
Julius–Maximilians–Universität Würzburg
Institut für Informatik

Lehrstuhl für Kommunikationsnetze (Informatik III)

Deep Reinforcement Learning
for Configuration of

Time-Sensitive-Networking

Bachelor’s Thesis submitted by

Jan Hofmann

Julius–Maximilians–Universität Würzburg
Institut für Informatik

Lehrstuhl für Kommunikationsnetze (Informatik III)

Deep Reinforcement Learning
for Configuration of

Time-Sensitive-Networking

Bachelorarbeit im Fach Informatik
vorgelegt von

Jan Hofmann

Angefertigt am
Lehrstuhl für Kommunikationsnetze (Informatik III)

Julius–Maximilians–Universität Würzburg

Betreuer:
Prof. Dr. Tobias Hoßfeld

Dr. rer. nat. Michael Seufert
Alexej Grigorjew M. Sc.
Nikolas Wehner M. Sc.

Abgabe der Arbeit:
27.07.2020

Deutsche Zusammenfassung

Zuverlässige Echtzeitnetzwerke spielen eine zentrale Rolle im heutigen industriel-
len Umfeld. Während sich in anderen Anwendungsbereichen Ethernet als Technik
für Kommunikationsnetze durchsetzen konnte, basiert industrielle Kommunikation
bis heute häufig noch auf teuren Feldbus-Systemen. Mit der Einführung von Time-
Sensitive-Networking (TSN) wurde Ethernet schließlich um eine Reihe von Stan-
dards erweitert, die die hohen Anforderungen an Echtzeitkommunikation erfüllen
und Ethernet damit auch im industriellen Umfeld etablieren sollen. Doch für eine zu-
verlässige Kommunikation, besonders im Hinblick auf die Übertragungsverzögerung
von Datenpaketen (Latenz), ist die richtige Konfiguration von TSN entscheidend.

Dynamische Netzwerke zu konfigurieren ist ein Optimierungsproblem, das verschie-
dene Herausforderungen birgt. Verfahren wie die lineare Optimierung liefern zwar
optimale Ergebnisse, jedoch steigt der Zeitaufwand exponentiell mit der Größe der
Netzwerke. Moderne Lösungsansätze wie Machine Learning (ML) können sich einer
optimalen Lösung annähern, benötigen jedoch üblicherweise große Datenmengen,
auf denen sie trainiert werden (Supervised Learning).

Diese Arbeit untersucht die Anwendung von Deep Reinforcement Learning (DRL)
zur Konfiguration von TSN. DRL kombiniert Reinforcement Learning (RL), also
das selbstständige Lernen ausschließlich durch Interaktion, mit dem Deep Learning
(DL), dem Lernen mittels tiefer neuronaler Netze. Die Arbeit beschreibt, wie sich ei-
ne Umgebung für DRL zur Simulation und Konfiguration von industriellen Netzwer-
ken implementieren lässt, und untersucht die Anwendung zweier unterschiedlicher
Ansätze von DRL auf das Problem der TSN-Konfiguration.

Beide Methoden wurden anhand von zwei unterschiedlich komplexen Datensätzen
ausgewertet und die Ergebnisse sowohl mit den zeitaufwändig generierten Optimallö-
sungen als auch mit den Ergebnissen zweier Supervised Learning-Ansätze verglichen.
Es konnte gezeigt werden, dass DRL optimale Ergebnisse auf kleinen Netzwerken er-
zielen kann und insgesamt in der Lage ist, Supervised Learning bei der Konfiguration
von TSN zu übertreffen. Weiterhin konnte in der Arbeit demonstriert werden, dass
sich DRL schnell an fundamentale Veränderungen der Umgebung anpassen kann,
was mit Supervised Learning nur durch deutlichen Mehraufwand möglich ist.

Contents

1 Introduction 1

2 Background 3
2.1 Time-Sensitive-Networking . 3
2.2 Deep Learning . 8
2.3 Deep Reinforcement Learning . 10

2.3.1 Q-Learning . 12
2.3.2 Deep Q-Network . 14
2.3.3 Policy Gradient . 17
2.3.4 Actor-Critic . 18

2.4 Related Work . 20

3 Methodology 22
3.1 Framework for Network Simulation 22
3.2 Environment for Reinforcement Learning 26
3.3 Implementation of Deep Q-Network 31
3.4 Implementation of Actor-Critic . 33

4 Evaluation 36
4.1 Training and Experimental Setup . 36
4.2 Evaluation of Deep Q-Network . 38
4.3 Evaluation of Actor-Critic . 43
4.4 Comparison to Supervised Learning 45
4.5 Variations on Priority Classes . 48

5 Conclusion 50

List of Figures 53

List of Tables 54

Bibliography 55
Technical Reports and Standards . 55
Articles and Books . 56

1
Introduction

Reliable, deterministic real-time communication is fundamental to most industrial
systems today. In many other domains Ethernet has become the most common plat-
form for communication networks, but has been unsuitable to satisfy the require-
ments of industrial networks for a long time. This has changed with the introduction
of Time-Sensitive-Networking (TSN), a set of standards utilizing Ethernet to imple-
ment deterministic real-time networks. This makes Ethernet a viable alternative to
the expensive fieldbus systems commonly used in industrial environments. However,
TSN is not a silver bullet. Industrial networks are a complex and highly dynamic
environment and the configuration of TSN, especially with respect to latency, is a
challenging but crucial task.

Various approaches have been pursued for the configuration of TSN in dynamic
industrial environments. Optimization techniques like Linear Programming (LP)
are able to determine an optimal configuration for a given network, but the time
consumption exponentially increases with the complexity of the environment. Ma-
chine Learning (ML) has become widely popular in the last years and is able to
approximate a near-optimal TSN configuration for networks of different complexity.
Yet, ML models are usually trained in a supervised manner which requires large
amounts of data that have to be generated for the specific environment. Therefore,
supervised methods are not scalable and do not adapt to changing dynamics of the
network environment.

To address these issues, this work proposes a Deep Reinforcement Learning (DRL)
approach to the configuration of TSN in industrial networks. DRL combines two
different disciplines, Deep Learning (DL) and Reinforcement Learning (RL), and
has gained considerable traction in the last years due to breakthroughs in various
domains (Mnih et al. 2013, Silver et al. 2016). RL is supposed to autonomously
learn a challenging task like the configuration of TSN without requiring any training
data. The addition of DL allows to apply well-studied RL methods to a complex
environment such as dynamic industrial networks.

Introduction

There are two major contributions made in this work. In the first step, an interactive
environment is proposed which allows for the simulation and configuration of indus-
trial networks using basic TSN mechanisms. The environment provides an interface
that allows to apply various DRL methods to the problem of TSN configuration.
The second contribution of this work is an in-depth study on the application of two
fundamentally different DRL methods to the proposed environment. Both methods
are evaluated on networks of different complexity and the results are compared to
the ground truth and to the results of two supervised ML approaches. Ultimately,
this work investigates if DRL can adapt to changing dynamics of the environment
in a more scalable manner than supervised methods.

The remainder of this work is structured as follows. Chapter 2 gives an introduc-
tion to the key components of industrial networks and TSN, introduces the func-
tionality of DL, and covers the foundations of RL along with the two DRL methods
that are studied in this work. The chapter concludes with an overview over related
RL methods that have already been applied to the domain of dynamic networking.
Chapter 3 proposes the RL environment for simulation and configuration of TSN
and describes the specific implementation details of the two DRL methods used in
this work. Chapter 4 covers the training and evaluation of the two methods on
networks of different complexity. The chapter presents the results on two different
data sets and compares the results to the ground truth and the results of two super-
vised ML methods. Ultimately, the scalability of the DRL approach is investigated
by changing the dynamics of the proposed environment. Chapter 5 concludes with
a brief summary and an outlook on possible further enhancements to the methods
presented in this work.

2

2
Background

This chapter gives an overview of the key technologies used in industrial networks
and introduces Time-Sensitive-Networking as a set of standards to implement de-
terministic real-time communication using Ethernet. This is followed by an insight
into Deep Learning and the functionality of Deep Neural Networks as powerful com-
putational models. Then, the chapter describes the foundations of Reinforcement
Learning and the value-based Q-Learning algorithm which serves as a basis for the
Deep Q-Network method. This is followed by the Policy Gradient algorithm as a
policy-based learning approach which serves as a basis for the Actor-Critic method.
The chapter concludes with a brief overview of related problems in the domain
of dynamic networking where Reinforcement Learning methods have already been
successfully applied.

2.1 Time-Sensitive-Networking
This work studies Ethernet-based networks in an industrial environment. Ethernet
is the most common type of wired local network and was originally developed as a
platform for providing best-effort services, i.e., services that do not meet real-time
requirements. Since then, Ethernet has been constantly evolving and has become
practicable for providing deterministic real-time services in industrial environments.

Communication in Ethernet-based networks is divided into seven layers, specified
in the Open System Interconnection (OSI) model. The OSI model provides layers
of abstraction and reduces the complexity of network communication. Each layer
serves the next layer and uses the services of the previous layer.

In this work, only the physical layer and the data link layer (cf. IEEE 802.3 2018)
are of interest. The physical layer ensures the transmission of raw bits between
different systems using a physical transmission medium. The data link layer, on the
other hand, is responsible for the reliable communication between two systems.

2.1. Time-Sensitive-Networking

In order to directly communicate with a specific system, a media access control
(MAC) address is used. This address is usually assigned by the manufacturer and
uniquely identifies a network interface of a system.

Besides correct addressing, reliable communication also requires identifying trans-
mission errors and controlling the flow of data. In order to provide such functional-
ity, the data link layer encapsulates raw data into units called frames. An Ethernet
frame includes the actual payload along with additional meta information that is
necessary to ensure a correct transmission to the destination system (cf. Figure 2.1).

64 – 1522 Bytes

Preamble

7 Bytes

SFD

1 Byte

MAC Source

6 Bytes 46 – 1500 Bytes

PayloadMAC Destination

6 Bytes 12 Bytes

Interframe Gap

4 Bytes

802.1Q Tag

4 Bytes

Checksum

2 Bytes

Type

Figure 2.1. Structure of an Ethernet frame as specified in (IEEE 802.3 2018).

An Ethernet frame has a size of at least 64 bytes up to a maximum of 1522 bytes
and includes the following additional meta information:

• Preamble and SFD. Each frame is preceded by a preamble, which is a well-
defined pattern of 7 bytes for the purpose of synchronization with the receiver
of the frame. The Start Frame Delimiter (SFD) is a single byte which indicates
the start of the frame.

• MAC Source and Destination. Both addresses uniquely identify the sender
of the frame and the destination system, respectively.

• 802.1Q Tag. Includes the Class of Service (CoS), which can be used to assign
different priorities to the frames.

• EtherType. Indicates the protocol that the next layer utilizes for processing
the payload of the frame.

• Checksum. The checksum allows for identification of bit transmission errors.
• Interframe Gap. After transmitting a frame, there is a gap of 12 bytes before

the transmission of the next frame.

This work considers industrial networks that are build from two basic components,
bridges and endpoints. Both connect to physical links and exchange streams of data
frames at different rates. This work uses the commercial term switch synonymously
for a bridge. A switch connects multiple networks or network components and allows
segmentation of the network. The switch receives frames on an incoming port and
forwards them to the correct outgoing port, based on the destination MAC address.

4

2.1. Time-Sensitive-Networking

For this purpose, the switch learns the MAC address of all network participants and
stores them in a MAC address table. If the destination address is not known to the
switch yet, the frame is flooded to all outgoing ports.

Endpoints, on the other hand, are components that send and receive frames. In the
context of this work, there are two types of endpoints to distinguish between. Sensors
and actuators, hereafter referred to as sensors, send and receive data and are able
to detect changes in the industrial environment and interact with it. Programmable
logic controllers (PLCs), in this work referred to as controllers, are devices that are
equipped with microprocessors and are able to control and monitor multiple sensors.
Controllers are programmed in advance to fulfil specific tasks and communicate with
sensors over bidirectional streams.

There are one or multiple switches on the path of each stream, forwarding frames
to the destination endpoint. Each switch has multiple incoming ports, which means
that multiple frames can arrive at the same time. Therefore, one of the most impor-
tant tasks of a switch is to queue and schedule incoming frames, i.e., select the next
frame for transmission. Traffic scheduling, also referred to as transmission selection,
is not to be confused with traffic shaping, a processing step which delays certain
frames in order to optimize the total network utilization or increase bandwidth for
other streams.

When it comes to industrial environments, communication often has to meet
application-specific real-time requirements with regards to the network latency. La-
tency denotes the total transmission delay of a frame from source to destination
when being transmitted over physical links and being forwarded through switches.
Traffic with bounded end-to-end latency, hereafter referred to as time-sensitive traf-
fic, and traffic without such requirements, referred to as best-effort traffic, usually
coexist within the same network.

In order to meet real-time requirements and ensure a deterministic transmission
behaviour for time-sensitive traffic, the IEEE 802.1 working group proposed a set
of standards under the term Time-Sensitive-Networking (TSN, IEEE 802.1Q 2018).
TSN provides four key components (cf. Figure 2.2) that allow to implement deter-
ministic real-time services suited for industrial use, based on Ethernet.

5

2.1. Time-Sensitive-Networking

Time Synchronization

Time-Sensitive-Networking

Resource ManagementAvailability and ReliabilityBounded Low Latency

Figure 2.2. Categorization of TSN into four key components (cf. Farkas 2018).

Time synchronization. TSN utilizes the Precision Time Protocol (PTP, IEEE
1588 2008) which distributes time information across all network participants. This
is a prerequisite for mechanisms like the Time Aware Shaper (TAS, IEEE 802.1Qbv
2016) which introduces timed gates to each queue of a switch port.
Bounded Low Latency. In order to guarantee bounded end-to-end latency, TSN
proposes various traffic shaping mechanisms besides TAS. The Credit-based Shaper
(CBS, IEEE 802.1Qav 2009) smooths out bursting traffic and ensures that services
do not exceed bandwidth. The Asynchronous Traffic Shaper (ATS, IEEE 802.1Qcr
2020, Specht et al. 2016) improves link utilization, especially for mixed traffic types.
Unlike CBS and TAS, the ATS mechanism does not require the network-wide dis-
tribution of time information but works with bridge-local information and therefore
reduces implementation complexity.

Besides traffic shaping, TSN also includes a more simple transmission selection
method, the Strict Priority Transmission Selection (SP, IEEE 802.1Q 2018). Each
switch manages multiple queues dedicated to frames of different priority. (IEEE
802.1Q 2018) proposes up to eight classes that can be used to prioritize the network
traffic. Frames in different queues are strictly forwarded by priority. Within a single
priority queue, the switch follows the first-in-first-out (FIFO) principle.

SP can be configured regarding the guaranteed maximum per-hop latency that
each of the priority classes provide. The mechanism works with bridge-local infor-
mation and therefore does not require time synchronization, and in contrast to ATS,
it is widely supported by current hardware.
High Availability and Reliability. TSN provides mechanisms to ensure reliability
and fault tolerance of the network. This includes redundancy mechanisms (IEEE
802.1CB 2017) as well as filtering and policing (IEEE 802.1Qci 2017), which protects
against excessive bursts and bandwidth usage.
Resource Management. TSN includes protocols like the Stream Reservation
Protocol (SRP, IEEE 802.1Q 2018) and the Resource Allocation Protocol (RAP,
IEEE 802.1Qdd 2018), which specify admission control, i.e., ensure the availability
and reservation of required network resources. RAP can be used to include bridge-
local information in the reservation process, which is applicable to SP transmission
selection.

6

2.1. Time-Sensitive-Networking

Sporadic
Best-Effort

Periodic
Time-Sensitive

Monitoring
(HTTP)

Controller

Switch

Sensor Sensor

Transmission Port

Incoming Port

Frame Filtering,
Frame Policing, etc.

Traffic Shaping

Transmission Selection

Frame Queueing

Figure 2.3. Frame processing steps of a switch in a network with mixed traffic
types. An exemplary source of best-effort traffic is a monitoring dashboard which is
accessed via a browser using HTTP.

In summary, Figure 2.3 shows a schematic representation of a network with spo-
radic best-effort traffic and periodic time-sensitive traffic. Sensors and controllers
periodically send and receive frames with end-to-end latency requirements. Switches
perform various processing steps on each frame before forwarding it to its destina-
tion. Besides filtering, policing and traffic shaping, the task this work focuses on is
the transmission selection.

More precisely, networks studied in this work do not rely on traffic shaping mech-
anisms but rather utilize SP transmission selection only. Of the eight available
priority classes (cf. IEEE 802.1Q 2018), this work utilizes up to four classes for
time-sensitive traffic and the other classes for best-effort traffic. Given a network,
the objective is to identity an optimal SP configuration that maximizes the number
of streams which can be added to the network without violating latency require-
ments. This work investigates the application of Machine Learning techniques to
this configuration optimization problem.

7

2.2. Deep Learning

2.2 Deep Learning

Machine Learning (ML) is a major subset of Artificial Intelligence (AI) and focuses
on algorithms that use data to automatically improve themselves over time. The
goal of ML is to learn a computational model that can perform some task without
explicitly being programmed to do so. This primarily applies to complex problems
that cannot be solved by some algorithm. The basic concepts described in this
section are covered in great detail by (Goodfellow et al. 2016).

In general terms, the goal of ML is to learn some unknown and in most cases
highly complex function f : X → Y, where x ∈ X is some input and f(x) ∈ Y

is the calculated output. The input can be anything from an image to a series of
measurement data and the output can be anything from a single binary number to
a probability distribution.

One key concern with traditional ML techniques is their limited capability in
processing raw data. Extracting the most important features from data is not a
trivial task and therefore requires both domain expertise and careful engineering.

Deep Learning (DL) is a ML technique that utilizes Deep Neural Networks (DNN)
as a computational model for learning multiple levels of representation from raw
data, thus extracting the key features. A DNN is composed of multiple layers of
simple processing units, called neurons, that are connected to neurons of the previous
and next layer. Each connection is weighted and represents an adjustable parameter
within the network. While the first and last layer of the network correspond to the
input and output, layers in between are called hidden layers. The NN is considered
deep if it has at least one hidden layer, as illustrated in Figure 2.4.

Input layer
x

Hidden layer
h

Output layer
y

Figure 2.4. DNN architecture with one hidden layer and weighted connections
between the neurons, which is indicated by different levels of opacity.

8

2.2. Deep Learning

Each non-input neuron in the network computes a simple vector-to-scalar function
that combines multiple input values and produces a single output value, which is
then fed to the next layer of neurons.

DNNs are more powerful than NNs without a hidden layer. The reason is the
non-linearity, which is introduced by applying an activation function to the hidden
layer. This ensures that the output cannot be reproduced from a linear combination
of the inputs and allows to learn much more complicated functions. The most
commonly used activation function is the rectified linear unit (ReLU), which is
defined in Equation 2.1 with x being the input to a neuron.

f(x) = max(0, x) (2.1)

Using ReLU as an activation function, a non-input network layer performs a non-
linear transformation h = f(a) with a = W · x + b. x is a vector of input values,
W is a matrix of weights for every connection between the previous layer and the
current layer, and b denotes the bias.

In order for the DNN to actually learn an unknown function, it is trained on a
number of existing input-output pairs. As the desired output is already known, such
data is considered labelled and the method of training is generally known as super-
vised learning. The DNN learns an unknown function by example and generalizes
in order to predict output values from input values it was not trained.

For the purpose of learning, a loss function is defined which calculates the distance
between a predicted output value and the desired output. A commonly used loss
function is the mean squared error (MSE), which is defined in Equation 2.2 with ŷ

being the desired value and y being the actual prediction.

1

n

n∑
i=1

(ŷi − yi)
2 (2.2)

Throughout the training, the DNN gradually adjusts its weight parameters in order
to minimize the loss and increase the accuracy of the prediction. The adjustment is
based on a method called gradient descent. It computes a gradient based on the loss
with respect to the network parameters, which is then propagated back through the
network. This adjusts the parameters in a direction which ultimately minimizes the
loss (Rumelhart et al. 1988).

Derived from this computational method, several types of DNNs have been in-
troduced, specialized on solving different types of problems. Convolutional Neural
Networks (CNNs) have been proposed by (LeCun et al. 1995) in order to process
images by utilizing convolutional layers which learn filters with small receptive fields
that are able to detect features like edges and shapes in images. Recurrent Neu-
ral Networks (RNNs, Jordan 1986) use internal memory to process input sequences
with variable length. Based on this concept, (Hochreiter et al. 1997) introduced Long
Short-Term Memory (LSTM) which allows for processing long sequential input data.

9

2.3. Deep Reinforcement Learning

DNNs have proven to be powerful computational models with the capability to gen-
eralize and process large amounts of various raw data, which does not require much
engineering by hand. Along with decreasing computational cost and continuous
technological improvements, there is a wide range of domains where DNNs have
become state-of-the-art and led to significant breakthroughs. This includes speech
recognition (Hinton et al. 2012), image recognition (Krizhevsky et al. 2012), and
machine translation (Wu et al. 2016).

2.3 Deep Reinforcement Learning

Reinforcement Learning (RL) is another major subset of AI that does not deal
with learning from pre-labelled data but rather with sequential decision-making
and interaction with an environment. This section introduces the most important
concepts of RL as covered in (Sutton et al. 2018, Part I).

The key component of RL is an agent which, at each time step t, interacts with its
environment by taking an action at ∈ A. The agent then observes a transition from
the current state st ∈ S to a consecutive state st+1 ∈ S and a reward signal rt for its
action (cf. Figure 2.5). Rewards may be positive or negative and correspond to the
labels used in supervised learning. The difference is that the reward signal for an
action is not known from the start and has to be discovered by trial and error. After
an episode of multiple actions, the agent ultimately stops when reaching a terminal
state.

state
st action

at

reward
rt

rt+1

st+1

Agent

Environment

Figure 2.5. Agent interacting with its environment.

Furthermore, the agent initially does not know how an action will affect the current
state. This makes RL a form of unsupervised learning, where the agent requires
numerous interactions with its environment to actually acquire experience in which
action to take being in a specific state. For this, the agent generally does not require
any knowledge of the environment in advance.

The agent is supposed to learn a policy π : S→ A, which is a function that maps
a state to the action, the agent should take when in this state. The goal of RL
is to learn an optimal policy π∗ which maximizes the cumulative reward the agent
receives with respect to some objective.

10

2.3. Deep Reinforcement Learning

One may differentiate between two types of environments, stochastic and deter-
ministic. In a stochastic environment, the agent does only have limited impact to
the outcome of an action. Taking the same action in the same state at different
times may result in different observations. This is often true when modelling real-
world scenarios that involve some stochastic elements that cannot be fully known in
advance. This is further discussed in (Kuang et al. 2019).

In a deterministic environment, on the other hand, the transition to the next state
depends solely on the current state and the action the agent takes. In this work,
a deterministic environment is proposed where the same choice of action in a state
always leads to the same observation.

The problem of learning from interaction with an environment in order to achieve
some goal can be formulated as a Markov Decision Process (MDP, Bellman 1957).
In the context of this work, only the deterministic case is considered and the MDP
is defined as a 4-tuple (S,A, T, R) where

• S is a state space,
• A is a finite action space,
• T : S×A→ S is a transition function that maps a state-action pair

to a consecutive state,
• R : S×A→ R is a reward function.

The MPD allows to model decision making with the primary goal of maximizing the
cumulative reward. The most important property of MPDs is the Markov property,
which claims that the impact of an action solely depends on the current state and
not on past decisions. The current state always includes all relevant information
required for the transition to a consecutive state. This property is a fundamental
prerequisite for the RL methods covered in the following sections.

This work studies methods where the agent learns in an online setting. This means
that labelled data become available successively in form of observations when the
agent interacts with its environment. This is opposed to an offline setting where
labelled data are available from the start. An important characteristic of an online
setting is the fact that the agent can actually decide how to gather new data, e.g.,
by randomly exploring different states instead of solely following its current policy.

Usually, it is desired to give the agent an incentive to reach its goal in as little
time as possible. Therefore, a discount factor γ ∈ [0, 1] is introduced which discounts
future rewards with every time step. At time step t, the discounted reward for taking
an action at is defined as rt = γtR(st, at). Discounting future rewards is an effective
way to affect the behaviour of the agent.

• γ = 1 gives the agent no incentive to solve the MDP in reasonable time because
the number of steps taken does not affect the future reward,

• γ = 0 lets the agent thoughtlessly maximize the next reward because any
future reward becomes zero.

11

2.3. Deep Reinforcement Learning

A second crucial hyperparameter is the learning rate α ∈ [0, 1]. This determines to
what extent the agent replaces previous knowledge with new experience.

• α = 0 prevents the agent from acquiring any new knowledge,
• α = 1 forces the agent to overwrite previous knowledge at each time step.

The right choice for γ and α depends on several factors including the characteristics
of the environment and the utilized RL method.

2.3.1 Q-Learning

Q-Learning (Watkins et al. 1992) is one of the best studied algorithms that solves
an MDP. The algorithm allows an agent to learn an optimal policy without prior
knowledge of the environment, the reward function, or the transition function. With
Q-Learning, the agent does not learn a model of its environment. Hence, the algo-
rithm falls under the category of model-free learning.

Instead, the agent learns an action-value function Qπ : S × A → R that denotes
the quality of an action in a given state. This quality value Qπ(st, at) with respect
to a policy π is equivalent to the maximum expected cumulative reward when taking
action at in state st and following π thereafter.

At the beginning of the training, the Q-values for every state-action pair are ar-
bitrarily initialized and stored in a table. At each time step t, the agent chooses an
action at in the current state st and observes some consecutive state st+1 along with
a reward signal rt. It then uses this observation to update its current Q-value for
the just taken action at according to Equation 2.3.

Qπ(st, at)← Qπ(st, at) + α(rt + γ max
a∈A

Qπ(st+1, a)−Qπ(st, at)︸ ︷︷ ︸
temporal difference value

) (2.3)

Qπ(st, at) denotes the current value while the term rt + γ maxa∈A Qπ(st+1, a) corre-
sponds to the target value. The learning rate α specifies to which extent the old
value is overwritten by the target value while γ discounts the maximum expected
future reward for the next state.

Q-Learning is considered an off-policy algorithm. The reason is that the algorithm
only learns the value function Q but does not explicitly learn a policy π. Instead,
in Equation 2.4, the policy is derived from Q by greedily choosing the action with
the highest Q-value in a given state.

π(s) = argmax
a∈A

(Qπ(s, a)) (2.4)

The overall goal is to learn an optimal Q-function Q∗ from which an optimal policy
π∗ can be derived which maximizes the cumulative reward.

12

2.3. Deep Reinforcement Learning

Arbitrarily initializing the Q-values can lead to undesirable behaviour, because in
a given state, the agent will always greedily choose the action based on its highest
Q-value even if another action would lead to a higher cumulative reward in the long
run. This raises the question if, especially in early phases of the training, the agent
should trust its current Q-values or instead explore some other actions that could
potentially lead to higher future reward.

For this purpose, an exploration rate ε ∈ [0, 1] is introduced. ε is used as a
probability for the agent not to greedily choose its next action by the highest Q-
value but rather explore a completely random action. This strategy, called ε-greedy,
is a trade-off between exploration and exploitation. In order to obtain high rewards,
the agent should follow a behaviour that has proven beneficial in the past, which is
termed exploitation. But, especially in early phases of the training, such actions must
first be discovered by exploration. ε is an essential hyperparameter when utilizing
the Q-Learning algorithm.

• ε = 0 lets the agent greedily choose the action with the highest Q-value every
time, which can lead to a suboptimal policy,

• ε = 1 lets the agent choose a random action every time, which prevents the
agent from learning a reasonable policy.

(White et al. 1992) were the first to thoroughly discuss the trade-off between ex-
ploration and exploitation. As with all hyperparameters, choosing an appropriate
exploration rate ε depends on the dynamics of the environment.
Algorithm 1 shows the tabular Q-Learning algorithm with ε-greedy strategy accord-
ing to (Watkins et al. 1992 and Sutton et al. 2018).

Algorithm 1: Q-Learning
Input: learning rate α ∈ [0, 1], exploration rate ε ∈ [0, 1]

Initialize Q(s, a) arbitrarily ∀s ∈ S, a ∈ A except that Q(terminal, ∗) = 0;
foreach episode do

Start in state st;
while st is not terminal do

Choose action at randomly with ε probability, else at = π(st);
Take action at;
Observe next state st+1 and reward rt;
Q(st, at)← Q(st, at) + α(rt + γ maxa∈A Q(st+1, a)−Q(st, at));
st ← st+1;

end
end
Output: Q

13

2.3. Deep Reinforcement Learning

2.3.2 Deep Q-Network

When modelling real-world scenarios, there often is a large or even infinite number
of possible states. The tabular Q-Learning algorithm is not suited for this kind of
environment, because for a large state space, there is no efficient way of storing the
Q-values for all state-action pairs in memory.

Since Q is a function, the issue can be resolved by introducing a function approxi-
mator like a DNN which takes the current state st as the input and approximates a
vector of Q-values for every action and state. The first implementation of this idea
was the Deep Q-Network (DQN, Mnih et al. 2013), which originated the class of
Deep Reinforcement Learning (DRL) methods. DQN achieved human-level results
on the complex task of controlling Atari 2600 video games by processing raw pixels.

DQN is a modification of the Q-Learning algorithm in the sense that it learns a
parameterized Q-function Q(st, at, θt) where θt corresponds to the adjustable param-
eters of the Q-Network at time step t. Therefore, learning does no longer happen
by updating the Q-values, but rather by adjusting the parameters in a way that
the Q-Network moves towards approximating an optimal Q-function Q∗. Figure 2.6
resembles Figure 2.5 and illustrates the interaction cycle of an agent when utilizing
a Q-Network for value approximation.

At each time step t, a loss Lt(θt) in dependence of the current network parameters
θt is calculated according to Equation 2.5. The calculation uses the MSE of the target
value, i.e., the expected maximum cumulative reward rt+γ maxa∈A Q(st+1, a, θt), and
the actual Q-value.

Lt(θt) = (rt + γ max
a∈A

Q(st+1, a, θt)−Q(st, at, θt))
2 (2.5)

Based on the loss, in Equation 2.6, a gradient is computed with respect to the
network parameters which is then propagated back through the Q-Network.

∇θtLt(θt) = (rt + γ max
a∈A

Q(st+1, a, θt)−Q(st, at, θt))∇θtQ(st, at, θt) (2.6)

Equation 2.7 formulates this as an update rule that resembles the original Q-Learning
update rule from Equation 2.3.

θt+1 ← θt + α(rt + γ max
a∈A

Q(st+1, a, θt)−Q(st, at, θt))∇θtQ(st, at, θt) (2.7)

14

2.3. Deep Reinforcement Learning

Agent

Environment

state ststate st

action
at

policy
πθ

policy
πθ

reward rtreward rt
parameters θparameters θ

rt+1

st+1

Figure 2.6. DRL using a Q-Network for Q-value approximation. A policy is derived
from the Q-values by choosing the action with the highest value in the current state.

In supervised learning, a loss can simply be calculated as the distance between
predicted output and expected output, while in RL the expected output has to be
approximated. To be more precise, the Q-Network not only approximates the current
Q-values but is also utilized to approximate the target values used for learning.
This approach is called bootstrapping. Although the reward rt from Equation 2.7
comes from actual experience, for the most part the target value is based on an
approximation from the Q-Network. Therefore, the calculated gradient with respect
to the network parameters is based on an approximated loss, which makes DQN a
semi-gradient method where the gradient does not contain the whole information
but is rather based on an approximation.

Since new data become available at every time step, the parameters of the Q-
Network are constantly adjusted. Using this unstable Q-Network for approximating
the target values in order to calculate a loss can lead to instabilities in training.

Therefore, (Mnih et al. 2013) propose a second Q-Network called target network
with an identical architecture and its own set of parameters θ–. Unlike the first
Q-Network, which is referred to as the online network, the target network does not
adjust its parameters after every time step. Instead, the parameters are frozen for
a fixed number of steps after which the target network is synchronized with the
online network. Using a target network, Equation 2.8 modifies the update rule from
Equation 2.7 using the target parameters θ– for approximating the target value.

θt+1 ← θt + α(rt + γ max
a∈A

Q(st+1, a, θ
−
t)−Q(st, at, θt))∇θtQ(st, at, θt) (2.8)

Despite having two sets of network parameters, only the online network is actively
learning, which makes it still only one single model and therefore does not affect
performance in a negative way.

15

2.3. Deep Reinforcement Learning

(Mnih et al. 2013) propose another modification to the DQN method in order to
stabilize training, which is experience replay (ER). During the training, consecutive
observations might be highly correlated with each other, which can further desta-
bilize training. Therefore, ER makes use of a memory to store observations. The
agent then samples random batches from this memory for training the Q-Network,
which breaks correlation between training data. ER not only stabilizes training but
also improves sample efficiency by repeatedly reusing past observations in training.
The method is further discussed in (Kalyanakrishnan et al. 2007).
Algorithm 2 shows the complete DQN implementation based on (Mnih et al. 2013)
with limitation to a deterministic environment.

Algorithm 2: DQN with Experience Replay
Input: learning rate α ∈ [0, 1], exploration rate ε ∈ [0, 1]

Initialize replay memory M ;
Initialize action-value function Q with arbitrary weights;
foreach episode do

Start in state st;
while st is not terminal do

Choose action at randomly with ε probability, else at = π(st);
Take action at;
Observe next state st+1 and reward rt;
Store observation (st, at, rt, st+1) in M ;
Sample random minibatch of observations (sj, aj, rj, sj+1) from M ;
Calculate target value

ŷj =
{

rj + γ maxa∈A Q(sj+1, a, θ
−
t) if sj+1 is not terminal

rj otherwise
Perform a gradient descent step on (ŷj −Q(sj, aj, θj))

2;
st ← st+1;

end
end
Output: Q

While (Mnih et al. 2013) use a CNN architecture as a feature extractor for raw
image input, DQN can be applied to various types of environments with a large
or infinite state space. In chapter 3, DQN is applied to an industrial real-time
network environment in order to learn an optimal Q-function and derive a policy for
configuration of SP transmission selection.

16

2.3. Deep Reinforcement Learning

2.3.3 Policy Gradient

Both Q-Learning and DQN aim to optimize an action-value function from which a
policy is derived. This section introduces policy gradient as a different RL approach
that aims to learn a parameterized policy directly, without consulting a value func-
tion. Such a method is considered on-policy and represents a second fundamental
way of learning as opposed to the off-policy methods from the previous sections.
Concepts described in this section are covered in (Sutton et al. 2018, Chapter 13).

The first policy gradient method was introduced by (Williams 1992). The goal
of the policy gradient method is to directly learn a parameterized policy πθ where
θ denotes the parameter vector. The method makes use of a DNN as a function
approximator for πθ.

Value-based methods derive a deterministic policy from a learned value function.
Deterministic refers to the fact that the derived policy maps a state to one specific
action for the agent to take, i.e., the one action with the highest value.

Policy gradient methods, in contrast, learn a stochastic policy, which is a proba-
bility distribution πθ(a|s) = Pθ(a|s) for every action a when in state s. There are
two advantages in learning a stochastic policy. The first is that action probabilities
change smoothly during training whereas in ε-greedy selection, the action probabil-
ities can change dramatically if the underlying estimated action values change. The
second advantage is that there is no need for an explicit exploration strategy such as
ε-greedy because a stochastic policy naturally results in exploration with a certain
probability.
In order to actually learn a policy, Equation 2.9 defines a score function in depen-
dence of the parameters θ.

J(θ) = Eπθ
(
∑
t

γtR(st, at)) (2.9)

The score corresponds to the expected total reward with γ being the discount factor.
The function can also be rewritten as Equation 2.10 where V (s) is a value function.

J(θ) = Eπθ
(
∑
t

γtR(st, at)) = Eπθ
(V (st)) (2.10)

Although policy gradient methods do not use a value function to derive a policy,
there can still be a value function used in the learning process. This is not an action-
value function Q(s, a) but rather a state-value function V (s) that corresponds to the
expected cumulative future reward from a state s regardless of an action.

17

2.3. Deep Reinforcement Learning

J(θ) evaluates the quality of the current policy πθ during training. The goal of policy
gradient is to optimize the parameters θ in order to maximize J(θ). The basic idea is
that the parameters are gradually adjusted in a way that the probability of profitable
actions increases over time, thus maximizing the total reward.
For this purpose, in Equation 2.11, a gradient with respect to the parameters θ is
calculated that corresponds to the direction of the steepest increase of the score
function.

∇θJ(θ) = Eπθ
(R(τ)∇θ(log πθ(a|s))) (2.11)

The gradient is computed from the actual total reward R(τ) that was observed over
the course of an episode multiplied by the probabilities according to πθ. Using log
probabilities log πθ(a|s) instead of the actual probability function makes it easier to
differentiate. A high total reward R(τ) indicates that the actions taken during the
episode, on average, led to high rewards. Therefore, it is desired to increase the
probability of taking these actions. This is done with a gradient ascent step which
Equation 2.12 formulates as an update rule that resembles Equation 2.7.

θt+1 ← θt + αR(τ)∇θ(log πθ(a|s)) (2.12)

As with previous parameterized functions, α denotes the learning rate. The update
based on the policy gradient adjusts the parameters in a direction that favors actions
with a high return, thus gradually optimizing the score function J(θ).

2.3.4 Actor-Critic

The most significant drawback of the described policy gradient method is that the
gradient ascent step only applies at the end of an episode. For an overall high value
score R(τ), all actions taken in the episode are considered profitable, even if some
actions actually led to low or negative rewards. As the method averages all actions
based on the value score, it usually is not efficient in learning which specific actions
are actually profitable and which are not. Thus, learning requires a large amount of
samples and convergence is usually slow.

To address this issue, the Actor-Critic algorithm is introduced. It is a temporal
difference method based on policy gradient that updates parameters at each time
step rather than at the end of an episode. Actor-Critic requires learning the previ-
ously mentioned state-value function Vw(s), which is used to update the parameters
of the policy at each time step.

18

2.3. Deep Reinforcement Learning

As Vw(s) is a parameterized function, a second model is required for approximation.
Therefore, the model is split into an actor and a critic. The actor learns the policy πθ

by adjusting its parameters θ, while the critic learns the state-value function Vw(s)

with its own set of parameters w. For the purpose of learning, a temporal-difference
error is calculated from the state-values (cf. Equation 2.13) at each time step.

δt = rt + γVw(st+1)− Vw(st) (2.13)

Using the error, Equation 2.14 formulates an update rule for the actor that resembles
Equation 2.12.

θt+1 ← θt + αθδt∇θ(log πθ(a|s)) (2.14)

This adjusts the actor’s parameters such that the error δ is ultimately minimized.
As the adjustments aim at minimizing an error rather than maximizing a score, this
is a gradient descent step rather than a gradient ascent step. It is worth noting
that both actor and critic use different learning rates αθ and αw respectively. For
adjusting the critic’s parameters, the same error is used (cf. Equation 2.15).

wt+1 ← wt + αwδt∇wtVw(st) (2.15)

Figuratively speaking, the critic observes the current state and provides feedback
to the actor’s policy. At the same time, the critic learns to optimize its estimation
of the state-value to provide better feedback for the next time. All steps combined
result in Algorithm 3 adopted from (Sutton et al. 2018).

Algorithm 3: Actor-Critic
Input: learning rates αθ, αw ∈ [0, 1]

Initialize policy π with arbitrary weights;
Initialize state-value function V with arbitrary weights;
foreach episode do

Start in state st;
while st is not terminal do

Choose action at = π(st);
Take action at;
Observe next state st+1 and reward rt;
Compute temporal-difference error δt = rt + γVw(st+1)− Vw(st);
Update actor parameters θt+1 ← θt + αθδt∇θt(log πθ(a|s));
Update critic parameters wt+1 ← wt + αwδt∇wtVw(st);
st ← st+1

end
end

19

2.4. Related Work

In chapter 3, Actor-Critic is applied to the industrial real-time network environment
in order to learn an optimal policy for configuration of SP transmission selection.
Using both DQN and Actor-Critic methods in the same environment allows for a
comprehensive study on the difference between two fundamental ways of learning,
off-policy and on-policy.

2.4 Related Work
The industrial network environment as proposed in this work requires deterministic
transmission of frames with bounded end-to-end latency. Instead of using traffic
shaping mechanisms like CBS, TAS, or ATS, the network only applies basic SP
transmission selection.

Shaping methods like CBS and TAS depend on network-wide information to pro-
vide end-to-end-latency bounds. For SP, (Grigorjew et al. 2020) propose a mathe-
matically proven method for calculating bounds with bridge-local information, which
is fundamental to this work as it allows to meet real-time requirements in a network
without the use of additional shaping mechanisms. It also allows the network en-
vironment to provide information that can be used to train an agent using the
previously covered DRL methods.

The first attempt to apply DRL to dynamic networks was proposed by (Boyan
et al. 1994) using the tabular Q-Learning algorithm in order to optimize packet
routing, i.e., determine optimal paths for all packets. (Ferrá et al. 2003) were one
of the first to apply Q-Learning to packet scheduling in routers. Both methods use
a basic environment with a small state-action space and embed the RL module into
the nodes of the switching network.

As a more modern approach, (Lin et al. 2016) propose an adaptive routing algo-
rithm based on Q-Learning that takes Quality of Service (QoS) into consideration.
The algorithm applies to software-defined networking (SDN), where routing and
scheduling mechanisms are decoupled from the actual hardware.

(Feki et al. 2017) introduce a QoS-aware scheduling algorithm for LTE cellular
networks based on Q-Learning, which outperforms traditional packet scheduling
algorithms like Round Robin. (Kim et al. 2018) propose a method based on Q-
Learning that improves scheduling in IoT environments and efficiently learns new
scheduling policies even if the environment changes.

Ultimately, (Stampa et al. 2017) propose a routing algorithm based on DQN that
produces near-optimal routing configuration and minimizes end-to-end delay in dy-
namic networks. (Xu et al. 2018) use an Actor-Critic method with prioritized ex-
perience replay which significantly reduces end-to-end delay and is also robust to
changing environments.

20

2.4. Related Work

Besides routing and scheduling, congestion control is a task for which RL methods
have been successfully applied in the last years. Both (Li et al. 2016) and (Kong
et al. 2018) investigate the use of tabular RL methods on congestion control, which,
again, only allows for environments with a small state-action space. Still, both
methods provide better throughput and delay performance compared to the TCP
New Reno mechanism (Henderson et al. 2012).

(Jay et al. 2019) apply an Actor-Critic method to congestion control where the
agent is a sender of traffic and actions represent changes to the traffic rate. The
agent learns to optimize its sending rate such that network resources are utilized
efficiently and outperforms state-of-the-art congestion control methods.

(Ruffy et al. 2018) propose a framework that applies DRL to congestion control
in data centers. The work makes use of advanced methods based on policy gra-
dient, namely Deep Deterministic Policy Gradients (DDPG, Lillicrap et al. 2015)
and Proximal Policy Optimization (PPO, Schulman et al. 2017). As the proposed
environment is deterministic, DDPG provides better results than PPO and exceeds
the TCP New Vegas performance baseline (Sing et al. 2005).

As there is a number of alternatives to SP, the application of RL methods on
networks solely using SP transmission selection has been neglected for the most
part. This work aims to investigate the application of two different types of DRL
methods on the configuration of SP in industrial networks and compare the results
to two different supervised ML approaches.

21

3
Methodology

This chapter presents a framework that allows for simulating basic industrial net-
works with time-sensitive traffic using SP transmission selection. Based on the
framework, an environment is proposed which allows to interact with the network.
This enables an RL agent to adjust the network configuration and receive feedback
based on the change in total network capacity. The chapter then continues with
the implementation of both DQN and Actor-Critic to determine a near-optimal SP
configuration for a given network environment. This includes the specific implemen-
tation details for both methods as well as all relevant hyperparameters.

3.1 Framework for Network Simulation
In order to build an interactive environment for the configuration of industrial net-
works, a framework is required that allows to simulate such networks and calculate
the network capacity based on the current SP configuration. Mathematical symbols
used to formalize the framework are listed in Table 3.1.

Table 3.1. Mathematical symbols used to formalize framework and environment

Symbol Description

T Network topology
S Set of all streams s ∈ S in the system
C Network configuration

NS
C Network capacity under configuration C regarding streams S

h(s) Number of hops for stream s

p(s) Priority assigned to stream s

δ(s) End-to-end latency requirement of stream s

δh(s) Per-hop latency requirement of stream s

3.1. Framework for Network Simulation

Networks studied in this work are restricted to a linear topology T = (m,n). In
detail, this means that the network is built upon a number of m linearly arranged
switches. Each switch is connected with exactly one controller and a number of n
sensors. An exemplary linear topology is illustrated in Figure 3.1, including bidirec-
tional communication between sensors and controllers.

A network with linear topology is characterized by the fact that there is only one
possible path between two different endpoints. This particularly means that every
path between two endpoints is a shortest path. In networks with a more complex
structure, there are usually multiple possible paths between two endpoints, which
calls for a routing mechanism that determines optimal paths for the streams. As
this work only considers networks with linear topology, routing is negligible.

Sensors

Controller

Switch

...

...

Sensors

Controller

Switch

...

Sensors

Controller

Switch

...

Figure 3.1. Linear network topology with one controller and multiple sensors per
switch. Blue arrows indicate the bidirectional communication between endpoints.

Every sensor in the network communicates with exactly one controller via a bidi-
rectional stream of data. More precisely, this corresponds to two unidirectional
streams from sensor to controller and vice versa. Streams are periodically, i.e., each
stream has a specific transmission interval at which frames are transmitted to the
controller. Further properties of a stream are the range of the frame size as well as
the end-to-end latency requirement.

In order to provide a relatively realistic simulation of a real network, five different
application profiles are specified that can be applied to the streams (cf. Table 3.2).
Each profile includes a transmission interval and an end-to-end latency requirement
for frames as well as a minimum and maximum frame size, whereby all the properties
double between consecutive profiles.

23

3.1. Framework for Network Simulation

Table 3.2. Available application profiles for the streams.

Transmission
interval

Maximum
latency

Minimum
frame size

Maximum
frame size

profile 1 250µs 250µs 64 bytes 128 bytes
profile 2 500µs 500µs 128 bytes 256 bytes
profile 3 1000µs 1000µs 256 bytes 512 bytes
profile 4 2000µs 2000µs 512 bytes 1024 bytes
profile 5 4000µs 4000µs 1024 bytes 1522 bytes

Properties for each stream s ∈ S are randomly chosen from one of the application
profiles according to a uniform distribution. Furthermore, the end-to-end latency
requirement δ(s) is identical to the transmission interval. As a stream can take only
one distinct path through the network, the same is true for the number of hops h(s)
on this path. Therefore, the per-hop latency requirement for s can be calculated
according to Equation 3.1.

δh(s) =
δ(s)

h(s)
(3.1)

Lastly, the network uses burst transmission whereby a stream can exceed its trans-
mission rate for a short period of time. Regardless of the application profile, how-
ever, the burst size cannot exceed the maximum frame size of 1522 bytes specified
in (IEEE 802.3 2018).

The framework does not make use of any additional traffic shaping mechanisms but
rather utilizes basic SP transmission selection. (IEEE 802.1Q 2018) specifies eight
classes that can be used for streams of different priority. The framework makes
use of up to four classes for traffic with tight end-to-end latency requirements while
the other classes are reserved for best-effort traffic. For each outgoing port, a switch
manages one dedicated queue for each of the four priority classes. Frames in a queue
of higher priority always get transmitted first. Frames within the same queue get
processed according to the FIFO principle.

The primary configuration option provided by the framework is the maximum
per-hop latency that is guaranteed by each of the four priority classes. This section
assumes that all four classes are used for the transmission of time-sensitive streams.
Equation 3.2 defines the configuration of the network as a 4-tuple where Ci is the
guaranteed maximum per-hop latency provided by priority class i.

C = (C0, C1, C2, C3) (3.2)

C0 denotes the highest priority class with the lowest guaranteed per-hop latency. The
priority p(s) of a stream s is determined by the lowest priority class that satisfies
the per-hop requirement δh(s).

24

3.1. Framework for Network Simulation

If there is no priority class that meets this requirement, s is not assigned a priority
and therefore cannot be added to the network under the current configuration. Table
3.3 shows the exemplary priority assignment for a small set of four streams given
the stream profile and the path length. C = (75µs, 150µs, 250µs, 500µs) is used as
an configuration for the example.

Application
profile

Path
length

End-to-end
requirement

Hops
on path

Per-hop require-
ment

Priority
assigned

s0 profile 1 3 δ = 250µs 2 δh = 125µs p = 0

s1 profile 1 5 δ = 250µs 4 δh = 62.5µs p = n.d.
s2 profile 2 4 δ = 500µs 3 δh = 166.67µs p = 1

s3 profile 5 5 δ = 4000µs 4 δh = 1000µs p = 3

Table 3.3. Exemplary priority assignment for streams with different profile and
path length under configuration C. Priority p(s1) is undefined due to the fact that
there is no priority class that meets the requirements of s1.

The framework is initialized with a topology T, a set of streams S, and a configura-
tion C. The main task of the framework is to simulate the real-time communication
between sensors and controllers solely utilizing SP, and to determine the actual net-
work capacity NS

C . The capacity is defined as the number of streams s ∈ S that can
be added to the network under the current configuration C without violating the
end-to-end latency requirements of any stream in the network.

As the previous example illustrated, streams cannot be added to the network if
there is no priority class that meets its per-hop requirements. However, NS

C does not
only depend on the number of prioritizable streams, but also on the percentage of
those streams that can actually transmit frames at their transmission rate without
violating any end-to-end requirements due to transmission delay.

In order to identify such streams, the framework uses the latency bound calculation
method of (Grigorjew et al. 2020). The method is applied by iteratively adding the
prioritizable streams to the network and calculating the occurring latency at every
hop. If adding a stream violates the end-to-end requirements of the stream or any
other stream, that has already been added to the network, the stream is rejected.

The framework allows to simulate and configure basic industrial networks with
linear topology using SP transmission selection. It provides an interface that allows
to adjust the current configuration and re-calculate the network capacity under the
new configuration. This serves as a basis for the RL environment that is introduced
in the next section.

25

3.2. Environment for Reinforcement Learning

3.2 Environment for Reinforcement Learning
Identifying an optimal configuration C∗ for a given network topology and a set of
streams is a hard optimization problem. Reinforcement Learning is expected to
be an appropriate method that approaches a decent configuration in reasonable
time. Therefore, this section proposes an interactive environment built upon the
framework that allows to apply different RL methods to the problem.

Two essential components of such an environment are the action space and the
state space. As the objective is to identify an optimal configuration C∗, actions
represent adjustments to the configuration or, in other words, to the guaranteed
per-hop latency of the priority classes. The action space is defined in Equation 3.3
where p is the number of classes that are used by the framework.

A = (a0, a1, ..., a2p−1) (3.3)

For every priority class, the environment provides one action to increase and one
action to decrease the guaranteed per-hop latency of the class by 10µs, respectively.
To be precise, an action does not adjust the absolute value but rather the absolute
distance between class Ci and the next lower priority class Ci−1. This results in
an adjustment of ±10µs to the class Ci itself as well as all higher priority classes.
This may be illustrated by an exemplary configuration Ct and an action space A =

(a0, a1, ..., a7). Figure 3.2 illustrates a short, exemplary sequence of actions and the
resulting adjustments to the network configuration ∆C. This shows that, e.g., action
a0 increases the configuration of all four priority classes by 10µs.

Ct = (50, 100, 200, 500)

Ct+1 = (60,110,210,510)

Ct+2 = (60,120,220,520)

Ct+3 = (60, 120,210,510)

a0 ∆C = (+10, +10, +10, +10)

a2 ∆C = (±0, +10, +10, +10)

a5 ∆C = (±0, ±0, −10, −10)

Figure 3.2. Exemplary sequence of actions and the resulting adjustments in con-
figuration denoted as ∆C.

26

3.2. Environment for Reinforcement Learning

Figure 3.3 shows the interaction cycle with the proposed environment. An action at
results in an adjustment of the configuration ∆C. The framework re-calculates the
network capacity NS

C under the new configuration and passes this information back
to the environment.

Environment

Framework

Agent

state
st

action
at reward

rt

rt+1

st+1

Δ𝒞 t+1N𝒮

Figure 3.3. Interaction with the environment built upon the framework.

If the absolute distance between two classes is less than 10µs, an action that would
further decrease the distance between both classes results in a no-op action. In
general, no-op actions are actions that are invalid in the current state and therefore
do not affect the environment. This is particularly true for action a1 if C0 ≤ 10µs

since the action would result in a negative configuration.
At the beginning of an episode, framework and environment are initialized with a

topology and a set of streams. The initial configuration of the network is not chosen
randomly, but rather as a rough estimation of a configuration that would match
the given set of streams. This initial choice deserves some consideration because it
can significantly speed up the training process if there is already a reasonable initial
network configuration. In order to choose such a configuration, the actual occurring
per-hop latency requirements for all streams are consulted. Let Equation 3.4 define
an ordered list of all uniquely occurring per-hop requirements.

∆ = (δh(s) | s ∈ S) (3.4)

The initial network configuration C0 is then determined according to Equation 3.5.

C0 =

(∆0,∆0.25,∆0.5,∆0.75) if p = 4

(∆0,∆0.33,∆0.66) if p = 3

(∆0,∆0.5) if p = 2

(3.5)

∆0 always denotes the lowest occurring per-hop requirement. ∆0.25,∆0.33,∆0.5,∆0.66,
and ∆0.75 denote the 25th, 33th, 50th, 66th, and 75th percentile of all occurring
values, i.e., the smallest value that is higher than 25%, 33%, 50%, 66%, and 75% of
all other values in the list.

27

3.2. Environment for Reinforcement Learning

Equation 3.6 shows an exemplary list of per-hop requirements and the corresponding
initial configuration C0 = (∆0,∆0.25,∆0.5,∆0.75) = (62.5µs, 125µs, 250µs, 1000µs).

∆ = {62.5︸︷︷︸
∆0

, 83.33, 125︸︷︷︸
∆0.25

, 166.66, 200, 250︸︷︷︸
∆0.5

, 333.33, 500,1000︸ ︷︷ ︸
∆0.75

, 1333.3} (3.6)

Besides an action space, the environment also provides a representation of the current
network state. As an action results in an adjustment of the network configuration,
it also results in a state transition that represents the change in network capacity.

The environment is meant to handle networks of different size and different num-
bers of streams. As the environment is used to apply DRL methods, the state
representation is ultimately used as an input for a DNN that approximates either
a value function or a policy. Such DNNs are restricted to a fixed number of input
neurons, therefore, the state representation has to be of the same size regardless of
the network topology or number of streams.

This means that the state representation must not involve a list of switches, end-
points, or streams as the number of elements may vary to a large extent. Instead,
a more general representation has to be chosen as shown in Table 3.4. The state
representation can be divided into four different groups. The first group includes
topology-related features like the number of different network devices. The network
diameter and path length provide additional information about the structure of the
network. The second group includes features related to the set of all streams in the
system. Information about the capacity of the network and the occurring trans-
mission delays is provided by the third group. It uses both a hypothetical static
configuration as well as the current dynamic configuration for the calculation. The
last group directly represents the current configuration as it includes the guaranteed
per-hop latency for all priority classes as well as the number of streams that have
successfully been added to the network and the ones that have been rejected.

Altogether, the state is represented by a vector of 76 both static and dynamic
features. As most of the features have a continuous range of values, this results in
a large state space where most of the states are not expected to ever be observed
when interacting with the environment.

28

3.2. Environment for Reinforcement Learning

Table 3.4. Representation of the current network state as a vector of 76 features.

Group Value

Topology Number of sensors
Number of controllers
Number of switches

Network diameter
The number of hops of the longest path through the network.

Path length
Minimum, maximum, and mean number of hops.
Link speed
Minimum, maximum, and mean link speed.

Streams Number of streams in total
Stream interval
Minimum, maximum, and mean of transmission intervals.
Stream bursts
Minimum, maximum, and mean of stream bursts.

Latency Static latency bound
Minimum, maximum, and mean latency bound for each priority cal-
culated with the method of (Grigorjew et al. 2020) using a static con-
figuration that utilizes a hypothetical number of 20 priority classes.
This hypothetical calculation provides valuable information about
the potential capacity of the network without considering the cur-
rent configuration.

Dynamic latency bound
Minimum, maximum, and mean latency bound using the current
configuration of the network. This calculation provides information
about the actual capacity of the network.

Configuration Network capacity
Number of streams successfully added to the network.

Number of rejected streams
This includes streams that could not be prioritized and streams that
have been rejected due to violation of latency requirements.

Current configuration
The configuration itself is also part of the current state.

29

3.2. Environment for Reinforcement Learning

In RL, an episode of actions normally ends when a terminal state is reached. But
as the problem studied in this work is an optimization problem, it is not trivial to
determine if a state is actually terminal. This is due to the fact that neither the
optimal configuration nor the maximum capacity of the network with respect to a
set of streams are known in advance. Apart from the trivial case, where all streams
can successfully be added and the current capacity at time step t is NS

t = |S|, there
is no way to determine if the current configuration already is optimal or not.

For this reason, an additional mechanism called early stopping is applied. Espe-
cially for large sets of streams, an optimal solution is not likely to allow all streams to
be added to the network. Early stopping prevents episodes from continuing endlessly
in case that a terminal state is impossible to reach.

The mechanism is implemented in a way that the agent is granted a minimum
number of n actions. Thereafter, the current network capacity NS

t is compared to
the capacity before the sequence of actions, which is denoted as NS

min. For the case
that NS

t < NS
min, the episode stops because the agent decreased the network capacity

with its past sequence of actions. Otherwise, if NS
t ≥ NS

min, the agent is granted
another n actions to take and NS

min := NS
t .

The early stopping mechanism ensures that after the next sequence of actions,
the agent must not continue if it fell back behind previously made progress. This
is repeated until the episode ultimately stops at a maximum number of actions,
regardless if the agent has made further progress or not. This ensures a reasonable
time frame for episodes and prevents long sequences of no-op actions where the agent
does not decrease capacity, but does not show progress either.

Utilizing the environment for training a RL agent requires a reward signal, which
allows the agent to learn reasonable behaviour. Therefore, a reward function is
defined that determines the objective the agent learns to optimize.

In this work, the objective is to adjust the network configuration in a way that max-
imizes network capacity. Equation 3.7 defines a reward function that corresponds
to the percentage increase in capacity after adjusting the network configuration.

rt =

{
Nt−Nt−1

|S| · 120 if Nt = |S|
Nt−Nt−1

|S| · 100 otherwise
(3.7)

This function is designed for the agent to maximize the network capacity and ad-
ditionally rewards the only certainly terminal state where NS

t = |S| by 20%. The
environment provides immediate rewards, which means that the agent receives a
reward signal after every single action rather than at the end of an episode.

30

3.3. Implementation of Deep Q-Network

3.3 Implementation of Deep Q-Network
The first RL method that is applied to the industrial network configuration problem
is DQN. As an extension to the well-studied Q-Learning method it has already been
successfully applied to various problems like video game control (Mnih et al. 2013)
or robotic control (Gu et al. 2016).

As DQN is capable of dealing with the large state representation used in this work
(cf. Table 3.4), it is expected that the method is applicable to the problem of SP
configuration in the proposed industrial network environment. This section gives
an overview over the implementation of the DQN method, which also serves as a
representative for the group of off-policy learning methods.

One crucial implementation detail is the architecture of the Q-Network, specifically
the number of hidden layers and neurons. Early investigations by (Cybenko 1989,
Hornik 1991, Leshno et al. 1993) came to the conclusion that a DNN with one hidden
layer is already sufficient to approximate any conceivable function. (Hinton et al.
2006) were the first to provide evidence that, depending on the application, DNNs
with more than one hidden layer are able to learn more complex representations of
data in a more efficient manner. (Heaton 2017) states that a DNN with two hidden
layers is well suited to approximate a smooth mapping from a large state space to
an action space. Additional layers are only needed for the extraction of complex
features, as in the case of raw pixel input (Mnih et al. 2013).

In this work, the input of the Q-Network is the state vector as previously shown
in Table 3.4. It is expected that a network architecture with two fully-connected
hidden layers meets the given requirements. The size of the input and output layer
correspond to the size of the state vector and the size of the action space, respec-
tively. The number of neurons per hidden layer, however, is regarded as a tunable
hyperparameter that is further examined in Chapter 4.

In order to introduce non-linearity to the Q-Network, ReLU activation is applied to
both hidden layers. ReLU is one of the most common activation functions (LeCun
et al. 2015) and does not involve expensive calculations. However, no activation
is applied to the output layer. This allows for negative output values, which is
desirable for the Q-Network as it approximates action-values. The values estimate
the cumulative future reward when taking an action and may be either positive or
negative, depending on the quality of the action.

According to (Mnih et al. 2013), a target network should be used with an archi-
tecture identical to the online network. The number of time steps after which the
target network is synchronized with the online network, referred to as target update
rate, is regarded as a tunable hyperparameter. The target network is utilized to
approximate the target value that is used to calculate a loss. The loss is computed
with the MSE, according to Equation 2.2. The loss is then used to compute a gradi-
ent that is propagated back through the network. To perform the gradient descent
step, an optimizer is used.

31

3.3. Implementation of Deep Q-Network

Root Mean Square Propagation (RMSProp, Tieleman et al. 2012) is a widely used
optimizer that maintains an adaptive learning rate on parameter-level, i.e., the learn-
ing rate is individual for every parameter in the network. RMSProp is supposed to
be effective in online settings and is also used in the original DQN implementation
(Mnih et al. 2013). Another commonly used optimizer is Adam (Kingma et al. 2014).
Adam is closely related to RMSProp as it also maintains a learning rate for each
network parameter. However, the authors demonstrate that Adam can outperform
RMSProp and other methods based on gradient descent.

Both methods require another hyperparameter, the learning rate α. Although both
methods use adaptive learning rates for the parameters, α provides an approximate
upper bound and affects the initial learning, before the learning rate is ultimately
adjusted by the optimizer. The utilized optimizer is regarded as a tunable hyper-
parameter and the performance of both RMSProp and Adam along with different
initial learning rates is further evaluated in Chapter 4.

Industrial networks are a highly dynamic environment. Not only communication
varies in that endpoints exchange frames of different sizes at different rates. Also, the
structure and size of the network can vary in that new connections are established
or new endpoints are added to the network. In order to account for this, the agent
is trained on a number of different network topologies and for each topology, on a
number of different sets of streams, each referred to as a scenario.

Methods like DQN require some exploration strategy like ε-greedy. The idea is
that, especially in early phases of the training, the agent performs random actions
with probability ε in order to discover valuable state-action pairs.

In a dynamic environment where the agent is trained on multiple different scenar-
ios, the utilization of ε-greedy requires careful consideration. Normally, the strategy
can be implemented by defining an initial exploration rate ε0 and then decreasing
the exploration rate with each action. This is problematic because when trained on
a sequence of different scenarios, a high initial exploration rate would lead to a large
number of random actions in early phases of the training and prevent the agent from
acquiring reasonable behaviour in early scenarios.

Instead, it is desired to already balance between exploration and exploitation in
early scenarios and to keep a steady decrease in exploration over the course of the
whole training at the same time. To achieve this, this work proposes a strategy
of dynamic exploration for DQN, which is illustrated in Figure 3.4. The figure
shows both the simple approach, where the exploration rate steadily decreases with
each action, as well as the dynamic approach. In both cases, the exploration rate
ultimately approaches εmin over the course of the training.

32

3.4. Implementation of Actor-Critic

Ex
pl

or
at

io
n

ra
te

ε

Training scenarios
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Training scenarios

ExplorationExploration Exploration

εminεmin

Figure 3.4. Decreasing exploration rate without considering the sequence of sce-
narios (left) and dynamic exploration with decreasing initial exploration for each
network topology and additional reduction of ε with each action (right). Vertical
lines indicate different network topologies the agent is trained on.

Let σ denote the total number of different network topologies the agent is trained
on. For each network topology i an initial exploration rate ε0(i) for the first episode
is calculated according to Equation 3.8. The calculation requires hyperparameters
εmax and εmin, i.e., the maximum initial exploration rate and the minimum rate, as
well as the total number of network topologies σ for training.

ε0(i) = max(εmin, εmax − i
εmax − εmin

σ
) (3.8)

This results in a steady decrease of initial exploration rates with each network.
While training on a network, ε is decreased by a value εdec after each action. This
ensures a balance between exploration and exploitation. As the training progresses,
the agent is expected to acquire more reasonable behaviour, thus the exploration
rate ultimately approaches εmin. This work proposes values εmax = 1.0, εmin = 0.1,
and εdec ≈ 0.001 in order to keep the balance between exploration and exploitation.

3.4 Implementation of Actor-Critic
The second method implemented in this work is Actor-Critic, which serves as a
representative for the group of on-policy learning methods. As with DQN, Actor-
Critic is capable of dealing with large state spaces and is expected to be applicable
to the proposed industrial network configuration problem.

A key difference to the DQN implementation is the network architecture. While
DQN uses the Q-Network to approximate a single action-value function, Actor-
Critic utilizes both an actor network to approximate a policy and a critic network
that approximates a state-value function.

33

3.4. Implementation of Actor-Critic

In general, the term actor-critic refers to a group of algorithms and does not make an
assumption about the actual implementation of the actor and the critic. (Schulman
et al. 2015) implement Actor-Critic utilizing two separate networks for the actor
and the critic, respectively. (Mnih et al. 2016) propose a parallelized Actor-Critic
implementation built upon a single shared network for both actor and critic. The
approach has similarities to Dueling DQN (Wang et al. 2015) which uses a shared
Q-Network that ultimately splits into a state-value and action-value approximator.

π
Actor output

policy π

Critic output
state-value V

Input layer Output layerShared hidden layers

Figure 3.5. Basic Actor-Critic network with shared architecture and split output
layer for actor and critic.

This work implements Actor-Critic using a single shared network for feature extrac-
tion and a split output layer for both actor and critic (cf. Figure 3.5). The approach
is easy to implement, reduces the number of trainable network parameters, and also
ensures better comparability since the network architecture resembles that of DQN
for the most part. Therefore, different results can be attributed to the different
methods of learning rather than the different number of learnable parameters.

The size of the input layer, again, corresponds to the size of the state vector. As
with DQN, the network uses two hidden layers. The output layer of the actor has
a size equal to the size of the action space while the output layer of the critic has a
fixed size of 1 and outputs a single state-value.

ReLU activation is applied to both hidden layers. The split output layer, however,
requires more consideration. For the critic output layer, no activation is applied,
because the output is a state-value which can either be positive or negative based
on the expected cumulative reward. For the actor, however, the output values
correspond to a policy, which is a probability distribution.

34

3.4. Implementation of Actor-Critic

For this reason, Softmax activation is applied as defined in Equation 3.9.

Softmax(xi) =
exp(xi)∑
j expxj

(3.9)

Softmax ensures that output values are non-negative values within the interval [0, 1]
and that all output values sum up to 1. This results in the desired probability
distribution which represents the current policy.

For the purpose of learning, a temporal-difference error is calculated at each time
step according to Equation 2.13. The gradient descent step basically follows Equa-
tions 2.14 and 2.15. Because the implementation utilizes one shared network for
both actor and critic, the gradient is computed from the sum of the actor loss and
the critic loss and is then propagated back through the shared network. This results
in a simultaneous optimization of the policy and the accuracy of the state-value.
For the gradient descent step, again, either RMSProp or Adam optimizer is used.

As opposed to DQN, Actor-Critic does not utilize a sample memory. This comes
from the fact that Actor-Critic is an on-policy method which computes a gradient
based on the current log probabilities. This is important as the adjustment to
the parameters is supposed to increase the probability of actions that led to high
rewards. An observation that is used to compute a gradient and adjust the network
parameters must always be associated with the policy that led to this observation.
Therefore, using batches of random samples is expected to prevent the algorithm
from convergence. A target network is also not required as the approximation of a
target value is done by the critic.

Another key difference is the lack of an exploration strategy like the dynamic
exploration proposed in Section 3.3. Instead, the stochastic policy naturally results
in exploration with a certain probability and still allows to associate an observation
to the corresponding policy.

Overall, the Actor-Critic method used in this work is more straightforward than
the DQN method as it involves less implementation details und therefore introduces
less tunable hyperparameters.

35

4
Evaluation

This chapter describes the training procedure and the evaluation of the two imple-
mented methods, DQN and Actor-Critic. For each method, the chapter gives an
overview over the tunable hyperparameters and the experiment that was conducted
in order to determine the effect of each hyperparameter on the results. The hy-
perparameters for both methods were then optimized in a way that maximizes the
resulting network capacities. Results were obtained on two data sets of different
complexity and were ultimately compared to two different supervised ML models
that have been trained on ground truth data. The chapter concludes by demon-
strating the flexibility of the two DRL methods when varying the number of priority
classes utilized by the environment.

4.1 Training and Experimental Setup
This work utilizes two different data sets. The first one is a set of unique linear
network topologies with n ∈ {2, ..., 7} switches, m ∈ {5, 10, 15, ..., 40} sensors, and
one controller per switch. This results in a total of 48 different network topologies.
As each sensor communicates with exactly one controller in a bidirectional manner,
the number of streams in the system is defined as |S| = 2 ·m · n. For each network
topology, the data set includes a large number of different scenarios with varying
application profiles for the streams (cf. Table 3.2).

For the training, a subset of 24 network topologies was selected, hereafter referred
to as training set. Networks with a small number of streams usually have an initial
network capacity that is already optimal without additional configuration. Such
networks, particularly the ones with n ∈ {5, 10, 15} sensors per switch, were not
included in the training set.

4.1. Training and Experimental Setup

For the evaluation, another subset of the data set was selected. This set, hereafter
referred to as validation set, consists of 400 scenarios that were randomly chosen from
the data set. Although stream properties vary between training and evaluation, the
validation set consists of network topologies on which the agent is also trained on.

Therefore, this work utilizes a second data set, hereafter referred to as test set.
This set consists of linear network topologies on which the agent is not explicitly
trained on and which generally are of larger size compared to the ones used for
training. More precisely, the test set includes linear networks with n ∈ {3, ..., 9}
switches, m ∈ {10, 11, 12, ..., 60} sensors, and one controller per switch. On average,
this results in much more complex network environments in which the distance
between the total number of streams and the actual network capacity is expected
to be much larger. Evaluating on the test set not only accounts for overfitting to
the training data, but also indicates if the model is able to generalize beyond the
network topologies it has been trained on.

An issue that was identified in early phases of this work is the reproducibility of
results. Despite the deterministic nature of the network environment, the overall
training environment of the agent is still non-deterministic due to different factors.
More precisely, the following sources of non-determinism were identified:

• Initialization of the DNN parameters
• Order of network topologies chosen from the training set
• Order of scenarios for each network topology
• Order of scenarios chosen from the validation set
• Choice of actions when following ε-greedy exploration (DQN only)
• Batches of samples for training the Q-Network (DQN only)

This leads to results that are generally not reproducible, even when using identical
hyperparameters. To address this issue, deterministic random seeds were used for
every source of non-determinism in the training environment.

Furthermore, it was observed that, using the same hyperparameters, a different
random seed can lead to variations in the results. In order to obtain more robust
results, each time, three models were trained in parallel using three different random
seeds. The results were then calculated as the mean of all three results, which
accounts for possible variations that can not be attributed to a variation of the
hyperparameters.

37

4.2. Evaluation of Deep Q-Network

4.2 Evaluation of Deep Q-Network
The first method to be evaluated was DQN. Section 3.3 covered the implementation
of DQN in great detail. This involved a number of hyperparameters of which some
require further examination:

A) Epochs (epochs ∈ N).
This is the number of actions used for the early stopping mechanism. It
serves both as a minimum number of actions and as the number of additional
actions granted to the agent. The maximum length of an episode is defined as
10 · epochs. This reduces the configuration of the early stopping mechanism to
a single hyperparameter.

B) Episodes (episodes ∈ N).
This is the number of episodes, i.e., the number of scenarios the agent is trained
on each network topology of the training set.

C) Learning rate (α ∈ [0, 1]).
This value determines to which extent the Q-Network parameters are adjusted
at each time step.

D) Discount factor (γ ∈ [0, 1]).
This value discounts future rewards and gives the agent an incentive to opti-
mize the network capacity in as little time as possible.

E) Optimizer (opt ∈ {Adam,RMSProp}).
This determines which optimizer is used for the gradient descent step.

F) Hidden nodes (nodes ∈ N).
This specifies the size of the hidden layers of the Q-Network. In order to reduce
the number of hyperparameters, for now, nodes is used for both hidden layers.

G) Target update rate (target_update ∈ N).
This determines the number of time steps after which the target network is
synchronized with the online network.

H) Batch size (batch_size ∈ N).
This determines the size of the sample batch used for training the Q-Network.

It is obvious that the number of hyperparameters could have been further increased,
e.g., by differentiating the size of the two hidden layers, using other activation func-
tions than ReLU or other loss functions than MSE. However, the number of factors
exponentially increases the number of possible configurations and was therefore re-
duced to the ones that were expected to have the greatest effect on the results.

In order to determine the effect of the eight hyperparameters on the results, an
experiment was conducted. The first approach that comes to mind is to study
each factor separately while holding the others constant. However, when studying a
number of eight factors, this is neither sufficient nor was it manageable in the time
frame of this work.

38

4.2. Evaluation of Deep Q-Network

Instead, a factorial design approach (Montgomery 2013) was used, where two discrete
levels are specified for each individual factor. More precisely, for each factor there
is one high level value, denoted as “+”, and one low level value, denoted as “−”.
Table 4.1 shows the levels for each of the eight hyperparameters A to H, which were
not expected to be optimal, but still chosen reasonably with respect to the network
environment.

Table 4.1. High level and low level values for the eight DQN hyperparameters.

A B C D E F G H

+ 16 200 0.01 0.99 RMSProp 100 200 100

− 4 20 0.001 0.8 Adam 40 50 25

The factorial design determines the effect of each individual factor on the results as
well as the interdependence of effects, often referred to as interactions. Ideally, every
possible combination of factors is studied in a full factorial design. Although the
range of values for each factor is reduced to two discrete levels, a full factorial design
involving eight factors still requires 28 = 256 runs. This was, again, not manageable
in the time frame of this work.

Instead, this work followed a fractional factorial design approach, where a subset
of the full factorial design was chosen. (Montgomery 2013) states that, in a full
factorial experiment involving a number of ≥ 6 factors, only a small proportion of
the factors have significant effects on the results.

In a fractional factorial design, some of the effects or interactions are confounded,
which means that they cannot be estimated independently of each other. It is
desired for the fractional design to have the highest possible resolution. The design
resolution determines the ability to separate main effects and low-order interactions
from each other. The fractional factorial design used for the DQN experiment was a
28−4

IV factorial design (Myers et al. 2016). As it is a resolution IV design, main effects
are confounded by two-factor interactions and two-factor interactions are aliased
with each other (Montgomery 2013). The 28−4

IV design allows for studying a number
of eight factors with only 24 = 16 runs.

Table 4.2 shows the design matrix of the selected factorial design. The matrix
includes the levels of the eight factors for each of the 16 runs. The experiment
studied all combinations of the factors A to D, while the other four factors were
represented by aliases E = ±BCD, F = ±ACD, G = ±ABC and H = ±ABD.
The table includes the results for each run on both the validation set and the test
set. The results correspond to the maximum percentage increase in network capacity
from an initial baseline using the specified levels for the hyperparameters.

39

4.2. Evaluation of Deep Q-Network

Table 4.2. Design matrix of the selected 28−4
IV fractional factorial design adopted

from (Myers et al. 2016, Table 4.13). The results on both data sets correspond to
the maximum percentage increase in network capacity from an initial baseline.

Run A B C D E F G H Val. Test
1 + + + + + + + + 2.117 % 1.608 %
2 + + + + − − − − 1.792 % 1.340 %
3 + + − − + + − − 1.655 % 1.403 %
4 + + − − − − + + 2.117 % 1.608 %
5 + − + − + − + − 2.117 % 1.608 %
6 + − + − − + − + 2.117 % 1.608 %
7 + − − + + − − + 0.899 % 0.789 %
8 + − − + − + + − 1.661 % 1.268 %
9 − + + + + + + + 0.759 % 0.541 %
10 − + + − + − − − 0.000 % 0.003 %
11 − + − + − − + − 0.023 % 0.130 %
12 − + − − − + − + 0.838 % 0.702 %
13 − − + + − − − + 0.775 % 0.628 %
14 − − + − − + + − 0.779 % 0.589 %
15 − − − + + + − − 0.121 % 0.245 %
16 − − − − + − + + 0.031 % 0.145 %

For an experiment involving k runs, Equation 4.1 calculates the effect eZ of a factor
Z on the results when switching from low level value to high level value. sZ(i) is
the sign of the factor in run i and R(i) is the corresponding result of the run.

eZ =
1

2k−1

2k∑
i=1

sZ(i) ·R(i) (4.1)

For DQN, Figure 4.1 shows the calculated effects of the factors A to H on the
maximum network capacity and the 95% confidence intervals based on the validation
set and the test set. The effects have been calculated according to Equation 4.1 using
the results of all k = 16 runs in Table 4.2. While negative values indicate a negative
effect when switching from low level value to high level value, the value itself in
comparison to the other values indicates the significance of the factor.

The figure indicates that the configuration of the early stopping mechanism (A)
has the most significant effect of the results, followed by the learning rate (C), the
choice of optimizer (E), and size of the hidden layers (F). While most of the factors
improve the results when switching from low level to high level value, this is not
true for the discount factor (D) and the optimizer (E).

40

4.2. Evaluation of Deep Q-Network

Factors

Eff
ec

t
on

ne
tw

or
k

ca
pa

ci
ty

A B C D E F G H
-0.50%

-0.25%

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50% Validation set
Test set

Figure 4.1. Mean effects and 95% confidence intervals for the eight factors A to H

based on the results on the validation set and the test set.

Because of the significance of the early stopping configuration, a second experiment
was conducted in order to identify an optimal value for the epochs hyperparameter.
As the results indicated that a value epochs > 4 has a positive effect on the results,
five different values (epochs ∈ {10, 12, 14, 16, 18}) were studied in the experiment.
Figure 4.2 shows the results on the validation set and the test set when using the five
different values for early stopping. The results, again, correspond to the percentage
increase in network capacity from an initial baseline. The figure reveals that 14
epochs is the best choice for the configuration of the early stopping mechanism.

10 11 12 13 14 15 16 17 18

Number of epochs

0.3%

0.4%

0.5%

0.6%

0.7%

N
et
w
or
k
ca
pa
ci
ty Validation set

Test set

Figure 4.2. Results of the experiment on the validation set and the test set using
10, 12, 14, 16 and 18 epochs for the configuration of the early stopping mechanism.

41

4.2. Evaluation of Deep Q-Network

In the next step, hyperparameters B to H were optimized in a way that maximizes
the network capacities. For the number of episodes, 50 was chosen as a trade-off
between the number of samples and a reasonable training time. As the agent was
trained on a set of 24 different network topologies, episodes = 50 and epochs = 14

made for a total number of 1200 episodes and a minimum number of 16800 training
samples, i.e., observations for the agent.

Figure 4.1 shows that the learning rate has the second most significant effect on the
results and that α > 0.001 increased the effect on the network capacity. Therefore,
three values (α ∈ {0.01, 0.025, 0.05}) were tested and α = 0.05 led to the best results.
The discount factor, on the other hand, only had a minor effect on the results. Three
values (γ ∈ {0.9, 0.8, 0.75}) were tested and γ = 0.8 was chosen as the best one. For
the gradient descent step, opt = Adam was chosen as the use of RMSProp had a
negative effect on the results.

For the size of the hidden layers, Figure 4.1 indicates a positive effect of a value
nodes > 40. (Heaton 2017) states that the number of hidden neurons can be chosen
with respect to the size of the input layer and output layer. As the size of the state
representation is 76, two values 64 and 72 were chosen for testing. Moreover, the size
of the second hidden layer was tested using 100% and 90% the size of the first hidden
layer, respectively. Using a smaller size for the second hidden layer was expected
to reduce overfitting as it enforces a further abstraction of the state representation.
This results in four values (nodes ∈ {(64, 64), (64, 58), (72, 72), (72, 65)}) to test, of
which nodes = (72, 65) led to the best results.

Ultimately, Figure 4.1 shows that target_update and batch_size only had a minor
positive effect on the results when using the higher level value, respectively. To keep
things simple, the high level values target_update = 200 and batch_size = 100 were
used for both hyperparameters.
In summary, the following hyperparameters were used for training the DQN model:

• σ = 24

• ε0 = 1.0

• εmin = 0.1

• εdec ≈ 0.001

• epochs = 14

• episodes = 50

• α = 0.05

• γ = 0.8

• opt = Adam
• nodes = (72, 65)

• target_update = 200

• batch_size = 100

The model was evaluated on a number of 400 different scenarios from the validation
set and the test set, respectively. It achieved an average maximum network capacity
of 95.44% on the validation set and 87.05% on the test set.

42

4.3. Evaluation of Actor-Critic

4.3 Evaluation of Actor-Critic
The second model to be evaluated on both data sets was Actor-Critic. Section 3.4
covered the implementation details for Actor-Critic, which involved less tunable hy-
perparameters. More precisely, the Actor-Critic hyperparameters A to F correspond
to the ones of DQN while G and H are not required as Actor-Critic utilizes neither
a target network nor batch sampling.

Overall, this section closely follows Section 4.2. In the first step, an experiment
was conducted in order to determine the effect of the hyperparameters A to F on
the results of the Actor-Critic. With a number of 6 factors, a full factorial design
stil requires a number of 26 = 64 runs. Therefore, again, a fractional factorial design
approach was followed in order to reduce the size of the experiment.

The DQN experiment proved 16 runs to be reasonable with respect to the time
frame of this work. Therefore, a 26−2

IV factorial design (Myers et al. 2016) was chosen
for Actor-Critic. Again, this is a resolution IV design which requires 16 runs in order
to study a number of six factors. For factors A to D, all combinations are studied
in the experiment while E and F are aliases with E = ±ABC and F = ±BCD.

As with DQN, two discrete levels were specified for each of the six factors as
shown in Table 4.3. Due to the fact that Actor-Critic is an on-policy method and
was expected to be less sample efficient and more sensitive to the choice of hyper-
parameters, some low level and high level values differ from the ones used for DQN.
Also, since the DQN experiment showed that a low number of early stopping epochs
had a significant negative effect on the results, the low level value was increased for
the Actor-Critic experiment.

Table 4.3. High and low value levels for the six Actor-Critic hyperparameters.

A B C D E F

epochs episodes α γ opt nodes

+ 20 200 0.01 0.99 RMSProp 100

− 10 40 0.0001 0.8 Adam 40

Table 4.4 shows the design matrix for the 26−2
IV fractional design involving six factors

and 16 runs. The table includes the results for every run on the validation set and
the test set. Again, the results for each run correspond to the maximum percentage
increase in network capacity from an initial baseline.

43

4.3. Evaluation of Actor-Critic

Table 4.4. Design matrix of the selected 26−2
IV fractional factorial design adopted

from (Myers et al. 2016, Table 4.13) along with the results for both data sets.

Run A B C D E F Val. Test
1 + + + + + + 2.094 % 1.530 %
2 + + + + − − 2.032 % 1.518 %
3 + + − − − + 1.639 % 1.301 %
4 + + − − + − 0.183 % 0.404 %
5 + − + − − + 2.443 % 1.759 %
6 + − + − + − 2.187 % 1.625 %
7 + − − + + + 1.699 % 1.412 %
8 + − − + − − 0.801 % 0.738 %
9 − + + + − + 2.005 % 1.410 %
10 − + + − + − 2.245 % 1.689 %
11 − + − + + − 0.464 % 0.658 %
12 − + − − − + 0.855 % 0.696 %
13 − − + + + − 2.151 % 1.658 %
14 − − + − − + 2.014 % 1.454 %
15 − − − + − + 1.699 % 1.358 %
16 − − − − + − 0.464 % 0.658 %

As with DQN, Equation 4.1 was utilized in order to calculate the effects of the
factors A to F on the maximum network capacity based on the validation set and
the test set. This is shown in Figure 4.3 which resembles Figure 4.1 from the DQN
experiment and also includes the 95% confidence intervals. The figure emphasizes
that for Actor-Critic the learning rate (C) and the number of hidden nodes (F) had
the most significant positive effect on the results. The number of episodes (B) and
the use of the RMSProp optimizer (E) had a negative effect on the results.

Factors

Eff
ec
t
on
ne
tw
or
k
ca
pa
ci
ty

A B C D E F
-0.50%

-0.25%

0.00%

0.25%

0.50%

0.75%

1.00%

1.25% Validation set
Test set

Figure 4.3. Mean effects and 95% confidence intervals of the six factors A to F

based on the results on the validation set and the test set.

44

4.4. Comparison to Supervised Learning

The experiment concluded that the learning rate requires careful consideration and
that the effect of the early stopping mechanism was much smaller than with DQN,
which can be attributed to the modified levels. A number of epochs = 14 proved to
work with DQN and therefore, the configuration was maintained for Actor-Critic.

As the method cannot re-use samples from a memory, for the number of training
episodes, a higher value of episodes = 70 was chosen in order to ensure that there
were enough observations for the agent to be trained on. For the learning rate, three
values (α ∈ {0.005, 0.01, 0.025}) were tested and α = 0.025 proved to be a reasonable
choice. For the discount factor, two values (γ ∈ {0.85, 0.9}) were tested and γ = 0.9

led to better results. As with DQN, the hidden layers of the network were tested
with 64 and 72 nodes as well as 100% and 90% the number of nodes for the second
hidden layer, respectively. Again, nodes = (72, 65) led to the best results. For the
gradient descent step, Figure 4.3 shows that RMSProp, again, had a negative effect
on the results. Therefore, opt = Adam was also used for Actor-Critic.
In summary, the following hyperparameters were used for training the final model:

• σ = 24

• α = 0.025

• γ = 0.9

• opt = Adam

• epochs = 14

• episodes = 70

• nodes = (72, 65)

The model was evaluated on a number of 400 different scenarios from the validation
set and the test set, respectively. It achieved an average maximum network capacity
of 95.43% on the validation set and 86.38% on the test set. Compared to DQN,
this is a slightly lower result.

4.4 Comparison to Supervised Learning
Sections 4.2 and 4.3 presented the absolute results for DQN and Actor-Critic. The
significance of the results is debatable, because there was no way to determine the
distance between the resulting network capacties and the actual maximum capaci-
ties. Especially for the large network topologies of the test set, it is expected that
ground truth, on average, is much less than 100 % network capacity.

In order to assess the results of both DRL methods, this section presents a compar-
ison between DRL, ground truth that has been computed by a brute force algorithm,
and two supervised ML models that have been trained on the ground truth data.
The ground truth as well as the ML results have been made available for the purpose
of this work.

45

4.4. Comparison to Supervised Learning

The brute force algorithm basically uses the occurring per-hop requirements of all
streams (cf. Equation 3.4) and identifies an optimal SP configuration by trying out
all four-value combinations of elements δ ∈ ∆. For the linear network scenarios used
in the data sets of this work, the algorithm always identifies an optimal configuration
that leads to the maximum network capacity.

This ground truth data could not only be utilized to assess the results of the DRL
models trained in this work, but has also been used to train two different supervised
ML models. The first model has been trained using random forests in order to
predict the SP configuration for a given scenario. The model solves a classification
task, which means that it outputs four discrete values from a range of 20 different
values. This output corresponds to the configuration C. The second model has been
trained using a DNN with three fully-connected hidden layers. The model solves
a regression task, which means that it predicts values of continuous range, which,
again, correspond to the configuration C. Hereafter, the two ML methods are also
referred to as classification and regression, respectively.

Table 4.5. Ground truth and results of the DRL and supervised ML methods on
the validation set and the test set in descending order. The results correspond to
average network capacity.

Ground Truth DQN Actor-Critic Regression Classification

Val. 97.28 % 95.44 % 95.43 % 92.79 % 92.10 %
Test 89.97 % 87.05 % 86.38 % 84.84 % 84.45 %

Table 4.5 shows the ground truth along with the resulting average network capacities
for the DRL methods and the ML methods on the validation set and the test set. For
the test set, the ground truth confirmed the assumption that the actual maximum
capacity of the large networks is much less than 100 % on average.

The results show that the DRL methods, on average, outperformed both ML
methods on the validation set and the more challenging test set. DRL was able to
achieve network capacities that are fairly close to the maximum network capacities.

As the results were promising, it was further investigated how the size of the
networks affected the performance of the DRL and ML models and which models
were able to generalize beyond the network topologies they have been trained on.
Therefore, Figure 4.4 groups the results on the validation set by the number of
streams in the system, which is determined by the number of sensors and is closely
related to the size of the network. The validation set includes scenarios with up
to 560 streams (280 sensors). The results are shown for both DRL and both ML
methods and correspond to the average network capacity relative to the ground
truth for the validation set along with the 95% confidence intervals.

46

4.4. Comparison to Supervised Learning

Number of streams in the system

0 - 200 201 - 400 401 +
75%

80%

85%

90%

95%

100%

N
et

w
or

k
ca

pa
ci

ty

Classification
Regression

DQN
Actor-Critic

Figure 4.4. Results for DRL and ML on the validation set relative to the ground
truth along with the 95% confidence intervals. Results are grouped by the number
of streams in the system which is closely related to the size of the network.

The figure shows that for small scenarios up to at least 200 streams, both DRL
models provided optimal results. Only for medium-sized scenarios with more than
400 streams in the system, supervised ML slightly outperformed DRL.

0 - 200 201 - 400 401 - 600 601 - 800 801 +

Number of streams in the system

75%

80%

85%

90%

95%

100%

N
et
w
or
k
ca
pa
ci
ty

Classification
Regression

DQN
Actor-Critic

Figure 4.5. Results for DRL and ML on the test set relative to the ground truth
along with the 95% confidence intervals. Results are also grouped by the number of
streams in the system.

47

4.5. Variations on Priority Classes

Figure 4.5 resembles Figure 4.4 and shows the results for both DRL and both super-
vised ML methods on the test set grouped by the number of streams in the system.
The test set includes much larger scenarios with up to 1080 streams (540 sensors).
The results, again, correspond to average network capacities relative to the ground
truth for the test set and include 95% confidence intervals.

The figure confirms that DRL provided optimal results for small scenarios with
up to at least 200 streams. It also reveals that the performance of Actor-Critic
significantly dropped with the number of streams and the size of the network. This
was not obvious in the results in Table 4.5, because most of the scenarios included
in the test set are small or medium-sized. Lastly, the figure shows that DQN not
only outperformed Actor-Critic on large scenarios, but also outperformed both ML
methods on the test set. This proves that the DQN model is able to generalize well
beyond the network topologies it has been trained on.

In summary, the results presented in this section prove that this work success-
fully applied DRL to the problem of SP configuration for linear industrial networks.
DRL provided optimal results for small networks and was able to outperform two
supervised ML models on small and medium-sized scenarios. Particularly the DQN
model was able to outperform all other tested methods on the challenging test set
including network scenarios with up to 1080 streams. Although Actor-Critic did not
perform as well on large network scenarios, it is expected that further fine-tuning of
the training environment and the hyperparameters can improve the results.

4.5 Variations on Priority Classes
This work successfully demonstrated that DRL can outperform supervised ML on
the task of SP configuration for linear industrial networks. Besides the solid results,
a major advantage of DRL methods over supervised ML is the level of flexibility.

Supervised learning requires ground truth data for the training, which often has to
be generated using methods like brute force or linear programming. Generally, this is
not only time-consuming, but the ground truth also loses its validity if a fundamental
change is introduced to the environment. DRL, on the other hand, does not depend
on ground truth data and can easily adjust to a changing environment.

This section completes this work by demonstrating the flexibility of the DRL
approach. For this purpose, it introduces a variation to the number of priority
classes used in the industrial network environment. Previously, both DQN and
Actor-Critic have been trained on an environment that utilizes four priority classes
for SP transmission selection. This also applies to the brute force algorithm and the
ML methods introduced in Section 4.4.

48

4.5. Variations on Priority Classes

Utilizing for example only three priority classes for time-sensitive traffic is a fun-
damental change to the dynamics of the environment. For ML, this requires the
generation of new ground truth along with various adjustments to the ML method.
For DRL, on the other hand, the change only requires an adjustment to the action
space and to the output layer of the Q-Network or Actor-Critic network, respectively.

This provided the opportunity to study the performance of DQN and Actor-Critic
when utilizing only two or three priority classes for SP transmission selection. To
account for the smaller size of the action space, the number of epochs for early
stopping was reduced to 12 for the training with two priority classes. Apart from
that, all hyperparameters were chosen according to Sections 4.2 and 4.3, respectively.

Figure 4.6 shows the results of DQN and Actor-Critic on the validation set (a)
and the test set (b) when utilizing four, three and two classes for SP transmission
selection, respectively. For environments utilizing three or two classes, there were
no ground truth data available. Therefore, results in the figure correspond to the
average network capacity relative to the total number of streams in the system, not
to the ground truth. The figure also includes 95% confidence intervals.

4 classes 3 classes 2 classes
65%

70%

75%

80%

85%

90%

95%

100%

65%

70%

75%

80%

85%

90%

95%

100%

N
et
w
or
k
ca
pa
ci
ty

4 classes 3 classes 2 classes
Number of priority classes

(a) Validation set
Number of priority classes

(b) Test set

DQN
Actor-Critic

DQN
Actor-Critic

Figure 4.6. Average network capacities for DQN and Actor-Critic on the validation
set (a) and the test set (b) when utilizing four, three, or two priority classes

The figure shows that, even when utilizing only two priority classes, DRL still en-
sured network capacities above 70 %. It is also worth noting that Actor-Critic was
able to outperform DQN on both data sets when only two priority classes were used.

Overall, this further emphasizes the potential of DRL methods for the configu-
ration of TSN in dynamic industrial networks. Although this work only studied
the configuration of SP, the results of Section 4.5 indicate that DRL can also be
applied to network environments with different dynamics. It is expected that this
also applies to different configuration tasks beyond basic SP transmission selection.

49

5
Conclusion

This work studied TSN configuration for dynamic industrial networks utilizing two
different DRL methods. For this purpose, a RL environment was proposed for simu-
lation and configuration of industrial networks using SP transmission selection. Two
fundamentally different DRL methods, DQN and Actor-Critic, were implemented
and applied to the SP configuration problem.

Evaluating the two models on two data sets of different complexity showed that
DQN and Actor-Critic were able to achieve optimal results on small networks and
were able to outperform supervised ML on small and medium networks with up to
400 streams. On networks of larger size, DQN was still able to outperform Actor-
Critic and the supervised classification model. In absolute numbers, the DRL models
trained in this work outperformed supervised ML on both data sets and provided
results that were much closer to the ground truth.

Ultimately, this work investigated the flexibility of the DRL approach and demon-
strated that DRL not only provides reasonable results on the task of SP configura-
tion, but also adapts to changing dynamics of its environment. For this purpose,
DQN and Actor-Critic were trained on two environments that utilized only two and
three priority classes for time-sensitive traffic, respectively. While supervised ML
would have required the generation of new ground truth data for each of the en-
vironments, DRL adapted to the changes and proved to be applicable to network
environments with different dynamics.

Besides the comparison between DRL and supervised ML, this work aimed to
study the differences between on-policy and off-policy learning with regard to im-
plementation and application to the SP configuration problem. For this purpose,
DQN and Actor-Critic were chosen to represent the two fundamentally different
ways of learning. This work utilized the baseline implementations adopted from
(Mnih et al. 2013) and (Sutton et al. 2018), respectively. Yet, various enhancements
to the baseline implementations have been proposed in the last years.

Conclusion

DQN is based on Q-Learning which (van Hasselt 2010) proved to suffer from an
overestimation bias due to the use of the max-operator in Equation 2.3. To address
this issue, van Hasselt proposed Double Q-Learning which was later implemented
as Double DQN (DDQN, van Hasselt et al. 2015). Regarding the architecture of
the Q-Network, (Wang et al. 2015) proposed a Dueling DQN architecture with two
streams of computation to approximate both a state-value and an action-value which
corresponds to the advantage of each action over the other actions in the current
state. The approach bears a resemblance to the Actor-Critic architecture used in
this work and was also shown to be successfully combinable with DDQN. Regarding
sample-efficiency, the baseline DQN implementation in this work uniformly samples
batches from memory in order to train the Q-Network. (Schaul et al. 2015) proposed
a method of prioritized experience replay which samples observations from which the
agent can learn the most with higher probability. The combination of Dueling DQN,
DDQN, and prioritized sampling achieved state-of-the-art results on the Atari 2600
benchmark (Bellemare et al. 2013).

There are also various enhancements to the baseline Actor-Critic. (Mnih et al.
2016) proposed the Asynchronous Advantage Actor-Critic (A3C) which approxi-
mates a policy as well as the advantage of each action over the other actions in the
current state. It also enables parallelization and drastically reduces training time
and hardware requirements. Proximal Policy Optimization (PPO, Schulman et al.
2017) provides increased stability to the policy gradient method by using multiple
epochs of gradient ascent to perform an adjustment to the policy. Deep Determinis-
tic Policy Gradient (DDPG, Lillicrap et al. 2015) combines the advantages of DQN
and Actor-Critic when using a continuous action space. Although this work pro-
posed an environment with a discrete action space, PPO or DDPG could be used to
adjust the guaranteed per-hop latency of the priority classes in a continuous range
instead of using steps of 10µs.

Ultimately, (Hessel et al. 2017) demonstrated that a combination of multiple tech-
niques and enhancements to the baseline methods can lead to significant improve-
ments over the individual results. It is expected that the utilization of more advanced
methods based on DQN and Actor-Critic can further improve the results on the chal-
lenging SP configuration task and can also be applied to other configuration tasks
in the domain of TSN. This was out of scope for this work but offers great potential
for further research.

51

List of Figures

2.1 Structure of an Ethernet frame as specified in (IEEE 802.3 2018). . . 4
2.2 Categorization of TSN into four key components (cf. Farkas 2018). . 6
2.3 Frame processing steps of a switch in a network with mixed traf-

fic types. An exemplary source of best-effort traffic is a monitoring
dashboard which is accessed via a browser using HTTP. 7

2.4 DNN architecture with one hidden layer and weighted connections
between the neurons, which is indicated by different levels of opacity. 8

2.5 Agent interacting with its environment. 10
2.6 DRL using a Q-Network for Q-value approximation. A policy is de-

rived from the Q-values by choosing the action with the highest value
in the current state. 15

3.1 Linear network topology with one controller and multiple sensors per
switch. Blue arrows indicate the bidirectional communication be-
tween endpoints. 23

3.2 Exemplary sequence of actions and the resulting adjustments in con-
figuration denoted as ∆C. 26

3.3 Interaction with the environment built upon the framework. 27
3.4 Decreasing exploration rate without considering the sequence of sce-

narios (left) and dynamic exploration with decreasing initial explo-
ration for each network topology and additional reduction of ε with
each action (right). Vertical lines indicate different network topolo-
gies the agent is trained on. 33

3.5 Basic Actor-Critic network with shared architecture and split output
layer for actor and critic. 34

4.1 Mean effects and 95% confidence intervals for the eight factors A to
H based on the results on the validation set and the test set. 41

4.2 Results of the experiment on the validation set and the test set using
10, 12, 14, 16 and 18 epochs for the configuration of the early stopping
mechanism. 41

List of Figures

4.3 Mean effects and 95% confidence intervals of the six factors A to F

based on the results on the validation set and the test set. 44
4.4 Results for DRL and ML on the validation set relative to the ground

truth along with the 95% confidence intervals. Results are grouped
by the number of streams in the system which is closely related to
the size of the network. 47

4.5 Results for DRL and ML on the test set relative to the ground truth
along with the 95% confidence intervals. Results are also grouped by
the number of streams in the system. 47

4.6 Average network capacities for DQN and Actor-Critic on the valida-
tion set (a) and the test set (b) when utilizing four, three, or two
priority classes . 49

53

List of Tables

3.1 Mathematical symbols used to formalize framework and environment 22
3.2 Available application profiles for the streams. 24
3.3 Exemplary priority assignment for streams with different profile and

path length under configuration C. Priority p(s1) is undefined due to
the fact that there is no priority class that meets the requirements of
s1. 25

3.4 Representation of the current network state as a vector of 76 features. 29

4.1 High level and low level values for the eight DQN hyperparameters. . 39
4.2 Design matrix of the selected 28−4

IV fractional factorial design adopted
from (Myers et al. 2016, Table 4.13). The results on both data sets
correspond to the maximum percentage increase in network capacity
from an initial baseline. 40

4.3 High and low value levels for the six Actor-Critic hyperparameters. . 43
4.4 Design matrix of the selected 26−2

IV fractional factorial design adopted
from (Myers et al. 2016, Table 4.13) along with the results for both
data sets. 44

4.5 Ground truth and results of the DRL and supervised ML methods on
the validation set and the test set in descending order. The results
correspond to average network capacity. 46

Bibliography

Technical Reports and Standards

Sing, J., & Soh, B. (2005). TCP New Vegas: Improving the Performance of TCP
Vegas Over High Latency Links, In Fourth IEEE International Symposium
on Network Computing and Applications.

IEEE 1588. (2008). IEEE Standard for a Precision Clock Synchronization Proto-
col for Networked Measurement and Control Systems. IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002).

IEEE 802.1Qav. (2009). IEEE Standard for Local and Metropolitan Area Networks
– Virtual Bridged Local Area Networks – Amendment 12: Forwarding and
Queuing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-
2009 (Amendment to IEEE Std 802.1Q-2005).

Henderson, T., Floyd, S., Gurtov, A., & Nishida, Y. (2012). The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm (RFC No. 6582). Internet Engineering
Task Force (IETF). https://tools.ietf.org/html/rfc4180

IEEE 802.1Qbv. (2016). IEEE Standard for Local and Metropolitan Area Networks
– Bridges and Bridged Networks – Amendment 25: Enhancements for Sched-
uled Traffic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-
2014)).

Specht, J., & Samii, S. (2016). Urgency-Based Scheduler for Time-Sensitive Switched
Ethernet Networks, In 2016 28th Euromicro Conference on Real-Time Sys-
tems (ECRTS).

IEEE 802.1CB. (2017). IEEE Standard for Local and Metropolitan Area Networks –
Frame Replication and Elimination for Reliability. IEEE Std 802.1CB-2017.

IEEE 802.1Qci. (2017). IEEE Standard for Local and Metropolitan Area Networks
– Bridges and Bridged Networks – Amendment 28: Per-Stream Filtering and
Policing. IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014)).

Farkas, J. (2018). IEEE 802.1 Time-Sensitive Networking (TSN) Task Group (TG)
Overview.

https://tools.ietf.org/html/rfc4180

Articles and Books

IEEE 802.1Q. (2018). IEEE Standard for Local and Metropolitan Area Network –
Bridges and Bridged Networks. IEEE Std 802.1Q-2018 (Revision of IEEE
Std 802.1Q-2014).

IEEE 802.1Qdd. (2018). IEEE Standard for Local and Metropolitan Area Networks –
Bridges and Bridged Networks – Amendment: Resource Allocation Protocol.

IEEE 802.3. (2018). IEEE Standard for Ethernet. IEEE Std 802.3-2018 (Revision
of IEEE Std 802.3-2015).

Grigorjew, A., Metzger, F., Hoßfeld, T., Specht, J., Götz, F.-J., Schmitt, J., & Chen,
F. (2020). Technical Report on Bridge-Local Guaranteed Latency with Strict
Priority Scheduling (tech. rep.). Institut für Informatik.

IEEE 802.1Qcr. (2020). IEEE Draft Standard for Local and Metropolitan Area Net-
works – Bridges and Bridged Networks – Amendment: Asynchronous Traffic
Shaping. IEEE P802.1Qcr/D2.1, February 2020.

Articles and Books

Bellman, R. (1957). A Markovian Decision Process. Indiana Univ. Math. J., 6, 679–
684.

Jordan, M. I. (1986). Serial order: a parallel distributed processing approach. Tech-
nical report, June 1985-March 1986.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning Representations
by Back-Propagating Errors. In Neurocomputing: Foundations of Research
(pp. 696–699). Cambridge, MA, USA, MIT Press.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems (MCSS), 2(4), 303–314.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4, 251–257.

Watkins, C., & Dayan, P. (1992). Technical Note: Q-Learning. Machine Learning,
8, 279–292. https://doi.org/10.1007/BF00992698

White, D., Sofge, D., & Thrun, S. (1992). The Role Of Exploration In Learning
Control.

Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning. Mach. Learn., 8(3–4), 229–256. https :
//doi.org/10.1007/BF00992696

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6(6), 861–867. https ://doi .org/”https ://doi .
org/10.1016/S0893-6080(05)80131-5

Boyan, J. A., & Littman, M. L. (1994). Packet Routing in Dynamically Changing
Networks: A Reinforcement Learning Approach (J. D. Cowan, G. Tesauro,
& J. Alspector, Eds.). In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.),
Advances in Neural Information Processing Systems 6. Morgan-Kaufmann.

56

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/"https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/"https://doi.org/10.1016/S0893-6080(05)80131-5

Articles and Books

LeCun, Y., & Bengio, Y. (1995). Convolutional Networks for Images, Speech, and
Time-Series.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Com-
put., 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Ferrá, H., Lau, K., Leckie, C., & Tang, A. (2003). Applying Reinforcement Learning
to Packet Scheduling in Routers.

Hinton, & Osindero. (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural
computation, 18, 1527–54.

Kalyanakrishnan, S., & Stone, P. (2007). Batch reinforcement learning in a complex
domain. https://doi.org/10.1145/1329125.1329241

van Hasselt, H. (2010). Double Q-learning (J. D. Lafferty, C. K. I. Williams, J.
Shawe-Taylor, R. S. Zemel, & A. Culotta, Eds.), 2613–2621.

Hinton, Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Van-
houcke, V., Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared Views
of Four Research Groups. IEEE Signal Processing Magazine, 29(6), 82–97.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks, In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume 1,
Lake Tahoe, Nevada, Curran Associates Inc.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5—RMSProp: Divide the gradient by
a running average of its recent magnitude.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The Arcade Learn-
ing Environment: An Evaluation Platform for General Agents. Journal of Ar-
tificial Intelligence Research, 47, 253–279. https://doi.org/10.1613/jair.3912

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. A. (2013). Playing Atari with Deep Reinforcement Learning.
CoRR, abs/1312.5602arXiv 1312.5602. http://arxiv.org/abs/1312.5602

Montgomery, D. C. (2013). Design and Analysis of Experiments (8th ed). John Wiley.
Kingma, D., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. Inter-

national Conference on Learning Representations.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436–44.

https://doi.org/10.1038/nature14539
Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., &

Wierstra, D. (2015). Continuous control with deep reinforcement learning.
CoRR.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized Experience
Replay, arXiv 1511.05952.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-Dimensional
Continuous Control Using Generalized Advantage Estimation.

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement Learning with
Double Q-learning, arXiv 1509.06461.

57

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/1329125.1329241
https://doi.org/10.1613/jair.3912
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14539

Articles and Books

Wang, Z., de Freitas, N., & Lanctot, M. (2015). Dueling Network Architectures
for Deep Reinforcement Learning. CoRR, abs/1511.06581arXiv 1511.06581.
http://arxiv.org/abs/1511.06581

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning [http://www.
deeplearningbook.org]. MIT Press.

Gu, S., Lillicrap, T. P., Sutskever, I., & Levine, S. (2016). Continuous Deep Q-
Learning with Model-based Acceleration. CoRR, arXiv 1603.00748. http://
arxiv.org/abs/1603.00748

Li, W., Zhou, F., Meleis, W., & Chowdhury, K. (2016). Learning-Based and Data-
Driven TCP Design for Memory-Constrained IoT, In 2016 International Con-
ference on Distributed Computing in Sensor Systems (DCOSS).

Lin, S., Akyildiz, I. F., Wang, P., & Luo, M. (2016). QoS-Aware Adaptive Routing in
Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learn-
ing Approach, In 2016 IEEE International Conference on Services Computing
(SCC).

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.,
& Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement
Learning.

Myers, R., Montgomery, D., & Anderson-Cook, C. (2016). Response Surface Method-
ology: Process and Product Optimization Using Designed Experiments (Vol. 705).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.
https://doi.org/10.1038/nature16961

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M.,
Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., … Dean,
J. (2016). Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation, arXiv 1609.08144.

Feki, S., Zarai, F., & Belghith, A. (2017). A Q-learning-based Scheduler Technique
for LTE and LTE-Advanced Network, In WINSYS.

Heaton, J. (2017). The Number of Hidden Layers. Retrieved July 6, 2020, from
https://www.heatonresearch.com/2017/06/01/hidden-layers.html

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., & Silver, D. (2017). Rainbow: Combining
Improvements in Deep Reinforcement Learning, arXiv 1710.02298.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347arXiv 1707.06347.
http://arxiv.org/abs/1707.06347

Stampa, G., Arias, M., Sanchez-Charles, D., Muntés-Mulero, V., & Cabellos, A.
(2017). A Deep-Reinforcement Learning Approach for Software-Defined Net-

58

http://arxiv.org/abs/1511.06581
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1603.00748
https://doi.org/10.1038/nature16961
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
http://arxiv.org/abs/1707.06347

Articles and Books

working Routing Optimization. CoRR, abs/1709.07080arXiv 1709.07080. http:
//arxiv.org/abs/1709.07080

Kim, D., Lee, T., Kim, S., Lee, B., & Youn, H. (2018). Adaptive Packet Scheduling
in IoT Environment Based on Q-learning. Procedia Computer Science, 141,
247–254.

Kong, Y., Zang, H., & Ma, X. (2018). Improving TCP Congestion Control with
Machine Intelligence, In Proceedings of the 2018 Workshop on Network Meets
AI & ML, Budapest, Hungary, Association for Computing Machinery. https:
//doi.org/10.1145/3229543.3229550

Ruffy, F., Przystupa, M., & Beschastnikh, I. (2018). Iroko: A Framework to Proto-
type Reinforcement Learning for Data Center Traffic Control. CoRR, arXiv
1812.09975. http://arxiv.org/abs/1812.09975

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction
(Second). The MIT Press. http : / / incompleteideas . net / book / the - book -
2nd.html

Xu, Z., Tang, J., Meng, J., Zhang, W., Wang, Y., Liu, C. H., & Yang, D. (2018).
Experience-driven Networking: A Deep Reinforcement Learning based Ap-
proach. CoRR, abs/1801.05757arXiv 1801.05757. http : / / arxiv . org / abs /
1801.05757

Jay, N., Rotman, N., Godfrey, B., Schapira, M., & Tamar, A. (2019). A Deep Rein-
forcement Learning Perspective on Internet Congestion Control (K. Chaud-
huri & R. Salakhutdinov, Eds.). In K. Chaudhuri & R. Salakhutdinov (Eds.),
Proceedings of the 36th International Conference on Machine Learning, Long
Beach, California, USA, PMLR.

Kuang, N. L., Leung, C. H. C., & Sung, V. W. K. (2019). Stochastic Reinforcement
Learning. CoRR, abs/1902.04178arXiv 1902.04178. http://arxiv.org/abs/
1902.04178

59

http://arxiv.org/abs/1709.07080
http://arxiv.org/abs/1709.07080
https://doi.org/10.1145/3229543.3229550
https://doi.org/10.1145/3229543.3229550
http://arxiv.org/abs/1812.09975
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://arxiv.org/abs/1801.05757
http://arxiv.org/abs/1801.05757
http://arxiv.org/abs/1902.04178
http://arxiv.org/abs/1902.04178

	Introduction
	Background
	Time-Sensitive-Networking
	Deep Learning
	Deep Reinforcement Learning
	Q-Learning
	Deep Q-Network
	Policy Gradient
	Actor-Critic

	Related Work

	Methodology
	Framework for Network Simulation
	Environment for Reinforcement Learning
	Implementation of Deep Q-Network
	Implementation of Actor-Critic

	Evaluation
	Training and Experimental Setup
	Evaluation of Deep Q-Network
	Evaluation of Actor-Critic
	Comparison to Supervised Learning
	Variations on Priority Classes

	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Technical Reports and Standards
	Articles and Books

