real and recognized event occurs caused by the

sampling rate with a maximum absolute error value of gn

2
. The error value can

be decreased by selecting oscillators with higher frequencies, which leads to a

shortened granule gn. Another limitation of digital clocks is related to event

ordering. The order of multiple observed events between two consecutive

sampling points can’t be reconstructed.

2.3 Clock uncertainties

Digital clocks are derived by use of oscillators as introduced in the prior

Section 2.2. Hence, uncertainties of used oscillators directly correlate with

the quality of digital clocks. These uncertainties are generally defined in

Parts Per Million (PPM), which expresses the maximum deviation to the

nominal oscillator frequency. Additionally, PPM values depend on different

properties like temperature, voltage or aging [Vec17, p. 11].

2A detailed definition of macrotick/tick is given in Section 2.5.
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The drift of a clock can be defined with respect to two consecutive mi-

croticks by the following equation [Kop11, p. 54].

driftki =
z(microtickki+1)− z(microtickki )

nk
(2.1)

It is assumed that all microticks of clock k are observable by clock z with

a negligible digitalization error. This observation provides an actual duration

between microtickki+1 and microtickki , which contains a deviation to the nom-

inal duration, expressed by nk. The ratio between the actual and nominal

duration of two consecutive microticks defines the drift for a given clock and

a specific microtick.

Inside existing literature, the term drift rate is often used to express os-

cillator uncertainties. It can be defined by the following equation [Kop11,

p. 55].

ρki =

∣∣∣∣∣z(microtickki+1)− z(microtickki )

nk
− 1

∣∣∣∣∣ (2.2)

The drift rate describes an unsigned measure for the oscillator frequency

deviation compared to its nominal frequency. A perfect oscillator without

any deviations has a drift rate of 0.

2.4 Accuracy versus Precision

The precision is used to determine how close a clock ensemble is synchronized.

The definition of precision requires an introduction of offsets between clocks.

An offset is measured between two clocks j and k with the same granularity

for a given microtick i by use of a reference clock z [Obe11, p. 15].

offsetjki =

∣∣∣∣∣z(microtickji )− z(microtickki )

∣∣∣∣∣ (2.3)

The digitalization error of reference clock z is considered as negligible. The

maximum offset between n clocks for a given microtick i is defined as follows

[Obe11, p. 15].
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Πi = max
∀1≤j,k≤n,

{offset} (2.4)

Πi represents the precision for a clock ensemble at microtick i. The preci-

sion for an arbitrary microtick interval is defined as Π. The precision values

are expressed by microticks of the reference clock.

Clock deviations, measured to a given reference clock, are called accuracy.

Similar to precision, the accuracy is also determined for a single microtick i

but also for an arbitrary interval. Figure 2.4 shows the differences between

precision and accuracy for a specific point in time.

t
t1

Good precision, 
bad accuracy

Bad precision, good accuracy

Clock1

Clock2

Clock3

Clock4

Clockref

Clock value

Figure 2.4: Definition of precision and accuracy.

Clock1 and Clock2 have a low offset between each other at t1, which leads

to a good precision between them. However, the offset of each clock to the

reference Clockref is large, which causes a bad accuracy. Clock3 and Clock4

illustrates the opposite by showing a large offset between each other but a

small offset to Clockref .
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2.5 Global Time

As explained in Section 2.1, each node inside distributed systems generally

has to maintain its own clock locally, whereas the value of its clock is derived

by an oscillator. These oscillators can vary between nodes in frequency and

stability. Thus, microticks of oscillators are insufficient to define a global time

throughout all nodes.

Instead, a system-wide temporal duration, often called macrotick, is de-

fined [Cen+13, p. 33]. These macroticks are used to define parameters that

are shared inside the whole system, e.g. slot lengths or whole schedules/cy-

cles, as shown by Figure 2.5. They are derived by counting microticks until

...

...

...

...

Microticks

Macroticks

Slot1 Slotn

Cyclen Cyclem

...

...

...

...

Figure 2.5: Construction of schedule cycles based on microticks, macroticks
and slots.

the defined macrotick duration is reached [Han06] and represent the smallest

time granularity inside the system. The number of microticks per macrotick

can vary between nodes depending on the used oscillators. This number can

also vary for a single node as soon as correction methods for clock synchro-

nizations are applied.

2.6 Start-up

A time-triggered system is considered as asynchronous after a global power-on

or in case unexpected faults lead to a full loss of synchronization. The system

changes to synchronous operation as soon as two or more nodes synchronize
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their local clocks in order to execute their schedules. It is the responsibility

of start-up algorithms to establish a synchronized time within a maximum

temporal duration for a subset of nodes. The start-up phase is generally

implemented separately to other processes to encapsulate its high complex-

ity. Additionally, the separation allows a better exchange of the algorithm if

required and improves maintenance and testability.

The implementation of a start-up process directly depends on the network

topology. Three different start-up algorithms for a bus, with up to nine nodes,

were described and evaluated in [Loe99] by use of simulation. Another start-

up solution, based on unique message lengths, is provided by [CLS04]. A

start-up algorithm and related architectural guidelines are provided in [SP02]

with a focus on bounded execution durations and the ability to work under

different failure scenarios. An extension in the fault hypothesis, which allows

arbitrary failures, is discussed in [SK06]. Additionally, this enhanced algo-

rithm was compared with the FlexRay start-up algorithm. It turned out that

FlexRay is vulnerable to simple failure modes.

Bus-based start-up algorithms basically work in a similar way. A set of

nodes, which are allowed to perform a start-up, exchange messages to estab-

lish the synchronous operation. For this, start-up nodes are initially passive

by observing the bus to check for data exchanges that are already in progress.

These data exchanges indicate that either synchronous operation is already

performed or another start-up node executes a start-up phase to establish

a synchronous operation. If no data exchanges are monitored throughout a

timeout period, start-up nodes become active by starting their own local clock

to provide periodically start-up specific data according to the schedule. These

data, in turn, are used by other start-up nodes to determine the currently ex-

ecuted schedule position. This information is finally used by unsynchronized

nodes to change into a synchronous operation.

Possible collisions must be handled during the asynchronous operation be-

cause no centralized mechanism is used to bring the system into a synchronous

operation. Instead, multiple start-up nodes can begin their start-up phases

in parallel. However, a bus topology only provides mutual exclusive write

access. Thus, collisions need to be detected and resolved in some way.
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The technology FlexRay detects collisions by use of the schedule [Fle10,

p. 173]. Initially, a Collision Avoidance Symbol (CAS) is transmitted to the

bus before start-up nodes start their local clocks to enter a reduced sched-

ule execution for active start-up phase application. Throughout one reduced

schedule execution, only a single start-up frame is transmitted per start-up

node inside a unique slot. This CAS application can happen in parallel,

whereby multiple start-up nodes start the schedule execution. This leads to

several transmitted start-up frames throughout a single schedule execution.

However, each start-up node is assigned to a unique slot for start-up frame

transmission. Thus, all start-up frames are transmitted in a predefined order.

The first start-up frame inside this order is recognized by all start-up nodes,

which indicates a parallel start-up phase. By this, the collision is detected,

and all start-up nodes that don’t belong to the first start-up frame stop its

active start-up phase. Start-up nodes, who canceled their start-up phase, ob-

serve again the bus to detect data transfers. The timeout used for observation

is equal for all start-up nodes inside a FlexRay system.

TTP/C uses a different strategy to resolve collisions compared to the equal

timeout of FlexRay. In case two or more start-up nodes start transmission

within a specific interval, frames collide and are recognized as noise at the

receivers [SP02]. The detection of noise leads to a reset of the timeout, which

is used for observing the bus. These timeouts are unique for every start-up

node. Thus, it is assumed that collisions resolve only by temporal differences

introduced by unique timeouts.

Bus-based time-triggered technologies with their broadcast abilities rely on

nearly constant message propagation delays for start-up, clock synchroniza-

tion, and integration. Switched network topologies instead can’t use the same

concepts. Message delays can vary significantly caused by routing and con-

gestion with a dependability to the network structure. Additionally, message

multicasting is not necessarily applied. TTEthernet, as a prominent switched

network technology, accumulates propagation delays inside transferred mes-

sages to overcome the problem. A request/acknowledge based data exchange

between multiple participants is done throughout start-up phases to establish

an initial time [TTT11, p. 53]. Thereby, the start-up routine differs for high
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reliable configurations.

Algorithm analysis is often done by functional simulation. However, func-

tional simulation is often not capable of checking all system properties con-

cerning system states or state transitions. Formal verification can be applied

to provide a mathematical proof that system properties hold under every de-

fined condition. Such a formal verification was done for the DACAPO and

TTP start-up algorithm in [LP97]. TTEthernet functionality, with respect to

clock synchronization and start-up behavior, was investigated by formal ver-

ification in [SD11] and extended in [Dut+12]. A survey of additional formal

verifications used for start-up algorithms, like TTCAN, SPIDER, or FlexRay,

is given in [SRR16].

2.7 Integration

Nodes need to be integrated into synchronous operation in case they are

powered on late, loss of synchronization due to errors or reset throughout

operation. For this, an integrating node has to determine the actual system

state to bring its own state in synchronicity. This state, or at least the rele-

vant sub-state, is typically provided by data frames of already synchronized

nodes periodically throughout synchronous operation. These data frames can

be either dedicated or combined ones. Dedicated data frames used for inte-

gration reduces the overhead with the disadvantage of utilizing schedule slots.

Combined data frames increase the overhead but don’t block schedule slots.

Typically, most technologies use synchronization frames also for integration.

FlexRay provides a single frame type to cover all functionalities [Fle10,

p. 183], including payload transfers. The startup frame indicator field inside

the header is used for integration, leading, and following start-up as well.

This bit is set to one a single time by a subset of nodes throughout each

schedule execution.

Different frame types are used by TTP/C. A separated frame for the start-

up and so-called normal frames for synchronous operation are used. Normal

frames are further distinguished because they contain either implicit or ex-



24 2 Time-triggered Communication

plicit Controller State (C-state) information [Obe11, p. 98], which represents

the system state. Implicit C-state information are only included into the

frame Cyclic Redundancy Check (CRC). Already synchronized nodes must

use their own C-state to verify the frame by calculating the CRC. However,

the C-state can’t be extracted from the frame, which makes the integration of

unsynchronized nodes impossible. Explicit C-state frames instead, contain all

required state information to perform an integration [TTT02, p. 40]. Implicit

C-state frames are introduced by TTP/C to reduce the frame overhead.

FlexRay and TTP/C provides the system state periodically by use of mul-

tiple nodes. A different approach is used by Time-Triggered Controller Area

Network (TTCAN), which incorporates the concept of multiple time masters

[Füh+01]. However, during operation, only a single time master is active,

responsible for providing its view of the system state by periodic reference

message transmissions to all other nodes.

TTEthernet, as a switched network technology, encapsulates and dis-

tributes the system state inside IEEE 802.3 compliant Ethernet frames. The

system state information is transmitted periodically inside Protocol Control

Frames (PCFs). PCFs can be specified further to cover different purposes.

The Integration Frame (IN) represents such a PCF specification used for node

integration [Ste09]. They are created by Synchronization Masters (SMs) and

transmitted to all Compression Masters (CMs) where they are processed. The

resulting IN is finally transmitted back to all SMs. Compared to the bus-based

technologies, it is not possible to use the received system state information

without initial preprocessing by the CMs. The processed IN contains the

actual system state and a membership field, which represents the number of

already synchronized SMs. The integration can be completed successfully if

a sufficient number of SMs are active.

2.8 Clock Synchronization

Uncertainties of physical oscillators lead to local clock drifts over time, which

can’t be entirely removed. Clock synchronization is used to align all local
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clocks of a system within predefined boundaries. This alignment process is

applied continuously throughout synchronous operation in order to keep the

clock deviations shorter or equal to the allowed precision.

The problem of clock synchronization inside distributed systems was first

addressed in [Lam78]. However, the introduced approach relies on a fault-free

message exchange between all system nodes. As a consequence, a single faulty

node can corrupt the whole system. Further research regarding fault-tolerant

clock synchronization was published in [LM85]. Its results are the foundation

for many other clock synchronization algorithms, including the fault-tolerant

midpoint algorithm [LL88] used for this thesis.

Clock synchronization can be applied in different ways [KAH04]. One so-

lution is clock state correction intending to correct clock values immediately

to remove the deviation that was accumulated over time. However, this cor-

rection only removes the effect of oscillator drifts but doesn’t prevent clocks

from drifting apart again. The clock drifting itself can be reduced by ap-

plying clock rate correction. As explained in Section 2.2, clocks derive their

values by counting oscillator events. This counting correlates to the rate of a

clock. Rate correction adjusts the counting to decrease or increase the rate

of a clock to compensate oscillator uncertainties.

It might be sufficient to use only rate correction for specific applications.

This can be done if systems work on time differences instead with time values,

as explained in [Lis91]. However, widely used time-triggered technologies like

FlexRay, TTP/C, or TTEthernet combine both correction methods to achieve

better synchronization and to tolerate less precise oscillators.

Clock synchronization can be further distinguished in internal and external

synchronization. For internal synchronization, an ensemble of clocks is defined

and used to synchronize their clocks. External synchronization is used if an

ensemble of clocks is defined but synchronized to a separated single or an

ensemble of clocks.
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2.8.1 Processing Order

The process of clock synchronization can be defined generally in three steps.

Initially, a node inside a system collects clock time values of other predefined

nodes. These values are also called remote clock estimates and represent a

relation between local clocks. The remote clock estimation was distinguished

in two major approaches by [AP98, p. 13]. For time transmission techniques,

a local clock value is sent by node Ni, based on its local time, to node Nn.

The reception point in time at node Nn allows the estimation. However, la-

tencies of the local clock distribution must be considered because it can affect

the remote clock estimation quality drastically. The Remote Clock Reading

(RCR) technique describes a request based remote clock estimation. Node

Ni can trigger a local clock transmission at node Nn if required. The remote

clock estimation additionally contains the request transmission latency.

Nodes can gather single or multiple remote clock estimates depending on

the system. All these estimates, or a subset of them, are used to calculate

a correction value for its local clock. Multiple remote clock estimates al-

low a fault-tolerant correction value calculation by discarding the extremes.

The computation is done by convergence functions which are outlined more

detailed in Section 2.8.2.

Finally, nodes use the prior calculated correction values to correct its local

clock. The point in time and the way of correction value application differs

between clock rate and state corrections.

2.8.2 Convergence Functions

Convergence functions take a set of remote clock estimates as inputs and

provide a correction value used to correct a local clock. A detailed intro-

duction of convergence functions is provided by [Sch86]. The work also con-

tains evaluations of precision and accuracy boundaries for each investigated

convergence function. An extended evaluation and classification of conver-

gence functions is provided in [AP98, p. 19]. It defines convergence-average

and nonconvergence-average techniques. For convergence-average techniques,

a concrete clock value inside remote clock estimates is required to define
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the correction value. Nonconvergence-average techniques only work with the

presence of remote clock estimates. Convergence functions generally differ

in computation complexity and their ability to tolerate faulty remote clock

estimates.

Two convergence functions which are integrated in widely used communi-

cation technologies are given in the following. Notation f(pi, xi, ...xn) identi-

fies a convergence function, where pi is the processor or node that intends to

execute the convergence function and xi, ...xn represents the received remote

clock estimates of pi.

Fault-tolerant midpoint function. This function fftm(pi, x1, ...xn) is

used by FlexRay [Fle10, p. 213] and has been introduced initially by [LL88].

The algorithm discards the k highest and lowest remote clock estimates. From

the remaining values, xhigh and xlow are used to calculate a midpoint that

serves as the correction value. Parameter k depends on n, but the maximum

number of discarded values is bounded to four (two lowest, two highest). The

algorithm complexity can be considered moderate because it requires only

the sorting of values and a division by two.

Fault-tolerant average function. This function ffta(pi, x1, ...xn) is uti-

lized by TTP/C [TTT02, p. 56] and has been published in [Dol+83]. The

algorithm has been further analyzed for usage in a loosely coupled distributed

real-time system in [KO87]. ffta discards a prior defined number k of n re-

ceived remote clock estimates. The remaining n − 2k values are all used

to calculate its average which is the final correction value. The algorithm

complexity is similar to function fftm.

2.8.3 Technology Specific Application

The synchronization approach depends on multiple factors like network topol-

ogy or required reliability. Bus-based network technologies like TTP/C and

FlexRay often takes advantage of small message latencies and low jitters.

Both technologies are designed to provide a fault-tolerant clock synchroniza-
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tion. The general concept of collecting remote clock estimates is the same

for FlexRay [Fle10, p. 209] [Rau07, p.53] and TTP/C [Kop03; KB03], al-

though these technologies differ regarding its number of different synchroniza-

tion frames. Several nodes transmit synchronization messages periodically,

whereas all receiving nodes know the expected dispatch point in time due to

the schedule. The comparison between actual and expected synchronization

frame reception provides the remote clock estimates used for error correc-

tion. Multiple nodes are selected to provide these synchronization messages

to allow fault tolerance depending on the underlying correction algorithm

(convergence function).

Another bus topology is TTP/A that relies on a master based clock syn-

chronization [KB03; KHE00]. A master periodically transmits specific fire-

works frames that contains relevant information to establish a global time

inside each reception node. Clock state correction is applied immediately af-

ter the reception of the second byte of each fireworks frame. The temporal

distance or interval between the first two bytes of each fireworks frame is

known and additionally measured by all receiving nodes. The interval value

is used to adjust the local clock rate based on the measured deviation to the

expected interval.

A different approach for aligning local clocks is applied by SAFEbus. It

uses three different kinds of synchronization messages. Initial Resync mes-

sages for start-ups, Long Resync messages for integration and Short Resync

messages to correct oscillator drifts [HD92]. These messages contain relevant

information of the overall system state required to synchronize or integrate.

However, all nodes finally synchronize on sync pulses, which is a low value on

the communication bus, applied by all nodes at fixed points in time. The low

value is recognized by all nodes and causes a freeze of local clocks. All local

clocks continue running at the release of the sync pulse, which completes the

synchronization process.

Message latencies in meshed networks can vary drastically, which causes

significant jitters. However, the precise determination of latency and jitter is

the foundation of synchronization for the bus-based technologies introduced

in this Section. Hence, nodes connected by a meshed topology are not able
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to collect remote clock estimates within an acceptable uncertainty by just de-

tecting the reception point in time of synchronization frames. Instead, other

mechanisms need to be established that allow a determination of the synchro-

nization message latency between transmitting and receiving nodes. Network

Time Protocol (NTP) [Mil91] was defined to solve the problem for very large

networks like the internet. It is suitable for applications with synchroniza-

tion requirements of a few milliseconds. A better synchronization quality is

often required for industrial automation, military systems, and many other

domains. These applications can utilize the Precision Time Protocol (PTP),

defined in standard IEEE 1588, to achieve a synchronization quality in the

area of microseconds or even sub-microseconds [IS08, p. 2]. Although it is

possible to realize PTP in software, hardware timestamping is required to get

high accuracy clock synchronization [LEG12].

TTEthernet deploys the PTP of standard IEEE 1588 to apply a delay ac-

cumulation inside synchronization frames [AK07]. A synchronization frame

can pass multiple switches until the destination nodes are reached. Each tra-

versed switch adds its delay, which enables the receiving node to determine

the expected dispatch time of the respective synchronization frame [Ste+06].

The synchronization process itself requires two distinct applications of conver-

gence functions [TTT11, p. 22]. Initially, a set of nodes, defined as SM, send

a synchronization frame to all connected nodes marked as CM. CMs, which

generally provides switching functionality, collect all synchronization frames

to apply a first convergence function. The result, a compressed synchroniza-

tion frame, is sent back to all connected SMs where a second convergence

function is executed. Depending on the number of CMs, each SM finally

receives n compressed synchronization frames used for the clock correction.

The maximum limit of compressed synchronization frames is set to three for

each synchronization attempt [Obe11, p. 200].
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Chapter 3

Field Programmable Gate

Arrays

3.1 Introduction

FPGAs are electronic devices capable of implementing user-defined hard-

ware designs combined with a high degree of flexibility. The resources in-

side FPGAs are connected by control of configuration memories to provide

required user functionalities. These memories are reconfigurable for the ma-

jority of available FPGAs, which allows rapid prototyping, inexpensive bug

fixing, or functional updates. However, the fixed layout of FPGAs, e.g. hard-

ware primitives, clk trees, and interconnect possibilities, are placed through-

out manufacturing, which introduces disadvantages compared to ASICs.

These disadvantages comprise an increase in silicon area and power consump-

tion. A decreased performance must also be expected. Additionally, FPGA

utilization is expensive if used for high quantity products. A detailed compar-

ison about the area, performance and power gap between FPGAs and ASICs

are given in [KR07]. The configuration of currently available FPGA devices

is realized by three different memory types and introduced in the following.

Flash technology. These memories are based on the floating gate tech-

nology and utilized by Actel FPGAs [BSV11, p. 12]. An advantage of this
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technology is the non-volatility. Additonally, radiation tests for a particular

flash based FPGA have shown, that the configuration memory is not sensitive

to Single Event Effects (SEEs) caused by radiation [Urb+13]. A drawback

of this technology is the limited number of reconfiguration cycles [Mic15,

Tab. 2-3].

SRAM technology. Utilized by most available FPGAs but requires a

configuration each time the device is powered on because of its volatility.

The configuration time is very short compared to flash-based devices. Addi-

tionally, this technology allows an infinite number of reconfiguration cycles

[BSV11, p. 14]. A significant disadvantage of this technology is the sensitivity

to ionizing radiation [Man+08; Caf+02].

Antifuse technology. The configuration of this memory type can only be

applied once without any possibility of reconfiguration. High voltage is used

to melt a resistance which permanently stores the required value inside each

memory cell [BSV11, p. 13]. This type of configuration memory provides the

maximum resistance against radiation effects.

FPGA designs are mainly written by use of Hardware Description Languages

(HDLs) like VHDL [Soc08] or Verilog [IEE06] to provide a Register-Transfer

Level (RTL) representation of the required functionality. Additionally,

major Electronic Design Automation (EDA) vendors have started to support

SystemVerilog [SG17] as a design language. Efforts in increasing the

abstraction of hardware design development is ongoing by use of High-Level

Synthesis (HLS). HLS enables FPGA designers to describe hardware in

programming languages like C, C++, or SystemC, depending on the utilized

compiler [Nan+16]. Evaluations between HLS and traditional HDL designing

have shown that performance gains and reductions of development times are

possible [Wan+15; PR09].

The remainder of this chapter is structured as follows. Section 3.2 pro-

vides an overview of the general FPGA architecture. The impact of radiation

effects on electronic devices and its implications to FPGAs are discussed in



3.2 General Architecture 33

Section 3.3. The overall design flow is introduced in Section 3.4 followed by

an overview of formal verification approaches given in Section 3.5. Aspects re-

garding traditionally applied functional simulation are covered in Section 3.6.

Assertion-based verification is introduced in Section 3.7 due to its impor-

tance for simulation and formal verification. Finally, an overview of the most

adopted verification framework is given in Section 3.8.

3.2 General Architecture

An abstract architecture of modern FPGAs is given in Figure 3.1 [KTR08].

It basically consists of functional blocks with the possibility of being intercon-
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Figure 3.1: Basic FPGA architecture.

nected by routing channels. The configuration memory defines how the rout-

ing channels are configured and which blocks are actually connected to each

other. A more detailed view on interconnect capabilities of meshed-based

FPGA architectures is discussed in [PMM15, p. 48]. The given functional

blocks can be classified into three types: I/O ports are used to connect the

FPGA logic with external signals. Basic logic primitives provide the core
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logic gates that are utilized for designs. Other blocks like Random-Access

Memorys (RAMs), Multipliers (MULs), or hardware, used for creating and

maintaining clks, can be treated as specialized ones.

A logic primitive can be configured to represent small boolean functions

by utilizing Look-Up Tables (LUTs). Due to the interconnection capabilities,

multiple logic primitives can be combined to implement arbitrary algorithms.

Additionally, each logic primitive generally provides Flip-Flops (FFs), mul-

tiplexer, and special arithmetic functionality. Arithmetic functionalities are

often provided by Digital Signal Processor (DSP) units as well.

It is recommended to use dedicated RAM units to store large data amounts

instead of using FF. Otherwise, it is possible to run out of hardware resources

that are required to implement the algorithms.

3.3 Radiation Effects

Electronic devices may be exposed to different types of radiation, which can

be classified into two major categories: Charged particles (e.g. electrons) and

electromagnetic radiation (e.g. ultraviolet light) [KCR06, p. 9]. The amount

of energy which is deposited into a device is called Linear Energy Transfer

(LET). It is defined by the deposited energy per unit path length (MeV/cm)

divided by the density of the material (mg/cm3) [BSV11, p. 44]. Electronic

devices can be affected by radiation in different ways, ranging from transient

to destructive effects. Devices can be shielded to reduce the overall dose

level. However, shielding doesn’t protect against SEEs caused by high energy

particles [Duz05]. An overview of common radiation effects is given inside

the following Sections 3.3.1 and 3.3.2.

3.3.1 Single Event Effects

Different types of SEEs exist and generally classified by soft errors and hard

errors [BSV11, p. 45].1 An overview of common SEEs are introduced in

the following with respect to typical circuit elements [KCR06, p. 13] given

1SET, SEU and SEFI are soft errors. SEL is a hard error.
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in Figure 3.2. These circuits generally consist of FFs and combinational
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logic
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C

D Q
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Figure 3.2: Typical circuit elements (combinational logic and flip-flops).

logic. FFs are used to define state machines or to store input values for

further processing. Signals that are applied to combinational logic directly

propagate through it. Additionally, combinational logic doesn’t store any

values. A circuit that defines its outputs based on its inputs and the actual

memory content (state) is called sequential logic.

Single Event Transient (SET). SETs can occur in combinational logic

of circuits. Charged particles that hit combinational logic can cause transient

current spikes. The current spike can propagate to the output of the combina-

tional logic, depending on its intensity. This, in turn, provides a probability

of corrupting the system state, which happens in case current spikes and rel-

evant clk edge events are present at FFs at the same time. The probability

of corrupting FFs increases with higher system operating speeds [Dod+10].

Single Event Upset (SEU). SEUs can cause corruptions of memory el-

ements [BSV11, p. 44]. It can happen to FFs, RAM cells used inside the

circuit, but also to the configuration memory if SRAM based FPGAs are

used. These effects are usually removed if the correct value is rewritten to

the affected memory element. SEUs not necessarily implies an incorrect sys-

tem behavior.

Single Event Functional Interrupt (SEFI). A SEFI is present if the

radiation effect leads to a system that is not capable to continue a fault-free



36 3 Field Programmable Gate Arrays

operation [Kog+97]. This can happen if memory elements of state machines

are corrupted or a program counter of processors.

Single Event Latch-up (SEL). SELs can cause permanent errors that

induce a high current in the affected device [EDN04]. These high currents

can be destructive if not recovered early enough by powering-off the device.

3.3.2 Total Ionizing Dose

Total Ionizing Dose (TID) describes a cumulative radiation effect depending

on exposure time, particle flux and its LET [BSV11, p. 49]. TID radiation

hardness of Commercial Off-The-Shelf (COTS) microelectronic devices has

been extended over the past decade [Dod+10]. However, it is still an impor-

tant aspect to consider because of its degrading effects inside electronic de-

vices. These degradation effects are various, depending on the electronic parts

and the accumulated TID. For example, Metal-Oxide-Semiconductor Field-

Effect Transistor (MOSFET) threshold voltages can change which leads to

increased currents or even result in complete losses of functionality [Mau+08].

During flash device tests, an increased single bit upset sensitivity was observed

for relative low TID levels [Bag+10]. The correlation of TID to SEEs has be

investigated in [Sal+16]. However, no correlation was observed for the tested

parts.

3.4 Design Flow

There are several approaches with different abstraction levels in use to im-

plement hardware designs. A simplified design flow for recent Xilinx FPGA

devices is shown in Figure 3.3. It can be divided into an optional HLS flow

on the left side and the traditional RTL synthesis flow on the right side.

HLS is not a new approach. It started in the 1980s but failed to be adopted

until the early 2000s. HLS tools generally focus on specific applications to

achieve better results. Thus, it should not be utilized by default for all design

types [MS09]. Xilinx HLS tool can process abstract hardware descriptions
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Figure 3.3: High-level and register-transfer level synthesis flow.

written in C, C++ or SystemC [Xil18b, p. 12]. However, multiple academic

and commercial tools are available, able to process hardware descriptions

based on other inputs (e.g. MATLAB or Handel-C) [Nan+16]. The high-level

model is initially compiled, followed by simulation to ensure correct function-

ality on the abstract level. Finally, high-level descriptions are transferred into

RTL descriptions by the use of synthesis. This transfer requires three impor-

tant operations [Cou+09]. All required FPGA hardware resources need to

be allocated. Additionally, the abstract hardware description doesn’t contain

clk cycle accurate behavior. A specific scheduling process is executed to solve

this. Finally, variables and operations are bound to suitable functional units.

The RTL synthesis flow starts with verification/simulation of the RTL de-

sign. Different verification approaches exist and further discussed later in this

chapter. The verification of hardware designs can be applied pre-syntheses,

post-synthesis, and after implementation. The logic synthesis transfers RTL

designs into technology independent representations of gates and macros.
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These independent representations are finally mapped to specific FPGA re-

sources [KB06, p. 229]. The final result of logic synthesis is a netlist, usually

provided as standardized and vendor independent Electronic Design Inter-

change Format (EDIF). The netlist is further optimized throughout imple-

mentation in order to fulfill user constraints. Additionally, the implementa-

tion provides all capabilities to place and route the netlist into a concrete

FPGA device [Xil18a, p. 7]. Finally, the targeted FPGA can be configured

by use of the bitstream file.

3.5 Formal Verification

Formal Verification (FV) and its applied approaches rely on mathematical

concepts to determine correct system behaviors. It has been considered as a

verification technique applied to special or rare corner cases for a long time.

Today, FV is often utilized alongside functional simulation to compensate

weaknesses for certain types of designs or specific domains. However, FV

has even started to replace traditional verification methods if the design is

suitable [Kai+09]. The number of problems which can be addressed by FV

are diverse. Three major approaches, commonly used throughout FPGA and

ASIC design, are introduced in the following.

3.5.1 Equivalence Checking

Three different types of equivalence checking are commonly used. Combina-

tional equivalence is applied to combinational design parts only as explained

in [DS07]. Sequential equivalence incorporates state elements to proof cycle-

accurate equivalence between a given reference model and the alternative im-

plementation [MS05]. It is often used between different representations of the

same system [DH02]. Several RTL re-designs are usually applied throughout

FPGA developments. These re-designs often take place due to optimization

purposes, e.g. new logic is inserted to reduce power consumption or critical

paths are eliminated to increase the operating frequency. Instead of applying

functional simulation for each re-design, it is sufficient to ensure the system
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output behavior is equal for all input combinations compared to the refer-

ence RTL. Additional computation prior to Equivalence Checking (EC) is

required, if a one-to-one interface correspondence between two system repre-

sentations doesn’t exist [MM04, p. 3].Functional simulation can take weeks or

even months before completed. EC instead, may provide the results in hours

or even minutes2. However, the actual computation time directly depends on

the system state-space. Equivalences can also be checked between RTL and

corresponding gate-level circuits to ensure synthesis was performed correctly.

In contrast to model checking, it is not necessary to describe formal system

properties or specifications to apply EC.

Transaction-based equivalence can be considered as the most recent variant.

It is used for comparing high-level and RTL descriptions. It provides the

freedom of utilizing models without a cycle-accurate specification [SSK15,

p. 229].

3.5.2 Clk Domain Crossing

Recent studies have shown that most FPGA and ASIC designs utilize 3 or

4 clk domains. But also designs with 20 or even more clk domains were

developed [Fos18a, Fig. 1-2] [Fos18d, Fig. 7-3]. Multiple clk domains require

data is passed between them. Several ways are described in [Cum08] to

handle Clk Domain Crossing (CDC) properly. CDC techniques shall prevent

the propagation of metastability into the system. Metastability occurs if

setup and hold times of sampling units (FFs) are violated, which results in

unpredictable states on the FF output. These violations can’t be removed for

asynchronous multi-clk designs, but isolated by CDC techniques to prevent

system operation is failing.

These checking tools investigate all the design parts involved in CDC, ap-

plicable to RTL and gate level. Typical design flows for RTL and gate level

checks are published in [CH17]. Gate level CDC checks are recommended to

ensure synthesis has not broken existing CDC paths. Synthesis flows might

2Durations are provided by Mentor Graphics for tool Questa Sequential Logic Equiva-
lence Check (SLEC) [Gra19].
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also introduce inadvertently new CDC paths. However, the setup and de-

bug effort throughout gate level CDC checks is considered as much higher

compared to RTL CDC checks.

3.5.3 Model Checking

This kind of verification applies property checks to a formal model of the sys-

tem intended to be verified. These models are usually extracted from RTL

descriptions if used for ASIC or FPGA designs. Additionally, system spec-

ifications need to be defined in a way that Model Checking (MC) tools can

apply them. These specifications are often expressed by temporal logic like

Linear Temporal Logic (LTL), first introduced in [Pnu77], or Computation

Tree Logic (CTL). Throughout evaluation, the MC tools apply legal input

combinations to the model in order to violate system specifications [Coh+16,

p. 238]. Each violation is reported as a counterexample, which represents the

sequence that leads to the failure. MC explores whole system state-spaces,

which is a major difference to functional simulation. If no counterexample

is found, a specification holds under every legal input sequence. MC is fre-

quently represented by Formal Property Verification (FPV) in the domain of

digital circuit design. A concrete problem is addressed by FPV inside this

work and outlined in detail in Section 6.3.

MC tools often using Binary Decision Diagrams (BDDs) [DS01] to express

the system states and transitions between them. They apply optimization

and reduction to the BDDs in order to keep the overall system state man-

ageable. However, it has been observed that BDD can grow exponentially if

the model size increases [FLS15]. As a consequence, larger designs are par-

titioned into smaller parts to reduce the explorable state size. Each part is

then individually checked. Additionally, constraints are applied to MC tools

by use of assume statements, which can reduce the state-space further.

A major advantage is the early application of MC throughout FPGA de-

velopment cycles. It can be applied as soon as RTL code is available without

the need to have a testbench, as it is required for functional simulation.

MC can be additionally used to explore designs by defining cover state-
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ments [SSK15, p. 111]. Thus, MC tools provide input sequences that show

the design behavior intended to be investigated, without the need of having

a testbench ready.

3.6 Functional Simulation

Functional simulation represents the verification method mostly used for

FPGA designs. The Device Under Test (DUT) is placed inside a testbench

which is able to control DUT inputs. These inputs lead to a reaction of the

DUT, which is compared with its requirements. Simulation can be applied

in different stages during FPGA verification flows. RTL simulation is used

to verify the correct behavior of RTL code without concerns about timing

delays. Gate level simulation incorporates the timing information generated

by place and route but requires more time for execution [Sim15, p. 181].

Several approaches exist in the field of simulation. They differ in the way of

providing stimulus to the DUT or how they check for correct DUT behavior.

An overview of the most relevant concepts and their differences is introduced

in the following.

3.6.1 Constrained Random Verification

Stimulus, applied to the DUT, must be defined in some way. This can be done

either manually or by utilizing a randomization engine. The manual stimuli

definition targets a specific operation of the DUT and is also known as directed

testing. Additionally, directed testing often comprises manual evaluations of

DUT responses to ensure they are compliant with the requirements [ST12,

p. 5].

The randomized stimuli definition is part of Constrained Random Verifi-

cation (CRV). Constraints are provided to a randomization engine in order

to generate a specific range of input stimuli. However, this approach im-

plies that different related activities are automated. The actual applied DUT

stimulus and responses must be tracked by functional coverage to ensure all

DUT functionalities were tested according to its requirements. Additionally,
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all DUT responses must be checked automatically in order to handle the huge

amount of test cases.

In contrast to directed testing, more effort is required to prepare a test

environment able to handle all CRV related activities. The usual progress of

CRV and directed testing is given in Figure 3.4 [Meh18, p. 66]. CRV per-

Coverage [%]

Time

100%

Directed Test
Random Test

Figure 3.4: Verification progress of random versus directed testing.

forms the verification process faster, although it requires a longer setup time.

Once started, CRV rapidly collects a large amount of coverage. Constraints

are modified to target the unexplored DUT behavior in order to collect the

missing coverage. The randomized stimulus application also reveals bugs in

design parts where they are not anticipated [ST12, p. 7]. In contrast to CRV,

directed testing provides a constant but flat progress.

3.6.2 Languages

Testbenches are written in different languages. However, recent studies in-

dicate thatVHDL, Verilog and SystemVerilog are used mostly for verifying

FPGA designs [Fos18c, Fig. 6-2].

VHDL and Verilog are dominant for system design. They were also se-

lected as primary verification language for a long time. Continuous increases

in system complexity and a limited capability of HDLs to cover all neces-

sary verification needs lead to the definition of Hardware Verification Lan-

guages (HVLs). OpenVera, e, SystemC, and SystemVerilog are the most
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commonly known HVLs. They typically provide stimulus randomization to

apply CRV, functional coverage tracking, and high-level programming fea-

tures, e.g. object-oriented class-based design.

Additionally, some languages are used to establish methodologies or frame-

works. These methodologies provide patterns to solve typical verification

problems, starting from stimuli application for different access types3 up to

support for register modeling. Current study results that represent the adop-

tion of different methodologies are given in [Fos18c, Fig. 6-3]. It shows that

UVM [Soc17], which is based on SystemVerilog, dominates in the application

of methodologies.

3.7 Assertion-based verification

Assertions are used to describe system properties in a formal way. They are

mostly used to express design behavior over time if used for verifying hard-

ware designs. Assertions mainly defined by SystemVerilog Assertions (SVA)

[SG17, p. 364] or Property Specification Language (PSL) [IEE10] whereas

both languages are well supported by the main EDA vendor tools. It has

been published that Assertion-Based Verification (ABV) adoption can lead

to a drastic reduction of verification efforts up to 50% [Y+00]. Several bene-

fits, identified in [Cer+10, p. 7], can improve the overall verification process

by utilizing ABV.

Formal design specification. A system property expressed by assertions

is distinct and doesn’t provide room for interpretation. Instead, system spec-

ifications written in natural languages are often ambiguous.

Improved bug detection. Simulation can be considered as black box test-

ing in most cases. Input stimuli are applied to the DUT and possible faults

need to propagate from internal structures to the interface boundary to be

recognized by the test environment. However, it is possible that DUT faults

3E.g. to support Bidirectional Non-Pipelined or Out of Order Pipelined transfers.



44 3 Field Programmable Gate Arrays

are masked or isolated internally [RA16], possibly leading to non-trivial bugs

that are found late in the design cycle or completely missed. Assertions can

be placed at unit interfaces on arbitrary hierarchy levels or inside design code

to address this problem. They can also reference arbitrary signals inside the

design if required. Assertions that detect faulty behavior indicate a violation

of the concrete covered system property. Problem root causes are localized

very fast by the help of assertions, often with additional tool support like

assertion thread viewer.

Formal and simulation-based application. Successfully applied asser-

tions can be adopted for use by formal and simulation-based methods, which

increases efficiency [Y+00].

3.8 Universal Verification Methodology

UVM provides an IEEE standardized verification framework [Soc17] based

on the HVL SystemVerilog. It was defined and developed by the main EDA

vendors based on the experiences collected during previous methodology stan-

dardization processes like Open Verification Methodology (OVM) or Verifi-

cation Methodology Manual (VMM). By now, UVM is the de-facto standard

methodology for functional verification of RTL designs as indicated by the

latest survey results in [Fos18c, Figue 6-3] [Fos18b, Figue 10-3]. The study

shows an approximate UVM usage of around 50% for FPGA developments

and about 70% for ASIC developments in 2018 which represents a large gap

to all alternative methodologies. Additionally, an ongoing utilization uptrend

is present for the given statistics, ranging from the year 2014 to 2018.

3.8.1 Architecture

A basic UVM testbench architecture is shown in Figure 3.5. It consists of

dynamic SystemVerilog (SV) class objects which are connected to static SV
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interfaces in order to interact with the DUT. The architecture is divided into
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Figure 3.5: Basic UVM architecture.

three layers to increase reusability. Its testbench layer solely contains SV

class objects, able to communicate with other objects inside this layer by use

of transaction objects. These transaction objects are exchanged by function

or task calls without specific DUT timings. Connections to DUT signals can

be established for individual cases like reacting on specific hardware events,

by referencing SystemVerilog interfaces. However, for most cases, no direct

DUT connections exist for the testbench layer. The Monitor and Driver

proxies act as an interface between testbench and transactor layer. Finally,

Bus Functional Models (BFMs) operate at the DUT pin level with respect

to clk accurate timings, required to drive the DUT input signals and to store

its responses.

It is also possible to include the proxy objects into the transaction layer

with the disadvantage of limiting portability. However, the integration in-

creases flexibility because BFM tasks would be executed by SV class objects

rather than SV interfaces4.
4SV interfaces are limited because they don’t provide object-oriented features like in-
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3.8.2 SystemVerilog Assertion Integration

SVAs are used to describe and check system properties. These assertion

checks can be of type immediate and concurrent. Assertions that check

boolean values without relation to clks are immediate. Concurrent asser-

tions are used whenever system behavior is checked for single or multiple

clk cycles. SystemVerilog provides properties and textitsequences to express

system specifications. Properties become true or false at the end of each

evaluation, whereas sequences are used to define more complex properties.

An example sequence, used within a property and checked by an assertion,

is shown in Figure 3.6. The property evaluation starts for each rising edge of

variable req in order to check for a high value of variable ack within one to

three clk cycles. SVAs are commonly placed inside SV interfaces or modules

1 default clocking @(posedge c l k ) ; endclocking
2

3 property p r e q f o l a c k ;
4 $rose ( req ) |−> s a ck h i g h ;
5 endproperty : p r e q f o l a c k
6

7 sequence s a ck h i g h ;
8 ##[1:3] ack ;
9 endsequence : s a ck h i g h

10

11 a reqack : assert property ( p r e q f o l a c k )
12 begin
13 // Action block p o s i t i v e eva lua t i on
14 end else begin
15 // Action block negat ive eva lua t i on
16 end

Figure 3.6: Code example of an assertion check based on property and
sequence definitions.

to build an encapsulated and reusable verification unit. A dedicated checker

statement exists to provide specific capabilities for creating verification units.

heritance and polymorphism.



3.8 Universal Verification Methodology 47

However, these units also introduce some limitations compared to modules

or interfaces [Cer+10, p. 447]. SV interfaces are the only unit that can be

referenced by class-based objects. Thus, checkers need to be implemented

there in case UVM environments are required to exchange data with SVAs.

These direct interactions between UVM environments and SVAs can im-

prove verification processes is different ways. It might be required to deac-

tivate assertions for specific test runs as introduced in [Lit13]. Additionally,

SVA evaluations can be modified over time depending on the DUT system

state as published in [Coh13]. UVM environments can provide this infor-

mation to all relevant SVA in order to update their behavior dynamically

throughout verification runs. Another use case of UVM scoreboard support

is introduced in [BMD19], which targets the verification of volatile status

registers. The author uses SVAs to capture volatile register values at specific

points in time. These values are forwarded to the UVM scoreboard, which

allows a combined register model comparison for volatile and non-volatile reg-

isters. Volatile register verification must be considered as non-trivial because

it is not covered by the general UVM verification flow [Lit14].
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Chapter 4

SpaceWire

4.1 Introduction

SpaceWire is a communication technology mostly used on-board spacecraft

to connect instruments, on-board computers, or other units. It provides full-

duplex, bidirectional and serial communication transfers with data rates be-

tween 2 - 400 MBits/s [ESA08, p. 13]. Two SpaceWire interfaces are con-

nected point-to-point to establish a link.

The remainder of this chapter is structured as follows. Section 4.2 in-

troduces the SpaceWire layers and discusses problems concerning real-time

capabilities. An overview of existing SpaceWire modifications and extensions

is given in Section 4.3. These extensions either provide concrete solutions, or

they contribute concepts that might help to address the real-time issue.

4.2 Layers

SpaceWire is divided into six different layers to define its complete function-

ality, which is outlined in the following.
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4.2.1 Physical Layer

The physical layer defines the properties of cables and connectors. Addi-

tionally, Printed Circuit Board (PCB) design recommendations are given to

ensure proper track routing. The standard allows cables with lengths up

to 10 m and considers certain characteristics (impedance, skew, attenuation,

crosstalk) to achieve high data rates up to 400 MBits/s. Extensive Electro-

magnetic Compatibility (EMC) tests were done in order to meet the require-

ments for typical spacecraft [ESA08, p. 24].

4.2.2 Signal Layer

LVDS is used as a transmission standard that provides a high immunity to

signal noise combined with low power consumption. The Data-Strobe (DS)

encoding scheme is used for all data transfers and originally defined in [IEE96].

An example trace for this encoding is given in Figure 4.1. Signal D provides

1 1 1 1 10 0 0 0 0Value

D

S

Recovered clk
(D XOR S)

Figure 4.1: Data-strobe encoding with recovered clk.

the actual transmitted/received value. Signal S changes its value in case D

remains constant. However, it is not allowed that both signals change their

values at the same time. Clk recovery can be applied by XORing both signals.

DS encoding tolerates signals skews between D and S to almost 1-bit time.

In contrast to that, synchronous data transfers, controlled by a separate clk
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signal, only tolerate 0.5-bit times [ESA08, p. 24].

4.2.3 Character Layer

Transferred bits are interpreted in characters. SpaceWire defines data charac-

ters and control characters [ESA08, p. 52] as illustrated by Figure 4.2. Both

Data character

Data

Parity bit
Data-control flag

P

Control character

Control code

Parity bit
Data-control flag

FCT (Flow control token)

EOP (Normal end of packet)

EEP (Error end of packet)

ESC (Escape)

X0 X1 X2 X3 X4 X5 X6 X70

P 0 01

P 0 11

P 1 01

P 1 11

Figure 4.2: SpaceWire data and control characters.

character types contain a parity and data-control flag. The data-control flag

is used to distinguish between both character types. The parity bit protects

the data-control flag and the parity bit of the actual character. Additionally,

it protects user or control code values of the previous character. These are

either eight bits (X0 to X7) for data characters or two control code bits used

for control characters.

Four control character types exist. Normal End Of Packet (EOP) and

Error End of Packet (EEP) characters represent a packet boundary and mark

packets as faulty or fault free. Single Flow Control Tokens (FCTs) indicate a

receiver has memory space left for further data character receptions in order

to prevent congestion. Escape (ESC) characters only used in combination
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with FCTs or data characters to form two possible control codes [ESA08,

p. 53] as shown in Figure 4.3.

111P 0010

FCT
ESC

Control code (NULL)

111P X1X001 X3X2 X7X6X5X4

ESC
Data character

Time value
Control valueControl code (time-code)
(00 = Time-Code)

Figure 4.3: Initially defined control codes (NULL and time-code) before
actual SpaceWire standard revision.

NULLs are transmitted periodically to keep already established links up. A

timeout is recognized in case NULLs are missing, which starts a link recovery

procedure. They are also used during link initialization.

Time-codes are used to transmit high priority messages, consisting of six

bit time value and two bit control value. SpaceWire data transfers can be

considered as a stream of the three introduced elements (data characters,

control characters, and control codes). Each element is transferred individ-

ually and can’t be interleaved during transmission. However, these elements

are transferred with different priorities. Time-codes have the highest priority

which allows them to interleave large data streams consisting of multiple data

characters.

Distributed interrupt codes are introduced by the revised SpaceWire stan-

dard [ESA19, p. 88] and shown in Figure 4.4. Time-codes and distributed

interrupt codes are now classified as broadcast-codes. Distributed interrupt

codes have the same structure as time-codes and provide request/acknowl-

edge based interrupt capabilities. They have a lower priority than time-codes

but still precedence over data characters. Distributed interrupts allow trans-
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111P 01

ESC
Data character

Interrupt value

Control value
Broadcast code 
(Distributed interrupt code)

Interrupt type

(1 = interrupt code) 
(0 = interrupt acknowledge code) 

(01 = Distributed interrupt code) 
X0 X1 X2 X3 X4 X5 X6 X7

Figure 4.4: Recently added distributed interrupt classified as broadcast
code.

mission of arbitrary interrupt values. This is a major difference to time-codes

who require time value increments of 1 (valuen = valuen−1 + 1) [ESA08,

p. 84]. Additionally, distributed interrupts can be extended by incorporat-

ing the interrupt type bit into the interrupt value field. In these cases, the

interrupt value consists of six bits by removing all acknowledge capabilities.

4.2.4 Exchange Layer

The exchange layer defines how links between two SpaceWire interfaces are

initialized, how the data flow is controlled throughout normal operation, and

how errors are detected and recovered. This layer additionally classifies Nor-

mal Characters (N-Chars) and Link Characters (L-Chars). Characters and

control/broadcast codes, introduced in Section 4.2.3, are classified by their

layer accessibility. N-Chars are those that are passed to the packet layer (data

characters, EOP and EEP). All others remain inside the exchange layer and

part of L-Chars.

Link initialization between two connected SpaceWire interfaces is done

by following a handshake procedure. It starts with a transmission of

NULLs by SpaceWireInterfacex in order to wait for a NULL response of

SpaceWireInterfacey. After that, SpaceWireInterfacex transmits FCTs.

The procedure is completed once SpaceWireInterfacex receives a FCT of

SpaceWireInterfacey. After this procedure, both SpaceWire interfaces are
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allowed to transmit user data, e.g. data characters and broadcast codes (time-

codes, distributed interrupt codes).

Flow control is used after link initialization has finished. It ensures

that N-Chars are only transmitted if the receiver has memory space

left to store them. For this, SpaceWireInterfacex provides FCTs to

SpaceWireInterfacey. A single FCT, received by SpaceWireInterfacey,

indicates that SpaceWireInterfacex has memory space available for at least

eight N-Chars.

Several error conditions can be detected. A link disconnect error is recog-

nized on receiver side if no data is received for 850 ns. A parity error occurs

if the parity field inside data or control characters indicates data corruption.

Invalid control codes are marked as ecape errors whereas an unexpected recep-

tion of N-Chars causes credit errors. Specific handshake mismatches during

initialization are covered by character sequence errors. All errors lead to an

exchange of silence. This is required to ensure both ends of the link reinitialize

the connection.

4.2.5 Packet Layer

The structure of SpaceWire packets is fairly simple, as shown in Figure 4.5.

Identifier spwPacket defines a complete SpaceWire packet. It allows an arbi-

trary number of destinationAddress values used for routing packets through

networks. Value destinationAddress may be skipped for point-to-point con-

nections if required. The arbitrary sized cargo field1 contains user data. All

packets must be closed by the endOfPacket field.

A protocol identifier can be used if multiple different protocols are required

to be transmitted [RE10, p. 12]. However, value destinationAddress must be

present for these cases to provide a logical address in order to determine the

correct position of the protocol identifier within received data streams.

1Allowed to be skipped from the technical point of view.
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spwAddress 
logicalAddress = data character; 

= data character; 
= control character; 
= control character;

= spwAddress | logicalAddress;
spwPacket = {destinationAddress}, {cargo}, endOfPacket;

cargo 

EOP
EEP

destinationAddress

= data character; 

= EOP | EEP;endOfPacket

Figure 4.5: Structure of a basic SpaceWire packet.

4.2.6 Network Layer

Routers are used in case more than two SpaceWire interfaces are required

to be connected. These routers can be treated as a collection of SpaceWire

interfaces connected by a crossbar. Crossbars can connect each SpaceWire

input to an arbitrary SpaceWire output, whereas each output arbitration is

done independently and in parallel. Prioritization can be used to control the

arbitration. It allows a prioritized forwarding of specific packets to establish

ordinary QoS.

Packets that arrive at routers are forwarded to the required router output,

depending on their addresses. Addresses are located at the first packet byte

and can be of type logical address or path address. Logical addressed packets

are forwarded according to routing tables, which provides the relation between

address and required output. Path addressed packets are used to select the

required output directly without routing table access.

Path addresses are deleted before packets are forwarded 2. This allows the

traversal of multiple cascaded routers by using path addresses only. Logical

addresses are also allowed to be deleted. However, this must be enabled

explicitly inside the router configuration for each logical address individually.

Packets inside routers are assigned to the required outputs as soon as ad-

dresses are received. This kind of switching technology is known as wormhole

routing. [ESA08, p. 92]. Wormhole routing is utilized to reduce the required

2This address deletion is also known as header deletion.



56 4 SpaceWire

memory size drastically inside routers. A survey of research contributions and

commercial ventures in the field of wormhole routing is published in [NM93].

A prioritization scheme is used to allow packets are arbitrated and for-

warded prioritized depending on their addresses. However, cascaded routers

can cause congestion situations that remove the benefit of prioritized packet

transfers, as outlined in Figure 4.6. Prioritized packets are labeled with p,

p1

np1 npn+1

npm

...

npn

...

Router0 Router1

Congestion

Figure 4.6: Prioritization problem for cascaded routers.

non-prioritized packets are labeled with np. For the given scenario, p1 com-

petes with np1...npn−1 to get access to the output of Router0. However, p1

will be forwarded next because it is the only prioritized packet at the input

of Router0. npn currently blocks the output of Router0 and is requesting

access for the output of Router1. In a worst case scenario, all other packets

at the inputs of Router1 are granted to the output before npn which in turn

blocks p1 as well. As a consequence, the prioritization capabilities of p1 are

restricted to Router0.

4.3 Extensions

An overview of SpaceWire extensions that contribute concepts and ideas,

relevant for real-time transfers, are introduced in the following.

SpaceWire Time Distribution Protocol (TDP). The approach relies

on a master based time distribution. A single initiator transmits periodi-



4.3 Extensions 57

cally time-codes which are received by an arbitrary number of targets. TDP

is capable of determining and compensating time-code latencies between the

initiator and each target by utilizing distributed interrupts and hardware

timestamping. Jitter and drift mitigation is performed inside targets. They

determine the local clock differences to the initiator based on time measure-

ments between consecutive time-codes [Sak+14]. A tailored version of TDP

is used the first time inside a real flight mission for the JUpiter ICy moons

Explorer project [TIM16].

SpaceWire Network Discovery and Configuration Protocol

(NDCP). This protocol is used to discover and configure SpaceWire net-

works. It considers every SpaceWire router and SpaceWire end-point as a De-

vice. Furthermore, NDCP defines Control Devices which are used to manage

Peripheral Devices. Multiple parameters are available for Peripheral Devices.

They are accessed by Control Devices to identify the kind of device (Node

or Switch) and its properties. A graph model of the whole system is cre-

ated if all available information about the network and its nodes are collected

[Rom+16]. Establishing an overall view of the system can be important be-

cause its structure often influences compensation methods used during clock

synchronization.

SpaceWire deterministic (D). This approach defines a time-triggered

data transfer over SpaceWire with data exchanges controlled by the Remote

Memory Access Protocol (RMAP) [Gib+16]. The global time is distributed

centralized by using time-code values. These time-code values directly define

the executed schedule slots. Hence, the overall schedule length is limited

to 64 slots caused by the time-code structure. The time-code distribution

frequency can be parameterized but need to be constant once the system

starts time-triggered operation. This leads into equal slot lengths for all 64

available slots.

SpaceWire reliable (R). This protocol provides reliable data transfers by

utilizing various functionalities [Mic+16]. It uses automatic packet retrans-
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mission based on acknowledged data exchanges. Additionally, large sizes of

user data can be segmented over multiple SpaceWire-R packets. It is also

possible to establish several parallel data streams between source and des-

tination. Destinations can apply flow control in case they are not able to

process the overall incoming data. For this, receivers inform transmitters

about the number of packets they can process. The concept is similar to the

flow control implemented by SpaceWire on the character layer. Heartbeat

packets are transferred in case no user data are available to detect faults

like broken connections or non-responding destinations. However, all these

properties don’t guarantee real-time data transfers.
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Part III

Contribution
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Chapter 5

Approach and System Design

5.1 Introduction

The concept of clock synchronization, introduced in Chapter 2, can be consid-

ered as a precondition for time-triggered data transfers. Furthermore, clock

synchronization requires the collection of remote clock estimates. This chap-

ter introduces a novel approach for collecting these remote clock estimates

and provides an overview of the complete system architecture, which is used

for evaluation purposes.

The introduced approach allows clock synchronization without accumulat-

ing packet latencies between source and destination. Instead, remote clock

estimates are gathered by recognition of pulses/interrupts which are trans-

ferred over the network. The utilization of SpaceWire evaluates this concept

because it provides these interrupts built-in. However, the concept could also

be transferred to other communication technologies if the character layer of

SpaceWire is imitated. The introduced approach additionally provides the

ability to handle clock synchronization in a decentralized way. This allows a

fault-tolerant time distribution, which is a major difference compared to all

existing SpaceWire extensions.

The remainder of this chapter is structured as follows. A detailed intro-

duction of the pulse-based remote clock estimation is given in Section 5.2

followed by an overall system architecture discussed in Section 5.3. The sys-
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tem start-up, integration, and clock synchronization process are outlined in

Section 5.4. Finally, a modified SpaceWire interface is introduced in Sec-

tion 5.5, with the intent of reducing broadcast code transmission jitters to

achieve better synchronization qualities.

5.2 Pulse-based Remote Clock Estimation

The estimation of remote clocks if fundamental to establish a system-wide

clock synchronization. Pulses with predefined characteristics are used for

the introduced approach in order to receive clock estimates instead of apply-

ing delay accumulation techniques. Its general working principle and usage,

in combination with SpaceWire as a concrete communication technology, is

given in the following.

5.2.1 General Approach

Clock synchronization is performed while time-triggered systems execute their

schedules. During schedule execution, data are exchanged in order to collect

remote clock estimates, which are used for the convergence function dur-

ing clock synchronization. These remote clock estimates represent a relation

between local clocks inside the system. For centralized approaches, only a

single remote clock estimate is used to synchronize clocks. Decentralized ap-

proaches, like the one introduced in this thesis, collect multiple remote clock

estimates throughout schedule executions and allow fault-tolerant clock syn-

chronizations.

The pulse-based remote clock estimation uses a schedule shown in Fig-

ure 5.1. The schedule is executed periodically and consists basically of three

schedule slot types. Data slots are assigned to arbitrary nodes. They are used

to exchange user data and don’t affect the clock synchronization. Time and

pulse slots are executed by a subset or all available nodes (Node0 - Noden).

Each selected node transmits this slot pair during schedule execution to all

other nodes. Time slots contain information about the executed slot, cycle,

and a unique reference number that belongs to the actual transmitting node.
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...
t

Time
(Node0)

Pulse
(Node0)

Time
(Noden)

Schedule slot

Slot start

Data
(Arbitrary Nodes)

Pulse
(Noden)

Figure 5.1: Example schedule used to distribute time information.

This reference number is also transmitted inside the pulse slot. Nodes that

receive time and pulse values validates the connection between both slot infor-

mation. Time slot values are transmitted like user data. It must be ensured

that transmission is completed inside the slot without any further temporal

constraints. In contrast to that, pulse slot values are transmitted with pri-

ority in order to provide predictable transmission latencies. It is technically

possible to transmit pulse slot values inside Data slots to increase the overall

efficiency instead of assigning them to dedicated slots.

The concrete remote clock estimation for a particular pulse slot is explained

in the following based on Figure 5.2. It illustrates a pulse slot from the trans-

t

pulseDispatch

pulseLatencymin

pulseJitterpulseLatencymax

pulseExpected

...... Pulse Slot (Nodetx)

...... Pulse Slot (Noderx)

Figure 5.2: Pulse reception for perfectly synchronized local clocks.

mitting and receiving node point of view. This is required because slots are

executed based on the local clock of each node. Both local clocks are perfectly

synchronized for the given figure. Nodetx transmits a pulse value at the slot
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beginning according to its own local clock1. Noderx (and all other receiving

nodes) has information about the pulse dispatch point in time because of the

schedule. No local clock drifts are present between Noderx and Nodetx for

the given example. Thus, the pulse dispatch happens at the same local time

for both nodes. Additionally, minimum and maximum pulse latency values

are known. These latencies depend on the network path between the source

and destination node and determined before system operation. Pulse jitters

directly correlate to the quality of the collected remote clock estimates and

defined by the temporal variance of pulse receptions (Equation 5.1). The

expected pulse reception time (Equation 5.2) must be calculated in order to

determine the final remote clock estimate rce (Equation 5.3) which expresses

the temporal difference between the local clock of the pulse transmitting and

receiving node.

pulseJitter = pulseLatencymax − pulseLatencymin (5.1)

pulseExpected = pulseDispatch+ pulseLatencymin +
pulseJitter

2
(5.2)

rce = pulseExpected− pulseActual (5.3)

The closer rce values converge to 0, the better local clocks are aligned. The

expected pulse reception time pulseExpected is defined based on the local

clock of each receiving node and set into the pulseJitter center. The subtrac-

tion between pulseExpected and the actual pulse reception point pulseActual

defines the local clock difference which can be negative or positive. The fol-

lowing system properties affect the rce value and in turn influence the overall

clock synchronization quality.

1This representation is simplified for illustration purposes. In fact, the pulse value
dispatch is delayed by the system precision value and possibly further delayed to allow slot
preparation.
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Jitter. An increased size of pulseJitter directly enlarges its introduced un-

certainties. The maximum rce value is defined as follows

rcemax = ±pulseJitter
2

(5.4)

for perfectly aligned local clocks. Jitter values represent constant uncertain-

ties that can’t be compensated by clock synchronization algorithms. As a

consequence, rce values are processed only beyond a specific threshold to en-

sure uncertainties, caused by real clock drifts, are present. However, jitter

values may be decreased by modifying the overall system behavior. This

work presents such a modification for the used communication technology

SpaceWire, introduced in Section 5.5.

A general overview of approximated jitter ranges of synchronization mes-

sages is given in [Kop11, p. 70]. It indicates that hardware implementations

are capable of maintaining jitter ranges of less than 1 µs. In contrast to that,

kernels of operating systems imply jitter ranges between 10 - 100 µs. Even

worse jitter ranges of 10 µs - 5 ms are expected if synchronization messages

are handled at the application software level.

Local clock drift. This causes clock value differences, which leads to offsets

in schedule slot executions, as shown in Figure 5.3. This local clock offset

......
t

pulseDispatchtrue

...... Pulse Slot (Nodetx)

pulseDispatchfalse

localClockOffset

Pulse Slot (Noderx)

Figure 5.3: Local clock drift effect on pulse determination.

doesn’t affect relative values like latencies or jitter. However, as shown in

Equation 5.3 and 5.2, the remote clock estimation also includes the pulse

dispatch as an absolute value to determine the expected pulse value reception.
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Thus, local clock offsets can increase the deviation between expected and

actual pulse reception.

A centered position of pulseExpected allows a balanced reaction on local

clock differences for positive and negative values. Figure 5.4 shows the dis-

tance from pulseExpected to the jitter boundaries. As already stated, remote

t
pulseLatencymin

pulseJitter

pulseLatencymax

pulseExpected
(Center of pulseJitter)

pulseJitter/2+pulseJitter/2-

Figure 5.4: Distance from expected pulse location to jitter boundaries.

clock estimates must have a value that clearly contains clock drift uncer-

tainties in order to use them for clock synchronization. Thus, remote clock

estimates can be used for synchronization purposes if its values are larger than

+pulseJitter/2 or smaller than −pulseJitter/2. The range of allowed remote

clock estimates changes if pulseExpected is located at pulseLatencymax. In

this case, remote clock estimates smaller than −pulseJitter, and every posi-

tive value would be a valid input for the clock synchronization. Clock drifts

up to a total duration of pulseJitter can be masked if pulses are transmitted

with its maximum jitter. This happens, for example, if a pulse is received at

pulseLatencymax and a clock drift of −pulseJitter is present.

5.2.2 Concrete SpaceWire Utilization

Pulse distribution over serial communication links is provided built-in by

SpaceWire broadcast codes [ESA19, p. 84]. This work utilizes Distributed In-

terrupts (DIRQs) which are a subset of broadcast codes. Figure 5.5 shows the

basic connectivity responsible for transmitting and receiving DIRQs. Each

SpaceWire interface has a dedicated port for transmitting user data and

broadcast codes. User data are stored inside memories and processed in
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Serial data linkTime-codes
Distributed interrupts

Broadcast codes

User data SpaceWire
interface Broadcast codes

User dataSpaceWire
interface

Figure 5.5: SpaceWire interface connection with typical user interface.

the order they are applied to the SpaceWire interface. DIRQs, instead, are

processed immediately at the time they are assigned to the broadcast code

port. Its transmission over the serial data link is started as soon as currently

executed token2 transfers are finished.

Routers, which are generally part of SpaceWire networks, relay incoming

broadcast codes without arbitration to all other outputs. Thus, a constant

latency is given for broadcast code forwarding inside routers. Existing uncer-

tainties that affect DIRQ transmissions are outlined in Section 5.5 as well as

strategies to reduce them.

5.3 System Architecture

A complete system capable of establishing and maintaining a global time is

shown in Figure 5.6. It consists of multiple NCs connected by a SpaceWire

network. All NCs are capable of synchronizing their local clocks and of per-

forming a system start-up to establish an initial synchronized global time.

The synchronized clocks are used to provide time-triggered data transfers

between arbitrary connected hosts.

The implemented clock synchronization incorporates the pulse-based re-

mote clock estimation which is introduced in Section 5.2. The network can

be considered as isolated by NCs to prevent hosts from influencing the overall

communication by illegal accesses. A basic overview of NCs is given in Fig-

2Data characters, FCTs, NULLs, Time-codes, Distributed interrupts.
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SpaceWire network

Network controllern

......

Network controller0Host0

Hostn

Figure 5.6: Network controller based data exchange by utilizing SpaceWire
networks.

ure 5.7. They are connected to the network by the use of standard SpaceWire

interfaces. Hosts can interact with NCs over the internal Advanced High-

Performance Bus (AHB), which is implemented as an interconnect to improve

performance. The start-up unit is active after each power-on, reset, or loss of

clock synchronization. It performs the start-up routine to establish an initial

global time in case no communication is recognized.

The integration unit collects time and pulse information3 in case already

synchronized NCs exchange data. The integration completes if a sufficient

number of time and pulse information is received. The synchronized state is

kept as long as the observer unit recognizes a minimum number of time and

pulse information. Otherwise, another start-up attempt is initiated.

The schedule execution unit provides information to all other units about

actual executed slots and cycles. Its progress is controlled by the macrotick

generator unit, which provides ticks with a system-wide defined frequency.

The macrotick length can be modified by the state and rate correction units,

which are part of the clock synchronization.

Interactions between NCs and hosts are based on instructions stored inside

host interface RAMs. The executed schedule is located inside network con-

troller RAMs. The packet exchange RAM either contains host data required

for transmission or provides memory space for received data. A detailed in-

troduction of each RAM purpose and the way they are accessed is given in

Section 5.3.1. The NC prototype is described in VHDL and implemented on a

3Received in time and pulse slots related to Section 5.2.1.
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Figure 5.7: Network controller structure.

FPGA with each RAM realized in a separated block RAM. It is also possible

to use a single external RAM accessed by a suitable memory controller.

5.3.1 Host to NC Interaction

Hosts need to communicate with NCs to access the network. However, host

network access capabilities are restricted to ensure all data transfers are initi-

ated according to the given schedule. Schedules generally define the point in

time and the way data is routed through the network. They are fixed before

system operation and located inside the network controller RAM. Hosts are

allowed to define the payload data, which is transferred throughout slot ex-

ecutions. Additionally, memory space must be defined by hosts for received

data. Payload data transmission and reception handling are controlled by the

host interface RAM without possibilities to affect the schedule.
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Figure 5.8 shows the detailed relation between the schedule, located in-

side network controller RAMs, and host interface RAMs. Each schedule slot

relates to an entry inside both RAMs for transmissions and receptions sep-

arately. Each entry consists of three 32 bit words and can be read by hosts

and NCs. Only the host interface RAM entries are allowed to be modified

to enable handshaking and information exchanges between NCs and hosts.

Slot sizes are configurable and defined by each network controller RAM entry

(slet). A virtual link identifier (vlid) can be used to validate packet occur-

rences inside the network. However, vlid values are ignored in the actual

prototype implementation because schedule policy checks are not performed

inside routers.

...Slot1 Slotn

Network controller RAM
Slot1 (TX)...
Slotn (TX)
Slot1 (RX)...
Slotn (RX)

Host interface RAM
Slot1 (TX)...
Slotn (TX)
Slot1 (RX)...
Slotn (RX)

slotid vlid
tla slet

rsvd

syf
pld
dirq

pldmax

slotid vlid
rsvd slet

ilat

syf
pld
dirq

pldmax

ien

slotid plength
txaddr

eep en
rsvderr

slotid plength
rxaddr

err rsvd
enval

Figure 5.8: Relation between schedule, network controller RAM, and host
interface RAM.

Transmission slots. These slots can lead to three different transmission

types depending on the control flag values (dirq, pld, syf). Synchronization

frames (syf) and DIRQs (dirq) are used to apply the clock synchronization
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based on the pulse based-remote clock estimation which is introduced in Sec-

tion 5.24. Synchronization frames and DIRQs are created and transmitted

by NCs without interaction with hosts and their related host interface RAM.

Hosts provide information to NCs by modifying host interface RAM entries

in case payload data (pld) can be transmitted for a given slot. The modified

entry provides information about the payload length (plength), the location

of payload data (txaddr), which is stored inside the packet exchange RAM,

and how the packet shall be closed (eep). Additionally, entries are enabled

(en) by hosts and disabled by NCs after they are processed. Packets that con-

tain synchronization frames or payload data are routed through the network

by the use of logical addresses (tla). The maximum size of payload lengths

is defined by the schedule to ensure packets transfers are completed inside

the related slot. Violations or problems that are observed throughout slot

execution by NCs are reported to the host by modifying the error field (err)

of related host interface RAM entries.

Reception slots. These slots provide information about the kind of data

that is expected to be received, indicated by the control flags (dirq, pld, syf).

The combination of received synchronization frames and related DIRQs is

primarily used for synchronization purposes inside every NC. However, it is

also used to mark each synchronized NC that provides synchronization frames

and DIRQs. The interrupt enable flag (ien) is used to select specific or all NCs

and its DIRQs as input for the remote clock estimates. Thus, it is possible

to track every synchronized NC with the ability to utilize only a subset of

synchronized NCs for clock synchronization purposes. Additionally, DIRQ

latencies (ilat) are provided and used for uncertainty compensation during

clock synchronization. Hosts provide memory addresses to NCs by modifying

the related host interface RAM entry (rxaddr) in case payload data (pld) is

expected. Each unexpected behavior during reception is stated by NCs inside

the error field (err). The packet is marked as valid (val) in case receptions

were successful. The actual received number of payload bytes is stored by the

4time slots transfer synchronization frames, pulse slots transfer DIRQs.
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NC inside the related length field (plength). Each host interface RAM entry

must be enabled and disabled, as already explained for transmission slots.

5.4 Core Functionalities

NCs provide three core functionalities to cover all relevant activities required

to establish and maintain a global time. The core functionalities are repre-

sented as states in Figure 5.9. NCs either initiate a start-up or they try to

Integration successful

Integration failed 
INTEGRATION

Synchronized operation detected 

Start-up successful

START-UP

Synchronization lost

SYNCHRONIZED

(Entry for NCs not allowed  

to participate in start-ups) 

(Entry for start-up NCs) 

Figure 5.9: Network controller core functionalities.

integrate at the time they are powered on. However, it is the objective to

enter the synchronized operation independent on the entry state in order to

exchange data through the network. The following sections provide detailed

information about each functionality.

5.4.1 Start-up

Start-ups are required to synchronize local clocks of NCs initially after the

system encounters a power-on, reset, or loss of synchronization. The intro-

duced system relies on a decentralized start-up process. Thus, a subset of

start-up participating NCs is determined before system operation. This sub-

set is allowed to communicate asynchronously to select a single NC. The
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selection process is done by exchanging Start-Up Frame (SUF) commands

that are confirmed by SUF acknowledges. The NC that collects the majority

of acknowledges finalizes the start-up process by transmitting a DIRQ. The

DIRQ reception starts the schedule execution in all NCs that provided ac-

knowledges. All unsynchronized NCs need to integrate into a synchronized

system from this point.

Figure 5.10 shows the detailed start-up process from the perspective of

a single NC. Each start-up participating NC initially listen to the network

SYF and DIRQ received

initial timeout cnt exceeded /  

tx SUF cmd

ack timeout exceeded ||  

rx SUF ack && !majority

rx SUF !ack / reset initial timeout cnt

rx SUF ack && majority /  

tx DIRQ

rx SUF cmd / tx SUF !ack

NC left / tx SUF cmd

!NC left

NEXT SUF NC

rx SUF cmd / 

tx SUF ack 

WAIT COM

entry / 

start initial timeout cnt

WAIT SUF ACK

entry / 

start ack timeout cnt

rx finalization DIRQ

dirq timeout exceeded

WAIT DIRQ

entry / 

start dirq timeout cnt
rx SUF cmd / 

tx SUF !ack 

Figure 5.10: Network controller start-up sequence.

in order to detect existing communication. The following situations can be

classified.

System already synchronized. A reception of Synchronization Frames

(SYFs) and DIRQs indicates a synchronized operation based on an already
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established global time. Thus, NCs need to integrate as explained in Sec-

tion 5.4.2.

System start-up in progress. Receptions of SUF commands are acknowl-

edged as long as the initial timeout is not exceeded. These commands indi-

cate that other start-up participating NCs have already started to establish

a global time. The start-up process must be finalized by a related DIRQ re-

ception within a predefined interval. Otherwise, the start-up process restarts.

NCs provide only a single acknowledge for the first SUF command they re-

ceive. All other received SUF commands are responded with not acknowledges

while waiting for the finalization DIRQ.

System waits for start-up. Start-up participating NCs start transmitting

SUF commands as soon as the initial timeout has exceeded and no communi-

cation was recognized. NCs always wait for a related acknowledge or timeout

before starting the next SUF transmission. This procedure terminates suc-

cessfully if the majority of acknowledges has been collected. However, the

sequence fails if SUFs were transmitted to all allowed NCs without having

the majority of acknowledges collected. The sequence can also fail if not ac-

knowledges are received as a response on SUF commands, which is also called

logical collision. The whole start-up sequence restarts in both fail cases. The

start-up sequence is finished by transmitting a DIRQ as soon as the majority

of acknowledges are collected. However, the start of schedule execution is

delayed by the DIRQ latency in order to enhance the synchronicity with all

involved NCs.

5.4.2 Integration

NCs are integrated into synchronous system operation if a global time is

already established. The whole process is given by Figure 5.11. Already syn-

chronized NCs transmit time (SYF) and pulse (DIRQ) information through-

out schedule execution periodically. Integrating NCs, which operate asyn-

chronous related to the schedule, take the first received SYF/DIRQ pair as the



5.4 Core Functionalities 75

rx DIRQ

timeout cnt exceeded

WAIT DIRQ

ASYNC

first scd slot executedWAIT SCD

START

last scd slot executed  

[rx SYF/DIRQ pair num < min]

last scd slot executed 

[rx SYF/DIRQ pair num >= min && 

executed correction num < min]

WAIT SCD

END
last scd slot executed 

[rx SYF/DIRQ pair num >= min &&  

executed correction num >= min]

rx SYF

timeout cnt exceeded

WAIT SYF ASYNC

entry/start timeout cnt

Figure 5.11: Network controller integration sequence.

entry point into the schedule execution. The integration process is stopped

if the initial SYF/DIRQ pair is not received within a predefined time.

NCs collect SYF/DIRQ pairs based on schedule entries once the schedule

entry point is defined. It is required to collect at least a minimum number of

SYF/DIRQ pairs per schedule cycle to ensure enough NCs are synchronized.

Otherwise, the integration process is stopped and restarted later on. The

integration only succeeds if the minimum number of SYF/DIRQ pairs per

schedule cycle are present and a minimum number of clock corrections are

applied during the clock synchronization process.

5.4.3 Clock Synchronization

The applied clock synchronization combines state and rate corrections to

achieve a better alignment of all local clocks. The effect of each correction

type and its combination is shown in Figure 5.12. Each graph provides clock

deviations that accumulate over time. Rate corrections lower the gradient

of clock deviations by reducing or increasing the progression of clocks. This

results in clocks that finally operate at the same rate but with different val-

ues. State corrections remove the accumulated deviation without affecting
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Figure 5.12: Effect of different applied correction methods.

the clock rate. Thus, clocks deviate again after state corrections. The com-

bination of state and rate correction provides lower clock deviations once the

rate has been adjusted.

The introduced system and its NCs use a similar cycle structure as FlexRay

[Fle10, p. 198]. Two consecutive schedule cycles are organized as double cy-

cles as shown in Figure 5.13. A single cycle consists of slots that are used to

...

Double cycle n Double cycle n+1

State Correction n

Rate correction
(n-1)

Rate correction
(n-1)

State correction n+1

NIT

Cycle 0 (even) Cycle 1 (odd)

Rate correction
(n)

Rate correction
(n)

NIT

Cycle 2 (even) Cycle 3 (odd)

Slots Slots NITSlots Slots NIT

Figure 5.13: Network controller schedule cycle structure.

transfer payload data and SYF/DIRQ pairs in order to allow remote clock

estimation. Each cycle ends with a Network Idle Time (NIT), which can be

used to apply state corrections. State corrections are applied within the dou-

ble cycle they are calculated. However, state correction application is only

applied at the end of each odd cycle to prevent corrupting rate correction

calculation, which is outlined in more detail inside this section. Rate correc-

tion values, calculated in double cycle n, are applied throughout double cycle

n+ 1. Additionally, rate correction values are distributed equally throughout

cycles instead of being applied instantly at specific points in time.
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Remote clock estimates that are collected throughout cycle execution are

processed by the convergence function introduced in [LL88]. This function is

used to calculate state and rate correction values for each double cycle as long

as a sufficient number of remote clock estimates is collected. The algorithm

was selected because of its ability to tolerate up to two faulty remote clock

estimates. However, the number of discarded values depends on the number

of collected remote clock estimates, as shown in Table 5.1.

Table 5.1: Number of discarded values depending on valid remote clock
estimates.

Remote clock estimates Discarded number (k)

1 - 2 0

3 - 7 1

> 7 2

Correction value calculations initially start with an ordering of available

remote clock estimates. The k highest and lowest ordered values are discarded

according to the rules introduced by Table 5.1. Finally, the new high and low

values are added and divided by two to receive the correction value used to

synchronize the local clock. The simple arithmetic required for correction

value calculation is another selection argument for the algorithm. Addition

is a basic functionality supported by all relevant FPGAs. Division generally

utilizes dedicated hardware blocks. However, dividing values by two can be

implemented by simple shift operations, which removes the need for dedicated

hardware.

State and rate correction values are used to increase or decrease macrotick

lengths in order to influence the clock progression. However, the way re-

mote clock estimates are handled, before they are applied to the convergence

function, is different for both correction types and explained in the following.

State correction flow. Remote clock estimates for state correction value

calculations are only used within odd cycles as shown in Figure 5.14. It

is sufficient to collect a single remote clock estimate within odd cycles to
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ODD cycle slots ends [RCE num > 0]   

/ delete previous correction value

COLLECT RCE SORT RCE DISCARD K

calc new correction value  

/ reset RCEs

ADD DIV2

EVEN cycle slots ends ||   

ODD cycle slots ends [RCE num = 0] 

/ reset RCEs

RECEIVE 

START 

STATE CORR

NIT

Figure 5.14: Network controller state correction sequence.

start the convergence function. Clock deviations determined inside odd cycles

represent the accumulated deviation over the whole double cycle. Thus, it

is not required to handle clock deviations inside even cycles separately. The

calculated state correction value is deleted once it has modified the clock. As

a consequence, actual correction values don’t affect future correction values.

Rate correction flow. Remote clock estimates are used indirectly for rate

correction value calculations as shown in Figure 5.14. Remote clock esti-

mates are collected for even and odd cycles separately. Differences of related

remote clock estimates between two consecutive cycles are calculated after

each double cycle execution (Equation 5.5)

rcediff (index, cycle) = rce(index)cycle+1 − rce(index)cycle (5.5)

The rcediff values describe drift rates between a local clock that receives

remote clock estimates and the source of each remote clock estimate. This

double cycle relation is the reason why state corrections are not allowed to
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be applied in even cycles. Otherwise, it would corrupt the determination

of drift rates that rely on calculating differences. The convergence function

EVEN cycle NIT ends 

COLLECT RCE

EVEN
SORT RCE DIFF

DISCARD K

Add old and new correction value 

/ reset RCEs

ADD DIV2

ODD cycle slots ends

COLLECT RCE

ODD

RCE diff num = 0

RCE diff num > 0

CALC RCE DIFF

RECEIVE 

START 

RATE CORR 

EVEN 

RATE CORR 

ODD 

Figure 5.15: Network controller rate correction sequence.

takes all available remote clock estimate differences as inputs in order to cal-

culate the new rate correction value. New rate correction values incorporate

the old rate correction value to keep compensated drift rates stable. Without

incorporating past values, the following scenario would happen. Clock rate

differences are determined by a rate correction value unequal to zero for dou-

ble cycle n. Double cycle n + 1 applies the rate correction value of double

cycle n, which leads to a new rate correction value of zero. Double cycle n+2

applies rate correction value zero, determined in double cycle n + 1. As a

consequence, double cycle n + 2 reintegrates the initially compensated drift

rate of double cycle n in case past rate correction values are not considered.

Each updated rate correction value is distributed over the following even and

odd cycle individually, which results in a stretched or compressed schedule

execution time.
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5.5 Jitter Reduction

The clock synchronization quality directly depends on the characteristics of

DIRQs. Nodes that receive pulses (DIRQs) have to determine the latency

as precise as possible in order to calculate accurate remote clock estimates,

which are the inputs for the clock synchronization algorithm. SpaceWire in-

terface implementations are subject to different uncertainties that influence

the predictability of broadcast code (DIRQs and time-codes) transfer laten-

cies.

These uncertainties and strategies to remove them partially are explained

in the following. The used SpaceWire interface has a structure, as shown in

Figure 5.16. It consists of core logic, a receiver frontend, and transmitter

Receiver

Transmitter

Core logic

Data

Data
Strobe

Strobe

Clk domain crossing (CDC)

Clk domain crossing (CDC)

User interface

rxclk

txclk

clk

Data character
FCT
EOP
EEP

NULL
Time-code

Distributed interrupt

Token stream

Select

Figure 5.16: Character and code selection for the used SpaceWire interface.

backend. The core logic provides the user interface, which is used to transmit

and receive payload data or broadcast codes. Data reception is performed

by detecting signal transitions of data and strobe by use of oversampling.

The transmission unit generates a token stream consisting of data characters,
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control characters, or control codes. Dedicated clk domains are used for re-

ceptions (rxclk) and transmissions (txclk) in order to allow much higher data

rates. However, the core logic interacts with receiver and transmitter units,

which implies CDC issues. Although CDC is covered by proper utilization

of synchronization stages, it still introduces uncertainties depending on the

phase relation between the relevant clks and its frequency differences.

The problem is illustrated by Figure 5.17. BcEnclk is part of the user inter-

face inside the core logic unit used to enable a broadcast code transfer. The

signal is passed into the transmitter unit clk domain indicated by BcEntxclk.

Value Uncertaintycdc depends on the clk difference between clk and txclk and

its phase relation. Generally, Uncertaintycdc decreases in case frequency of

txclk increases. A constant preparation time Latencyprep is needed to process

Uncertaintycdc UncertaintywaitLatencyprep

BcEnclk BcEntxclk BcTxMintxclk BcTxMaxtxclk
t

Figure 5.17: Existing uncertainties and latencies for DIRQ transmissions.

the broadcast code transmission request once BcEntxclk is valid. Finally, the

required broadcast code token (either DIRQ or time-code) is transmitted as

soon as possible.

However, the broadcast code transmission is stalled at minimum until the

actual token transfer has finished. In best cases, no token is transferred, which

allows an immediate transmission of the broadcast code at BcTxMintxclk. In

worst cases, another broadcast code transmission of the same type has started,

which causes a delay of 14 bits5 indicated by BcTxMaxtxclk. A corner case

is a consecutive time code transmission which has precedence over DIRQ

transfers [ESA19, p. 85]. This scenario would prevent DIRQ transfers com-

pletely from a technical point of view. However, time-codes are transferred

5Broadcast code = ESC (4 Bit) + Data character (10 Bit).
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generally with sufficient distances between each other, which eliminates the

problem for real applications. Additionally, every broadcast code delay be-

tween 0 - 14 Bits is possible depending on the occurrence of BcEntxclk and

the actual transmission state. Delay Uncertaintywait influences the latency

determination used for remote clock estimate calculations and directly af-

fects the synchronization quality. Time consumed by Uncertaintywait is also

depending on the link transmission rate.

In total, two uncertainties are present during broadcast code transmis-

sion activities. Uncertaintycdc can be influenced by selecting txclk as fast

as possible in order to keep the CDC of BcEn short. Phase relations be-

tween txclk and clk could also be controlled to enhance the CDC process.

However, Uncertaintycdc represents the much smaller value compared to

Uncertaintywait. Its full removal is illustrated in the following, according to

Figure 5.18. The removal is based on a transfer of uncertainty into latency.

Uncertaintycdc LatencywaitLatencyprep

BcEnclk BcEntxclk BcTxtxclk
t

Figure 5.18: Transfer of uncertainty into latency for low jitter DIRQ trans-
missions.

This is achieved by shifting BcTxMintxclk to BcTxMaxtxclk for all transfer

conditions. An artificial delay is applied to each broadcast code transmission

in order to determine the fixed starting point BcTxtxclk. This introduces idle

times and reduces effectively the overall throughput, which results addition-

ally in higher broadcast code latencies. However, the broadcast code latency

range and its jitter are significantly reduced, which in turn provides more

precise remote clock estimations.



83

Chapter 6

Broadcast Code Evaluation

6.1 Introduction

In this chapter, the end-to-end transmission characteristics of DIRQs for the

used SpaceWire interfaces are analyzed in different ways. This is done ini-

tially by the use of HVLs to take advantage of capabilities like object-oriented

programming. This kind of functional simulation is a suitable option because

of the small design size under evaluation. The correct jitter determination

for DIRQs is fundamental in order to achieve proper clock synchronization

results, as introduced in Section 5.5. Thus, FPV is applied as an additional

verification method to confirm the results provided by functional simulation.

The remainder of this chapter is organized as follows. Section 6.2 introduces

structure and main components of the verification environment used for func-

tional simulation. The applied FPV and its relevant aspects are explained

in Section 6.3 followed by the analysis results given by Section 6.4. Finally,

Section 6.5 provides some conclusions.

6.2 Simulation Environment

A separated UVM environment is used to characterize DIRQ end-to-end

transmissions for the given SpaceWire Interfaces with an architecture shown

in Figure 6.1. The DUT contains two SpaceWire interfaces connected to each
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Figure 6.1: UVM simulation environment used for DIRQ evaluation.

other by data and strobe connections. DIRQ forwarding inside routers is con-

stant. Hence, it is sufficient to investigate DIRQ characteristics for a single

SpaceWire link. Two UVM agents are connected to the user interface of each

SpaceWire unit. Agentfifo transmits and receives user payload data as well

as EEP and EOP in order to create SpaceWire packets. Transmitted packets

are passed to the Scoreboard, where they are used as expected values. Re-

ceived packets are provided to the scoreboard upon completion, which allows

an automated comparison between actual and expected packets. The same

actual to expected verification is used for DIRQs. Its latencies are tracked

by timestamping each transmission and reception. Thus, a set of latencies

is collected, which allows a determination of jitter and the distribution of

each latency value. Additionally, latencies are tracked by the use of asser-

tions based on passed clk cycles. This is used to make analysis comparable

to FPV because these techniques are generally cycle-based. Thus, a notion

of time doesn’t exist as it is the case for event-driven technologies like RTL

simulators.
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The ability to exchange DIRQs, time-codes, and data characters was al-

ready verified for the standard SpaceWire interface. However, because of the

implemented jitter reduction, it is necessary to verify the modified implemen-

tation again.

Simulation runs are handled by a regression tool. A randomized oscilla-

tor phase relation is applied for each run before both SpaceWire interfaces

exchange data. These phase variations are required because they can affect

the latencies of broadcast code transmissions. A different way of oscillator

control is applied for system tests introduced in Section 7.2.

6.3 Formal Property Verification

FPV provides a way to prove that system properties for RTL designs hold

under every possible input stimulus. For the given case, FPV was selected

to confirm simulation-based results, which targets the exact DIRQ latency

determination.

Figure 6.2 illustrates the differences between FPV and functional sim-

ulation regarding state-space evaluation. FPV checks complete state-space

areas in parallel instead of evaluating single traces. Multiple simulation traces

are created in order to cover the most relevant properties throughout several

simulation runs. However, all traces generated during simulation don’t cover

the whole state-space, which leaves room for potential bugs in the uncovered

areas. This problem of incompleteness is only caused by the huge state-spaces

and should not be treated as a fault of simulation techniques in general.

The entire state-space of RTL designs consist of all state elements (like

FFs and RAMs) and its inputs with the overall number of states defined by

states = 2inputs+stateElements. Thus, even minimal designs, like a comparator

with two 32 bit input vectors, lead to an overall state-space of 264 elements

and a duration of more than 1000 years1 before exhaustive simulation-based

verification finishes.

RTL designs are typically brought into a reset state before property checks

1With a simulator capable of checking a vector every 2 ns.
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Reset state

Entire state-space

Simulation tracesProof boundaries

Proof areas

Figure 6.2: Specific simulation traces versus area investigation by formal
property verification.

are applied. These reset states are often created throughout dedicated initial-

ization phases. However, they may consist of multiple states in case particular

state elements don’t receive its default value by reset signals2. Alternatively,

a predefined reset state can be loaded, which is useful to handle complexity

issues.

6.3.1 Property Checking

System properties for this work are written in SVA and stored inside

SystemVerilog modules. However, the usage of modules for VHDL designs is

driven by a constraint of the selected FPV tool.

As already introduced, the FPV activities within this work focus on deter-

mining the minimum and maximum DIRQ latencies between two SpaceWire

interfaces. This information can be used to derive the jitter for the entire

system safely. A DIRQ transmissions can be initiated by use of tick in spw0

as shown in Figure 6.3. The reception of DIRQs is indicated by tick out spw1.

The main clk domains of both SpaceWire interfaces (spw0, spw1 ) are driven

by its own asynchronous clks (clk spw0, clk spw1 ).

2E.g. RAMs often don’t have a reset signal.
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tick_in_spw0 tick_out_spw1

clk_spw0 clk_spw1
...
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Serial
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Figure 6.3: DIRQ transmission with respect to different clk domains.

The property that describes the tick in to tick out relation for the standard

jitter implementation is given in Figure 6.4 and directly applied to an assert

statement. A valid time window from tick in spw0 high until tick out spw1

high is initially defined by simulation which ranges from 16 - 29 clk cycles.

Invalid ranges are defined for areas below and above the valid range, rep-

resented by the generated assertions a illegalLowArea and a illegalHighArea.

Each property basically checks that tick out spw1 doesn’t occur i clk cycles

after a rising edge of tick in spw0 .

FPV tools try to violate properties that are placed inside assert statements

as soon as the formal initialization phase is finished. Evaluated properties can

be considered as a full proof if no counterexample is found. However, this

requires no counterexample is found within the entire state-space, whereas

these complete evaluations are not always possible. DUT complexity or in-

sufficient memory resources may prevent full proofs. A complexity issue is

present for the asserted properties, which prevents the FPV tool to provide

a full proof within 60 hours of execution3.

This problem is solved by bounded proofs. They are used to decrease the

search depth in order to limit the explorable state-space. FPV tools automat-

ically increase the search depth incrementally throughout evaluation until a

counterexample for a given property is found, or a user-defined proof bound-

ary is reached. An example of these proof boundaries and its related areas

is shown in Figure 6.2. However, bugs may not be revealed if proof bound-

aries are selected to small. A proper selection of these boundaries generally

requires good insight knowledge of the DUT.

3It might be possible to find a full proof for longer execution times or selecting more
solving engines which require more host memory.
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For the given work, a maximum search depth of 60 is defined, which allows

bounded proofs for the asserted properties given in Figure 6.4. The depth4 of

1 // I l l e g a l low range o f broadcast code r e c e p t i o n s
2 generate
3 f o r ( genvar i = 5 ; i <= 15 ; i++) begin
4 a i l l e ga lLowArea : assert property
5 (@(posedge c lk spw0 ) $rose ( t i c k i n s p w 0 ) |=>
6 @(posedge c lk spw1 ) ##i ! $rose ( t i ck out spw1 ) ) ;
7 end
8 endgenerate
9

10 // I l l e g a l high range o f broadcast code r e c e p t i o n s
11 generate
12 f o r ( genvar i = 30 ; i <= 40 ; i++) begin
13 a i l l e g a l H i g h A r e a : assert property
14 (@(posedge c lk spw0 ) $rose ( t i c k i n s p w 0 ) |=>
15 @(posedge c lk spw1 ) ##i ! $rose ( t i ck out spw1 ) ) ;
16 end
17 endgenerate

clk_spw0

clk_spw1

tick_in_spw0

tick_out_spw1

i (i ∈ {5, ..., 15, 30, ..., 40})

Figure 6.4: Concrete properties used to check distributed interrupt trans-
mission durations for standard SpaceWire interface implementations.

60 allows the tool to find counterexamples within 60 clk cycles with a starting

point directly behind the initialization phase. The depth is considered to

be reasonable because the underlying DIRQ transmission itself is treated

as verified. Additionally, a concrete expectation about DIRQ delays exists

because of the prior executed simulation. Thus, the FPV objective is to find

small variances around the simulation results rather than finding deep bugs.

4The depth is also known as proof radius.
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However, the selected depth is only suitable because an artificial DUT reset

state was applied, which already provides an initialized SpaceWire link as

described in Section 6.3.5.

6.3.2 Constraints

Every input of the DUT is treated as a formal control point which is driven

typically by the FPV tool. Clks are the only exception because they are

generally defined statically with its required characteristics. However, clks

can also be influenced or even modeled for special cases, as explained in

Section 6.3.4.

Constraints to formal control points are required to create valid input

stimulus [Fos+07]. These constraints are defined by formal assumptions with

the ability to apply properties. DUTs that violate specified behavior on their

inputs are called under constrained. For the given work, a delay between two

consecutive DIRQ transmissions must be defined as shown by Figure 6.5. It

causes signal tick in spw0 to be high for a single clk cycle followed by a fixed

low period of 40 clk cycles.

1 m tickInDelays : assume property
2 (@(posedge c lk spw0 ) $rose ( t i c k i n s p w 0 ) |−>
3 ##1 ! t i c k i n s p w 0 [ ∗ 4 0 ] ) ;

clk_spw0

tick_in_spw0

tick_in_spw0 
must be low

1 38 39 40

Figure 6.5: Assumption used to ensure a minimum temporal distance be-
tween two consecutive DIRQs.

A risk of over constraining exists if to many assumptions are applied which

can lead to false positive results. Required DUT behavior is never triggered by

its inputs in these cases. As a consequence, property checks may not be able
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to provide any counterexample, which leads to the incorrect conclusion that

DUTs fulfill their required behavior. Hence, all the required behavior should

be tracked by cover statements, as explained in the following Section 6.3.4.

6.3.3 Coverage

Coverage tracking should be done in order to check that all required function-

ality of the DUT was tested [SSK15, p. 52]. DIRQ transmission and reception

is the key functionality required to be observed as shown in Figure 6.6.

1 c t ickInToTickOut : cover property
2 (@(posedge c lk spw0 ) $rose ( t i c k i n s p w 0 ) |=>
3 s @(posedge c lk spw1 ) $rose ( t i ck out spw1 ) [−>1]);

clk_spw0

clk_spw1

tick_in_spw0

tick_out_spw1

n (n ∈ ℕ) 

Figure 6.6: Cover statement to track arbitrary DIRQ latencies.

The property to be covered is written in the same way as it is done for

property checks and assumptions but passed to a cover statement instead.

The given cover statement is fulfilled as soon as a rising edge of tick in spw0

is followed by a rising edge of tick out spw1 arbitrary clk spw1 cycles later.

Possible over constraints that lead to permanent high or low values of signal

tick in spw0 would be revealed in this way.

6.3.4 Clk Modeling

Clks used for DUTs are typically defined and provided to FPV tools as part

of the overall configuration before verification runs. These clks are created

throughout verification runs by FPV tools with user-defined options like phase

shifts or unusual duty cycles. Clks that are defined in that way are not
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controlled by assumptions or modified during verification. However, there

are situations where clks need to be modeled. This may happen for multi-clk

designs where phase relations between specific clks are of interest.

A more detailed view of the used SpaceWire interface structure is given

in Figure 6.7. The design consists of three clk domains that require CDC

tx

rx
main

spw0

clk_spw0

txclk_spw0

rxclk_spw0

clk domain crossing (CDC)

data/strobe

clk domain crossing (CDC)

data/strobetick_in_spw0

...

Figure 6.7: Clk domains that are involved for all types of transmissions and
receptions.

between different sub-units. In particular from main to tx and back from rx

to main. In total, six asynchronous clk domains can be used for two connected

SpaceWire interfaces. The impact of phase relations regarding transmission

timings must be considered as reasonable because data and DIRQs need to

pass all clk domains. Thus, a static clk definition is unsuitable for the required

property checks. Instead, a set of temporary clks with different phase relations

is defined statically but assigned to the real DUT clk throughout verification.

Figure 6.8 shows the relevant part of the code used to model the main clk of

SpaceWire interface instance spw0. All other clks can be modeled accordingly.

Wires clk0 50mhz and clk1 50mhz are statically defined 50 MHz clks with

different phase relations to each other and applied to clk spw0 depending on

variable sel clk spw0 . These clks can be used to model an arbitrary number

of 50 MHz DUT clks by merely adding additional case statements. However,

this clk granularity only provides four different clk phases to keep complexity

manageable for the FPV tool. It is important to keep sel clk spw0 stable by

an assumption because phase relations are considered to be constant once the
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1 // S t a t i c de f i ned c l k s
2 wire clk0 50mhz ;
3 wire clk1 50mhz ;
4

5 // Clk s e l e c t i o n s i g n a l c o n t r o l l e d by formal t o o l
6 wire [ 1 : 0 ] s e l c l k s p w 0 ;
7

8 // S t a t i c c l k s a s s i gned to DUT c lk
9 always @∗ begin

10 case ( s e l c l k s p w 0 )
11 0 : c lk spw0 <= clk0 50mhz ;
12 1 : c lk spw0 <= clk1 50mhz ;
13 2 : c lk spw0 <= ˜ clk0 50mhz ;
14 3 : c lk spw0 <= ˜ clk1 50mhz ;
15 default : c lk spw0 <= ˜ clk0 50mhz ;
16 endcase
17 end

Figure 6.8: Applied clk modeling for formal property verification.

system operates5. This allows the FPV tool to select one value (0 to 3) for

the beginning of each verification run but prevents a change in between.

It is also possible to model more complex clk scenarios without the need for

defining multiple static clks. Instead, a single static clks is used to derive all

required DUT clks, as shown in Figure 6.9. The example provides different

frequencies to DUT clk spw0 depending on sel clk spw0. Frequencies are

allowed to change in an arbitrary way throughout verification runs if sel clk -

spw0 is not further constrained.

All these clk modeling approaches provide limitations regarding verifica-

tion run time and accuracy. The more clks are involved, the more time it

takes until properties are checked by full or bounded proofs. It may also hap-

pen that proofs are not possible any longer due to the increased state-space.

On the other hand, multiple clks are required to increase the granularity of

possible phase relations applied to the DUT.

5Except phase relation changes caused by oscillator uncertainties.
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1 // S t a t i c de f i ned c l k
2 wire c l k ;
3

4 // Clk s e l e c t i o n s i g n a l c o n t r o l l e d by formal t o o l
5 wire s e l c l k s p w 0 ;
6

7 // Clk modeling
8 reg [ 3 : 0 ] cnt ;
9

10 always @(posedge c l k or posedge r s t ) begin
11 i f ( r s t )
12 cnt <= 4 ’ h0 ;
13 else
14 cnt <= cnt + 1 ;
15 end
16

17 // Assignment to DUT c lk
18 assign c lk spw0 = s e l c l k s p w 0 ? cnt [ 1 ] : cnt [ 3 ] ;

Figure 6.9: Alternative clk modeling in order to adjust frequencies rather
than phase relations.

6.3.5 Complexity Handling

Property checks, which incorporate large state-spaces, often have problems

to find full or even bounded proofs. Additionally, FPV tools can run out of

memory for complex evaluations. These complexity issues were encountered

for the given SpaceWire DUT and addressed in the following ways.

Constraining. Assumptions are used to create valid stimulus on DUT in-

puts. However, they can also reduce the evaluation space in case they prevent

specific DUT behavior to occur. One example is the dynamic transmission

rate adjustment, as shown in Figure 6.10.

Each SpaceWire interface can change its transmission rate depending on

its related txdivcnt signal. However, the use case of the SpaceWire links

don’t allow these rate changes. Thus, txdivcnt spw0 should be kept constant

to reduce the evaluation space for the given properties.
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1 m spw0TxdivcntZero : assume property
2 (@(posedge c lk spw0 ) txdivcnt spw0 == 8 ’ h00 ) ;

clk_spw0

txdivcnt_spw0 0x00 0x00

1 2 3 0 n-1 n-2 n-3 n-4 

Figure 6.10: Assumption used to reduce state-space.

Blackboxing and Cut points. DUT internal logic can be removed if it

represents a complexity problem. This is often done for logic that is not

appropriate for formal evaluation in general. BRAMs are an example of this

kind of logic and also used inside the SpaceWire interfaces. The majority

of them are blackboxed with the effect of transforming BRAM outputs into

formal control points, as shown by Table 6.1.

Additional 18 formal control point bits are available after BRAM removal.

The significant impact of BRAM resources is shown by the overall design gate

number, which is reduced from 10126 down to 6849.

Cut-points represent a more precise way to exclude logic. They define

specific signals to be cut away from the logic of interest instead of removing

whole units [Agg+11]. However, the signal which is cut away is treated as a

formal control point similar to blackbox outputs.
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Table 6.1: Blackbox effect on design size.

Element Unmodified Blackboxed

Control Point Bits 68 77

DUT Input Bits 62 53

Cut Point Bits 0 0

Black Box Output Bits 0 18

Undriven Wire Bits 6 6

Modeling Bits 0 0

State Bits 2878 1704

Counter State Bits 614 614

RAM State Bits 1216 64

Register State Bits 102 80

Property State Bits 946 946

Logic Gates 11380 8103

Design Gates 10126 6849

Property Gates 1254 1254

User-defined reset state. The applied property checks that ensure DIRQ

transmissions within specified boundaries require two SpaceWire interfaces

with an established link. However, links are established by executing an

initialization sequence that takes at least 19.2 µs. From the FPV point of

view, all states that are involved in initializing a SpaceWire link are included

throughout property checks. This leads to a large proof area, as illustrated

by the dashed oval of the left-hand side in Figure 6.11. In fact, the present

proof area is even too large to fulfill cover statements that are used to check

for end-to-end DIRQ transmissions, as introduced in Figure 6.6.

This problem is solved by defining a new reset point where the FPV tool

starts its evaluation, as shown on the right-hand side of Figure 6.11. The

approach is also known as semi-formal [MBS18; EY19] or hybrid verification

[Cer+10, p. 240]. SpaceWire initialization phases can be considered as a pre-

condition to any kind of transfers and don’t interact with DIRQ transmissions

during fault-free operation. Hence, the starting state is shifted to the point
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Entire state-spaceOriginal reset state

Area of interest
(SpaceWire link running) Proof area

Shifted reset state

Path to user-defined
reset state

Figure 6.11: Drastically reduced proof area due to user-defined reset state.

where both SpaceWire interfaces have established a link, which drastically

reduces the state-space to be evaluated.

These user-defined reset states can be reached by writing cover statements.

Fulfilled cover statements typically provide an option to extract the related

system state, which is finally applied throughout formal initialization phases.

However, it might be impossible to reach the required starting state directly

because of complexity issues. In these cases, additional cover points are re-

quired to define intermediate states used to create a path to the final state.

It is not possible to reach the running state, which indicates an established

SpaceWire link, for the given design directly. Hence, intermediate states for

starting and connecting are selected to finally reach the running state. Func-

tional simulation can also be used to extract a required starting state. This is

helpful for complex designs since functional simulation can be guided deeply

into large state-spaces.
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6.4 Jitter Analysis

Clk frequencies are static for the given tests according to the nominal fre-

quencies used throughout system evaluation in Chapter 7. In particular, 50

MHz for the main clk domains (clk spw) and 120 MHz for the remaining clk

domains (rxclk spw, rxclk spw) are used.

The expected latency range and its resulting jitter were initially deter-

mined by a set of cover statements during functional simulation, as shown

by Figure 6.12. The given code results in 50 individual cover statements to

track the occurred latencies of DIRQ transmissions between two SpaceWire

interfaces, started by tick in spw0 and completed by reception of tick out -

spw1. All covered latencies represent an expected area which is used to define

1 generate
2 for (genvar i = 1 ; i < 50 ; i++) begin
3 c determineLatency : cover property
4 (@(posedge c lk spw0 ) $rose ( t i c k i n s p w 0 ) |=>
5 @(posedge c lk spw1 ) ##i $rose ( t i ck out spw1 ) ) ;
6 end
7 endgenerate

Figure 6.12: Cover statement used to track initially all observed latencies.

the final jitter for a given SpaceWire interface implementation. The overall

system accuracy depends on the accurate determination of this area. Thus,

two illegal areas are centered around the expected area. These illegal areas

represent safety properties that disallow the occurrence of latencies within

these areas6. These properties are defined as shown by Figure 6.13. The

given example provides the generation of property checks for one area. An-

other generate statement is required to cover the second one. The properties

target each unhallowed latency separately, whereas the range of each area is

defined by the loop variables low and high. A finite range of each illegal area

is considered as reasonable because coverage results already determine a con-

6Latency occurrences are illegal in the system context, not by definition of the
SpaceWire standard.
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1 generate
2 for (genvar i = low ; i < high ; i++) begin
3 a i l l e g a l : assert property
4 (@(posedge c lk spw0 ) $rose ( t i c k i n s p w 0 ) |=>
5 @(posedge c lk spw1 ) ##i ! $rose ( t i ck out spw1 ) ) ;
6 end
7 endgenerate

Figure 6.13: Properties used to specify invalid latency areas.

crete area. Additionally, the applied checks target for performance evaluation

rather than bug hunting.

The same property checks are applied for functional simulation and FPV.

Alternatively, functional simulation could be used to determine absolute la-

tency values measured in ns. However, this absolute measurement is not

possible for FPV because of its cycle-based functioning without a notion of

time between two consecutive clk cycle events.

6.4.1 Simulation-based

Regression runs are executed for both SpaceWire interface implementations

separately. Overall, five regression runs were executed for each implementa-

tion. A regression run consists of 800 tests that apply 160000 DIRQ trans-

missions. Thus, a total of 800000 DIRQs were transmitted for each imple-

mentation.

Two connected SpaceWire interfaces are driven by six individual clks. Clk

offsets were applied randomly for each test to create arbitrary phase relations

between all clks. The offsets granularity was set to 1 ns in order to provide a

wide range of different phase relations. The ability to handle a granularity of

1 ns is a major advantage of functional simulation. In contrast to that, FPV

ran into serious complexity issues for a lower clk granularity as explained in

Section 6.4.2. Tests results for the standard SpaceWire interface implemen-

tation are given in Table 6.2. A low number of failed tests were encountered

throughout all regression runs for the initially defined latency range. All failed



6.4 Jitter Analysis 99

Table 6.2: Simulation results for standard SpaceWire in-
terface implementations.

Regression ID
Latency range
[clk spw1 cycles]

Passed Failed

1a 16 - 29 784 (98.0%) 16 (2.0%)

2a 16 - 29 781 (97.6%) 19 (2.4%)

3a 16 - 29 783 (97.9%) 17 (2.1%)

4a 16 - 29 784 (98.0%) 16 (2.0%)

5a 16 - 29 789 (98.6%) 11 (1.4%)

1b 15 - 29 800 (100%) 0 (0%)

2b 15 - 29 800 (100%) 0 (0%)

3b 15 - 29 800 (100%) 0 (0%)

4b 15 - 29 800 (100%) 0 (0%)

5b 15 - 29 800 (100%) 0 (0%)

a Initial latency range defined by cover statements
b Corrected latency range

tests were caused by a DIRQ latency of 15 clk spw1 cycles, which extends the

lower boundary of the initial valid area. Another execution of all regression

runs with an extended latency range leads to a fault-free result.

Table 6.3: Simulation results for low jitter SpaceWire interface implemen-
tations.

Regression ID
Latency range
[clk spw1 cycles]

Passed Failed

1 32 - 35 800 (100%) 0 (0%)

2 32 - 35 800 (100%) 0 (0%)

3 32 - 35 800 (100%) 0 (0%)

4 32 - 35 800 (100%) 0 (0%)

5 32 - 35 800 (100%) 0 (0%)

A different situation is present for the results of the low jitter SpaceWire
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interface implementation, as shown in Table 6.3. All regression runs were

executed with the same constraints but finished without a single failed test

for the initially defined latency range.

6.4.2 Formal-based

The valid DIRQ latency range is defined as a cover statement for FPV in

the same way as it is done for functional simulation. This is required to

ensure that no over constraining is present, which could lead to false-positive

results. The FPV tool can select different clk offsets throughout evaluation

runs. This allows an investigation of multiple phase relations between all clks.

However, an increased number of available offsets slows down the verification

runs substantially. Hence, three separated verification runs are applied with

different clk offset modeling capabilities, as classified in the following.

• OFST4 - clks are modeled with four possible offsets

• OFST2 - clks are modeled with two possible offsets

• OFST0 - clks are static

The reduction of possible offsets allows a deeper evaluation but reduces the

number of possible phase relations between all clks. OFST4 provides the max-

imum acceptable number of four clk offsets. In contrast to that, functional

simulation provides phase offsets with a granularity of 1 ns, which allows

more phase relations compared to OFST4. Unfortunately, a dependency be-

tween all relevant clks must be supposed concerning the transmission latency

of DIRQs. Hence, it is not acceptable to apply multiple tests with a subset of

modeled clks to reduce complexity. All verification runs were executed with

a limit of 60 hours, with its results are discussed in the following.

The effect of different clk modeling approaches is given in Figure 6.14. It

shows the evaluation progress of each verification run by average proof radii

over time. The lowest complexity is present for OFST0, which provides the

highest average proof radius. OFST0 even shows a clear difference between

low and standard jitter implementations, which is not the case for OFST2
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Figure 6.14: Formal property verification progress over time for different
clk modeling approaches.

and OFST4. The figure also shows that most progress is made within the first

hour for all traces. The collected coverage results for the standard SpaceWire

interface implementation are given in Table 6.4. The standard SpaceWire in-

Table 6.4: FPV coverage results for standard jitter implementations.

Offset
modeling

Latency range
[clk spw1 cycles]

Covered
Radius
[clk spw1 cycles]

Execution time

OFST4 15 - 29 full 18 - 41 1m 55s - 3h 18m

OFST2a 15 - 29 partly1 18 - 44 1m 2s - 1d 19h 44m

OFST0b 15 - 29 partly2 22 - 39 19s - 1d 23h 12m

1 Latency value 15 is missed
2 Latency value 15 and 29 are missed
a 1 engine with slowed progress
b 1 engine with consistent progress, 1 engine with slowed progress

terface implementation provides a wide valid latency range of 15 to 29, with all

values being covered for OFST4. OFST2 and OFST0 were not able to cover

all latencies, which shows the importance of considering phase relations. La-

tency value 15 provides a corner case scenario because it was uncoverable for

two FPV runs and during functional simulation as discussed in Section 6.4.1.

An additional uncoverable latency value is present for OFST0.

Engines are applied to each cover or property check statement until they
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are solved. The health of each solving process indicates the progress, which

is useful to decide how to proceed with a given verification run. One solving

process was left for OFST2 after 60 hours with a single engine that indicated

a slowed progress. In contrast to that, two solving processes were active

until the end of the OFST0 verification run with one engine that provided

consistent progress.

The radius represents the number of clk spw1 cycles7 required to fulfill a

given cover statement. All covered statements are at 44 clk spw1 cycles or

below, which provides additional information about radii for bounded proofs

applied during property checks. The required duration for solved statements

is provided by the execution time. It took 3 hours 18 minutes to complete

the coverage statements for OFST4. However, the meaning of execution time

is different for uncompleted solving attempts (either coverage or property

checks). In these cases, each statement is in the progress of being solved

with a maximum investigated radius for each point in time. The required

time to reach the actual maximum radius is given in the execution time. The

execution time is updated as soon as any solving attempt extends the actual

maximum radius for a given cover or property check statement.

The low jitter SpaceWire interface implementation provides a shorter range

of valid latency values and in turn, a reduced jitter, as shown in Table 6.5.

Full coverage is possible for OFST4 and OFST2, which is a difference to the

Table 6.5: FPV coverage results for low jitter implementations.

Offset
modeling

Latency range
[clk spw1 cycles]

Covered
Radius
[clk spw1 cycles]

Execution time

OFST4 32 - 35 full 35 - 37 12m 14s - 1h 30m

OFST2 32 - 35 full 35 - 37 4m 11s - 9m 52s

OFST0a 32 - 35 partly1 36 - 37 1m 19s - 1d 23h 15m

1 Latency value 32 and 35 are missed
a 2 engines with slowed progress

standard SpaceWire interface implementation. However, all active engines

were in slowed progress after 60 hours for OFST0.

7Counting starts after the formal tool initialization phase.
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Property checking results are given in Table 6.6 for the standard SpaceWire

interface implementation. The areas to check for are defined by latency ranges

4 - 14 and 30 - 40. The valid latency range of 15 - 29, which was completely

covered for OFST4, is located in between. The results show that full proofs

were not found at all. This can be sufficient if proof boundaries are defined.

Table 6.6: FPV property check results for standard jitter implementa-
tions.

Offset
modeling

Latency range
[clk spw1 cycles]

Full
proof

Radius
[clk spw1 cycles]

Execution time

OFST4a 4 - 14 no 59 - 71 1d 18h 8m - 2d 11h 47m

30 - 40 no 49 - 56 1d 7h 36m - 1d 16h 45m

OFST2a 4 - 14 no 76 - 84 1d 6h 39m - 2d 11h 55m

30 - 40 no 73 - 82 1d 8h 55m - 1d 18h 0m

OFST0b 4 - 14 no 99 - 109 1d 6h 39m - 2d 11h 21m

30 - 40 no 88 - 103 1d 10h 23m - 1d 19h 25m

a 4 engines with consistent progress, 18 engines with slowed progress
b 0 engines with consistent progress, 22 engines with slowed progress

A proof boundary of around 60 may be considered as reasonable for the given

evaluation. It is because DIRQ transmissions can be considered to be finished

in the area of 29 clk cycles for the standard implementation. Additionally, all

valid latencies were covered within a radius of 44. Latency violations beyond

a radius of 60 are probably caused by faulty DUT behavior and should be

addressed by FPV bug hunting approaches. However, results for OFST4 show

a minimum reached radius of 49, which represents a relatively short distance

to 44. Hence, OFST4 results must be treated carefully.

At least 18 solving engines indicated a slowed progress after 60 hours.

Thus, increasing the proof radii slightly might be possible by providing more

time for the FPV tool, but it is very unlikely to get full proofs in that way.

The property check results for the low jitter SpaceWire interface imple-

mentation are shown in Table 6.7 without significant differences. Full proofs

were not expected for the given case as well because the complexity of both

implementations can be considered as similar. Almost all solving engines in-
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Table 6.7: FPV property check results for low jitter implementations.

Offset
modeling

Latency range
[clk spw1 cycles]

Full
proof

Radius
[clk spw1 cycles]

Execution time

OFST4a 21 - 31a no 64 - 73 1d 17h 27m - 2d 11h 7m

36 - 46a no 51 - 56 1d 6h 57m - 1d 16h 12m

OFST2b 21 - 31b no 69 - 79 1d 17h 55m - 2d 11h 53m

36 - 46b no 78 - 87 1d 6h 51m - 1d 15h 9m

OFST0c 21 - 31c no 91 - 96 1d 7h 3m - 2d 11h 59m

36 - 46c no 84 - 94 1d 10h 30m - 1d 19h 43m

a 3 engines with consistent progress, 19 engines with slowed progress
b 2 engines with consistent progress, 20 engines with slowed progress
c 1 engines with consistent progress, 21 engines with slowed progress

dicated slowed progress and even execution times are very similar. Finally,

no counterexample was found for any SpaceWire interface implementation.

This confirms the simulation-based results under the introduced assumptions

(e.g. proof boundary) and concerns regarding OFST4 radii.
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6.5 Conclusion

The evaluation results provide a precise end-to-end DIRQs latency range for

both SpaceWire interface implementations. These ranges are used to define

the jitter inside the complete system, which is vital to apply proper clk syn-

chronization throughout all NCs. A latency range of 15 - 29 receiver clk

cycles was determined for the standard SpaceWire interface implementation,

which represents a latency of 280ns. A huge improvement was achieved for

the modified implementation with its latency range of 32 - 35 receiver clk

cycles. This is equal to a latency of 60ns and provides a reduction of around

78.6% compared to the standard SpaceWire interface implementation.

The DIRQ latency range determination was initially performed by a set

of cover statements, embedded into a UVM test environment used to apply

functional simulation. Larger regression runs indicated an insufficient range

determination by missing a single latency at the lower boundary. However,

a latency value was only missed for the standard SpaceWire interface im-

plementation. Additional regression runs did not show any violation of the

corrected latency range.

Formal property checking was applied to confirm simulation-based results.

The evaluated design size of two SpaceWire interfaces only consists of 6849

design logic gates, which can be considered as quite small. However, differ-

ent complexity reduction approaches (e.g. blackboxing and user-defined reset

states) were still required to get the final results. A major complexity issue

is the clk modeling used to apply phase shifts between all relevant clks. As

a result, the maximum proof radius doesn’t exceed 73 cycles for the most

complex applied offset modeling. In contrast to that, verification runs with

static clks provide a proof radius of more than 100 cycles. Additionally, the

number of possible clk phase shifts is lower compared to functional simula-

tion, which represents a deviation between both test methodologies. Another

important aspect of the given formal results is the inability to find full proofs

at all. However, the defined minimal proof radius of 60 cycles is considered

as suitable, although not reached by every clk modeling approach.
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Chapter 7

System Evaluation

7.1 Introduction

The system evaluation covers the main operational modes of the developed

prototype and its utilization results. The prototype size was expected to be

manageable by functional simulation. Thus, a UVM test environment was

created to check and observe its behavior as introduced in Section 7.2. The

application of formal property verification was additionally considered but

discarded due to complexity concerns. The start-up behavior is analyzed

with respect to successful termination and execution time in Section 7.3.

Additionally, logical collisions are investigated to provide estimations on suc-

cessful start-up sequences. The clock synchronization quality is discussed for

different system configurations in Section 7.4 followed by an overview of uti-

lization results (area, frequencies) for different FPGA targets in Section 7.5.

Finally, some conclusions are given in Section 7.6.

7.2 Simulation Environment

Verification and performance tracking of the complete system is done by a

UVM environment as shown in Figure 7.1. The DUT consists of eight NCs

connected to either one or four routers in order to establish and maintain a

global time. The network topology is selected automatically throughout the
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execution of multiple tests. Three different agent types are used to control

Network

Router0

Router0 Router2

Router1 Router3

...NC

Device Under Test

...Agentnc

...Agentosc

AgentSpW

(8x)

(12x)

(8x)

Analyzerstartup AnalyzerclockSync

Test (Stimulus & Preperation)

Configurations Sequences

DesignChecks

UVM Environment

(DUT)

.

.

. . .
Figure 7.1: UVM simulation environment used for system characterization.

all DUT and network relevant interface signals. Agents generally consist of

a driver capable of transferring transaction-level stimuli to the DUT directly

or by use of BFMs. Additionally, a monitor observes the DUT to reconstruct

transaction objects used for automated comparisons. Sequencers are used

inside agents to arbitrate concurrently received transaction stimuli.

Agentocs is used to mimic the behavior of physical oscillators. It is capable

of serving three independent oscillator signals configurable before and during

simulation runs. Routers and NCs have three oscillator inputs to operate

its internal SpaceWire interfaces and its core logic. Thus, a maximum of 12

Agentosc units are required to provide arbitrary oscillator signals and drifts

to each NC and router separately.

Hosts, represented by Agentnc, are attached to NCs in order to commu-

nicate over the network. They are additionally used to store the schedule
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and configuration of each NC. However, the schedule storage or modification

would not be allowed to hosts for real applications. Thus, access to schedule

related memory locations is limited to prototyping only.

Routers need to be configured before system operation. Routing tables

must be set and global parameters like packet multicast or timeouts need to

be defined. All these configurations are performed by AgentSpW .

7.2.1 Metric Analyzer

Two analyzers are implemented to track and investigate the system proper-

ties of interest. The Analyzerstartup is used to determine the duration of each

start-up performed during related tests. These tests are performed with three

or five NCs, which should provide a sufficient fault tolerance without expect-

ing an excessive occurrence of logical collisions. Additionally, both network

topologies are used for all executed tests. The analyzer starts a measurement

as soon as the majority of all start-up NCs is activated. All participating NCs

are activated within a maximum time window to ensure a start-up process

can technically be finished within a predefined boundary. Otherwise, the ma-

jority of NCs could be held deactivated for years before its activation, which

prevents a successful start-up procedure. However, the NC activation order

and its constrained point in time are randomized to allow arbitrary start-up

sequences.

The system enters a synchronous operation immediately after start-ups

are successfully finished. Its overall clock synchronization is investigated by

the use of the AnalyzerclockSync unit. It observes all slot changes for already

synchronized NCs during schedule execution. The analyzer is triggered by

the first NC that changes its actual slot to the next slot. From this point,

the analyzer creates a timestamp tfirst and waits until all other synchronized

NCs have performed a slot change to create a second timestamp tlast. The

deviation between all clocks is defined by

clockDeviation = tlast − tfirst (7.1)

for all slot changes separately. The actual clock precision between all
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synchronized NCs is represented by the maximum clock deviation observed

throughout all tests.

7.2.2 Design Checks

The prototype has not been completed concerning exhaustive verification

based on test requirements and automated scoreboard comparisons. Instead,

multiple checker interfaces that contain assertions are described to track and

verify the most relevant system behavior.

The schedule execution can be considered as the major functionality pro-

vided by each NC to execute a synchronous operation. Each NC is configured

before system operation to establish an expected schedule execution. These

expectations are described by assertions and checked automated by compari-

son to real system behavior during operation. It comprises checks for correct

slot lengths as described inside the schedule definition and checks for ongoing

schedule executions by all NCs that are synchronized. Additionally, schedule

executions are influenced by state and rate correction values that are cal-

culated dynamically. However, the expected effects of correction values and

their update location inside the executed schedule can still be checked by

assertions. The already introduced system architecture, given in Figure 5.7,

shows that state and rate correction values influence macroticks. A fixed

number of macroticks is executed for each cycle. However, the number of mi-

croticks per macrotick can vary to apply correction values. Thus, the number

of expected microticks must be determined for each schedule cycle to check

that correction values are applied correctly.

The implementation for this particular check is given in Figure 7.2. Prop-

erty p cnt ut in odd cycle starts its evaluation whenever an odd schedule cycle

begins with slot number 1 and NCs are integrating or fully synchronized. The

microtick determination is applied in sequence s cnt ut in odd cycle. The se-

quence counts all microticks by use of variable ut cnt once its evaluation starts

until the cycle ends. Finally, variable expected is calculated by addition of the

default microtick number (reg utpc i) and both correction values in order to

compare it with the actual microtick number stored in variable ut cnt. The
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1 sequence s c n t u t i n o d d c y c l e ( ) ;
2 int ut cnt = 0 ;
3 int u t r a t e = 0 ;
4 int expected = 0 ;
5 (1 ’ b1 , u t r a t e = r a t e c o r r i ,
6 ut cnt = 0 , u t c n t o d d l o c a l r s t ( ) ) ##0
7 first match
8 (
9 ( oddc i , u t cnt++, u t c n t r e f o d d s e t ( ut cnt ) )

10 [ ∗ 0 : $ ] ##1 ! oddc i
11 ) ##0
12 (1 ’ b1 , expected = r e g u t p c i + u t r a t e + s t a t e c o r r i ,
13 e x p e c t e d o d d l o c a l s e t ( expected ) ) ##0
14 ut cnt == expected + 1 | |
15 ut cnt == expected − 1 | |
16 ut cnt == expected ;
17 endsequence : s c n t u t i n o d d c y c l e
18

19 property p c n t u t i n o d d c y c l e ( ) ;
20 $rose ( oddc i ) && s y n c p r e i && s c d s l o t v a l o == 1 |−>
21 s c n t u t i n o d d c y c l e ( ) ;
22 endproperty : p c n t u t i n o d d c y c l e

Figure 7.2: Microtick number check for odd schedule cycle executions.

evaluation for correctness contains three comparisons (lines 14 to 16). It is

because the rate correction algorithm is not able to distribute a single posi-

tive or negative microtick for odd cycles due to the interaction with the state

correction. This specific scenario could be handled by different properties or

the expected value calculation need to incorporate these conditions. How-

ever, for checks within even schedule cycles, a single comparison is performed

that verifies the rate correction value distribution more precise. Thus, for the

given prototype, the uncertainty of a single microtick throughout odd checks

was considered as acceptable.
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7.3 Start-up Analysis

Start-ups of the introduced system are critical because they are a precondition

of synchronous operation. The start-up duration depends on several system

parameters like timeouts applied initially or caused by logical collisions, the

number of network controllers, and the structure of the network itself.

The start-up behavior evaluation is organized in various tests. Each test

was executed multiple times to track the behavior under different system con-

figurations. The results of start-up executions and observed logical collisions

are given in the following sections.

7.3.1 Execution Times

Overall, 32800 start-ups were executed. Each start-up begins with all NCs

are inactive. All start-up involved NCs, either three or five depending on

the actually executed configuration, are activated in an arbitrary order with

delays in between. These activation delays are randomized by the UVM en-

vironment with a maximum delay of one schedule cycle (0.5 ms, 1 ms or 2

ms). These delays result in the activation of all NCs within a single sched-

ule cycle. Each activated NC performs a unique timeout with a minimum

duration of at least one schedule cycle. The initial timeout is executed to

integrate into synchronous operation or to participate in start-up sequences

already initiated by other NCs as introduced in Section 5.4. NCs initiate a

start-up sequence in case no communication at all is recognized within the

initial timeout.

The measurement of a start-up execution time begins if sufficient NCs

are activated to perform a start-up sequence successfully. The measurement

completes if a single NC provides the synchronizing DIRQ that finishes the

start-up sequence. All NCs are deactivated to prepare the subsequent start-up

sequence once the transmitted DIRQ leads to a synchronous operation. Begin

and end of each start-up is tracked by the UVM environment automatically.

Figure 7.3 shows the results for the network that consists of a single router.

Each cross inside the diagram relates to a single executed start-up. All tests
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Figure 7.3: Tracked start-up durations for a network consisting of one
router.

were applied with schedule lengths of 0.5 ms, 1 ms, and 2 ms. However, for

start-up tests, the schedule length only influences the initial timeout of each

NC. The majority of start-up execution times is located below its respective

initial timeout of 0.5 ms, 1 ms or 2 ms. Overall, all observed execution times

don’t provide extremes that indicate a high occurrence of logical collisions

or an improper selection of timeout values. Results for the network that

consists of four routers are given in Figure 7.4. It doesn’t provide significant

differences to the single router configuration. However, it is noticeable that

some kind of borders of start-up execution times are present throughout all

configurations. This can be clearly seen inside Figure 7.3 for three start-up

NCs and a 1 ms schedule at start-up execution time value of approximately

1.1 ms. This happens for specific NC enable arrangements. In these cases,

the last NC required to enable a measurement is activated and able to begin

and complete the start-up sequence without interruption.
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Figure 7.4: Tracked start-up durations for a network consisting of four
routers.

7.3.2 Logical Collisions

Logical collisions are present whenever NCs receive a not acknowledge as

a response on their SUFs as introduced in Section 5.4.1. The probability of

logical collisions increases, the more NCs are allowed to participate in start-up

processes. Additionally, the probabilities are influenced by timeout durations

that are executed by NCs initially or after a logical collision is detected. The

number of logical collisions for each executed start-up was captured by the

UVM environment with its results given in Figure 7.5. The distribution of

observed logical collisions is given for each system configuration separately.

It can be seen that the network structure is another system property that

affects the occurrence of logical collisions. The overall distribution within

configurations that consists of a single router is much lower compared to

the four router configuration. Additionally, a significant occurrence of four

collisions is present for five NCs operating at the four router network.

Every initiated start-up was finished successfully, although up to eight

logical collisions were observed. However, this test is not a full proof that
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Figure 7.5: Distribution of encountered logical collisions for all system con-
figurations.

every start-up under the applied parameters can finish because the analysis

is based on functional simulation. There still might be input combinations

that lead to periodic logical collisions which preventing start-up phases to be

finished. This problem must be investigated by the use of formal verification

as a continuation of this work.

7.4 Distributed Clock Analysis

Clock deviations were measured for all defined system configurations. This

includes three different schedule lengths and two network configurations. Ad-

ditionally, two different SpaceWire interface implementations were used. One

implementation behaves as defined in its related standard [ESA19, p. 84]. The

second implementation contains the jitter reduction capabilities introduced

in Section 5.5 and investigated in Section 6.4.

The general test setup was already introduced in Figure 7.1. All executed

tests were performed with eight NCs to exchange and control their clock in-
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formation. All NCs are enabled in parallel at the beginning of each test,

whereas only two NCs are selected for a start-up process to establish a syn-

chronous system operation. All remaining NCs integrate initially over time,

as introduced in Section 5.4.2. Each NC is driven by a separated oscillator,

which is simulated in a way that uncertainties of +100 ppm or −100 ppm are

applied. These values are considered as reasonable based on the experience

gathered during space-related projects.

The overall evaluation consists of multiple executed tests for all system

configurations. Each test contains 118 schedule cycles with an overall exe-

cuted slot number of 3894, 7906, or 15694 depending on the selected schedule.

In total, 549880 slots were executed and its clock deviations observed across

all tests. Oscillator uncertainties are applied randomly to all NCs at the

beginning of each test and kept stable throughout the whole test execution.

However, the randomization of uncertainties is further constrained in a way

that three times +100 ppm, three times −100 ppm, and two times 0 ppm

uncertainties are applied. This is required to prevent that eight equal uncer-

tainties are applied. This, in turn, would lead to full removals of clock and

schedule drifts between all NCs. The nominal main frequency of NCs is set

to 50 MHz. Two additional oscillators, with nominal frequencies of 120 MHz,

are used inside each SpaceWire interface for serial data transmissions and

receptions, whereas all available oscillator inputs are asynchronous to each

other and individually controlled.

7.4.1 Deviation Over Time

The system evaluation is based on a repetition of test cases with different

static configurations and randomized parameters. The result of two single

test runs is given in Figure 7.6 to show possible clock deviations as a function

of executed schedule slots. Clock deviations are measured for each slot change

as an absolute value. Due to clock deviations, it is likely that some NC

start its slot change before other NCs. This results into n slot changes1,

performed in an arbitrary order, within a defined time window. The first slot

1Value n is defined by the number of synchronized NCs.
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change triggers a time measurement, whereas the last slot change completes

the measurement by determining the temporal difference. The given traces

are observed in a four router network and a schedule length of 2 ms (15694

slots). Arbitrary NC deactivations followed by reactivations are performed

during synchronous operation to force ongoing integration throughout a test.

However, at least three NCs are kept active as they are required to maintain

a synchronous operation for all executed tests. The ongoing reintegration

of NCs causes further deviations alongside to the deviations introduced by

DIRQ jitter.
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Figure 7.6: Deviation of single traces as a function of executed schedule
slots for a 2ms schedule and a four router network.

The initial spike of both traces represents a particular problem. As intro-

duced in Section 5.4.3, rate and state corrections are applied after the execu-

tion of two schedule cycles. This allows integrating NCs to apply both correc-

tions multiple times before entering synchronous operation with an improper

synchronized clock. However, NCs that complete start-up processes success-

fully transfer immediately into synchronous operation without any possibility

of applying a correction. Thus, clocks of these NCs deviate without com-

pensation, depending on their oscillator differences. The length of executed

schedules additionally affects the problem because clocks have more time to
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deviate until initial corrections are ready for application.

The overall deviation for the low jitter SpaceWire interface implementation

can be treated as much lower compared to the standard jitter implementation.

However, the given traces only represent a subset of all available traces. Thus,

graphs that provide distribution of collected deviations is the convenient way

to interpret available results and given in the following Section 7.4.2.

7.4.2 Distribution

Throughout all executed tests, a set of observed deviations was collected for

each static configuration. A static configuration is identified by its network

(one router, four routers), schedule length (0.5 ms, 1 ms, 2 ms), and the kind

of SpaceWire interface implementation (standard jitter, low jitter). Hence,

12 different static configurations are investigated in this work.

The effect of both SpaceWire implementations for all network and sched-

ules configurations is given in Figure 7.7 and Figure 7.8. Measured clock

deviations are grouped into ranges of 50 ns on the x-axis. This size is con-

sidered as suitable to illustrate and compare the overall behavior between all

tests. A total number of deviations are measured for each static configura-

tion. These deviations are located inside its related range to calculate the

occurrence, which is represented as distribution on the y-axis.

The advantage of the low jitter implementation is obvious. The distribu-

tion is larger within all static configurations for low clock deviations up to

99 ns, with a steep decrease for higher clock deviation values. In contrast to

that, standard jitter implementations provide a broader percentage of higher

clock deviations starting from 100 ns.

The effects of networks and different schedule lengths are illustrated in

Figure 7.9. It is expected that larger networks introduce more uncertainties

because of an increased number of SpaceWire interfaces that need to be tra-

versed. This, in turn, leads to larger DIRQ jitters with a direct impact on

the overall clock synchronization quality. This assumption is confirmed for

the standard jitter implementation. All single router configurations provide

a higher distribution up to 149 ns compared to the four router setups. A
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Figure 7.7: Clock deviations for a one router network between low jitter
and standard SpaceWire interface implementations.
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Figure 7.8: Clock deviations for four router network between low jitter and
standard SpaceWire implementation.
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different situation is present for the low jitter implementation. A closer ar-

rangement of all traces is expected. It is because of the overall reduced jitter

that correlates to the clock synchronization quality. However, a clear advan-

tage for the single router configuration can’t be determined for the available

set of data. This may be corrected by an increased number of executed tests

and must be further evaluated.
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Figure 7.9: Effect of clock deviations for different networks and schedules.

Different schedule lengths are also of interest because they define the fre-

quency of rate and state correction application, as explained in Section 5.4.3.

It can be expected that higher correction frequencies achieve better synchro-

nization results than lower ones. The reason for this is that clocks increase

their deviation over time, whereas an increased synchronization frequency
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decreases this duration.

This expectation is typically illustrated by a higher distribution of low de-

viation ranges for low schedule duration. However, the differences between

schedules are not that distinctive for the observed values. Especially the

differences between 1 ms and 2 ms schedules are minor. The expected behav-

ior is illustrated at best for the standard jitter implementation with a single

router network. The 0.5 ms provides the highest distribution of up to 149

ns. After that, the distribution decreases below the 1 ms and 2 ms schedules

until they finally converge. Although not all traces exactly match, it clearly

shows a trend in the direction of the expectation, which may become more

visible for a larger set of overall observed deviations.

The given deviation ranges with a limit of 500 - 549 don’t represent the

maximum observed value. The maximum values are given in Table 7.1 for

each static configuration. It is noticeable that maximum deviations of low

Table 7.1: Maximum deviations for all static evaluated configurations.

Router Schedule [ms] Implementation Max. Deviation [ns]

1 0.5 standard 540

1 0.5 low 350

1 1 standard 683

1 1 low 540

1 2 standard 1134

1 2 low 1094

4 0.5 standard 617

4 0.5 low 496

4 1 standard 758

4 1 low 564

4 2 standard 1154

4 2 low 833

jitter implementations are always lower than standard jitter implementations

for the same router and schedule configuration. Additionally, maximum de-

viation values increase for larger schedules with equal implementation and
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router configurations. Finally, four router configurations for a given schedule

and implementation always provide larger deviations compared to the same

configuration of a single router.

7.5 Target Utilization

A single NC was synthesized for several FPGA devices to evaluate the resource

utilization and the maximum operating frequencies. All results are based on

synthesis without applied Triple Modular Redundancy (TMR) and given in

Table 7.2. Two Microsemi FPGAs (RTG4, ProASIC3L) are given inside

Table 7.2: Synthesis results for a single NC with different
target devices.

FPGA device Utilization [%] Est. frequencies [MHz]

LUT FF Main TX RX

RTG41 6 4 53.8 276.2 271.8

ProASIC3L2 42 9 35.3 196.6 174.3

Virtex-4QV3 17 12 77.5 332.7 322.0

Virtex-5QV4 8 7 114.8 389.5 614.3

Zynq-70005 2 1 149.9 704.9 739.3

Kintex UltraScale6 2 1 193.3 956.6 1145.2

1 rt4g150cg1657-1
2 a3pe3000lfbga324-1
3 xqr4vfx60cf1144-10
4 xqr5vfx130cf1752-1
5 xc7z100ffg1156-1
6 xcku060-ffva1517-1

the utilization results, whereas both are available as radiation-hardened or

radiation-tolerant parts. All remaining FPGAs are manufactured by Xilinx.

Virtex-4QV and Virtex-5QV currently represent the only available space-

grade devices. The Kintex UltraScale is part of the evaluation because it is

selected to be the next space-grade Xilinx device [Elf18]. The Zynq-7000 is

a System-on-Chip (SoC), consisting of two CPUs connected to a FPGA and

located inside a single chip. This part has recently been subject to COTS
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based on-board computing systems to be used in the space domain [WG18;

Tre+18].

The results table provides the consumption of LUTs and FFs in order to

allow a rough comparison between devices and vendors. However, it must be

considered that LUTs can differ between technologies in their number of in-

puts which leads to different capabilities. Additionally, there might be restric-

tions in using LUTs and FFs for specific situations. For instance, ProASIC3L

devices restrict parallel usage of LUTs and FFs in case they are located in the

same VersaTile. FF and LUT consumptions are very low for most parts and

provides sufficient remaining resources for additional Intellectual Property

(IP) Cores alongside NCs on each FPGA.

All estimated frequencies are sufficient to allow SpaceWire transfer rates

of at least 120 MBits/s for the used IP. However, frequency estimations based

on synthesis are often reduced throughout place and route processes. This

could lead to a transfer rate reduction down to 100 MBits/s for ProASIC3L

devices. Optimizations of IPs to shorten combinational paths are typical

tasks to solve this problem and could be applied to the given prototype as

well.

Block RAM utilization significantly depends on the schedule size and

should be shifted into external memory for future developments. Hence,

BRAM utilization is not added here. This shift is vital for smaller FPGAs

with fewer BRAM blocks to provide sufficient resources to IPs that might be

instantiated in parallel to NCs.

7.6 Conclusion

The evaluation demonstrates all the capabilities of the introduced approach.

Clock synchronization is performed without centralized time distribution and

doesn’t require time accumulation inside the network. Additionally, a global

time is established decentralized throughout a dedicated start-up sequence.

The evaluation of the start-up behavior shows several important aspects.

Each applied start-up sequence was successfully completed for all given sys-
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tem configurations. The number of five start-up participating NCs should

provide sufficient fault tolerance for most applications. The low number of

observed logical collisions indicates a very low probability of having start-

ups that never succeed. For the given timeout and system configurations, all

start-ups were completed within 3.5 ms, with most of them are finished in

less than 2 ms. However, the start-up should be executed ideally only once

throughout system operation. Thus, it is essential that start-ups succeed at

all rather than focusing on the maximum execution time.

A synchronization between eight distributed clocks was performed

throughout the evaluation for multiple system configurations. A modified

SpaceWire interface was created to improve the overall synchronization qual-

ity by reducing the jitter of broadcast codes. This modification also repre-

sents a part of all used system configurations. Overall, a maximum clock

deviation of 1154 ms was observed for the longest schedule, a four router

network, and the standard SpaceWire implementation. The impact of syn-

chronization quality, depending on the network size, is clearly represented

by the distribution graphs for standard SpaceWire interfaces. The depen-

dency between synchronization quality and network size is reduced for the

modified SpaceWire interface. The correlation between schedule length and

synchronization quality is much lower than expected for both SpaceWire im-

plementations. The modified SpaceWire interface causes the most noticeable

improvement of synchronization quality. Its usage provides much better clock

synchronization for all schedules and network configurations compared to the

standard SpaceWire interface. The permanent applied NC disconnects did

not lead to a full loss of synchronization, which demonstrates the system

tolerance to fail-stop, crash, or omission failures.

All metrics were tracked by functional simulation inside a UVM test envi-

ronment. Its main advantage is the unlimited access to all relevant prototype

internal values required to create the statistics presented in this work. How-

ever, the execution of all tests requires multiple weeks to be finished. Thus,

emulation based verification should be considered to extend the test coverage

drastically.
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Chapter 8

Outlook

Formal broadcast code latency evaluation suffers from the complexity intro-

duced by the end-to-end checks. These end-to-end evaluations typically have

a massive cone of influence for the given properties that are analyzed. Ad-

ditionally, formal property checks on data paths generally require a larger

temporal space compared to control paths, which complicates evaluations

further. A single SpaceWire interface should be analyzed isolated in order

to target full proofs. This reduces the overall logic and the number of clks

that need to be modeled. However, this requires direct interaction on the

data/strobe interface, which leads to more complex assumptions and proper-

ties. Clk modeling was identified as a major complexity issue that caused a

massive proof radius reduction. Static clk offsets could be applied by the use

of scripts with all possible phase relations are evaluated in a separated verifi-

cation run. This probably leads to an increase of verification time but allows

proof radii in the area of 100 with more evaluated phase relations compared

to the actual used approach.

Formal property checking has not been applied to the complete system

because of complexity concerns that came up after the formal broadcast code

evaluation. However, it should be possible to select specific sub-functionalities

of the complete system to be checked by formal tools. Mainly the start-up

behavior should be targeted by formal verification because of its vast system



128 8 Outlook

importance. A more abstract model checking approach with UPPAAL1 could

be an alternative if formal property checking on the given RTL is not possible.

Several tasks should be addressed in order to apply the system to real ap-

plications. The executed schedules in this work were defined manually, which

is a sophisticated and error-prone process. Thus, an automated schedule syn-

thesis needs to be developed. Additionally, a larger system run-time should

be evaluated. This can be achieved by emulation, which provides access to

system internal signals by default. However, emulation generally requires

a significant financial investment. Hence, an FPGA-based prototype with

access to system internal parameters could be a cost-efficient alternative.

A practical use case of the given clock synchronization approach will be

evaluated for the successor of the DLR internal compact satellite Eu:Cropis

[Kot+18]. A utilization for secondary payloads might be possible to keep

risks moderate that originate by the open tasks.

1Tool to model systems as timed automata in order to apply model checking on it.
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Appendix
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Appendix A

Notations

A.1 Introduction

System properties or definitions are given by several representations. In the

following, a short listing of EBNF and Unified Modeling Language (UML) is

given due to its usage inside this thesis.

A.2 UML State Diagrams

UML provides a wide range of graphical notions in order to describe and

design software systems. However, specific UML diagram types (e.g. state

machine or timing diagrams) are very useful do describe behavior of hard-

ware systems. Figure A.1 shows a subset of available elements used for state

machine diagrams inside this work.
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State

Final state

Initial state

event [guard] / action Transition

ID event [guard]/ action

ID

ID

Concurrency

Signal reception

Signal transmission

ID

ID

State with internal
activities

Figure A.1: Subset of UML state diagram elements.

A.3 Extended Backus-Naur Form

The Extended Backus-Naur Form (EBNF) is a syntactic metalanguage used

to formally define a specific syntax. A well known use case is the definition of

programming languages. The EBNF is standardized in [Int96] and provides

the following operators.

Table A.1: EBNF operators.

Operator Usage

* Repetition

- Exception

, Concatenation

| Alternative

= Definition

; Terminator

’ Quotation 1

” Quotation 2

(* *) Comment

( ) Group

[ ] Option

{ } Optional repetition

? Special sequence
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[Bor+19] K. Borchers, D. Lüdtke, S. Montenegro, and F. Dannemann.

“Performance and Utilization Results for Time-Triggered Data

Transfers over SpaceWire”. In: IEEE Aerospace Conference. Mar.

2019.

[Hab+13] S. Habinc, A. Sakthivel, J. Ekergarn, A. Bjorkengren, R.

Pender, S. Landstrom, F. Cordero, J. Mendes, T. M. Ho,

and K. Stohlmann. “MASCOT On-Board Computer Based on

GR712RC”. In: Data Systems in Aerospace (DASIA). 2013.
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