fonstralned Graph Layouts

Vertlces on the Outer Face
and on the Integer Grid

Andre Loffler

Constrained Graph Layouts:
Vertices on the Outer Face and on the Integer Grid

Andre Loffler

Constrained Graph Layouts

Vertices on the Outer Face and on the Integer Grid

' Wiirzburg
Y. University Press

Dissertation, Julius-Maximilians-Universitat Wirzburg
Fakultat fur Mathematik und Informatik, 2020
Gutachter: Prof. Dr. Steven Chaplick, Prof. Dr. Alexander Wolff, Prof. Dr. Sabine Storandt

Impressum

Julius-Maximilians-Universitat Wirzburg
Wirzburg University Press
Universitatsbibliothek Wiirzburg

Am Hubland

D-97074 Wiirzburg
www.wup.uni-wuerzburg.de

© 2021 Wiirzburg University Press
Print on Demand

Coverdesign: Andre Loffler

ISBN 978-3-95826-146-4 (print)

ISBN 978-3-95826-147-1 (online)

DOI 10.25972/WUP-978-3-95826-147-1
URN urn:nbn:de:bvb:20-opus-215746

@ ®O Except otherwise noted, this document—excluding the cover—is licensed under the
Y Creative Commons License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/

@@@@ The cover page is licensed under the Creative Commons License
AT

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
https://creativecommons.org/licenses/by-nc-nd/4.0/

Preface

This book studies algorithmic problems from the graph drawing subfield of computer
science. At a high level the field concerns being given an abstract graph and realizing it
graphically by placing the vertices at explicit coordinates and providing curves realizing
the edges. The coordinate space is primarily 2-dimensional (as to display the graph on a
screen), and secondarily 3-dimensional. To make such realizations meaningful, restric-
tions are used, e.g., on the topology of edge crossings or on coordinate precision.

The contributions herein involve several mathematical perspectives: graph-theoretic,
algorithmic, heuristic, and geometric. The problems studied here are split into two parts
(Chapter 1 and Chapter 2 introduce and set-up the context).

The first part contains two chapters (3 and 4) on drawings of graphs in the plane
where the vertices are required to occur on the boundary of a simple polygon and the
edges are drawn inside the polygon. Chapter 3 provides graph-theoretic results on nat-
ural drawing styles and these structural results are leveraged to provide algorithms (via
a logic-based algorithmic meta-theorem: Courcelle’s Theorem). Chapter 4 highlights a
new perspective (drawing edges with few bends) on the well-studied problem of partial
planar drawing extension and provides natural first steps via efficient algorithms.

The second part concerns two problems (one spanning Chapter 5 and Chapter 6, and
the other in Chapter 7). The common themes are that the given graph is embedded (a
cyclic ordering of the edges around each vertex is given and the output drawing must re-
spect this), vertices occur at integer coordinates, and edges are realized as line segments.
Chapter 5 and Chapter 6 concern a natural aspect of graph drawing: snapping/rounding
an arbitrary precision drawing to integer coordinates. Computational hardness, an ex-
act approach (via integer linear programming), and a new practical heuristic approach
to natural instances of the problem are given. Chapter 7 is, in my opinion, the strongest
result of the thesis. It concerns an analogous result on orthogonal polyhedra to Cauchy’s
Rigidity Theorem for convex polyhedra. The proof of the rigidity result is constructive (via
a simple, but novel, combinatorial 3-coloring algorithm) and involves rather detailed ge-
ometric analysis and imagination—it is the fruit of two years of discussions.

Having worked directly with Andre on several results herein (and supervised him
throughout), it has been an enjoyable ride. His creativity and humor kept our meetings
fun and productive—though the puns were painful at times. For a retelling of some of
that ride, I invite you to read this thesis and I hope that you enjoy the results, and look
to the conclusions for some interesting questions for further study.

Steven Chaplick,
Dept. of Data Science and Knowledge Engineering,
Maastricht University, the Netherlands.

Contents

Preface

1 Introduction

2 Basic Definitions
21 Graphs ... e
2.2 Algorithms. e

I Vertices on a Common Outer Face

3 Outer k-Planar and Outer k-Quasi-Planar Graphs
3.1 Related Work and Contribution
3.2 Outerk-PlanarGraphs
3.3 Outer k-Quasi-PlanarGraphs
3.4 Testing for Full Convex DrawingsviaMSO,
3.5 Conclusion. i e
3.6 AdditionalResources

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape
4.1 Related Work and Contribution
4.2 Notationand Preliminaries
4.3 Procedure e
4.4 COrreCtNeSS . . o v i e i e e e e e
4.5 Conclusion.

Il Vertices on the Integer Coordinates

5 Moving Graph Drawings to the Grid Optimally

5.1 Related Work and Contribution
52 NP-Hardness e
5.3 Exact Solution Using Integer Linear Programming
5.4 Experimental Performance Evaluation.
55 Conclusion. e

17

19
20
22
29
40
43
44

45
46
46
48
51
56

59

61
63
67
71
77
84

Vii

Contents

6 Practical Topologically-Safe Rounding of Geographic Networks
6.1 Related Work and Contribution
6.2 Terminology and Basic Heuristics
6.3 TheTwo-Stage Algorithm
6.4 ExperimentalResults
6.5 Conclusion. e

7 Cauchy’s Theorem for Orthogonal Polyhedra
7.1 Related Work and Contribution
7.2 Orienting Faces by ColoringEdges
7.3 Arbitrary Genus: The Proof of Theoremz7.1
7.4 Conclusion.

8 Conclusion

Bibliography

Acknowledgments

List of Publications

viii

113
114
118
120
141

143

147

159

161

Chapter1

Introduction

“Within a graphic standard, a graph has infinitely many different drawings.
However, in almost all data presentation applications, the usefulness of a
drawing of a graph depends on its readability, i.e., the capability of convey-
ing the meaning of the diagram quickly and clearly”

- taken from Guiseppe Di Battista, Peter Eades,
Roberto Tamassia & Ioannis Tollis, 1994 [DBETT94]

The task of producing high-quality visualizations of information involves a spectrum of
challenges due to it being a craft as well as being an art form. Historically, visualizing
data was manual work done by scholars and experts, and the material used was very
expensive. Thus, significant effort was put into creating pieces of art — a typical example
can be found in Figure 1.1 (a): This geographic map of the region around Wiirzburg was
enriched with depictions of prominent people and places of interest to illustrate the data
at hand. The main body of water is shown as an oversimplified oval shape, with islands
on the inside and all ports placed around it, preserving their cyclic order while ignoring
real-world distances and geographic accuracy. Today, technical schemata such as UML
diagrams are regularly used in software engineering and project management to convey
complex information quickly and without ambiguity: The nodes contain information
about the entities they represent, whereas the links between the nodes are annotated
with the type of connection. In some cases, designers intentionally blur the lines between
craft and art, creating beautiful schematic representations such as the metro map shown
in Figure 1.1 (b).

Nowadays, there is a plethora of information to visualize. It ranges from the abstract
data of social networks to blueprints and flowcharts to geographic data. Each domain
is asking for its own meaningful and pleasant visualization to assist the viewer in cap-
turing all relevant information. Sometimes, tremendous effort is spent drawing large
networks by hand: See for example the Human Metabolism Map shown in Figure 1.2 -
the layout was crafted by five people over the course of more than a year. This drawing
has proven to be an effective instrument to a team of researchers around Thiele [TSF*13].
Unfortunately, not every drawing of such size can be hand-made by experts.

In particular, the need for good automated drawing algorithms is clear and is a pri-
mary focus of the, now roughly thirty year old, field of graph drawing. Graph drawing fo-
cuses on discovering the structural properties of different classes of networks, exploiting
them to a develop graphic standard tailored to each class respectively. In graph drawing,

1 Introduction

Figure 1.1: (a) Historic map “Nova Franconiae descriptio” of the region around Wirzburg, cre-
ated 1626, produced by etching (Licensed under CC BY-NC-ND 4.0 by the Wiirzburg University Li-
brary; found at http://vb.uni-wuerzburg.de/ub/permalink/36gfm912139_105787462, Signa-
ture 36/G.f.m.9,12,139). (b) A map of the Chicago public transport network, created by Maxwell Roberts
in 2015; the design is inspired by Frank Lloyd Wright (found at http://www.tubemapcentral . com).

the node-link metaphor is commonly used: each individual datum is represented by a
node and the connection between different data elements is modelled by connecting the
nodes via arcs. In most of today’s literature, nodes are called vertices and links are called
edges, reusing the names established in discrete maths. Most commonly, heavy dots are
used to represent vertices and edges are either straight-line segments or simple curves.
Moditying and augmenting these objects already allows for a lot of different drawing
styles: Is the vertex labeled? How is it shaped? Are different colors used to represent dif-
ferent data types? Are the edges curvy or straight? Do they have arrow-tips indicating
directions? Is additional data - such as distance or connection strength — represented?
An extensive overview on different drawing styles is given in Semiology of graphics by
Jacques Bertin [Ber83]. Of course, graphic standards are not limited to changing the
visual representations of vertices and edges.

This work focuses on graphic standards that restrict where vertices are allowed to be
placed. In classic graph drawing literature, the goal is often to draw a given graph onto
a two-dimensional plane - like a sheet of paper, blackboard, or computer monitor. The
placement of each vertex is described by assigning two coordinates (usually using real
numbers to represent x- and y-coordinate). We now list several important results on
different graphic standards.

De Fraysseix, Pach, and Pollack [dFPP90], as well as Schnyder [Sch90], considered
drawings of bounded size with straight-line edges and vertices placed at integer coor-

http://vb.uni-wuerzburg.de/ub/permalink/36gfm912139_105787462
http://www.tubemapcentral.com

1 Introduction

dinates. They managed to show that every graph that can be drawn planar - without
crossing edges — has a layout using the integer grid whose size is quadratic in the num-
ber of nodes.

Networks representing hierarchical structures, such as trees, can be drawn using the
layered layout by Sugiyama, Tagawa, and Toda [STT81], where vertices of the same level
obtain the same y-coordinate. A more general case of these layered layouts are radial lay-
outs: Layers are represented by concentric circles and vertices on the same level have the
same distance to the center. Outerplanar graphs can be imagined as a case: All vertices
have to be placed on the same circle, all edges are routed inside the circle and no pair of
edges is allowed to intersect.

Outerplanar graphs are also known as planar permutation graphs, introduced by
Chartrand and Harary [CH67]. Fruchterman and Reingold [FR91] take a different ap-
proach, by aiming to restrict how closely together vertices are allowed to be drawn and
aiming for an equal edge length. They model the edge lengths using repulsive forces of
springs between vertices, trying to find an equilibrium by expanding dense vertex clus-
ters at the expense of less dense parts.

Another layout restriction concerning polyline edges focuses on limiting the num-
ber of different edge slopes used in the drawing. Rectilinear and octilinear drawings
- used in graph layouts such as Manhattan-geodesic drawings (for example, see Katz,
Krug, Rutter, and Wolft [KKRW10]) and classic metro-map drawings (see N6llenburg
and Wolff [NWI11]) - are well-studied graphic standards with a large set of applications.
For a broad overview and diverse selection of results on bounded slope numbers, we
refer to the work of Dujmovi¢, Suderman, and Wood [DSW07].

Unfortunately, as usual in algorithmic fields, there are many graph drawing and lay-
out problems that cannot be solved efficiently unless we have P = A’P. Some interesting
examples are listed below.

Eades and Wormald [EW90] showed that for a given graph G with prescribed edge
lengths it is A/P-hard to determine whether there is a crossing-free drawing of G in
which the edges are straight-line segments of the prescribed lengths.

As shown by Argyriou, Bekos, and Symvonis [ABS12], it is also A/P-hard to decide
for a given non-planar graph, whether the vertices can be placed such that (a) all edges
are straight-line segments and (b) if two edges cross, they do so at right angles. Mini-
mizing the total area needed to draw a planar graph using straight-line edges at integer
coordinates is N/P-hard, shown by Krug and Wagner [KW07]. Cabello [Cab06] showed
that even deciding for a given set of points and a planar graph, if there is a mapping of
the vertices to the coordinates such that the resulting drawing is planar is A’P-hard.

As discussed above, we consider a drawing to be good if it is visually pleasing and
transports information without ambiguity. Some graphic standards are better suited for
placing labels next to vertices, some allow for a better perception of graph distance and
connectivity inside the network. While we have hinted at applications in transit map
drawing and organizational charts, this work puts the focus on theoretical results, broad-
ening the understanding of what makes a layout problem hard or easy.

1 Introduction

o

i
i §0

ey
Ism

g ‘;lum h’i -‘u’u.‘,.

I |!fgqnwv*'uf

Folate rjnetabol

nsportof amino acids

'”4’

4 1:5;,&

a .“!':n
Iy

SR

0, =
- e

19t g ||"—"ﬁ4
g €*"

%

&5

et

i ,.,4\:
.., k ‘g: i
‘. Lo, G o
dlg? ..:’“ g l-%!! q !
§+>|1 Hq %«" lt,ﬁl '

4‘%
;—\41 9

t’,t K
v -JU "“:71:1.1.
:‘. ;J w {E

T rfr 0

//www.vmh.life/#reconmap, see Noronha et al. [INDG*16].

lable at https

Figure 1.2: The Human Metabolism Map, published by Thiele et al. [TSF*13], is the largest hand-drawn network in biology. An interactive online explorer
is avai

https://www.vmh.life/#reconmap

1 Introduction

Outline of this Book

In this work, we answer selected questions on two different types of graph layout strate-
gies, each of which restrict vertex placement. This naturally partitions the chapters of
this book into two parts as follows:

Part One (Chapters 3 and 4) examines graph drawings that have all vertices mapped
to the boundary of a common (outer) face. An example for drawings in this layout style
can be found in Figure 1.3 (b). Part Two (Chapters 5, 6, and 7) looks into graph drawings
with vertices at integer coordinates. Refer to Figure 1.3 (c) for an example.

Additionally, Chapter 2 reviews the required basics in graph theory, algorithms, and
computational complexity. And finally, Chapter 8 summarizes the contents of this book,
giving an outlook by pointing to several open research questions.

Part One: Vertices on a Common Outer Face

Beyond Outerplanarity. In the first chapter of Part One, we look into the structural
properties of graphs that admit non-planar convex drawings; that s, all vertices are placed
in convex position - defining the boundary of the outer face — and all edges are straight
lines going between the vertices.

In Chapter 3, we consider two families of graph classes with nice convex drawings.
These families are defined by the crossing patterns that edges of members of these classes
are allowed to make. These classes are outer k-planar graphs — where each edge is crossed
by at most k other edges — and outer k-quasi-planar graphs — where no k edges can
mutually cross.

For the family of outer k-planar graphs, we show (|\/4k + 1] + 1)-degeneracy. As an
immediate consequence we get that every outer k-planar graph can be (| V4k + 1] +2)-
colored, and this bound is tight. We further show that every outer k-planar graph has a
balanced separator of size at most 2k + 3. This implies that the treewidth of such graphs is
O(k). For each fixed k, these small balanced separators allow us to test outer k-planarity
in quasi-polynomial time, hence recognizing membership in any class of this family is
not N’P-hard unless the Exponential Time Hypothesis fails.!

The other family of graph classes considered in this chapter is that of outer k-quasi-
planar graphs. We discuss the edge-maximal graphs of this family, which have been
considered previously under different names (such as chords of a convex polygon by
Capoyeleas and Pach [CP92]). We also construct planar 3-trees that are not outer 3-quasi-
planar, showing that planar graphs and outer 3-quasi-planar graphs are incomparable.

In the last section of this chapter, we further restrict outer k-planar and outer k-quasi-
planar drawings to closed drawings and subsequently to full drawings. A drawing of a
graph from either family is closed when the sequence in which the vertices appear on
the outer face’s boundary is a cycle in the graph; a drawing of a graph from either family
is full, when no crossing occurs on the boundary of the outer face. Naturally, any closed

! Details on the Exponential Time Hypothesis can be found in the work of Impagliazzo and Paturi [IP01].

1 Introduction

(a) (b) (@

Figure 1.3: lllustration of considered layout styes. Three drawings of the complete bipartite graph K3 3:
(a) A drawing with opposing subsets, (b) an outer 1-planar drawing that is also outer 3-quasi-planar,
(c) and a crossing-free triangular-shaped grid drawing.

drawing is also full. For each k, we express closed outer k-planarity and closed outer
k-quasi-planarity in extended Monadic Second-Order Logic. Thus, by Courcelle’s Theo-
rem [Cou90], for each fixed k, closed outer k-planarity is linear-time testable since outer
k-planar graphs have bounded treewidth. Using the test for closed outer k-planarity as
a subroutine, we can also test full outer k-planarity in linear time.

This chapter is based on joint work with Steven Chaplick, Myroslav Kryven, Giuseppe
Liotta, and Alexander Wolff [CKL*17].

Polygonal Boundaries. Many drawing algorithms for planar graphs work recursively.
Given a planar drawing of a subgraph, each step of the recursion extends it. The exten-
sions work in a way that maintains the structural properties of the previous drawing that
made the extension possible. This is oftentimes done by joining subgraphs at distinct
vertices — e.g. combining two trees by merging the root vertex of one tree with a leaf
vertex of the other — or by drawing subgraphs inside the faces of the previous drawing,
connecting the new vertices to those defining the face. For the latter, the shape of the face
to be drawn in can be prescribed, requiring the extended drawing to respect this shape
without inducing edge crossings. This raises the question if a given planar graph can be
drawn inside a prescribed outer face such that the resulting drawing is also crossing free.

In Chapter 4, we consider this question in a special setting: All vertices of the sub-
graph are already placed on the prescribed face’s boundary. Thus drawing the subgraph
only requires adding the missing edges inside the face. If the shape of the face is con-
vex, this problem is equivalent to testing whether the subgraph with given embedding
is outerplanar. If it is not convex, insisting on drawing edges as line-segments can eas-
ily make them cross the face’s boundary. Therefore we consider the following problem:
Given a drawing of the outer face as a simple polygon with p corners, an outerplanar
graph with n vertices and a mapping of the vertices to the face’s boundary, can the edges
be drawn inside the face with at most one bend per edge? We prove that this can be

6

1 Introduction

decided in O(pn) time. We do so by giving an algorithm that, in the positive case, also
outputs such a drawing.

This chapter is based on joint work with Patrizio Angelini, Philipp Kindermann, Lena
Schlipf, and Antonios Symvonis [AKL*20].

Part Two: Vertices at Integer Coordinates

Moving to the Grid Optimally. Until this point we were concerned with where the
vertices are placed, but not at what precision this placement is stored. Taken as a given
that real computers work within hard limitations, and can only store numbers at finite
precision, approximating and rounding numbers in the process is inevitable. Greene and
Yao [GY86] noted that repeatedly performing geometric operations - such as checking
point-in-area containment and line intersection — on coordinates of finite precision can
result in rapidly growing rounding errors.

Actually working with limited resources creates the need for an algorithm that trans-
forms a given drawing into a drawing of lower coordinate precision without damaging
the embedding or completely losing geometric similarity. Preserving topology and geo-
metric similarity are most important when working with data like real-world road net-
works. The transformation also removes unnecessary detail and reduces space consump-
tion as well as the computation time of algorithms working with the coordinates. In the
first chapter of Part Two — Chapter 5 — we investigate the TOPOLOGICALLY-SAFE GRID
REPRESENTATION problem for given straight-line drawings of planar graphs.> We show
that the problem is NP-hard for several different objective functions and provide an in-
teger linear programming formulation to compute optimal solutions. We also provide
an experimental evaluation on the performance and limitations of our program.

This chapter is based on a Master’s Thesis as well as joint work with Thomas C. van
Dijk and Alexander Wolff [L6f16, LvDW16].

Rounding to the Grid Heuristically. We originally started looking into the ToroL-
OGICALLY-SAFE GRID REPRESENTATION problem with a geographic application in mind,
engaging it from a graph-drawing perspective. Chapter 5 presents an A/P-hardness re-
sult and an exact ILP formulation that is infeasible for practical applications, so we ask
for an efficient algorithm that transforms a given drawing into a topologically equivalent
grid drawing.

In Chapter 6, we tackle this problem from a different angle by providing a random-
ized heuristic algorithm. Our algorithm consists of two stages of simulated annealing,
each with a different objective function. Stage One focuses on finding a feasible solution

2 Motivated by actually putting the drawings onto the screen, work on this topic usually considers points
to be centered inside pixels. Transforming pixel-centers to (crossing) points on the integer grid only
requires uniformly shifting all object by half of a unit in both dimensions.

3 Most of the results in Chapter 5 have already been published as part of a Master’s Thesis [L6f16]. We
choose to include them here again for two reasons: To provide a more profound experimental evaluation;
and as a foundation for the work presented in Chapter 6.

1 Introduction

- a non-optimal drawing with all vertices placed on grid points — by reducing the over-
all “density” of the drawing, moving vertices away from each other. Stage Two takes the
feasible drawing, but switches the objective to reducing the total movement of vertices
induced by the first stage. We discuss various feasibility procedures and evaluate their
applicability on geographic networks. We demonstrate that a straightforward annealing
approach without the first stage has difficulty finding any feasible solution at all. We
also discuss parameter selection for the second simulated annealing step, which tries to
reduce rounding cost of the drawing.
This chapter is based on joint work with Thomas C. van Dijk [vDLI9].

Recognizing Nets of Orthogonal Polyhedra. Incomputational geometry, the graph
defined by the corners and creases of a polyhedral surface is a commonly studied object
- often called the skeleton. The Rigidity Theorem given by Cauchy in 1813 can be restated
within today’s notation as follows: When a graph is the skeleton of the surface of a convex
polyhedron and the angles within each face of that graph are given, the dihedral angles
of the faces on the surface are uniquely determined.

This naturally raises questions about other polyhedral surfaces to which graphs can
be embedded uniquely. Biedl and Geng¢ [BG09] studied orthogonal polyhedral surfaces
of genus 0 with connected graphs - that is, the angles between edges as well as those
between faces are multiples of 90° that are topologically equivalent to the surface of the
sphere % in R?. Restricting faces to be orthogonal polygons and requiring edge lengths
to be integer, we get that all corners and creases of the polyhedral surface end up be-
ing placed on the three-dimensional integer grid. Biedl and Geng give the linear-time
BUNDLEORIENTATION algorithm to translate Cauchy’s theorem to orthogonal polyhedral
surfaces of genus 0: This algorithm can determine the unique set of dihedral angles for
a given connected graph with orthogonal faces or report that no such set of angles ex-
ists. Biedl and Geng also showed that testing realizability is N’/P-hard when the graph is
disconnected.

In Chapter 7, we consider an essential question that was left open by Biedl and Geng -
whether or not a similar translation exists for orthogonal polyhedral surfaces of genus 1
or higher. They give an example instance of genus 1 on which their algorithm can fail. To
answer their open question in the affirmative, we introduce the ITERATEDBUNDLECOL-
ORING algorithm. It uses the original BUNDLEORIENTATION algorithm repeatedly and
exhaustively. We show that it is capable of finding a set of dihedral angles for orthogo-
nal polyhedral surfaces of arbitrary genus. We do so by arguing how it re-discovers the
dihedral angles matching those of a polyhedron realizing the input graph.

This chapter is joint work with Steven Chaplick and Thomas C. van Dijk.

Chapter2

Basic Definitions

This book considers questions about graph drawings under different layout constraints.
To answer them, we provide algorithms as well as results from complexity theory. For a
general overview on these topics, we refer to two standard textbooks — Introduction to
Algorithms by Cormen, Leiserson, Rivest, and Stein [CLRS13] for algorithms and Com-
puters and Intractability: A Guide to the Theory of NP-Completeness by Garey and John-
son [G]79] for complexity theory.

In this chapter, we define the essential concepts used throughout this book. First,
we discuss the basics of graphs, including notation and terminology commonly used in
graph theory and graph drawing. Then, we give the basics of algorithms, covering asymp-
totic runtime notation and standard considerations from computational complexity.

2.1 Graphs

2.11 Combinatorics

Graph Terminology. A graph G = (V,E) is a tuple of sets V and E; the elements of
V are the vertices — or nodes' - of G, the elements of E are the edges. We use n = |V|
and m = |E| to refer to the sizes of these subsets respectively. In an undirected graph,
each edge e € E is an unordered pair {u, v} € V x V of vertices, whereas directed graphs
use ordered tuples (u,v) € V x V, indicating that the edge goes from start vertex u to
end vertex v. We use V(G) and E(G) to address the sets of vertices and edges in G
respectively whenever the graph in question is not immediately clear from context.

The vertices of an edge are also called its endpoints. In this thesis, we do not treat di-
rected edges differently; hence, we use the tuple-notation for both variants, considering
all edges to be undirected. Whenever the direction of an edge is relevant, we explicitly
state the direction the edge is going. We say that a graph G is connected when for every
non-empty proper subset of vertices A ¢ V(G), we find at least one edge (u,v) € E(G)
withue Aandve V N\ A,

For an edge e = (u,v), we say that u and v are incident to e and vice versa. In addition,
two vertices are adjacent, if they are connected by an edge. Two edges are incident, if they
share a common endpoint. The degree deg v of a vertex v is the number of edges incident
towv.

1 We rarely use the term “node”. We usually use “node” to refer to vertices in auxiliary graphs, making
sure they are not mistaken for elements of the primary graph.

2 Basic Definitions

A subgraph G' = (V', E") of a graph G has the following properties: The vertex set
V' € V(G) is a subset of the original vertex set and the edge set E’ € E(G) is a subset
of all edges (u,v) € E(G) with u,v € V'. If a graph is not connected, the maximal
connected subgraphs of G are called its connected components. Naturally, each connected
component itself is a graph — possibly containing only as little as a single isolated vertex.

The subdivision of an edge e = (u, v) is created by deleting e from G, adding another
vertex v/ and adding the edges (u,v") and (v, v). A graph G’ is a subdivision of graph
G if G’ can be created subdividing some of the edges of G, or if G’ is a subdivision of a
subdivision of G.

Special Graphs and Graph Properties. Next, we look into graph classes defined by
structural properties of abstract graphs. In the following, let G = (V, E) be a graph.

Let u, w € V be vertices of G. We say that G contains a path P of length k connecting
u and w if there is a k-element subset of edges {e;, es,...,ex} ¢ E(G) creating the
sequence e; = (u,v1),e; = (vi,v2),e3 = (v2,v3),...ex = (vk_,w). We call u and w
the end vertices of the path. Each end vertex appears only once in the edge sequence,
all other vertices appear exactly twice. Naturally, we have |V (P)| = |[E(P)| + 1. A cycle
of length k > 3 is a closed path? - a sequence of edges starting and ending on the same
vertex, that is, ey = (vk_1,u) and e; = (u,v;). A chord is an edge e connecting two
vertices on the same cycle (of length at least 4) that e itself is not part of>. A cycle is an
induced cycle if no pair of vertices on that cycle is connected by a chord.

A tree is a connected graph, that does not have a subgraph that is a cycle. The degree-
1 vertices of a tree are called its leaves. A tree containing all vertices of a given graph
G is a spanning tree of G. A Hamiltonian path is a path of G that visits every vertex of
G exactly once. A Hamiltonian cycle is a Hamiltonian path that is also closed. When G
has a Hamiltonian cycle, we call G a Hamiltonian graph. The edges highlighted in red in
Figure 2.1 (a) are a Hamiltonian cycle of that graph.

The edge set E of the complete graph K,, = (V, E) on n vertices contains all possible
two-element subsets of V, that s, E = (‘2/) (and m = n-(n-1)). A graph contains a clique
of size k when it has K}, as a subgraph. The complete graph K is shown in Figure 2.1 (a).

A (vertex) coloring of G is a function ¢: V — C mapping the vertices of G to a fixed
set of colors* C such that we have c(u) # c(v) for every edge (u,v) € E. The chromatic
number y(G) is the size of the smallest set Cpp;, for which a valid coloring of G exists;
for simplicity we say that a graph G with y(G) = x is x-colorable. Naturally, the chro-
matic number of the complete graph is y(K,) = n, and a famous result by Appel and
Haken [AH76] states that all planar graphs are 4-colorable; trees, paths, cycles of even
length are 2-colorable, non-trivial cycles of odd length require a third color. A valid
5-coloring of K5 is shown in Figure 2.1 (a).

2 Cycles of length 1are edges with both end points being the same vertex, usually called (self-) loops. Cycles
of length 2 can only appear in directed graphs or multigraphs; they are usually called lenses. Both special
cases will not be considered in this thesis.

* Think of a chord as a shortcut through the cycle. Naturally, triangles cannot have shortcuts.

* Despite the name, we generally use natural numbers or letters as colors, not “red, blue, green, ...”

10

2.1 Graphs

Figure 2.1: lllustrations of basic definitions: (a) The complete graph Ks: One of many Hamiltonian
cycles in red; the vertex-colors show a valid 5-coloring. (b) The complete bipartite graph K3 3: The
central (blue) face is bounded only by partial edges and thus has no vertices incident to it; the bottom-
right (orange) is not adjacent to the central face. (c) The edge (u,v) can be drawn in two different
ways — going around vertex ¢ to the left (orange drawing) or to the right (blue drawing). Each drawing
crosses a different edge incident to ¢, creating two different subdivisions that both follow the same
rotation system.

The 2-colorable graphs are also called the bipartite graphs, since any valid 2-coloring
partitions their vertex set into two groups V; and V,. The special family of complete
bipartite graphs contains the graphs K, , with a = |V;| and b = |V,|. They contain every
possible edge between these groups — we have E = V;, x V.

Recognition. When considering a given structural property, one would generally want
to test whether a given graph admits it. The recognition problem can generally be stated
as follows: “Does graph G belong to the class of graphs with property X?” Some recogni-
tion problems are easy — such as testing planarity —, while testing other properties can be
very challenging - like searching for a Hamiltonian path. Oftentimes, in graph drawing
— as well as in this book - the property to test for is whether or not a given graph can be
drawn according to a specific graphic standard.

2.1.2 Drawings

In the previous section, we have defined the elements of abstract graphs as well as some of
their structural properties that are of general relevance to this book. To visually represent
- or draw - an abstract graph, we use the node-link metaphor. We have already worked
with the intuitive nature of this metaphor in the introduction when giving an overview
on different graph layout approaches. We now formally define the basic concepts and
notation used for drawing graphs using this metaphor.

1

2 Basic Definitions

Vertices and Edges. A drawingI' of graph G is a visual representation placed in some
k-dimensional Euclidean space. The drawing maps each vertex v of G to a k-dimensional
coordinate vector I'(v) with entries from R. Since we want to visualize drawings - to ac-
tually be able to look at them -, we restrict ourselves to either k = 2 or k = 3. For
k = 2, we get the well-known Cartesian plane R?, most commonly associated with a
blackboard or sheet of paper to draw on; for k = 3, we get the 3-dimensional space
R?. Producing a 3-dimensional drawing oftentimes involves drawing onto the surface
of some 3-dimensional object, physically building objects representing the vertices and
edges of G or using 3D computer graphic tools.” We identify the vector T'(v) with its as-
sociated vertex and refer to the entries of I'(v) as the x-, y- (and z-) coordinates. Vertices
are commonly represented by “heavy” dots, as in Figure 2.1.

Edges are drawn using Jordan curves. A Jordan curve is a continuous injective map
d of the interval [0,1] to R? (or R? respectively). That is, for i, j € [0,1] we have the
following two conditions: When j converges towards i, we getlim_,; d(j) = d(i) - there
are no abrupt changes in value — and for i # j we have for d(i) # d(j) - a Jordan curve
never occupies the same point in space twice. A drawing I'(e) of an edge e = (u,v) isa
Jordan curve where one endpoint is I'(u) and the other endpoint is T'(v). If the map is
also linear, we call the resulting curve a straight-line segment. For simplicity, we identify
an edge e and its drawing I'(e).

Planarity and Beyond. In a drawing, the curves of two edges e and f can cross at
some interior point- that is, we get I'(e) N T(f) # @ °; if they share interior points, we
call each such point a crossing. If two edges cross, we insist that they do so at interior
points, that is, we do not allow for an endpoint of one edge to b an interior point of
another edge. A drawing in the plane without crossing edges is a planar drawing and
a graph that has some planar drawing is called a planar graph; if a graph has no planar
drawing, it is nonplanar. A famous result by Fary [Far48] states that every planar graph
also has a planar straight-line drawing. Planarity can also be characterized combinatori-
ally. Tutte [Tut63] states Kuratowski’s Theorem as follows: A graph is planar if and only if
none of its subgraphs is a subdivision of the complete graph K5 or the complete bipartite
graph K; 3. These graphs are also known as the Kuratowski graphs; they are shown in
Figure 2.1 (a) and (b) respectively.

The notion of planarity can be relaxed as follows: For any constant k, a graph is k-
planar, if it has a drawing in the plane in which no edge participates in more than k
crossings; if a graph is k-planar, it is also (k +1)-planar. Notice that Fary’s theorem does
not generalize to 1-planarity. A more detailed overview on beyond-planar graph classes
can be found in Chapter 3.

> During our research for Chapter 7, we used all of these techniques. We built polyhedral surfaces from
paper cut-outs and plastic tiles, then drawing vertices and edges onto them. Several of the figures found
in Chapter 7 are screenshots of digital 3D models created using our own implementation in JavaScript.
® This does not include incident edges “crossing” at their shared endpoint.

12

2.2 Algorithms

Rotation Systems and Embeddings. The rotation system of a drawing of a graph
is defined as the set of cyclic orders of incident edges around each vertex, usually con-
sidered consistently counterclockwise. The edges of a drawing in the plane” subdivide
that plane into disjoint regions called faces. In the plane, there is exactly one unbounded
outer face and (possibly) some inner faces. The boundary of each inner face is a closed
curve composed of a cyclic sequence of edges connecting incident vertices and partial
edges connecting vertices and/or crossings. Notice that an edge can appear twice in this
sequence. We say that an edge or vertex is incident to a face if it belongs to the closed
curve bounding it. Similar to above, two faces are adjacent if their boundaries share an
edge. An embedding of a graph is a rotation system together with a prescribed outer face.
The subdivision created by a drawing of graph G also induces one embedding of G but
for a given embedding, there is an infinite number of drawings realizing it.

We can also use a rotation system to describe an embedding. For planar graphs, these
definitions are equivalent; for nonplanar graphs, there can be multiple different subdivi-
sions - creating faces bounded by combinatorially different curves — following the same
rotation system (see Figure 2.1 (c)). We will sometimes prescribe the combinatorial em-
bedding of a graph to then try finding a drawing matching the given embedding.

2.2 Algorithms

In this section, we define the algorithmic concepts relevant to this book. An algorithm
is a finite sequence of well-defined instructions, designed to be executed by some ma-
chine (such as Turing machines, computers, or humans). An algorithm is deterministic,
if when given an input, it will always perform the same sequence of steps to arrive at
the same output. A non-deterministic algorithm has some “freedom of choice” when
performing the next instruction — some choices might lead to different outputs than oth-
ers. A randomized algorithm employs some random number generator — such as flipping
coins or creating a random order of the elements of a set. The computational model used
throughout this book is the real RAM model - a hypothetical machine capable of infinite-
precision arithmetic operations on real numbers in constant time. Details on this model
can be found in the book Computational Geometry by Preparata and Shamos [PS85].

2.2.1 Asymptotic Runtime

When looking at families of graphs or the running time of algorithms, one can often rec-
ognize some asymptotic behaviour. We describe such behaviours using Landau symbols
- also known as Big Oh Notation. Let f:N — N be a function that maps a natural number
to a natural number - e.g. input size and running time for an algorithm or number of
vertices (usually called n) and edges () for some graph. We define the following classes
of functions with respect to function f:

7 Or on some other two-dimensional surface.

13

2 Basic Definitions

O(f)={¢:N->N| 3c>0, 3Ing>0, Vn>ngy: 0<f(n)y<c-g(n) }
Q(f)={g:N->N| 3c>0, 3Iny>0, Vn>ng: c-g(n) < f(n) }
O(f) ={g:N->N| J¢;,¢>0, Ing >0, Vn>ng: c;-g(n) < f(n) < cz-g(n) }

The growth of a function g that lies in the order of f - or for short g € O(f) - is
upper-bounded by that of f. Symmetrically, we have that for g € Q(f), the growth of
g is lower-bounded by that of f. Intuitively, we have that g € ®(f) implies that f and
g grow alike - that is, g € O(f) and g € Q(f), thus f upper- and lower-bounds g for
different constants.

If we have f € O(n*) for some constant k, we say that f is a polynomial function; an
algorithm with runtime O(#*) is an efficient or polynomial-time algorithm. Opposed to
efficient algorithms are the exponential-time algorithms. An exponential algorithm has
a runtime that is lower-bounded by some exponential function (a function f(n) = ¢"
in which the parameter appears in the exponent at least once and with some base ¢ > 1).
Between polynomial and exponential functions are the quasi-polynomial functions. A
function f is quasi-polynomial, if we have f € O(2(°¢™)") for some constant ¢ > 0.5
A quasi-polynomial-time algorithm has a runtime that can be bounded using a quasi-
polynomial function.

2.2.2 Complexity and Hardness

Complexity Classes. There are two different kinds of problems that we discuss in this
book. For decision problems, we try to find a yes/no-answer; whereas for optimization
problems, we look for the best answer - optimizing some objective function.

The complexity class P is the class of all decision problems that are solvable by some
efficient deterministic algorithm. Similarly, the class OP is the class of all decision prob-
lems solvable by quasi-polynomial-time algorithms. On the other hand, the class NP
is the class of problems solvable by non-deterministic polynomial-time algorithms. We
clearly have that P c NP, but the question whether the two classes are the same or not
- P =NP or P ¢ NP - remains open. From an algorithm standpoint, most results are
stated under the standard assumption that P # N'P.°

A problem T is N'P-hard, when there is a polynomial-time reduction from every
problem R € NP to T. A reduction from R to T is a transformation that translates an
instance Iy for problem R into an instance I for problem T such that there is a valid
solution to I if and only if there is one to I'. A problem is N'P-complete if it is N’/P-hard
and in N'P.

8 For ¢ = 1 we get the linear functions, whereas for ¢ < 0 we get sub-polynomial functions.
° This question has been open for about 60 years. In 2012, William Gasarch [Gas12] conducted a survey
among computer scientists. Out of 152 participants, 83% expected the two classes to not be equal.

14

2.2 Algorithms

Boolean Satisfiability. Finally, we define one of the classic problems shown to be
NP-complete by Richard Karp [Kar72] in 1972 - namely Satisfiability with at most 3
literals per clause, also known as 3SAT. Cook [Co071] and Levin [Lev73] independently
considered the Boolean Satisfiability Problem (or SAT), showing that it is the first A/P-
complete problem; this result is therefore known as the Cook-Levin theorem. An instance
of SAT - a Boolean formula - consists of Boolean variables and the three operators AND,
OR, and Not (denoted by the symbols A, v, and - respectively). A formula is called
satisfiable if it is true for some assignment of Boolean values to the variables. SAT is the
problem of deciding whether a given formula is satisfiable.

The variables appear as negated or unnegated literals — such as —x or x. Each clause
is a disjunction of literals - for instance (x vV -y v z) - and a formula is in conjunctive
normal form, if it is a conjunction of clauses. Any SAT formula can be translated to an
equivalent formula in conjunctive normal form. The issue with this is that the translated
formula’s size can be exponentially larger than that of the original one.

The 3SAT problem is a special version of SAT; a 3SAT formula is in conjunctive nor-
mal form and in addition, every clause contains no more than three literals. While 3SAT
is N'P-complete, the variant 2SAT - restricting the clauses to contain up to two literals
each - can be solved efficiently.

Exponential Time Hypothesis. The Exponential Time Hypothesis (or ETH for short)
(as stated by Impagliazzo and Paturi [IP01]) is a complexity theoretic assumption defined
as follows: Let 55 = inf{&: there is an O(2°")-time algorithm to solve kSAT}. The Expo-
nential Time Hypothesis states that for k > 3 we have that s, > 0; in other words, there is
no sub-exponential-time algorithm - and subsequently also no quasi-polynomial-time
algorithm - that solves 3SAT. Finding a problem that can be solved in quasi-polynomial
time and that is also A’P-hard would contradict the ETH. In recent years, the Exponen-
tial Time Hypothesis has become a standard assumption from which many conditional
lower bounds have been proven; Cygan et al. [CFK*15] provide a good summary on this
topic.

Note that, in addition to violating the ETH, the existence of an N’P-hard problem
which can be solved in quasi-polynomial time would also directly imply that determin-
istic and nondeterministic exponential time — EXP and NEXP - coincide. This can be
proven by a padding argument similar to Proposition 2 by Buhrman and Homer [BH92].
Thus, having a quasi-polynomial algorithm for a problem implies that it is extremely un-
likely for that problem to be A/P-hard. Thus, it is widely believed that NP ¢ OP.

Approximability. Similar to A’P-hard decision problems, there are also N/P-hard op-
timization problems. To any optimization problem, there is also a division variant - in-
stead of asking for the best solution, one can also ask if there exists a solution above or
below a certain threshold. The complexity class NPO contains all A’P-hard optimiza-
tion problems.

15

2 Basic Definitions

One way to tackle a problem in APO is to try finding an approximation algorithm
- an algorithm with a provable guarantee on the solution quality. Let OPT(I) be the
optimal solution for an instance I of some optimization problem P and let ALG(I) be
the output of some approximation algorithm solving it. That algorithm is a constant-
factor approximation, if there exists some constant ¢ such that ¢ - ALG(I) = OPT(I)
holds for all instances I of problem P.

The class APX is the class of problems in N/PO that have a polynomial-time constant-
factor approximation algorithm.

16

Part |

Vertices on a
Common Outer Face

Chapter 3

Outer k-Planar and
Outer k-Quasi-Planar Graphs

In the last decade, the focus in graph drawing has shifted from exploiting structural
properties of planar graphs to addressing the question of how to produce well-structured
and understandable drawings of general graphs.

This becomes even more important in the presence of edge crossings, giving rise to
the topic of beyond-planar graph classes. The primary approach here has been to define
and study graph classes which allow some edge crossings, but restrict these crossings in
varijous ways. Two commonly studied such graph classes are:

1. k-planar graphs, the graphs which can be drawn so that each edge (Jordan curve)
is crossed by at most k other edges.

2. k-quasi-planar graphs, the graphs which can be drawn so that no k pairwise non-
incident edges mutually cross.

Following these definitions, the 0-planar graphs and 2-quasi-planar graphs are precisely
the planar graphs. Additionally, the 3-quasi-planar graphs are simply called quasi-planar.
Two highly relevant recent surveys on these classes are by Kobourov, Liotta, and Mon-
tecchiani [KLMI17] and Didimo, Liotta, and Montecchiani [DLM19].

In this chapter we study these two families of classes of graphs under the restriction
that the vertices are placed in convex position and edges mapped to line segments; i.e.,
we apply the above two generalizations of planar graphs to outerplanar graphs and study
outer k-planarity and outer k-quasi-planarity.

Concepts. In the following, we consider balanced separators, treewidth, degeneracy,
coloring, edge density, and recognition to study these two classes. We start by defin-
ing the key concepts used in this chapter, then state our contribution to these beyond-
outerplanar graph classes, to finally give an overview on the related work. We briefly
define the most important graph theoretic concepts that we study in this chapter.

A graph is d-degenerate when every subgraph of it has a vertex of degree at most
d. This concept was introduced by Lick and White [LW70] as a way to provide easy

A preliminary version of the contents of this chapter has appeared in the proceedings of Graph Draw-
ing 2017 [CKL*17]. This is joint work with Steven Chaplick, Myroslav Kryven, Giuseppe Liotta, and
Alexander Wolff.

19

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

bounds on the chromatic number. Namely, a d-degenerate graph can be (d +1)-colored
by repeatedly removing a vertex of degree at most d. A graph class is d-degenerate if
every graph in the class is d-degenerate. Note that the class of d-degenerate graphs is
hereditary, that is, it is closed under taking subgraphs. Also note that outerplanar graphs
are 2-degenerate, and planar graphs are 5-degenerate.

Given a graph G = (V, E) with n vertices, a pair A, B of subsets of V is a separation
of Gif AUB =V, and no edge of G has one endpoint in A\ B and the other in B\ A. The
intersection A N B is called a separator and the size of the separation (A, B) is|An B|. A
separation (A, B) of G is balanced if |A~ B| < & and | B\ A| < 2. The separation number
of G is the smallest number s such that every subgraph of G has a balanced separation of
size at most s. There is a polynomial relation between separation number and treewidth
found by Robertson and Seymour [RS84]; namely, any graph with treewidth ¢ has separa-
tion number at most + 1 and, as Dvorak and Norin [DN19] recently showed, any graph
with separation number s has treewidth at most 15s. Graphs with bounded treewidth are
of interest, among others, due to Courcelle’s Theorem (see Theorem 3.12 [Cou90]), which
implies that for graphs with bounded treewidth many problems can be solved efficiently.

3.1 Related Work and Contribution

Ringel [Rin65] was the first to consider k-planar graphs by showing that 1-planar graphs
are 7-colorable. This was later improved to 6-colorable by Borodin [Bor84]. This is
tight since Kg is 1-planar. Many additional results on 1-planarity can be found in a re-
cent survey paper by Kobourov, Liotta, and Montecchiani [KLM17]. Generally, each n-
vertex k-planar graph has at most O(1+/k) edges (shown by Pach [PT97]) and treewidth
O(V/kn) (shown by Dujmovié, Eppstein, and Wood [DEW17]).

Outer k-planar graphs have been considered mostly for k € {0,1,2}. Of course, the
outer 0-planar graphs are the classic outerplanar graphs which are well-known to be
2-degenerate and have treewidth at most 2. It was shown by Babu, Khoury, and New-
man [BKNI16] that essentially every graph property is testable on outerplanar graphs.
Outer 1-planar graphs are a simple subclass of planar graphs and can be recognized in
linear time [ABB*16, HEK"14]. Full outer 2-planar graphs — a subclass of outer 2-planar
graphs — can been recognized in linear time [HN16]. General outer k-planar graphs were
considered by Binucci et al. [BGHLI18]. Among other results, they showed that, for ev-
ery k, there is a 2-tree which is not outer k-planar. Wood and Telle [WT07] considered a
slight generalization of outer k-planar graphs in their work and showed that these graphs
have treewidth O(k).

The k-quasi-planar graphs have been studied extensively from the perspective of edge
density. The goal here is to settle a conjecture of Pach, Shahrokhi, and Szegedy [PSS96]
stating that every n-vertex k-quasi-planar graph has at most cxn edges, where ¢ is a
constant depending only on k. This conjecture has been settled in the affirmative by Ack-
erman and Tardos for k = 3 [AT07] and by Ackerman for k = 4 [Ack09]. The best known
general upper bound is (nlog #)2*("", discovered by Fox, Pach, and Suk [FPS13], where

20

3.1 Related Work and Contribution

a is the inverse of the Ackermann function. Capoyleas and Pach [CP92] showed that any
k-quasi-planar graph has at most 2(k — 1)n — (2k2—1) edges, and that there are k-quasi-
planar graphs meeting this bound. More recently, it was shown by Geneson, Khovanova,
and Tidor [GKT14] that the semi-bar k-visibility graphs are outer (k + 2)-quasi-planar.
However, the outer k-quasi-planar graph classes do not seem to have received much fur-
ther attention.

The relationship between k-planar graphs and k-quasi-planar graphs was consid-
ered recently. While any k-planar graph is clearly (k + 2)-quasi-planar, Angelini et
al. [ABB*20] showed that any k-planar graph is (k + 1)-quasi-planar. More specially,
it has also been shown that 2-planar graphs are also quasiplanar.

The convex (or I-page book) crossing number of a graph is the minimum number of
crossings which occur in any convex drawing. This concept has been introduced several
times (see Schaefer [Sch13] for more details). Masuda et al. [MKNF87] showed that de-
termining the convex crossing number is A’P-complete. However, recently Bannister
and Eppstein [BE18] used treewidth-based techniques (via extended Monadic Second-
Order Logic - MSO;) to show that the convex crossing number can be computed in
linear FPT time, i.e., in O(f(c) - |I|) time where ¢ is the convex crossing number and
f is a computable function. Thus, for any k, the outer k-crossing graphs with n vertices
and m edges can be recognized in time linear in n + m. Chaplick et al. [CvDK*20] used
MSO; to recognize graphs that have a circular layout with k bundled crossings'.

Contribution. The rest of this chapter is structured as follows.

In Section 3.2, we consider outer k-planar graphs. We show that this graph class is
(|V4k + 1] + 1)-degenerate, and observe that the largest outer k-planar clique has size
(|V'4k + 1] +2). This implies each outer k-planar graph can be (| V/4k + 1| +2)-colored,
and this is tight. We further show that every outer k-planar graph has separation number
at most 2k + 3. For each fixed k, we use these balanced separators to obtain a quasi-
polynomial time algorithm to test outer k-planarity, i.e., these recognition problems are
not A/P-hard unless ETH fails.

In Section 3.3, we consider outer k-quasi-planar graphs. Specifically, we discuss the
edge-maximal graphs which have been considered previously under different names, for
example by Capoyleas and Pach [CP92], Dress, Koolen, and Moulton [DKMO02], and
Nakamigawa [Nak00]. We provide a novel approach to show that all edge-maximal outer
k-quasi-planar graphs have the maximum number of edges, namely 2(k — 1)n — (Zkz_l).
We also relate outer k-quasi-planar graphs to planar graphs.

In Section 3.4, we restrict outer k-planar and outer k-quasi-planar drawings to full
drawings (where no crossing appears on the boundary - see Figure 3.1 (a)), and to closed
drawings (where the vertex sequence on the boundary is a cycle in the graph - see Fig-
ure 3.1 (c)). The case of full outer 2-planar graphs has been considered by Hong and
Nagamochi [HN16]. They showed that full outer 2-planarity testing can be performed

U A bundle is a set of edges that travel in parallel. A bundled crossing occurs when two bundles cross - that
is, every edge of one bundle crosses every edge of the other.

21

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

(@) (b) (@

Figure 3.1: (a) An outer 1-planar embedding that is not full; (b) a full embedding that is not closed; (c) a
closed outer 1-planar embedding.

in linear time. We first observe that a graph is full outer k-planar if and only if its maxi-
mal biconnected components are closed outer k-planar?, and that this equivalence also
holds for full outer k-quasi-planar graphs. Then, for each k, we express both closed
outer k-planarity and closed outer k-quasi-planarity in extended Monadic Second-Order
Logic. Thus since outer k-planar graphs have bounded treewidth, full outer k-planarity is
testable in O(f(k) - n) time, for a computable function f. This result greatly generalizes
the work of Hong and Nagamochi.

3.2 Outer k-Planar Graphs

In this section we show that every outer k-planar graph is O(v/k)-degenerate and has
separation number O(k). This provides tight bounds on the chromatic number, and
allows for testing outer k-planarity in quasi-polynomial time.

3.2.1 Degeneracy and Coloring

We show that every outer k-planar graph has a vertex of degree at most V4k + 1+1. First
we note the size of the largest outer k-planar clique and then we prove that each outer k-
planar graph has a vertex matching the clique’s degree. This also tightly bounds the chro-
matic number in terms of k, i.e., Theorem 3.3 follows from Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Every outer k-planar clique has at most | /4k + 1] + 2 vertices.

Proof. Let a and b be two vertices of the largest clique. In any outer embedding the
edge (a,b) partitions the other vertices into two sets S, and S, - the vertices on the
left and the right side of (a, b). Because all vertices are a clique, edge (a, b) is crossed
ISe| - |S;| times. Therefore, the edge that is crossed the most has an almost equal number

% This was observed for full outer 2-planar graphs by Hong and Nagamochi [HN16].

22

3.2 Outer k-Planar Graphs

n-2
2
and W < k if n is odd. Therefore, for fixed k, the size of the clique is at most

|V4ak +1] +2. O

Lemma 3.2. The largest possible minimum degree of a vertex in an outer k-planar graph

G is \/4k + 1+ 1 and this bound is tight.

2
of vertices on both sides; the total number of crossings then is () < k if n is even

Proof. In the following let § be the largest minimum degree over all outer k-planar
graphs and let G be some outer k-planar graph realizing §. By Lemma 3.1 we know
that G can contain a clique of size |\/4k + 1] + 2, so we have § > |[V4k +1] + L

Hence, it remains to show that § < 4k +1+ 1. We use a contradiction argument
to show that G cannot have minimum degree § > 4k +1 + 2 - it would then be too
small to accommodate such a minimum degree vertex. We say an edge (a,b) cuts h € N
vertices, if there are h vertices to either the left or the right side of (a, b) with respect to
the embedding of G.

Assume that edge (a, b) cuts h vertices of graph G and let cr(, ;) denote the number
of edges crossing (a, b). Since we have minimum degree delta, we get the following:

CI(q,p) < 5h—]’l(h+1) <k. (3.1)

Inequality (3.1) accounts for all edges incident to vertices cut by (a4, b), subtracting
all edges that can possibly go between those vertices or from any such vertex to a or b,
as those edges cannot cross (a,b). Assume for contradiction that ¢ is larger, namely
0 > 4k + 1+ 2; There is some number h* of vertices that edge (a, b) would have to cut
to violate k-planarity.

Cr(ap) 20" —h*(h* +1) > k +1. (3.2)

From Inequality (3.2) we get h* > (6 - 1- /(6 -1)2 - 4(k +1)). Consider the
smallest such h*. Further assume that no edge (a,b) cuts between h* and h vertices
inclusive. Thus, for edge (a, b) we get the following relationship:

h-h*
(apy SOh—h(h+1)+2(). j). (3.3)

Jj=1

The last term on the right side of Inequality (3.3) accounts for the absent edges that
cut more than h — h* vertices. Now, assuming that (a, b) cuts h +1 vertices and we have
0 > 2h*, we get the following from Inequality (3.2):

CTap) > Oh = h(h+1) +2(X" j) + 8- 2(h+1) +2(h - h* +1)

(3.4)
>k+0-2(h+1)+2(h-h"+1) > k.

Inequality (3.4) is trivially satisfied for § > \/4k + 1+ 2. Therefore, with minimum
degree 8 > \/4k +1 + 2, there cannot be an edge that cuts more then h* < 2v/4k +1

23

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

Figure 3.2: lllustrations for finding a balanced separator as in the proof of Theorem 3.4: (a) the pair of
parallel edges (be, b}) and (ar, a,.); (b) case 1in the proof; (c) case 2.

vertices in any outer k-planar graph. On the other hand, such a graph can have at most
2h* < /4k +1 vertices, which is not enough “other endpoints” to accommodate the
minimum degree vertex required; a contradiction. O

Having established that outer k-planar graphs are (\/4k + 1+1)-degenerate, we easily
obtain the following result.

Theorem 3.3. Each outer k-planar graph is \/4k + 1+ 2 colorable and this is tight.

3.2.2 Quasi-polynomial timerecognition via Balanced Separators

We show that outer k-planar graphs have separation number at most 2k+3 (Theorem 3.4)
by constructing balanced separators. Via a result of Dvordk and Norin [DN19], this
implies that these graphs have treewidth linear in k. However, Proposition 8.5 of Wood
and Telle [WT07] implies that every outer k-planar graph has treewidth at most 3k + 11,
i.e., a better bound on the treewidth than applying the result of Dvorak and Norin to
our separators. The treewidth 3k + 11 bound also implies a separation number of 3k + 12,
but our bound is lower. Our separators also allow outer k-planarity testing in quasi-
polynomial time - see Theorem 3.5.

Theorem 3.4. Each outer k-planar graph has separation number at most 2k + 3.

Proof. Consider an outer k-planar drawing. If the graph has an edge that cuts between
% and 2?” vertices to one side, we can use this edge to obtain a balanced separator of size
at most k + 2, i.e., by choosing the endpoints of this edge and a vertex cover of the edges
crossing it. So, suppose no such edge exists. Consider a pair of vertices a and b such that
the line ab divides the drawing into a left side S, and a right side S, having an almost
equal number of vertices (||S¢| ||| < 1). If the edges which cross ab also mutually cross

24

3.2 Outer k-Planar Graphs

each other, there can be at most k of them. Thus, we again have a balanced separator of
size at most k + 2. So, it remains to consider the case when we have some pair of edges
that both cross ab, but do not cross each other. We call such a pair of edges parallel. We
now pick a specific pair of parallel edges:

Starting from b, let b, be the first vertex along the boundary in clockwise direction
such that there is an edge (b, b)) that crosses the line ab. Symmetrically, starting from a,
let a, be the first vertex along the boundary in clockwise direction such that there is an
edge (a,,a’) that crosses the line ab; see Figure 3.2 (a). Note that the edges (a,,a’)
and (by, b,) are either identical or parallel. In the former case, we see that all other
edges crossing line ab must also cross the edge (a,,a’) = (be, b)), and as such there
are again at most k edges crossing ab. In the latter case, there are two subcases to be
considered. For two vertices u and v, let [u,v] be the set of vertices that starts with u
and, going clockwise, ends with v (with respect to the embedding). Let |u, v[be the set
of vertices between u and v, thus Ju, v[= [u,v] ~ {u,v}.

« Case 1: The edge (by, b;) cuts § vertices to the top; see Figure 3.2 (b). In this case,
either [by, b] or [, be] has to have between £ and % vertices. We claim that neither
the line bb, nor the line b_bg can be crossed more than k times. Namely, each edge
that crosses bb; also crosses edge (b, b)). Similarly, each edge that crosses b_bi,
also crosses (by, b}). Thus, we have a separator of size at most k + 2, regardless of
whether we choose bb, or b_bi, to separate the graph. As we observed above, one
of them is balanced. The case where edge (a,, a;) cuts at most 3 vertices to the
bottom is symmetric.

« Case 2: The pair of edges (be, by) and (a,, a;) each cut at most § vertices to the
bottom and top, respectively, and don’t cross each other. We show that in this
case, we can always find a close pair of parallel edges, that is, a pair of edges, both
cutting % vertices to the top and bottom, respectively, and with no edges between
them parallel to either. If there is an edge e between (b, b},) and (a,, a), we form
a new pair by using e to replace either (a,, a;) or (b, b,), depending on whether
e cuts at most 5 vertices to the bottom or to the top, respectively. By repeating this
procedure, we always find a close pair. Hence, we can assume that (u;,v;) and
(g, v,) actually form a close pair. Let & = |[vg, ua[], B = |]ve> us[]s ¥ = [Jtta> vo >
and d = |]uyp, v,[| be the numbers of vertices in the four quadrants defined by the
endpoints; see Figure 3.2 (c).

Suppose that the edge pair shares an endpoint - w.l.o.g. assume v, = u;. We can
now use both edges (v,,v;) and (u,, v,) (together with any edges crossing them)
to obtain a separator of size at most 2k+3. The separator is balanced since a+ 3 < 2?"
andy+ 0 < %”

So, instead assume that the endpoints u,, v4, up, vy, are all distinct vertices. Note
that we have y, § < 7 since each side of ab has at most 5 vertices. We separate the

25

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

Figure 3.3: Shapes of separators, special separator S in blue, regions in different colors (red, orange,
and pink), components connected to blue vertices in green: (a) closest-parallels case; (b) single-edge
case; (c) special case for single-edge separators.

graph along the line u,u, as follows: All the edges that cross this line must also
cross (up, vy) or (v, u,). Therefore, we obtain a separator of size at most 2k + 2.

To see that the separator is balanced, we consider two cases. If § > § (or y > %),
thena+ B +y < 2 (or a + B+ & < &). Otherwise we have § < £ and y < 2. In
this case 6 + o < 27” andy+ < 2?” In both cases the separator is balanced.

O

Using the existence of balanced separators in outer k-planar graphs, we get the fol-
lowing result.

Theorem 3.5. The outer k-planarity of a graph with n vertices can be tested in O (2P°Y1og)
time when k is fixed.

Proof. Our approach is to leverage the structure of the balanced separators as described
in the proof of Theorem 3.4. Namely, we enumerate the sets which could correspond to
such a separator, pick an appropriate outer k-planar drawing of these vertices and their
edges, partition the components arising from this separator into regions, and recursively
test the outer k-planarity of the regions.

To obtain quasi-polynomial runtime, we need to limit the number of components on
which we branch. We do this by grouping them into regions defined by special edges of
the separators.

By the proof of Theorem 3.4, if our input graph has an outer k-planar drawing, there
must be a separator which has one of the two shapes depicted in Figure 3.3 (a) and (b).
Here we are not only interested in the up to 2k + 3 vertices of the balanced separator, but
actually the set S of up to 4k + 3 vertices one obtains by taking both endpoints of the

26

3.2 Outer k-Planar Graphs

edges used to find the separator. Note that this larger set S is also a balanced separator.
We use a brute force approach to find the right set: Enumerating all sets of vertices of
size up to 4k + 3, we then check whether it can be drawn similar to one of the two shapes
from Figure 3.3. By fixing S, we pick a subgraph Gs induced by S with O(k) vertices.
Graph Gg can have at most a function of k different outer k-planar drawings. Thus, we
branch on all such drawings of Gs.

We now consider the two different shapes separately. In the first case, S contains
three special vertices v, w; and wy; in the second case S contains two special vertices v
and w. In both cases, the special vertices will be called boundary vertices and all other
vertices in S will be called regional vertices. By fixing the drawing of Gg in the current
branch, the regional vertices are partitioned into regions by the boundary vertices. Using
the structure of the separator guaranteed by the proof of Theorem 3.4, we get that no
component of G \ § can be adjacent to regional vertices which live in different regions
with respect to the boundary vertices.

We first discuss the case of using G as depicted in Figure 3.3 (a). We start by picking
the three special vertices v, w; and w; from S to behave as shown in Figure 3.3 (a). The
following arguments regarding this shape of separator are symmetric with respect to the
pair of opposing regions.

If there is a component connected to regional vertices of different regions, we reject
this configuration. From the proof of Theorem 3.4, no component can be adjacent to all
three boundary vertices: this would either contradict the closeness of the parallel edges
or imply an edge connecting distinct regions. Each component is of one of four different
types, depending on how it is connected to regional and/or boundary vertices; for the
regions neighboring w; they are shown as ¢}, ¢z, ¢3, and ¢4 in Figure 3.3 (a).

« Components of type c; are connected to (possibly many) regional vertices of the
same region and may be connected to boundary vertices as well. In any valid draw-
ing, they have to be placed in the same region as their regional vertices.

« Components of type ¢, are not connected to any regional vertices and only con-
nected to one of the three boundary vertices. Hence, they cannot interfere with
other parts of the drawing — we can arbitrarily assign them to a region adjacent to
their boundary vertex.

o For components that are connected to two boundary vertices - say v and w; - it
seems to be possible for them to be placed left or right of the edge connecting v
and wy, e.g., as ¢3 or ¢4. The latter option ¢4 is not valid: The separator was created
by two close parallel edges as argued in the proof of Theorem 3.4, a contradiction.

From the above discussion, we see that from a fixed configuration - a set S, a draw-
ing of G, and triple of boundary vertices - if the drawing of Gs has the shape depicted
in Figure 3.3 (a), we can either reject the current configuration for having bad compo-
nents, or we obtain a well-defined placement into the regions defined by the boundary
vertices: For components of type ¢, it suffices to recursively produce a drawing of that

27

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

component together with its boundary vertex to be placed next to that boundary vertex.
The other components can be partitioned into the regions and we recurse on the regions
individually. This covers all cases for this separator shape.

The shape of the separator for the second case is shown in Figure 3.3 (b). We have two
boundary vertices v and w and thus only two regions. This allows for the two component
types ¢; and ¢, from the first case. They are also handled as described above. In addition,
we have components connected to both v and w but no regional vertices. This allows
for two different placement options c; or ¢4 — left or right of the line vw. If there is an
edge (v;, w;) that is part of the separator but different from vw, there cannot be more
than a total of k such components; see Figure 3.3 (b). In any drawing, there will be
edges connecting each component to v and w, and at least one of these edges has to cross
(vi, w;). Since this edge can be crossed at most k times, this gives an upper bound on the
number ¢; and c¢4-type components. Thus, we now enumerate all different placements
of these components as either type c; or type ¢4 and recurse accordingly.

In the case that there is no edge (v;, w;), the separator is exactly the pair v, w. This
eliminates the possibility of type ¢; components and the components of type ¢, are han-
dled as before. We argue that in this case, any a valid drawing can have at most a func-
tion of k different components of type c; or ¢s. Consider the components of type cs,
the components of type c4 can be counted similarly. Given a valid drawing of a type c3
component, consider the highest — clockwise last — vertex of this drawing connected to
v and the lowest — clockwise first — vertex connected to w. These two vertices define a
subinterval of the left region. Considering two such intervals, they can relate in one of
three ways: They overlap, they are disjoint, or one is contained in the other. We group
components with either overlapping or disjoint intervals into layers. This is shown in
Figure 3.3 (c): For simplicity, we only draw the highest and lowest connected vertices
for every component and we contract every component into a single edge representing
connectivity.

Let (a3, by) be the bottom-most component of type c; — vertex a; is the lowest of all
lower vertices. We define the first layer to be all components overlapping or disjoint of
(a1, by). Now consider the (green) edge (b;, w) (see Figure 3.3 (c)): The total number
of components disjoint from (ay, by) in the first layer is bounded by k since for every
component, at least one of its edges connecting it to v must cross (b, w). Intervals that
overlap (aj, by) must have an edge connecting the vertex inside (ay, b;) to either v or w.
This edge then must cross either (a;,v) or (by, w). This implies that there can only be
O(k) components in the first layer.

New layers are defined by considering components whose intervals are fully con-
tained in the first interval of the previous layer, starting with the second layer completely
being contained inside (a;, b;). Notice that intervals fully contained in other intervals
disjoint from (ay, by) are also in the first layer and accounted for accordingly. All deeper
layers are nested inside (ay, b;). To limit the total depth, let a, be the lowest vertex of the
first component of the deepest layer. Consider the (purple) edge (v, a,) - it is crossed by
some edge of every layer above it. As any edge can only have k crossings, there can only

28

3.3 Outer k-Quasi-Planar Graphs

be O(k) different levels in total. This leaves us with a total of at most O(k?) components
per region and again we can enumerate their placements and recurse accordingly.

The above algorithm provides the following recurrence regarding its runtime. De-
note by T'(n) the runtime of our algorithm which is generously upper bounded by the
following expression. Let f(s) be the number of different outer k-planar drawings of a
graph with s vertices.

T(n) < nO®) . f(ak +3)-n>-n- T(%”) for n > 5k
| f(n) otherwise.

Thus, the algorithm runs in quasi-polynomial time, i.e., gpoly(logn) O

3.3 Outer k-Quasi-Planar Graphs

In this section we consider outer k-quasi-planar graphs. We first describe some classes
of graphs which are (not) outer 3-quasi-planar. We then discuss edge-maximal outer
k-quasi-planar drawings.

3.3.1 Comparability to Planar Graphs

A sub-Hamiltonian graph is a planar graph to which edges can be added such that the
resulting augmented graph is still planar and contains a Hamiltonian cycle. Note that
all sub-Hamiltonian planar graphs are outer 3-quasi-planar: The (completed) Hamilto-
nian cycle divides the edges into two sets of mutually non-crossing edges — one outside
and one inside the cycle. Flipping the outside edges to the inside, we get sets of pairwise
crossing edges of size at most 2. In this embedding, the edges completing the Hamilto-
nian cycle can be added without crossings (they bound the outer face). One can also see
which complete and bipartite complete graphs are outer 3-quasi-planar.

Proposition 3.1. The following graphs are outer 3-quasi-planar:
(a) K4)4 and K5,
(b) planar 3-tree with three complete levels, and
(c) square-grids of any size.
Proof. It is easy to verify (a) by constructing a valid drawing, such as those in Figure 3.4.
(b) was experimentally verified by using MINISAT [SE05] to check a Boolean expres-
sion for satisfiability. The details on the SAT formulation can be found in Section 3.6.1.

(c) follows from an old result by Chung, Leighton, and Rosenberg [CLR87]: Square-
grids are sub-Hamiltonian. O

29

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

@) (b)

Figure 3.4: lllustrations for Proposition 3.1: An outer 3-quasi-planar embedding of (a) K5 and (b) K4, 4.

(a) (b)

Figure 3.5: A vertex-minimal 23-vertex planar 3-tree which is not outer quasi-planar: (a) planar draw-
ing; (b) deleting the blue vertex makes the drawing outer quasi-planar.

In addition, we state in the proposition below that certain complete and complete
bipartite graphs which are not outer 3-quasi-planar. The family of planar 3-trees is the
set of graphs obtainable by the following construction: Take a planar drawing of the
complete graph K, and repeat the stacking operation as often as desired: Pick some inner
face f of the drawing, add a vertex v at f’s center, and connect v to all vertices incident
to f (subdividing f into three new inner faces). By convention Ky is the planar 3-tree
with one complete level; performing the stacking operation on all original inner faces of
a planar 3-tree with i complete levels, a planar 3-tree with i + 1 complete levels is created.

30

3.3 Outer k-Quasi-Planar Graphs

Proposition 3.2. The following graphs are not outer 3-quasi-planar:
(a) complete bipartite graphs K, , with p >3, g > 5,
(b) complete graphs K, with n > 6, and
(c) planar 3-tree with four complete levels.

Furthermore, not all planar graphs have an outer quasi-planar drawing. Consider
the vertex-minimal planar 3-tree on 23 vertices shown in Figure 3.5 (a); using MINISAT
to check for satisfiability of the corresponding Boolean expression we verified that it is
not outer quasi-planar. An almost outer-quasi planar drawing of this graph can be seen
in Figure 3.5 (b). It was constructed by removing the blue vertex, drawing the remaining
graph in an outer quasi-planar way, and then reinserting the missing vertex. A descrip-
tion of the formula used to verify this result is found in Section 3.6.1.

Together, Propositions 3.1 and 3.2 immediately yield the following.

Theorem 3.6. Planar graphs and outer 3-quasi-planar graphs are incomparable under
containment.

3.3.2 Maximal Outer k-Quasi-Planar Graphs

If adding any edge to a drawing of an outer k-quasi-planar graph destroys the outer k-
quasi-planarity of that drawing, it is called maximal. We call an outer k-quasi-planar
graph maximal if it has a maximal outer k-quasi-planar drawing. Recall that Capoyleas
and Pach [CP92] showed the following upper bound on the edge density of outer k-quasi-
planar graphs on n vertices:

|E| <2(k-1)n - (2k2_ 1).

We prove that each maximal outer k-quasi-planar graph meets this bound. We in-
clude our independently discovered proof even though two other proofs of this result
can be found in the literature — by Dress, Koolen, and Moulton [DKMO02] and also
by Nakamigawa [Nak00], we thank David Wood for pointing us to them - the main
result of both papers prove a slightly stronger theorem: For a drawing G = (V,E),
an edge flip produces a new drawing G* by replacing an edge e € E with a new edge
e’ e (2‘) \ E. Both works show that, for every two edge-maximal outer k-quasi-planar
drawings G = (V,E) and G’ = (V, E’), there is a sequence of edge flips producing draw-
ings G = G1,Gy, ..., Gy = G such that each G, is a maximal k-quasi-planar drawing.
Together with the tight example of Capoyleas and Pach, this implies the next theorem.
The proof we present here directly employs an inductive argument, building on the ideas
of Capoyleas and Pach. The argument itself and the structural insights leading up to it
are of independent interest.

31

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

V1 !
V2 w2
Vi wj

We
Vg—l Wh-1

Vg wp

@) (b) (0

Figure 3.6: Long edges in outer k-quasi-planar graphs: (a) Labeling scheme for left and right side
vertices according to the long edge (a4, b). (b) lllustration of property (P1): (v kw,) is crossing (v, w;)
from above. (c) Property (P2): Blue edge in level i and the first two edges of a possible certificate.

Theorem 3.7. Each maximal outer k-quasi-planar drawing G = (V, E) has:

2| - (" if|V|<2k-1,
| 2k-DVI-(CKY) V]2 2k -1

For an outer k-quasi-planar drawing of graph G we call an edge (a, b) a long edge, if
a and b are separated along the outer face of G by at least k — 1 vertices on both sides.
In the following depictions, long edges will always be drawn vertically with a on top,
dividing the graph into the two regions left and right of (a, b). All edges that intersect
the long edge are called crossing edges. All vertices incident to crossing edges will be
called crossing vertices and for illustration we will label them as follows: In the left region,
vertices will be labeled v, ..., v, counterclockwise from a on - from top to bottom -,
and in the right region, vertices will be labeled w1, ..., w},, and by definition, we have
g>h > k - 1; see Figure 3.6 (a).

To prove maximality of the considered graph, we count the number of crossing edges
in an inductive argument. We construct (k — 2) hierarchical levels — subsets of the cross-
ing edges of G that form maximal crossing-free connected subgraphs of G. We then
define a replacement-operation that uses these levels to split the original graph into two
subgraphs, each with fewer vertices.

We use Algorithm 3.1 to greedily build the hierarchical levels. The correctness of
Algorithm 3.1 is shown in the following lemma.

Lemma 3.8. For a given edge-maximal outer k-quasi-planar graph G, Algorithm 3.1 gen-
erates k — 2 hierarchical levels.

Proof. We need to argue two things: The algorithm creates k — 2 levels that cover all

crossing edges with respect to (a,b), and that every level is connected. We order the

32

3.3 Outer k-Quasi-Planar Graphs

Algorithm 3.1: BuiLDLEVELS(Outer k-quasi-planar Graph G, long edge (4, b))

Vertices {v1,...,v,} < vertices left of (a,b)
Set of Sets S = {S1,...,Sk_2} < empty level sets
fori < 1tok—-2do
for j < 1to gdo
S’ < edges of v; not crossing edges in S;
S,‘ <~ S,‘ us’

return S

levels by order of construction: level y is after level x or x < y, if y is constructed after x.
To do so, we first state two important properties:

(P1) If an edge (v;, w;) of level y is crossed by an edge (vi,we) of level x with x < y,
then (v, we) must cross (v;, w;) from above: i > k and j < ¢; see Figure 3.6 (b).

(P2) For any edge e of level i, there is a set of edges € = {ey, ..., e;_1} — one from each
previous level — such that Eue is a set of i pairwise crossing edges; see Figure 3.6 (c).

Property (P1) follows from the construction of level x: If there where no edge of level
x crossing edge (v;, w;), then (v;, w;) would also belong to level x.

Property (P2) holds by induction: For the first level there is no previous level. Edges
of level two are crossed by edges of the first level due to (P1). Any edge (vi,w,) of level
i must be crossed by some edge (vy,_,,w,,_,) of level i —1. Inductively we know that e;_;
is crossed by an edge of every previous level. Together, they form a chain of pairwise
crossings from above, and we get the following patterns on the indices of these edges:

X>Xi1>Xip> - >xjand y< i1 < Yip <o <y < Y.

These patterns indicate that in fact all the considered edges are pairwise crossing.
For a given edge e of level i, we call any set following the description in property (P2) a
certificate for e to be in i and any edge of level i — 1 crossing e can be extended to some
certificate for e.

Let ¢ be the last level and consider the last edge e taken from that level. Suppose the
algorithm created too many levels, so t > k — 2. By property (P2), the certificate of e’

belonging to ¢ together with e’ and (a, b) forms a set of £ +1 > k pairwise crossing edges.
This contradicts that the graph from which e is taken is outer k-quasi-planar. Hence,
we never create more than k — 2 levels.

As Algorithm 3.1 greedily takes any legal edge into the current set, each level is max-
imal by construction.

To argue about the connectivity of the levels we carefully consider the way they will be
generated in a maximal graph. We ensure that greedily picking edges never disconnects

33

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

Vu

Vw

Vu

Vw

Vu

Vw

Figure 3.7: Connectivity of hierarchical level i: (a) The green level i is disconnected, as dashed edge e

(e)

Wx

Wy

Wi

wy

Wy

wy

Vu

Vw

Vu

Vw

(f)

Wi

wy

Wx

Wy

4

is missing. (b) A full set of edges blocking e’ using only locally left edges; (c) black edges start between
vy and vy, but do not belong to the same level as e and f, (d) red edges cross e’ from above and end
below wy, (e) orange edges cross e’ from below, and (f) blue edges start and end on the same side.

34

3.3 Outer k-Quasi-Planar Graphs

the edge set of any level. Assume we already generated levels 1to i — 1 and in level i we
pick the edges e and f but not e’, as shown in Figure 3.7 (a).

Assume that edge e’ exists but is not put into level i, ending up with that level being
disconnected. Consider the relative positions of the endpoints of e’ in the left and right
regions with respect to the other edges of level i. As e’ is going upward it cannot cross
other edges of level i from above due to Property (P1). Thus, if e’ is present in our graph,
it would belong to level i and i would be connected, a contradiction.

The other option to have level i be disconnected is that edge e’ is missing from the
graph. As the graph is supposed to be maximal, there must be a prevention set - a set
of k — 1 pairwise crossing edges that prevent its existence. Due to the edge (a,b), the
prevention set can contain at most k — 2 crossing edges. By existence of the edges e and
f we know that the prevention set also cannot consist of edges only locally on one side:
Any prevention set locally left would also prevent the existence of f by covering v,,; a
symmetric argument can be made against a locally right set together with edge e and
vertex wy.

In this context, (a,b) is considered to be both locally left and locally right. Hence,
any prevention set would have to include crossing edges as well, implying two possible
options: crossing edges together with locally left or right edges — see Figure 3.7 (b). For
illustration we use colors to describe the different types of edges of the prevention set
depicted in Figure 3.7 (b) differently: black edges (Figure 3.7 (c)) start between v, and
vy, appearing between e and f but not belonging to the same level as e; red edges (Fig-
ure 3.7 (d)) cross e’ from above ending strictly below w,; orange edges Figure 3.7 (e)
cross ¢’ from below; blue edges (Figure 3.7 (f)) are locally on one side crossing all edges
of other colors. By verifying the following claim, we finish the proof.

Claim: A prevention set P for e’ can be transformed into a prevention set for f (or
symmetrically e) - contradicting the existence of that set.

To transform a prevention set P for e’ into a prevention set P’ for f, we proceed as
follows: We keep all the orange and blue edges of P, as they already pairwise cross and
also cross f. If we replace any of the remaining edges, we need to make sure that the new
edges also cross the blue and orange ones in P’.

Any other edges in P belong to previous levels because of the following:

o By (P1), all red edges cross e’ from above.

o For the black edges, we have two different cases: Each edge either crosses f or lives
completely between e and f. Again by (P1), edges crossing f do so from above.
Edges that live between e and f cannot be crossed by edges of level i, so they must
belong to a level before level i.

We now consider the edges of P in the order of the level they belong to starting at
i — 1. For any such level, there is an edge crossing f whose left vertex is between the two
endpoints of every blue edge of P. To see that this is true, assume that there is some
edge e of level k < i crossing e’ but not f. Since f is not in level k, there must be an
edge e* crossing it and its right vertex must be below the right vertex of ej. This leaves

35

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

@) (b) (@

Figure 3.8: Using hierarchical levels to perform the split operation: (a) The frame of a maximal outer
k-quasi-planar graph; black edges are present for any k, green edges for k > 3, purple edges for k > 4).
(b) An outer 4-quasi-planar graph with 2 hierarchical levels shown in green and purple respective; (c)
the resulting subgraph G, the presumably missing edge of v (drawn dashed) is actually a frame edge.

to options for the left vertex of e*: it can either also be the left vertex of e or some other
vertex below it but still above v,,; in both cases, this left vertex will be covered by all blue
edges and we can replace ey by e*. In the worst case, performing this replacement stops
all remaining edges of the certificate for e’ from crossing e* because it is below them. As
e” is in level k, there must be a prevention set for that. Notice that every edge of this
certificate must be below its corresponding counterpart of the certificate for e’ and thus
still all starting vertices are covered by blue edges. Hence then we also replace all edges
of layers before k by edges of the certificate for e*.

This conclude that a prevention set for e’ using locally left edges can be transformed
into a prevention set for f. A similar argument can be made using locally right edges by
again taking a prevention set for e’, transforming the certificate for e’ into one for e and
observing that the endpoints of of the edges of the certificate are again still covered by

the locally right edges.
We have established that edge ¢’ must exist and has to be placed into the same layer
as e and f, connecting the two components. O

Considering the construction of Pach and Capoyleas [CP92], the proof of Claim 4
yields the following:

Remark. Let G be an outer k-quasi-planar graph with » vertices and let the vertices be
labeled vy, v2, ..., V4, Vui1 = v1 according to their cyclic order along the outer face. Every
vertex v; can be adjacent to v, with € € [i — (k—1), i + (k—1)]. Hence, these frame edges
are present in any maximal outer k-planar graph; see Figure 3.8 (a).

Using the hierarchical levels described above, we give a split operation, which is used
to split the graph into two smaller parts. Let G be a maximal outer k-quasi-planar graph

36

3.3 Outer k-Quasi-Planar Graphs

with a long edge (a, b) and hierarchical levels created by Algorithm 3.1. Let L; and R; be
the vertices of G incident to the crossing edges of level i in the regions left and right of
(a,b), respectively. Splitting G into two subgraphs G; and G is done as follows: To ob-
tain Gy, for every level i from 1to (k—2), replace the vertices of L; by a single level-vertex
v; and connect that vertex to all vertices in R;, see Figure 3.8 (b) and (c). Finally, add
to G all missing frame edges to make it maximal. To obtain G,, proceed symmetrically,
exchanging the roles of left and right.

Lemma 3.9. After applying a split operation to a maximal outer k-quasi-planar graph G,
the following relations among G and its two subgraphs G, and G, hold:

(i) [V(G)| = |[V(G))| +|V(Gy)| -2k + 2 and
(ii) [E(G)| = [E(G1)| + |E(G2)| - (|E{| + |E3]) + |E'| -1,

where E' is the set of edges of G crossing (a, b) and Ej, E’, are the sets of crossing edges
added to Gy, G, by the split operation.

Proof. We establish the two equations (i) and (ii) individually.
(i): Graphs G; and G, are obtained by only modifying vertices on the right or left

side of G respectively, leaving the other side unmodified and (a4, b) present in both. The
modification adds k — 2 level-vertices to each graphs, so subtracting these vertices and
one copy of the vertices a and b, yields:

V(G| = V(G| - (k-2) +|V(G2)| - (k-2) -2
= V(G| +|V(Gy)| - 2k +2.

(ii): We count the edges added to both G; and G, and compare them to the number
of edges removed by splitting G. To do so, we consider the structure of our hierarchical
levels and the respective left and right vertices L; and R;. Every level is a caterpillar - a
set of connected and non-crossing edges -, so there are exactly |L;| + |R;| — 1 edges in
level i. Hence, the total number of crossing edges over all levels is

k-2
|E'| = Z(|Lz| +[R| = 1).
i=1

The sets of edges added to G; and G, each consist of two different types of edges: The
first type are the edges incident to the level-vertices, the other type are the missing frame
edges added to ensure that G; and G, are maximal. The total number of edges of the first
type can be expressed by summing up the sizes of all sets L; and R; with1 < i <k —2as
follows:

k-2
Y IRi| + L.
i=1

37

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

The subgraphs induced by vertices and edges of the unmodified sides of G; and G,
remain maximal by maximality of G. But considering the last vertex of some level, in
some cases it seems possible to add an additional edge incident to that vertex to the
drawing - for instance, see vertex v from Figure 3.8 (c). To count the presumably missing
edges, recall how we generated the hierarchical levels. In level i we take all remaining
edges of right-side vertex wj,_(;_. For the first level, we take all edges of the last right-
side vertex, for the second level all edges of the second-to-last vertex, and so on. The
total number of edges missing this way in both subgraphs together is

k-2
2- Z;(i—l).

The distance of each level vertex to the lowest vertex on the other side in the cyclic
order - counted clockwise or counterclockwise, depending on in which region the level
vertex was placed - is by construction bounded by k — 1. Hence, any edge missing this
way is actually a frame edge that can safely be added to the subgraph to make it maximal.

We added k — 2 level vertices and the maximum number of frame edges incident to
them. As G is a k-quasi-planar graph, the vertices connecting these frame edges together
with a and b form a clique on k — 2 + 2 vertices. The number of edges in this clique, and
hence the exact total amount of edges we add to G; and G, this way (without counting

(a,b))is
(5)-)
2 -1).
2
Putting everything together, the total number of new edges added to G; and G, is

k k-2
|E;|+|E;|=z((2)—1)+ Ri+Li+2(i-1).
i=1

Notice that we did not account for (a, b) in any of the subgraphs yet, so we subtract
one copy of it. The remaining parts of G; and G, are the unmodified sides of G and one

copy of (a, b). Simplifying the above equation completes the proof. O

To complete our inductive argument, we need to do two things: We need to prove
the existence of a long edge in any maximal outer k-quasi-planar graph and we need to
consider the base cases — those maximal outer k-quasi-planar graphs with the minimum
number of vertices.

Lemma 3.10. Any maximal outer k-quasi-planar graph G = (V, E) either
(i) is a clique of size |V| < 2k -1, or
(ii) has a long edge.

38

3.3 Outer k-Quasi-Planar Graphs

Proof. We consider each case individually, depending on number of vertices in the graph.

For case (i), when |V| < 2k — 1, the graph G has to have all possible frame edges by
maximality. For any vertex v these edges connect it to the closest k —1 other vertices left
and right of it. As any v together with its frame edge neighbors covers all vertices of G,
the graph itself is the complete graph Ky;_;.

In case (ii) we have |V| > 2k — 1: Doing a simple counting argument on the number
of neighbors induced by frame edges, we get that for every vertex v; (i € 1,..., n), there
is at least one other vertex w; that it is not connected to via a frame edge. Consider the
pair v;, w; for some i. If it were connected by an edge, this would be the long edge we
are looking for. So suppose the edge (v;, w;) is missing. As we choose G to be maximal,
there must be some set S of edges preventing the existence. As edges of S cannot be
part of the frame, they must span more than k — 1 vertices on both sides. Hence, S must
contain at least on long edge. O

Finally, we combine the results of the lemmata presented above to complete the proof
of Theorem 3.7.

Proof of Theorem 3.7. By Lemma 3.10, the graph G we consider in each step either (i) isa
clique or (ii) we always find a long edge to split by. By picking a long edge in G, dividing
it into two regions, building the hierarchical levels with respect to these regions and
performing the split operation as described above, we get two subgraphs G, and G, of
smaller size. By Lemma 3.9 we get the relationships on vertex- and edge-count between
G and both subgraphs. We recursively repeat the splitting on these subgraphs until we
encounter cliques. We then know that the number of edges matches the bound on total
edge number.

Given a maximal outer k-quasi-planar graph G, we can recursively split it into pieces
that individually retain maximality and outer k-quasi-planarity. Considering the rela-
tionship among the edge sets of Lemma 3.9 (ii) and the maximality of the subgraphs, we
get the following equation:

[E(G)| = |E(G)| +|E(G2)| = (IE{| +|E3]) + |E"| -1
=|E(G)| + |E(Gy)| - 2k* + 5k - 3
=2(k - 1)(m +ny) = 2(*5") - 2k? + 5k - 3.

From the maximality of G and using Lemma 3.9 (i), we now have:

2(k-1)(-2k +2) = -(*4") - 2k* + 5k - 3
—4Kk* + 8k — 4 = —4k* + 8k — 4.

The equation balances, completing the proof. O

39

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

3.4 Testing for Full Convex Drawings via MSO,

Hong and Nagamochi [HN16] were the first to introduce the class of full outer k-planar
graphs. Graphs in this class have a convex drawing which is outer k-planar and addi-
tionally there is no crossing on the outer boundary of the drawing - every corner of
the (not necessarily simple) polygon prescribing the outer face is a vertex of the graph.
Hong and Nagamochi gave a linear-time recognition algorithm for full outer 2-planar
graphs. They state that a graph G is (full) outer-2-planar, if and only if its biconnected
components are (full) outer-2-planar and that the outer boundary of a full outer-2-planar
embedding of a biconnected graph G is a Hamiltonian cycle of G. In Theorem 3.11, we
observe that this property also carries over to general outer k-planar and outer k-quasi-
planar graphs. Therefore, we define the classes of closed outer k-planar and closed outer
k-quasi-planar graphs, where closed means that there is an appropriate convex drawing
where the circular order forms a Hamiltonian cycle.

In the following, we first give a basic introduction to Monadic Second-Order Logic
(MSO;) and Courcelles’ Theorem [Cou90, CEI2], then use MSO; to express crossing
patterns of closed k-planar and k-quasi-planar graphs. This will result in a linear-time
algorithm to test closed outer k-planarity for each fixed k. The following Theorem 3.11
will then conclude this section, translating the algorithm from closed to full outer k-
planar graphs.

Theorem 3.11. To test a given graph for full outer k-planarity or outer k-quasi-planarity
it suffices to test its biconnected components for closed outer k-planarity or outer k-quasi-
planarity respectively.

Proof. Let G be a graph. Clearly, if a subgraph is not closed outer k-planar, then neither
is the whole graph. It remains to show that when all biconnected components are all
closed outer k-planar, then the whole graph is full outer k-planar. It is well-known that
the set of cut vertices of G can be obtained in linear time. Splitting G at the cut vertices,
we obtain biconnected closed components if and only if G was full itself: When one
component only has drawings showing some crossing on the outside, this carries over to
a drawing of the full graph - since the biconnected components of a graph form a tree,
attaching the other components cannot close a cycle that covers a side of a component.

Every biconnected component is considered individually and checked in linear time.
Each non-cut vertex belongs to exactly one component and thus is handled only once.
The total effort spent on considering cut vertices is bounded by the number of bicon-
nected components. Hence, a simple charging argument on the vertices concludes run-
time analysis.

The MSO; formulas stated below in Section 3.4.2 guarantee that the Hamiltonian
cycle - if present - is placed on the outer boundary of the drawing of each component.
Putting together the individual drawings of the components can be done crossing free
be reidentifying the cut vertices. O

40

3.4 Testing for Full Convex Drawings via MSO;

3.4.1 Introduction to Monadic Second-Order Logic

Monadic Second-Order Logic (MSO,) - a subset of second-order logic — can be used to
express certain graph properties. Formulas in MSO; can be built using these primitives:

« Variables for vertices, edges, sets of vertices, and sets of edges;

o Binary relations for equality (=), membership in a set (), subset of a set (<), and
edge-vertex incidence (I);

« Standard propositional logic operators: —, A, v, —, and <;
o Standard quantifiers (V, 3) which can be applied to all types of variables.

For a graph G and an MSO, formula ¢, we use G = ¢ to indicate that ¢ can be
satisfied by G in the obvious way. Properties expressed in this logic allow us to use the
powerful algorithmic result of Courcelle stated in the next section.

Any formula presented here assumes that a graph G is given and uses edges, vertices
and incidences of G. To simplify notation in the following, we will always use e and f
as variables for edges, F as a set of edges, u, v as vertices and U as a set of vertices (also
including sub- and superscripted variants). In addition to the quantifiers above we also
use a logical shorthand for the existence of exactly x elements (37) satisfying a property,
that are all pairwise unequal and that no x +1 such elements exist. The following formula
allows us to describe connectedness of the subgraph induced by an edge set F.

CoNNECTED-EDGES(F) = (VF c F)[3e, fre e F' A f e FNF']A
((3fece” e Free F'af ¢ F)Buv)[I(u, f) A(vie) AL(v, ") A T(u,€")])

It states that for every proper subset F’ of edge set F, we can find three edges e, f, e*
- one in F’, one not in F’ and e* connecting the ends of two edges — one in F’ and the
other outside of F'.

The following formulas are used to describe Hamiltonicity of G. Formula CycLE-SET
implies that the edges of F form cycles, CycLE implies maximality of the cycle and SpaN
forces the cycle to have an edge incident to every vertex of G.

Cycre-Set(F) = (Ve)[e eF= (Tzf)[f eFne+fa(Iv)|I(e,v)A I(f,v)]]]
CycLe(F) = CycLe-SET(F) A CONNECTED-EDGES(F)
SPaAN(F) = (Vv)(Je)[e e F nl(e,v)]
HamitToNIAN(F) = [CYcLE(F) A Span(F)]

VERTEX-PARTITION implies the existence of a partition of the vertices of G into k disjoint
subsets.

VERTEX-PARTITION(UY, ..., Uy) = (Vv) l(\k/v € Uk) A (/\ﬂ(v eU;nve Uj))]

i=1 i*]

41

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

3.4.2 Courcelle’s Theorem and Closed Outer k-(Quasi-)Planarity

We now state Courcelle’s Theorem and give the formulas required to express closed outer
k-(quasi-)planarity.

Theorem 3.12 ([Cou90, CE12]). For any integer t > 0 and any MSO, formula ¢ of length
¢, an algorithm can be constructed which takes a graph G with treewidth at most t and
decides in O(f(t,€) - (n + m)) time whether G & ¢ where the function f from this time
bound is a computable function of t and ¢.

By Theorem 3.4 — as well as Proposition 8.5 of Wood and Telle [WT07] — we know that
outer k-planar graphs have treewidth O(k). Therefore, expressing outer k-planarity by
an MSO, formula whose size is a function of k would mean that outer k-planarity could
be tested in linear time. However, this task might be out of the scope of MSO,. The
challenge in expressing outer k-planarity in MSO; is that MSO; does not allow quantifi-
cation over sets of pairs of vertices vy, v, when v; and v, are not connected by an edge.
Namely, it is unclear how to express a set of pairs that forms the circular order of vertices
on the boundary of our convex drawing. However, if this circular order forms a Hamilto-
nian cycle in our graph, i.e., the given graph is closed, then we can indeed express this in
MSO,. With the edge set of a Hamiltonian cycle of our graph in hand, we can then ask
that this cycle was chosen in such a way that the other edges satisfy either k-planarity or
k-quasi-planarity.

Theorem 3.13. Closed outer k-planarity can be expressed in MSO,. Thus, closed and also
full outer k-planarity can be tested in linear time.

Theorem 3.14. Closed outer k-quasi-planarity can be expressed in MSO,.

For a closed outer k-planar or closed outer k-quasi-planar graph G, we want to ex-
press that two edges e and e; cross. To this end, we assume that there is a Hamiltonian
cycle E* of G that defines the outer face. We partition the vertices of G into three sub-
sets C, A, and B, as follows: let set C contain the endpoints of e, whereas A and B are the
two subgraphs on the remaining vertices connected using only edges of E*. This parti-
tion divides the vertices of G into two special sets, one left and the other one right of e.
For such a partition, e; must cross e whenever e; has one endpoint in A and one in B.

CrossING(E™, e, e;) = (VA, B, C)[(VERTEX—PARTITION(A, B,C)
A(I(e,x) <> x € C) A CoNNECTED(A, E*) A CONNECTED(B, E*))

— (JacA)(FbeB)[I(e;, a) /\I(e,-,b)]]

Now the crossing patterns for closed outer k-planarity and closed outer k-quasi-
planarity can be described using the formulas presented above as follows:

42

3.5 Conclusion

CLOSED OUTER k-PLANARG = (EIE*)[HAMILTONIAN(E*)/\

k+1 k+1

(Ve)[(Vel,...,ekH)[(1/:\1 eiren e+ ej) — \/ -CrossING(E", e, e,-)]]]

i*j i=1

Here we insist that G is Hamiltonian and that, for every edge e and any set of k + 1
distinct other edges, at least one among them does not cross e. The following formula
directly implies Theorem 3.14.

CLOSED OUTER k-QUASI-PLANAR(= (HE*)[HAMILTONIAN(E*)/\

(Ver, ..., ek)[(Nei# ej) - \/ =CrossING(E", e;, e]-)]]
i%j i*j
Again, we insist that G is Hamiltonian and further that, for any set of k distinct edges,
there is at least one pair among them that does not cross.
This gives us linear-time recognition of closed outer k-planar graphs.

3.5 Conclusion

In this chapter, we explored two extended outerplanar settings — namely outer k-planarity
and outer k-quasi-planarity.

For the outer k-planar graphs, we have shown that they are (| V/4k + 1]+1)-degenerate
and thus also have chromatic number (|\v/4k +1| + 2). We further showed that they
have separators of bounded size - 2k + 3, improving the old bound obtained from the
bounded treewidth. This allowed us to give an algorithm for testing outer k-planarity in
quasi-polynomial time.

For the outer k-quasi-planar graphs, we looked into comparability to planar graphs,
showing that outer 3-quasi-planar graphs and planar graphs are incomparable under con-
tainment by providing graphs in either class but not in the other. We have also reconsid-
ered the edge-maximal outer k-quasi-planar graphs, showing that those graphs are also
edge-maximum. We obtained this result by giving a recursive argument, enumerating
crossing patterns involving carefully picked edges.

In the last section, we provided an overview to Monadic Second-Order Logic. We
used MSO; to express closed and full outer k-planar and outer k-quasi-planar graphs
- insisting on the boundaries of the biconnected components to be Hamiltonian cycles
for that component. Together with the bounded treewidth and Courcelle’s Theorem, we
showed that full and closed outer k-planarity can be tested in polynomial time.

Possible future research directions involve looking for polynomial-time algorithms
to recognize outer k-planar graphs for k > 2 (since testing full outer k-planarity can be
done in linear time) and outer k-quasi-planar graphs for k > 3 (as outer 2-quasi-planar
graphs are exactly quasiplanar graphs).

43

3 Outer k-Planar and Outer k-Quasi-Planar Graphs

As some of our claims were verified using a computer SAT solvers, we provide the
formulations of our models in the next section. While we only used them to overcome
exhaustive checking by hand, they are generally extendable and might be of interest for
future research.

3.6 Additional Resources

3.6.1 Outer quasi-planarity checker

In this section, we describe a Boolean formula for testing whether a given graph is outer
quasi-planar. We present the formula in first-order logic. After transformation to Boolean
logic, we solve the formula using the MINISAT [SE05] solver.

A quasi outer-planar embedding corresponds to a circular order of the vertices. Cut-
ting a circular order at some vertex v turns the circular into a linear order starting and
ending at v. However, the edge crossing pattern remains the same. Therefore, we look
for a linear order.

We need the following two sets of variables. For any pair of vertices u # v € V, we
introduce a Boolean variable x,, , that expresses that vertex u is before v in the linear
order. In addition, for any pair of edges e # e’ € E we introduce a Boolean variable y, ./
that expresses that edge e crosses edge e¢’. Now we list the sets of clauses present in our
SAT formula.

Xuy A Xy = Xyw foreachu +v +we V; (3.5)
Xuyp € Xy y foreachu v e V; (3.6)
X! A Xyry AXyyr = Veor foreache=(u,v) # e =(u',v') € E; (3.7)

“(Verer N Veres N Veres) for each ey, e;, e3 € E with different endpoints. (3.8)

The first two sets of clauses describe the necessary properties of a linear order. The
clause (3.5) realizes transitivity, and clause (3.6) anti-symmetry. Clause (3.7) ensures
that variable y, . is set to true whenever the linear ordering on the endpoints of e and
e’ implies a crossing. Finally, clause (3.8) ensures that no three edges pairwise cross.

44

Chapter 4

One-Bend Drawings of
Outerplanar Graphs with Fixed Shape

One of the fundamental problems in graph drawing is to draw a planar graph crossing-
free under certain geometric or topological constraints. Many classical algorithms draw
planar graphs under the constraint that all edges have to be straight-line segments, such
as those by Schnyder [Sch90], de Fraysseix, Pach, and Pollack [dFPP90], or Tutte [Tut63].
But for practical applications we do not always have the freedom of drawing the whole
graph from scratch, as some important parts of the graph may already be drawn. For ex-
ample, in visualizations of large networks, certain patterns may be required to be drawn
in a standard way, or a social network may be updated as new people enter a social circle
or as new links emerge between already existing persons. In that case, we might want to
extend a given drawing to a drawing of the whole graph.

For planar graphs, this problem is known as the PARTIAL DRAWING EXTENSIBILITY
problem. Formally, given a planar graph G = (V,E), a subgraph H = (V', E") with
V' ¢ Vand E’ ¢ E called the host graph, and a planar drawing I'yy of host H, the problem
asks for a planar drawing I'c of G such that the drawing of H in I'; coincides with T'y.
This problem was first proposed by Brandenburg et al. [BEG*04] in 2003. Since then it
has received a lot of attention in the subsequent years.

In this chapter, we consider a special drawing extension setting: We are given a bi-
connected outerplanar graph G = (V; U Vo, E; U Eq). The edge set is divided into two
subsets Ep and E: The edges in E define a Hamiltonian cycle in G that prescribes the
outer face; the other set of edges E; are the inner edges. Having the edge set partitioned
into two subsets, we can partition the vertices in a similar way: Subset V; contains all
vertices incident to edges of E;, whereas Vj contains all other vertices. As the host graph,
we are given the subgraph H = (VU Vg, Ep). The drawing I'y of H forms a simple poly-
gon P in which all edges are to be drawn as straight-line segments. One can imagine the
vertices of V; being mapped to the boundary of P. We want to draw the missing edges of
E; inside the region defined by P such that I'; is crossing free while allowing one bend
per edge of E;.

A preliminary version of the contents of this chapter has appeared in the proceedings of EuroCG
2020 [AKL*20]. This is joint work with Patrizio Angelini, Philipp Kindermann, Lena Schlipf, and An-
tonios Symvonis.

45

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape

4.1 Related Work and Contribution

For the case of extending a given straight-line drawing using straight-line segments as
edges, Patrignani [Pat06] showed the problem to be N’P-hard, but he could not prove
membership in AP, as a solution may require coordinates not representable with a poly-
nomial number of bits. Recently Lubiw, Miltzow, and Mondal [LMM18] proved that a
generalization of the problem where overlaps (but not proper crossings) between edges
of EX\ E" and E' are allowed is hard for the existential theory of the reals (IR-complete).

These results motivate allowing bends in the drawing. Angelini et al. [ADF*15] pre-
sented an algorithm to test in linear time whether there exists any topological planar
drawing of G with pre-drawn subgraph, and Jelinek, Kratochvil, and Rutter [JKR13] gave
a characterization via forbidden substructures. Chan et al. [CFG*15] showed that a lin-
ear number of bends (72| V’|) per edge suffices. This number is also asymptotically worst-
case optimal as shown by Pach and Wenger [PWO01] for the special case of the host graph
not containing edges (E’ = @).

Special attention has been given to the case that the host graph H is exactly the outer
face of G. Already Tutte’s seminal paper [Tut63] showed how to obtain a straight-line
convex drawing of a triconnected planar graph with its outer face drawn as a prescribed
convex polygon. This result has been extended by Hong and Nagamochi [HN08] to the
case that the outer face is drawn as a star-shaped polygon without chords (that is, interior
edges between vertices on the outer face). Mchedlidze, Nollenburg, and Rutter [MNR13]
give a linear-time algorithm to test for the existence of a straight-line drawing of G in
the case that H is an arbitrary cycle of G and I'yy is a convex polygon. Mchedlidze and
Urhausen [MU18] study the number of bends required based on the shape of the drawing
of H and show that one bend suffices if H is drawn as a star-shaped polygon.

Contribution. For any constant number k of bends, there exists some instance such
that G has a k-bend drawing but no (k —1)-bend drawing; see, e.g., Figure 4.1 (b) for
k = 2. Hence, it is of interest to test for a given k whether a k-bend drawing of G exists.
This task is trivial for k = 0.

In this chapter, we introduce the ONEBENDINPOLYGON algorithm (see Algorithm 4.1),
which solves this problem for k = 1in time O(|V;|- p), where p is the number of corners
of P. In Section 4.2 we establish notation and the lemmata necessary to describe the
algorithm. We then state ONEBENDINPOLYGON in Section 4.3; finally in Section 4.4 we
prove correctness and runtime.

4.2 Notation and Preliminaries

In the following, we consider the setting described above, but with the notation simpli-
fied as follows: We summarize all elements of host graph H under the polygon P such
that the Hamiltonian cycle coincides with the boundary dP. Hence, the problem at hand
is equivalent to finding an outerplanar one-bend drawing of the subgraph G; = (V}, Ej)

46

4.2 Notation and Preliminaries

Figure 4.1: (a) A biconnected outerplanar graph, subgraph G; in green and the dual tree in orange.
(b) For an edge e = (u,v), the straight line uv intersects both P(u,v) and P(v,u), the dashed red
1-bend drawing of e only avoids crossing P(u, v), possible 2-bend drawing in green.

inside P where the vertices V; are already mapped to 0P. We say that G can be drawn in P
if there is a crossing-free drawing of G with its vertices on dP as defined by the mapping,
its outer face drawn as dP, and its interior edges drawn with at most one bend per edge.

For a pair of vertices 1 and v mapped to oP, we denote by uv the straight-line segment
between them. The given mapping also orders the vertices of V; along the boundary.
Starting at 1 and following 0P in counterclockwise order until reaching v, we obtain the
open interval P(u,v) - the piece of dP between u and v. As a complement, we also
have the open interval P(v, u) - the piece between v and u. By concatenation of the two
vertices and the two pieces we get 0P = u o P(u,v) ov o P(v,u).

Considering the full graph G, the faces of G induce a unique dual tree T (e.g. see
Proskurowski and Syslo [PS86]) where each edge of T corresponds to an interior edge of
Ep; see Figure 4.1 (a). Any interior edge e = (u, v) divides the polygon into two parts and
for an edge corresponding to a leaf of the dual tree, one of these parts does not contain
other vertices of V;. The faces corresponding to these empty parts are exactly the leaves
of T. In the following, we consider T to be rooted at some leaf node f,. For each face f;,
we denote by p(f;) the parent of f; in T, and by e; the edge between f; and its parent.
We say that f; and f; are siblings if p(f;) = p(fj).

ONEeBeNDINPoLYGON will traverse the dual tree twice — first bottom-up and then top-
down. We can consider the faces of G in sequence of the bottom-up traversal f;, ..., f,.
In each step, we incrementally process an interior edge of Gy, and prune T and refine P
accordingly. We will now define the pruning and refinement operations to then give a
description of the algorithm.

The sequence in which the edges are processed also implies a sequence of subtrees of
T. For step i (with 1 < i < n), let T; be the subtree of T induced by the nodes f;,.. ., f,.

47

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape

Hence for the first step we have Ty = T and for the final step we have T, = ({f,.}, @). By
pruning the tree, eventually every node of T will become a leaf node of some subtree.

Similar to the sequence of pruned subtrees, we also have a corresponding sequence
of refined polygons P, ..., P,. In the first step we have P; = P and after the last step of
the bottom-up traversal P, is the bounding cycle of f,. In step i, we process the edge
e; € E; and by choice of sequence, one of the parts induced by e; in P; will be a leaf
corresponding to f; in T;. Putting a one-bend drawing of e; into P; using bend point b,
we classify the type of corner that b will induce in P;,;. We say that the interior edge e;
is either

o areflex edge if bend point b has to be placed in a way that enforces a reflex corner
to occur at b in P;,; - see Figure 4.2 (a) - or

o a convex edge if a placement of b resulting in a convex corner at b in P;,; or as a
straight line is possible.

Let G; be the subgraph of G; induced by the vertices incident to the faces f;,... f,,
hence G = G;. In step i, our algorithm picks a leaf f; of T; and processes the interior
edge e; between f; and its parent such that the following invariant holds:

“Graph G, can be drawn in P;,; if and only if G; can be drawn in P;”

To maintain this invariant during the bottom-up traversal of T, we want to refine P
in the least restrictive way — cutting away as little of P as possible. We will formally prove
that the invariant holds in Lemma 4.6.

4.3 Procedure

The objective for this section is to establish the pieces needed to ONEBENDINPOLYGON
(Algorithm 4.1). Before we can do that, we describe how it will proceed in more detail,
establishing the necessary lemmata on the way.

Among all leaves of T;, the algorithm chooses the next node f; to process as follows:
If T; has aleaf corresponding to a reflex edge, we process the corresponding interior edge
next. Otherwise, all leaves in T; correspond to convex edges, and we choose one of the
nodes of the dual tree among them that has the largest distance to the root f, in T. We
do this to make sure that a convex edge is only chosen if all siblings corresponding to
reflex edges have already been processed.

Let e; = (u,v) be the interior edge corresponding to the leaf f;. Let V,, and V, be
the regions inside of P; visible from u and v, respectively, and let V,, = V,, n V, be their
intersection — the region visible by both end points. Clearly, any valid bend point for
e; needs to be inside V;,. For any point b € V,,, let in be the obstructed region, the
subpolygon of P; bounded by P;(u,v) o vb o bu — the part of P; that is “cut off” by
drawing e; with its bend at b. We call a bend point b € V,, minimal for e; if there is no
other point b’ € V,, with ij: ¢ Qb.

For reflex edges, we have the following lemma regarding minimal bend points.

48

4.3 Procedure

Figure 4.2: lllustrations of minimal bend points and obstructed regions for an edge e connecting u
and v: (a) Edge e is reflex: We show two possible drawings using either b or b’: Both cut away at least
the red region and b is the minimal bend point to do so. In both cases, the modified polygon has a
reflex angle at the bend. (b) Edge e is convex: Visibility region V,, of vertex u in orange, visibility region
V, of vertex v in blue, and intersection V, = V;, n'V, in green; (c) the region Qf cut off by drawing e
with its bend at point b in red; (d) Construction of p,, p, and of the obstructed region Q., set of bend
point options B, in purple.

Lemma 4.1. Let e; = (u,v) be a reflex edge to be drawn in polygon P;. If there is a valid
drawing of e; in P;, then there is also a unique minimal bend point b for e;.

Proof. We construct b by considering the shape of P(u,v) and the visibility region V,.
As e; is a reflex edge, some parts of P(u,v) must extend over uv - either by intersecting
uv or by uv being completely outside of P;.

By assumption there is some valid drawing of e;; let b’ be the bend point of that
drawing; see Figure 4.2 (a). Consider the line ub’ and rotate it clockwise around u until
it intersects P(u, v). Rotating ub’ towards v also moves the intersection point b" of both
lines closer to v. That way, we obtain the obstructed region in = P(u,v) o ub® o bty
and Q fj c ij;. Doing the same with line b'v, rotating counterclockwise towards u, we
get the intersection point b of both rotated lines.

49

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape

Moving intersection point b by a small constant distance ¢ to avoid intersecting
P(u,v) with either line segment, it becomes a valid bend point for e; and in total we
have in c ij = Qf:. As ¢ decreases towards 0, the point b becomes a minimal bend
point for edge e; by construction. O

Considering convex edges, we can no longer rely on having a single minimal bend
point. Hence, we need to refine our notation.

Given edge e;, let B,, be the set of all valid minimal bend points. We define the region
Qe, = NMpes, Qi’i to be the region of P; obstructed by all valid drawings e; — wherever we
place the bend point of e;, all the points of Q,, will be cut off. Conversely, for every
point p € P; \ Q,, there is a placement of the bend point of e; such that p is not cut off.
An example for the obstructed region and the set of possible minimal bend points for a
convex edge can be seen in Figure 4.2 (d).

Lemma 4.2. Let e; be a convex edge to be drawn in polygon P;. If there is a valid drawing
of e; in P;, then B, c dV, and we can safely refine P; by removing Q..

Proof. For any reflex edge, the unique minimal bend point is the point on the boundary
of that edge’s visibility region defining the smallest obstructed region (Lemma 4.1). When
considering a convex edge e;, the boundary 0V,, and P(u, v) can coincide in some points
or even segments. Our goal is to preserve as much of V,, as possible for future usage
while still refining the polygon. Therefore, we first define the set B,, of all bend points
with obstructed regions that are incomparable with respect to containment. Then we
compute the region Q,, obstructed by all these bend points.

Let (u,u’) and (v',v) be the segments of P;(u,v) incident to u and v, respectively.
Consider the ray starting at u and going towards u’, coinciding with uu’. Rotate this ray
in counterclockwise direction until it hits V,, for the first time; call this point p,. Do
the same with the ray from v to v/, rotating it clockwise; let the point where it hits V,,
be p,. To identify all points belonging to B,,, consider the outline piece of the visibility
region between p, and p, — namely V,,(pu, p,). The piece V,,(pu, pv) is composed of
two things: Rays with origin u or v that are tangent to dP;, and parts of dP; itself. The
set B,, is composed of all points on dP; N V., (p,, p,) that are not also on some tangent
ray, and of those points on tangent rays that have the largest distance to the origin of that
ray.

We now describe how to construct Q,, using p, and p, as intersecting the individ-
ual obstructed regions for all possible bend points is infeasible. Using the points and
segments constructed above we get that Q,, is the region inside P; bounded by the fol-
lowing segments:

Qei :v_pvo Vei(pu’pv) Omopi(”ﬂ’)-

Notice that this region is not necessarily simple, as tangent rays and parts of V,, (p, pv)
can coincide with parts of oP;.

50

4.4 Correctness

If there is an edge e; later in the sequence (i < j) of G; that needs to have its bend
point inside Q,, then any two drawings of e; and e; have to intersect and G; cannot be
drawn in P. Thus, cutting away Q., is a safe refinement of P;. O

The set of bend points B, constructed for edge e in Figure 4.2 (d) contains a single
point (to the left), as it is the end point of tangent rays with origins u and v; there is
also a segment of P; c B, - including the segments’ end points, as they are endpoints of
tangent rays.

The complete pseudocode for ONEBENDINPOLYGON is listed in Algorithm 4.1:

4.4 Correctness

We now proceed to show correctness of ONEBENDINPOLYGON (Algorithm 4.1). As de-
scribed above, it consists of two while-loops: the first one represents the bottom-up
traversal whereas the second one represents the top-down traversal. Processing the edges
and safely refining the polygon accordingly is treated in Lemma 4.1 and Lemma 4.2, re-
spectively: In step i of the first loop, our algorithm computes the visibility region V. If
we have a step with an empty visibility region, it is impossible to draw G; in P;, so by the
invariant it is also impossible to draw G in P and the algorithm stops. Otherwise, the
algorithm computes Q,, and creates P;;; = P; \ Q,,. If an edge e; (j > i) had to place
its bend point inside Q.,, then e; and e; would cross independent of the choice of the
bend point of e;; in this case, our algorithm concludes that it is impossible to draw G
in P when processing e;.

In the following, we focus on the top-down traversal: We show that G, can be drawn
in P;; if and only if G; can be drawn in P;.

We first analyze the possible sequences in which sibling-sets consisting of convex
edges can be processed. Without being able to fix the “best” drawing of a convex edge,
we need to argue that there is no bad sequence for picking the nodes of convex edges. To

do so, for each convex edge e;, we define the region R,, = (UbsBei QZ_) \ Q,, to be the
region of P; restricted by e; — see the red region in Figure 4.3 (a). For each point r € R,,,
there are two minimal bend points b and b’ for e; such that bending e; at b cuts off r,
whereas bending e; at b’ does not.

Lemma 4.3. Let S(f) be the set of all nodes in T with parent f that correspond to convex
edges. For any pair of edges e1, e, € S(f) and polygon P; to draw inside, the restricted
regions R, and R., are interior-disjoint.

Proof. Let e; = (uy,v1) and e; = (uy,v,) be two convex edges with parent node f and
let f correspond to edge e = (u’,v"). Consider the three pieces P(u’,v"), P(u;,v;) and
P(uy,v,) defined by the parent and its two children. Since e; and e are siblings below f,
they are “next to” each other along P(u',v") - that is, w.l.o.g. we get P(uy,v;) c P(u',v")
and P(uy,v,) c P(u',v") but P(uy,v1) N P(uy,v,) = @. s Since both edges are convex,
their visibility regions — and thus also their restricted regions - live between P(u',v")

51

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape

Algorithm 4.1: ONEBENDINPoLYGON(Outerplanar Graph Gj, Polygon P)

Tree T < dual of G; with outer face P

Stack C < @ /* to store convex edges
Set £ <« Set of leaves in T
Set B+« & /* to store edge-bend point pairs
node f, < node from £ /* as root for T
node f; « NIL, region Q, < NIL /* iteration variables
while (£ \ f,,) + @ do /* bottom-up traversal
if £ contains leaf nodes corresponding to reflex edges then
pick f; € L for some reflex edge e
if V, = @ then return IMPOSSIBLE
compute optimal bend point b € V, and region Q, /* Lemma 4.1
B.App({e, b})
else /* L only contains convex edges
pick f; € L for a convex edge e = (u,v) /* safe by Lemma 4.3
if V, = @ then return IMPOSSIBLE
compute minimal bend points B, and regions Q, /* Lemma 4.2
C.Pusu({e, P(u,v)}) /* for top-down traversal
P < PN Q. /* refine P
T+« T\ f /* prune T
Remove f; from £, check if parent p(f;) is now a leaf
while C + @ do /* top-down traversal
{e =(u,v), Poa(u,v)} < C.Pop()
P« uoP(v,u)ovoPya(u,v) /* re-expand P, Lemma 4.4
recompute minimal bend points B,
if B, n P = & then return IMPOSSIBLE /* later refinement
point b « bend point from B, n P
B.App({e,b})
P+~ P~Qb /* refine P

return B

*/
*/
*/

*/
*/

*/

*/
*/

*/
*/

*/
*/

*/

*/

*/

52

4.4 Correctness

Figure 4.3: (a) The dashed part of piece P(u2, v2) forces the bend point b’ to be placed inside R(,, ,,)-
Todoso, b’ creates a reflex angle, making (u2, v) a reflex edge that would have been processed before
(u1,v1). (b) Edge e; = (u1,v1) is the parent of edge e, = (12, v2). The two possible bend points by, b,
of edge e, are each placed in the restricted region of one of the children of e,. Fixing the one-bend
drawing of e; to intersect u;v; makes e; become a reflex edge, eliminating any choice.

and u;v; or uyvy, respectively; see Figure 4.3 (a). W.l.o.g. assume that u,v; is between
uyvy and P(u',v") as seen along the boundary. Hence, the structures of P(u’,v") that
u, and v, are mapped to influence the shape of the visibility region V,, - in the worst
case UV, is part of boundary 0V,,. The only reason for e, to be drawn in a way that
its bend point would be inside R,, is that some part of P(u,,v,) intersects u,v, — see
the dashed piece P(u,,v;) in Figure 4.3 (a). This would imply that e, is a reflex edge, a
contradiction. O

While bend points for reflex edges can be fixed immediately, convex bends have to
remain undecided until the root of the dual tree is reached. Given a convex edge e;
encountered in step i of the bottom-up traversal and some later edge e; (with i < j), two
events can have an impact on how e; will be drawn:

» Ife;isareflex edge — hence encountered later in the bottom-up traversal - it might
require its unique optimal bend point to be placed inside R,,, or

« if ej is a convex edge, it will be fixed before e; in the top-down traversal. The bend
point of e; might need to be placed inside R,, - see edge (u5,v;) in Figure 4.3 (b).

All restricted regions can possibly be subject to further refinement until encountered
again during the top-down traversal. To reconstruct the situation of step i while incor-
porating all refinements, for any convex edge e; = (u,v), we store the piece P;(u,v) on
stack C. When f,, is eventually encountered, all safe refinements of nodes below it have
been removed from P, creating the final polygon P,,; it incorporates all refinements nec-
essary to draw any reflex edges and also the obstructed region of the last convex edge

53

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape

Figure 4.4: Constructing polygon P; for edge (u,v) from P;_; by adding the stored piece Poq (1, v).

encountered. This obstructed region might in turn contain the visibility regions of other
yet to be fixed convex edges. Assuming that we encountered and stored ¢ convex edges,
we create ¢ additional expanded polygons P,y ..., Py..; for each stored convex edge
(u,v), we create the expanded polygon P; from P;_; by replacing P;_1(u,v) with the
stored piece Py (4, v). During the bottom-up traversal, we kept the part of P; bound to
containing root f,; in the top-down traversal, this is also reversed — when given a choice,
we keep the part of the polygon containing the next convex edge e; - in Algorithm 4.1
this edge is stored as C.Top. We get the following lemma:

Lemma 4.4. Let (ej = (4, V), Poia(u,v)) be the next convex edge-piece pair to process in
the top-down traversal and P;_, be the current refined polygon. We can obtain the simple
polygon P; to draw e; into by replacing Pj_,(u,v) with P,a(u,v).

Proof. We first prove that the current polygon’s boundary dP;_; contains both vertices u
and v. Then we show that P;_; can safely be expanded to P;.

If there is any sub polygon containing only one of the two vertices, there must have
been some edge separating them - with # on one side and v on the other. Then this edge
and (u,v) must cross in any outer drawing, hence contradicting outerplanarity of the
input graph. Hence, if they are both cut off of P;_;, both must have been cut oft by edge
e’ at the same time. This edge then separates the polygon into two pieces, both having a
boundary partially composed of the drawing for e’ and with one of them containing u
and v; choose the boundary of this subpolygon as dP;_;.

The vertices u and v subdivide boundary of P;_; into two pieces — see Equation (4.1).

Piy=uoPj (u,v)ovoP(v,u) (4.1)
Pj = uo Pog(u,v)ovoPjy(v,u) (4.2)
= Pj_yuuoPyg(u,v)ovoPi(u,v) (4.3)
—_—
reversed

To obtain P; from P;_;, we replace piece P;_;(u, v) with the stored piece Py (u,v) as
in Equation (4.2). By processing the nodes of dual tree T in the order described above

54

4.4 Correctness

we know that all refinements that happened between the step when edge e was stored
and the current step j are either part of piece P;_;(v,u) or cut off by that piece. Any
refinement made inside piece P,q (4, v) — not cutting it off completely — would contradict
that the node corresponding to edge (u, v) being a leaf at the time. To see that P; is free
of self-intersections, notice that we expanded P;_, by effectively joining it with the region
described in Equation (4.3); any segment of P;_; (v, u) intersecting Pyjq(u,v) must also
have intersected Pj_;(u, v). This joining operation is illustrated in Figure 4.4.

With P; being a simple polygon and edge e = (u, v) being a leaf in the corresponding
dual tree, we can now recompute the visibility region V.. O

During step j of the top-down traversal ONEBENDINPoLYGON will check and (possi-
bly) draw edge e; without looking back or ahead. In Lemma 4.4 we established that not
looking back is safe. For not looking ahead we have the following lemma.

Lemma 4.5. Let e; = (u,v) be the convex edge to be drawn in Pj, let V., be the visibility
region of ej, and let S(e;) be the set of all (not yet fixed) convex children of ej in T. If there
is a valid drawing for all edges in S(e;) inside their corresponding polygon before refining
it by drawing ej, then there still are valid drawings for all edges after drawing e;.

Proof. The edges in S(e;) are siblings in T; hence, by Lemma 4.3, their respective re-
stricted regions are area-disjoint. Pick a valid bend point b for e; and assume that it is
in the restricted region of edge e’ € S(e;). As e; has only one bend point to place and
as the restricted regions are disjoint, e’ is the only edge affected by the choice of b - see
edge (u,,v,) with two different possible bend points b; and b, in Figure 4.3 (b). Notice
that b cannot be in the obstructed region Q.- as this region was subject to refinement, is
not part of the current polygon P; and hence cannot be part of V,,. Next consider the
possible drawing of e’ using bend point b’; assume that placing b cuts off b’ from P;
and thus also from the polygon corresponding to e’. By the definition of the restricted
region R, for ¢’ we know that b’ € R, and therefore we can find an alternative bend
point b* € R, to bend edge e’ at later. O

Combining the results above yields the following lemma.

Lemma 4.6. If the visibility region for the current edge is non-empty, then G;.; can be
drawn in Py, if and only if G; can be drawn in P;.

Proof. During the bottom-up traversal, we refine the current polygon, only making it
smaller in every step. Hence, whenever we have V,, = & for any edge e; inside P;, we
stop as refining further cannot increase the size of any visibility regions. Otherwise, we
either compute the unique minimal bend point b (Lemma 4.1), or the obstructed region
Q, as described in Lemma 4.2, safely refining P; to P;,; accordingly. Since minimal
bend points cannot lie in restricted regions of siblings (Lemma 4.3), only the bend point
of the edge corresponding to p(e;) can possibly be placed in the restricted region R,,
of e;; therefore, any edge drawn in the bottom-up traversal is correct and safe.

55

4 One-Bend Drawings of Outerplanar Graphs with Fixed Shape

During the top-down traversal, we can encounter overlapping restricted regions, but
only when the nodes are in a parent-child relationship (Lemma 4.3). Then by Lemma 4.5,
when there is a bend point placement for the current edge e; that is valid for the current
refined polygon, this choice cannot impact the decisions later in the traversal; that is
because any other bend point that lies inside R(e;) must lie on the opposite side of the
drawing of p(e;) (Lemma 4.4), so it cannot influence the choice of the bend point for e;.

O

We are now ready to state the main result of this chapter.

Theorem 4.7. Given an outerplanar graph G; = (V1, E;), a polygon P with p corners,
and a mapping of the vertices of Gy to the boundary 0P, we can decide in O(|V;|- p) time
whether Gy can be drawn in P with at most one bend per edge.

Proof. We use ONEBENDINPOLYGON as described in Algorithm 4.1. The correctness fol-
lows immediately from Lemma 4.6.

The most expensive part of the algorithm in terms of runtime is to compute the vis-
ibility region V, for all the edges e = (u,v). Since V, is a simple polygon with at most
2p edges, it can be computed in O(p) time, as demonstrated by Gilbers [Gill4, page 15].
Doing two traversals, the visibility region of each edge needs to be computed at most
twice; as outerplanar graphs can have at most an amount of edges linear in the number
of vertices, all these regions can be computed in O(|V;| - p) total time. The remaining
parts of the algorithm (computing the dual graph of G, choosing the order of the faces f;
in which we traverse the graph, computing Q., “cutting off” parts of P, and propagating
the graph at the end to fix the presentation) can clearly be done within this time.

Thus, the total running time is O(| V7| - p). O

4.5 Conclusion

In this chapter, we have developed an algorithm that (when possible) is able to draw an
outerplanar graph into a predefined simple polygon when it is allowed to add one bend
per edge. When no such drawing exists, our algorithm reports the edges that enforce the
crossing. This can then be used to identify the malformed segments of the boundary -
forcing the bend points to be outside of the polygon, enforcing the crossing — using the
dual tree of the drawing. We phrased the problem as a partial representation extension
problem, where the outer face is a Hamiltonian cycle that is pre-drawn. The task then
was to add the missing chords, bending each missing edge at most once and only inside
the drawing.

This technique was designed with the application in mind that a fixed drawing of
some planar subgraph is already given that then needs to be completed, respecting the
shapes of the prescribed faces. Considering that the mapping of the vertices to the bound-
ary is part of its input, our algorithm can be used to accomplish this goal - or report that
no such drawing extension exists.

56

4.5 Conclusion

Open problems on this chapter could be to consider drawing related graph classes:
What about planar graphs with only a subset of the vertices mapped to the boundary, or
outer 1-planar graphs? Another direction would be to consider other pre-drawn struc-
tures, such as a path or (more generally) a tree? If the pre-drawn path is colinear, the
problem becomes testing for a 2-page book embedding with a fixed layout.

Acknowledgments. This work was initiated at the Workshop on Graph and Network
Visualization 2019. We thank all the participants for helpful discussions and Anna Lubiw
for bringing the problem to our attention.

57

Part Il

Vertices on the
Integer Coordinates

Chapters

Moving Graph Drawings
to the Grid Optimally

From a graph drawing perspective, restricting the vertex coordinates to be of integer pre-
cision can be desirable for various reasons, such as aesthetics, computational complexity,
or technical limitations. While the A’P-hardness proof (Section 5.2) and the integer
linear programming formulation (Section 5.3) were already submitted and presented as
part of a Master’s Thesis [L6f16], we include these results in this work for the sake of com-
pleteness: In the following two chapters, we consider the problem TOPOLOGICALLY-SAFE
GRID REPRESENTATION. This chapter covers the theoretical results on that problem and
presents an exact algorithm that finds optimal solutions to an A/P-hard problem. This
motivates the results we will present in Chapter 6. With a geographic application in
mind - representing road networks and administrative borders at finite precision -, we
use this chapter as a foundation to design and evaluate a randomized heuristic approach
to solving TOPOLOGICALLY-SAFE GRID REPRESENTATION.

Concepts. In the computational geometry community, a process called snap round-
ing has been proposed for line arrangements and has since become well-established. Let
the euclidean plane be tiled into unit squares called pixels with center on integer coordi-
nates. Let S be a finite collection of line segments s € S in the plane and let A(S) be
the arrangement of vertices, edges and faces in the plane induced by the segments and
intersections of S. Guibas and Marimont [GM98] define the snap rounding paradigm:

Definition 5.1. Snap rounding is the process of converting the arbitrary precision ar-
rangement A(S) into a fixed-precision representation .4*(S*) with these properties:

(1) Fixed-precision: All vertices of A* are at integer precision coordinates.

(2) Geometric similarity: For each segment s € S, the transformed segment s* lies
within the Minkowski sum of s and a pixel at the origin.

(3) Topological similarity: .Aand A* are “topologically equivalent up to the collapsing
of features” — that is, there is a continuous deformation of the segments in S to their
snap-rounded counterparts such that no segment ever passes completely over a
vertex in the arrangement.

A preliminary version of the contents of this chapter has appeared in the proceedings of Graph Drawing
2016 [LvDW16]. This is joint work with Thomas C. van Dijk and Alexander Wolff [L6f16].

61

5 Moving Graph Drawings to the Grid Optimally

Figure 5.1: Rounding the intersection point of two line segments: (a) An example instance on four
vertices and three edges, intersection point depicted as a white vertex, (b) rounding the intersection
to the nearest integer grid point creates two extraneous intersections. The results obtained by using
the algorithms of (c) Greene and Yao and (d) Hobby (tolerance square in red).

Designed to overcome problems induced by working with infinite-precision real arith-
metic machines (RAMs) - a paradigm used by Preparata and Shamos [PS85], de Berg,
Halperin, and Overmars [dBHOO07], and others -, this technique can also be used for
limited display resolutions, such as bitmap graphics. There are several algorithms for
computing such a representation that are fast and work well in practice; we present a
brief survey on challenges and solutions in Section 5.1.

The concepts common to all approaches stem from the line intersection problem as
stated by Greene and Yao [GY86]: Given an arrangement of line segments, each pixel that
contains vertices or intersections is called hot. Then every segment becomes a polygonal
chain whose edges (fragments) connect center points of hot pixels, namely those that the
original segment (ursegment) intersects. Guibas and Marimont [GM98] showed that
during snap rounding, vertices of the arrangement never cross a polygonal chain, so
after snapping no two fragments cross. Moreover, the circular order of the fragments
around an output vertex is the same as the order in which the corresponding ursegments
intersect the boundary of its pixel. The resulting arrangement approximates the original

62

5.1 Related Work and Contribution

one in the sense that any fragment lies within the Minkowski sum of the corresponding
ursegments and a unit square centered at the origin. But by definition, the output of those
algorithms is not topologically safe: vertices, edges or even faces can visually disappear
from the output drawing while rounding.

5.1 Related Work and Contribution

5.1.1 Rounding to the Grid

Greene and Yao [GY86] considered the precision required to store the points created
when intersecting line segments as it has numerous applications in computational geom-
etry. Reducing the precision used to store these intersection points can lead to artificial
extraneous intersections, that are not part of the original arrangement - see Figure 5.1.
Initially, these intersections have been handled by repeatedly running an intersection
detection algorithm - for example the Bentley—-Ottmann sweep [BO79] -, until no new
intersections are reported. The algorithm given by Greene and Yao does not prevent
extraneous intersections from occurring, but finds and rounds all intersections in one
single iteration. An example output of their algorithm can be found in Figure 5.1 (c).

The approach by Hobby [Hob99] considers tolerance squares — unit-length pixels
centered on integer grids in which segment endpoints and intersections occur. Edges
passing through tolerance squares get subdivided, then every vertex in the square gets
snapped to the center. While this may introduce new incidences, it avoids extraneous
intersections - see Figure 5.1 (d).

Guibas and Marimont [GM98] give a boiled down definition of snap rounding and
state a dynamic algorithm based on vertical cell decompositions; Having n unrounded
segments, a set H = {h,..., hy} of tolerance squares, complexity of the cell decompo-
sition C and complexity of the arrangement A, their algorithm has an output-sensitive
asymptotic runtime of O(nlogn + A+ ¥ ey |h* + C).

Goodrich et al. [GGHT97] give two simplified algorithms: The first algorithm is de-
terministic and based on the Bentley-Ottmann sweep, the other algorithm is random-
ized using trapezoidal decomposition. Both have a matching runtime of (expected)
O(nlogn + Y, |h|log n), independent of arrangement complexity A.

The precision required to store vertex coordinates and to measure vertex-to-vertex
distances can be bounded by grid resolution, but measuring distances between noninci-
dent vertex-edge pairs may still require arbitrary precision. Rounding the endpoints of
segments induces drift on the segment itself. Drift can cause a rounded segment to pass
through a tolerance square it did not pass in its unrounded state; this is demonstrated
by edge e; in Figure 5.2 (a) and (b). To overcome this, Halperin and Packer [HP02] aug-
ment the classic snap rounding procedure by iterating the process. This iterated snap
rounding procedure gives an output that is equivalent to that of repeatedly applying the
tolerance square-based rounding process until for all pairs of vertices and nonincident
edges, the distance is at least half the width of a pixel. Applying this to the above example

63

5 Moving Graph Drawings to the Grid Optimally

Figure 5.2: Iterated snap rounding: (a) Input segments at arbitrary precision, edge e; does not inter-
sect the red tolerance square. (b) Edge e; intersects the tolerance square after snap rounding, requiring
another iteration. (c) Resulting arrangement after iterated snap rounding, edge e; subdivided.

(Figure 5.2 (c)) edge e; gets subdivided during the second iteration and both parts sub-
sequently become incident to the snapped vertex. Subdividing segments and rounding
the pieces can imply additional drift induced by consecutively intersecting other toler-
ance squares, heavily deforming the output arrangement. Effort to bound the drift was
made by Packer [Pac06], adding a user-specified parameter. An implementation of iter-
ated snap rounding for 2D arrangements can also be found in the CGAL computational
geometry framework [Pacl9].

De Berg, Halperin, and Overmars [dBHOO07] extend the original list of desired prop-
erties adding non-redundancy. A degree 2 vertex of the output is redundant if it does
not stem from a segment endpoint; consider the white vertex in Fig 5.3 (b). They give
an algorithm that outputs a snap-rounded arrangement in which all redundant vertices
are removed by using a second vertical sweep. This algorithm has a total runtime of
O((n +I)logn) with I being the number of intersections in the arrangement.

Hershberger [Herl3] introduced stable snap rounding. Algorithms based on tolerance
squares can be made sable in the following sense: the rounded arrangement does not
change when re-applying the procedure. This is obtained by providing individual rules
for two different types of tolerance squares, requiring O(|H|logn) additional runtime.

Most recently, rounding of arrangements in 3D has recently been studied by Devillers,
Lazard, and Lenhart [DLLI8]. Rounding specific classes of graphs, such as Voronoi di-
agrams (studied by Devillers and Gandoin [DGO02]) have also been considered from a
computational geometry perspective and with similar objective in mind.

64

5.1 Related Work and Contribution

Figure 5.3: Redundant degree 2 vertices in rounded arrangements: (a) input segments (redundant
intersection marked as white vertex), (b) output with (white) degree 2 vertex that is not a segment
endpoint.

5.1.2 Drawing on the Grid

From a graph-drawing perspective, restricting vertex coordinates to integer precision is
a common practice. Fary [Far48] (among others) shows that every planar graph has a
planar straight line embedding with vertices as points on the plane; this is also known as
a Fdry embedding. Tutte [Tut63] introduces the barycenter method for drawing planar
graphs. It yields drawings that need precision linear in the size of the graph.

Dolev, Leighton, and Trickey [DLT83] introduce the family of planar nested trian-
gles graphs — see Figure 5.4. Nested triangles with » vertices can be used to prove that
(2n/3-1) x (2n/3 —1) is a lower bound on the required area when restricting straight
line drawings on the integer grid.

Motivated by these results, Schnyder [Sch90] and, independently, de Fraysseix, Pach,
and Pollack [dFPP90] have shown that any planar graph with » vertices admits a straight-
line drawing on a grid of size O(n) x O(n) and that this is asymptotically optimal in the
worst case. Chrobak and Nakano [CN98] have investigated drawing planar graphs on
grids of smaller width, at the expense of a larger height.

Krug and Wagner [KW07] give a reduction from 3-PARTITION, showing that area
minimization of straight line grid drawings is A’P-hard. They also give an iterative algo-
rithm that computes a more compact drawing of a given plane graph.

Nollenburg and Wolff [NW11] give a mixed integer program for octilinear metro-
map drawings with station labels. They establish sets of hard and soft constraints to
create a visually pleasant map drawing for answering navigational questions while not
preserving real-world distances or travel times. While solving a very special problem,
their model be adapted for other geometric tasks — we will do this in Section 5.3.

In relation to that, Biedl et al. [BBN*13] propose a generic ILP model for various grid-
based layout problems, such as determining pathwidth, finding optimum s-¢-orientations
or bar k-visibility representations.

65

5 Moving Graph Drawings to the Grid Optimally

Figure 5.4: Nested triangles graph on n = 12 vertices.

Contribution. We investigate the problem of moving the given drawing of a planar
graph to a given grid, prioritizing the ability to recognize the original graph over geo-
metric similarity: While we do not tolerate new point-point or point-line incidences in
the rounded drawing, we accept the possibility that a vertex does not go to the nearest
grid point. Presented this set of requirements, our objective is to minimize the change
induced on the vertex positions. This change can by measured, for example, by the sum
of the distances or the maximum distance in the Euclidean (L,-) or Manhattan (L;-)
metric. We define our variant of this problem - ToPOLOGICALLY-SAFE GRID REPRE-
SENTATION - in Section 5.2 and show that it is N/P-hard; To do so, we give a reduction
that asks for compressing each coordinate by just a single bit. The proof is somewhat
similar in concept to the proof of the A/P-hardness of Metro-Map Layout by Néllen-
burg [N6105], but requires additional constructions since the rounding problem does
not easily allow the construction of “rigid” gadgets. In Section 5.3, we propose an inte-
ger linear program (ILP) to solve instances of TOPOLOGICALLY-SAFE GRID REPRESEN-
TATION to optimality; Our ILP formulation generalizes the ILP for Metro-Map Layout
by Nollenburg and Wolff [NWI11] in the following way: Where the ILP by Néllenburg
and Wolff assumes a constant number of possible edge directions (namely 8) to obtain
an octilinear drawing, our desired output asks for a number of edge directions that is
quadratic in the size of the grid; on a grid of size k x k, there are ®(k?) edge directions.
The numbers of variables and constraints of our ILP are polynomial in grid size and
graph size, but are quite large in practice. Thus, for an n-vertex planar graph, we must
generate O(k*n?) constraints, among others, to preserve planarity and the cyclic order
of edges around the vertices. To ameliorate this, we apply delayed constraint generation,
a technique used to add certain constraints only when needed. However, the runtime
of our ILP is prohibitive for graphs with more than about 15 vertices — we give a set of

66

5.2 NP-Hardness

example-instances in 2D in Section 5.4 to show the power and limitations of our exact
approach. Our techniques can also be adapted to draw (small) graphs with minimal area.
This is interesting even for small graphs since minimum-area drawings can be useful for
validating (counter)examples in graph drawing theory.

5.2 NP-Hardness

In the following we will consider a rounding task that relaxes on geometric similarity of
the output while enforcing topological equivalence; see properties (2) and (3) of Defi-
nition 5.1. We first give a formal definition of this new problem that we call ToroLoGI-
CALLY-SAFE GRID REPRESENTATION and then proceed to show AV/P-hardness.

Definition 5.2 (TOPOLOGICALLY-SAFE GRID REPRESENTATION). Asinput we takeaplane
graph G = (V, E) with vertex positions of arbitrary precision and a bounding rectangle
B = [0, Xmax] % [0, Yimax]-

The TOPOLOGICALLY-SAFE GRID REPRESENTATION problem is trying to find an draw-
ing I of G the with the following properties:

(1) All vertices of G are moved to integer coordinates that are contained inside B, and
(2) T is topologically equivalent to the given plane straight-line drawing of G.

(3) The total displacement of I' is minimal over all such drawings: the displacement
of a single vertex is the Manhattan-distance between its original position and the
rounded coordinate, and the displacement of a drawing is the the sum of over all
vertex displacements.

We prove N’P-hardness of TOPOLOGICALLY-SAFE GRID REPRESENTATION by consid-
ering the decision variant. Instead of searching for the smallest total displacement, we
ask for a drawing with some constant displacement c. Having an algorithm to answer
this question, we can use it to search for the smallest such constant c¢i,. Since the search-
ing can be done using a polynomial amount of queries, proving hardness for the decision
variant also implies hardness of the original problem.

We reduce from PLANAR MONOTONE 3SAT. A formula F for this variant of 3SAT
(recall from Section 2.2.2) has the following additional properties:

o The graph H(F) induced by the formula - using variables and clauses as vertices
and having an edge for every occurrence - is planar.

« Clauses are monotone: The variables of a clause are all negated or all unnegated.

The PLANAR MONOTONE 3SAT problem is known to be A’P-hard, as shown by de Berg
and Khosravi [dBK12]. We can assume that the graph H(F) can be laid out as shown in
Figure 5.5 (a): all vertices corresponding to variables lie on the x-axis with the vertices of
the all-negated clauses above them and the vertices of all-unnegated clauses below them.

67

5 Moving Graph Drawings to the Grid Optimally

(@) (b) (@ (d)

Figure 5.5: (a) Graph H(F) forformula F = (X vY v Z) A (X Vv Y) A (X v Z); (b-e) All gadgets
used in the reduction. Inner area of each gadget highlighted gray, possible roundings indicated by
arrows. (b) Vertical line gadget (bottom) connected to corner gadget (top), (c) variable gadget (with
two negated and one unnegated occurrences), and (d) all-negated clause gadget with three negated
variables.

Theorem 5.1. TOPOLOGICALLY-SAFE GRID REPRESENTATION is N'P-hard.

Proof. For a formula F of PLANAR MONOTONE 3SAT, we construct a cost bound ¢y,
and a plane graph G with vertices at half-integer coordinates'. The sum of all vertex
movements induced by rounding G to integer coordinates will be exactly cpi, if and
only if F is satisfiable. To achieve this, we introduce gadgets to resemble the elements of
the formulas incidence graph H(F) - variables, clauses, edges and bends - and construct
G and cpip in polynomial time.

For exposition, we draw the vertices of G using two different styles. Black vertices
start on integer grid points and do not need to be rounded. Moving a black vertex to
another integer grid point is allowed, but we will show that this is not optimal if F is
satisfiable. White vertices start at grid cell centers — using half-integer coordinates — and
thus will always move at least 1 unit - rounding each coordinate by at least | + 0.5 inde-
pendently. Let W € V(G) be the set of white vertices. Now we give the construction of
the various gadgets.

To get started, we introduce the line and bend gadgets. They are used to consistently
transport the variable assignments to the clause gadgets. Every segment of the line gadget
consists of four black vertices and two edges forming a tunnel, and a single white vertex
inside; see Figure 5.5 (b), lower half. Each white vertex can be rounded most cheaply -
at cost 1 — to exactly two possible integer grid points inside the tunnel, depicted by the
red and blue arrows. Consider the white vertices of two neighboring grid cells inside a
tunnel. They share exactly one grid point that is not occupied by black vertices of the
tunnel’s wall. Rounding one of the white vertices to that grip point prevents the other
vertex from also going there; with only one safe option of cost 1 left, the other white

! Storing half-integers requires an additional bit compared to regular integers.

68

5.2 NP-Hardness

vertex has to mimic the movement of the first vertex. So, if the white vertex at one end
of a tunnel is rounded inward (blue arrow) the white vertex at the other end of that line
must be rounded outward - we say it is pushed. The same machinery works for the bend
gadgets, as can be seen in Figure 5.5 (b), upper half.

Next, consider the variable gadget depicted in Figure 5.5 (c). It can be extended hori-
zontally to have tunnels for vertical line gadgets for every negated and unnegated occur-
rence at the top and bottom respectively. Inside the left-most of the center cells of this
gadget, there is a white assignment vertex. The assignment vertex is connected to the
gadget’s walls by four edges forming two triangles and can be rounded up or down repre-
senting the two possible states of the variable. Rounding the assignment vertex to either
corner of its cell forces a pair of those triangle edges to coincide with a line of the grid,
blocking grid points on the top or bottom tunnels, respectively. The tunnels connected
on that side of the gadget are then all forced to push inwards and into the connected
clause gadgets. Following the layout convention depicted in Figure 5.5 (a), we say that a
variable is set to true, if the assignment vertex is rounded upwards (following the blue
arrow) and false, if rounded downwards (following the red arrow).

Finally, the clause gadget is shown in Figure 5.5 (d). In the following, we only discuss
the all-negated degree-3 version of this gadget. The degree-2 version can be constructed
by replacing the vertical tunnel by a black vertex at the tunnels entrance and extending
the walls on both sides, connecting them to the new black vertex to form a tunnel. The all-
unnegated versions of this gadget can be obtained by mirroring the all-negated versions
atahorizontal line. Atthe center of the gadget, there is a white satisfaction vertex that can
go to any of three possible integer grid points (or two respectively) at equal cost. These
grid points belong to the three line gadgets and are only available if the corresponding
line does not transmit a push. Then the satisfaction vertex can be rounded at cost 1 if
and only if the clause is satisfied.

All white vertices must be rounded at cost at least 1. Thus, the rounding cost of G is
bounded from below by cinin = |W|. If F is satisfiable, there is a rounding of all vertices of
W to achieves this: Round the assignment vertices according to a satisfying assignment
of the variables. Then the line and corner gadgets between a clause and the (at least) one
variable satisfying it does not transmit a push. This allows the corresponding satisfac-
tion vertex to be rounded towards the entrance of that line. All rounded white vertices
contribute cost of exactly 1. In the other direction, a satisfying assignment can be read
off from the assignment vertices if rounding occurred at cost ¢pin-

For all three candidate grid points of a satisfaction vertex to be unavailable, all line
gadgets connected to the clause must be forced to transmit pushes; hence, none of the
variables occurring in this clause are assigned to satisfy this clause. In our construction,
this shows as three variable-tunnel-clause triples. In each such triple, all integer points
are occupied by white vertices, leaving no grid point for the satisfaction vertex of the
clause. A topologically valid rounding of such a triple then must involve moving a black
vertex, making the original position of the black vertex available by broadening the tun-
nel. Since all white vertices still need to be moved by at least 1, adding the cost of moving
the black vertex makes G exceed the cost bound cyi,. That is, if ¢y, is exceeded, then F

69

5 Moving Graph Drawings to the Grid Optimally

is unsatisfiable: Any rounding corresponding to a satisfying truth assignment is cheaper.
This concludes our reduction and the claim follows. O

Given that the objective function we intend to optimize is polynomially bounded
by the size of the bounding rectangle and the number of vertices in the instance, the
following extension of Theorem 5.1 implies that there is no fully polynomial-time ap-
proximation scheme unless P = NP [G]79].

Corollary 5.2. ToPOLOGICALLY-SAFE GRID REPRESENTATION is N'P-hard in the strong
sense.

Proof. The only numerical variables in an instance of TOPOLOGICALLY-SAFE GRID REP-
RESENTATION are vertex coordinates. In the proof of Theorem 5.1 the constructed in-
stances have a bounding rectangle of polynomial size and thus coordinate values are
limited polynomially as well. Thus the runtime of a hypothetical algorithm remains ex-
ponential in input size when unary representations are used. O

We decided to prove N/P-hardness of TOPOLOGICALLY-SAFE GRID REPRESENTATION
using the Manhattan distance as a cost measure, because of the integer linear program
we present in Section 5.3. Linearizing Manhattan distance with standard transforma-
tions [MS97], it can easily be used as an objective function. The hardness result itself is
not limited to these considerations.

Corollary 5.3. ToPOLOGICALLY-SAFE GRID REPRESENTATION is also N'P-hard when us-
ing Euclidean distance to evaluate rounding costs. In this case it is also N'P-hard to mini-
mize the maximum movement dp, instead of the sum over all vertices.

Proof. The choice of distance measure changes the lower bound cpi,. Using Euclidean
distance, rounding a white vertex costs at least 1/0.5% + 0.52 and moving black vertices
still costs (at least) 1. Thus, we obtain a minimum rounding cost of ¢;pi, = V/0.5% + 0.52 -
|W|. As moving black vertices is still not accounted for, the above proof still holds.
Exploiting the fact that +/0.5% + 0.5% ~ 0.71 < 1, we can identify satisfiable instances
by considering the maximum movement dy,,y over all vertices of G. Given an instance
of TOPOLOGICALLY-SAFE GRID REPRESENTATION, a maximum movement of d,, < 1
implies that only white vertices have been rounded. Thus, the corresponding formula is
satisfiable. For the case of an unsatisfiable formula, at least one black vertex needs to be
moved, making dyax > 1. O

The ability to make the distinction between different maximum movements (mov-
ing a black vertex at cost 1 versus only moving white vertices at cost 0.71) based on the
satisfiability of F also gives the following.

Corollary 5.4. Euclidean ToPOLOGICALLY-SAFE GRID REPRESENTATION with the objec-
tive to minimize maximum movement dy .y is APX -hard.

70

5.3 Exact Solution Using Integer Linear Programming

5.3 Exact Solution Using Integer Linear Programming

In this section we provide an exact algorithm for TOPOLOGICALLY-SAFE GRID REPRE-
SENTATION by giving an integer linear program - or ILP for short. In the following,
we describe the integer variables necessary for instances of TOPOLOGICALLY-SAFE GRID
REPRESENTATION to then model the task of finding an optimal solution to ToroLOGI-
CALLY-SAFE GRID REPRESENTATION by giving a linear cost function and several sets of
linear constraints to ensure topological equivalence. Our model borrows ideas from
a linear program for creating octilinear drawings of metro maps by Noéllenburg and
Wolff [NWI11], changing and extending them to fit for our requirements.

In the following presentation, we will use upper-case letters to denominate constants,
whereas lower-case letters will be variables for the ILP. We further divide the variables,
greek characters will be used for binary variables while variables represented by roman
characters can take any natural number as value.

5.3.1 Basic Model

Each instance of TOPOLOGICALLY-SAFE GRID REPRESENTATION is a graph G = (V,E)

together with real-valued vertex coordinates p: V — R? and a prescribed rotation system.
In our model, we consider the input coordinates of each vertex v € V to be a tuple of real-
valued constants (X,,Y,). We define the integer-valued coordinates : V' — N? with
r(v) = (xy, y»), thus obtaining two integer variables 0 < x, < Xjax and 0 < ¥, < Yiax

to represent the rounded output coordinates in our model. The ILP will find an optimal
solution by adjusting the values of these variables. This data model naturally leads to the
objective function of Equation (5.1).

Minimize) |x, — X,|+ [y, - Y, | (5.1)
veV

By using the absolute value function, Equation (5.1) is not linear, but can be made so
with standard transformations [MS97]. Note that without any further constraints, this
would just move vertices to (one of) the nearest integer grid points. Together with a
polynomial-time checker for topological equivalence, this already implements the most
basic heuristic. We will refer to this heuristic as Instant Rounding and build on this idea

in Section 5.3.3 - and also later in Section 6.2 of the next chapter (see page 88).

5.3.2 Constraints for Topological Equivalence

Unique Vertex Coordinates. Given the representations of coordinates in our model,
ensuring that vertices do not coincide can easily be done by adding the constraints of
Equation (5.2). They too are not linear as stated, but can also be readily linearized.

(% #x0) V(P # V) Vv,weV,v+w (5.2)

71

5 Moving Graph Drawings to the Grid Optimally

Figure 5.6: Farey sequence and direction assignment: (a) The slopes of the black vectors match the ele-
ments of depth 3 in the Farey sequence {0,1/3,1/2,2/3,1}, the red extensions point to all grid points of
distance at most three within that plane octant. (b) Using the elements of the sequence as coordinates
for vector endpoints (either as x or y coordinate and with different signs), we get sets of vectors for
all octants; combining all sets, we get set D. Programmatically creating D, we can order all directions
radially around the origin. (c) Edges have two directions assigned to them - one for each endpoint.
Direction D (blue) matches the slope of (v, w) as seen from v while D’ (red) matches the slope seen
from w. D and D’ are opposites, which is also represented in the ordering of D.

We will now introduce constraints to ensure that input and output are topologically
equivalent; that is, no two edges intersect and the edges at every vertex have the same
cyclic order as in the input. To do this, we first introduce the following tool:

Possible Directions. The most important departure from the metro-map drawing
ILP is about the number of different edge slopes. The goal of Néllenburg and Wolft was
to draw metro maps in the rather classic octilinear style. This restriction is unreasonable
for planar graphs in general, more than eight different directions are required. A priori
the only assumption on the placement of rounded vertices is that they each lie on a grid
point somewhere within the given bounding rectangle. Hence, edges in a valid drawing
can possibly go from any of those grid points to any other. Let D be the set of unique
directions D = (Dx, Dy) in [~ Xmax> Xmax] X [~ Ymax> Ymax]- To explicitly enumerate all
elements of this set, we use the Farey sequence [GKP94]. The Farey sequence F, recur-
sively enumerates all fully-reduced fractions with denominator less or equal to n. More
precisely, F,, contains F,,_; and all mediants? created from subsequent elements of F,_i;
the first three elements of the Farey sequence are shown in Equation (5.3).

01 011 01121
Flz{_a_}aFZ:{_’_>_}aF3={_’_’_’_’_} (53)
11 121 13231

2 Also known as the “freshman sum’, the mediant of two fractions % and 5 is defined as the sum of the

numerators divided by the sum of the denominators ZT*;.

72

5.3 Exact Solution Using Integer Linear Programming

Picking # = max{Xmax, Ymax ;> We use the n-th element of the sequence F, to gener-
ate the set D of all possible directions as follows: We use the elementsin fi,..., fi € F, as
slopes for a set of vectors; all vectors start at the origin and the j-th vector points towards
coordinate (1, f]) Extending these vectors to travel a distance of n in x-direction, they
together point to (or pass over) all grid points that are inside the bounding rectangle and
the first octant. An illustration for n = 3 can be found in Figure 5.6 (a). Alternating the or-
der and signs of the endpoint’s coordinates allows us to create sets of vectors for all eight
octants; see Figure 5.6 (b). From the literature [GKP94] we get that |F,| ~ 37%2 and hence
the number of all possible directions inside the bounding rectangle is |D| € ®(n?). In the
following, we let the set D be ordered counterclockwise and enumerated using integers,
starting at the positive x-axis, allowing comparison of directions by integer identifier.

No two Edges Cross. The following constraints ensure that nonincident edges do not
cross without preventing incident edges from touching in their shared vertex. We will
follow the general idea of Nollenburg and Wolff [NW11]. While producing octilinear
drawings of metro maps, they ensured planarity by forcing every pair of nonincident
edges to be separated by at least some distance Dyy;, in at least one of the eight octilin-
ear directions. Enforcing this minimum distance of separation was partly an aesthetic
guideline, but also guarantees planarity. We employ the same approach for the latter, but
as we are not interested in the same aesthetics, some modifications are necessary. Most
notably, we allow for more than eight possible edge slopes and thus need to check if a
pair of nonincident edges is separated in any direction of D. Enforcing a rather large
minimum distance between edges was useful for Néllenburg and Wolff when labeling
the individual stations along the metro lines. We do not have additional labels that we
need to reserve space for, therefore we pick the separation distance Dy, such that all
planar realizations on the grid are allowed; that is, Dy, has to be small enough to sepa-
rate any non-intersecting pair of edges in the output. Considering the possible slopes of
an edge and the minimum distance of that edge to the endpoint of some other edge, we
choose Dpin = 1/(max{ Xmax> Ymax } + 1) — smaller than all non-zero elements in F,,.

For every pair of nonincident edges e;, e; € E and all directions D € D, we add a
binary variable yp(e;, e;) € {0,1} to the model. A value of 1 indicates that e; and e,
are apart by Dy, in direction D. Every pair of nonincident edges must be separated in
some direction (following the idea of Nollenburg [N6105]), we need to make sure that at
least one of the corresponding y is set to 1. Hence, we get the set of constraints shown in
Equation (5.4).

Ypep yplene) =1 Ve, e, € E, e, e, nonincident (5.4)

To enforce separation of the edges, we impose constraints on the coordinates of the
edges’ endpoints. We need all constraints to be contained in the model before solving,
but as there are opposing directions, we also need to include sets of constraints that are
apparently conflicting. Hence we only want the set of constraints to be enforced for
which the corresponding y is set to 1. To model this switch-case scenario, we extend

73

5 Moving Graph Drawings to the Grid Optimally

all necessary equations by a term composed of a multiplication of that y by some large
constant L,’, adding some slack to the constraints we want to have “disabled” during
solving. Let L, = 2-max{Xmax> Ymax } +1. Then we require the following for any direction
D e D, all pairs of nonincident edges ey, e,, and all pairs of endpoints v € e}, w € e;.

DX : (xv _xw) + DY : ()/v _yw) + (1 -)/D(eb 62))1’)/ 2 Dmin

N 5.5
VDeD Vee;¢€E,ep, e, nonincident Vvee,wee, (5.5)

Considering a single pair of nonincident edges, the constraint of Equation (5.4) yields
a unique direction D with yp = 1. By choice of L, the constraints of Equation (5.5) that
involve a direction D with yp = 0 are trivially fulfilled.

Determine Direction of Incident Edges. To prevent two incident edges e, e; € E
from overlapping, we again generalize the metro-map drawing ILP. Without being re-
stricted to the octilinear drawing style, we assign any direction from D to either edge.
The direction assigned to an edge e = (v, w) is relative to the endpoint of that edge - con-
sider the opposing directions D and D’ in Figure 5.6 (c). By ensuring that the directions
assigned to any pair of incident edges differ, we prevent those edges from overlapping.

Following the recipe for nonincident edges, we introduce a binary decision variable
ap(v,w) € {0,1} for every vertex v € V, every vertex w € N(v) from the neighborhood
of v and every direction D € D. Setting ap (v, w) to 1 implies that the direction of edge
(v,w) is D when considered from endpoint v. To ensure that every edge gets some
direction assigned to it, we use the constraints presented in Equation (5.6).

Y pep ap(v,w) =1 VveV VYweN(v) (5.6)

For any vertex v € V, any neighbor w € N(v), and any direction D € D, the follow-
ing ensures that edge (v, w) indeed has direction D and that the position endpoint w
matches that direction. Again presented with sets of constraints apparently in conflict,
we add conditional slack to the inequalities as we did in Equation (5.5). We do so by
using constant L, = 2 - max{Xmax, Ymax} + L.

Xy Dy+y,-Dx—x,-Dy+(1-ap(v,w))Ly >y, - Dx
Xw-Dy+y,-Dx—x,-Dy - (1-ap(v,w))Ly < y» - Dx
(1-ap(v,w))Ly + (x —x,) - Dx + (yw —yy) Dy >0
VveV VweN(v) VDeD

By setting some « to 1 — and thus satisfying the constraints of Equation (5.6) — we
enable one subset of constraints from Equation (5.7), as L, dominates all other terms.
These constraints enforce the comparison between edge slope and direction, which gives
us the direction of edge (v, w) with the correct sign.

With the correct value assigned to each «, we prevent overlapping incident edges and
preserve cyclic orders of neighbors around each vertex in one set of constraints.

(5.7)

* In Operations Research, this is known as the Big-M method.

74

5.3 Exact Solution Using Integer Linear Programming

Preserve Cyclic Orders of Outgoing Edges. We test cyclic orders using the map-
ping of the corresponding edges onto the directions, as those are already ordered lin-
early by the angle between the corresponding vector and the positive x-axis. Given the
input embedding, we enforce that for vertex v and the i-th neighbor w; of direction D;,
the direction D;,; of the next neighbor w;,; must be later in the order of D, hence we
say D; < Djy; identifier-wise. We also need to linearize the cyclic order of neighbors
around each vertex in order to be able to encode them into the model. This imposes the
problem that we cannot know in advance, which neighbor will be assigned the direction
with the lowest identifier. Given k neighbors and knowing the “correct” first neighbor
in advance, we would get the ordering of the directions D; < D; < --- < Dy to match
W1, Wa, ..., Wi, Wi, Unrolling the cyclic order of neighbors at the wrong point, there
could then be a neighbor in the linearized order, for which the increasing-identifier con-
dition described above cannot hold, despite of the cyclic order being preserved in the
output. To overcome this, we use a binary decision variable (v, w) € {0,1} for every
vertex-neighbor pair, indicating if w is the “last” neighbor of v according to the order of
D. Thus, when the output contains an ordering Dy < --- < Dy ¢ Dpyq < Dpyz ..., We use
the corresponding f to add the slack necessary to disable exactly one constraint.

Y weN(v) B(v,w) =1 Vv eV,deg(v)>1 (5.8)

&p, (V’ Wi) < /3(‘/’ Wi) + ZDWE'D:DW>D1 ap, (V’ Wi+1)

5.9
VD eD VveV,N(w)={w,wy...,wi}, k=degv>1 (5:9)

For notational convenience, we let wi,; = wy, as N(v) is conceptually circular. For
any « set to 0, the inequalities of (5.9) are trivially satisfied. Otherwise, there has to
be a neighbor whose connecting edge has direction with higher identifier (and thus the
corresponding « set to 1), unless it is the last neighbor in the embedding of v. To ensure
that there is only one “last neighbor”-violation of the constraints from (5.9), we introduce
the constraints of (5.8). Adding f3 to every constraint of (5.9) also allows for the whole
neighborhood of v to be rotated around it.

Theorem 5.5. The above ILP solves TOPOLOGICALLY-SAFE GRID REPRESENTATION.

In addition to its original purpose, the integer linear program we described above
can also be repurposed to produce grid drawings of planar graphs of small area. To do
so, changes to the objective function are required; see Equation (5.10).

Minimize max y, (5.10)
veV

Lemma 5.6. By replacing the objective function (Equation (5.1)) from the above integer
linear program with that shown in Equation (5.10), the above model can be used to search
for minimal-area drawings.

Proof. Replacing the objective function with that of Equation (5.10), the ILP computes
a planar straight-line grid drawing with the given embedding and width at most X«

75

5 Moving Graph Drawings to the Grid Optimally

(prescribed by the bounding rectangle). For each now constant width, we get a drawing
of minimal height by scaling down the graphs original coordinates to make it fit into
one grid cell and then “rounding it” back to the grid. Changing the bounding rectangle
width, we get an algorithm to search for a drawing of smallest bounding rectangle. [

5.3.3 Delayed Constraint Generation

The integer linear program described to solve TOPOLOGICALLY-SAFE GRID REPRESEN-
TATION works in theory; however, it is not suited for practical applications due to ob-
structive computation time. This problem becomes even more apparent when trying
to find drawings of small area. Hence, we discuss the application of delayed constraint
generation (also known in the context of constraint generation, see Chinneck [Chi08]) to
the original model as well as the area minimization variant. Delayed constraint genera-
tion is a technique used to speed up the process of solving linear programs. We discuss
its usefulness and give an experimental evaluation on selected instances to support our
claims. We will discuss this at the end of Section 5.4. The general idea behind this is that
in a “reasonable” feasible solution, most constraints will trivially be satisfied. Our intu-
itive approach to constraint generation is the following: Consider two edges that are far
apart in the input. If the endpoints of these edges don’t move too much while rounding,
the edges will also be far apart in the output. Hence, those edges will probably not want
to cross, making the sets of constraints preventing them from doing so obsolete. If we
could identify and remove all such constraints beforehand, the resulting model would
be smaller in size and thus easier to solve. But as the problem at hand is NP-hard, we
cannot make good guesses on the relevance of individual constraints.

In general, the opposite is done to implement constraint generation: Creating and
solving a possibly underconstrained partial model, an external oracle is used to verify
correctness of the obtained solution. If the solution is correct, it is also optimal and
feasible for the full model (containing all possibly relevant constraints); otherwise, the
oracle reports back any parts of the solution that would have made it be infeasible for
the full model. Then the violated constraints of the full model are added to the partial
model. This process is repeated until either a feasible solution is found or all constraints
of the full model are added. In either case, the solution produced by the iteratively refined
partial model is of the same quality as that of the full model.

We use delayed constraint generation to iteratively add almost all constraints only
when needed. We extend the basic model to include the constraints relevant for the con-
sistency of assignment of the sets of binary variables containing all the y (Equation (5.4)),
all the o (Equation (5.6)), and all the 8 (Equation (5.8)) to get the empty model. It is empty
in the sense that it is missing all constraints that require a “meaningful” assignment of
binary variables; hence the consistency constraints of the empty model can be satisfied
almost trivially. In the following, we will use the empty model as the initial partial model
to start adding constraints to. Most basic ILP-solvers will pick one decision variable of
the empty model at a time and branch on the possible values it can take. For our co-
ordinates this process will implicitly first try moving each vertex to one of the corners

76

5.4 Experimental Performance Evaluation

of the cell containing it. In the next chapter, in Section 6.2, we reconstruct this proce-
dure when describing the Greedy Rounding* heuristic; there we also provide an efficient
implementation in G+ and discuss the overall performance of this heuristic.

Checking the output of a partial model for topological equivalence can easily be
done by any algorithm to test for planarity. To serve as an oracle, we store the original
cyclic orders of the input graph and extend the planarity test to also test for consistency
with the stored rotation system and make it report back any new incidences, crossing
edges, and changed cyclic orders. We then use the results to add the constraints of Equa-
tions (5.2), (5.5), (5.7), and (5.9) respectively as needed. The extended partial model is
then solved again. Notice that the actual runtime of a planarity test is small compared
to the time required to set up and solve the model. Also notice that solving the almost
empty basic model takes practically no time. Hence, that way we can easily and quickly
find a reasonable initial set of relevant constraints. We support these runtime- and per-
formance claims by observations made in the next section.

5.4 Experimental Performance Evaluation

In this section, we discuss the performance and limitations of the model described above.
To do so, we made an implementation using Java to create the model and control the
IBM CPLEX solver. We tested this implementation on six graphs of different sizes and
complexity. The test instances are hand-picked to convey the impact of vertex count, size
of bounding rectangle and number of “difficult” parts on the overall performance.

In the following, the column “Full model” is used for executions of the above ILP
without any constraint generation. The column “first” gives the time until any feasible
integer solution (not necessarily optimal) is reported by the integer solver. For both
variants, the “opt” column gives the time until the solver reports an optimal solution.

We performed the following experiments on a machine with 16 cores (2666 MHz
and 4 MB cache each), 16 GB memory and 20 GB swap space and using CPLEX with
Java bindings. To compare the full model and the constraint generation approach, we
consider model size and wall-clock time spend solving. The measure for model size are
the number of rows and columns after CPLEX completes any preprocessing steps; an
entry of “t” in a table means that either no model could be created within given time
and/or system memory, or that the solver did not report a result within 10 minutes.

For the output figures, white vertices represent the initial positions with the red ar-
rows indicating actual vertex movement. For all input/output drawing pairs, the underly-
ing grid represents the bounding rectangle that was allotted to each instance respectively.
As a general measure for complexity of an instance, we will consider the vertex density
y, the ratio between the number of vertices in the input and the total number of grid
points contained in the allotted bounding rectangle; y = 100% implies that in the output,
all grid points will be occupied.

* Greedy Rounding will be implemented to obey the constraints of Equation (5.2), whereas the empty
model does not.

77

5 Moving Graph Drawings to the Grid Optimally

Small Examples. We start the discussion with a group of three instances. Each in-
stance has a rather small number of vertices as well as bounding rectangle area. The in-
put drawings are shown in the upper row of Figure 5.7; see Table 5.1 for data on instance
size, model size, and time spend solving.

Consider Graph 1 (Figure 5.7 left): The right of the two inner faces contains two
additional vertices but the initial drawing has only one available grid point inside that
face, making an “unlucky” execution of Greedy Rounding’ fail to round either vertex.
To overcome this, several of these vertices need to make locally non-optimal movements,
enlarging the face. Graph 1 is of average vertex-density (y = 36%) compared to the other
five instances. Because of its small size and low number of edges, the resulting model
is small and thus an optimal solution is found rather quickly. However, its vertices are
positioned so that many constraints are not trivially satisfied and significant effort is
required even by the constraint generation approach.

Graph 2 (Figure 5.7 center) has lower vertex-density (y » 30.5%). In addition, it is
designed such that every vertex has one preferred integer grid point that is not contested
by any other vertex; hence, greedily rounding each vertex yields the optimal solution.
The embedding preservation constraint of the central vertex involves all other vertices,
and thus requires most of the « variables to be set properly, whereas in the basic model,
these variables can be assigned freely. Any other constraint is easily satisfiable. In terms
of computation time, there is not a big difference between finding the first solution and
closing the integrality gap. By construction of the input graph, the embedding is trivially
preserved by Greedy Rounding; this is also reflected considering model size and solving
time of the constraint generation approach. Hence the optimal solution is found by the
first run of the constraint generation approach almost immediately. (Note that the 0.5
second runtime includes setting up the Java environment, calling the CPLEX solver and
checking topology.)

The input drawing of Graph 3 (Figure 5.7 right) is comparable to those suggested to be
input for the area-minimal drawing variant described in Lemma 5.6 - that is, all vertices
are initially drawn within the same grid cell. With vertex-density y ~ 77.8%, this is also
the most dense instance we did experiments on. First of all, small bounding box result
in small and easy-to-solve full models. The size of the bounding box has extreme effect
on the runtime — compare the times for the full models of Graph 3 and Graph 1, which
has only two more vertices but a much larger bounding box. For such extreme instances,
almost all constraints are required and repeated testing and adding of constraints results
in an accumulated runtime that is higher than setting up and solving the full model.

5> We will later describe Greedy Rounding to try each vertex in random order, moving it to the cheapest
grid point that is available at that time.

78

5.4 Experimental Performance Evaluation

Input:

Output:

(cost: 6.181125) (cost: 5.570467) (cost: 6.92559)

Figure 5.7: Graph 1has one contested grid point (marked by the orange circle) that required significant
effort to be resolved. Graph 2 is roundable greedily without complications. Graph 3 is similar to the
instances suggested for finding area-minimal drawings, and is supposed to be challenging in general.

Table 5.1: Instance sizes and runtime measurements for Graph 1, 2, and 3, all shown in Figure 5.7.

Instance Full model Constraint generation

V| |E| y | rows cols first opt | rows cols opt
1 9 10 36.0% 8046 2239 3.2s 90.6s | 3791 1053 29.2s
11 15 30.6% | 26151 6857 5.2s 10.6s 2 3 0.5s

3 7 7 77.8% | 2583 89 0.5s 4.8s | 2245 682 20.2s

79

5 Moving Graph Drawings to the Grid Optimally

The last example implies that constraint generation is best to be used when the in-
stance has low-vertex density or when many vertices have uncontested preferred grid
points to be rounded to. To investigate on these two implications and their relationship,
we now look into larger and gradually more complex instances.

Medium-sized Examples. The performance difference between the full model and
the constraint generation approach becomes more apparent when the size of the bound-
ing rectangle increases. Consider the two instances of Figure 5.8: They are of about the
same density as the first two instances, but double in size; exact measurements on in-
stance size and solving times can be found in Table 5.2.

Graph 4 (Figure 5.8 left) is a path, and thus the model of this instance does not need
to contain any constraints to preserve the cyclic orders of vertices. The vertices of the
input drawing are spread rather evenly over the bounding rectangle, making almost all
vertices have an uncontested preferred grid point to round to. Graph 5 (Figure 5.8 right)
on the other hand has one vertex more but is more connected. Graph 5 is also designed
to make the Greedy Rounding fail: Trivially rounding the two upper degree-1 vertices
will change their relative order around their common neighbor; the path on the right
side has several contested grid points and the vertices on it will create new incidences
when rounded greedily.

These differences are also represented in the sizes of the full model for both instances.
The model for Graph 5 has more than four times as big, mostly because more edges need
to be considered with respect to more possible directions. Therefore the solver did not
find an optimal solution for the instance of Graph 5 within 10 minutes. To capture the im-
portance of pre-eliminating trivially satisfied constraints consider the final model sizes
for the column generation approach on these instances. The lower left part of Graph 5
is a grid on nine vertices, all of which can be greedily rounded correctly. All embedding-
and planarity-preserving constraints for edges incident to these vertices are trivially sat-
isfied by any good solution and thus were never added to the partial model. This results
in a significant time reduction for solving the partial model to optimality - compare that
time to the time it took finding any feasible solution for the full model.

Considering the partial model for Graph 4, we observe that easy instances also benefit
from constraint generation, but the obtained speed-up is not nearly as high, even on a
smaller bounding rectangle.

Notice that in our context, medium-sized instances only have about 20 vertices and
even then, we have to wait for four minutes (in the case of Graph 5) - for most scenar-
ios, graphs of that size would be considered rather small. To emphasize the impact that
constraint generation has on instances with large bounding rectangles and low vertex-
density, we now consider an even more extreme example.

80

5.4 Experimental Performance Evaluation

:ndinQ

(cost: 7.88264)

(cost: 13.082013)

Figure 5.8: Graph 4 is a path and can be solved optimally fairly easily. Graph 5 is designed to have two

as well as new incidences and collapsing

orange circle)

(

complications: One changing cyclic order

features (green circle).

Table 5.2: Instance sizes and runtime measurements for Graph 4 and 5, all shown in Figure 5.8.

opt

cols

9200 2402
15127 3894

Constraint generation
rows

opt
1106

first

Full model
cols
19591
82816

rows
74957
323441

Y

39.5%
31.3%

Instance
|E|

V]

#

21s
212s

43s
182s

18
25

19
20

T

81

5 Moving Graph Drawings to the Grid Optimally

Input: Output:

Figure 5.9: Graph 6 is the largest instance we ran experiments on. The only non-trivial part is high-
lighted by the orange circle at the top-right corner.

Table 5.3: Instance sizes and runtime measurements for Graph 6, all shown in Figure 5.9.

Instance Full model Constraint generation
V| |E| y | rows cols first opt | rows cols opt
6 26 34 116% | t t t 112355 3146 7.ls

A large Example. The last instance we discuss here is shown in Figure 5.9 (with addi-
tional data in Table 5.3). In terms of rounding complexity, this instance is almost as easy
as Graph 2: there is only one pair of vertices contesting the same grid point in the top
right part of the input drawing. Being an easy instance has no impact on the performance
of the full model; in fact, creating all possible constraints for all possible directions in this
instance already exceeded the allotted computation time and no time was left to spend
actually solving the model. In contrast, the constraint generation only had to add one
constraint for two vertices of the upper-right corner to the partial model. Rebuilding
the model and solving with this constraint runs in reasonable time (compared to the full
model). Notice that this constraint does not involve the direction set D.

The key messages to take from this section can be summarized as follows: Small
bounding rectangles result in small and quick-to-solve models, but as the bounding rect-
angle grows in size, so does the model - recall that the number of possible directions |D|
is quadratic in the rectangle’s larger dimension and that the number of most constraints is
directly linked to | D|. Second, when many constraints are violated during the constraint
generation processes, iteratively adding the constraints results in runtime exceeding the
time for solving the full model. On instances with moderate vertex-density (y < 40%)

82

5.4 Experimental Performance Evaluation

Figure 5.10: (a) A nested-triangles graph on n = 6 vertices, placed completely in one grid cell; (b) the
output using the rounding objective (Equation (5.1)) - solved in 3 h 25 min; (c) the output using the
objective function of Equation (5.10) with Xa.x = 3 - solved in 10 min 31s.

the constraint generation approach clearly outperforms the full model (while still being
infeasibly slow in practice).

Graph Drawing. We conclude this chapter with a brief overview on the capabilities
of our integer linear program as a graph drawing tool. Area-minimal drawings of pla-
nar graphs are useful tools for creating (counter-)examples and thus have a long history
in graph drawing, summed up by Frati and Patrignani [FP07]. While Krug and Wag-
ner [KW07] did provide a A/P-hardness proof, we do not know of any tool for com-
puting optimal solutions. We demonstrate the capability of our ILP finding such draw-
ings and compare the model tailored to solve TOPOLOGICALLY-SAFE GRID REPRESEN-
TATION to the modified version described in Lemma 5.6. Our model does not contain
constraints for fixing a particular outer face; any drawing respecting the given cyclic
orders is valid. In Figure 5.10, we show a nested-triangles graph on six vertices (a), to-
gether with two area-minimal drawings created using the regular program (b) and the
modified version (c). Notice how both drawings have a non-triangular outer face differ-
ent from the input and that both occupy the same area of six grid cells. Figure 5.10 (b)
was created in almost three and a half hours, whereas Figure 5.10 (c) only took about ten
minutes. This difference can be attributed to the fact that the objective function of the
area-minimizing model takes discrete values (namely the highest y-coordinate), which
allows the solver to prove lower bounds faster.

Our model is capable of taking non-planar drawings of planar graphs as input - the
lines separating nonincident edges in the input is not represented in the constraints - as
well as (in theory) taking non-planar graphs and reporting “infeasible” for them. The
latter is strongly inadvisable. We tried solving the model using a drawing of K as input,
but canceled computation after twelve hours.

83

5 Moving Graph Drawings to the Grid Optimally

5.5 Conclusion

In this chapter, we have discussed the problem ToPOLOGICALLY-SAFE GRID REPRESEN-
TATION - transforming a given planar drawing into a drawing with the following con-
straints: Each vertex has coordinates at integer precision, the topology of the original
drawing is preserved, and the total displacement of all vertices is minimal among all
valid transformed drawings.

We have shown TOPOLOGICALLY-SAFE GRID REPRESENTATION to be AV/P-hard by
giving a reduction from PLANAR MoNOTONE 3SAT. To find optimal solutions, we mod-
elled the problem using integer linear programming. We created some selected test in-
stances to evaluate the performance of our original model as well as our faster delayed
constraint generation approach. To do so, we implemented the model using Java and
the IBM CPLEX solver, performing experiments on a virtual machine with 16 cores. We
concluded the discussion of the experiments with empirically analyzing the selected in-
stances, pointing out why they are challenging for our implementation.

Finally, we discussed how our model can be adapted to solve another A’P-hard prob-
lem, namely minimizing the area of planar straight-line drawings. While applicable in
theory, our experiments have shown the runtime to be infeasible from a practical stand-
point.

The results we have presented in this chapter directly motivate those of the following
Chapter 6. The integer linear program discussed here is too slow to be used in any real
world application, hence we next introduce an efficient randomized heuristic based on
simulated annealing.

84

Chapter 6

Practical Topologically-Safe Rounding
of Geographic Networks

In this chapter we consider the TOPOLOGICALLY-SAFE GRID REPRESENTATION problem
in an application-oriented setting. We are given a geographic network representable by
line-segments in the plane — encoded as a planar graph with real-valued vertex coor-
dinates - and consider the problem of representing the vertices at given (integer) grid
positions. There are several advantages to such representations as opposed to the com-
mon practice of using floating-point numbers for coordinates. Goldberg [Gol91] stated
that using integer precision makes explicit what the actual precision of the representa-
tion is (because of using a data type), in a data type without mathematical surprises.
Milenkovic [Mil95] demonstrated that the original coordinate precision has consider-
able impact on the precision required to safely perform geometric operations, such as
intersecting or calculating overlap. Finding representations on small grids is a natural
form of data compression since it reduces the range of the coordinate values. In geo-
graphic applications, usually large amounts of data need to be stored and processed. In
mobile route planing, for example, the devices in use are often hand-held and have lim-
ited resources: small memory, small screens, or slow CPUs. It is also of mathematical
interest to consider the smallest grid on which the network can be represented under
certain quality constraints. Grid drawings also provide a form of schematization by en-
forcing a minimum length on edges and introducing a rigid structure in dense areas. This
also serves a perceptual purpose: It avoids having arbitrarily small features that need to
be drawn. Such features would be hard to read and, ultimately, any visual reproduction
of the network is likely to have precision limited to some discrete level anyway.

We are of course interested in good grid representations of the input network - for
some measure of quality — and not just an arbitrary representation. Many “rounding”
and “snapping” procedures from the literature give a bound on the geometric difference
between the input and output networks; usually, vertices are allowed to move only within
one grid cell. These procedures achieve this by accepting possible changes to the topol-
ogy of the network, such as allowing vertices to coincide, new intersections to occur, or
faces to collapse. We approach the problem from another direction by demanding topo-
logical equivalence between the input and output drawings and optimizing the quality of
the result. This perspective is motivated by geographic networks, where connectivity, em-

A preliminary version of the contents of this chapter has appeared in the proceedings of ACM SIGSPA-
TIAL 2019 [vDL19]. This is joint work with Thomas C. van Dijk.

85

6 Practical Topologically-Safe Rounding of Geographic Networks

bedding (road networks), and the faces (territorial maps) are crucial. Our main measure
of quality for the rounded output is the same as for ToPoLOGICALLY-SAFE GRID REPRE-
SENTATION: the sum of (Euclidean) input-output-position distances for all vertices.

This topologically-safe “rounding” problem is nontrivial, especially if the network
has areas where the density of the points is high relative to the size of the grid. In fact,
several variants are known to be A’P-hard - see Milenkovic and Nackman [MN90], as
well as Chapter 5 and our joined work with van Dijk and Wolff [LvDW16] - and no
practical method for obtaining high-quality results is known. In this paper we present a
practical method based on simulated annealing.

6.1 Related Work and Contribution

Related work on drawing and rounding graphs on the grid can be found in Section 5.1.
Here we focus on work about network compression. Recall that the approaches discussed
in Section 5.1 bound the distance between input and output, but allow features to collapse.
As argued before, these techniques may not be appropriate for geographic applications.
We showed in Chapter 5 that minimizing distortion in topologically-safe grid represen-
tations is A/P-hard in many settings.

As a data compression problem, it is hard to find a minimum representation of ar-
rangements of polygons [MN90]; also recall that the reduction we give in Section 5.2 asks
for saving only a single bit on coordinate representations of embedded planar graphs.
Shekhar et al. [SHDZ02] give a clustering-based approach to compress vector (road)
maps; Khot et al. [KHN*14] present a survey on road network compression techniques.

Contribution. In this chapter, we consider a variant of the ToPOLOGICALLY-SAFE GRID
REPRESENTATION problem from Chapter 5 that does not restrict the output drawing to be
contained inside a bounding rectangle. Notice that the hardness proofs from Section 5.2
trivially extend to this less constrained variant. In the following, we use the Euclidean
distance - denoted by ||-| - to measure the cost of vertex movements.

Considering the hardness of this problem, we propose a heuristic approach - in par-
ticular, a two-stage algorithm based on simulated annealing. Stage One focuses on find-
ing a topologically equivalent grid representation that we can improve in Stage Two. This
is necessary since finding any feasible solution that does not, in the worst case, massively
distort the input is nontrivial. The second stage uses simulated annealing to improve the
quality of the drawing; see Figure 6.1 for two examples on real geographic networks.

The rest of this chapter is organized as follows: In Section 6.2, we establish the basic
terminology and introduce easy heuristics that partially solve the problem. In Section 6.3,
we give an overview on simulated annealing in general and describe our two-stage algo-
rithm, including pre- and postprocessing procedures. Finally, Section 6.4 describes the
setup used for our experiments on real-world networks as well as on artificially generated
networks as well as the results. We statistically evaluate the impact of various design de-
cisions on the performance of our approach.

86

6.1 Related Work and Contribution

Eras

(4

Figure 6.1: Two instances with real-valued input (light drawing) and corresponding grid represen-
tation (black drawing) computed using our algorithm. (a) Roundabout in downtown Wiirzburg (138
vertices, 155 edges), grid size 28 x 28, average vertex movement 0.600, computed in 15 s; (b) borders in
Britain (3110 vertices, 3207 edges), grid size 240 x 240, average vertex movement 0.435, computed in

70 s, cropped to show only the south-east (roughly centered around London).

87

6 Practical Topologically-Safe Rounding of Geographic Networks

6.2 Terminology and Basic Heuristics

Given an input drawing I}, our two-stage approach will produce intermediate drawings
I, - drawings where some vertices are already moved to the integer grid while others
are not. We call a vertex nongrid if its coordinates are not integer. As before, the cost of
a vertex v in a drawing Iy (with k > 1) of G is defined as the Euclidean distance between
its original (real) position p(v) in the input and its position r(v) in the drawing I; the
cost of a drawing is the sum over the costs of its vertices. This matches the notation and
objective function stated in Section 5.3.1. A drawing is called feasible if it is topologically
equivalent! to the input and all vertices are positioned on grid points. Note that the
original drawing I always has cost zero, but - except in trivial cases - is infeasible.

In the iterative procedures we describe in this chapter, we proceed from one inter-
mediate drawing to the next by moving a vertex: A move is the change of position of a
single vertex of the current drawing, that also keeps the position of each other vertex
unchanged. A move is called valid if it does not change the topology of the drawing, and
the cost of the move is the difference in cost between before and after the move.

As a baseline, we describe several rather straightforward partial heuristics. They re-
late to rounding vertices as known from the literature, as they move vertices to the closest
available grid point; they are partial in the sense that they are not guaranteed to find a
feasible solution.

Instant Rounding. Independently set the position r(v) of each vertex to the nearest
grid point. If the resulting drawing is topologically equivalent to the input, it is an op-
timal solution since every vertex independently moves the minimum amount possible.
Otherwise the heuristic failed, returning the original drawing unchanged.

Incremental Rounding. Round the vertices one by one, in arbitrary order, checking
the validity of each move. Undo any invalid moves, leaving each such vertex v in their
original position p(v). This procedure may succeed in rounding a subset of the vertices
even if it fails to solve the entire instance; this can be useful for quickly solving “easy”
parts of the graph. The cost of this drawing is still a lower bound on the optimum since
any vertex that moves does so by the minimum amount.

Incremental Greedy. Do the following for all vertices, one by one, in arbitrary order:
consider moving it to any of the four corners of the grid cell it is in.> Check these candi-
date moves for validity in nondecreasing order of cost (distance to p(v)); accept the first
valid move and continue with the next vertex. Vertices with no valid candidates remain
unrounded. Note that the rounding cost of this (partial) solution is not a lower bound on
the optimum, even if it finds a valid grid position for all vertices since greedy decisions
were made.

! Recall that equivalence is stronger than the topological similarity stated in the definition of snap rounding
(Definition 5.1 (3) on page 61).

2 This is ill-defined for vertices on grid lines; in fact we take the floor or ceiling on each axis, resulting in
at most 4 candidate positions per vertex. Hence, vertices that already lie on a grid point are not moved.

88

6.2 Terminology and Basic Heuristics

(a) Rounding (b) Greedy
100% | 087 072 062 055 098 089 079 069
- 80% | 0.89 0.73 0.63 0.55 0.98 0.91 0.81 0.71
a 60% | 0.90 0.75 0.64 0.56 0.98 0.92 0.83 0.72
&
2
40% | 0.91 076 066 0.58 095 086 075
20% - 077 067 058 096 089 077
10% 40% 70% 100% 10% 40% 70% 100%
(c) Rounding (d) Greedy
with Cartogram Preprocessing with Cartogram Preprocessing
100% | 0.92 0.81 070 061 092 083 073
o 80% | 093 082 072 062 094 086 075
a 60% | 095 085 075 0.66 096 089 0.79
&
=
40% | 0.96 0.88 0.78 0.69 0.98 0.92 0.83
20% - 089 083 074 098 095 0.89
10% 40% 70% 100% 10% 40% 70% 100%
Vertex Density Vertex Density

Figure 6.2: Success rates of (a) incremental rounding, and (b) incremental greedy as described in Sec-
tion 6.2. Figures (c) and (d) include the cartogram preprocessing from Section 6.3.3. Each entry is for
100 random instances with area [0,19] x [0, 19] and varying vertex and edge density (see Section 6.4.1
for a description of the random instances). Matrices are sparsified for readability.

Depending on the properties of the considered instances, these easy heuristics may
work quite well or experience significant difficulties. For example, in Figure 6.2 (a)
and (b), success rates of these heuristics are given for randomly generated planar graphs
of various vertex density y and edge density ¢ on a fixed area. These instances and how
they are created is described in more detail in Section 6.4.1; here we include vertex den-
sities from 10% up to 100% (meaning one vertex per grid point on average), and edge
densities from approximately matching-sized edge sets (20%) up to a full Delaunay tri-
angulation (100%).

The matrices show the success rate of the Incremental Rounding and Incremental
Greedy algorithms on 100 graphs for each setting; that is, numbers and colors indicate
the fraction of vertices in the output drawings that are at integer-precision coordinates.

89

6 Practical Topologically-Safe Rounding of Geographic Networks

We see that the greedy approach clearly performs better than simple rounding, but even
in the sparsest graphs, rounding fails to move 1% of the vertices to the grid on average.
The gradient of the values indicates that vertex density seems to be more challenging for
both approaches than the number of edges: although the edges also constrain the feasi-
bility of drawings, it is particularly the (local) density of vertices that forms a problem
for these heuristics. Note, for example, that a grid cell containing more than four input
vertices cannot be completely rounded by these heuristics; this, among other difficult
situations, is more likely to occur in instances of higher vertex density. Scale & Greedy
(described below) overcomes this problem by exploding the size of the network, effec-
tively increasing the number of available grid points at the expense of a large (rounding)
cost.” This is efficient in terms of runtime, but often requires large scaling factors on
real data and therefore returns drawings that are completely unacceptable as a heuris-
tic and impractical for Stage Two. We support this claim by experimental results, see
Section 6.4.2.

We also present a heuristic that always finds a feasible solution. However, it can give
very bad solutions, as we will discuss in Section 6.4.2.

Scale & Greedy. Repeat the following steps in order until a valid drawing is found.
Uniformly scale the input network by a factor f (initially f = 1) and apply the Incremen-
tal Greedy algorithm. If this results in no vertices being nongrid, we are done; otherwise,
increase f by one and retry. This process terminates since Incremental Greedy will suc-
ceed for large enough f. However, scaling the entire network is likely to result in high
cost.

6.3 The Two-Stage Algorithm

We do not allow topological alterations of the network and insist on moving all vertices
to the grid, thus we have to handle vertex-dense clusters. To do this, we first propose
and discuss several approaches. The difficulty of ToPOLOGICALLY-SAFE GRID REPRE-
SENTATION lies not only in finding a solution with low cost since it is already nontrivial
to find any reasonably similar feasible solution at all. Given these difficulties (and the in-
tractability of finding optimal solutions), we now consider a local search approach. Since
we do not want to require starting with a feasible solution, this local search will have to
handle infeasible states: it needs to consider drawings in which there are (still) nongrid
vertices. However, it will never consider drawings that are not topologically equivalent
to the input: Topological equivalence of the current drawing and the input drawing is
an invariant we maintain at all times, rather than a property we are searching for. All
our search algorithms use the following definition of transitions between neighbors for
intermediate drawings:

3 From a data compression perspective, scaling by a factor two corresponds to using an additional bit on
each axis of each vertex. With enough bits, the drawing can be represented without significant rounding.

90

6.3 The Two-Stage Algorithm

Local search neighborhood transition. Take any vertex v and perform any valid
move among the following. If v is nongrid, move it to a random corner of the grid cell it
is currently in; otherwise, move it to one of the eight grid points surrounding it.

Two drawings are neighbors in the local search, when they differ only in the position
of a single vertex and when this difference is obtainable by the transition defined above.

If we use hill climbing (always greedily picking the neighbor with lowest cost) in this
neighborhood definition, nothing happens: the state representing the input drawing I}
already has cost zero and any neighbor of I is more expensive. Since we generally foresee
further complications due to local optima, we pick the well-known metaheuristic simu-
lated annealing by Kirkpatrick, Gelatt, and Vecchi [KGV83]. For a description of sim-
ulated annealing, see for example Van Laarhoven and Aarts [vVLA87]; below we briefly
sketch the general approach. Simulated Annealing borrows its terminology from metal-
working: We will use terms like energy, temperature and cooling, which we define next.

Simulated Annealing. Simulated annealing is an iterative local search procedure. We
consider all topologically valid drawings of the input network as possible system states.
We define the energy E(T') - or cost in our terminology - of a state I' to be the round-
ing cost as defined in the problem statement of TOPOLOGICALLY-SAFE GRID REPRESEN-
TATION. To transition from state Iy to I',;, we pick a random (valid) move from the
neighborhood described above. If the new state has less energy than the current one
(E(Tx41) < E(T%)), we accept it as our new current state. If the new state has the same
or more energy — that is, it is worse — we can still accept it, and do so with probability
exp(—0/T), where § is the difference in cost and T is a variable called the temperature.
This randomness allows simulated annealing to escape local optima. For the cooling
schedule, we employ the standard exponential schedule T, = ¢ - T,,_; for some constant
factor ¢; in this way, it becomes less likely to accept worse solutions as the search pro-
gresses. We discuss the impact of different values of ¢ in Section 6.4.3.

We experimentally observe that a straightforward annealing approach using cost as
the objective function does not perform well (for an example, peak ahead to Figure 6.4 (a)
on page 101): the focus on cost often prevents it from finding a feasible drawing. One pos-
sibility to overcome this would be to design an objective function that rewards feasibility.
However, this imposes several difficulties. First, in order for the search procedure to ac-
tually find the feasible drawings, this added term must be “smooth” enough to provide
attraction, but it is not clear how to do this. Furthermore, depending on the details of
this added term, it would have to be tweaked to not interfere with the cost optimization
too much. We are eager to avoid such extra tuning parameters, which would come on
top of the parameter tuning required for the simulated annealing itself. Therefore, we
take a different approach by splitting the algorithm into two stages: One focused on find-
ing a reasonable feasible drawing quickly, and a second straightforward annealing phase
tries to minimize the total cost of all vertex movements. We conclude the section with
optional preprocessing and postprocessing steps, and some algorithmic implementation
considerations.

o1

6 Practical Topologically-Safe Rounding of Geographic Networks

6.3.1 Stage One - Feasibility

We describe several feasibility procedures. Their goal is not to minimize the total move-
ment cost, but to efficiently find a feasible drawing that can then be optimized for cost.
We first sketch an approach that is guaranteed to find a feasible drawing quickly. Unfor-
tunately, these drawings have impractically high cost and do not serve well for Stage Two.
Then we describe a local search procedure that works well in practice.

Graph drawing. Take the input as an abstract (embedded) graph and draw it anew,
ignoring the vertex positions given in the input drawing. This can be done, for example,
with the algorithm of Harel and Sardas [HS98] which deterministically computes a com-
pact grid drawing preserving a given embedding in linear time. Besides several technical
challenges, such as requiring the graph to be biconnected, our experiments indicate that
these drawings do not provide a good starting point for our Stage Two: they are too dis-
similar to the input in terms of shape and positions. See Section 6.4.2 for a qualitative
evaluation of this approach.

Vertex-density annealing. This procedure uses the local-search neighborhood in-
troduced above, but with a different objective function. Since locally dense regions are
hard to successfully round, we want the search algorithm to make space. We therefore
minimize the sum of inverse squared distances for all pairs of vertices.

1

Jansir(P)= | 2, Ty p T (61)

We now use simulated annealing to reduce this score by moving vertices away from
each other in a topologically safe way one step at a time - either putting it to one of
the four nearest grid points (cell boundaries) or moving to one of the neighboring eight
grid-points. This function is modeled to be reminiscent of the repulsive forces in force
directed graph drawing (for further details, see Eades [Ead84]). Notice that minimizing
this function is easy: Simply scale the graph to be arbitrarily large. Hence we do not
actually want to minimize this objective function but rather run the search at a constant
temperature of T = 1 and terminate the search as soon as the drawing is feasible. We
unconditionally accept any valid move that moves a nongrid vertex onto a grid point,
regardless of its effect on the cost since that is the real goal of this stage. Constantly
keeping the temperature at a relatively high level ensures enough freedom of movement:
The goal of this stage is to escape locally difficult situations.

Here are some observations about Vertex-density annealing. As we consider squared
distances, a cluster of very close vertices will have strong impact on the energy of an
otherwise sparse network. If the score of a vertex is low, it is more likely that greedy
snapping will be safe as small changes can only cause problems when grid points are

* This makes “annealing” a bit of a misnomer, but for uniformity of presentation, and since we do have
Kirkpatrick-style move acceptance, we call it annealing.

092

6.3 The Two-Stage Algorithm

contested. Every network always has a density-reducing move, as some vertex on the
outer face can always move away from the others. Making small moves keeps vertices
rather close to their input coordinates.

Grid-density annealing. This works identically to Vertex-density annealing, except
it interprets the density more locally based on the grid using the following procedure. Ev-
ery nongrid vertex adds i “density” to its four surrounding grid points and every other
vertex adds % to its eight surrounding grid points and the one it is placed on. That way,
vertices effectively charge the grid points they could possibly move to within one itera-
tion; grid points with high values are more likely to be contested by multiple vertices.
Then we say the score of a vertex is the squared density of the grid point it is on - or, for
a nongrid vertex, the squared density of the nearest grid point. The annealing objective
value is the sum of these vertex scores. As with Vertex-density annealing, this encour-
ages vertices to move out of the way of other vertices, and particularly provide space for
nongrid vertices (since they contribute more to the density). However, it is not imme-
diately clear if the more local nature of Grid-density annealing is good or bad. This is
evaluated in Section 6.4.2.

Improvements based on Structural Considerations. In order to find a feasible
drawing sooner, we augment the neighbor selection by adding two improvements that
are both based on the particular structure of the problem at hand. Both further depart
from the classic simulated annealing approach described above by changing how the
local neighborhood of a given drawing is generated and explored.

First, at each step, we perform the Incremental Greedy algorithm in addition to the
regular local search move, immediately moving any nongrid vertices to the best available
grid point on its cell. This shortcuts having to wait for the random vertex selection to
pick such vertices eventually.

Second, rather than selecting a vertex uniformly at random, we temper how vertices
are sampled in two ways. We select the vertex according to a distribution based on its
individual contribution to the total density measure of the current state. This should
encourage the algorithm to search in dense areas, hopefully giving progress toward fea-
sibility. Additionally since we try moving all nongrid vertices before creating the next
neighboring drawing in every iteration, we only try moving vertices already on the grid
— those are the vertices that block grid points, possibly blocking other vertices from being
put onto the grid. See Section 6.4.2 for a statistical evaluation discussing these modifica-
tions.

6.3.2 Stage Two - Reducing Cost

Once Stage One finishes by finding a feasible drawing, we switch to straightforward sim-
ulated annealing with the objective function we originally intended — minimizing round-
ing cost. Since this is a more traditional annealing approach where we want to avoid local
optima, we pick the typical exponential cooling schedule. See Section 6.4.3 for details of

93

6 Practical Topologically-Safe Rounding of Geographic Networks

the parameter selection. Using any Stage One strategy will move vertices away from their
original position — some more, some less, but the network is likely to expand. Stage Two
tries to undo the expansion while maintaining topology and coordinate precision - stay-
ing on the underlying grid.

To transition between two neighboring states I'y and I';,;, we randomly pick a vertex
v € V and randomly mutate its current position by independently mutating its (integer)
coordinates — adding or subtracting 1 from x, and/or y,. Given that v was on the integer
grid before, it will be on the integer grid afterwards - the mutation will move v to one of
the eight (octilinear) neighboring grid points.

The way we generate these drawings does not check topological equivalence - rota-
tion systems might change, vertices might end up on other structures or edges might
cross. To overcome this, we rely on a modified acceptance function: after generating
some neighbor T, we check it for topological consistency and immediately reject any
inconsistent drawing. If I, was not rejected, we evaluate the energy level E(Ty,;) and
follow the original approach proposed by Kirkpatrick et al. [KGV83]: If the energy level
(the total movement cost) is lower, we accept Iy ;; otherwise we can still possibly accept
it, even if the energy level is higher. The probability for accepting an energy-increasing
move is given in Equation (6.2).

WELBELL) .

6.3.3 Pre- and Postprocessing

To improve the performance of our approach, we suggest a preprocessing procedure
and a postprocessing procedure to be performed before and after Stage One and Two
respectively. Both procedures are efficient and deterministic; we evaluate the impact of
pre- and postprocessing on the overall performance of each stage in Section 6.4.

Preprocessing: Linear Cartograms. Since dense areas of the input drawing are hard
to resolve, some preprocessing to assist Stage One seems appropriate. Hence, we pro-
pose expanding the input using efficiently computed linear cartograms by van Dijk et
al. [vDH14, vDLI8]. In a linear cartogram, all edges of a drawing of a network are drawn
with a prescribed length. Clearly, not every combination of network and prescribed edge
lengths is possible.” To minimize the error in edge lengths, this method is based on find-
ing a solution to an overconstrained set of linear equations using least squares adjust-
ment. For our problem, we create a twofold set of equations. On one side, we ask for any
edges shorter than length v/2 (the diagonal of a grid cell) to be elongated and for vertices
that are too close together to be moved apart; on the other side, we want the vertices to
stay relatively close to their input positions. We will see in Section 6.4.2 that using linear
cartograms is quite effective in practice.

5 For example, consider a triangle with two short edges and one edge that is longer than both other edges
combined.

94

6.3 The Two-Stage Algorithm

This preprocessing is implemented using the following linear least-squares adjust-
ment formulation, computing new positions p given the original positions r. Note that
we create an overdetermined system of equalities on purpose; least squares adjustment
will find an optimal compromise between the conflicting constraints. (See for example
Kraus [Krall] for a general introduction.)

First, in the interest of the cost of the final drawing, vertices should ideally stay where
they are. For every v € V, we therefore have the following vertex position constraint from
Equation (6.3) on the x and on the y axis.

p(v) =r(v) (6.3)

The relative position of vertices that are connected by a long edge should also remain
the same, implying that the length of that edge stay the same. Edges shorter than \/2
are problematic since it is likely that both endpoints contest for the same grid position.
We want to introduce some additional distance between the two vertices of any short
edges, stretching the edge towards length v/2. Hence, we have one of the two edge length
constraints for any (u,v) € E of the input and on both axes - either from Equation (6.4)
for long edges or from Equation (6.5) for short edges:

p(u)+r(v) —r(u) if [r(u) = r(v)|| > /2, or (6.4)
p(v) = V2 (r(v) - r(u))
PO) S rw)

otherwise. (6.5)

We also add the constraints of Equations (6.4) and (6.5) to the non-edges missing
from a constrained Delaunay triangulation. A Delaunay triangulation is a triangulation
of a set of points in the plane such that the circumcircle of any triangle does not con-
tain other points. A constrained Delaunay triangulation departs from the original idea
by enforcing that the triangles cover a prescribed set of edges (possibly violating the
circumcircle-rule to do so, for more details see Chew [Che93]).°

In addition, we put additional emphasis on separating any pairs of nonadjacent ver-
tices that are too close, adding vertex distance constraints similar to Equation (6.5). See
van Dijk et al. [vDvGH?*13] for more on constrained Delaunay triangulations when trans-
forming geographic networks.

Since we want to punish violations of the different sets of constraints differently, we
add weight factors to the misclosures’ of the different equations. Intuition suggested
that preventing short edges is most important, whereas trying to keep vertices at their
original positions is conflicting all other constraints. Also, we deemed pushing apart
any vertices that are too close to be more important than preserving the constrained
Delaunay triangulation. Following these assumptions, we have considered a base setting

® In the case of artificial instances (look ahead to Section 6.4.1), a constrained Delaunay triangulation
does not violate the rule - it simply re-adds the previously discarded edges. Constrained Delaunay
triangulations of real-world instances are most likely not Delaunay triangulations.

7 The misclosure of an equation is the amount by which left-hand and right-hand side differ.

95

6 Practical Topologically-Safe Rounding of Geographic Networks

Table 6.1: Different weights tested for the Cartogram preprocessing.

Parameter base low high ‘ final ‘ Equations
vertex position 0.2 00001 1.0 | 0.8 | (6.3)
edge length 4.0 0.1 8.0 4.0 | (6.4),(6.5)
constrained Delaunay 20 0.1 4.0 2.0 | (6.4),(6.5)
vertex distance 1.0 0.1 4.0 1.5 | (6.5)

for the weights — see the first column of Table 6.1 — and from these values, we pitched each
weight to either extreme individually - as in the second and third column of Table 6.1,
respectively -, leaving the other three unmodified. We finally settled for the values shown
in the fourth column of Table 6.1. Those will also be the values that we use throughout
the rest of this chapter whenever we use cartogram preprocessing.

We only modify vertex positions according to the weighted minimum of misclosures,
but do not check for topological consistency. Hence, the resulting drawing I'(G, p) us-
ing the new positions might not be topologically equivalent to the input. In that case,
van Dijk and Haunert [vDHI4] describe a back-off procedure that we use here: Con-
sider linearly interpolating the vertex positions uniformly from in the input drawing to
those obtained by the least squares adjustment. The interpolation factor (ranging from 0
to 1) can be seen as a time step. We find the latest discrete time step in this interpolation
that yields a valid drawing - by starting at 1 and testing 0.1-decrements - and output the
corresponding drawing.

Postprocessing: Hill Climbing. Our simulated annealing algorithm chooses the next
state to evaluate at random. Annealing theory suggests that by extending the cooling
schedule, the probability for the algorithm to find a global optimum converges towards 1
(see Granville, Krivanek, and Rasson [GKR94]). As we have no efficient means of telling
if a solution is optimal or not, we have to stop Stage Two eventually and take the last
accepted state as final drawing. Annealing for longer could possibly yield better results,
but by our choice of cooling schedule, the annealing temperature goes to zero and the
search reduces to local hill climbing. Hence we propose a straightforward hill climbing
implementation as a much more efficient postprocessing: rather than sampling random
vertices and attempting moves, our approach iteratively applies valid moves that improve
the outcome until a local optimum is reached. This suggests the possibility of annealing
at a higher temperature than one normally would, and relying on the final hill climb to
clean up the solution. See Section 6.5 for an evaluation on the trade-off between hill
climbing and annealing for longer time.

6.3.4 Implementation Considerations

Our algorithm often needs to test whether a particular move is valid. The expensive
part in this is checking for possibly intersecting edges. Rather than the well-known (and

96

6.4 Experimental Results

worst-case more efficient) Bentley-Ottmann sweepline algorithm [BO79] for line seg-
ment intersections, we implement the following bin-based approach to speed up these
tests. First, we overlay a W x W regular grid of rectangular bins over the full extent of
the current drawing, then loop over all edges and put them in all bins that they inter-
sect, and finally check all pairs of edges in each bin by brute force. If W is picked large
enough, at most a small number of edges will be in any particular bin. This is efficient
on real-world data for a wide range of values W. Our code uses W = 512 as a somewhat
arbitrary trade-off between memory, number of bins, and the population of bins. For
more details on this method, see also Peng and Wolff [PW14].

In fact, this grid-based approach - at least for our application and on our data -
outperforms the CGAL implementation [ZWF19] of the Bentley-Ottmann algorithm by
more than two orders of magnitude, even though CGAL generally has high-quality and
high-performance implementations. Its problem seems to be the numerical instability
of the sweepline algorithm, which requires CGAL to use high-precision arithmetic on
our real-world data — something our relatively crude algorithm does not require. We ad-
ditionally point out that our current implementation is single-threaded, but in principle
checking the bins can be easily parallelized.

We use the Computational Geometry Algorithms Library (CGAL) for basic geometric
computations and for constrained Delaunay triangulations (see the CGAL manual [Yvil9]
for details). We use the Eigen library [G]*10] for highly-efficient sparse matrix calcula-
tions in the cartogram code.

6.4 Experimental Results

In this section, we statistically evaluate various properties of our algorithm and the effec-
tiveness of design decisions and parameter choices. Whenever we directly compare two
options, we provide a (two-sided) Wilcoxon paired signed-rank test [Wil45] and report
the z-score, demonstrating statistically significant improvements; recall that a z-score of
1.96 or higher satisfies a 95% confidence level.

6.4.1 TestInstances

We provide experiments on both real-world networks and artificial instances. For the
real networks, we have used OpenStreetMap shapefiles® and the City of Chicago Open
Data Portal’. Since these road networks are not always planar, we preprocessed the in-
stances, introducing vertices at any intersections in order to get plane graphs.

We also consider random artificial instances. This allows us to perform systematic
and statistically significant experiments on large datasets without having to select and
sanitize real-world road networks. These instances are based on vertices sampled using
binomial point processes, placing v vertices uniformly at random in a square area of X

8 https://www.geofabrik.de/data/download.html
 https://data.cityofchicago.org/

97

https://www.geofabrik.de/data/download.html
https://data.cityofchicago.org/

6 Practical Topologically-Safe Rounding of Geographic Networks

@) (b)

Figure 6.3: Visual comparison of real-world and artificial networks: (a) Wiirzburg downtown with 134
vertices and ¢ = 40.5%; (b) an artificial instance with roughly the same parameters.

by X units - thus having X + 1 possible integer coordinate values in each dimension. To
generate instances with many edges, we take the Delaunay triangulation [GKS92] of this
point set; for instances with fewer edges, we take a subset of the triangulation edges as
described below. We therefore have three parameters describing size and complexity of
an instance: the side length X of the area in which the points are sampled, the number of
vertices v, and the edge density — the number of edges as a percentage ¢ of those present in
a complete Delaunay triangulation. As an alternative to specifying the number of vertices
v, we can also consider the vertex density y. This is the ratio between the number of
vertices and the number of grid points of the area; up to rounding we have v = y- (X +1)2.
Throughout the rest of the chapter, we describe random instances by the triple of these
parameters, namely as (X, y, €).

We can also determine y and ¢ values for real-world instances by calculating a Delau-
nay triangulation of the point set. Vertex density can be interpreted as desired compres-
sion rate. While testing our algorithm on real-world instances, we noticed that aiming
for y < 40% gives good results in reasonable time."” Therefore, we will also focus our
experiments on artificial instances on those with vertex density y = 40%.

Edge density is independent of the size of grid cells. We have seen in Figure 6.2 that
the impact of higher edge density is less severe than that of higher vertex density when
considering how complicated rounding that instance is. The road networks we consider
typically have an edge density value € between 35% and 45% - therefore we focus on ar-
tificial instances with & = 40% and € = 100%. For comparison, see the instances listed in
Table 6.2. When dropping edges from a Delaunay triangulation to obtain lower values

1 Higher vertex densities resulted in runtimes that were generally higher and also of larger variance.

98

6.4 Experimental Results

of ¢, we need to make sure that we do not create isolated vertices. Our algorithm was
designed with road networks in mind: while road networks can easily be disconnected,
they usually do not have isolated (unreachable) vertices; hence, our algorithm cannot
handle such vertices safely. To avoid this problem in our artificial instances, we proceed
as follows. We sample the point set P and calculate a Delaunay triangulation. Then we
compute an arbitrary depth-first search tree of this triangulation and take a maximal
matching from the tree’s edges: if |P| is even, that matching is perfect (as shown by Dil-
lencourt [Dil87]), otherwise we add one extra edge to cover the missing vertex (creating
a path of length two); in either case, we mark all edges obtained this way. We then delete
a uniformly random set of the other edges to achieve the desired number of edges. Since
the marked edges cover every point of P, no vertices end up being isolated in the final
instance. A visual comparison between real and artificial instances is provided in Fig-
ure 6.3: on the left is a part of Wiirzburg downtown, on the right is an artificial instance
with approximately the same density parameters.

6.4.2 Evaluating Stage One

As discussed before, the basic rounding heuristics will not consistently find feasible draw-
ings and those provided by the graph drawing algorithm are too distorted for the anneal-
ing process to find a good solution in reasonable time. In this section, we evaluate the
performance of the procedures for Stage One from Section 6.3.1 on artificial instances.
As a baseline, we first consider the simplest variant, that is, without greedy steps dur-
ing the annealing and sampling all vertices uniformly. The experiments in this section
are run on 1000 random instances with configuration (19,40%,100%), that is, 400 grid
points in the sampled area and therefore 160 vertices and approximately 450 edges.

Before deciding between the different advanced procedures, we first rule out Scale
& Greedy and Redrawing the embedded graph; then we compare Vertex-density anneal-
ing to Grid-density annealing, with and without cartogram preprocessing and other im-
provements over a traditional annealing approach. To get an intuition regarding the total
cost of an instance recall the definition of snap rounding (Definition 5.1 on page 61). En-
forcing geometric similarity would imply a maximum cost of %\/5 ~ 0.71 per vertex (or
about 113 per 160-vertex instance). While we cannot hope for such low costs, our goal
for Stage One is to stay within the same order of magnitude.

Scale & Greedyisbad. We have seen in Section 6.2 that Incremental Greedy is bound
to fail if there are too many vertices inside the same grid cell. Scale & Greedy works on
the idea that adding more grid lines — and thus more possible coordinate values — will
eventually make Incremental Greedy work. Instead of inserting new grid lines — moving
from integer to half integer, then to quarter integer and so on — we do the opposite, scal-
ing the drawing (and all coordinates) by a constant factor. By doing so, we preserve the
notion of “moving to the integer grid” and report scaling factors instead of additional
bits needed for representing the refined grid. We ran the following experiment, search-
ing for the right factor to scale the original coordinates with starting at 1; once a feasible

99

6 Practical Topologically-Safe Rounding of Geographic Networks

solution is found, we report the factor and the total vertex movement induced by scaling
and rounding. The instances in this experiment admit reasonable solutions with a cost
of about 500 (as we will see). Scale & Greedy required an average scaling factor of 3.86
(ranging between 2 and 23), resulting in an average cost of 3329 and no solution with
cost below 1047." This holds true also for real-world instances, e.g. producing a feasible
drawing of the roundabout in Wiirzburg from Figure 6.1 (a) requires a scaling factor of
4. This disqualifies Scale & Greedy as a practical Stage One procedure.

Redrawing is worse. We created grid drawings of all instances using an implementa-
tion of the algorithm of Harel and Sardas [HS98] created by Johannes Zink [CLWZ19].
In the context of graph drawing algorithms, our instances are small and thus grid draw-
ings can be computed quickly compared to our randomized annealing approaches. One
could imagine that the time saved in Stage One could be spend optimizing the output in
Stage Two for longer. However, the average cost of these drawings is an enormous 26 256
(or average cost per vertex of 164). This makes it is completely impractical — consider for
example that any move in Stage Two can improve the cost by at most v/2.

Vertex density vs. Grid density. In Section 6.3.1, we have proposed two different
“density” objective functions and claimed that immediately optimizing cost leads to dif-
ficulties finding feasible a solution. We now experimentally evaluate this.

We ran the three options - cost, Grid-density, and Vertex-density - on each graph for
20000 iterations. Whenever a feasible solution was found within the allotted number of
steps, the remaining iterations were spent in Stage Two by optimizing the output drawing
for total movement cost. See Figure 6.4 for the behavior on a typical instance over time
(counted by iterations): The purple line shows cost, the turquoise line shows the number
of vertices that have taken a grid positions.

A general trend over the 1000 instances is that Vertex-density annealing generally
requires fewer steps to find a feasible solution, whereas Grid-density annealing generally
finds a (first) feasible solution with lower cost; simply annealing with the objective of
phase two — minimizing rounding cost - fails to find a feasible solution at all on 362 of
the 1000 instances, oftentimes being stuck on the last one or two vertices. Since it is not
better than Incremental Greedy, this disqualifies using annealing for rounding cost to
find feasible drawings.

On the other hand, a Wilcoxon test shows that the differences between Vertex-density
and Grid-density are significant: Vertex-density annealing finishes significantly sooner
(z ~ 28, “winning” 688 of the 1000 instances), but with higher cost (z » 10). As a quali-
tative indication, when it finished first, the Grid-density solution was 15% cheaper on
average (347.208 compared to 407.916). On the instances where Vertex-density was
faster, the average cost of the solutions found was higher: 592.480. This suggests that

I Here we measure cost by aligning the centers of both drawings so that scaling up moves vertices away
from the center.

100

6.4 Experimental Results

(a) Annealing for Cost

160 I 500
140 1 450
« i
.g 120 L 400
b < 350
= 100 - 300
© -
< 80 1250 §
f=
3 60 200
oy <4 150
<)
#* 40 - 100
20 4 50
0 1 1 1 1 1 1 1 0
o 2 3 2 7, 7. 7 7
500 000 500 0000 2500 5000 % 300
iterations
(b) Annealing for Grid-density
160 T T T T 500
140 450
n 400
‘g 120 350
< 100 300
© -
I 80 250 &
5 200
3 60
5 40 150
2+ 100
O 1 1 1 1 1 1 1 0
o 2. S 2 7, 7. 7 7
500 000 ‘500 0000 <~'500 3000 < 500
iterations
(c) Annealing for Vertex-density
160 u T T T T T 500
140 450
] 400
g 120 350
5 80 250 §
f=
3 60 200
o 150
5 |
#* 40 100
0 Il Il Il Il Il Il Il
o 2. 3¢ 2 7, 7. 7 7
500 000 500 0000 2500 5000 2 300

iterations

Figure 6.4: Qualitative evaluation of Stage One performance on a single artificial instance with
(19, 40%,100%); annealing Stage One for: (a) cost, (b) Grid-density, and (c) Vertex-density. Purple line
shows total rounding cost, turquoise line shows the number of rounded vertices.

101

6 Practical Topologically-Safe Rounding of Geographic Networks

Grid-density is quicker at finding relatively easy solutions, but struggles on more diffi-
cult instances.

Cartogram Preprocessing. The main goal of linear cartograms from Section 6.3.3
is to reduce the time Stage One needs to find a feasible solution as well as to reduce
the total rounding cost of the found solution. Concerning the time taken to find a fea-
sible solution, we observe the following: Both procedures got significantly faster — for
Vertex-density, we get z ~ 25.95, and for Grid-density, we get z ~ 23.35 — and while both
procedures improve, it still holds true that annealing for Vertex-density is generally the
faster option for Stage One (z ~ 22.47).

Considering the total cost of the feasible solution, we notice that those found by
Vertex-density annealing got cheaper (z ~ 3.828), while we failed to show an improve-
ment for the Grid-density annealing (z ~ 0.124). Again, the observations we made
above are still true, and Grid-density annealing finds significantly cheaper solutions
(z ~ 26.53).

This demonstrates that preprocessing instances using linear cartograms is highly ad-
visable in practice; it is fast — in our implementation, it takes the time of about 50 anneal-
ing iterations on typical instances — and improves the process of finding a feasible initial
solution in almost every aspect.

Incremental Greedy and Nonuniform sampling. Finally we add the two augmen-
tations from Section 6.3.1: additionally running the basic Incremental Greedy heuristic
at every step, and nonuniform sampling of the vertex to move.

Still on the same instances, we first investigate on the additional executions of In-
cremental Greedy. We notice that Vertex-density annealing still finishes earlier on 644
instances (also significant, z » 21.0). On either procedure, the speed improvement ob-
tained by adding Incremental Greedy is highly significant (z > 36 for both variants). Con-
sidering the movement cost of the found feasible drawings, we look at the average total
movement for both variants: The average cost of all instances where Vertex-annealing
finished first was 226.3 and the average cost of all instances where Grid-density anneal-
ing finished first was 188.9, a cost reduction by almost 50% in both cases. In fact, both
cost improvements are also highly significant (z > 50 for both); the cost difference be-
tween both procedures is also significant (z ~ 24.92). Considering these significance
levels, we decided to include Incremental Greedy executions into both of our Stage One
procedures by default.

Since we now treat vertices differently, we investigate on the option of sampling ver-
tices nonuniformly based on their local density measure. Looking at the average costs of
the winning instances for both procedures, we get 196.2 for Grid-density and 229.9 for
Vertex-density. Comparing these numbers to those with uniform sampling, one might
think that nonuniform sampling is actually worse. Statistical tests however suggest that
there is no significant difference between uniform and nonuniform vertex sampling; all

102

6.4 Experimental Results

z-scores are below 0.34, implying that neither variant shows significant differences in
quality or speed. We claim that the reason for this behavior the following:

Choosing the right vertex to try moving is a delicate task. On one hand, a vertex
with low density is likely to have many moves that lead to valid drawings; on the other
hand, none of these drawings will be significantly less dense (in either measure), as both
density measures are somewhat symmetric: Vertices with high density values are likely
to be close to other vertices of high density and the same is true for vertices with low
density respectively. Thus, moving a low-density vertex has only limited impact on the
overall density of the drawing. Successfully moving a high-density vertex would have
a much higher impact on the overall density of the resulting drawing. This observation
motivated trying nonuniform sampling. However, the higher the local density of a vertex,
the harder it is to actually find a valid move for it. Hence, favoring the more dense vertices
while sampling for possible moves is likely to result in more neighboring states being
rejected by the topology test.

The final modification to the vertex sampling comes directly from how Incremental
Greedy changes the network at every step. Recall that Incremental Greedy will try mov-
ing every nongrid vertex onto one of the four corners of the cell containing the vertex.
Mutating a nongrid vertex in the local search neighborhood - moving it to a random
corner of its cell - simply randomly tests one of the four options available to Incremen-
tal Greedy. Hence, after running Incremental Greedy on an instance, no nongrid vertex
will have any valid move available to it (as it would have been performed by Incremental
Greedy before). Therefore, every attempt of moving a nongrid vertex will immediately
fail, rejecting the resulting state and effectively wasting the iteration. Instead we now only
ever sample from the rounded vertices; if that results in creating a valid move for a non-
grid vertex, this move will be performed by the execution of Greedy in the next round.
Running the experiments on (19,40%,100%) instances — complete Delaunay triangula-
tions on 160 vertices — and testing for changes compared to sampling from all vertices,
we failed to see a significant difference — all z-scores were below 1. Since we were under
the impression that sampling only from the rounded vertices worked well on real-world
instances, we look further into this. To do so, we created 1000 instances of lower edge
density, namely (19,40%, 40%), to resemble actual road networks. Performing the same
experiments as before, we report the following findings: Vertex-density annealing got
significantly faster (z ~ 4.01) while being just short of producing significantly cheaper
feasible drawings (z ~ 1.427). On the other hand, the solutions produced by Grid-density
annealing got significantly cheaper (z » 3.30), but we could not obtain the same speedup
(z ~ 0.389). On these instances, we also observe that the speed difference between both
Stage One procedures becomes insignificant (z ~ 1.011) while Grid-density annealing is
still cheaper (z ~ 17.85). This also supports the claims we made when first comparing
the two options in Section 6.4.2: indeed, Grid-density seems to thrive on easier and less
dense instances.

Final Conclusion on Stage One. To sum up our findings on the different options
for Stage One, we ran a final experiment on the 1000 instances of (19, 40%,100%) with

103

6 Practical Topologically-Safe Rounding of Geographic Networks

all options enabled: Cartogram preprocessing, Incremental Greedy at every iteration,
and nonuniform vertex sampling ignoring nongrid vertices. Recall that the first sets of
solutions had average costs of 347.208 for the Grid-density annealing and 407.916 for the
Vertex-density annealing. All modifications described and evaluated above bring these
numbers down to 183.082 and 221.572 respectively, saving almost 50% on the total cost
of the first feasible solution and doing so in less time.

6.4.3 Evaluating Stage Two

Now that we demonstrated how to find a reasonable initial solution, we consider Stage
Two. After Stage One departed from the input drawing to find a less dense but feasible
drawing, Stage Two now anneals back towards the initial vertex positions. Annealing
theory [KGV83] suggests that a system provided with the right cooling schedule and
enough time will eventually end up in a low cost state. It is unclear how to determine that
this state is reached, and a schedule that is guaranteed to achieve it with high probability
is impractically slow; in practice, this requires experimental tuning.

We note that our moves from one drawing to the next are rather small, in terms of
objective value: a single vertex is moved at most one grid cell, resulting is a maximum
change in cost of \/2 if moved diagonally. With the typical starting at temperature of
To = 1.0, this means we initially accept at least 24.3% of all cost-increasing moves. Sim-
ilar to Section 6.4.2, we will evaluate various cooling schedules, step counts on large in-
stances, and discuss when to switch from annealing to the hill climbing postprocessing
as described in Section 6.3.3.

Finally, we note that unfortunately we cannot compare to optimal solutions for any
interesting instances: As we have seen in Section 5.4, known exact methods are infea-
sible and only able to handle networks so small that the comparison to the output of
our two-stage algorithm is not of interest — those instances are simply too small to give
an intuition on how the output of our heuristic on real-world instances holds up to an
optimal solution.

Cooling Schedules. One of the most important parameters for any simulated anneal-
ing process, besides number of iterations, is the cooling schedule. We use the typical
exponential cooling schedule T;,; = ¢ - T; which naturally gets slower over time. There-
fore, we requiring a choice for initial temperature T and cooling factor c. We evaluate
this on 200 instances with parameters (14,40%,40%) and 200 instances with parame-
ters (14, 40%,100%). In order to eliminate any randomness from re-running Stage One,
we use precomputed feasible solutions using Vertex-density annealing. We ran 20000
steps in Stage Two (followed by hill climbing postprocessing) with ¢; = 0.99, ¢; = 0.999,
and ¢; = 0.9999, doing five runs of each setting on each instance. Figure 6.5 shows
a histogram of the resulting cost (rounded to the nearest integer). First consider Fig-
ures 6.5 (a) and (b), the instances with rather number of edges: before hill climbing (a),
the choice of cooling factor does not seem to have high impact on the quality; after-
ward (b), the advantage of the slower cooling provided by ¢ = 0.9999 becomes visible.

104

6.4 Experimental Results

(‘pa4oubi 0£ Jo 3500 puoAaq sia13no 3|6uls) “Bulquilpd |1y Ja)e (p) pue 21043q (9)
sadueIsUl (%001 “%0% F1) O SIS0D SMOYS MOJ WO0g Y3 :Buiquulld |1y Ja)e (q) pue 210494 (e) saduelsul (%0% ‘%0F F1) J0 S3503 smoys moJ doyay] "azis
19b91ul Jo suig ojul payded ale s} NSl ‘S9dURISUI 00T UO SUNJ AL SaUIGWIOd Wwelbolsiy Lydoeg 3s0d |e10] [euy Uo 1030e) Buljood sy} Jo 1337 :5°9 a4nbi4

(19633u] 0} papunol) 350> (19633u] 0} papunoy) 3501
oL 9 09 ss 0s 1% ov se oL 9 09 ss 05 1% ov se
. : . 0 : ; ; 0
F {0z F {0z
- 40 % - 40
o o
= =
F {09 F {09 3
w w
& &
F {og F {og
B B
F Ho0L @ F do00L @
| —— 66660=> i | —— 66660=> i
6660=> oct 6660=> ozt
660="> 660=">
A obL A obL
Buiquid 1Y Yyim (%001 %0t L) J0 sadueIsu| (P) Buiquuid |1y InOYHM (%00 L %0t v L) $0 sedueIsU| ()
(19633u] 0} papunoi) 3503 (19633u] 0} papuNnoy) 3500
oL 9 09 ss 05 1% ov se oL 9 09 ss 0s 1% ov se
T T T T T 0 T T T T T 0
F {0z F {0z
F 1 ov + 1 ov
H* H*
F 109 & F 109 &
= =
F {08 I - 108 S
2 4
F {00l & + {00l &
> >
F dozL B F dozt @
1% w
F d oL F d oL
—— 66660=> —— 66660=>
H 6660 =2 {09t F 6660 =2 409t
66'0=2 66'0=2
A 08l A 08l

Buiquii |11y Yyum (%0t'%0% 't L) J0 saduelsul (q) Buiquid (1Y Inoyum (%0%'%0%"v 1) 0 saduelsul (e)

105

6 Practical Topologically-Safe Rounding of Geographic Networks

Looking at how the systems temperature developed over time, the reason is as follows:
the schedule for ¢; = 0.99 reaches a temperature of effectively 0 after only 1500 iterations,
compared to the 12000 iterations it takes for cooling with ¢, = 0.999 to reach the same
temperature. This means that for both parameter values, a significant amount of time
was spent rejecting any move that does not strictly improve the cost: they were basically
hill climbing random vertices one step at a time. This behavior is also visible in the plots:
There is hardly any difference between the orange and red lines in Subfigures 6.5 (a)
and (b). This is not true for the slowest schedule (c; = 0.9999), as even after 20 000 it-
erations the temperature was still about 0.135 — while accepting is not very likely in the
end, this schedule never rejected score-decreasing moves immediately, leaving room for
improvements to be made by hill climbing. The same phenomenon can be observed look-
ing at the second set of instances (Figure 6.5 (c) and (d)). Again, hill climbing basically
did not find any improvements for ¢; or c,, whereas ¢; managed to avoid running into
local optima long enough for hill climbing to make a difference. The cost improvement
of hill climbing on both test sets are highly significant (z > 50 each).

With these observations in mind, we recommend always using the hill climbing as
postprocessing; it is fast and guaranteed to not worsen the final solution as hill climb-
ing only performs a set of moves that would have been accepted by annealing even at
temperature 0.

Step Count & Hill Climbing. To further evaluate the effect of hill climbing postpro-
cessing, we generated feasible solutions for all of the (19, 40%,100%) instances from Sec-
tion 6.4.2 using Vertex-density annealing with cartogram preprocessing.

On these rather large and dense instances, we run Stage Two annealing for m steps
(m € {0,2500,5000,10 000, ...,40000}), followed by hill climbing, reporting score with
and without postprocessing. To demonstrate the impact of step count — and with respect
to the experiments above —, we choose the slowest of the cooling schedules above, namely
¢ = 0.9999. Indicative results of these experiments are shown in Figure 6.6.

We deal with instances of maximum edge density that result in rather expensive Stage
One solutions (see Section 6.4.2). This leaves quite some space for a lot of improvements
— we can expect “good” final solutions to have cost below 100, or less than 1 per vertex on
average. We now discuss the four subfigures of Figure 6.6 individually.

As noted, annealing with temperature 0 yields very similar results to hill climbing.
After 5000 steps, the system is still at temperature 0.607, whereas after 40 000 steps, it
reaches a temperature of 0.0183. Also recall that high temperatures imply high accep-
tance probability for Stage Two (between 24.5% and 16.4% for the first 2500 steps). A
downside of combining a slow cooling schedule with greedy local optimization is visible
in Figure 6.6 (a). For the orange curve, we spent 2 500 iterations randomly moving away
from the first feasible solution, which hill climbing sometimes could not repair.

Figure 6.6 (b) compares m = 15000 steps with hill climbing to m = 25000 steps
without postprocessing. For reference, we also include the data for m = 2500 from
Figure (a). Notice that performing 22500 extra steps in Stage Two leads to lower costs
in the final drawing, even without hill climbing. However, carefully picking the point

106

6.4 Experimental Results

*s30|d 1910 01Ul 190 A1led pue s)ase1ep 01 puodsaliod $10j0d aul|

‘uosiiedwod Ja1ses 1oy {paddold usag ey SISIINO SWOS “Buiquilfd [[1Y INOYUM PUR YUM ‘000 ST = 44 () “Buiquil}d |1y yim ‘{000 0% ‘000 ST ‘000 ST} > i
Joj sanjea sidnnpy (2) ‘sdoys a1ow 1oy om| dbeyS Buluuni pue Buiquwi |1y USIMIS] Ho-peJy aY] (q) “Burquild Iy YUM Y1oqg ‘00ST = Ui 'SA () = Ui ()
:Buiquuipd (1Y Inoyum pue yym sasueisul (%001 ‘%0F ‘61) JO 1502 UO 12944 Y3 pue om| a6e1S 1oy ui Junod dois Jo SsanjeA snoliep :9°9 a4nbid

(4a633u| 03 papunol) 3503

o€l ozl oLt 00l 06 08 oL o€l ozt oLl 00l 06
T W T T 0 5 0
- oL + oL
- (4 + (4
ETS H*
- 0 o + 0f o
=+ =+
- or 5 + oy 5
4 4
- 0S © + 0S o
> >
L 09 3 + 09 3
wv w
- oL + oL
14y ‘sda1s 00001
- Buiguui |1y ‘sda3s 0005 L 08 + ‘sda3s 0005T 08
Buiquui|dd 11y ou ‘sdais 0005 L 1y ‘sda1s 0005 L
| | | | | | 06 | L L L L 06
Burqui|d |11H 40 1yauag (p) Buiquuid [I1H Yim sdais 210 (9)
(49b33u| 0} papunol) 350> (19633u] 03 papuNOJ) 350D
o€l ozl oLL 0oL 06 08 oL o€l ozl oLt 0oL 06 08 oL
- == T T 0 T T T T T 0
- oL + oL
- (4 + (4
+ H*
- 0 o + 0f o
= =+
- or 5 + oy 5
23 4
- 0S © + 0s o
> >
L 09 8 L 09 5
1%] w
- oL + oL
14 ou ‘sda3s 00052
- ‘sda3s 0005 L 08 - Buiquip |1y ‘sdais 00sz 08
1y ‘sda3s 005 11> |1y ‘sdajs ou
| | | | | 06 f L L L L 06

sda3s 210 'S Buiquiid |)IH (9)

(19633u] 0} papuNo1) 3500

1uno) dais mo (e)

107

6 Practical Topologically-Safe Rounding of Geographic Networks

at which to switch from annealing to hill climbing can lead to similar results in shorter
time, as shown by the blue line.

Figure 6.6 (c) shows how the total movement cost changes with increasing step count.
There is a noticeable difference between high and low step counts. In addition, even after
40000 annealing iterations, hill climbing managed to improve 874 of the 1000 instances.

Figure 6.6 (d) illustrates the impact hill climbing can have on the total cost of a solu-
tion. The improvement made by hill climbing is obvious and easy to explain — Stage Two
simply was not done yet. Nevertheless, the final result after postprocessing is comparable
to those of higher iteration counts.

6.4.4 Real-World Data

In this section we compare instances based on real-world road networks to artificial net-
works. The results presented here were obtained by experiments we ran on a 2.6 GHz
processor with sufficient RAM. See Table 6.2 for instance parameters and sizes as well
as experimental results; all data was gathered over 100 runs on each instance, reporting
average scores and times, together with standard deviations over these measurements.
More data on other instances is publicly available online'?.

The instances were preprocessed using linear cartograms and Vertex-density anneal-
ing with all options enabled for Stage One. Examine the instances and the computed
grid drawings of Wiirzburg-Train Station, found in Figure 6.7 (a). The solutions of
Wiirzburg-Train Station we computed had an average cost of 110.9 (0.860 on average
per vertex, standard deviation of 8.66); notice that for these runs, we picked the vertex-
grid point ratio y = 16.45%. The average cost over 100 runs on artificial instance named
“0.4_0.4_42” (resembling this real network by picking ¢ accordingly, but with y = 40%)
is 77.2 (0.483 on average per vertex, standard deviation of 1.92). While Wiirzburg-Train
Station is less dense and thus could be expected to be easier, neither cost nor runtime
reflect this; Train Station takes 63% longer on average (43.1s vs. 26.4 s) and is 43% more
expensive. To investigate this, consider that the left part of Fig 6.7 (a) (marked by the
blue arrow) is significantly more dense than the rest; moving the tilted bus parking lanes
to the grid results in parts of them being pushed outwards. The vertex indicated by the
blue arrow (together with the middle of its incident edges) forces significant distortion in
this drawing. While there seem to be quite some empty grid points nearby, topology pro-
hibits any local improvement for the vertex marked by the orange arrow and on closer
reflection, this seems to be a decent drawing of this instance on a critically small grid.
To support this observation, we extracted the dense part: Wiirzburg-Bus Lanes alone
at y = 40% is comparable to artificial instances of about twice its size on runtime and
rounding cost.

This problem is even more obvious for Chicago—Cloud Gate, shown in Figure 6.7 (c).
Note that the path to the bottom-right of the instance has way too many vertices com-
pared to the grid size. Hence we get a rather skewed grid representation even though the

2http://github.com/tcvdijk/armstrong

108

http://github.com/tcvdijk/armstrong

6.4 Experimental Results

()
Figure 6.7: Grid representations (in black) of real-world instances (in red). (a) Wiirzburg-Train Station

on agrid of size 28 x 28; the vertex indicated by the orange arrow looks highly suboptimal. (b) Chicago-
Downtown on a grid of size 25 x 25; (c) a crop of Chicago-Cloud Gate on a grid of size 240 x 240.

109

(To1) 296 (6'181) 9¥S¥ (SOS'IT) SL'€9 0000T | %0°0F 0T*x0T | %00T 091 W oT ¥0-
(81°¢) 622 (¥'05) 6'S0C | (s0S°1) $9°GT 0000C | %0'0F 0T*0CT | %OF 091 Y8 H0 H0-
(s10) TLL (0) L'SET (s88°0) S¥'9C 0000T | %00y 0Tx0T | %0F 091 Yo vo- My

(T'1D) Tobel 7 (68¢6) €L18S | (S0€'T8T) 0065 0000S | %0'S 0STX0ST | %8FE OIT¢€ s1opIog- 3N

(69'8) 995¢ (I'€1€) 8°060C | (SOF'6IT) SOT6F 000SE | %01 0FCx0¥C | %I'SE 8LS 918D pno[o-
(091) ¥'06€ (8901) LT9VT | (SOE'8T) s¢'€8 0000T | %¢'LS STXSC %C'6¢ 89¢ umojumod- 14D

¥6'%) ¥SII (T'L9) G'z6¢ (5%5°6) $L°09 0000T | %S'¥E 0¢*x0¢C %8'8¢ 8¢l Bury-
(€29) 9L (£'69) 0cre (S€L'%) $6°¢C 0000T | %9°6¢ SIxql %L TV 68 uonelg sng-—
(0z2) %01l | (6°611) T98% | (S06FI) STEF 00007 | %S'9T 8TX8T | %EO0F 6CT UOnwISURIL- DA\
(¥0) 1809¢S | (1S0) 1502 1S | (*0) own w | 4 az1s 3 a aweN

*(8T x 8T 92IS 40 PLUB JaUY B UO UMOYS S| Buly-BIngzInAp) A[9AI3ddsai () pue () L'9 2inbi4 Ul UMOYS aJe siaplog-wopbury payun
40 syed pue Buly-B6ingzinp “(2) pue (q) £'9 3inbl4 Ul punoj ag ued d3eDH pPnojd— pue umoumod-obediyd ‘Uolels ulel] Jo jjey Y| 9Y3 S uonels sng
‘(e) £°9 21nB14 Ul UMOYS S| UOIIR]S Ulel|-BINgZINAA SIUSWSINSEIW Y} UO SUOIIRIASP piepuels Buipuodsaliod ay a1e o pue 150 o (A|aA130adsal om|
pue auQ sabe3s Jayje 3501 Bulpunol [e}0} Je 350D TG, pue ,1S0D LS, ‘0M] 6B Ul SUOIIRIDY JO JqUINU 33 SI 14, {papeaIy}-3|Buls ‘Spuodas Ul USAIG S|
Lununy,, ‘sioloweled sawes aY3 YUM sunt 00T JI9A0 d6eIaAR Y} d1e SISGUINU |[B S} NS [eIUSWILISAXS UM S9OURISUL [RIDYILIE pUE B3I PR1I3|9S :T°9 d]qel

6 Practical Topologically-Safe Rounding of Geographic Networks

110

6.5 Conclusion

other roads around the problematic path are generally represented quite well (and would
have tolerated an even coarser grid). The average vertex cost after Stage One (3.62 per
vertex) indicates how long it took to find any feasible drawing. This suggests that future
work could attempt to integrate topologically-safe simplification into the grid represen-
tation workflow.

Consider the artificial instances 0.4_0.4_42 and 0.4_0.4_84, again from Table 6.2:
different networks with the same parameters. The former is immediately solved by Incre-
mental Greedy during the first iteration of Stage One, so the result is deterministic. For
this instance, this was only the case when cartogram preprocessing was enabled, demon-
strating its benefit. Though the average runtime on the two instances is comparable, the
final drawings of the latter have higher variance. This suggests that a deterministic Stage
One may be preferable, as the results obtained from Stage Two will become more stable.

All of this indicates that the performance of our algorithm is sensitive to the structure
of the network, and that the particular road network representations we found in Open-
StreetMap and the City of Chicago Data Open Data Portal are challenging instances. Still,
our method is able to find reasonable representations of realistic networks, which was
not feasible with previous methods.

6.5 Conclusion

In this chapter, we settled one of the open questions from Chapter 5: We provided an effi-
cient heuristic to the TOPOLOGICALLY-SAFE GRID REPRESENTATION problem. It relaxes
on the minimality of the total vertex displacement in the output: finding non-optimal,
yet reasonable solutions, while maintaining topological equivalence of input and output
drawing. This heuristic was designed to transform geographic networks into drawings re-
quiring lower coordinate precision. To do so, we proposed a two-stage approach based
on the simulated annealing metaheuristic. The first stage anneals for feasibility by re-
ducing the overall vertex-density of the drawing; the second stage anneals the feasible
drawing to reduce the total rounding cost of the output.

We demonstrated the necessity of our two-stage approach by experimental evalua-
tion. For Stage One, we proposed two different objective functions for annealing, and by
analyzing their performance on randomly generated artificial road networks, we were
able to provide significance tests to show the strong and weak points of both. For Stage
Two, we provided experiments demonstrating the impact of parameter selection to the
final result. We proposed pre- and postprocessing steps and showed via significance test-
ing that both procedures improve the result of their respective stage significantly.

We concluded the experimental evaluation of our algorithm by testing it on hand-
picked real world instances of various sizes.

Future research on the topic of TOPOLOGICALLY-SAFE GRID REPRESENTATION could
revolve around finding a deterministic heuristic or an approximation algorithm with
provable guarantee. It could also be beneficial to the algorithms output to look into
moving the input drawing onto a non-uniform grid. One could, for example, imagine

111

6 Practical Topologically-Safe Rounding of Geographic Networks

distinguishing between the downtown- and highway-parts of a road network. With the
application to road networks in mind, one could also consider using other techniques
(such as line simplification) to better preserve the visuals of the input in the output draw-
ing while reducing unnecessary detail.

Acknowledgments. We thank Thomas C. van Dijk for helping with creating sophisti-
cated implementations of the procedures described in this chapter in C++, and for making
datasets and the implementation publicly available at
https://github.com/tcvdijk/armstrong.

112

https://github.com/tcvdijk/armstrong

Chapter 7

Cauchy’s Theorem for
Orthogonal Polyhedra

A classic theorem by Cauchy states that, for convex polyhedra, when the embedded
graph of the surface and the angles within each face are given, then the dihedral angles
are determined - that the object is rigid. In this chapter, we translate Cauchy’s rigidity
theorem to orthogonal polyhedra of arbitrary genus. We do so by using the linear-time
BUNDLEORIENTATION algorithm by Biedl and Geng¢ [BGO09] as a subroutine. They origi-
nally created it to determine the unique set of dihedral angles of orthogonal polyhedral
surfaces of genus 0 with connected graph (if this set exists).

They left open whether a similar translation exists for orthogonal polyhedral surfaces
of higher genus. In this chapter, we resolve this in the affirmative. To obtain this result,
we apply the original BUNDLEORIENTATION algorithm repeatedly and exhaustively, and
call this procedure ITERATEDBUNDLECOLORING. We show that it is capable of finding a
set of dihedral angles for orthogonal polyhedral surfaces of arbitrary genus. We do so by
arguing how it re-discovers the dihedral angles matching those of a polyhedron realizing
the input graph.

Concepts. We begin this chapter with formally defining the structures we consider.

A polyhedron is a solid object in three dimensions. Looking at a polyhedron, we
see straight edges and sharp point-shaped corners on its exterior. The edges form a set
of induced cycles, creating two-dimensional polygons on the surface. These polygons
define the faces of the polyhedron. Joining all polygons, we obtain the polyhedral surface
bounding it — the genus of a polyhedron is the genus of the bounding surface.

A polyhedron induces a combinatorially (and geometrically) embedded graph via
its boundary - the faces, edges, and vertices of the graph correspond to those defined
by the corners and creases of the polyhedron. Moreover, the relative placement and
orientation of the connected components in the graph are specified by the polyhedron.
Similarly, a polyhedral surface in three dimensions is a closed connected orientable mesh
of polygonal faces - the difference is that adjacent faces can be parallel. A polyhedral
surface also induces an embedded graph, which we call a net. By convention, nets are
connected. Note that, as remarked by Ziegler [Zie08], the classification of polyhedra and
polyhedral surfaces up to homeomorphism is well-known: For each integer g > 0, there

This is joint work with Steven Chaplick and Thomas C. van Dijk.

113

7 Cauchy’s Theorem for Orthogonal Polyhedra

is exactly one topological type, the surface of genus g, obtainable by attaching g handles
to the 2-sphere S,

Given a single polygonal face of a graph, the facial angles are the angles at which two
consecutive edges meet; for two adjacent flat polygonal faces in three-dimensional space,
the dihedral angle is the angle measured along the edges they share.

A classic topic in geometry is polyhedra (and polyhedral surfaces) with various ge-
ometric restrictions, the most well-studied case being the convex polyhedra where the
vertices occur in convex position. For example, convex polyedra were a common topic
of Euclid, Cauchy, and Steinitz. Recently several classic results on convex polyhedra have
been considered for orthogonal polyhedral surfaces, for which every edge is parallel to
one coordinate-axis; here, all facial and dihedral angles are multiples of 90°, and (without
loss of generality) each face is perpendicular to one coordinate-axis.

Fixing the edge lengths of the graph to be at integer precision, any orthogonal poly-
hedron realizing the graph with those edge lengths can naturally be “snapped” to the
three-dimensional integer grid. This can be done by picking any face of the realization,
making its edges parallel to two of the coordinate axes — by rotating the polyhedron -
and then shifting the polyhedron to make one of the face’s corners coincide with the
coordinate systems origin. Given an edge of the polyhedron with one endpoint on the
integer grid, orthogonality and integer edge lengths ensure that the other endpoint has
to be on the integer grid as well.

Next, we outline some results from the literature.

7.1 Related Work and Contribution

Classical Convex Results vs. Recent Orthogonal Results. Cauchy’s rigidity theo-
rem states that, when constructing a convex polyhedron from a 3-connected planar graph,
the facial angles determine the dihedral angles uniquely; proofs can be found in several
textbooks, for example, see Proofs from THE BOOK by Aigner and Ziegler [AZ04].

This theorem breaks down for non-convex polyhedra. Consider an object composed
of two six-sided polyhedra - one large and one small - with the smaller one attached to
one side of the larger one (the faces they are connected at are coplanar and the smaller
face is contained in the interior of the larger face). Notice that, even if given the net,
the facial angles, and edge lengths of this combined polyhedron, it is still not uniquely
described - it can be realized as a polyhedron in the two distinct ways as shown in Fig-
ure 7.1: adding the smaller polyhedron to the larger (a), creating a “bulge”, or subtracting
the smaller polyhedron (b), creating a dent. Both variants are valid nonconvex realiza-
tions, creating different dihedral angles. Notice that both realizations create the same
graph via their corners and creases, see Figure 71 (c).

Moreover, there are even flexible polyhedra where the dihedral angles can vary contin-
uously while maintaining the edge lengths or facial angles; one such object was created by
Connelly [Con79]. The Bellows conjecture claims that flexible polyhedra also have fixed
volumes. The conjecture was shown to be true for general orientable 2-dimensional poly-

114

7.1 Related Work and Contribution

Figure 7.1: Example of a non-convex polyhedron that is not rigid: (a and b) Two possible non-convex
realization for the graph from (c) with the green structure “pushed out” (in orange) (a) or “dented in”
(in blue) (b). (c) The net of both polyhedra is disconnected - the green piece is created by either the
orange or blue piece (dashed lines indicate the relative position on the surface).

hedral surfaces by Connelly, Sabitov, and Walz [CSW97]. Of course, orthogonal polyhe-
dra are inherently inflexible.

An analogous formulation of Cauchy’s rigidity theorem for orthogonal polyhedral
surfaces of genus 0 is shown by Biedl and Geng [BG09] where the graph is connected'.
Note that, like convexity, the connectedness is necessary for the uniqueness of the di-
hedral angles. This is illustrated in Figure 71 (b) and (c): When the two joining faces
(indicated by the dashed connections) touch in one edge — connecting the graph -, sub-
tracting the smaller polyhedron would create a degenerate object that has a “boundary-
only” section without interior at the other side of the joined edge. In an extended ver-
sion [BGO8] of their work [BG09], Biedl and Geng show that testing whether a given
embedded planar graph can be realized as an orthogonal polyhedral surface where ev-
ery face is a unit square is NP-complete. The gadgets utilize disconnectedness of the
graph.

Steinitz’ theorem states that the 3-connected planar graphs are precisely the graphs
obtainable from the surfaces of convex polyhedra. A graph-theoretic characterization
of orthogonal polyhedra of genus 0 where three mutually-perpendicular edges meet at
each vertex has also been proven by Eppstein and Mumford [EM14].

Stoker’s theorem states that, when constructing a convex polyhedron from a 3-con-
nected planar graph, the dihedral angles and edge lengths determine the facial angles
uniquely. However, Bield and Geng [BG11] showed that for embedded graphs with given
edge lengths and dihedral angles, it is A/P-hard to decide if there is an orthogonal poly-
hedral surface of genus 0 realizing this input.

! Recall that the graph of the polyhedron is defined by the corners and creases, and as all dihedral angles
are non-zero, there are no coplanar faces incident to the same edge.

115

7 Cauchy’s Theorem for Orthogonal Polyhedra

A related topic is whether any given embedded graph having facial angles restricted
to multiples of 90° forces all of its realizations as polyhedral surfaces to be orthogonal.
For example, Biedl, Lubiw, and Sun [BLS05] asked whether every polyhedron in which
every face is a rectangle is an orthogonal polyhedral surface. Their question was an-
swered in the negative by counterexamples of genus 7 (Donoso and O’'Rourke [DO02])
and genus 6 (Biedl etal. [BCD*02]. On the other hand, the question has a positive answer
for genus at most 2 [BCD*02, DOO02]. The cases of genus 3, 4, and 5 remain open.

Our main result - stated in Theorem 7.1 below — builds upon the work of Biedl and
Geng [BG09] from orthogonal polyhedral surfaces of genus 0 to all orthogonal polyhe-
dral surfaces. They already give the following two-step strategy that we extend upon in
this chapter.

In the first step, they show that for each face f, the axis perpendicular to f is uniquely
determined by a given embedded genus-0 (planar) graph with specified facial angles (up
to relabeling of the axes). Note that this first step already determines all of the “flat”
dihedral angles, i.e., the parallel adjacent faces, and as such provides the unique graph
of every realization (obtained by merging parallel adjacent faces).

The second step consists of two small substeps. They first observe that connectedness
of the graph and knowing the axis perpendicular to each face implies that there can be
only two possible realizations of the dihedral angles, basically regarding which side of
the faces is the “outside” and which side is the “inside” of the surface. With this obser-
vation in mind, they further note that having fixed edge lengths fully determines all of
the vertex positions in both sets of dihedral angles (up to translation).? Thus, from this
set of vertex coordinates they identify the correct set of dihedral angles by looking at
the incident dihedral angles of a face f perpendicular to the x-axis with the maximum
x-coordinate (f’s dihedral angles must all be 270°). Finally, they note that quadratic time
suffices to check that the constructed object avoids self-intersections using an existing
algorithm [BLSO05]. This resolves the genus-0 case.

Remark 7.1. Interestingly, as stated by Biedl and Geng [BG09], the second step does
not require a genus-0 input, and can be applied (regardless of genus) as long as one is
given the axis perpendicular to each face. Thus, to generalize their result from genus 0
to arbitrary genus, it suffices to generalize the first step of their approach.

They give the original BUNDLEORIENTATION algorithm - a conservative propagation
algorithm working on the edges of the graph, which we describe in Section 7.2 - and show
that (in the case of a realizable input) its output uniquely determines the axis perpendic-
ular to each face with respect to any starting face. They demonstrate that their approach
can fail to determine the axis for every face already for realizable inputs of genus 1 (see
Figure 7.2 (a) and further details in Section 7.2). In particular, they observe that for some
starting faces, their algorithm does not determine the axis of every face. Additionally, we
present an example of genus 2 in Figure 7.2 (b) where no single face is a sufficient place
to start to resolve the axis of every face via their algorithm. We discuss this in Section 7.2.

2 This can result in one vertex needing two distinct positions, in which case the instance is not realizable.

116

7.1 Related Work and Contribution

@) (b) (@]

Figure 7.2: (a) A polyhedron of genus 1 with a bad starting face in yellow (one of four). The face's
bundles (in purple and turquoise) cross only once, stopping propagation. (b) A polyhedron of genus 2
composed of two tori connected by a bridge going from the inside of one to the inside of the other.
Starting at the yellow face orients the bottom torus but not the top one. (c) The underlying bundle
graph B of the polyhedron from (a), with matching colors identifying the same objects.

Contribution. The main result of this chapter is generalizing the main theorem of
Biedl and Geng to orthogonal polyhedra of arbitrary genus. To do so, we prove the fol-
lowing extended theorem:

Theorem 7.1. Given an embedded graph G with facial angles F and edge lengths L

1. we can report in cubic time either that no orthogonal polyhedral surface realizes the
given graph and facial angles or determine the unique coordinate axis perpendicular
to each face; and

2. if1does not reject the instance, then in additional linear time we report:

o that this graph and facial angles can only belong to an orthogonal polyhedral
surface for which the polyhedron bounded by it has a disconnected graph; OR

o that no orthogonal polyhedral surface realizes (G, F,L); OR

o the unique set of dihedral angles of any orthogonal polyhedral surface that has
this graph as its net, facial angles F, and edge lengths L.

We overcome the difficulty of finding the right starting faces by describing how to
use their BUNDLEORIENTATION algorithm in an exhaustive fashion — obtaining the al-
gorithm we call ITERATEDBUNDLECOLORING. It progressively learns the orientations of
faces, see Section 7.2. The correctness of our approach is presented in Section 7.3. There
we consider an input graph and facial angles together with a hypothetical polyhedron
that realizes it. We traverse the surface of this realization “layer-by-layer”, maintaining
the invariant that ITERATEDBUNDLECOLORING would orient the faces of the next layer

7

7 Cauchy’s Theorem for Orthogonal Polyhedra

(by coloring the bundles that their edges belong to), if it could orient the faces of the
earlier layers. This invariant is stated in Lemma 7.4, which we will split into sub-cases
for all possible different two-layer patters, providing and individual lemma for each. By
arguing that the output of ITERATEDBUNDLECOLORING is stable — that is, it is unique up
to renaming the equivalence classes —, we can use this output directly as input for the
original second step by Biedl and Geng, implying correctness of Theorem 7.1.

7.2 Orienting Faces by Coloring Edges

In this section we provide the ITERATEDBUNDLECOLORING algorithm to accomplish the
following task. The input of the algorithm is a connected and embedded graph G (i.e.,
including the cyclic order of the edges around each vertex, and the corresponding faces)
as well as the set F of facial angles, each of which is a multiple of 90°. If there is an
orthogonal polyhedral surface realizing (G, F), then the algorithm will determine an
orientation of each face, i.e., for each face f, an axis perpendicular to f or, equivalently,
the axis-plane parallel to f will be specified. Moreover the orientations are obtained in
a stable way: Up to renaming of the axes, every orthogonal polyhedral surface realizing
(G, F) has these orientations.

The algorithm builds upon the reasoning used by Biedl and Geng [BGO09] for the
case of genus 0. Rather than directly working with the faces of G, it works on the bundle
graph B . For any orthogonal face f, the edges bounding f can be partitioned into two
(edge) bundles. If a pair of edges is parallel (with respect to parity and the facial angles
at f’s corners), they are in the same bundle; otherwise, they are in different bundles.
This implies that the edges of each face are partitioned into two bundles where edges in
distinct bundles are perpendicular. If edges of two distinct bundles appear on the same
face, we say that those bundles cross there. By definition, each edge e bounds exactly two
faces and thus is in two (possibly) different bundles. As parallelism is transitive, all edges
of both such bundles are parallel to e, allowing the bundles to merge into one. Taking the
closure of these merges leads to a partition of the entire edge set of G into a collection B
of bundles where edges of distinct crossing bundles are perpendicular in any realization
as an orthogonal polyhedral surface. This gives us the bundle graph B = (B, E) with
vertex set B and an edge e € £ between two vertices, if there is at least one face containing
edges of both bundles.

To discover the realization as an orthogonal polyhedral surface, we aim to partition
the edges into three color classes depending on the coordinate-axis to which they are
parallel. BUNDLECOLORING picks an edge of B (a face of G) and colors the two bundles
connected by it differently. It then repeatedly looks for a triangle in 8 with two colored
vertices, coloring the third vertex in the remaining color, until all of B is colored or no
such triangle is found anymore. As a shorthand, we use BUNDLECOLORING(B ¢, e) to
say we run BUNDLECOLORING on the bundle graph ‘B with starting edge e € £. Then,
any 3-coloring of B provides an orientation of the faces of G.

118

7.2 Orienting Faces by Coloring Edges

Algorithm 7.1: ITERATEDBUNDLECOLORING(Graph G, facial angles F)

B = (B,) « bundle graph of G with facial angles F
while |B| > 3 do
B4 « copy of Bg /* Copy to track progress */
foreach edge e € £ do
L merge bundles in B using BUNDLECOLORING(®Bg, €)

/* If nothing changed and there are still uncolored
bundles, subsequent runs will also fail. */

if %‘gd =3 then return Infeasible

return B /* B is now a partition of the edges of G. */

Remark 7.2. If the input graph G consists purely of rectangular faces, then the corre-
sponding bundle graph has a natural intuitive structure. Each bundle corresponds to a
cycle of faces obtained by tracing the outline of the surface along a path parallel to one of
the axes - see Figure 7.2 (b) for the surface and (d) for the corresponding bundle graph
(using the same colors).

They showed that for realizable instances (G, F) where G has genus 0, this simple con-
servative coloring procedure always completely colors 2B, and hence the orientation of
the faces in any realization of (G, F) is unique up to naming of the axes. Their algorithm
is easily implementable in time linear in the size of the bundle graph, which is linear in
the size of G. Biedl and Geng observed that BUNDLECOLORING can fail to color all the
bundles when the graph G has genus 1. For example, if, in Figure 7.2 (a), we start the
bundle coloring procedure on the edge corresponding to the (yellow) “inner” face, then
it will not color any bundles beyond the original two. However, if a “corner” face (e.g.
the blue face) is used instead, then all bundles will indeed be colored. As their algorithm
starts with an arbitrary edge, it cannot generally cope with such examples. Therefore,
Biedl and Geng left the status of nonzero-genus inputs as an open problem. In fact, al-
ready for genus 2 we observe that there are realizable instances where some bundles will
remain uncolored after one execution of BUNDLECOLORING regardless of the starting
edge. For example, in Figure 7.2 (b), if we start from a face of one torus (e.g., the yellow
face), when the color propagation reaches the other torus, the topology steers it so that
it is as though we started on an inner face of the other torus. Thus, as in the genus-1
example, some bundles remain uncolored. This implies that a more involved approach
is needed for genus larger than one. Here, we can observe that the faces of this “bridge”
connecting the torii will be oriented when starting in a “good” face for either torus. in-
tuitively, by combining these two partial orientations, we can indeed consistently orient
all of the faces.

For the case of arbitrary genus inputs, we designed the ITERATEDBUNDLECOLORING
algorithm, listed in Algorithm 71. It first constructs the bundle graph from (G, F) and
then repeatedly runs rounds of BUNDLECOLORING executions on the edges of the bun-

119

7 Cauchy’s Theorem for Orthogonal Polyhedra

dle graph as a subroutine. While doing so, it intermediately adjusts the bundle graph
depending on the information learned from the previous runs. Namely, if a single run
of BUNDLECOLORING(B,) on some edge e € £ does not color all of the bundles, but
does manage to color some bundles, we can derive the following: All bundles that have
received the same color must do so in any valid 3-coloring. Thus, for each i € {1,2,3},
we merge the bundles with color i into a single bundle where the neighborhood of this
bundle is simply the union of the neighborhoods of its members. The ITERATEDBUNDLE-
CoLORING algorithm simply repeats such rounds until no bundles are merged in a round
(since this implies that no further iterations would merge bundles). For the total runtime
of ITERATEDBUNDLECOLORING, we have the following lemma:

Lemma 7.2. On an m-edge graph G, ITERATEDBUNDLECOLORING runs in O(m?>) time.

Proof. Consider the total number of merge operations using BUNDLECOLORING. They
will occur at most as many times as we have bundles to begin with, i.e., less than the
number of edges in G. On a graph with n vertices and m edges an execution of BUNDLE-
CoLORING takes O(n+m) time. In each round, we run BUNDLECOLORING for every face
(of which there are O(m)). Thus, after at most linearly many rounds, we will indeed have
a round in which no bundles merge, resulting in a total runtime cubic in the number of
edges. O

In Section 7.3, we will show that for realizable instances (G, F) of arbitrary genus, this
simple iterated conservative coloring procedure results in a triangle (i.e., it completely
colors and merges the bundles), and as such the orientation of each the face in any real-
ization of (G, F) is unique up to naming of the axes. This will establish Theorem 7.1.

Remark 7.3. For the correctness of our approach, it suffices to consider input instances
where each face is a unit square. In particular, when an instance (G, F) can be realized,
the resulting orthogonal polyhedral surface can be tessellated so that every face is a unit
square, providing a corresponding tessellation G’ of G. Moreover, the bundle graph of
G’ only contains less information (more separate bundles) regarding which edges of G
must be parallel and which must be perpendicular. So, by arguing that the edges of any
such tessellation will be completely colored by our approach, we indeed establish that
the edges of G will also be completely colored.

7.3 Arbitrary Genus: The Proof of Theorem 7.1

Following Remark 71 given by Biedl and Geng [BG09] on their two-step proof structure,
to prove Theorem 7.1, it suffices to prove the following theorem regarding step one.

Theorem 7.3. Given a connected embedded graph G (of arbitrary genus) with facial angles
F that are all multiples of 90°, ITERATEDBUNDLECOLORING Will

o report that no orthogonal polyhedral surface can realize this graph and facial angles,
OR

120

7.3 Arbitrary Genus: The Proof of Theorem 7.1

o report all edges of the graph for which the dihedral angles must be 180° in any orthog-
onal polyhedral surface that realizes this graph and facial angles.

Recall that, by Remark 7.3, it suffices to prove this when every face of G is a unit
square. With this in mind, we set up some terminology. Let G be a graph in which all
faces are bounded by cycles of length four, and let F be a set of facial angles that are all
90°. Together G and F imply that the surface of any orthogonal polyhedron P realizing
(G, F) has to be tessellated using rectangular faces. Imposing the additional restriction
for every edge to have unit-length, and that the faces are supposed meet at dihedral angles
that are multiples of 90° implies that P itself - if it exists — needs to be composed of solid
unit cubes joined at their sides (not edges or corners).

7.3.1 Proof Outline

In the following we assume that (G, F) is a realizable instance and that P is the polyhe-
dron realizing it. We will traverse the polyhedron in a top-to-bottom fashion, consider-
ing locally confined pieces of G. Each piece will correspond to a subset of the faces on
P and we will argue that ITERATEDBUNDLECOLORING would discover the orientations
of those faces assuming the higher components of P are fully oriented. This process will
yield that the orientation found on P is unique (up to rotation), because BuNDLECOL-
ORING will only ever derive the coloring of a bundle when it shares faces with bundles of
the two other colors.

Traversing Object and Graph. We assume that P is aligned to some three-dimen-
sional coordinate system: At least one of the faces of P is coplanar to the xy-plane 7, at
the origin® - imagine P standing on that face, growing upwards. Let ¢ be the maximum
z-coordinate of all points of P. By definition, the “top-most” faces of P (having an in-
terior point with z-coordinate ¢) are coplanar to ;. Similarly, all “bottom-most” faces
(with an interior point with z-coordinate 0) are coplanar to 7. Furthermore, any plane
m; with i € (0, t) crosses through the interior of P. This allows us to define the i-th cross
section C; of P, the set of cubes intersecting ;. Obviously, C, is empty for x ¢ [0, ¢]. The
term “cross section” is a misnomer here, as those are usually two-dimensional outlines
created by intersecting a three-dimensional object with some plane, and not also three-
dimensional objects. In fact, we will later also consider the two-dimensional outlines of
those objects (projecting the cubes onto the xy-plane they are intersected by).

Since G is the net of P (by assumption), the cross sections of P also “intersect” G. Each
xy-plane 71; (with i € [0, t]) defines a cross section that intersects some faces of G on the
surface of P. Before we describe how to obtain the subgraph G; from cross section C;,
we look into how cross sections interact with faces on P. There are two options for faces
intersected by an xy-plane 7;: They can be coplanar with 7; or have two of their edges
parallel to 7r; while the other two are perpendicular to 7; (piercing it). We only consider

3 An xy-plane 7y is a plane spanned by the x- and y-axes at some constant z-coordinate k.

121

7 Cauchy’s Theorem for Orthogonal Polyhedra

a discrete subset of all possible cross sections, namely those defined by xy-planes 7; with
integer i € {0,1,...,¢} and the xy-planes with coordinates half-integer above/below" it,
namely central cross section C; and C; 1 and C,-_%.S As the realization P is aligned to
the coordinate system and stands on 71, there are three options for any face f intersected
by cross section C; (when i is an integer):

o Face f is itself coplanar to xy-plane 7;;
o One edge of f is coplanar to 7;, and either

- “standing on” 7; (intersected by 7, 1); or,
2

- “hanging from” 71; (also intersected by i1).

We say that a face f of polyhedron P is a roof face when it is coplanar to an integral
xy-plane 77; and it appears on a (solid) cube intersected by 77;_, (below it). Symmetrically,
a face of P is a ceiling face when it appears on a cube intersected by 7,1 (above it). All
other faces are perpendicular to the xy-plane and we call them wall faczes. At each wall
face f there are two crossing bundles - one containing the horizontal edges of f and
the other containing the vertical edges of f. Given the alignment of P to the underlying
coordinate system, we say that the former bundle (containing horizontal edges) extends
top-to-bottom. The latter extends parallel to the half-integral xy-plane intersecting f; we
refer to such bundles as outline bundles, as they follow the polygonal outlines of the cross
sections. The half-integer indexed cross sections only intersect walls while the integer
indexed cross sections collect coplanar roof/ceiling faces together with their adjacent
wall faces.

Defining Pieces and Patterns. The notation presented next concerning planes, sub-
graphs, layers, parallel edges, bundles, and the bundle graph B is illustrated in Fig-
ure 73. Considering a triple of cross sections C;, 1, C;, C;_1 of P for some integer i €
{0,1,...,t}, we can define the subgraphs Giy1,Gis and G of G. Each such subgraph
consists of exactly those vertices and edges of G that belong to faces on the cubes compos-
ing P intersected by each cross section respectively.® The half-integer indexed subgraphs
consist only of wall faces — as roof and ceiling faces can only be coplanar to integer in-
dexed xy-planes -, and G; consists of both G,,1 and G,_; as well as all roof and ceiling
faces between them. Even though G and P are both connected, each such subgraph G;
can consist of multiple connected components L; j,...,L; ; € G;, which we refer to as
layers. Since G; is the graph induced by cross section C;, we also write L; j € C;. In each
layer L; j, we have F; ; as the set of faces on the intersected cubes. We use these nota-
tions for integer as well as half-integer indexed subgraphs. Notice that G, consists of the
highest roof faces P and their neighboring faces (hanging “down” from them), and G,
consists of the lowest ceiling faces of P and their neighboring faces.

* Cy_1 and C,, 1 do not intersect P. We will discuss the triples involving either of them separately.

2 2
> Clearly all other non-empty cross sections are equal to one of these.
© Notice that “interior” cubes of P do not contain any vertices or edges and thus can be ignored.

122

7.3 Arbitrary Genus: The Proof of Theorem 7.1

T
T I
2
1.2
- - -
- - . _ _ L - - _ _ ___!___‘
: - - P N !
h - - \ !
i - - 1 V|
- - \ 1
(v) : [] [] \\ - I
b ! - - - |
- = N\l - - - - Ny /A p— - _
Vs
——— . _ - | - -
r - I
! N - !
| \ - 1
wl g el - 1
1 ' ! - I
1 Cmm X - 1
1 = - 1
-——--M _ _ 0\l ____ _-.__
- -

Figure 7.3: lllustration of the used notation: (a) A simple polyhedron P of height ¢t = 2. Plane m,
defines subgraph G (red), plane ;. defines two disconnected layers L. ; and L. , (blue). The faces

of P contained in 7, are roof faces,zthe faces intersected by 7y are wall faces. (Ic;) The net of P. The
red highlighted edges belong to G,; the dashed lines indicate bundles: vertical bundles in purple,
horizontal bundles in orange, outline bundles in blue. (c) The bundle graph B corresponding to the

net (with matching colors).

123

7 Cauchy’s Theorem for Orthogonal Polyhedra

Figure 7.4: Patterns realizable by components of L;, left to right: Straight, split, merge, and mixed.

In the following, we treat the layers of each subgraph G; in isolation, referring to each
as layer L; - omitting the second index. We enumerate the set of five different possible
patterns that we could encounter in L;, depending on the numbers of layers in G; +1and
G;_1 present in L; respectively. Patterns 2-5 (below) are illustrated in Figure 7.4.

1. Inastart L; only contains one layer of G;_1, but no layers of G;, 1; symmetrically,

in an end pattern L; contains one layer of G;, 1, but none of G;_1.

2. In a straight pattern, L; contains exactly one layer of each of G; 41 and G

3. Ina split pattern, L; contains exactly one layer of G;, 1 but multiple of G, ;.
4. In a merge pattern, L; contains multiple layers of G;, 1 but exactly one of G, ;.

5. In a mixed pattern, L; contains multiple layers of both G, 1 and G, _;.

Proof Invariant. To prove Theorem 7.3, we argue that ITERATEDBUNDLECOLORING
colors the bundles of B, i.e., the output is a partition of the bundles into three sets. This
coloring will be unique (up to renaming the colors), as we will never “guess” the color
of a bundle but only derive it from having two differently colored neighbors. Actually,
BUNDLECOLORING itself does not exploit the geometric nature of the problem but only
works on the (unique) bundle graph of G. Having the coloring of B¢, we can obtain an
orientation of the faces of G, marking each of them as perpendicular to one of the three
coordinate axes.

In this analysis, we will argue that ITERATEDBUNDLECOLORING would be able to “puz-
zle” together the results obtained from multiple executions of BUNDLECOLORING - recall
the loops in the code from Algorithm 7.1. We will only consider a selected subset of all ex-
ecutions’, looking for bundles that have been colored by more than one of them. When
we find two executions that both color the same two bundles, we say that those execu-
tions can be synchronized®, merging the color classes (renaming those of one execution).
During the analysis we will oftentimes argue that two (or more) layers must have been
synchronized.

While ITERATEDBUNDLECOLORING does not actually process ‘B top-to-bottom as
we describe (since it does not know about the realization it will reconstruct), we will

7 Unfortunately, we cannot identify this subset without the realization at hand. Therefore we choose ex-
haustive application of BUNDLECOLORING, eventually performing all required runs.
8 This is something the algorithm finds eventually, we just argue that it has to happen.

124

7.3 Arbitrary Genus: The Proof of Theorem 7.1

argue using executions of BUNDLECOLORING on faces of layers in a top-down fashion.
The requirements on an upper layer allowing the algorithm to color the bundles of a
lower layer are stated in Lemma 7.4 below. We will not prove Lemma 7.4 directly, but
instead argue for all five patterns individually.

Lemma 7.4. Let B{, be the output of ITERATEDBUNDLECOLORING and let G, =
UnLiyt, and Gi1=UnlL n be the subgraphs of all upper and lower layers respec—

tively. For each i € {0,1,..., t} we have

1. If ITERATEDBUNDLECOLORING can individually orient all upper layers in G, 1 (the

bundles of each layer have been merged to form triangles in B (),

i+l

2. then the outline bundles of all layers in G;_1 would be colored by ITERATEDBUNDLE-
COLORING, synchronizing them to the upper layers’ outlines,

3. which in turn means that the remaining bundles of G, . are also colored, i.e., they
have been merged to form a triangle in B,.

Our ultimate goal is to orient the faces of G. Therefore, in this analysis we classify
faces by type - either 0,1 or 2 —, depending on the number of bundles with already fixed
color class, following the notation introduced by Biedl and Gen¢ [BG09]. Again recall
that ITERATEDBUNDLECOLORING does not work with the faces of G directly; instead, we
use the types of faces to discuss how much and what parts of a given layer have been
processed. Property (1) of Lemma 7.4 implies that all faces in F, 1 are of type 2; we will
use this property as an invariant that we assume holds for all upper layers of any pattern.

Next, observe that Lemma 7.4 indeed implies Theorem 7.3: Property (1) trivially holds
for i = t. Moreover, for each layer within any integer-indexed cross section C;, the
bundles form a triangle in ‘B, by Properties 2 and 3. Thus, as our net G is connected, it
must be the case that B is a triangle, and as such the orientation of every face of G has
been determined.

7.3.2 Lemmata for the Patterns

In the following, we fix a polyhedron P that realizes G, and consider the patterns for
the layer L; of P, establishing a lemma similar to Lemma 7.4 for each. For now, we do
not consider layers with flat holes: Layer L; 1 has a flat hole, when there are two (or
more) lowerlayersL; 1 ,and L; 1 , with outlmes in7;_1,such thatboth lower layers are
connected using roof and/or ceiling faces from L; and such that the outline of one layer is
contained in the outline of the other. The most simple flat hole is shown in Figure 7.2 (a)
on page 117: It has three cross sections C;, C 1 and Cy. The middle cross section C 1
shows two outlines — one 3 x 3 units large, the other 1 x 1 (in purple) — with the larger
containing the smaller and both of them connected by roof faces from C; (e.g. in blue).

Notice that this does not imply restricting ourselves to genus-0 cases for now, as holes

125

7 Cauchy’s Theorem for Orthogonal Polyhedra

Figure 7.5: lllustration of a patch: (a) The subgraph of the net of a straight pattern; faces of the patch
are drawn in red, bounding bundles in blue. (b) The same patch on the surface of the realization,
forming a start pattern (with matching colors).

in planes perpendicular to xy-plane (and some other, more complicated cases) are still
possible and will be handled implicitly.

To complete the analysis, we later introduce Lemma 7.12, describing how ITERAT-
EDBUNDLECOLORING establishes Property 2 of Lemma 7.4 in the presence of flat holes.
After coloring all bundles of a layer (Lemma 7.4 (3)), processed flat holes “disappear”
from the bundle graph as all outside-inside outline pairs are colored the same and thus
the bundles are merged in B¢;,.

Patches and Patch Spreading. In the following proofs we use the concepts of patches
and patch spreading. A patch is a maximal connected set of faces of some subgraph G;,
defined by a “boundary™ of bundles with the same color: For each face f of a patch,
the two bundles b and b(® crossing in f only extend across other faces of the same
patch until eventually crossing one of these boundary bundles on either side. (As we will
pick the patches to be coplanar to some plane 7;, these boundary bundles will in fact be
outline bundles of upper and lower layers.) An illustration can be found in Figure 7.5 -
even though we also provide a geometric interpretation there, the concept of patches is
defined only on the faces of G and therefore implicitly present in the bundle graph.

Lemma 7.5 (Patch Spreading). If the boundary bundles of a patch have the same color
and the patch contains a face of type 2, then all faces in that patch are type 2.

Proof. Neighboring faces share one bundle and patches are connected, thus the following
argument can be applied exhaustively, spreading over all faces of the patch: If a patch

° The boundary composed of outline bundles relates to the bands introduced by Biedl and Geng [BG09]
In the case of hole-free start- and end patterns, the single outline bundle is indeed a band.

126

7.3 Arbitrary Genus: The Proof of Theorem 7.1

has some type 2 face, all of its neighbors are at least type 1 (from the shared bundle);
since those neighboring faces have another bundle crossing at least one boundary bundle,
those neighbors are actually type 2. O

We will argue about establishing Property 3 of Lemma 7.4 using patch spreading.'
Consider a single face of a patch - by definition, its two bundles cross each other and
also cross bundles of the third color class.

Since we assume that there are no flat holes (for now), in the start, there is only one
boundary outline bundle to be crossed by the bundles of patch faces. End pattern seem
to be more complex since there can possibly be multiple upper layers that are crossed
by bundles from faces of the patch. As those upper layers will have been lower layers
of some other patterns, they are already synchronized and can be treated as one bundle.
We can then either choose the color for the bundle bounding the patch (uncolored lower
layer of a start pattern) or have it fixed and given (colored upper layer of an end pattern).
In most of our cases however, we first ensure that Property 2 of Lemma 7.4 holds; thus,
even when crossing different outline bundles, we still get the same coloring information
from all of them.

With patch spreading established, we can now prove the first pattern-lemma.

Lemma 7.6 (Start- and End Pattern). Let L, 41 and Liy be the upper and lower layer in
L; respectively.

(@) If L;;1 = @, an orientation of all faces in L; can be obtained by running BUNDLE-
COLORING starting on any roof face.

(b) IfL,_1 = @and L, is oriented, the ceiling faces in L; can be oriented to be consistent

3 i+1

with the coloring of L; 1.

Proof. For case (a), picking any roof face f coplanar to 7; yields two perpendicular bun-
dles bW, b3, Having a realization, we know that both cross the lower outline bundle
b;_1, hence we have a patch containing f that is only bounded by b; 1 (as L; is con-

nected and L; 41 s empty). Running BUNDLECOLORING on f, we pick two colors for
b and b?®), making f type 2 and get that b,_1 must be of the third color. This allows

patch spreading, coloring all bundles in L;, ma_kiing all patch faces type 2. With all other
bundles known, all faces of b;_1 must also be type 2.

For case (b), consider the outline bundle b, 41 of L,,1. At any convex corner of this

i+l
outline, there is a ceiling face f; the two bundles of f extend onto upper wall faces. By
the invariant, those bundles are colored, making the corner face type 2. With b, 41 also

colored, applying patch spreading (Lemma 7.5). O

In each realizable instance, there is at least one start pattern — namely at the face
defining 7, - initializing the propagation process of Lemma 7.4 and one end pattern -
the face(s) coplanar to 7.

10 Again, this is not what the algorithm actually does, but a way to argue about the output.

127

7 Cauchy’s Theorem for Orthogonal Polyhedra

1
T

Figure 7.6: Geometric intersection and bundle directions: (a) A layer creating a merge pattern (two
upper layers, one lower layer); the intersections of lower and upper layers together with their respec-
tive xy-planes in purple and orange respectively. (b) The geometric intersection of the layer from (a)
yields two curves (segments indicated by ticks). The blue bundle is fake, it is northern and southern
for the same layer; The two north-western corners are indicated by the green region: The corner at
the orange bundles is blocked, that at the purple bundles is unblocked.

Geometric Intersection and North-Western Corners. The next rather simple pat-
tern is the straight pattern. In this pattern we encounter an upper layer L,, 1 +1 providing
a prescribed coloring that the remaining bundles of the subgraph G; of L; “need to be
synchronized to.

Since we have the realization P at hand, we can look at the upper and lower cross
sections of C; on their xy-planes 7; 41 and7;_1. 1. Projecting the outlines of the intersected
cubes down onto a common xy- plane each palr of overlapping layers creates one or more
two-dimensional polygonal regions called curves. We call the set of curves obtained by
projecting and intersecting the upper and lower layers of L; the geometric intersection of
L;. As the realization is aligned to a coordinate system, so are these outlines. This allows

us to characterize the regions as follows:

Each unit-length segment of a curve corresponds to two faces fi, f, — one from the
upper and one from the lower layer - coinciding with the outline of the inner-most of the
two faces. At those faces, we have three bundles in total — the two outline bundles (tracing
the original polygonal regions in the planes) and some bundle b’ perpendicular to both.
In the following, we will oftentimes identify a curve with either of the two outline bundles
of the layers creating it, depending on the layer we currently consider. By construction,
b’ extends over both faces creating f in the intersection, b’ is therefore present in the
bundle graphs of both layers. Using the alignment of P within the coordinate system, we
can classify the shared bundle b’ as northern, eastern, southern, or western, following

128

7.3 Arbitrary Genus: The Proof of Theorem 7.1

the facings and perpendicular coordinate axes of f; and f, on P. By this definition, the
bundle b’ can be the shared bundle of multiple unit-length segments of the same curve'’,
and thus be northern and southern (or eastern and western) for that same curve at the
same time. In that case, we call the bundle fake northern and southern (or fake eastern
and western). In the following, we will focus on non-fake northern and western bundles.
The example found in Figure 7.6 shows these notions as well as the notation below.

On these curves, we now look for north-western corners. A corner is a convex 90° turn
in the curve. It is north-western, if one of its segments is defined by a face with a northern
bundle, the other segment is defined by a face with a western bundle, and neither of the
two bundles is fake - the green areas in Figure 7.6 (b) depict north-western corners. We
say that a northern (or western) bundle is blocked when there is a different curve for
which it is southern (or eastern) — consider the orange bundle from Figure 7.6 (b). In
that case, the blocked bundle traverses some wall face of another curve. Similarly, a
corner is blocked if at least one of its bundles is blocked. It is easy to see that every curve
of a geometric intersection always has at least one north-western corner, and that there
always is some curve that has an unblocked north-western corner.

Lemma 7.7 (Straight Pattern). Let L; € C; be a straight pattern with upper and lower lay-
ersLi 1 €Cipi and L; 1 €C 1, respectively. Given an orientation ofLH%, the remaining
parts of L; can be synchromzed to it.

Proof. We first establish how the color of the outline bundle b; 1 of L; 1 can be derived.
This allows us to argue using patch spreading on the remaining Toof and ceiling faces.
Let b, 41 and b,_, be the outline bundles of L, i1 and Liy respectively. Consider
the geometric intersection of the two outlines. In this set, consider a curve with an un-
blocked north-western corner - call the curve of this corner p. By Lemma 74 (1), the
bundles defining the north-western corner of p are colored. They both cross b;, 1 as well
as b;_1, synchronizing them and establishing 2. This makes all faces of L; 1 of type 1.

If there are patches of roof or ceiling faces in L;, there must also be at least one face f
neighboring a face of b, 1, sharing an edge with a wall face of the upper layer and hence

also sharing a bundle b("). Let the other bundle of f be b(®) — it crosses colored bundle
bD (at f) and at least one of the outline bundles making f a type 2 face for that patch,
enabling patch spreading. Repeat this until all patches are oriented. O

Peeling Sequence. In the following lemma for the merge pattern, we will encounter
a the geometric intersection containing multiple curves.

To synchronize all outlines, we define the peeling sequence of the curves of a geomet-
ric intersection using the following set of instructions: As long as there are unprocessed
curves, take a curve with an unblocked north-western corner, add it to the sequence and

! For example, consider a bundle going between the ends of a “C”-shape, like the blue bundle from Fig-
ure 7.6 (b).

129

7 Cauchy’s Theorem for Orthogonal Polyhedra

mark it as processed. Update the other corners by marking the northern and western bun-

dles blocked by processed curves as not blocked (possibly marking some north-western

corners as unblocked).!?

Lemma 7.8 (Merge Pattern). Let L; € C; be a merge pattern with L;, 1 y,..., L 1, €
Ciyiand L;_1 € C;_1. Given locally consistent orientations for all layers in C; 1, (i.e., in

each L, 1 o1 the bundles have been merged to form a triangle in By, - Lemma 7.4 (1)) the

remammgparts of L; can be oriented consistently (as in Lemma 7.4 (2) and (3)).

Proof. We pick one of the upper layers as a reference and first argue how BUNDLECOLOR-
ING synchronizes the other outline bundles to it. We argue how the roof and ceiling faces
between them become oriented by patch spreading. With these orientations in place, we
then synchronize the color classes of the remaining layers into the reference layer.

Consider the geometric intersection of all upper layers with lower layer L; .; for
every upper layer, we get some curve corresponding to it. Let L;, 1 , be the layer of the
first element of the peeling sequence for that geometric intersection. This curve has a
north-western corner with two unblocked bundles, i.e., they both cross bl,% and b, i1
only extending over roof or ceiling faces in between. Having bundles of two different
color classes identified in both layers, we synchronize L; 1 and L;,1 ;.

Following the peeling sequence, we synchronize all other outline bundles as follows:
Consider the representative north-western corner ¢ of the current element in the se-
quence belonging to upper layer L, The bundles at ¢ form a triangle with outline

l+]
bundle b;, 1 ;. If both bundles at ¢ are not blocked, then they cross the lower layer’s out-
line bundle b;_1. Thus b, ; gets synchronized to the lower layer’s outline (like b;, 1 ,

was). If elther (or both) of the bundles is blocked, it must be blocked by some curve to
the north (or west respectively), crossing that upper layer’s outline bundle. As that curve
needs to be earlier in the sequence (by being more north and/or west), its outline bundle
is already synchronized, hence propagating the same coloring information as if crossing
b;_1. This way, ITERATEDBUNDLECOLORING can synchronize all outline bundles of L;.
W1th all upper and lower layers synchronized, the missing patches of roof and ceiling
faces can be synchronized using patch spreading like above. O

Hooking Curves Together. As opposed to the merge pattern above, the multiple
lower layers of the split pattern are not covered by the invariant of Lemma 74 (1) - that
is, identifying two perpendicular bundles crossing a curve does not imply synchroniz-
ing the layers they are obtained from, as the bundles of those layers are not grouped into
three color classes yet.

To overcome these problems, we use a similar strategy to that of Lemma 7.8: We look
for the north-western corners (with bundles ") and (")) in sequence, deriving the
color for each corresponding outline bundle from the upper layer’s outline or the curves

12 For the purpose of defining this sequence, use the following intuition: Imagine removing the picked
curve from the geometric intersection, “peeling it away” to make other curves accessible. We will later
introduce Lemma 7.9 to argue how this peeling relates to ITERATEDBUNDLECOLORING.

130

7.3 Arbitrary Genus: The Proof of Theorem 7.1

blocking it. In the following discussion we look for a face f “near” the corner; that is, the
two faces creating corner ¢ and face f share exactly one vertex in G (they are diagonally
opposite on P). To obtain a unique valid coloring despite having blocking curves, we
argue having an execution of BUNDLECOLORING “nearby” and fixing the colors of two
additional bundles ¥ and b, allowing us to explore the crossing patterns of those six
bundles (including the two outlines). A schematized geometric intersection (with faces,
corner, and bundles) is shown in Figure 7.7 (a). The subgraph characterizing the bundles
for this configuration is shown in Figure 7.7 (b).

We demonstrate how the result of a single execution of BUNDLECOLORING on f hooks
the outline bundles of the curves to each other. Using the two crossing bundles starting
in f, we can derive that the outline bundles b;; and b, , have to be in the same color
class, even if neither outline has been synchronized to an upper outline bundle yet.

It is also possible that there is no face f diagonally opposing c; consider that realiza-
tion P might be missing a cube in the upper layer. In that case, we technically cannot
argue using Lemma 7.9. If there is no cube on the upper layer to have face f on its surface,
this missing cube certifies that there are two bundles coming down from the upper layer,
one being coplanar to b and the other coplanar to b(?). As those bundles are colored
differently by the invariant and cross an upper outline bundle, we can use these colors
instead of those obtained by the “missing” execution. Due to the merging bundles of the
same color in B¢, we can still assume to have the local structure in the bundle graph
shown in Figure 7.7 (d).

Lemma 7.9 (Hooking layers). Let C be the set of curves of the geometric intersection for
some layer L;. Suppose C is being processed using a peeling sequence and let c be the north-
western corner of the currently processed curve. When corner c is blocked, the curve of ¢ can
be hooked to curves processed earlier in the sequence — either by using a suitable execution
of BUNDLECOLORING or by considering the structure of P nearby c.

Proof. Let b; ; be the outline bundle of the currently processed curve, let ¢ be the north-
western corner of this curve and let 5 and b(*) be the western (horizontal) and north-
ern (vertical) bundles of c. Suppose that both b(") and b(") are blocked by other curves.
This layout of curves is depicted in Figure 7.7 (a); the structure in the bundle graph that
enables the hooking is shown in Figure 7.7 (b), with b; , being the representative of all
outline bundles previously synchronized.

Since bundle b(" is blocked by some curve, there must be at least one face between
¢ and the blocking curve. Let f;, be the first of those faces, neighboring the wall face
defining ¢. Symmetrically define f, as the first face of b("). Consider the two other
bundles of faces f, and f;, call them b and b®) respectively. By construction, these
bundles cross at some face f. This face f is diagonally opposite of ¢ on P, sharing one
vertex with the wall faces composing c.

To derive that b; ; and b; , will be placed into the same color class, we need to show
two things: First, b(") and b(*) both cross b; ; and some outline bundle synchronized to
b; »; and second, that b and b will be placed in different color classes.

131

7 Cauchy’s Theorem for Orthogonal Polyhedra

| | bio |

()
(1)
JEE AR
1_[c
T

(a) (b)

Figure 7.7: Hooking a blocked curve to the already processed parts of B¢, see Lemma 7.9. (a) Corner
¢ (in green) has two (orange) bundles b and b(*) that are both blocked by curves to the west and
north respectively. Face f (in red) is diagonally opposite of ¢, the two (blue) bundles 5", b®) of f
extend to the west and north respectively, eventually crossing other outline bundles (either other
curves or the upper layer’s outline). The pairs of bundles b, b and b, b(® cross at f, and f,
respectively. (b) A subgraph of the bundle graph 2B for the layers of (a) (with matching colors).

The first part is easy: By construction both bundles cross b; . As b(") extends to the
west, any curve blocking it must have a north-western corner further to the west. Thus,
this curve was processed before the current curve, meaning it has been synchronized to
the outline bundle. If b5(") is not blocked, it trivially crosses the outline bundle that the
current curve is supposed to be synchronized to. This argument holds symmetrically for
bundle ().

For the second part, consider the execution of BUNDLECOLORING with starting face f.
The two bundles b(") and b(®) of f cross each other, and by extending the the west/north,
both also cross representatives of b; ;. As b crosses b and both cross some bundle
synchronized to b; ,, both bundles also need to be in different color classes. This forces
b® and b to have the same color (symmetrically for b and b(*)). We now have that
b and b(") are in different color classes, completing the claim.

Notice the following: If any of the three faces f, f,, f, does not exist, we get that
(at least) one of the pairs of crossing bundles directly cross the outline we are trying
synchronizing to, ensuring that both bundles are in different color classes. O

Since we cannot know the correct peeling sequence while running ITERATEDBUNDLE-
COLORING - the algorithm does not know the realization P -, we rely on exhaustive ap-
plication. In particular, the hooking via the peeling sequence means that - assuming that
the faces of the upper layers are fully oriented — some bundles can be merged by a single
execution of BUNDLECOLORING, and as such, ITERATEDBUNDLECOLORING would do so.
As we have discussed, we can assume that such a sequence exists for any valid positive
instance. After hooking two curves, both outlines propagate the same coloring infor-

132

7.3 Arbitrary Genus: The Proof of Theorem 7.1

mation when crossed, so we can effectively treat the layers creating them as as having a
single outline bundle, hence merging them.

Lemma 7.10 (Split Pattern). Let L; € C; be a split pattern with upper layer L;, 1 € Cy,1
and lower layers Liiys.sLi 1, € C 1. Given an orientation ofL,+ , the remaining

parts of L; will be synchromzed fo it by ITERATEDBUNDLECOLORING.

Proof. Letb,, 1 be the outline bundle of the upper layer. As before, we first establish that
all lower outline bundles will be synchronized to b; 1

Again, consider the geometric intersection of L; and let L1, be the lower layer
contributing to the first curve in a peeling sequence. As the first element cannot be
blocked, there are two bundles present in Li—%,l that are uninterrupted. Hence, these
bundles allow us to synchronize b; 1 , and b, 1

We now consider the remaining elements of the peeling sequence in order, synchro-
nizing each outline bundle to b,,:. Let ¢ be the north-western corner of the current
curve. If ¢ is not blocked, the northern and western bundle each cross both outlines, syn-
chronizing them. If ¢ is blocked, we argue using Lemma 7.9: We observe that there is a
face f on which BUNDLECOLORING can be executed, such that both outlines are hooked.
The hooking certifies that the outline of the curve of ¢ is synchronized to the outlines
blocking it.

This shows that all lower outlines are synchronized to the upper outline bundle b, , 1,
making all wall faces of L; at least type 1. Next, consider the patches of roof and ceiling
faces. Since L; is connected, all patches must have a face neighboring a wall face of the
upper layer’s outline bundle b, o1 At that wall face, there is a bundle b)) (perpendicular

tob,, 1) extending at least one face of the patch; let f* be that face, and let bV and b be

the two bundles of f*. By construction, the bundle b of f* belongs to the upper layer,
and the other bundle b® crosses some synchronized outline bundle. Thus, b® crosses
two colored bundles and will be colored itself. This implies that f* is of type 2. Applying
patch spreading (Lemma 7.5) to that patch colors all bundles of faces in the patch of f*.
Repeating this argument until all patches are oriented concludes the proof. O

To see the conceptual difference between the mixed pattern and regular split or merge
patterns, consider the single central cube in the upper layer of in Figure 7.8 (a); call it
L;_1 .. While the geometric intersection of the outlines is non-empty, neither of the two
bundles going over L, 1 . crosses the outline of the layer below it - both extend over
ceiling faces and onto other upper layers on each side. To apply either Lemma 7.8 or
Lemma 7.10, we would require all outline bundles to be in the same color class, but the
alternating structures created by upper and lower layers prevent us from using either

lemma.

Lemma 7.11. Let L; be a mixed pattern with upper layers LiyypseosLipi g€ Gy and
lower layers L1y Lisip € Ciy. Given individual orientations for all upper 7ayers
in Cy1, the all of L; will be synchromzed

133

7 Cauchy’s Theorem for Orthogonal Polyhedra

() (d)

Figure 7.8: The mixed pattern: (a) The central layer LH%,C of this pattern has no bundle hitting the

outline of the layer it stands on. (b) A layer of a polyhedron forming a mixed pattern, three upper
outline bundles in purple and four lower outline bundles in orange. (c) The set of upper (in red) and
lower outlines (in blue) from (b); (d) the geometric intersection of the two sets from (c) labeled from
1to 7 by sequence of consideration, Start cases in red (1 and 6), All-Lower case in green (2), All-Upper
cases in blue (3, 4 and 5), and Set-Merge case in orange (7).

Proof. In the previous patterns we could always assume that all layers of one side (upper
or lower) interact with the same layer on the other side. For the mixed pattern, this is
no longer the case: When synchronizing the outline bundles of two upper-lower-layer
pairs, we might end up with two subsets of merged bundles. Since layer L; is connected
in P, so is the corresponding subgraph of the bundle graph and eventually all outlines
will be merged (given the right executions of BUNDLECOLORING).

Recall that a curve of a geometric intersection is created by intersecting the outlines of
two layers — an upper layer L, overlapping alower layer L, with outline bundles b,, and b,.
A northern (or western) bundle is blocked when it starts on a face of b,, (or symmetrically
be) and extends upwards (to the left), but instead of crossing by it crosses the outline
bundle of some other curve. If a bundle starting on a face of b, (or b,) is blocked, it
must cross the outline bundle of some other upper (lower) layer; we distinguish between

134

7.3 Arbitrary Genus: The Proof of Theorem 7.1

Figure 7.9: Different blocking patterns creating the same geometric intersection. The geomettric in-
tersection shown in (c) can either be obtained from the polyhedron shown in (a) or (b). The purple
bundle is blocked in both configurations: In (a) we have an upper block and in (b) we have a lower
block.

these options, calling them upper and lower blocks respectively. The different blocks are
illustrated in Figure 7.9.

We now classify the curves by the bundles on their north-western corner c. If both
bundles of ¢ are unblocked, the two layers start a new subset. In all other cases, at least
one of the bundles at ¢ is blocked by some curve. Since this curve is further north (or
west) in the intersection, it was processed before — the layers creating the curve already
belong to some subset. With this in mind, we classify the remaining curves by the curves
blocking the bundles of their corners, depending on whether all blocked bundles are
blocked by curves created from layers of same subset'® or from different subsets.

This leads to the following four cases:

(1) Start: No blocks - starting a subset — similar to the straight pattern (Lemma 7.7).
(2) All-Upper: All blocks are upper blocks, similar to the merge pattern (Lemma 7.8).
(3) All-Lower: All blocks are lower blocks, similar to the split pattern (Lemma 7.10).
(4) Set-Merge: One block is an upper block, the other block is a lower block.

An illustration of these cases can be found in Figure 7.8 (b) to (d). In the following, we
consider each case, arguing how to synchronize the outline bundles. This will later allow
us to use patch spreading on the roof and ceiling faces on L;.

13 This naturally includes the case when only one bundle is blocked.

135

7 Cauchy’s Theorem for Orthogonal Polyhedra

Q 3(3) , b)/)

L

Figure 7.10: lllustration of the Set-Merge Case (4). (a) A simple polyhedron showing a Set-Merge Case
(rotated such that the viewpoint is the north-western side, compass rose included). The colored bun-
dles indicate synchronization: Purple and green for the outlines of the two subsets respectively, green
for the western bundles of the upper layer, blue for the (supposed) northern bundle of the lower layer.
(b) The part of the bundle graph showing how the four colors interact: Green-purple and green-orange
edge from b(*) crossing b, and b; on a wall face respectively; blue-purple and blue-orange edge from
b crossing b and b, on a wall face respectively; blue-green edge from b(®) crossing (") on the ceil-
ing face neighboring the corner.

For Case (1), we trivially synchronize the two outline bundles - both bundles at cor-
ner c¢ are unblocked.

The All-Upper Case (2) can only occur when synchronizing the outline of a thus far
unprocessed upper layer into a subset. The new layer and all layers of blocking curves
share the same lower layer L, (otherwise, it would not have been an upper blocking).
Since the blocking curves are more northern and/or western, they have been synchro-
nized to b, before. As the bundles of L, are 3-colored (by the invariant of Lemma 7.4 (1)),
the outline bundle b, can be synchronized.

Symmetrically, the All-Lower Case (3) can only occur when synchronizing an un-
known lower layer into a subset. All blocking layers share the same upper layer L, and
the outlines of the layers creating the blocking curves are already synchronized to b,,.
This allows us to hook the new layer’s outline b, to the outlines of the blocking curves
(using Lemma 7.9), synchronizing them.

For the Set-Merge Case (4), we are given a curve with corner ¢ an upper and a lower
block. Assume that the upper block is to the west and created by layer L; (with out-
line bundle b;) overlapping L, and that the lower block is to the north and created by
layer L, (with outline bundle b,) overlapping L,,. This configuration is illustrated in Fig-
ure 7.10 (a). Let ¢, and c,, be the northern and western curve respectively. Assume that
A, B, and C are the three color classes of L, from the invariant. From processing curve c,
we know that b, and b, have the same color, say this color is A; symmetrically we know
from ¢, that b; and b, have the same color, say D as it is yet to be synchronized. To
establish that b, and b, have the same color — merging A and D, synchronizing all four

136

7.3 Arbitrary Genus: The Proof of Theorem 7.1

outlines —, we look at the two bundles at ¢, namely b™) and b(™ . From the pattern we
have that one of the two bundles is synchronized to the color classes of L, (by extending
over a wall face of L, participating in the upper block) whereas the other is not; w.l.o.g.
assume that this bundle is (™) and that its color is B. Since b(") crosses by, we have that
D # B. To argue that the outline bundles get synchronized - that is, D = A - we now
need to show that the color of b(*) needs to be C, as ") crosses b,. In Figure 710 (b),
we give a corresponding bundle graph with A being purple, B being green, C being blue,
and D being orange.

Consider the first ceiling face f; that b(*) extends over after the wall face at which it
crossed b,. Let bundle b be the other bundle of f. Symmetrically, let f, be the first
roof face of bundle b("). Figure 710 (a) suggests that b() must “wrap up” - that is, b
extends onto a wall face of L,, making it part of L, and thus colored by the invariant.
To show that this wrapping up indeed occurs in a valid realization, consider the unit
square x diagonally opposing corner ¢ in the geometric intersection of cross section
;. Considering how P is built from unit cubes, first observe that x is empty space in
the geometric intersection — that is, x cannot be another corner, created by two cubes

(one intersected in 77;, 1 and one cube intersected in 7;_1). Wrapping up could still be

prevented from happening by a single cube in either i 1 OF a1 = possibly making

b®) extend over another wall or ceiling face respectively. Neither case is possible: The
upper cube would share the same edge with face f, and a wall face of L, on P but not
in G, making P degenerate; symmetrically, the lower cube would share the same edge
with f; and a wall face of L,,. Therefore, x must indeed mark empty space in P, allowing
b®) to wrap around. The construction of b®) implies that it has the same color as b,
therefore we get that the color of b(") is neither A nor B and thus C. We now have that
the bundles of color class D are crossed by bundles of colors B and C, enforcing the
synchronization of classes A and D.

This concludes the enumeration of all possible patterns involving upper and lower
blocks, thus arguing that ITERATEDBUNDLECOLORING eventually synchronizes all out-
line bundles in the mixed pattern. With all outlines synchronized, patch spreading syn-
chronizes the bundles on roof and ceiling faces of m;. Since each patch must share a
bundle with some upper layer, all layers will get synchronized. O

The following - and final - lemma reconsiders all patterns above in the presence of
flat holes. Recall that a flat hole is a pair of outline bundles such that they both belong to
a single layer of the upper half-integral cross section - creating an inside-outside outline
pair. Notice that flat holes (and the bundles creating them) are not immediately visible
in either the supposed net G or the bundle graph B;. Nevertheless, given a realization
P that contains flat holes, we can argue how ITERATEDBUNDLECOLORING discovers the
colors creating the orientations of the faces on P.

Any such inside-outside outline bundle pair corresponds to the existence of one hole,
but one outer outline might contain several independent inner outlines and thus be part
of multiple pairs. In addition to transmitting coloring information downwards from

137

7 Cauchy’s Theorem for Orthogonal Polyhedra

Figure 7.11: Patterns for synchronizing the inner outline of a hole to the outside outline using the
upper layer (outline in blue), depending on the northern and western bundles provided by the upper
layer. (a) Corner ¢ (purple dot) is not covered by the upper layer — the bundles at ¢ synchronize b;
to curves more northern/western. (b and ¢) c is covered by the upper layer, but the upper layer has
two bundles of different colors wrapping down and crossing b;, synchronizing both outlines. Notice
that in (), the northern bundle does not wrap around but follows the wall faces. (d) The corner is
covered, but there is no northern bundle from the upper layer going into the hole, so synchronizing
a (northern) bundle from a roof face is required.

the (upper) layers of C; 1 to the (lower) layers of C;_1, we now also have to consider
transmitting “sideways” from one hole outline to the other.

Since we aim to process P using the patterns presented above, we have to distinguish
between holes in starting patterns and holes in lower layers. We do not need to worry
about holes in the upper layers of other patterns, because by the invariant, all bundles
in these upper layers were lower layers of the previous step and subsequently have been

merged and virtually disappear from the contemporary bundle graph B¢..
Lemma 7.12 (Hole-Layer Lemma). Let L; be one of the patterns above.

(a) If L; is a start pattern and lower layer L;_1 contains holes, there is a set of executions

2
of BUNDLECOLORING that merges all outline bundles in L; 1 into the same class.

(b) IfL; is an end pattern and upper layer L, 1 contains holes, there is a set of executions
of BUNDLECOLORING on ceiling faces that merges all outline bundles in L;_1 into the

same class.

(c) If L; is not a start or end pattern pattern and lower layer L,_1 contains holes, all

bundles in L,_1 corresponding to inner outlines either get hooked to the outer outline

i1
bundle contair;ing it, or synchronized to the outline bundle of some upper layer.

Proof. Our only concern here is to argue about how the outline bundles get synchronized
using specific executions of BUNDLECOLORING. Once we can safely assume that all out-
line bundles are synchronized, patch spreading carries over to patches with holes. In fact,

138

7.3 Arbitrary Genus: The Proof of Theorem 7.1

the net G (and also the bundle graph B¢) of a hole in a lower layer is indistinguishable
from an upper layer “standing” at the same spot.!*

Regarding (a): Among the outlines of L,_1, consider a (convex) north-western corner
of the outer outline. Executing BuNDLECOLORING at the roof face of this corner initially
fixes the three color classes that all inner outlines will to be synchronized to, argued as
follows. We now imagine that the inner outlines are processed using a peeling sequence
- despite not having a geometric intersection here, the (empty) corners of inner outlines
will have northern and western bundles that are either blocked by the outlines of other
holes or reach the outside outline, allowing us to define a similar peeling sequence.”
This allows us to apply Lemma 7.9, hook all holes together and eventually synchronize
all of them to the outside outline using executions of BUNDLECOLORING on various roof
faces.

Regarding (b): The outline bundles of holes in the upper layer of an end pattern
have been part of lower layers of the previous layer. Thus, each hole provides its own
3-coloring of its bundles. Since the outside outline containing all holes is also colored,
we are in a setting similar to the Merge Pattern (Lemma 7.8): Considering a peeling
sequence on the holes, we can hook the inner outlines to the outer outline and each
other using executions of BUNDLECOLORING on ceiling faces. Eventually all outlines
will be synchronized, leaving one patch of ceiling faces that can be processed using patch
spreading (Lemma 7.5).

Regarding (c): For any other pattern, we can have flat holes in some lower layer L ..
In that case, we synchronize the inner outlines to either the lower outline b; 1 (contain-
ing it) or the outline bundle of some (upper) layer from L,, 1. We do this by arguing that
we can either add it to a peeling sequence for the upper layerzs or that we can synchronize
the outline bundle b; to that of the upper layer covering it. In either case, we require that
the outline bundles of the upper layers all get synchronized to the lower layers outline
bundle by following the reasoning provided in the lemmata for the individual patterns.'®
For a flat hole with inner bundle b;, there are four cases depending on the “shape” of the
ceiling over c' provided by upper layers. The four possible shapes are depicted in Fig-
ure 7.11:

(1) None of the bundles at ¢ are part of the upper layer, leaving ¢ uncovered (Fig-
ure 711 (a)),

(2) corner c is covered and there are two bundles of different color from the upper
layer both crossing b;, with two different options shown in (Figure 711 (b) and (c)),
or

(3) thereare only bundles of one color from the upper layer crossing b; (Figure 711 (d)).

! The gadgets used in the A’P-hardness reduction by Biedl and Geng [BGO08] exploit this.

15 Recall that the definition of a north-western corner disallows using fake northern (or western) bundles.

16 Here we have the additional complication that holes can actually block northern and western bundles.
To do so, however, such a hole must be more to the north/west and thus have been synchronized before.

17 Remember that ¢ is the corner of a hole, and thus, that ¢ is empty space.

139

7 Cauchy’s Theorem for Orthogonal Polyhedra

We now discuss the cases individually, arguing how ITERATEDBUNDLECOLORING syn-
chronizes the inner outline of the hole to the upper layer’s outline.

)

()

©)

In the uncovered case (Figure 711 (a)), there is no upper layer covering c. In this
case, we can handle synchronization of b; as if it were an upper layer - exploiting
the fact that inner lower layers and upper layers are indistinguishable in B . Treat-
ing it like an upper layer, there is some peeling sequence containing it. By the time
that b; is processed, we know that the two bundles at ¢ - northern bundle (") and
western bundle b(*) — each either crosses the lower layer’s outline or is blocked by
some other upper curve. By choice of the sequence, we know that all those bundles
are already synchronized. Therefore, b; can be synchronized using b(") and b(*).

In the two-sided cases (Figure 711 (b) and (c)), there is a ceiling face over ¢ and the
outline of the layer covering ¢ has a corner over the hole defined by inner outline
b;. Let that corner in the covering layer be ¢’. In either case — ¢’ being convex
or reflex — there are two bundles of different colors from an upper layer wrapping
around onto the ceiling over ¢. These bundles eventually cross b;, synchronizing
it to the upper layers outline.

In the one-sided case (Figure 711 (d)), corner c is covered by a ceiling face but we
only have bundles from one direction (w.l.o.g. say west) from the upper layer but
not from the other direction (say north). Since the upper layer covers c, it must
have a north-western corner further north and west - hence, that layer’s outline
bundle is already synchronized to the outside outline bundle. To find a northern
bundle crossing b;, consider the face neighboring both outline bundles - b; and
the upper layer’s outline. This face must exist as the hole is not completely covered
by the upper layer. At that face, there are two bundles: Bundle b(!) traverses a
neighboring wall face of the upper layer, marking it as western. The other bundle
b(?) extends towards the north, eventually crossing some other outline (that has
already been processed by choice of sequence). This marks b(>) as northern; as
it wraps around and down onto a wall face in b;, this synchronizes the outline
bundles.

O

With all of the pattern lemmata in place, we can now prove Lemma 7.4 and subse-
quently Theorem 7.3.

Proof of Lemma 7.4. Assuming that a realization exists, there is at least one triple of bun-
dles forming a guaranteed set of merged bundles for B, — namely that of the face defin-
ing ;. Therefore we are guaranteed that there is at least one starting pattern, that can
be colored and subsequently have its bundles merged according to Lemma 7.6 (a) (or
Lemma 7.12 (a), respectively), establishing the condition of (1), referred to as the invari-

ant.

140

7.4 Conclusion

Discovering and coloring more outline bundles for condition (2) — while traversing
the realization downwards — we can argue that all encountered bundles can be merged
using only the coloring information locally available in the triples of layer subgraphs.
This is done by either Lemma 7.8, Lemma 710 or Lemma 7.11. In each lemma, we first
argue how ITERATEDBUNDLECOLORING preserves the invariant by being able to merge
the bundle-triangles of multiple upper layers (stemming from different starting patterns).
Then, all remaining outline bundles of the current layer will be synchronized to the upper
outlines: Outer outline bundles get handled directly in the individual lemmata; inner
outlines of flat holes are implicitly added to the synchronization process - this is argued
in Lemma 7.12.

Finally, in each layer, all missing bundles of roof and ceiling faces get colored using
patch spreading, arguing that condition (3) holds, concluding the proof. O

Proof of Theorem 7.3. In this section, we considered pairs of xy-parallel cross sections at
unit distance, exhaustively enumerating all possible patterns that can be encountered in
a valid realization. When our input graph is indeed the net of a polyhedron, the invariant
established in Lemma 7.4 states that ITERATEDBUNDLECOLORING is able to orient all faces
on that polyhedron by coloring the bundles in ‘B.

For each of the patterns, we demonstrate that there is a finite number of single exe-
cutions of BUNDLECOLORING that together merge the color classes into a triangle. Each
merge is unambiguous, resulting in ITERATEDBUNDLECOLORING producing a stable and
unique coloring if one exists. Exhaustive execution as done by ITERATEDBUNDLECOLOR-
ING implies that the algorithm does not stop attempting to make progress using BUNDLE-
CoLORING unless no starting face would merge bundles. Hence, if ITERATEDBUNDLE-
COLORING stops at some point where ‘B, is not a triangle, some part of the graph could
not be realized using any of the patterns, and we have an non-realizable instance. ~ [

7.4 Conclusion

In this chapter, we introduced the ITERATEDBUNDLECOLORING algorithm that uses the
original BUNDLECOLORING algorithm by Biedl and Geng [BGO09] as a subroutine. We
showed that exhaustive and repeated execution of the original algorithm can be used to
report all edges of the graph for which the dihedral angles must be 180° in any orthog-
onal polyhedral surface that realizes this graph and facial angles. This implies that any
orthogonal polyhedral surface - even those of arbitrary genus — arising from an orthogo-
nal polyhedron whose graph is connected are rigid - that is, the net and the facial angles
together with the edge lengths determine the dihedral angles.

Our algorithm has a total runtime in O(m?), but our focus in this chapter was put
onto proving correctness of ITERATEDBUNDLECOLORING. We believe that the runtime
analysis can be improved by considering the sequence of BUNDLECOLORING executions
more carefully. The question of non-orthogonal polyhedral surfaces also remains open.

141

Chapter 8

Conclusion

The contents of this book are dedicated to problems regarding constrained graph layouts.
We picked two general ideas — convex drawings and grid drawings -, looking into two
specialized problems for each idea. This division gave birth to this book’s two-part struc-
ture. We now briefly recall the main results of each chapter in order, highlighting open
questions and interesting opportunities for future research.

Part One: Drawing Vertices on a Common Outer Face

Beyond Outerplanarity. The main contribution of Chapter 3 was looking into the
combination of graph properties — outerplanarity and k-(quasi-)planarity - obtaining
convex graph drawings with two different restrictions: limiting the number of crossings
per edge or limiting the size of any sets of pairwise crossing edges.

We showed that outer k-planar graphs are (| v/ 4k + 1|+1)-degenerate, thus obtaining
a coloring bound on these graphs. We have also shown that they have small balanced
separators (of size 2k + 3), allowing outer k-planarity to be tested in quasi-polynomial
time.

By giving graphs of either class that are not member of the other, we have shown that
the classes of outer k-quasi-planar graphs and planar graphs are incomparable. We have
also proven that all maximal outer k-quasi-planar graphs are also maximum - for any
outer k-quasi-planar graph, there is a way to add missing edges until the upper bound
of 2(k-1)n+ (Zkz’l) is reached.

We also gave a linear-time algorithm to recognize full and closed outer k-planar
graphs. It directly follows from Courcelle’s Theorem [Cou90] (by expressing closed outer
k-planarity in Monadic Second-Order Logic) and the fact that outer k-planar graphs
have bounded treewidth.

To this end, the following questions remain open. Since Auer et al. [ABB*13] gave an
algorithm to recognize outer 1-planar graphs in linear time, is there some generalization
or other strategy to extend this result to higher levels of non-planarity?

Open Problem 1. Can outer k-planarity for k > 2 be tested in polynomial time?

Outer 3-quasi-planar graphs are exactly the planar graphs, but we do not know of an
efficient algorithm to test for outer k-quasi-planarity, even for k = 3.

Open Problem 2. Can outer k-quasi-planarity for k > 3 be tested in polynomial time?

143

8 Conclusion

Considering the coloring result for outer k-planar graphs, we would also be curious
to know the answer to the following question:

Open Problem 3. Can the chromatic number of outer k-quasi-planar graphs be upper-
bounded by some function k?

Polygonal Boundaries. In Chapter 4, we developed an algorithm to decide whether
or not an outerplanar graph can be drawn into a given simple (not necessarily convex)
polygon, when the vertices are mapped to the boundary and when each of the edges is
allowed to have one bend inside the polygon. The algorithm we proposed works with
the dual tree of the outerplanar graph, refining the polygon with each drawn edge until
all edges are drawn or one of the bend points can not be placed inside the polygon.

A possible application for our algorithm is to recursively insert subgraphs into the
inner faces of some predefined drawing. Being able to decide the question if a one-
bend drawing for outerplanar graphs exists naturally gives rise to questions about related
graph classes.

Open Problem 4. Can we decide if planar graphs can be drawn inside a simple polygon
with one bend per edge when only some of the vertices are mapped to the polygon’s
boundary?

Open Problem 5. Can we incorporate crossings into the algorithm, deciding if outer
k-planar graphs can be drawn with one bend per edge and inside a simple polygon?

Considering the bend points of our edges to be degree 2 subdivision vertices, we get
a very restricted family of planar graphs drawable by our algorithm - finding a sufficient
condition for larger subsets of planar graphs would be very interesting. Also, our algo-
rithm works by iteratively refining the polygon — drawing an edge changes the boundary
and planarity limits the options for further edges. What if we allowed some crossings on
the inserted edges? Expanding the set of graph classes drawable by our algorithm - or
similar strategies — would improve its applicability as a subroutine.

As our algorithm is stated now, it will add bend points to almost all edges of the output
drawing to ensure that the refinements made to obtain the intermediate polygons are as
little restrictive as possible. While this helped proving the algorithm’s correctness, it can
lead to drawings that are quite hard to read.

Open Problem 6. Can our algorithm be adapted to minimize the total number of bend
points added to edges of the drawing?

Part Two: Drawing Vertices using Integer Coordinates
Moving tothe Grid Optimally. Chapter 5 considered the task of transforming a given

planar drawing into a topologically equivalent grid drawing with minimum vertex dis-
placement - that is, a drawing with all vertices at integer coordinates, inducing the same

144

8 Conclusion

embedding in the plane, and all vertices optimally cumulatively close to their original po-
sition. This task lends itself to trying rounding-like procedures such as modified variants
of snap rounding, that are well-known in computational geometry.

We showed that TOPOLOGICALLY-SAFE GRID REPRESENTATION (as we call the prob-
lem above) is A/P-hard. Since we could not hope finding a modified version of an effi-
cient snap rounding algorithm to solve it, we modelled ToPOLOGICALLY-SAFE GRID REP-
RESENTATION as an integer linear program. To evaluate the performance of our model,
we implemented it in Java using the IBM CPLEX solver. We found our implementation
to perform poorly on large instances — both area-wise and with respect to the number of
vertices. While lazily generating the constraints for our model “on demand” gave some
speedup, the model is still infeasible for any practical purpose. This raises the question
about further improvements on the model.

Open Problem 7. As not all grid points will be used, can a column-generation-like strat-
egy be used to iteratively “add” new grid points to the model?

Our analysis suggests that the area of the drawing has the largest impact on the wall-
clock runtime of our implementation, because the sizes of most sets of constraints heav-
ily depend on the number of possible edge slopes. One way of limiting the number of
possible slopes would be to settle Open Problem 7.

As a byproduct, our implementation can also create minimum-area straight-line
drawings of planar graphs - a problem also known to be A/P-hard [KW07]. Our ex-
periments suggest that this can in practice only be used to verify or produce very small
(counter-)examples. To the best of our knowledge, the problem of finding minimum-
area straight-line drawings in reasonable time is still open.

Open Problem 8. Can we adapt the integer linear program solving TOPOLOGICALLY-
SAFE GRID REPRESENTATION to find area-minimal straight-line planar drawings faster?

Rounding to the Grid Heuristically. In Chapter 6, we have presented a practical
heuristic for the TOPOLOGICALLY-SAFE GRID REPRESENTATION problem, introduced in
Chapter 5. Our algorithm follows the simulated annealing metaheuristic, but is subdi-
vided into two distinct phases — one for feasibility, the other for optimization. The various
features of the algorithm have been statistically evaluated, showing significant improve-
ments to runtime or solution quality.

In Chapter 5, we presented a slow but exact algorithm, we gave a fast algorithm that is
likely to produce reasonable results. The obvious open problems are trying to strengthen
this rather vague statement: One could try finding an efficient deterministic heuristic or
some approximation algorithm with provable guarantees.

Open Problem 9. Is there a deterministic heuristic or an approximation algorithm with
provable guarantee for TOPOLOGICALLY-SAFE GRID REPRESENTATION?

While we obtained a result on approximation hardness (see Corollary 5.4 on page 70)
for a special case, we failed to show APX -hardness for the general TOPOLOGICALLY-SAFE
GRID REPRESENTATION problem.

145

8 Conclusion

We have considered TOPOLOGICALLY-SAFE GRID REPRESENTATION as an abstract
problem in isolation. Future work can consider the place of grid representations in a
larger context. For example, we noted it may be useful to integrate polyline simplifica-
tion for geographic data (recall the rather extreme examples in Figure 6.7 on page 109). It
would also be interesting to evaluate the influence that rounding to a grid representation
has on subsequent steps in a pipeline, such as the length of shortest paths, the results of
generalization, or, for example, map matching.

Open Problem 10. Investigate how our two-stage heuristic algorithm can be adapted to
allow for better perception of rounded geographic data.

Recognizing Nets of Orthogonal Polyhedra. In the final chapter of this book -
Chapter 7 — we built upon the BUNDLECOLORING algorithm by Biedl and Geng [BG09].
Analyzing a repeated sequence of exhaustive executions of BUNDLECOLORING (which
we called ITERATEDBUNDLECOLORING), we were able to translate Cauchy’s Rigidity The-
orem to orthogonal polyhedra of arbitrary genus and where the graph formed by the
vertices and edges is connected - settling an open question proposed by Biedl and Geng.
Given an unconnected graph, many distinct realizations are possible even for genus 0.!
Our result encourages looking into other more diverse objects — like nets with facial
angles that are multiples of 45°.

Open Problem 11. Is there a translation of our rigidity theorem to other polyhedra, for
instance allowing dihedral and/or facial angles of that are multiples of 45°?

While our algorithm finds its output in a brute-force-like fashion, the analysis we
used to show its correctness relied on carefully traversing a hypothetical realization, layer
by layer. This resulted in a rather simple (and easily implementable) algorithm with a
rather trivial upper bound of O(m?) on the runtime. This bound was obtained from the
total number of possible restarts in each round and the maximum number of rounds,
but our analysis uses only a rather small but well-selected subset of these executions.

Open Problem 12. Is there a better bound on the total number of restarts performed by
ITERATEDBUNDLECOLORING?

It is also worth noting that neither our algorithm nor its runtime or its analysis are
impacted by the actual genus of the resulting polyhedron. This is rather surprising, as the
challenges seem to be related to the inner walls of the holes of the polyhedron. It seems
possible that the number of restarts (and thus also the total runtime) can be parameter-
ized by the genus of the realization. We have a family of instances that requires at least
genus-many restarts: Recall that the object shown in Figure 7.2 (b) on page 117 requires
two starts. Extending this construction by adding more rings onto the connecting bridge,
we get objects of arbitrary genus that require equally many executions of BUNDLECOL-
ORING. This raises the hope for a O(g - m*) or even O(g - m)-time algorithm.

! This fact was exploited by Biedl and Geng when they showed that the realization problem is N’P-hard
for disconnected graphs.

146

Bibliography

[ABB*13]

[ABB*16]

[ABB*20]

[ABSI2]

[Ack09]

[ADF*15]

[AH76]

[AKL*20]

[AT07]

Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas
Gleiflner, Kathrin Hanauer, Daniel Neuwirth, and Josef Reislhuber. Recog-
nizing Outer 1-Planar Graphs in Linear Time. In Stephen K. Wismath and
Alexander Wolff, editors, Graph Drawing, volume 8242 of Lecture Notes in
Computer Science, pages 107-118. Springer International Publishing, 2013.

Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas
Gleifiner, Kathrin Hanauer, Daniel Neuwirth, and Josef Reislhuber. Outer
1-Planar Graphs. Algorithmica, 74(4):1293-1320, 2016.

Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Gior-
dano Da Lozzo, Giuseppe Di Battista, Walter Didimo, Michael Hoffmann,
Giuseppe Liotta, Fabrizio Montecchiani, Ignaz Rutter, and Csaba D. Té6th.
Simple k-planar graphs are simple (k + 1)-quasiplanar. Journal of Combi-
natorial Theory, Series B, 142:1-35, may 2020.

Evmorfia N. Argyriou, Michael A. Bekos, and Antonios Symvonis. The
Straight-Line RAC Drawing Problem is NP-Hard. Journal of Graph Algo-
rithms and Applications, 16(2):569-597, 2012.

Eyal Ackerman. On the Maximum Number of Edges in Topological
Graphs with no Four Pairwise Crossing Edges. Discrete and Computa-
tional Geometry, 41(3):365-375, 20009.

Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vit Jelinek, Jan
Kratochvil, Maurizio Patrignani, and Ignaz Rutter. Testing Planarity of
Partially Embedded Graphs. ACM Transactions on Algorithms, 11(4):1-42,
2015.

K. Appel and W. Haken. Every planar map is four colorable. Bulletin of
the American Mathematical Society, 82(5):711-713, 1976.

Patrizio Angelini, Philipp Kindermann, Andre Léftler, Lena Schlipf, and
Antonios Symvonis. One-Bend Drawings of Outerplanar Graphs Inside
Simple Polygons. In Steven Chaplick, Philipp Kindermann, and Alexan-
der Wolff, editors, EuroCG2020, 2020.

Eyal Ackerman and Gabor Tardos. On the maximum number of edges in
quasi-planar graphs. Journal of Combinatorial Theory, Series A, 114(3):563-
571, 2007

147

Bibliography

[AZ04]

[BBN*13]

[BCD*02]

[BE18]

[BEG*04]

[Ber83]

[BGO08]

[BGO9]

[BGI11]

[BGHLIS]

[BH92]

148

Martin Aigner and Giinter M. Ziegler. Cauchy’s rigidity theorem. In Proofs
from THE BOOK, pages 71-74. Springer Berlin Heidelberg, 2004.

Therese C. Biedl, Thomas Blésius, Benjamin Niedermann, Martin Néllen-
burg, Roman Prutkin, and Ignaz Rutter. Using ILP/SAT to Determine
Pathwidth, Visibility Representations, and other Grid-Based Graph Draw-
ings. In Stephen K. Wismath and Alexander Wolff, editors, Graph Draw-
ing, volume 8242 of Lecture Notes in Computer Science, pages 460-471.
Springer International Publishing, 2013.

Therese C. Biedl, Timothy M. Chan, Erik D. Demaine, Martin L. Demaine,
Paul Nijjar, Ryuhei Uehara, and Ming-wei Wang. Tighter Bounds on the
Genus of Nonorthogonal Polyhedra Built from Rectangles. In 14th CCCG,
pages 105-108, 2002.

Michael J. Bannister and David Eppstein. Crossing Minimization for 1-
page and 2-page Drawings of Graphs with Bounded Treewidth. Journal
of Graph Algorithms and Applications, 22(4):577-606, 2018.

Franz-Josef Brandenburg, David Eppstein, Michael T. Goodrich,
Stephen G. Kobourov, Giuseppe Liotta, and Petra Mutzel. Selected Open
Problems in Graph Drawing. In Giuseppe Liotta, editor, Graph Drawing,
volume 2912 of Lecture Notes in Computer Science, pages 515-539. Springer
Berlin Heidelberg, 2004.

Jacques Bertin. Semiology of graphics; diagrams networks maps. University
of Wisconsin Press, 1983.

Therese C. Biedl and Burkay Geng. Cauchy’s Theorem for orthogonal poly-
hedra of genus 0. Technical Report CS-2008-26, University of Waterloo,
School of Computer Science, 2008.

Therese C. Biedl and Burkay Geng. Cauchy’s Theorem for Orthogonal
Polyhedra of Genus 0. In Amos Fiat and Peter Sanders, editors, European
Symposium on Algorithms, volume 5757 of Lecture Notes in Computer Sci-
ence, pages 71-82. Springer Berlin Heidelberg, 2009.

Therese C. Biedl and Burkay Geng. Stoker’s Theorem for Orthogonal Poly-
hedra. International Journal of Computational Geometry & Applications,
21(4):383-391, 2011.

Carla Binucci, Emilio Di Giacomo, Md. Igbal Hossain, and Giuseppe Li-
otta. 1-page and 2-page drawings with bounded number of crossings per
edge. European Journal of Combinatorics, 68(Supplement C):24-37, 2018.

Harry Buhrman and Steven Homer. Superpolynomial Circuits, Almost
Sparse Oracles and the Exponential Hierarchy. In R. K. Shyamasundar,

[BKNI6]

[BLS05]

[BO79]

[Bor84]

[Cab06]

[CE12]

[CFG*15]

[CFK*15]

[CHé67]

[Che93]

Bibliography

editor, Lecture Notes in Computer Science, volume 652 of Lecture Notes in
Computer Science, pages 116-127. Springer Berlin Heidelberg, 1992.

Jasine Babu, Areej Khoury, and Ilan Newman. Every Property of
Outerplanar Graphs is Testable. In Klaus Jansen, Claire Mathieu, José
D. P. Rolim, and Chris Umans, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2016), volume 60 of Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2016.

Therese C. Biedl, Anna Lubiw, and Julie Sun. When can a net fold to a
polyhedron? Computational Geometry, 31(3):207-218, 2005.

Bentley and Ottmann. Algorithms for Reporting and Counting Geometric
Intersections. IEEE Transactions on Computers, C-28(9):643-647, 1979.

O. V. Borodin. Solution of the Ringel problem on vertex-face coloring of
planar graphs and coloring of 1-planar graphs. Metody Diskret. Analiz.,
41:12-26, 1984.

Sergio Cabello. Planar embeddability of the vertices of a graph using a
fixed point set is NP-hard. Journal of Graph Algorithms and Applications,
10(2):353-363, 2006.

Bruno Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic: A Language-Theoretic Approach. Cambridge University Press,
2012.

Timothy M. Chan, Fabrizio Frati, Carsten Gutwenger, Anna Lubiw, Petra
Mutzel, and Marcus Schaefer. Drawing Partially Embedded and Simul-
taneously Planar Graphs. Journal of Graph Algorithms and Applications,
19(2):681-706, 2015.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Daniel Marx, Marcin Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Pa-
rameterized Algorithms, chapter Lower Bounds Based on the Exponential-
Time Hypothesis, pages 467-521. Springer, 2015.

Gary Chartrand and Frank Harary. Planar Permutation Graphs. Annales
de 'LH.P. Probabilités et statistiques, 3(4):433-438, 1967.

L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces.
In Proceedings of the ninth annual symposium on Computational geometry
- SCG '93. ACM Press, 1993.

149

Bibliography

[Chi08]

[CKL*17]

[CLRS7]

[CLRSI13]

[CLWZ19]

[CN98]

[Con79]

[Co071]

[Cou90]

[CP92]

[CSW97]

[CvDK™*20]

150

John W. Chinneck. Feasibility and Infeasibility in Optimization: Algorithms
and Computational Methods, volume 118 of International Series in Opera-
tions Research & Management Science. Springer US, 2008.

Steven Chaplick, Myroslav Kryven, Giuseppe Liotta, Andre Loffler, and
Alexander Wolff. Beyond Outerplanarity. In Fabrizio Frati and Kwan-Liu
Ma, editors, Proceedings of the 25th International Symposium on Graph
Drawing and Network Visualization., volume 10692 of Lecture Notes in
Computer Science, pages 546-559. Springer, 2017.

FanR. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Em-
bedding Graphs in Books: A Layout Problem with Applications to VLSI
Design. SIAM Journal on Algebraic and Discrete Methods, 8(1):33-58, 1987.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT press, 3rd edition edition, 2013.

Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink. Com-
pact drawings of 1-planar graphs with right-angle crossings and few bends.
Computational Geometry, 84:50-68, 2019.

Marek Chrobak and Shin-Ichi Nakano. Minimum-width grid drawings
of plane graphs. Computational Geometry, 11(1):29-54, 1998.

Robert Connelly. The Rigidity of Polyhedral Surfaces. Mathematics Mag-
azine, 52(5):275-283, 1979.

Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing -
STOC 71, pages 151-158. ACM Press, 1971.

Bruno Courcelle. The monadic second-order logic of graphs. I. Recogniz-
able sets of finite graphs. Information and Computation, 85(1):12-75, 1990.

Vasilis Capoyleas and Janos Pach. A Turan-type theorem on chords of
a convex polygon. Journal of Combinatorial Theory, Series B, 56(1):9-15,
1992.

Robert Connelly, Idzhad Sabitov, and Anke Walz. The bellows conjecture.
Beitrige zur Algebra und Geometrie, 38(1):1-10, 1997.

Steven Chaplick, Thomas C. van Dijk, Myroslav Kryven, Ji won Park,
Alexander Ravsky, and Alexander Wolff. Bundled Crossings Revisited.
Journal of Graph Algorithms and Applications, 2020. (accepted, to be pub-
lished).

[DBETT94]

[dBHO07]

[dBK12]

[DEW17]

[dFPP90]

[DGO02]

[Dil87]

[DKMO02]

[DLLIS]

[DLMI19]

[DLT83]

[DN19]

Bibliography

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Algorithms For Drawing Graphs: An Annotated Survey. Computational
Geometry, 4(5):235-282,1994.

Mark de Berg, Dan Halperin, and Mark Overmars. An intersection-
sensitive algorithm for snap rounding. Computational Geometry,
36(3):159-165, 2007.

Mark de Berg and Amirali Khosravi. Optimal binary space partitions for
segments in the plane. International Journal of Computational Geometry
& Applications, 22(03):187-205, 2012.

Vida Dujmovi¢, David Eppstein, and David R. Wood. Structure of Graphs
with Locally Restricted Crossings. SIAM Journal on Discrete Mathematics,
31(2):805-824, 2017.

Hubert de Fraysseix, Janos Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41-51, 1990.

Olivier Devillers and Pierre-Marie Gandoin. Rounding Voronoi diagram.
Theoretical Computer Science, 283(1):203-221, 2002.

Michael B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay Tri-
angulation. Information Processing Letters, 25(3):149-151, 1987.

Andreas W. M. Dress, Jack H. Koolen, and Vincent Moulton. On Line Ar-
rangements in the Hyperbolic Plane. European Journal of Combinatorics,
23(5):549-557, 2002.

Olivier Devillers, Sylvain Lazard, and William J. Lenhart. 3D Snap Round-
ing. In Bettina Speckmann and Csaba D. Téth, editors, 34th Interna-
tional Symposium on Computational Geometry (SoCG 2018), volume 99 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:14,
Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A Survey
on Graph Drawing Beyond Planarity. ACM Computing Surveys, 52(1):1-37,
2019.

Danny Dolev, Frank Thomson Leighton, and Howard Trickey. Planar Em-
bedding of Planar Graphs. Technical report, Massachusetts Institute of
Technology, 1983.

Zdené¢k Dvordk and Sergey Norin. Treewidth of graphs with balanced
separations. Journal of Combinatorial Theory, Series B, 137:137-144, 2019.

151

Bibliography

[DO02]

[DSWO07]

[Ead84]

[EM14]

[EW90]

[Far48]

[FPO7]

[FPSI13]

[FRI1]

[Gas12]

[GGHT97]

152

[Gil14]

[G]79]

Melody Donoso and Joseph O’Rourke. Nonorthogonal polyhedra built
from rectangles. In 14th CCCG, pages 101-104, 2002.

Vida Dujmovi¢, Matthew Suderman, and David R. Wood. Graph draw-
ings with few slopes. Computational Geometry, 38(3):181-193, 2007.

Peter Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149-160, 1984.

David Eppstein and Elena Mumford. Steinitz Theorems for Simple Or-
thogonal Polyhedra. Journal of Computational Geometry, 5:179-244, 2014.

Peter Eades and Nicholas C. Wormald. Fixed edge-length graph drawing
is NP-hard. Discrete Applied Mathematics, 28(2):111-134, 1990.

Istvan Fary. On straight Lines representation of plane graphs. ACTA Sci-
entiarum Mathematicarum Szeged, 11:229-233, 1948.

Fabrizio Frati and Maurizio Patrignani. A Note on Minimum-Area
Straight-Line Drawings of Planar Graphs. In Seok-Hee Hong, Takao
Nishizeki, and Wu Quan, editors, Graph Drawing, volume 4875 of Lec-
ture Notes in Computer Science, pages 339-344. Springer Berlin Heidel-
berg, 2007.

Jacob Fox, Janos Pach, and Andrew Suk. The Number of Edges in k-
Quasi-planar Graphs. SIAM Journal on Discrete Mathematics, 27(1):550-
561, 2013.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. Software: Practice and Experience, 21(11):1129-
1164, 1991.

William I. Gasarch. Guest Column “the second P =?NP poll". ACM
SIGACT News, 43(2):53-77, 2012.

Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J.
Tanenbaum. Snap rounding line segments efficiently in two and three di-
mensions. In Proceedings of the 13th Annual Symposium on Computational
Geometry, pages 284-293. ACM Press, 1997.

Alexander Gilbers. Visibility Domains and Complexity. PhD thesis,
Rheinische Friedrich-Wilhelms-Universitit Bonn, 2014.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman, San Fransisco,
CA, 2nd edition, 1979.

[GJ*10]

[GKP94]

[GKR94]

[GKS92]

[GKT14]

[GM98]

[Gol91]

[GY86]

[HEK*14]

[Herl13]

[HNO8]

[HN16]

[Hob99]

Bibliography

Gaél Guennebaud, Benoit Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison Wesley, 2nd edition,
1994.

V. Granville, M. Krivanek, and J.-P. Rasson. Simulated annealing: a proof
of convergence. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 16(6):652-656, 1994.

Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized in-
cremental construction of Delaunay and Voronoi diagrams. Algorithmica,
7(1-6):381-413, 1992.

Jesse Geneson, Tanya Khovanova, and Jonathan Tidor. Convex geometric
(k+2)-quasiplanar representations of semi-bar k-visibility graphs. Discrete
Mathematics, 331:83-88, 2014.

Leonidas J. Guibas and David H. Marimont. Rounding Arrangements
Dynamically. International Journal of Computational Geometry & Applica-
tions, 8(2):157-178, 1998.

David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5-48, 1991.

Daniel H. Greene and FE. Frances Yao. Finite-resolution Computational
Geometry. In 27th Annual Symposium on Foundations of Computer Science
(SFCS 1986), pages 143-152. IEEE, 1986.

Seok-Hee Hong, Peter Eades, Naoki Katoh, Giuseppe Liotta, Pascal
Schweitzer, and Yusuke Suzuki. A Linear-Time Algorithm for Testing
Outer-1-Planarity. Algorithmica, 72(4):1033-1054, 2014.

John Hershberger. Stable snap rounding. Computational Geometry,
46(4):403-416, 2013.

Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of graphs
with non-convex boundary constraints. Discrete Applied Mathematics,
156(12):2368-2380, 2008.

Seok-Hee Hong and Hiroshi Nagamochi. Testing Full Outer-2-planarity
in Linear Time. In Ernst W. Mayr, editor, Graph-Theoretic Concepts in
Computer Science, volume 9224, pages 406-421. Springer Berlin Heidel-
berg, 2016.

John D. Hobby. Practical segment intersection with finite precision output.
Computational Geometry, 13(4):199-214, 1999.

153

Bibliography

[HP02]

[HS98]

[IPO1

—

[JKRI3]

[Kar72]

[KGV83]

[KHN*14]

[KKRW10]

[KLM17]

[Krall]

[KWO07]

[Lev73]

[LMMIS]

154

Dan Halperin and Eli Packer. Iterated snap rounding. Computational
Geometry, 23(2):209-225, 2002.

D. Harel and M. Sardas. An Algorithm for Straight-Line Drawing of Planar
Graphs. Algorithmica, 20(2):119-135, 1998.

Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT.
Journal of Computer and System Sciences, 62(2):367-375, 2001.

Vit Jelinek, Jan Kratochvil, and Ignaz Rutter. A Kuratowski-type theo-
rem for planarity of partially embedded graphs. Computational Geometry,
46(4):466-492, 2013.

Richard M. Karp. Reducibility among Combinatorial Problems. In Com-
plexity of Computer Computations, pages 85-103. Springer US, 1972.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671-680, 1983.

Amruta Khot, Abdeltawab Hendawi, Anderson Nascimento, Raj Katti,
Ankur Teredesai, and Mohamed Ali. Road network compression tech-
niques in spatiotemporal embedded systems. In 5th ACM SIGSPATIAL
International Workshop on GeoStreaming - (IWGS '14). ACM Press, 2014.

Bastian Katz, Marcus Krug, Ignaz Rutter, and Alexander Wolff.
Manhattan-Geodesic Embedding of Planar Graphs. In David Eppstein
and Emden R. Gansner, editors, Graph Drawing, volume 5849 of Lecture
Notes in Computer Science, pages 207-218. Springer Berlin Heidelberg,
2010.

Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An
annotated bibliography on 1-planarity. Computer Science Review, 25:49-
67, 2017.

Karl Kraus. Photogrammetry: Geometry from Images and Laser Scans. Wal-
ter de Gruyter, 2011.

Marcus Krug and Dorothea Wagner. Minimizing the Area for Planar
Straight-Line Grid Drawings. In Seok-Hee Hong, Takao Nishizeki, and
Wu Quan, editors, Graph Drawing, volume 4875 of Lecture Notes in Com-
puter Science, pages 207-212. Springer Berlin Heidelberg, 2007.

Leonid A. Levin. Universal sequential search problems. Problemy
Peredachi Informatsii, 9(3):115-116, 1973.

Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The Complex-
ity of Drawing a Graph in a Polygonal Region. In Therese C. Biedl and
Andreas Kerren, editors, Proc. 26th Int. Symp. Graph Drawing Netw. Vis.,
volume 11282, pages 387-401. Springer International Publishing, 2018.

[Lofl6]

[LvDW16]

[LW70]

[Mil95]

[MKNEF87]

[MN90]

[MNRI13]

[MS97]

[MU18]

[Nak00]

[INDG*16]

Bibliography

Andre Loffler. Snapping Graph Drawings to the Grid. Master’s
thesis, Julius-Maximilians-Universitit Wiirzburg, 2016. Available at
http://wwwl.pub.informatik.uni-wuerzburg.de/pub/theses/
2017-loeffler-master.pdf.

Andre Loffler, Thomas van Dijk, and Alexander Wolff. Snapping Graph
Drawings to the Grid Optimally. In Proceedings of the 24th International
Symposium on Graph Drawing, volume 9801 of Lecture Notes in Computer
Science, pages 144-151. Springer International Publishing, 2016.

Don R. Lick and Arthur T. White. k-Degenerate Graphs. Canadian Jour-
nal of Mathematics, 22:1082-1096, 1970.

Victor J. Milenkovic. Practical methods for set operations on polygons
using exact arithmetic. In 7th CCCG, pages 55-60, 1995.

Sumio Masuda, Toshinobu Kashiwabara, Kazuo Nakajima, and Toshio Fu-
jisawa. On the NP-completeness of a computer network layout problem.
In Proceedings of the 1987 IEEE International Symp. on Circuits and Systems,
pages 292-295, 1987.

Victor J. Milenkovic and Lee R. Nackman. Finding compact coordinate
representations for polygons and polyhedra. IBM Journal of Research and
Development, 34(5):753-769, 1990.

Tamara Mchedlidze, Martin Noéllenburg, and Ignaz Rutter. Drawing Pla-
nar Graphs with a Prescribed Inner Face. In Stephen K. Wismath and
Alexander Wolft, editors, Graph Drawing, volume 8242 of Lecture Notes in
Computer Science, pages 316-327. Springer International Publishing, 2013.

Bruce A. McCarl and Thomas H. Spreen. Applied Mathematical Program-
ming Using Algebraic Systems. Texas A&M University, 1997.

Tamara Mchedlidze and Jérome Urhausen. f-Stars or On Extending a
Drawing of a Connected Subgraph. In Therese C. Biedl and Andreas Ker-
ren, editors, Proc. 26th Int. Symp. Graph Drawing Netw. Vis., volume 11282,
pages 416-429, 2018.

Tomoki Nakamigawa. A generalization of diagonal flips in a convex poly-
gon. Theoretical Computer Science, 235(2):271-282, 2000.

Alberto Noronha, Anna Dréfn Danielsdéttir, Piotr Gawron, Freyr
Johannsson, Soffia Jonsdéttir, Sindri Jarlsson, Jon Pétur Gunnarsson, Sig-
urdur Brynjolfsson, Reinhard Schneider, Ines Thiele, and Ronan M. T.
Fleming. ReconMap: an interactive visualization of human metabolism.
Bioinformatics, 33(4):605-607, 2016.

155

http://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2017-loeffler-master.pdf
http://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2017-loeffler-master.pdf

Bibliography

156

[N6105]

[NW11]

[Pac06]

[Pacl9]

[Pat06]

(PS85]

[PS86]

[PSS96]

[PT97]

[PWO1]

[PW14]

[Rin65]

[RS84]

Martin Noéllenburg. Automated Drawing of Metro Maps. Master’s thesis,
Fakultat fiir Informatik, Universitit Karlsruhe, 2005. Available at https:
//illuww.iti.kit.edu/extra/publications/n-admm-05da.pdf.

Martin Nollenburg and Alexander Wolff. Drawing and Labeling High-
Quality Metro Maps by Mixed-Integer Programming. IEEE Transactions
on Visualization and Computer Graphics, 17(5):626-641, 2011.

Eli Packer. Iterated snap rounding with bounded drift. In Proceedings of
the 22nd Annual Symposium on Computational Geometry, pages 367-376.
ACM Press, 2006.

Eli Packer. 2D Snap Rounding. In CGAL User and Reference Manual.
CGAL Editorial Board, 4.14 edition, 2019.

Maurizio Patrignani. On Extending a Partial Straight-line Drawing. In-
ternational Journal of Foundations of Computer Science, 17(5):1061-1069,
2006.

Franco P. Preparata and Michael Ian Shamos. Computational Geometry.
Springer New York, 1985.

Andrzej Proskurowski and Maciej Syslo. Efficient Vertex- and Edge-
Coloring of Outerplanar Graphs. SIAM Journal on Algebraic and Discrete
Methods, 7:131-136, 1986.

J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing number.
Algorithmica, 16(1):111-117, 1996.

Janos Pach and Géza Téth. Graphs drawn with few crossings per edge.
Combinatorica, 17(3):427-439, 1997.

Janos Pach and Rephael Wenger. Embedding Planar Graphs at Fixed Ver-
tex Locations. Graphs and Combinatorics, 17(4):717-728, 2001.

Dongliang Peng and Alexander Wolff. Watch Your Data Structures! In
Proceedings of the 22nd Annual Conference of the GIS Research UK, pages
371-381, 2014.

Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen
aus dem Mathematischen Seminar der Universitdt Hamburg, 29(1):107-117,
1965.

Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-
width. Journal of Combinatorial Theory, Series B, 36(1):49-64, 1984.

https://i11www.iti.kit.edu/extra/publications/n-admm-05da.pdf
https://i11www.iti.kit.edu/extra/publications/n-admm-05da.pdf

[Sch90]

[Schi13]

[SE05]

[SHDZ02]

[STTSI1]

[TSF*13]

[Tut63]

[vDHI14]

[vDL18]

Bibliography

Walter Schnyder. Embedding Planar Graphs on the Grid. In David S. John-
son, editor, Proceedings of the first annual ACM-SIAM symposium on Dis-
crete algorithms., pages 138-148. Society for Industrial and Applied Math-
ematics, 1990.

Marcus Schaefer. The Graph Crossing Number and its Variants: A Survey.
Electronic Journal of Combinatorics, 1000, 2013.

Niklas Sorensson and Niklas Een. MiniSat v1. 13 - A Sat Solver with
Conflict-Clause Minimization. Theory and Applications of Satisfiability
Testing, (53):1-2, 2005.

Shashi Shekhar, Yan Huang, Judy Djugash, and Changging Zhou. Vector
map compression. In Proceedings of the tenth ACM International Sympo-
sium on Advances in Geographic Information Systems. ACM Press, 2002.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Visual
Understanding of Hierarchical System Structures. IEEE Transactions on
Systems, Man, and Cybernetics, 11(2):109-125, 1981.

Ines Thiele, Neil Swainston, Ronan M. T. Fleming, Andreas Hoppe, Swa-
gatika Sahoo, Maike K. Aurich, Hulda Haraldsdottir, Monica L. Mo, Ot-
tar Rolfsson, Miranda D. Stobbe, Stefan G. Thorleifsson, Rasmus Agren,
Christian Bélling, Sergio Bordel, Arvind K. Chavali, Paul Dobson, War-
wick B. Dunn, Lukas Endler, David Hala, Michael Hucka, Duncan Hull,
Daniel Jameson, Neema Jamshidi, Jon J. Jonsson, Nick Juty, Sarah Keating,
Intawat Nookaew, Nicolas Le Novere, Naglis Malys, Alexander Mazein,
Jason A. Papin, Nathan D. Price, Evgeni Selkov, Martin I. Sigurdsson,
Evangelos Simeonidis, Nikolaus Sonnenschein, Kieran Smallbone, Ana-
toly Sorokin, Johannes H. G. M. van Beek, Dieter Weichart, Igor Goryanin,
Jens Nielsen, Hans V. Westerhoff, Douglas B. Kell, Pedro Mendes, and
Bernhard @. Palsson. A community-driven global reconstruction of hu-
man metabolism. Nature Biotechnology, 31(5):419-425, 2013.

William T. Tutte. How to Draw a Graph. Proceedings of the London Math-
ematical Society, 13(1):743-767,1963.

Thomas C. van Dijk and Jan-Henrik Haunert. Interactive focus maps us-
ing least-squares optimization. International Journal of Geographical Infor-
mation Science, 28(10):2052-2075, 2014.

Thomas C. van Dijk and Dieter Lutz. Realtime linear cartograms and
metro maps. In Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 488-491.
ACM Press, 2018.

157

Bibliography

[vDL19]

[vDvGH™13]

158

[VLAS87]

[Wil45]

[WT07]

[Yvil9]

[Zie08]

[ZWF19]

Thomas C. van Dijk and Andre Loftler. Practical Topologically Safe Round-
ing of Geographic Networks. In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 239-248. ACM Press, 2019.

Thomas van Dijk, Arthur van Goethem, Jan-Henrik Haunert, Wouter
Meulemans, and Bettina Speckmann. Accentuating focus maps via partial
schematization. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 428-431.
ACM Press, 2013.

Peter J. M. van Laarhoven and Emile H. L. Aarts. Simulated Annealing:
Theory and Applications. Springer Netherlands, 1987.

Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biomet-
rics Bulletin, 1(6):80, 1945.

David R. Wood and Jan Arne Telle. Planar decompositions and the cross-
ing number of graphs with an excluded minor. New York Journal of Math-
ematics, 13:117-146, 2007.

Mariette Yvinec. 2D Triangulation. In CGAL User and Reference Manual.
CGAL Editorial Board, 4.14 edition, 2019. https://doc.cgal.org/4.
14/Manual/packages.html#PkgTriangulation2.

Giinter M. Ziegler. Polyhedral Surfaces of High Genus, pages 191-213.
Birkhiduser Basel, Basel, 2008.

Baruch Zukerman, Ron Wein, and Efi Fogel. 2D Intersection of Curves.
In CGAL User and Reference Manual. CGAL Editorial Board, 4.14 edi-
tion, 2019. https://doc.cgal.org/4.14/Manual/packages.html#
PkgSurfaceSweep2.

https://doc.cgal.org/4.14/Manual/packages.html#PkgTriangulation2
https://doc.cgal.org/4.14/Manual/packages.html#PkgTriangulation2
https://doc.cgal.org/4.14/Manual/packages.html#PkgSurfaceSweep2
https://doc.cgal.org/4.14/Manual/packages.html#PkgSurfaceSweep2

Acknowledgments

Somebody once told me that doing research is like shooting an arrow into the sky, then
looking for where it came down to paint a bullseye around it, declaring victory. In retro-
spect, i fully agree.

Following this metaphor, first and foremost, I want to thank my supervisor Dr. Steven
Chaplick for helping with painting the bullseye. Graph drawing and computational ge-
ometry are fields with problems that can be tackled from many different angles. Guiding
me, he always managed to keep me focused on the task at hand. Knowledgeable and
always happy to help, he really was the supervisor I needed to conclude this work.

All this work would not have been possible had Prof. Dr. Alexander Wolff not pro-
vided the arrow. He gave me a place in his group and took care of financing my four-year
long archery lesson. But most importantly, his critical thinking and helpful comments
as my senior advisor pushed me forward, making this shot possible.

Having an arrow would be rather pointless without also having a bow. Dr. Thomas C.
van Dijk sparked my joy for research-archery, encouraging me to pick up my own bow.
Leading by example, his curiosity made me to broaden my horizon, helping me search
for that arrow after it came down in unexpected places.

For helping me in pulling the bowstring and watching the arrow fly, I thank all my
coauthors (in alphabetical order): Patrizio Angelini, Moritz Beck, Johannes Blum, Steven
Chaplick, Thomas C. van Dijk, Tobias Greiner, Bas den Heijer, Nadja Henning, Philipp
Kindermann, Felix Klesen, Myroslav Kryven, Giuseppe Liotta, Lena Schlipf, Antonios
Symvonis, Florian Thiele, Alexander Wolff, Alexander Zaft, and Johannes Zink. Work-
ing with all of you has been a pleasure, your ideas and contributions have been truly
invaluable.

Research hardly ever happens in isolation. The wonderful people in the group of
Wiirzburg had all the right impact on me, even if we didn’t publish together. Thank you to
Benedikt Budig, Titus Dose, Oksana Firman, Krzysztof Fleszar, Jakob Geiger, Christian
Glafler, Jonathan Klawitter, Fabian Lipp, Falco Nogatz, Ludwig Ostermayer, Dongliang
Peng, Dietmar Seipel, Joachim Spoerhase, Sabine Storandt, and Daniel Weidner.

Finally, this undertaking would not have been possible without the wonderful sup-
port by my wife Eva and our son Felix. Without the two of you, I would have lost track
and gone crazy a long time ago.

159

List of Publications

« A.Loffler, T. C. van Dijk, A. Wolff.
Snapping Graph Drawings to the Grid Optimally.
In: Proceedings of the 24th International Symposium on Graph Drawing and Net-
work Visualization 2016 (GD’I6). pp. 144-151. Springer (2016).

« S. Chaplick, M. Kryven, G. Liotta, A. Loffler, A. Wolft.
Beyond Outerplanarity.
In: Proceedings of the 25th International Symposium on Graph Drawing and Net-
work Visualization 2017 (GD’L7). pp. 546-559. Springer (2017).

o T. C.van Dijk, T. Greiner, B. den Heijer, N. Henning, E Klesen, A. Loftler.
Wiipstream: Efficient Enumeration of Upstream Features (GIS cup).
In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (SIGSPATIAL18). pp. 626-629. ACM (2018).

o M. Beck, J. Blum, M. Kryven, A. Loffler, J. Zink.
Planar Steiner Orientation is NP-complete.
At: 10th International Colloquium on Graph Theory and Combinatorics (ICGT’18).
Lyon, France, 2018.

o S. Chaplick, P. Kindermann, A. Loffler, E Thiele, A. Wolff, A. Zaft, J. Zink.
Stick Graphs with Length Constraints.
In: Proceedings of the 27th International Symposium on Graph Drawing and Net-
work Visualization (GD’19). pp. 3-17. Springer (2019).

o T. C.van Dijk, A. Loffler.
Practical Topologically Safe Rounding of Geographic Networks.
In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (SIGSPATIAL19). pp. 239-248. ACM (2019).

o P. Angelini, P. Kindermann, A. Loftler, L. Schlipf, A. Symvonis.
One-Bend Drawings of Outerplanar Graphs Inside Simple Polygons.
In: Proceedings of the 36th European Workshop on Computational Geometry (Eu-
roCG’20). pp 70:1-70:6, Wiirzburg (2020).

161

Constrai'ning graph layouts - that is, restrictifig the
placement of vertices and the routing of edges to obey
certain constraints — is common practlce in graph

drawing.

In this book we dlscuss algorithmic results on two d|f-'
ferent restriction types: placing vertrces on the outer

face and on the integer grid.
For the first type, we look into the outer k-planar and

outer k-quasi-planar graphs, as well as giving a linear-

time algorithm to recognize full and closed outer
k-planar graphs Monadic Second-order Logic.

For the second type, we consider the problem of trans-
ferring a glven planar drawing onto the integer grid
while perserving the original drawings topology; we
also generalize a variant of Cauchy‘s rigidity theorem
for orthogonal polyhedra of genus o to those of ar-
bitrary genus.

ISBN 978-3-95826-146-4

839587261

	Preface
	Introduction
	Basic Definitions
	Graphs
	Algorithms

	I Vertices on a Common Outer Face
	Outer k-Planar and Outer k-Quasi-Planar Graphs
	Related Work and Contribution
	Outer k-Planar Graphs
	Outer k-Quasi-Planar Graphs
	Testing for Full Convex Drawings via MSO2
	Conclusion
	Additional Resources

	One-Bend Drawings of Outerplanar Graphs with Fixed Shape
	Related Work and Contribution
	Notation and Preliminaries
	Procedure
	Correctness
	Conclusion

	II Vertices on the Integer Coordinates
	Moving Graph Drawings to the Grid Optimally
	Related Work and Contribution
	NP-Hardness
	Exact Solution Using Integer Linear Programming
	Experimental Performance Evaluation
	Conclusion

	Practical Topologically-Safe Rounding of Geographic Networks
	Related Work and Contribution
	Terminology and Basic Heuristics
	The Two-Stage Algorithm
	Experimental Results
	Conclusion

	Cauchy's Theorem for Orthogonal Polyhedra
	Related Work and Contribution
	Orienting Faces by Coloring Edges
	Arbitrary Genus: The Proof of Theorem 7.1
	Conclusion

	Conclusion

	Bibliography
	Acknowledgments
	List of Publications

